
HAL Id: tel-02446233
https://theses.hal.science/tel-02446233

Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gradual Pattern Extraction from Property Graphs
Faaiz Hussain Shah

To cite this version:
Faaiz Hussain Shah. Gradual Pattern Extraction from Property Graphs. Other [cs.OH]. Université
Montpellier, 2019. English. �NNT : 2019MONTS025�. �tel-02446233�

https://theses.hal.science/tel-02446233
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En Informatique

École doctorale : Information, Structures, Systèmes

Unité de recherche LIRMM

Gradual Pattern Extraction from Property GraphsGradual Pattern Extraction from Property Graphs

Présentée par Faaiz Hussain SHAH
Le 16 juillet 2019

Sous la direction de Prof. Anne LAURENT
et Dr. Arnaud CASTELLTORT

Devant le jury composé de

Carmen Gervet, Professeur, Université de Montpellier Présidente

Ricard Gavalda, Professeur, Universitat Politècnica de Catalunya Rapporteur

Marie-jeanne Lesot, Maître de Conférence HDR, Sorbonne Université Rapporteur

Claire Noy, Maître de Conférence, Université Paul Valéry Examinatrice

Anne Laurent, Professeur, Université de Montpellier Directrice

Arnaud Castelltort, Maître de Conférence, Université de Montpellier Co-directeur

“To my love..............”

Acknowledgements

The journey of PhD thesis is a life changing experience, i must say “a life transformation
experience“. It requires a lot of patience, persistence and perseverance.

To reach at this stage, i really want to render my highest gratitude to Prof. Anne Laurent to
give me this opportunity to work under her supervision. She is a real mentor. She was always
available through emails and meetings whenever i needed guidance. I would also like to thank
Dr. Arnaud Castelltort for his guidance at various phases of thesis and in particular sharing his
expertise in experiments part of thesis.

I would like to thank Prof. Carmen Gervet for presiding the jury and i present my especial
gratitude to Prof. Ricard Gavalda and Dr. Marie-jeanne Lesot for their valuable and explicate
feedback on thesis report.

Finally, I am very much thankful for my family for their support; my mother, my father, my
wife and sweet kids.

Résumé

Les bases de données orientées graphes (NoSQL par exemple) permettent de gérer des
données dans lesquelles les liens sont importants et des requêtes complexes sur ces données à
l’aide d’un environnement dédié offrant un stockage et des traitements spécifiquement desti-
nés à la structure de graphe. Un graphe de propriété dans un environnement NoSQL est alors
vu comme un graphe orienté étiqueté dans lequel les étiquettes des nœuds et les relations sont
des ensembles d’attributs (propriétés) de la forme (clé:valeur). Cela facilite la représentation de
données et de connaissances sous la forme de graphes. De nombreuses applications réelles de
telles bases de données sont actuellement connues dans le monde des réseaux sociaux, mais
aussi des systèmes de recommandation, de la détection de fraudes, du data-journalisme (pour
les panama papers par exemple). De telles structures peuvent cependant être assimilées à des
bases NoSQL semi-structurées dans lesquelles toutes les propriétés ne sont pas présentes par-
tout, ce qui conduit à des valeurs non présentes de manière homogène, soit parce que la valeur
n’est pas connue (l’âge d’une personne par exemple) ou parce qu’elle n’est pas applicable (l’an-
née du service militaire d’une femme par exemple dans un pays et à une époque à laquelle les
femmes ne le faisaient pas). Cela gêne alors les algorithmes d’extraction de connaissance qui
ne sont pas tous robustes aux données manquantes. Des approches ont été proposées pour
remplacer les données manquantes et permettre aux algorithmes d’être appliqués. Cependant,
nous considérons que de telles approches ne sont pas satisfaisantes car elles introduisent un
biais ou même des erreurs quand aucune valeur n’était applicable. Dans nos travaux, nous
nous focalisons sur l’extraction de motifs graduels à partir de telles bases de données. Ces mo-
tifs permettent d’extraire automatiquement les informations corrélées. Une première contri-
bution est alors de définir quels sont les motifs pouvant être extraits à partir de telles bases
de données. Nous devons, dans un deuxième temps, étendre les travaux existant dans la lit-
térature pour traiter les valeurs manquantes dans les bases de données graphe, comme décrit
ci-dessus. L’application de telles méthodes est alors rendue difficile car les propriétés classique-
ment appliquées en fouille de données (anti-monotonie) ne sont plus valides. Nous proposons
donc une nouvelle approche qui est testée sur des données réelles et synthétiques. Une pre-
mière forme de motif est extrait à partir des propriétés des nœdus et est étendue pour prendre
en compte les relations entre nœuds. Enfin, notre approche est étendue au cas des motifs gra-
duels flous afin de mieux prendre en compte la nature imprécise des connaissances présentes
et à extraire. Les expérimentations sur des bases synthétiques ont été menées grâce au déve-
loppement d’un générateur de bases de données de graphes de propriétés synthétiques. Nous
en montrons les résultats en termes de temps calcul et consommation mémoire ainsi qu’en
nombre de motifs générés.

Abstract

Graph databases (NoSQL oriented graph databases) provide the ability to manage highly con-
nected data and complex database queries along with the native graph-storage and processing.
A property graph in a NoSQL graph engine is a labeled directed graph composed of nodes con-
nected through relationships with a set of attributes or properties in the form of (key : value)
pairs. It facilitates to represent the data and knowledge that are in form of graphs. Practical
applications of graph database systems have been seen in social networks, recommendation
systems, fraud detection, and data journalism, as in the case for panama papers. Often, we face
the issue of missing data in such kind of systems. In particular, these semi-structured NoSQL
databases lead to a situation where some attributes (properties) are filled-in while other ones
are not available, either because they exist but are missing (for instance the age of a person that
is unknown) or because they are not applicable for a particular case (for instance the year of
military service for a girl in countries where it is mandatory only for boys). Therefore, some
keys can be provided for some nodes and not for other ones. In such a scenario, when we
want to extract knowledge from these new generation database systems, we face the problem
of missing data that arise need for analyzing them. Some approaches have been proposed to
replace missing values so as to be able to apply data mining techniques. However, we argue
that it is not relevant to consider such approaches so as not to introduce biases or errors. In
our work, we focus on the extraction of gradual patterns from property graphs that provide
end-users with tools for mining correlations in the data when there exist missing values. Our
approach requires first to define gradual patterns in the context of NoSQL property graph and
then to extend existing algorithms so as to treat the missing values, because anti-monotonicity
of the support can not be considered anymore in a simple manner. Thus, we introduce a novel
approach for mining gradual patterns in the presence of missing values and we test it on real
and synthetic data. Further to this work, we present our approach for mining such graphs in
order to extract frequent gradual patterns in the form of “the more/less A1,..., the more/less
An" where Ai are information from the graph, should it be from the nodes or from the rela-
tionships. In order to retrieve more valuable patterns, we consider fuzzy gradual patterns in
the form of “The more/less the A1 is F1,...,the more/less the An is Fn" where Ai are attributes
retrieved from the graph nodes or relationships and Fi are fuzzy descriptions. For this pur-
pose, we introduce the definitions of such concepts, the corresponding method for extracting
the patterns, and the experiments that we have led on synthetic graphs using a graph genera-
tor. We show the results in terms of time utilization, memory consumption and the number of
patterns being generated.

Contents

Acknowledgments iv

Resume vi

Abstract vii

1 Introduction 1

1.1 Introduction . 2

1.2 Problem Statement . 8

1.3 Thesis Outline . 9

2 Related Work 11

2.1 Introduction . 12

2.2 Graph Databases . 12

2.2.1 Neo4j Graph Database . 12

2.2.2 Cypher Query Language . 15

2.3 Property Graphs . 15

2.3.1 Schema-less Nature of Property Graphs . 16

2.3.2 Graph Pattern Matching . 19

xii Contents

2.4 Gradual Pattern Mining . 20

2.4.1 Frequent Pattern Mining . 22

2.4.2 Anti-monotonicity Property . 24

2.4.3 Association Rules and Gradual Dependencies 24

2.4.4 Formal Definition of Gradual Pattern (Itemset) 25

2.4.5 Support Measure for Gradual Pattern . 26

2.4.6 GRITE Algorithm . 27

2.4.7 GRAANK Algorithm . 31

2.5 Fuzzy Gradual Patterns . 32

2.5.1 Fuzzy Logic and Fuzzy Sets . 33

2.5.2 Defining Fuzzy Gradual Patterns . 34

2.6 Handling Missing Values . 36

2.6.1 Handling Missing Data Techniques . 37

2.6.2 Handling Missing Data With Replacement 38

2.6.3 Handling Missing Data Without Replacement 38

2.7 Conclusion . 41

3 Defining Gradual Patterns from Property Graphs 43

3.1 Introduction . 44

3.2 Definitions . 44

3.3 Types of Gradual Patterns in Property Graphs . 48

3.3.1 Intra-Label-Node-Properties . 48

3.3.2 Inter-Node-Label-Properties . 50

3.3.3 Node-Properties with Relationships Count 52

3.3.4 Node-Properties-with-Relationships-Properties 53

3.3.5 Inter-Relationships-Properties . 56

Contents xiii

3.4 Fuzzy Property Graph Gradual Pattern . 58

4 Extracting Gradual Patterns from Property Graphs 61

4.1 Dealing with Missing Values for Mining Gradual Patterns 62

4.2 Support Computation . 65

4.3 Algorithms . 66

4.3.1 Algorithm 1: Mining Property-based Gradual Items 66

4.3.2 Algorithm 2: Mining Property-based Gradual Patterns 68

4.4 Embedding Gradual Patterns Mining within a Graph Database 68

4.4.1 Integrating Features in a Graph Database Engine 68

4.4.2 Integration Challenges - Discussion . 71

4.4.3 API Specification . 73

4.4.4 Extending Neo4j . 75

4.4.5 Limits of the Current Integration . 78

5 Experiments & Results 79

5.1 Introduction . 80

5.2 Synthetic Graph Data Generation . 80

5.2.1 Description of Data Generation Parameters 82

5.2.2 Code Customization for Properties . 86

5.2.3 Property Graph Creation Using Graph Generator Cypher 88

5.3 Program Setup Environment and Protocol . 92

5.3.1 Execution environment (hardware & software) 93

5.3.2 Experiments protocol . 93

5.3.3 Outlier Removal Approach . 94

5.3.4 Memory Consumption Metric . 94

xiv Contents

5.4 Datasets . 95

5.4.1 The Russian Twitter Troll . 96

5.4.2 Hepatitis from UCI Machine Learning Repository 98

5.4.3 Synthetic Dataset . 98

5.4.4 Synthetic Graph Dataset using Graph Generator 99

5.4.5 Hetnets in Biomedicine . 99

5.4.6 Datasets for Fuzzy and Crisp Gradual Patterns 101

5.5 Results . 101

5.5.1 Intra-Node Datasets Plots . 102

5.5.2 Nodes with Relationships Count Datasets Plots 104

5.5.3 Fuzzy and Crisp Datasets Plots . 105

5.6 Discussion . 108

6 Conclusion and Perspectives 109

6.1 Conclusion . 110

6.2 Perspectives . 111

6.2.1 Integration of the Algorithms in Neo4j . 111

6.2.2 Scalable Distributed Implementation of Gradual Pattern Mining 114

6.2.3 Improving and Extending the Graph Generator 114

Bibliography 116

Publications 128

Appendices 128

A Flowchart and Program Execution 129

A.1 Flowchart . 129

Contents xv

A.2 Program Execution . 130

A.2.1 Getting Started . 130

A.2.2 Running the Program . 132

A.3 Synthetic Graph Generation Tool . 137

List of Figures

1.1 AI in Practice and Current Dimensions [Log16, Reu16, Ful16] 3

1.2 Data Mining Process [Kam09a] . 3

1.3 Data Mining Application Domains [HPK11] . 4

1.4 Data Mining Venn Diagram [Hal+14] . 4

1.5 Graph Type Morphisms [RN10] . 6

1.6 Graph Databases Overview [RWE15] . 7

1.7 Property Graph Representation . 8

2.1 DB-Engines Ranking of Graph DBMS -Trend Chart April 2019 13

2.2 DB-Engines Ranking of Graph DBMS -Tabular April 2019 13

2.3 Graph Native Storage and Processing . 14

2.4 Explicit relationships . 14

2.5 Property Graph with data as (key:value) pairs . 16

2.6 Running Example Graph Database Schema . 17

2.7 Running Example Property Graph Visualization 18

2.8 Output Example Cypher Pattern Query . 19

2.9 Cypher - All Persons who Publish Paper . 20

xviii List of Figures

2.10 The KDD Process [FPS96] . 21

2.11 p1 w.r.t all other tuples . 28

2.12 p2 w.r.t all other tuples . 28

2.13 p3 w.r.t all other tuples . 28

2.14 p4 w.r.t all other tuples . 28

2.15 p5 w.r.t all other tuples . 28

2.16 Final Binary Matrix of Order for Gradual Item (Age ↑) 29

2.17 (Age ↑) - Hasse Diagram Representation . 29

2.18 (Experience ↑) - Hasse Diagram Representation . 29

2.19 (Publications ↑) - Hasse Diagram Representation . 29

2.20 (Experience ↑) Binary Matrices for Gradual Item of Size-1 30

2.21 (Publications ↑) Binary Matrices for Gradual Item of Size-1 30

2.22 Binary AND of concordant object pairs for gradual patterns (Age↑ , Experience↑) 30

2.23 Precedence Graph (Age ↑ , Experience ↑) - Hasse Diagram representation 30

2.24 Binary matrix representing orders for the dataset shown in Table 2.3 31

2.25 Binary AND of concordant object pairs for gradual patterns (Age↓ , Publications↓) 32

2.26 Membership Functions [Str15] . 34

2.27 Property Graphs Missing Data Handling and Pattern Mining Process 36

2.28 Handling Missing Data [Swa18] . 37

2.29 Datasets with and without Missing values . 39

3.1 Property Node . 45

3.2 Property Relationship between two Property Nodes . 45

3.3 Property Graph . 47

3.4 Label “Person” Nodes . 50

3.5 Label “Person” Nodes with Relationships Graph Visualisation 51

List of Figures xix

3.6 Property Graphs Gradual Pattern Mining Process 53

3.7 Fuzzy Partition . 59

4.1 Binary matrix representing orders for Table 4.3 . 64

4.2 Hadamard product for binary AND operation of Age AND Expr 65

4.3 Neo4j Internal Architecture . 70

4.4 Extension possibilities . 72

4.5 API Service Illustration . 73

4.6 Neo4j: run of Intra-Label-Node-Properties GP with on a label 77

4.7 Neo4j: run of Intra-Label-Node-Properties GP with on a label and minsup 77

4.8 Neo4j: run of Intra-Label-Node-Properties GP with on a label and minsup +
skipProperties . 78

5.1 Graph Data Generation tool . 81

5.2 Synthetic Graph Generator for Neo4j . 81

5.3 Graph Tool Parameters Descriptions . 83

5.4 Cypher with Random Names of Labels, Relationships and Properties 85

5.5 Original Graph Generator Tool with Cypher . 89

5.6 Uniform Nodes and Relationships "Without" Properties in Original Graph Gen-
erator . 90

5.7 Non-uniform Nodes and Relationships "Without" Properties in Original Graph
Generator . 90

5.8 Explicit Label Names Nodes "With" Properties in Extended Graph Generator . . 91

5.9 Explicit Relationship Names Nodes "With" Properties in Extended Graph Gen-
erator . 91

5.10 Random Label Names Nodes "With" Properties in Extended Graph Generator . . 92

5.11 Random Relationship Names Nodes "With" Properties in Extended Graph Gen-
erator . 92

xx List of Figures

5.12 Russian-Twitter-Troll Sandbox Details . 96

5.13 Russian-Twitter-Troll-Graph Schema Visualization 96

5.14 Synthetic Graph Schema visualizations . 99

5.15 Hetnet Graph Schema visualizations [Dan19] . 100

5.16 Time Utilization for Russian Troll Tweets . 102

5.17 Memory Consumption for Russian Troll Tweets 102

5.18 Number of Patterns for Russian Troll Tweets . 102

5.19 Time Utilization for Hepatitis - UCI ML Repository Dataset 103

5.20 Memory Consumption for Hepatitis - UCI ML Repository Dataset 103

5.21 Number of Patterns for Hepatitis - UCI ML Repository Dataset 103

5.22 Time Utilization for Synthetic Dataset . 104

5.23 Memory Consumption for Synthetic Dataset . 104

5.24 Number of Patterns for Synthetic Dataset . 104

5.25 Time Utilization for Synthetic Graph Generator Dataset 105

5.26 Memory Consumption for Synthetic Graph Generator Dataset 105

5.27 Number of Patterns for Synthetic Graph Generator Dataset 105

5.28 Time Utilization for Hetionet(Gene) Dataset Dataset 106

5.29 Memory Consumption for Hetionet(Gene) Dataset Dataset 106

5.30 Number of Patterns for Hetionet(Gene) Dataset 106

5.31 Time Utilization with Fuzzy Sets . 107

5.32 Memory Utilization with Fuzzy Sets . 107

5.33 No. of Patterns with Fuzzy Sets . 107

5.34 Time Utilization for Crisp Data . 107

5.35 Memory Utilization for Crisp Data . 107

5.36 No. of Patterns for Crisp Data . 107

List of Figures xxi

6.1 Cache and Filesystem . 113

A.1 (vdb) approach . 129

A.2 Imputation Method . 129

List of Tables

2.1 Most Used Neo4j Cypher Clauses . 15

2.2 Market Basket Dataset . 23

2.3 Person Data . 28

3.1 Label “Person” Tabular form . 50

3.2 Age Fuzzy Sets . 59

3.3 Data Fuzzification . 60

4.1 |vdb (Age)| . 62

4.2 |vdb (Sal)| . 62

4.3 Retrieved Data from Graph for Age & Expr . 63

4.4 |vdb (Age & Expr)| . 64

4.5 |vdb (Age & Sal)| . 64

4.6 |vdb (Age & Sal & Expr)| . 64

5.1 Intra-Node Gradual Pattern Mining . 95

5.2 Nodes with Relationships Gradual Pattern Mining 96

5.3 Hetionet “Gene”Relationships Summary . 100

5.4 Synthetic Dataset: Nodes Details . 101

xxiv List of Tables

5.5 Graph structure (Node Properties with Relationship Count) 101

Chapter 1
Introduction

1.1 Introduction . 2

1.2 Problem Statement . 8

1.3 Thesis Outline . 9

2 Chapter 1. Introduction

1.1 Introduction

With the provision of ever increasing data rates on Internet and open source technologies to
the end users, it has become increasingly challenging for many enterprises to process large vol-
umes of data in an efficient manner. In some cases, traditional database management systems
may not be able to store, process, manage, and analyze data to get insight of data for efficient
decision making.

Since the inception of artificial intelligence (AI) in 1956 at Dartmouth conference, it has be-
come such an important field that its influence on our daily lives can hardly be overestimated
[Lun+07]. The rapid change in AI technologies is transforming various aspects of our lives
and human activities from healthcare to education, supply chain, manufacturing, entertain-
ment, etc. It has evolved from simple rule-based systems to machine learning in 1980s to deep
learning in recent days and it is continuously evolving into many more aspect of information
technology. Thomson Reuters, a well know corporation that serves the decision makers in
providing integrated and intelligent information on financial risks for businesses and profes-
sionals states “experts predicts that spending on AI by companies will grow from $8 billion in 2016 to
$47 in 2020, up almost 600%” [Reu19]. The current AI practices and state of the art is shown in
Figure 1.1.

Artificial intelligence, data mining, and machine learning techniques are being actively
studied for last three decades. More and more applications have been developed these days
at a scale to solve the problems in diversified fields including computer science (neural nets
and deep learning), medical science (biological databases), chemistry (DNA sequencing and
molecules properties analysis), physics (quantum machine learning and experimental physics
e.g. Large Hadron Collider experiments at CERN), space technology (data streams or sensor
readings) etc. One of the main purpose of all these developments is to emulate human intelli-
gence and implement or apply decision making process for computers.

At the crossroads of big data and artificial intelligence, the objective of data mining can be
precisely described as “the non-trivial extraction of new, implicit, and actionable knowledge from large
datasets” [WHR98]. Formally, it can be defined as “a process concerned with uncovering patterns,
associations, anomalies, and statistically significant structures and events in data” [Kam09b]. The
process involves collecting raw data, cleaning, pre-processing, data transformation into desired
formats and then extraction of patterns to gain useful insight from data. The key steps in the
process of data mining are briefly shown in Figure 1.2.

As stated in [HPK11], data mining is a highly application-driven domain that has adopted
many techniques from various domains such as “statistics, machine learning, pattern recognition,
database and data warehouse systems, information retrieval, visualization, algorithms, high-performance
computing, etc.,”. Figure 1.3 depicts the relationships of data mining with different domains,
where each one of them is entirely as vast field of research. Figure 1.4 given in article [Hal+14]
shows the Venn diagram representation of AI, data mining, machine learning, and particularly

1.1. Introduction 3

Figure 1.1 – AI in Practice and Current Dimensions [Log16, Reu16, Ful16]

data science domain covering databases, statistics, and pattern recognition as well as others.
This clearly shows the versatility of data mining domain as well as the complexity involved in
a particular mining task. The advantage of this intersection of data mining with several fields
make it a source to deal with many open research problems.

The applications of data mining are often closely related to one of four main problems i.e.,
pattern mining, clustering, classification and outlier analysis [Agg15b]. The data mining pro-
cess may vary depending on the type of data and the level of complexity for data analysis. It
involves to find the relationships between attributes/columns and relationships between ob-
jects/rows. Pattern mining (aka association pattern mining) and classification are generally

Figure 1.2 – Data Mining Process [Kam09a]

4 Chapter 1. Introduction

Figure 1.3 – Data Mining Application Domains [HPK11]

Figure 1.4 – Data Mining Venn Diagram [Hal+14]

used to find relationships between attributes, whereas clustering and outlier analysis find rela-
tionships between objects [Agg15b]. In data mining, the overall goal is to transform raw data
into understandable structures that are presentable in such a way that they may be used for
predictive analysis and strategic or capacity planning.

Pattern recognition is one the key step of data mining as shown in Figure 1.2. It involves
considering various algorithms for an application to implement it in such a way to make the
application more effective and computationally efficient [Kam09a]. A pattern is defined as “an
arrangement or an ordering in which some organization of underlying structure can be said to exist.
Patterns in data are identified using measurable features or attributes that have been extracted from the
data.” [Kam09a]

1.1. Introduction 5

Pattern mining is generally referred as frequent itemsets (pattern) mining or frequent sub-
sequence (sequential patterns) mining. It is used to find the items that appear often together
and in some sequence in transactional dataset [HPK11]. The data classification mining de-
termines the relationships of a special column with other columns of dataset and hence the
process is referred to as supervised. In clustering the main objective is to determine how the
values of a subset of rows are related to the values in corresponding columns. The outlier anal-
ysis refers to “identify entries in the rows are different from the corresponding entries in other row”,
and it becomes interesting data or unusual data point [Agg15b].

Frequent pattern mining i.e., mining the data patterns having more occurrences than a pre-
defined threshold is a major domain in data mining. Frequent pattern mining has rapidly
extended from transactional databases analysis to the analysis of complex structures having
numerical attributes such as sequences, trees or graphs. Therefore, frequent gradual pattern
mining poses a new challenge to design efficient algorithms capable of scaling up on huge and
complex databases [DLT09].

Gradual pattern extraction is the process of discovering knowledge from databases as com-
parable attributes of co-variations. These can be increasing variations or decreasing variations.
In linguistic expression, it may be represented as, “the more/less the value of Xi,. . . , the more/-
less the value of Xn”, where i = 1, 2, 3...n, and X1,X2,X3, . . . to Xn are numerical ordinal at-
tributes [DLT09]. For instance, a gradual pattern is considered interesting if it occurs frequently
i.e., the support of that pattern is greater than the given threshold (minimum support).

Efficient mining of gradual patterns from large numerical databases is a non-trivial task,
in particular when considering the scalability issues due to ever increasing volume of data in
enterprises. The application of gradual patterns mining can be found in various fields rang-
ing from applications for analyzing client databases for marketing purposes, analyzing pa-
tient databases in medical studies, analysis of climate and environment change. The existing
gradual pattern mining techniques presented in [DLT09, LLR09, Do+15] are mainly for tabular
databases while some other types are emerging, as for instance property graphs.

The concept of graph is studied since late 19th century, however, in last few decades in the
field of computer science, the research in applied graph has grown due to prevalence of social
networks and networked-based data [RN12]. “A graph G = (V,E) is a data structure composed of a
set of vertices (V) and edges (E)” or more commonly called as a set of nodes and the relationships
that connect them [RN10]. The authors in [RN12, Rod16] present various types of graphs by
describing their relevant definition as shown in Figure 1.5.

Graphs provide us better understanding of diversified datasets in the fields such as science,
government, and business [FG17, Muñ+17]. As stated in [RWE15], “The expressive nature of
graph structures allows us to model almost all kind of scenarios for computing like construction of a
space rocket, system of roads, supply chain, medical history for populations, etc”. This expressive
nature of graph structures helps to model a vast number of real scenarios of governments and
business applications [Neo19e, Neo19c].

6 Chapter 1. Introduction

Figure 1.5 – Graph Type Morphisms [RN10]

Graphs have been studied from many years [Tru94] but they have only been integrated in
database engines in recent years with the so called name as “graph databases”. In contrast
with relational database, there is no concept of “joins” in a graph database and relationships
are treated as first class citizens [RWE15]. When considering the graph database technologies
there are two main properties of a graph database are (i) underlying storage i.e., the way in
which graphs are stored and manged and (ii) graph processing engine i.e, the way in which graph
queries are processed, typically as an index-free node traversal [RN12, RWE15]. The Figure 1.6
shows an overview of graph database present with respect to these two properties.

Graph modeling helps to identify people’s interactions, influences, and exchange of ideas
on these social networks has helped to better understand global demographics, political move-
ments and products commercialization [Van14]. Graph modeling is generally an iterative pro-
cess. A property graph data model enables to represent the data in a natural way with the flex-
ibility to incorporate schema changes as and when required. It does not require a fixed schema
prior to the database creation. Hence, it is also referred as semi-structured data. In graph the-
ory, these types of graphs are called “dynamic” or “time-evolving” graphs, where changes occur
in vertices and edges over the time [KBB17, Dem+10, Liu+18]. For building a property graph
model, first we identify requirements for the node labels and relevant properties that are to
be assigned to nodes. Then we identify and assign the relationships between these nodes and
their properties. This process becomes and evolutionary process and nodes and relationships
keeps on adding as and when required.

1.1. Introduction 7

Figure 1.6 – Graph Databases Overview [RWE15]

Graph data can be embeded within NoSQL graph oriented databases. The other categories
of NoSQL databases include Key-Value store, Column-Family stores, and Document stores re-
spectively. Many companies have developed their in house implementations of graph database
systems such as, Facebook’s Open Graph, Google’s Knowledge Graph, FlockDB by Twitter, and
many more [Mil13]. The other open source graph database solutions are Dex, InfiniteGraph,
and OrientDB having different levels of maturity. NoSQL graph engines are purpose built sys-
tems to store nodes and relationships natively. Nodes or vertices (data entities) are created and
linked through relationships (edges), that results in much faster query response for this linked
data. The increasing need for such systems has been observed in use cases including “social
networks, recommendation engines, knowledge graphs, fraud detection, network and IT operations, and
life sciences”[Beb+18].

A property graph is a way to represent data as graphs. “In the parlance of graphs, a prop-
erty graph is a directed, edge-labeled, attributed multi-graph”[RN12]. A property graph is typically
defined as a data model in a graph structure containing nodes and relationships with proper-
ties/attributes in form of (key:value) pairs. Nodes are represented as entities and relationships
are the edges that connect these entities. A node can have one or more Labels that define the
role of a node. Relationships between two nodes have one Type; they are directional and may
contain (key:value) properties as nodes as shown in Figure 1.7. Several relationships can be
defined between two nodes, which is different from regular graphs.

8 Chapter 1. Introduction

Collaborates

{key:value}

Paper

key:value

Person : Student Person : Professor

 Publish
{k

ey
:v

al
ue

}

{key:value}

key:value

key:value

Pu
bl

ish

Figure 1.7 – Property Graph Representation

1.2 Problem Statement

In recent years, graph data management and mining is gaining a lot of interest in database
research community due to its pervasiveness in the fields such as, social networks, knowledge
graphs, genome and scientific databases, medical and government record [KBB17]. Also, the
research is being actively pursed for last one decade in gradual pattern mining from large nu-
merical tabular datasets along with addressing the scalability issues [DLT09, LLR09, Ayo+10,
QLP11, Do+15, AY14, Lau+12, Ngo+18]. This dissertation argues that in case of property
graphs, it is not possible to apply directly existing methods for gradual patterns extraction.
There are two main reasons:

1. Graphs are not same as tabular data in their meaning and application;

2. Graphs are semi-structure nature of data.

The existing techniques were primarily for small or large single dataset of tabular data
without involving relationships. Also, the existing techniques did not address the issue of
missing values in datasets, if they appear in attributes. In property graphs, we have nodes
with label(s), that have properties/attributes (missing and non-missing) and directed relation-
ships. This arises many questions like how to manage different labeled nodes data for gradual
pattern mining, what to do when nodes involve relationships between them and how to do
transformation into tabular data, as well as treatment of missing data, if there exist any. To the
best of our knowledge, the extraction of gradual patterns from property graphs is a novel idea
and has not been studied as yet. The objective of this research work is to address following two
main aspects:

1. Defining gradual patterns in the context of property graphs;

2. Mining gradual patterns automatically from property graphs.

1.3. Thesis Outline 9

In order to achieve these objectives, we address the issue of missing data that arises as a conse-
quence when we are mining graph data. Furthermore, we also define and describe our method
for mining fuzzy gradual patterns from property graphs.

We will investigate in detail each of the above mentioned aspect in the coming chapters
including extending existing gradual pattern mining algorithms, their implementation results
on real and synthetic graph data and discussions to highlight use and application of property
graphs.

1.3 Thesis Outline

The rest of the thesis document is organized as follows.

Chapter 2 describes the preliminary concepts and definitions about property graphs, grad-
ual patterns, mining fuzzy gradual patterns, and various types of missing data types and the
techniques for handling missing data. All these concepts are discussed as a basis to for our
proposed approach presented in chapter 3.

In chapter 3, we describe an overall mining process for gradual patterns in the context of
property graphs. A property graph is a data structure containing nodes and relationships with
properties in (key:value) format. One of our contributions is to propose a formal definition of
property graphs as the literature often proposes definitions that do not embed all particular-
ities that we would like to include. We then introduce different forms of gradual patterns in
the particular context of such property graphs. Five types are proposed that can be seen as
protoforms in the sense of fuzzy summaries. Finally, we propose an extension to fuzzy gradual
patterns in order to be able to extract more understandable knowledge. Such patterns can be
like the more the age is “almost 40”, the more the experience is “almost high”.

In chapter 4, we investigate in detail the mining of gradual patterns. Such a process implies
to deal with the presence of missing values as it is in the context of property graphs. We discuss
the support computation process and the algorithms with related explanations. This chapter is
concluded by a section discussing how our work can be integrated in a graph database engine
with by a proof-of-concept example.

In chapter 5, we show the experiments and results for our proposed approach. It starts
with describing synthetic graph generator tool in detail including its implementation and how
it can be used to generate property graphs in NoSQL engine like Neo4j. This GUI-based tool
facilitates to generate property graphs for our experiment. Then we describe the setup environ-
ment and program execution protocol. We show the details for 8 different datasets on which
the experiments are led along with briefly describing them. For all these datasets the results
are provided in terms of time utilization, memory consumption and the number of generated
patters in the process of mining gradual pattern. The chapter ends with a discussion on the

10 Chapter 1. Introduction

results.

In chapter 6, we present the conclusion of the entire work covering of all the chapters. In
perspectives, we discuss the possible dimensions of the current work by briefly describing the
conceptual visualization that could possibly lead to complete research projects.

Chapter 2
Related Work

2.1 Introduction . 12

2.2 Graph Databases . 12

2.2.1 Neo4j Graph Database . 12

2.2.2 Cypher Query Language . 15

2.3 Property Graphs . 15

2.3.1 Schema-less Nature of Property Graphs 16

2.3.2 Graph Pattern Matching . 19

2.4 Gradual Pattern Mining . 20

2.4.1 Frequent Pattern Mining . 22

2.4.2 Anti-monotonicity Property . 24

2.4.3 Association Rules and Gradual Dependencies 24

2.4.4 Formal Definition of Gradual Pattern (Itemset) 25

2.4.5 Support Measure for Gradual Pattern . 26

2.4.6 GRITE Algorithm . 27

2.4.7 GRAANK Algorithm . 31

2.5 Fuzzy Gradual Patterns . 32

2.5.1 Fuzzy Logic and Fuzzy Sets . 33

2.5.2 Defining Fuzzy Gradual Patterns . 34

2.6 Handling Missing Values . 36

2.6.1 Handling Missing Data Techniques . 37

2.6.2 Handling Missing Data With Replacement 38

2.6.3 Handling Missing Data Without Replacement 38

2.7 Conclusion . 41

12 Chapter 2. Related Work

2.1 Introduction

This work deals with property graphs, gradual patterns, extending fuzzy gradual patterns
and missing data management. In this chapter, we will first review existing works related
to these topics. In section 1.1, we briefly described about the graphs, graph database, prop-
erty graphs in Neo4j graph database and the purpose to choose it to perform gradual pattern
mining. Furthermore, we describe and define property graphs, state of the art about gradual
pattern extraction algorithms and gradual pattern mining from property graphs. We also de-
scribe mining fuzzy gradual patterns from property graphs and treatment of missing data in
property graphs so as to mine gradual patterns.

2.2 Graph Databases

Graph databases have given a new way of modeling and traversing interconnected data
and have applications in social graphs, recommendation systems, and bioinformatics [Mil13].
A comparison between the relational databases and graph databases focusing on the aspects
of data structures, data models, query facilities and limitations of is presented in [Mil13]. The
decision to choose between the relational database and graph database is primarily based on
the requirements of systems that may be utilizing these database.

A NoSQL database engine is a system specifically designed to store, manage, and pro-
cess such kind of graph-like data. Such kind of systems are gaining attention as mentioned
in [SA11] "increasing usage of graph data structure for representing data in different domains such as:
chemical compounds, multimedia databases, social networks, protein networks and semantic web." To-
day, the well known NoSQL database systems are: Amazon’s Neptune [Ama19], Microsoft’s
Cosmos [Mic19], Titan [Aur19], and Neo4j [Neo19a]. DB engine ranking [DBE19] provides the
current ranking of graph database engines in the market according to the popularity and is
updated monthly. The chart and list depiction of April 2019 are shown in Figures 2.1 and 2.2
respectively. This clearly shows that Neo4j is a leader in Graph databases for quite some time.
Therefore, based on research survey, popularity and more importantly of being open source,
we choose Neo4j as graph database engine to create property graphs and apply gradual pattern
mining algorithms to analyze the patterns and evaluate the results.

2.2.1 Neo4j Graph Database

Neo4j is an open source NoSQL graph database implementation that is highly scalable and
leverages data as well as relationships. Neo4j stores data as connected data that provides the
flexibility of adding a new node or a new relationship without compromising or migration of
existing data. Relationships are considered as much important as the nodes. Relationships are
used to perform the node traversing thereby eliminating the need of complex join operations.

2.2. Graph Databases 13

Figure 2.1 – DB-Engines Ranking of Graph DBMS -Trend Chart April 2019

Figure 2.2 – DB-Engines Ranking of Graph DBMS -Tabular April 2019

14 Chapter 2. Related Work

Native Graph Processing

Native Graph Storage

Figure 2.3 – Graph Native Storage and Processing

Neo4j’s native graph storage as shown in Figure 2.3 is used to store the data as graphs and
optimized for managing graphs. “The graph processing engine is used to provide basic graph opera-
tions and algorithms to deliver constant, real-time performance, helping enterprises to build intelligent
applications to meet today’s evolving data challenge” [RWE15]. Another main performance char-
acteristic of a graph database is the graph traversal or pattern matching query independent of
the data set size. This is achieved primarily due to native storage of data as graphs.

Graph traversal across the nodes using relationships is one of the key features of graph
databases. Neo4j does not require a join operation because every node in graph has an explicit
relationship joined between two nodes and it only requires traversal across the graph to match
the required pattern. This feature results in efficient query performance and better response
time. In the case of relational database systems, we need to create a separate link table in which
we store foreign keys of two tables to link them together. Another advantage of property graph
model as compared to relational model is that it does not require creating a schema prior the
creation of database. It allows more flexibility to incorporate schema changes as and when
required.

John

Carl

Dave Chris

T imCOLAB

Figure 2.4 – Explicit relationships

Neo4j helps to model dynamic complex relationships in a maneuverable form of connected
data that can be easily understandable like white board model. Neo4j is gaining more interest
in the field of data science, specifically for defining complex join-intensive and path traversal
queries over the graph [RWE15].

2.3. Property Graphs 15

2.2.2 Cypher Query Language

Neo4j is a NoSQL graph database that uses “Cypher’’, a declarative query language that
uses ASCII-art syntax. The queries written in declarative query language allow to declare a
required pattern to retrieve data from the database as opposed to imperative query language
such as SQL where we have to specifically tell the database what to do in order to retrieve the
required data. Cypher query language is composed of specific clauses to perform queries from
graph database.

Table 2.1 shows the different clauses used to query the graph data in Noe4j. Cypher uses
these clauses to change or update the graph data by adding or removing the nodes, relation-
ships and properties of a graph. Cypher also provides several aggregate functions to calculate
aggregate data analogous to ’GROUP BY’ in SQL. These include but are not limited to COUNT,
COLLECT, AVG, MAX, MIN, SUM, etc.

Clause Purpose
MATCH To match the required pattern for result
RETURN To return the matched data
WHERE Provides criteria for filtering pattern matching results
CREATE Create nodes and relationships
DELETE Removes nodes, relationships, and properties
SET Sets property values
UNION Merges results from two or more queries
REMOVE Remove a label or property from node
CALL Standalone call to built-in procedures
LOAD To import external files in graph database and create nodes
ORDER BY To the result of return result in ascending or descending order

Table 2.1 – Most Used Neo4j Cypher Clauses

In the following section we describe property graphs using Neo4j graph database engine to
explain the relavent concepts including the running example created in Neo4j.

2.3 Property Graphs

A Property Graph (PG) refers to a data model in which data has (key:value) pairs. A property
graph data model enables us to represent the data in natural way in form of graph structure
of vertices (nodes) and edges (relationships), as shown in Figure 2.5. We use property graphs
to represent data. Entities are represented as nodes or objects having one or more labels that
describe the type or class of nodes and a node can have one or more (key:value) properties,
hence the graph is called as a labeled property graph model. Each node can have one or more
relationships that connect the nodes. Relationships have a single type and they can also store
(key:value) properties. Relationships have a direction.

16 Chapter 2. Related Work

{id:1}
{name:“John”}

{age:45}

Person Person

Paper

{id:7}
{name:“Carl”}

{age:44}

{id:14}
{title:“RDF”}
{year:2017}

COLLABORATE
{since:2017-05-10}

PU
BLISH

{date:2018-02-10}
PU

BL
IS
H

{d
at
e:
20

18
-0
2-
10

}

Figure 2.5 – Property Graph with data as (key:value) pairs

Property graph modeling is generally an iterative process that provides a flexibility to
change the graph schema without altering the existing graph structure. This feature is very use-
ful particularly for agile application development. For building a property graph data model
it is important to identify the nodes and what properties are relevant to the nodes that are to
be assigned. This is generally termed as user requirement gathering for developing the initial
graph structure. We identify the uniquely identifiable able attributes to define the indexes and
constraints accordingly. Then we identify the relationships between these nodes and possible
properties these relationships can have between each node. This process is repeated whenever
needed.

To present the definitions, we create a running example property graph in Neo4j. The graph
schema of the property graphs is shown in Figure 2.6 showing three labeled nodes with rela-
tionship types. The overall property graph visualization for this graph schema with nodes and
relationships is shown in Figure 2.7. The property graph shows 14 nodes with 3 labels namely
person, paper and projects. There are 30 relationships with 3 relationship types namely collab-
orate, publish and receive_grant.

2.3.1 Schema-less Nature of Property Graphs

The interesting thing is the property graph is that there is no fixed schema and any node(s)
or relationship(s) can be removed without affecting the entire graph. Only the links between
associated nodes will diminish and rest of the structure will be intact. Similarly, the addition
of nodes and relationships can be done on the fly whenever required. For example, in case of
Person label, assume that you have a table named “Person” in a relational database and you
need to add an attribute, say “Phone_Number”. To do so, you need to define the attribute first

2.3. Property Graphs 17

Person

Paper

Project

COLLAB.

PUBLISH

RCV_GRANT

Figure 2.6 – Running Example Graph Database Schema

by using ALTER table and then you can add the value for the respective record. In case of
property graph, there is no need to define something before for adding an attribute/property
for a node (record). You just add the property right away independent of any structure as well
as without affecting relationships. That is why property graphs are often referred as schema
less graphs and semi-structured data graphs.

We use Neo4j cypher-shell utility to query the list of nodes for each label. The Cypher query
along with the output result for label “Person” is shown in Listing 2.1. In the query we write
the names of each property to make the output more presentable. Similarly, the query and
output for label “Paper” is shown in Listing 2.2 and for label “Project” it is shown in Listing
2.3 respectively.

1 neo4 j > MATCH (n : Person)
2 RETURN ID (n) AS ID , n . name AS NAME, n . age AS AGE,
3 n . desig AS DESIGNATION , n . expr AS EXPERIENCE ,
4 n . s a l AS SALARY;
5 +−−−+
6 | ID | NAME | AGE | DESIGNATION | EXPERIENCE | SALARY |
7 +−−−+
8 | 1 | " John " | 45 | "PR" | 13 | 3500 |
9 | 2 | " Dave " | NULL | "MCF" | 7 | 2500 |

10 | 3 | " Emily " | 30 | "ETU" | 5 | NULL |
11 | 6 | "Tim" | NULL | "MCF" | 10 | 2800 |
12 | 7 | " Carl " | 44 | "PR" | 14 | 3800 |
13 | 9 | " Chris " | 38 | "MCF" | 9 | 2600 |
14 | 10 | " David " | 32 | "ETU" | 5 | 1400 |
15 +−−−+
16 7 rows a v a i l a b l e a f t e r 10 ms , consumed a f t e r another 1 ms

Listing 2.1 – Person Node Details

18 Chapter 2. Related Work

 Person

 Paper

 Project

RCV_GR

R
C
V_
G
R

PU
BLI

SH

P
U
B
LI S

H

PUBLISH

C
O
LL
A
B
O
R
AT
E

C
O
LLABO

R
ATE

CO
LLABO

RATE

PUBLISH

COLLABORATE

C
O
LL
A
BO

R
AT
E

P
U
B
LI
S
HC

O
LLABO

R
ATE

PU
BL
IS
H

PU
BLI

SH

COLLABORATE

RCV_GR

PU
BLISH

PUBLIS
H

PU
BLI

SH

COLLABORATE

CO
LL
AB
OR
AT
E

CO
LLABO

RATE
PUBLISH

CO
LL
AB
OR

AT
E

COLLABORATE

CO
LL
AB
OR
AT
E

P
U
B
LI
S
H

PUBLISH

CO
LL
AB
OR

AT
E

RECEIVE

R
E
C
E
IV
E

RE
CE
IV
E

EV
AL
U
AT
E

EVALUATE

EVALUATE

John

Dave Emily

Tim

Carl

Chris

David

GRAPH

LOGIC

FUZZY

RDF

DB

MUSE

CNRS

Figure 2.7 – Running Example Property Graph Visualization

1 neo4 j > MATCH (n : Paper)
2 RETURN ID (n) AS ID , n . p r _ t i t l e AS TITLE ,
3 n . type AS TYPE , n . year AS YEAR, n . C i t a t i o n s AS CITATIONS ,
4 n . Impact_Factor AS IMPACT_FACTOR;
5 +−−+
6 | ID | TITLE | TYPE | YEAR | CITATIONS | IMPACT_FACTOR |
7 +−−+
8 | 11 | "GRAPH" | " conference " | " 2015 " | 10 | NULL |
9 | 12 | "LOGIC" | " j o u r n a l " | " 2016 " | 30 | 4 . 5 |

10 | 13 | "FUZZY" | " conference " | " 2015 " | 5 | NULL |
11 | 14 | "RDF" | " conference " | " 2017 " | NULL | NULL |
12 | 15 | "DB" | " j o u r n a l " | " 2016 " | 50 | 2 |
13 +−−+
14 5 rows a v a i l a b l e a f t e r 1 ms , consumed a f t e r another 1 ms

Listing 2.2 – Paper Node Details

1 neo4 j > MATCH (n : P r o j e c t)
2 RETURN ID (n) AS ID , n . p r g _ t i t l e AS PROJECT_TITLE ,
3 n . amount AS AMOUNT, n . year AS YEAR;
4 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

2.3. Property Graphs 19

5 | ID | PROJECT_TITLE | AMOUNT | YEAR |
6 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
7 | 16 | "MUSE" | 30000 | " 2017 " |
8 | 17 | "CNRS" | 50000 | " 2016 " |
9 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

10 2 rows a v a i l a b l e a f t e r 11 ms , consumed a f t e r another 1 ms

Listing 2.3 – Project Node Details

2.3.2 Graph Pattern Matching

Pattern matching e.g., "()-[]->()" is also one of the main feature of cypher to match the de-
sired graph structures and to retrieve the desired information pertaining to nodes and rela-
tionships in a graph. An example cypher query to find a node labeled Person, whose name
property value is ‘John’ and he publishes a journal paper can be written as shown in List-
ing 2.4. The output of this query from Neo4j console is shown in Figure 2.8.

1 MATCH (p : Person) − [v : PUBLISH] -> (q : Paper)
2 WHERE p . name =" John " AND q . type =" j o u r n a l "
3 RETURN p AS PersonName , q AS Paper

Listing 2.4 – Example Cypher Pattern Query

Figure 2.8 – Output Example Cypher Pattern Query

Similarly, if we want to see all the persons who have published in a journal, the Cypher
query can be written as shown in Listing 2.5. The output of the query is shown in Figure 2.9.

20 Chapter 2. Related Work

1 MATCH (p : Person) − [r : PUBLISH] -> (q : Paper)
2 WHERE q . type =" j o u r n a l "
3 RETURN p AS PersonName , q AS Paper

Listing 2.5 – All Persons who Published in Journal

Figure 2.9 – Cypher - All Persons who Publish Paper

In the whole property graph, if we like to see who is connected with whom and in what
frequency of relationships, then we can use the query shown in Listing 2.6. It can also be said
as topology extraction in tabular form.

After discussing briefly about the property and pattern matching in property graphs, we
proceed in the next section to describe the main concepts of gradual pattern mining, definitions
and algorithms presented in the literature on the topic.

2.4 Gradual Pattern Mining

The knowledge discovery process was first presented in [FPS96] as shown in Figure 2.10.
In the process of knowledge discovery from databases, data mining is one of the key steps that
involves applying algorithms in order to extract patterns. Data mining tasks include cluster-
ing, classification, association rule mining, etc. The association rule mining involves frequent
pattern mining/extraction. Following are some of the categories of frequent pattern mining:

• frequent Patterns,

• fuzzy Patterns,

2.4. Gradual Pattern Mining 21

1
2 neo4 j > MATCH (n) -[r] -> (m)
3 RETURN l a b e l s (n) AS SrcLabel , type (r) AS Rela t ionsh ip ,
4 l a b e l s (m) AS DstLabel , Count (*) AS Relat ionships_Count ;
5 +−−−+
6 | SrcLabel | Re la t ionsh ip | DstLabel | Relat ionships_Count |
7 +−−−+
8 | [" Person "] | "COLLABORATE" | [" Person "] | 14 |
9 | [" P r o j e c t "] | "EVALUATE" | [" Person "] | 3 |

10 | [" Paper "] | "RECEIVE" | [" P r o j e c t "] | 3 |
11 | [" Person "] | "PUBLISH" | [" Paper "] | 13 |
12 | [" Person "] | "RCV_GR" | [" P r o j e c t "] | 3 |
13 +−−−+
14
15 5 rows a v a i l a b l e a f t e r 7 ms , consumed a f t e r another 0 ms
16 neo4 j >

Listing 2.6 – Graph Schema Summary with Relationships

• gradual Patterns,

• sequential Patterns.

Figure 2.10 – The KDD Process [FPS96]

All these approaches for mining patterns differ in their application on the basis of the type
of data from which the pattern extraction is performed.

Gradual pattern mining is an extension of frequent pattern mining. In this section, first
we briefly describe frequent pattern mining and its related definitions as a basis for describing
gradual patterns. Then we describe state of the art algorithms for gradual patterns mining.
In particular, we explain the two existing algorithms namely GRITE and GRAANK that were
primarily used on tabular data to extract gradual patterns. The GRadual ITemset Extraction
(GRITE) [DLT09] is based on precedence graph, whereas GRAANK [LLR09] is employing the

22 Chapter 2. Related Work

approach based on rank correlation and the concept of concordant/discordant pairs. We also
describe their related definitions and support computation method for these algorithms.

In data mining process from the raw data to the patterns and knowledge discovery, the
pattern mining/extraction poses several questions such as [Kam09a]:

• “Is it possible to modify existing algorithms, or design new ones, that are scalable, robust, accurate,
and interpretable?”

• “Can these existing algorithms be applied effectively and efficiently to complex data?”

To address these questions, research is being continuously carried out to present more op-
timized solutions with the evolution of technology.

2.4.1 Frequent Pattern Mining

Frequent pattern mining (aka frequent itemset mining) is defined as a process to find the
items that appear often together in some sequence in transactional database [ABA14]. Frequent
pattern mining was first introduced in 1993 in [AIS93] and since then it is “one of the most
intensively investigated problems in terms of computational and algorithmic development” [ABA14].

“The problem was originally proposed in the context of market basket data in order to find frequent
group of items that are bought together” [Agg14].

Frequent patterns play an important role in many data mining tasks such as association
rules, correlations, sequences, classifiers, clusters etc. [Goe03]. Association rule mining is gen-
erally referred as frequent itemsets mining and it is used to discover the association rules (Sec-
tion 2.4.3) between items in the transactional data [AIS93].

An itemset is considered to be frequent if its support is at least equal to user defined minimum
support threshold. Therefore, in frequent pattern mining the actual task is to determine itemsets
that have requisite level of support [Agg15a]. The definition of support and its calculation is
described as follows.

Definition of Support

As stated in [ABA14], let D be a transaction database which contains a set of n trans-
actions as D = {t1, t2, ..., tn}. Each ti ∈ D, ∀i = {1....n} consists of a set of items, say
ti = {x1, x2, x3, ...xm}. A set I ⊆ ti, is called an itemset. A k-itemset is an itemset that con-
tains exactly k items, where k is the cardinality of set of items.

2.4. Gradual Pattern Mining 23

tid Set of Items Binary Representation
t1 a,b,e 110010
t2 d,e,f 000111
t3 a,c,d,e 101110
t4 d,e,f 000111
t5 c,e,f 001011

Table 2.2 – Market Basket Dataset

Definition 2.1 (Support). The support of an itemset I is defined as the fraction of the transac-
tions in the database D = {t1, t2, ..., tn} that contains I as a subset [Agg15a].

Support(I) = |Occurrences of I in D|
|D|

(2.1)

Support Calculation

Considering the Table 2.2 of market basket dataset, the attributes for binary representation
are arranged in the order {a,b,c,d,e,f} and each item that is placed in basket is set to 1. Since
there are 5 transactions in the database, the support for itemsets Ix = {a, e} and Iy = {c, f} is :

Support(Ix) = 2
5 = 0.4 , Support(Iy) = 1

5 = 0.2

How to choose minimum support threshold ?

Considering the above support calculation, if the required minimum support threshold value
is 0.3, then the itemset Iy will not be considered as frequent because it does not fulfill the
minimum support level. In this example, Ix is a frequent 2-itemset that satisfies the minimum
support.

Therefore, the choice of minimum support threshold is a crucial aspect when discovering the
frequent patterns. Because in case of a smaller value of minimum support threshold, a large
number of patterns will be generated and if the minimum support threshold is very high then
few or no patterns can be found.

Algorithms must be designed to extract all frequent itemsets from databases efficiently. For
frequent pattern mining algorithms the search space for finding the frequent patterns becomes
very larger (of the order of 2|t|). In the above toy dataset of market basket, the search space
will be 26 = 64. Therefore, to limit the search space, algorithms apply pruning based on the
anti-monotonicity property of support that allows to achieve better computational efficiency.

24 Chapter 2. Related Work

2.4.2 Anti-monotonicity Property

The anti-monotonicity property of support states that, “the support of every subset J of I is at
least equal to that of the support of itemset I” [Agg15a].

Support(J) ≥ Support(I) ∀ J ⊆ I (2.2)

In other words, it can be said that support of an itemset never exceeds the support of its
subset. The anti-monotonicity property of support is also referred to as “downward closure prop-
erty” which implies that “if an itemset is frequent, then all of its subset will also be frequent,
and if an itemset is infrequent then all of its superset will also be infrequent”.

2.4.3 Association Rules and Gradual Dependencies

An association rule is an implication of the form shown in Equation 2.3, [AS+94].

X =⇒ Y, where X ⊂ ti, Y ⊂ ti, and X ∩ Y = ∅ (2.3)

It says that a transaction that contains the set of items X is likely to contain the items Y as
well. By using a measure know as confidence, frequent patters can be used to generate associa-
tion rules [Agg15a]. It is defined as follow, .

Definition 2.2 (Confidence). “ Let X and Y be two set of items. The confidence conf(X ∪ Y) of the
rules X ∪ Y is the conditional property of X ∪ Y occurring in a transaction, given that the transaction
contains X. Therefore, the confidence conf(X ∪ Y) is defined as follows:” [Agg15a].

conf(X ∪ Y) = Support(X ∪ Y)
Support(X) (2.4)

Although the original techniques for mining association rules were designed for binary
attributes but in practice a database does not contain only the binary attributes but also the
quantitative attributes therefore, “the algorithms can be extended to attributes with values ranging on
(completely) ordered scales, e.g. cardinal or ordinal attributes” [Hül02]. These quantitative attributes
then lead quantitative association rules. Several works have been proposed in the literature to
deal with such data and patterns, as for instance [SA96] for mining patterns like “(Age: 30..39)
and (Married: Yes)→ (NumCars: 2)". Such patterns have been extended to fuzzy intervals in
order to discover patterns like “(Age: young) and (Married: Yes)→ (NumCars: low)" [AYL11].

For mining quantitative data, [Hül02] proposes a new type of rules to express a kind of
“tendency” aka a gradual dependence between attributes.

2.4. Gradual Pattern Mining 25

Gradual Dependency

In [Hül02], a first interpretation of “gradual dependency” is presented in which it is expressed
as co-variation constraint such that “the more A, the more B holds if an increase in A comes along
with an increase in B” [LLR09]. To extract such relationships, a linear regression analysis of two
attributes is presented. Hence, a “gradual dependency” is defined as a pair of gradual itemsets
on which a causality relationship is imposed [LLR09]. For instance, it takes the form “the
higher the experience, ’then’ the more the salary“ meaning that an increase in experience implies a
salary increase which as a result “breaks the symmetry of the gradual itemsets in which all items play
the same role” [LLR09]. In the next section we discuss the definition of gradual item, gradual
pattern, and the computation of support for gradual patterns.

2.4.4 Formal Definition of Gradual Pattern (Itemset)

The gradual pattern mining is a process to discover frequent co-variations of the form “the
more/less the Xi, . . . , the more/less theXn” [DLT09]. These co-variation can be between two
or more than two attributes such as: “The higher the age, the higher the salary, the higher the tax”
or “The more the intensive-diet, the less the physical-activity-hours, the more the weight”.

A gradual item is defined as follows.

Definition 2.3 (Gradual Item). Let τ be a set of items, i ∈ τ be an item and ? ∈ {↑, ↓} be a com-
parison operator. A gradual item i? is defined as an item i associated to an operator ? [DLT09].

Consequently, a gradual pattern (aka gradual itemset) is defined as follows:

Definition 2.4 (Gradual Pattern). A gradual pattern P = (i1?1, . . . , ik?
k) is a non empty set of

gradual items. A k-itemset is an itemset containing k gradual itemsets [DLT09].

Example 1. For example, let us consider the pattern “the higher the age, the higher the number of
publications”, formalized by the itemsets from Figure 2.5 are:

P1 = (Age ↑ , NumberofPublications ↑)

A gradual pattern is said to be frequent if its support calculation is greater than or equal to
user defined minimum support threshold. In the following section we discuss different methods
for computing the support.

26 Chapter 2. Related Work

2.4.5 Support Measure for Gradual Pattern

In the classical pattern mining the quality of patterns is assessed by the “minimum sup-
port” measure. Therefore, when dealing with gradual patterns, the definitions of the classical
support measure must be extended.

In [Ber+07], and interpretation of gradual dependencies is presented as constraints imposed
to the order induced by the attributes and not to their numerical values[LLR09]. Considering
the attributes shown in Table 2.3, the order-based definition of gradual dependency defined in
[Ber+07] as follows.

Definition 2.5 (Order-based gradual dependency). A gradual dependency of the form the more
the Age, the more the Experience holds if,

∀(x, x′) ∈ D, Age(x) < Age(x′) implies Experience(x) < Experience(x′) (2.5)

where Age(x) denotes the value taken by attribute Age for object x such that x proceeds x′.

It is clear from the above definition that it takes the implication relationship between item-
sets and the authors propose to extract such gradual dependencies to formulate the association
rules [LLR09]. And to mine these gradual rules, the authors in [Ber+07] use operators {<,>}
with attributes e.g., {Age <}. The support is consequently expressed as the number of object pairs
respecting the order divided by the total number of object pairs of the dataset as given below [DLT09,
LLR09].

Supp(A1?
1, . . . , Ak?

k) = 1
|D|
|{o = (x, x′) ∈ D/∀y ∈ [1, k]Ay(x) ?y Ay(x′)}| (2.6)

By relying on the Definition 2.5, the authors in [DLT08], present a heuristic based method to
extract gradual association rules. To build these rules the first step is to compute the support.
Let P be a gradual pattern (itemset), where P = (A1?

1, . . . , Ak?
k), the support of P is given as

follows.

Supp(P) = 1
|D|

max
Li∈µ

|Li| (2.7)

The support measure Supp(P) is the maximal number of rows {r1,, rm} in D for which
there exist a permutation π such that ∀x ∈ [1,m− 1], ∀y ∈ [1, k], it holds Ay(rπx) ?y Ay(rπx+1) ,
denoting µ as the set of all such sets of rows [LLR09].

2.4. Gradual Pattern Mining 27

Taking into account the support measure given in Equation 2.7, the authors in [DLT09]
present a new approach based on precedence graph to extract gradual patterns. The algorithm
to extract such patterns is named as GRITE which is described as follows.

2.4.6 GRITE Algorithm

The GRITE is acronym of GRadual ITemset Extraction (GRITE), which is an algorithm pro-
posed in [DLT09] for extracting gradual patterns from numerical tabular datasets. The main
features of algorithm include:

• Associate the binary matrix to each item and perform the join operation of two items by
using Hadamard product method 1

• Compute the support of resulting itemset

The algorithm uses the vertical bitmap representation presented in [Ayr+02] to store the
ordering in the binary matrix. In the proposed method the binary matrix is used to represent
the ordering of gradual items. The order is associated with each gradual item (i.e., item with
its variation e.g., Age ↑) and represented in a binary matrix as per following principle.

“If there exists an order relation between two tuples a and b of an item, then the bit corresponding to
the line of a and the column position of b is set to 1, and to 0 otherwise” [DLT09].

Let us consider the sample data as shown in Table 2.3 to show the binary matrix of orders.
Let n be the number of tuples of considered item, then every item or itemset of size n being
processed is associated with an (n ∗ n) binary matrix. For example we take the gradual item
Age ↑, the binary matrix for Age ↑ will be of size (5 ∗ 5), since there are 5 tuples. The process
to build binary matrix of order (for “ > ” to represent the variation ↑) for Age ↑ is shown from
Figure 2.11 to Figure 2.15. According the above mentioned principle, the value of p1 is checked
with all the other tuples to see if there exist an order relation between them. For instance,
p1 > p2 results as 1 and p1 > p4 results as 0. The resulting comparison of p1 w.r.t all other
tuples is then placed in first column of the matrix as shown in Figure 2.11. For p2 the result
is stored in second column and so on for all the respective tuples. The final binary matrix of
order for Age ↑ is shown in Figure 2.16.

Similarly, this process of binary matrix of order is performed for all the size-1 items for
both variations (i.e., “ > ” for ↑ and “ < ” for ↓). Therefore, for these 3 items we will have
6 binary order of matrices as Age ↑, Age ↓, Experience ↑, Experience ↓, Publications ↑, and
Publications ↓. Once we have all these resultant binary order matrix, then the join operation of
items takes place by performing Hadamard product (bit-wise AND operation) 1 as described
below.

28 Chapter 2. Related Work

Id Age Experience Publications
p1 45 13 35
p2 35 7 20
p3 30 5 25
p4 55 10 28
p5 40 14 38

Table 2.3 – Person Data

MGs = Ms ANDM ′
s

Where Ms and M ′
s are the matrices representing order for the itemsets s and s′. The matrix

MGs is the bit-wise AND for these items. Therefore, a gradual pattern P for gradual items e.g.,
(i1 ↑ , i2 ↓) can be generated, if the following relation holds [DLT09]:

P = (i1 ↑ AND i2 ↓) (2.8)

Age ↑
p1 > p1 = 0
p1 > p2 = 1
p1 > p3 = 1
p1 > p4 = 0
p1 > p5 = 1

=

p1 p2 p3 p4 p5


p1 0 0 0 0 0
p2 1 0 0 0 0
p3 1 0 0 0 0
p4 0 0 0 0 0
p5 1 0 0 0 0

Figure 2.11 – p1 w.r.t all other tuples

Age ↑
p2 > p1 = 0
p2 > p2 = 0
p2 > p3 = 1
p2 > p4 = 0
p2 > p5 = 0

=

p1 p2 p3 p4 p5


p1 0 0 0 0 0
p2 1 0 0 0 0
p3 1 1 0 0 0
p4 0 0 0 0 0
p5 1 0 0 0 0

Figure 2.12 – p2 w.r.t all other tuples

Age ↑
p3 > p1 = 0
p3 > p2 = 0
p3 > p3 = 0
p3 > p4 = 0
p3 > p5 = 0

=

p1 p2 p3 p4 p5


p1 0 0 0 0 0
p2 1 0 0 0 0
p3 1 1 0 0 0
p4 0 0 0 0 0
p5 1 0 0 0 0

Figure 2.13 – p3 w.r.t all other tuples

Age ↑
p4 > p1 = 0
p4 > p2 = 1
p4 > p3 = 1
p4 > p4 = 0
p4 > p5 = 1

=

p1 p2 p3 p4 p5


p1 0 0 0 1 0
p2 1 0 0 1 0
p3 1 1 0 1 0
p4 0 0 0 0 0
p5 1 0 0 1 0

Figure 2.14 – p4 w.r.t all other tuples

Age ↑
p5 > p1 = 0
p5 > p2 = 1
p5 > p3 = 1
p5 > p4 = 0
p5 > p5 = 0

=

p1 p2 p3 p4 p5


p1 0 0 0 1 0
p2 1 0 0 1 1
p3 1 1 0 1 1
p4 0 0 0 0 0
p5 1 0 0 1 0

Figure 2.15 – p5 w.r.t all other tuples

1. Hadamarad product is a bit-wise/entry-wise product named due to the early work of the French mathemati-
cian Jaques Hadamard (1865–1963)

2. Hasse diagram, proposed by the German mathematician Helmut Hasse (1898–1979), that makes it possible to

2.4. Gradual Pattern Mining 29

Id Age
p1 45
p2 35
p3 30
p4 55
p5 40

=

p1 p2 p3 p4 p5


p1 0 0 0 1 0
p2 1 0 0 1 1
p3 1 1 0 1 1
p4 0 0 0 0 0
p5 1 0 0 1 0

Figure 2.16 – Final Binary Matrix of Order for Gradual Item (Age ↑)

p3 (30)

p2 (35)

p5 (40)

p1 (45)

p4 (55)

Figure 2.17 – (Age ↑) - Hasse
Diagram Representation

p3 (5)

p2 (7)

p4 (10)

p1 (13)

p5 (14)

Figure 2.18 – (Experience ↑) -
Hasse Diagram Representation

p2 (20)

p3 (25)

p4 (28)

p1 (35)

p5 (38)

Figure 2.19 – (Publications ↑) -
Hasse Diagram Representation

The GRITE algorithm uses precedence graph based approach to compute the support of
gradual patterns so as to check whether the pattern is frequent or not. It states the for a given
gradual pattern P and its associated matrix MGs, the support is the longest list from MGs

[DLT09]. To illustrate the method authors use Hasse diagram 2. The representation of items
Age ↑, Experience ↑, and Publications ↑ as Hasse diagram is shown in Figure 2.17, 2.18, and
2.19 respectively.

The Hasse diagram shown in Figure 2.17, for instance when considering the pattern Age ↑,
we observe that that p3(Age30) precedes p2(Age35) which precedes p5(Age40), and so on. This
results in the fact that the value 1 at the intersection between p3 and p2 in the final matrix
as shown in Figure 2.16. Similarly, we can observe the Hasse diagram for Experience ↑ and
Publication ↑ and the resulting values in matrices in Figure 2.20 and Figure 2.21 respectively.

When considering gradual items for more than one attribute, as for instance (Age ↑ ,
Experience ↑), the binary matrices of (Age ↑) and (Experience ↑) are mixed to compute the

represent a finite ordered set graphically

30 Chapter 2. Related Work

p1 p2 p3 p4 p5


p1 0 0 0 0 1
p2 1 0 0 1 1
p3 1 1 0 1 1
p4 1 0 0 0 1
p5 0 0 0 0 0

Figure 2.20 – (Experience ↑) Binary Matrices for
Gradual Item of Size-1

p1 p2 p3 p4 p5


p1 0 0 0 0 1
p2 1 0 1 1 1
p3 1 0 0 1 1
p4 1 0 0 0 1
p5 0 0 0 0 0

Figure 2.21 – (Publications ↑) Binary Matrices for
Gradual Item of Size-1

p1 p2 p3 p4 p5


p1 0 0 0 0 0
p2 1 0 0 1 1
p3 1 1 0 1 1
p4 0 0 0 0 0
p5 0 0 0 0 0

Figure 2.22 – Binary AND of concordant object
pairs for gradual patterns (Age↑ , Experience↑)

resulting matrix as the Hadamard product. The resulting output is shown in the matrix repre-
sentation in Figure 2.22.

The Figure 2.23 shows the precedence graph in which p3 (Age 30, Experience 5) precedes
p2 (Age 35, Experience 7) because we both have 30 < 35 and 5 < 7 following the pattern (Age ↑
, Experience ↑) but p1 and p4 are incomparable as 45 < 55 but 13 > 10. Indeed, in the matrix
the cells [p1][p4] and [p4][p1] are set to 0 which means that there is no order relation between

P 1(45, 13)
P 4

(55, 10)

P 2 (35, 7)

P 3 (30, 5)

P 5 (40, 14)

Figure 2.23 – Precedence Graph (Age ↑ , Experience ↑) - Hasse Diagram representation

2.4. Gradual Pattern Mining 31

p1 p2 p3 p4 p5


p1 0 1 1 0 1
p2 0 0 1 0 0
p3 0 0 0 0 0
p4 1 1 1 0 1
p5 0 1 1 0 0

(Age ↓)

p1 p2 p3 p4 p5


p1 0 1 1 1 0
p2 0 0 0 0 0
p3 0 1 0 0 0
p4 0 1 1 0 0
p5 1 1 1 1 0

(Publications ↓)
Figure 2.24 – Binary matrix representing orders for the dataset shown in Table 2.3

p1 and p4. This mapping of precedence is achieved using bitwise AND operation of itemsets
(Age ↑ and Experience ↑). The support of the considered itemset can then be obtained as the length of
the maximal path in the graph [LLR09]. The algorithm uses a memory conserving knowledge for
information about the traversal of node from Hasse diagram for keep the knowledge about its
maximality. In the final result the solution is considered with the longest path.

In order to enhance the performance of algorithm [DLT09], a scalable implementation is
presented in [Do+15] in which parallelism is exploited by employing multi-core processors for
mining gradual patterns.

2.4.7 GRAANK Algorithm

The GRAdual rANKing (GRAANK) algorithm presented in [LLR09] combines the prin-
cipals of existing approaches to exploits the rank correlation for gradual pattern extraction.
More precisely, it considers the framework of Definition 2.5 that evaluates gradual tendency in
terms of ranking correlation and propose the algorithm for support computation [LLR09]. It
uses Kendall’s tau rank correlation method of concordant and discordant pairs in the process
of mining gradual pattern.

Kendall’s tau ranking correlation coefficient is one of the most widely used non-parametric
measure of association between two variables for rank correlations [PL84]. It evaluates the
strength of dependence between two variables. The Kendall’s rank correlation coefficient evaluates
the degree of similarity between two sets of ranks given to a same set of objects. This coefficient depends
upon the number of inversions of pairs of objects which would be needed to transform one rank order
into the other [Abd07]. The pairs that can be ordered in the same way are called concordant and
those ordered differently are called discordant. The Kendall tau rank correlation is calculated as
follow:

τ = nc − nd
1
2n(n− 1)

(2.9)

32 Chapter 2. Related Work

p1 p2 p3 p4 p5


p1 0 1 1 0 0
p2 0 0 0 0 0
p3 0 0 0 0 0
p4 0 1 1 0 0
p5 1 1 1 0 0

Figure 2.25 – Binary AND of concordant object pairs for gradual patterns (Age↓ , Publications↓)

Where for given n objects to be ranked, nc is list of concordant pairs and nd is list of discordant
pairs fro the given ranking order.

As stated in [LLR09]. In order to take into account information regarding the sense of variation
of the attributes, i.e. to distinguish between A ≤ and A ≥ , we consider object couples instead of pairs,
dissociating the two cases of concordance defined in the Kendall’s tau: we keep the information whether
the couple (i, j) or the couple (j, i) is concordant. The support then equals the length of the concordant
couple list, divided by the total number of object pairs. For example, considering the sample data
Table 2.3 shows the list of concordant pairs for gradual items (Experience ↑, Publications ↑)
and (Age ↓, Experience ↓).

(Experience ↑, Publications ↑) = (5, 25), (10, 28), (13, 35), (14, 38)

(Age ↓, Experience ↓) = (55, 10), (35, 7), (30, 5)

This algorithm uses binary matrices for representing orders and performs the computation
of binary matrices representing the set of concordant object pairs for instance for (Age↑ AND
Experience↑) the result is shown in Figure 2.22 and for (Age↓ AND Publications↓) the result is
shown in Figure 2.25. Then for all candidate itemsets, the support is computed as the sum of
their concordance matrices divided by n(n− 1)/2 where n is the number of objects.

2.5 Fuzzy Gradual Patterns

Gradual patterns allow to express patterns in the form the higher the age, the higher the ex-
perience [Ayo+10]. However, they may lead to crisp behaviours because as seen in section 2.4,
gradual patterns allow to deal with numerical data. We thus investigate fuzzy pattern mining
and its extension to gradual patterns aka fuzzy gradual pattern mining. To do so, we first describe
the basics of fuzzy sets and membership functions.

2.5. Fuzzy Gradual Patterns 33

2.5.1 Fuzzy Logic and Fuzzy Sets

“Everything is vague to a degree you do not realize till you have tried to make it precise.”

– Bertrand Russell

"Fuzzy logic is not fuzzy. Basically, fuzzy logic is a precise logic of imprecision and approximate
reasoning" - Lotfi A.Zadeh [Zad08].

Humans have the capability to converse, reason, and take decision in an environment of
imprecise information. Fuzzy logic can be seen as formalization of these human capabili-
ties [Zad08].

Fuzzy set theory was first introduced by Lotfi A. Zadeh in 1965 [Zad65] to allow to deal
with natural language and imprecise concepts. The theory of fuzzy sets is central to fuzzy
logic [Dub80, PG98]. Fuzzy sets help to represent the uncertain or imprecise information by
using linguistic variables such as very low, very high, moderate, very young, almost young,
very old, almost old etc., With fuzzy sets we can have non-sharp boundaries (e.g., low or high)
for an attribute which in turn help to provide a reasonable representation of different cogni-
tive concepts and linguistic expressions [Hül02]. A fuzzy set is described by its membership
function.

Membership Functions

A fuzzy subset is identified by a so-called memberships function which is a generalization of
characteristic function that specifies the degree of membership of x in the fuzzy set [Hül02].
Usually, membership degrees are taken from the unit interval [0, 1], i.e. a membership function is a
mapping of [0, 1] [Hül02]. The membership function formally defined in [Dub80] as follows.

Definition 2.6 (Membership Function). Let X be a universal set (aka universe of discourse)
containing all possible objects whose elements are denoted as x, the membership in a fuzzy
subsetA ofX is often viewed as a characteristic function µA fromX to [0,1] such that µA(x) = 1
if x fully belongs to A and µA(x) = 1 if x does not belong at all to A.

It states that each element of X is mapped to a value between 0 and 1 and that value is
called as memberships value or degree of membership. The degree of membership quantifies the
grade of membership of that element in X to the fuzzy subset A.

34 Chapter 2. Related Work

Common Types Membership Functions

The usefulness of fuzzy sets very much depends on the construction of membership func-
tion. Various methods for construction of memberships functions are addressed in litera-
ture [Str15]. The membership function allows us to represent a fuzzy set graphically. Figure
2.26 shows the most common membership function.

b X
0

1

μ
Trapezoidal function

ca d b
0

1

μ
Triangular function

ca

b
0

1

μ L - function

a b
0

1

μ R- function

a

X

XX

Figure 2.26 – Membership Functions [Str15]

2.5.2 Defining Fuzzy Gradual Patterns

Since the inception of fuzzy sets [Zad65], considerable literature has be contributed in va-
riety of disciplines with its applications from medicine to consumer products [Bez+99]. A
comprehensive work on fuzzy models for pattern recognition is presented in [Bez+99]. Pattern
recognition is defined as a field about feature analysis, clustering and classifier design.

The applications of fuzzy systems have been seen in the field of control theory, compu-
tational intelligence and artificial intelligence [Bez+99, JB09]. Research is conducted to in-
vestigate applications of fuzzy sets in the fields of statistical data analysis [CGK06], machine
learning and data mining [Hül11] and more recently in the big data [Fer+16] and data sci-
ence [Bou18].

The authors in [QLP11] present an approach for frequent gradual patterns in terms of rank
correlation measure on the basis of fuzzy orderings. [Ayo+10] presents a method to automat-
ically build fuzzy modalities (such as, almost x) from numerical dataset to mine fuzzy grad-
ual pattern. The approach allows to extract the knowledge (gradual patterns) from numerical
datasets that may not be discovered by crisp approach. As of now, there is no work presented

2.5. Fuzzy Gradual Patterns 35

in the literature to extract such kind of fuzzy gradual patterns from semi-structured graph
databases that involves two tasks i.e., to first deal with missing data and then extract patterns.

Fuzzy gradual patterns are of the form “the more/lessA1 isF1 , the more/lessAk isFk” [Ayo+10,
KH10, Bou+10]. For instance, the more the age is “almost 40”, the more the experience is “almost
high”. These patterns express the information about the attributes and their co-variations which
can leads to valuable knowledge for experts for decision making.

In contrast with the crisp data for example “Age” and “Experience ” attributes as shown in
Table 2.3, the fuzzy data allows linguistic variables associated to fuzzy modalities such as (e.g.
“almost”, “all the more”, “low”, “normal”, “high” etc.,). For instance, “Age” can be associated
to 3 modalities such as “low”, “normal”, and “high”. The data are then described by member-
ship degrees that indicate the extent to which their characteristics belong to the considered modalities
[Bou+10]. A “fuzzy gradual item” is then a “triplet” made of an attribute, one of its modalities and
a variation, such as (low, normal, high) [LLR09]. As a result, fuzzy gradual pattern may allow
to discover some interesting patterns that would not have been retrieved by existing methods
because of the crisp approaches such as presented in [DLT09].

Definition 2.7 (Fuzzy Gradual Item). Given an attribute X defined on a universe U , a fuzzy
subset A defined on U describing one of X modalities and ? ∈ {↑, ↓}, a fuzzy gradual item is
defined as the triplet (X,A, ?).

Definition 2.8 (Fuzzy Gradual Itemset). A fuzzy gradual itemset is defined as a combination of
several gradual items, semantically interpreted as their conjunction.

Example 2. Fuzzy gradual items FP can be written as, FP = {(X1, A1, >), (X2, A2, <)} and
interpreted as “ The more theX1 isA1, the lessX2 isA2”, as for instance the more the age is “almost
40”, the more the experience is “almost high”.

The issue arises in defining that “what would be the best fuzzy modality”. [Ayo+10]
presents a method to build fuzzy modalities automatically.

[QLP11, Sic+13] present methods to mine fuzzy gradual patterns based on multi-core archi-
tectures and fuzzy ordering. Fuzzy orderings refer to the fact that two values can more or less
different. For instance, 0.1 may be considered as very different from 0.8 while 0.000001 may
be considered as not that different from 0.0000011. In real-world world database applications,
it is sometimes hardly possible to rank the data according to graduality. Therefore, fuzzy or-
dering and fuzzy ranking techniques presented in the literature help us to address vagueness,
ambiguity and imprecision occuring in some situations [Sic+13].

To the best of our knowledge as of today, no work has been presented to deal with the prob-
lem of mining fuzzy gradual patterns when the data is in graph. In our work, we thus define
fuzzy property graph gradual items and patterns and present the mechanism to retrieve these

36 Chapter 2. Related Work

0 1 0 1 ?

1 0 1 0 1

1 0 ? 1 0

1 1 1 0 ?

Handling
Missing Data

Mining Gradual
Patterns

NoSQL Graph
Database

Connect Pre-Process Extract

Figure 2.27 – Property Graphs Missing Data Handling and Pattern Mining Process

patterns from property graphs. However, we rely on former work for dealing with fuzziness
within property graphs. [CL14] has introduced fuzzy queries on Neo4j by presenting an exten-
sion of the Cypher declarative query aka. cypherf. For instance, it can be applied to retrieve cheep
and popular hotels from a graph database.

In our work, it may be the case that source properties are missing. We thus review in the
next section the main existing methods for dealing with missing data.

2.6 Handling Missing Values

In order to extract gradual patterns from property graphs, often we face the situation when
all the properties of a node may not be present because they do not have a predefined schema.
In property graph, a node may not contain all the properties, as the data may be missing since
it may not be available, or it does not exist as it may not be applicable (for example no salary,
or experience in the case of kids). Therefore, it requires to treat missing data and then apply
mining algorithms to retrieve patterns of interest from graphs.

In our proposed approach, we investigate a mechanism to handle semi-structured data for
mining gradual pattern. The main steps of our approach are; (i) Retrieve the graph data, (ii)
Treat missing data and (iii) Extract gradual patterns. An overall process flow depicting these
three steps for gradual pattern mining from a property graph is shown in Figure 2.27.

When dealing with missing data, it is important to consider the type or nature of miss-
ing data. For example the missing data can be random, structured, forgotten or sometimes
not available etc. Types of missing data were first described in [RUB76] as; (i) Missing Com-
pletely At Random (MCAR), (ii) Missing At Random (MAR), and (iii) Missing Not At Random
(MNAR).

In MCAR, the missing data is not related to a specific value or observed response. When

2.6. Handling Missing Values 37

missing data depends on set of observed responses, but not related to specific values it is called
MAR. The missing values are distributed randomly across all the data in MCAR whereas, in
MAR missing values are distributed within one or more sub-samples. If the missing data is
neither MCAR nor MAR, it is then categorized as MNAR. The missing values in MNAR are
related to actual values and they do depend on missing values. The example for MNAR can be
the people with high income are less likely to report their income [RUB76].

2.6.1 Handling Missing Data Techniques

Primarily there are two main approaches to deal with missing values i.e., (i) ignoring /
deletion and (ii) imputation. It is important to decide the best strategy that results the least
biased results. This can be performed by evaluation of the source data and identifying type of
missing data. A classification of handling missing data give in [Swa18] is shown in Fig.2.28.

Figure 2.28 – Handling Missing Data [Swa18]

38 Chapter 2. Related Work

Ignoring or deleting techniques include listwise deletion (i.e., ignoring a row/ object which
contains missing data) and attribute deletion. Imputation techniques include replacing missing
data with fixed constant, replacing with mean of the objects of attribute and multiple imputa-
tion method. Expectation Maximization presented in [DLR77] is a missing data imputation
technique in which missing values are estimated (parameter estimation) based on the maxi-
mum likelihood method.

2.6.2 Handling Missing Data With Replacement

Imputation methods involve replacing missing data. However, we claim that we can not
replace missing data in case of property graphs. Indeed, if the property is missing in a node,
there is often no meaning to add it artificially, which creates a bias in results, particularly in the
case of real datasets.

The treatment of missing data using imputation is studied by employing supervised learn-
ing algorithms [BM03, HHE03, SRA17]. In [WWC04, Ben+09], an association rules based model
is used to complete missing data.

The use of graphical models for processing of missing data is presented in [MP18]. “Graph-
ical models enable an efficient and transparent classification of the missingness” [MP18] i.e.,
whether it is MCAR or MAR. Maximum Likelihood and Multiple Imputation are well known
missing data estimation methods but they assume MAR. Consistent estimation for missing
data and its implementation procedure is discussed theoretically for MAR and MNAR cate-
gories.

2.6.3 Handling Missing Data Without Replacement

[PL84] has considered the question of dealing with missing data for the computation of
rank correlation. However, the paper only considers the case where one or several individuals
are missing, meaning, in the tabular representation, a full line whereas we consider here the
case where single values are missing.

As mentioned in [OW72], we claim that “obviously the best way to treat missing data is not to
have them". In real world applications, where data is managed in relational databases, we often
find missing values. [RC98] has proposed to mine association rules in relational databases in
the presence of missing data by segmenting the database into several so-called valid databases
(“vdb”), in such a way that a vdb does not contain any missing value. The authors have hence
redefined the concepts of support and confidence for vdb that are fully compatible with exist-
ing association rule mining algorithms.

The authors in [RC98] redefine the classical support and confidence for vdb. Figure 2.29 shows
two datasets with and without missing values.

2.6. Handling Missing Values 39

Figure 2.29 – Datasets with and without Missing values

We recall the classical definition of support given in Equation 2.1 and confidence in Equa-
tion 2.4, if the required minimum support threshold is 40%, and the confidence is 80% for DB1
shown in Figure 2.29, the itemsets result is given as below.

Length 1 : {X1 = a} , {X1 = b} , {X2 = b} , {X4 = c} , {X4 = c}; supp = 50
Length 2 : {X1 = a, X4 = c} , {X1 = b, X4 = c}; supp = 50

The resulting association rules will be:

X1 = a →X4 = c, supp = 50, conf = 100
X1 = b →X4 = d, supp = 50, conf = 100
X4 = c →X1 = a, supp = 50, conf = 100
X4 = d →X1 = b, supp = 50, conf = 100b

Now, taking the same required minimum support threshold is 40%, and the confidence is 80%
for DB2, the results are as under:

Length 1 : {X1 = a} = 3
8 = 0.375

{X1 = b} = 3
8 = 0.375

{X2 = b} = 4
8 = 0.5

{X4 = c} = 3
8 = 0.375

{X4 = d} = 3
8 = 0.375

40 Chapter 2. Related Work

As we can see in the above result that none of the Length 1 has met the minimum support
threshold requirement of 40%, except {X2 = b} which has support of 50%. As as result there
will be no Length 2 itemsets will be formed and hence no rules. Now, we see the how this
missing data results when we take vdb. The vdb approach stated that we can avoid the above
mentioned problem by partially ignoring missing values, as a fact only certain data containing
missing values will be partially disabled. To explain the vdb, we recall the definitions given in
[RC98] as below.

Let D be a database, X an itemset, and t a data.

Definition 2.9 (Disabled data). t is disabled for X in D, if t contains missing values for at least
one item i of X .

We note that Dis(X) is the subset of D disabled for X .

We note that DX is the subset of D containing X , i.e.

DX = {t ∈ D | X ⊆ t}

Definition 2.10 (Valid database). The valid database vdb for an itemset X in D is:

vdb(X) = D − Dis(X)

Consequently, the support is redefined as follows:

Support(X) = |DX |
|vdb(X)| = |Dx|

|D| − |Dis(X)| (2.10)

With the new definition of support, now we are taking the same required minimum support
threshold of 40% for DB2, and the results are as under:

Length 1 : {X1 = a} = 3
6 = 0.5; (data disabled = 1, 5)

{X1 = b} = 3
6 = 0.5; (data disabled = 1, 5)

{X2 = b} = 4
8 = 0.5

{X4 = c} = 3
6 = 0.5; (data disabled = 2, 6)

{X4 = d} = 3
6 = 0.5; (data disabled = 2, 6)

Length 2 :{X1 = a, X4 = c} = 2
4 = 0.5; (data disabled = 1, 2, 5, 6)

{X1 = b, X4 = d} = 2
4 = 0.5; (data disabled = 1, 2, 5, 6)

2.7. Conclusion 41

When dealing with missing values, one of the main issue is to select minimum support thresh-
old, because if the value is small, too many itemsets will be generated and hence the association
rules and if the value is large, very few or no itemsets may be generated. So in data mining
task, it is generally considered as a hard problem to fix these minimum values.

2.7 Conclusion

In this chapter, we explained the basic concepts to form the basis for our proposed method.
The topic covered in this chapter include graph databases their applications and importance in
dealing with large unstructured data. We discussed Neo4j graph database which is used in our
proposed method to create and manage property graphs. We also discussed the basic concepts
and definitions related to frequent pattern mining and gradual pattern mining. We discussed
two main algorithms for gradual pattern mining. Furthermore, we have briefly described fuzzy
sets and fuzzy gradual patterns. Finally, we discussed about various missing data handling
techniques to form a basis for dealing with missing data issue related to property graphs when
it is required to extract gradual patterns.

Chapter 3
Defining Gradual Patterns from Property
Graphs

3.1 Introduction . 44

3.2 Definitions . 44

3.3 Types of Gradual Patterns in Property Graphs 48

3.3.1 Intra-Label-Node-Properties . 48

3.3.2 Inter-Node-Label-Properties . 50

3.3.3 Node-Properties with Relationships Count 52

3.3.4 Node-Properties-with-Relationships-Properties 53

3.3.5 Inter-Relationships-Properties . 56

3.4 Fuzzy Property Graph Gradual Pattern . 58

44 Chapter 3. Defining Gradual Patterns from Property Graphs

3.1 Introduction

In this chapter, we introduce different approaches in which gradual patterns can be defined
from property graphs. The definition of these patterns rely on both nodes and relationships and
their properties, which provides several opportunities to exploit the information. The patterns
are extended to fuzzy gradual patterns. In our work, we have designed the following types of
gradual patterns from property graphs:

• Intra-Label-Node-Properties,

• Inter-Label-Node-Properties,

• Node-Properties-with-Relationships-count,

• Node-Properties-with - Relationships -Properties,

• Inter-Relationships -Properties,

• Fuzzy Gradual Patterns from Property Graphs.

All these scenarios provide various perspectives of the data depending upon the applica-
tion domain and requirements of the end user. The first two types of patterns rely on node
properties while the other three ones also exploit relationships. In the rest of this chapter, we
detail and illustrate these different types of gradual pattern mining by providing relevant def-
initions and examples.

3.2 Definitions

Property graphs have been studied in commercial solutions and the literature for the last
ten years. However, existing definitions do not provide satisfactory frameworks including all
the specificities of such data: properties put to both nodes and relationships, types put on
relationships (only one type, only one direction, several relationships having to be defined for
bi-directional relationships and/or for several types), several possible labels for every node,
etc.

An overall nodes and relationships visualization of a property graph is shown in Figure 2.7
and the details of the nodes are shown in 2.1 for label “Person”, Listing 2.2 for label “Paper”
Listing 2.3 for label “Project” respectively. We define property node, property relationship,
and property graph as follows.

Definition 3.1 (Property Node). Let ΛN be a set of node Labels with NULL ∈ ΛN , ΠN be a
set of properties where every property π ∈ ΠN can take values over a domain dom(π). PN is

3.2. Definitions 45

ID : 1
Age : 45
Expr : 13
Sal : 3500

Person : Professor

Figure 3.1 – Property Node

ID : 1
Age : 45
Expr : 13
Sal : 3500

ID : 15
Citations : 50
Imp_Fac : 2

PUBLISH
{date:2018-08-10}

Figure 3.2 – Property Relationship between two Property Nodes

the set of all possible pairs (π, v) with v ∈ dom(π). A property node n is given by the tuple
(idn,Λn, Pn) with

• idn the unique identifier of n,

• Λn ⊆ ΛN the set of labels defining the node,

• and Pn ⊆ PN is the set of properties of n.

Example 3. ΛN ={Person, Professor, NULL}, ΠN = {Age, Expr, Sal}, n1 = (1, { Person, Profes-
sor}, {(Age : 45), (Expr : 13), (Sal : 3500)}) is a property node as shown in Figure 3.1.

Definition 3.2 (Property Relationship). Let N be a set of property nodes, ΛR be a set of rela-
tionship types with NULL ∈ ΛR, ΠR be a set of properties where every property π ∈ ΠR can
take values over a domain dom(π). PR is the set of all possible pairs (π, v) with v ∈ dom(π). A
property oriented relation r is given by the tuple [idr, n1, n2, λr, Pr] with

• idr the unique identifier of r,

• n1 ∈ N ,

• n2 ∈ N ,

• λr ∈ ΛR the Type of the relation,

• and Pr ⊆ PR is the set of properties of r.

Example 4. ΛR = { PUBLISH, RCV_GRANT, COLAB. }, ΠR = {date, since, NULL},and r1 = [28,
{1}, {15}, {PUBLISH}, {(date:2016-08-10)}] is a property relation as shown in Figure 3.2.

46 Chapter 3. Defining Gradual Patterns from Property Graphs

1 neo4 j > MATCH (n : Person) -[r : PUBLISH] -> (p : Paper)
2 WHERE ID (n)= 1 AND ID (p)= 15
3 RETURN ID (r) , ID (n) , ID (p) , type (r) , r . date ;
4 +−−−+
5 | ID (r) | ID (n) | ID (p) | type (r) | r . date |
6 +−−−+
7 | 28 | 1 | 15 | "PUBLISH" | 2016−08−10T00 : 00Z |
8 +−−−+
9

10 1 row a v a i l a b l e a f t e r 18 ms , consumed a f t e r another 0 ms
11 neo4 j >

Listing 3.1 – Property Relationship

Listing 3.1 shows the cypher-shell query to retrieve the record for “date” property for rela-
tionship type “PUBLISH” using node IDs given in Example 4

Definition 3.3 (Property Graph). Let ΛN be a set of node Labels with NULL ∈ ΛN , ΠN be a set
of properties of node, PN a set of (key:value) pairs over ΠN , ΛR be a set of relationship Types
with NULL ∈ ΛR, ΠR be a set of properties of relationship, PR a set of (key:value) pairs over
ΠR.

A property graph G is given by (N,R) where:

• N stands for a set of property nodes defined over ΛN and PN ,

• R stands for a set of property relationships defined over N , ΛR and PR.

Example 5. The details of property graphPG as shown in “Fig 3.3” are : ΛN = ({(Person:Professor),
(Paper), (Project) }, ΛR = ({ COLLAB, PUBLISH , RCV_GRANT }, ΠN = {(ID, Name,Age, De-
sig, Expr, Sal, NULL), (ID, Pr_Title, Type, Year, Citations, Impact_Factor, NULL), (ID, Year,
Amount, NULL)}, ΠR = {(date, NULL), (since, NULL)}.

Definition 3.4 (Property Graph Node Gradual Item). Let ΛN be a set of node Labels with
NULL ∈ ΛN , ΠN be a set of properties, PN a set of (key:value) pairs over ΠN , ΛR be a set
of relationship types with NULL ∈ ΛR, ΠR be a set of properties, PR a set of (key:value) pairs
over ΠR.

Let GD = (N,R) be a graph defined over ΛN , PN , ΛR and PR. A graph data gradual item
is a gradual item i? where i ∈ ΠN ∪ΠR.

Example 6. An example of such property graph data gradual item could be “The higher the Age”
(Age ↑), where “Age” is a property of a node labeled with “Person”.

Definition 3.5 (Graph Relationship Gradual Item). Let ΛN be a set of node Labels withNULL ∈
ΛN , ΠN be a set of properties, PN a set of (key:value) pairs over ΠN , ΛR be a set of relationship
Types with NULL ∈ ΛR, ΠR be a set of properties, PR a set of (key:value) pairs over ΠR.

3.2. Definitions 47

{ID:2,
Name:Dave,
Age:NULL,
Desig:MCF,

Expr:7,
Sal:2500}

{ID:1,
Name:John,

Age:50,
Desig:PR,
Expr:15,
Sal:4000}

{ID:15,
Pr_Title:DB,

Type:conference,
Year:2015,

Citations:50,
Imp._Fac.:2 }

{ID:16,
Prg_Title:MUSE,
Amount:30000,

Year:2017 }

PUBLISH
{ date:2016-08-10}

COLLAB.
since : 2017

RCV_GRANT
{ date:2017-05-22}

Figure 3.3 – Property Graph

Let GD = (N,R) be a graph defined over ΛN , PN , ΛR and PR. A graph relationship gradual
item is a gradual item ij? where j ∈ N is the depth of the item, i ∈ ΛR and ? ∈ {↑, ↓}.

For the sake of simplicity, when a property graph relationship gradual item is of depth 1,
we can omit to mention the depth, as shown in Example 7.

Example 7. (COLLABORATE ↑) is equivalent to (COLLABORATE 1 ↑) and stands for the num-
ber of collaborations increases. This considers that the relatioship depth is 1 i.e., a relationship
path between two nodes. (COLAB.3 ↑) stands for number of collaboration of collaboration of collab-
oration increase. This involves a path traversal of depth 3.

The path traversal at the depth of 3 relationships in Neo4j can be extracted using the cypher
query shown in Listing 3.2

1
2 neo4 j > MATCH path =(: Person) -[:COLLABORATE*] -> (e : Person)
3 USING SCAN e : Person
4 RETURN EXTRACT (n in NODES(path)| ID (n)) AS path_Nodes ,
5 length (path) AS Length
6 ORDER BY Length DESC ;

Listing 3.2 – Path Traversal

The graph topology structure that is retrieved from property graphs in order to deal with
the data in a more efficient way. For this purpose, we consider graph structure summaries as

48 Chapter 3. Defining Gradual Patterns from Property Graphs

described below.

Definition 3.6 (Property Graph Structure Summary). Let SNL be a source node label with
NULL ∈ SNL, DNL be a destination node label with NULL ∈ SNL, RT be a unique of
relationship type between SNL and DNL, and C be the count of relationships between SNL

and DNL.

A property graph structure summaryGSS is given by a matrix of tuple (SNL, RT , DNL, C)
representing the strucure of graph.

Example 8. (SNL = (Person) , RT =[COLLABORATE] , DNL = ((Person), C=15) or
(SNL = (Person) , RT =[PUBLISH] , DNL = ((Paper), C=15).

Now, as described in Section 1.2, our two main objectives are; (i) Defining gradual patterns
in the context of property graphs and (ii) Mining gradual patterns automatically from property
graphs. We have defined basic definitions as described above and we start different types of
patterns that can be extracted from property graphs.

3.3 Types of Gradual Patterns in Property Graphs

In this section we describe the five different types of gradual patterns in the context of
property graphs as mentioned in Section 3.1. These scenarios describe the possibilities in which
gradual patterns can be extracted from property graphs depending upon the requirement of
end user.

3.3.1 Intra-Label-Node-Properties

We investigate the scenario of Intra-Label-Node-Properties for gradual pattern extraction. In
this scenario, the pattern extraction process is to be performed for nodes sharing the “same
label”. It is important to note that in this scenario, there are no relationships involved.

First, the program retrieves the data from property graph using for each label. This steps
involves the connection of the program with graph database and retrieval of data for all nodes
for each labels. Listing 3.3 shows the cypher-shell query to show a representation of query
and retrieved data. For example, considering label “Person” to retrieve its data from property
graph. Listing 3.4 shows the cypher query and retrieved data in cypher-shell for label person.

At this stage, the program transforms the output of cypher query response received from
graph database is into tabular representation so as to as to be able to apply pattern mining

3.3. Types of Gradual Patterns in Property Graphs 49

algorithms. The property graph for label person with (key:vales) is shown in Figure 3.4 and its
transformation in tabular representation is shown in Table 3.1.

1 neo4 j > MATCH (n)
2 RETURN l a b e l s (n) as LABEL , count (*) as nodeCount ;
3 +−−−−−−−−−−−−−−−−−−−−−−−+
4 | LABEL | nodeCount |
5 +−−−−−−−−−−−−−−−−−−−−−−−+
6 | " Person " | 7 |
7 | " Paper " | 5 |
8 | " P r o j e c t " | 2 |
9 +−−−−−−−−−−−−−−−−−−−−−−−+

10
11 3 rows a v a i l a b l e a f t e r 2 ms , consumed a f t e r another 0 ms

Listing 3.3 – Retrieve Node Labels with Node Count

1 neo4 j > MATCH (n : Person)
2 RETURN n AS Person_Label_Nodes ;
3 +−−+
4 | Person_Label_Nodes |
5 +−−+
6 | (: Person { desig : "PR" , name : " John " , expr : 13 , age : 45 , s a l : 3500 }) |
7 | (: Person { desig : "MCF" , name : " Dave " , expr : 7 , s a l : 2500 }) |
8 | (: Person { desig : "ETU" , name : " Emily " , expr : 5 , age : 30 }) |
9 | (: Person { desig : "MCF" , name : "Tim" , expr : 10 , s a l : 2800 }) |

10 | (: Person { desig : "PR" , name : " Carl " , expr : 14 , age : 44 , s a l : 3800 }) |
11 | (: Person { desig : "MCF" , name : " Chris " , expr : 9 , age : 38 , s a l : 2600 }) |
12 | (: Person { desig : "ETU" , name : " David " , expr : 5 , age : 32 , s a l : 1400 }) |
13 +−−+
14
15 7 rows a v a i l a b l e a f t e r 8 ms , consumed a f t e r another 0 ms

Listing 3.4 – Label Person Data

To check gradual patterns for label “Person”, the algorithm finds the correlation among the
properties of nodes. The output pattern according to definition 2.4 may be of the form “the
higher the age, the higher the experience”. To do so, the program creates binary order matrix for
given properties as discussed in Section 2.4.

We compute the support as described in algorithm presented in [LLR09] for gradual pat-
tern extraction. But, it requires to handle missing values first, because the exiting algorithm
does not allow to treat missing data. In section 4.1, we present the details for mining this type
of pattern.

50 Chapter 3. Defining Gradual Patterns from Property Graphs

Representation:
NO

Missing
Age

Missing
Sal

Missing

name:John
age:45
expr:13
Sal:3500

name:Dave
expr:7

Sal:2500

name:Emily
age:30
expr:5

name:Tim
expr:10
Sal:2800

name:Carl
age:44
expr:14
Sal:3800

name:Chris
age:38
expr:9

Sal:2600

name:David
age:32
expr:5

Sal:1400

Figure 3.4 – Label “Person” Nodes

Id Name Age Expr Sal
1 John 45 13 3500
2 Dave ? 7 2500
3 Emily 30 5 ?
4 Tim ? 10 2800
5 Carl 44 14 3800
6 Cris 38 9 2600
7 David 32 5 1400

Table 3.1 – Label “Person”
Tabular form

3.3.2 Inter-Node-Label-Properties

In the Inter-Node-Label-Properties scenario, gradual patterns are extracted from the nodes
having “different labels” that may or may not involve a relationship between them. From our
running example graph schema Figure 2.7, we take two node labels i.e., “Person” and “Paper”
to explain the scenario. In this situation, they involve a relationship “PUBLISH” between these
two types of nodes but this is not mandatory. A query to display the node properties of label
“Paper”, the cypher query is shown in Listing 3.5.

1 neo4 j > MATCH (n : Paper)
2 RETURN Id (n) , n . p r _ t i t l e , n . year , n . C i t a t i o n s , n . Impact_Factor ;
3 +−−−+
4 | Id (n) | n . p r _ t i t l e | n . year | n . C i t a t i o n s | n . Impact_Factor |
5 +−−−+
6 | 11 | "GRAPH" | " 2015 " | 10 | NULL |
7 | 12 | "LOGIC" | " 2016 " | 30 | 4 . 5 |
8 | 13 | "FUZZY" | " 2015 " | 5 | NULL |
9 | 14 | "RDF" | " 2017 " | NULL | NULL |

10 | 15 | "DB" | " 2016 " | 50 | 2 |
11 +−−−+
12
13 5 rows a v a i l a b l e a f t e r 7 ms , consumed a f t e r another 0 ms
14 neo4 j >

Listing 3.5 – Query Node Properties for Label “Paper”

3.3. Types of Gradual Patterns in Property Graphs 51

1 MATCH (n : Person) -[r : PUBLISH] -> (m: Paper)
2 RETURN n , r ,m

Listing 3.6 – Label “Paper” and “Person” Nodes with Relationships

Figure 3.5 – Label “Person” Nodes with Relationships Graph Visualisation

As we can observe in the output result of Listing 3.5, we have missing data in Citations and
Impact_Factor properties represented as “NULL”. Therefore, it requires to deal with missing
data before mining the gradual patterns. Also, we know that some nodes in label “Person”
have missing values as shown in 3.1. After dealing with the missing data and vdb computa-
tion as explained in Section 3.3.1, the pattern mining algorithm is applied by the program. To
find the gradual patterns in this scenario, we need to address both nodes with labels and the
relationships types between them. To show graph visualization for nodes and corresponding
relationship of Person and Paper, a cypher query is given in Listing 3.6. The resulting output is
shown in Figure 3.5.

Once the data is retrieved from the graph and missing values between the labels are ad-
dressed then then mining process tries to find correlation of the type “the higher the experience,
the higher the paper citation” and other that might exits in the data. This done by checking the
patterns which have support greater than the user defined minimum support threshold. The
algorithm for this mining task are discussed in Section 4.3.

52 Chapter 3. Defining Gradual Patterns from Property Graphs

3.3.3 Node-Properties with Relationships Count

In “Node-Properties-with-Relationships- count” scenario, we try to extract the gradual patterns
that involve node properties for a label as well as the corresponding relationships count. The
pattern extraction process will be processed to see if there exists any correlation between them.
In this case, the correlation can be “the higher the age, the higher the number of collaborations” or
“the higher the experience, the higher the number of punlications”.

To perform this type of pattern mining we first need to extract graph summaries describ-
ing relationships. “Graph summarization facilitates the identification of structure and meaning in
data” [Liu+18]. There are various summarization techniques depending upon the nature and
requirement of the task [KBB17, Liu+18]. These graph summarization techniques include
aggregation-based (topology), attribute-based (topology and attributes) [Wu+14], application-
oriented (e.g., graph pattern matching), and domain specific (e.g., bioinformatics) [KBB17].
A mechanism to retrieve structure summaries from NoSQL graph engine is also presented
in [CL17]. Listing 3.7, shows the relationships details.

In our scenario, our program first extracts the graph topology summary including the labels
and relationships count and further uses that for mining gradual patterns. The output of graph
schema summary for running example is shown in Listing 2.6.

1 neo4 j > MATCH () -[r] -> ()
2 RETURN type (r) as Relationship_Type , count (*) as Relat ionships_Count ;
3 +−−−+
4 | Relat ionship_Type | Relat ionships_Count |
5 +−−−+
6 | "RCV_GR" | 3 |
7 | "PUBLISH" | 13 |
8 | "COLLABORATE" | 14 |
9 | "RECEIVE" | 3 |

10 | "EVALUATE" | 3 |
11 +−−−+
12
13 5 rows a v a i l a b l e a f t e r 7 ms , consumed a f t e r another 0 ms
14 neo4 j >

Listing 3.7 – Retrieve Relationships with Relationships Count

After retrieving the graph schema summary, the program extracts summary per label with
all its nodes and relationships count. The output of this summary in tabular form for label
“Person” is shown in Figure 3.6. From this point the process of handling missing values (see
Section 4.1) takes place as shown in Figure 2.27. After handling missing values, the support
computation takes place to find out the gradual pattern that have support greater than the
min_threshold support.

3.3. Types of Gradual Patterns in Property Graphs 53

Id Name Age Expr Sal
No. Of

Collaboration
No. of

Publications
No. of
Grants

1 John 45 13 3500 3 3 2

2 Dave ? 7 2500 2 1

3 Emily 30 5 ? 1 1

4 Tim ? 10 2800 1 2

5 Carl 44 14 3800 3 3 1

6 Chris 38 9 2600 3 1

7 David 32 5 1400 1 2

Label “PERSON” Data Relationships Count

0

0

0

0

0

Figure 3.6 – Property Graphs Gradual Pattern Mining Process

3.3.4 Node-Properties-with-Relationships-Properties

In this type of scenario, the gradual patterns are extracted from the node properties and re-
lationships properties. Since the relationships are treated as much important as node in prop-
erty graphs so there may arise a situation where pattern need to be extracted from relationship
properties. These patterns will be extracted for each label with the corresponding relationship
types. The Listing 3.7 shows the relationship types with the respective count and an overall
schema topology was shown in Listing 2.6 showing which relationships are connected between
which source and destination label nodes.

Now first objective is to retrieve the relationships properties. The Listing 3.8 shows the
properties for the running example. As we can see that for our running example, only keys are
“since” and “ data”, which are not enough to fully explain the scenario. Therefore, to present
this scenario, we use the synthetic graph generator to generate new property graph of nodes
and relationships with properties. The detailed description about the graph generator is given in
Section 5.2.

1 neo4 j > MATCH (n : Person) -[r] -> (m)
2 RETURN l a b e l s (n) , type (r) , keys (r) , l a b e l s (m) , count (r) ;
3 +−−−+
4 | l a b e l s (n) | type (r) | keys (r) | l a b e l s (m) | count (r) |
5 +−−−+
6 | [" Person "] | "COLLABORATE" | [" s i n c e "] | [" Person "] | 6 |
7 | [" Person "] | "PUBLISH" | [] | [" Paper "] | 12 |
8 | [" Person "] | "PUBLISH" | [" date "] | [" Paper "] | 1 |
9 | [" Person "] | "COLLABORATE" | [] | [" Person "] | 8 |

10 | [" Person "] | "RCV_GR" | [" date "] | [" P r o j e c t "] | 2 |

54 Chapter 3. Defining Gradual Patterns from Property Graphs

11 | [" Person "] | "RCV_GR" | [] | [" P r o j e c t "] | 1 |
12 +−−−+
13
14 6 rows a v a i l a b l e a f t e r 12 ms , consumed a f t e r another 0 ms
15 neo4 j >

Listing 3.8 – Relationship Properties

With the synthetic graph generator, just to explain the current scenario and for the sake of
simplicity, we create a synthetic graph of 10 nodes and 40 relationships. We set 5 properties
for each node namely PN1, PN2, PN3, PN4 and PN5. We set 3 properties for each relation-
ship namely, PR1, PR2, and PR3. To keep the synchronization the running example, we keep
same naming convention for node labels and relationship types. The details of node and rela-
tionships for this newly created property graph is shown in Listing 3.9 and the details of the
relationships is shown in Listing 3.10.

1 neo4 j > MATCH (n)
2 RETURN l a b e l s (n) as LABEL , count (*) as nodeCount ;
3 +−−−−−−−−−−−−−−−−−−−−−−−−−+
4 | LABEL | nodeCount |
5 +−−−−−−−−−−−−−−−−−−−−−−−−−+
6 | [" Person "] | 3 |
7 | [" Paper "] | 4 |
8 | [" P r o j e c t "] | 3 |
9 +−−−−−−−−−−−−−−−−−−−−−−−−−+

10
11 3 rows a v a i l a b l e a f t e r 28 ms , consumed a f t e r another 0 ms

Listing 3.9 – Node and Relationship Details

1 neo4 j > MATCH (: Person) -[r] -> ()
2 RETURN type (r) , keys (r) , count (*) ;
3 +−−+
4 | type (r) | keys (r) | count (*) |
5 +−−+
6 | "EVALUATE" | ["PR1 " , "PR2 " , "PR3 "] | 2 |
7 | "RCV_GR" | ["PR1 " , "PR2 " , "PR3 "] | 5 |
8 | "COLLABORATE" | ["PR1 " , "PR2 " , "PR3 "] | 5 |
9 | "PUBLISH" | ["PR1 " , "PR2 " , "PR3 "] | 3 |

10 +−−+
11
12 4 rows a v a i l a b l e a f t e r 8 ms , consumed a f t e r another 0 ms
13 neo4 j >

Listing 3.10 – Relationship Types with their Properties from Synthetic Property Graph

3.3. Types of Gradual Patterns in Property Graphs 55

As we can see in both Listings 3.9, and 3.10 for the created graph using synthetic graph gener-
ator, the distribution of 10 nodes in their respective labels is evenly distributed. Similarly, the
distribution of 40 relationships their respective types is also evenly distributes. This is due to
the fact that, we select the feature of “ Uniform distribution” in GUI interface of the tool for
creation of node and relationships.

To extract the patterns, the program needs to check the node properties along with its rela-
tionships properties for each label from the property graph. The Listing 3.11 shows the output
for label Person and its related relationship properties with values.

1 neo4 j > MATCH (n : Person) -[r] -> ()
2 RETURN d i s t i n c t ID (n) , n .PN1 , n .PN2 , n .PN3 , n .PN4 , n .PN5 ,
3 r . PR1 , r . PR2 , r . PR3 ;
4 +−−−+
5 | ID (n) | n .PN1 | n .PN2 | n .PN3 | n .PN4 | n .PN5 | r . PR1 | r . PR2 | r . PR3 |
6 +−−−+
7 | 2 | 7 | 1 | 81 | 72 | NULL | 92 | 68 | 52 |
8 | 2 | 7 | 1 | 81 | 72 | NULL | 97 | 0 | 2 |
9 | 2 | 7 | 1 | 81 | 72 | NULL | 8 | 23 | 36 |

10 | 2 | 7 | 1 | 81 | 72 | NULL | 15 | 74 | 8 |
11 | 2 | 7 | 1 | 81 | 72 | NULL | 35 | 21 | 30 |
12 | 4 | 52 | 98 | 45 | 63 | NULL | 99 | 96 | 33 |
13 | 4 | 52 | 98 | 45 | 63 | NULL | 62 | 48 | 82 |
14 | 4 | 52 | 98 | 45 | 63 | NULL | 1 | 74 | 24 |
15 | 4 | 52 | 98 | 45 | 63 | NULL | 55 | 88 | 10 |
16 | 4 | 52 | 98 | 45 | 63 | NULL | 75 | 99 | 58 |
17 | 9 | 67 | 1 | 47 | 7 | 54 | 30 | 52 | 22 |
18 | 9 | 67 | 1 | 47 | 7 | 54 | 30 | 25 | 35 |
19 | 9 | 67 | 1 | 47 | 7 | 54 | 93 | 51 | 38 |
20 | 9 | 67 | 1 | 47 | 7 | 54 | 68 | 10 | 93 |
21 | 9 | 67 | 1 | 47 | 7 | 54 | 53 | 4 | 26 |
22 +−−−+
23
24 15 rows a v a i l a b l e a f t e r 5 ms , consumed a f t e r another 2 ms

Listing 3.11 – Node Properties with Relationship Properties from Synthetic Property Graph

Once the node properties and relationships are retrieved by the program, it proceed to the
process of extracting pattern according to the Algorithms as presented in 1, 2. It must be noted
that we have shown the explicit queries to explain the scenario, but for the program this process
has to automatic retrieval of data, then pre-processing and finally pattern extraction.

56 Chapter 3. Defining Gradual Patterns from Property Graphs

3.3.5 Inter-Relationships-Properties

In Inter-Relationships-Properties, for extracting patterns we are only concerned with the re-
lationship properties regardless of the node labels present in the graph schema. The resulting
patterns will be showing the co-variance only between the relationship properties. To explain
this scenario, we use the same synthetic graph that is generated for the example data as de-
scribed in Section 3.3.4. The Listing 3.12 show the output of synthetic graph relationships type
PUBLISH with its properties and Listing 3.13 the output of properties for all relationship types.

1
2
3 neo4 j > MATCH () -[r : PUBLISH] -> ()
4 RETURN type (r) , keys (r) , count (*) ;
5 +−−+
6 | type (r) | keys (r) | count (*) |
7 +−−+
8 | "PUBLISH" | ["PR1 " , "PR2 " , "PR3 "] | 13 |
9 +−−+

10
11 1 row a v a i l a b l e a f t e r 22 ms , consumed a f t e r another 1 ms
12
13
14 neo4 j > MATCH () -[r : PUBLISH] -> ()
15 RETURN d i s t i n c t ID (r) , r . PR1 , r . PR2 , r . PR3 ;
16 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
17 | ID (r) | r . PR1 | r . PR2 | r . PR3 |
18 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
19 | 41 | 29 | 81 | 11 |
20 | 21 | 6 | 53 | 51 |
21 | 1 | 90 | 46 | 5 |
22 | 33 | 52 | 89 | 51 |
23 | 13 | 11 | 92 | 23 |
24 | 45 | 82 | 37 | 100 |
25 | 25 | 47 | 52 | 15 |
26 | 5 | 83 | 45 | 38 |
27 | 37 | 47 | 77 | 5 |
28 | 17 | 94 | 21 | 36 |
29 | 49 | 30 | 52 | 22 |
30 | 29 | 93 | 51 | 38 |
31 | 9 | 53 | 4 | 26 |
32 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
33
34 13 rows a v a i l a b l e a f t e r 53 ms , consumed a f t e r another 5 ms
35 neo4 j >

3.3. Types of Gradual Patterns in Property Graphs 57

Listing 3.12 – PUBLISH Relationship type with Properties Synthetic Property Graph

1 neo4 j > MATCH () -[r] -> ()
2 RETURN d i s t i n c t ID (r) , r . PR1 , r . PR2 , r . PR3 ;
3 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
4 | ID (r) | r . PR1 | r . PR2 | r . PR3 |
5 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
6 | 49 | 30 | 52 | 22 |
7 | 43 | 35 | 39 | 57 |
8 | 37 | 47 | 77 | 5 |
9 | 34 | 62 | 48 | 82 |

10 | 9 | 53 | 4 | 26 |
11 | 4 | 75 | 99 | 58 |
12 | 39 | 30 | 25 | 35 |
13 | 27 | 48 | 35 | 23 |
14 | 25 | 47 | 52 | 15 |
15 | 23 | 43 | 94 | 25 |
16 | 6 | 52 | 36 | 82 |
17 | 0 | 59 | 51 | 78 |
18 | 5 | 83 | 45 | 38 |
19 | 44 | 99 | 96 | 33 |
20 | 41 | 29 | 81 | 11 |
21 | 36 | 85 | 48 | 44 |
22 | 31 | 43 | 33 | 16 |
23 | 21 | 6 | 53 | 51 |
24 | 19 | 68 | 10 | 93 |
25 | 16 | 71 | 69 | 21 |
26 | 1 | 90 | 46 | 5 |
27 | 48 | 41 | 59 | 40 |
28 | 45 | 82 | 37 | 100 |
29 | 24 | 1 | 74 | 24 |
30 | 47 | 1 | 66 | 65 |
31 | 18 | 76 | 15 | 38 |
32 | 12 | 15 | 74 | 8 |
33 | 11 | 81 | 23 | 48 |
34 | 7 | 69 | 79 | 99 |
35 | 42 | 92 | 68 | 52 |
36 | 38 | 71 | 81 | 28 |
37 | 33 | 52 | 89 | 51 |
38 | 15 | 29 | 19 | 93 |
39 | 13 | 11 | 92 | 23 |
40 | 10 | 54 | 34 | 92 |
41 | 2 | 35 | 21 | 30 |
42 | 40 | 16 | 21 | 6 |
43 | 35 | 8 | 93 | 10 |

58 Chapter 3. Defining Gradual Patterns from Property Graphs

44 | 30 | 92 | 15 | 81 |
45 | 26 | 28 | 18 | 38 |
46 | 14 | 55 | 88 | 10 |
47 | 46 | 93 | 1 | 91 |
48 | 28 | 76 | 84 | 32 |
49 | 22 | 8 | 23 | 36 |
50 | 17 | 94 | 21 | 36 |
51 | 32 | 97 | 0 | 2 |
52 | 29 | 93 | 51 | 38 |
53 | 20 | 43 | 25 | 69 |
54 | 8 | 51 | 62 | 38 |
55 | 3 | 98 | 78 | 65 |
56 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
57
58 50 rows a v a i l a b l e a f t e r 3 ms , consumed a f t e r another 3 ms
59 neo4 j >

Listing 3.13 – Properties for all Relationship types from Synthetic Property Graph

In Listing 3.13, we retrieve the proprieties of all relationships whatever their types. We do
not differentiate a property named PR1 for a relationship of type PUBLISH than a property
of any other relationship type for example COLLABORATE. An other scenario could have
been to group properties by relationship types. For instance, we could have a column with
PUBLISH.PR1 and another with COLLABORATE.PR1 and so on for all the relationship types
and their respective properties. We have not chosen to present this alternative scenario in this
section but it is also a legitimate scenario that can be exploited in further works.

3.4 Fuzzy Property Graph Gradual Pattern

This section relies on the definitions of fuzzy gradual items and patterns as defined in the
last chapter.

The concepts have to be extended when dealing with property graph data in nodes and
relationships. As discussed in Section 2.3, a property graph is a combination of nodes and
relationships as shown in Figure 2.5. The property graph node gradual item is defined in Defini-
tion 3.4 and property graph relationship gradual item is defined in Definition 3.5. Based on these,
we define the the concept of fuzzy property graph gradual item for node properties.

Let ΛN be a set of node labels with NULL ∈ ΛN , ΠN be a set of properties, PN a set of
(key:value) pairs over ΠN , ΛR be a set of relationship Types with NULL ∈ ΛR, ΠR be a set of
properties, PR a set of (key:value) pairs over ΠR. Let GD = (N,R) be a graph defined over
ΛN , PN , ΛR and PR. Let Pi be a fuzzy partition of the domain of property i ∈ ΠN ∪ ΠR within
the fuzzy sets {fj}j∈[1,ni]. A graph data gradual item is a fuzzy gradual item i, fj , δ where
i ∈ ΠN ∪ΠR, fj ∈ Pi and δ ∈ ↑, ↓.

3.4. Fuzzy Property Graph Gradual Pattern 59

Id Age Age_Low Age_High
p1 26 1 0
p2 57 0.6188 0.3811
p3 78 0 1

Table 3.2 – Age Fuzzy Sets

Example 9. (Expr, Expr_Low, ↑) is a fuzzy property graph node gradual item expressing “the
more the Experience is Low" , where “Expr” is the node property under consideration, “Expr_Low”
is the fuzzy set and “↑” is the associated variation with the property.

In order to mine fuzzy gradual patterns from property graphs, data have to be transformed
in order to get fuzzy descriptions of the information. For this purpose, we consider the use of
fuzzy partitions over the universes of the retrieved the properties (e.g., Age, Salary, Experience
for Label Person for the running example) and the relationships (e.g., number of Publications).
The data are transformed from quantities to the degree of membership for every subset of the
partitions being considered, as for instance Low and High for the “Age” property.

For instance, we can consider the combination of L− function and R− function and user-
provided partitions as in Figure 3.7 where the thresholds have been given or computed by a
given protocol.

69.5

0

1

μ

Low

X49.3

High

Figure 3.7 – Fuzzy Partition

Being provided with such a partition (with 2 elements here) allows us to transform the data
by computing every membership degrees as shown in Table 3.2.

Therefore, for the sake of experiments on the property graphs to extract fuzzy gradual pat-
terns, we used synthetic graph generator (Section 5.2) to generate the node properties with
symmetric range of values for all properties. For example if the user input in the graph gen-
erator to have three properties namely A1, A2, and A3 for the given number of node (e.g. 5
nodes), the output for the fuzzy sets is shown in Table 3.3.

Once the data is retrieved from property graphs and fuzzified according to the membership

60 Chapter 3. Defining Gradual Patterns from Property Graphs

Id A1 A1_Low A1_High A2 A2_Low A2_High A3 A3_Low A3_High
n1 50 0.965 0.034 71 0 1 33 1 0
n2 55 0.717 0.282 15 1 0 62 0.371 0.628
n3 NULL NULL NULL 54 0.767 0.232 65 0.222 0.777
n4 60 0.470 0.529 2 1 0 NULL NULL NULL
n5 45 1 0 51 0.915 0.084 76 0 1

Table 3.3 – Data Fuzzification

function then the next step it to extract the extract the gradual pattern. In the following section
we discuss the extraction of these patterns as well handling of missing data if they appear in
the properties.

Chapter 4
Extracting Gradual Patterns from
Property Graphs

4.1 Dealing with Missing Values for Mining Gradual Patterns 62

4.2 Support Computation . 65

4.3 Algorithms . 66

4.3.1 Algorithm 1: Mining Property-based Gradual Items 66

4.3.2 Algorithm 2: Mining Property-based Gradual Patterns 68

4.4 Embedding Gradual Patterns Mining within a Graph Database 68

4.4.1 Integrating Features in a Graph Database Engine 68

4.4.2 Integration Challenges - Discussion . 71

4.4.3 API Specification . 73

4.4.4 Extending Neo4j . 75

4.4.5 Limits of the Current Integration . 78

62 Chapter 4. Extracting Gradual Patterns from Property Graphs

Id Name Age
1 John 45
3 Emily 30
5 Carl 44
6 Cris 38
7 David 32

Table 4.1 – |vdb (Age)|

Id Name Sal
1 John 3500
2 Dave 2500
4 Tim 2800
5 Carl 3800
6 Cris 2600
7 David 1400

Table 4.2 – |vdb (Sal)|

4.1 Dealing with Missing Values for Mining Gradual Patterns

Mining gradual patterns from property graphs is a novel ideal as it involves automatic
retrieval of graph data including nodes and relationships. It becomes more challenging be-
cause the retrieved information often contains missing value due to inherent nature of prop-
erty graphs. Therefore, we need to devise a mechanism for this kind of mining task when there
exist missing values in the data.

Gradual Pattern extraction from tabular data has been studied [DLT09, LLR09, Do+15], but
there does not exist any approach for such a task from property graphs. Due to inherent nature
of property graph, a node may not contain all the properties. This data may be missing because
it does not exist or is not applicable (for example no salary and experience in the case of kids
or a response to question that is only to be given by woman and not by man etc.,). Therefore,
it is not possible to apply existing algorithms of gradual pattern extraction due to the semi-
structure nature of property graphs.

We can see in Table 3.1, there are missing values in “Age” and “Sal” attributes. To represent
this missing data of nodes in tabular form we use “?” sign. For the sake of representation,
this missingness is shown in different colors in Figure 3.4. We present how to deal with such
“missing” values in gradual patterns extraction.

For the treatment of missing values in the context of property graphs, We consider the “vdb”
approach presented in [RC98]. The “vdb” is the cardinality of an attribute without missing
values. Let n be the number of tuples of an attribute and am be the number of missing values
in that attribute then the vdb of that attribute of the dataset is:

|vdb| = |n| − |am| (4.1)

Therefore, the “vdb” calculation for (Age) is 5 and for (Sal) is 6 as shown in Table 4.1 and
Table 4.2 respectively.

Let us see with an example about the issue of missing data and then we will propose our
approach to handle the missing data. There are seven nodes for Label “Person” in which some

4.1. Dealing with Missing Values for Mining Gradual Patterns 63

Id Name Age Expr
1 john 45 13
2 dave ? 7
3 emily 30 5
4 tim ? 10
5 carl 44 14
6 cris 38 9
7 david 32 5

Table 4.3 – Retrieved Data from Graph for Age & Expr

nodes are missing properties like age and salary as shown in Figure 3.4. In property graph,
in response to a projection cypher query, a missing property (i.e., key) and a missing value of
the property are treated as same. The result of the cypher query will be “NULL”, if the node
contains a missing value or a missing property [Bow19]. Now, the first step is to transform this
data into tabular form by querying the graph as shown in Figure 2.27. The second step is to
represent these properties in a binary order of matrix as explained in Section 2.4. The binary
matrices of (Age ↑) and (Expr ↑) representing the order are shown in Figure 4.1.

As we can observe in Table 4.3, we have missing data of Age for Id 2 and 4. This missingness
is represented with the “?” sign in the table and in the binary matrix representing order. Since,
we do not know the missing value of dave’s age, so when representing the order between
John’s age and Dave’s age, we place “?” sign in the 2nd row of 1st column of the matrix (Age ↑)
in Figure 4.1. The same procedure applies for John and Tim’s missing age, we place “?” sign in
the 4th row of 1st column in the matrix. For the binary AND operation of (Age ↑) and (Expr ↑),
we consider the fact that any bit (1 or 0) multiplied with “?” sign will result in “?” sign. Hence,
the resulting Hadamard product of these two gradual items in matrix representation is shown
in Figure 4.2.

The “vdb” is the cardinality of an attribute without missing values. When combining sev-
eral attributes, the value of vdb reduces as it results in the elimination of the entire tuple for the
considered attributes in order to have no missing data. [RC98] states that, for a given itemset,
we cut the dataset into a valid database “vdb”, such that the “vdb” must not have any miss-
ing values. In our approach, it requires us to preserve the location of missing value, so as to
maintain the cardinality for computing the support when combining multiple attributes.

The vdb representation in tabular form when combining |vdb (Age & Expr)| attributes is
shown in Table 4.4. Similarly, for |vdb (Age & Sal)| shown in Tables 4.5 and |vdb (Age & Sal & Expr)|
in Table 4.6 respectively. As we can observe that the size of vdb is the same for (Age & Sal) and
(Age & Sal & Experience) because the Expr attribute does not have any missing value.The
calculation of “vdb” for label “Person” is given below:

|vdb(Age)| = 5, |vdb(Sal)| = 6, |vdb(Expr)| = 7

64 Chapter 4. Extracting Gradual Patterns from Property Graphs

|vdb(Age& Sal)| = 4, |vdb(Age& Expr)| = 5

|vdb(Sal & Expr)| = 6

|vdb(Age& Sal & Expr)| = 4

For the gradual pattern extraction process, vdb calculation is an essential part because the
value of vdb is then used for support computation.

Id Name Age Expr
1 john 45 13
3 emily 30 5
5 carl 44 14
6 cris 38 9
7 david 32 5

Table 4.4 – |vdb (Age & Expr)|

Id Name Age Sal
1 john 45 3500
5 carl 44 3800
6 cris 38 2600
7 david 32 1400

Table 4.5 – |vdb (Age & Sal)|

Id Name Age Sal Expr
1 john 45 3500 13
5 carl 44 3800 14
6 cris 38 2600 9
7 david 32 1400 5

Table 4.6 – |vdb (Age & Sal & Expr)|

1 2 3 4 5 6 7



1 0 ? 0 ? 0 0 0
2 ? ? ? ? ? ? ?
3 1 ? 0 ? 1 1 1
4 ? ? ? ? ? ? ?
5 1 ? 0 ? 0 0 0
6 1 ? 0 ? 1 0 0
7 1 ? 0 ? 1 1 0

(Age ↑)

1 2 3 4 5 6 7



1 0 0 0 0 1 0 0
2 1 0 0 1 1 1 0
3 1 1 0 1 1 1 0
4 1 0 0 0 1 0 0
5 0 0 0 0 0 0 0
6 1 0 0 1 1 0 0
7 1 1 0 1 1 1 0

(Expr ↑)

Figure 4.1 – Binary matrix representing orders for Table 4.3

4.2. Support Computation 65

1 2 3 4 5 6 7



1 0 ? 0 ? 0 0 0
2 ? ? ? ? ? ? ?
3 1 ? 0 ? 1 1 1
4 ? ? ? ? ? ? ?
5 0 ? 0 ? 0 0 0
6 0 ? 0 ? 1 0 0
7 1 ? 0 ? 1 1 0

Figure 4.2 – Hadamard product for binary AND operation of Age AND Expr

4.2 Support Computation

The existing support and confidence measures are misleading when there exist missing data
in such a way that they are lacking in the crucial monotonicity property of support [CGM07].
We are interested to compute the “support” with valid databases. We are not computing the
confidence as the objective over here is not rules formation. The anti-monotonicity of the sup-
port can not be considered anymore in a simple manner because support cannot be computed
object by object but requires to consider the ranking of all objects.

In order to compute the support, we compute the logical AND of gradual items as ex-
plained in Section 3.3.3. From the resultant matrix, we take the sum of binary ‘1’ bit from the
matrices. Consequently, we calculate the support as given below:

Support(Xi) = Sum of concordant pairs

|vdb(Xi)| ∗ (|vdb(Xi)| − 1)/2 (4.2)

where, Xi = itemset

In [RC98], authors suggest, “To obtain good results a vdb must be a good sample of the database.
This is normally true if values are missing at random”, therefore a new parameter “representativity”
is introduced. The representativity is the proportion of the vdb(Xi) over the entire dataset tu-
ples. The itemset should be representative so as to be considered for support computation.
Representativity is a user defined parameter. It helps to ensure that support computation
should not take place for the itemset which is not representative i.e., having value less than
user defined value. For the running example, the representativity is calculated as follows:

Representativity(Xi) = |vdb(Xi)|
|n|

(4.3)

66 Chapter 4. Extracting Gradual Patterns from Property Graphs

where, Xi = itemset, n = number of tuples

|Rep(Age)| = 5/7, |Rep(Sal)| = 6/7, |Rep(Expr)| = 7/7

|Rep(Age & Sal)| = 4/7, |Rep(Age & Expr)| = 5/7

|Rep(Sal & Expr)| = 6/7, |Rep(Sal & Expr)| = 6/7

|Rep(Age& Sal & Expr)| = 4/7

4.3 Algorithms

The overall process of mining gradual patterns includes following steps.

1. Connection to the graph database.

2. User specified properties (attributes) extraction from property graph.

3. Pre-process the data including checking for missing values in attributes.

4. Handling the missing data (if exist)

5. Extraction of patterns.

The process is shown in Figure 2.27 and to perform the step 4 and step 5 we show the two
core algorithms as follow.

4.3.1 Algorithm 1: Mining Property-based Gradual Items

Algorithm 1 shows the procedure for computing the support based on the vdb method as
explained in Section 4.2. After the retrieval of data from the graph data, following are the main
steps.

• Store the items (properties/attribute(s)) in an array list

• Initialize the binary matrix for each item of the list

• Compute the binary order matrix

• Compute the sum of high “1” bits and missing data represented as “?”

• compute the vdb (cardinality of valid data) to be used for support computation

4.3. Algorithms 67

Algorithm 1: Mining Property-based Gradual Items in the Presence of Missing Values

Input: Properties, minSupport

Output: List of gradual items having support greater than minSupport
1: Initialize the matrices for each property and store into list L
2: for all items in list L do
3: for all rows of matrix M for listItem Li do
4: for all columns of row of M do
5: if Li.M[row][col] == 1 then
6: sum← sum+ 1
7: else if Li.M[row][col]==? then
8: card← card+ 1
9: end if

10: if card == Li.M.length then
11: flag ← flag + 1
12: end if
13: end for
14: end for
15: vdb = (Li.M.length - flag)
16: support = sum / (vdb * (vdb-1)/2)
17: if support < minSupport then
18: remove Li
19: end if
20: end for
21: Update the list L with successful gradual items of size-1

• compute the support and update the list

An explanation of these steps is presented as follows. After the retrieval of data from the
graph data, binary matrix initialization for each property is performed. Then we calculate
binary-ordered representation for each item. These matrices contain 0 or 1 and missing values
are represented by “?” sign. Then, we then calculate the sum of all high-bits i.e., 1 which
represent the concordance for the respective item. A complete row with “?” sign in matrix
represents the missing value in that attribute as shown in Figure 4.1, (Age↑) for row 4 i.e.,
Tim’s age is missing. To keep track of this, a card variable is used. For instance, in Figure 4.1,
(Age↑), the number of rows containing “?” are 2. The flag variable is used to track the the length
of matrix that in turns helps to calculate vdb i.e., the cardinality of that item without missing
values. Finally, the support is computed as expressed in Equation 4.1. If the item’s support is
less than the minimum support threshold, then it is removed from the list.

68 Chapter 4. Extracting Gradual Patterns from Property Graphs

4.3.2 Algorithm 2: Mining Property-based Gradual Patterns

Once we have the list of successful gradual items, i.e., those having (support > minSupport)
the program check for gradual patterns as defined in Definition 2.4. Therefore, the Hadamard
product of binary AND operation of gradual items is performed and then the support is calcu-
lated. The successful gradual patterns are updated in the list and those which do not meet the
minimum support requirement are removed. This is performed in Algorithm 2. Following are
the main steps:

• Take the list of input gradual items that are result of Algorithm 1 and multiply Li item
with Lj item.

• Perform the Hadamard product for Li AND Lj .

• Compute the binary order matrix

• Compute the sum of high “1” bits and missing data represented as “?”

• Compute the vdb (cardinality of valid data) to be used for support computation and
compute support

• Update the list of gradual patterns and go for next item in Li

• Output the list of successful gradual patterns

Regarding the complexity of the algorithms, research shows that pattern mining algorithms
are known to be NP-hard. It is concluded that the complexity of enumeration problem for
mining maximal frequent itemsets is NP-hard [Yan04, Han+07].

4.4 Embedding Gradual Patterns Mining within a Graph Database

In this section, we are introducing our work to integrate gradual patterns mining features
inside a graph database. First, we will explore several ways to integrate functionalities inside
a graph database engine such as Neo4j. Then, we will challenge them and explain our choice.
A proof-of-concept has been made to demonstrate our approach. We will conclude this section
by giving more details on our implementation choices and the limits of the current implemen-
tation.

4.4.1 Integrating Features in a Graph Database Engine

Before going further in this chapter, we introduce some concepts about the internal archi-
tecture of a graph database.

4.4. Embedding Gradual Patterns Mining within a Graph Database 69

Algorithm 2: Mining Gradual Patterns in the Presence of Missing Values from Gradual
Items

Input: List Li of gradual items, minSupport,

Output: Frequent Property-based Gradual Patterns
1: while items in list |Li| ! = 0 do
2: for all listItem Li do
3: for all listItem Lj = Li + 1 do
4: for all rows of matrix M for listItem Li do
5: for all columns of row of M do
6: resultM [row][col] = Li.M [row][col]* Lj .M [row][col]
7: if resultM[row][col] == 1 then
8: sum← sum+ 1
9: else if resultM[row][col] == ? then

10: card← card+ 1
11: end if
12: if card== resultM.length then
13: flag ← flag + 1
14: end if
15: end for
16: end for
17: vdb = (LiresultM.length - flag)
18: support = sum / (vdb * (vdb-1)/2)
19: if support < minSupport then
20: remove Li
21: end if
22: end for
23: end for
24: Update the list L
25: end while
26: Output the frequent patterns

4.4.1.1 Preliminary Concepts: Internal Architecture of Graph Databases

A graph database engine is composed of several components such as:

• A declarative query language like SPARQL or Cypher that allows an end-users to explain
what they want to do. The system will then determine the most optimized way, or at least
try to do so, to accomplish the user request.

• Some programming interfaces that allow a developer to explain to the system how to
realize the desired operation.

• Low-level system (kernel) operations that execute core operations on the graph storage
engine.

70 Chapter 4. Extracting Gradual Patterns from Property Graphs

Neo4j Architecture

Traversal API Core API Cypher

Object Cache

File System Cache

Record Files

Disks

Transaction Management

Transaction Log

Graph Query

Transaction support

Store Layer

Kernel

Figure 4.3 – Neo4j Internal Architecture

This list is non-exhaustive and there are often more components in a graph database system.
The Figure 4.3 shows the internal architecture of the Neo4j database. As the reader can see, this
graph database management system also have a transaction management system.

Also, every graph database do not have a declarative query language even if during the
last years there is a trend to provide one in every graph database engine. Some initiatives have
emerged to standardise declarative languages, such as the OpenCypher 1 initiative or GQL 2

(Graph Query Language).

4.4.1.2 Adding Features to a Graph Database

In the previous section we described the internal architecture of graph databases. It high-
lights some components that can be extended to provide new functionalities to the database.

The first possibility is to choose a low-level implementation, extending core features inside
the graph database kernel. Doing so can be a wise choice when, for example, we have to
manage records or add new low-level capacities. This is the case for example when we want to
add a new functionality such as spatial and geographic objects or to add some special indexes
such as R-tree (proposed by Antonin Guttman in 1984 [Gut84]).

1. https://www.opencypher.org/
2. https://gql.today/

4.4. Embedding Gradual Patterns Mining within a Graph Database 71

The second possibility is to choose to enhance the API 3 by providing new code and inter-
faces that rely on the kernel implementation to build new functionalities that can be exploited
by developers. It is a common use-case to do so for adding new traversal algorithms such as
neighbourhood-search (e.g. returns distinct nodes of the given relationships in the pattern up
to a certain distance) or to add utilities functions (temporal functions, text functions, etc.).

The third possibility is to extend the graph database at the declarative language layer. There
are several ways to do so:

• Creating an overlay layer upon the Domain Specific Language (DSL). The concept is to
create a dedicated expressive language that will be processed to generate Cypher well-
formed queries. This approach has been used in [Piv+16] where the authors provide a
system for querying graph databases in a flexible way by offering a transcriptor (SUG-
GAR) that generates Cypher queries from a new query language (FUDGE) and execute
those queries on the graph database engine. This scenario can be seen as an additional
layer at the top of Figure 4.4.

• Extending the declarative language and binding it to the current low-level API. In this
scenario, the declarative language is extended but the user is still using the same under-
lying API. This scenario can work for some utility functions or some business functionali-
ties that do not require to add new complex code. Adding fuzzy logic in a system without
adding new functions may be hard to achieve (or even not possible).

• Extending the declarative language and adding new APIs to offer the best of the two
worlds: on the one hand adding new API offers to the developers new possibilities and
on the other hand extending the declarative language offers to the end-user the ability to
use it.

The Figure 4.4 summarizes the approaches presented above.

4.4.2 Integration Challenges - Discussion

As described in Section 4.4.1.2, there are several ways to extend a graph database. We will
not get in too much details about what are the pros and cons of each solution as this topic as
already been cover in [CM18]. In short, each of them has pros and cons but what really matter
here is to determine what is the one that fit the best our needs.

It seems pretty obvious that using an overlay upon a declarative language is not a good
choice. On the one hand, declarative languages describe what the user want to do, and not how
the user want it to be done. On the other hand, our goal is to explain to the engine how to
process gradual patterns. Thus, it seems pretty difficult or, at least, really inefficient to try to

3. A set of functions and procedures allowing the creation of applications that access the features or data of an
operating system, application, or other service.

72 Chapter 4. Extracting Gradual Patterns from Property Graphs

Figure 4.4 – Extension possibilities

drive a declarative language, that is by definition focusing on the what, to ask the engine to do
implement gradual mining over property-graph.

Using Low-level API could be a solution if we want to persist our binary matrices (as a new
level storage object type) or if we would like to add new indexes that keep track of gradual
patterns. This does not solve our primary issue but as we think that this could be an interesting
further step, therefore, we have added it as a perspective and discussed it in a more detail in
Section 6.2.1.4.

Our main concern is to provide some gradual mining feature inside graph database engines.
There is two kind of users that we can target:

• For the developers, we have to offer a library and some APIs

• For the end-users, we have to provide a high-level extension; meaning extending the
declarative language and to bind it on an API (specific or not).

We think that we need to address both kind of users. We then have (i) to create a library
and add an API to enhance core APIs with new features and (ii) to provide an extension of the
query language.

The next section will focus on the specification of the API and Section 4.4.4 will focus on
how to extend the declarative language on a real use-case scenario.

4.4. Embedding Gradual Patterns Mining within a Graph Database 73

Figure 4.5 – API Service Illustration

4.4.3 API Specification

In this section, we are describing the specifications of the library that we have to define to
allow developers to retrieve gradual patterns for following scenarios:

• Intra-Label-Node-Properties as defined in Section 3.3.1

• Inter-Node-Label-Properties as defined in Section 3.3.3

• Node-Properties with Relationships Count as defined in Section 3.3.3

• Node-Properties-with-Relationships-Properties as defined in Section 3.3.4

• Inter-Relationships-Properties as defined in Section 3.3.5

For each of these scenarios, we don’t want that developers have to deal with this underlying
complexity or to require them to understand the code structure and the dependencies between
our classes. Thus, we suggest to use the API Facade design pattern as illustrated in Figure 4.5.

The Facade design pattern is one of the twenty-three well-known GoF design patterns[Gam95].
Analogous to a facade in architecture, a facade is an object that serves as a front-facing interface
masking more complex underlying or structural code.

As a proof-of-concepts that we are able to integrate our work inside a graph database en-
gine we have chosen to integrate the Intra-Label-Node-Properties scenario inside the Neo4j
database. We need now to define the features that will be available.

74 Chapter 4. Extracting Gradual Patterns from Property Graphs

4.4.3.1 Defining a Service

Adding the Intra-Label-Node-Properties into Neo4j implies to define what services will be
provided by the API to developers.

In our point of view, developers should be able to find gradual patterns by passing the label
and the minimum support threshold that will be used. Then the code should retrieve the data,
execute the operation accordingly with what has been defined in Section 3.3.1 and return the
result.

Also, we think that we should also provide an overloaded version of this function that
gives a default value (0.5) for the minimum support to allow developers to only give the label
as parameter is suitable.

We have defined a service named SearchGradualPatternsService that implements and re-
spects this specifications. This service is acting as an API and is responsible to offer search-
ing/mining features. It will be completed with the other scenarios in further works, we invite
the reader to see Section 6.2 for more information.

4.4.3.2 Treating Unsortable Columns

As explained in Section 2.3.1, the schema-less nature of property graphs implies that there
is no predefined schema. We do not have meta-data information on each property of a node
neither do we for relationships. It is then difficult to know if a column is sortable or unsortable.
In chapter 2, we explained that this is an important matter for discovering gradual patterns.

We also are highlighting the reader that a property with the same name could be used in
two different nodes for storing two different types of data. For instance node A could have a
property named prop1 with value 12 (integer) and node B could also have a property named
prop1 with a value of false (boolean). We are dealing with this issue in two ways:

• A naive approach, that is mainly a type checking approach. We iterating on the prop-
erties of all the node that we have to treat (e.g: all node with the same label in the
Intra-Node-Properties scenario) and every time that a node has a property value that
is non-numerical then we remove the property from the list of properties to use for grad-
ual patterns. This is not the best approach as we can have some properties that are not
numerical but have an order (such as academic rank) and we can also have numerical
properties that do not have a functional/business order, that is to said that the numerical
order is does not make sense on it.

• Using a user-knowledge based approach. In that scenario, we are providing a third func-
tion specification in the API that allows the user through a new parameter named ‘ ‘skip-
Properties” to give an array of all the properties that should be skiped whether it is be-

4.4. Embedding Gradual Patterns Mining within a Graph Database 75

cause they are not sortable or for any other user-based consideration. This can be seen as
a pre-filter phase before the execution of the algorithms described in Section 4.3.

To efficiently process a property that is an ordinal variable we need to go beyond and offer
a way to the user to give a comparison function that allow our program to order the categories
of the property. This has not been addressed during the thesis but is noted as a perspective in
Section 6.2.1.

4.4.4 Extending Neo4j

In this section, our purpose it to demonstrate the feasibility of integrating our algorithms
into Neo4j. In this section, we look into the new techniques offered by Neo4j to integrate user-
defined features and the integration of the Intra-Node-Label-Properties scenario into it. The
section is concluded by a running example.

4.4.4.1 User-defined procedures and User-defined functions

In the latest versions of Neo4j, it is now possible to use a new system to extend the standard
functionalities:

• Adding new procedures and functions that extend the capabilities of the Cypher query
language

• Authentication and authorization plugins that extend the Neo4j security framework

• Server extensions that enable new surfaces to be created in the HTTP API

In our case, the first item is the one that can help us to extend Neo4j by providing gradual
patterns functionalities. Of course, writing extensions requires to be familiar with Java (or Scala
or any JVM compliant language).

User-defined procedures and User-defined functions are mechanism that allow the user to
write code that can be invoked directly from Cypher. Thus, it is a good way to provide access
to third-party code. The main difference between user-defined procedures and user-defined
functions lies in the fact that functions are read-only and only return a single value.

This mechanism is a component-based scan approach that browses the class-loaders to find
class with some annotations and add it to a registry of available functionalities. It offers an
easy way to extend both the declarative language and the core API to offer a new feature as
presented in Figure 4.4.

76 Chapter 4. Extracting Gradual Patterns from Property Graphs

Previously, before the release of user-defined procedures mechanism in neo4j, we had to
extend the Parser Expression Grammar (PEG) [For04] as it has been done in [CM18]. A Parsing
Expression Grammar (PEG) is a recognition-based grammar formalism.

4.4.4.2 Integrating Intra-Label-Node-Properties Gradual Patterns

The specification presented in Section 4.4.3 lead to three function signatures:

• fr.lirmm.gradualpatterns.GPIntraNode(labelname, minsup) - find GP for a label with
minimal support of ’minsup’

• fr.lirmm.gradualpatterns.GPIntraNode(labelname) - find GP for a label with minimal
support value of O.5

• fr.lirmm.gradualpatterns.GPIntraNode(labelname, minsup, skipProperties) - find GP for
a label with minimal support and skip properties that are defined in the skipProperties
array

As we can see, these signatures can be seen as overloading signature for a unique function.

To implement this functionality we have created a user-defined function that takes three
parameters: the label, the minimal support as defined in section 4.4.3 and an array named
skipProperties.

@UserFunction(value = "lirmm.gpintranode")

@Description("fr.lirmm.gradualpatterns.GPIntraNode(labelname,

minsup) - find GP for a label with minimal support of 'minsup'

(default 0.5) and exclusion of properties found in

skipProperties array")

↪→

↪→

↪→

public String GPIntraNode(@Name("label") String label,

@Name(value="minsup", defaultValue="0.5") Double minsup,

@Name(value="skipProperties", defaultValue="") List<String>

skipProperties) {

↪→

↪→

↪→

...

}

The code of the above listing can be invoked in cypher with statement defined in listing 4.1 ,4.2
and 4.3. You can also see screenshot of the execution of that function in Figure 4.6, 4.7 and 4.8.

RETURN lirmm . gpintranode (' Person ') AS r e s u l t

4.4. Embedding Gradual Patterns Mining within a Graph Database 77

Figure 4.6 – Neo4j: run of Intra-Label-Node-Properties GP with on a label

Figure 4.7 – Neo4j: run of Intra-Label-Node-Properties GP with on a label and minsup

Listing 4.1 – Invoking Intra-Label-Node-Properties GP with on a label

RETURN lirmm . gpintranode (' Person ' , 0 . 7) AS r e s u l t

Listing 4.2 – Invoking Intra-Label-Node-Properties GP with label and minsup

RETURN lirmm . gpintranode (' Person ' , 0 . 7 , [' desig ']) AS r e s u l t

Listing 4.3 – Invoking Intra-Label-Node-Properties GP with label minsup and skipProperties

78 Chapter 4. Extracting Gradual Patterns from Property Graphs

Figure 4.8 – Neo4j: run of Intra-Label-Node-Properties GP with on a label and minsup + skipProperties

4.4.5 Limits of the Current Integration

At the beginning of this section 4.4, we explain that this implementation is a proof-of-
concept. Indeed, our goal here was not to make an optimized implementation of our entire
work but only to lead the way for further works as it is explained in the perspectives Section
6.2. That is why, the current implementation is lacking from some limitations such as:

• We do not have done any optimization on memory consumption, cache system, or stor-
age. We are streaming data from the graph database without any further optimization.

• we have only integrated the first of five scenarios defined in Section 4.4.3 but this is
enough to demonstrate the feasibility of integrated our work into a graph database sys-
tem.

Chapter 5
Experiments & Results

5.1 Introduction . 80

5.2 Synthetic Graph Data Generation . 80

5.2.1 Description of Data Generation Parameters 82

5.2.2 Code Customization for Properties . 86

5.2.3 Property Graph Creation Using Graph Generator Cypher 88

5.3 Program Setup Environment and Protocol . 92

5.3.1 Execution environment (hardware & software) 93

5.3.2 Experiments protocol . 93

5.3.3 Outlier Removal Approach . 94

5.3.4 Memory Consumption Metric . 94

5.4 Datasets . 95

5.4.1 The Russian Twitter Troll . 96

5.4.2 Hepatitis from UCI Machine Learning Repository 98

5.4.3 Synthetic Dataset . 98

5.4.4 Synthetic Graph Dataset using Graph Generator 99

5.4.5 Hetnets in Biomedicine . 99

5.4.6 Datasets for Fuzzy and Crisp Gradual Patterns 101

5.5 Results . 101

5.5.1 Intra-Node Datasets Plots . 102

5.5.2 Nodes with Relationships Count Datasets Plots 104

5.5.3 Fuzzy and Crisp Datasets Plots . 105

5.6 Discussion . 108

80 Chapter 5. Experiments & Results

5.1 Introduction

In this chapter we present our experiments that we have performed on real datasets as well
as on synthetic graphs using a graph generator. We show the results in terms of time utilization,
memory consumption and the number of patterns being generated. Furthermore, we present
discussion on results for each data and identify the issues for future investigations and results
optimizations.

Before presenting the results, we first describe the synthetic graph generator used to con-
duct the experiments and then introduce the execution environment, experimental protocol,
and datasets respectively. Finally, we show and experimental results and discussions.

5.2 Synthetic Graph Data Generation

The use graphs databases has widespread in industries and academia in recent past to
represent the connected data with its applications in many different environments like social
network analysis, fraud detection, industrial management, knowledge analysis, etc. [Fra+18,
LMD14]. More and more companies provide services that can not be anymore achieved efficiently using
relational databases [JV13]. The representation of real world data as graph brings a lot of oppor-
tunities for data analytics, but unfortunately most of big data graph databases are propriety
systems as discussed in Section 2.2. Also, these graph based systems are in phase of evolution
process, hence very limited number graph databases are publicly available in repositories for
research purpose. This arises the need for development of tools that can facilitate to generate
graph data to create graph in open source database engines like Neo4j.

In our urge to perform experiments for mining gradual pattern from property graphs, we
extended an existing graph generator which was developed as an internship project. This
web based tool is available at [Win18] and its GUI interface shown in Figure 5.1. The aim of
project was to set up some parameters like the number of nodes and relationships he wants in
the database and the type of distribution of relationships between nodes. Then, the generator
produces the query corresponding to the parameters set by the user which are then used for
graph creation. An example with description is shown in Section 5.2.3.

The existing tool [Win18] is tool is very useful to generate Cypher for creating nodes and re-
lationships but it does not allow to add node properties and relationship properties. Therefore,
an extension of the existing version is developed to generate synthetic graph data nodes and re-
lationships. The extended version of the tool’s web interface is available at [Sha19b]. The GUI
interface of the extended version is shown in Figure 5.2. The extended section in encircled with
red box. Angular platform is used to build this web application. AngularJS is a JavaScript-based
open-source front-end web framework maintained by Google [Wik19]. The details about the source
code and program execution are available in Appendix A.3.

5.2. Synthetic Graph Data Generation 81

Figure 5.1 – Graph Data Generation tool

Figure 5.2 – Synthetic Graph Generator for Neo4j

82 Chapter 5. Experiments & Results

5.2.1 Description of Data Generation Parameters

In our synthetic graph generation tool there are six fields showing various parameters for
generating Cypher and two options for uniform and non-uniform distribution of relationships
generation between the created nodes. The description of each of the field shown in Figure 5.3
is given as below.

1. Number of Nodes

To define the number of nodes to be created in graph database. The minimum limit
is set to 1 which is also defined as default “placeholder” as can be seen in Figure 5.2.
There is no limit for the maximum number of nodes that can generated with this
tool but user’s machine specification are important1.

2. Number of Relationships

To define the number of relationships to be created in between nodes. The mini-
mum limit is set to 0, because sometimes it not necessary to create relationships and
user may only want to create nodes. There is no limit for the maximum number of
relationships that can generated with this web based tool but user’s machine speci-
fication must be under consideration1.

3. Node Labels

Node labels define the role of nodes in graph. There are two options for user to cre-
ate names for the node labels. First is to assign randomly generated words and the
second is to assign explicit names. As it can be seen in Figure 5.3, we assigned ex-
plicit label name as “Person” for the nodes. The output Cypher generated is shown
in Figure 5.3. An example for assigning random names for labels is also created
as shown in Figure 5.4 where two (02) labels namely (’fibeg’ and ’gyhoby’) and 10
nodes from ’n1’ to ’n10’ are shown with the generated Cypher.

To make label field as mandatory, the field is set with alert message with “The num-
ber of labels should be at least 1”. For the explicit names of label, label deletion is
also feature is also configured using “chipsContainer” of javascript to customize the
inputs.

4. Relationship Types

A relationship is a directed edge that connects two nodes. Relationships in property
graphs are considered as much important as nodes. Relationships names are called
“type”. Similar to the node labels, relationship types can also be assigned explicitly

1. It is pertinent to mentions that AngularJS application execution is basically client-side (user’s browser) there-
fore, the number of nodes that can be generated in web browser are mainly dependent on the user’s machine
specifications which is being used to generate nodes.

5.2. Synthetic Graph Data Generation 83

1 2

3 4

5 6

7

Figure 5.3 – Graph Tool Parameters Descriptions

84 Chapter 5. Experiments & Results

or can be given a number to generate respective number of relationships. Figure 5.3
shows three (03) relationships types namely (’COLLABORATE’, ’FRIEND’, ’VISIT’).
Figure 5.4 shows the randomly generated words for three (03) relationship types
namely (’bicub’, ’cihi’, ’hubygy’) with 20 relationships links from ’r1’ to ’r20’.

5. Node Properties

Node properties is the new feature added in the extended version of synthetic graph
generator [Sha19b]. It generates the properties for the nodes in (key:value) format.
Essentially, there is no maximum limit for the number of properties that can be as-
signed to nodes but it is recommended to give realistic number of properties to be
generated. Two graph generation examples with explicit node labels and properties
are shown in Figure 5.3 (for explicit property names) and Figure 5.4 (for random
property name words) respectively. In the first example, there are five (05) explicit
node property keys defined for which random values will be generated for each
node in order to create property graph. These properties are namely (Age, Salary,
Experience, Cars, Level). As it is visible in Figure that some properties are missing
for some nodes. This is discussed more in Section 5.2.2.

Tooltip information is also configured to make the parameters more informative and
interactive for users. It is implemented using Popover with the trigger event of
hover effect. The two information messages for numbers and names respectively
are "You can configure only the number of node properties you want" and "You can
choose the names that you want for node properties to be treated as keys". For the
sake visibility of this description, second message is also shown in Figure 5.3.

Two more important functionalities added in this field are:

(i) To generate the a random value for each property key

(ii) To introduce missing values randomly for key values

The details about both of these functionalities are discussed in Section 5.2.2.

6. Relationship Properties Parameters

Relationships in property graphs are treated as first class citizens and often contain
properties in (key:value) format. This field is also a new addition in this extended
version of graph generator. To make a realistic number of relationship properties
we set the maximum limit of properties to 10 for each relationship type. This is not
a hard limit and can be changed based on the experiment requirements if and when
needed. Figure 5.3 and Figure 5.4 respectively shows the explicit and random names
for relationships types. We would also like to mention that missing values feature in
the properties of relationship types is not set. This can also be set whenever required
based on the requirement of experiments.

5.2. Synthetic Graph Data Generation 85

Figure 5.4 – Cypher with Random Names of Labels, Relationships and Properties

7. Distribution of Relationships between Nodes

To generation relationships between nodes for the defined number of nodes two

86 Chapter 5. Experiments & Results

features are provided as shown in 5.1. In uniform distribution, the relationships are
divided evenly between the total defined number of nodes whereas, in non-uniform
distribution, some nodes have much more relationships than other. This feature is
added to introduce a realist representation of the data that can resemble with real
life data, it may be the case that some nodes have more relationships than other. The
graph visualization for both of these features is shown in Section 5.2.3

5.2.2 Code Customization for Properties

In this section, we briefly describe the code listing with some explanation for the code cus-
tomization performed to add the two fields namely “Node Properties” and “Relationship Prop-
erties”. We specifically discuss random values generation for each property key and missing
properties. To perform further enhancements and improvement in the existing code, the com-
plete source is made available at git [Sha18].

• FormControl validator: Field alerts for maximum and minium values for number of
node properties and relationship properties are defined using the function as shown in
Listing 5.1. This is place where we can manage the min. and max. value of properties
and can be increased or decrease as per given requirements.

1 / /−−−−−−−−−−−−FOR NODE PROPERTIES−−−−−−−−−−−−−−−−−−
2 node_property_radio : new FormControl (' option_number ') ,
3 node_property_number : new FormControl (1 ,
4 [V a l i d a t o r s . required ,
5 V a l i d a t o r s . min (1) , / / Minimum r e q u i r e d p r o p e r t i e s
6 V a l i d a t o r s . max(100)]
7) ,
8 / /−−−−−−−−−−−−FOR RELATIONSHIP PROPERTIES−−−−−−−−−−−−−−−−−−
9 r e l a t i o n s h i p _ p r o p e r t y _ r a d i o : new FormControl (' option_number ') ,

10 relat ionship_property_number : new FormControl (0 ,
11 [
12 V a l i d a t o r s . required ,
13 V a l i d a t o r s . min (0) , / / Minimum r e q u i r e d p r o p e r t i e s
14 V a l i d a t o r s . max(10)]
15)

Listing 5.1 – FormControl Validators for Alerts Configuration

• Generate Cypher Button: When clicked on the button, the onSubmit() method send the
form to the service "dataGenerator". The functionality behind the "dataGenerator" related
to node and relationships properties is given in shown in Listing 5.2.

5.2. Synthetic Graph Data Generation 87

Here the the check between the options of number of node properties and explicit name is
performed. If user has opted for explicit names for the node (or relationship) properties,
then the entered keys will be stored in array named "node.property_keys", which is de-
fined in export class "DataParameters" in a separate typescript file named "data_parameters_model".

If the user has opted for number of node properties in parameters then the "getRandom-
Words()" function is called which take the input number of properties entered by user and
generates the random word for property keys. The maximum length for the randomly
generated word is set to 5 which can be increased or decreased as per requirements.

1 / /−−−−−−−−−−FOR NODE PROPERTIES−−−−−−−−−−−−−−−−−−−
2
3 i f (t h i s . node_property_radio . value === ' option_name ') {
4 t h i s . dataParameters . node_property_keys = t h i s . node_property_keys ;
5 }
6 e l s e {
7 t h i s . dataParameters . node_property_keys =
8 t h i s . getRandomWords (t h i s . node_property_number . value , 5) ;
9 }

10
11 / /−−−−−−−−−−−−−−FOR RELATIONSHIP PROPERTIES−−−−−−−−−−−−−−−
12
13 i f (t h i s . r e l a t i o n s h i p _ p r o p e r t y _ r a d i o . value === ' option_name ') {
14 t h i s . dataParameters . re la t ionsh ip_proper ty_keys =
15 t h i s . re l a t ionsh i p_proper t y_keys ;
16 } e l s e {
17 t h i s . dataParameters . re la t ionsh ip_proper ty_keys =
18 t h i s . getRandomWords (t h i s . re lat ionship_property_number . value , 5) ;
19 }

Listing 5.2 – onSubmit() method

• Function for Random Values Generation for Keys: The functions shown in Listing 5.3
are used to random values for the keys(properties) of nodes and relationships.

1 / /−−−−−−−−−−FOR NODE PROPERTIES−−−−−−−−−−−−−−−−−−−
2 getNodeProperties (nodePropert ies) : s t r i n g [] {
3 const words : s t r i n g [] = [] ;
4 f o r (var j = 0 ; j < nodePropert ies . length ; j ++) {
5 words . push (nodePropert ies [j] + ' : '+ t h i s . getRandomNumber (0 , 100)) ;
6 / / THE RANGE OF GENERATED VALUES IS BETWEEN 0 TO 100
7 / /AND CAN BE CHANGED TO ANY RANGE

88 Chapter 5. Experiments & Results

8 }
9 return words ;

10 }
11 / /−−−−−−−−−−−−−−FOR RELATIONSHIP PROPERTIES−−−−−−−−−−−−−−−
12 g e t R e l a t i o n s h i p P r o p e r t i e s (r e l a t i o n s h i p P r o p e r t i e s) : s t r i n g [] {
13 const words : s t r i n g [] = [] ;
14 f o r (var j = 0 ; j < r e l a t i o n s h i p P r o p e r t i e s . length ; j ++) {
15 words . push (r e l a t i o n s h i p P r o p e r t i e s [j] + ' : '
16 + t h i s . getRandomNumber (0 , 100)) ;
17 / / THE RANGE OF GENERATED VALUES IS BETWEEN 0 TO 100
18 / /AND CAN BE CHANGED TO ANY RANGE
19 }
20 return words ;
21 }

Listing 5.3 – FormControl Validators for Alerts Configuration

• Nodes with Missing Properties: The functions shown in Listing 5.4 is used to generate
missing properties randomly out of total number of properties mentioned in the param-
eters by the user. This can be seen in both Figure 5.3 and Figure 5.4 that some nodes has
missing properties whereas, other have complete. This feature is added to introduce a
realist representation of the data that can resemble with real life data for the nodes as
much as possible. This function assumes that users has desired at least the 3 properties
for each node, which is set the minimum value of "getRandomNumber()" function. This
minimum value can be changed as per user requirement.

1 / /−−−−−−−−−−FOR NODE PROPERTIES−−−−−−−−−−−−−−−−−−−
2 getNodePropertiesWithMissing (nodePropert ies) : s t r i n g [] {
3 const words : s t r i n g [] = [] ;
4 f o r (var j = 0 ;
5 j < (t h i s . getRandomNumber (3 , nodePropert ies . length)) ; j ++) {
6 words . push (nodePropert ies [j] + ' : '+ t h i s . getRandomNumber (1 , 100)) ;
7 }
8 return words ;
9 }

Listing 5.4 – Function for Nodes with Missing Properties

5.2.3 Property Graph Creation Using Graph Generator Cypher

To show the graph creation process we show node and relationships generation for the
Cypher generated in Figure 5.3 and Figure 5.4. First we show the graph generated without

5.2. Synthetic Graph Data Generation 89

properties parameters for the first version of the tool [Win18]. The Figure 5.5 shows the given
parameters and generated Cypher with the tool [Win18]. The property graphs created with the
generated Cypher are shown in Figure 5.6 (for uniform relationships distribution) and Figure
5.7(for non-uniform relationships). It is clearly visible that generated nodes have no properties
except the node ID as highlighted with blue circle. Similarly relationships also do not have any
properties.

Figure 5.5 – Original Graph Generator Tool with Cypher

To create the property graphs with extended version of graph generator tool, we use the
Cypher text generated in our examples as shown in Figure 5.3 and Figure 5.4. The parameters

90 Chapter 5. Experiments & Results

Figure 5.6 – Uniform Nodes and Relationships "Without" Properties in Original Graph Generator

Figure 5.7 – Non-uniform Nodes and Relationships "Without" Properties in Original Graph Generator

description is discussed in Section 5.2.1 in detail and also visible in the figures as well. Non-
uniform distribution is used for explicit label names and relationship types. For random label
names and relationships types, uniform distribution is used. The output graphs are shown in
Figures 5.8, Figures 5.9, Figures 5.10, Figures 5.11 respectively.

5.2. Synthetic Graph Data Generation 91

Figure 5.8 – Explicit Label Names Nodes "With" Properties in Extended Graph Generator

Figure 5.9 – Explicit Relationship Names Nodes "With" Properties in Extended Graph Generator

As we can see in Figure 5.8, the node ID 8 is selected in Neo4j GUI interface and the prop-
erties for this node are highlighted. Similarly in Figure 5.9, the “COLLABORATE” relationship
between node ID 0 and node ID 8 is selected to hight the properties contained for this rela-
tionship. Similar depiction for node and relationships properties is shown in Figure 5.10 and
Figure 5.11 respectively. For each of these property graph, each time a fresh graph database is

92 Chapter 5. Experiments & Results

Figure 5.10 – Random Label Names Nodes "With" Properties in Extended Graph Generator

Figure 5.11 – Random Relationship Names Nodes "With" Properties in Extended Graph Generator

created to show these examples.

5.3 Program Setup Environment and Protocol

In this section we briefly describe the program execution environment, experimental pro-
tocol, outlier removal method and memory consumption metrics used to calculate maximum

5.3. Program Setup Environment and Protocol 93

heap utilization respectively.

5.3.1 Execution environment (hardware & software)

The execution environment describes the software and hardware on which these experi-
ments are conducted. The details of tools and packages given below.

• Hardware: Intel Core i7-4610M, 3.00 GHz, quad core processor, 16 GB RAM

• Operating System: Linux generic kernel 4.4.0-134, Ubuntu 16.04 LTS

• Software:

– JDK version “1.8.0_181”, jre build 1.8.0_181-b13, HotSpot java 64-bit server VM
(build 25.181-b13, mixed mode)

– Neo4j graph database community edition 3.4.7, bolt protocol enabled

– Neo4j-java-driver version 1.4.4

It may be noted that the program can safely run on the latest version of Java and Neo4j
irrespective of the operating system. These configurations are just to describe our testing envi-
ronment.

5.3.2 Experiments protocol

The experiment protocol describes the necessary steps that program takes from the database
connection till the final list of gradual patterns. From these outputs, we plot the results shown
in Section 5.5. The source code and output files are available at git [Sha19a].

1. The Java program establishes the connection with graph database using Neo4j’s bolt pro-
tocol (port 7867) with the given credentials.

2. After the successful connection, the program queries graph database to retrieve the la-
bel’s data for the required properties (attributes). In general, these are the user desired
properties on which the gradual patterns extraction process is applied. This functional-
ity is achieved by implementing HashMap. For our program, these properties must be
numerical.

3. Once the properties with data are retrieved, they are stored in array list. Then for each
property the binary matrix initialization is performed as discussed in Section 2.4

4. After the matrix initialization, and concordant object pairs AND operation, the vdb and
support computation takes place as discussed in Section 4.1

94 Chapter 5. Experiments & Results

5. The result is stored for size-1 gradual patterns (i.e., two items) and program iterate for
next level and so on as explained in Algorithm 1 and Algorithm 2.

The program takes min_support threshold as input parameter. An executable jar file is
created for the program and it is run 5 times. The average value is then used to plot the charts.
In this process we also perform outliers removal as discussed below.

5.3.3 Outlier Removal Approach

The outlier removal method is adopted to eliminate the result which is not considered as
the expected output. This non-corresponding result may have appeared due to any software,
memory or hardware issues. The mechanism used to remove the outlier is as under. It is
important to mention that this approach is adopted for results of time and memory because
there is no change in the total number of gradual patterns that are generated in the result.

Each data point which is plotted in results (Section 5.5) is considered by taking the average
of 5 times execution of the program with same set of input parameters. In case of any outlier
result point in time or peak heap memory utilization, we use the Three Sigma rule also known
as 68-95-97.7 or “empirical rule”. It states that for a normal distribution almost all of the data
will be within the range of 3 standard deviations (std.dev). Empirical rule has three parts i.e.,
68% of data will fall with 1 standard deviation of the mean value, 95% of data within 2 standard
deviations of the mean value and 97.7% of data within 3 standard deviations of the mean value.
For removing the outliers, we adopt the rule of 2 standard deviations i.e., (Mean + 2× std.dev)
for upper bound point and (Mean − 2× std.dev) for lower bound point [Nar19].

5.3.4 Memory Consumption Metric

Choosing a metric for memory consumption is an essential task. A Java program consumes
both heap and non-heap memory. The JVM considers memory pools of type heap and non-
heap [ora18]. For the memory consumption plots we take peak used memory pools which
are of type HEAP and NON_HEAP. For this we use java MemoryPoolMXBean management
interface for a memory pool and call the method getPeakUsage(). The plots for datasets show
the sum of heap and non-heap peak memory usage.

For each program execution, we have used the same JVM settings. First of all, we have
decided to use the G1 garbage Collector. First introduced with Java 7 this G1 garbage collector
has the unique ability to efficiently and concurrently deal with very large heaps. It can also be
configured to not exceed a maximum pause time. We also set the BiasedLockingStartupDelay to 0
for improving performance of unaccounted synchronization. We have set the Xmx parameter
to fix the maximum heap size at 10G for memory allocation pool. To summarize, the jvm flags
as arguments for program execution are:

5.4. Datasets 95

S# Dataset Nodes Properties Missing %
1 Russian_tweet_Users 393 6 3
2 Hepatitis 155 6 13
3 Synthetic 10,000 5 25

Table 5.1 – Intra-Node Gradual Pattern Mining

-XX:+UseG1GC -XX:BiasedLockingStartupDelay = 0 -Xmx10G

5.4 Datasets

We have performed the experiments on two types of gradual pattern mining approaches
explained in Section 3.3. These are:

• Intra-node gradual pattern mining (Section 3.3.1)

• Node properties with relationships count (Section 3.3.3)

The Table 5.1 shows the datasets for which intra-node gradual pattern mining experiments
were performed and Table 5.2 shows the datasets for node properties with relationship count.
It is pertinent to mention that program is applicable for numerical attributes.

For the intra-node datasets, since the Russian_tweet is a real dataset therefore, in order to
apply gradual pattern mining, first the dataset need to imported into graph database. Simi-
larly, for Hepatitis dataset which is taken from UCI Machine Learning repository needed to
for imported first into graph. The data import method for these datasets is discussed later in
this section. Also, in case of these both datasets, a pre-processing step is performed to opt the
attributes as properties which are numerical due to our program requirement of processing
only such kind of data. The synthetic numerical data generated using legacy data generator
[Sha19a] was also imported into graph database in order to apply gradual pattern mining. For
all these, we have created separate graph databases and run the program as per experimental
protocol described in Section 5.3.2. The more details for each of these datasets is presented later
in this section.

For the nodes properties with relationships count datasets Table 5.2, we do not require
an import because synthetic graph generator generates the Cypher which can be directly exe-
cuted in cypher-shell to create nodes and relationships whereas Hetionet dataset is a real graph
database which is publicly available at [Him19].

96 Chapter 5. Experiments & Results

S# Dataset Nodes Relationships Properties Relationship Types Missing %
1 Synthetic Graph 15,000 999,268 6 3 10
2 Hetionet(Gene) 20,945 1,289,190 1 4 1

Table 5.2 – Nodes with Relationships Gradual Pattern Mining

5.4.1 The Russian Twitter Troll

The Russian_tweet_troll is a real dataset taken from [New19]. This dataset contains more
than 232, 061 tweets and 453 that Twitter has tied to “malicious activity" from Russia-linked
accounts during the 2016 U.S. presidential election. The dataset is publicly available as Neo4j
sandbox use case cite and the graph database can be accessed through direct URL as shown in
“Details” section of Figure 5.12. The graph schema visualization is shown in Figure 5.12.

The overall summary of graph schema showing the relationships count between source and
destination labels is shown in Listing 5.5.

Figure 5.12 – Russian-Twitter-Troll Sandbox Details

Figure 5.13 – Russian-Twitter-Troll-Graph Schema Visualization

5.4. Datasets 97

1
2 $./ bin/cypher−s h e l l −a b o l t : / / 3 4 . 2 2 4 . 1 7 . 1 1 6 : 4 0 5 3 5 −u n e o 4 j −p computer−governor−t a r
3 Connected to Neo4 j 3 . 4 . 11 a t b o l t : / / 3 4 . 2 2 4 . 1 7 . 1 1 6 : 4 0 5 3 5 as u s e r n e o 4 j .
4 Type : help f o r a l i s t of a v a i l a b l e commands or : e x i t to e x i t the s h e l l .
5 Note t h a t Cypher quer ies must end with a semicolon .
6 neo4 j > MATCH (n) -[r] -> (m)
7 RETURN l a b e l s (n) AS SrcLabel , type (r) AS Rela t ionsh ip ,
8 l a b e l s (m) AS DstLabel , Count (*) AS Relat ionships_Count ;
9 +−−−+

10 | SrcLabel | Re la t ionsh ip | DstLabel | Relat ionships_Count |
11 +−−−+
12 | [" Tweet "] | "IN_REPLY_TO" | [" Tweet "] | 559 |
13 | [" Tweet "] | "MENTIONS" | [" User " , " T r o l l "] | 956 |
14 | [" Tweet "] | "POSTED_VIA" | [" Source "] | 58051 |
15 | [" Tweet "] | "HAS_TAG" | [" Hashtag "] | 106792 |
16 | [" Tweet "] | "MENTIONS" | [" User "] | 55154 |
17 | [" User " , " T r o l l "] | "POSTED" | [" Tweet "] | 200833 |
18 | [" Tweet "] | "HAS_LINK" | ["URL"] | 31166 |
19 | [" Tweet "] | "RETWEETED" | [" Tweet "] | 39649 |
20 +−−−+
21
22 8 rows a v a i l a b l e a f t e r 853 ms , consumed a f t e r another 0 ms
23 neo4 j >

Listing 5.5 – Russian Tweet Graph Schema Summary with Relationships

From the available data of user accounts file [New19] we selected 7 relevant (numerical)
attributes out of 14 for our experiments. These are (userId, followersCount, statusesCount,
timeZone, favouritesCount, friendsCount, and listedCount). This data is used to create graph
database using cypher import utility. The data is imported using the Cypher commands shown
in Listing 5.6

1 LOAD CSV WITH HEADERS FROM
2 " f i l e : / / / u s e r s _ r u s s i a n _ t w e e t _ t r o l l . c s v " AS row
3 MERGE
4 (: User { userId : row . userId ,
5 followersCount : row . followersCount ,
6 statusesCount : row . statusesCount ,
7 timeZone : row . timeZone ,
8 favouri tesCount : row . favouri tesCount ,
9 friendsCount : row . friendsCount ,

10 l i s tedCount : row . l i s tedCount })

Listing 5.6 – Cypher import command for Russian-tweet-troll

98 Chapter 5. Experiments & Results

5.4.2 Hepatitis from UCI Machine Learning Repository

Hepatitis dataset is taken from UCI machine learning repository [Rep19]. For this dataset,
there are 20 attributes, but we consider only 6 relevant attributes (BILIRUBIN, ALKphosphate,
PROTIME, ALBUMIN, Age, and SGOT]) that have been imported to graph database. At-
tributes selection is made considering the numerical attributes requirement of program. Listing
5.7 shows the command to import this dataset in Neo4j.

1 LOAD CSV WITH HEADERS FROM
2 " f i l e : / / / h e p a t i t i s . c s v " AS row
3 MERGE
4 (: H e p a t i t i s { Age : row . Age ,
5 BILIRUBIN : row . BILIRUBIN ,
6 ALKphosphate : row . ALKphosphate ,
7 SGOT: row .SGOT,
8 ALBUMIN: row .ALBUMIN,
9 PROTIME : row . PROTIME})

Listing 5.7 – Cypher import command for Hypatitis dataset

5.4.3 Synthetic Dataset

For this experiment, we creates a synthetic dataset by using the Java class “Random” to gen-
erate a stream of pseudorandom numbers. The source code for generating dataset is available
at gitlab [Sha19a]. We generated the dataset for 10, 000 nodes and 5 attributes. Now, in order to
introduce missing values of 25% in the generated file, we use R’s package missForest and its
method prodNA. This package uses Random Forest supervised machine learning algorithm
to introduce missing values completely at random (MCAR). The database creation command
is show in Listing 5.8.

1 LOAD CSV WITH HEADERS FROM
2 " f i l e : / / / genData10K . c s v " AS row
3 MERGE
4 (: S y n t h e t i c { Id : row . Id ,
5 A99RO: row .A99RO,
6 B99RO: row . B99RO,
7 C99RO: row .C99RO,
8 D99RO: row .D99RO,
9 E99RO: row . E99RO})

5.4. Datasets 99

Figure 5.14 – Synthetic Graph Schema visualizations

Listing 5.8 – Cypher import command for Synthetic dataset

5.4.4 Synthetic Graph Dataset using Graph Generator

We have developed a synthetic graph generator to make property graphs in Neo4j database.
This graph generator’s web interface is available at [Sha19b]. The synthetic graph dataset
contains 3 labels namely Label1, Label2, Label3 and 3 relationship types R1, R2, and R3 re-
spectively. The nodes and relationships details are shown in Table 5.2. We created the graph
database with these specifications to run the experiments for both vdb and imputation methods
to compare the time and memory utilization as well as to observe the difference in generated
patterns. The graph schema visualization for this property graph is shown in Figure . The
created database can be downloaded from [Sha19a] to use in Neo4j and the complete source
code is available at [Sha19a].

5.4.5 Hetnets in Biomedicine

Hetnet is a research outcome published in [Him+17], which shows a network of biology,
disease, and pharmacology. It is an integrated network of nodes and relationships in which
“the knowledge from millions of biomedical studies over the last half century have been en-
coded into this single system” [Him+17]. The graphs schema of Hetionet is shown in Figure
5.15. Panel A shows the metagraph (graph of types) for Hetionet. Panel B shows the actual hetnet with

100 Chapter 5. Experiments & Results

Figure 5.15 – Hetnet Graph Schema visualizations [Dan19]

Src Relationship Dst RelCnt
Gene PARTICIPATES_GpBP Biological Process 559504
Gene REGULATES_GrG Gene 265672
Gene INTERACTS_GiG Gene 147164
Gene PARTICIPATES_GpMF Molecular Function 97222
Gene PARTICIPATES_GpPW Pathway 84372
Gene PARTICIPATES_GpCC Cellular Component 73566
Gene COVARIES_GcG Gene 61690

Table 5.3 – Hetionet “Gene”Relationships Summary

nodes laid out in circles by type. Color denotes edge type[Dan19]. The complete details of project and
its relevant data is available on GitHib [Dan19] and its GUI interface is available at [Him19].

In this dataset, we choose the “Gene” label and its relationships. The purpose to choose
“Gene” because it has a relevant attribute i.,e number of chromosomes for every gene. We
took all the gene nodes and their relationships with other labels like chemical compound, bi-
logical process, etc. There are 7 relationship types of “Gene” Label in Hetionet. The summary
of its relationships with other labels is shown in Table 5.3. The dataset has a total of 47,031
nodes and 2,250,197 relationships. In the Gene label, there are 20,945 nodes and 1,289,190
relationships with 7 relationship types. For our experiments, we tool all the nodes with 4
relationship type that connect with labels other than Gene itself like, PARTICIPATES_GpBP,
PARTICIPATES_GpMF, PARTICIPATES_GpPW and PARTICIPATES_GpCC. The output plots
for the time utilization, memory consumptions and number of patterns are shown in in Figure
5.28, Figure 5.29, and Figure 5.30 respectively.

5.5. Results 101

S.No. Nodes Labels Properties Relationship Types Missing%
1 1K 3 9 3 17
2 10K 3 9 3 17
3 20K 3 9 3 17

Table 5.4 – Synthetic Dataset: Nodes Details

Node Properties
Relationships

Count
A1 A2 A3 B1 B2 B3 C1 C2 C3 R1 R2 R3
25 43 74 1 0 2
45 88 NULL 2 2 1
69 NULL 56 1 0 1

Table 5.5 – Graph structure (Node Properties with Relationship Count)

5.4.6 Datasets for Fuzzy and Crisp Gradual Patterns

To generate graph data to mine fuzzy gradual patterns, we used synthetic graph generator
[Sha19b]. The graphs were generated for three datasets of 1000, 10,000 and 20,000 nodes and
same number of relationships for the respective datasets. The details of the datasets is shown
in Table 5.4. The range of values of the node properties are randomly generated between 1
to 100. Also, due to the schema less nature of property graphs, we introduce missing data by
randomly selecting the attributes of nodes. The resulting missingness of data is 17% for all the
3 datasets as shown in Table 5.4.

For a particular label e.g., “Label 1”, the graph structure of node attributes with relation-
ships count is shown in Table 5.5. This graph structure contains 12 attributes i.e., 9 properties
for each node as (A1, A2, A3, B1,..,C3) and 3 attributes for relationship count as (R1, R2, R3).
If there does not exist any relationship for a node, the graph database returns 0 in response to
the graph structure Cypher query. If there exist a relationship for a node, it returns the count of
relationship. For example, the first node in Table 5.5 having relation type R2 as 0 means that it
does not have any relationship type R2 where there are 2 relationships of type R3 for the same
node.

5.5 Results

In this section we show the plots for various types of datasets for intra-node and node
properties with relationships count as discussed in Section 5.4. For each dataset, two types
of approaches (i.e., vdb and imputation) are compared in terms of time and peak memory con-
sumption with respect to minimum support threshold. Furthermore, we also show the number
of patters generated for each of the dataset.

102 Chapter 5. Experiments & Results

For the plots of missing data imputation method, we made a separate Java program to per-
form comparisons of time consumption, peak memory and number of generated patterns. The
missing data is imputed using R package Amelia 2 that uses the expectation minimization al-
gorithm [HKB11] for multiple imputation of missing data. The complete details of source code
is available at GitLab [Sha19a] and the program flow for the imputation and non-imputation
i.e. vdb method is shown in Appendix A.1. The results of experiments are shown in two sub-
section as below.

5.5.1 Intra-Node Datasets Plots

In case of Russian tweet troll dataset (Section 5.4.1), we took the user accounts data to apply
the gradual patterns extraction and plot the results for intra-node scenario. As we can see for
the time utilization in Figure 5.16 and Memory consumption in Figure 5.17 that vdb approach
performs better that imputation approach. Since, the number of nodes are small as well as the
percentage of missing data, the number to generated pattern for both types of approaches (i.e.,
vdb and imputation) are almost same as shown in Figure 5.18.

	0

	1

	2

	3

	4

	5

	6

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Ti
m

e(
se

c)

Support	Threshold

(Russia	Tweet	Troll	Dataset)

VDB
Imputation

Figure 5.16 – Time Utilization for Russian
Troll Tweets

	0

	50

	100

	150

	200

	250

	300

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Pe
ak

	H
ea

p	
M

em
or

y(
M

B)

Support	Threshold

(Russia	Tweet	Troll	Dataset)

VDB
Imputation

Figure 5.17 – Memory Consumption for
Russian Troll Tweets

	0

	10

	20

	30

	40

	50

	60

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

N
um

Pa
tte

rn
s

Support	Threshold

(Russia	Tweet	Troll	Dataset)

VDB
Imputation

Figure 5.18 – Number of Patterns for Russian Troll Tweets

5.5. Results 103

	0

	0.5

	1

	1.5

	2

	2.5

	3

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Ti
m
e(
se
c)

Support	Threshold

(Hepatitis	-	UCI	ML	Repository	Dataset)

VDB
Imputation

Figure 5.19 – Time Utilization for Hepati-
tis - UCI ML Repository Dataset

	0

	20

	40

	60

	80

	100

	120

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Pe
ak
	H
ea
p	
M
em

or
y(
M
B)

Support	Threshold

(Hepatitis	-	UCI	ML	Repository	Dataset)

VDB
Imputation

Figure 5.20 – Memory Consumption for
Hepatitis - UCI ML Repository Dataset

	0

	10

	20

	30

	40

	50

	60

	70

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

N
um

Pa
tte
rn
s

Support	Threshold

(Hepatitis	-	UCI	ML	Repository	Dataset)

VDB
Imputation

Figure 5.21 – Number of Patterns for Hepatitis - UCI ML Repository Dataset

For Hepatitis dataset (Section 5.4.2) we observed some excessive patterns in imputation
method. For example, in the output result at minimum support threshold of 0.2, some pat-
terns were not present in VDB method output file for the same minimum support thresh-
old such as (BILIRUBIN ↑, Age↑, SGOT↓), (ALKphosphate ↑, PROTIME↑, ALBUMIN↑) and
(ALKphosphate↑ , PROTIME ↑, Age↓). We think that these excessive patterns may not re-
semble to the reality and can be better decided by the domain expert by looking at the actual
available data. In this dataset we have 13% of missing values in the available data.

In terms of time utilization and memory consumption we can see in Figures 5.19 and 5.20,
the vdb approach perform better than imputation, whereas the total numbers of patterns is al-
most same due to smaller volume of data. The complete output results of all these experiments
are available at [Sha19a].

Similarly, in the case of synthetic dataset (Section 5.4.3) at support threshold of 0.2, the
imputation approach generates 24 patterns whereas vdb approach generates 13 patterns. Some
of the excessive pattern generated by imputation approach are (A99RO↑ , B99RO↑), (A99RO↑,
C99RO↑), (B99RO↑, C99RO ↑), (A99RO ↑, B99RO↑, C99RO↑), and (B99RO ↑, D99RO↑, E99RO↑).

104 Chapter 5. Experiments & Results

	0

	50

	100

	150

	200

	250

	300

	350

	400

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Ti
m

e(
se

c)

Support	Threshold

(Synthetic	Dataset)

VDB
Imputation

Figure 5.22 – Time Utilization for Syn-
thetic Dataset

	0

	1000

	2000

	3000

	4000

	5000

	6000

	7000

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Pe
ak

	H
ea

p	
M

em
or

y(
M

B)

Support	Threshold

(Synthetic	Dataset)

VDB
Imputation

Figure 5.23 – Memory Consumption for
Synthetic Dataset

	0

	5

	10

	15

	20

	25

	30

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

N
um

Pa
tte

rn
s

Support	Threshold

(Synthetic	Dataset)

VDB
Imputation

Figure 5.24 – Number of Patterns for Synthetic Dataset

As described earlier in dataset description Section 5.4.3, there is 25% missing data and we notice
a reasonable difference from minimum support threshold of 0.4 to 0.5 in memory consumption
and time utilization as shown in Figure 5.22 and 5.23.

5.5.2 Nodes with Relationships Count Datasets Plots

In case of synthetic graph data generator dataset (5.4.4), we can observe that in Figure 5.26
from minimum support threshold of 0.8 to 0.5 the memory consumption is almost same but at
0.4 the memory consumption becomes more than double for the imputation method from 2GB
to almost 5GB and a very clear difference is observed at much lower minimum support of 0.2
with a difference of almost 9GB higher memory consumption. Interesting observation is notice
particularly in number of patterns like at minimum support of 0.4 there is difference almost
250 excessive patterns and at 0.2 the difference becomes 600 patterns. This clearly indicates
that these excessive patterns may or may not be useful but vdb approach generates only the
patterns for actual data which may provide more clarity in decision making on the given data.

5.5. Results 105

	0

	100

	200

	300

	400

	500

	600

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Ti
m

e(
se

c)

Support	Threshold

(Synthetic	Graph	Generator	Datasets)

VDB
Imputation

Figure 5.25 – Time Utilization for Syn-
thetic Graph Generator Dataset

	0

	2000

	4000

	6000

	8000

	10000

	12000

	14000

	16000

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Pe
ak

	H
ea

p	
M

em
or

y(
M

B)

Support	Threshold

(Synthetic	Graph	Generator	Datasets)

VDB
Imputation

Figure 5.26 – Memory Consumption for
Synthetic Graph Generator Dataset

	0

	200

	400

	600

	800

	1000

	1200

	0.2	0.3	0.4	0.5	0.6	0.7	0.8

N
um

Pa
tte

rn
s

Support	Threshold

(Synthetic	Graph	Generator	Datasets)

VDB
Imputation

Figure 5.27 – Number of Patterns for Synthetic Graph Generator Dataset

For the plots of Hetnets in Biomedicine (Section 5.4.5) we download the complete graph
database from its Github source [Dan19] in order to plot the result with same environment
setup. Hetnets is a big database with more than 2 million relationships and more than 47 thou-
sand nodes. For the sake of data relevance we choose “Gene” label for the experiments which
contains more than 20 thousand nodes. The available data has only 1% missing values there-
fore, there is not distinguishable difference in number of patterns being generated between vdb
and imputation methods. Time utilization for both approaches is almost same for all values of
minimum support whereas, at smaller value such as 0.3 we observe that vdn method consumes
less memory that imputation method.

5.5.3 Fuzzy and Crisp Datasets Plots

The plots for fuzzy sets and crisp data are shown and for three different size of datasets as
shown in Table 5.4. The experimental results show that with fuzzy sets, the time consumption

106 Chapter 5. Experiments & Results

	0

	200

	400

	600

	800

	1000

	0.3	0.4	0.5	0.6	0.7	0.8

Ti
m

e(
se

c)

Support	Threshold

(Hetionet	Datasets)

VDB
Imputation

Figure 5.28 – Time Utilization for Het-
ionet(Gene) Dataset Dataset

	0

	5000

	10000

	15000

	20000

	25000

	0.3	0.4	0.5	0.6	0.7	0.8

Pe
ak

	H
ea

p	
M

em
or

y(
M

B)

Support	Threshold

(Hetionet	Datasets)

VDB
Imputation

Figure 5.29 – Memory Consumption for
Hetionet(Gene) Dataset Dataset

	0

	5

	10

	15

	20

	0.3	0.4	0.5	0.6	0.7	0.8

N
um

Pa
tte

rn
s

Support	Threshold

(Hetionet	Datasets)

VDB
Imputation

Figure 5.30 – Number of Patterns for Hetionet(Gene) Dataset

is higher as shown in Fig 5.31 as compared to crisp dataset as shown in Fig. 5.34. Similarly,
peak heap memory consumption is also higher with fuzzy subset Fig. 5.32 and Fig 5.35. This is
due to the fact that the number of attributes to be considered for gradual patterns is increased
with the inclusion of fuzzy partitions (Low and High)for each property of node.

We observe an increase in the number of patterns being generated particularly at small
support threshold values as shown in Fig. 5.33 and Fig 5.36. For example, number of patterns
with 10K dataset at 0.1 support threshold, we get almost double the number of patterns with
fuzzy sets. As we can see in Fig. 5.33 and Fig 5.36, in both type of experiments, the number
of patterns for all the three datasets i.e., 1K, 10K and 20K are almost same. This is probably
due to the fact that the data is generated synthetically using the graph generator. It would be
interesting to observe the patterns generation with real graph datasets of different sizes. This
is one of the points that may be investigated for optimization of results in term of patterns that
are being generated.

5.5. Results 107

	0

	500

	1000

	1500

	2000

	2500

	3000

	3500

	4000

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8

Ti
m
e(
se
c)

Support	Threshold

(Synthetic	Datasets	with	Fuzzy	Sets,	Properties=36)

1K
10K
20K

Figure 5.31 – Time Utilization with Fuzzy Sets

	0

	2

	4

	6

	8

	10

	12

	14

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8

P
ea

k	
H

ea
p	

M
em

or
y(

G
B

)

Support	Threshold

(Synthetic	Datasets	with	Fuzzy	Sets,	Properties=36)

1K
10K
20K

Figure 5.32 – Memory Utilization with Fuzzy Sets

	0

	200

	400

	600

	800

	1000

	1200

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8

N
um

P
at
te
rn
s

Support	Threshold

(Synthetic	Datasets	with	Fuzzy	Sets,	Properties=36)

1K
10K
20K

Figure 5.33 – No. of Patterns with Fuzzy Sets

0

100

200

300

400

500

600

700

800

0.10.20.30.40.50.60.70.8

Ti
m

e
(s

e
c)

Support Threshold

(Synthetic Datasets, Properties=12)

1K
10K
20K

Figure 5.34 – Time Utilization for Crisp Data

0

1

2

3

4

5

6

7

8

0.10.20.30.40.50.60.70.8

Pe
a
k

H
e
a
p
 M

e
m

o
ry

(G
B

)

Support Threshold

(Synthetic Datasets, Properties=12)

1K
10K
20K

Figure 5.35 – Memory Utilization for Crisp Data

0

100

200

300

400

500

600

700

0.10.20.30.40.50.60.70.8

N
u
m

Pa
tt

e
rn

s

Support Threshold

(Synthetic Datasets, Properties=12)

1K
10K
20K

Figure 5.36 – No. of Patterns for Crisp Data

108 Chapter 5. Experiments & Results

5.6 Discussion

It is found from the results of experiments for intra-nodes and node properties with rela-
tionships that the percentage of missing data has a relevance with the total number of extracted
patterns. That is, with higher missing data percentage in a dataset, we get more patterns.

In the experiments for intra-node gradual patterns, it was observed that imputation method
generates more patterns than vdb-based method. This implies that the imputation method
generates the patterns that might not actually correlate in reality. Since the Russian-tweet-
troll dataset has only 3% missing data, so here is almost no difference between both methods
(i.e., vdb and imputation) in terms of patterns being extracted as shown in the NumPatterns
Vs Support Threshold plots Figure 5.18. The same fact is visible in Figure 5.21 for Hepatitis
dataset. Whereas, in Synthetic dataset plot Figure 5.24, at smaller support thresholds like 0.2,
the difference of generated patterns is almost double. This shows that with higher percentage
of missing data, the imputation method generates more biased results.

In the experiments for node properties with relationships scenario for the datasets shown
in Table 5.2, we observed the similar fact that with more percentage of missing data the im-
putation method generates more patterns as shown in numPatterns in Figure 5.27. For the
imputation method, this fact may be crucial in the case of real graph databases where practi-
tioners or domain experts involvement becomes necessary to remove the false positives (i.e.,
the excessive patterns). The same is observed in Hetionet graph database at support threshold
of 0.3, where we found (chromosome ↑ , PARTICIPATES_GpPW ↑) as an excessive pattern.

For the memory utilization results, with the exception of couple of instances, the vdb based
method performs better than imputation method for all the three datasets of intra-node. The
program’s time utilization results also show that time difference almost doubles for both meth-
ods in all the three datasets of intra-node experiments. Whereas, the time utilization in case
of node with relationships scenario is almost same as observed in Figure 5.25 and Figure 5.28
respectively.

It is deduced form the results that for both scenarios (intra-node and node properties and
relationships count) for the given datasets, when the percentage of missing values is higher
the imputation method generates more patterns than vdb approach. We think that it might not
reflect the reality because data is being artificially imputed in missing places and as a result it
generates more co-variance for the objects that are not actually present.

Chapter 6
Conclusion and Perspectives

6.1 Conclusion . 110

6.2 Perspectives . 111

6.2.1 Integration of the Algorithms in Neo4j . 111

6.2.2 Scalable Distributed Implementation of Gradual Pattern Mining 114

6.2.3 Improving and Extending the Graph Generator 114

110 Chapter 6. Conclusion and Perspectives

6.1 Conclusion

This work addresses the extraction of gradual patterns from property graphs. To extract
such patterns, we provide new protoforms of gradual patterns and the corresponding algo-
rithms and architectures to extract them. Experiments have been run over synthetic and real
graph databases.

We summarize below the main contributions of this work.

• We have proposed a formal definition of property graphs that is the first one in the liter-
ature to completely cover their particularities.

• We have designed different types of approaches for defining gradual patterns from prop-
erty graphs as discussed in Chapter 3. These approaches provide different perspectives
of mining the data depending upon the application domain and requirements of the end
user. The first two types of patterns rely on node properties while the other three ones
also exploit relationships.

• We also defined the concept of fuzzy gradual patterns from property graphs.

• We have proposed algorithms, methods and architectures in order to operationalize the
extraction of such patterns from property graphs.

• In particular, we have investigated a mechanism to handle missing values in NoSQL
semi-structured graph database. For such a goal, we propose a method to deal with the
missing values to find gradual patterns from property graphs. Our approach considers
the concept of valid databases vdb presented in [RC98]. We also have demonstrated the
feasibility of integrating our work within a graph database engine.

• We have extended the synthetic graph generator application to generate property graph
in NoSQL engine like Neo4j. The extended version allows to integrate “ properties” in
form of key:value for nodes and relationships. The existing version was able to generate
dummy nodes and relationships for a given input number without properties. To mine
gradual patterns, we require data within the nodes and relationships, hence the tool was
extended which is publicly available at [Sha19b].

• We implemented our algorithms in Java and used Neoj4 engine for creating property
graphs. The approach has been tested on graph data generated by a synthetic graph
generator and real dataset. We presented performance comparison and evaluations of
results in terms of time and memory to compare the approach of vdb with imputation
method.

6.2. Perspectives 111

6.2 Perspectives

Considering the contributions mentioned above, we present following perspective works
that can be taken as future research directions. We especially discuss improvements related to
the integration the algorithms within Neo4j and then present some further works on the data
generator.

6.2.1 Integration of the Algorithms in Neo4j

Section 4.4 presents the methodology we used to start integrating our work into Neo4j’s
graph database engine. The ultimate goal of this work is to provide a full library of our work
as a third-party module for Neo4j that we will be shared with the open-source community. To
do so, we have identified several key points that we need to address. They are discussed in
more details in the rest of this section.

6.2.1.1 Can we extract gradual patterns through Cypher?

This question is intimately linked to that of inductive databases which have been inten-
sively studied some years ago [BB06, Bes+10]. Neo4j engine allows to extend the features by
adding “user-defined procedures” and “user-defined functions” to extend the functionality of
graph database and Cypher query language.

As explained in Section 4.4.4, with the help of these user-defined functions and procedure
we can use Cypher to retrieve gradual patterns directly from graph database engine rather
than making an explicit database connection to run the algorithm and processing the data for
patterns. These user-defined functions and procedures are written in Java, compiled into a jar
file and can be placed in the plugins directory on each standalone or clustered server.

As described in Section 4.4, we have done a proof-of-concept that answer positively to
that question. This POC has been created by developing a first user-defined function that
allows users to mine gradual patterns on the properties of the nodes that share a same label.
Nevertheless, this user-procedure does not address some issues related to the optimization as
discussed in more details in the next section.

There are also some expressivity concerns to address: How to define user-friendly function
that allow users to express what they want to achieve? For example, when treating the use-case
of Inter-Relationships-Properties, how to users can express which relationships they want that
the algorithm take into account?

• One idea is to take as input a pattern that describes the shape of the data the user want
to be processed.

112 Chapter 6. Conclusion and Perspectives

• Another possibility is to take as parameter a PATH, a segment that combines a relation-
ship in a path with a start and end node that describe the traversal direction for that
relationship. This PATH can be obtained as the result of a Cypher query or by using the
Traversal API of Neo4j. Having a PATH as parameter will give access to a sub-set of the
data (a subgraph) that contains the required data for running our algorithm.

We will have to inspect this leads in our further work to integrate smoothly our work to
Neo4j.

6.2.1.2 Handling Categorical Ordinal Properties

In our work, we do not handle categorical ordinal variables for which the possible values
may be ordered. [Mar+18] tries to exploit the information provided by the numerical attributes
so as to extract knowledge about the categorical ones. For now, we do not provide any mecha-
nism that allows the user to define the order of a property for example, academic ranks (assis-
tant professor, associate professor, professor). In the current implementation, we are not able
to manage these ranks.

That is why we have to think about a way to offer the possibility to the end-user to provide
comparison function or when it is possible, the order of the elements of an ordinal variable.
So that, we could map each categorical value with an index value in order to use them as an
attribute in gradual pattern mining.

6.2.1.3 Integrating as an HTTP Service

Neo4j is a graph database engine that can be accessible through HTTP requests. For exam-
ple, for a local installation of Neo4j, the users can do a cypher query through the REST API
available at http://localhost:7474/db/data/cypher

As explained in Section 4.4.4.1, we could also create a server extension that enable new
surfaces to be created in the HTTP API.

We could then offer new services to the users through HTTP APIs. Please find below some
propositions of extension that could be helpful:

• An orchestrating system for gradual pattern mining. Indeed, some gradual patterns min-
ing could take time to be processed. It could be interesting to have an asynchronous
approach: letting the user ask for a gradual pattern mining through a HTTP API and
then have a scheduling system that will perform the property-graph mining and send an
email to the user so that it can check the results.

6.2. Perspectives 113

Figure 6.1 – Cache and Filesystem

• Categorical ordinal properties management system. A user interface or REST API could
be added to let the user annotate the data and manage information on the data model (for
example to give information on sortable/unsortable properties and comparable methods
for ordinal variables).

6.2.1.4 Storage and Low-level API

Graph databases can have graph native storages which are filesystems that are optimized
for graph processing and traversal access to the data:

• For instance, Neo4j uses extensively the offset mechanism for traversing from one node
to another. There is also some materialization of relationships information inside nodes
(such as the relation type, the ingoing and outgoing node’s id) in order to speed up the
traversal.

• Beyond this native graph storage system, there is also a caching system layer that opti-
mize the I/O access as discussed in [Vuk+15].

We think that to optimize the execution time we should also use both approaches. That
is to say, exploiting cache systems and also try to have an efficient storage system for binary
matrices when we need to retrieve some information as presented in Figure 6.1.

114 Chapter 6. Conclusion and Perspectives

Another optimization could be an efficient use of indexation. We could index some data
and meta-data useful for our algorithms. For example, we could create some indexes to tell
which fields are sortable and not sortable. We could use an index to map ordinal variables to
their comparable functions. We could also optimize our process by indexing binary matrices.

6.2.2 Scalable Distributed Implementation of Gradual Pattern Mining

One of our further works is to provide a scalable distributed implementation of gradual
pattern mining algorithm compatible with the use of missing values. To do so, there are several
leads:

• There are several Graph Processing Systems. The most popular ones are GraphX, Gi-
raph, and GraphLab, which are implementations of the ideas expressed in the Google
Pregel[Mal+10] and on Map/Reduce papers like [DG08]. We aim at using GraphX Apache
Spark’s API, a graph processing system based on Apache Spark In-Memory BigData pro-
cessing library, for graphs and graph-parallel computation.

• It has been recently announced that based on the achievements of the ongoing Cypher
for Apache Spark project, Spark 3.0 users will be able to use the well-established Cypher
graph query language for graph query processing, as well as having access to graph
algorithms stemming from the GraphFrames project [Men18].

• Morpheus 1 builds on the Spark SQL DataFrame API, offering integration with stan-
dard Spark SQL processing and also allows integration with GraphX. Morpheus extends
Apache Spark with Cypher. It allows for the integration of many data sources and sup-
ports multiple graph querying. It enables you to use your Spark cluster to run analytical
graph queries. Queries can also return graphs to create processing pipelines.

The recent announce of several tools and the current traction around property-graph and
spark ecosystem to handle them strengthens us in the belief that we going in the right direction.

6.2.3 Improving and Extending the Graph Generator

The evaluation of data mining techniques is crucial for assessing and benchmarking the
proposed approaches. Several works exist for many data types (e.g., relational databases and
regular graphs) but as for as we know, no tool is available for property graphs. We have there-
fore developed a graph generator presented in chapter 5.

The existing version of graph generator helps us to synthetically generate nodes and rela-
tionships with properties in GUI interface as well in a text file as Cypher statements that can

1. see https://github.com/opencypher/morpheus

6.2. Perspectives 115

used to create property graph. It is not a recommended practice in Neo4j to create property
graphs by writing thousands of lines of Cypher in GUI interface or in Cypher-shell utility. Al-
though, the graph generator can generate thousands of lines of Cypher statements but there is
a limit to execute them for example 1500 to 2000 statements at a time. Therefore, it requires to
load the Cypher statements in chunks.

We present two possible dimensions of work that can be carried out to further extend the
graph generator and make it a comprehensive tool for creating property graph.

• Enable the tool to create the data in CSV file format that can be imported in Neo4j using
LOAD CSV command. With the data in CSV format, we can load millions of nodes and
relationships in few minutes.

• Identify the limits of data that can be generated in GUI interface and to automatically
export the data in CSV if the size of input data to be generated is beyond the certain
specified limit for instance, more than 100k nodes and relationships. This limit is because
the tool is a browser based application and runs in user’s browser therefore, specifications
of the end user’s machine are to be considered for data that is being generated.

Bibliography

[Abd07] Hervé Abdi. « The Kendall rank correlation coefficient ». In: Encyclopedia of Mea-
surement and Statistics. Sage, Thousand Oaks, CA (2007), pp. 508–510 (cit. on p. 31).

[Agg15a] Charu C Aggarwal. « Association Pattern Mining ». In: Data mining: the textbook.
Springer, 2015. Chap. 4, pp. 93–132 (cit. on pp. 22–24).

[Agg14] Charu C. Aggarwal. « An Introduction to Frequent Pattern Mining ». In: Frequent
Pattern Mining. 2014, pp. 1–17. DOI: 10.1007/978-3-319-07821-2_1. URL:
https://doi.org/10.1007/978-3-319-07821-2%5C_1 (cit. on p. 22).

[Agg15b] Charu C. Aggarwal. Data Mining: The Textbook. Springer Publishing Company, In-
corporated, 2015. ISBN: 9783319141411 (cit. on pp. 3–5).

[ABA14] Charu C Aggarwal, Mansurul A Bhuiyan, and Mohammad Al Hasan. « Frequent
pattern mining algorithms: A survey ». In: Frequent pattern mining. Springer, 2014,
pp. 19–64 (cit. on p. 22).

[AIS93] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. « Mining Association Rules
Between Sets of Items in Large Databases ». In: SIGMOD Rec. 22.2 (June 1993),
pp. 207–216. ISSN: 0163-5808. DOI: 10.1145/170036.170072. URL: http://
doi.acm.org/10.1145/170036.170072 (cit. on p. 22).

[AS+94] Rakesh Agrawal, Ramakrishnan Srikant, et al. « Fast algorithms for mining asso-
ciation rules ». In: Proc. 20th int. conf. very large data bases, VLDB. Vol. 1215. 1994,
pp. 487–499 (cit. on p. 24).

[Ama19] Amazon. Amazon Neptune: Fast, reliable graph database built for the cloud. page ac-
cessed: Jan 2019. 2019. URL: https://aws.amazon.com/neptune/ (cit. on
p. 12).

[Aur19] Titan Aurelius. TITAN: Distributed Graph Database. page accessed: Jan 2019. 2019.
URL: http://titan.thinkaurelius.com/ (cit. on p. 12).

https://doi.org/10.1007/978-3-319-07821-2_1
https://doi.org/10.1007/978-3-319-07821-2%5C_1
https://doi.org/10.1145/170036.170072
http://doi.acm.org/10.1145/170036.170072
http://doi.acm.org/10.1145/170036.170072
https://aws.amazon.com/neptune/
http://titan.thinkaurelius.com/

118 Bibliography

[Ayo+10] Sarra Ayouni, Sadok Ben Yahia, Anne Laurent, and Pascal Poncelet. « Fuzzy grad-
ual patterns: What fuzzy modality for what result? » In: SoCPaR: International Con-
ference of Soft Computing and Pattern Recognition. Paris, France, 2010, pp. 224–230.
URL: https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798797 (cit. on pp. 8,
32, 34, 35).

[AY14] Sarra Ayouni and Sadok Ben Yahia. « Fuzzy set-based formalization of gradual
patterns ». In: 2014 6th International Conference of Soft Computing and Pattern Recog-
nition (SoCPaR). IEEE. 2014, pp. 434–439 (cit. on p. 8).

[AYL11] Sarra Ayouni, Sadok Ben Yahia, and Anne Laurent. « Extracting compact and in-
formation lossless sets of fuzzy association rules ». In: Fuzzy Sets and Systems 183.1
(2011), pp. 1–25. DOI: 10.1016/j.fss.2011.06.019. URL: https://doi.
org/10.1016/j.fss.2011.06.019 (cit. on p. 24).

[Ayr+02] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. « Sequential Pattern
Mining Using a Bitmap Representation ». In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’02. Edmon-
ton, Alberta, Canada: ACM, 2002, pp. 429–435. ISBN: 1-58113-567-X. DOI: 10.1145/
775047.775109. URL: http://doi.acm.org/10.1145/775047.775109
(cit. on p. 27).

[BM03] Gustavo E. A. P. A. Batista and Maria Carolina Monard. « An Analysis of Four
Missing Data Treatment Methods for Supervised Learning ». In: Applied Artificial
Intelligence 17 (2003), pp. 519–533 (cit. on p. 38).

[Beb+18] Bradley R. Bebee et al. « Amazon Neptune: Graph Data Management in the Cloud ».
In: International Semantic Web Conference. 2018, pp. 1–2 (cit. on p. 7).

[Ben+09] Leila Ben Othman, François Rioult, Sadok Ben Yahia, and Bruno Crémilleux. « Miss-
ing Values: Proposition of a Typology and Characterization with an Association
Rule-Based Model ». In: Data Warehousing and Knowledge Discovery. Ed. by Tor-
ben Bach Pedersen and A. Min Mohania Mukesh K. and Tjoa. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 441–452 (cit. on p. 38).

[Ber+07] F. Berzal, J.-C. Cubero, D. Sanchez, M.-A. Vila, and J. M. Serrano. « An alternative
approach to discover gradual dependencies ». In: Int. Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems 15.5 (2007), pp. 559–570 (cit. on p. 26).

[Bes+10] Jérémy Besson, Jean-François Boulicaut, Tias Guns, and Siegfried Nijssen. « Gener-
alizing Itemset Mining in a Constraint Programming Setting ». In: Inductive Databases
and Constraint-Based Data Mining. Ed. by Saso Dzeroski, Bart Goethals, and Pance
Panov. Springer, 2010, pp. 107–126. ISBN: 978-1-4419-7737-3. DOI: 10.1007/978-
1-4419-7738-0_5. URL: https://doi.org/10.1007/978-1-4419-
7738-0%5C_5 (cit. on p. 111).

[Bez+99] James C. Bezdek, Mikhil R. Pal, James Keller, and Raghu Krisnapuram. Fuzzy Mod-
els and Algorithms for Pattern Recognition and Image Processing. Norwell, MA, USA:
Kluwer Academic Publishers, 1999. ISBN: 0792385217 (cit. on p. 34).

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798797
https://doi.org/10.1016/j.fss.2011.06.019
https://doi.org/10.1016/j.fss.2011.06.019
https://doi.org/10.1016/j.fss.2011.06.019
https://doi.org/10.1145/775047.775109
https://doi.org/10.1145/775047.775109
http://doi.acm.org/10.1145/775047.775109
https://doi.org/10.1007/978-1-4419-7738-0_5
https://doi.org/10.1007/978-1-4419-7738-0_5
https://doi.org/10.1007/978-1-4419-7738-0%5C_5
https://doi.org/10.1007/978-1-4419-7738-0%5C_5

Bibliography 119

[BB06] Francesco Bonchi and Jean-François Boulicaut, eds. Knowledge Discovery in Induc-
tive Databases, 4th International Workshop, KDID 2005, Porto, Portugal, October 3,
2005, Revised Selected and Invited Papers. Vol. 3933. Lecture Notes in Computer Sci-
ence. Springer, 2006. ISBN: 3-540-33292-8. DOI: 10.1007/11733492. URL: https:
//doi.org/10.1007/11733492 (cit. on p. 111).

[Bou+10] B. Bouchon-Meunier, A. Laurent, M. Lesot, and M. Rifqi. « Strengthening fuzzy
gradual rules through “all the more” clauses ». In: International Conference on Fuzzy
Systems. July 2010, pp. 1–7. DOI: 10.1109/FUZZY.2010.5584858 (cit. on p. 35).

[Bou18] Bernadette Bouchon-Meunier. « Strengths of Fuzzy Techniques in Data Science ».
In: Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy, etc.
Methods and Their Applications. HAL, 2018. URL: https : / / hal .sorbonne -
universite.fr/hal-01676195 (cit. on p. 34).

[Bow19] Andrew Bowman. Understanding non-existent properties and working with nulls. page
accessed: Jan 2019. 2019. URL: https://neo4j.com/developer/kb/understanding-
non-existent-properties-and-null-values/ (cit. on p. 63).

[CGM07] Toon Calders, Bart Goethals, and Michael Mampaey. « Mining Itemsets in the Pres-
ence of Missing Values ». In: Proceedings of the 2007 ACM Symposium on Applied
Computing. SAC ’07. Seoul, Korea: ACM, 2007, pp. 404–408. ISBN: 1-59593-480-4.
DOI: 10.1145/1244002.1244097 (cit. on p. 65).

[CL14] Arnaud Castelltort and Anne Laurent. « Fuzzy queries over NoSQL graph databases:
perspectives for extending the cypher language ». In: International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based Systems.
Springer. 2014, pp. 384–395 (cit. on p. 36).

[CL17] Arnaud Castelltort and Anne Laurent. « Exploiting NoSQL Graph Databases and
in Memory Architectures for Extracting Graph Structural Data Summaries ». In:
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 25 (2017),
pp. 81–110 (cit. on p. 52).

[CM18] Arnaud Castelltort and Trevor Martin. « Handling scalable approximate queries
over NoSQL graph databases: Cypherf and the Fuzzy4S framework ». In: Fuzzy
Sets and Systems 348 (2018), pp. 21–49 (cit. on pp. 71, 76).

[CGK06] Renato Coppi, Maria A Gil, and Henk AL Kiers. « The fuzzy approach to statistical
analysis ». In: Computational statistics & data analysis 51.1 (2006), pp. 1–14 (cit. on
p. 34).

[Dan19] Sergio Baranzini Daniel Himmelstein. Hetnets in biomedicine. page accessed: Jan
2019. 2019. URL: https://github.com/hetio/hetionet (cit. on pp. 100,
105).

[DG08] Jeffrey Dean and Sanjay Ghemawat. « MapReduce: simplified data processing on
large clusters ». In: Communications of the ACM 51.1 (2008), pp. 107–113 (cit. on
p. 114).

https://doi.org/10.1007/11733492
https://doi.org/10.1007/11733492
https://doi.org/10.1007/11733492
https://doi.org/10.1109/FUZZY.2010.5584858
https://hal.sorbonne-universite.fr/hal-01676195
https://hal.sorbonne-universite.fr/hal-01676195
https://neo4j.com/developer/kb/understanding-non-existent-properties-and-null-values/
https://neo4j.com/developer/kb/understanding-non-existent-properties-and-null-values/
https://doi.org/10.1145/1244002.1244097
https://github.com/hetio/hetionet

120 Bibliography

[Dem+10] Camil Demetrescu, David Eppstein, Zvi Galil, and Giuseppe F. Italiano. « Dynamic
Graph Algorithms ». In: Algorithms and Theory of Computation Handbook. Ed. by
Mikhail J. Atallah and Marina Blanton. Chapman & Hall/CRC, 2010, pp. 9–9. ISBN:
978-1-58488-822-2. URL: http://dl.acm.org/citation.cfm?id=1882757.
1882766 (cit. on p. 6).

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. « Maximum Likelihood from Incom-
plete Data via the EM Algorithm ». In: Journal of the Royal Statistical Society. Series B
(Methodological) 39.1 (1977), pp. 1–38. ISSN: 00359246. URL: http://www.jstor.
org/stable/2984875 (cit. on p. 38).

[DLT08] Lisa Di Jorio, Anne Laurent, and Maguelonne Teisseire. « Fast extraction of gradual
association rules: A heuristic based method ». In: Proceedings of the 5th international
conference on Soft computing as transdisciplinary science and technology. ACM. 2008,
pp. 205–210 (cit. on p. 26).

[Do+15] Trong Dinh Thac Do, Alexandre Termier, Anne Laurent, Benjamin Négrevergne,
Behrooz Omidvar-Tehrani, and Sihem Amer-Yahia. « PGLCM: efficient parallel
mining of closed frequent gradual itemsets ». In: Knowl. Inf. Syst. 43.3 (2015), pp. 497–
527. DOI: 10.1007/s10115-014-0749-8. URL: https://doi.org/10.
1007/s10115-014-0749-8 (cit. on pp. 5, 8, 31, 62).

[Dub80] Didier J Dubois. Fuzzy sets and systems: theory and applications. Vol. 144. Academic
press, 1980 (cit. on p. 33).

[DBE19] DB-Engines. Knowledge Base of Relational and NoSQL Database Management Systems.
page accessed: April 2019. 2019. URL: https://db-engines.com/en/ranking/
graph+dbms (cit. on p. 12).

[FPS96] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. « From data min-
ing to knowledge discovery in databases ». In: AI magazine 17.3 (1996), pp. 37–37
(cit. on pp. 20, 21).

[Fer+16] Alberto Fernández, Cristobal José Carmona, Marıéa José del Jesus, and Francisco
Herrera. « A view on fuzzy systems for big data: progress and opportunities ». In:
International Journal of Computational Intelligence Systems 9.sup1 (2016), pp. 69–80
(cit. on p. 34).

[FG17] Michael Fire and Carlos Guestrin. « The Rise and Fall of Network Stars: Analyzing
2.5 million graphs to reveal how high-degree vertices emerge over time ». In: arXiv
preprint arXiv:1706.06690 (2017) (cit. on p. 5).

[For04] Bryan Ford. « Parsing expression grammars: a recognition-based syntactic foun-
dation ». In: ACM SIGPLAN Notices. Vol. 39. 1. ACM. 2004, pp. 111–122 (cit. on
p. 76).

[Fra+18] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Tay-
lor. « Cypher: An evolving query language for property graphs ». In: Proceedings of

http://dl.acm.org/citation.cfm?id=1882757.1882766
http://dl.acm.org/citation.cfm?id=1882757.1882766
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/10.1007/s10115-014-0749-8
https://doi.org/10.1007/s10115-014-0749-8
https://doi.org/10.1007/s10115-014-0749-8
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms

Bibliography 121

the 2018 International Conference on Management of Data. ACM. 2018, pp. 1433–1445
(cit. on p. 80).

[Ful16] FullAI. A short history of artificial intelligence. page accessed: April 2019. 2016. URL:
http://www.fullai.org/short-history-artificial-intelligence/

(cit. on p. 3).

[Gam95] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995 (cit. on p. 73).

[Goe03] Bart Goethals. « Survey on frequent pattern mining ». In: Univ. of Helsinki 19 (2003),
pp. 840–852 (cit. on p. 22).

[Gut84] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. Vol. 14. 2.
ACM, 1984 (cit. on p. 70).

[Hal+14] Patrick Hall, Jared Dean, Ilknur Kaynar Kabul, and Jorge Silva. « An overview of
machine learning with SAS® enterprise miner™ ». In: SAS Institute Inc (2014) (cit.
on pp. 2, 4).

[Han+07] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. « Frequent pattern mining:
current status and future directions ». In: Data Mining and Knowledge Discovery 15.1
(Aug. 2007), pp. 55–86 (cit. on p. 68).

[HPK11] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.
Elsevier, 2011 (cit. on pp. 2, 4, 5).

[Him19] Daniel Himmelstein. Hetnets in Neo4j. page accessed: Jan 2019. 2019. URL: https:
//neo4j.het.io/browser/ (cit. on pp. 95, 100).

[Him+17] Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sab-
rina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini.
« Systematic integration of biomedical knowledge prioritizes drugs for repurpos-
ing ». In: eLife 6 (Sept. 2017). Ed. by Alfonso Valencia, e26726. ISSN: 2050-084X. DOI:
10.7554/eLife.26726. URL: https://doi.org/10.7554/eLife.26726
(cit. on p. 99).

[HKB11] James Honaker, Gary King, and Matthew Blackwell. « Amelia II: A Program for
Missing Data ». In: Journal of Statistical Software 45.7 (2011), pp. 1–47 (cit. on p. 102).

[HHE03] Eduardo R. Hruschka, Estevam R. Hruschka, and Nelson F. F. Ebecken. « Evalu-
ating a Nearest-Neighbor Method to Substitute Continuous Missing Values ». In:
AI 2003: Advances in Artificial Intelligence. Ed. by Tamás (Tom) Domonkos Gedeon
and Lance Chun Che Fung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 723–734 (cit. on p. 38).

[Hül02] Eyke Hüllermeier. « Association Rules for Expressing Gradual Dependencies ». In:
Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge
Discovery. PKDD ’02. London, UK, UK: Springer-Verlag, 2002, pp. 200–211. ISBN: 3-
540-44037-2. URL: http://dl.acm.org/citation.cfm?id=645806.670161
(cit. on pp. 24, 25, 33).

http://www.fullai.org/short-history-artificial-intelligence/
https://neo4j.het.io/browser/
https://neo4j.het.io/browser/
https://doi.org/10.7554/eLife.26726
https://doi.org/10.7554/eLife.26726
http://dl.acm.org/citation.cfm?id=645806.670161

122 Bibliography

[Hül11] Eyke Hüllermeier. « Fuzzy Sets in Machine Learning and Data Mining ». In: Appl.
Soft Comput. 11.2 (Mar. 2011), pp. 1493–1505. ISSN: 1568-4946. DOI: 10.1016/j.
asoc.2008.01.004. URL: http://dx.doi.org/10.1016/j.asoc.2008.
01.004 (cit. on p. 34).

[JB09] Jens Jäkel and Georg Bretthauer. « Fuzzy system applications ». In: Control Systems,
Robotics and AutomatioN–Volume XVII: Fuzzy and Intelligent Control Systems (2009),
p. 107 (cit. on p. 34).

[DLT09] Lisa Di-Jorio, Anne Laurent, and Maguelonne Teisseire. « Mining Frequent Grad-
ual Itemsets from Large Databases ». In: Advances in Intelligent Data Analysis VIII.
Ed. by Niall M. Adams, Céline Robardet, Arno Siebes, and Jean-François Boulicaut.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 297–308. ISBN: 978-3-642-
03915-7 (cit. on pp. 5, 8, 21, 25–29, 31, 35, 62).

[JV13] Salim Jouili and Valentin Vansteenberghe. « An empirical comparison of graph
databases ». In: 2013 International Conference on Social Computing. IEEE. 2013, pp. 708–
715 (cit. on p. 80).

[Kam09a] Chandrika Kamath. « The Scientific Data Mining Process ». In: Scientific data min-
ing: a practical perspective. Siam, 2009. Chap. 4, pp. 57–66 (cit. on pp. 3, 4, 22).

[Kam09b] Chandrika Kamath. Scientific data mining: a practical perspective. Vol. 112. Siam, 2009
(cit. on p. 2).

[KBB17] Arijit Khan, Sourav S. Bhowmick, and Francesco Bonchi. « Summarizing Static and
Dynamic Big Graphs ». In: Proc. VLDB Endow. 10.12 (Aug. 2017), pp. 1981–1984.
ISSN: 2150-8097. DOI: 10.14778/3137765.3137825. URL: https://doi.
org/10.14778/3137765.3137825 (cit. on pp. 6, 8, 52).

[KH10] Hyung-Won Koh and Eyke Hüllermeier. « Mining Gradual Dependencies Based
on Fuzzy Rank Correlation ». In: Combining Soft Computing and Statistical Methods
in Data Analysis, SMPS 2010, Oviedo, Spain, September 29 - October 1, 2010. 2010,
pp. 379–386. DOI: 10.1007/978-3-642-14746-3_47. URL: https://doi.
org/10.1007/978-3-642-14746-3%5C_47 (cit. on p. 35).

[LMD14] Josep Lluıés Larriba-Pey, Norbert Martıénez-Bazán, and David Domıénguez-Sal.
« Introduction to graph databases ». In: Reasoning Web International Summer School.
Springer. 2014, pp. 171–194 (cit. on p. 80).

[LLR09] Anne Laurent, Marie-Jeanne Lesot, and Maria Rifqi. « GRAANK: Exploiting Rank
Correlations for Extracting Gradual Itemsets ». In: Flexible Query Answering Sys-
tems. Ed. by Troels Andreasen, Ronald R. Yager, Henrik Bulskov, Henning Chris-
tiansen, and Henrik Legind Larsen. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 382–393. ISBN: 978-3-642-04957-6 (cit. on pp. 5, 8, 21, 25, 26, 31, 32, 35, 49,
62).

[Lau+12] Anne Laurent, Benjamin Négrevergne, Nicolas Sicard, and Alexandre Termier. « Ef-
ficient parallel mining of gradual patterns on multicore processors ». In: Advances
in Knowledge Discovery and Management. Springer, 2012, pp. 137–151 (cit. on p. 8).

https://doi.org/10.1016/j.asoc.2008.01.004
https://doi.org/10.1016/j.asoc.2008.01.004
http://dx.doi.org/10.1016/j.asoc.2008.01.004
http://dx.doi.org/10.1016/j.asoc.2008.01.004
https://doi.org/10.14778/3137765.3137825
https://doi.org/10.14778/3137765.3137825
https://doi.org/10.14778/3137765.3137825
https://doi.org/10.1007/978-3-642-14746-3_47
https://doi.org/10.1007/978-3-642-14746-3%5C_47
https://doi.org/10.1007/978-3-642-14746-3%5C_47

Bibliography 123

[Liu+18] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. « Graph Summarization
Methods and Applications: A Survey ». In: ACM Comput. Surv. 51.3 (June 2018),
62:1–62:34. ISSN: 0360-0300. DOI: 10.1145/3186727. URL: http://doi.acm.
org/10.1145/3186727 (cit. on pp. 6, 52).

[Log16] Neota Logic. Artificial Intelligence in Law: The State of Play 2016, Part 1. page ac-
cessed: April 2019. 2016. URL: https://www.neotalogic.com/2016/02/28/
artificial-intelligence-in-law-the-state-of-play-2016-part-

1/ (cit. on p. 3).

[Lun+07] Max Lungarella, Fumiya Iida, Josh C Bongard, and Rolf Pfeifer. « AI in the 21 st
Century–With Historical Reflections ». In: 50 years of artificial intelligence. Springer,
2007, pp. 1–8 (cit. on p. 2).

[Mal+10] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. « Pregel: a system for large-scale graph
processing ». In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM. 2010, pp. 135–146 (cit. on p. 114).

[Mar+18] Christophe Marsala, Anne Laurent, Marie-Jeanne Lesot, Maria Rifqi, and Arnaud
Castelltort. « Discovering Ordinal Attributes Through Gradual Patterns, Morpho-
logical Filters and Rank Discrimination Measures ». In: International Conference on
Scalable Uncertainty Management. Springer. 2018, pp. 152–163 (cit. on p. 112).

[Men18] Xiangrui Meng. SPIP: Property Graphs, Cypher Queries, and Algorithms. Nov. 2018.
URL: https://issues.apache.org/jira/browse/SPARK-25994 (cit. on
p. 114).

[Mic19] Microsoft. Azure Cosmos DB: Globally distributed, multi-model database service. page
accessed: Jan 2019. 2019. URL: https://azure.microsoft.com/en- gb/
services/cosmos-db/ (cit. on p. 12).

[Mil13] Justin J Miller. « Graph database applications and concepts with Neo4j ». In: Pro-
ceedings of the Southern Association for Information Systems Conference, Atlanta, GA,
USA. Vol. 2324. 2013 (cit. on pp. 7, 12).

[MP18] Karthika Mohan and Judea Pearl. « Graphical Models for Processing Missing Data ».
In: arXiv:1801.03583v1 [stat.ME] (Jan. 2018), pp. 1–34 (cit. on p. 38).

[Muñ+17] Vıéctor Méndez Muñoz, Anna Cohen-Nabeiro, Romain David, Vicente Ivars Camáñez,
Alfons Nonell-Canals, Miquel Senar, Denis Couvet, Jean-Pierre Feral, Aurélie Delavaud,
and Thierry Tatoni. « Analysis on the Graph Techniques for Data-mining and Vi-
sualization of Heterogeneous Biodiversity Data Sets ». In: Complexis 2017. 2017,
pp. 144–151 (cit. on p. 5).

[Nar19] Balasubramanian Narasimhan. The Normal Distribution. page accessed: Jan 2019.
2019. URL: http://statweb.stanford.edu/~naras/jsm/NormalDensity/
NormalDensity.html (cit. on p. 94).

[Neo19a] Neo4j. Neo4j - The Fastest Path To Graph Success. page accessed: Jan 2019. 2019. URL:
https://neo4j.com/ (cit. on p. 12).

https://doi.org/10.1145/3186727
http://doi.acm.org/10.1145/3186727
http://doi.acm.org/10.1145/3186727
https://www.neotalogic.com/2016/02/28/artificial-intelligence-in-law-the-state-of-play-2016-part-1/
https://www.neotalogic.com/2016/02/28/artificial-intelligence-in-law-the-state-of-play-2016-part-1/
https://www.neotalogic.com/2016/02/28/artificial-intelligence-in-law-the-state-of-play-2016-part-1/
https://issues.apache.org/jira/browse/SPARK-25994
https://azure.microsoft.com/en-gb/services/cosmos-db/
https://azure.microsoft.com/en-gb/services/cosmos-db/
http://statweb.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html
http://statweb.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html
https://neo4j.com/

124 Bibliography

[Neo19b] Neo4j. Neo4j Debian installation. page accessed: Jan 2019. 2019. URL: https://
neo4j.com/docs/operations-manual/current/installation/linux/

debian/ (cit. on p. 131).

[Neo19c] Neo4j. Neo4j is the Go-To Technology for Retail- Neo4j Retail Customers. page accessed:
Jan 2019. 2019. URL: https://neo4j.com/industries/retail/ (cit. on p. 5).

[Neo19d] Neo4j. Neo4jCommunityVersion. page accessed: Jan 2019. 2019. URL: https://
gite.lirmm.fr/shah/neo4j-community-version-3.4.7/ (cit. on p. 131).

[Neo19e] Neo4j. The World of Graphs — Powered by Neo4j. page accessed: Jan 2019. 2019. URL:
https://neo4j.com/customers/ (cit. on p. 5).

[New19] NBC News. Russian troll tweets. 2019. URL: https://www.nbcnews.com/tech/
social-media/now-available-more-200-000-deleted-russian-

troll-tweets-n844731 (cit. on pp. 96, 97).

[Ngo+18] Tu Ngo, Vera Georgescu, Anne Laurent, Thérèse Libourel, and Grégoire Mercier.
« Mining Spatial Gradual Patterns: Application to Measurement of Potentially Avoid-
able Hospitalizations ». In: International Conference on Current Trends in Theory and
Practice of Informatics. Springer. 2018, pp. 596–608 (cit. on p. 8).

[Ora19] Oracle. Java SE 8 installation. page accessed: Jan 2019. 2019. URL: https://www.
oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html (cit. on p. 131).

[ora18] oracle. Java Memory Types. 2018. URL: https://docs.oracle.com/javase/
7/docs/api/java/lang/management/MemoryPoolMXBean.html (cit. on
p. 94).

[OW72] T. Orchard and M. A. Woodbury. « A missing information principle: theory and ap-
plications ». In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics
and Probability. 1972, pp. 697–715 (cit. on p. 38).

[PL84] T. Papaioannou and S. Loukas. « Inequalities on Rank Correlation with Missing
Data ». In: Journal of the Royal Statistical Society Series B (Methodological) 46.1 (1984),
pp. 68–71 (cit. on pp. 31, 38).

[PG98] Witold Pedrycz and Fernando Gomide. An introduction to fuzzy sets: analysis and
design. Mit Press, 1998 (cit. on p. 33).

[Piv+16] Olivier Pivert, Olfa Slama, Grégory Smits, and Virginie Thion. « SUGAR: A graph
database fuzzy querying system ». In: 2016 IEEE Tenth International Conference on
Research Challenges in Information Science (RCIS). IEEE. 2016, pp. 1–2 (cit. on p. 71).

[QLP11] Malaquias Quintero, Anne Laurent, and Pascal Poncelet. « Fuzzy orderings for
fuzzy gradual patterns ». In: International Conference on Flexible Query Answering
Systems. Springer. 2011, pp. 330–341 (cit. on pp. 8, 34, 35).

[RC98] Arnaud Ragel and Bruno Crémilleux. « Treatment of Missing Values for Associa-
tion Rules ». In: Research and Development in Knowledge Discovery and Data Mining,
Second Pacific-Asia Conference, PAKDD-98, Melbourne, Australia, April 15-17, 1998,
Proceedings. 1998, pp. 258–270 (cit. on pp. 38, 40, 62, 63, 65, 110).

https://neo4j.com/docs/operations-manual/current/installation/linux/debian/
https://neo4j.com/docs/operations-manual/current/installation/linux/debian/
https://neo4j.com/docs/operations-manual/current/installation/linux/debian/
https://neo4j.com/industries/retail/
https://gite.lirmm.fr/shah/neo4j-community-version-3.4.7/
https://gite.lirmm.fr/shah/neo4j-community-version-3.4.7/
https://neo4j.com/customers/
https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731
https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731
https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryPoolMXBean.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryPoolMXBean.html

Bibliography 125

[Rep19] UCI Machine Learning Repository. Hepatitis Data Set. 2019. URL: https://archive.
ics.uci.edu/ml/datasets/hepatitis (cit. on p. 98).

[Reu16] Thomson Reuters. Artificial Intelligence: How will it affect legal practice – and when?
page accessed: April 2019. 2016. URL: https://blogs.thomsonreuters.com/
answerson/artificial-intelligence-legal-practice/ (cit. on p. 3).

[Reu19] Thomson Reuters. Early adoption is an investment that pays dividends. page accessed:
April 2019. 2019. URL: https://legal.thomsonreuters.com/en/insights/
infographics / early - adoption - is - an - investment - that - pays -

dividends (cit. on p. 2).

[RWE15] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases: New Opportunities for
Connected Data. 2nd. O’Reilly Media, Inc., 2015. ISBN: 9781491930892 (cit. on pp. 5–
7, 14).

[Rod16] Marko A. Rodriguez. Graph Morphisms. page accessed: Jan 2019. 2016. URL: https:
//github.com/tinkerpop/blueprints/wiki/Graph-Morphisms (cit. on
p. 5).

[RN10] Marko A Rodriguez and Peter Neubauer. « Constructions from dots and lines ».
In: Bulletin of the American Society for Information Science and Technology 36.6 (2010),
pp. 35–41 (cit. on pp. 5, 6).

[RN12] Marko A Rodriguez and Peter Neubauer. « The graph traversal pattern ». In: Graph
Data Management: Techniques and Applications. IGI Global, 2012, pp. 29–46 (cit. on
pp. 5–7).

[RUB76] DONALD B. RUBIN. « Inference and missing data ». In: Biometrika 63.3 (1976),
pp. 581–592. DOI: 10.1093/biomet/63.3.581. URL: http://dx.doi.org/
10.1093/biomet/63.3.581 (cit. on pp. 36, 37).

[SA11] Sherif Sakr and Ghazi Al-Naymat. « Querying Graph Databases: An Overview ».
In: Advanced Database Query Systems: Techniques, Applications and Technologies. IGI
Global, 2011, pp. 304–322. DOI: 10.4018/978-1-60960-475-2.ch013 (cit. on
p. 12).

[Sha18] Faaiz Shah. Source Code for Synthetic Graph Generator Extension. page accessed: Jan
2019. 2018. URL: https://github.com/faaizshah/graphs (cit. on pp. 86,
137).

[Sha19a] Faaiz Shah. Gradual Pattern Extraction- Java code. page accessed: Jan 2019. 2019. URL:
https://gite.lirmm.fr/shah/handlingmissingdata (cit. on pp. 93, 95,
98, 99, 102, 103).

[Sha19b] Faaiz Shah. GUI Interface for Synthetic Graph Generator. page accessed: Jan 2019.
2019. URL: https://faaizhussain.github.io/graphs/ (cit. on pp. 80, 84,
99, 101, 110, 134, 137).

https://archive.ics.uci.edu/ml/datasets/hepatitis
https://archive.ics.uci.edu/ml/datasets/hepatitis
https://blogs.thomsonreuters.com/answerson/artificial-intelligence-legal-practice/
https://blogs.thomsonreuters.com/answerson/artificial-intelligence-legal-practice/
https://legal.thomsonreuters.com/en/insights/infographics/early-adoption-is-an-investment-that-pays-dividends
https://legal.thomsonreuters.com/en/insights/infographics/early-adoption-is-an-investment-that-pays-dividends
https://legal.thomsonreuters.com/en/insights/infographics/early-adoption-is-an-investment-that-pays-dividends
https://github.com/tinkerpop/blueprints/wiki/Graph-Morphisms
https://github.com/tinkerpop/blueprints/wiki/Graph-Morphisms
https://doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1093/biomet/63.3.581
https://doi.org/10.4018/978-1-60960-475-2.ch013
https://github.com/faaizshah/graphs
https://gite.lirmm.fr/shah/handlingmissingdata
https://faaizhussain.github.io/graphs/

126 Bibliography

[SRA17] Waseem Shahzad, Qamar Rehman, and Ejaz Ahmed. « Missing Data Imputation
using Genetic Algorithm for Supervised Learning ». In: International Journal of Ad-
vanced Computer Science and Application (IJACSA) 8.2 (Feb. 2017), pp. 438–445 (cit.
on p. 38).

[Sic+13] Nicolas Sicard, Yogi Aryadinata, Federico Del Razo Lopez, Anne Laurent, and Per-
fecto Flores. « Multi-core parallel gradual pattern mining based on multi-precision
fuzzy orderings ». In: Algorithms 6.4 (2013), pp. 747–761 (cit. on p. 35).

[SA96] Ramakrishnan Srikant and Rakesh Agrawal. « Mining Quantitative Association
Rules in Large Relational Tables ». In: Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’96. Montreal, Quebec, Canada:
ACM, 1996, pp. 1–12. ISBN: 0-89791-794-4. DOI: 10.1145/233269.233311. URL:
http://doi.acm.org/10.1145/233269.233311 (cit. on p. 24).

[Str15] Umberto Straccia. « All about fuzzy description logics and applications ». In: Rea-
soning Web International Summer School. Springer. 2015, pp. 1–31 (cit. on p. 34).

[Swa18] Alvira Swalin. How to Handle Missing Data. Jan. 2018. URL: https://towardsdatascience.
com/how-to-handle-missing-data-8646b18db0d4 (cit. on p. 37).

[Tru94] Richard J Trudeau. Introduction to graph theory. Dover Books on Mathematics. Mi-
neola, NY: Dover, 1994. URL: http://cds.cern.ch/record/2009885 (cit. on
p. 6).

[Van14] Rik Van Bruggen. Learning Neo4j. Packt Publishing Ltd, 2014 (cit. on p. 6).

[Vuk+15] Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic Fox, and Jonas Partner.
Neo4j in action. Vol. 22. Manning Shelter Island, 2015 (cit. on p. 113).

[Wik19] Wiki-Angular. About AngularJS. page accessed: Jan 2019. 2019. URL: https://en.
wikipedia.org/wiki/AngularJS (cit. on p. 80).

[WHR98] Graham Williams, Markus Hegland, and Stephen Roberts. « A data mining tu-
torial ». In: IASTED Int. Conf. on Parallel and Distributed Computing and Networks,
PDCN. Vol. 98. 1998, p. 14 (cit. on p. 2).

[Win18] Mégane Wintz. Graph Generator. page accessed: Jan 2019. 2018. URL: https://
fastgraph-generator.herokuapp.com/ (cit. on pp. 80, 89, 137).

[WWC04] Chih-Hung Wu, Chian-Huei Wun, and Hung-Ju Chou. « Using association rules
for completing missing data ». In: Hybrid Intelligent Systems, 2004. HIS ’04. Fourth
International Conference on. Dec. 2004, pp. 236–241. DOI: 10.1109/ICHIS.2004.
91 (cit. on p. 38).

[Wu+14] Y. Wu, Z. Zhong, W. Xiong, and N. Jing. « Graph summarization for attributed
graphs ». In: 2014 International Conference on Information Science, Electronics and Elec-
trical Engineering. Vol. 1. Apr. 2014, pp. 503–507. DOI: 10.1109/InfoSEEE.2014.
6948163 (cit. on p. 52).

https://doi.org/10.1145/233269.233311
http://doi.acm.org/10.1145/233269.233311
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4
http://cds.cern.ch/record/2009885
https://en.wikipedia.org/wiki/AngularJS
https://en.wikipedia.org/wiki/AngularJS
https://fastgraph-generator.herokuapp.com/
https://fastgraph-generator.herokuapp.com/
https://doi.org/10.1109/ICHIS.2004.91
https://doi.org/10.1109/ICHIS.2004.91
https://doi.org/10.1109/InfoSEEE.2014.6948163
https://doi.org/10.1109/InfoSEEE.2014.6948163

Bibliography 127

[Yan04] Guizhen Yang. « The complexity of mining maximal frequent itemsets and maxi-
mal frequent patterns ». In: Proceedings of the Tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Seattle, Washington, USA, August
22-25, 2004. 2004, pp. 344–353. DOI: 10.1145/1014052.1014091. URL: https:
//doi.org/10.1145/1014052.1014091 (cit. on p. 68).

[Zad65] Lotfi A Zadeh. « Fuzzy sets ». In: Information and control 8.3 (1965), pp. 338–353 (cit.
on pp. 33, 34).

[Zad08] Lotfi A Zadeh. « Is there a need for fuzzy logic? » In: Information sciences 178.13
(2008), pp. 2751–2779. DOI: https://doi.org/10.1016/j.ins.2008.02.
012. URL: http://www.sciencedirect.com/science/article/pii/
S0020025508000716 (cit. on p. 33).

https://doi.org/10.1145/1014052.1014091
https://doi.org/10.1145/1014052.1014091
https://doi.org/10.1145/1014052.1014091
https://doi.org/https://doi.org/10.1016/j.ins.2008.02.012
https://doi.org/https://doi.org/10.1016/j.ins.2008.02.012
http://www.sciencedirect.com/science/article/pii/S0020025508000716
http://www.sciencedirect.com/science/article/pii/S0020025508000716

128 Bibliography

Publications

• Journal Publication (Accepted)

Faaiz Shah, Arnaud Castelltort, Anne Laurent, “Handling Missing Values for Min-
ing Gradual Patterns from NoSQL Graph Databases“, Future Generation Computer
Systems (FGCS), Elsevier, Oct 2019. [Impact Factor: 5.768]

• Conference Proceeding

– Faaiz Shah, Arnaud Castelltort, Anne Laurent. “Extracting Fuzzy Gradual Patterns
from Property Graphs“ FUZZ-IEEE, June 2019, New-Orleans, United States.

Appendix A
Flowchart and Program Execution

A.1 Flowchart

The following two flowchart show the overall execution of program from connection to
graph database to the final result.

Program_Flow_Vdb

Apply_HashMap

Support <
Min_Threshold

Connect_DB

Start

Initialize_Matrices

Compute_VDB_
&_Support

End

Save Results

YES

Evaluate next
 Itemset

Figure A.1 – (vdb) approach

Program_Flow_Imputation(EM Algo.)

Apply_HashMap

Support <
Min_Threshold

Connect_DB

Start

Perform_Imputation

Compute Support

End

Save Results

YES

Evaluate next
 Itemset

Initialize_Matrices

Figure A.2 – Imputation Method

130 Appendix A. Flowchart and Program Execution

A.2 Program Execution

Following is summary of the steps for this program execution.

1. Getting Started

(a) System Specifications

(b) Prerequisites

(c) Installations

2. Running the program

(a) Individual program execution

(b) Multiple executions of program for plotting charts

A.2.1 Getting Started

This program provides the details about how to run this Java program for extraction of
gradual patterns from property graphs. We show the necessary tool and commands to generate
output files.

A.2.1.1 System Specifications

For running these experiments, following were our system specification.

• Hardware: Intel Core i7-4610M, 3.00 GHz, quad core

• Processor, 16 GB RAM

• Operating System: Linux generic kernel 4.4.0-134, Ubuntu 16.04 LTS

Note:

It is not necessary to have exactly same or higher hardware specifications to run this pro-
gram. If you choose to run this program for a database smaller of nodes and relationships, for
example upto 5000 nodes and 5000 relationships, then Linux OS with 4 GB RAM and Core i3/i5
processor can easily run this program. An example setup for a database with 1000 nodes and
1000 relationships, as show in following setup. The same setup can execute higher number of
nodes and relationships e.g. 20,000 nodes and 20,000 relationships with the above mentioned
hardware specifications or with higher specifications.

A.2. Program Execution 131

A.2.1.2 Prerequisites

To run this program, you need to have following softwares.

Mandatory:

• Java version 1.8.0_181, Java(TM) SE Runtime Environment (build 1.8.0_181-b13) or higher

• Neo4j graph database version 3.4.7 or higher

Optional (if you want to execute scripts to reproduce results):

• Python 2.7.12

• Linux Ubuntu 16.04.5 LTS

A.2.1.3 Installations

We tested this program execution with neo4j community version 3.4.7. The installation in-
structions for neo4j on debian are available at [Neo19b]. Java 8 installation package is available
at [Ora19]. If you want to download the community version that we used for running these
experiments, then it is available at [Neo19d].

After the successful installations, following are the outputs of version commands for instal-
lations verification:

$ java −vers ion

Output :
j ava vers ion " 1 . 8 . 0 \ _181 "
Java (TM) SE Runtime Environment (bui ld 1 . 8 . 0 \ _181−b13)
Java HotSpot (TM) 64−B i t Server VM (build 25.181−b13)

$ readl ink −f $ (which java)

Output :
/usr/ l i b /jvm/jdk1 . 8 . 0 _181/bin/java

Python may be installed in Ubuntu by executing following command:

132 Appendix A. Flowchart and Program Execution

$ sudo apt−get i n s t a l l python−minimal

$ python −−vers ion

Output :
Python 2 . 7 . 1 2

A.2.2 Running the Program

Steps

1. Download the project in any format (tar or zip)

2. Go to the download location in your host machine and untar the downloaded file "gpnr-
master.tar.gz"

$ t a r −zxvf gpnr−master . t a r . gz

3. Go to the directory and check files as shown below

$ cd gpnr−master/GPNR/

$ l s − l

The above output contains the "src" directory which contains complete source code of this
program. It also contains the "pom.xml" file to see the packaging and dependencies details.

If you see the "GPNR-Node-Rel-1K-Nodes.jar" and "graph-1K-GG.db.tar.gz", then you are
ready to execute the program.

A.2.2.1 Individual program execution

Now, first we have to configure the neo4j.conf file. Open the config file

A.2. Program Execution 133

$ nano / e t c /neo4j/neo4j . conf

In the case, you are using community version, go the directory of neo4j config directory and
open the config file

$ cd neo4j−community−3.4.7/

$ nano ./ conf/neo4j . conf

Comment the following line and add a new line as shown in neo4j.conf file

#dbms . a c t i v e _ d a t a b a s e =graph . db
dbms . a c t ive_da tabase=graph−1K−GG. db

Save the file Ctrl+o and exit Ctrl+x

Untar the "graph-1K-GG.db.tar.gz" and place it into neo4j database folder

$ cd ~/gpnr−master/GPNR/

Copy the database file into /neo4j-home/data/databases/ folder. In our case, we are using
community version. So the command will be as follows:

$ cp graph−1K−GG. db . t a r . gz ~/neo4j−community−3.4.7/ data/databases/

$ t a r −zxvf graph−1K−GG. db . t a r . gz

This will result an folder with name "graph-1K-GG.db" in location /neo4j-community-3.4.7/data/databases/

Start the neo4j service

$ s e r v i c e neo4j s t a r t

134 Appendix A. Flowchart and Program Execution

In case you are using community version,

$./ neo4j console

On successful start of the service, you will see the output on console, something similar to
following:

INFO ======== Neo4j 3 . 4 . 7 ========
INFO S t a r t i n g . . .
INFO Bo l t enabled on 0 . 0 . 0 . 0 : 7 6 8 7 .
INFO S t a r t e d .
Remote i n t e r f a c e a v a i l a b l e a t ht tp :// l o c a l h o s t :7474/

Test that neo4j is working correctly and having nodes and relationships. Open http://localhost:7474/
in browser to verify. The username is "neo4j" and password is "lirmm" without quotes. Please
note that username and password must be same as mentioned. These credentials are used by
java program to communicate with graph database.

Note: If you do not want to use this test database and want to create a new neo4j database
using our synthetic graph generator [Sha19b]. It generates the cypher to create graphs in Neo4j.

After the successful start and verification of Neo4j on host machine, now we will run our java
program.

The program requires two inputs:

1. Input jar file (in our test case i.e., GPNR-Node-Rel-1K-Nodes.jar)

2. Minimum support threshold (normally in range from 0.1 to 0.9)

It is better to save the output of the program in a text file so as to view it separately. Therefore,
the command will be:

$ java − j a r GPNR−Node−Rel−1K−Nodes . j a r 0 . 2 >
Result−Support −0 .2 . t x t

For experiments, sometime it is better to allocate static memeory (e.g., 2G as shown below) to
program, efficient G1 garbage collection and zero "0" biased locking delay. We use following
JVM flags to run the individual execution.

A.2. Program Execution 135

−Xmx2G −XX:+UseG1GC −XX : BiasedLockingStartupDelay =0

Therefore, the final command with jvm flags would be:

$ java −Xmx10G −XX : BiasedLockingStartupDelay =0 −XX:+UseG1GC
− j a r GPNR−Node−Rel−1K−Nodes . j a r 0 . 2 > Result−Support −0 .2 . t x t

The successful execution of the program will generate a text file with name "Result-Support-
0.2.txt" in the current directory, which is /gpnr-master/GPNR/. You will also notice that after
the program execution, a folder with name "csv" is created that contains the data files retrieved
from graph database. The final lines of the output file may look like:

L i s t of P a t t e r n s with Valid_Database :
−−

Tota l Number of P a t t e r n s : 56

[[2 +] , [1 +]] 0 .3338108643867335
[[1 +] , [2−]] 0 .3096400193233496
[[4 +] , [1 +]] 0 .5149839249720978
[[4 −] , [1 +]] 0 .4654095384051573
[[5 +] , [1 +]] 0 .21682130899035498
[[5 −] , [1 +]] 0 .23287967883260316
[[6 +] , [1 +]] 0 .4866985390881378
.
.
.
.

[[8 +] , [6−] , [1 +]] 0 .20677649880894872
[[6 +] , [8−] , [4 +]] 0 .2336292915327081

* *

136 Appendix A. Flowchart and Program Execution

−−−−−− Run Time & Peak Heap Memory Resul t are : −−−−−−

Tota l Heap Peak Used : 282
Program Run time : 10 .083783252 seconds

A.2.2.2 Multiple executions of program for plotting charts

In this section we will describe the details of multiple executions of program in order to
plot the charts. As we can see in Step 3, the output of the command "ls -l" shows two script
files namely, "GPNR-Node-Rel.sh" and "resultsPythonScriptGPNR.py". Please note, to run this
script, it must be in the directory where the jar file and python script is present. In our case
currently, it is " /gpnr-master/GPNR/".

Program execution: graph database with 1,000 nodes and 1,000 relationships:

This database contains 3 node labels, 3 relationship types, and 9 node properties per label.
In order to execute given .jar file (i.e., GPNR-Node-Rel-1K-Nodes.jar) for minimum support
threshold values ranging from 0.1 to 0.8, we will execute the bash script as follows:

$./GPNR−Node−Rel . sh

The script will ask you to provide the input jar file as shown below:

$./GPNR−Node−Rel . sh

Bienvenue e t Bonjour !

entrez l e nom de f i c h i e r avec l ' ex tens ion . j a r :

Now, type the input file i.e., GPNR-Node-Rel-1K-Nodes.jar. The script will start executing the
program and you will see the output on console like:

$./GPNR−Node−Rel . sh

Bienvenue e t Bonjour !

A.3. Synthetic Graph Generation Tool 137

entrez l e nom de f i c h i e r avec l ' ex tens ion . j a r :
GPNR−Node−Rel−1K−Nodes . j a r

WELCOME TO GRADUAL PATTERN EXTRACTION PROGRAM

Input f i l e : GPNR−Node−Rel−1K−Nodes . j a r
Minimum support : 0 . 1

AvgTimeConsumption : 10 .4684838968
AvgMemoryUtilization : 258 .4

WELCOME TO GRADUAL PATTERN EXTRACTION PROGRAM

Input f i l e : GPNR−Node−Rel−1K−Nodes . j a r
Minimum support : 0 . 2

AvgTimeConsumption : 6 .0477500466
AvgMemoryUtilization : 182 .6
.
.
.

Program ends

This script runs the program five (5) times keeping an interval of 15 seconds in each execu-
tion. It will create a new directory namely "Output-Results" in the current path that contains
the results of all the 5 executions along with an average result csv file for each minimum sup-
port threshold ranging from 0.1 to 0.8.

A.3 Synthetic Graph Generation Tool

We have developed a synthetic graph generator to make property graphs in Neo4j database.
This synthetic graph generator [Win18] was first developed by Mégane Wintz, as a thesis in-
ternship at polytech Montpellier, France. Later on, to add the node properties feature, it was
extended for which the GUI is available at [Sha19b] and the source code is available [Sha18].
The project was created using Angular JS. The basic configuration details are as given below.

138 Appendix A. Flowchart and Program Execution

Graph Generator Configurat ion d e t a i l s :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Angular CLI : 6 . 1 . 3

Node : 1 0 . 1 4 . 0

OS : l inux x64 (Ubuntu 1 6 . 0 4)

Angular : 5 . 2 . 1 1

Pre−r e q u i s i t i e s :
−−−−−−−−−−−−−−−−−

Node . j s

$ sudo apt− i n s t a l l nodejs
$ sudo apt− i n s t a l l npm

Check vers ions for v e r i f y i n g s u c c e s s f u l i n s t a l l :
−−

$ node −v
$ npm −v

I n s t a l l F i l e S a v e r . j s , for saving f i l e s on the c l i e n t−s ide :
−−−

$ npm i n s t a l l f i l e −saver −−save

I n s t a l l node modules :
−−−−−−−−−−−−−−−−−−−−−−−

$ npm i n s t a l l

Open the Appl icat ion :
−−−−−−−−−−−−−−−−−−−−−−−

$ ng serve −−open

A.3. Synthetic Graph Generation Tool 139

I t w i l l open the a p p l i c a t i o n on http :// l o c a l h o s t :4200/

140 Appendix A. Flowchart and Program Execution

	Acknowledgments
	Resume
	Abstract
	Introduction
	Introduction
	Problem Statement
	Thesis Outline
	Related Work
	Introduction
	Graph Databases
	Neo4j Graph Database
	Cypher Query Language

	Property Graphs
	Schema-less Nature of Property Graphs
	Graph Pattern Matching

	Gradual Pattern Mining
	Frequent Pattern Mining
	Anti-monotonicity Property
	Association Rules and Gradual Dependencies
	Formal Definition of Gradual Pattern (Itemset)
	Support Measure for Gradual Pattern
	GRITE Algorithm
	GRAANK Algorithm

	Fuzzy Gradual Patterns
	Fuzzy Logic and Fuzzy Sets
	Defining Fuzzy Gradual Patterns

	Handling Missing Values
	Handling Missing Data Techniques
	Handling Missing Data With Replacement
	Handling Missing Data Without Replacement

	Conclusion

	Defining Gradual Patterns from Property Graphs
	Introduction
	Definitions
	Types of Gradual Patterns in Property Graphs
	Intra-Label-Node-Properties
	Inter-Node-Label-Properties
	Node-Properties with Relationships Count
	Node-Properties-with-Relationships-Properties
	Inter-Relationships-Properties

	Fuzzy Property Graph Gradual Pattern

	Extracting Gradual Patterns from Property Graphs
	Dealing with Missing Values for Mining Gradual Patterns
	Support Computation
	Algorithms
	Algorithm 1: Mining Property-based Gradual Items
	Algorithm 2: Mining Property-based Gradual Patterns

	Embedding Gradual Patterns Mining within a Graph Database
	Integrating Features in a Graph Database Engine
	Integration Challenges - Discussion
	API Specification
	Extending Neo4j
	Limits of the Current Integration

	Experiments & Results
	Introduction
	Synthetic Graph Data Generation
	Description of Data Generation Parameters
	Code Customization for Properties
	Property Graph Creation Using Graph Generator Cypher

	Program Setup Environment and Protocol
	Execution environment (hardware & software)
	Experiments protocol
	Outlier Removal Approach
	 Memory Consumption Metric

	 Datasets
	 The Russian Twitter Troll
	 Hepatitis from UCI Machine Learning Repository
	Synthetic Dataset
	Synthetic Graph Dataset using Graph Generator
	Hetnets in Biomedicine
	Datasets for Fuzzy and Crisp Gradual Patterns

	Results
	Intra-Node Datasets Plots
	Nodes with Relationships Count Datasets Plots
	Fuzzy and Crisp Datasets Plots

	Discussion

	Conclusion and Perspectives
	Conclusion
	Perspectives
	Integration of the Algorithms in Neo4j
	Scalable Distributed Implementation of Gradual Pattern Mining
	Improving and Extending the Graph Generator

	Bibliography
	Publications
	Appendices
	Flowchart and Program Execution
	Flowchart
	Program Execution
	Getting Started
	Running the Program

	Synthetic Graph Generation Tool

