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Introduction 

The telecommunication field based on electrical millions-calculation-per-second 

microprocessors has completely reshaped the way we think and human comes to an 

age that signal can be transferred and processed almost instantaneously. However, 

electrical transmissions do not scale up to the data rates needed for long-distance 

communication backbones. The vast acceleration of information request in the past 

decades triggered scientists to develop optical fibers. Optical fibers consist of 

deionized glass material, and can guide light over large distances with ultra-small 

propagation loss (around 0.2dB/km at 1.55µm wavelength, or even below). The 

success of optics [I1-I3] in modern telecommunication systems and optical 

interconnects has already been evidenced in the last century, but the versatility of light 

is continuously promoted with the development of semiconductor technologies. 

In 1969, Mr. S. E. Miller proposed the idea “Integrated Optics” [I4] for the 

purpose of surpassing the anticipated bottleneck of electrical interconnects. By 

integrating various kinds of electronic and photonic elements on a single chip and 

linking them by optical paths, hybrid integrated processors were expected to have 

order-of-magnitude’s improvement compared to the previous microelectronic 

processors. The development in integrated photonics has led to significant success in 

optoelectronics, especially in the field of optical interconnects [I5, I6] and data centers 

[I7, I8]. Taking a panoramic view of the development of optical networks and the 

current stage of optical interconnects, the direction that has driven photonic integrated 

chips [I9] is now going toward to a more-compact, lower-cost and low power 

consumption technologies. Numerous difficulties [I9], including production cost, 

optoelectronic packaging and function expanding, are viewed to find solutions in the 

convergence of electronic and photonic systems. The increasing request on data 

processing is just creating a strong demand in integrated photonics for new-generation 

technologies including 5G communications [I10], Internet of Things [I11], remote 

sensing [I12] and Photonic Lab-on-chips [I13], etc. These trends lead to a needed 

technology transition in the near term. Active optical cables are one successful 

example of a retro-benefit of photonics to the electronic technology. The development 

of complex photonic systems [I9] is expected to lead to new functionalities combining 

active components (including light sources, light modulators, and light detectors, etc) 

and stronger capability of on-chip light manipulation to support applications and 

researches (including nonlinear light processes, opto-mechanical devices, quantum 

optics, etc). One of the hints among these topics is to enhance the light-matter 

interactions. 

Silicon is well-known to be the mainstream photonic platform and this matter of 

fact obviously comes from the CMOS electronic technology which offers a wide 

range of mature etching, lithography, and packaging technologies for guided optics 

javascript:;
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and photonic circuits, and considerable development potential in terms of applications 

and large-scale diffusion. Silicon photonics is now a mature domain, and the main 

disadvantage of silicon is well known: it is its indirect band structure that eliminates 

the possibility of making integrated silicon laser sources. At the same time, hybrid 

material integration paths are possible on silicon, starting with III/V laser diodes 

which can be integrated on silicon, either locally or by transferring substrates. The 

silicon option, or rather onon-silicon, is therefore a preferred method of photonic 

integration for various applications, including datacom, metrology, on-chip quantum 

optics, microwave photonics, and sensing in the near and mi-infrared. 

Silicon is also not a very good material from the point of view of electro-optical 

modulation, with no Pockels effect in bulk material. The contribution of a local 

mechanical constraint provides a partial solution to this problem, but it is absolutely 

essential in this configuration to develop high-performance optical resonators, i.e. 

with a giant ON/OFF ratio under the action of a modification of the refractive index 

Pockels which remains very low. At the same time, it appears that silicon has a very 

strong third order non-linearity, and that other materials such as Si3N4 or rich silicon 

can be reported on silicon for the same purpose. These non-linear properties open up a 

whole range of possible applications for the realization of supercontinuum sources or 

frequency combs by the Kerr effect. Though in-situ laser composing is difficult due to 

the lack of direct bandgap for light emission (which is emerging issues and most 

difficult problems in the field of photonics.), the abundant nonlinear effect in silicon 

has drawn a lot attention in composing active functions. The exploitation of these very 

interesting properties nevertheless requires a drastic control of the phase agreement 

conditions (frequency and wave vector), which is not always easy to guarantee in 

these high contrast structures of core/sheath refractive index. 

In this context, which has great potential but at the same time presents important 

challenges, my thesis work has focused on two main aspects: 

- The realization of original Fano integrated resonators perfectly adapted to 

the exploitation of a low electro-optical Pockels effect for the realization of 

ultra-fast compact modulators with low power consumption. 

- The exploration of a new family of waveguides leading to an automatic and 

generalized condition of frequency/wave vector phase matching conditions in 

high index contrast waveguides. The proposed theoretical contribution is based on an 

approach that can be generalized to any integrated photonic platform (e.g. III/V, 

polymers, etc), but has been applied in the manuscript to two specific types of 

situations: graded waveguides for Four-Wave-Mixing applications, and frequency 

comb generation, respectively.  

A tool that runs through all the proposals we make and taking advantages of the 

versatility of silicon nonlinearities in this work is to use the engineering of 



7 

 

 

subwavelength photonic structures, whose toolbox is decisive in practice for the 

concrete achievement of the objectives pursued.  

The manuscript is organized as follows: 

Chapter 1 reviews the state-of-art of silicon photonics and recalls the required 

concepts for understanding nonlinear devices and the most representative works 

carried out on silicon nonlinear devices. Based on several examples, we will point out 

some difficulties and demands on silicon light modulation and light generation, 

respectively. Next, we recall the advantages and elements of optical propagation in 

periodically structured waveguides, and give a brief review on the most recent 

progress in silicon subwavelength optics. We then draw the main lines of using 

subwavelength structural approaches to improve silicon nonlinear applications and 

present the interest of relying subwavelength nonlinear photonics in view of nonlinear 

photonic applications. 

Chapter 2 introduces how subwavelength engineering can be considered to shape 

micro resonators for the purpose of cutting down the driven swing and increasing the 

modulation efficiency of integrated electro-optical modulators by generating Fano 

resonances. Using derived concepts, we propose a method for tuning the introduced 

nanobeam resonator resonance to reach one step towards tunable Fano modulators. 

The methodology of cleanroom fabrication of structures and device characterization 

used throughout this thesis is then reviewed. 

Chapter 3 introduces a novel kind of waveguide with a proposed operating condition 

for all the exploited modes, entitled “self-adaptive boundary” and introduces how 

silicon nonlinear devices based on Kerr nonlinearities can benefit from this 

configuration. Explanation is given about the practical realization of photonic 

waveguide structures satisfying this condition by the mean of subwavelength 

structures. From this point, a variation of this type of waveguide is made in two 

configurations, the first corresponding to multimode guides for the realization of a 

universal phase matching adapted to FWM, and a second based on single mode guides 

with particular properties useful for the generation of very wide frequency combs. 

Chapter 4 will summarize these works and open perspectives. 
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1 Introduction and motivations 

In this chapter we are going to introduce the background of silicon photonic 

integration. For the purpose of composing active functions in/with silicon, we will 

introduce the concepts of nonlinear optical effects. Especially we will review some 

representative silicon nonlinear devices which take advantages of the silicon Pockels 

and Kerr effects, respectively, and extrude the merits and limits/issues of them by 

closely explaining them with demonstrations taken from the state of the art. Next, as a 

tool used in our work to address these issues in silicon photonics, subwavelength 

structures will be reviewed. Besides, we believe that most of the contributions of this 

thesis work derive from a contribution from the engineering of subwavelength 

photonic structures to the problems of non-linear silicon optics. 

1.1 Silicon photonics: a versatile platform for light 

processing 

As the fundamental material of the semiconductor industry, silicon is widely 

adopted for versatile electronic devices and widely accepted as a key technology in 

next-generation communications systems and data interconnects [1-3]. The design and 

fabrication process flow for electronic devices based on silicon wafers has already 

been well developed completely since 50 years ago and is called CMOS 

(“Complementary Metal Oxide Semiconductor”).  

 

Figure 1 (a) The comparison in capacity between electrical, classical optical methods and silicon 

photonics, reproduced from [1]. (b) Industry scale in different field of silicon photonics, including 

telectom/datacom, data centers and high-performance computation. (c) Schematic of integrated silicon 

photonics. (b) and (c) are reproduced from [5].  
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Silicon photonics is based on the idea of reusing CMOS fabrication methods and 

processes and transferring them to guided-wave optics for the realization of photonic 

integrated circuits [2, 3]. As shown in Figures 1 (a) and (b), silicon photonics is 

progressively leading an advanced position, especially in optical telecommunications 

[4], data centers and high-performance computing [5]. This is because it brings the 

advantages of integration of photonics - high data densities and transmission over 

longer distances - in a platform where high levels of integration (including electronic 

IO, waveguides, photonic detectors, etc) can be achieved with low manufacturing 

costs using conventional silicon integrated circuit infrastructures. 

Driven by originally this purpose of optical interconnects and later demand in 

parallel applications, various kinds of fields in optics are strongly promoted. As 

shown in Figure 2, various applications including light sources, spectroscopy, light 

distance optical communications, optical data processing and sensors are covered by 

this technology. 

 

Figure 2. Future evolution and applications in silicon photonics, reproduced from [6]. 

1.1.1 Progress and merits in silicon photonics 

In silicon photonics, a silicon waveguide layer is used as a waveguide core on top 

of a buried oxide which acts as its lower cladding. The refractive index values of this 

silicon core and oxide layer are 3.476 and 1.444 for 1500 nm wavelength, respectively. 

This high index contrast allows confining light in the very small area of waveguide 

core and explains why bending radii silicon-on-insulator waveguides can be as small 

as a few microns with almost no losses. A direct consequence is that the devices’ 

footprints reduce significantly. This makes the integration density very high. Figure 3 

(a)-(d) shows the schematic and transverse electric-field profiles of silicon photonic 

http://www.leti-cea.com/cea-tech/leti/english/Documents/pres-WS-LID-2018/Photonic/01_siliconPhotonics_overview_LETI_DAYS_2018.pdf
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waveguides [7, 8] with strip and rib shapes, respectively. 

 

Figure 3. Schematic of silicon strip (a) and rib (b) waveguide. (c) (d) Corresponding transverse 

electric-field profile. (e)Future evolution and applications in silicon photonics, reproduced from [6]. 

Thanks to the great flexibility supported by the high index contrast between 

silicon and surrounding materials, a lot of basic elements in photonic circuits, 

including couplers, multiplexers, splitters, bends, etc., have been demonstrated [9] and 

widely used in on-chip photonic systems. In addition, as shown in Figure 3 (e), due to 

the wide transparent spectrum of silicon in the telecom window, components like 

transmitters, switches, and detectors can be integrated [9]. Based on these building 

blocks, the stage of silicon photonics has been more recently extended to new fields 

including silicon quantum photonics [10], integrated microwave photonics [11], and 

on-chip sensing and metrology [12]. Overall, the merits of silicon platform/devices 

can be summarized as follows: 

1. High Crystalline qualities with tiny material defect that can be processed in a 

massive growing scale. 

2. High index contrast with the oxide upper cladding and substrate, in favor of 

ultra-small photonic devices. 

3. Compatibility with the mature CMOS fabrication processes and possibility of a 

somewhat easy integration of various on-chip optoelectronic components. 

4. Large 3rd nonlinearities for creating active building blocks (introduced later). 

5. Ultra-wide transparent windows covering from near-infrared to far-infrared range. 

1.1.2 Limits in the performance of active functions 

Despite all the qualities of the silicon platform mentioned above, Si photonics has 

also significant disadvantages. Its main difficulties are presented in Figure 4. As 

mentioned above, the rapidly increasing demand for optical interconnects leads to the 

strong requirement of ultralow power consumption and tens-to-hundreds-gigabits 

devices, among which silicon-based light sources and silicon optical modulators 

http://www.leti-cea.com/cea-tech/leti/english/Documents/pres-WS-LID-2018/Photonic/01_siliconPhotonics_overview_LETI_DAYS_2018.pdf
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(Figure 5 (a), [13]) play an essential role. However due to the Si indirect bandgap, the 

full integration of the prime element – the light source - is more than challenging 

(though tiny emission can be produced light emission [14, 15]). As shown in the rest 

of Figure 5, beyond silicon and silicon nitride [16-19], the path that has been chosen 

and which has led to the best results is based on the integration of III/V 

semiconductor diodes [20-25] on silicon. In addition to these classical semiconductor 

materials, new materials like for instance LiNbO3 [26-31], organic polymers [32-37], 

two-dimension materials (graphene, MoA2 etc. [37-39]) have been also considered for 

modulation. 

 
Figure 4. Main challenges and technical breakthroughs in silicon photonics, reproduced from [3]. 

 

Figure 5. Schematic of silicon modulators (a), silicon/III-V hybrid integrated mid-infrared laser (b), 

silicon nitride frequency comb (c), Lithium niobate/silicon hybrid modulator (d), Silicon-organic 

http://www.leti-cea.com/cea-tech/leti/english/Documents/pres-WS-LID-2018/Photonic/01_siliconPhotonics_overview_LETI_DAYS_2018.pdf
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modulator and silicon-graphene modulators (f). Schematic of Silicon/III-V hybrid integrated tunable 

laser. Figures are reproduced from [13], [21], [19], [29], [33] and [35], respectively. 

As you could know in all these references, though, 2D, LiNbO3 and organic 

materials can produce higher modulation performance or novel functions to optical 

modulation but the complexity in fabrication also make a cost on the further photonic 

integration. III-V as the most capable materials for developing light sources are 

preferably expected in silicon photonics, but their superior performance are made at 

the expense of cost and accessibility, in both industry and academic research. In 

contrast, though light emission through direct bandgap is not possible in silicon, the 

silicon nonlinearities however are also considered as one of the alternatives for the 

silicon-based light sources. Based on the strong silicon Kerr effect, silicon Raman 

laser [40, 41] has first been proposed by Intel in the early years of the 21th century. In 

these designs, a high-power pump signal circulates in a high-quality factor silicon 

race-track resonator. By taking advantage of the flexible fabrication of silicon devices 

[42] and the possibilities of composing broadband light source based on strong 

nonlinearities in silicon, on-chip spectroscopic sensing was expected [43]. The source 

problem finally can find solution via the integration of active materials on silicon and 

leads to very good results. At the same time, the development of laser sources is not 

the only possible option to address this issue. It is indeed possible to take advantage of 

the third order non-linear optical effects, which are very strong in silicon, for the 

production of supercontinuum sources or frequency combs. This does not entirely 

exempt the use of an optical source, as a pump harness is necessary to achieve these 

effects. That being said, only one source being necessary, it is quite easily possible to 

inject this pump from an external source and to take advantage of it for the realization 

of multi wavelength or wide spectrum sources in an integrated configuration. The 

on-demand implementation of third order non-linear optical effects is therefore a key 

point in the development of silicon photonics, both for the telecom waveband and for 

mid infrared wavelengths [44-50]. 

1.2 Nonlinear silicon active functions: progress and 

difficulties 

As introduced above, the use of third order non-linear optical effects is now a key 

point in the development of Si photonics. It turns out that silicon has a very high Kerr 

index but, at the same time, its gap is too small to effectively block the phenomenon 

of two-photon absorption (TPA) in the near infrared. Active materials can naturally be 

grown on silicon to overcome this disadvantage, among which materials such as Si3N4 

or silicon-rich compounds can be considered.  

In any case, we need to make some reminders of non-linear photonics in order to 

be able to understand the studies that will be carried out in chapters 2 and 3 of this 

manuscript. We will have a short review on the principles of silicon nonlinearities, 
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followed by the representative applications and researches in which 3rd order 

nonlinear effect is considered.  

1.2.1 Generalities on optical nonlinear effects 

As shown in Figure 6 (a), when light propagates in a linear material, the 

collection of vibrating dipoles constituting the material results in a linear polarization, 

while in nonlinear materials (6 (b)), the dependence of the restoring forces with the 

displacement of the electric charge center of mass leads to nonlinear collection of 

vibrating dipoles and harmonic waves. 

 

Figure 6. Schematic of light polarization in linear (a) and nonlinear (b) media. (c) Schematic of light 

propagating in waveguide with nonlinearities. 

Light propagation is governed by the Maxwell’s Equation which consists of four basic 

equations [7, 8] as below: 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
                     (1.1) 

∇ ×𝑯 = 𝐽 +
𝜕𝑫

𝜕𝑡
                     (1.2) 

∇ ∙ 𝑫 = 𝜌𝑓                       (1.3) 

∇ ∙ 𝑩 = 0                      (1.4) 

in which 𝑬  and 𝑯  are vectorial variables of the electric and magnetic fields, 

respectively, and 𝑫  and 𝑩  are the corresponding electric and magnetic flux 

densities, respectively. The current density vector  𝐽  and the charge density 𝜌𝑓 

represent the sources for electromagnetic field generation. The electric and magnetic 

fields are bonded with curl revolution, in response to the Gaussian flux of charge 

density and the local current density while the electromagnetic field is propagating 

inside the medium. The flux densities 𝐷 and 𝐵 are described by: 

𝑫 = 휀0𝑬 + 𝑷                     (1.5) 

𝑩 = 𝜇0𝑯+𝑴                     (1.6) 
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where 휀0 and 𝜇0 are the vacuum permittivity and vacuum permeability, respectively. 

𝑷 and 𝑴 are the electric and magnetic polarizations induced by the electromagnetic 

energy. By taking the curl of equation (1.1) and substituting the curl of (1.2) into it, 

we can simplify it into  

∇ × (∇ × 𝑬) = −
𝜕

𝜕𝑡
[∇ × (𝜇0𝑯+𝑴 )]  = −

𝜕

𝜕𝑡
[∇ ×𝑴+ 𝜇0𝐽 + 𝜇0

𝜕

𝜕𝑡
(휀0𝑬 + 𝑷 )]   

(1.7) 

For most of the media we consider in integrated photonics, especially the 

silicon-based materials, the current densities, charge densities and the magnetic 

polarizations can be ignored as: 𝑀 = 0, 𝐽 = 0 and 𝜌𝑓 = 0. Therefore: 

∇ ×(∇ × 𝑬) = −𝜇0
𝜕2

𝜕𝑡2
(휀0𝑬 + 𝑷 )                (1.8) 

This equation is primarily restricted by the boundary conditions ∇ ∙ 𝑫 = ∇ ∙

(휀0𝑬 + 𝑷) = 0 , which means that crossing the interface between materials the 

tangential component of 𝑬 and the normal component 𝑫 should be continuous. For 

an electromagnetic field propagating through a homogeneous material, the 

polarization can be written as 𝑷 = 휀0𝝌𝑬, by which we have:  

𝑫 = 휀0𝑬 + 휀0𝝌𝑬 = 휀0𝜺𝒓𝑬 = 휀0𝑛
2𝑬             (1.9) 

where by definition 𝑛 = √휀𝑟 = √1 + 𝝌 is the refractive index of the material, with 

linear susceptibility 𝜒. By simply expanding the curl operator in equation (1.8) with 

𝛻 ×(𝛻 × 𝑬) = 𝛻(𝛻 ∙ 𝑬) − 𝛻 ∙ (𝛻𝑬) = 𝛻(𝛻 ∙ 𝑬) − 𝛻2𝑬 then equation (1.8) can be 

simplified as:  

𝛻2𝑬 − 𝛻(𝛻 ∙ 𝑬) − 𝜇0휀0
𝜕2

𝜕𝑡2
(1 + 𝝌)𝑬 = 0           (1.10) 

Since ∇ ∙ 𝐷 = 0, and the vacuum light speed is corresponding to 𝜇0휀0 =
1

𝑐2
, we can 

further simply it in to into: 

𝛻2𝑬 −
1

𝑐2
𝜕2

𝜕𝑡2
(1 + 𝝌)𝑬 = 0                (1.11) 

With boundary conditions: 

∇ ∙ 𝑫 = ∇ ∙ 𝑬 = 0                (1.12) 

This is the wave equation for an electromagnetic field propagating in a homogeneous 

linear material. Typically, electromagnetic wave propagating along the 𝑧 axis with 
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single-frequency 𝜔0 can be described by: 

𝑬(𝑧, 𝑡) =
1

2
𝐹(𝑥, 𝑦)𝐴(𝑧, 𝑡)𝑒𝑖(𝑘0𝑛𝑧−𝜔0𝑡) + 𝑐𝑐.              (1.13) 

Where 𝐹(𝑥, 𝑦)  is the electromagnetic distribution normal to the propagation 

direction while 𝑘0 =
𝜔0

𝑐
 is the corresponding wavevector while 𝑐. 𝑐. is the complex 

conjugate. With  휀 = 휀0휀𝑟 = 휀0(1 + 𝜒) , the wave equation generally can be 

represented, and is also called as the Helmholtz equation as: 

∇2𝑬 + 𝑘0
2휀𝑬 = 0                (1.14) 

Once nonlinear effects are nonzero, with instantaneous response to electromagnetic 

field is [51]: 

𝑷 = 𝑃𝐿 + 𝑷𝑵𝑳 = 휀0𝜒
(1)𝑬 + 휀0(𝝌

(𝟐)𝑬 + 𝝌(𝟑)𝑬𝑬 +⋯)𝑬          (1.15) 

where 𝜺(𝝎) = 휀𝐿 + 𝜺𝑵𝑳 = 휀0(1 + 𝜒
(1))  + 휀0(𝝌

(𝟐)𝑬 + 𝝌(𝟑)𝑬𝑬 +⋯) , The wave 

equation can then be rewritten as: 

∇2𝑬 −
1

𝑐2
𝜕2

𝜕𝑡2
𝑬 − 𝜇0

𝜕2

𝜕𝑡2
𝑃𝐿 = −𝜇0

𝜕2

𝜕𝑡2
𝑷𝑵𝑳               (1.16) 

or 

∇2𝑬 + 𝑘0
2휀𝐿𝑬 = −𝜇0

𝜕2

𝜕𝑡2
𝑷𝑵𝑳               (1.17) 

In equation (1.17) the part on the right can be considered as the electromagnetic 

source governed by nonlinearities, which is responsible for the generation of new 

frequencies. For materials with non-instantaneous response, the polarization 𝑃 

should be replaced by  

𝑷 = 휀0 ∫ 𝝌(𝑡 − 𝑡′)
+∞

−∞
𝐸𝑑𝑡′                  (1.18) 

where 𝜒(𝑡 − 𝑡′) represent the non-instantaneous response with time delay 𝑡 − 𝑡′. 

In electric polarization 𝑷 = 𝑃𝐿 + 𝑷𝑵𝑳 = 휀0𝜒
1𝑬 + 휀0(𝝌

𝟐𝑬 + 𝝌𝟑𝑬𝑬 +⋯)𝐸, the 

complex first-order susceptibility 𝜒(1) corresponds to the dipole excitations with 

bound and free electrons induced by a single photon. The real part of 𝜒1 directly 

contributes, as mentioned above, to the real part of the linear refractive index while 

the imaginary part contributes to the gain and loss from of the material. A remarkable 

matter of fact for silicon is that due to its crystal structure inversion symmetry, the the 
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second-order susceptibility 𝜒(2) vanishes to zero, strongly restricting the application 

of this effect for electro-optical modulation and switching.  

Third order nonlinearities, on their side involve three electromagnetic waves 

simultaneously and can be described as follows in optical waveguides:  

𝑬(𝑧, 𝑡) = ∑ [
1

2
𝐹(𝑥, 𝑦)𝐴(𝑧, 𝑡)𝑒𝑖(𝑘𝑗𝑛𝑧−𝜔𝑗𝑡) + 𝑐. 𝑐. ]3

𝑗=1   

= ∑ [
1

2
𝐸𝜔𝑗(𝑧, 𝑡)𝑒

−𝑖𝜔𝑗𝑡 + 𝑐𝑐. ]3
𝑗=1                   (1.19) 

With equation (1.15), the polarization governing the third nonlinearity [52] can be 

represented by multiple terms as: 

𝑃𝑁𝐿 =
3

4
휀0𝜒

(3)[|𝐸𝜔1|
2]𝐸𝜔1            

+
6

4
휀0𝜒

(3)[|𝐸𝜔2|
2 + |𝐸𝜔3|

2]𝐸𝜔1  

+
1

4
휀0𝜒

(3)[𝐸𝜔1
3 𝑒−𝑖3𝜔1𝑡 + 𝑐. 𝑐. ]  

+
3

4
휀0𝜒

(3) [
1

2
𝐸𝜔1
2 𝐸𝜔2𝑒

−𝑖(2𝜔1+𝜔2)𝑡 + 𝑐. 𝑐. ]  

+
3

4
휀0𝜒

(3) [
1

2
𝐸𝜔1
2 𝐸𝜔2

∗ 𝑒−𝑖(2𝜔1−𝜔2)𝑡 + 𝑐. 𝑐. ]  

+
6

4
휀0𝜒

(3) [
1

2
𝐸𝜔1𝐸𝜔2𝐸𝜔3𝑒

−𝑖(𝜔1+𝜔2+𝜔3)𝑡 + 𝑐. 𝑐. ]  

+
6

4
휀0𝜒

(3) [
1

2
𝐸𝜔1𝐸𝜔2𝐸𝜔3

∗ 𝑒−𝑖(𝜔1+𝜔2−𝜔3)𝑡 + 𝑐. 𝑐. ]           (1.20) 

where, on the right side, the first and second terms correspond to the self-phase 

modulation (SPM) and cross-phase modulation (XPM) effects, respectively. An 

illustrative picture of the main classical third-order mechanisms is presented in Figure 

7. 
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Figure 7. Schematic of nonlinear process, reproduced from [14]. 

1.2.2 Silicon plasma dispersion and Pockels effects for light modulation 

Second-order nonlinearity 𝜒(2)is preferably expected for optical modulation in 

most of photonic platforms. The Pockels effect indeed traditionally makes it possible 

to obtain a variation in the optical refractive index by applying an RF electric field, i.e. 

by simply applying a modulation RF voltage after manufacturing a set of metal 

electrodes judiciously placed on either sides of the waveguides. Though 𝜒(3) can be 

considered for light modulation, difficulties stem from the request of strong power for 

driving the modulator since the on-chip modulators are basically driven by a 

radio-frequency (RF) electrical source. As this 𝜒(2) effect is absent in bulk silicon 

due to the centro-symmetry of crystal lattice in silicon, it has proved necessary to 

exploit another phenomenon, which has finally turned out to be simply based on an 

essential property of silicon: it is a semiconductor and is therefore characterized by a 

possible transport of free charges (electrons and holes) induced by doping and 

modulable by the application of a voltage (PN junction). 

1.2.2.1 Plasma dispersion effect and modulator 

As mentioned above, free carrier concentrations can be modulated in silicon 

waveguide by the use of a PN junction, i.e. relying on the so-called plasma dispersion 

effect. In turn, the modulation of the free carrier plasma is responsible for the 

modification of the material conductivity, which leads to a simultaneous change of the 

real (∆𝑛) and imaginary parts (∆𝛼) of the refractive index. Preferentially playing on 

one or the other of these contributions leads to the classification of electro-optical 

modulators into electro-refraction or electro-absorption modulators. 

Quantitatively [53]: 

∆𝑛 = ∆𝑛e + ∆𝑛h = −[8.8 × 10
−22∆𝑁e + 8.5 × 10

−18(∆𝑁h)
0.8]      (1.21) 

∆𝛼 = ∆𝛼e + ∆𝛼h = [8.5 × 10
−18∆𝑁e + 6.0 × 10

−18(∆𝑁h)
0.8]      (1.22) 
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where ∆𝑁e,h are the variations of the electron and hole concentrations, while ∆𝑛e,h 

is the index variation induced by the electrons/holes. ∆𝛼e,h  shares the similar 

definitions. Electrical manipulation of the carrier density interacting with the 

propagating light is achievable through mechanisms categorized as carrier injection, 

carrier accumulation or carrier depletion. The difference of these free methods is 

shown in Figure 8. As the most preferred mechanism, carrier depletion provides most 

promising electro-optic bandwidth due to most effective carrier motion from filling to 

vanishing, controlled by reverse electric field. In practice, an electrical polarization 

structure must be designed and realized (PN junction, MOS capacitance: Figure 9 (a), 

[54]) and an interferometric structure must be implemented for electro-refraction 

modulators (Figure 9 (b), [55]). 

 

Figure 8. Schematic of silicon modulators using carrier-accumulation (a), carrier injection (b) and 

carrier depletion (c) effects. Figures are reproduced from [67]. 

 

Figure 9. Schematic of silicon modulators using Mach-Zehnder Interferometer (a) and ring resonators 

(b). Figures are reproduced from [68] and [69]. 

1.2.2.2 Strain-induced Pockels effect and optical modulation 

In addition to the plasma dispersion effect, a new emerging and interesting 

approach reported in the last decade is the strain induced Pockels effect in silicon [56]. 

This topic has drawn lots of attention from the silicon photonics community since it 

presents two important merits: an ultra-fast modulation capability based on the 

Pockels effect (removing the contribution of free carriers removes the carrier transport 
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transit time blockade) and a simple fabrication and integration (as no PN junction if 

then needed). The basic idea of this approach is to break the centro-symmetry of bulk 

silicon by straining its lattice unit cell through the use of straining external layers [57], 

as shown in Figure 10, for producing non-zero 𝜒(2).  

 

Figure 10. Schematic of straining host lattice with external material. Cases with different 

tensile/compressive strain are distinguished by the arrows.  

 

Figure 11. Schematic (a) and performance (b) of strained silicon modulator. Figures are reproduced 

from [63]. 

This technique to generate 𝜒(2) in silicon has been theoretically as well as 

experimentally investigated in the past years. Interestingly, the strain induced 𝜒(2) 
was first strongly overestimated in early works where the contributions of the Pockels 

and carrier effects were not properly separately estimated [58-60]. New works 

performed later in 2014 and 2015 corrected this trend [61,62], and a first high-speed 

(up to 20GHz) characterization was then demonstrated in 2018 [63] using the 

silicon-nitride-on-silicon platform. In this demonstration (Figure 11), a long (2mm) 

Mach-Zehnder interferometer was adopted in a first approach to estimate for the 

electro-optical response that turned to be around -1.8 pm/V in still non-optimized 

structures. 

Further work is needed in this direction to improve and strengthen the observed 

effects. We will come back to this point later in this manuscript. 
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1.2.2.3 Demand in addressing the power-bandwidth trade-off 

The universal motivation for reducing the power consumption and increasing the 

modulation efficiency has never been stopped and triggered for novel modulation 

approaches. The reason is that the index change resulting from the application of a 

control voltage is relatively small, usually by a few 10-5, or by a few 10-4 at most. As a 

result, this places relatively high constraints on the interferometric structure in charge 

of converting index modulation into intensity modulation with high modulation 

contrast. A first option is to use a very long interferometer (typically an MZM of a 

few mm [64, 65]), so that the interaction length compensates for the low index 

modulation. To circumvent this drawback, another option is to enhance light matter 

interaction by the use of high Q resonators. One of the common methods is to use ring 

resonators in this purpose. Numerous works have contributed to silicon ring 

modulators [66, 68, 55]. In addition to ring resonators, PhC slow-light waveguides 

(Figure 12(a)) have also been adopted to enhance light-matter interactions, with slow 

light group velocity engineering. Almost ten-times higher efficiency was 

demonstrated with one tenth footprint in such structures [68, 69]. In addition to 

waveguides, 2D PhC cavities (Figures 12(c) and (d)) have also been considered for 

light modulation [70] with ultra-low powers (few μW) required for reasonable 

extinction ratio (ER, 10dB). 

Comparisons between these modulators are presented in Table 1. As it can be 

seen, both ring resonators and PhC cavities can enhance modulation efficiency by 

providing much larger wavelength shifts when identical driven swings are applied to 

them. However, at the same time, the high photon lifetime resulting from the 

outstanding resonance (Q>>103) in return restricts the achievable electro-optic 

bandwidth. This power-bandwidth trade-off has been witnessed [66, 67] 

experimentally and especially when quality factor is raised up to hundreds of 

thousands, the modulation speed is then limited to no more than few GHz [70, 71]. 

Another point is that a higher-Q resonator normally indicates a bigger active volume 

and in return a reduction of the efficiency which can be improved by compressing the 

device volume [55]. Though high-bandwidth silicon PhC cavity modulator has not 

been experimentally demonstrated, some recent theoretical works on silicon photonic 

crystal cavity modulators [72-74] indicated promising results (Figure 12(e)) [75] to 

beat this limit, which yet remains essentially unsolved. 

Therefore, to universally improve silicon resonant modulator and especially 

promote the strain silicon platform, the power-bandwidth need to be addressed. 

This leaves us the first issue that we will address in chapter 2, with subwavelength 

engineering of 1D photonic crystal cavities. 

Type 
Electrical 

bandwidth 

Eye diag. 

Extinction 

ratio (dB) 

Efficiency 

V*cm 

Quality 

factor 

Drive 

swing 

Vpp (V) 

Length 

/diameter 

μm 

Silicon,  60 Gbps 7.4 2.3 - 5.75  800 
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depletion 

M.-Z. 

[64], [65] 

25 Gbps 5 1.15 3.3 1000 

Silicon,  

depletion 

PhC M.-Z. 

[68], [69] 

10 Gbps 

25 Gbps 

7.9 

> 6 

0.056 

- 
- 

4.2  

3.5  

200 

200 

Silicon, 

 depletion 

Ring [66], 

[67], [67] 

10 Gbps 

25 Gbps 

25/40 Gbps 

8 

7 

8 

50 fJ/b 

0.76 

0.9 fJ/b 

14500 

7500 

~ 3000 

2  

2.3  

0.5/2.2  

30 

>100 

4.8 

Silicon,  

PhC 

cavity  

[71], [72] 

~ GHz 

20 GHz 

10 

6  

~ μW 

14 AJ/b 

5.4e5 

8500 

1.5 

0.6  

~10 

2 

Strained 

Silicon, 

M.-Z. [63] 

A21, 10GHz > 3 - 2 mm 20 2000 

Table 1. Comparison between different kinds of silicon electro-optic modulators. 

 

Figure 12. Schematic of silicon PhC slow-light Mach-Zehnder modulator (a) and nanobeam cavity (b) 

with optical bistability. (c) and (d) schematic of a 2D PhC cavity silicon modulator. (e) schematic of a 

2D PhC cavity silicon hybrid modulator. Figures are reproduced from [69], [74], [71], [71] and [75]. 



22 

 

 

1.2.3 Silicon optical Kerr effect and nonlinear frequency generation 

1.2.3.1 Optical Kerr effect and Two-photon absorption in silicon 

As mentioned above, silicon is not a material naturally suited for electro-optical 

modulation. On the other hand, it has a strong third order non-linearity which 

potentially opens up a wide field of exploitable phenomena, starting with the 

four-wave mixing processes (FWM), and therefore the possibility of parametric 

amplification, wavelength conversion, etc. Our enthusiasm must be somewhat 

tempered by a significant penalty related to the phenomenon of two-photon 

absorption, as we will see, affecting wavelengths below 2.2µm but yet not beyond.  

Generally speaking, the Kerr effect can be described as follows:  

𝑃 = 𝑃𝐿 + 𝑃𝑁𝐿 = 휀0(𝜒
(1) + 3𝜒(3)|𝐸|2)𝐸              (1.23) 

With the definition 𝑛 = √휀𝑟, the refractive index, including the nonlinearity-induced 

absorption, can be represented (with the assumption that the nonlinear susceptibility is 

much smaller than the linear counterpart) as:  

𝑛 = √휀𝑟 = √(1 + 𝜒(1) + 3𝜒(3)|𝐸|2) ≈ √(1 + 𝜒
(1)) +

3𝜒(3)|𝐸|2

2(1+𝜒(1))
      (1.24) 

Since 𝑛1 = √(1 + 𝜒
(1)) is the linear material refractive index, then equation 1.22 

can be simplified as: 

𝑛 = 𝑛1 +
3𝜒(3)|𝐸|2

2𝑛1
= 𝑛1 +

3𝜒(3)

4𝑛1
2
0𝑐
(2𝑛1휀0𝑐|𝐸|

2)          (1.25) 

By expanding 𝜒(3) into its real and imaginary part, the refractive index 𝑛 can be 

rewritten as:  

𝑛 = 𝑛1 + 𝑛2𝐼 + 𝑖α2𝐼                   (1.26) 

where 𝑛2 =
3

4𝑛1
2
0𝑐
𝑅𝑒(𝜒(3))  and α2 =

3

4𝑛1
2
0𝑐
𝐼𝑚𝑎𝑔(𝜒(3))  is the nonlinearities 

induced index change and absorption, respectively. 

Kerr effect is very strong in silicon, with 𝑛2 = 3 × 10
−18𝑚2/𝑊, i.e. is a factor of 

100 higher than in silica fibers, which promises silicon as a solid candidate for 

on-chip light conversion and generation. Yet, as shown in Figure 7, the couple of 

pump photons do not only contribute to the Kerr-induced SPM effect, but also to the 

two-photon absorption (TPA) process. This phenomenon occurs non-negligibly in the 

near-infrared wavelength region due to the fact that the double of the photon energy 

can easily surpass the energy gap between the valence and conduction bands. This 

effect typically influences the degenerate FWM (𝜔𝑃2 = 𝜔𝑃1) by sacrificing part of 

the pumping photon for higher energy conversion without direct optical repay. Due to 

the non-negligible TPA (Figure of merit FOM =
𝑛2

𝜆𝛼2
) in silicon, with a coefficient 
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𝛽2 = 5 × 10
−12𝑚/𝑊 in the O band (around =1550nm), light all-optical modulation 

and wavelength conversion are hindered with threshold powers of few mW only. This 

absorption contribution has also to be integrated into α2 in equation (1.26). 

In addition to the direct absorption behavior, the absorbed photons can in return, 

produce new free carriers with long lifetime leading to free-carrier absorption (FCA) 

and free-carrier index (FCI) changes. This combination of TPA and the long lasting 

FCA jointly work against the FWM by reducing the parametric gain and slow down 

the bandwidth of silicon Kerr switches. However, some methods can be applied that 

can effectively reduce the influence of FCA and TPA. For example, an external 

electric field produced by PN junction can be used to deplete the free carrier while 

ultrafast pump will temporal scale faster than the TPA process suppress TPA. The 

simplest approach to eliminate TPA and FCA is also to perform the nonlinear 

processes with a pump wavelength larger than 2.2 μm since the double of the photon 

energy then no longer reaches the Si bandgap. Impressive results have been obtained 

by this approach, that yet does not solve the need for telecom wavelength all-optical 

signal processing techniques. 

1.2.3.2 Four-wave mixing enhanced by resonators and photonic crystal 

Four-wave mixing has a wide range of applications including parametric 

amplification, wavelength conversion, nonlinear microscopy and spectroscopy, etc. 

Particularly, light amplification in silicon has been demonstrated using FWM [76] for 

more than a decade. Unlike the Raman effect which is restricted by the availability of 

the phonons in materials, the FWM effect is able to provide a larger parametric 

amplification in a broader wavelength range. The needed elements for these 

parametric amplifications are the fine control of the involved waves phase matching 

condition and the realization of low waveguide propagation losses. Starting from the 

energy conservation (𝜔𝐼 = 𝜔𝑃2 + 𝜔𝑃1 −𝜔𝑆 ) being satisfied, the phase matching 

condition is described by the condition of involved wavevectors as: ∆𝛽 = 𝛽P1 +

𝛽P2 − 𝛽S − 𝛽I = 0. In this condition, 𝑆, 𝐼, 𝑃1 and 𝑃2 are labels with respect to the 

signal, the idler, and the pump waves, respectively. This condition typically requires 

careful dispersion engineering of the waveguide cross-section. In the control of phase 

matching, not only the waveguide dimensions controlling its chromatic dispersion, but 

also the nonlinearities-induced phase variation needs to be taken into account. This is 

where SPM or XPM in that Kerr nonlinearities are widely used for ultrafast phase 

modulation, which can be translated into intensity modulation with the assistance of 

Mach-Zehnder interferometers or micro resonators. Using optimized designs, 

different kinds of applications have been demonstrated, such as near-infrared 

broadband optical parametric gain [76, 77] (see Figure 13). 

In order to enhance the nonlinear light-matter interaction, ring resonators were 

adopted for simultaneously making three waves circulate with a self-aligned 

frequency spectrum [77, 78]. Similar works were also performed in multi-resonant 

PhC cavities (see Figure 14) for further improvement of the light-matter interaction 
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within ultra-small active volumes [79, 80]. By introducing the coupled mode scheme 

to produce parity-varied eigen modes in photonic molecules [81-83], new freedom 

was given to control FWM. This photonic molecule was also found to be able to 

improve the light-matter interaction with a mis-alignment cavity lattice [84].  

 

Figure 13. (a) Schematic of silicon degenerate four-wave mixing (b) Frequency spectrum of (a). 

Figures are reproduced from [76] and [77]. 

Though resonators are powerful in promoting strong light-matter interaction, the 

resonant nature of these cases however puts difficulties on the broadband or tunable 

functions which are highly expected in practical applications. In this context, PhC 

slow-light waveguides [85] were applied to improve the light-matter interaction [86] 

while leaving access to broadband purpose (see Figure 15). Based on this method, 

third-order harmonic generation (green light) based on silicon Kerr effect was 

demonstrated [87]. Numerous works on group velocity control for enhancing silicon 

Kerr nonlinearities using photonic crystal waveguides have been later reported [88, 

89].
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Figure 14. Methods of enhancing the silicon four-wave mixing with (a) ring resonator, (b) 

multi-resonance PhC cavity, (c) coupled rings molecule and (d) coupled PhC molecule. Figures are 

reproduced from [77], [79], [81], [83]. 

 

Figure 15. (a) Schematic of 3rd harmonics in silicon enhance by photonic crystal slow-light waveguide. 

(b) Microscope of silicon slotted photonic crystal slow-light waveguide. (c) Schematic and (d) 

performance of using photonic crystal slow-light waveguide to enhance four-wave mixing. Figures are 

reproduced from [87], [89], [85], [85]. 

1.2.3.3 Demand in flexible dispersion control 

As was introduced above, the Kerr nonlinearities highly depend on the energy 

conservation and phase matching conditions, no matter classical strip waveguides or 

PhC waveguides are considered. In this context, careful waveguide dimension design 

for controlling the waveguide dispersion to compensate the nonlinear phase 

induced-mismatch [90] is necessary and important. However due to the fact that 

semiconductor platforms, especially silicon, present a high core/cladding 

index-contrast, standard waveguides normally exhibit sharp dispersion changes (see 

Figure 16 (a)). These unflatten dispersion behaviors intrinsically lead to narrow 

bandwidths of the conversion wavelength range, as shown in Figure 16 (b). Similar 

results are also found at longer wavelengths around =2 microns [91]. Photonic 

crystal patterns are able to offer flexible engineering capability of the waveguide 

dispersion but also bring another drawback with their huge sensitivity to changes of 

the light group velocity dispersion and to the fabrication techniques, as shown in 

Figure 15 (c) and (d). 
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This issue on dispersion control gives us another question: Do we have more 

robust and flexible methods to engineer the dispersion for simultaneously 

fulfilling energy conservation and phase matching conditions？ 

 

Figure 16. (a) Dispersion of silicon waveguide with different cross-section and (b) Corresponding 

conversion efficiency of four-wave mixing. Figures are reproduced from [90]. 

1.3 Subwavelength structures at the services of passive and 

active functions  

To address those two issues laid on section 1.2.2.3 and 1.2.3.3, i.e. the 

power-bandwidth trade-off in a silicon resonant modulator and the management of 

waveguide dispersion in silicon waveguides to enable phase-matched nonlinear 

optical processes, we think that subwavelength waveguide structures can bring a 

decisive help. Based on subwavelength optics, we expect, from a novel point of view, 

to address those issues, improve device performances and open new opportunities for 

the relevant applications. 

1.3.1 Subwavelength structures: a powerful tool for passive devices 

Subwavelength optics has been proposed for more than two decades [92] and 

benefits from the rapid development of fabrication technologies which makes it 

accessible experimentally. Subwavelength optics [92] has found many applications in 

the realization of vertical cavity surface emitting lasers [93-96] where light 

penetration length and photon life are dramatically reduced with this approach and 
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tunable functions can be realized when combined with MEMS technologies. In 

addition to membrane mirrors, subwavelength structures can be also applied to 

develop meta-surfaces [97], non-conventional optical lenses [98], holographic and 

nonlinear devices [99], as well as on-chip photonic mode convertors [100], to quote a 

few examples. 

In a photonic crystal perspective (see Figure 17), sub-wavelength photonics 

occurs in fact when light frequency is much smaller than the period of a periodic 

structure (at least locally periodic), meaning a much larger wavelength than the 

geometrical corrugation scale (𝐴 ) that 𝜆 ≫ 2𝑛𝐴  (where 𝑛  is material index). 

Spatially averaging the optical material properties then becomes relevant. Band 

structure and the dispersion curves of periodic structures waveguide are shown in 

Figure 17 for comparison. In this context, the diffraction (Mie scattering, radiation, 

Bragg reflection) is strongly suppressed and especially when they are much larger 

than the pitch, the particles work like Rayleigh scatters. In this situation the stratified 

structure behaves like a homogeneous anisotropic material with an equivalent 

anisotropic permittivity tensor with respect to the macroscopic electromagnetic field 

[92], which has been discussed 50 years ago. It was difficult to conduct experiments 

in the visible or near-infrared ranges but of the progress of micro fabrication has 

rapidly reduced this limitation (e.g. with electron-beam lithography and other 

techniques) in the last 15 years 

 

Figure 17. Schematic of the optical response in different regions of periodically structured waveguide. 

Figures are reproduced from [102]. 

In [92], Dr. Rytov found that if the period of subwavelength structures consisting 

of alternating slabs of dielectric materials with refractive indices 𝑛H and 𝑛L is much 

smaller than the incident wavelength, the overall medium is optically equivalent to a 

uniaxial crystal with an optical axis perpendicular to the layers (see Figure 18). With a 

quasi TE light polarization injection, if the segment is arranged along the propagation 
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direction (i.e. polarization is parallel to periodical interface) or the normal direction 

(i.e. polarization is perpendicular to the periodic interface), the global photonic 

structure can be considered as a homogeneous material with an index being 

[101-103]:  

Either 𝑛||
2 =

𝑤

𝐴
𝑛𝐻
2 + (1 −

𝑤

𝐴
)𝑛𝐿
2,              (1.27) 

Or 𝑛ꓕ
−2 =

𝑤

𝐴
𝑛𝐻
−2 + (1 −

𝑤

𝐴
)𝑛𝐿
−2,              (1.28) 

where 𝑛II and 𝑛ꓕ are the equivalent material index values in the two considered 

cases, with 𝑛H  and 𝑛L  standing for the high-index and low-index materials, 

respectively. The pitch and the filling factor of the high-index segment are called 

here  𝐴  and 𝑤/A , respectively. With this approximation, index-engineering is 

available for creating artificial media being designed to have a greater range of 

material properties than those available in nature. 

 

Figure 18. Schematic of the equivalence of periodically structures, for electric field polarizing parallel 

and perpendicular to periodic surface. 

These “all-dielectric metamaterials” bring new degrees of freedom in the design 

space parameter of optical waveguide structures, for the purposes including splitter, 

coupler [104-106], biosensing [107], inverse photonic designs [108, 109], automatic 

calculation [110, 111], etc. Unlike the typical bulk metamaterials, these “all-dielectric 

metamaterials” are integrated easily with the on chip photonic component using 

planar fabrication technologies (see Figure 19), with numerous advances, which are 

the reason why they are so interesting.  
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Figure 19. (a) Schematic of subwavelength structured silicon grating coupler. (b) Schematic and 

scanning electron microscopy image of subwavelength broadband beam splitter. (c) Scanning electron 

microscopy image of subwavelength spot convertor. (d) Scanning electron microscopy image of a 

polarization beam splitter using inverse design. Figures (a), (b), (c) and (d) are reproduced from [104], 

[105], [106] and [109]. 

1.3.2 Subwavelength engineering: a toolbox to help light-matter interaction 

The powerfulness of subwavelength engineering has been witnessed [93-111] and 

introduced in section 1.3.1. This is a take-home message that we expect to use 

subwavelength engineering to address those two issues laid on section 1.2.2.3 and 

1.2.3.3: i.e. power-bandwidth trade-off in a (strained) silicon resonant 

modulators and the dispersion manipulation for exploring Kerr-induced optical 

effects in silicon waveguides (with a special focus, as shown later on FWM and 

frequency comb generation). 

✓ In chapter 2, we will first address the power-bandwidth trade-off using 

subwavelength engineering to enhance efficient light modulation in 

silicon photonic crystal (Fano) cavity silicon resonant modulators. 

✓ In chapter 3, we will introduce a method (called “Self-Adaptive Boundary” 

(SAB)) for flexibly controlling waveguide dispersion and enabling an 

automatic FWM phase matching condition. Taking its root from ideas 

derived from quantum mechanics and being practically achieved by the 

use of subwavelength waveguide structures, this method will be applied to 

waveguide FWM processes and frequency comb generation. Soliton comb 
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generation and dynamics will be studied in the engineered waveguides 

based on the nonlinear Schrödinger equation in the form of the 

Lugiato-Lefever equation. 

We believe that the proposed method opens even wider perspectives for the 

exploitation of 3rd-order non-linear optical properties from the silicon photonic 

platform or any other platform (IIV/V semiconductors, polymers, etc). The story 

began on this background but will definitely not limited in just nonlinear optics and 

subwavelength optics and cases we mentioned. The hint among all these contents is, 

the flexible control of light-matter interaction. Harnessing these preliminary 

researches presented following, we hope new visions can be reached for our further 

researches in nonlinearities-based photonics and other researches including quantum 

light source, on-chip spectroscopy, on-chip temporal signal control etc.  
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2 Subwavelength structures for enhanced 

electro-optical modulation 

In this chapter, we first explain the bandwidth-consumption trade-off in silicon 

resonant modulators and indicate that by sharping the resonant spectrum of the 

in-modulator constitutive resonator, modulation efficiency can be improved without 

sacrifice on the bandwidth. More specifically, we will describe the mechanism based 

on a subwavelength engineering approach to produce an asymmetric-spectrum Fano 

resonance in a single nanobeam cavity, i.e. made on a single optimized strip silicon 

waveguide channel. Analytical analysis will be presented to sustain the proposed idea 

and, with the parameters derived from the design, fabrication and characterization 

results will be presented, before concluding. 

Next, the design of a strained silicon modulator based on this single-waveguide 

subwavelength structured Fano resonator will be developed. In addition, we will 

indicate how a wavelength tunable operation can be achieved with such a 

single-waveguide resonator through both analytical and experimental demonstrations. 

Overall, the feasibility of high-bandwidth low-consumption silicon resonant 

modulators will be reported, with outlook of tunable function and new application 

using this subwavelength structured resonator.  

2.1 Sharpening the resonant spectrum of PhC Fano 

cavities with subwavelength structures 

2.1.1 Introducing a Fano resonance to a single-waveguide resonant cavity 

As we introduced it above, micro-resonators (including micro rings/disks and 

photonic crystal cavities) are capable for small footprints and relatively small off/off 

operation (typically > 15dB) in on-chip integrated configurations [112]. However, the 

considerable photon lifetime in an ultra-high-quality factor (Q>>103) cavity is 

detrimental to the target modulated bandwidth (at least >10GHz). Generally speaking, 

the photon dynamics in a Lorentzian shape cavity modulator fed directly by a bus can 

be understood as it is shown in Figure 20. Since the cavity we consider here is a 

nanobeam cavity (one of 1D photonic crystal cavities) fed directly by a bus 

waveguide, as Figure 20 (b), Lorentzian shape with highest transmission on resonance 

is shown in Figure 20 (a). 
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Figure 20. (a) Schematic of on/off-resonance photon dynamics. (b) Schematic of a nanobeam cavity 

based on a strip optical waveguide drilled by holes. (c) Schematic of in-complete light extinction in 

high-Q and low-Q case.   

In such a cavity, strong light reflection is formed for a wideband spectrum and 

only light wave with on-resonant frequency can be transferred to the cavity core, with 

an in-cavity optical power built up, and then remitted to the output port. The on/off 

modulation operation is obtained at a specific wavelength by shifting the cavity 

resonance from an “on-resonance” to “off-resonance” thanks to any relevant possible 

mechanism (e.g. thermal effect, electro-optical and other nonlinear effects, free carrier 

plasma dispersion effect). As the cavity energy decay time is proportional to Q (where 

photon lifetime which determined by time duration for a power decay factor of 𝑒−2.) 

A long-lasting output energy decay of a high-Q cavity can be actually observed and 

lead to non-instantaneous transition on modulator (see Figure 20 (c)). Given a certain 

spectrum shift that determined by materials and applied signal, the “high-Q” spectrum 

can give a larger “accessible (maximum) extinction ration” (or to say, transmission 

contrast) than that of “low-Q” spectrum. This high accessible contrast can give the 

possibility for reducing the required driven power. However, as the Figure 20 (c), this 

large contrast cannot be fully used since photons decay is cut at next raising/falling 

edge of the driven signal. In contrast, though smaller maximum extinction ratio is 

obtained with a low-Q spectrum, but full light falling back then occurs before the 

signal flip. 

For example, for a quality factor of only 104, the bandwidth 𝑓3dB limited by 

photon lifetime (with negligible RC constant) can be calculated as: 
1

𝑓3𝑑𝐵
2 = (2π𝜏)2 +

(2π𝑅𝐶)2 ≈ (2π𝜏)2 and 𝜏 =
𝑄

𝜔
=

𝜆𝑄

2𝜋𝑐
, which gives no more than 20GHz for a 
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working wavelength at around 1.5𝜇𝑚 [66]. Though the experimental bandwidth is 

later found can be a bit larger than this estimation [112], resonators designed for high 

bit rate modulators have usually limited Q factors of a few thousands [113, 114]. Such 

a limit on Q factors leads to the request of higher driving swing for enlarging the 

wavelength shift and the accessible extinction ratio compared to a higher-Q cavity. 

This has no doubt caused a larger power consumption, e.g. of tens to hundreds of 

femtojoules per bit for acceptable extinction ratio (>8 dB). Various approaches like 

different-signal driving [115] and vertical P-N structures [116] for silicon disk 

resonators have been implemented to reduce power consumption. However, these 

kinds of doping schemes are complex and challenging with respect to fabrication 

accuracy control. Therefore, new and simple solutions are expected for low power 

consumption and high-bit rate optical modulation. 

In fact, modulation inefficiency comes largely from the shape of the spectral 

resonance used, very symmetrical, and which therefore implies to be significantly 

shifted in frequency in order to induce an on/off extinction ratio >>1. If we can, 

as illustrated in Figure 21, rotate the Lorentzian-lineshape spectrum without any 

increase on the Q factor, we can take advantage of the fast light response and 

simultaneously improve the obtained modulation extinction ration (ER). This is the 

reason why Fano resonances, which arise from the interference of a discrete resonant 

mode and a continuum background, have been proposed to solve this issue [117]. As 

it is shown hereafter and already illustrated in Figure 21, their asymmetric spectrum 

signature can be used to address the bandwidth-power trade-off of silicon resonant 

optical modulators and potentially minimize the power consumption of silicon 

switching and modulation devices. Different types of Fano-resonance-based cavities 

have already been proposed including spatial membrane structures [118], plasmonic 

resonators [119] and integrated side-coupled one/two-dimensional (1/2D) photonic 

crystal cavities [120-123]. Thanks to the advances of fabrication technology, novel 

integrated devices based on these Fano cavities like nonreciprocal transmission 

structures [124], Fano lasers [125] and switches [126] have been demonstrated. 

Especially, an all-optical high-bit rate modulation behavior combining the free carrier 

response of indium phosphide and a Fano cavity was demonstrated [127].  
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Figure 21. Schematic picture of the effect of an asymmetrical resonance lineshape on modulation 

properties 

2.1.2 Design of the single-waveguide Fano nanobeam cavity 

Photonic crystals (see Figure 22 (a), (b)) were first experimentally introduced by 

Eli Yablonovitch in 1987 as a method of controlling spontaneous emission in a 

material [128] and have been intensively studied since then [129]. There also came 

from the motivation of manipulating light using small photonic components bringing 

the density of functional elements to the same level as that in current electronics and 

triggering investigation of the light-matter interaction and discovering multi-physical 

effects. These motivations led to the development ultra-high-Q photonic crystal 

cavities [130-132], which (see Figure 22 (c)), compared to the ring/disk resonators 

[133, 134], present significant improvement on the Purcell factor [135] and strong 

potentials in applications including quantum optics [136], matter detection [137], 

optical memory [138] and biosensing [139] etc. The nanobeam cavities, in form of 

strip-shape 1D PhC cavity (see Figure 22 (d), (e) and (f)), are also found as presenting 

ultra-high quality factors [140], in the meanwhile give novel freedoms to researches 

including optomechanical control [141, 142], particle manipulation [143], extreme 

light concentration [144], low-power switch [145-147], etc. The theory of photonic 

bandgap and PhC cavities has already been well developed and detailed in [129-132, 

140] and we will not recall their properties here.  

 

Figure 22. Schematic views, dispersion diagrams and mode profiles of PhC cavities reproduced from 

[131] and [137]. 

PhC cavities have been used in previous works as an element for creating Fano 

spectra, most of which operating with a side-coupled bus waveguide [121, 124], as 

shown in Figure 23 (a). A practical implementation can be to consider a line-defect 

PhC waveguide close to a 2D PhC cavity or a strip bus waveguide to the vicinity of 

nanobeam, as shown in Figures 22 (b) and (c). In this configuration, the first behaves 
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as a localized resonance, while the second behaves as a continuum of possible 

frequencies, the interference of a wave exciting these two paths leading to a Fano 

spectral resonance. A partially transmitting element is then placed between to control 

the balance between both light paths.  

However, though structures are basically as simple as two strip waveguides, this 

type of side-coupled photonic-wire configurations leads to some issues for optical 

modulation. A first drawback of such configurations arises from the high sensitivity 

of the bus waveguide/cavity region optical coupling ratio on the technological 

fabrication imperfections of the structure (in particular on the width of the bus 

waveguide) [145]. The imperfection of hole sizes can also introduce light unbalance 

from the in the strip and resonator, which influences their spectra and distort their 

resonances. Unless a post-trimming method of controlling the light balance is 

provided, this control is somewhat challenging. A second issue stems from the fact 

that the cross-sectional structure of the modulator is intrinsically both asymmetric and 

more spatially extensive than a simple waveguide one. For instance, considering this 

configuration in a free carrier plasma dispersion effect with an embedded PN junction 

as shown in Figure 23 (d), the bus waveguide somewhat brings complexity to the 

realization of the needed doping profiles and is more importantly responsible for an 

increase of the electrode-to-electrode distance that is likely to kill the modulator 

bandwidth. Since the electrodes need to be set a distance away from the waveguide 

for to avoid ohmic losses, this extension indeed increases both the capacitance and the 

access resistance of the whole structure equivalent circuit [146]. Therefore, for the full 

exploitation of the Fano signature of active cavities, it is particularly important to look 

for fully integrable configurations in a single waveguide (strip or strongly engraved 

rib [147]) with a good strategy of controlling the light balance between the two light 

channels interfering with each other. 
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Figure 23. (a) Schematic of side-coupled Fano resonator. (b) Fano resonator using side-coupled 2D 

PhC cavity. (c) Fano resonator using side-coupled nanobeam cavity. (d) Cross-section of a side-coupled 

modulator using plasma dispersion effect and a two-strip waveguide Fano cavity 

Since a Fano resonance arises from the interference between a discrete resonance 

and a continuum [117], the idea is to create the non-resonant background with a 

higher order propagating mode, i.e. to shape Fano resonances using slightly 

multimode waveguides. We propose here is to take advantage of a two-mode spatial 

multiplexing scheme to generate the resonant and the transmitting modes in the same 

physical optical waveguide, as shown in Figure 24 (a). As introduced in chapter 1, the 

Bragg condition for creating a mirror is 𝜆 = 2𝑛𝑒𝑓𝑓𝑎, where 𝑛𝑒𝑓𝑓 and 𝑎 are the 

effective index of the propagating mode and lattice period, respectively. The basic 

principle of the approach we propose to implement is thus to design a single 

guide but dual mode structure, of which one of the two resonant modes could 

play the role of narrow resonance and the other of wide resonance acting as a 

pseudo-continuum of frequencies, respectively, and then to force their 

interference to obtain a Fano resonance signature. 

 

Figure 24. (a) Schematic of using a high-order optical mode working in sub-wavelength region as a 

non-resonant background. (b) Dispersion curves of the TE modes at 1550nm wavelength in a 

220nm-thick silicon on insulator strip waveguide as a function of the waveguide width. 

In order to study the feasibility of the proposed single-waveguide principle of 

operation, eigen mode solving and FDTD methods were used to calculate the mode 

dispersion and field and power transmission levels of the TE modes in the nanobeam 

structure, as Figure 24 (a). The corresponding platform we considered started from a 

typical silicon-on-insulator (SOI) photonic platform with a 220nm thick silicon core 

and a 2μm thick buried silicon dioxide layer. The dispersion curves of both TE 

propagating modes obtained for different nanobeam widths (𝑤n) are presented in 

Figure 24 (b). In principle, in order to provide a high transmission level for the TE1 

mode with a weak perturbation from the nanobeam cavity, the difference of effective 

index values between the TE1 andTE1 propagating modes should be as large as 

possible to prevent Bragg reflection for the TE1 mode. A waveguide width 𝑤n=630 
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nm (neff,TE0~2.55 and neff,TE1~1.6) corresponds to the ideal value but due to the rapid 

change of the TE1 propagating mode dispersion close to this condition, this option can 

lead to fabrication-sensitivity issues. Thus, a moderate value 𝑤n=800nm was selected, 

providing an acceptable index contrast between the TE0 and TE1 propagating modes 

of ~ 0.565. We also notice that due to the diverged mode distribution as shown in 

Figure 24 (b), the overlap of the mode and the central etched can be controlled in no 

more than 10%, which gives good promise to the week perturbation. 

Next, a nanobeam cavity with a 50-holes array under a period of 300nm was 

considered. To obtain a resonant high quality (Q) factor and a high transmission for 

the TE0 mode, the hole radii were tapered from 100nm in the center to 70nm in a 

15-periods length [148]. Extra 10-holes mirror sections with identical 70nm radius 

holes were added at the end of each taper. The total length of the nanobeam cavity 

was close to 15 μm. The calculated transmission spectra for both TE propagating 

modes are shown in Figure 25 (a). As visible, and as desired, the TE0 and TE1 modes 

present strongly different spectra. Considering for example the spectral region 

centered on the first TE0 resonance, for example from 1.51µm to 1.53µm, it is 

obvious that each of the two modes TE0 and TE1 makes its expected contribution (a 

sharp resonance and an almost flat resonance, i.e. no resonance at all), respectively.  

The simulated quality factor/transmission values with TE0 input (merely TE0 

propagating mode in the nanobeam waveguide) for the 1st and 2nd cavity modes are 

230000/55%, and 19000/95%, respectively. Quality factor is calculated using formula 

𝑄 = 𝜔𝜏/2 in which 𝜔 and 𝜏 are the resonant angular frequency and corresponding 

photon lifetime, respectively. For the TE1 propagating mode, an average transmission 

larger than 90% is obtained in the 1500nm to 1600nm wavelength range. Overall this 

high distinctly diverse transmission response thus gives promise to the feasibility of 

generating asymmetric spectrum by mixing the two waveguide mode channels 

together. Though the peak transmission of these two TE propagating modes are not 

exactly balanced, the related excitation ratio can easily be engineered by adjusting the 

input waveguide width of the MMI-like structure to find the right balance between the 

two optical modes. 

 

Figure 25. (a) Transmission spectra through a nanobeam, with excitation of onlu TE1 or TE2 
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propagating modes through a classical nanobeam cavity with wn=800nm, 50 holes and 300nm period.  

Knowing the possibility of guiding one resonant and one propagating mode 

simultaneously in a nanobeam, now we can build a preliminary model like that the 

one shown in Fig. 26. In that purpose analytical calculation using the temporal 

coupled-mode theory can be considered [120, 149] (TCMT). This whole study will be 

carried out by considering a single TE0 resonance, i.e. by restricting the analysis 

frequency range around a single resonance. 

As shown in Fig. 26, the total structure can be considered as a two-port scattering 

system. 𝑆I
+, 𝑆I

−are the forward and backward field amplitudes from port I (left side 

port), respectively. 𝑆II
+ and 𝑆II

− share the same definitions for port II (right side port).  

𝑡𝐹0 is the complex transmission coefficient of electric field (then 𝑇𝐹0 = |𝑡𝐹0|
2 is the 

power transmission) of the TE0 propagating mode after the whole structure. For a 

nanobeam cavity with a resonant angular frequency 𝜔0 and corresponding electric 

field 𝑎0 for the TE0 mode, the decay rate for this resonant mode due to coupling to 

the two feeding waveguides, the decay rate due to out-of-plane scattering and intrinsic 

absorption are 𝛾1, 𝛾2, 𝛾v , 𝛾i , respectively. Therefore, the total decay rate (TE0 

propagating mode) can be written as 𝛾t = 𝛾1+𝛾2 + 𝛾v+ 𝛾i. The energy excitation 

from input source to the TE0 and TE1 modes in the distribution region (left deep gray 

region in Figure 26) are labeled by 𝜂0  and 𝜂1 , respectively. Meanwhile the 

conservation from the TE0 and TE1 modes to the TE0 mode (TE0 is chosen because 

fundamental is normally preferred for out-coupling with grating coupler) is 

considered in the “interference” region which will be addressed later, with conversion 

efficiencies 𝐶00 and 𝐶01, respectvely. The transmission of the nanobeam cavity for 

the TE1 propagating mode called 𝑇1 (𝑇1 = |𝑡1|
2) can be assumed as nearly uniform 

due to the weak interaction of this mode with the array of patterned holes. 

 

Figure 26. Schematic of the dynamics of optical waves in a standalone two-port waveguide nanobeam 
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Fano cavity. TE0 and TE1 propagating modes are marked by blue and red dashed curves, respectively. 

The spectrum of TE0 and TE1 propagating modes are depicted by the blue and red curves, respectively.  

According to the TCMT and considering a detuning of angular frequency 𝛿𝑟 =

𝜔 − 𝜔0, the coupled equations of the resonant and backward waves can be written as 

follows:  

𝑑𝑎(𝑡)

𝑑𝑡
= (−𝑖𝛿𝑟 − 𝛾𝑡)𝑎 + √2𝛾0𝑒

𝑖𝜃1√𝜂0𝑆I
+            (2.1) 

𝑆I
− = 𝑟𝑚√𝜂0𝑆I

+ +√2𝛾1𝑒
𝑖𝜃1𝑎               (2.2) 

𝑆II
− = √2𝛾2𝑒

𝑖𝜃2𝑎√𝐶00 +√𝜂1𝑆I
+𝑡1√𝐶01𝑖𝑒

𝑖∆𝜃              (2.3) 

in which 𝜃1 and 𝜃2 are the phase factors of the cavity waveguide modes at the left 

and right ports, respectively. ∆𝜃 is the phase difference between the TE0 and TE1 

propagating modes, which is counted from the input source to the interference region 

after the core part of nanobeam cavity. The reflection coefficient of the nanobeam 

cavity mirrors for the TE0 mode is 𝑟m , which can be considered as 1 for 

simplification (Confirmed by an estimated reflection power level at slightly 

off-resonant wavelength which indicated a reflection coefficient 0.98, a nearly 

unitary value being indeed consistent with the large Q factor of the TE0 cavity mode). 

 For steady state condition, da(t)/dt=0 and the field transmission coefficient for the 

TE1 mode through the whole structure (𝑇𝐹0 = |𝑡𝐹0|
2) can be written as: 

𝑡𝐹0 =
𝑆II
−

𝑆I
+ =

2√𝛾1𝛾2𝜂0𝐶00𝑒
𝑖(𝜃1+𝜃2)

𝑖𝛿𝑟+𝛾𝑡
+ 𝑖√𝜂1𝐶01𝑡1𝑒

𝑖∆𝜃         (2.4) 

For symmetric cavity design, 𝜃1 = 𝜃2, 𝛾1 = 𝛾2, and for a highly confined cavity mode, 

𝑒𝑖(𝜃1+𝜃2) = cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2) = −𝑟𝑚 ≈ −1[125] , therefore 

𝑡𝐹0 =
𝑆II
−

𝑆I
+ ≈

−2𝛾1√𝜂0𝑐00

𝑖𝛿𝑟+𝛾𝑡
+ 𝑖√𝜂1𝑐01𝑡1𝑒

𝑖∆𝜃            (2.5) 

If there is no excitation of the TE1 mode and no interference region after the nanobeam 

( 𝜂0 = 𝑐00 = 1, 𝜂2 = 𝐶01 = 0), then 

𝑇𝐹 = |𝑡𝐹0|
2 ≈

4𝛾1
2

𝛿𝑟
2+𝛾𝑡

2                (2.6) 

The total transmission of the TE0 mode then goes back to a typical Lorentzian shape. 

For a case where 𝜂1 ≠ 0, 𝐶10 ≠ 0: 
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𝑡𝐹0 ≈

−2𝛾1
𝛾𝑡

√𝜂0𝐶00

𝑖
𝛿𝑟
𝛾𝑡
+1

+ 𝑖√𝜂1𝐶01𝑡1𝑒
𝑖∆𝜃  =

2𝛾1
𝛾𝑡
√𝜂0𝐶00(𝑖

𝛿𝑟
𝛾𝑡
−1)

𝛿𝑟
2

𝛾𝑡
2+1

+ 𝑖√𝜂1𝐶01𝑡1𝑒
𝑖∆𝜃        (2.7) 

𝑇𝐹0 ≈ (

−2𝛾1
𝛾𝑡

√𝜂0𝐶00

𝛿𝑟
2

𝛾𝑡
2+1

− √𝜂1𝐶01𝑡1𝑠𝑖𝑛∆𝜃 )

2

 +(

2𝛾1
𝛾𝑡
√𝜂0𝐶00

𝛿𝑟
2

𝛾𝑡
2+1

𝛿𝑟

𝛾𝑡
+√𝜂1𝐶01𝑡1𝑐𝑜𝑠∆𝜃 )

2

  (2.8) 

=

4𝛾1
2

𝛾𝑡
2 𝜂0𝐶00

𝛿𝑟
2

𝛾𝑡
2+1

+ 𝜂1𝑡1
2𝐶01 +

4𝛾1
𝛾𝑡
𝑡1√𝜂0𝐶00𝜂1𝐶01

𝛿𝑟
2

𝛾𝑡
2+1

(
𝛿𝑟

𝛾𝑡
𝑐𝑜𝑠∆𝜃 + 𝑠𝑖𝑛∆𝜃)  

Assume that the phase relative variable is written as 𝐶𝑝 = −
𝛿𝑟

𝛾𝑡
+
𝛿𝑟

𝛾𝑡
𝑐𝑜𝑠∆𝜃 + 𝑠𝑖𝑛∆𝜃, we 

simplify 𝑇𝐹0 as: 

𝑇𝐹0 ≈ 𝜂2𝑡2
2𝐶12(

4𝛾1
2𝜂0𝐶00

𝛾𝑡
2𝜂1𝑡1

2𝐶01

𝛿𝑟
2

𝛾𝑡
2+1

+

𝛿𝑟
2

𝛾𝑡
2+1

𝛿𝑟
2

𝛾𝑡
2+1

+

4𝛾1√𝜂0𝐶00

𝛾𝑡𝑡1√𝜂1𝐶01

𝛿𝑟
2

𝛾𝑡
2+1

(
𝛿𝑟

𝛾𝑡
+ 𝐶𝑝))     

= 𝜂2𝑇2𝐶12
(
𝛿𝑟
𝛾𝑡
+
2𝛾1√𝜂0𝐶00

𝛾𝑡𝑡1√𝜂1𝐶01
)
2

𝛿𝑟
2

𝛾𝑡
2+1

+ 𝜂1𝑇1𝐶01
(1+

4𝛾1√𝜂0𝐶00

𝛾𝑡𝑡1√𝜂1𝐶01
𝐶𝑝)

𝛿𝑟
2

𝛾𝑡
2+1

          (2.9) 

Assuming that 
𝛿𝑟

𝛾𝑡
= ϵ,

2𝛾1√𝜂0𝐶00

𝛾𝑡𝑡2√𝜂1𝐶01
= 𝑞, and taking into account that the total energy of the 

TE1 propagating mode coupled back to TE0 mode is 𝑇01 = 𝜂1𝑇1𝑐01, we can simplify 

equation (2.9) as: 

𝑇𝐹0 ≈ 𝑇01
(𝜖+𝑞)2

𝜖2+1
+ 𝑇01

(1+2𝑞𝐶𝑝)

𝜖2+1
            (2.10) 

The first term of equation (2.10) is the same as the traditional expression for Fano resonance 

in a two-port cavity [150]. The variable q is the asymmetric parameter, which quantifies the 

Fano spectrum asymmetry. The normalized energy amplitude of the continuum part of the 

TE0 propagating mode, e.g. the 𝑇10, becomes the amplitude coefficient of the Fano spectrum 

in Eq. (2). Similarly, the classical Fano spectrum in which the amplitude coefficient is the 

transmission of the partially transmitting element [117]. However, the above equations 

indicate that the phase quantity also contributes to the transmission and can cause a small 

deviation to the perfect Fano line shape. By controlling 𝐶𝑝, this phase related item can be 

minimized and high quality Fano lineshapes can then be obtained. As a whole, the above 

analytical calculation shows that the obtained pseudo Fano expression opens room to 

design a sharp Fano-like behavior. Analysis for TE1 mode can be made similarly and is not 
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shown here. To study the effect of excitation efficiencies and mixing efficiencies to the 

spectrum, we assume that ∆𝜃 = 0 ( then 𝐶𝑝 = ϵ(−1 + 𝑐𝑜𝑠∆𝜃) + 𝑠𝑖𝑛∆𝜃 = 0) for 

simplification, thus: 

𝑇𝑡 = 𝑇12
(𝜖+𝑞)2

𝜖2+1
+ 𝑇12

1

𝜖2+1
             (2.11) 

Based on this analytical calculation, we need to introduce mode excitation and 

interference as 𝜂1 ≠ 0, 𝐶10 ≠ 0. The mode distribution/excitation can be performed 

by the Multimode Interference (MMI)-like structure shown in Figure 27 (a). This 

simple structure allows a tight control of the balance between the excited TE0 and TE1 

propagating modes through the choice of the narrow (input) and wide (nanobeam) 

waveguides’ widths, labelled 𝑤i and 𝑤n, respectively (see Figure 27 (a)). With the 

nanobeam width 𝑤𝑛 being fixed at 800nm (again, throughout this work), the out 

excitation efficiency of the TE0 propagating mode, increases with the waveguide 

width, while the excitation efficiency of the TE1 mode first reaches a maximum at 

𝑤𝑖 =400nm, and then gradually decreases with increasing 𝑤𝑖  values. These 

monotonous trends of the TE0 mode curve can be understood with the related 

increased effective index value which minimizes the impedance mismatch between 

the input access waveguide and the nanobeam waveguide modes. On the other hand, 

the increased TE1-mode efficiency arises from an improved effective index matching 

and the largest mode overlap (Figure 26 (b)) at the input/nanobeam waveguide 

interface. Figure 27 (a) indicates that the excitation efficiency of the TE0/TE1 mode 

can be adjusted in a large range (from nearly 55%/40% to infinity). For input 

waveguide widths larger than 400nm, the summation of the TE0 and TE1 excitation 

efficiencies is close to 1, which also indicates an available width range for low-loss 

light injection. As stated before, the he key of the design is also to widen the contrast 

between the effective indices of these two modes so that the TE0 propagating mode 

strongly feels the influence of the cavity, thus generating a marked spectral resonance, 

while the second propagating mode TE1 is only slightly insensitive to the periodic 

corrugation of the waveguide geometry and thus presents a very flat transmission 

spectrum (i.e. an ultra-wide resonance). 

 

Figure 27. (a) Excitation efficiencies of the TE1 and TE2 propagating modes at plane 2 in a nanobeam 

waveguide with wn=800 nm, connected with an input waveguide with different widths wi ranging from 
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300-700nm. (b) The corresponding mode overlap between the input waveguide and nanobeam 

waveguide.  

Corresponding to the mode mixing, the mode interference/mapping can be 

performed using several subwavelength approaches. We designed a subwavelength 

mixer which consists of several rectangle-shape asymmetrically-located etched 

holes for this purpose. The schematic of a mixer of this kind is shown in the inset of 

Figure 28 (a). The period 𝑃𝑒 and filling f actor (ff) of these holes are 200nm period 

and 0.5, respectively, which are moderate values acceptable for fabrication and at the 

same time well located away from the condition of Bragg reflection (𝑃𝑒~300nm), i.e. 

in the subwavelength propagation regime, for the working wavelength (~1.5𝜇𝑚). The 

etched holes have a length (𝐿𝑒) of half of 𝑊n, i. e. 400nm and are 200nm displaced 

from the center of the waveguide. Such a structural asymmetry in an infinite 

periodically etched-hole array gives birth to the two modes whose mode dispersion 

curves are shown in Figure 28 (a). The effective index values of these two Bloch 

modes at =1550nm are about 2.3 and 1.6, respectively. The approximate spatial 

parities (Figure 28 (b)) of these two Bloch modes have been verified separately using 

a directional coupler. A fundamental TE mode in a 450nm-wide side waveguide was 

used to excite merely the 0th Bloch mode while a fundamental TM mode in 

500nm-wide side waveguide served to excite merely the 1st one. This property enables 

an efficient projection of the two TE0 and TE1 waveguide modes on the base on the 

two Bloch modes basis in an ultra-short distance (<1 µm). After being excited in a 

controllable balance through the convertor, the two excited TE Bloch modes can 

excite back the TE0 and TE1 modes in the output strip waveguide, the overall process 

being responsible for the desired mode mixing (i.e. TE0 and TE1 mode excitations at 

the output are each made of TE0 and TE1 mode mixing from the input channel). 

 

Figure 28. (a) Dispersion of the first two order Bloch modes in a waveguide with an infinite periodic 

subwavelength etch-hole array. (b) The spatial parities of 0th and 1st Bloch modes. 
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To find a proper mixer length with desirable mode mapping for efficient Fano 

generation, mixers of different numbers of etched holes (3, 5, 10 ,15) are shown 

Figure 29. The efficiencies of TE0-TE1 modes inter-mode mixing (𝐶01 and 𝐶10) and 

forward transmission factors (𝐶00 and 𝐶11) for each case are shown on the bottom 

Figures, while the energy distributions with TE1/TE2 mode injections are provided on 

top left/right Figures. The 3N, 5N and 15N cases give better inter-mode mixing 

efficiencies than the 10N case. In terms of mixing efficiency/conversion to the TE0 

mode (𝐶00 and 𝐶01), the 5N case shows better performances (𝐶00 and 𝐶01  are 

balanced and both close to 0.4) than the 15N and 3N ones. However, compared to the 

3N case, the TE1 forward transmission 𝐶11of the 5N case is much worse than for the 

3N case one. Therefore, the 3N configuration was chosen as the best. 

 

Figure 29. Mixing efficiencies and energy distributions of subwavelength mixers with different 

numbers of etched holes. The mixing efficiencies of TE0 mode to TE0 mode, TE10 mode to TE1 mode, 

TE1 mode to TE0 mode and TE1 mode to TE1 mode, are labeled by red solid, red dashed, blue dashed 

and blue solid lines, respectively. 

Now with all these elements, we can evaluate the spectrum based on equation 

(2.11). We accordingly adjust the energy ratio of the TE0/TE1 propagating modes and 
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the mixing efficiencies to search the optimization operation point. The related details 

are shown in Figure 30. Clear Fano curves presenting sharp spectral transitions and 

high extinction ratio are demonstrated from 𝜂1 = 0.1 and 𝜂1 = 0.9. In this study, 

mode interference was fixed at 𝐶11 = 0.45, C12 = 0.35, which comes directly from 

the 3N case in Figure 29. The best configuration for Fano behavior, indicated by 𝑞 ≈

1 (the largest asymmetry), is generally linked to the most rapid change (maximum 

slope) of the structure spectral transmission. This condition is satisfied here when 

𝜂1 = 0.55, as shown in Figure 30 (a). Especially, the comparison between the 𝜂1 =

0.9 and 𝜂1 = 0.999 cases shows that values of 𝜂1  close to 1 are necessary to 

recover a Lorentzian shape cavity spectral lineshape.   

We also investigated the effect of the mixer with different coupling efficiencies (𝐶00 and 

𝐶01) on the Fano spectra, as shown in Figure 30 (b). The selection on 𝐶xx are based on the 

results on Figure 29, while in this study, mode excitation was fixed at 𝜂1 = 0.55 and  𝜂2 =

0.45, which directly came from the 400nm case in Figure 27. The 𝑞 parameter variation is 

much more limited than in the previous case and the spectra keep a fairly marked Fano shape 

even in the severe 𝐶11; 𝐶12 =70%;5% condition, which indicates the robustness of the 

proposed Fano cavity scheme against variations of the mixer geometry. Overall, the main 

trends reported in Figure 30 (a) and (b) provide a design strategy to target a trade-off between 

correct Fano lineshapes and large extinction ratio values. 

 

Figure 30. (a), (b) The transmission of the TE1 mode versus the varying excitation efficiencies 𝜂1, 𝜂2 

and mixing efficiencies 𝐶11, 𝐶12. The exchange efficiencies in (a) are fixed as: 𝐶11 = 0.45, C12 =

0.35, while the excitation efficiencies in (b) are: 𝜂1 = 0.55 and  𝜂2 = 0.45, respectively. Both (b) and 

(c) share the following parameters: 𝜔1 = 2π ∗ 193.414𝑇𝐻𝑧, T2= 90%, 𝑄1 =
𝜔1

2𝛾1
= 7 × 104, 𝑄v =

𝜔1

2𝛾𝑣
= 1.6 × 105 and 𝑄 =

ω1

2𝛾𝑡
≈ 30000.  

With these analytical evaluations, a full Fano nanobeam cavity is proposed as 

shown Figure 31 (a), which produces two Fano resonances, i.e. for each of the TE 

modes. Five planes marked by black dash lines (1,2, 3, 4, and 5) at different positions 

in Figure 31 (a) are used to illustrate the structure principle of operation: plane 1 at the 

input waveguide, plane 2 before the cavity, plane 3 before the mode mixer, plane 4 
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after the mode mixer, and plane 5 at the bifurcation of the TE mode. The period, 

filling factor, and length of the mixer region hole are as mentioned above: Pe=200 nm, 

ff=0.5 and Le=400nm, respectively. This is for the purpose of a TE1-TE1 and the 

TE1-TE0 mixing efficiency of ~45% and ~35% from a 3-N subwavelength mixer. The 

simulated propagating distribution corresponding to a TE0 light injection is shown in 

the left inset in Figure 31 (a). The transmission levels of the TE propagating modes 

through the complete device (inset in Figure 31 (b), i.e. from plane 1 to plane 4) 

including the input waveguide width wi=400nm (which provides excitation 

efficiencies of 55% and 40%, for TE0 and TE1 mode, respectively) are also shown. 

Unambiguous Fano line spectra for the TE0/ TE1 propagating mode (blue/red 

curve in Figure 31 (b)) are observed, which confirms the adequate interference of the 

resonant and the flat spectra. Interestingly and as it could be anticipated, the TE1 

mode also exhibits a Fano spectrum lineshape, since part of the TE0 and TE1 modes 

are indeed coupled back to the TE1 mode as well after the subwavelength mixer. An 

additional narrow side waveguide forms a directional coupler to convert the TE1 

propagating mode to the TE0 mode of the side waveguide (see the right inset of Figure 

30 (1)). Uncomplete destructive interferences marked by the appreciable but not 

complete Fano dips (transmission does not drop to 0) result from the unbalanced 

TE0/TE1 energy levels. Each of both Fano resonance behaviors can be separately 

optimized by adjusting either the TE0-TE0, TE1-TE0 mixing efficiencies or the 

TE1-TE1, TE0-TE1 ones. Overall our cavity effectively compresses the physical 

dimensions of a Fano cavity and gives great convenience to the design of 

modulator as easily as in a single wire waveguide. 

 

Figure 31. (a) Schematic of the proposed standalone Fano cavity, consisting of a MMI-like input 

structure, a nanobeam cavity, a subwavelength mixer and a directional coupler. The blue and red 

dashed curves represent the spatial mode profiles (bottom right inset) of the TE0 and TE1 propagating 

modes, respectively. The blue and red solid curves represent the spectral lineshapes of the TE0 and TE1 

propagating modes, respectively. Top right inset: the propagating distribution of the TE1 propagating 

mode coupled with and converted into the TE0 mode of the side waveguide. (b) Transmission spectra of 

the TE0 and TE1 propagating modes through the proposed Fano cavity with a 400nm-wide input 

waveguide. The period, filling factor and length of the subwavelength holes array are Pe=200 nm, 
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ff=0.5 and Le=400nm, respectively. Other parameters are identical to that reported previously. In each 

Figure, the TE1 and TE2 propagating modes are depicted by blue and red curves solid lines or circles, 

respectively. 

2.1.3 Fabrication and characterization of Fano nanobeam cavities 

Based on the parameters developed in section 2.1.2, we performed the device 

fabrication with mask generated using python package. The fabrication process 

introduced in this part is used throughout the manuscript which is shown Figure 32. 

The fabrication of SOI chip can be separated in several steps in which most of these 

fabrication steps have been carried out by Mr. Xavier Le Roux from the C2N 

laboratory. 

Cleaning; The silicon on insulator (SOI) wafer can be first cleaned using NH4F 

solution for removing the surface oxide created in the growing process. This step can 

provide a good adhesion with the silicon and the photo resist. Following this, acetone, 

isopropanol is then used step-by-step, with the ultra-sonic machine to clean the 

surface of silicon. Sometimes there’s some carbon contaminant stuck on the silicon 

surface which cannot be removed by an organic solution. In these cases, a combined 

solution of concentrated sulfuric acid and hydrogen peroxide can be considered. 

Spin coating; after drying the wafer from step one (a) with a hot plate with 

temperature up to 120 Celsius degrees, the sample can be transferred to the spin 

coater for covering it with photo-resist. For different purposes and design, two kinds 

of photoresist can be used, i.e. a positive resist or a negative resist. A positive resist 

(e.g. ZEP series, PMMA) is exposed to dedicated light source and removed in a later 

developing process, while the exposed parts of negative resist (e.g. Ma-N 24xx series, 

HSQ) are the remaining areas after the developing process. After the spin coating, the 

sample with hundreds of nm of photoresist (the thickness of the photoresist can be 

easily controlled by the rotation rate of the spin coater) on top of the surface is put on 

the hot plate for pre-baking. In this step, the photo resist is dried out and strengthened. 

Electron-beam Lithography; taking the sample from spin coating, an electronic 

lithography machine is used to transfer the pattern that were generated from Python 

GDS tool, as shown in Figure 32 (c) and (d). 

Developing; the sample from exposure is soaked into the developing solution for the 

pattern recover (e). The solution used is chosen according to the polarity of the 

photoresist. Following this, the sample is again put on the hot plate for drying out. 

Etching; sample is transferred to the chamber of Induced Couple Plasmas (ICP) 

etching machine for pattern transfer (f). In this process, a dry run with pure oxygen is 

preferred before etching the sample, which can clean the chamber and stabilize the 

etching rate. With conductive silicone grease, sample is stuck on the spacer for 

thermal dissipation. The gas used for silicon etching is C4F8 and SF6 while the recipe 

for silica and silicon nitride CF4 and CH3. 

Postprocess; after etching, the sample is rinsed in acetone with the assistance of 

shaking table for roughly removing the photoresist. Then, it is followed by the fine 

cleaning of combined solution of concentrated sulfuric acid and hydrogen peroxide 
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(g). Once cleaning is finished, sample can be put on the hot plate again for 

dehydration. 

Surface polishing; waveguide roughness can be created during all these processes 

above, including patterning roughness, transfer roughness or etching roughness. To 

polish the surface of structures, samples are put into the high-temperature oven to 

generate sacrificed oxide which can be removed by rinsing fabricated samples in 

diluted hydrofluoric acid. 

Overlay; In cases that multi-step patterning is needed. The pattern can be again 

transferred to the sample by performing alignment to the labeled structures which are 

formerly generated during the first etching step. Then, spin coating, exposure and 

etching can be repeated as described above. 

Deposition; In cases that external materials are expected (e.g. top silica cladding), we 

can use a plasma enhanced chemical vapor deposition (PECVD) machine for 

depositing amorphous material. In terms of metal (e.g. for electrode purpose), 

magneto sputtering and evaporation deposition technologies can be used, followed by 

the lift-off method. 

 
Figure 32. Schematic of our silicon fabrication process flow. (a) Cleaning. (b) Spin coating. (c) 

Lithography. (d) Post-baking. (e) Developing. (f) Etching. (g) Post-cleaning. 
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A silicon-on-insulator (SOI) wafer with 220nm silicon thickness was used for 

fabrication. Since photonic waveguides have a high index contrast with the 

surroundings, the most convenient method to interface the input fiber connected with 

light source and the fabricated sample appeared to be the use of grating couplers, 

taking advantages of the efficient radiation [151, 152] A scanning electron 

microscope (SEM) of our fabricated grating coupler is presented in Figure 32. Since 

the cross-section of a single-mode on-chip silicon photonic waveguide width is 

usually less than 200 or 300 nm, optical waveguides are needed first to be tapered 

from their narrow cross-section to the larger grating one in order to interact with the 

grating corrugation. A simpler design to shorten the taper length is to directly 

combine the taper and the grating as shown in Figure 33, which is widely stated the 

“focusing grating coupler”.  

 

Figure 33. Scanning electron microscopic image of one of our fabricated focusing grating coupler 

using our design and fabrication process. 

With such a focusing coupler, the sample can be further considered for optical 

characterizations. Typical experimental conditions and optical benches are shown in 

Figures 34, 35, and 36. In Figure 34, a tunable/broadband coherent light source 

(Yenista TUNICS, operating in the 1260-1640nm wavelength range), a polarization 

controller, a spectrometer (Yokogawa, AQ 637x series), a power detector (Yenista 

CT400), and a source meter (Keithley 24xx series) are used to characterize the sample 

transmission. One practical picture of handling the fiber is shown in Figure 35. In the 

zoom-in picture of Figure 35 (b), the fiber is almost vertically placed (10-30 degrees, 

according to the design of the grating coupler) and placed to inject/extract the light 

to/from the grating coupler. Such a slight tilted angle is normally requested since a 

perfect vertical coupling configuration can lead to the sacrifice of half on the input 

energy to the backward waveguide propagation direction. With this method, coupling 

efficiency can be achieved experimentally up to nearly 50%), which is definitely 

enough for the proper characterization of the structures. 
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In some cases, grating couplers are unsuitable for the fiber/photonic circuit 

interfacing. For example, high-power lasers delivering spatial output preferably 

request alignment using lenses as high power can be responsible for fiber mechanical 

instabilities. Broadband light sources and low index-contrast design also go beyond 

the grating coupler since grating coupler have limited coupling bandwidths and 

efficiencies strongly dependent on the waveguide index-contrast. In these cases, butt 

coupling (or edge coupling), as shown in Figure 36, can be used. Lensed single-mode 

fibers fiber are usually adopted by approaching it to the facet of the sample. 

 

Figure 34. Schematic of an experimental bench for characterizing passive opto-electronic devices. 

DUT: devices under test. Optical and electrical path are represented by blue and red curves, 

respectively.  

 

Figure 35. Zoom-out (a) and zoom-in (b) image of our grating coupler bench.  
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Figure 36. Zoom-out (a) and zoom-in (b) image of our butt coupler bench.  

The scanning electron microscopy (SEM) picture of a typical fabricated device is 

shown in Figure 37. The gap between the nanobeam waveguide and the side 

waveguide (ws=400nm) is here of 150nm. A straight coupling length of 16 μm was 

chosen to completely couple the TE1 propagating mode in the nanobeam waveguide 

to the TE0 mode in the side waveguide. Then the side waveguide was turned into a 

bend waveguide with a radius of 40 μm for an ultra-low loss separation of both 

modes. The performances of this directional coupler were confirmed by 3D-FDTD 

simulations and from fabricated devices characterizations. The width of the input 

waveguide was chosen as 500nm since the experimental transmission of resonant 

mode was usually lower than the theoretical one. Other parameters about the 

nanobeam cavity were directly inherited from the design stages. i.e. a nanobeam 

waveguide width 𝑤𝑛=800nm, 50 holes, and a hole radius profile quadratically 

tapered from 100nm in the center to 70nm at the edges. 

 

Figure 37. SEM views of fabricated devices. The MMI-like structure and subwavelength mixer are 

shown in the top-left and bottom-right insets, respectively. 

The experimental transmission curves of the full structure are shown in Figure 38 

(a). All the transmission curves were normalized to straight waveguides with identical 



51 

 

 

grating couplers. Clear Fano lineshapes for the 1st and 2nd order cavity modes are 

observed, with resonance wavelengths located at around 1515 nm and 1531 nm, 

respectively, which are close to the values (1510nm and 1533nm) obtained from 

3D-FDTD simulation in Figure 31 (b). Simulated distributions for these two modes 

are presented in the insets of Figure 38 (a). Simultaneous Fano lineshapes of the 2nd 

cavity mode in the nanobeam and side waveguides are also shown in Figure 38 (b), as 

the blue and orange curves, respectively. Zoomed-in views of the transmission curves 

of the around the two spectral resonances are shown in Figure 38 (c) and (d), 

respectively. The blue circles and the orange solid curves are experimental results and 

fitting curves from equation (2.11), respectively. 

In Figure 38 (c), we see that in a wavelength detuning of 56pm, the cavity 

optical transmission experiences a transition drop of about 17 dB. To 

experimentally obtain the quality factor, another device with same parameters but an 

input width of 700nm was further analyzed. This wide-input device can be considered 

as a classical nanobeam cavity without any TE1 propagating-mode excitation (Figure 

24 (a)). 

 

Figure 38. (a) Experimental transmission of the nanobeam waveguide. (b) Experimental transmission 

around 2nd cavity mode detected in nanobeam and side waveguides, depicted by blue and orange curves, 

respectively. (c) Experimental transmission and fitting curve of 1st cavity mode of nanobeam 

waveguide, depicted by blue circles and orange curve, respectively. (d) Experimental transmission and 

fitting curve of 2nd cavity mode of nanobeam waveguide, depicted by blue circles and orange curves, 

respectively. Lorentzian curve is labeled by a green curve while transition between maximum and 
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minimum are depicted by grey regions. 

According to our previous analysis, the transmission spectrum is then pretty close 

to a Lorentzian resonance. Using Q=/0, a Q factor of ~32000 was obtained (the 

transmission of this Lorentzian spectrum is low and not shown in Figure 38 (c)). The 

Q factor value was also extracted from equation (2.11), by fitting the experimental 

Fano spectrum. The asymmetric total decay rate 𝛾t  was 2π ∗ 2.96GHz , which 

indicated a Q factor of 34000, well coincident with that given by the Lorentzian-kind 

device. The asymmetric parameter q was estimated as q=1.6335, i.e. close to the 

perfect Fano condition (i.e. |q|1) proving the consistency of the carried-out 

optimization. In addition, the total measured energy transmission from the TE1 

propagating mode to the TE0 one (𝑇01 = 𝜂1𝑇1𝑐01 ) was found around 0.1267. 

Considering the excitation ratio of TE1 mode (𝜂1) for a 500nm width input waveguide 

of about 0.3 and the nanobeam transmission (𝑇1) of 0.9 and a mixing efficiency (𝑐01) 

of 0.35, this value of 𝑇01  (0.1267) is thus in good agreement with analytical 

prediction (0.0945). 

Similar analysis for the 2nd cavity mode was performed as well from which a 

more than 23.2 dB extinction ratio was obtained for a wavelength detuning of 

366pm, as shown in Figure 38 (d). The calculated asymmetric parameter q, the Q 

factor and the total transmission 𝑇12were 1.894, 5600 and 0.1056, respectively (the 

phase variables 𝐶𝑝 for both cases were calculated to be close to zero and are not 

shown). Using a device made of an identical nanobeam cavity but with a 

700nm-width input waveguide, an overall transmission T=0.88 was experimentally 

monitored. According to the estimation31 𝑇 = (
𝑄𝑡𝑜𝑡𝑎𝑙

𝑄𝑤𝑔
)
2

 and the classical relationship 

1

𝑄𝑡𝑜𝑡𝑎𝑙
=

1

𝑄𝑤𝑔
+

1

𝑄𝑖+𝑣
, quality factors 𝑄𝑤𝑔and 𝑄𝑖+𝑉 , both accounting for waveguide 

coupling and intrinsic absorption and vertical losses were estimated as 𝑄𝑤𝑔=5930 

and 𝑄𝑖+𝑉=100000, respectively. This estimate thus demonstrated the negligible 

nature of optical losses by absorption and out of plane scattering. An 

experimental Lorentzian spectrum with nearly the same Q-factor of 5600 is reported 

as well (green curve) in Figure 38 (d) for comparison, which is clearly less efficient. 

For a lossless Lorentzian resonance 
𝛾𝑡
2

(𝜔0−𝜔)2+𝛾𝑡
2 with the same Q factor of 5600 

(𝛾t=2π ∗ 17.75GHz), the Extinction Ratio (ER) for a wavelength detuning of 366pm 

(∆𝜔 ≈ 2π ∗ 46.83GHz) is -10log(
𝛾𝑡
2

(∆𝜔)2+𝛾𝑡
2)=9dB. This value is 14dB smaller than that 

of the experimentally reported Fano resonance (23dB). From another perspective, 

with the same Q factor (5600) and ER (23 dB), the wavelength detuning required in a 

Lorentzian case is 1.96nm (∆𝜔 ≈ 2π ∗ 251GHz), which would lead to a much higher 

driven power.  
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In order to have a clear observation on how Fano resonance is influenced by the 

balance between modes, a series of configurations with different TE0/TE1 excitation 

ratios was performed by making the input waveguide width 𝒘𝒊 vary. The related 

evolution of an array of fabricated Fano cavities with different 𝑤𝑖 ranging from 300 

nm to 700 nm is reported in Figure 39 (a)-(h). The different lineshapes first behave as 

all-pass filters and become asymmetric with increasing the input waveguide width, 

achieving almost a maximum asymmetry within the range of 500-600 nm of input 

waveguide width, then coming back to an add-drop-type Lorentzian shape resonator 

at wi700 nm. Clear Fano lineshapes are widely observed from wi=450nm to 650 nm. 

This easiness highlights the robustness of our design even in the case of possible 

tens of nanometers of fabrication errors. 

 

Figure 39. (a)-(h) Evolution of the Fano spectra by considering the variation of the overall nanobeam 

Fano cavity input waveguide width wi from 300nm to 700nm. 

Since the mode mixing efficiencies of the proposed subwavelength structure are 

important parameters driving the obtained Fano spectra, different practical parameters 

(different filling factors, i.e. the width of the etched rectangle normalized to the period, 

and etch lengths 𝐿𝑒) were chosen to check the Fano performances in a broad set of 

situations. 
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Figure 40. (a) – (i) Evolution of Fano cavities with different mixer parameters, i.e. varying and the 

length of rectangle etch hole 𝐿e(350nm, 400nm and 450nm) in each row. The filling factor varies from 

FF=0.35 to FF=0.65, from first top row to bottom row. 

Filling factor (ff, the size of etched hole compared to the silicon) was arranged from 

0.35 to 0.65, while 𝐿𝑒 was varied from 350 nm to 450nm. The related collected 

spectra are shown in Figure 40. Fano signatures are observed from all configurations. 

We note that small variations of 𝐿𝑒 tend to lead to only minor spectral changes, even 

difficult to perceive. However, increasing ff allows increasing the energy exchange 

efficiencies 𝐶10 and 𝐶01. The best configurations (𝑞 being close to 1) are driven to 

the cases with higher input waveguide widths (e.g. wi =500nm for ff=0.35, 

wi=600nm for ff=0.65). Fano resonance can even be seen with a 700nm input 

waveguide with ff=0.65 (bottom row of Figure 40). These results bring here a new 

confirmation of the robustness of the proposed mixer. 
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So far, a method for generating Fano resonances in a standalone silicon nanobeam 

cavity has been reported and investigated both analytically and experimentally. We 

now consider it for the realization of plasma-dispersion based electro-optical 

modulators. 

 

Figure 41. Proposed Fano modulator based on a rib silicon P-N depletion active structure. Inset is the 

cross-section of the rib structure at the position labeled by dot line. 

The proposed P-N Fano modulator is shown in Figure 41 and the analysis is 

performed on the 220nm SOI platform with 170 rib thickness and 50 nm slab 

thickness. The Fano cavity is slightly doped in both side and a depletion region 

formed in the center. Meanwhile, the free carriers induced index change in silicon can 

be described at 1.55µm wavelength by [153]: 

∆𝑛 = ∆𝑛𝑒 + ∆𝑛ℎ = −[8.8 × 10
−22 × ∆𝑁𝑒 + 8.5 × 10

−18 × (∆𝑁ℎ)
0.8   

∆𝑛𝑒 , ∆𝑛ℎ, ∆𝑁𝑒 and ∆𝑁ℎ are here the electron induced index change, hole induced index 

change, the density changes of electrons, and density change of holes. For a common doping 

change level of ∆𝑁𝑒= ∆𝑁ℎ= 5× 1017 , the index change is ∆𝑛= −1.7 × 10−3 . We 

consider a nanobeam cavity with symmetric P-N junctions, i. e. with identical widths for the 

P-type and N-type regions. The optical index in the P doped/depletion regions can be 

considered as 3.4783 and ~3.48, respectively. Since the depletion width of the P-N junction 

can be described as [154]: 

𝑊𝑑 = [
2 0 𝑟(𝑁𝐷+𝑁𝐴) 

𝑞(𝑁𝐷∙𝑁𝐴)
(𝑉𝑃 + 𝑉𝑒𝑥𝑡 −

2𝑘𝐵𝑇

𝑞
)]
1
2⁄

          (2.12) 

 휀0 = 8.8542 × 10
−12𝐹/𝑚  and 휀𝑟 = 12 ,𝑉𝑃 , 𝑉𝑒𝑥𝑡  and 𝑞  are the vacuum silicon 

dielectric constant, the silicon dielectric constant, the build-in potential, external applied 

voltage and the unit charge. 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature fixed at 

300K. 
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For a 0.35nm shift of the Fano resonance (consistent with the 2nd cavity mode discussed 

above, with Q~5600 and an extinction ratio larger than 20dB), the required width change of 

the depletion region (∆𝑊𝑑) calculated by using 3D-FDTD simulation was estimated to 

 about 15𝑛𝑚. The peak-peak voltage for such a width change at a bias of 𝑉𝐵 ≈ −0.5𝑉 is 

 ∆𝑉𝑒𝑥𝑡 ≈ 0.5𝑉  (i. e. 𝑉𝑒𝑥𝑡  is within the range of𝑉𝐵 − ∆𝑉𝑒𝑥𝑡 /2 to to 𝑉𝐵 + ∆𝑉𝑒𝑥𝑡 /2). 

Considering an average depletion width of 100nm and a cavity length L=15𝜇𝑚, the 

capacitance of the P-N junction is [154]: 

𝐶𝑑 = 휀0휀𝑟
𝐻𝑟𝑖𝑏(~220𝑛𝑚)

𝑊𝑑
𝐿 ≈ 4f𝐹             (2.13) 

Therefore, the energy consumption per bit can be estimated to [66]: 

𝐸 =
𝐶∙𝑉𝑝𝑝

2

4
=
𝐶𝑑∙∆𝑉

2

4
≈ 0.25𝑓𝐽/𝑏𝑖𝑡             (2.14) 

Even considering a practical capacitance (i.e. an experimental capacitance taking other 

capacitance and fabrication imperfection into account besides the depletion capacitance) of 

C=50fF like for earlier reported ring resonators [66], the energy consumption per bit is still as 

low as 3.125𝑓𝐽/𝑏𝑖𝑡. Such a low energy consumption per bit, which is supported by the 

small wavelength detuning of 366pm required to obtain an ER of 23dB in the proposed Fano 

cavity with a low Q factor of 5600 is not possible to be achieved in Lorentzian-lineshape 

resonant modulators. For the 1st cavity mode of Q~34000, (0.056nm shift for ER>15dB), the 

energy consumption per bit is reduced down to 𝐸 ≈ 0.5𝑓𝐽/𝑏𝑖𝑡. Besides, asymmetric doping 

profiles could be further considered to optimize the active structure performances [155]. The 

absorption resulting from the free carriers we obtained for this structure is ∆α = 7.25cm−1, 

from which we derived an imaginary part (𝑛 = 𝑛 + 𝑖𝑘, at 1550nm wavelength) of refractive 

index of ∆𝑘 = 0.89 × 10−4. Taking this value into account, we recalculated the quality 

factor of the nanobeam cavity with and without free carriers. The quality factor for the 2nd 

cavity mode in the passive case being 1.89 × 104, while it was estimated to 1.29 × 104 

when free carriers were accounted for, indicating an additional decay rate of only ∆𝛾i=2π ∗

2.38GHz. Comparing this value to the experimental total decay rate of the 2nd mode (𝛾t=2π
∗ 17.75GHz), we observe that the impact of free-carrier absorption on the Fano 

resonance decay is small. This result brings a confirmation that the cavity quality factor is 

dominated by the strong coupling between the propagating mode in the feeding 

waveguide and the cavity mode, rather than by free-carrier absorption losses (i.e., with the 

notations of the paper, the resonance is mainly governed by 𝛾1, 𝛾2, 𝛾v, rather than 𝛾i), let 

alone the further lossy contribution from fabrication. Thanks to this small additional decay 

rate, q is only weakly influenced by free carriers so that the asymmetric spectral 

lineshape of the cavity is preserved in the active modulation configuration. 



57 

 

 

2.1.4 Exploring the strained silicon Fano modulator  

Plasma dispersion effect modulation based on such a Fano single waveguide 

cavity brings very nice performance, however, in terms of the emergency, it would be 

much more interesting to explore the strained silicon modulator since the Pockels 

effect in strained silicon is way much weaker than the plasma dispersion effect in 

doped silicon. While in strained silicon, extremely huge driven voltage is requested to 

run an eye diagram, as we introduced in chapter 1. Therefore, taking into account the 

feasibility of strained silicon fabrication and the interests of improving strained silicon 

modulator, we try here to explore the possibility of combining the Fano resonator and 

the strained silicon platform, as shown in Figure 42 (a). To strain the silicon 

waveguide, a layer of silicon nitride with thickness 700nm is deposited on top on the 

silicon. Details of the strain formation is reported in [63] and no longer repeated here. 

Above the silicon nitride, a layer of Au electrode with 500nm thickness is deposited. 

Due to the introduction of silicon nitride, longer mirrors are required to compensate 

the reduction of index perturbation in each cell, but a nanobeam of 60 holes is enough 

to reach Q factors of 70000 and 8000 for the 1st and 2nd cavity modes, respectively. 

Accordingly, the transmission spectra of the TE0 and TE1 are presented in Figure 42 

(b). The distinct response is maintained well in this longer cavity. With an optimized 

6-N subwavelength mixer, a clear Fano resonance can be observed in Figure 42 (d). In 

this Figure, the longer wavelength (thus the 2nd and 3rd cavity modes) was primarily 

optimized instead of the 1st cavity mode because the 2nd cavity mode presents a more 

appropriate Q factor for optical modulation. 

As the Pockels effect is relatively weak, a travelling wave [156, 157] electrode is 

preferred to reduce the microwave reflection and losses. The equivalent electrical model of 

proposed strained silicon modulator is shown in Figure 43. A configuration of coplanar 

metallic type waveguide is used with electric field pointing at the vertical direction at the 

region of silicon core. The impedance of a two electrical probe is labeled as source impedance 

𝑍𝑆 and the terminal impedance is called 𝑍𝑇. The gap between electrodes, the width for S pad 

and the thickness of the gold electrode are chosen as 10𝜇𝑚, 30𝜇𝑚 and 500nm, respectively. 

This configuration gives us a characteristic impedance of 𝑍 = 50Ω at 30 GHz, i.e. matching 

the source impedance 𝑍𝑆 and terminal impedance 𝑍𝑇. Based on this model, the effective 

average voltage drops on the device, including microwave losses and group velocity 

mismatch, can be considered as [158, 159]: 
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Figure 42. (a) Schematic of proposed Fano modulator based on strained silicon platform. (b) 

Transmission of the optical modes TE0 and TE1 in a silicon nanobeam cavity covered by silicon nitride. 

The total hole number is 60, with hole radius taper from 100nm at the center to 70 nm at the edge. (c) 

Performance of a 6-N silicon subwavelength mixer covered by silicon nitride. (d) Corresponding 

overall device performance with an input waveguide width of 500nm. 

 

Figure 43. Schematic of equivalent electrical model of proposed strained silicon Fano modulator based 
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on a silicon-strained cladding structure. The loaded impedance that working with traveling-wave 

electrode is outlined by the red dot line. VNT: vector network analyzer. 

𝑉𝑎𝑣𝑔 = 𝑉𝑖𝑛
2𝑍

𝑍+𝑍𝑆

exp(𝑖𝛽𝑜𝐿)[𝑉++(
𝑍𝑇−𝑍

𝑍𝑇−𝑍
)𝑉−]

2[exp(γ𝐿)+(
𝑍−𝑍𝑆
𝑍+𝑍𝑆

)(
𝑍𝑇−𝑍

𝑍𝑇−𝑍
)exp (−γ𝐿)]

          (2.15) 

Where the two voltage coefficients are represented by:  

𝑉+ = exp[+𝑖
(−𝑖γ−𝛽𝑜)𝐿

2
]
sin [(−𝑖γ−𝛽𝑜)𝐿/2]

[(−𝑖γ−𝛽𝑜)𝐿/2]
             (2.16) 

𝑉− = exp[−𝑖
(−𝑖γ+𝛽𝑜)𝐿

2
]
sin [(−𝑖γ+𝛽𝑜)𝐿/2]

[(−𝑖γ+𝛽𝑜)𝐿/2]
             (2.17) 

where 𝑉0 is amplitude of the driven signal, 𝑍 = √
(𝑅 + 𝑖𝜔𝐿)

(𝐺 + 𝑖𝜔𝐶)⁄  and 

γ = √(𝑅 + 𝑖𝜔𝐿)(𝐺 + 𝑖𝜔𝐶) = α + 𝑖𝛽  is the complex characteristic impedance and 

complex propagation constant of driven signal, respectively. It’s considered by definition 

from shunt admittance (𝐺 + 𝑖𝜔𝐶) and series impedance (𝑅 + 𝑖𝜔𝐿).  𝛽𝑜 =
𝜔𝑚

c
𝑛𝑔o is 

the microwave propagation constant (microwave frequency 𝜔𝑚) and group velocity of the 

optical mode 𝑛𝑔o. The frequency response can then be calculated as [158, 159]:  

𝑚(𝜔𝑚) = |
𝑉𝑎𝑣𝑔(𝜔𝑚)

𝑉𝑎𝑣𝑔(0)
|                   (2.18) 

Though the effective length of device is merely 18𝜇𝑚, the length 𝐿 of TWE is set at 50𝜇𝑚 

to ease the difficulty of probes contacting. With the electrode cross-sections mentioned above, 

the propagation losses α𝑑𝐵 (α𝑑𝐵 ≈ 4.34α) and group index 𝑛𝑔𝑚 of the microwave driven 

signal are shown in Figures 44 (a) and (b). 

Considering an optical group index of 𝑛𝑔0 ≈ 4, the 𝑆21 (𝑚(𝜔𝑚)) response is showed in 

Figure 45 (a). Due to the long-mismatched paths in 2mm and 4mm TWE, the 3dB bandwidth 

is limited at no more than 30GHz and 12GHz, respectively. Strong decay occurs even at low 

frequency, e.g. 1GHz. This strong voltage dissipation comes from the non-negligible 

microwave losses α and the considerable length of MZI. 

This bandwidth limitation and voltage dissipation are well known for MZI modulators [54, 

65], and especially critical in the design of a strained silicon modulator [160] in which high 

driven signal is in demand. In contrast, the 1dB bandwidth for our proposed Fano modulator 

can exceed more than 200GHz thanks to its ultra-short device length (50𝜇𝑚). Simultaneously, 

there is almost no voltage dissipation in the full frequency range. In this situation, we can 

almost consider an effective voltage of 𝑉𝑎𝑣𝑔 ≈ 𝑉0 applied all along the electrode of the 

designed Fano electro-optical modulator. 



60 

 

 

 

Figure 44. Propagation loss α𝑑𝐵 (a) and group index 𝑛𝑔𝑚 (b) of the traveling-wave electrodes. The 

gap, S pad width and the thickness of the gold electrode are chosen as 10𝜇𝑚, 30𝜇𝑚 and 500nm. 

 

Figure 45. The A21 frequency response (a) and average effective voltage 𝑉𝑎𝑣𝑔 of the traveling-wave 

electrodes. The gap, S pad width and the thickness of the gold electrode are chosen as 10𝜇𝑚, 30𝜇𝑚 and 

500nm. Propagation loss and group velocity is inherited from Figure 44. 

Next, a voltage of 𝑉in = 10𝑉 is considered for microwave driving. The electrical 

potential and electric field distribution could be calculated using the finite element method 

(FEM) and are shown in Figure 46. In the region of the silicon core, the electric field is nearly 

homogeneous with an amplitude of |E| ≈ 1.4 × 106V/m. Combining this value with the 

experimental second-order nonlinear susceptibility of  ∆𝜒𝑦𝑦𝑥
(2)

= −1.8 pm/V  [63], a 

resulting index change in silicon [51, 160] of ∆𝑛𝑒𝑓𝑓 = 2∆𝜒𝑦𝑦𝑥
(2)
𝐸𝑥 ≈ 5.04 × 10

−6 can be 

obtained.  According to the nearly linear wavelength change with respect to index variation, 

as shown in Figure 47, a wavelength detuning of 2 pm can be expected. Based on this index 

variation, a transmission extinction 1.3 dB and 0.5 dB can be obtained from the cavity optical 

model with Q factor of 34000 and 5600 (Figure 38 (c) and (d)). This is much more efficient 

than that previous demonstrations made using MZI where high microwave losses were 

present and a frequency detuning larger than 1 nm was needed to obtain a 3dB extinction 

[160, 63], which is in principal impossible to achieve with this low ∆𝜒𝑦𝑦𝑥
(2)

= −1.8 pm/V. 
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3dB extinction can be further expected with 5pm and 14 pm in the cavity with Q of 34000 

and 5600, respectively, which indicates approximately a 200-fold and 60-fold improvements 

on extinction ratio. Based on these analyses, a Fano strained silicon modulator is expected 

possibly to run an eye-diagram which has not been done in [63] yet.  

 

Figure 46. Electric potential (a) and electric field (b) distribution with 10V driving signal. 

 

Figure 47. Wavelength shift results from the index variation of the Fano cavity. 

Currently, an eye-opened diagram (e.g. 3dB extinction) is still not easily accessible since 

it requests higher availability of driven amplitude (e.g. 25V). However, instead of using such 

a 25V driven amplitude, we are also targeting a higher nonlinear susceptibility by 

reorganizing the cladding for higher strain. For instance, a triple of the nonlinear susceptibility 

∆𝜒𝑦𝑦𝑥
(2)

 (i.e. 4.5 pm/V, yet is still much lower than LiNbO3) would be enough to propose a 

3dB-ER eye-diagram. These studies on the materials and structures are current under progress 

to demonstrate this research outcome. Overall, the strong improvement of the optical 

extinction ration with low Q and the ultra-compact TWE give us a nontrivial possibility to run 

a high-rate and low-power silicon modulator with low nonlinear effect. 

2.2 Conclusions and outlook 

 This chapter has developed an approach for improving the modulation efficiency 

of silicon resonant modulators. Taking the silicon modulator based on plasma 
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dispersion effect as the first example, a Fano cavity resonator enabled by 

sub-wavelength engineering (mixer) has led to simultaneously anticipated an 

ultra-low power consumption of less than 5 fj/bit with a small Q factor of only 5600 

but yet with a high extinction ratio of 23 dB. Based on this result, high-speed (up to 

40 Gb/s) modulation with clear eye diagram can be foreseen. 

Additionally, more importantly, starting from the unusual performance of the 

optical cavity on-off transition, we have extended the method to design a strained 

silicon Fano modulator. Modulation based on the strain-induced Pockels effect in 

silicon usually suffers strongly from the weak amplitude of the exploited nonlinear 

effect and of the considerable microwave losses due to the needed large footprints. For 

example, previously a 3dB extinction required a wavelength shift of 1nm in MZI 

strained silicon [63], which is unreachable with the low second-order susceptibility 

level ∆𝜒𝑦𝑦𝑥
(2)

= −1.8pm/V presently available. By means of the proposed subwavelength 

structured Fano resonator, around 200-fold/60-fold (Q factor of 32000/5600) 

improvement on the extinction with the same driven voltage is theoretically predicted.  

To sum, the reported results bring promise of huge progress regarding 

electro-optical modulation in silicon photonics. At the time being of the manuscript 

writing period, the fabrication of samples is currently under progress. 
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3 Subwavelength structured Self-Adaptive 

Boundary for Kerr nonlinearity 

After the introduction and motivations in Chapter 1, Chapter 2 was devoted to the 

theme of electrooptical modulation by plasma and Pockels effects. Chapter 3 is now 

devoted to the use of third order non-linearities, in particular for the use of four-wave 

mixing (FWM) processes and the realization of light sources (frequency combs). 

To first address some classical issues on the dispersion manipulation in FWM 

process, we introduce originally the Self-Adaptive Boundary (SAB) in a waveguide 

which is built to by extracting the similarities from a quantum well, for inter-mode 

four-wave mixing. With the proposed SAB, modes with different effective index 

values can automatically adapt to different spatial spans, giving room to satisfy the 

required phase matching condition for nonlinear processes in a new strategy. The 

model is investigated with detailed calculation and numerical confirmation. The 

feasibility of proposed concept for nonlinear wave generation is demonstrated using 

subwavelength grating waveguides relying on an equivalent index model. 

Next, the proposed SAB subwavelength waveguides are adopted to extend the 

bandwidth of silicon soliton frequency combs where the generation of full spectra is 

built on a cascaded FWM process. The generation of soliton frequency combs is 

performed with different waveguide strategies for comparison which leads to the 

conclusion that the proposed SAB waveguide condition can powerfully enhance the 

operation of frequency micro-combs. 

3.1 Self-Adaptive Boundary (SAB) in phase-matched 

optical waveguides 

3.1.1 Reconsidering the momentum and energy conservation in FWM 

processes 

In the implementation of wideband sources for silicon photonics [51, 161-162], 

especially the FWM-based parametric amplification [163-165] and mid-infrared light 

sources [166-168], the compensation of both the intrinsic material and 

nonlinearity-induced dispersion is a key point to maximize the conversion efficiencies. 

In a conventional single-mode FWM approach, depicted in Figure 48 a, energy is 

transferred from the pump into signal and idler propagating in the fundamental 

waveguide mode with different propagation constants. Thus, precise control of 

dispersion is required to fulfill the phase matching condition (2kzP=kzS+kzI). Another 

approach to ease the request on the dispersion is to use inter-mode FWM [169-171] in 

which scheme more than one mode is involved in the nonlinear process. As shown in 

Figure 56 b, the working point (𝑘,𝜔) is then distributed over 3 or 4 modes. By 
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fulfilling 𝜔𝑧𝑃1 + 𝜔𝑧𝑃2 = 𝜔𝑧𝑆 + 𝜔𝑧𝐼  and 𝑘𝑧𝑃1 + 𝑘𝑧𝑃2 = 𝑘𝑧𝑆 + 𝑘𝑧𝐼 , four wave 

mixing processes can be potentially conducted in a with frequency span. This requires, 

however, appropriate and simultaneous control of the dispersion relationship of the 

different modes involved operating at different points (,k), as illustrated in Fig. 48 

(b). 

 

Figure 48. (a) Schematic of degenerate four wave mixing operating in a single-mode waveguide with 

anomalous dispersion. (b) Schematic of a classical inter-mode four-wave mixing. (c) Schematic of 

degenerate four wave mixing operating within an inter-modal scheme regardless the absolute 

dispersion provided that all dispersion curves are obtained by translating the same curve with a 

constant frequency step (e.g. ∆𝜔21=∆𝜔10 here). 

Instead of managing to yield anomalous dispersion in single-operation or 

searching the possible working points (,k) for inter-mode four mixing, we propose 

to shape the index profile of the waveguide to support different spatial modes 

with the same propagation constant and equal frequency spacing, as shown in 

Figure 48 c. In this proposal, energy is transferred from the pump into signal and 

idler propagating in different waveguide modes with the same propagation constant 

(𝑘𝑧𝑃 = 𝑘𝑧𝑆 = 𝑘𝑧𝐼 ). Therefore, the phase matching condition is automatically 

satisfied. Concurrently, energy conservation requires equal frequency spacing. Then, 

the bandwidth of the proposed scheme does not depend on the exact dispersion of the 

waveguide, but on the relative spacing of the dispersion curves of the modes, 

determining the wavelength range where energy conservation is fulfilled. The key 

point is then to ensure that the dispersion curve of each mode is obtained by a 

simple frequency translation, as a whole, of a previous mode; in other words, 

that the dispersion curves of the modes involved in the non-linear interaction are 
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parallel to each other. As the search for this condition is not natural, we devote most 

of the following pages to it, starting with the simplified case of planar optical 

waveguides in order to be able to carry out, in the first instance, a completely 

analytical resolution. 

Let us thus consider a two-dimensional step-index slab waveguide presented in 

the inset of Figure 49 (a) (infinite depth along the x axis). As it is well known from 

textbooks, the eigen equation for modes propagating along the 𝑧 axis with an electric 

field polarized along 𝑦 axis then reads as [7]: 

ℎ𝑎 =
𝑚𝜋

2
+ 𝑎𝑟𝑐𝑡𝑎𝑛(

𝛾𝑛𝑤
2

ℎ𝑛𝑐
2)                   (3.1) 

where 𝑛𝑤 and 𝑛𝑐 are the material index of waveguide core and cladding, while 

ℎ = √(𝑘0
2𝑛𝑤2 − 𝑘z2) and 𝛾 = √(𝑘z2−𝑘0

2𝑛𝑐2) are the wavevector along the 𝑦 axis, 

inside and outside the waveguide core, respectively. Silicon and silicon dioxide are 

chosen here as the core and cladding materials, considering material dispersion. The 

waveguide width 2𝑎 is set here at 700nm, which is enough to support 4 modes with 

effective index values higher than 2. From equation (3.1) we obtain the dispersion 

curves for the first four order modes (with corresponding mode order 𝑚=0, 1, 2, 3), 

as shown in Figure 49 (a). Obviously, the frequency spacings change in a nonlinear 

manner with the mode order 𝑚, resulting in an uneven spacing that precludes the 

satisfaction of energy conservation required for the proposed multi-mode FWM 

approach. Figure 49 (b) depicts the evolution of the frequency spacing ∆𝜔𝑚 = 

𝜔𝑚+1-𝜔𝑚 and effective index as a function of the mode order. With the increasing 

mode order m (thus decreasing 𝑛𝑒𝑓𝑓), the frequency spacing ∆𝜔𝑚monotonously and 

rapidly increases. 

 

Figure 49. (a) Dispersion curves of first 4 modes of a two-dimension silicon waveguide with silica 

cladding, propagating along 𝑧 axis. The width is 2𝑎 = 700nm. The index profile of the waveguide 

and mode distribution are plotted in the inset. (b) Frequency spacings 𝜔m+1-𝜔m and 𝑛𝑒𝑓𝑓  as a 

function of the mode order 𝑚, collected at 𝑘𝑧 = 1.08 × 10
7 in (a).  
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To better understand the evolution of frequency spacing ∆𝜔𝑚, we consider the 

derivative of the mode frequency with respect to the mode order m by considering it 

artificially (i.e. mathematically), for the analysis, as a continuous variable. Assuming 

that the 𝑘𝑧 is a constant and 𝜔 is a function of 𝑛𝑒𝑓𝑓 and 𝑚, the frequency spacing 

between modes can therefore be expressed as:  

𝑑𝜔

𝑑𝑚
=

𝑑

𝑑𝑚
(
𝑘𝑧𝑐

𝑛𝑒𝑓𝑓
) =

𝑘𝑧𝑐

−𝑛𝑒𝑓𝑓
2 ∙

𝑑𝑛𝑒𝑓𝑓

𝑑𝑚
 =

𝑘𝑧𝑐

−𝑛𝑒𝑓𝑓
2 /

𝑑𝑚

𝑑𝑛𝑒𝑓𝑓
           (3.2) 

From equation (3.2) we can infer that if 𝑑𝑚 𝑑𝑛𝑒𝑓𝑓
⁄ is proportional to −1

𝑛𝑒𝑓𝑓
2⁄ ,  then 

the frequency spacing is fixed. Though the mode order number 𝑚 is a discrete 

integer indicating the phase solution, mathematically it still can be represented as a 

function of 𝜔 and 𝑛𝑒𝑓𝑓, from equation (3.1) that: 

𝑚 =
2

𝜋
[
𝑘𝑧∙𝑎√𝑛𝑤

2 −𝑛𝑒𝑓𝑓
2

𝑛𝑒𝑓𝑓
− 𝑎𝑟𝑐𝑡𝑎𝑛(

𝛾𝑛𝑤
2

ℎ𝑛𝑐
2)] = 𝑓𝑚1 + 𝑓𝑚2          (3.3) 

In which𝑓𝑚1 =
2𝑘𝑧

𝜋
𝑎√

𝑛𝑏
2

𝑛𝑒𝑓𝑓
2 − 1  describes the phase from standing waves, while 

𝑓𝑚2 = −
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛(

𝑛𝑏
2√(𝑛𝑒𝑓𝑓

2 −𝑛𝑐
2)

𝑛𝑐
2√(𝑛𝑏

2−𝑛𝑒𝑓𝑓
2 )
)  accounts for the abrupt index change on the 

boundary. The related first derivatives can therefore be written as: 

𝑑𝑓𝑚1

𝑑𝑛𝑒𝑓𝑓
=
2𝑘𝑧

𝜋

𝑑

𝑑𝑛𝑒𝑓𝑓
(𝑎√

𝑛𝑤
2

𝑛𝑒𝑓𝑓
2 − 1) =

−2𝑎𝑘𝑧𝑛𝑤
2

𝜋𝑛𝑒𝑓𝑓
2 √𝑛𝑤

2 −𝑛𝑒𝑓𝑓
2
            (3.4) 

𝑑𝑓𝑚2

𝑑𝑛𝑒𝑓𝑓
= −

2

𝜋
∙

𝑑

𝑑𝑛𝑒𝑓𝑓
𝑎𝑟𝑐𝑡𝑎𝑛(

𝛾𝑛𝑤
2

ℎ𝑛𝑐
2) = −

2

𝜋
∙

1

1+
𝑛𝑏
4(𝑛𝑒𝑓𝑓

2 −𝑛𝑐
2)

𝑛𝑐
4(𝑛𝑏

2−𝑛𝑒𝑓𝑓
2 )

∙
𝑑

𝑑𝑛𝑒𝑓𝑓
(
𝑛𝑏
2√(𝑛𝑒𝑓𝑓

2 −𝑛𝑐
2)

𝑛𝑐
2√(𝑛𝑏

2−𝑛𝑒𝑓𝑓
2 )
)    

= −
2

𝜋
∙

𝑛𝑒𝑓𝑓

−1+𝑛𝑒𝑓𝑓
2 (1/𝑛𝑐

2+1/𝑛𝑤
2 )
∙

1

√(𝑛𝑒𝑓𝑓
2 −𝑛𝑐

2)
∙

1

√(𝑛𝑤
2 −𝑛𝑒𝑓𝑓

2 )
           (3.5) 

Confirmed by numerical intermediate calculation, for 𝑎 =350nm, 𝑛𝑤 =3.48, 

𝑛𝑐=1.445 and 𝑛𝑒𝑓𝑓 from 1.6 to 3, we have 
𝑑𝑓𝑚2

𝑑𝑛𝑒𝑓𝑓
∈ (−1.7,−0.19) while 

𝑑𝑓𝑚1

𝑑𝑛𝑒𝑓𝑓
∈
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(−5,−3), from which we may assume that the 
𝑑𝑚

𝑑𝑛𝑒𝑓𝑓
 is almost governed by 

𝑑𝑓𝑚1

𝑑𝑛𝑒𝑓𝑓
 

for simplifying the analysis. Therefore, 
𝑑𝑚

𝑑𝑛𝑒𝑓𝑓
 can be approximately expressed as: 

𝑑𝜔

𝑑𝑚
=

𝑘𝑧𝑐

−𝑛𝑒𝑓𝑓
2 /(

𝑑𝑓𝑚1

𝑑𝑛𝑒𝑓𝑓
+

𝑑𝑓𝑚2

𝑑𝑛𝑒𝑓𝑓
) ≈

𝑘𝑧𝑐

−𝑛𝑒𝑓𝑓
2 /(

𝑑𝑓𝑚1

𝑑𝑛𝑒𝑓𝑓
) =

𝑐𝜋√𝑛𝑤
2 −𝑛𝑒𝑓𝑓

2

2𝑎𝑛𝑤
2        (3.6) 

The analytical d𝜔/d𝑚, calculated from equation (3.6) by considering 𝑎=350nm, 

𝑛𝑤=3.48, 𝑛𝑐=1.445, is plotted in Figure 50 (a). The effective index 𝑛𝑒𝑓𝑓 of the first 

4 modes are marked by the circles in the Figure. The corresponding values of 

d𝜔/d𝑚 range from 2𝜋 ∗ 24THz to 2𝜋 ∗ 45THz. Marked points are well coincident 

with the discrete calculation results coming from the dispersion curves shown in 

Figure 49 (b). From equation (3.6), it follows that 
𝑑𝜔

𝑑𝑚
 is almost proportional to 

√𝑛𝑤2 − 𝑛𝑒𝑓𝑓
2 , which gives a good explanation on the monotonous and nonlinear 

evolution of ∆𝜔𝑚  observed in Figure 49 (b). This confirms that the analytical 

frequency spacing 
𝑑𝜔

𝑑𝑚
 is a useful and simple tool to investigate how the frequency 

spacing evolves with the waveguide dimension and the index profile. 

 

Figure 50. (a) Frequency spacings as a function of effective index 𝑛𝑒𝑓𝑓, obtained from analytical 

calculation. (b) Schematic of the transverse photonic well described by the cut-off frequency for photon 

propagating along 𝑧 axis with wavevector 𝑘𝑧. 

The step-index slab waveguide can be understood from the point of view of 

quantum wells, just by considering the cut-off frequencies (the minimum 

frequency/energy for a photon to propagate along 𝑧 axis with a wave vector of 𝑘𝑧 ) 

for the core (𝑘𝑧𝑐/𝑛𝑤) and cladding (𝑘𝑧𝑐/𝑛𝑐), for a given wavevector 𝑘𝑧 [172-174]. 

Then, the behavior of frequency spacings is similar to the solutions of a harmonic 

oscillator in a finite-depth potential well. The square potential well formed by the 

step-index waveguide, depicted in Figure 50 (b), results in unevenly spaced 
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frequencies. Conversely, it is well known that parabolic potential wells yield 

equi-spaced frequencies [175].  

3.1.2 Self-Adaptive Boundary (SAB) 

Standing on the issue (non-equal frequency spacing) introduced above, we try to 

explore the possibility of equalizing the frequency spacing by reshaping the potential 

well with an index profile such as the one shown in Figure 51 (a). Concepts and 

therefore approaches are adopted from quantum mechanics. We consider a 2D 

graded-index slab waveguide (then with graded cut-off potential) with a waveguide 

width of 2𝑎. The indices for the waveguide core, waveguide edge and cladding are  

𝑛(0) = 𝑛𝑐𝑒𝑛𝑡, 𝑛(𝑎) = 𝑛𝑏 and 𝑛(|𝑦| > 𝑎) = 𝑛𝑐, respectively, as displayed in Figure 

51 (b). When the condition that all effective indices of the modes are larger than the 

physical boundary index (i.e. 𝑛𝑒𝑓𝑓 > 𝑛(𝑎) = 𝑛𝑏 for all the guided modes) into the 

index profile, the waveguide can be considered as splitting into five zones (zones 0, 

∓1, ∓2). The central part (part 0) is within the [-𝐿𝑚, 𝐿𝑚] range in which 𝑛(𝑦) is 

larger than 𝑛𝑒𝑓𝑓 and can be expressed by a 𝑐𝑜𝑠 function as usually, instead of the 

physical boundaries (i. e.  𝑦 = ∓𝑎). The other four zones (zones ∓1, ∓2) are 

described by a decaying form because 𝑛(𝑦) is there smaller than 𝑛𝑒𝑓𝑓.  

 

Figure 51. (a) Schematic of a graded-index potential well. (b) Sketch of a non-uniform index profile 

and the mode distribution of the first three modes propagating 𝑧 axis. 𝑛𝑐𝑒𝑛𝑡 , 𝑛𝑏 , 𝑛𝑐 are the material 

index of the waveguide center, waveguide boundary and the surrounding for a waveguide with 

self-adaptive boundary (𝑛𝑒𝑓𝑓𝑚> 𝑛𝑏 ). The zero point of 𝑦  axis is located at the center of the 

waveguide. 
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To satisfy the Maxwell’s equations and the corresponding boundary condition for 

an electric field polarizing along 𝑦, the field can be expanded as follows we rewrite 

the wave equation inside the waveguide: 

𝐻𝑥 = 𝐴2
+𝑒𝑥𝑝 [𝑘0√𝑛𝑒𝑓𝑓

2 − 𝑛𝑐2 ∙ (𝑦 − 𝑎)] ,      𝑎 ≤ 𝑦                             (3.7) 

𝐻𝑥 = 𝐴1
+𝑐𝑜𝑠ℎ[𝐷(𝑦)] + 𝐵1

+𝑠𝑖𝑛ℎ[𝐷(𝑦)],        𝐿 ≤ 𝑦 < 𝑎                    (3.8) 

𝐻𝑥 = 𝐴0𝑐𝑜𝑠[𝑁(𝑦) − 𝜑] ,                             − 𝐿 < 𝑦 < 𝐿                    (3.9) 

𝐻𝑥 = 𝐴1
−𝑐𝑜𝑠ℎ[𝐷(𝑦)] + 𝐵1

−𝑠𝑖𝑛ℎ[𝐷(𝑦)] ,   − 𝑎 < 𝑦 ≤ 𝐿               (3.10) 

𝐻𝑥 = 𝐴2
−𝑒𝑥𝑝 [𝑘0√𝑛𝑒𝑓𝑓

2 − 𝑛𝑐2 ∙ (𝑦 + 𝑎)] , −𝑎 ≥ 𝑦                            (3.11) 

in which the 𝐴1,2
+  and 𝐵1,2

+  are the amplitudes of the decaying components for the 

positive direction, while 𝐴1,2
−  and 𝐵1,2

−  stand for the negative one. 𝜑 is the biased 

phase that is related to the mode order (𝜑 = 0 or 𝜑 = 𝜋 2⁄ , with respect to modes of 

symmetric and anti-symmetric parities). The pattern of zone 0 and zones ∓2, jointly 

determine the hyperbolic form of part 1. Due to the varying index profile, currently 

the total phases of the wave propagation along the 𝑦 axis inside the waveguide can 

be transformed to the integral of position-related wavevector √(𝑘0
2𝑛2(𝑦) − 𝑘𝑧2)  to 

𝑦 coordinate (𝑁𝑚 and 𝐷𝑚 stand with respect to zone 0 and zones ∓1, respectively): 

𝑁𝑚(𝑦) = ∫ √(𝑘0
2𝑛2(𝑦) − 𝑘𝑧2)

𝐿𝑚
0

𝑑𝑦                  (3.12) 

𝐷𝑚(𝑦) = ∫ √(𝑘𝑧2 − 𝑘0
2𝑛2(𝑦))

𝑦

𝐿𝑚
𝑑𝑦                           (3.13) 

As it is shown in Figure 51, modes with different mode orders 𝑚 are confined in 

different spatial spans, which sizes increase with m. Each spatial span 𝐿𝑚 (for 𝑚 

=1,2,3, …) which can be called “effective length” for mode ‘𝑚’ is defined through 

𝑛(𝐿𝑚) = 𝑛𝑒𝑓𝑓𝑚. The condition 𝒏𝒆𝒇𝒇 > 𝒏𝒃 is defined as “Self-Adaptive Boundary 

(SAB)” in the manuscript. By solving the equation 3.7-3.13, the eigen equation can be 

written as: 

𝑡𝑎𝑛[𝑁(𝐿𝑚) ± 𝜑] =
𝐷𝑚
′ (𝐿𝑚)

𝑁𝑚
′ (𝐿𝑚)

= 𝑙𝑖𝑚
𝑦→𝐿𝑚

𝐷𝑚
′ (𝑦)

𝑁𝑚
′ (𝑦)

= 1              (3.14) 

The Eigen equation for modes propagating along 𝑧 axis with an electric field polarized along 

the 𝑦 axis can be rewritten as: 
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𝑁(𝐿𝑚) = ∫ √(𝑘0
2𝑛2(𝑦) − 𝑘𝑧

2)
𝐿𝑚
0

𝑑𝑦 =  
𝑚𝜋

2
+
𝜋

4
            (3.15) 

Previously, in the step-index waveguide, to respond to the approximately linear phase 

increas on the right part of equation (3.3), the changes of 𝜔  and 𝑛𝑒𝑓𝑓  were 

correlated through the relationship 𝑎 (
𝜔𝑚+1

𝑐
)√𝑛𝑤2 − 𝑛𝑒𝑓𝑓,𝑚+1

2 −

𝑎 (
𝜔𝑚

𝑐
)√𝑛𝑤2 − 𝑛𝑒𝑓𝑓,𝑚

2 =
𝜋

2
. When the proposed self-adaptive boundary 𝑛𝑒𝑓𝑓,𝑚 >

𝑛𝑏 ∀𝑚  is introduced, the spatial integral range is automatically selected which 

exactly gives the room to trim the frequency spacing through the following condition : 

𝜔𝑚+1

𝑐
∫ √𝑛2(𝑦) − 𝑛𝑒𝑓𝑓,𝑚+1

2𝐿𝑚+1
0

−
𝜔𝑚

𝑐
∫ √𝑛2(𝑦) − 𝑛𝑒𝑓𝑓,𝑚

2𝐿𝑚
0

=
𝜋

2
  .To consider the 

improvement from this new condition, a similar analysis for frequency spacings is 

carried out as previously with a general index profile described by 𝑛(𝑦) =

(𝐴 + 𝐵𝑦)𝑝. With this variable confinement strength effect, i.e. the Self-Adaptive 

Boundary (SAB), we first consider a linear index profile, i.e. 𝑝 = 1 and 𝑛(y) =

𝐴𝑦 + 𝐵. The phase 𝑁(𝐿𝑚) can be recalculated as: 

𝑁(𝐿𝑚) =  
𝑚𝜋

2
+
𝜋

4
, ie: 

𝑁(𝐿𝑚) =
𝑘𝑧𝑛(𝑦)

2𝐴𝑛𝑒𝑓𝑓,𝑚
√𝑛2(𝑦) − 𝑛𝑒𝑓𝑓,𝑚

2 −
𝑘𝑧𝑛𝑒𝑓𝑓,𝑚

2𝐴
𝑙𝑜𝑔 [

𝑘𝑧

𝑛𝑒𝑓𝑓,𝑚
√𝑛2(𝑦) − 𝑛𝑒𝑓𝑓,𝑚

2 +

𝑘𝑧

𝑛𝑒𝑓𝑓,𝑚
𝑛(𝑦)]|0

𝐿                    (3.16) 

Because of the self-adaptive behavior related to the endpoint 𝑛(𝐿𝑚) = 𝑛𝑒𝑓𝑓𝑚 

condition, the previous relationship can be greatly simplified in a common form for 

the different modes, with 𝑛(0) = 𝐵 = 𝑛𝑐𝑒𝑛𝑡, to: 

𝑁(𝐿𝑚) =
−𝑘𝑧𝑛𝑒𝑓𝑓,𝑚

2𝐴
𝑙𝑜𝑔[𝑘𝑧] − (

𝑛𝑐𝑒𝑛𝑡

2𝐴
∙

𝑘𝑧

𝑛𝑒𝑓𝑓,𝑚
√𝑛𝑐𝑒𝑛𝑡

2 − 𝑛𝑒𝑓𝑓,𝑚
2  −

𝑘𝑧𝑛𝑒𝑓𝑓,𝑚

2𝐴
𝑙𝑜𝑔 [

𝑘𝑧

𝑛𝑒𝑓𝑓,𝑚
√𝑛𝑐𝑒𝑛𝑡

2 − 𝑛𝑒𝑓𝑓,𝑚
2 +

𝑘𝑧

𝑛𝑒𝑓𝑓
𝑛𝑐𝑒𝑛𝑡])  

=
𝑘𝑧𝑛𝑒𝑓𝑓,𝑚

2𝐴
𝑙𝑜𝑔 (√

𝑛𝑐𝑒𝑛𝑡
2

𝑛𝑒𝑓𝑓,𝑚
2 − 1 +

𝑛𝑐𝑒𝑛𝑡

𝑛𝑒𝑓𝑓,𝑚
) −

𝑘𝑧𝑛𝑐𝑒𝑛𝑡

2𝐴
√
𝑛𝑐𝑒𝑛𝑡
2

𝑛𝑒𝑓𝑓,𝑚
2 − 1      (3.17) 

By doing the 1st derivative of 𝑁(𝐿), we have 
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𝑑𝑁(𝐿𝑚)

𝑑𝑛𝑒𝑓𝑓
=

𝑘𝑧

2𝐴

(

 
 
𝑙𝑜𝑔 [√

𝑛𝑐𝑒𝑛𝑡
2

𝑛𝑒𝑓𝑓,𝑚
2 − 1 +

𝑛𝑐𝑒𝑛𝑡

𝑛𝑒𝑓𝑓,𝑚
] −

𝑛𝑒𝑓𝑓,𝑚
2

√𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑒𝑓𝑓,𝑚

2

√𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑒𝑓𝑓,𝑚

2 +𝑛𝑐𝑒𝑛𝑡

− 1 +

𝑛𝑐𝑒𝑛𝑡
3

𝑛𝑒𝑓𝑓,𝑚
2 √𝑛𝑐𝑒𝑛𝑡

2 −𝑛𝑒𝑓𝑓,𝑚
2

)

 
 

  

=
𝑘𝑧

2𝐴
𝑙𝑜𝑔(√

𝑛𝑐𝑒𝑛𝑡
2

𝑛𝑒𝑓𝑓,𝑚
2 − 1 +

𝑛𝑐𝑒𝑛𝑡

𝑛𝑒𝑓𝑓,𝑚
) +

𝑘𝑧𝑛𝑐𝑒𝑛𝑡√𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑒𝑓𝑓,𝑚

2

2𝐴𝑛𝑒𝑓𝑓,𝑚
2            (3.18) 

For a fixed 𝑘𝑧, we have 𝑚 =
2

𝜋
(𝑁(𝐿𝑚) −

𝜋

4
), therefore  

𝑑𝜔

𝑑𝑚
=

𝑘𝑧𝑐

−𝑛𝑒𝑓𝑓,𝑚
2 /

𝑑𝑚

𝑑𝑛𝑒𝑓𝑓,𝑚
=

𝜋𝑘𝑧𝑐

−2𝑛𝑒𝑓𝑓,𝑚
2 /

𝑑𝑁(𝐿)

𝑑𝑛𝑒𝑓𝑓,𝑚
   

= −𝐴𝜋𝑐/[𝑛𝑒𝑓𝑓,𝑚
2 𝑙𝑜𝑔(√

𝑛𝑐𝑒𝑛𝑡
2

𝑛𝑒𝑓𝑓,𝑚
2 − 1 +

𝑛𝑐𝑒𝑛𝑡

𝑛𝑒𝑓𝑓,𝑚
) + 𝑛𝑐𝑒𝑛𝑡√𝑛𝑐𝑒𝑛𝑡

2 − 𝑛𝑒𝑓𝑓,𝑚
2 ]   (3.19) 

Figure 52 (a) shows d𝜔/d𝑚 as a function of 𝑛𝑒𝑓𝑓, calculated from equation 3.19, 

considering 𝑎=800nm, 𝑛𝑐𝑒𝑛𝑡=3.48, 𝑛𝑏=1.8, 𝑛𝑐 =1.45 and 𝑛𝑒𝑓𝑓 from 1.8 – 3.4. 

Though the frequency spacings is still changing monotonously, the function exhibits a 

totally new tendency with an increasing  d𝜔/d𝑚 with 𝑛𝑒𝑓𝑓. This trend is opposite 

to that of a step-index waveguide shown in Figure 58 (a). The dispersion curves of the 

first four modes, obtained from 2D FDTD are presented in Figure 60 (b), in which the 

narrowing effect of  d𝜔/d𝑚 is consistent with the prediction shown in Figure 60 (a). 

Particularly,  d𝜔/d𝑚 is flattened for 𝑛𝑒𝑓𝑓~2 (Figure 60 (b)), which indicates that 

identical frequency spacings can be found at more than one point. 

Then, we study d𝜔/d𝑚 for an index profile characterized by 𝑝 ≠ 1 and 𝑛(y) =

(𝐴 + 𝐵𝑦)𝑝. To do so, we expand 𝑛(𝑦) around y=0 to a summation of a 8-order 

polynomial using the Taylor series expansion: 𝑁(𝐿) = ∫ ∑ [𝐶0 + 𝐶1(𝑛 − 𝑛𝑐𝑒𝑛𝑡) +
𝑘
1

𝐿

0

⋯+ 𝐶10(𝑛 − 𝑛𝑐𝑒𝑛𝑡)
𝑘] 𝑑𝑦  and redo the analytical integral and derivative. The 

evolutions of d𝜔/d𝑚   as a function of 𝑛𝑒𝑓𝑓 for 𝑝 = 0.6  and 𝑝 = 0.3 , are 

presented in Figure 52 (a). The flattened d𝜔/d𝑚 region shifts to higher 𝑛𝑒𝑓𝑓 values 

with decreasing 𝑝 numbers. For 𝑝 = 0.3 the flattened region appears near 𝑛𝑒𝑓𝑓 =

2.85, which is close to that of a fundamental mode in a silicon on insulator (SOI) 

waveguide. Figure 3 (d) shows the dispersion curves of the first 4 order modes 

calculated using the FDTD method for 𝑝 = 0.3. Clearly, all the curves are almost 
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parallel and separated by a very close frequency spacing of ~20.5 THz. The 

evolution of frequency spacings, ∆𝜔𝑚 , and the effective index, 𝑛𝑒𝑓𝑓 , for a 

wavevector of  𝑘𝑧 = 1.03 × 10
7 m-1 are presented in Figure 52 (b) 

 

Figure 52. (a) Analytical Frequency spacings as a function of effective index 𝑛𝑒𝑓𝑓, with different 

𝑜𝑟𝑑𝑒𝑟 numbers (different modes feeling different profiles). The other parameters are: 2𝑎 = 1600nm. 

𝑛𝑐𝑒𝑛𝑡 = 3.48,  𝑛𝑏 = 1.8, 𝑛𝑐=1.45. The 𝑛𝑒𝑓𝑓 points, corresponding to the first 3 modes, are labelled 

by the colored circles. (b) Dispersion curves of first 4 modes with 𝑜𝑟𝑑𝑒𝑟 = 1, i.e. linear shape, using 

FDTD calculation.  

Opposite to the step-index waveguide case studied in Figure 2 (b), the frequency 

spacing now remains almost constant when changing the mode order 𝑚, regardless of 

the sharply descending 𝑛𝑒𝑓𝑓 , which is perfectly coincident with the prediction 

indicated by the analytical calculation. These results illustrate the potential of the 

proposed approach to achieve energy conservation and phase matching 

simultaneously, overcoming the major limitations of step-index waveguides. All 

possibility of equal frequency spacing rely on 𝒏𝒆𝒇𝒇 > 𝒏𝒃, i.e. the SAB since it is 

what opens the rooms for reshuffling the mode bands. In Appendix A1 we have 

discussed the configuration with traditional condition 𝑛𝑒𝑓𝑓 < 𝑛𝑏 and indicates the 

necessity of SAB to such a equi-frequency spacing result.  
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Figure 53. (a) Dispersion curves of first 4 modes with 𝑜𝑟𝑑𝑒𝑟 = 0.3, using FDTD calculation. (b) 

Frequency spacings 𝜔m+1-𝜔m and the 𝑛𝑒𝑓𝑓 as a function of the mode order 𝑚, collected at 𝑘𝑧 =

1.03 × 107 m-1 in (a). 

3.2 Translating the SAB with subwavelength structures to 

3D realistic waveguide geometries 

3.2.1 Subwavelength structured waveguide with Self-Adaptive Boundary 

It is easy to fulfill the condition of 𝑛𝑒𝑓𝑓 > 𝑛𝑏 and obtain relevant mode profiles by 

setting a continuous/multi-segment grade-index profile. Typical examples are shown 

in Figure 54. As expected, the effective width of each mode is different for each mode. 

However, this kind of configuration is almost impossible to access in practice using 

standard planar fabrication technologies. 

 

Figure 54. Mode profiles of first 3 modes in continuous/multi-segment grade-index waveguide, with 

Self-Adaptive Boundary 𝑛𝑒𝑓𝑓𝑚> 𝑛𝑏 . The material index is changed from center (3.48) to the 

boundary (1.8), with cladding index of 1. The waveguide widths are 800nm and 1400mm, respectively 

while thickness is 340nm. 

Consistently with the main thread of this thesis, this kind of graded index profile 

can be more easily mimicked by the use of subwavelength structured waveguides 

[176, 177]. In Figure 55, the schematic of two possible implementations is presented 

for illustration, where the gradual index variation is implemented by apodization of 

the waveguide length. However, we would like to highlight the very general nature of 

the proposed approach, which can be seamlessly adapted to all types of geometries, 

photonic platforms (Si, III/V, polymer guides, etc.), and spectral ranges (near infrared, 

medium infrared).  
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Figure 55. Schematic of the potential well of a graded-profile subwavelength waveguide. The 

equivalent cut-off frequency distribution indicated by the index. 

As an example of the possible design of three-dimensional graded-profile 

waveguides with a self-adaptive boundary, a subwavelength structured waveguide 

with high-index strip tapered from center to the edge is chosen (Figure 55 top case). 

The period of 150nm is chosen for a balance of fabrication control and good index 

equivalence of the subwavelength region. The materials considered here are silicon 

and air, for the high-index and low-index regions, respectively. Graded-index is 

obtained by tapering the component width of silicon, from the center to the edge 

while keeping the period fixed. In this case, the width of the silicon components is 

changed from 150nm to 40nm, i. e. adjusting the filling factor from 1 to 0.267. 

According to the well-known equivalent properties of SWG waveguide, the index of 

SWG waveguide can be described as: 

𝑛𝑆𝑊𝐺(𝑦) = √𝜂𝑛𝑐𝑒𝑛𝑡
2 + (1 − 𝜂)𝑛𝑐

2  = √𝜂(𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑐

2) + 𝑛𝑐
2       (3.20) 

which leads to an index ranging from around 3.48 to 1.8 for the C-band wavelengths. 

The 𝜂(𝑦) = (𝐴𝑦 + 𝐵)𝑝is the filling factor of silicon of the SWG waveguide at a 

transverse position 𝑦. The schematic of potential well that describes the cut-off 

frequency, as introduced before, is also presented in the inset of Figure 55. In order to 

approximately investigate the frequency spacings of this three-dimensional (3D) 

SWG waveguide, the effective index method [7] is adopted to find an equivalent 

simpler 2D waveguide with eight cladding regions. Then the phase item of the 

dispersion modes equation (3.15) can be rewritten again as: 

𝑁(𝐿𝑚) = ∫ √(𝑘0
2𝑛𝑆𝑊𝐺
2 (𝑦) − 𝑘𝑥2 − 𝑘𝑧2)

𝐿𝑚
0

𝑑𝑦 =  
𝑚𝜋

2
+
𝜋

4
          (3.21) 

𝑘𝑥𝑡 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝛾𝑥

𝑘𝑥
)                    (3.22) 
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𝛾𝑥 = √𝑘0
2𝑛𝑆𝑊𝐺
2 (𝑦) − 𝑘𝑥2−𝑘0

2𝑛𝑐2                 (3.23) 

in which 𝑘𝑥 and  𝛾𝑥 are the wavevectors along the x direction, inside and outside 

the waveguide, respectively. The corresponding index component can be depicted by  

𝑛𝑥 =
𝑘𝑥

𝑘0
. Limited by the complicated expression of index of waveguide and the 

non-analytical solution of the dispersion equation along 𝑦 , finding an accurate 

solution of equation (3.26) is difficult. Instead, using numerical fitting we simplify the 

𝑛𝑥 to a function 𝑛𝑥
2 = 𝐶 + 𝐷𝑛𝑆𝑊𝐺

2 (𝑦) by numerically solving equation (3.22) and 

(3.23). Particularly, in order to ease the effect coming from 𝑛𝑥 and simultaneously 

promote the effective index values of all the modes, we introduce additionally a 

shared section in which the index is fixed with a width of [−𝑏, 𝑏] as the central 

section shown in Figure 56 (a). The approximately analytical calculation of this 3D 

waveguide is addressed in Appendix A2 and no shown here.  

 

Figure 56. (a) Schematic of a graded-profile subwavelength waveguide. (b) Analytical Frequency 

spacings as a function of effective index 𝑛𝑒𝑓𝑓 , with different 𝑜𝑟𝑑𝑒𝑟s and 𝑏  values. The other 

parameters were adopted as: 𝑛𝑐𝑒𝑛𝑡 = 3.48,  𝑛𝑏 = 𝑛𝑐=1.8. (c) Frequency spacings as a function of the 

effective index 𝑛𝑒𝑓𝑓, using 3D FDTD calculation. The perfect matching point and the 5% tolerant 

range are labeled by grey line and grey region, respectively. 

Following then the same method as previously detailed, a set of waveguide 

parameters was found, with general structure as Figure 56 (a). Figure 56 (b) shows 

the calculated d𝜔/d𝑚 for waveguides with different parameters. First, we consider a 

fully graded index profile, with no fixed index region in the center (𝑏 = 0). For a 
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linear index profile, i.e. 𝑝 = 1, the graded waveguide yields a flattened response near 

𝑛𝑒𝑓𝑓 = 2.4. With a slower nonlinear index variation, i.e. 𝑝 = 0.6, the flattened region 

can be shifted up to 𝑛𝑒𝑓𝑓 = 2.75. Further reduction of the 𝑝 value compresses the 

flattened region to a narrow region which restricts the available design space. By 

introducing the fixed index region, we release a new degree of freedom that helps to 

widen the flattened region. By appropriately adjusting the value of 𝑏 (e. g. to 200 

nm), the slope between the local maximum and minimum can be substantially 

reduced, as shown in Figure 56 (b). 

With optimized parameters of 𝑎 = 775nm,  𝑏 = 275nm  and 𝑝 = 1 , we can 

locally equalize the frequency spacing and make the dispersion curves parallel. In 

Figure 56 (c) we show the dispersion curves for the three first modes of the optimized 

waveguide, calculated using 3D FDTD simulations. With the point  𝜔2−𝜔1 =

𝜔1−𝜔0 located at 𝑘𝑧 = 1.07 × 10
7, the frequency range with condition |∆𝜔21 −

∆𝜔10| <  ∆𝜔 ∗ 5% is as large as 35 THz (~300nm), which also evidences a good 

tolerance to the possible structure fabrication imperfections. Using this configuration, 

phase matching is achieved between signal frequency of 220THz (1.36μm) and idle 

frequency of 172THz (1.72μm). We have to mention that this result comes from the 

operation of the first 3 modes. However, this design strategy could be scaled up to 

higher order modes, e.g. to 5 modes. As mentioned earlier, these capabilities arise 

from the self-adaptive boundary (SAB) condition 𝑛𝑒𝑓𝑓,𝑚 > 𝑛𝑏 , ∀𝑚 which is more 

than a simple graded-profile condition. The results in Figure 56 strongly confirms 

us the feasibility to use subwavelength graded-structured waveguide to achieve 

the corresponding index-grated functions for dispersion engineering.  

3.2.2 Evaluation of the properties of the enabled FWM processes 

Based on this result and structure (Figure 57 (b) inset), we explore now the 

capability and flexibility of the proposed approach with respect to degenerate 

four-wave mixing processes. Phase matching considering nonlinearities was described 

earlier as ∆𝑘 = 2𝛾𝑃𝑃 − (2𝑘𝑧𝑃 − 𝑘𝑧𝑆 − 𝑘𝑧𝐼), which is governed by the nonlinear part 

2𝛾𝑃𝑃 and linear part ∆𝑘𝐿 = 2𝑘𝑧𝑃 − 𝑘𝑧𝑆 − 𝑘𝑧𝐼. Since 2𝛾𝑃𝑃 is normally positive in 

silicon, the linear dispersion  ∆𝑘𝐿needs to be a bit larger than zero to fulfill the 

global phase matching condition, which is classically addressed by tuning the 

dispersion to its anomalous regime in a classical waveguide. In contrast, in our case, 

the condition is translated to the fact that the frequency spacing ∆𝜔𝑆𝑃 (the matched 

frequency spacing between the pump and signal waves, i.e. between the 1st and 2nd 

modes, at the matched position) should be slightly different from ∆𝜔𝑃𝐼 (frequency 

spacing between pump and idler wave, i.e. between 1st and 0th mode, at the matched 

position), which can be easily achieved just by slightly moving the operating point of 

pump wave, as illustrated in Figure 57 (a). If the condition that ∆ωSP = ∆ω21 −
δω

2
=

∆ω10 +
δω

2
= ∆ωSI   can be satisfied at the shifted position characterized by 2𝑘𝑧𝑃 >
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(𝑘𝑧𝑆 + 𝑘𝑧𝐼), then the nonlinearity-induced phase mismatch can be compensated. This 

condition requires  
𝑑(∆ω21−∆ω10)

𝑑𝑘𝑧
> 0, which can be easily satisfied by adjusting the 

structure profile. For example, we plot in Figure 57 (b), 𝛿𝜔 for the optimized 

waveguide shown in Figure 56. Rightward the working point, we see that ∆ω21 >

∆ω10 with increasing 𝑘𝑧 (grey line). The negative-to-positive trend well validates 

the possibility of compensating the nonlinear mismatch. For silicon waveguides 

working at telecom wavelengths, the effective nonlinear Kerr nonlinearity γ can be 

described as 𝛾 =
𝜔𝑛2𝑎𝛤𝑉

𝑐𝑉
∙ (
𝑛𝑔

𝑛𝑆𝑖
)
2

, in which 𝑛2 , 𝑎  and 
𝑎𝛤𝑉

𝑉
 are the nonlinear 

refractive index, period of subwavelength structured waveguide and effective area of 

nonlinearity, respectively. By doing the 3D power integral in a single unit cell of [178, 

179], we can obtain an energy confinement factor (energy confined in silicon) 𝛤𝑉 of 

0.87, 0.816 and 0.68 for the idler, pump and signal waves, respectively. With the 

parameters provided above and 𝑛2 = 2.8 × 10
−18(𝑚2/𝑊)   [43], an effective 

nonlinear Kerr nonlinearity 𝛾 of 65 (𝑚 ∙ 𝑊)−1 and therefore a nonlinear phase item 

2𝛾𝑃𝑃  of  130 𝑚−1 can be deduced. Inter-modal electric-field overlaps are verified 

as well by calculating the 3D integral
∭𝐸𝑦𝑆∙𝐸𝑦𝑃∙𝐸𝑦𝑃

∗ ∙𝐸𝑦𝐼
∗ 𝑑𝑟3

∭|𝐸𝑦𝑃|2𝑑𝑟3√∭|𝐸𝑦𝑆|2𝑑𝑟3∙√∭|𝐸𝑦𝐼|2𝑑𝑟3
 in a single 

unit cell [180], which gives a value of  0.12, 𝐸𝑦𝑆, 𝐸𝑦𝑃and 𝐸𝑦𝐼 corresponding to the 

field of signal, pump, and idler waves, respectively. 

An important consideration is to discuss the tunability operation of the designed 

multimode waveguide, for which 1/𝑉𝑔, i. e. 
𝑑𝑘𝑧

𝑑ω
, of the first 3 modes is shown in 

Figure 57 (c) and Figure 57 (b), 𝑉𝑔 being the mode group velocity. As it is well 

known, the 3dB bandwidth of the FWM process can be described as |∆𝑘|𝐿𝑤𝑔 =

∆𝜔𝑡(
1

𝑉𝑔2
−

1

𝑉𝑔0
)𝐿𝑤𝑔 < 𝜋 , in which 𝐿  is the waveguide length. With a value of  

0.07 × 10−8 (s/𝑚) for (
1

𝑉𝑔2
−

1

𝑉𝑔0
) obtained from Figure 57 (b), we can predict an 

3dB tunable bandwidth of around 1THz (~10nm) for a 1mm long waveguide, 𝑉𝑔2and 

𝑉𝑔0 corresponding to the second and fundamental modes, respectively. 
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Figure 57. (a) Schematic of the proposed subwavelength structured waveguide for the simultaneous 

energy conservation and wavevector phase matching under the effect of a nonlinear effect. (b) The 

difference between frequency spacings  𝛿𝜔 = ∆𝜔21 − ∆𝜔10 as a function of wavevector corresponds 

to the left axis. On the right side are the reciprocals of the group velocity of the first 3 modes. The 

working range is labelled by the gray region. (c) Schematic of using the proposed subwavelength 

structured waveguide for tunable four-wave mixing. (d) The tunable band width as a function of the 

waveguide length. 

By generalizing this approach, the 3dB tunable bandwidth as a function of 

waveguide length was calculated and is plotted in Figure 57 (d). It can be seen that 

even in a non-fully-optimized waveguide, the spectral operating band of the FWM 

process is as wide as few tens of nanometers for SOI sub-millimeter long 

waveguides. 

Additionally, we can easily adopt this approach to any other platforms, no matter 

what kinds of dispersion the waveguide modes exhibit. As an illustrative example of 

the highly adaptable nature of the method to different platforms with different 

thicknesses, targeting different frequency ranges, we have investigated its application 

to different situations. We have calculated the dispersion curves for Si 

sub-wavelength waveguides with Si thicknesses ranging between 220nm and 600nm. 

For the 220nm-thick Si waveguide with parameters 𝑎=700nm, 𝑏=300nm, the 
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optimized position for ∆𝜔21=∆𝜔10is located at wavevector around 𝑘𝑧 = 0.95 ×

107m-1, leading to a conversion span from 220 THz to 180 THz, as shown in Figure 

58 (a). By raising 𝑎 and reducing 𝑏 to 750nm and 250 nm, we have been able to 

shift the optimized position continuously to 𝑘𝑧 = 1.53 × 10
7 m-1, with starting and 

stop frequencies of 280 THz to 245 THz, respectively as shown in Figure 58 (b). In 

order to push the operating point to a lower frequency, with the purpose of generating 

light wavelengths up to 2𝜇𝑚, larger waveguide cross-sections can be considered. 

Very interestingly, by simply enlarging the thickness to 600nm, the working 

frequency for the fundamental mode can be shifted to around 155THz, with 

conversion span over 40THz (from 1.53μm to 1.93μm, i.e. 400 nm), as shown in 

Figure 58 (c), with almost no displacement on 𝑘𝑧. Similar result can also be observed 

in another configuration (𝑎=750nm, 𝑏=250nm), with a slightly shifted working point 

𝑘𝑧 (Figure 58 (d)). These gathered results unambiguously show the simplicity and 

flexibility of our approach for degenerate four-wave mixing, i. e., 1) for each 

waveguide thickness the waveguide is capable to offer adjustable working 

conditions in a wide frequency range, within a varying index-profile; 2) for a 

certain optimal lineshape, the strategy for shifting the working wavelength is 

simply to adjust the thin film slab thickness. The flexibility pointed out here can be 

seamlessly adapted to different technology platforms. This strategy opens a new 

design space for versatile on-chip nonlinear applications can be adapted to different 

wavelength ranges and material platforms. 

 

Figure 58. (a), (b) Dispersion curves of first 3 modes in SWG waveguide with different lengths 𝑎, 𝑏 

and linear strategy (𝑜𝑟𝑑𝑒𝑟 = 1) and 220nm Si thickness. (c) and (d) Dispersion curves with same 
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strategy but with 600nm Si thickness. The working points at which energy conservation and phase 

matching is satisfied, is labelled by grey regions. 

Overall, we foresee that the self-adaptive boundary concept will favor the 

development of a new generation of on-chip nonlinear circuits with an immense 

potential for light generation at mid-infrared wavelength, but also for nonlinear 

processes beyond FWM and applications in which dispersion manipulation is of 

major relevance. In the following section, this spirit will be embodied in the 

compensation of the dispersion on the request of frequency comb based cascaded 

FWM. 

 

3.3 Frequency comb with SAB waveguides: towards 

controllable light sources 

Controlling the dispersion relationship of optical waveguides is a very important 

preliminary step for the exploitation of third-order non-linear optical processes. This 

very important preliminary step leads to the exploitation of integrated non-linear 

functions. The generation of frequency micro combs is one of the main ones. 

Consisting in discrete and equally spaced frequency lines spectra, frequency 

combs can be generated by different mechanisms, including periodic modulation (in 

amplitude and/or phase) of a continuous-wave laser, four-wave mixing in nonlinear 

media, or stabilization of the pulse train generated by a mode-locked laser. Since early 

research devoted to frequency comb generation [181] huge attention has been paid on 

this topic within the photonic community. In the last 10 years, much work has been 

devoted to the frequency combs, especially those based on the nonlinear Kerr gain (i.e. 

cascaded FWM) in dielectric media. As an elegant research field, frequency comb is 

expected as a strong candidate for novel on-chip silicon light sources [47], and 

provides a strong basis for many applications in on-chip spectroscopy [182], as well 

as novel research axes such as time-space-frequency mapping. 

3.3.1 Issues in dispersion control for silicon frequency comb 

Corresponding to dissipative Kerr soliton generation [183], soliton frequency 

combs strongly rely on the precise control on the dispersion and nonlinearity, gain and 

loss on optical waveguides. To balance the nonlinearities-induced phase mismatch, 

overall anomalous dispersion is generally expected, which can be supported directly 

from the materials (e.g. silica at telecom wavelengths) or induced by the waveguide 

dispersion with well-designed waveguide cross-sections. As a result, toroidal-shape 

cavities using silica [184] or MgF2 [185, 186] are frequently used for frequency comb 

generation due to the high Q factor of up to few millions and low dispersion of these 

structures. Another classical material used for frequency comb demonstrations is 

https://en.wikipedia.org/wiki/Continuous-wave_laser
https://en.wikipedia.org/wiki/Pulse_train
https://en.wikipedia.org/wiki/Modelocking
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silicon nitride (SiN). Due to the high quality factor of ~ million and a much higher 

nonlinear index (SiN: 𝑛2 ≈ 2.4 × 10
−19𝑚2/𝑊,  MgF2: 𝑛2 ≈ 1.5 × 10

−20𝑚2/𝑊 ), 

high-performance frequency combs can be achieved on chip [187] and even 

integrated with commercial III-V integrated lasers [188]. Though silicon nitride 

presents normal material dispersion at around ~1.5𝜇𝑚 wavelength, its high enough 

index contrast with SiO2 allows it to generate small anomalous dispersion to 

compensate nonlinear-induced phase mismatch. A typical spectrum of an on-chip 

SiN-based frequency comb is shown in Figure 59 (a). As displayed in Figure 59 (b), 

anomalous dispersion for broadband comb spectrum can be controlled by properly 

choosing the waveguide cross-section. Once the pump wavelength is chosen, the 

anomalous dispersion (𝐷 > 0) can be created by increasing the waveguide height and 

later be flattened with larger and larger widths. In the meanwhile, the peak position of 

the parabolic shape dispersion curve is then red shifted. 

The dispersion parameter (𝐷) that is related to the group velocity dispersion 

(GVD) is defined as:  

𝐷𝜆 =
𝜕

𝜕𝜆

1

𝑉𝑔
= −

2𝜋𝑐

𝜆2
∙ 𝐺𝑉𝐷 = −

2𝜋𝑐

𝜆2
∙
𝜕2𝑘𝑧

𝜕𝜔2
            (3.24) 

which can be written in an equivalent way as: 

𝐷𝜔 = −
𝜔2

2𝜋𝑐
∙
𝜕2𝑘𝑧

𝜕𝜔2
                 (3.25) 

where 
𝑑2𝑘

𝑑𝜔2
< 0 or 𝐷 > 0  corresponds to anomalous dispersion while 

𝑑2𝑘

𝑑𝜔2
>

0 and 𝐷 < 0  stands for normal one.  

 

Figure 59. (a) Spectrum of a frequency comb running in silicon nitride ring resonator. (b) Dispersion 

curves of silicon nitride waveguide with different cross-section. Figures are reproduced from [183] and 

[76], respectively. (c) Dispersion curves of silicon-on-insulator waveguide with different cross-section.  
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Using equation 3.24, we can calculate the 𝐷 parameter of SOI waveguides with 

different dimensions, as shown in Figure 59 (c). Absolute values and peak positions 

are controlled by the height and width of the waveguides, and it turns that dispersion 

curves rapidly change from negative to positive regions due to the high index contrast 

of SOI waveguides. To obtain a small anomalous dispersion region needed to phase 

matching purpose, waveguide dimensions need to be very carefully controlled or 

external materials should be used for dispersion compensation but these two 

approaches are neither easy to perform nor fully satisfying [180].  

A flexible method to flatten silicon waveguide dispersion for frequency comb 

generation is thus highly expected. A strong interest is to explore how the 

dispersion shape influence the bandwidth and other properties of the comb spectrum, 

especially in situations when a target wavelength operation is provided in advance. 

The next sections of this chapter seek to address these questions and provide at least 

partial answers. 

3.3.2 Dynamics of the soliton frequency comb  

Before the introducing the SAB to trim the comb spectrum, dynamics and 

generation of soliton frequency comb need to be clarified. The propagation of short 

light pulses in waveguides has been extensively described in the literature, starting 

with fibers [182] and then, for more than 10 years, in the higher contrast index 

waveguides of integrated photonics, particularly in silicon photonics [183]. We refer 

the reader to our Appendix A3 - Nonlinear Schrödinger equation in micro-ring 

resonator and Appendix A4 - Modeling the soliton frequency comb for more 

details. In summary, the propagation of pulses in a waveguide with effective third 

order non-linearity results in a non-linear equation, often referred to as a non-linear 

Schrödinger equation (NLSE, Appendix A3): 

𝜕

𝜕𝑧
𝐴(𝑧, 𝜏) = [𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝛾|𝐴(𝑧, 𝜏)|2 −
𝛼

2
] 𝐴(𝑧, 𝜏)       (3.26) 

Where 𝐴(𝑧, 𝜏) is the pulse amplitude described by the circumferential position 𝑧 

and the time variable 𝜏 that corresponding to a relative time frame. 𝛽𝑘, 𝛾 and 𝛼 is 

the group velocity dispersion, Kerr nonlinear parameter and waveguide loss, 

respectively. The generation of frequency combs using ring microresonators is 

traditionally done from the configuration shown in Figure 60. 
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Figure 60. Schematic of the nonlinear ring-based frequency comb system.  

 A narrow spectrum continuous optical source (laser) is centered on an optical 

resonance of the ring resonator. If the chromatic dispersion of the ring is well chosen, 

it can result in a cascade of FWM processes in the frequency domain, which leads to 

the generation of a frequency comb. From a temporal point of view, the generation of 

such a broad-spectrum comb corresponds to a regime of short solitonic pulses, or even, 

in the best of cases, to a regime of mono-soliton propagation in the ring. The 

interpretation of comb generation gives us nontrivial instruction on designing the 

comb spectrum. In relation to what has been said above concerning the Schrödinger 

equation, the periodic injection of energy into the ring must be described, as well as 

the fact that the guide no longer has an indefinite length but is looped back on itself. 

This mainly results in a change in the boundary conditions of the Schrödinger 

equation. Another particularity also concerns the time scales of phenomena. In most 

of situations, the temporal dynamics of temporal soliton excitation is much slower 

than the characteristic time required for a pulse to complete a full rotation of the ring. 

As a result, the temporal problem can be decoupled according to these two-time scales, 

which leads to a considerable simplification of the problem to be solved. We refer the 

interested reader to Appendix A3 - Nonlinear Schrödinger equation in micro-ring 

resonator for further details and provide here only a brief summary of the main 

conclusions. 

The overall process of comb generation [185, 189, A1-A12] is systematically 

discussed in Appendix A4 - Modeling the soliton frequency comb and briefly 

schematized in Figure 61.  

At the beginning, the cavity detuning from the resonance is set at zero and it 

shifts away from the pump due to the Kerr effect as energy builds up within the ring. 

The anomalous dispersion allows modulation instability (MI) to generate the first 

comb lines in a degenerate FWM process from the driven mode to the primary offset 

symmetrically placed as soon as the parametric gain overcomes the loss of the cavity 

(Figure 61 (a)). The distance (in terms of relative mode number m) of the new lines to 

the pump depends on the pump power and the dispersion of the resonator, the 
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nonlinear phase (thus wavelength) shift (via self- and cross-phase modulation), and 

the pump laser detuning compensates one another. This stage consists of the 

formation of multiple stable cavity solitons. Further build-up of power then causes 

cascaded four-wave mixing (FWM) of these MI peaks within the anomalous 

dispersion region, which transfers the initial parametric amplification process to all 

emerging higher-order sidebands with the initial spacing frequency spacing due to the 

conservation of energy and momentum in parametric processes.  

 

Figure 61. Sketch of a frequency comb formation based on a Kerr-enhanced resonator.  

With the increased circulating power, the overall relative detuning is reduced, 

where secondary lines are generated adjacent to the primary lines via both degenerate 

or non-degenerate FWM processes (Figure 61 b). Modes adjacent to these primary 

modes created previously also experience MI from the pumped mode. Bundles of 

other combinations of FMW processes based on these secondary frequency lines give 

birth to the generation of sub-combs as soon as phase matching is satisfied with 

increased intracavity power (Figure 61 (c)). Continuously, as soon as the sub-combs 

overlaps one another, the spectrum gap may eventually be filled with the later 

contribution of multiple parametric gain process. In the meanwhile, the temporal 

characteristics change dramatically, forming stable cavity solitons with initial mode 

locking.  

Later, the pump is tuned further closer to the Kerr-shifted resonance, the 

intracavity power increases, and the multi-pulse mode locking is lost due to instability 

of the cavity solitons. The pulses exhibit periodic amplitude fluctuations, interacting 

with each other causing destabilization resulting in the scene of random pulses 

circulating in the cavity. Further detuning of the pump leads to the surpassing over the 

Kerr-shifted resonance. This “slightly red off-resonant” step causes the drop of the 
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intracavity power, and mode locking is again established with non-periodic multiple 

cavity solitons formed inside. In the meanwhile, the bandwidth is also chopped a little 

and determined jointly with the lower intracavity power and phase locking. The 

frequency comb has decreased slightly in both total power and bandwidth.  

Depending on the precise pump power and wavelength detuning conditions, a 

single-soliton solution can satisfy in some cases the mean-field Lugiato-Lefever 

equation (LLE, Appendix A4), then featuring a pulse shape approximately described 

by equation (A4.16). Very Fine pump detuning is required for the dynamics to evolve 

to a single pulse by killing the others. The vanishing of the beat note of a multiple 

stable soliton is followed by the slight drop of the intracavity power. The remaining 

intracavity power with single soliton can be increased to higher power again.  

Based on this process, we use a silicon nitride ring as an example to show the full 

dynamics, as shown in Figure 62. In this example, 𝑄 factor of 105 , nonlinear 

parameter and 𝛾 = 1𝑚−1𝑊−1，roundtrip loss of 𝛼𝐿 = 0.012, roundtrip length 𝐿 =

314𝜇𝑚 , 𝛽𝑘 = −50𝑝𝑠
2/𝑘𝑚  corresponding to a silicon nitride resonator is 

considered. The input power is set at 1.5W. In Figure 62, stage I corresponds to an 

initial blue-detuning stage where only the pump signal can survive in the cavity. With 

increasing the detuning increase from blue (negative) to red (positive), the intracavity 

power starts to increase, the overall phase matching is fulfilled for Kerr gain. Primary 

frequency lines and therefore sub-combs can be observed (stage II), then followed by 

the first mode-locking process with equally-spaced multiple solitons (stage III). 

Modulation instability caused by the high Kerr gain of the overlapped sub combs 

(stage IV) is observed with chaotic temporal solitonic effects, which tend to extend 

the existing sub-combs with increased coupled power. 
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Figure 62. Dynamics of comb generation based on our modeling. In this example, a 𝑄 factor of 105, 

nonlinear parameter and 𝛾 = 1𝑚−1𝑊−1，roundtrip loss of 𝛼𝐿 = 0.012, roundtrip length 𝐿 = 314𝜇𝑚, 

𝛽𝑘 = −50𝑝𝑠
2/𝑘𝑚 corresponding to a silicon nitride resonator is considered. The input power is set at 
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1.5W. Typically, in the stage Typically, we see in stage IV strong fluctuations of the intracavity power 

due to the bi-stability behavior of the nonlinear ring cavity, as investigated earlier [190]. 

The intracavity power can be then described by: 

𝑃in ∙
𝛾𝑡
2

(𝜔0−∆𝜔0−𝜔)2+𝛾𝑡
2 ∙ (𝑛2

𝑉

𝐿cav
∙
𝐿cav

𝑚∙𝑁g
+ 𝑛T

𝐾

𝑉
) =

𝐶2𝜋

𝜔0−∆𝜔0−𝜔
        (3.27) 

, where 𝑃in ∙
𝛾𝑡
2

(𝜔0−𝜔)2+𝛾𝑡
2  is the intracavity power and 𝑛2

𝑉

𝐿cav
∙
𝐿cav

𝑚∙𝑁g
 is Kerr 

wavelength shift per power. 𝑉 is the cavity volume and 𝐾𝑉  gives the thermal 

wavelength shift per unit power. 
𝐶2𝜋

𝜔0−∆𝜔0−𝜔
 is the overall wavelength detuning of the 

pump. Two solutions (∆𝜔0) can satisfy equation 3.27 with 𝜔0 > 𝜔, corresponding to 

a small ∆𝜔0 with a small intracavity power and a large ∆𝜔0 with large intracavity 

power, respectively (blue-detuned input is unable here to make enough power for a 

full comb).  

Next, stage V corresponds to a stable multiple-soliton state where second 

mode-locking and over detuning (slightly red off-resonant) occur. Sharp intra-cavity 

power drop is observed from stage IV to V. In stage VI, single soliton is observed 

with further detuning, at a cost of another power drop and the vanishing of other 

solitons.  

 

Figure 63. (a) dispersion (green line is experimentally used) and (b) experimental comb spectrum 

generated in a silicon nitride ring resonator, from [191]. (c) A recovered dispersion and (d) spectrum of 

a single soliton state of frequency comb based on the same parameters.  
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To further validate the applicability of our model, we benchmarked with respect 

to experimental works [191]. The dispersion of the silicon nitride waveguide thy used 

in this work (green line) is shown in Figure 63 (a), corresponding to an experimental 

comb spectrum in Figure 63 (b). 

With a recovered dispersion that in shown in Figure 63 (c) and parameters 

(including Q factor, FSR, pump power) from [191], we achieve a single-soliton 

spectrum of frequency comb (Figure 63 (d)) using the comb generation model 

described above. Clearly, good coincidence is found in both the power level and the 

bandwidth. Based on this evidence, we are able to say that we have validated our 

model is capable to describe and be used to explore new theoretical work. In the 

following section, using this model, we will explore the silicon frequency comb and 

introduce our improvements for addressing several drawbacks of silicon frequency 

combs. 

In summary, the dynamics of frequency comb generation is very complex and 

relies on very precise control of the chromatic dispersion of the waveguides and on 

precise experimental conditions (tunability of the pump signal in power and 

wavelength detuning). We have developed a programming code to generate and 

predict this type of phenomenon. This code has been accurately calibrated by 

reproducing results from the literature [191, 184-187]. In the rest of this chapter, we 

describe our efforts to design frequency micro-comb engineering by freeing 

ourselves from two-photon absorption in silicon (by working beyond 2µm 

wavelengths) and using the SAB waveguides described at the beginning of this 

chapter, i. e. specially designed to meet the phase matching conditions of FWM 

processes. 

3.3.3 Reshaping silicon frequency combs with SAB engineered waveguides  

In the rest of this chapter, we describe our efforts to design frequency 

micro-comb engineering by freeing ourselves from two-photon absorption in silicon 

(by working beyond 2µm wavelengths) and using the SAB waveguides described at 

the beginning of this chapter, i. e. specially designed to meet the phase matching 

conditions of FWM processes. To initially launch a silicon frequency comb, pump 

wavelength is chosen at around 𝜆 = 2𝜇𝑚 and an overall moderate waveguide loss of 

4dB is considered. The dimensions of the silicon on insulator (SOI) wafer used here 

are 220nm and 800nm for height and width, as shown in Figure 64.  

The waveguide dispersion curve was previously shown in Figure 59 (b) (yellow 

line) and redisplayed again in Figure 65 (a), where a peak value of chromatic 

dispersion around 𝐷 = 350 𝑝𝑚/(𝑛𝑚 ∗ 𝑘𝑚)  is found. The corresponding group 

velocity dispersion is shown in Figure 65 (b). An underestimated nonlinear gain 

coefficient of 𝛾 = 30(𝑚 ∙ 𝑊)−1 is considered for interrogating the other parameters, 

especially the pump power. A coupling coefficient of 0.01 (working in under coupling) 

and 150mW pump power (in bus waveguide) are chosen, respectively to overwhelm 

javascript:;
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the losses. A free spectrum range of 0.23 THz corresponding to a ring radius of 

50𝜇𝑚 is chosen to build a moving frame with roundtrip time of 4.35 𝑝𝑠.  

 

Figure 64. Cross-section of the silicon ring used for comb modeling. 

 

Figure 65. (a) Dispersion and (b) Group velocity dispersion of the SOI waveguide that shown in Figure 

64. (c) Final soliton stage and (d) Corresponding soliton frequency comb.  

Using the model described above, we achieved a single-soliton silicon frequency 

comb with intracavity pulse shape shown in Figure 65 (c). Compared to the 

intracavity pulse in the silicon nitride configuration shown in Figure 62, the 

intracavity energy inside silicon is almost 10-folds lower due to the much higher gain 

factor (from 1 to 30(𝑚 ∙ 𝑊)−1), which means that much less power is now required 
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to overwhelm propagation losses. This is also a strong point and original interest of 

using the silicon platform to achieve frequency combs. However, it can be seen in 

Figure 65 (d) that, due to the much higher waveguide dispersion, the bandwidth 

of the silicon frequency comb is much worse than the one of silicon nitride.  

To summarize the current point of our discussion, it appears that by moving from 

Si3N4 to SOI waveguides, an advantage (lower pump power) and a drawback (reduced 

frequency comb spectral width) result simultaneously. Consequently, addressing the 

problem of the spectral width of µ-combs is an important point, naturally aiming to 

increase it by using waveguides with a particular chromatic dispersion profile. 

To understand the bandwidth issue, we come back here to simulation results. In 

Figure 66 (a), the slightly red tuning gives birth to a situation where FWM parametric 

gain overwhelms the overall loss level. The first primary frequencies generated by 

DFWM, as in Figure 66 (a), are located very closely to the pump line. These primary 

lines are actually the pre-representation of the comb bandwidth since the following 

cascaded FWM and mode locking processes all originate from there. A snapshot of 

the separated sub combs that result from sufficient cascaded FWM mixing processes 

is shown in Figure 66 (b).  

 
Figure 66. (a) Snapshot of the generation of primary frequency lines due to the degenerate four-wave 

mixing. (b) A later snapshot where multi frequency lines by are generated by cascaded four wave 

mixing. 

Due to the strong dispersion 𝐷, FWMs are limited to small range according to 

phase matching. According to equation Appendix (A4.10), phase mismatching can be 

considered as: 

∆𝑘 = 2𝛾𝑃𝑖𝑛 − 𝐷
𝜆2

2𝜋𝑐
∙ (𝑛𝐹𝑆𝑅𝜔)

2 = 2𝛾𝑃𝑖𝑛 − 𝐷2𝜋𝑐 ∙ (
𝑛𝜆

𝑛𝑔𝐿
)2       (3.28) 

for degenerate FWM with three waves spaced by one FSR (𝑛 = 1), the pump power 

for phase matching (following the same configuration, 𝜆 = 2.1𝜇𝑚, ring 𝐿 = 314𝜇𝑚 

and 𝛾 = 30𝑚−1𝑊−1) is 27.8mW. In another words, for a pump power that we use 

(150mW), the phase matching occurs at the frequency lines of 2.8 FSR from pump, 
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which is coincident to what we observe in Figure 66 (a). So very straightforwardly, if 

we want to move the primary frequency lines to a further place for extending the 

bandwidth (black arrows in Figure 66), a much stronger power, which responds to the 

square-order growth of FSR number 𝑛, is needed to compensate the dispersion. This 

high power is way wasting since it i’s far overwheled by optical losses and not 

accesible. On the contrary, it is very significant and interesting to reduce and flatten 

the dispersion 𝐷 globally while keeping the other parameters fixed (𝛾, 𝑃𝑖𝑛 etc.).  

Flattened dispersion (SAB) waveguides: 

With this objective in mind, we have endeavored to explore the use of SAB 

waveguides, whose dispersion properties have proven to be adapted to the problem of 

µ-combs. Figure 67 shows two types of waveguides with Self-Adaption Boundary 

condition 𝑛𝑒𝑓𝑓 > 𝑛𝑏, i.e. continuously graded-index waveguide (Figure 67 (a)) and 

discretely graded-index waveguides (Figure 67 (c)), in single-mode operation. 

The structure of the continuously graded-index waveguide is shown in the inset of 

Figure 67 (b). The period thickness and width are chosen at 150nm, 340nm and 

800nm, with a filling factor linearly tapered from center to edge. Dispersion of a strip 

waveguide and SAB waveguide with 𝑛𝑏 ≈ 1.5 and 𝑛𝑏 ≈ 2.8 is plotted in Figure 67 

(b) for comparison. The SAB allow us to trim the dispersion of the “long” wavelength 

where 𝑛𝑒𝑓𝑓 < 𝑛𝑏. This is because the wave is confined by the index contrast of 

𝑛𝑏/𝑛𝑐 and phase integral strongly depends on the index 𝑛𝑏. In contrast, due to the 

short wavelength (𝑛𝑒𝑓𝑓 > 𝑛𝑏) is confined by the effective width of the waveguide 

where electric field pass smoothly, the dispersion doesn’t vary a lot. In brief, the 

whole frequency range is separated into two part with diverse response and this allow 

us to globally reconFigure the dispersion for working point by flattening or steepening 

the dispersion accordingly. Using the discretely graded-index waveguides shown in 

Figure 67(c), we can further extend the anomalous dispersion range by locally 

squeezing a small anomalous dispersion. The bi-level SAB is used for confine 

separately the “blue” and “red” wavelength. This idea will practically be translated 

into a waveguide as in Figure 67 (d). 

A commercial 340nm SOI platform was chosen to provide sufficient anomalous 

dispersion in up to 2𝜇𝑚 range. The continuously graded-index waveguide with 

filling factor values varying from 1 to 0.83 is shown in Figure 68(a). The width of the 

fixed-index and the taper regions were chosen at 900nm and 240 nm. The whole 

structure is shown in the inset of Figure 68 (a). Compared to those classical strip/rib 

waveguides where the dispersion displays normally a parabolic shape, there is more 

than one peak existing in the center which totally give us a new freedom for the 

dispersion engineering. Since SAB can reduce the index contrast and dramatically 

reduce the anomalous dispersion for wavelengths not confined by the outer boundary, 

the region between two anomalous peaks are seperated by a normal region using 

bi-level SAB waveguide, as shown in Figure 68(b). In this case, a more appropriate 

index contrast with filling factor varying from 1 to 0.66 is achieved (dimension of the 
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waveguide is clarified in the inset). The whole wavelength range from 2.25𝜇𝑚 to 

3.25𝜇𝑚 now has been totally flattened. In addition to the bi-level case, tri-level case 

can be further use to locally engineer the dispersion as in Figure 68 (c). The small 

ripple, can be eliminated by adjusting the length of each section once filling factor is 

determined, for instance, from Figure 68 (c) to (d). In a wide wavelength range, the 

anomalous dispersion can be controlled in very low value, as in Figure 68 (d). 

 

Figure 67. (a) Schematic of a graded-index waveguide with SAB operating in single-mode. (b) 

Cchromatic dispersion parameter D. Width and height of the waveguide are 750nm and 340nm. (c) 

Schematic of a bi-level graded-index waveguide with SAB operating in single-mode. (d) Sketch of the 

chromatic dispersion parameter D. Material dispersion is not considered here (𝑛 = 3.48). 
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Figure 68. Dispersion of infinite-level (a), bi-level (b) and three tri-level (c) (d) subwavelength 

structured waveguides. The thickness of silicon and the period are both set at 340nm and 240nm. Other 

parameters are respectively shown in the insets.  

Frequency comb generation with flattened dispersion waveguides: 

Frequency comb generation was then considered with the flattened dispersion 

waveguides shown in Figure 68. Since periodic structures are introduced in this case, 

extra losses are needed to be taken into account. Though experimental demonstration 

[192-194] already indicated very promising loss level (smaller than 3dB/cm), we 

consider here a conservative higher waveguide loss level of 8dB/cm.  
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Figure 69. (a) and (e) Snapshot of the generation of primary frequency lines due to the degenerate 

four-wave mixing, corresponding to dispersion in Figure 68 (b) and 68 (d). (b) and (f) A later snapshot 

where multi frequency lines by are generated by cascaded four wave mixing, together with 

mode-locking multi soliton processes. (c) and (g) Multi-nonperiodic-soliton comb stage caused by 

modulation instability. (d) and (h) corresponding single-soliton frequency comb.  

With all the other parameters being fixed (i.e. 𝑝 = 150𝑚𝑊, ring 𝐿 = 314𝜇𝑚 

and 𝛾 = 30𝑚−1𝑊−1 ), we use again our model to evaluate the silicon soliton 

frequency comb with dispersion in Figure 68 (b) and 68 (d), of which the 

corresponding results are shown in 69 (a)-(d) and 69 (e)-(h), respectively. In Figure 

69 (a) and (e), we obtain a new initial comb generation stage, where the primary 

frequency lines are way farther away from the pump line as compared to Figure 66 (a). 

The following mode-locking multi-soliton stage with cascaded sub combs is shown in 

Figure 69 (b) and (f), which is much better than that of 66 (b). There is no doubt that 

the comb bandwidth in stage of modulation instability and multi-soliton state in 

Figure 69 (c) and (g) and the final single-soliton frequency comb in Figure 69 (d) and 

(h) can be similarly broader. Bandwidth improvement is clearly witnessed with the 

introduction of Self-Adaptive Boundary, based on which the Cherenkov Radiation 

[195-196] can be further integrated for performance extension.  

3.4 Conclusions of this chapter 

We have begun this chapter by introducing idea proposal for using Self-Adaptive 

Boundary (SAB) waveguides to enable inter-mode four-wave mixing processes in a 

nearly universal phase-matched configuration. The analytical and numerical 

implementation of this SAB have been investigated. Beyond the concept, we have 

insisted on the fact that the practical implementation of this idea was based largely on 

the use of sub-wavelength photonic structures, and showed a number of examples 

design, based in particular on the SOI waveguides of silicon photonics. 

Intuitively, we have noticed the strong potential of this Self-Adaptive Boundary 

waveguides for third-order nonlinear photonics with a unique capability of dispersion 

engineering. Driven by this, we have modeled the frequency micro-comb generation 

process through the resolution of the Nonlinear Schrödinger Equation in µ-rings 

feeded by a continuous wave optical wave (Lugiato-Lefever equation). On top of this 

model, we indicate the limits especially the bandwidth in the spectrum of 

silicon-based frequency combs and indicates strong room for improvement that can be 

accessed with Self-Adaptive Boundary flattened dispersion waveguides. The study of 

several configurations proved to be very successful, demonstrating the significant 

widening of the µ-comb frequency spectral band through the use of this family of 

specific optical waveguides. This work has thus contributed to the development of an 

original path for the realization of optical frequency combs in the silicon platform 

beyond 2µm wavelengths, giving access to the whole range of applications of 

µ-frequency combs, particularly in metrology and on-chip spectroscopy. 
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4 Conclusions and perspectives 

To meet the rapidly increasing demand for optical interconnects, efforts are 

continuously made to develop low power consumption, tens-to-hundreds-gigabits 

devices and on-chip light source with CMOS-compatible platform, especially silicon 

due to its versatility and low production cost. Second-order Pockels effect and the 

third-order Kerr effect can be exploited for light modulation and generation. To 

substantially take advantages of these nonlinearities, we have tried to introduce the 

advantages provided by subwavelength optical structures to explore new on-chip 

possibilities. 

For improving the performance of optical modulators, instead of simply 

increasing the light-matter interaction by accumulating light power in an optical 

resonator, we have introduced a background mode into the nanobeam cavity to 

accelerate the on-off transition of the modulator. This background mode, excited in 

the high-order mode type and working in the subwavelength region, has been 

successfully demonstrated to trim the classical Lorentzian line shape in very compact 

footprint Fano lineshape structures. More than 23 dB extinction ratio is achieved with 

merely 366pm in nanobeam cavity with Q of merely 5600, which is about 6-fold 

efficient than the Lorentzian-lineshape resonance with the same Q factor where 

1.96nm is needed from the same performance. This superior performance shows 

strong potential in reducing the power consumption of optical modulators while still 

leaving big room for high-rate modulation which suffers a lot in Lorentzian cavity 

from large photon lifetimes. With this robust method, we designed a Fano strained 

silicon modulator. Compared to the existing work using ultra-long MZI structures 

where strong radio frequency losses exist in the traveling-wave electrodes, the 

proposed compact design allows to be integrated with strained process. In the 

meanwhile, it potentially provides an electrical bandwidth larger than 200 GHz and 

shows a predicted 60-200 folds improvement on the E-O response (Q ranging from 

5600 to 32000). This improvement gives new possibility for strain silicon modulator 

to run a few-dB extinction with voltages lower than 20V and a moderate Q factor 

(32000). Higher efficiencies can be further improved by rebalancing the mode ratio 

according to our Fano model. Though strained silicon platform where the 

second-order nonlinear effect stays tiny is taken as an example to clarify the merits of 

this Fano cavity, the generality of reducing the power consumption without sacrificing 

the modulation rate of modulators is highly expected and could be analogously 

adopted to other kinds of modulators. For instance, silicon modulators based on 

carrier depletion effect can present a sub fj/bit power consumption with more 20dB 

extinction and 30 Gb/s modulation rate based on the proposed subwavelength 

structured Fano cavity. 

For the purpose of providing more flexible satisfaction of momentum 

conservation and improving the use of silicon Kerr nonlinearities, we have proposed 
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the use of Self-Adaptive Boundary (SAB) waveguides. The SAB condition has been 

first designed for automatically fulfilling the energy and momentum conservation 

laws in the inter-mode four-wave mixing (FWM) process by relying on a close 

analogy with quantum wells and transposed into silicon waveguide cross-sections 

with the assistance of subwavelength structures. This waveguide design proved to 

extend the FWM bandwidth of nonlinear active waveguides for which dispersion can 

be flexibly adjusted in a wide range. 

Standing on the strong potential the capability of this Self-Adaptive Boundary 

waveguides in engineering the dispersion of optical waveguides, we have considered 

their use for the generation of Kerr frequency micro-combs. Frequency comb 

generation in close-loop micro-ring resonators fed by a continuous wave laser has 

been modeled by solving the relevant nonlinear Schrödinger equation 

(Lugiato-Lefever) to dynamically analyze the soliton comb spectrum generation in 

time and frequency. On top of this model, the limits, especially in term of spectrum 

bandwidth in Si ring resonator micro-combs, have been indicated, and room for 

improvement that can be accessed with Self-Adaptive Boundary has been highlighted. 

As a whole, it was shown that SAB-engineered optical waveguides are able to trim 

and extend the bandwidth of silicon soliton frequency combs  

Overall, the main axis we have developed has been to try to show that combining 

subwavelength optics and nonlinearities can bring a great benefit in terms of lifting 

design locks of integrated non-linear function designs. This work has thus opened up 

prospects in terms of electro-optical modulation via constrained silicon, for which it 

will nevertheless be necessary to carry out guide engineering in order to strengthen 

the usable effective 𝜒(2) and the whole range of third order non-linear optical effects. 

In the short term, the fabrication and testing of SAB waveguides in multimode 

configuration will be a first key point, for example by measuring the parametric 

amplification efficiency or the signal-to-idler conversion rate in various 

configurations. For frequency micro-combs, a characterization of resonator quality 

factors and a demonstration of frequency comb generation will be the first steps. 

Depending on the difficulties encountered or not, the following steps will be open to 

multiple applications, including spectroscopy and metrology on a chip. 
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Appendix 

A1.  The necessity of Self-Adaptive Boundary  

With the classical condition that (𝑛𝑒𝑓𝑓 < 𝑛𝑏), the eigen dispersion equation can be 

similarly written by replacing the  
𝜋

4
 with the boundary-induced phase item 

𝑎𝑟𝑐𝑡𝑎𝑛(
𝑛𝑏
2√(𝑘𝑧

2−𝑘0
2𝑛𝑐
2)

𝑛𝑐
2√(𝑘0

2𝑛𝑏
2−𝑘𝑧

2)

), as: 

𝑁(𝑎) = ∫ √(𝑘0
2𝑛2(𝑦) − 𝛽2)

𝑎

0
𝑑𝑦 =

𝑚𝜋

2
+ 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑛𝑏
2√(𝑘𝑧

2−𝑘0
2𝑛𝑐
2)

𝑛𝑐
2√(𝑘0

2𝑛𝑏
2−𝑘𝑧

2)

)    (A1.1) 

𝑚 =
2

𝜋
𝑁(𝑎) −

2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛(

𝛾𝑛𝑤
2

ℎ𝑛𝑐
2) =

2

𝜋
𝑁(𝑎) + 𝑓𝑚2           (A1.2) 

For a linear-index profile waveguide 𝑛(y) = 𝐴𝑦 + 𝐵, then 

𝑁(𝑎) = (
(𝐴𝑦+𝐵)

2𝐴
∙
𝜔

𝑐
√(𝐴𝑦 + 𝐵)2 − 𝑛𝑒𝑓𝑓,𝑚

2 −
kz𝑛𝑒𝑓𝑓,𝑚

2𝐴
𝑙𝑜𝑔 [

𝜔

𝑐
√(𝐴𝑦 + 𝐵)2 − 𝑛𝑒𝑓𝑓,𝑚

2 +

𝜔

𝑐
(𝐴𝑦 + 𝐵)]) |0

𝑎                    

=
𝑘𝑧

2𝐴
(𝑛𝑏√

𝑛𝑏
2

𝑛𝑒𝑓𝑓,𝑚
2 − 1 − 𝑛𝑐𝑒𝑛𝑡√

𝑛𝑐𝑒𝑛𝑡
2

𝑛𝑒𝑓𝑓,𝑚
2 − 1 + 𝑛𝑒𝑓𝑓,𝑚 𝑙𝑜𝑔 [

√𝑛𝑐𝑒𝑛𝑡2−𝑛𝑒𝑓𝑓,𝑚
2 +𝑛𝑐𝑒𝑛𝑡

√𝑛𝑏
2−𝑛𝑒𝑓𝑓,𝑚

2 +𝑛𝑏

])  

                  (A1.3) 

Similarly, 

𝑑𝜔

𝑑𝑚
=

kz𝑐

−𝑛𝑒𝑓𝑓,𝑚
2 /

𝑑

𝑑𝑛𝑒𝑓𝑓,𝑚
[
2

𝜋
𝑁(𝑎) + 𝑓𝑚2]           (A1.4) 

=
𝜋kz𝑐

−2𝑛𝑒𝑓𝑓,𝑚
2 / {

𝛽kz

2𝐴
[
𝑛𝑐𝑒𝑛𝑡√𝑛𝑐𝑒𝑛𝑡

2 −𝑛𝑒𝑓𝑓,𝑚
2

𝑛𝑒𝑓𝑓,𝑚
2 −

𝑛𝑏√𝑛𝑏
2−𝑛𝑒𝑓𝑓,𝑚

2

𝑛𝑒𝑓𝑓,𝑚
2 + 𝑙𝑜𝑔(

√𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑒𝑓𝑓,𝑚

2 +𝑛𝑐𝑒𝑛𝑡

√𝑛𝑏
2−𝑛𝑒𝑓𝑓,𝑚

2 +𝑛𝑏

)] +

−𝑛𝑒𝑓𝑓,𝑚

−1+𝑛𝑒𝑓𝑓,𝑚
2 (1/𝑛𝑐

2+1/𝑛𝑏
2)
∙

1

√(𝑛𝑒𝑓𝑓,𝑚
2 −𝑛𝑐

2)
∙

1

√(𝑛𝑏
2−𝑛𝑒𝑓𝑓,𝑚

2 )
}           (A1.5) 

Comparing equation (A1.5) to equation (3.6), the only change we can clearly see is 

the replacing from 
𝑑

𝑑𝑛𝑒𝑓𝑓
𝑓𝑚1  to 

𝑑

𝑑𝑛𝑒𝑓𝑓
[
2

𝜋
𝑁(𝑎)] , which we found, is not much 

different in the index (𝑛𝑒𝑓𝑓,𝑚) range we adresse (i.e. 𝑛𝑏>3). Based on equation 

(A1.5), frequency spacings in different configurations are investigated and presented 

in Figure A1. Compared to a step-index waveguide with 𝑛𝑏=3 and 𝑎=350nm, the 

frequency spacing of linear-shape graded-index waveguide presents a faster change 
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but in a basically similar line-shape. Even using a wider graded-index waveguide with 

𝑎=500nm or smaller boundary index 𝑛𝑏=2.6, the lineshapes in the concerned range 

of effective index (𝑛𝑒𝑓𝑓 < 𝑛𝑏, i.e. [1.6, 3] and [1.6, 2.6], respectively) still behave 

monotonously. The only thing that matters is the absolute value frequency spacing. 

This result unambiguously confirms us that, without the assistance of a variable 

“effective width” supported by the Self-Adaptive Boundary, there is no way to 

reshuffle the frequency spacings in the multi-mode scheme, since the integral range 

has a significant effect on the left part of eigen dispersion equation.  

 

Figure A 1. Analytical Frequency spacings as a function of effective index 𝑛𝑒𝑓𝑓, with different 𝑜𝑟𝑑𝑒𝑟 

and 𝑎 values, using the classical condition 𝑛𝑒𝑓𝑓 < 𝑛𝑏. 
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A2.  Approximate calculation of the 3D subwavelength 

waveguide grating  

The effective core index 𝑛𝑥 is approximated by function 𝑛𝑥
2 = 𝐶 + 𝐷𝑛𝑆𝑊𝐺

2 (𝑦) 

by numerically solving equation 3.22 and 3.23. The comparison between the 

analytical/numerical solving and the approximation, within the range of  𝑛𝑆𝑊𝐺 ∈

[1.8, 3.48], is shown in Figure A2. 

 

Figure A 2. Comparison between the analytical solution and the linear approximation of 𝑛𝑥
2, using 

𝑛𝑥
2 = 𝐶 + 𝐷𝑛𝑆𝑊𝐺

2 (𝑦). The values 𝐶 and 𝐷 are directly shown in the Figure. 

Based on this approximation, this case can be simplified as a two-dimension 

waveguide with an equivalent “material index” of: 

𝑛(𝑦)= √𝑛𝑆𝑊𝐺
2 (𝑦) − 𝑛𝑥2 = √(1 − 𝐷)𝑛𝑆𝑊𝐺

2 (𝑦) − 𝐶  

= √(1 − 𝐷)[𝜂(𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑐2) + 𝑛𝑐2] − 𝐶           (A2.1) 

With this equivalent index, equation 3.21 can be simplified to the general form: 

𝑁(𝐿𝑚) = ∫ √(𝑘0
2𝑛2(𝑦) − 𝑘𝑧2)

𝐿

0
𝑑𝑦 =  

𝑚𝜋

2
+
𝜋

4
            (A2.2) 

Now the phase item shares the same expression as equation 3.15. Thus, we can adopt 

the method discussed before to optimize the waveguide. Very importantly, the 
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effective index 𝑛𝑒𝑓𝑓 is shifted to a lower level due to the limited thickness, which 

gives a maximum equivalent index of 𝑛(0)=√(1 − 𝐷)[(𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑐2) + 𝑛𝑐2] − 𝐶.  

Calculation is performed on a silicon platform with the period, thickness and the half 

waveguide width 𝑎 set to 150 nm, 340 nm and 800 nm, respectively. The width of 

nano-arms is set to 40 nm which gives a boundary index of  𝑛𝑏 = 𝑛𝑐=1.8. With a 

width of fixed-index region 2𝑏 while index between 𝑏 and 𝑎 follows the same law 

(𝐴 + 𝐵𝑦)𝑝 as in the previous section. By setting this, a minimum phase can be 

ensured and the total phase can be rewritten as:  

𝑁(𝐿𝑚) = 𝑏
𝜔

𝑐
√𝑛2(0) − 𝑛𝑒𝑓𝑓,𝑚

2 + ∫
𝜔

𝑐
√𝑛2(𝑦) − 𝑛𝑒𝑓𝑓,𝑚

2𝐿

𝑏
𝑑𝑦       (A2.3) 

Since 𝑛(𝐿𝑚) = 𝑛𝑒𝑓𝑓,𝑚, if order = 1, that is to say 𝜂(𝑦) = (𝐴𝑦 + 𝐵), then 

𝑁(𝐿𝑚) = 𝑏𝑘𝑧√
𝑛2(0)

𝑛𝑒𝑓𝑓,𝑚
2 − 1 +

−2𝑘𝑧

3𝐴𝑛𝑒𝑓𝑓,𝑚(1−𝐷)(𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑐

2)
[𝑛2(0) − 𝑛𝑒𝑓𝑓,𝑚

2 ]
3/2

     (A2.4) 

We then obtain similarly the frequency spacings as: 

𝑑𝜔

𝑑𝑚
=
−𝐴𝜋𝐶(1−𝐷)(𝑛𝑐𝑒𝑛𝑡

2 −𝑛𝑐
2)

4
 /(

[𝑛2(0)−𝑛𝑒𝑓𝑓,𝑚
2 ]

3/2

3
+ 𝑛𝑒𝑓𝑓,𝑚

2 √𝑛2(0) − 𝑛𝑒𝑓𝑓,𝑚
2 −

𝑏𝐴𝑛2(0)(1−𝐷)(𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑐

2)

2√𝑛2(0)−𝑛𝑒𝑓𝑓,𝑚
2

)                (A2.5) 

Currently, the frequency spacing 
𝑑𝜔

𝑑𝑚
 is no longer simply dominated by the effective 

index 𝑛𝑒𝑓𝑓,𝑚 . Instead, also being affected by the new introduced item  

𝑏𝐴𝑛2(0)(1−𝐷)(𝑛𝑐𝑒𝑛𝑡
2 −𝑛𝑐

2)

2√𝑛2(0)−𝑛𝑒𝑓𝑓,𝑚
2

, which gives us a new room to control the frequency spacing by 

providing additionally a local maximum-peak at the high 𝑛𝑒𝑓𝑓 range. 

 

 

 

  



102 

 

 

A3.  Nonlinear Schrödinger equation in micro-ring 

resonator  

Optical wave propagating in nonlinear media is described by nonlinear wave 

equations [51], as well known for optical parametric gain. To describe a frequency 

comb, wave equation needs to be considered jointly with the driven field and the 

waveguide-resonator interaction. Before deducing the nonlinear wave equations, 

Fourier Transform is first recalled with definition that will be intensively used later. 

For electromagnetic mode polarized along 𝑦 and propagating along 𝑧, with mode 

distribution 𝐹(𝑥, 𝑦)  considered constant and integrated into amplitude envelope 

function 𝐴(𝑧, 𝑡), the electric field can be written as:  

𝐸(𝑧, 𝑡) =
1

2
𝐴(𝑧, 𝑡)𝑒𝑖(𝛽𝑧−𝜔0𝑡) + 𝑐𝑜𝑛𝑗. {

1

2
𝐴(𝑧, 𝑡)𝑒𝑖(𝛽𝑧−𝜔0𝑡)}         (A3.1) 

With conjugated component in the frequency domain: 

𝐸(𝑧, 𝜔) =
1

2
𝐴(𝑧, 𝜔 − 𝜔0)𝑒

𝑖𝛽𝑧 + 𝑐𝑜𝑛𝑗. {
1

2
𝐴(𝑧, 𝜔 − 𝜔0)𝑒

𝑖𝛽𝑧}     (A3.2) 

To simplify the calculation, we consider in the following context that: 

𝐸(𝑧, 𝑡) = 𝐴(𝑧, 𝑡)𝑒𝑖(𝛽𝑧−𝜔0𝑡) and 𝐸(𝑧, 𝜔) = 𝐴(𝑧, 𝜔 − 𝜔0)𝑒
𝑖𝛽𝑧 

Equation (A3.1) and (A3.2) are linked by the Fourier and inverse Fourier Transform 

as below: 

𝐸(𝑧, 𝜔) = ∫ 𝐸(𝑧, 𝑡) 𝑒𝑖𝜔𝑡 𝑑𝑡
∞

−∞
                (A3.3) 

𝐸(𝑧, 𝑡) =
1

2𝜋
∫ 𝐸(𝑧, 𝑤)𝑒−𝑖𝜔𝑡𝑑𝜔
∞

−∞
               (A3.4) 

By cross-substitute (A3.3) and (A3.4) to each other, then we have 

𝐸(𝑧, 𝜔) = ∫ 𝐴(𝑧, 𝑡)𝑒[𝑖𝑘𝑧𝑧+𝑖(𝜔−𝜔0)𝑡]𝑑𝑡 = 𝐴(𝑧, 𝜔 − 𝜔0)
∞

−∞
𝑒𝑖𝑘𝑧𝑧     (A3.5)  

𝐸(𝑧, 𝑡) =
1

2𝜋
∫ 𝐴(𝑧, 𝜔 − 𝜔0)𝑒

𝑖(𝑘𝑧𝑧−𝜔𝑡)𝑑𝜔
∞

−∞
= 𝐴(𝑧, 𝑡)𝑒𝑖(𝑘𝑧𝑧−𝜔0𝑡)    (A3.6) 

Which can be simplified as 

∫ 𝐴(𝑧, 𝑡)𝑒𝑖(𝜔−𝜔0)𝑡𝑑𝑡 = 𝐴(𝑧, 𝜔 − 𝜔0)
∞

−∞
          (A3.7) 

1

2𝜋
∫ 𝐴(𝑧, 𝜔 − 𝜔0)𝑒

−𝑖(𝜔−𝜔0)𝑡𝑑𝜔
∞

−∞
= 𝐴(𝑧, 𝑡)         (A3.8) 

Where 𝐴(𝑧, 𝜔 − 𝜔0) is exactly the Fourier spectrum centralized by carrier frequency 

𝜔0. If assumes 𝜔0 = 0, i.e. with the directional current (DC) input, then 
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∫ 𝐴(𝑧, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡 = 𝐴(𝑧, 𝜔)
∞

−∞
             (A3.9) 

1

2𝜋
∫ 𝐴(𝑧, 𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔
∞

−∞
= 𝐴(𝑧, 𝑡)               (A3.10) 

Which means Fourier spectrum is mirrored by the axis. Based on these, go 

considering the mode propagating with single frequency 𝜔0  and mode 

distribution 𝐹(𝑥, 𝑦) in a waveguide with non-negligible nonlinearities. The electric 

field of the confined mode can be written as: 

𝐸(𝑧, 𝑡) =
1

2
𝐹(𝑥, 𝑦, 𝜔0)𝐴(𝑧, 𝑡)𝜔0𝑒

𝑖(𝛽0𝑧−𝜔0𝑡) + 𝑐𝑐.           (A3.11) 

In which 𝛽0 = 𝜔0𝑛𝑒𝑓𝑓0/𝑐 is the linear mode propagation wavevector determined by 

the waveguide cross-section and material properties. By submitting definition (A3.11) 

to wave equations (1.14) and expanding: 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝐹(𝑥, 𝑦, 𝜔0) ∙ 𝐴(𝑧, 𝑡)𝜔0 + 𝐹(𝑥, 𝑦, 𝜔0) ∙ [−𝛽0

2 + 2𝑖𝛽0
𝜕

𝜕𝑧
+

𝜕2

𝜕𝑧2
] 𝐴(𝑧, 𝑡)𝜔0 +  

𝑘0
2(휀𝐿 + 휀𝑁𝐿)𝐹(𝑥, 𝑦, 𝜔0)𝐴(𝑧, 𝑡)𝜔0 = 0            (A3.12) 

If we assume that the propagating mode in this nonlinear waveguide is well confined 

and both the losses and nonlinearities are only involved with the linear approximation, 

then simplify equation (A3.12) with 𝐹(𝑥, 𝑦)
𝜕2

𝜕𝑧2
𝐴(𝑧, 𝑡)𝜔0 ≈ 0, then we have: 

 𝐹(𝑥, 𝑦, 𝜔0)2𝑖𝛽0
𝜕

𝜕𝑧
𝐴(𝑧, 𝑡)𝜔0 + (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝐹(𝑥, 𝑦, 𝜔0) ∙ 𝐴(𝑧, 𝑡)𝜔0 + [𝑘0

2(휀𝐿 + 휀𝑁𝐿) −

𝛽0
2]𝐹(𝑥, 𝑦, 𝜔0)𝐴(𝑧, 𝑡)𝜔0 = 0               (A3.13) 

Where (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝐹(𝑥, 𝑦) ∙ 𝐴(𝑧, 𝑡)𝜔0 + (𝑘0

2휀𝐿 − 𝛽0
2)𝐹(𝑥, 𝑦)𝐴(𝑧, 𝑡)𝜔0 = 0  is 

exactly the typically Helmhotz Equation that determining the linear effective index, 

for the homogeneous material without variation along the propagation direction. 

Therefore equation (A3.13) can be translated as: 

2𝑖𝛽0
𝜕

𝜕𝑧
𝐴(𝑧, 𝑡)𝜔0 + 𝑘0

2휀𝑁𝐿𝐴(𝑧, 𝑡)𝜔0 = 0 or 
𝜕

𝜕𝑧
𝐴(𝑧, 𝑡)𝜔0 =

𝑖𝑘0 𝑁𝐿

2𝑛𝑒𝑓𝑓0
𝐴(𝑧, 𝑡)𝜔0  

                    (A3.14) 

Considering the weak 2nd and high order nonlinearity (>3rd), the nonlinear electric 

polarization can be written as  𝑃𝑁𝐿 ≈ 3휀0𝜒
3|𝐸|2𝐸  and 휀𝑁𝐿 = 3𝜒

3|𝐸|2  as claimed 

in chapter 1. Therefore, equation can be written as:  
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𝜕

𝜕𝑧
𝐴(𝑧, 𝑡)𝜔0 = 𝑖𝑘0

3𝜒3

4𝑛1𝑛𝑒𝑓𝑓0 0𝑐
(2𝑛1휀0𝑐|𝐴|

2)𝐴(𝑧, 𝑡)𝜔0 = 𝑖𝑘0𝑛2𝐼𝐴(𝑧, 𝑡)𝜔0     (A3.15) 

𝑛1 = √휀𝐿 = √1 + 𝜒1 is the linear material refractive index while 𝑛2 is the nonlinear 

refractive index which contributes to the mode propagation with the light intensity 𝐼. 

Once a wave package propagating with carrier frequency 𝜔0 is introduced to 

this nonlinear waveguide, then the electric field of each frequency component (e.g. 

𝜔1) of the mode can be written as: 

𝐸(𝑧, 𝑡) =
1

2
𝐹(𝑥, 𝑦, 𝜔1)𝐴(𝑧, 𝑡)𝜔1𝑒

𝑖(𝛽𝐿1𝑧−𝜔1𝑡) + 𝑐𝑐.  

=
1

2
𝐹(𝑥, 𝑦, 𝜔1)𝐴(𝑧, 𝑡)𝑒

𝑖(𝛽0𝑧−𝜔0𝑡) + 𝑐𝑐.               (A3.16) 

Where 𝛽𝐿1 = 𝜔1𝑛𝑒𝑓𝑓1/𝑐 is the linear propagation wavevector determined by the 

waveguide cross-section and material properties for frequency  𝜔1 . The mode 

amplitude 𝐴(𝑧, 𝑡) = 𝐴(𝑧, 𝑡)𝜔1𝑒
𝑖(𝜔0−𝜔1)𝑡𝑒𝑖(𝛽𝐿1−𝛽0)𝑧 has already considered the phase 

deviation from the frequency detuning. This exposing ton he carrier frequency is 

made for the later consideration on the whole packet. Based on this, we can rewrite 

the wave equation as:  

𝐹(𝑥, 𝑦, 𝜔1)2𝑖𝛽0
𝜕

𝜕𝑧
𝐴(𝑧, 𝑡) + (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝐹(𝑥, 𝑦, 𝜔1) ∙ 𝐴(𝑧, 𝑡) + [𝑘0

2(휀𝐿 + 휀𝑁𝐿) −

𝛽0
2]𝐹(𝑥, 𝑦, 𝜔1)𝐴(𝑧, 𝑡) = 0                (A3.17) 

To simplify equation (A3.17), we introduce the frequency-related propagation 

wavevector 𝛽(𝜔1), then equation (3.51) can be separated into two part.  

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝐹(𝑥, 𝑦, 𝜔1) ∙ 𝐴(𝑧, 𝑡) + [𝑘0

2(휀𝐿 + 휀𝑁𝐿) − 𝛽
2]𝐹(𝑥, 𝑦, 𝜔1)𝐴(𝑧, 𝑡) = 0 

                    (A3.18) 

2𝑖𝛽0
𝜕

𝜕𝑧
𝐴(𝑧, 𝑡) + (𝛽2 − 𝛽0

2)𝐴(𝑧, 𝑡) = 0           (A3.19) 

where 𝛽 is the wave vector first determine by (A3.18), which is used to described a 

dispersive wave envelop (frequency information is included in 𝐴(𝑧, 𝑡) and input to 

equation (A3.19).  

In equation A3.19, we considering the weak 2nd and high order nonlinearity (>3rd) and 

ignoring similarly we have: 
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𝛽(𝜔1) =
√𝑘0

2𝑛1
2 + 𝑘0

23𝜒3|𝐸|2 +
(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)𝐹(𝑥,𝑦)

𝐹(𝑥,𝑦)
≈ √𝑘0

2𝑛1
2 +

(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)𝐹(𝑥,𝑦)

𝐹(𝑥,𝑦)
+

𝑘03𝜒
3|𝐸|2

2𝑛1
                   (A3.20) 

𝑛1 = √휀𝐿 = √1 + 𝜒1  is the linear refractive index for frequency 𝜔1  while 

𝛽𝐿(𝜔1) =
√𝑘0

2𝑛1
2 +

(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)𝐹(𝑥,𝑦)

𝐹(𝑥,𝑦)
= 𝛽𝐿1 = 𝜔1𝑛𝑒𝑓𝑓1/𝑐  is the solution of 

electromagnetic mode with frequency 𝜔1  propagating in a waveguide without 

nonlinearity (𝑘0
23𝜒3|𝐸|2 = 0). With this the wavevector can be written as: 

𝛽(𝜔1) = 𝛽𝐿(𝜔1) +
𝑘03𝜒

3|𝐸|2

2𝑛1
               (A3.21) 

In equation A3.19, since the nonlinear wavevector is normally order-of-magnitude 

smaller than the linear counterpart, we can take the approximation that: 

2𝑖𝛽0
𝜕

𝜕𝑧
𝐴(𝑧, 𝑡) + (𝛽 + 𝛽0)(𝛽 − 𝛽0)𝐴(𝑧, 𝑡) ≈ 2𝑖𝛽0

𝜕

𝜕𝑧
𝐴(𝑧, 𝑡) + 2𝛽0(𝛽 − 𝛽0)𝐴(𝑧, 𝑡) = 0    

Therefore, a simplified version of (A3.19) is obtained: 

𝜕

𝜕𝑧
𝐴(𝑧, 𝑡) = 𝑖(𝛽 − 𝛽0)𝐴(𝑧, 𝑡)              (A3.22) 

Putting the overall wavevector, i.e. equation (3.21) to (3.22), then we have: 

𝜕

𝜕𝑧
𝐴(𝑧, 𝑡) = 𝑖(𝛽𝐿 − 𝛽0)𝐴(𝑧, 𝑡) + 𝑖

𝑘03𝜒
3|𝐸|2

2𝑛1
𝐴(𝑧, 𝑡)  

= 𝑖(𝛽𝐿 − 𝛽0)𝐴(𝑧, 𝑡) + 𝑖𝑘0
3𝜒3

4𝑛1
2
0𝑐
(2𝑛1휀0𝑐|𝐴|

2)𝐴(𝑧, 𝑡)          (A3.23) 

Ignoring the nonlinearities-induced losses (i.e. α2 = 0), then 

𝜕

𝜕𝑧
𝐴(𝑧, 𝑡) = 𝑖(𝛽𝐿 − 𝛽0)𝐴(𝑧, 𝑡) + 𝑖𝑘0𝑛2𝐼𝐴(𝑧, 𝑡)          (A3.24) 

By considering the frequency-detuning (from carrier frequency 𝜔0 ) induced 

dispersion and Fourier transform, we can obtain 

𝜕

𝜕𝑧
𝐴(𝑧, 𝑡) = 𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝑡𝑘
)𝑛

𝑘=1 𝐴(𝑧, 𝑡) + 𝑖𝑘0𝑛2𝐼𝐴(𝑧, 𝑡)         (A3.25) 

In this equation, 𝑡 is the absolute time of propagation. Considering a case in Figure 

A3 (a) that a pulse is propagating in a ring resonator, if the pulse is analyzed in 
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absolute time windows, the evolution of amplitude at different position would be 

difficult to visualized in multi-roundtrip observation.  

 

Figure A 3. Sketch of pulse propagating in resonator with absolute time variable 𝑡 (a) and relative 

time variable 𝜏 that restrict within roundtrip time range (b). 

To simplify the analysis, a moving time frame with a time variable limited in [0, 

roundtrip time (𝜏𝑅)] is adopted, by which the relative phase variation from the 

coupling point can be integrated into 𝐴(𝑧, 𝑡) . With this approach, redundant 

time-relevant information is removed and the comparison between position in the 

same roundtrip and different roundtrips at the same position can be very 

straightforward. To consider the relative time frame at each position, we need to 

replace it with a variable 𝜏 = 𝑡 −
𝑧

𝑣𝑔
 to build a moving time frame, as in Figure A3 

(b). By reconsider new component in position (i.e. 𝑧 + (𝜔0 − 𝜔1)
𝑧

𝑣𝑔
), equation 

(A3.25) can be furthered as: 

𝜕

𝜕𝑧
𝐴(𝑧, 𝜏) = 𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=1 𝐴(𝑧, 𝜏) + 𝑖(𝜔0 − 𝜔1)
1

𝑣𝑔
𝐴(𝑧, 𝜏) + 𝑖𝑘0𝑛2𝐼𝐴(𝑧, 𝜏)   

= 𝑖 ∑
𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 𝐴(𝑧, 𝜏) + 𝑖𝑘0𝑛2𝐼𝐴(𝑧, 𝜏)           (A3.26) 

Equation (A3.26) is then well developed for describing the amplitude envelope in a 

time frame of 𝜏 ∈ [𝜏1, 𝜏2] moving along the propagation. With consideration on the 

absorption induced by the scattering and waveguide imperfection that 𝐴(𝑧) =

𝐴(0)𝑒−
𝛼

2
𝑧
, the lossless nonlinear wave equation (A3.26) can be extended to: 

𝜕

𝜕𝑧
𝐴(𝑧, 𝜏) = [𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕2

𝜕𝜏2
)𝑛

𝑘=2 + 𝑖𝑘0𝑛2𝐼 −
𝛼

2
] 𝐴(𝑧, 𝜏)         (A3.27) 

Till now, we obtain a nonlinear wave equation  for light frequency 𝜔1 propagating 
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(𝐴(𝑧, 𝑡) = 𝐴(𝑧, 𝑡)𝜔1𝑒
𝑖(𝜔0−𝜔1)𝑡𝑒𝑖(𝛽−𝛽0)𝑧) with carrier coefficient 𝑒𝑖(𝛽0𝑧−𝜔0𝑡). Based 

on this, we can easily integrate all the wave equation, i.e.  

𝜕

𝜕𝑧
[𝐴(𝑧, 𝜏)𝜔1𝑒

𝑖(𝜔0−𝜔1)𝑡] = [𝑖 ∑
𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝑘0𝑛2𝐼 −
𝛼

2
] ∙ [𝐴(𝑧, 𝜏)𝜔1𝑒

𝑖(𝜔0−𝜔1)𝑡]  

𝜕

𝜕𝑧
[𝐴(𝑧, 𝜏)𝜔2𝑒

𝑖(𝜔0−𝜔2)𝑡] = [𝑖 ∑
𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝑘0𝑛2𝐼 −
𝛼

2
] ∙ [𝐴(𝑧, 𝜏)𝜔2𝑒

𝑖(𝜔0−𝜔2)𝑡]  

… 

𝜕

𝜕𝑧
[𝐴(𝑧, 𝜏)𝜔𝑛𝑒

𝑖(𝜔0−𝜔𝑚)𝑡] = [𝑖 ∑
𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝑘0𝑛2𝐼 −
𝛼

2
] ∙ [𝐴(𝑧, 𝜏)𝜔𝑚𝑒

𝑖(𝜔0−𝜔𝑚)𝑡]  

by doing the simple multiplication with Fourier Transform laid out before, we can 

conveniently conclude a general nonlinear wave equation describing a wave packet 

propagating with coefficient 𝑒𝑖(𝛽0𝑧−𝜔0𝑡): 

𝜕

𝜕𝑧
𝐴(𝑧, 𝜏) = [𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝑘0𝑛2𝐼 −
𝛼

2
] 𝐴(𝑧, 𝜏)         (A3.28) 

Unambiguously, the temporal signal can be obtained by the inverse Fourier Transform 

from 𝐴(𝑧, 𝜔 − 𝜔0). In equation (A3.28), the light intensity (with dimension W/𝑚2) is 

supposed to be jointly considered with the mode confinement and the effective mode 

area 𝐴𝑒𝑓𝑓. By separating mode area from light intensity, we can obtain the nonlinear 

coefficient 𝛾 =
𝑘0𝑛2

𝐴𝑒𝑓𝑓
=

ω𝑛2

𝑐𝐴𝑒𝑓𝑓
 and a modified nonlinear wave equation:  

𝜕

𝜕𝑧
𝐴(𝑧, 𝜏) = [𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝛾𝑃 −
𝛼

2
] 𝐴(𝑧, 𝜏)             (A3.29) 

Where 𝑃  is the optical power transmit through waveguide cross-section. By 

normalizing the electric field 𝐴(𝑧, 𝜏) to the dimension of power (with the optical 

resistance), then it can be further rewritten as: 

𝜕

𝜕𝑧
𝐴(𝑧, 𝜏) = [𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝛾|𝐴(𝑧, 𝜏)|2 −
𝛼

2
] 𝐴(𝑧, 𝜏)        (A3.30) 

To understand how the [𝑖𝛾|𝐴|2] influences the spectrum and produces energy on 

spectrum, just simply calculate the complex amplitude envelope. 

𝐴(𝑧, 𝑡) =
0.5𝐴(𝑧,𝑡)exp(−𝑖𝜔0𝑡)+𝑐𝑜𝑛𝑗(0.5𝐴(𝑧,𝑡)exp(−𝑖𝜔0𝑡))

cos (−𝜔0𝑡)
  

Once a phase is added to 𝐴(𝑧, 𝑡), then 

𝐴(𝑧, 𝑡)∆𝜑 =
0.5𝐴(𝑧,𝑡)exp(𝑖∆𝜑−𝑖𝜔0𝑡)+𝑐𝑜𝑛𝑗(0.5𝐴(𝑧,𝑡) exp(𝑖∆𝜑−𝑖𝜔0𝑡))

cos (−𝜔0𝑡)
=
cos (∆𝜑−𝜔0𝑡)

cos (−𝜔0𝑡)
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Clearly, the variation of amplitude in at different time period (or different position in a 

roundtrip) is relative to propagating frequency.  

Equation (A3.31) is the basic tool to consider an optical pulse propagation of 

supercontinuum generation or mode-lock laser [A1] with moving time frame. As it 

shares the generalized form of Nonlinear Schrödinger Equations [51, A1]: 

𝑖
𝜕

𝜕𝑡
𝜓 = −

1

2

𝜕2

𝜕𝑥2
𝜓 + 𝜅|𝜓|2𝜓                (A3.31) 

Equation (A3.31) is often related and stated as the Nonlinear Schrödinger Equations 

(NLSE) [A2, A3] for nonlinear optics. Based on equation (A3.30), we can detail the 

generation of soliton frequency comb and related dynamics. 
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A4.  Modeling the soliton frequency comb  

Model using mean-field Lugiato-Lefever equation  

Optical frequency combs display a complex and very rich dynamical behavior, 

which has led to the development of several theoretical models for their description. 

These include the Ikeda map, the modal expansion approach, and the Lugiato-Lefever 

equation. In a cold linear ring resonator, the resonant pattern of the pump wavelength 

will be stabilized with circulating time much longer than the ring roundtrip time 𝜏𝑅, 

as illustrated in Figure A4 (a). However, in a Kerr ring resonator (Figure A4 (b)), the 

pump wave inside the cavity continuously generates new frequency with the Kerr gain. 

These circulating, new frequencies will constructively interference at certain positions 

where phase is well matched. Since then, this strong in-phase point will continuously 

move even though their respective resonant pattern is shaped, with almost all the 

energy concentrating locally (in space). These hot energy spots evolve with time and 

can considered as initial-solitons where light of different frequencies propagating with 

same velocity remain with a relatively constant phase. 

 

Figure A 4. Sketch of a continuous-wave driven linear (a) and nonlinear (b) ring system. 𝜅, 𝛼 and 𝐿 

is the ring-bus coupling efficiency, intra-cavity loss coefficient and roundtrip length, respectively. 

To adapt equation (A3.30) to a ring/disk resonator system, ring-bus coupling is 

taken into account. As shown in Figure 71, the coupling coefficient and the roundtrip 

length of the resonator are represented by 𝑘 and 𝐿, respectively. The system can be 

described as: 

𝜕

𝜕𝑧
𝐴(𝑧, 𝜏) = [𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝛾|𝐴(𝑧, 𝜏)|2 −
𝛼

2
] 𝐴(𝑧, 𝜏)         (A4.1) 
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𝐴(0, 𝜏)𝑚+1 = √1 − 𝜅𝐴(𝐿, 𝜏)𝑚𝑒
𝑖∆𝜑0 + √𝜅𝐴𝑖𝑛(𝜏)        (A4.2) 

𝐴𝑖𝑛  is the driven amplitude while ∆𝜑0 is the phase detuning satifying ∆𝜑0 =
𝐿𝜔0𝑛𝑔/𝑐 = 2𝜋𝑛 − 𝜑0  where 𝜔0  and 𝜔𝑛  are the pump frequency and 𝜔𝑛  the 

closest 𝑛-order resonant frequency of ring, respectively. 𝜑0 is the phase of the 

driven signal accumulated in the cavity。 For convenience, 𝑛 is usually set with zero 

order by which ∆𝜑0 = −𝛿0 . Driven wavelength red shifted or blue shifted are 

describedby𝛿0 > 0 and 𝛿0 < 0, respectively. This approach was originally used to 

describe stationary states, instability and chaotic issues of the transmitted light in a 

ring cavity system [A4]. This method is now widely used to described the so-called 

Ikeda map of frequency combs. 

Instead of counting every small step of the resonator, the Lugiato-Lefever 

equation (LLE, based on the original form of Nonlinear Schrödinger Equations), 

as a temporal model, is more commonly used for describing the formation of 

microresonator frequency combs in the mean-field approximation. The model usually 

designated as Lugiato–Lefever equation was formulated in 1987 [A5, A6] as a 

paradigm for spontaneous pattern formation in nonlinear optical systems. The patterns 

originate from the interaction of a coherent field, that is injected into a resonant 

optical cavity, with a Kerr medium that fills the cavity. The LLE is a type of driven 

and damped NLSE that has previously been used to model transverse effects in 

diffractive optical ring cavities [A5], and temporal effects in dispersive fiber-ring 

resonators [A7]. In the context of microresonators, the LLE was first introduced by 

Matsko et al. [A8]. It describes the evolution of the slowly varying electric field 

envelope 𝐴(𝑧, 𝜏) over multiple passes of the resonator cavity. In this method, it is 

assumed that the field vary slowly enough over the duration of the round-trip so that 

the z-variation of 𝐴(𝑧, 𝜏) on the right-hand side of equation (A4.1) can be ignored. 

This can be formulated as a requirement that the detuning and the dispersion should 

be a small enough that phase variation in single round trip is much smaller than 𝜋. 

The mean-field approximation may still be applicable even if the intracavity field 

oscillating round-by-round. The solution of equation (A4.1) is then approximated as: 

𝐴(𝐿, 𝜏)𝑚 − 𝐴(0, 𝜏)𝑚 = [𝑖 ∑ 𝐿
𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝛾𝐿|𝐴(0, 𝜏)𝑚|
2 −

𝛼𝐿

2
] 𝐴(0, 𝜏)𝑚  (A4.3) 

In the meanwhile, we also notice that in small perturbation, the transfer factor at the 

coupling region can be simplified as  

√1 − 𝜅𝐴(𝐿, 𝜏)𝑚𝑒
−𝑖𝛿0 ≈ (1 −

𝜅

2
− 𝑖𝛿0)𝐴(𝐿, 𝜏)𝑚           (A4.4) 

By inserting equation (A4.3) and (A4.4) back to boundary equation (A4.2), we have:  

𝐴(0, 𝜏)𝑚+1 = √𝜅𝐴𝑖𝑛(𝜏) + (1 −
𝜅

2
− 𝑖𝛿0) 𝐴(𝐿, 𝜏)𝑚  

https://en.wikipedia.org/wiki/Pattern_formation
https://en.wikipedia.org/wiki/Kerr_effect
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= √𝜅𝐴𝑖𝑛(𝜏) + 𝐴(0, 𝜏)𝑚 + [𝑖∑ 𝐿
𝛽𝑘

𝑘!
(𝑖
𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝛾𝐿|𝐴(0, 𝜏)𝑚|
2
−
𝛼𝐿

2
] 𝐴(0, 𝜏)𝑚 −

(
𝜅

2
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𝜅
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] 𝐴(0, 𝜏)𝑚   

Since the last term is very small with the scale of square of slow variation, the 

equation can be simplified as:  

𝐴(0, 𝜏)𝑚+1 − 𝐴(0, 𝜏)𝑚 ≈ √𝜅𝐴𝑖𝑛(𝜏) − (
𝛼𝐿

2
+
𝜅

2
+ 𝑖𝛿0)𝐴(0, 𝜏)𝑚 +

𝑖 ∑ 𝐿
𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝐴(0, 𝜏)𝑚

𝑛
𝑘=2 + 𝑖𝛾𝐿|𝐴(0, 𝜏)𝑚|

2𝐴(0, 𝜏)𝑚             (A4.5) 

In the meanwhile, since basic step size is considered with the roundtrip time that 𝑡 =

𝑚𝜏𝑅, equation (A4.5) can be written in the differential form in which the roundtrip 

number can be jointly considered with time, therefore:  

𝜏𝑅
𝜕

𝜕𝑡
𝐴 (

𝑡

𝜏𝑅
𝐿, 𝜏) = √𝜅𝐴𝑖𝑛(𝜏) − (

𝛼𝐿+𝜅

2
+ 𝑖𝛿0) 𝐴 (

𝑡

𝜏𝑅
𝐿, 𝜏) + 𝑖 ∑ 𝐿

𝛽𝑘

𝑘!
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𝜕𝑘

𝜕𝜏𝑘
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𝜏𝑅
𝐿, 𝜏)𝑛
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𝑖𝛾𝐿 |𝐴 (
𝑡

𝜏𝑅
𝐿, 𝜏)|

2
𝐴 (

𝑡

𝜏𝑅
𝐿, 𝜏)                  

Or a more clear form that 

𝜏𝑅
𝜕

𝜕𝑡
𝐴(𝑡, 𝜏) = √𝜅𝐴𝑖𝑛(𝜏) − (

𝛼𝐿+𝜅

2
+ 𝑖𝛿0)𝐴(𝑡, 𝜏) + 𝑖 ∑ 𝐿

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝐴(𝑡, 𝜏)𝑛

𝑘=2 +

𝑖𝛾𝐿|𝐴(𝑡, 𝜏)|2𝐴(𝑡, 𝜏)                     (A4.6) 

Equation (A4.6) is widely referred as the mean-field Lugiato–Lefever equation. It is 

written by using a two-time scale approach, with 𝜏 being a fast time variable that 

describes the pulse field profile in a reference frame moving at the group velocity and 

spanning in the roundtrip time range. Meanwhile, 𝑡 is a slow time variable that 

measures the evolution averaged field of the round-trip.  

This two-time scale approach allows to treat the evolution of ring standing wave 

profile (propagation of light with respect to position, “transverse patterns”) and the 

soliton temporal profile (light temporal evolution at a certain position, 

“longitudinal patterns”) as independent variables. The frequency spectrum is obtained 

by taking the Fourier transform of the field 𝐴(𝑡, 𝜏) with respect to the fast time 𝜏, 

and the amplitude of this spectrum is evolving on the slow time scale 𝑡. The LLE has 

two substantial advantages compared to the Ikeda map. For one thing it allows us 

numerically observe the dynamics by integrating the field with steps in roundtrip unit 

as usual but tremendously. In the meanwhile, it reduces the computational burden. For 

another thing, by taking the steady-state solutions of equation (A4.6) that states that 

𝜕

𝜕𝑡
𝐴(𝑡, 𝜏) = 0, it allows us to search its possible roots using the Newton-Rhapson 
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method and analytically investigate [A9-A10] faster with more general validity such 

as those based on the Ikeda map. For example, with 
𝜕

𝜕𝑡
𝐴(𝑡, 𝜏) = 0 , a lowest 

approximation of soliton solution of equation (A4.16) can be considered as [A10]: 

𝐴(𝑡, 𝜏) = −𝑖
√𝜅𝐴𝑖𝑛

𝛿0
+√

2𝛿0

𝛾𝐿
𝑠𝑒𝑐ℎ (√

2𝛿0

|𝛽|𝐿
𝜏) 𝑒

𝑖(
𝛼𝐿+𝜅

𝜋|𝐴𝑖𝑛|
√
2𝛿0
𝛾𝜅𝐿
)
             (A4.7) 

which gives straightforwardly the temporal profile for understanding the evolution of 

soliton combs although it does not yield insights into its dynamics. The combination 

of these two evolutions gives rise to a sequence of pulses (described with 𝜏) in the 

output of the cavity that, which is intrinsically linked to the phenomenon of “Kerr 

frequency combs” in microresonators reported in 2007 [184]. According to equation 

A4.7, the typical shape of such a soliton solution could be portrayed like that in 

Figure A5 (a). The field hot spot in Gaussian shape in the center describes the 

collective interference of the multi-frequency optical field using the second term of 

equation (A4.7). The constant field around is a bias corresponding to the continuous 

pump field. By doing the inverse Fourier Transform of the soliton profile in Figure 

A5 (a), we can obtain a frequency comb spectrum in shape like that in Figure A5 (b).   

 

Figure A 5. Schematic of a single-soliton profile in (a) time domain and (b) frequency domain. 

In addition to the solving the steady-state solution of the mean-field equation, we 

could also dynamically solve it using integration. Based on LLE introduced 

previously, we can establish a detuning-evolving comb model for investigating the 

generation and the dynamics of soliton frequency combs [A11, A12]. Open-access 

Python programming environment is chosen due to the high functionality and 

portability. A dynamics of comb generation is explained and shown in Figure 61 and 

62. The dynamics of the frequency comb could also have been described in the 

frequency domain modal expansion approach [A13, A14], where a much higher level 

of computational complexity is then required, where the computational analysis is 

then also slown down by several orders of magnitude by the intensive use of Fourier 

transform calculations. 

 

https://en.wikipedia.org/wiki/Kerr_frequency_comb
https://en.wikipedia.org/wiki/Kerr_frequency_comb
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Dispersion and parameters control 

The nonlinear ring system can be considered as that shown in Figure A6 (a). 

 
Figure A 6. (a) Schematic of the nonlinear ring-based frequency comb system. (b) A design map for 

managing the input parameters. 

The free spectrum range (FSR) in frequency unit can be written as: 

 𝐹𝑆𝑅𝜔 =
𝑑𝜔

𝑑𝑚
=
2𝜋𝑐

𝑛𝑔𝐿
                      (A4.8) 

   , where 𝑚 is the azimuthal order of the mode interference. Therefore, the phase 

mismatch results from the nonlinear phase and chromatic dispersion can be 

considered as:  

∆𝑘 = 2𝛾𝑃𝑖𝑛 − ∆𝑘𝐿 = 2𝛾𝑃𝑖𝑛 − (2𝑘𝑧𝑃 − 𝑘𝑧𝑆 − 𝑘𝑧𝐼)  

≈ 2𝛾𝑃𝑖𝑛 − (
𝑑𝑘

𝑑𝜔𝜔1
∙ 𝑛𝐹𝑆𝑅𝜔 −

𝑑𝑘

𝑑𝜔𝜔2
∙ 𝑛𝐹𝑆𝑅𝜔) = 2𝛾𝑃𝑖𝑛 +

𝑑2𝑘

𝑑𝜔2
(𝑛𝐹𝑆𝑅𝜔)

2     (A4.9) 

Where 𝑛 is the number of FSR that the three waves space to each other. Since 

dispersion 𝐷 =
−2𝜋𝑐

𝜆2
∙
𝑑2𝑘

𝑑𝜔2
,   then  

 ∆𝑘 = 2𝛾𝑃𝑖𝑛 − 𝐷
𝜆2

2𝜋𝑐
∙ (𝑛𝐹𝑆𝑅𝜔)

2 = 2𝛾𝑃𝑖𝑛 − 𝐷2𝜋𝑐 ∙ (
𝑛𝜆

𝑛𝑔𝐿
)2       (A4.10) 

Based on dispersion matching described by equation A4.10, the design map for 

managing these parameters can be considered as shown in Figure A6 (b).  
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Synthèse en français du manuscrit de thèse  

 

Titre: Ingénierie de guides et de cavités silicium sub-longueur d'onde 

pour la photonique non linéaire 

 

La photonique silicium est basée sur l'idée de réutiliser les méthodes et procédés 

de fabrication CMOS et de les transférer à des structures guidantes pour la réalisation 

de circuits intégrés photoniques. La photonique silicium a acquis depuis quelques 

années une place croissante, notamment pour les télécommunications optiques, les 

centres de données et le calcul haute performance. En tirant parti des fortes densités 

de données et de la transmission sur de plus longues distances en photonique silicium, 

il est possible d'atteindre des niveaux élevés d'intégration avec de faibles coûts de 

fabrication en utilisant des infrastructures de circuits intégrés silicium classiques. 

Malgré toutes les qualités de la plate-forme silicium, la photonique silicium présente 

également des inconvénients importants. L'augmentation rapide de la demande 

d'interconnexions optiques entraîne une forte demande de fonctions actives efficaces 

et fonctionnelles, basse puissance, en particulier de sources lumineuses à base de 

silicium et de modulateurs optiques silicium. 

Visant à explorer les fonctions actives de la photonique silicium, cette thèse est 

centrée sur l'exploitation des non-linéarités du silicium en utilisant tout 

particulièrement une ingénierie de structures sub-longueur d'onde. En particulier, 

l'effet Pockels de deuxième ordre et l'effet Kerr de troisième ordre sont exploités pour 

la modulation de la lumière à grande vitesse et faible puissance et la génération de 

lumière sur puce en photonique silicium. 

 

Guidé par ces orientations, le travail effectué peut être classé en deux grandes 

parties : 

1. Etude et optimisation de résonateurs Fano en silicium pour la réalisation de 

modulateurs électro-optiques à base de silicium contraint (donc à effet Pockels). 

2. Guide d'onde à limite de confinement auto-adaptative à structure 

sub-longueurs d'onde pour l'ingénierie de dispersion et l’application au mélange à 

quatre ondes et à la génération de peignes de fréquence Kerr. 

Chacune de ces étapes a conduit aux résultats que nous présentons ci-après. 
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1. Résonateurs Fano silicium pour modulateurs optiques à effet Pockels 

Une longue durée de vie des photons dans un résonateur à facteur de qualité Q élevé 

nuit de manière générale à la rapidité des modulateurs électrooptiques (Figure 1) et 

limite leur largeur de bande de modulation pour un rapport d'extinction donné. Par 

exemple, pour un facteur de qualité de seulement 104, la largeur de bande f3dB limitée 

par la durée de vie des photons (en supposant une constante de temps RC négligeable) 

peut être calculée comme suit : 
1

𝑓3𝑑𝐵
2 = (2π𝜏)2 + (2π𝑅𝐶)2 ≈ (2π𝜏)2 , où 𝜏 =

𝑄

𝜔
=

𝜆𝑄

2𝜋𝑐
, ce qui donne un maximum de 20GHz pour une longueur d'onde de travail autour 

de 1.5μm [66]. Cette inefficacité relative de modulation provient en fait en grande 

partie de la forme de la résonance spectrale utilisée, très symétrique, et qui implique 

donc un décalage significatif en fréquence afin d'induire un rapport d'extinction 

on/off>>1. En générant une asymétrie spectrale de la réponse du résonateur, sans 

aucune augmentation du facteur Q (Figure 1), on peut profiter d’une réponse plus 

rapide et améliorer simultanément le rapport de modulation (ER) obtenu. 

 
Figure 1. Représentation schématique de l'effet d'une forme de ligne de résonance asymétrique sur les 

propriétés de modulation d’un modulateur électro-optique. 

Pour réaliser un spectre asymétrique dans un résonateur à guide d'onde unique, 

résultat très attendu pour la réalisation de modulateurs électro-optiques rapides et à 

basse puissance consommée, nous propose d’exploiter des cavités multimodes et d’en 

coupler les modes comme suit. La cavité montrée en Figure 2 (a) produit deux 

résonances de Fano, c'est-à-dire pour chacun des deux modes de polarisation 

quasi-TE considérés. La condition de Bragg traditionnelle de création d’un miroir 

distribué est en effet λ=2neffa, où neff et a sont respectivement l'indice effectif du 

mode de propagation et de la période du réseau. Le principe de base de l'approche que 

nous proposons de mettre en œuvre est donc de concevoir une structure à guide 

unique mais à résonance double, dont l'un des modes connaît une transmission 

résonante tandis que le mode supérieur fonctionne en régime sub-longueur d’onde, et 

donc à transmission élevée. Leur combinaison, basée sur un mélangeur de modes (à 



135 

 

 

structuration sub-longueur d'onde), conduit à un jeu d’interférences à signature de 

résonance de Fano pour chacune des deux résonances. 

Sur la base des dispositifs fabriqués (voir Figure 2 (b)), des signatures spectrales de 

type Fano ont été clairement observées pour les modes de cavité du 1er et du 2ème 

ordres, comme le montre la Figure 3 (a), avec des longueurs d'onde de résonance 

situées respectivement à environ 1515 nm et 1531 nm. Les distributions simulées pour 

ces deux modes sont présentées dans les encarts de la Figure 3 (b). 

 

Figure 2. a) Schéma de la cavité de Fano proposée, constituée d'une structure d'entrée de type MMI, 

d'une cavité nanométrique, d'un mélangeur sub-longueur d'onde et d'un coupleur directionnel. Les 

courbes en pointillés bleus et rouges représentent les profils de mode spatial (en bas à droite) des 

modes de propagation TE0 et TE1. Les courbes solides bleues et rouges représentent les formes de 

lignes spectrales des modes de propagation TE0 et TE1. Encart supérieur droit : la distribution du mode 

TE1 couplée au mode TE0 du guide d'onde latéral et convertie en celui-ci. b) Image MEB de la cavité 

Fano proposée avec un guide d'onde d'entrée de 400 nm de largeur. La période, le facteur de 

remplissage et la longueur du réseau de trous de longueur d'onde secondaire sont respectivement 

Pe=200 nm, ff=0,5 et Le=400nm. 

Le spectre du 1er mode de cavité est montré en Figure 3 (c). Nous voyons qu’avec 

un désaccord de longueur d'onde de seulement 56pm, le niveau de transmission 

optique de la cavité subit une chute de transition d'environ 17 dB. Une analyse 

similaire a également été effectuée pour le deuxième mode de cavité, qui a permis 

d'obtenir un rapport d'extinction de plus de 23,2 dB pour un désaccord de longueur 

d'onde de 366pm avec un facteur Q de 5600, comme illustré en Figure 3 (d). Un 

spectre de Lorentz expérimental avec presque le même facteur Q de 5600 est 

également reporté (courbe verte) en Figure 38 (d) pour comparaison, qui s’avère 

nettement moins efficace. Pour une résonance Lorentzienne sans perte 
𝛾𝑡
2

(𝜔0−𝜔)2+𝛾𝑡
2 

avec le même facteur Q de 5600 (𝛾t=2π ∗ 17.75GHz), le rapport d'extinction (ER) 

pour un désaccord de longueur d'onde de 366pm (∆ω≈2π*46.83GHz) est 

-10log(
𝛾𝑡
2

(∆𝜔)2+𝛾𝑡
2)=9dB. Cette valeur est inférieure de 14dB à celle de la résonance de 

Fano rapportée expérimentalement (23dB). D'un autre point de vue, avec le même 



136 

 

 

facteur Q (5600) et le même facteur ER (23 dB), le désaccord de longueur d'onde 

requis dans un cas Lorentzien est de 1,96 nm (∆ω≈2π*251GHz), ce qui conduirait à 

une puissance de commande bien supérieure à celle du modulateur à résonance Fano. 

Cette performance supérieure montre un fort potentiel de réduction de la 

consommation d'énergie tout en laissant une grande place à la modulation à haut débit 

sans subir les effets d’une durée de vie excessive des photons. Dans l'ensemble, notre 

cavité comprime efficacement les dimensions physiques d'une cavité Fano et donne 

ainsi une grande commodité à la conception des modulateurs électrooptiques. 

 

Figure 3. (a) Transmission expérimentale du guide d'onde à cavité. (b) Transmission expérimentale 

autour du deuxième mode de cavité détecté. c) Courbe expérimentale de transmission et courbe 

d'ajustement du premier mode, représentées par des cercles bleus et une courbe orange, respectivement. 

d) Courbe expérimentale de transmission et courbe d'ajustement du deuxième mode de cavité. La 

courbe de Lorentz est marquée par une courbe verte tandis que la transition entre le maximum et le 

minimum est représentée par des régions grises. 

En nous appuyant sur cette méthode robuste, nous avons conçu un modulateur 

silicium exploitant l’effet d’une contrainte mécanique des couches (générant un effet 

Pockels dans le silicium) combiné à une telle cavité Fano mono-guide d’onde (voir 

Figure 4). Par rapport aux travaux existants utilisant des structures interférométriques 

longues (interféromètres Mach-Zehnder de plusieurs mm) où des pertes 

radio-fréquences élevées sont présentes dans les électrodes à ondes progressives, 

notre conception ultra-compacte permet d'intégrer le résonateur sur une surface de 

quelques centaines de µm2 tout en fournissant une bande passante supérieure à 



137 

 

 

200GHz, associée à une forte amélioration de la réponse électro-optique. Par exemple, 

auparavant, une extinction de 3 dB nécessitait un décalage de longueur d'onde de 1nm 

dans le silicium sous contrainte, ce qui est inatteignable avec le faible niveau de 

sensibilité du second ordre ∆𝜒𝑦𝑦𝑥
(2)

= −1.8pm/V actuellement disponible. Au moyen 

du résonateur Fano à corrugation sub-longueur d'onde proposé, on prévoit 

théoriquement une amélioration d'environ 200 fois/60 fois (facteur Q de 32000/5600) 

de l'extinction avec la même tension appliquée. Cette amélioration donne une 

nouveau champ aux modulateurs silicium à contrainte, leur permettant de fonctionner 

à quelques dB d'extinction avec une tension accessible (<20V) et un facteur Q modéré 

(32000, ici). 

 

Figure 4. Schéma d'un modèle électrique équivalent du modulateur de Fano en silicium contraint 

proposé. L'impédance de charge de l'électrode à ondes progressives est définie par la ligne en pointillés 

rouges. VNA : analyseur de réseau vectoriel. 

 

2. Guide d'onde à confinement auto-adaptatif conçu par ingénierie sub-longueur 

d'onde appliqué au mélange à quatre ondes et la génération de peignes de 

fréquence Kerr 

Nous avons proposé l'utilisation de guides d'ondes SAB (Self-Adaptive Boundary) 

pour la réalisation d’un accord de phase quasi-universel des processus nonlinéaires 

d’ordre 3. La condition SAB a d'abord été conçue pour satisfaire automatiquement les 

lois de conservation de l'énergie et du vecteur d’onde dans le procédé de mélange 

intermode à quatre ondes (FWM) en s'appuyant sur une analogie étroite avec les puits 

quantiques (Figure 5a) et transposée en sections de guide d'ondes silicium (Figure 5b). 

La mise en œuvre de l'égalisation de l'espacement en fréquence entre modes, obtenu 

en remodelant le profil du puits de potentiel avec un profil d'indice graduel, est 
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illustrée en Figure 5 (b). Nous considérons un guide d'onde 2D à gradient d'indice 

(alors avec un « potentiel de coupure » à gradient) avec une largeur de guide d'onde 

de 2a. Les indices du cœur, du bord interne du guide, et de la gaine du guide d'onde 

sont respectivement 𝑛(0) = 𝑛𝑐𝑒𝑛𝑡 , 𝑛(𝑎) = 𝑛𝑏  and 𝑛(|𝑦| > 𝑎) = 𝑛𝑐 , comme le 

montre la Figure 5 (b). Lorsque la condition stipulant que tous les indices effectifs des 

modes guidés utilisés sont supérieurs à l'indice de limite physique (c'est-à-dire  

𝑛𝑒𝑓𝑓 > 𝑛(𝑎) = 𝑛𝑏 pour tous les modes guidés) est vérifiée, on peut considérer que le 

guide d'onde se divise en cinq zones (zones 0, ∓1, ∓2). La partie centrale (partie 0) se 

situe dans la plage[-Lm, Lm] dans laquelle n(y) est supérieur à neff et peut être exprimée 

par une fonction cosinus, comme habituellement, au lieu des limites physiques 

(c'est-à-dire y=∓a). Les quatre autres zones (zones ∓1, ∓2) sont décrites par une 

forme décroissante car n(y) y est plus faible que neff. 

 

Figure 5. (a) Schéma d'un puits à indice de potentiel graduel. (b) Esquisse d'un profil d'indice non 

uniforme et de la distribution modale des trois premiers modes de propagation de l'axe z. ncent, nb, nc 

sont les indices du centre du guide d'onde, de la limite intérieure du guide d'onde, et de son 

environnement (tout en vérifiant la condition SAB selon laquelle neffm>nb). Le point zéro de l'axe est 

situé au centre du guide d'onde. 

En tirant parti de l'équivalence d'indice de l’ingénierie des structures sub-longueurs 

d'onde, nous sommes en mesure de créer un guide d'ondes vérifiant la condition SAB 

effectivement réalisable en photonique silicium (voir Figure 6 (a)). Avec des 

paramètres optimisés suivants : a=775nm, b=275nm, nous pouvons égaliser 

localement l'espacement en fréquence et rendre les courbes de dispersion bien 

parallèles, ce qui la condition sine qua non à un accord de phase généralisé pour le 

mélange à quatre ondes intermodes. En Figure 6 (c), nous montrons les courbes de 

dispersion pour les trois premiers modes du guide d'ondes optimisé. Avec le point 

𝜔2−𝜔1 = 𝜔1−𝜔0 situé à 𝑘𝑧 = 1.07 × 10
7, la gamme de fréquence avec condition 

|∆𝜔21 − ∆𝜔10| <  ∆𝜔 ∗ 5% est aussi large que 35 THz (~300nm), ce qui montre 

également une bonne tolérance aux éventuelles imperfections de fabrication des 

structures. En utilisant cette configuration, l'adaptation de phase est réalisée entre la 

fréquence du signal de 220THz (1.36μm) et la fréquence idler de 172THz (1.72μm). 
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Les résultats de la Figure 6 nous confirment ainsi la faisabilité d'une utilisation des 

guides d'ondes structurés à l’échelle sub-. 

 

Figure 6. (a) Schéma d'un guide d'ondes à profil gradué et à structuration sub-. b) Espacement des 

fréquences en fonction de l'indice effectif neff, à l'aide d'un calcul FDTD 3D. Le point d'appariement 

parfait et la plage de tolérance de 5 % sont marqués respectivement par une ligne grise et une zone 

grise. Les paramètres suivants ont été adoptés : ncent=3.48, nb=nc=1.8. 

Compte tenu du fort potentiel de ces guides d'ondes multimode à confinement 

latéral auto-adaptatif pour l'ingénierie de la dispersion, nous avons étendu leur étude à 

un fonctionnement monomode pour la génération de peignes de fréquence Kerr, 

comme illustré en Figures 7(a) et 7(b). Les courbes de dispersion d'un guide d'ondes 

ruban (‘strip’) et d'un guide d'ondes graduel SAB avec nb≈1.5 et nb≈2.8 sont 

représentées en Figure 7(b), pour comparaison. Les guides SAB permettent d'ajuster 

la dispersion de la longueur d'onde "longue" où neff<nb. C'est parce que l'onde est 

confinée par le contraste d'indice nb/nc et que l'intégrale de phase dépend fortement de 

l'indice nb. En revanche, en régime de courte longueur d'onde (neff>nb), une limitation 

par la largeur effective du guide d'ondes apparait, la dispersion ne variant alors pas 

beaucoup. Au total, toute la gamme de fréquences est séparée en deux parties avec des 

réponses différentes, ce qui nous permet de reconFigurer globalement la dispersion du 

guide pour le point de travail visé en aplatissant ou en accentuant la dispersion en 

conséquence. 
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Figure 7. (a) Schéma d'un guide d'ondes monomode à gradient d'indice et condition SAB. b) Paramètre 

de dispersion chromatique D. Largeur et hauteur du guide d'ondes : 750 nm et 340 nm. (c) Schéma d'un 

guide d'ondes à deux niveaux à gradient d'indice avec condition SAB et fonctionnement monomode.  

d) Evolution du paramètre de dispersion chromatique D. La dispersion des matériaux n'a pas été 

considérée ici (n=3,48). 

A partir de là (c’est-à-dire à partir de ces guides), nous avons considéré la 

dynamique de la génération d'un peigne de fréquences solitons basé sur un résonateur 

en anneau non linéaire Kerr, comme le montre la Figure 8 (a). Utilisation l’équation 

de Schrödinger non-linéaire (sous la forme de l'équation de Lugiato-Lefever) : 

𝜕

𝜕𝑧
𝐴(𝑧, 𝜏) = [𝑖 ∑

𝛽𝑘

𝑘!
(𝑖

𝜕𝑘

𝜕𝜏𝑘
)𝑛

𝑘=2 + 𝑖𝛾|𝐴(𝑧, 𝜏)|2 −
𝛼

2
] 𝐴(𝑧, 𝜏)  

, nous avons modélisé la formation de peignes de fréquence, de la déduction du 

spectre du peigne de solitons à l'analyse dynamique du spectre du peigne de solitons, 

comme l’illustrent les Figures 8 (c)-(e). 

 
Figure 8. a) Schéma de principe d'un anneau non linéaire (Kerr) pour la génération d’un peigne de 

fréquence. (b) et (c) : Evolutions temporelles et spectrales au cours de la génération du peigne de 

fréquences au sein duquel des raies sont générées par un mélange à quatre ondes en cascade, (c) et (e) 

Forme temporelle et signature spectrale d’un peigne de fréquence mono-soliton (état final) 

Nous nous sommes ensuite tout particulièrement intéressés à la largeur spectrale 

totale des peignes de fréquence réalisables par effet Kerr à partir de guides et de 

résonateurs silicium. En partant de guides silicium de dimensions 220 nm (épaisseur) 

et de 800 nm de largeur, avec une dispersion de guide d'ondes correspondante illustrée 

à la Figure 9 (a), nous avons trouvé une valeur maximale de dispersion chromatique 

autour de D=350 pm/(nm*km). En utilisant le modèle décrit ci-dessus, nous avons 

obtenu un peigne de fréquences silicium mono-soliton avec une largeur de bande de 

peigne beaucoup plus faible que pour les résonateurs nitrure de silicium (voir Figure 
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9(b)), un avantage (plus faible puissance de pompe) étant contre-balancé par un 

inconvénient (plus faible bande passante de conversion par mélange à quatre ondes). 

Sans ambiguïté, en introduisant les guides silicium à condition SAB, nous avons 

obtenu une courbe de dispersion très aplatie, comme le montre la Figure 9 (c). En 

utilisant à nouveau notre modèle pour évaluer les propriétés des peignes de fréquences, 

nous avons pu alors démontrer une très nette amélioration de la largeur spectrale des 

peignes de fréquence à solitons unique, comme illustré sur un exemple en Figure 9 (d). 

Il ne fait aucun doute que la largeur de bande du peigne en phase d'instabilité de 

modulation est étendue et que l'amélioration de la largeur de bande est clairement 

observée avec l'introduction des guides d’ondes à limite auto-adaptative (SAB). 

 

Figure 9. (a) Dispersion et (b) spectre de peigne à soliton unique correspondant au guide d'onde SOI 

qui Figure dans l'encadré. (c) Dispersion et (d) spectre du peigne à soliton unique correspondant au 

guide d'ondes à limite auto-adaptative (SAB). L'épaisseur du silicium et la période sont toutes deux 

fixées à 340 nm et 240 nm. D'autres paramètres sont affichés dans les encadrés. 

Conclusion 

L'axe principal que nous avons développé a été d'essayer de montrer que la 

combinaison de l'optique sub-longueur d'onde et des non-linéarités peut apporter des 

solutions à plusieurs verrous de la conception de fonctions non linéaires intégrées. 

Ces travaux ont ainsi ouvert des perspectives en termes de modulation électro-optique 

via le silicium contraint, pour laquelle il sera néanmoins nécessaire de réaliser une 

ingénierie de guidage afin de renforcer la susceptibilité nonlinéaire effective (χeff
(2)) et 

toute la gamme des effets optiques non linéaires de troisième ordre (χeff
(3)). Il est clair 
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que les degrés de liberté apportés par les structures sub-longueur d’onde sont non 

seulement profitables aux circuits photoniques passifs qui ont été intensivement 

développés au cours des dix dernières années, mais qu'elles présentent également un 

fort potentiel pour la réalisation de fonctions actives. Les technologies de fabrication 

en constante évolution donnent par ailleurs à beaucoup d'idées anciennes un nouveau 

souffle. Par exemple, sans les structures de guides d'ondes sub-longueur d'onde, la 

condition de guidage à confinement auto-adaptatif proposée serait difficile à réaliser. 

Dans un avenir proche, nous nous concentrerons sur la fabrication et le test de guides 

d'ondes SAB pour le mélange à quatre ondes, et sur la réalisation de résonateurs à 

guides SAB pour la génération de peignes de fréquence Kerr, avec comme point de 

mire ultérieur l’exploration d’applications en spectroscopie et métrologie sur puce. 
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photonique non linéaire 

Mots clés : Photonique non linéaire; sous-longueur d'onde; guides d'ondes et cavités 

Résumé :  

Les effets Pockels de deuxième ordre et 

les effets Kerr de troisième ordre font partie des 

effets importants exploités pour la modulation 

de la lumière et la génération de sources dans 

les plateformes technologiques de la 

photonique intégrée. Pour tirer parti de ces non-

linéarités en photonique au silicium, 

l'utilisation de structures optiques sub-

longueurs d'onde a été explorée. Dans ce 

contexte, ce travail de thèse s'est concentré sur 

deux aspects principaux, notamment : 1) 

L’exploration d'un nouveau schéma de cavité 

photonique pour tirer profit de l'effet Pockels 

électro-optique dans les structures de silicium 

contraint pour la réalisation de modulateurs 

ultra-rapides à faible consommation ; 2) 

L’exploration d'une nouvelle famille de guides 

d'ondes conduisant à une satisfaction 

automatique des lois de conservation 

énergie/vecteur d’onde pour la génération de 

peignes de fréquence Kerr au sein des 

plateformes photoniques intégrées (notamment 

silicium). 

Pour améliorer les performances des 

modulateurs optiques Si résonants intégrés, 

nous avons mis au point un nouveau résonateur 

à cavité de Fano qui, grâce à une ingénierie 

sub-longueur d'onde (=1.55µm), a permis 

d'obtenir simultanément un taux d'extinction 

élevé (23 dB) avec un faible facteur Q de 

seulement 5600, et caractérisé par une très 

faible consommation électrique inférieure à 5 

fj/bit quand on utilise l'effet de modulation par 

dispersion plasma des porteurs libres. Nous 

avons étendu la méthode à la conception d'une 

structure de modulation Fano en silicium 

contraint dont les performances souffrent 

traditionnellement de la faible amplitude de 

l'effet Pockels induit par la déformation 

exploitée et des pertes micro-ondes 

considérables dues à des composants de grande 

surface.  

 

 

Au moyen du résonateur Fano ultra-compact à 

structuration sub-longueur d'onde, une 

amélioration d'environ 200 fois/60 fois 

(facteurs Q  de 32000/5600) du rapport 

d'extinction de modulation avec la même 

tension de commande a été théoriquement 

prévue. 

Pour améliorer l'exploitation des non-

linéarités Kerr des structures silicium, nous 

avons proposé une nouvelle famille de guides 

d'ondes optiques pour satisfaire 

automatiquement les lois de conservation de 

l'énergie et du vecteur d’onde des procédés de 

mélange à quatre ondes (FWM). La conception 

de la section des guide d'ondes est basée sur un 

principe hérité des puits quantiques et des 

concepts hérités des structures sub-longueur 

d'onde pour la réalisation des profils d'indice 

particuliers. En nous basant sur ces guides 

d'ondes spécifiques en terme de dispersion 

chromatique, nous les avons appliqués à la 

modélisation des micro peignes de fréquence 

(en utilisant des résonateurs à micro anneaux) 

en résolvant l’équation non linéaire pertinente 

(Lugiato-Lefever) pour analyser de façon 

dynamique le processus de génération du 

spectre des peignes à solitons dans diverses 

configurations. En complément de ce modèle, 

les guides d'ondes sub-longueur d'onde à 

accord de phase automatique ont été considérés 

pour étendre la largeur de bande des peignes de 

fréquence à solitons, démontrant une largeur de 

bande élargie et une meilleure flexibilité dans 

la réalisation des peignes de fréquence 

relativement aux démonstration des travaux 

précédents. 

Dans l'ensemble, l'une des caractéristiques 

dominantes de notre étude a été de contribuer à 

montrer que les structures photoniques sub-

longueur d'onde pouvaient apporter des 

solutions concrètes aux problèmes utiles à la 

réalisation de fonctions non linéaires sur puce.  
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Les nano-structures sub-longueur d’onde 

permettent non seulement une amélioration des 

circuits photoniques passifs, sujet 

intensivement développé depuis dix ans, mais 

ont également un fort potentiel pour la 

réalisation des fonctions actives.  

Cette boîte à outils de structures sub-longueur 

d'onde est décisive dans la pratique pour la 

réalisation concrète de fonctions optiques 

nonlinéaires intégrées, en particulier en 

photonique silicium. 
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Title : Subwavelength engineering of silicon waveguides and cavities for nonlinear photonics 
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Abstract :  

Second-order Pockels and the third-order 

Kerr effects are among the important effects 

exploited for light modulation and light 

generation in integrated photonic platforms. To 

take advantage of these nonlinearities in silicon 

photonics, especially due to the lack of second 

order effect in bulk Si, the use of 

subwavelength optical structures is explored. In 

this context, this thesis work has focused on 

two main aspects, including: 1) Exploration of 

a novel photonic cavity scheme to take benefit 

of the electro-optical Pockels effect in strained 

Si structures for the realization of ultra-fast 

lower-consumption compact silicon 

modulators; 2) Exploration of a new family of 

waveguides leading to an automatic satisfaction 

of energy/momentum conservation for the 

purpose of Kerr frequency comb generation in 

integrated photonic platforms. 

For improving the performances of 

integrated silicon resonant optical modulators, 

we have developed a novel Fano cavity 

resonator enabled by sub-wavelength 

engineering, leading simultaneously to high 

extinction ratio (23 dB) with a small Q factor 

of only 5600, and characterized by an ultra-low 

power consumption of less than 5 fj/bit when 

relying on the free carrier plasma dispersion 

effect. We have further extended the method to 

design a strained silicon Fano modulation 

structure which performances traditionally 

suffer from the weak amplitude of the exploited 

strain-induced Pockels effect and from 

considerable microwave losses due to large 

footprint components. By means of the proposed 

ultra-compact subwavelength structured Fano 

resonator, around 200-fold/60-fold (Q factor of 

32000/5600) improvement on the modulation 

extinction ratio with the same driven voltage 

was theoretically predicted. 

 

For improving the exploitation of silicon 

Kerr nonlinearities, we have proposed a novel 

family of graded index optical waveguides 

intending to automatically fulfill the energy and 

momentum conservation laws of four-wave 

mixing processes. The design of the waveguide 

section is based on a principle inherited from 

quantum wells of wave mechanics and 

concepts inherited from subwavelength 

structures for the practical realization of the 

rather particular index profiles. Standing on 

these specific waveguides in term of light 

dispersion, we have applied them to the 

modeling of frequency micro-combs (e.g. 

frequency combs generated using micro-ring 

resonators and a CW light source) by solving 

the nonlinear relevant equations (Lugiato-

Lefever) to dynamically analyze the soliton 

comb spectrum generation process in various 

configurations. On top of this model, the 

specifically automatically phase-matched sub-

wavelength-enabled graded-index waveguides 

were considered to trim and extend the 

bandwidth of silicon soliton frequency combs, 

demonstrating enlarged bandwidth and 

improved spectrum design flexibility with 

respect to previous works.  

Overall, one of the dominant features of 

our study was to contribute to showing that 

sub-long wavelength photonic structures could 

provide concrete solutions to problems useful 

for the realization of on-chip non-linear 

functions. Subwavelength/nano structures not 

only benefit to passive photonic circuits which 

have been intensively developed in the past ten 

years, but also show strong potentials in the 

realization of active functions. This 

subwavelength toolbox is decisive in practice 

for the concrete achievement of the objectives 

pursued. 

 

 


	Front
	Manuscript-1stRev_20191126 important
	Back



