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du grade de docteur en Informatique Attila Csikász-Nagy, King’s College London, UK
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Dirigée par: Madalena Chaves/Franck Annabelle Ballesta, University of Warwick, UK

Delaunay Jean-Paul Comet, Université de Nice Sophia
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Sofia José Figueiredo Almeida

Synchronization of biological oscillators:

modeling, analysis and coupling of the

mammalian cell cycle and circadian clock

Defended on December 17th 2018 in front of the jury composed by:

Reviewers Attila Csikász-Nagy King’s College London

Marc Lefranc Université de Lille 1, France

Examiners Annabelle Ballesta University of Warwick, UK
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Abstract

The cell division cycle and the circadian clock are two fundamental processes of cellular con-

trol that generate cyclic patterns of gene activation and protein expression, which tend to be

synchronous in healthy cells. In mammalian cells, the mechanisms that govern the interactions

between cell cycle and clock are still not well identified. In this thesis we analyze these two

biological oscillators, both separately and as a coupled system, to understand and reproduce

their main dynamical properties, uncover essential cell cycle and clock components, and iden-

tify coupling mechanisms. Each biological oscillator is first modeled by a system of non-linear

ordinary differential equations and its parameters calibrated against experimental data: the cell

cycle model is based on post-translational modifications of the mitosis promoting factor and

results in a relaxation oscillator whose dynamics and period are controlled by growth factor; the

circadian clock model is transcription-based, recovers antiphasic BMAL1/PER:CRY oscillation

and relates clock phases to metabolic states. This model shows how the relative duration of

activating and repressing molecular clock states is adjusted in response to two out-of-phase hor-

monal inputs. Finally, we explore the interactions between the two oscillators by investigating

the control of synchronization under uni- or bi-directional coupling schemes. Simulations of

experimental protocols replicate the oscillators’ period-lock response and recover observed clock

to cell cycle period ratios such as 1:1, 3:2 and 5:4. Our analysis suggests mechanisms for slowing

down the cell cycle with implications for the design of new chronotherapies.

Keywords: cell cycle, circadian clock, coupled oscillators, dynamical systems, period con-

trol, model calibration, model reduction, sensitivity analysis, phase-locking, synchronization;
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Résumé

Le cycle de division cellulaire et l’horloge circadienne sont deux processus fondamentaux de la

regulation cellulaire qui génèrent une expression rythmique des gènes et des protéines. Dans

les cellules mammifères, les mécanismes qui sous-tendent les interactions entre le cycle cellu-

laire et l’horloge restent très mal connus. Dans cette thèse, nous étudions ces deux oscillateurs

biologiques, à la fois individuellement et en tant que système couplé, pour comprendre et re-

produire leurs principales propriétés dynamiques, détecter les composants essentiels du cycle

cellulaire et de l’horloge, et identifier les mécanismes de couplage. Chaque oscillateur biologique

est modélisé par un système d’équations différentielles ordinaires non linéaires et ses paramètres

sont calibrés par rapport à des données expérimentales: le modèle du cycle cellulaire se base sur

les modifications post-traductionnelles du complexe Cdk1-CycB et mène à un oscillateur de re-

laxation dont la dynamique et la période sont contrôlés par les facteurs de croissance; le modèle

de l’horloge circadienne reproduit l’oscillation antiphasique BMAL1/PER:CRY et l’adaptation

de la durée des états d’activation et répression par rapport à deux signaux d’entrée hormonaux

déphasés. Pour analyser les interactions entre les deux oscillateurs nous étudions la synchroni-

sation des deux rythmes pour des régimes de couplage uni- ou bi-directionnels. Les simulations

numériques reproduisent les ratios entre les périodes de l’horloge et du cycle cellulaire, tels que

1:1, 3:2 et 5:4. Notre étude suggère des mécanismes pour le ralentissement du cycle cellulaire

avec des implications pour la conception de nouvelles chronothérapies.

Mots clés: cycle cellulaire, horloge circadienne, oscillateurs couplés, systèmes dynamiques,

contrôle de la période, calibration de modèles, réduction de modèles, analyse de sensibilité,

verrouillage de phase, synchronisation;
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Introduction

The cell division cycle and the circadian clock are two fundamental processes of cellular con-

trol that generate cyclic patterns of gene activation and protein expression, which tend to be

synchronous in a variety of healthy cell lineages.

The cell cycle is the process of cell growth and division, where the cell undergoes a sequence

of observable changes culminating in mitosis. There is an oscillatory nature of this process as,

after cell division, daughter cells re-start the cell cycle. In turn, the circadian clock is a biological

oscillator conserved across species that results in 24 h rhythms (circadian rhythms). In mammals,

peripheral cellular clocks are entrained by a central pacemaker localized in the suprachiasmatic

nuclei of the hypothalamus, through internal synchronizers. This central clock also coordinates

rest/activity and fast/feeding rhythmic behaviors. At the cellular level, a molecular cell clock

generates circadian patterns of gene activation and protein expression. The basic molecular

mechanisms of both systems are explained on Section 1.1.

The interconnection between these two systems is a main topic of interest for biologists

and modelers alike. Because both systems result in rhythmic behavior they can be interpreted

and modeled as oscillators, possibly subjected to some form of coupling. Section 1.2 of this

Chapter gives a brief discussion of the state of the art on the relevance of these systems and

their connection with a variety of biological processes.

The present work is motivated in large part by observations of Feillet et al., (2014) on phase-

locking between the cell cycle and the circadian clock of mammalian cells [1]. Therefore, Section

1.3 describes how these results changed the state of the art on clock/cell cycle coupling. Our

work is centered in recovering and understanding these results by the development and analysis

of non-linear dynamical models.

Furthermore, our work is part of a larger project – ICycle [2] – concerning the design and

building of synthetic biological oscillators. Synthetic biology is an expanding interdisciplinary

field that aims at the construction of artificial biological systems. The building of synthetic

oscillators has an added layer of difficulty over other types of synthetic designs, in that it requires

obtaining robust and regular oscillations. A comparative review of various successful biological

oscillators is provided by Purcell et al., (2010), [3] – synthetic oscillators are comprised of a

reduced number of variables, generally two. Because of this, there is, in this thesis, a large focus
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1. Introduction

on achieving reduced models that consistently recover the fundamental mechanisms of the clock

and cell cycle systems – a reduced number of variables and interactions allows to better use our

models to inform the design of synthetic oscillators. On Section 1.5 we discuss the methodology

and goals of our work.

Finally, Section 1.6 of this Chapter presents an overview of the work and main results of this

thesis. Generally, on Chapter 2 of this thesis we develop and analyze a mathematical model of

the mammalian cell cycle ([4]), on Chapter 3 we develop and study a model for the mammalian

circadian cell clock, on Chapter 4 we investigate the coupling between the two oscillators and

Chapter 5 presents conclusions and future perspectives. Chapters 2 and 3 of cell cycle and clock

modeling are written as articles, with appropriate introduction of background and methods

provided for each of them.

1.1 Basic Mechanisms of the Mammalian Cell Cycle and Circadian Cell Clock

Systems

In this Section we briefly expose some of the basic molecular mechanisms of the mammalian cell

cycle and cellular clock oscillators. Because Chapters 2 and 3 are written as articles, further

explanation and schemes are provided there.

1.1.1 Cell Cycle Mechanisms

A cell that has entered the cell cycle will go through several different phases of growth culmi-

nating in mitosis (M phase). M phase is the key phase during which two daughter cells are

generated. The previous cell cycle stages form the interphase, composed of: the G1 phase of

cellular growth, the S phase of DNA replication and the G2 phase of growth and preparation

for mitosis [5]. Cell cycle arrest can occur and the cell exits the cell cycle (G0 phase).

Moreover, a characteristic of the eukaryotic cell cycle is that of checkpoints: thresholds of

control in the cycle that assess whether a given sequence of events was performed correctly.

These are: the G1 checkpoint, where the cell “commits” to divide, the G2/M checkpoint, where

possible DNA damage is repaired, and the mitotic spindle checkpoint, that ensures chromosomes

are well aligned at the metaphasic plate before releasing the anaphase promoting complex (APC),

that promotes cell cycle progression. After each checkpoint the cell cannot revert to its previous

cell cycle phase.

The cell cycle phases are characterized at the molecular level by the sequential elevated

expression of a family of proteins called Cyclins, each supporting the activity of specific cyclin-

dependent kinases (cdks). Cyclin D forms a complex with either cdk4 or cdk6 and is the cyclin

of the G1 phase, Cyclin E pairs mostly with cdk2 and controls the passage from G1 to S phase,

cyclin A also pairs with cdk2 and is active during S phase and G2, and finally cyclin B forms a

complex with cdk1 and controls the G2/M transition. The cyclin B-cdk1 complex is also known
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as the mitosis promoting factor (MPF) and is the necessary and sufficient element to carry out

the mitotic process [6].

Because MPF is the essential cell cycle component, regulatory loops involving this complex

are often considered central to the cell cycle. Important regulators of MPF include the wee1

kinase that inactivates MPF by phosphorylation, the cdc25 phosphatase that activates MPF

by dephosphorylation and the APC:cdc20 complex that targets MPF for degradation [7], [8].

MPF in turn also phosphorylates these three components, which leads to activation of cdc25,

inactivation of wee1 and allows APC to dimerize with cdc20, forming the APC:cdc20 complex.

Therefore, MPF forms positive self-regulatory loops via its action in activating its activator cdc25

and repressing its repressor wee1, and a negative feedback loop by promoting the formation of

its repressor APC:cdc20. These regulatory mechanisms are important cell cycle controls and are

at the center of a variety of cell cycle models (further discussed on Section 1.4), including ours

on Chapter 2 (schemes of these interactions are provided on the same Chapter).

1.1.2 Circadian Clock Mechanisms

The central regulatory clock network of mammalian cells is a transcription/translation feedback

loop (TTFL) [9]. Two central elements of this network are the CLOCK:BMAL1 and PER:CRY

protein complexes. CLOCK:BMAL1 binds to regions of the genome called E-boxes and promotes

transcription of the Per and Cry genes. PER and CRY proteins in turn form the PER:CRY

complex that reenters the nucleus and binds to CLOCK:BMAL1, blocking its promoter activity.

This forms the core negative feedback loop of the mammalian circadian clock.

Furthermore, RORs and REV-ERBs are families of transcription factors that are also impor-

tant for clock regulation. CLOCK:BMAL1 promotes expression of Ror and Rev. In turn, ROR

proteins are activators of the Clock and Bmal1 genes, while REV-ERBs are repressors. ROR and

REV-ERBs compete for binding at the BMAL1 promoter, thus a positive feedback loop is formed

between ROR and CLOCK:BMAL1. The negative feedback loop between CLOCK:BMAL1 and

REV-ERBα is considered an important and fundamental part of the core clock mechanism [10].

Moreover, post-transcriptional mechanisms, including RNA-based mechanisms, are also con-

trols of the mammalian circadian clock. Therefore, processes of mRNA stability, translation

and alternative splicing are required for maintaining proper clock function [11]. Furthermore,

post-translational mechanisms such as phosphorylations and dephosphorylations allow the rapid

incorporation of signals by the clock system and play a role in the generation of the 24 h rhythm

by controlling the delay of entrance of clock proteins, such as PER, in the nucleus [12].

1.2 The Cell Cycle and Circadian Clock Systems – a Brief Discussion

Both clock and cell cycle processes are essential for cellular health in mammals and when un-

regulated can result in disease at the organism level. In particular, cancer is characterized by

unregulated growth of mutated cells, while disruptions in circadian rhythms have been linked

with insulin resistance and inflammation [13]. Due to the tight interconnection between the
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two oscillators, deregulation in one of them often deregulates the other as well, as evidenced by

increased risk of circadian clock disturbances in cancer patients [14].

Furthermore, the circadian clock can impact cancer development [14]. Recently, agonists of

REV-ERB (a central clock component) demonstrated efficacy in impairing glioblastoma growth

in mice [15]. The mechanism behind these observations may involve REV-ERB-induced inhi-

bition of autophagy and de novo lipogenesis, processes that are a part of fat metabolism [15].

This discovery highlights the tight control exerted by the clock oscillator in a variety of cellu-

lar internal systems and reveals that pharmacological modulation of circadian components is a

promising strategy for cancer therapy.

Besides cancer, circadian rhythms control a variety of cellular processes from energy home-

ostasis, insulin secretion, insulin resistance/sensitivity, DNA repair and inflammation. In par-

ticular the interplay between the circadian clock and metabolism is of great relevance for un-

derstanding a variety of metabolic diseases. For instance, shift workers have a higher incidence

of metabolic disorders [16], that are known to be caused by misalignment between the clock

of the organism and the external light cycle [17]. In fact, circadian misalignment leads to an

increase in markers of insulin resistance and inflammation regardless of sleep loss [13]. The role

of the clock in cellular metabolism is currently a subject of vast and ongoing research interest,

including recent experimental ([17], [15]) and dynamical modeling ([18]) works alike. In this

work, we will explore some ideas about clock connection with metabolism on Chapter 3.

As revealed by genome-wide studies, the majority of drug targets show circadian patterns

of control [19]. Moreover, timed drug delivery, or chronotherapy, is an effective control of drug

efficacy, that maximizes the desired drug effect while simultaneously minimizing undesired side-

effects [19]. Chronotherapy is of importance in the delivery of a variety of treatments, including

chemotherapy, though it is not clearly understood exactly what is behind increased efficiency

of drugs at certain times. A better understanding of this phenomenon involves studying the

circadian clock as well as its possible interactions with the cell cycle.

Concerning the relation between the mammalian circadian clock and cell cycle, rhythms of

cell division are observed to be circadian in a variety of organisms [14], which led to an hypothesis

of “gating” of the cell cycle by the clock mechanism [20]. This means that the clock mechanism

would control the cell cycle so as to only allow mitosis to occur at certain time windows. Under

the gating hypothesis the circadian clock would act as a fourth cell cycle checkpoint for the

mitotic phase.

Furthermore, several molecular interactions revealing direct action of the clock on the cell

cycle have been discovered. Firstly, the CLOCK:BMAL1 protein complex, essential for the

circadian clock, induces expression of the wee1 gene [21]. The kinase wee1 phosphorylates and

inactivates the cdk1 and cdk2 kinases, thus inhibiting the essential cell cycle complex cyclin

B-cdk1, or mitosis promoting factor (MPF). Secondly, the clock components REV-ERB-α/β

and ROR-α/γ regulate the cell cycle inhibitor p21 [22]. Finally, there is also evidence for clock

repression of c-Myc, a promoter of cell cycle progression by cyclin E induction [23], that is

deregulated in mice deficient in the gene encoding for the core clock protein PER2 [24].

An example of a model of cell cycle gating by the clock is provided by Zámborszky et al.,
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(2007), where critical size control of the mammalian cell cycle was found to be triggered by the

clock [25]. By contrast, Gérard and Goldbeter, (2012), simulate entrainment of the cell cycle by

the clock, while also suggesting a possible form of gating by the clock at the entry of G1 phase

through a mechanism of oscillating growth factor [26].

Moreover, Nagoshi et al., (2004), have analyzed NIH3T3 mouse fibroblasts in real time and

in individual cells and observed autonomous cellular clocks in these cells and that the cell cycle

in a population of synchronized cells shows a trimodal frequency distribution of mitosis for

specific circadian clock phases [27]. Up until now, the state of the art included clock control of

the cell cycle, exclusively. A breakthrough was made by Feillet et al.,(2014), and Bieler et al.,

(2014), demonstrating phase-locking between clock and cell cycle with strong evidence for bi-

directional coupling [1], [30]. In the same work, the trimodal peak distribution is also obtained

for synchronized cells (similarly to Nagoshi et al., (2004) [27]).

1.3 Phase-locking of the Mammalian Circadian Clock and Cell Cycle

This Section describes the main results of Feillet et al., (2014), [1] that strongly motivate this

dissertation.

The work of Feillet et al., (2014), changed the previous state of the art concerning the

interconnection between the clock and cell cycle systems in that it showed substantial evidence

for a control of the cell cycle on the clock [1]. This is evidenced by observing the periods of the

clock and cell cycle systems in NHI3T3 mouse fibroblasts under different growth conditions. The

authors are able to measure the phases of both cell cycle and clock in NHI3T3 mouse fibroblasts

at each point in time, using two independent reporter systems: a single-live-cell imaging of a

REV-ERBα::VENUS fusion protein, as a clock reporter, and two fluorescent cell cycle reporters,

Cdt1 and Geminin, based on fluorescent ubiquitination of the cell cycle (FUCCI).

The cell cycle oscillator is known to be period-responsive to the concentration of growth

factors in the medium – these are expressed as % of FBS (Fetal Bovine Serum) and comprised

of a variety of nutrients and growth factors, such as insulin-like growth factor 1 (IGF-1), that

stimulate the cell cycle in a variety of mammalian cells. The rate of cell division increases with

FBS concentration.

Feillet et al., (2014), observe that increasing the concentration of growth factor in the medium

results not only in the expected increased frequency of the cell cycle, but also in an equal trend

of increase in clock frequency [1], such that the two oscillators always remain synchronized for

a variety of values of % of FBS.

Furthermore, they verify that cell cycle division occurs at a specific clock phase for all

cells. This means their observations are consistent with a model of oscillators that are phase-

locked. Phase locking is characterized by convergence of the combined phase of oscillation

φ(t) = (φ1(t), φ2(t)) to a closed curve – an attractor. The phase-locking is distinct from the

gating model, as phase-locked oscillators are synchronized through the entire cycle – knowing

the phase of one oscillator determines the phase of the other, in ideal noise-free systems. By
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contrast, in the gating hypothesis only the mitotic phase would have to align with specific clock

phases.

Fig. 1.1 shows the 1:1 phase-locking results of Feillet et al., (2014), [1], for 10 % FBS and 15

% FBS. For cells grown in 10 % FBS the mean clock period is 21.9 ± 1.1 h and the mean cell-cycle

period is 21.3 ± 1.3 h, while for cells grown in 15 % FBS the mean clock period is 19.4 ± 0.5 h

and the mean cell-cycle period is 18.6 ± 0.6 h. Furthermore, the peak in REV-ERBα::VENUS

expression is phase-locked with the mitotic phase: the mean delay of REV-ERBα::VENUS after

mitosis is of 8,6 h for 10 % FBS and of 7,1 h for 15 % FBS (see also Traynard et al., (2016),

[28]).

Figure 1.1: Result from Feillet et al., (2014) for 1:1 clock/cell cycle phase-locking [1].
The increase in growth factor concentration in the culture medium of NHI3T3 mouse fibroblasts
increases the frequency of the cell cycle, which results in an increase in clock frequency as well.
The oscillators are in 1:1 phase-locking. For 10 % FBS mean clock period is 21.9 ± 1.1 h and
mean cell-cycle period is 21.3 ± 1.3 h and REV-ERBα::VENUS peaks on average 8,6 h after
mitosis. For 15 % FBS mean clock period is 19.4 ± 0.5 h and mean cell-cycle period is 18.6 ±
0.6 h and REV-ERBα::VENUS peaks on average 7,1 h after mitosis

Moreover Fig. 1.2 shows an histogram of cell density versus clock phase from Feillet et

al., (2014), [1]. For 15 % FBS, increases in cell density, due to cellular division, occur at a

preferential clock phase.

Furthermore, Feillet et al., (2014), observe synchronization of cells under the application a

of Dexamethasone pulse (during 2 hours) in the medium [1]. Dexamethasone is a corticosteroid

drug, known to synchronize clocks in populations of mammalian cells by inducing PER expres-

sion in all cells. Corticosteroids induce expression of circadian clock PER proteins via activation

of transcriptional activator glucocorticoid receptor GR [29]. Feillet et al., (2014), verify that

application of a Dexamethasone pulse results in different synchronization ratios depending on

the concentration of growth factor [1].
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Figure 1.2: A result from Feillet et al., (2014) for distribution of cell densities with
clock phase [1].
There is a preferencial clock phase for mitosis. For 15 % FBS the mean phase of division is 3.97
± 0.14 radian.

For cells grown in 20% FBS, the population of cells segregates into two groups, one with

cells and synchronizing in 1:1 phase-locking (just as without Dexamethasone application) and the

other group of cells showing a slower clock than cell cycle. From several analysis of cells grown in

10% FBS and 20% FBS the period locked ratios are determined to be roughly 5:4 for 10% FBS

and 3:2 for 20% FBS (second group); this is further predicted by mathematical modeling [1]. The

synchronization dynamics of the second group for 20% FBS after Dexamethasone application is

similar to that observed by Nagoshi et al., (2004), under a similar protocol [27].

Fig. 1.3 A) shows the clustering of cells in one simulation for 20% FBS after synchronization

by a pulse of Dexamethasone. In this particular case the clock to cell cycle period ratios are 1,8

and 1,09. Fig. 1.3 B) shows the distribution of cell density with clock phase for the two groups

of cells.

From these results as well as mathematical modeling, the authors conclude the existence

of multiple attractors for clock and cell cycle phase-locked behavior [1], i.e. that the input of

Dexamethasone may be shifting the oscillators from one limit-cycle to another.

While the three peak distribution of cell density on itself doesn’t exclude the “gating” hypoth-

esis, the observations of 1:1 period-lock are supportive of the phase-locked coupled oscillators

hypothesis and suggests coupling from the cell cycle to the circadian clock in mammalian cells.

Thus, there is likely bidirectional coupling between the oscillators. Our work aims at gaining

insight on dynamical mechanisms that may be behind the observations of Feillet et al., (2014),

[1] presented in this Section, in particular the different synchronization ratios, and explore uni-

and bi- directional forms of coupling.

Furthermore, Bieler et al., (2014), have obtained similar results concerning the 1:1 phase-lock
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Figure 1.3: Results from Feillet et al., (2014) for clustering of clock and cell cycle
periods and distribution of cell densities with clock phase [1].
A) Scatter plot showing segregation of two groups of cells in terms of their clock and cell cycle
period ratios. In the blue cluster, the median clock period is 29 h ± 1,05 h and the median
cell cycle period is 16,5 h ± 0,48 h; in the red cluster, the median clock period is 21,25 h ±
0,36 h and the median cell cycle period is 19,5 h ± 0,42 h. In this experiment the mean period
ratios are 1,8 for the blue group and 1,09 for the red group. B) Distribution of cell densities
with clock phase for the two cluster groups. On the left plot, the first group shows a three peak
distribution, where the middle, left and right peaks correspond respectively to the first, second,
and third divisions (hence the increase in cell density). On the right plot, the second group
phase-locks in 1:1 ratio, similarly to the system without Dexamethasone (see Fig. 1.2).

of clock and cell cycle with the increase of growth factor [30], thus further corroborating this

hypothesis. A recent study by Traynard et al., (2016) has presented model-based investigations of

possible bidirectional mechanisms of clock and cell cycle coupling, that didn’t result in recovering

the rational period-lock ratios [28].

1.4 Models of the Mammalian Cell Cycle and Circadian Clock Oscillators

In this Section, we present a brief review of reference models for the cell cycle and the circadian

cellular clock systems.

1.4.1 Cell Cycle Models

In 1991, Tyson first proposed a cell cycle modeling approach centered on MPF, the essential

cell cycle component, by modeling the interactions of cdc2 (cdk1) with cyclin B and showed

the existence of three modes of stability: a steady state with high MPF activity, a spontaneous
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oscillator and an excitable switch [31]. Following this work, Novak and Tyson, (1993), were the

first to select the regulatory loops between MPF and cdc25/wee1, as well as the negative feedback

loop where MPF stimulates its own degradation by activation of the ubiquitination pathway, as

essential mechanisms that in themselves form the central cell cycle network of eukaryotic cells

[32]. This work resulted in a model for the cell cycle in Xenopus oocyte extracts.

A decade later, Pomerening et al., (2003), studied the negative feedback-loop between MPF

and APC:cdc20, by developing a model that includes auto-regulatory positive loops [33]. This

model generates relaxation oscillations. Furthermore, the authors verify experimentally that the

activation response of cdc2 to non-degradable cyclin B is consistent with a bistable dynamical

behavior [33]. Moreover, Qu et al., (2003), presented a generic mathematical model of the

eukaryotic cell cycle that allows simulation of both the G1/S and G2/M transitions [34]. In

this model, the cell cycle checkpoint is a Hopf bifurcation point. Later, Pomerening et al.,

(2005), highlighted the importance of positive feedback loops in maintaining sustained cell cycle

oscillations and verified experimentally that the cdc2/APC system in Xenopus egg extracts

behaves like a relaxation oscillator [35].

In more recent years, Gérard and Goldbeter, (2009), proposed a detailed, 39-variable model

of the mammalian cell cycle, containing four cdk modules regulated by reversible phosphoryla-

tion, cdk inhibitors, and protein synthesis or degradation [36]. This model extensively describes

the network of cyclin-dependent kinases and first includes the role of growth factors in inducing

the system’s transition from a quiescent state to an oscillatory cdk network. Later, the authors

reduced this model ([36]) to a skeleton model of 5 variables (see Gérard and Goldbeter, (2011)),

where the growth factor role in stability control is maintained and progression along the G1,

S, G2 and M phase is still verified via sequential activation of the cyclin/cdk complexes [37].

Moreover, Gérard et al., (2012), extended this skeleton model via the incorporation of phos-

phorylation/dephosphorylation cdk regulation as well as the positive feedback loops between

MPF and cdc25/wee1 and verified that these controls promote the occurrence of bistability and

increase the amplitude of oscillations in the various cyclin/cdk complexes [38]. Furthermore,

including these regulatory mechanisms improves robustness of the cdk oscillations with respect

to molecular noise, as shown by stochastic modeling [38].

Finally, Gérard et al., (2015), built and analyzed a mathematical model of the molecular

interactions controlling the G1/S and G2/M transitions in yeast cells with a minimal cdk network

consisting of a single cyclin-cdk fusion protein [39].

1.4.2 Circadian Clock Models

The first circadian clock oscillatory model was proposed by Goodwin, (1975), and is based on

a negative feedback loop between a protein and its own gene [40]. In later years, Leloup and

Goldbeter, (2003), developed a detailed model of the mammalian circadian clock (of 16 to 19

variables) and observe sustained versus damped oscillations as well as entrainment of the system

by light/dark cycles [41]. Furthermore, the authors verify a sensitivity of the oscillator’s phase

in relation to changes of parameters that potentially relates to syndromes of advanced or delayed
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sleep phase observed in humans [41]. In the same year, Forger and Peskin, (2003), propose a

different yet also detailed model of the mammalian circadian clock, using mass action kinetics,

that is calibrated to data and accurately reproduces characteristics of oscillatory clock proteins

and mRNAs, such as the shape and amplitude of oscillation and the phase of entrainment to

the 24 h light/dark cycle [42].

Moreover, Leloup and Goldbeter, (2004), further extend studies on the Leloup and Gold-

beter, (2003) [41], model and observe that the oscillatory behavior and period of the system are

most sensitive to parameters involved in the synthesis or in the degradation of Bmal1 mRNA

and BMAL1 protein, and that these regulatory mechanisms may be sufficient for generating

sustained oscillations [43]. Furthermore, in the same study the authors verified that the phase

of oscillations upon entrainment to the light/dark cycle strongly depends on the parameters

that govern the level of CRY protein [43]. On the same year, Becker-Weimann et al., (2004),

propose a model using a reduced number of species, that is able to reproduce the rescue of cir-

cadian oscillations in Per2Brdm1/Cry2−/− double-mutant mice [44]. Differently, Mirsky et al.,

(2009), propose a model minimizing post-translation modified species that is evaluated against

experimental knockout phenotypes in what concerns retention of rhythmicity and changes in

expression levels of clock species [45].

Relógio et al., (2011), developed a circadian clock model based on data for the amplitude

and phase of the core clock components that highlights the role of the ROR/BMAL1/REV-

ERB loop as important to the circadian clock [46]. Moreover, Comet et al., (2012), identified

mechanisms common to circadian clocks across species, using differential equations as well as

discrete models [47]. The authors simplified as much as possible in order to obtain minimal

networks of essential interactions and reduced the model of Leloup and Goldbeter, (2004) [43],

to eight and four variables [47].

A different type of model is proposed by Korenčič et al., (2012), describing a six-variable

gene regulatory network of the liver core clock, whose negative feedback includes time-delayed

variables [48]. This model is able to reproduce time profiles, amplitudes and phases of clock

genes and shows that intrinsic combinatorial gene regulation governs the liver circadian clock

[48]. Moreover, Jolley et al., (2014), propose a simplified clock model that highlights the role

of the clock controlled genomic binding region D-box and reproduces predictions on the dual

regulation of Cry1 by D-box and REV-ERBα/ROR [49].

Furthermore, a complete comparative review on these models is provided by Podkolodnaya

et al., (2017) [50].

Finally, as mentioned in Section 1.2, mammalian clock models have been applied in studying

connection with important cellular systems: the cell cycle (see Gérard and Goldbeter, (2012),

[26], Zámborszky et al., (2007), [25], Bieler et al., (2014), [30] and Traynard et al., (2016), [28])

and metabolism (see Woller et al., (2016), [18]).

10



1.5. Principles, Methods and Goals

1.5 Principles, Methods and Goals

This work is the first part of the ICycle Project, [2], that seeks to uncover mechanisms behind

the dynamics of the mammalian clock and cell cycle coupled systems and to build synthetic

oscillators.

Because at the beginning of this thesis there is little knowledge of what mechanisms re-

sult in the dynamical clock/cell cycle synchronization ratios ([1]), it is crucial to first perform

modeling work in order to verify their existence in reduced models and to establish principles

for the design of synthetic oscillators. As it is not guaranteed that any two coupled models of

mammalian cell cycle and circadian clock will phase-lock in rational ratios under the application

of a specific input, especially one that accurately models the Dexamethasone effect, designing

synthetic oscillators “in the dark”, i.e. without first reproducing and studying these dynamics,

offers less guarantees of recovering clock/cell cycle phase-locked dynamics in synthetic biology

settings.

Thus, our work aims to reproduce the dynamical synchronization ratios, described on Section

1.3, observed by Feillet et al., (2014), [1], Bieler et al.,(2014), [30] and Nagoshi et al., (2004)

[27]. Moreover, understanding the clock and cell cycle dynamical coupling and observation of

synchronization dynamics are itself the main motivations and points of interest of this work.

Furthermore, we seek to test protocols that may be of relevance for the real system, such as

chronotherapies, and methods of oscillator period control and synchronization state control.

Fig. 1.4 shows a scheme of the philosophy behind the organization of the entire project ([2])

and the interplay between biology and methods of modeling and simulation. Starting from real

systems, with a variety of complex interactions, our work aims for several steps of simplication:

in the creation of average-sized models via selection of the main biological interactions, then

dynamical reduction of these models in order to find the essential central mechanisms. From

here we study the coupling between the two models. The insight gained on reduced models and

their coupling can then be used in the design of synthetic oscillators.

We opted for designing new models, rather than using pre-existing models, such as those of

Section 1.4. This is because, being part of a broader work, we sought a combination of charac-

teristics for our models, that would simultaneously favor their use in synthetic oscillator design

and coupling studies. For the design of synthetic oscillators we require a reduced number of

variables and simultaneously to recover the essential mechanisms capable of generating oscil-

lations. Moreover, we should be able to tune the period of the system and oscillations should

be robust to variations in parameters. Furthermore, we seek to be able to relate our coupling

results to the observations of Feillet et al., (2014), [1]. Therefore, modeling is conducted with

the perspective of allowing the integration of Growth Factor and Dexamethasone, the control

inputs in that experimental work, in subsequent coupling studies. The use of mechanistic rather

than phenomenological terms is another property that helps relate our models both to the real

system and to future synthetic circuits.

Thus, the basic principles of modeling used in this work are:

� Identification and choice of main mechanisms;
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Figure 1.4: General scheme of the philosophy behind this work.
Biological systems are on the left and mathematical models on the right. Our work performs
the first two arrows: identifying main mechanisms to build intermediate average-sized models,
and further pushing the simplicity to unveil skeleton reduced networks for both systems. We
then use the reduced systems to study coupling and to discover the main points of interest for
synthetic oscillator design.

� Reproducibility of oscillation and the essential properties of each oscillator;

� Tunable and robust oscillations;

� Reduced number of variables;

� Mechanistic rather phenomenological terms;

� Possibility of using the models to inform future design of synthetic oscillators;

To develop our models, we use differential ordinary equations (ODEs), with mechanistic

terms, such as Michaelis-Menten and Hill functions, and terms derived by mass action kinetics.

These are some of the classical tools used to model genetic and signaling networks (see de Jong,

(2002), [51]). For dynamical model reduction we often use the quasi-steady-state approximation

([52], [53]) which is based on the comparison of the system’s timescales. The “faster” variables

can be obtained in terms of the “slower” variables, via an algebric equation. Moreover, we use

the Matlab software for all simulation studies.

The main mathematical modeling and computational methods used in this thesis are:

• Ordinary Differential Equations using mass action kinetics, Michaelis-Menten and Hill

functions;

• Calibration of models to data via numerical optimization methods;

• Analysis of numerical data – period computation based on a numerical implementation of

the first return map [54];

• Model reduction using the quasi-steady-state approximation;
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• Piecewise quadratic approximation of the reduced model to establish a parameter region

for existence of oscillations;

• Matlab: ODE solvers and optimization tools based on non-linear cost minimization;

Thus, our work seeks to reproduce and study the synchronization state of the two oscillators,

to investigate forms of coupling from the clock to the cell cycle as well as to propose mechanisms

that may be relevant for the inverse, less studied, type of coupling, directed from the cell cycle

to the clock. Uncovering these dynamics would also allow studying strategies of controlling the

period of any or both of the two oscillators as well as the synchronization ratio between the two,

which is a main motivation of this work. The relevance of period and synchronization control lies

in the relation these two oscillators have with a variety of cellular states of health and disease,

as was discussed on Section 1.2, namely cancer that is uncontrolled cell cycle.

Therefore, our main research goals are:

X To gain insight and increase the understanding of the mammalian cell cycle and clock

oscillators via dynamical modeling analysis;

X To investigate several coupling mechanisms;

X To verify entrainment of one oscillator by the other, i.e. the 1:1 period-lock, in both

directions of unidirectional coupling as well as in bidirectional coupling;

X To obtain clock to cell cycle rational synchronization ratios under application of Dex as

a PER input, compatible with the experiments of Feillet et al., (2014), [1], Bieler et al.,

(2014) [30], and Nagoshi et al., (2004), [27];

X To observe the dynamical behavior of the coupled system and parametric control of syn-

chronization ratios;

X To analyze strategies of period control of one oscillator on the other – in particular strate-

gies to slow down the cell cycle;

By extension, some of the questions that we will keep in mind are: By which type of mecha-

nisms may the cell cycle exert control on the clock? Is it possible to recover the synchronization

ratios under the replication of experimental protocols in silico? If so, which parameters allow to

control the synchronization state of the oscillators? Are there multiple attractors? Why is there

a population of cells that synchronizes in a 3:2 period-lock ratio and another in a 1:1 ratio upon

treatment with Dexamethasone? What if the clock is responding directly to Growth Factor? Is

it possible to control the period of one oscillator by adding an input affecting the other?

1.6 Work Overview

Following the discussion and goals established in the previous Section, we develop non-linear

dynamical models to study the mammalian clock and cell cycle systems.
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As stated above, we aim for a reduced perspective that simultaneously focuses on the main

goal of later using these models to study coupling mechanisms. We aim also to be able to

relate our coupling results with the observations of Feillet et al., (2014), [1]. Thus, the cell

cycle modeling work largely focuses on exploring an effect of growth factor (GF) control on the

period and stability of the system and the clock model largely focus on a transcriptional-base,

so as to take into account the action of Dexamethasone (Dex) in indirectly causing induction

of the Per gene. Another point of clock modeling is the focus on obtaining an antiphasic

oscillation of CLOCK:BMAL1 and PER:CRY, not only because these two main clock elements

relate to opposite phases of the day/night cycle, a central influence on the evolution of clocks,

but also because this property may be of relevance for Dexamethasone application, that exerts

an asymmetric effect in promoting the repressor phase.

Thus, on Chapter 2 we identify the main dynamics underlying the mammalian cell cycle

and start by creating an intermediate seven variable model based on post-translational modifi-

cations of MPF, and in its degradation by the APC:cdc20 complex [4]. This model gives rise to

relaxation oscillations whose frequency increases with growth factor GF, a result in agreement

with observations [1]. From here, dynamical reduction results in a two variable cell cycle model

maintaining the essential properties of the initial model. We calibrate this reduced model against

experimental data and perform sensitivity analysis. When given as the input of an open-loop

configuration GF controls not only the period, but also the stability of the system.

The cell cycle model is then used, on Appendix B, to investigate coupling with a preliminary

clock model based on the essential core clock transcriptional network, where all clock components

oscillate in phase. The variation of the ratio of clock to cell cycle periods with GF resulted,

for weak coupling, in the devil’s staircase pattern ([55]), with the synchronization ratio being

constant by intervals at integer values. However, the effect of Dex application is not recovered

with this preliminary coupling. Nevertheless, the preliminary study of Appendix B allowed to

formulate the hypothesis that in a more complete clock model, that recovers the appropriate

phase differences between the core clock protein peaks, the experimentally observed effect of

Dex application ([1]) could be reproduced.

From here, we moved on to build a transcription-based clock model presenting antipha-

sic oscillation of the CLOCK:BMAL1 and PER:CRY protein complexes as a key feature, on

Chapter 3. Thus, the circadian clock modeling work, presented in Chapter 3, is an in-depth

study where the relevance of the CLOCK:BMAL1/PER:CRY antiphasic oscillation is related

to opposite phases of the fast/feeding, light/dark and rest/activity cycles. Uncovering the dy-

namical network behind this property is achieved by describing competition between activators

and repressors of certain genomic regions called clock controlled elements (CCEs) and the rate

of change of the core clock species as a combination of independent CCEs. The three modeled

CCEs are E-box, R-box and D-box.

We also calibrate our clock model against experimental data and verify robustness of oscil-

lation in relation to changes in parameters. The model reproduces the expected phase response

curve to external pulses and the region of entrainment by an external oscillatory signal forms an

Arnold Tongue pattern. We then applied our clock model in the simulation of the tau mutation
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and in the simultaneous application of one signal representative of the light/dark cycle and an-

other signal representing the fast/feeding cycle and observe the response in changes of duration

of peak expression of the different core clock proteins. Moreover, we identify, by means of model

reduction, the essential transcriptional core network that still guarantees the antiphasic BMAL1

and PER:CRY oscillation. The reduced clock model has four variables.

On Chapter 4 we study the coupling of our mammalian cell cycle and circadian clock reduced

models. We address unidirectional cell cycle → clock coupling, unidirectional clock → cell cycle

coupling, bidirectional coupling and unidirectional coupling with a GF-controlled clock. Unidi-

rectional cell cycle → clock coupling is achieved by modeling MPF-controlled phosphorylation

and subsequent degradation of REV-ERBα [56]. Unidirectional clock → cell cycle coupling,

in turn, is performed by modeling CLOCK:BMAL1-induced expression of wee1, that leads to

the repression of MPF activity [21]. Bidirectional coupling combines the two aforementioned

mechanisms.

Furthermore, we model a direct effect of GF on the clock by means of chromatin remodeling

near R-box ([102]), which is included in the model as GF repressing R-box. This is analyzed

in conjunction with the previously studied unidirectional clock → cell cycle coupling via wee1

induction.

We observe the devil’s staircase pattern of synchronization state response in all forms of

coupling except for the GF-controlled clock system. Moreover, we study the coupling dynamics

under changes in control parameters and Dexamethasone application.

Final considerations and future work regarding synthetic oscillator design and further clock

and cell cycle dynamical studies are presented on Chapter 5.
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2

Modeling the Mammalian Cell Cycle

This Chapter presents the work done in the first part of this thesis in creating and exploring

a dynamical model of the mammalian cell cycle, with a mechanistic, biologically meaningful,

approach and reduced number of variables. Thus, this Chapter consists in the article ”A com-

prehensive reduced model of the mammalian cell cycle” (Almeida et al. (2017)), published in

the proceedings of the 20th IFAC World Congress [4].

Because this is a short technical paper, some explainations of specific methods of function

approximation used in the article of Section 2.1 are provided on Section 2.2 of this Chapter.

Following this Chapter, Appendix B shows the application of the model here developped in the

coupling with a simple mammalian circadian clock model (developed in Appendix B), allowing

to take a preliminary look into what type of information may be obtained from the unidirectional

cell cycle → clock coupling between the two oscillators, which largely influenced the basis for

the development of a better, more complete, clock model in Chapter 3.

As this work is included in a larger project of synthetic oscillators’ design, the model devel-

oped in this Chapter seeks to minimize the number of variables, while simultaneously maintaining

mathematical terms that allow for biological interpretation, such as Michaelis-Menten and Hill

functions, as opposed to more phenomenological models. These characteristics allow to obtain a

reduced final cell cycle scheme that can form a basis for the development of a synthetic biological

oscillator (that is limited in the number of species it can contain, with 2 or 3 being ideal).

The cell cycle model built in this Chapter results in a relaxation oscillator, whose period

control is made by an input of growth factors. A particularly important observation that is

recovered by this model is the cell cycle period reponse to growth factor, whereby a small

amount of growth factor is required for oscillation and the frequency of the cell cycle increases

for increasing growth factor (both results in agreement with observations).
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2.1 A comprehensive reduced model of the mammalian cell cycle

2.1.1 Abstract

The cellular division cycle is an essential process to ensure healthy tissue development and

homeostasis which can, due to its periodicity, be interpreted as a biological oscillator. This

work focuses on identifying the main dynamics underlying cell cycle rhythms in mammals and

proposes a mathematical model to describe them. The model is based on post-translational

modifications of cyclin B-cdk1, also called mitosis promoting factor (MPF), known to be the

essential protein of the mammalian cell cycle, as well as in its degradation by the APC:cdc20

complex. The final result is a two variable reduced model of the mammalian cell cycle that

is able to reproduce oscillatory behaviors and properties consistent with observations, namely

the period being tunable by an external input of growth factor. We calibrate and validate this

model and study its behavior in a simple open-loop control configuration, showing that it can

exhibit bistability and oscillations. The model presents an advantage to work with due to its

low variable and parameter size.

Keywords: cell cycle, biological oscillator, tunable period, open-loop control, bistability

2.1.2 Introduction

The cycle of life of eukaryotic cells is under tight control of a vast network of regulatory molec-

ular processes in order to ensure cells grow, proliferate and die at proper rhythms and in a

manner consistent with cell homeostasis. As such, the cell cycle is a key process involved in

DNA synthesis and repair, cellular differentiation and programmed cell death, making it one of

the most essential mechanisms to life. Uncontrolled cell proliferation on the other hand is char-

acteristic of cancer, while insufficient cell proliferation may result in cell loss as seen in aging.

Thus understanding and controlling the cell cycle is of the utmost importance in the treatment

of cancer and other diseases.

The cell cycle occurs rhythmically resulting in a periodic oscillation of protein levels and

activity, gene activation patterns and cellular morphology: it produces a biorhythm and can

thus be interpreted as an oscillator. The cell cycle of several mammalian cells has a period of

approximately 24 h and is coupled to the cellular circadian clock, another important biological

oscillator, see [1] and [20]. Furthermore, the rate of division in a culture of mammalian cells

varies accordingly with the amount of “growth factors”, which are represented by a specific class

of peptidic hormones added to the medium, allowing to tune the period of the oscillator.

Mathematical modeling has become particularly instrumental to study the cell cycle due to

the increasingly known complexity of molecular controls involved in the process, see [57]. Models

have become a powerful tool to study cell division systems, investigate the core mechanisms

behind cell cycle rhythms and make predictions. [32], [36], [33] and [37] are successful examples

of reference models for the mammalian cell cycle that vary in complexity and approach. The

drawback of these models is their size which prevents analytical study of the parameter space

in order to explore the various dynamical regimes.
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With the goal of studying the main circuits underlying cell cycle rhythms and prove existence

of oscillations and other properties we develop a reduced variable mechanistic model of ordinary

differential equations (ODE) based on MPF (mitosis promoting factor, the cyclin B:cdk1 com-

plex) which is the active component of the G2/M transition phase and is known to be necessary

and sufficient to carry out the mitotic process (as seen in [6] and [32]).

The model here proposed includes phosphorylation and dephosphorylation steps carried out

between MPF, wee1 and cdc25 ([7]), responsible for positive feedback-loops on MPF, as well

as degradation of MPF by the APC:cdc20 complex ([8]) forming a negative feedback loop.

While negative feedback loops are essential for oscillation, positive feedback-loops allow to

tune the period of systems without compromising the amplitude of the signal, see [60]. The

MPF/APC:cdc20 feedback loop has also been previously studied and modeled, see [39], [59].

Section 2.1.3 presents an intermediate-sized model, based on the reference mechanisms al-

ready described in [32] and [39]. This model is then reduced to a 2D model (section 2.1.4)

containing all the mechanisms and is calibrated against cyclin B-cdk1 data [35] in order to ob-

tain a physiological parameter set. Finally, in section 4 we present a numerical and analytical

analysis of the parameter space, we observe that the 2D model captures well the period variation

with growth factor and study a scenario of bifurcation between bistability and oscillations.

2.1.3 A 7D intermediate model

To obtain a low dimension model of the cell cycle, we first develop and then reduce an interme-

diate model.

First, the schematic of Fig. 2.1 summarizes some main processes responsible for MPF acti-

vation and inactivation. The inactive form of MPF has an extra phosphate group relative to the

active one; cdc25 is a phosphatase responsible for removing this phosphate group leading to MPF

activation, while wee1 is a kinase that phosphorylates MPF promoting its inactive form, [7]. Fur-

thermore, MPF itself phosphorylates cdc25, activating it and forming a positive feedback-loop,

and also phosphorylates wee1, inactivating it and forming a double-negative feedback loop, that

acts as a positive loop.

Here, we consider that there is no production or destruction of cdc25 and wee1, meaning

[cdc25inactive] = cdc25TOT − [cdc25] and [wee1inactive] = wee1TOT − [wee1], where cdc25TOT and

wee1TOT are total amounts. Equations (2.1) to (2.4) model these processes.

The growth factor GF binds to receptors of the cellular membrane and initiates a signalling

cascade that leads to the production of cyclin B, here represented by a synthesis term SGF in

equation (2.4) given by SGF = Vf
GFn

GFn+knf
. If GF is constant, so is SGF and we assume that SGF

is a direct representation of the input.

d[cdc25]

dt
= V1

cdc25TOT − [cdc25]

cdc25TOT − [cdc25] + k1
[MPF ]− V2

[cdc25]

[cdc25] + k2
(2.1)

d[wee1]

dt
= V3

wee1TOT − [wee1]

wee1TOT − [wee1] + k3
− V4

[wee1]

[wee1] + k4
[MPF ] (2.2)
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Figure 2.1: Schematic representation of the positive feedback loop between MPF and
cdc25 and of the double-negative feedback loop of MPF with wee1.
MPF indirectly promotes its own activation by activating cdc25 and inactivating wee1: cdc25
promotes the active form of MPF while wee1 promotes its inactive form.

d[MPF ]

dt
=V5

[MPFinactive]

[MPFinactive] + k5
[cdc25]− V6

[MPF ]

[MPF ] + k6
[wee1]

− γ1[APC : cdc20][MPF ]

(2.3)

d[MPFinactive]

dt
=SGF − V 5

[MPFinactive]

[MPFinactive] + k5
[cdc25]

+ V6
[MPF ]

[MPF ] + k6
[wee1]

− γ2[APC : cdc20][MPFinactive]

(2.4)

The second part of the model is represented in the scheme of Fig. 2.2 and describes the degra-

dation of MPF by the complex APC:cdc20. These two components form a negative feedback-

loop, with MPF phosphorylating the anaphase-promoting complex APC, leading it to a config-

uration that will dimerize with cdc20. The APC:cdc20 complex promotes the ubiquitination of

MPF, targetting it for degradation. MPF has an opposite effect on cdc20 causing its inactivation

and we include this step on the model as a first approach. The complex APC:cdc20 can dissociate

into cdc20 and APC, see Fig. 2.2. Once more, we consider that there is no synthesis or degra-

dation of cdc20 and APC, which allows us to write [APCinactive] = APCTOT − [APC]− [APC :

cdc20] and [cdc20inactive] = cdc20TOT − [cdc20]− [APC : cdc20]. Equations (2.5) to (2.7) model

these steps.
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Figure 2.2: Schematic representation of the negative feedback loop between MPF
and the APC:cdc20 complex.
MPF promotes the formation of APC:cdc20 by activating APC, while APC:cdc20 represses MPF
by degradation. The APC:cdc20 complex can also dissociate.

d[APC]

dt
=V7

APCTOT − [APC]− [APC : cdc20]

APCTOT − [APC]− [APC : cdc20] + k7
[MPF ]

− V8
[APC]

[APC] + k8
− vAC [APC][cdc20]+

vCA[APC : cdc20]

(2.5)

d[cdc20]

dt
= V9

cdc20TOT − [cdc20]− [APC : cdc20]

cdc20TOT − [cdc20]− [APC : cdc20] + k9

− V10
[cdc20]

[cdc20] + k10
[MPF ]− vAC [APC][cdc20]

+ vCA[APC : cdc20]

(2.6)

d[APC : cdc20]

dt
= vAC [APC][cdc20]− vCA[APC : cdc20] (2.7)

This model has an oscillatory behavior as shown in Fig. 2.3, for representative parameters. A

calibration of the parameters is shown below for the reduced model. We also verify the tunability

of the period with the input SGF , for example for SGF = 0.24 nmol.min−1, T = 1942 min and

for SGF = 2.0 nmol.min−1, T = 1139 min. We verify that our total amounts of concentrations

are close to those obtained by [35] and we chose the units of our preliminary parameters based

21



2. Modeling the Mammalian Cell Cycle

Figure 2.3: Oscillations of the components of the cell cycle model.
Parameters: wee1TOT = 22.0, cdc25TOT = 20.0, APCTOT = 40.0, cdc20TOT = 20.0, γ1 = 3.0,
γ2 = 0.1, V1 = 0.1, k1 = 7.6, V2 = 2.5, k2 = 7.6, V3 = 0.5, k3 = 5.4, V4 = 5.0, k4 = 4.3,
V5 = 70.0, k5 = 50.0, V6 = 20.0, k6 = 50.0,V7 = 0.1, k7 = 10.2, V8 = 1.0, k8 = 10.5, V9 = 1.5,
k9 = 50.6, V10 = 0.5, k10 = 60.1, VAC = 0.2, VCA = 0.15 and SGF = 0.24. Units for V1, V4, V5,
V6, V7, V10 and VCA are min−1 for V2, V3, V8, V9 and SGF are nM.min−1, for γ1, γ2 and VAC
are min−1.nM−1 and for all k′s are nM .

on that work. This model can be interpreted in relation to the cell cycle with the peaks of

MPF corresponding to mitosis and the times when wee1 is high as the remaining phases of the

cell-cycle preceeding mitosis.

2.1.4 Model Reduction and Calibration

The model has relaxation oscillations with certain variables varying through plateaus (see Fig.

2.3), thus in order to reduce it we start by setting cdc25 and wee1 at steady-state, i.e. dxi
dt = 0

with xi representing a generic variable. This results in:

MPF (cdc25) =
V2
V1

[cdc25]

[cdc25] + k2

cdc25TOT − [cdc25] + k1
cdc25TOT − [cdc25]

(2.8)

and

MPF (wee1) =
V3
V4

wee1TOT − [wee1]

wee1TOT − [wee1] + k3

[wee1] + k4
[wee1]

(2.9)

We want to replace the variables cdc25 and wee1 in equation (2.3) by a term dependent on

MPF, thus we invert the functions given by equations (2.8) and (2.9) and verify that the inverse

functions can be well approximated by Hill functions, as follows:

22



2.1. A comprehensive reduced model of the mammalian cell cycle

cdc25(MPF ) = cdc25TOT
[MPF ]m

[MPF ]m + kmm
(2.10)

and

wee1(MPF ) = wee1TOT
knn

[MPF ]n + knn
(2.11)

where the cdc25 equation (2.10) is that of an activator or promoter and wee1 equation (2.11)

represents a repressor (further visualization of this method is given in Section 2.2).

Next, we observe that cdc20 isn’t an essential variable for the oscillary behavior and we can

make it constant.

Now focusing on the APC equation, we study the variations on parameters in equation

(2.5). We verify that the parameter k7 can be decreased to very low values without changing

the output of the model: k7 ' 0, implying that the first Michaelis-Menten term of equation

(2.5) is saturated and can be approximated by a constant. Furthermore, we also verify that

almost all the time k8 > [APC] and k8 can be very large without dramatically affecting the

system, which in its turn implies that the second Michaelis-Menten term of equation (2.5) can

be approximated by a linear function. Thus,the equation for APC becomes:

d[APC]

dt
=V7[MPF ]− V8

k8
[APC]− vAC [APC][cdc20]

+ vCA[APC : cdc20]

(2.12)

Now we put APC at steady-state to obtain:

[APC] =
V7[MPF ] + vCA[APC : cdc20]

vAC + V8
k8

(2.13)

substituting in equation (2.7), leads to:

d[APC : cdc20]

dt
= Vm[MPF ]− Vk[APC : cdc20] (2.14)

with parameters

Vm = vACV7
vAC+

V8
k8

and Vk = vCA(1− vAC

vAC+
V8
k8

).

Lastly, we procceed to merge the two MPF equations (2.3 and 2.4). We look to remove the

equation for MPFinactive as well as keeping Michaelis-Menten terms in the final equation to

represent the phosphorylation and dephosphorylation of MPF , in coherence with the previous

model. We verify that for non-negligible values of SGF enough MPFinactive is created so that

the production of MPF is never compromised. Thus, we consider an average maximum amount

MPFmax from where we can define MPFinactive = MPFmax−MPF . The parameter MPFmax

doesn’t represent a total amount of MPF since there is also a production term SGF . In section

4.2 we will include the effect of SGF on the total amount of MPF .

23



2. Modeling the Mammalian Cell Cycle

In equation (2.15) we observe the simplified MPF reduced equation, which also contains the

growth factor input:

d[MPF ]

dt
=SGF + Vc

MPFmax − [MPF ]

MPFmax − [MPF ] + kc

[MPF ]m

[MPF ]m + kmm

− Vw
[MPF ]

[MPF ] + kw

knn
[MPF ]n + knn

− γ1[APC : cdc20][MPF ]

(2.15)

The exponents m and n take the value of 2 and Vc and Vw represent V5cdc25TOT and

V6wee1TOT respectively (see equations (2.3), (2.10) and (2.11)). The APC : cdc20 complex is

as given by equation (2.14).

Our final model is thus given by equations (2.15) and (2.14). The numerical simulations give

again rise to relaxation oscillations as observed in Fig. 2.4 (period 126.8 min), with the peaks

of MPF indicating mitosis. Parameters are presented in Table 2.1 and were obtained through

adjustment to data points by means of a computational optimization, see Fig. 2.4. Data points

for calibration were collected from [35] that presents experimental results of normalized cyclin

levels and cdc2 activity for the Xenopus egg.

Table 2.1: Calibrated parameters

p Numerical Value

γ1 0.016 min−1

Vc 226 min−1

kc 130
Vw 748 min−1

kw 138
km 98.5
kn 0.116
Vm 1.68 × 10−2 min−1

Vk 1.07 ×10−2 min−1

SGF 5.69 min−1

MPFmax 284

It is clear that our model faithfully represents the dynamics of cyclin B, with a set of

physiological parameters that leads to oscillatory behavior. The fact that the reduced model

again produces relaxation oscillations for MPF as well as tuning of the period through GF (see

section 3.12), allows us to consider that the essential mechanistic steps of our first model are

conserved.

2.1.5 Mathematical Analysis

Next, we analyse how oscillations are originated by an unstable fixed-point inside a limited

phase-plane region. The nullclines are shown in Fig. 2.6. As discussed before, MPFmax will be
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Figure 2.4: Oscillations of MPF and APC:cdc20 over time.
Adjustment of the 2D model to data points for the Xenopus egg normalized to 100, retrieved
from [35]. Obtained parameters are presented in Table 2.1. The model results in relaxation
oscillations with T = 126,8 min. The peaks of MPF indicate mitosis.

an approximate limit for the maximum value of MPF, which in its turn will limit the amount

of APC:cdc20, thus forming a foward-invariant region for this system. Inside this region there

is a unique fixed point, which is unstable when the two nullclines intersect in an interval where

both are increasing. For this set of parameters, the nullclines intersect at (23.03, 36.16) and this

is an unstable fixed point. Under these conditions, applying the Poincaré-Bendixson Theorem

to this 2D system proves the existence of a periodic orbit.

The rate of production of the APC:cdc20 complex by MPF (Vm) and the natural degradation

of APC:cdc20 (Vk) control the slope of the APC:cdc20 nullcline. For the parameters of Table

2.1 the nullclines intersect near the beginning of the oscillatory region (Fig. 2.6), however

the calibration with data for the Xenopus egg gives us mostly the order of magnitude for the

parameters of a mammalian cell, thus we can change slightly the value of Vk in order to have a

broader study of the parameters in the oscillatory region in Fig. 2.5. From observation of Fig.

2.5 we can conclude that Vm, Vk and km are the parameters that produce greater changes in

period and that overall the system is robust in relation to parameters’ changes.
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Figure 2.5: Sensitivity analysis of the model.
Parameters are varied 20 % around a value in the middle of the oscillation region - (Table 2.1,
with Vk = 0.0157 min−1).

Parameters Analytical Characterization

In order to obtain broader limits for the parameters than those that numerical simulations allow

and to better understand how each term of the model equations affects the dynamics we analyse

possible relations between parameters that can guarantee existence of oscillation.

From the observed dynamics of our oscillations (Fig. 2.6), we require the MPF nullcline to

be increasing when it intersects with the APC:cdc20 nullcline in order to obtain an unstable

fixed-point. Thus, we consider now the MPF nullcline as g1(x) and the APC:cdc20 nullcline as

g2(x), represented in equations (2.16) and (2.17), with MPFmax now called XM for simplicity:

g1(x) =
SGF
γ1x

+
Vc
γ1x

XM − x
XM − x+ kc

x2

x2 + k2m

− Vw
γ1x

x

x+ kw

k2n
x2 + k2n

(2.16)
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Figure 2.6: Nullclines and piece-wise quadratic approximation.
Blue curve (g1): MPF nullcline, red curve (g2): APC:cdc20 nullcline (parameters given in Table
2.1), dashed purple curve (g̃1 ): piecewise quadratic approximation of the MPF nullcline.

g2(x) =
V m

V k
x (2.17)

and determine the local minimum and maximum points x1 and x2 that will delimit the

region of increasing g1. The intersection point of g1 and g2 must satisfy g1(x2)
x2

< Vm
Vk

< g1(x1)
x1

(see equation 2.17) in order for the nullclines to intersect in the growing region of g1. For

the set of calibrated parameters (Table 2.1) we determine x1 and x2 numerically and verify

0.61 < Vm
Vk

< 1.73.

We now proceed to approximate the terms of g1(x) by piecewise quadratic functions (a more

complete explanation of this process is given in Section 2.2). For example, considering h1(x) as

the activator Hill function in equation (2.16) we design an approximation given by:

h1(x) =
x2

x2 + k2m
≈

{
αx2 if x < xa

−a(x−XM )2 + h1(XM ) if xa ≤ x < XM

We choose α = 8 × 10−7km in order to define a quadratic function that approximates well

the first region of h1, xa =
√

1−αkm2

α is the point where the function intersects h1. The second

equation defines an inverted parabola whose maximum is set at XM , with a defined as a =
h1(XM )+αkm2−1

(xa−XM )2
> 0 in order to have continuity at xa.

The space is split into five intervals: 0 < x <
√

2kn,
√

2kn < x < xa, xa < x < kw,

kw < x < XM − kc and XM − kc < x < XM that define the limits of the piecewise quadratic

approximation g̃1 (shown in Fig. 2.6).
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Intervals 2 and 3 contain the region where the function increases (Fig. 2.6), at these intervals

g̃1 is defined as:

g̃21(x) =
SGF
γ1x

+
Vcαx

γ1
(2.18)

g̃31(x) =
1

γ1x
[SGF + Vc(−a(x−XM )2 + h1(XM ))] (2.19)

The derivative of g̃21(x) has a zero at x̃1 =
√

SGF
αVc

that marks the begining of the increasing

region, the derivative of g̃31(x) as a zero at x̃2 =

√
Vc(aX2

M−h1(XM ))−SGF

aVc
that limits the upper

bound of the interval. Thus, in a broad manner we may conclude that the parameters need to

satisfy x̃1 < x̃2, or:

SGF < Vc
α(aX2

M − h1(XM ))

a+ α
(2.20)

which we can interpret as giving the maximum value of the growth-factor dependent synthesis

term SGF in relation to Vc that guarantees oscillations. SGF and Vc together account for the total

production of MPF in the model, with Vc being the maximum value of the positive Michaelis-

Mentem term (representing formation of MPF from MPFinactive) in equation (2.15), this allows

us to conclude that the limit of growth factor above which oscillations stop is dependent on the

rate of MPF phosphorylation by cdc25. Using the parameters presented in Table 2.1 and the

mentioned value of α we obtain SGF < 21.6 and verify the condition (2.20).

The piecewise quadratic approximation shows that an interval where g1([MPF ]) increases

appears due to a dominance of the Hill term coming from the cdc25 positive loop, Vc
MPF 2

MPF 2+k2m
. It

furthermore captures the properties needed to generate sustained oscillations, yielding relations

between the parameters that allow to characterize the oscillatory behavior.

Open-loop Control and Bistability

In Fig. 2.7 we can see that the model reproduces the trend of period tunable with a Growth

Factor input, where an adjustment is made between our output and experimental data from

Table 2.2. The experimental data points come mostly from [1], with the exception of the 5%

FBS (fetal bovine serum) value, that is an additional measurement done under the exact same

experimental conditions (unperturbed NIH 3T3 mouse fibroblasts). We do a scaling in our

model such as t→ βt, which leads to SGF → SGF
β , with β = 0.1.

Lastly, seeking to improve the approximation made in section 3 as: MPFinactive = MPFmax−
MPF , we study the case in which MPFmax also depends on the input: MPFmax = MPFmax+

βSGF in equation (2.15). This recovers a property of our 7D model in which SGF will have an

effect in the amount of MPFinactive available to generate MPF .

An interesting result is that for certain values of MPFmax, the model switches from the

oscillatory regime to a bistable regime as the input SGF increases. Fig. 2.8 presents the MPF

steady states for different values of SGF , with MPFmax = 150 and β = 20. We can observe,
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Figure 2.7: Period tunable with the input SGF : open-loop control.
We do a scaling correspondance of our numerical simulations (blue circles) with data from Table
2.2 (red squares).

Table 2.2: Experimental data for the period tunable with GF ([1])

%FBS T (h)

5 26.6
10 21.3
15 18.6
20 16.5

with increasing SGF , the passage from a monostable regime to bistability, to again monostability,

then entering the oscillation region with one unstable fixed point and finally monostability again.

The entrance in the oscillatory region is marked by a Hopf bifurcation.

The input parameter SGF controls the change between dynamic regimes and we can delimit

the oscillatory regime for 3.3 min−1 < SGF < 17.7 min−1.

From a biological point of view this raises the question of whether cells grown with low

growth factor and unable to divide would present bistability. Bistability in the activation of

cdc2 has been observed by [33] on a modified system.

Additionally, Fig. A.1 shows an extended analysis of Fig. 2.8 complemented with the

envelope of oscillations and Fig. A.2 shows the intersection of nullclines for several values of

SGF (these Figures are not part of the original paper).
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2. Modeling the Mammalian Cell Cycle

Figure 2.8: MPF steady-states as a function of the parameter SGF.
Left side of image shows a zoom for SGF between 0 and 1. Stable steady states are represented in
blue and unstable steady-states in red. A Hopf bifurcation marks the entrance in the oscillatory
region.

2.1.6 Conclusion

A two variable cell cycle model based on the negative feedback loop between MPF and the

APC:cdc20 complex and on a positive feedback loop of MPF was calibrated from experimental

data for cyclin B from one study ([35]) and was able to reproduce experimental data from

another study ([1]) for the tunability of the period with the growth factor input.

The growth factor input controls the output of the system determining switching behavior

between bistability, monostability and oscillations. The cell cycle is understood in terms of rela-

tions between parameters representing the G2 phase, with the activity of cdc25 being dominant

over the other components, producing the biorhythm.
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2.2 Function Approximation in Cell Cycle Modeling

In this Section we provide complementary explanations and visualizations on methods of function

approximation used in the previous Section.

2.2.1 Graphical Function Approximation

In Section 2.1.4 quasi-steady-state approximation of d[cdc25]dt and d[wee1]
dt led to the substitution of

cdc25 and wee1 by functions (2.10) and (2.11). In this case function approximation is graphical.

Figs. 2.9 and 2.10 respectively show the plot of MPF(cdc25) and MPF(wee1) along with the

30



2.2. Function Approximation in Cell Cycle Modeling

inverse plot for the same functions, allowing to see that both can be well approximated by Hill

functions.

The true inverse functions of Eqs. 2.8 and 2.9 contain terms such as square roots that are

less biologically meaningful than Hill functions. For simplicity and readability of the reduced

model, we approximate the true inverse functions by straightforward Hill functions representing

one activator and one repressor for cdc25 and wee1 respectively. These accurately represent the

role of these two cell cycle components.

Figure 2.9: Quasi-Steady-State Approximation of cdc25.
On the left: MPF as function of cdc25 as given by 2.8. On the right: the inverse plot of
MPF(cdc25) allows to visualize that cdc25(MPF) can be well approximated by an activator Hill
function of the type Vm

xm

xm+kmm
(Eq. 2.10).

Figure 2.10: Quasi-Steady-State Approximation of wee1.
On the left: MPF as function of wee1 as given by 2.9. On the right: the inverse plot of
MPF(wee1) allows to visualize that wee1(MPF) can be well approximated by a repressor Hill

function of the type Vn
knn

xn+knn
(Eq. 2.11).
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2.2.2 Piecewise Quadratic Approximation

In Section 2.1.5 approximation of the MPF nullcline g1 by a piecewise quadratic function allowed

to establish a relation between the parameters representing MPF production, either by synthesis

(SGF ) or by activation via the cdc25 mechanism (Vc). This method consisted in approximating

each Michaelis-Mentem or Hill term of g1.

Recall g1:

g1(x) =
SGF
γ1x

+
Vc
γ1x

XM − x
XM − x+ kc

x2

x2 + k2m
− Vw
γ1x

x

x+ kw

k2n
x2 + k2n

(2.16)

Thus, we begin by approximating the Hill terms.

The repressor term representing wee1 action on MPF, given by h2(x) = k2n
x2+k2n

, is decreasing

and tends to zero as x→∞, thus after a certain value ks we approximate h2 by zero. To devise

the function for x < ks we found the quadratic approximation to fit better than the linear. We

design a funcion of the type q(x) = −ax2 + bx + c so as to have q(0) = 0, q′(0) = 0 and

q(kn) = 1
2 , just as h2. Thus the approximation becomes:

h2(x) =
k2n

x2 + k2n
≈

{
− 1

2k2n
x2 + 1 if x <

√
2kn

0 if x ≥
√

2kn
(2.21)

And we set ks =
√

2kn so as to have continuity between the two steps of the function.

The activator term representing cdc25 action on MPF and given by h1(x) = x2

x2+k2m
is in-

creasing and tends to 1 when x → ∞. In this case approximating by two quadratic functions

yielded better results in terms making our approximation g̃1 closer to g1. The approximation

was shown in Section 2.1.5 and is given by:

h1(x) =
x2

x2 + k2m
≈

{
αx2 if x < xa

−a(x−XM )2 + h1(XM ) if xa ≤ x < XM
(2.22)

Fig. 2.11 shows h1 as well as the two approximate parabolas, the inverted parabola has its

maximum at h1(XM ).

We now approximate the Michaelis-Menten functions by linear terms.

The term h3(x) = x
x+kw

represents MPF inactivation via phosphorylation and is multiplied

by the wee1 term h2. As h3 is increasing and tends to 1 as x → ∞, for x > ks we define h3 as

1, while for x < ks we take the linear approximation of the Michaelis-Menten function near the

origin x
kw

and set ks = kw so as to have continuity of h3:

h3(x) =
x

x+ kw
≈

{
x
kw

if x < kw

1 if x ≥ kw
(2.23)

Similarly, the term h4(x) = XM−x
XM−x+kc , representing activation of MPF from an available

constant amount XM is decreasing and flat at the origin. Thus we approximate it by 1 for

x < ks and take the linear approximation of h4 for x > ks. In this case ks = XM − kc and the

approximation becomes:
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Figure 2.11: Activator Hill term of g1.
Plot of h1 as well as the parabolas of Equation 2.22 and the line y = h1(XM ). XM is the upper
limit of x. In this case ks = xa is the point where the two parabolas intersect.

h4(x) =
XM − x

XM − x+ kc
≈

{
XM−x
kc

x if x < XM − kc
1 if XM − kc ≤ x ≤ XM

(2.24)

Finally we order the five intervals obtained above, defining the points where the quadratic

approximation g̃1 changes: 0 < x <
√

2kn,
√

2kn < x < xa, xa < x < kw, kw < x < XM − kc
and XM − kc < x < XM .

And we define g̃1 for each interval:

0 < x <
√

2kn :

g̃11(x) =
1

γ1x
[SGF + Vcαx

2 − Vw
x

kw
(1− 1

2

x2

k2n
)] (2.25)

√
2kn ≤ x < xa:

g̃21(x) =
1

γ1x
[SGF + Vcαx

2] (2.18)

xa ≤ x < kw:

g̃31(x) =
1

γ1x
[SGF + Vc(−a(x−XM )2 + h1(XM ))] (2.19)

kw ≤ x < XM − kc:

g̃41(x) =
1

γ1x
[SGF + Vc(−a(x−XM )2 + h1(XM ))] (2.26)
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and XM − kc ≤ x ≤ XM :

g̃51(x) =
1

γ1x
[SGF + Vc(−a(x−XM )2 + h1(XM ))

XM − x
kc

] (2.27)

The plot of this approximation is shown in Fig. 2.6 together with g1 and g2.
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Modeling the Mammalian Circadian Clock

This Chapter is written in the form of an article, with the provisory title: “Timing of circadian

clock regulatory inputs controls duration of activating and repressing phases in a transcriptional

D-box-based model”. In this article a transcription-based mammalian cellular clock model is

built, analyzed and reduced to a reasonable number of variables. Moreover, some applications of

this model are explored, namely the response to timed signaling inputs, allowing for an increased

understanding of how the circadian clock may control metabolic health and disease.

The mammalian circadian clock system presents a characteristic orderly expression of its

core proteins, where the phase-opposition between CLOCK:BMAL1 and PER:CRY, relating to

opposite states of the day/night cycle, is a key feature. Following the discussion of Appendix B,

we intend to study the implications of the essential circadian topology leading to an antiphasic

oscillation between CLOCK:BMAL1 and PER/PER:CRY in relation to the period-lock dynam-

ical behavior of the coupled clock/cell cycle system (this will be done on Chapter 4). Because

pre-existing circadian clock models tend to have a large number of variables and/or account for

a lot of post-translation protein modifications, we are not using already existing clock models,

but rather rely on the most recent experimental data to construct a more comprehensive model

with the desired properties. As such, the work here developed focus in obtaining this property

as a result of our model and also as a part of the essential oscillatory network. This is verified

when upon dynamical model reduction the BMAL1 and PER:CRY variables remain a part of

the circadian skeleton network. Their antiphasic oscillatory behavior is also maintained after

model reduction, making it a “built-in ” feature of our model, which after reduction has a small

number of variables (four).

The circadian clock being a mechanism of physiological adaption to daily external changes

consists in a system that coordinates the modulation of gene expression by certain external

and internal inputs, such as light and hormones. In this Chapter, we relate the different clock

phases with different metabolic states and use this to make inferences of the interconnection

between clock and metabolism, without including metabolic modeling directly. This is done,

among other methods, by analyzing the clock response to inputs that relate to the day/night

and fast/feeding cycles and observing the differences in clock dynamics when these two signals

are given in proper phase alignment versus in phase misalignment.
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3.1 Timing of circadian clock regulatory inputs controls duration of activating

and repressing phases in a transcriptional D-box-based model

Abstract

The molecular oscillator of the mammalian circadian clock consists of a dynamical network of

genes and proteins, largely uncovered by experimental studies and dynamical modeling, whose

regulation occurs essentially at the transcription level with some degree of post-transcriptional/post-

translational regulation. From a dynamical point of view, the mechanisms leading to an oscilla-

tory solution following an orderly peak protein expression pattern and a clear day/night phase

distinction remain unclear. Our goal is to identify the essential interactions needed to generate

phase opposition between the activating CLOCK:BMAL1 and the repressing PER:CRY com-

plexes and to better distinguish two main clock molecular phases relating to rest/activity and

fast/feeding cycles. To do this, we develop a transcriptional-based model centered on linear

combinations of clock controlled elements (CCEs): E-box, R-box and D-box, where each CCE

is modeled as an effector of activators and repressors. After calibration with single-cell data,

the model is analyzed and used to explore entrainment and period tuning via interplay with

metabolism as well as asymmetric changes in the duration of the different clock phases in the

tau mutation. Furthermore, when exposing the clock mechanism to two regulatory inputs, one

relating to the fast/feeding cycle and the other to the light-dependent SCN synchronization

signaling, the phase difference between these two signals impacts on the relative duration of the

different molecular clock phases. Simulated circadian misalignment, known to correlate with

insulin resistance, leads to decreased duration of BMAL1 and CRY1 peak expression, thus sup-

porting their role in promoting insulin sensitivity. The circadian clock mechanism controls the

relative duration of activating and repressing molecular clock states in response to hormonal sig-

naling inputs. Finally, dynamical reduction of the model allows us to conclude that D-box plays

an essential role in guaranteeing oscillations with CLOCK:BMAL1 and PER:CRY in anti-phase.

Author summary

In this work we investigate whether rhythmicity and phase differences between the main mam-

malian clock proteins can be recovered by a transcription-based model that minimizes post-

translational effects. We show that a model centered on the CCEs E-box, R-box and D-box

recovers the desired properties. This model is calibrated against experimental data and vali-

dated through properties such as robustness to changes of parameters and ability of entrainment

by an external signal. To allow for period tuning, we develop a non-linear closed-loop control

function representative of CLOCK:BMAL1 chromatin remodeling via PGC1-α. Through quasi-

steady-state reduction, we conclude that D-box is an essential topological element for antiphasic

oscillation between BMAL1 and PER:CRY, indicating a possibly important role for PAR tran-

scription factors in the core clock. Furthermore, we simulate the tau mutation and verify that

a decrease in the period of the system leads to a proportional decrease in the duration of the
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molecular night only. Following this, we explore interactions between clock and metabolism

by observing the clock response to the alignment state between fast/feeding and light/dark cy-

cles and propose that a decrease in the duration of BMAL1 peak expression may explain why

circadian misalignment is correlated with insulin resistance.

3.1.1 Introduction

In the vast majority of organisms the circadian clock is a fundamental, highly conserved, mech-

anism that governs daily behavior and cell physiology providing adaptation to external changes.

In mammals, coordination between cycles of rest/activity and fast/feeding with the external

light/dark cycle is ensured by a complex and hierarchical timing system: in brief, a hypothala-

mic central clock receives light inputs and in turn coordinates clocks in peripheral organs, tissues

and cells along the 24 h cycle via internal signaling. Importantly, both central and peripheral

clocks share the same molecular makeup.

Experimental studies and mathematical models have uncovered a dynamical network of clock

components. The core clock mechanism consists of the CLOCK:BMAL1 protein complex that

promotes transcription of the Per and Cry mRNA. The PER:CRY protein complex subsequently

formed in the cytoplasm then translocates into the nucleus where it both blocks CLOCK:BMAL1

transcriptional activity and displaces the CLOCK:BMAL1 heterodimer from its cognate pro-

moters [65]. Another negative feedback loop between CLOCK:BMAL1 and REV-ERBα is also a

part of the core clock mechanism mechanism [10] [46]. In spite of the phase differences between

core clock mRNAs and core clock proteins not being exactly the same, specific peak order be-

tween the core clock components, such as BMAL1, REV-ERBα, PER and CRY occurs already

at the mRNA level [61].

Endogenous circadian clocks coordinate gene activation patterns and protein concentrations

that oscillate in individual cells with a 24 hour period, such that different times of day are

characterized by different cellular protein profiles. Of particular importance is the antiphasic

relation between BMAL1 and PER:CRY that strongly correlates with the day/night separation.

We note that the terminology “phase” is formally used as to denote the angle of rotation of the

oscillator relative to a reference value. However, by abuse of language, throughout this article

we sometimes use “phase” in a more general sense, to designate a given stage of the molecular

circadian oscillation, as for instance to refer to an activating phase (when BMAL1 is up and

PER:CRY is down) or to a repressing phase (with BMAL1 down and PER:CRY up).

A combination of experimental and computational approaches has helped increase knowledge

on the circadian clock. Goodwin proposed in 1975 a model based on a simple negative feedback

loop between a protein and its own gene, [40]. Such a feedback loop was indeed uncovered, first

in Drosophila (Zehring et al. (1984) [62]) and later in other organisms (Bell-Pedersen et al.

(2005) [63]). Since then a number of dynamic modeling studies have furthered the discussion

on the mammalian cellular clock (see Podkolodnaya et al., (2017), for a comparative review

[50]). Examples of these models are Leloup and Goldbeter (2003), [41], Forger and Peskin

(2003), [42], Relógio et. al (2011), [46], and Yan et al. (2014), [64], that present varying ways
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of studying the system, from the use of high number of variables/parameters to the addition

of explicit time delays. Differently, Mirsky et al. (2009), propose a model that purposely

minimizes post-translation modified species [45] and Becker-Weimann et al. (2004) focus on clock

modeling using a reduced number of species [44]. In this work, we attempt to simultaneously

minimize the number of variables and restrict posttranslational modifications to the PER/CRY

mediated transrepression in order to investigate whether major mammalian clock properties

such as oscillation, orderly peak protein expression and clear day/night phase distinction can be

recovered by a transcription-based model that includes the majority of the core clock components

and uses simple equation modeling terms. Applications of clock models are useful for studying

the interconnection between the mammalian clock and other essential cellular processes, such

as the cell cycle (Gérard and Goldbeter (2012), [26], Zámborszky et al. (2007) [25], Feillet et

al. (2015) [20], Bieler et al. (2014) [30]) and metabolism (Woller et al. (2016) [18], Woller and

Gonze (2018) [100]).

While post-transcriptional mechanisms, including RNA-based mechanisms, are essential for

the proper functioning of the clock, this doesn’t mean these mechanisms are dynamically signifi-

cant for oscillation or for the correct order of protein peak expression and their contribution may

be mainly to create specific delays that in a modeling perspective can be achieved by adjusting

parameters on the essential dynamical interactions. In fact, transcription/translation feedback

loops are usually shorter than circadian periods and delays such as that of PER degradation

or that of PER nuclear entry via phosphorylation are known to contribute to the 24h circadian

period [12]. Furthermore, post-translational mechanisms may be a way to rapidly incorporate

a variety of signals and may even consist on the majority of circadian regulation interactions;

notwithstanding the integration of all these signals seems to occur at the gene transcription level

and uncovering a transcriptional network that reproduces the main mammalian clock properties

can provide insight on the system.

The process of designing the model in order to describe an experimentally-supported tran-

scriptional network, with a minimal yet plausible number of elements, led us to approach the

problem by focusing on the clock controlled elements (CCEs): E-box, D-box and R-box. Some

previous models have also represented the effect of CCEs on the clock: Korencic et al., (2012),

focus exclusively on regulation between CCEs modulation factors, proposing independent com-

petition between CCEs modeled by a multiplicative relation [48], and Jolley et al., (2014),

highlight the role of D-box in a model that reproduces expected timing of CRY1 peak expres-

sion via linear combined action of D-box and R-box [49]. In our model we consider independent

multiplicative competition between the terms of the majority of pairs of activator/repressor of

each CCE, but additive relations between the contributions of each CCE to gene promoters, as

has been observed for the activation of the mPer1 promoter [67]; basing our choice of CCEs on

the work of Ueda et al., (2005), [69], D-box is included in the equations for REV-ERBα and

PER rates of change – a topology that is later found to be essential. Fig. B.2 shows a scheme

of the molecular mechanisms and interactions included in our model.

Our model reproduces the expected peak order expression of the core clock proteins: BMAL1,

then PER, then CRY1 [61], and the expected antiphasic relation between BMAL1 and PER:CRY
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Figure 3.1: Simplified molecular mechanisms of the mammalian circadian clock.
The CLOCK:BMAL1 protein complex promotes transcription of Per, Cry, Ror, Rev-erb and Dbp
via E-boxes. CRY1 and PER:CRY block CLOCK:BMAL1 transcriptional activity, forming the
main transcription-translation feedback loop. RORs (activators) and REV-ERBs (repressors)
compete for R-box binding, coordinating expression of Clock, Bmal1, E4BP4, Ror and Cry1.
Finally, D-box, activated by DBP and repressed by E4BP4, also contributes for expression of
Rev-erb and Per.

is obtained. Aside from protein degradation/sequestration and formation/dissociation of the

PER:CRY complex no other post-translational protein effects such as multiple phosphorylation

states or shuttling between nucleus and cytoplasm are included in this model. Overall the model

presents an essential skeleton for the mechanisms driving the mammalian circadian rhythm,

consisting of eight molecular species described by a system of ordinary differential equations.

The CCE modeling terms are based mostly on Michaelis-Menten and one low exponent Hill

function (n=2), making it in agreement with experimentation, where cooperative binding of

clock proteins to target genes hasn’t been observed [66]. Parameters are obtained by fitting to

high temporal resolution REV-ERBα expression data from single cells, from Feillet et al. (2014)

[1], and oscillatory behavior is robust to parameter variations.

We improve on this model by adding an extra loop representative of the impact of the

CLOCK:BMAL1 controlled transcriptional coactivator PGC1-α on ROR activity This function

allows to control the period of the oscillator. Furthermore, we assess entrainment to external
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stimulus, typical of circadian clocks, and verify that the region of model entrainment forms an

Arnold tongue on the period and amplitude of the external signal, with sinusoidal waves allowing

for a larger entrainment region than rectangular waves.

As an application, the model is then used to simulate the tau mutation [80]. This is achieved

by increasing the PER degradation rate which leads to period diminution and variations in the

full width at half maximum (FWHM) of clock protein expression. FWHM decreases linearly

with the circadian period in the majority of clock proteins, with exception of CRY1 and BMAL1,

where FWHM almost doesn’t change, which recovers the experimental result of the asymmetric

shortening of the molecular night on the tau mutation [81][82]. We conclude that the dynamic

clock mechanism behind two distinct circadian phases (activating and repressing) is able to

protect the duration of one of these main phases from alterations that occur at the other.

Furthermore, we analyse what happens to the duration of clock protein expression in a situ-

ation of circadian misalignment, by simultaneously applying two oscillatory input signals mim-

icking the effect of regulatory events. The first signal acts on PER and represents glucocorticoid

signaling activity, indirectly correlating with the day/night cycle (see discussion below). The

second signal acts on BMAL1 and represents insulin signaling, correlating with the feeding/fast

cycle. One of the outcomes of our analysis is that the integration of the roles of feeding-related

and light-related signals affects the percentage of circadian period that is spent at each of the two

main molecular clock phases (BMAL1 and PER:CRY). This in turn may directly or indirectly

affect the duration of insulin sensitivity/resistance states and may be taken into consideration

in the study of altered metabolic physiology (further discussed below). We hypothesize that

the time spent at each circadian molecular phase may be related to states of metabolic health

or disease. Our proposal thus differs from the currently accepted view that considers the cause

of metabolic diseases in circadian misalignment to be the internal circadian desynchrony of tis-

sues and systems. Moreover, the here proposed clock control of molecular phase duration can

potentially be linked to a variety of cyclic cellular processes, such as metabolism or DNA re-

pair, explaining metabolic homeostasis. The circadian clock is thus interpreted as a mechanism

that reads hormonal signaling inputs and outputs time spent at different molecular and cellular

states.

A deeper analysis of our mathematical system includes model reduction to identify the mini-

mal set of components and interactions that are crucial for generating the antiphasic oscillatory

response. From here, we conclude D-box plays an essential role.

3.1.2 Model Design, Calibration and Robustness

To construct a concise yet biologically meaningful mathematical model, we use ODEs and favor

mass action kinetics terms as well as Michaelis-Menten and low exponent Hill function terms

that reasonably describe complex formation.

We restrict post-translational effects to protein natural degradation, formation/dissocia-

tion of the PER:CRY complex and nuclear export of the CLOCK:BMAL1:PER:CRY complex.

Focusing on transcriptional details, we center the model on the competition of pairs of tran-
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scription factors in binding to certain specific regions of genome: the clock controlled elements

(CCEs), summarized on Table B.7. These CCEs are the E-box (enhancer box) activated by

CLOCK:BMAL1 whose promoter activity can be blocked by CRY binding, the R-box (REV-

ERBα/ROR response element) activated by ROR and repressed by REV-ERBα and the D-box

activated by DBP, HLF and TEF and repressed by E4BP4.

Figure 3.2: Regulatory mechanisms of the three major CCEs.
RORs and REVs compete for R-box binding. CLOCK:BMAL1 acts as an E-box activator
and CRYs or PER:CRYs can bind to a previously bound CLOCK:BMAL1 repressing its E-box
promoter activity. D-box can be activated by DBP, HLF and TEF and repressed by E4BP4.

The transcriptional interactions used in this work (Fig. B.2) are based on the work of Ueda

et al., (2005), [69], that report the CCEs sufficient to guarantee clock rhythmicity in phase with

PER2 and antiphase with BMAL1. Several other experimental results point to more extensive

clock networks. For instance, Yang et al., (2013), found three functional E-boxes at the REV-

ERB promoter [70], Yamamoto et al., (2004), show the presence of R-box elements in DBP and

REV-ERB promoters as well as a higher number of CCEs in general [71] and Ukai-Tadenuma

et al., (2011), present substantial evidence for a D-box in combination with R-box at the CRY1

promoter [72]. Here, we focus on understanding the mininimal mechanisms for orderly clock

protein expression, in particularly anti-phase between CLOCK:BMAL1 and PER2/PER:CRY.

We start by deriving appropriate equations to describe the effect of each CCE (E-box, D-box

and R-box), which include an activator with a positive effect and a repressor with a negative

effect, that compete for binding, shown in Eqs 3.1, 3.2 and 3.3:

Ebox = VE
[BMAL1]

[BMAL1] + kE + kEr[BMAL1][CRY ]
(3.1)

Rbox = VR(
[ROR]

[ROR] + kR
)(

k2Rr
k2Rr + [REV ]2

) (3.2)

Dbox = VD(
[DBP ]

[DBP ] + kD
)(

kDr
kDr + [E4BP4]

) (3.3)
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Independent competition as in the R-box and D-box cases (Fig. B.7) is well described by

multiplying the terms of activation and repression. As for the E-box, CRY binds to a previously

bound BMAL1 on the target gene, blocking its promoter activity rather than directly blocking

the gene itself, and the competition is not independent

The model is shown in Eqs. (3.4) to (3.11): the eight variables are the 3 pairs of activa-

tors/repressors mentioned above (Equations (3.1) to (3.3)) as well as PER and the PER:CRY

complex. BMAL1 promoter activity is assumed to represent the CLOCK:BMAL1 complex, as

their transcriptional regulation is similarly achieved by 1 R-box and BMAL1 is rate-limiting in

the formation of CLOCK:BMAL1 [68]. All variables directly represent the rate of change of pro-

tein concentrations. Each CCE contributes additively to protein production, which is in agree-

ment with observations of the activation of the mPer1 promoter by DBP and CLOCK:BMAL1

[67]. As such, the model is given by Equations (3.4) to (3.11):

d[BMAL1]

dt
= Rbox − γbp[BMAL1][PER : CRY ] (3.4)

d[ROR]

dt
= Ebox +Rbox − γror[ROR] (3.5)

d[REV ]

dt
= 2Ebox +Dbox − γrev[REV ] (3.6)

d[DBP ]

dt
= Ebox − γdb[DBP ] (3.7)

d[E4BP4]

dt
= 2Rbox − γE4[E4BP4] (3.8)

d[CRY ]

dt
= Ebox + 2Rbox − γpc[PER][CRY ] + γcp[PER : CRY ]− γc[CRY ] (3.9)

d[PER]

dt
= Ebox +Dbox − γpc[PER][CRY ] + γcp[PER : CRY ]− γp[PER] (3.10)

d[PER : CRY ]

dt
= γpc[PER][CRY ]− γcp[PER : CRY ]− γbp[BMAL1][PER : CRY ] (3.11)

where the negative term −γbp[BMAL1][PER : CRY ] represents the nuclear export of

CLOCK:BMAL1 via complex formation with PER:CRY and the terms γpc[PER][CRY ] and

γcp[PER : CRY ] represent formation and dissociation of the PER:CRY complex respectively.

The model includes the two step mechanism of the repression of CLOCK:BMAL1 by PER:CRY

[65], with CRY also being a repressor of BMAL1 activity on E-box (Equation 3.1). The variables
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CRY and ROR directly model CRY1 and RORc, via the appropriate combination of CCEs (see

Ueda et al. (2005) [69]) (though we take them as representative of all CRYs and RORs).

Fig. 3.3 shows a solution of the model for the calibrated parameters (see Table D.1). The

model fits well to the high temporal resolution experimental data for relative fluorescence inten-

sities of VENUS-tagged REV-ERBα protein obtained from Feillet et al., (2014), [1] (Fig. 3.3 B).

These data are here filtered and repeated three times and normalized as percentage of the REV-

ERBα mean value (% ofREV ). The period of the system converged to the period of the data

(20,1 h). We can observe an appropriate separation and correct order between peaks of protein

expression of BMAL1, PER and CRY1 as well as total phase opposition between BMAL1 and

PER:CRY, the property of interest (Fig. 3.3 A). The phase relation between CLOCK:BMAL1

and REV-ERBα (Fig. 3.3 B) of 7,1 h is also in agreement with experimental observation [77].

Figure 3.3: The mammalian circadian clock can be described by a model focused on
transcriptional regulation.
Output of the mammalian circadian clock model for parameters of Table D.1. A) The expression
of clock proteins follows an order in accordance with experimental observation: BMAL1, then
PER, then CRY1. BMAL1 and PER:CRY have an antiphasic relation. B) Calibration of the
model using data from Feillet, (2014), [1] for a peak of REV-ERBα in mouse fibroblast cells
(NIH-3T3) repeated three times; a filter was applied to smooth the data. Oscillation occurs
with a 20,1 h period.

We note that all modeling terms have low Hill coefficient n, with the majority being Michaelis-

Menten terms, except the repression achieved by REV-ERBα. In the case of REV-ERBα, ac-

tive repression occurs via recruitment of co-repressor to genes, which requires two REV-ERBα

molecules; monomer REV-ERBα binding is not sufficient for active gene repression acting ex-

clusively as an inhibitor of ROR binding [76] [75]. REV-ERBα monomer repression may indeed

be what happens at gene promoters where R-boxes are not in close proximity at the genome

[74], however, here we assume REV-ERBα active repression and study the model with n = 2,

respecting the stoichiometry of co-repressor activation. Nevertheless, simulations for n = 1 yield

very similar results to simulations with n = 2, as seen in supplementary Fig. D.1. We consider
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low value Hill coefficients to be desirable in circadian models, because cooperative binding of

clock proteins to their target genes hasn’t been experimentally demonstrated.

The model is robust to perturbations in its parameters as shown by the sensitivity analysis

in Fig. 3.4. Each parameter is varied by 20% around the calibrated point and oscillations are

never lost although the period may change, which suggests period tuning is possible within a

range of 18 - 23 h approximately. We can observe that parameters such as VR and γdb impact the

period most, while variations on, for instance, kEr and γbp have little impact. We may conclude

that in general R-box promotes longer periods, as parameters that lead to an increase in R-

box value, VR and kRr, have a positive effect on the period, similarly D-box promotes shorter

periods and E-box has a very mild effect on the period (with VE and kEr having opposite effects).

Additionally, the increase in the rate of complex formation γpc leads to an increase in the clock

period and unsurprisingly the rate of complex dissociation γcp has an opposite effect, meaning

that favoring the repressor PER:CRY favors longer periods – as such the rate of formation of

the BMAL1:PER:CRY complex γbp that favors the removal of both the repressor PER:CRY and

the activator BMAL1 has almost no effect on clock period. The increase in PER degradation

rate γp leads to shorter periods, while decreasing it lengthens the period, which is in accordance

with observations on both the tau mutation phenotype and the knockout of the (CK1ε) enzyme

[79] [81].

3.1.3 Results and Discussion

Chromatin remodeling by CLOCK:BMAL1 as an internal mechanism of period control

Recently, more relevance has been attributed to the role of CLOCK:BMAL1 in promoting a

transcriptionally permissive chromatin state for other transcription factors, allowing to integrate

sensors of cellular energy status and nutrient availability with the molecular clock [85].

From a modeling point of view, this means that CLOCK:BMAL1 may be rhythmically

altering specific model parameters that reflect chromatin states, thus acting as a closed-loop

control function that modulates one or more specific parameters.

The circadian clock oscillates with a period close to 24 hours, but is observed to vary in

a larger range, from 18 to 26 hours approximately (see Saini et al. (2012) [86] and Feillet et

al. (2014) [1]) and as indicated by our sensitivity analysis. Hence, we explore ways to control

and tune the period of the system. A straightforward approach is to change the value of a

specific parameter or sets of parameters, but a more challenging and insightful approach is to

verify if a biologically derived function representative of the oscillatory chromatin permissive-

ness state could be used to tune a parameter thus validating our modeling architecture while

complementing the model.

Biologically, PGC1-α appears as an important transcription coactivator that facilitates ROR

connection to the genome at the R-box binding site. CLOCK:BMAL1 can possibly promote

PGC1-α in more than one way, particularly by promoting expression of the NAMPT enzyme

[87] and the sirtuin SIRT1 [97] via E-boxes: NAMPT is rate-limiting in the biosynthesis of
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Figure 3.4: Sensitivity analysis: the model is robust to the variation of parameters.
Each parameter is varied 20% around the calibrated point (Table D.1) and oscillations are always
present. Variations in the value of VR, kRr, γrev, γdb and γp significantly alter the period of the
system, while varying kE , kEr, γbp, γE4 and kD has little impact on the oscillatory period.
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NAD+ that acts as a cofactor of SIRT1 which deacetylate and activate PGC1-α [88]. This

control loop is shown in Fig. 3.5.

Figure 3.5: PGC1-α integrates cellular metabolism and the mammalian circadian
clock.
CLOCK:BMAL1 promotes PGC1-α indirectly by promoting expression of NAMPT, rate-
limiting in NAD+, and SIRT1 via E-boxes; the NAD+ dependent SIRT1 deacetylates and
activates PGC1-α. PGC1-α in turn binds to ROR facilitating its activation of R-box.

Thus, PGC1-α activity on R-box is a good candidate to represent the oscillatory chromatin

status. As such, we design a non-linear function µ that allows to control the period: consider

PGC1-α to be given by an E-box (PGC1-α = E-box) and its activity as a facilitator of the

binding of ROR to R-box can be expressed as causing a decrease in the parameter kR of R-box,

by making kR → µ kR in Equation 3.2, where µ is given by:

µ = V1
k1

k1 + Ebox
(3.12)

and setting VR = 50 (and keeping the rest of parameters as shown in D.1) allows to obtain

period control, without altering any other feature of the behavior of the system, see Fig. 3.6.

Part of the interest of this analysis is that period control via a closed loop function is not

always possible, for example applying this control function in other terms results in complex

behavior. The fact that a biologically-derived closed-loop function allows period control and

doesn’t interfere with the qualitative dynamical behavior of the system illustrates one of the

many ways in which the circadian clock is able to tune and integrate signals via internal loops

in order to optimize circadian output, i.e. the system has the ability to regulate itself via

this function. The period-control response to the internal closed-loop function, highlights the

ability of our model to correctly include chromatin remodeling terms. Incorporation of this term

increases the ability of entrainment to an external signal, to be discussed bellow.
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Figure 3.6: Tuning of the period by the function µ.
Variations in the period of the system with the parameters V1 and k1 of µ (Eq. 3.12). In this
region the system behaves with the exact same features of Fig. 3.3.

We use values of V1 = 0.41 and k1 = 10 to take the period of the oscillator to 24 h and we

will now work with this tuned system and explore its response to external signals.

Phase Response Curves and Entrainment

A particularly important characteristic of the circadian clock is its ability to synchronize to

external signals, as well as the phase response induced by an external input pulse. In order to

explore these properties, an input Ipulse is added in the equation of the PER protein, such as
d[PER]
dt = Ipulse +Ebox +Dbox − γpc[PER][CRY ] + γcp[PER : CRY ]− γp[PER]. The idea is to

mimic the PER promoter’s response in transducing a variety of external signals such as stress

hormones [29] [89] [90].

Fig. 3.7 shows the phase-response curve (PRC) of the system when we make a temporary

perturbation on PER: the transient phase-shift is measured when the phase of the perturbation

is varied over the course of one circadian cycle. For this, we consider the first BMAL1 peak that

occurs after the perturbation and compute the difference between the time at which this peak

occurs in the perturbed and non-perturbed cases. Data from Pendergast et al., (2010), from

photic entrainment in wild type mice, are shown for comparison [91]. Our simulation shows a

type I PRC, for two pulse intensities Ipulse, with shape similar to those of wild type mice, with

the delay zone being larger than the advance zone. The majority of organisms typically have

PRCs of this type, illustrating an ability to synchronize to external signals. Observe that phase

shifts are more pronounced for higher intensity pulses.

We next analyse the entrainment of our model to a sinusoidal and to a rectangular wave,

for different periods and amplitudes. In Fig. 3.8 we observe that, for both the sinusoidal (Fig.
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Figure 3.7: Phase response curves.
Phase response curves of the system (measured as the phase shift in BMAL1) to two external
pulses of different intensities, acting via stimulation of PER expression. Data points from
Pendergast et al., (2010), of photic entrainment in wild-type mice are shown for comparison
[91].

3.8 A) and the rectangular (Fig. 3.8 B) waves, the region of entrainment forms a characteristic

shape known as the Arnold tongue with entrainment becoming possible for larger period ranges

with increasing amplitude. Entrainment with a sinusoid in general allows for larger regions of

entrainment than with a square wave, a result that is obtained experimentally in observations

of photic entrainment in hamsters [94], as well as in numerical simulations of temperature

entrainment in circadian clocks [92] and of stochastic population-level entrainment of cellular

oscillators [93]. Entrainment via a sinusoidal wave leads to some points of period doubling,

where the ratio between the period of the clock and that of the entraining signal is 2:1, as well

as one point where the ratio between periods becomes 3:1. Rectangular waves also allow for a

couple of points where the period of the clock becomes three times the period of the entraining

wave.

Furthermore, Fig. D.2 shows the same simulation for the model without the closed loop

control function (Equation 3.12) introduced above. The closed-loop control increases the region
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Figure 3.8: Entrainment of the clock to an external oscillatory input.
The amplitude and the period of an entraining wave are varied and the resulting regions of
entrainment form Arnold tongues. A) The entraining wave is a sinusoid. B) Entrainment is
done with a rectangular wave. A black/white gradient represents the ratio between the clock
period and the period of the entraining wave: white - no entrainment, grey - 1:1 entrainment,
dark grey - 2:1 entrainment and black - 3:1 entrainment.

of entrainment of the system by an external oscillatory input, thus revealing a possible role of

chromatin remodeling in improving the ability of clock entrainment to signals.

Asymmetric variations in the duration of molecular clock phases on the tau mutation.

We now apply our calibrated and validated model to assess changes in the duration of the dif-

ferent clock phases. An important experimental example of asymmetric changes in the duration

of molecular clock phases is observed in animal models of the tau mutation, that have shorter

circadian periods. This mutation of the enzyme casein kinase 1ε (CK1ε) is thought to result in

a gain of function on certain PER residues leading to its accelerated degradation, which is at

the basis of the reduced period [79] [81].

In this model increased PER phosphorylation is achieved by increasing the parameter γp,

which as seen in Fig. 3.4 leads to a shortening of the circadian period. The same effect is

observed in the controlled model, oscillating at 24 h (see Fig. D.3). Though animals affected

by the tau mutation have a shorter behavioral day, the underlying mechanism is a shortening

of the molecular night, caused by accelerated degradation of PER after its peak expression [81].

However, it remains unclear whether (CK1ε) acts at a specific time phase or if a generalized

increase in the phosphorylation of PER could lead to asymmetric changes in the duration of

the core clock proteins. Here, we investigate if the model is able to reproduce the asymmetric

changes in the duration of clock phases when a decrease in period is caused by increasing γp.

As a measure of the average duration of peak expression, we compute the full width at half

maximum (FWHM) as the length between the two instances at which the solution crosses half
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peak height: FWHM = tup − tdown, where x(tup) = x(tdown) = 1
2 x(tpeak), tup < tpeak < tdown

and tpeak is the instant at which the solution x(t) is at its maximum. Fig. 3.9 shows the ratio

of FWHM to circadian period of all clock proteins, plotted against γp. Values of γp between

0.8 and 1.2 yield periods in the range from 24 h to 20 h, most relevant for comparison with

experimentations (see Fig. D.3).

Figure 3.9: Ratio of FWHM to circadian period T of several clock proteins is un-
changed as γp increases.
When the period of the system is varied in a manner consistent with the tau mutation the
majority of clock proteins, except for CRY1 and BMAL1, maintain an approximately constant
relation between its FWHM and the period of oscillations, i.e. the duration of protein expression
increases linearly with the circadian period (decrease of γp), with effects more pronounced in
REV.

We observe in Fig. 3.9 that the ratio of FWHM to circadian period T of a large group of

proteins remains constant, more pronouncedly in REV, but also seen in PER, ROR, DBP and

E4BP4, meaning that as the period decreases, the duration of expression these proteins also

decreases in a linear manner. The exceptions are BMAL1 and CRY1, whose duration doesn’t

decrease linearly with the period, with FWHM of CRY1 keeping approximately constant as the

period decreases in the tau mutation (see Fig. D.4 for a different representation of the same

results). This is consistent with observations on the asymmetric shortening of the molecular

night observed in animal models of the tau mutation and suggests an ability of the clock circuit
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to protect the duration of one of its molecular phases (BMAL1, CRY1) against changes that

affect the other (PER), see Fig. 3.3. Moreover, the fact that this phenotype can be reproduced

by a general increase in the PER degradation rate indicates that the dynamic clock mechanism

behind two distinct circadian phases is at the basis of this phenomenon.

The existence of two markedly distinct phases may be implicated in metabolic processes

and states, such as insulin sensitivity/resistance, that oscillate with the states of sleep and

alertness: a state of feeding/alertness tends to be also of increased insulin sensitivity so as to

allow cells to uptake glucose, in particular at the beginning of the activity phase [83]. The tau

phenotype is characterized by a cluster of altered features that includes altered rates of growth

and reproduction, body size and lifespan. Furthermore, metabolic rate relative to body mass is

observed to increase proportionally to the increase in circadian frequency [84]. Whether these

phenomena are caused by pleiotropic effects of CK1ε kinase or by the altered ciradian rhythm is

still a matter of discussion. In fact, mammalian clock proteins not only control the formation of

rate-limiting enzymes of several metabolic processes, but are also themselves directly involved

in metabolism [97] [99]. Furthermore, we observed that amplitudes and mean values of all clock

proteins decrease proportionally to the period variation (see Fig. D.5 and Fig. D.6), which

could also contribute to altered metabolic features. However, while amplitudes and mean values

vary similarly for all clock proteins, the FWHM is clearly different between the two main clock

phases, suggesting there may be a role of the circadian clock in optimizing the time spent in

each molecular phase. Hence, the relative duration of different clock phases may be a factor to

take into consideration when investigating metabolic diseases.

Clock integration of hormonal signaling and circadian alignment

To expand and deepen the relationship between the duration of the different circadian phases and

metabolism, we investigate the role of the mammalian clock mechanism in integrating hormonal

signaling.

A subject of interest is the response of the system to aligned and misaligned states between

suprachiasmatic nucleus (SCN)-driven circadian light sensing and food/activity-related signal-

ing. Circadian misalignment between the sleep/feeding schedule of individuals and the external

light environment (occurrent, for instance, in shift-workers) is known to increase the risk of

several metabolic diseases such as diabetes, obesity, displidemia, and insulin resistance which

are all manisfestations of the metabolic syndrome [16] [13].

Peripheral clocks are incapable of directly sensing light inputs. Nevertheless, light-induced

SCN-driven hormonal signaling is likely to be relevant for metabolic homeostasis in the entire

organism, as phase misalignment between the internal clock and the external light environment

decreases metabolic efficiency [17]. Ishida et al. demonstrate that the SCN of mice gates exter-

nal light signals inducing phase-dependent corticosterone release by the adrenal gland via the

sympathetic nervous system [95]. Furthermore, this effect is proportional to the light intensity

and indicates that external environmental light signals instantly provoke blood glucocorticoid

signals [95].
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Thus, adrenal production of glucocorticoids (GCs) is coordinated by the central nervous

system and can be either humoral, via activation of the hypothalamic pituitary adrenal (HPA)

axis as provoked by stress and fasting, or nervous via activation of the SCN-sympathetic nervous

system by light [95]. GCs in turn act on peripheral cells via activation of the glucocorticoid

receptor GR and are known to regulate the circadian clock and to cause an increase in PER

expression. In general, a high GC state also correlates with the fasting state, but unlike insulin

or glucagon that are exclusively dependent on nutrient status, GC plasma levels in mice can be

induced by light, making it the hormonal signal of choice to represent indirect sensing of the

light/dark cycle in peripheral molecular clocks. In fact, in aligned nocturnal animals, the fasting

phase corresponds to the light part of the daily circadian cycle.

As such, to represent the light-dependent GR cycle we add an input in the equation of PER,

Eq. (3.10), as done above for the entrainment study, which is a sinusoidal wave with a 24 h period

(the same as the intrinsic period of the system), as Per genes have been shown to be the ultimate

transcriptional targets of gluccorticoid signaling [29]. On the other hand, the hormonal signal

that better represents a feeding cycle is insulin. Insulin is known to trigger BMAL1 exclusion

from the nucleus, suppressing its promoter activity [96]. Thus, we introduce the degradation

term: −insulin(t) [BMAL1] in Eq. (3.4), where insulin(t) is also sinusoidal wave with period

T = 24 h, meaning that a gradual change occurs between a feeding (activity) and a fasting

(rest) phase (of 12 hours each). We keep the two signals with the same amplitude A = 1 and

period T = 24 h and vary only the phase ∆φ between them, as in GR(t) = A cos(2π24 t) and

insulin(t) = A cos(2π24 t + ∆φ). As our model was built on and calibrated to data of nocturnal

animals (mice and rats) [1] [69], we consider the aligned state to be represented by ∆φ ≈ 12

and compute the FWHM of all clock proteins in response to the phase difference between these

signals.

In Fig. 3.10 we observe how the FWHM of each clock protein changes as the phase difference

∆φ between the two signals varies from 0 to 24 hours. Strikingly, duration of BMAL1 and

PER:CRY peak expression has opposite trends in change, meaning that ∆φ affects the time

spent at each main circadian clock phase. This can possibly result in different time spent at

different metabolic states or processes, as well as in alteration of the quantities of metabolic

enzymes for which clock proteins are rate-limiting. Duration of BMAL1 peak expression has a

maximum when the signals are in phase opposition (circadian alignment) and a minimum when

the signals are in phase (circadian misalignment), with FWHM of CRY1, ROR and E4BP4 also

increasing when signals move out of phase. On the other hand, REV and PER:CRY seem to

have a maximum for signals in phase. Curiously, average duration of PER peak expression seems

to be constant. In a general manner, amplitudes and mean values are higher for smaller ∆φ for

all clock proteins (Fig. D.7 and Fig. D.8). In all simulations the order of peak expression of

clock proteins was unaltered, and the same as in Fig. 3.3.

These simulations show dynamic variations in the core clock components due to changes in

regulatory inputs. An interpretation of these results can be provided in the light of the wide

involvement of the circadian clock in metabolism and noticing that circadian misalignment has

been shown to promote insulin resistance independently of sleep loss [13]. Considering the role
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Figure 3.10: Variations of FWHM with the phase difference between two external
hormonal signals.
The ratio of FWHM to the 24 h period is measured, as the phase difference between two crossed
regulatory inputs changes. We can observe that duration of BMAL1, ROR, CRY1 and E4BP4
expression increases when the signals move out of phase, while duration of REV and PER:CRY
decreases. FWHM of PER seems to be constant with ∆φ.
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of BMAL1 in promoting insulin sensitivity in mouse liver and muscle [97] [98], as well as the fact

that CRY1, here presenting a similar trend as BMAL1, also plays a role in improving hepatic

insulin sensitivity [99], these results may help to explain the higher incidence of insulin resistance

in indiviuals subjected to circadian misalignment: as duration of circadian phases varies and the

percentage of circadian period with higher BMAL1 and CRY decreases so does the time spent

in (directly or indirectly) promoting processes of insulin sensitivity.

We note that light is a known stressor in mice, that are prey animals, and its role in provok-

ing GC adrenal release can’t for the moment be extrapolated for diurnal or predator animals.

However, not only a similar type of signaling is conceivable in other organisms, but also the

impact of misalignment in generating changes in the duration of the different clock phases as

seen in Fig. 3.10 may be relevant in all systems. Overall, Fig. 3.10 (as well as Fig. D.7 and Fig.

D.8) give predictions of the response of the system to the phase relation between any two input

signals (one acting via promoting PER and other via BMAL1 removal from target promoters)

and show that different states of circadian alignment/misalignment result in different percentage

of time spent at different clock phases and processes.

The analysis presented in this Section pieces together information on the mammalian clock,

namely that misalignment with the light evironment is observed to decrease metabolic efficiency

[17] and that light activates adrenal release of GCs [95]. Furthermore, a feeding-dependent 24

h insulin cycle is here proposed to be a decisive factor in determining the aligned/misaligned

state. This allowed to construct an idea of what type of signals could be acting on peripheral

clocks and how. Consequently, the obtained results in response to one food-related signal and

one SCN-dependent signal are here interpreted as a possible way by which the 24 h insulin

sensitivity cycle can be affected by peripheral clocks. This idea thus suggests a mechanism for

how the control of the 24 h glucose tolerance rhythm may be done by the SCN [83].

Furthermore, Woller and Gonze, (2018), have also investigated this subject by means of

a mathematical model for the clock-dependent pancreatic regulation of glucose homeostasis

in rodents and found that the conflict between light/dark and fast/feeding cycles creates a

differential phase shift in the expression of core clock genes and induces misalignment between

clock-controlled exocytosis and glucose cues on insulin secretion [100].

The currently accepted view of how circadian misalignment causes metabolic disease states

that circadian misalignment causes metabolic disease by desynchronizing the clocks of different

internal organs and systems. Our hypothesis aims to provide a new insight whereby circadian

misalignment can change the relative duration of activating and repressing clock phases and

consequently promote a higher percentage of time spent in processes that favor insulin sensitiv-

ity/resistance, thus leading to altered metabolic markers. A similar reasoning could be made

for other cyclic processes that may have a circadian control. For example, the time spent at

a specific stage of the DNA repair/damage cycle could be related with observations of altered

lifespan as is the case of tau mutation animals and in several studies of altered feeding. The

circadian clock is here seen as a system that receives hormonal signaling inputs and outputs

time spent at different cellular processes.
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Oscillation of ROR, E4BP4 and CRY1 is not required for oscillations: PER is rate-limiting in the

formation of the PER:CRY complex

This Section focuses on identifying the minimal network that still guarantees antiphasic oscilla-

tion for the clock system in Equations (3.4) to (3.11).

We observe that rhythmicity of ROR, E4BP4 and CRY is not required in order for the system

to oscillate. Oscillation of CRYs has in fact been shown not to be necessary for clock oscillation

in mouse fibroblasts by Fan et al., (2007), who were able to recover circadian oscillation in

CRY 1−/−CRY 2−/− mouse fibroblasts by means of introduction of a cell permeable CRY protein

of constant concentrations [101]. Furthermore, considering that PER:CRY is one of the main

repressors of the circadian clock, the maintenance of clock oscillation when CRY is arrhythmic

can only be possible if PER is rate-limiting in the formation of the PER:CRY complex, which

is verified experimentally [102].

Fig 3.11 shows the variation in the period when the formation of each of the three proteins

is put at an equilibrium (d[CRY ]
dt = 0, d[ROR]

dt = 0 and d[E4BP4]
dt = 0) and their constant con-

centration (given as an initial condition) is varied. In general, we verify that greater protein

concentrations lead to greater periods, with a saturation being observed in the case of ROR.

Figure 3.11: Oscillation of CRY, ROR and E4BP4 is not required for oscillation of
the system.
The system yields oscillations when the variables CRY, ROR and E4BP4 are individually put
at an equilibrium. Variation in circadian clock period with the variation of total protein con-
centration is shown for the three cases.

To better understand the fundamental variables and interactions of our system, while fo-

cusing on maintaining oscillations with phase opposition between BMAL1 and PER:CRY, a

dynamical reduction is the next step in the analysis of our model.

3.1.4 Model Reduction

In order to obtain the core structural dynamical network of our system, we perform a sequence

of quasi-steady-state approximations and other simplifications, verifying at each step both the

existence of a periodic solution and antiphase between PER:CRY and BMAL1. The goal is to

reduce the number of variables and possibly simplify equation terms in order to obtain a skeleton
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model with dynamical properties similar to those of the system of equations (3.1 –3.11).

The fist step is to set E4BP4 at quasi-steady-state:

d[E4BP4]

dt
= 0 (3.13)

leading to a system without loss of oscillations and allowing to approximate the Michaelis-

Menten term with a negative effect on D-box( kDr
kDr+[E4BP4]) (see Eq. 3.3) by a constant 1

2 .

Furthermore, as kD � [DBP ], the Michaelis-Menten term with a positive effect on D-box

(VD
[DBP ]

[DBP ]+kD
) can be approximated by a linear function, which leads to the equation of D-box

being well approximated by:

Dbox =
1

2

VD
kD

[DBP ] (3.14)

Secondly, setting the equation for the formation of ROR at the quasi-steady-state:

d[ROR]

dt
= 0 (3.15)

also maintains the desired oscillatory properties and eliminates one more variable. REV,

however, can’t be removed, and as such R-box can now be simplified as:

Rbox = VR
k2Rr

k2Rr + [REV ]2
(3.16)

As a third step, the system doesn’t require oscillation of CRY (Fig. 3.11) and we also verify

the dependence of E-box on CRY can be set to zero (kEr[BMAL1][CRY ] = 0 in equation 3.1).

Furthermore, kE � [BMAL1] allows the following approximation for E-box:

Ebox =
VE
kE

[BMAL1] (3.17)

Finally, consider the quasi-steady-state approximation of the Equation 3.10:

d[PER]

dt
= 0 (3.18)

that leads to:

PER =
Ebox +Dbox + γcp[PER : CRY ]

γpc[CRY ] + γp
(3.19)

furthermore is also possible to take:

γp = 0 (3.20)

which impacts the period of the system, but not the existence of oscillations. From (3.19)

and (3.20), replacing PER in the PER:CRY equation (3.11) leads to cancelling out the term

γpc[CRY ] and dependence on CRY is automatically eliminated.
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The reduced model has now four variables: BMAL1, DBP, REV and PER:CRY. We further

observe that, contra-intuitively, the E-boxes in the equations of REV and of PER:CRY can be

removed, while preserving oscillation and antiphasic relation between BMAL1 and PER:CRY,

but the D-boxes can’t. Finally, the skeleton reduced model is given by:

d[BMAL1]

dt
= VR

k2Rr
k2Rr + [REV ]2

− γbp[BMAL1][PER : CRY ] (3.21)

d[DBP ]

dt
= VB[BMAL1]− γdb[DBP ] (3.22)

d[REV ]

dt
= VD2[DBP ]− γrev[REV ] (3.23)

d[PER : CRY ]

dt
= VD2[DBP ]− γbp[BMAL1][PER : CRY ] (3.24)

where VB = VE
kE

and VD2 = 1
2
VD
kD

and all parameters (now shown in Table D.2) come directly

from the previous ones (Table D.1). The boxes here have become Rbox = VR
k2Rr

k2Rr+[REV ]2
, Ebox =

VB[BMAL1] and Dbox = VD2[DBP ]. Fig. 3.12 A) and Fig. 3.12 B) show a simulation of the

reduced model, with BMAL1 and PER:CRY maintaining an antiphasic relation; the solution

has an oscillatory period of 18,6 h. Fig. 3.12 C) shows a scheme of the reduced model, the

dashed red line represents the E-boxes at PER and REV promoter that can be removed as in

Eqs. (3.23) and (3.24); the direct double negative loop between BMAL1 and PER:CRY is due

to their mutual removal from the nucleus as the BMAL1:PER:CRY complex.

Fig. 3.12 A) shows that DBP varies slowly, but with very small amplitude. To better

understand the role of DBP dynamics, the reduced model of Eqs. (3.21) to (3.24) is explored as

a Boolean model, which provides an overall qualitative view of the dynamics. The corresponding

Boolean equations are given in Appendix E. Fig. 3.12 D) shows the asymptotic behavior of

the Boolean model, where several possible cycles are observed: when DBP (third variable) is

removed the dynamics converge to the cycle on the right side of the image where PER:CRY

(fourth variable) is always 1 and doesn’t oscillate (see Appendix E). In the minimal network

(Eqs. (3.21) to (3.24)) BMAL1 is therefore acting on PER:CRY on two different time-scales:

fast in its direct degradation and slow via DBP (here representing a generic D-box activator).

The dynamical condition for oscillation with BMAL1/PER:CRY in antiphase is that we need

to have D-box as an intermediate step, a topology that provides an element of delay.

Generally, D-box has been considered of lesser importance for the core clock mechanism and

its presence in the dynamic network is thought to affect mostly clock robustness than clock

period or the existence of oscillations. Our findings point to the necessity of a network topology

that includes two alternative pathways for the action of BMAL1 on the PER:CRY complex,

allowing for the possibility of delay effects and distinct time-scales phenomena. In our model

this role is achieved by D-box.
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3. Modeling the Mammalian Circadian Clock

Figure 3.12: The reduced model can recover the main properties of the circadian
clock
A) Output of the reduced model, oscillations have a period of 18,6 h. B) BMAL1 and PER:CRY
maintain an antiphasic oscillation. C) A scheme of the reduced model. Red dashed arrows show
the effect of E-boxes on REV and PER:CRY and can be removed. D) The asymptotic behavior
of the Boolean model showing the possible limit-cycles. A Boolean model without the third
variable (DBP) converges to the cycle 1111→ 0111→ 0011→ 0001→ 1001→ 1101 where the
fourth variable (PER:CRY) is always 1 and doesn’t oscillate.

The known activators of D-box are the PAR transcription factors that aren’t thought of as

part of the molecular core clock. In fact, the triple knockout mouse (Dbp−/−/Hlf −/−/Tef −/−) is

rhythmic [103] [104] (though showing a clear change in their activity pattern). As such, molecules

other than DBP/HLF/TEF and E4BP4 could possibly also affect D-box, as for example proteins

of the C/EBP family (CCAAT/enhancer-binding protein), known basic leucine zipper (bZip)

transcription factors that recognize similar, though less specific, amino-acid sequences to the

PAR proteins [105] [106]. More importantly, we note that rhythmicity in the triple knockout

mouse model doesn’t prove non-essentiality of D-box in peripheral clocks, as locomotor activity

and central clock controlled behavior may be influenced by a number of factors and external

inputs and we hypothesize that D-box may play a more important role in the cell-autonomous
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mammalian clock than what is generally accepted.

Ukai-Tadenuma et al. (2008), first propose that various combinations of transcription factors

with CCEs might, via the transcriptional cascade, generate all possible circadian phases [107].

In this work, linear combinations of CCEs at gene promoters were useful for circadian clock

modeling and while we started the modeling process by favoring mechanisms that underly the

circadian BMAL1/PER:CRY phase relation, we nevertheless end up obtaining results that point

for a topological role of significance of D-box on the circadian clock, via PER and REV-ERBα,

essential for oscillation and timely protein expression, a similar conclusion to that presented by

Ukai-Tadenuma et al., (2001), for the role of D-box via CRY1 [72].

Conclusion

Our analysis tends to illustrate that the circadian clock mechanism is well described by a network

of regulations occurring mostly at the transcription level. This is due to the ability of circadian

genes to transduce a variety of signals, as well as to the whole architecture of the system

that is able to sense and integrate external and internal inputs, with likely implications in a

variety of cellular processes, including metabolic processes. In this perspective, we developed

a transcription-based dynamic model, with standard mathematical formalism and a reduced

number of equations and parameters, that is indeed capable of reproducing the relative order of

expression of the main clock proteins, with special emphasis on the antiphasic relation between

BMAL1 and PER:CRY that relate to opposite phases of the fast/feeding, rest/activity cycles.

The modeling framework here developed is a tool that can be used for dynamic modeling of

genetic networks of this type, and consists generally in describing protein rates of change as a

combination of independent responses to certain regions of the genome, that in this case are the

CCEs: E-box, R-box and D-box. Change at these regions of the genome in turn is modeled by

the competition between activators and repressors.

Simulation of the tau mutation has shown that the peak duration of protein expression ad-

justs linearly to the period for the majority of clock proteins with the exception of BMAL1

and CRY1. Moreover, when one signal representative of the light/dark cycle and another signal

representing the fast/feeding cycle are simultaneously applied, the peak duration of BMAL1

is maximal when the feeding behavior occurs at a correct time (in mice) and minimal when

the feeding behavior occurs the most out of its expected phase (an opposite effect is observed

for PER:CRY). As we may directly connect BMAL1 with increased insulin sensitivity, these

observations help to connect the state of insulin resistance with altered time pattern of feed-

ing behavior that is observed for shift-workers and in people affected by metabolic syndrome

[16], leading us to propose that in the same way we may talk of two opposite phases of feed-

ing behavior, activity or light, we may talk of two main metabolic phases related to insulin

sensitivity/resistance. Overall these results point to the relevance of the absolute and relative

duration of each core clock protein expression/activity in experimental observations of healthy

and altered circadian systems.

Finally, we identify the essential transcriptional core network that still guarantees the an-
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tiphasic clock property. The topology of this network includes D-box, where its activator acts

as an intermediate step between BMAL1 and PER/REV and is essential for oscillatory clock

transcriptional dynamics, with antiphase of BMAL1 and PER:CRY. This observation leads us

to propose that D-box plays an important role in establishing the correct phase delays in the

transcriptional clock network.
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4

Coupling the Mammalian Cell Cycle and Circadian
Clock Oscillators

In this Chapter we study the coupling of the mammalian cell cycle model developed in Chapter

2 with the mammalian circadian clock model developed in Chapter 3 and investigate several

possibilities for the coupling mechanism. We use the reduced versions of both models: the two

variable model of the cell cycle given by Eqs. 2.15 and 2.14 and the four variable circadian clock

model given by Eqs. 3.21 to 3.24. The cell cycle model produces relaxation oscillations whose

period is controlled by the growth factor input GF; the clock model is based on transcriptional

regulation and is able to recover the antiphasic relation in the oscillation of the CLOCK:BMAL1

and PER:CRY proteins. Dynamical oscillations of these models were shown in Figs. 2.4 and

3.12 (A and B), respectively. Additionally, sensitivity analysis of the reduced clock model is

shown in Fig. D.9 for parameters of Table D.2, allowing to understand how the period of the

system varies with changes in parameters.

A repetition of the model equations is here shown again as a summary:

d[BMAL1]

dt
= Rbox − γbp[BMAL1][PER : CRY ] (4.1)

d[DBP ]

dt
= VB[BMAL1]− γdb[DBP ] (4.2)

d[REV ]

dt
= VD2[DBP ]− γrev[REV ] (4.3)

d[PER : CRY ]

dt
= VD2[DBP ]− γbp[BMAL1][PER : CRY ] (4.4)

d[MPF ]

dt
=GF + Vc

MPFmax − [MPF ]

MPFmax − [MPF ] + kc

[MPF ]2

[MPF ]2 + k2m

− Vw
[MPF ]

[MPF ] + kw

k2n
[MPF ]n + k2n

− γ1[APC : cdc20][MPF ]

(4.5)
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d[APC : cdc20]

dt
= Vm[MPF ]− Vk[APC : cdc20] (4.6)

where

Rbox = VR
k2Rr

k2Rr + [REV ]2
(4.7)

and the previously named parameter SGF , representing an MPF synthesis term due to the

presence of GF, is here renamed GF for simplicity.

In order to have oscillation of both systems with periods of the same order of magnitude

and consistent with values of experimental observations we scale parameters of both models, by

multiplying those referring to rates of change by a constant. This type of scaling changes only

the oscillatory frequency without interfering with the dynamical behavior of the system. Thus,

for the cell cycle model a time scaling t→ βt, with β = 10, is performed on parameters of Table

2.1, making the dynamics 10 times faster (as was previously done in Section 3.12). For the clock

model, the scalling t→ µt, with µ = 0.775 is performed on parameters of Table D.2, normalizing

the period to 24 h, the typical circadian clock period (see Section F.1 of appendix F for a brief

description). As both systems were previously normalized to a certain concentration value, the

solution of the coupled system (referring to concentration) is now unitless. Table F.1 shows

the final parameter values (except the parameter GF that will be varied during this Chapter).

Additionally, for all simulations we use the initial condition: BMAL = 1,2; DBP = 1,6; REV=

1,5; PER:CRY = 1,2; MPF = 2,0; APC:cdc20 = 1,0.

Moreover, the main topics explored in this Chapter are:

• possible ways of coupling the clock and cell cycle systems;

• joint dynamics of the oscillators in response to different forms of coupling;

• period response of the coupled system under single-parameter changes and/or external

inputs;

We will focus specifically on states of synchronization of the two oscillators with respect to

their period, or period-lock (PL), for the various types of coupling mechanisms. Phase-locking

(that implies period-locking) is also obtained (shown in some figures with oscillatory solutions),

but the analysis will largely focus on the evolution of the ratio of clock to cell cycle period

rT under different forms of coupling mechanisms, added inputs and parameter changes. In

particular, strategies for period control of one oscillator through the dynamics of the other are

investigated. The effects of Dexamethasone (Dex) are also recovered by using the new clock

model, in contrast to the preliminary model of appendix B.

As we intend to relate our work with experimental observations of the ratios of period

locking observed in mammalian cells ([1]), we want to develop an algorithm to compute these

numerical ratios in a systematic manner. We opted by computing the period of oscillations by

counting the number of relevant peaks in the numerical solutions, during a sufficiently long time
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interval. We consider that the relevant peaks of a protein are those above a certain threshold

concentration, and assume this is given by the mean protein concentration in that interval. In

our algorithm, the period is then the average of the differences between the times of relevant

peak occurrence. Therefore, in certain cases, this period will not correspond to the mathematical

period T of the solution, x(t) = x(t+T ), but will nevertheless provide a more realistic estimate

of the period-lock ratios. In fact, in many cases, small amplitude peaks can be observed in the

numerical solutions, which would not be distinguishable in experimental results, motivating our

introduction of the relevant peaks above a certain threshold. For example, two peaks of MPF

with different amplitudes but above mean MPF concentration both represent a mitotic event.

As discussed in Chapter 1, not much precise knowledge is available on how the cell cycle may

influence the clock. Following the breakthrough made by Feillet et al., (2014), and Bieler et al.,

(2014), we know that in NIH3T3 cells the oscillators show 1:1 phase-lock and the influence of

the cell cycle on the clock seems to be as relevant as the reverse [1] [30]. A general idea explored

in this Chapter is that MPF (cyclin B-cdk1) likely phosphorylates an essential clock component.

Specifically, MPF-mediated REV-ERBα phosphorylation and subsequent degradation is an ex-

perimental observation [56]. Notably, this is supported by the observation that cells arrested

in G2 upon treatment with nocodazole show a significant decrease in REV-ERBα abundance.

On the other hand, mechanisms denoting a clock influence on the cell cycle are a consensual

observation. Of these, CLOCK:BMAL1 promoting the MPF repressor wee1 [21] is a mechanism

that involves the essential cell cycle and clock complexes (MPF and CLOCK:BMAL1) as well

as the wee1 interaction included in our model via an MPF negative regulatory term.

Thus, we begin, in Section 4.1, by analyzing the coupling mechanism in which the cell cycle

influences the clock, which is the MPF-induced degradation of REV-ERBα [56] previously ana-

lyzed in appendix B for the preliminary clock model. We are able to recover not only the 1:1 and

the 3:2 period-lock ratios, but also the experimentally observed effect of a Dex input, unlike with

the model of appendix B. Furthermore, the application of a PER/PER:CRY input such as Dex

and the application of an hypothetical BMAL1 input IB have opposite effects in the control of

synchronization states: Dex drives the system from a 1:1 to a 3:2 period-lock state and IB drives

the system from 3:2 to 1:1 period-lock. In Section 4.2 we study the unidirectional entrainment

of the cell cycle by the clock via the known molecular interaction whereby CLOCK:BMAL1

indirectly represses MPF. This repression occurs via CLOCK:BMAL1-controlled activation of

the wee1 gene [21]. Strategies for controlling the cell cycle period by tuning the clock period

and controlling the coupled state of the system are also explored in this Section, by tuning the

parameters kRr, γrev and γdb. Following this, we study, in Section 4.3, the bidirectional coupled

system combining the two aforementioned interactions and find that certain combinations of

growth factor (GF) and the coupling parameters (cm and cb) result in a very slow mitotic rate.

Moreover, we analyze the effect of a Dex pulse (instead of a constant Dex input) and find the

time of pulse application Tpulse to be a control parameter for the synchronization state response

of the system: there is a responsive and a non-responsive region of the oscillators phase. Besides

this, the system’s period-lock response to a Dex pulse is transient, with the system returning to

its initial synchronization state some time after the application of the pulse. Finally, because
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unidirectional coupling can be sufficient for 1:1 PL and observations show the increase of both

clock and cell cycle frequencies with growth factor (GF), we also propose a different hypothesis in

Section 4.4 in which GF is not only a cell cycle input but also acts on the circadian clock system,

making it a common input for both systems. This mechanism is explored in conjunction with

the clock entrainment of the cell cycle via wee1 induction and results in a different dynamical

evolution of rT with GF, that nevertheless provides an alternative explanation to experimental

phase-lock observations [1]. For all coupling mechanisms, growth factor GF and the coupling

parameters (cm and cb) provide a way of controlling the oscillators’ synchronization state.

A summary of the coupling interactions and control parameters analyzed in this Chapter is

shown in Table 4.1.

Table 4.1: Coupling mechanisms and control parameters studied in this Chapter.

Coupling Unidirectional Unidirectional Bidirectional
mechanisms cell cycle → clock clock → cell cycle cell cycle � clock

Control Parameters:
MPF —|REV X GF, cm; - -
(Section 4.1) X Dex, IB;

Control Parameters:
BMAL1 —|MPF, - X GF, cb; -

(Section 4.2) X kRr, γrev, γdb;

MPF —|REV, Control Parameters:
BMAL1 —|MPF - - X GF, cm, cb;

(Section 4.3) X Dex, Tpulse;

BMAL1 —|MPF Control Parameters:
GF —|BMAL1 - X GF, cb, ks; -
(Section 4.4) X Dex;

4.1 Coupling via MPF-induced phosphorylation of REV-ERBα

We begin by studying the unidirectional cell cycle to clock coupling, whereby MPF phospho-

rylates REV leading to its subsequent degradation, [56], and compare results with those of the

simplistic clock model of appendix B. A scheme of the coupled system is shown in Fig. 4.1.

As such, we multiply the degradation term of REV by cm[MPF ], where cm is a constant,

representing the coupling strength between oscillators. The equation for the REV rate of change
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Figure 4.1: Schematic of the first coupling mechanism
MPF in its active form represses REV via its phosphorylation and subsequent degradation: this
is a unidirectional form of coupling, with exclusive action of the cell cycle on the clock.

becomes:

d[REV ]

dt
= VD2[DBP ]− cm[MPF ]γrev[REV ] (4.8)

As MPF has an enzymatic activity, catalyzing the reaction without being consumed in it,

we consider its rate of change to be unaffected by this interaction.

We start by verifying that entrainment of the clock by the cell cycle is possible for cm = 0.2,

see Fig. 4.2 (the variation of the cell cycle period with GF is also observed in this Figure).

Fig. 4.3 shows an example of an oscillatory solution for cm = 0.2 and GF = 40, where the

1:1 synchronization state can be seen along with phase portraits. Here, REV peaks 7,2 h after

MPF, which is in agreement with observations of REV-ERB peaking approximately 7 h after

mitosis [1].

Conversely, for weak/moderate coupling we verify different values for the period-lock ratio

rT = Tclock
Tcellcycle

, where the devil’s staircase-like pattern ([55]) is again observed with GF as a

control parameter. Fig. 4.4 shows results for cm = 0.04 (left) and cm = 0.08 (right). We

verify that different cm values induce different rT values and that non-integer rational ratios

are now present, including the experimentally observed 3:2 period-lock in both cases, a ratio

inferred from experimental analysis [1]. Increasing GF increases rT , while increasing cm has the

opposite effect and shifts the point where the system “jumps” from 3:2 to 2:1 period-locking for

a higher value of GF. From this analysis, it follows that GF and cm are control parameters for

the oscillators’ synchronization state.

Non-integer values of rT , such as 1,5, are now being recovered with the new clock model

(Eqs. (3.21) - (3.24)) for a large range of GF (see Fig. 4.4). In contrast, the preliminary model
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Figure 4.2: Strong coupling of the circadian clock and cell cycle models by MPF-
induced degradation of REV.
For cm = 0.2 the system is strongly coupled with 1:1 period-lock. The period of the clock follows
that of the cell cycle that decreases with GF. Cell cycle oscillations occur for 4 ≤ GF ≤ 80.

of appendix B could only obtain integer values of rT for very specific values of GF (see Fig.B.6).

These numerical results illustrate the more realistic and adaptable properties of the clock model

developed in Chapter 3.

A similar observation holds for cm as seen in Fig. 4.5, which shows the system’s period-lock

response to variation of this control parameter for fixed GF.

Additionally, supporting Figs. F.1 and F.2 show oscillatory solutions of cm = 0.08 and

cm = 0.04 respectively. These are done for fixed GF = 40 and result in 3:2 and 2:1 period-locked

oscillations (compare to Fig. 4.3 where GF = 40, cm = 0.2 results in 1:1 period-lock). See

that in Figs. 4.4 and 4.5 there are some points that fall outside the devil’s staircase pattern.

This sometimes constitutes a numerical error that occurs due to a difficulty of our algorithm in

computing the period, however often the system has a complex behavior. An example is shown

in Fig. F.3 for the point of cm = 0.1, GF = 40 that, as shown in Fig. 4.5, falls outside the

pattern.

The next important step is to test the ability of the model in simulating the effect of Dex-

amethasone on the system, namely on the ratios of period-locking. To do so, the constant

term Dex is added to the equation of d[PER:CRY ]
dt that in the reduced system encompasses the

transcriptional terms of PER activation (see Section 3.1.4). The equation now becomes:

d[PER : CRY ]

dt
= Dex+ VD2[DBP ]− γbp[BMAL1][PER : CRY ] (4.9)

With cm = 0.1 the system couples in a 1:1 ratio for 4 ≤ GF ≤ 24 and we verify that

introducing Dex = 10 drives the system from the 1:1 to the 3:2 PL ratio, as shown in Fig. 4.6,

confirming the ability of the model of reproducing the PL response to Dexamethasone. This
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4.1. Coupling via MPF-induced phosphorylation of REV-ERBα

Figure 4.3: Oscillations and phase portraits of BMAL1, REV and MPF in a 1:1
period-lock.
With GF=40, the coupling strength cm = 0.2 results in a solution with a 1:1 period-lock, where
Tclock = Tcell cycle = 14,5 h. The system is synchronized and phase-locked.

differs from coupling with our preliminary clock model (appendix B), where the application of

Dex didn’t recover the 3:2 period-lock from experimental observations [1].

These results mean that introducing an input on PER/PER:CRY has a similar effect to

decreasing the coupling strength parameter cm, in terms of driving the system from 1:1 PL to a

higher PL ratio. Furthermore, the fact that more of the clock/cell cycle experimental period-lock

observations are now being accurately reproduced by our mammalian clock model further helps

to validate it and highlights the importance of the circadian transcriptional topology.

Finally, note that the circadian clock dual state property (CLOCK:BMAL1 and PER:CRY in

phase opposition, as seen in Figs. 3.3 and 3.12) is important to generate the wide range of period-

lock ratios, confirming our hypothesis (developed in appendix B). For model 4.9, interference

with one of the phases of the clock, say by promoting the state of high PER:CRY/low BMAL1

(as is the case of Dex application) is in a way equivalent to decreasing the coupling strength cm.

These numerical experiments show that there is more than one way to drive the system between
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4. Coupling the Mammalian Cell Cycle and Circadian Clock Oscillators

Figure 4.4: Weak coupling of the circadian clock and cell cycle models by MPF-
induced degradation of REV.
For cm = 0.04 (left) and cm = 0.08 (right) the system is in weak/moderate coupling and distinct
period-lock ratios are obtained depending on GF, forming a pattern similar to that of the devil’s
staircase, where the period-lock ratio is increasing but remains constant by intervals of GF. GF
and cm are control parameters for the PL ratios. The 3:2 experimentally observed period-lock
state is obtained.

Figure 4.5: cm is a control parameter for the period-lock dynamics of the coupled
system.
Varying cm with fixed GF = 40 causes the ratio of clock to cell cycle period to vary in steps,
where the 2:1, 3:2 and 1:1 period-lock ratios are obtained.

different PL states, suggesting that in wild type cells the cell cycle may play an important role in

regulating the clock period, as recently proposed by Feillet et al., (2014), [1]. To further explore
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Figure 4.6: An input of Dexamethasone drives the system from 1:1 to 3:2 period-lock.
With cm = 0.1 and Dex = 0 the system is in strong coupling and in 1:1 PL for 4 ≤ GF ≤ 24.
With cm = 0.1 and Dex = 10 the 3:2 PL ratio is obtained.

our phase opposition hypothesis we devise a symmetric study where the system is in 2:1 PL and

an input IB is applied to induce a high BMAL1 state. In contrast to the Dex input, we now

anticipate the system will evolve to a state of 1:1 PL. The equation for d[BMAL1]
dt now becomes:

d[BMAL1]

dt
= IB + VR

k2Rr
k2Rr + [REV ]2

− γbp[BMAL1][PER : CRY ] (4.10)

In Fig. 4.7 we verify that our hypothesis is correct as the IB input drives the system from

rT > 1 to rT = 1 .

Promoting 1:1 PL either by increasing Dex (thus PER:CRY) or by decreasing cm (thus

increasing REV), can lead to similar effects in BMAL1 as both PER:CRY and REV repress

BMAL1. However, coupling via BMAL1 is not being modeled yet, which means changes applied

on the clock system impact the dynamics of the coupled system because they affect the clock

period. Fig. F.4 shows that Dex increases the clock period, while IB decreases it. As the cell

cycle has a shorter period than the clock for GF > 7,5 the IB input is promoting closer clock/cell

cycle periods, whilst Dex has an opposite effect. Thus, unsurprisingly, the relative periods of

the oscillators are a preponderant factor for the control of synchronization states: the closer the

intrinsic periods of the oscillators are the more the 1:1 period-lock is favored.

Furthermore, in this Section we have observed that for low GF values the oscillators tend

to couple in a 1:1 fashion: this could be because for low GF the clock and cell cycle intrinsic

periods are closer, as the GF value for which the cell cycle and the clock have the same intrinsic

period (24 h) is 7,5 (Fig. 4.2 (left) shows how the cell cycle period varies with GF). Accordingly,

PL states with rT > 1 that occur for higher GF values always represent a slower clock. Thus,

the idea of the intrinsic period of the oscillators being determinant of the coupling state is
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Figure 4.7: The input IB drives the system from 2:1 to 1:1 period-lock.
With cm = 0.04 and IB = 0 the system period-locks in 2:1 for 30 ≤ GF ≤ 60 (see also Fig. 4.4).
With cm = 0.04 and IB = 10 the 1:1 period-lock is obtained.

highlighted. Though a slower clock is in agreement with the experimental observations of Feillet

et al. [1], the possibility of using the PL state dynamics to slow down the cell cycle is of interest

and will be explored in following Sections.

Moreover, the application of Dex is able to induce the system from the 1:1 to the 3:2 PL

ratio as in experimental observations by Feillet et al., (2014), [1], which doesn’t occur for a clock

model without the characteristic CLOCK:BMAL1/PER:CRY antiphasic relation (see appendix

B). The circadian clock topology recovering CLOCK:BMAL1/PER:CRY antiphase is in turn

essential for reproduction of period-lock state changes induced by Dex application or by the

application of inputs that asymmetrically promote one of the two main clock phases. Specifically,

promoting the high PER phase of the circadian clock favors rT > 1, similarly to weak coupling,

while promoting the high CLOCK:BMAL1 phase favors rT = 1, similarly to strong coupling, in

the system of unidirectional coupling where the cell cycle entrains the clock via MPF-induced

degradation of REV.

Finally, we remark that a large part of experimental observations can be reproduced with

this unidirectional cell cycle → clock coupling, which is in itself a relevant result and helps

to validate not only the mechanism of MPF-controlled REV degradation in particular, but also

the cell cycle-mediated clock control in general.
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4.2 Coupling via BMAL1-mediated wee1 activation (indirect repression of

MPF)

We now study the reverse unidirectional coupling where the clock entrains the cell cycle (the

coupling mechanism studied in Section 4.1 is removed). As discussed before, unlike coupling

via the cell cycle, coupling via the clock has been known and documented for a long time. One

notable mechanism and the one we will focus on here is the induction of the wee1 gene by

CLOCK:BMAL1 [21], as it involves the variable BMAL1 present in our clock model as well as

the wee1 interaction with MPF that is included in our cell cycle model. Fig. 4.8 shows a scheme

of the coupled system to be analyzed in this Section.

Figure 4.8: Schematic of the second coupling mechanism
The CLOCK:BMAL1 protein complex (here the variable BMAL1) represses MPFactive due to
its action in promoting wee1 gene expression. This is a form of unidirectional coupling, with
exclusive action of the clock on the cell cycle.

The action of wee1 on MPF is included in the self-regulatory loop where MPF represses

the negative loop representative of its inactivation by wee1 (see Section 2.1). Thus, the effect

of CLOCK:BMAL1 in promoting wee1 is represented by promoting the wee1 term (and thus

repression of MPF), for which the equation for d[MPF ]
dt now becomes:

d[MPF ]

dt
=GF + Vc

MPFmax − [MPF ]

MPFmax − [MPF ] + kc

[MPF ]2

[MPF ]2 + k2m

− cb[BMAL1]Vw
[MPF ]

[MPF ] + kw

k2n
[MPF ]n + k2n

− γ1[APC : cdc20][MPF ]

(4.11)

where cb is the coupling parameter indicative of the coupling strength.

71



4. Coupling the Mammalian Cell Cycle and Circadian Clock Oscillators

In Fig. 4.9 we observe the effect of GF and the coupling parameter cb on the ratios of period

locking. For higher GF the ratio of clock to cell cycle period tends to increase; for higher cb the

GF parametric region for which the 1:1 period-lock occurs is wider, with rT > 1 beginning at

higher values of GF.

Figure 4.9: Coupling of the circadian clock and cell cycle models by BMAL1 repres-
sion of MPF via wee1 induction.
Coupling strength cb and growth factor GF control the period-lock ratio. Increasing cb increases
the GF region of 1:1 period-lock.

Furthermore, Fig. 4.10 shows the system’s period-lock response to variation of the control

parameter cb for fixed GF, which predicts the appearance of 4:3 and 5:3 synchronization states.

With the clock → cell cycle coupling, the effect of a Dexamethasone input in changing the

system’s PL dynamics is not as marked as with cell cycle → clock of the previous Section.

However, it may still be observed for a small GF interval near the point of period-lock state

change, as shown in Fig. F.5.

Fig. 4.9 shows that once again the periods couple in a 1:1 manner for low values of GF and

that when other period-lock ratios appear the clock is always slower than the cell cycle. This

points to the importance of the intrinsic oscillatory period, as argued above, since the natural

frequency of the uncoupled cell cycle increases with GF (see Figs. 2.7 and 4.2 (left)). In Fig.

4.11 the periods of both oscillators are shown for the same simulation as Fig. 4.9 (right), with

cb = 150. Observe that as expected for the clock → cell cycle unidirectional coupling, the

period of the clock is kept at 24 h, while the period of the cell cycle changes: in the region of

rT > 1, the period of the cell cycle adapts in such a way that it changes by steps with GF,

showing period ratios between 1 and 2.

As the intrinsic period of the cell cycle is lower than that of the clock for GF > 7,5, for the

majority of the GF region, a higher value of GF represents a sped up cell cycle. A question of

interest is the possibility of tuning the period of each oscillator, by using the knowledge gained

on the coupled system. In particular, the ability of slowing down the cell cycle would be relevant

for cancer treatment. From Fig. 4.11 this would roughly mean either promoting a slower clock
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Figure 4.10: cb is a control parameter for the period-lock dynamics of the coupled
system.
Varying cb with fixed GF causes the ratio of clock to cell cycle period to vary in steps. For GF
= 20, the 4:3 and 1:1 period-lock ratios are obtained, while GF = 40 results in 5:3, 3:2 and 1:1
period-lock ratios. GF = 40 requires a much higher value of cb for 1:1 period-lock than GF =20.

Figure 4.11: Circadian clock and cell cycle periods in the coupling via BMAL1 in-
duction of wee1.
The period of the clock doesn’t change with GF in the unidirectional coupling, while the period
of the cell cycle adapts in a stepwise manner (cb = 150).

together with coincidental period ratios (rT = 1) or a faster clock with rT > 1 in order to cause

the step-wise adaptation of the cell cycle, increasing its period relative to that of the coupled

system.
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4.2.1 Cell Cycle Period Control via the Clock

We will focus on procedures that are experimentally feasible, such as the addition of specific

inputs and single parameter changes. Available inputs include GF and Dex. Other inputs are

hypothetical so far, as is the case of the input IB in dBMAL1]
dt (Equation 4.10); single parameter

changes in its turn have the potential to be reproduced in experimental settings contingent upon

the discovery of target molecular compounds that specifically affect them (some examples will

be discussed below).

From observation of Fig. D.9 we conclude that parameters that affect R-box (VR and kRr )

as well as the degradation rates of REV and DBP (γrev and γdb) affect clock period the most

and are thus the best candidates for period-lock state control analysis.

We start by introducing the parameter α1 in the R-box equation as: Rbox = VR
k2Rr

k2Rr+(α1[REV ])2
,

which generally acts as a R-box antagonist or REV potentiator. Here, α1 = 1 represents the

original system oscillating with the intrinsic period, while the parameter α1 can either represent

an R-box agonist (REV antagonist) for α1 < 1 or an R-box antagonist (REV agonist) for α1 > 1

by comparison with the control state. Note that this application is identical to rescalling the

parameter kRr → kRr
α1

. The way this change relates to existing clock chemical modulators is

not obvious. On one hand agonists and antagonists of REV have been developed and are well

studied, on the other hand REV ligand agonists affect mostly the amplitude of the clock with

little impact on the period [109]. However, these drugs affect different tissues differently, causing

alterations of circadian gene expression that are distinct in the hypothalamus and in the liver

[109], for which we can’t conclude whether or not their action occurs specifically by changing

REV modulation of R-box. In our model, parameters of R-box strongly affect the period and

oscillation of the system, which is compatible with observations since our variable REV repre-

sents all REV-ERBs. Therefore, the parameter α1 appears to be a good candidate for period

control of the coupled oscillators.

Fig. F.6 shows the variation of the clock period with α1, where we can observe that clock

period increases with α1, up to a saturation value. Fig. 4.12 shows how α1 affects the period of

both oscillators and the ratio of clock to cell cycle period: for cb = 10 and GF = 7 the system is

naturally in a state of strong coupling when α1 = 1, with a 1:1 period-lock (see Fig. 4.9); when

α1 < 1 higher values of R-box expression and shorter clock period are obtained resulting in a

substantially increase in cell cycle period.

We now move on to explore variations of REV and DBP rates of natural degradation, γrev

and γdb respectively. Some available compounds are known to interfere with γrev that could

thus be used for tuning this parameter. These drugs act mostly via inhibition of GSk3β, known

to increase phosphorylation of REV-ERB, and can lead either to a decreased or increased clock

period [110] depending on the GSK-inhibitor used [111] [112]. Concerning γdb, we have found

no readily available compounds that specifically target this parameter yet. Nevertheless, we

will investigate how changes in both γrev and γdb interfere with the oscillators’ period. We thus

introduce α and β as modulators of these parameters as: γrev → αγrev and γdb → βγdb and

observe the change in period and the synchronization state of the system when individually
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Figure 4.12: Evolution of the oscillators period with α1 in the unidirectional coupling
via clock wee1 activation.
For cb = 10 and GF = 7 the system is in a 1:1 synchronization state when α1 = 1. On top: values
of α1 < 1 accelerate the clock and the cell cycle “adapts” by slowing down (left), which makes
the ratio between the two periods smaller than 1 (right); for α1 > 1 the system synchronizes in
a 1:1 manner. On bottom: the same as on top but for 0 < α1 < 1, to allow a more detailed
visualization. Ratios such as 1:2, 2:3, 3:4 and 4:5 are obtained.

varying each of these modulators.

Fig. 4.13 shows that tuning γrev by varying α leads to variations of the oscillators synchro-

nization state. For α < 1 the period of the clock slows down which effectively slows down the

cell cycle. For α > 1 the clock frequency increases resulting in a cell cycle oscillator that is

slower than the clock. This implies that regulating the parameter γrev is a successful strategy

for clock/cell cycle period control.

Fig. F.7 shows the periods and the ratio between periods of both oscillators, when α = 2,

while varying GF. We observe a region where the cell cycle is much slower than the clock, for

low values of GF: the 1:2 and the 3:4 synchronization states are present. More importantly, α
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Figure 4.13: Evolution of the oscillators period and synchronization state with α in
the unidirectional coupling via clock-controlled wee1 activation.
Tunning the parameter γrev is effective for period control: slowing down the clock period for
α < 1 effectively slows down the cell cycle, while speeding up the clock for α > 1 results in a
region (α > 1, 5) with a slower cell cycle than clock, thus representing two opposite forms of
slowing down the cell cycle.

= 2 induces higher cell cycle periods than that of the original locking (Tcellcycle = 33 h, for GF

≤ 5, whereas Tcellcycle = 24 h with α = 1). As GF increases and the cell cycle speeds up the

system enters a region of 1:1 period entrainment, followed by a region of rT > 1. Though this

strategy is successful in slowing down the cell cycle by inducing rT < 1, the cell cycle is slower

than the clock in only a narrow GF interval.

In contrast, Fig. 4.14 shows that tuning γdb by changing β is less effective in changing the

cell cycle period comparatively to the clock period, for a fixed value of GF. On the other hand,

as variations in γdb cause more dramatic changes in clock period, control of the cell cycle period

to higher values than that of the coupled system (24 h) or that of the intrinsic cell cycle period

(22 h, for GF = 10) may still be possible via this parameter.

To further analyze the effect of an increased DBP degradation rate γdb, we vary GF in the

region of oscillation for β = 1, 5. Fig. F.8 shows that increasing γdb leads to a wider GF region

where the cell cycle is slower than the clock (compare to Fig. F.7). However, the region where

the cell cycle is slower than 24 h (β = 1) is still small.

The combination of the two upgraded degradation rates is shown in Fig. 4.15. In this case,

α = 2 and β = 1, 5 leads to a much slower cell cycle overall (T= 31,5 h) and a 1:3 period

entrainment, while keeping GF =10.

In this Section, we have focused on controlling the cell cycle, because of its relation to

cancerous cell’s division rate, but it is important to note that healthy cells are likely to have

same period clock and cell cycle internal oscillators and the state of rT 6= 1 may be an indicator

or precursor of cellular disease [116]. In this case, it would be helpful to explore forms of tuning
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Figure 4.14: Evolution of the oscillators period and synchronization state with β in
the unidirectional coupling via clock-controlled wee1 activation.
When tuning the parameter γdb the period of the cell cycle changes less than that of the clock,
breaking the 1:1 period-lock. Because the period of the clock varies greatly with γdb, the cell
cycle can only entrain to values close to its intrinsic period (of 22 h), oscillating around this
value.

Figure 4.15: Oscillation of clock and cell cycle variables for α = 2 and β = 1, 5 in the
unidirectional coupling via clock-induced wee1 activation.
Oscillations of MPF and the clock variables BMAL1 and REV with GF =10, α = 2 and β = 1, 5:
the system locks in a 1:3 fashion: Tclock = 10,5 h and Tcell cycle = 31,5 h. The cell cycle is three
times slower than the clock and overall slower than the intrinsic coupled oscillators’ period (for
α = 1 and β = 1) of 24 h.

the coupling strength parameters in order to promote clock and cell cycle synchronization.

The intrinsic periods of the oscillators are the determinant factor for the system’s period-

lock state and promoting either the 1:1 synchronization state or other period entrainment ratios
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is a consequence of tuning the periods of the two oscillators by changes in parameters or the

introduction of inputs. In the next Section, we study the dynamical behavior of the bidirectional

coupled system that puts together the two unidirectional forms of coupling here studied.

4.3 Bidirectional coupling

In this Section we investigate the oscillators’ behavior under the simultaneous application of the

two coupling mechanisms studied above (given by Equations 4.8 and 4.11). Fig. 4.16 shows a

scheme of the system with bidirectional coupling.

Figure 4.16: Schematic of the bidirectional coupling mechanism.
Bidirectional coupling between the cell cycle and clock oscillators that includes the two previously
studied forms of coupling: MPF phosphorylates REV inducing its degradation and BMAL1
represses MPF by promoting its repressor wee1.

First, we start by verifying the system’s period response to variations of growth factor to be

compatible with observations. Fig. 4.17 shows that entrainment occurs for values of the coupling

strength parameters cm = 0.2 and cb = 30 and the trend of period decrease with GF fits well the

four data points of Table 2.2 ([1], [4]) when making a correspondence between our parameter

GF and % FBS in the real system (similarly to what was done in Fig. 2.7). In this case a 1

to 1 correspondence works well, i.e. GF = %FBS. Furthermore, the phase difference between

the peak of REV and the peak of MPF ∆φ[REV,MPF ] is also shown in Fig. 4.17. Observe that

∆φ[REV,MPF ] follows a very similar trend of the oscillators’ period (Toscillators). From [1] we

know that REV-ERBα is phase-locked with the mitotic phase and ∆φ[REV,MPF ] is 8,6 h for 20

h ≤ Toscillators ≤ 23 h and 7,1 h for 18 h ≤ Toscillators ≤ 20 h (see also[28]), i.e. ∆φ[REV,MPF ] falls

between 35 % and 45 % of the period. However, ∆φ[REV,MPF ] of our experiments has higher

values for 18 h ≤ Toscillators ≤ 23 h than experimental observations, falling somewhere between
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50 and 60 % of the period. This may be due to our clock model being too simplistic, but perhaps

more interestingly this observation raises the question of testing further coupling mechanisms

to attempt to fit not just the systems’ period response but also ∆φ[REV,MPF ]. In particular

other coupling mechanisms that, similar to the mechanism of cell cycle→ clock coupling here

proposed, involve MPF-controlled phosphorylation of an essential clock component are a subject

of future work. Phase control in itself has not been a subject of focus in this work and is also

a topic for further research. Nevertheless phase results of Fig. 4.17 give a broader view and

prediction of the trend of ∆φ[REV,MPF ] with the period of the system.

Figure 4.17: Period response of the bidirectional coupled system.
Our bidirectional coupling mechanisms are able to reproduce the overall observed oscillators’
period response of acceleration with GF and result in a good fit to experimental data ([1], [4])
when making GF = % FBS, with cm = 0.2 and cb = 30 . Phase difference between the peak of
REV expression and MPF, ∆φ[REV,MPF ], follows the same trend as the period of the system.

An oscillatory solution of a 1:1 synchronization state is shown Fig. 4.18 along with phase-

portraits.

Furthermore, we extend the simulation of Fig. 4.17 so as to include the entire GF region of

oscillation. Thus, Fig. F.9 shows that similarly to the two unidirectional coupling cases observed

above GF is a control parameter for the oscillators’ synchronization state that is constant by

intervals. In this case, for cm = 0.2 and cb = 30, the system couples in 1:1 synchronization for

the majority of GF values, while for high GF values ratios such as 4:3, 2:1 and even 2:3 appear.

Given that in Fig. 4.17 we observed that a 1 to 1 correspondence between GF and % FBS

accurately allows to reproduce the system’s period response, the values of GF that in Fig. F.9

lead to rT 6= 1 are outside of experimental feasible values of % FBS, which could mean that in
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Figure 4.18: An oscillatory solution with 1:1 period-lock in bidirectional coupling via
MPF-conrolled REV degradation and BMAL1-induced wee1 expression.
The solution for cm = 0.2, cb = 40 and GF=10 shows a 1:1 period-lock, with Tcell cycle = Tclock =
21,5 h. Moreover, the system is phase-locked, with REV peaking 11,8 h after MPF.

the real system we would reach the saturation of GF increase before arriving at period-lock ratios

differing from 1:1. On the other hand, because the period response doesn’t depend exclusively

on GF, but also on the coupling parameters cb and cm, the control of period-lock ratios in the

real system by GF might still be possible for other combinations of cb/cm.

Following this discussion, Fig. 4.19 shows the system’s synchronization state for varying cm

and cb with fixed GF = 20. Patterns of entrainment include the Arnold Tongue for the 3:2 ratio.

Because GF = 20 causes a faster cell cycle than clock, synchronization states aside from the 1:1

represent a slower clock than cell cycle. Additionally, the same study is shown for GF = 5, GF

= 10, GF = 30 and GF = 40 in Figs. Fig. F.10, Fig. F.11, F.12 and F.13, respectively. For

GF = 5 (Fig. F.10) the intrinsic cell cycle period is higher than the clock, which for certain

combinations of cm and cb results in rT < 1.

Furthermore, Fig. 4.20 shows the periods of clock and cell cycle for GF = 20 (same simulation

as Fig. 4.19). Extremely long periods are present for certain regions of entrainment. One

example from Fig. 4.20 is given in Fig. F.14, of a solution with a 1:1 synchronization and with

Tclock = Tcellcycle = 956 h – the intervals without mitosis correspond to elevated REV expression.
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Figure 4.19: Period-lock for different values of cb and cm with GF = 20.
Varying cb and cm for fixed GF = 20 results in different period-lock ratios. In the white region
there is no oscillation. The 1:1, 3:2, 2:1 and 4:3 ratios are the most prevalent.

Moreover, in certain parametric regions the system has a complex behavior where long periods

without mitosis occur – these also correspond to periods of high REV – followed by periods where

some peaks of MPF and BMAL1 occur typically with rT 6= 1. Fig. 4.21 shows one solution of

this region, where Tclock = Tcellcycle = 531 h. Another example is given in Fig. F.15. Although

these periods are not currently biologically viable, they are interesting as a model indicator:

this model predicts that particular combinations of cb, cm and GF are an effective srategy for

clock and cell cycle period control, capable of inducing a very slow mitotic rate. These coupling

combinations represent simultaneous weak degradation of REV and strong/moderate repression

of MPF (low cm and high/medium cb).

Next, we perform the Dex experiment, similarly to what was done above (Equation 4.9),

by inputting a constant amount of Dex in the system with 1:1 synchronization and observing

its period-lock response. Fig. 4.22 shows that the bidirectional coupling allows to recover the

experimentally observed effect of Dex ([1]) in shifting the system from 1:1 to 3:2 period-lock.

Moreover, Fig. 4.23 shows the oscillators’ period-lock response to different values of Dex

for fixed GF = 10. Dex is a control parameter for the oscillators’ synchronization state that

is once again constant by intervals. Additionally, Fig. F.16 shows the evolution of the clock
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Figure 4.20: Oscillators’ period for different values of cb and cm with GF = 20.
Periods of clock and cell cycle for the same simulation as Fig. 4.19, when varying cb and cm for
fixed GF = 20. In the white region there is no oscillation. Some small regions with very long
periods appear.

and cell cycle periods for the same simulation as Fig. 4.23: Dex can either decrease or increase

the period of both clock and cell cycle oscillators in the system with bidirectional coupling, in

contrast to its effect in increasing the clock period when applied exclusively on the clock (Fig.

F.4).

So far Dex has been introduced in the system as a constant input and the period-lock of

the two different systems (with and without Dex) compared. To better reproduce experimental

settings, where Dex is applied for some time and then removed, we will apply a Dex pulse and

observe the transient period-lock change. Fig. 4.24 shows the period-lock response to a pulse

of Dex applied over the course of two periods. Parameters of the system are the same as in

Fig. 4.22 (cm = 0.2 and cb = 40, with fixed GF = 15), which result in a Tclock = Tcellcycle =

18,9 h without Dex. A pulse of Dex = 40 is apllied during 1 hour and the period-lock response

measured on the second and third cycles following the application of the pulse. As shown in

Fig. 4.24, the system’s synchronization response is dependent on the time of pulse application

Tpulse, i.e. the system responds by shifting away from the 1:1 period-lock only when the pulse

is applied at particular clock/cell cycle phases. More specifically, we have verified that the Dex

response peak occurs when BMAL1 is up.

This could mean that cells would only be able to respond to a Dex pulse when at specific

phases of these cycles. Conversely, as a population of cells contains cells that are asynchronous

among themselves in their clock and cell cycle oscillations, this result provides insight on the

observed existence of two groups of cells after Dex application mentioned in Section 1.3. Namely,

that the existence of two period-lock groups of cells observed by Feillet et. al, (2014), [1] – one

with cells locking in a 1:1 manner and the other with cells locking in a 3:2 manner – may be due

to the clock or cell cycle phase cells are in at the moment of Dex application. To further explore

this hypothesis, for instance by extending modeling to populations of cells, is a topic for future
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Figure 4.21: An oscillatory solution with complex behavior and a very long period in
bidirectional coupling.
The solution for cm = 0.04, cb = 70 and GF=10 results in a very long period with a complex
behavior, where three peaks of MPF occur every 531 h, interleaved by a long time interval
where REV is up; Tclock = Tcellcycle = 531 h and in the region of MPF/BMAL1 peaks the two
oscillators lock in 3:2 synchronization.

research. Furthermore, a small region of period-lock with rT < 1 occurs in Fig. 4.24, which

gives a prediction that for a small phase interval a Dex application could result in a slower cell

cycle than clock, thus providing yet another strategy of cell cycle period control.

It is not clear, in theory, whether the clock or the cell cycle would be the preponderant

oscillator in determining the synchronization state response. On one hand cells in the G0 phase

of the cell cycle are known to be unresponsive to a variety of inputs and cells in M phase don’t

respond to Dex-treatment [114]. On the other hand, a recent crosstalk between REV-ERBα and
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Figure 4.22: A Dex input induces the system from a 1:1 to a 3:2 period-lock in
bidirectional coupling.
With cm = 0.2 and cb = 40 the system locks in 1:1 synchronization for 8 ≤ GF ≤ 20. Inputting
Dex = 5 shifts the system to a 3:2 period-lock ratio for the same values of GF.

Figure 4.23: Period-lock response to different values of Dex
Different values of the input Dex result in different period-lock ratios. For cm = 0.2, cb = 70 and
GF =10 synchronization states are constant by intervals and the 1:1, 3:2 and 2:1 period-lock
ratios appear.

glucocorticoid receptor signaling has been uncovered [115]. Therefore, both systems could play a

role in the resulting synchronization state of a cell under the application of Dex or other inputs.

In our work, we found that the system is Dex-responsive at the molecular phase where BMAL1

is up and PER:CRY is down. This makes sense intuitively, as is when PER:CRY is down that

an additive input in its expression would result in bigger changes, whereas when PER:CRY is
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Figure 4.24: Period-lock phase response of the bidirectional coupled system.
An 1 hour Dex pulse is applied over the course of two periods (i.e. during 38 h). Parameters are
cm = 0.2 and cb = 40 and GF =15. The system’s synchronization state changes only for certain
times of pulse application Tpulse. The responsive phase corresponds to increasing BMAL1.

already up adding more won’t affect the system as much, specially because in this model mean

values of PER:CRY are much higher than mean values of BMAL1. An experimental test that

would help to further increase the understanding of this topic would be to observe whether or

not Dex-induced synchronization of cellular clocks in a population is indeed occurring in cells of

the 1:1 period-lock group, as synchronization points to a Dex-responsive clock, which would in

this case highlight the role of the cell cycle phase in the period-lock response. From this analysis,

the time of pulse application Tpulse is a new control parameter for the synchronization state.

Furthermore, this insight may be relevant for a variety of chemical therapies, including

apoptosis-inducing chemotherapies that are usually efficient for only a part of the cell population,

with a percentage of cells remaining resistant. In particular, a group of apoptosis-resistant cells

is observed in vitro after repeated exposure to death-inducing ligands: each re-exposure of the

surviving group of cells results always in fractional killing [113]. This is thought to be due

to cell-to-cell variations of protein levels, though the mechanisms behind the fractional death

response remain unclear [113]. In this regard, our results uncover a possible role of the clock and

cell cycle systems in controlling the response of cells to inputs, whether this response is a change

in period or another physiological response, such as apoptosis. Moreover, this idea relates the

increased efficiency demonstrated by chronotherapies in vivo over normal therapies to clock/cell
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cycle time-dependent responses.

Finally, Fig. 4.25 shows the same simulation of Fig. 4.24 at a later point in time (1000 h

after the pulse), showing that after a transient shift in synchronization state, the system returns

to the 1:1 period-lock. As mentioned in Section 1.3, the different period-lock ratios observed

by Feillet et al., (2014), were considered to be caused by the existence of multiple attractors

[1], i.e. that the change caused by Dex occurs because the system shifts to a different limit-

cycle, with each ratio of period-lock corresponding to a different attractor. In this regard our

results contradict this hypothesis, pointing instead to the Dex-induced period-lock change being

transient. Experimental observation of cells after the application of the Dex pulse was done over

the course of three days [1], which can easily fall within the transient period. For this reason,

a longer observational time would help to clarify the existence (or non-existence) of attractors.

Additionally, Fig. F.17 shows two time series for different values of Tpulse and Fig. F.18 shows

a longer time series with the return to 1:1 synchronization.

Figure 4.25: Convergence to the 1:1 period-lock state after the application of a Dex-
pulse at different circadian phases over the course of two periods.
1000 hours after the shift caused by the Dex pulse (observed in Fig. 4.24) the system has
returned to 1:1 synchronization: changes in period-lock caused by Dex input are transient.

A similar conclusion to ours is given in the work of Traynard et al., (2016), albeit in the

context of non-recovery of experimental period-lock ratios [28]. By contrast, here we consider

the occurrence of rational synchronization ratios and the existence of multiple attractors as

two separate and different questions. Thus, in this work, we verify the occurrence of specific
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experimental synchronization ratios in agreement with the work of Feillet et al.. (2014), while

at the same time demonstrating a transient nature of these ratios when occuring in response

to a pulse, which is in disagreement with the hypothesis of that same work [1]. Following this

reasoning, we further searched for multiple attractors in our system by changing the initial

conditions under the same parameters as the simulations of Figs. 4.24 and 4.25, without Dex,

and didn’t find multiple attractors, though numerical analysis can’t be conclusive to prove their

non-existence, due to the impossibility of exploring the entire phase space.

Finally, our observations also indicate that a lasting effect of altered synchronization state

can be achieved by means of a constant Dex input (of a smaller value than that given in a pulse).

4.4 Coupling via GF-induced inhibition of R-box

In this Section we propose a different mechanism for the coupling of cell cycle and clock. One

of our goals is to reproduce and understand the dynamical interactions behind the phase-lock

experimental observations of Feillet et al., (2014), described in Section 1.3, where observations

show increasing amounts of GF speed up both the cell cycle and the clock in a 1:1 period-lock

state [1]. Thus, here we study GF as a common input to both oscillators. So far we have

assumed a coupling hypothesis where GF acts on the cell cycle that in turn acts on the clock.

Here, we take a look at a pathway connecting GF with the clock, such that GF is included in

the model as a direct clock input.

Growth factors promote cyclin D, a non-essential cell cycle cyclin that is active when in a

complex with either cdk4 or cdk6, via β-catenin mediated pathways [117]. Despite cyclin D

being approximately constant during the cell cycle, it is a precursor for the activation of the

subsequent cyclins. However, because cyclin D is non-essential (its deletion mutants still have a

functioning cell cycle) and considering cells can’t divide without GF, there must be other ways

for GF to affect the essential cell cycle elements, namely the cyclin B-cdk4 complex (MPF). In

our cell cycle model MPF responds directly to GF – an approximation that allows focusing on

this exclusively essential cell cycle species.

The cyclin D-cdk4 complex is known to negatively regulate PGC1-α, by promoting its re-

pressor GCN5 [102]. PGC1-α is an important clock component, whose role in promoting binding

of ROR to R-box has been shortly discussed in the previous Chapter. As such, the pathway

GF → cyclinD-cdk4 → GCN5 —|PGC1-α is of interest in the study of GF as a direct input to

the clock. The model term of R-box dependency on ROR has been simplified to a constant in

the previous Chapter (see Section 3.1.4). Nevertheless, the effect of GF as a repressor of R-box

via the cyclin D/PGC1-α pathway can be introduced by making the change VR → VR
ks

ks+GF
.

R-box now becomes:

Rbox = VR(
ks

ks +GF
)

k2Rr
k2Rr + [REV ]2

(4.12)

The hypothesis introduced in Equation 4.12 raises the question of whether or not a certain

amount of GF is needed for clock oscillation, as cells in experimental settings usually require
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some growth factor (often in the form of % of FBS) to be alive and functional. Because we built

and calibrated our model based on the established assumption of a cell autonomous clock, the

removal of GF (from Equation 4.12) doesn’t affect clock oscillations. Observations clearly show

a dependency of both cell cycle and clock periods on GF [1], whilst not being clear whether

or not the influence of GF on the clock involves essential components of the cell cycle, such

as MPF. These observations provide some basis to consider the hypothesis of clock oscillation

being dependent on the presence of GF, which is largely in disagreement with the long held

assumption of circadian clock oscillatory autonomy. Nevertheless, if that were to be the case, in

our model this could be achieved by adjusting the parameter VR to a higher value, incompatible

with oscillations at GF =0, and then modulate VR by the presence of GF (see Equation 4.12).

However, for simplicity, we will assume GF as a clock input that can control its period but it’s

still not required for oscillation. This modeling implies that GF = 0 yields the 24 h intrinsic

clock oscillation that has been the basis of our clock studies so far.

For ks = 100, Fig. F.19 shows the evolution of the clock period with GF when introducing

the GF repressing effect (Equation 4.12): the clock period decreasing for increasing GF, which

is in agreement with observations [1]. Clock oscillations are maintained in the entire GF region

of cell cycle oscillation (4 ≤ GF ≤ 80).

Next, we study the coupled system that includes the established interaction of BMAL1

repression of MPF via wee1, studied above. A schematic of the coupled system is shown in

Fig. 4.26. Coupling is in this case unidirectional from the clock to the cell cycle achieved

by introducing the term −cb[BMAL1] that multiplies the term denoting the wee1-mediated

inactivation of MPF (Equation 4.11) and GF is a common input.

We start by analyzing the effect of the coupling strength parameter cb on the oscillators’

synchronization state. Fig. 4.27 shows a wide region of 1:1 period-lock for cb = 50 differing from

the dynamics with cb = 10 that by contrast yield a narrow region of 1:1 period-lock (6 ≤ GF

≤ 21) followed by a region where the ratio of clock to cell cycle period increases to values close

to 1, or a state of “quasi-entrainment”, approaching the 1,25 period ratio. This behavior differs

from that of the other forms of coupling previously explored in the sense that, in this case the

devil’s staircase pattern is not visible (rT is not constant by intervals), but rather the transition

between period ratios is smoother, while simultaneously maintaining a certain stability around

the 5:4 synchronization state. Interestingly, this dynamical behavior though quite different from

that of the previous coupling mechanisms still reproduces desired properties, such as a slower

clock than cell cycle and the stabilizing near a 5:4 period-lock that adequately compares to the

experimental observations of Feillet et al. (2014) [1].

A more complete view of the dynamical behavior of this system is shown for cb = 10 for the

entire GF region of cell cycle oscillation in Fig. 4.28 (left), where the absence of period-lock

“jumps” is more visible. More importantly, a Dex input alters slightly the system’s behavior,

in particular shifting the changes of period-lock dynamics to lower values of GF (Fig. 4.28

(right)), namely the presence of Dex narrows the 1:1 synchronization region of GF response.

This “shift to the left” effect is similar to that observed for Dex application in the coupling

mechanisms studied above and provides an explanation for the experimental observations of
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Figure 4.26: Schematic of the GF-responsive clock system coupled via BMAL1 re-
pression of MPF.
GF controls both the cell cycle and the clock: GF represses R-box (at the BMAL1 promoter)
via the cyclin D-cdk4/PGC1α pathway. Coupling from the clock to the cell cycle is made via
BMAL1 repression of active MPF (via the wee1 pathway).

Figure 4.27: Variation of period-lock with GF for two values of cb.
With 4 ≤ GF ≤ 40, for a fixed value of cb = 50 the system shows 1:1 period lock, while for
cb = 10 a region of 1:1 period-lock is followed by a region where clock to cell cycle period ratios
are above but near 1 (“quasi-entrainment”) stabilizing around the 5:4 synchronization state.

Feillet et al. (2014), where introducing Dex leads to period-lock period ratios differing from

1 [1]. Thus, assuming GF as a clock input in conjunction with the unidirectional clock-to-

cell cycle coupling is also successful in reproducing experimental observations and may provide

an alternative or complementary explanation for the oscillators’ behavior to that of cell cycle-

mediated phosphorylation of some clock element, as studied above for the MPF phosphorylation
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of REV.

Figure 4.28: Dex input reduces the required GF value for changing the period-lock
state.
For cb = 10 the ratio of clock to cell cycle period is observed with and without Dex as GF varies
between 4 and 80: the presence of Dex causes dynamical changes in the system’s synchronization
state. In particular, inputting Dex ends the 1:1 period-lock state for a smaller value of GF
(without Dex the change in dynamics occurs at GF > 20 and with Dex at GF < 20).

Additionally, Fig. 4.29 shows the period of the system as GF varies, for cb = 10 with no Dex,

where as expected for the unidirectional coupling we observe the cell cycle adapting its period

to that of the clock. This is a situation with similarities to that of the unidirectional clock to

cell cycle coupling (see Section 4.2) and raises the question of the possibility of cell cycle period

control via tuning of the clock period. Thus, we test this possibility by making γrev → αγrev as

above and varying α for values around 1, see Fig. 4.30 . In this case, we can vary 0.6 ≤ α ≤ 2,5

and observe that slowing down the clock by decreasing α effectively slows down the cell cycle

while maintaining 1:1 synchronization. For 1 < α < 1, 4 we observe that speeding up the clock

results in a sped up cell cycle in 1:1 period-locking and for α ≥ 1, 4 the system breaks out of the

1:1 synchronization state and states of rT < 1 appear again in a step-like form, where the cell

cycle is slower than the clock. Thus, tuning the parameter γrev is also successful in cell cycle

period control and in the synchronization of the coupled oscillators in the unidirectional clock

to cell cycle coupling with a GF-responsive circadian clock.

Simulations have shown very different dynamic behavior between this form of direct GF in-

fluence on the clock and the other where GF acts on the clock via MPF. A step-like response with

intervals of constant period ratio was present only in the coupling via MPF, while a continuous

period ratio response was obtained, in the coupling with GF as a common input. However, both

simulations yield period-lock ratios that are compatible with experiments (3:2 and 5:4 respec-

tively) and reproduce the impact of Dex as a promoter of Tclock > Tcellcycle (period-lock ratios

higher than 1). Because living cells have a large amount of interactions and pathways (including

redundant pathways and species) it is not clear which of these two experimentally established

interactions is preponderant and whether this is influenced by the cellular (and extracellular)
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Figure 4.29: Periods of clock and cell cycle oscillators as GF varies in the GF-
responsive clock system coupled via BMAL1 repression of MPF.
For cb = 10 and Dex = 0 the periods of the clock and cell cycle oscillators are shown in the GF
region of cell cycle oscillation (4 ≤ GF ≤ 80). As the coupling is done from the clock to the cell
cycle, it is the cell cycle that may adapt its period to that of the clock; both systems respond
to GF, but an approximately constant relation between them (rT = 1, 25) is observed for the
middle region of GF.

Figure 4.30: Variation of clock and cell cycle periods and period-lock ratio with the
parameter α in the system coupled via BMAL1 repression of MPF with a GF-
responsive clock.
Slowing down the cell cycle is possible either by slowing down the clock (that maintains the 1:1
synchronization) or by speeding up the clock and inducing the breaking of the 1:1 synchroniza-
tion.

context (metabolism, signaling). Thus, experimental observations where GF is varied in a larger

91



4. Coupling the Mammalian Cell Cycle and Circadian Clock Oscillators

interval with and without Dex (or other period tuning inputs) would allow comparison with our

simulations for both cases and to understand which one of these interactions more accurately

reproduces the behavior of the system and is thus more relevant.

4.5 Final Discussion

In this Chapter we have observed the dynamics of our models of the mammalian cell cycle

and cellular clock under different forms of unidirectional/bidirectional coupling. Our work re-

covers the emergence of rational period-lock ratios in unidirectional and bidirectional coupling.

Differing approaches have been taken in other studies. We next discuss two main articles.

Gérard and Goldbeter, (2012), [26], for instance, have analyzed three different coupling

mechanisms of unidirectional clock → cell cycle coupling: CLOCK:BMAL1-mediated wee1

activation, CLOCK:BMAL1-mediated c-Myc repression and REV-ERBα-mediated repression of

the cdk inhibitor p21. They have verified the size of the period entrainment region under these

three different forms of unidirectional coupling and that combining multiple forms of coupling

doesn’t necessarily increase this region. Furthermore, for entrainment via CLOCK:BMAL1-

induced wee1 expression they found a parametric region with a complex MPF dynamics that is

similar to what we found in Section 4.3 for the bidirectional coupling (where the wee1 interac-

tion is also incorporated), albeit in our case BMAL1 followed a similar cycle as MPF and this

dynamics was associated with a very slow mitotic rate, while in the work of Gérard and Gold-

beter, BMAL1 was expressed in the period of low MPF and this complex dynamical behavior

was associated with a faster mitotic rate [26]. More importantly, their approach differed from

ours in that they opted for detailed models incorporating more molecular interactions, while we

favored reduced models that allow to understand which cellular mechanisms are essential.

Unidirectional cell cycle → clock coupling, in its turn, has been studied by Traynard et

al., (2016), via the incorporation of transcription regulation of clock genes during the mitosis

stage [28]. Their approach is fairly different from ours in that they focus on transcription

regulation, while we focus on MPF phosphorylation activity. Their model is centered on the

observed transcription activation of clock genes at the mitosis stage and proposes a role of

MPF in this regulation, using a periodic coupling parameter, while our model is based on the

established kinase activity of MPF in a particular experimentally verified interaction of REV-

ERBα phosphorylation. Another difference is that all of our coupling mechanisms are achieved

by constant multiplicative terms and, in our study, it is the natural periodicity of variables

that represents the different molecular phases (ex: MPF up represents the mitotic phase, etc.)

[28]. Furthermore, our cell cycle → clock coupling mechanism represents a degradation of

REV-ERBα by the MPF, while one of their coupling mechanisms represents REV-ERBα gene

activation during mitosis. Even though these are opposed forms of regulation, simultaneous co-

existence of both mechanisms isn’t, in our opinion, contradictory, as often such complex levels

of regulation exist in mammalian cells. In fact, not yet identified factors may tune the balance

between these two opposite regulations. In addition the mechanism proposed by Traynard

relates to gene (or protein) synthesis, whereas we considered a posttranslational regulation
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(ubiquitination and degradation of the REV-ERBα protein). Therefore, both mechanisms may

well represent fine tuning of REV-ERBα expression/activity regulation at the G2/M transition.

Furthermore, as discussed in Section 4.3 the conclusions of Traynard et al., (2016), about the Dex

period-lock response being transient are similar to ours [28]. However, in their work the rational

period-lock ratios were not obtained, which was interpreted as demonstrating non-existence of

multiple attractors. In our work, the appearance of period-lock ratios is understood as a separate

issue from the existence of multiple attractors. Moreover, in their work simultaneous fitting of

period and phase response is possible and achieved by adjusting the coupling parameters, while

in our work coupling parameters affect only the synchronization state (and thus the period) of

the oscillators.

A main result of our work is that there is more than one way of controlling the synchronization

state of the oscillators. Specifically, a 1:1 period-lock can be obtained when the intrinsic periods

between the oscillators are close to each other or when the coupling strength is high. Conversely,

period-lock ratios that differ from 1 (rT 6= 1) can be obtained when the periods of the oscillators

are further apart or when the coupling is weak. In particular, inputs such as GF, Dex or single-

parameter changes induced changes in synchronization state by changing the proximity between

the periods of the oscillators. This in turn can be used to control the period of one oscillator by

applying modifications to the other oscillator.

A common observation to all of our results, in the various types of coupling studied in

this Chapter, is that GF is a control parameter to the synchronized state of the oscillators.

This in theory predicts that synchronization states differing from 1:1, such as the experimental

results described in Section 1.3, could be reproduced by further increasing GF. However, this

verification is contingent upon the GF region of rT 6= 1 falling within the physiological limit

of GF increase in cells, which we can’t yet predict, because this depends on the real period

response of the oscillators to GF. Nevertheless, it would be interesting to analyze period-locking

(and phase-locking) in cells grown in high GF (% FBS > 15) and with no Dex, as for example

the 20 % FBS culture was tested only in the presence of Dex (see Section 1.3). On the other

hand, if the natural coupling between the oscillators is strong enough the oscillators will remain

in 1:1 period-lock even for increasing GF.

The hypothesis we made in the discussion of Appendix B of the importance of the dual

state clock property in modeling clock response to Dex was validated in this Chapter. In

particular, observations of a Dex pulse on the bidirectional coupled system reveal a sensitivity

of the CLOCK:BMAL1 molecular phase, where there is no PER:CRY, in period-lock response,

while when PER:CRY is up the system’s period-lock doesn’t change. In contrast, because the 3:2

period-lock occurs when Dex is introduced in the unidirectional cell cycle → clock coupling,

the idea that Dex introduction would be a form of indirect action on the coupling mechanism is

not verified, but rather Dex acts on the synchronization state of the oscillators by changing the

clock period (when given as a constant input). The period-lock state is dependent on the relation

between the intrinsic periods of the two oscillators, as well as on the strength of coupling.

In this Chapter, we investigated plausible molecular mechanisms for the coupling between

the cell cycle and the circadian clock. A general idea explored in the unidirectional cell cycle
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→ clock coupling is that MPF phosphorylates an essential clock component. This is compatible

with observations on NIH3T3 cells denoting a preponderant action of the cell cycle on the clock

[1] [30]. The particular mechanism modeled here was that of MPF-induced REV degradation

(observed experimentally). This resulted in entrainment and allowed to recover the effect of

Dex application. More than the validation of this particular coupling mechanism, these results

reinforce the validity of a broader class of coupling mechanisms involving the phosphorylation

of a core clock component by the essential cell cycle machinery.

Furthermore, Dex application as a PER/PER:CRY input recovered the experimentally ob-

served change in synchronization state ({rT = 1} → {rT > 1}) more faithfully in the cell cycle

→ clock coupling than in the clock → cell cycle, which again points to the increased rele-

vance of the first coupling mechanism for the observations in Dex-treated cells. And an input

IB applied on BMAL1 had the opposite effect of Dex: {rT > 1} → {rT = 1}, because inputs at

the two main clock phases induce opposite effects on clock period. Unidirectional clock → cell

cycle coupling in turn centered on the observed BMAL1-induced wee1 activation, which was

modeled as an MPF repression. This allowed entrainment and period control of the cell cycle

by means of single-parameter changes in the clock system.

In the bidirectional coupling combining MPF-mediated REV degradation and BMAL1-

mediated MPF repression via wee1 activation we found a particular parametric region where

both clock and cell cycle showed an oscillatory regime of very long periods. In this region, the

dynamics exhibited a time interval of oscillation interleaved with a time interval without oscilla-

tion, providing a promising strategy for period control. Moreover, GF-period control fits well to

data points and the effect of the Dex input in shifting the system from 1:1 to 3:2 synchronization

is also recovered in the bicoupled system. Additionally, we found the system’s response to a Dex

pulse to be transient, which contradicts the multiple attractor hypothesis established by Feillet

et al., (2014), [1]. Period-lock response to a Dex pulse applied at different times revealed the

existence of a responsive and a non-responsive phase regions, which we relate to the existence of

two populations of cells observed by Feillet et al., (2014), [1]. Thus, not only the amount of Dex

and the duration of the pulse are control parameters for the system’s dynamical response, but

also the time of pulse application as it relates to the the clock/cell cycle oscillators’ phase a at

the time of Dex application. This in a broader sense may be extrapolated to any input/output

cellular response, with possible implications for the improvement of chronotherapies.

Furthermore, we have modeled two very different forms of GF influence on the clock: one

via the cell cycle, where MPF phosphorylates and induces degradation of the essential clock

element REV and the other where GF acts on the clock via a pathway involving the non-

essential cell cycle complex cyclin D/cdk4, both experimentally established interactions. Both

models result in different dynamical behavior that nevertheless allows to reproduce experimental

results whereby Dex induces period-lock states of rT > 1. Dex application in the unidirectional

clock → cell cycle with a clock that responds directly to GF also results in inducing rT >

1, which is compatible with experimental observations. Moreover, cell cycle period control was

also verified by inducing single-parameter changes in the GF-responsive clock.

Finally, for all coupling mechanisms we have observed that control parameters allow to shift
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the system between different synchronization states. In general Dex induces a change similar

to that of GF, because these two inputs both separate the period of the oscillators: GF by

accelerating the cell cycle and Dex by slowing down the clock, leading to a rT > 1 state.

Diminishing the coupling strength in a situation where the clock is slower than the cell cycle has

a similar effect. Thus, the GF point of synchronization state change depends on the strength of

the coupling between the oscillators as well as on the proximity of the periods of the oscillators.

Inputs such as Dex have the effect of decreasing the GF value required for period-lock dynamical

change. This provides an explanation to the experimental observations of Feillet et al., (2014),

(described in Section 1.3) that have influenced this thesis [1].
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Conclusions and Perspectives

This dissertation aimed to expand the understanding of the coupled cell cycle and mammalian

circadian clock oscillators. As exposed on Chapter 1, the observations of Feillet et al., (2014),

establish evidence for a cell cycle control on the clock [1]. With the aim of reproducing some of

these observations as well as of understanding which characteristics of the mammalian cell cycle

and circadian cell clock oscillators are relevant for synchronization state determination we used

ODEs to build non-linear dynamical models of the two oscillators, on Chapters 2 and 3, and

applied our models to the study and exploration of coupling mechanisms and interconnection

between the oscillators, on Chapter 4.

5.1 Conclusions

On Chapter 2 we identified and modeled the main dynamical processes of the mammalian cell

cycle. Our model is based on post-translational modifications of the mitosis promoting factor

(MPF) and on its degradation by the APC:cdc20 complex ([4]). This model was calibrated from

data points and results in relaxation oscillations whose frequency increases with GF, a particular

important result that is in agreement with observations ([1]), and was reduced to a two variable

model with the same properties. Overall, our cell cycle model minimizes the number of variables

while simultaneously maintaining mathematical terms that allow for biological interpretation.

On Chapter 3 we modeled the mammalian cellular clock and uncovered a dynamical network

that generates antiphasic oscillation of the CLOCK:BMAL1 and PER:CRY protein complexes.

This model is transcription-based and describes competition of activators and repressors at the

clock controlled elements (CCEs) genomic regions: E-box, R-box and D-box. Furthermore, we

calibrated our model against experimental data and observed the region of entrainment by an

external signal as well as its phase response curve. We used this model to study the interplay

between the clock system and metabolism and uncovered a circadian clock role as a controller

for the duration of different molecular clock phases in response to the tau mutation and to the

phase difference between signals pertaining to the fast/feeding and the light/dark cycles. These

results allowed to formulate a mechanism explaining how metabolic states of health and disease,
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such as insulin sensitivity and insulin resistance, can be related with normal or altered time

patterns of feeding behavior (in mice and humans) by means of the internal circadian cell clock.

On Chapter 4 we investigated the coupling of our mammalian cell cycle and circadian clock

models in unidirectional and bidirectional configurations. These were: the MPF-controlled

phosphorylation and subsequent degradation of REV, the CLOCK:BMAL1-induced expression

of wee1 leading to the repression of MPF activity, the bidirectional application of the two

aforementioned mechanisms, and a different mechanism whereby GF action on the clock occurs

directly instead of by means of the cell cycle (in this case the clock entrains the cell cycle via

wee1 induction). We have observed that in all coupling cases GF itself is a control parameter for

the oscillators’ synchronization state, with higher GF driving the system from rT = Tclock
Tcell cycle

=

1 synchronization to rT > 1. Dex application, in turn, reduced the minimal GF value for which

this transition occurs and its effect in driving the system from the 1:1 to the 3:2 synchronization

state is reproduced. A devil’s staircase pattern of synchronization state response, where syn-

chronization ratios are constant by intervals, is obtained in all forms of coupling, except in the

GF-controlled clock system. These coupling forms resulted in different rational synchronization

ratios such as 1:1, 2:1, 3:2, 4:3, 2:3 and 1:2.

Furthermore, we establish that inputs, such as GF and Dex, cause the intrinsic periods of

the two oscillators to either be closer together or further apart, which in unidirectional coupling

has a similar effect in synchronization state alteration as respectively increasing or decreasing

the coupling strength parameter. In bidirectional coupling the combination of the two coupling

parameters with GF determines the ratio of period-locking.

In the system under bidirectional coupling analysis of the oscillators’ period-lock response to a

Dex pulse revealed that only when the application of the pulse occurs at a certain clock/cell cycle

phase region does the system respond by shifting from rT = 1 to rT > 1, while when at another

phase region the system doesn’t respond and is kept in 1:1 synchronization. Furthermore, our

results predict that a third and smaller phase region of pulse application results in a slower cell

cycle than clock (rT < 1). Synchronization state response to the Dex pulse is transient in our

system, which contradicts the multiple attractor hypothesis established by Feillet et al., (2014),

[1]. We relate the existence of a responsive and a non-responsive region to the two populations

of cells observed by Feillet et al., (2014), [1]. Therefore, the time of an input pulse application

is highlighted as a control parameter for the input/output response of a cell, which is an idea

relevant not just for synchronization state control but also for a variety of drug treatments,

including chemotherapy.

Synchronization state response in unidirectional coupling with a GF-responsive clock con-

trasted with the other forms of coupling in that it didn’t result in the devil’s staircase pattern for

changes in control parameters. Nevertheless rT > 1 is observed for certain parametric conditions

as well as in the response to a Dex input, that similarly to what was observed in other forms of

coupling decreases the minimum GF value required to induce breaking of the 1:1 period-lock.

Thus, this mechanism also provides a viable dynamical explanation for the results of Feillet et

al., (2014), [1].

Overall, in all forms of coupling we have observed the system’s response to different changes
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in parameters and inputs and that there is more than one way of controlling the synchroniza-

tion ratio. In a broader sense, our coupling results provide visualization and understanding of

dynamical behaviors compatible with the experimental observations of Feillet et al., (2014), [1].

Moreover, this work is part of a larger project of designing and constructing synthetic bio-

logical oscillators representing the cell cycle and clock systems. These synthetic constructs will

allow further investigation of some of the dynamics observed both in experimental settings of

the real system ([1]) and in silico on Chapter 4 of this thesis.

5.2 Perspectives and Future Work

5.2.1 Design of Synthetic Oscillators

The results of this thesis directly influence the design of synthetic oscillators and experiments

to be performed with them, as now we know which parameters would be more beneficial to

control externally and how different controls may affect the resultant synchronization state.

Furthermore, the period-control analysis performed on Chapter 4 offers an idea of the type of

experimental protocols to be developed.

Firstly, possible methods of synthetic oscillator design are provided by Purcell et al., (2010),

[3]. Simple configurations centering a main negative feedback loop between an Activator and a

Repressor in conjunction with the possible inclusion of either positive or negative self-regulatory

feedback loops, similar to our reduced cell cycle model (see Fig. B.1), are good starting points

for the design of both oscillators. The clock model should be appropriately represented by a

transcription-based circuit, while the cell cycle by a post-translational regulatory system.

Moreover, each synthetic circuit should have between two or three variables. Because we

discovered during the course of this work that the effect of Dex application in period-lock

control is due to its effect on the clock period, there won’t be necessary to match the number

of variables of our clock model (four) in a synthetic representation of the clock system. Instead

the focus should be on increasing period range as well as on methods of tuning parameters of

period control via external inputs. An example is provided by Kainrath et al., (2017), that

makes use of cobalamin binding domains of bacterial CarH transcription factors to allow the

breaking of protein complexes with an external green-light, thus creating an important tool to

control the rate of protein release via an external input [119]. Another technique that allows

tuning parameters is the use of drug-responsive gene promoters, whereby the control of gene

expression rates can be made via an additive input [120]. A particular interesting development

that improves control of the response of synthetic biological constructs is provided by Milias-

Argeitis et al., (2011), where external in silico feedback is computed by taking real-time cellular

measurements in order determine at each step the amount of an external light input to be applied

on the synthetic system [121].

Concerning cell cycle representation, a possible regulatory mechanism to assist the design

of a post-translational regulated oscillator is the toolbox proposed by Fernandez-Rodriguez and

Voigt, (2016), that is based on proteases of Potyvirus and their cleavage sites [122]. This
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toolbox allows external control of protein release and degradation by fusing the protein with an

inactivating peptide or a degron. Protease controlled cleavage acts by removing the inactivating

peptide, in the first case, thus activating the protein, or by exposing the degron, in the second

case, thus targeting the protein for degradation.

Furthermore, another system that may be useful to assist the design of our circuits is the first

ever implemented synthetic genetic oscillator, the repressilator, that has recently been simplified

by Potvin-Trottier et al., (2016), [123]. The authors found that the removal of some of the initial

circuit interactions allows for more regular oscillations and synchronization of populations of cells

without any coupling between them.

Finally, chinese hamster ovary (CHO) cells and the human embryonic kidney (HEK293) are

examples of mammalian cell lineages used in synthetic biology ([120]), that are good candidates

for our work as well. This project may involve the use of the latest developed lab techniques and

protocols of the field of synthetic biology engineering in eukaryots, such as Golden Gate shuffling

[124] and the hierarchical modular cloning system [125], that are based on type II restriction

enzymes and their ability for sequential assembly of multiple DNA streams.

5.2.2 Clock and Cell Cycle Modeling

In general, the modeling work presented on this thesis has expanded the state of the art concern-

ing the dynamics of the coupled clock and cell cycle systems by addressing the goals established

on Section 1.5, while at the same time opening topics of future research.

An immediate subject of future research is the use of our models in the investigation of

the dynamics of other forms of coupling. In particular, the idea proposed in this thesis of

phosphorylation of an essential clock component by MPF could be extended besides REV-ERB

– in this case BMAL1, PER and CRY are good candidates due to their fundamental role in the

clock system. Furthermore, clock regulation of the cell cycle can also be investigated via PER or

BMAL1 controlled regulation of c-Myc, a repressor of the G1/S transition, which in our model

can be represented by decreasing the effect of GF. Because we established the fundamental role

of GF in synchronization state control, this coupling mechanism has a high potential of being

relevant for the real system. Furthermore, as in this work we have focused on studying period-

lock and period control, the study of phase-lock control remains open. In this sense, observing

how differing types of coupling affect phase-locking is also a topic of interest; simultaneous

period-lock and phase-lock fitting to data points can be a method of validating a particular

coupling hypothesis over another, that hasn’t been explored by us here.

Moreover, as the results of Chapter 4 on the response of the bidirectional coupled system to

a Dex pulse suggest an explanation for the existence of the two period-locked populations of cells

observed by Feillet et al., (2014), [1], follow up modeling work on cell populations is a subject

of interest. In this regard, some questions that can be addressed under population modeling

are: are all techniques of period control used in this work also effective when expanding to cell

populations? Is it possible to make the non-responsive population responsive? Is it possible to

control the number of cell populations that occur or the number of cells in each population?

100



5.2. Perspectives and Future Work

Furthermore, the analysis and characterization of our reduced clock model could be ex-

panded. This could include the investigation of its FWHM response and/or the possibility to

simulate temperature compensation.

Concerning the expansion of the cell cycle model, earlier cell cycle stages and cyclins could

be included in order to investigate the mechanistic interplay between cyclins: though it is well

established that cell cycle cyclins precede each other, the entirety of the mechanism that leads GF

to induce expression of cyclin B is not simple, as binding of other cyclins to the cyclin B promoter

has not been identified. Instead the cyclin B promoter responds to a variety of molecular

compounds that have a role in sensing cellular health and whether DNA replication during S

phase has occurred correctly. It would be interesting to investigate how such a mechanism can

be incorporated as well as how to connect MPF synthesis rate with, for instance, a previous

cyclin stimulated by GF.

5.2.3 Experimental Studies

An important follow up to our clock modeling work would be the experimental exploration

in mammalian cells of our observations on the role of the clock mechanism in controlling the

duration of different molecular phases in response to input signals. Relatedly, another idea is

to investigate whether this finding can be extrapolated to other clock systems, which could be

done not only via modeling of other organisms, but also in experimental settings.

Moreover, an idea here proposed that could be experimentally explored is that of a GF-

responsive clock. In particular, the pathway proposed by us on Chapter 4 could be tested

via knock-out experiments of the intermediary components cyclin D/cdk4 and GCN5. Current

available observations relating to the issue of a GF versus a cell cycle-responsive clock are those

of confluent cells, that aren’t physically allowed to grow or divide [1]. On one hand, confluent

cells (with an arrested cell cycle) show a 24 h clock period regardless of the GF value, which

supports the idea of the cell cycle mediating any effect GF might exert on the clock. On the

other hand, only a very small percentage of cells (5 to 10 %) kept in confluency conditions

exhibit a circadian rhythm at all, thus making these observations insufficient to exclude the

hypothesis of GF directly affecting the clock of free dividing cells, in particular because we

don’t know how confluency affects GF-transducing pathways. Nevertheless, both the case where

cell cycle arrest results in a 24 h clock and the case where cell cycle arrest results in a loss of

circadian rhythmicity are consistent with a cell cycle → clock coupling effect, for which this

is, in our opinion, the strongest hypothesis. In general, the hypothesis of a GF-responsive clock,

formulated in this work, adds another layer of complexity to the coupling problem, as there isn’t

yet a way of knowing how relevant to circadian rhythms the effect of GF-transducing pathways

is versus the effect of the cell cycle. Thus, further experimental study is needed on particular

pathways establishing a direct connection between GF and the clock, such as the one proposed

in this thesis.

A final idea of future experimental work is to test on mammalian cells some of the experi-

ments and protocols proposed by us, so as to revisit and expand the work of Feillet et al., (2014),
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[1], now with the broader view acquired by our work. The methods developed in our work may

also be adapted into protocols testing the synchronization dynamics of synthetic biology oscil-

lators.

In summary, the observations of synchronization state control via inputs and single param-

eter changes provided by this thesis form a basis for a design of synthetic oscillators consistent

with the future goal of using these circuits to observe a variety of clock/cell cycle synchroniza-

tion ratios and period control methods. This can be achieved by focusing on external tuning of

parameters via the use of drug-responsive promoters of gene transcription as well as toolboxes

that allow the external control of protein release and degradation, such as light-sensitive tran-

scription factors. Finally, the work presented on this thesis has expanded the state of the art

concerning the dynamics of the coupled clock and cell cycle system by revealing different ways

of controlling the synchronization state of these oscillators as well as their dynamical behavior

under different coupling methods and controls.
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A

Supporting Information for the Cell Cycle Model

Figure A.1: Bifurcation analysis of the cell cycle model with SGF.
Stable steady states are represented in blue and unstable steady-states in red. A Hopf bifurcation
marks the entrance in the oscillatory region. The wave envelope is shown in green.
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Figure A.2: Nullclines for several values of SGF.
Varying SGF varies the shape of g1 and changes the number of fixed points. On the left, the
region of low SGF : two monostable regimes (red and purple), where intersection of g1 and g2
occurs only once, and a bistable regime (yellow), where the nullclines intersect three times – one
unstable fixed point is in the middle of two stable fixed points and the system converges to one
of the two stable points depending on the initial condition. On the right, higher values of SGF :
growth factor controls passage from monostability (red) to instability giving rise to oscillation
(yellow) and again to monostability (purple).
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Preliminary Coupling Studies

We now apply the 2 variables skeleton cell cycle model developed in Chapter 2, shown schemat-

ically in Fig. B.1, to perform a preliminary assessment of the coupling with a basic clock

model developed in this Section, in order to investigate possible mechanisms behind different

synchronization states.

Figure B.1: Schematic of the reduced cell cycle model.
The reduced model consists of a central negative feedback-loop between the active form of MPF
(activator) and the APC:cdc20 complex (repressor). An auto-regulatory positive feedback-loop
of MPF represents the positive regulation of MPF on itself via inhibition of wee1 and activation
of cdc25 and the effect of growth factor GF on the cell cycle is included via MPF synthesis.

This preliminary study seeks to investigate a known cell cycle/clock interaction of MPF-

controlled REV-ERBα phosphorylation ([56]), namely to assess its ability in reproducing en-

trainment for various GF values as well as how the periods of the system relate to each other

under this coupling mechanism and in the presence of a Dexamethasone input. The results

presented in this Section allow for a better understanding of the flow of the coursework between

the Chapters of this thesis, in specific because the questions raised by this preliminary study

largely influence subsequent work.

First, we analyze the fundamental molecular clock network and develop a simple model to

describe it. Fig. B.2 shows a scheme of the core molecular mammalian clock network, described

in Section 1.1.

Based on these main features of the mammalian circadian cell clock, we develop a prelimi-

105



B. Preliminary Coupling Studies

Figure B.2: Main molecular mechanisms of the mammalian circadian clock.
The nuclear CLOCK:BMAL1 protein complex promotes transcription of Per, Cry, Ror and Rev.
ROR and REV are transcription factors with an antithetical effect on BMAL1 transcription:
ROR activates the BMAL1 promoter and REV represses it. The PER and CRY proteins form the
PER:CRY complex that upon re-entrance in the nucleus will bind to CLOCK:BMAL1 repressing
its promoter activity.

nary model to describe it, in Equations (B.1) to (B.5). In this model BMAL1 is representative

of the CLOCK:BMAL1 complex and acts in promoting, REV, PER and CRY via Hill func-

tion terms, the positive loop between ROR and BMAL1 is modeled directly by BMAL1 self-

activation, including competing REV-ERB inhibition, and there is formation and dissociation

of the PER:CRY complex.

d[BMAL1]

dt
= VB

Vrb
k2rb

k2rb+[REV ]2
[BMAL1]2

Vrb
k2rb

k2rb+[REV ]2
[BMAL1]2 + k2b

− γbp[BMAL1][PER : CRY ] (B.1)
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d[REV ]

dt
= Vbr

[BMAL1]2

[BMAL1]2 + k2br
− γrev[REV ] (B.2)

d[CRY ]

dt
= VC

[BMAL1]2

[BMAL1]2 + k2C
− γpc[PER][CRY ] + γcpPER : CRY − γc[CRY ] (B.3)

d[PER]

dt
= VP

[BMAL1]2

[BMAL1]2 + k2P
− γpc[PER][CRY ] + γcpPER : CRY − γp[PER] (B.4)

d[PER : CRY ]

dt
= γpc[PER][CRY ]− γcp[PER : CRY ]− γf [PER : CRY ] (B.5)

This model yields oscillations, shown in Fig. B.3, with parameters of Table B.1. However,

all variables oscillate in phase for a wide range of parameter sets, whereas experimental obser-

vations show a specific order of the core clock proteins peak expression, namely BMAL1 then

REV-ERBα, then PER followed by CRY1. As such, we consider this approximate clock model

insufficient for accurate description of the mammalian clock system. In Chapter 3, we develop

a different transcription-based model, providing a deeper understanding of the system.

Figure B.3: Oscillations of the simplified mammalian clock model.
The model of the core mammalian clock network yields oscillations (Equations (B.1) - (B.5)),
for parameters of Table B.1. All variables oscillate in phase.

As preliminary work for the construction of a new, more realistic, clock model we will reduce

this clock model and explore the coupling between it and our reduced cell cycle model. First,
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we reduce the clock model (Equations B.1 to B.5) by approximating CRY and PER at quasi-

steady-state and considering that γp[PER] can be neglected without loss of oscillation. We now

get the new d[PER:CRY ]
dt Equation:

d[PER : CRY ]

dt
= VPC

[BMAL1]2

[BMAL1]2 + k2PC
− γf [PER : CRY ] (B.6)

whilst the equations for BMAL1 and REV remain unchanged. We aim to keep these three

variables, because BMAL1 and PER:CRY form the essential circadian clock main feedback loop

and REV-ERB is at the basis of the second, also essential, clock feedback loop. Furthermore,

REV-ERB is the usual reporter in the experimental study that demonstrates coupling from the

cell cycle to the circadian clock [1], whose results in part motivate this thesis.

We assess the unidirectional coupling, from the cell cycle to the clock system, one of the least

explored interactions, whose possible mechanisms we intend to investigate in this work. Thus,

we begin by observing the coupled systems via the MPF phosphorylation of REV-ERBα that

leads to its degradation [56].

Firstly, in the reduced clock model, the degradation term of REV now becomes−γrev [REV ]
[REV ]+krev

,

instead of the previous γrev[REV ] in order to obtain a better mathematical description of the

phosphorylation mechanism. A simulation of this model is shown in Fig. B.4 (with parameters

in Table B.2) (the new parameters now take the values VPC = 0.6, kpc = 15.0, γrev = 0.4

and krev = 4.0, with all remaining parameters the same as in Table B.1). These parametric

readjustments do not affect the global dynamics of the system.

Figure B.4: Reduced clock model.
Oscillations of BMAL1, REV and PER:CRY in the reduced model for parameters of Table B.2.
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We now use this model to make a tentative coupling with the cell cycle model developed in

Chapter 2. The effect of MPF on REV natural degradation is modeled by a multiplicative term

cm[MPF ], where the constant cm represents the coupling strength, for which the equation of

REV becomes:

d[REV ]

dt
= Vbr

[BMAL1]2

[BMAL1]2 + k2br
− cm[MPF ]γrev

[REV ]

[REV ] + krev
(B.7)

For cm = 2, we observe that the cell cycle entrains the circadian clock to its period, see Fig.

B.5.

Figure B.5: Strong coupling between the cell cycle and the circadian clock systems
by MPF-mediated degradation of REV.
For cm = 2 the system is strongly coupled in a a 1:1 clock to cell cycle period ratio: the period of
the clock follows that of the cell cycle, both decreasing with GF (left panel); the ratio between
the periods is always close to 1 (right panel).

On the other hand, for a weak/moderate coupling we observe different period-lock relations.

Fig. B.6 (left) shows results for a lower value of cm (cm = 0.05) where ratios between the

two periods follow a specific pattern with increasing GF. Period-lock ratios remain constant at

integer values for some GF intervals. This pattern has visual similarity to that of the devil’s

staircase fractal curve [55]. In Fig. B.6 (right) we observe how the ratio changes with variations

of cm for a fixed value of GF. The resulting variety of period-lock ratios obtained in these

simulations includes rational ratios differing from 1:1, which resembles results in Dex-treated

cells ([1]), though here period-lock regions often occur at integer values. These results hint at a

possible phenomenon of weak coupling from the cell cycle to the clock to explain the observed

period-lock phenomena in Dex-treated cells and support the coupling mechanism here proposed

(MPF promoting REV degradation). It is also interesting to investigate whether non-integer

period-lock ratios, such as 3:2 or 5:4, can also be obtained in a more comprehensive circadian

clock model.
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Figure B.6: Weak coupling of the circadian clock and cell cycle models by MPF-
mediated degradation of REV.
On the left: for cm = 0.05 the system is in weak/moderate coupling and several period-lock
ratios are obtained. The ratio of clock to cell cycle period increases with increasing GF but is
constant by intervals at integer values, forming a type of devil’s staircase-like pattern. On the
right: for a fixed value of growth factor, GF = 15, varying the coupling strength also leads to
different period ratios.

These results allow to extrapolate some ideas for the variety of experimentally observed

period-lock ratios between the cell cycle/circadian clock system, more specifically for the period

ratios observed in cells synchronized by Dexamethasone [1]. In particular, the introduction of a

Dexamethasone pulse may cause a perturbation in the system altering the GF-response of the

ratio between the periods of the two oscillators, as occurs in Fig. B.6 (left). Starting from this

point, a first idea would be that Dexamethasone could directly be affecting the coupling strength

parameter, which in this case means acting on the term cm[MPF ]γrev
[REV ]

[REV ]+krev
. Though this

hypothesis is not impossible, it consists in a high degree of extrapolation. A less speculative

perspective arising from these observations is that the clock/cell cycle system behaves in such

a way that the Dexamethasone perturbation affects the coupling between the systems, without

necessarily exerting direct action on coupling terms.

Dexamethasone, used commonly as a clock synchronizer in populations of cells is known to

induce a peak of PER expression. This phase-shifts the clocks of individual cells, synchronizing

the population for a certain amount of time. The mechanism by which Dexamethasone mediates

PER expression is likely to be the activation of the PER promoter by the glucocorticoid receptor

GR, which is activated by Dexamethasone (and other corticoids).

Thus, following this discussion, specific synchronization ratios, as observed experimentally

([1]) or as obtained in Fig. B.6 (left), should appear when modeling the known effect of Dex-

amethasone on the clock system, i.e. by adding an input Dex on the equation of d[PER:CRY ]
dt ,

representative of the Dexamethasone-driven activation of the PER promoter. The new model

would have a constant input of Dexamethasone, allowing to study the new limit-cycle under
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such conditions; alternatively, a pulse of Dex could be introduced to study the system’s tran-

sient response to the perturbation. However, adding Dex to Eq. B.6 results in loss of oscillation.

From this, we conclude that a better understanding of the clock system dynamics is required

via further modeling work. As the simplistic model here presented is a rough approximation

of the mammalian clock and results in simultaneous BMAL1, REV and PER:CRY oscillation,

which does not reflect reality, we move towards the construction of a more suitable model, that

better reproduces circadian clock dynamics. We aim to keep emphasis on a transcriptional-

based approach, as this is the basis of both the core clock circuitry (see Fig. B.3) and the

known mechanistic effect of Dexamethasone on the clock, via GR-mediated PER activation, as

discussed in this Section.

The most important mammalian clock negative feedback loop consists of CLOCK:BMAL1

and PER:CRY (Fig. B.2) and these two proteins tend to oscillate in phase-opposition, relating to

opposite phases of the day/night cycle. The known interaction of Dexamethasone with the clock

is via induction of PER expression, which favors one of these two main clock states (PER:CRY

up and CLOCK:BMAL1 down). We recall that CLOCK:BMAL1 is a known clock/cell cycle

coupling agent, via action in activating expression of the wee1 gene. The numerical experiments

of this Section show that weak coupling reproduces period-lock proportions differing from 1:1,

similar to experimental observations, which raises the question the role of Dex in the dynamical

behavior of the coupled system. Considering that PER:CRY represses CLOCK:BMAL1 activity,

an activator of PER, such as Dex, could then lead to increased repression of CLOCK:BMAL1

and consequently affect the coupling state of the oscillator (in a clock → cell cycle type of

coupling). Thus, the hypothesis here formed is that the mechanistic network behind the circa-

dian clock two-state dynamics (where either CLOCK:BMAL1 or PER:CRY is high) may thus

be a preponderant factor for the observed period-lock phenomena in cells treated with Dexam-

ethasone. Furthermore, introducing a Dex input may lead to a similar period-lock outcome as

changing the coupling strength.

In Chapter 4, this hypothesis will be verified with the new model (developed in Chapter 3),

where the introduction of a Dex input drives the cell cycle/clock system from a 1:1 synchrony

state to different rational period-lock ratios.

In summary, the experimentally observed period-lock phenomena in Dex-treated cells can’t

be reproduced using the model developed in this Section, raising the question of whether or

not this problem would be solved by using a model capable of reproducing the appropriate

order of protein expression. Understanding the topology that is behind the circadian clock

CLOCK:BMAL1 and PER/PER:CRY phase opposition is in itself a subject of interest and the

focus of Chapter 3. Nevertheless, the analysis of this Section helped to understand that period-

lock proportions differing from 1:1 can be otained with a cell cycle → clock unidirectional

coupling.

Finally, the main difference between the model of this Section, based on the scheme of Fig.

B.2, and that of Chapter 3 lies on the clock controlled elements (CCEs): E-box, R-box and D-

box, with the model variables now being the pairs of activators and repressors that act on these

CCEs (see Fig. B.7). This leads to a more extensive model, which incorporates experimental
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details, variables and interactions, while maintaining a core transcriptional basis.

Figure B.7: A scheme of the regulatory mechanisms of the three major CCEs.
A deeper look into the clock mechanism, by comparison with Fig. B.2. A) Competition between
ROR (activator) and REV (repressor) in RRE (R-box) binding. B) D-box may be activated by
DBP, HLF and TEF and repressed by E4BP4. C) CLOCK:BMAL1 acts as an E-box activa-
tor and CRY can bind to a previously bound CLOCK:BMAL1 repressing its E-box promoter
activity. D) PER:CRY bound to CLOCK:BMAL1 removes it from target genes.
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Supporting Tables

Table B.1: Parameters for the preliminary clock model

p Numerical Value

VB 1.4
kb 4.0
kbr 6.0
Vbr 0.4
kP 15.0
kC 15.0
VP 1.6
VC 1.6
Vrb 0.2
krb 3.0
γrev 0.4
γpc 0.5
γcp 0.2
γp 0.1
γc 0.1
γf 0.02
γbp 0.02

Table B.2: Parameters for the reduced preliminary clock model

p Numerical Value

VB 1.4
Vbr 0.4
Vrb 0.2
VPC 0.6
kb 4.0
kbr 6.0
krb 3.0
kpc 15.0
krv 4.0
γrev 0.4
γf 0.02
γbp 0.02
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C

Modeling E-box Dynamics

In this Section we use mass action kinetics to derive a model term for the E-box activation

dynamics. E-box is activated by [CLOCK]:[BMAL1], whose promoter activity is blocked by

subsequent CRY binding. PER then binds to CRY and the [CLOCK]:[BMAL1]:[PER:CRY]

complex exits target genes, freeing up E-box.

In more general terms an activator A binds to a promoter P , forming an activator complex

Ca. Afterwards, the repressor R binds to Ca at the promoter site. A scheme of this process is

shown on Fig. C.1.

Figure C.1: A scheme for a regulatory Ebox-type mechanism.
a) The activator A binds to the promoter site P initiating gene transcription. b) The repressor
R binds to previously bound A blocking gene transcription.

Competition between activator and repressor is not independent as the complex Cr = [Ca :

R], is not formed by direct binding of R to P, but rather by the binding of R to the previously

formed activator complex Ca.

These processes are given by the following kinetic reactions:
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C. Modeling E-box Dynamics

A+ P
k1
�
k2

Ca

Ca +R
k3
�
k4

Cr

(C.1)

which by the law of mass action result in the following system of equations:

Ċa = k1[A][P ]− k2[Ca]− k3[Ca][R] + k4[Cr]

Ċr = k3[Ca][R]− k4[Cr]
Ṗ = −k1[A][P ] + k2[Ca]

(C.2)

And, from [73], the rate of gene transcription is given by:

Ġ = α[Ca] (C.3)

Observe that from (C.2) we have:

Ṗ + Ċa + Ċr = 0

⇔ [P ] + [Ca] + [Cr] = PTOT , PTOT > 0

⇔ [P ] = PTOT − [Ca]− [Cr]

(C.4)

meaning the total amount of promoter sites P – free and occupied in the complexes Ca and Cr

– is always a constant PTOT .

Two further simplifications arise by taking the quasi-steady-state approximations:

Ċa ≈ 0 (C.5)

and

Ċr ≈ 0 (C.6)

which assumes the changes in the concentration of the intermediate complexes Ca and Cr

are fast in relation to the rate of formation of the product G.

Thus, from (C.6) we have:

Cr =
k3
k4

[Ca][R] (C.7)

and from Equations (C.4), (C.5) and (C.7):
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k1[A][P ]− k2[Ca]− k3[Ca][R] + k4[Cr] = 0

⇔ k1[A](PTOT − [Ca]− [Cr])− k2[Ca]− k3[Ca][R] + k4
k3
k4

[Ca][R] = 0

⇔ k1[A]PTOT − k1[A][Ca]− k1[A]
k3
k4

[Ca][R]− k2[Ca]− k3[Ca][R] + k3[Ca][R] = 0

⇔ [Ca](k1[A] + k1
k3
k4

[A][R] + k2) = k1[A]PTOT

⇔ [Ca] =
k1[A][PTOT ]

k1[A] + k1
k3
k4

[A][R] + k2

⇔ [Ca] = PTOT
[A]

[A] + k3
k4

[A][R] + k2
k1

(C.8)

From Equation C.3 the gene transcriptional rate is directly proportional to [Ca], now be-

coming:

Ġ = VG
[A]

[A] + kGR[A][R] + kG
(C.9)

And replacing A and R by BMAL1 and CRY respectively, we arrive at our equation for Ebox

transcriptional activity:

Ebox = VE
[BMAL1]

[BMAL1] + kE + kEr[BMAL1][CRY ]
(3.1)
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D

Supporting Information for the Circadian Clock Model

Table D.1: Calibrated parameters from REV-ERBα data from Feillet, (2014), [1], (as shown in
Fig.3.3), for the circadian clock model.

p Numerical Value

VR 44.4 %.h−1

kR 3.54 %
kRr 80.1 %
VE 30.3 %.h−1

kE 214 %
kEr 1.24 %
VD 202 %.h−1

kD 5.32 %
kDr 94.7 %
γror 2.55 h−1

γrev 0.241 h−1

γp 0.844 h−1

γc 2.34 h−1

γdb 0.156 h−1

γE4 0.295 h−1

γpc 0.191 %−1.h
γcp 0.141 h−1

γbp 2.58 %−1.h
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D. Supporting Information for the Circadian Clock Model

Figure D.1: Output of the model with Hill exponent n=1.
The model yields similar results with n=1 and n=2 and the peak expression of BMAL1, PER,
CRY and PER:CRY appear in the same order. Parameters of simulation are those of Table D.1.

Figure D.2: Entrainment of the clock model without chromatin remodeling to an
external oscillatory input.
The amplitude and the period of an entraining wave are varied and the resulting regions of
entrainment form Arnold tongues. A) The entraining wave is a sinusoid. B) Entrainment is done
with a rectangular wave. A black/white gradient represents the ratio between the clock period
and the period of the entraining wave: white - no entrainment, grey - 1:1 entrainment, dark grey
- 2:1 entrainment and black - 3:1 entrainment. By comparison with Fig. 3.8 incorporation of
the chromatin remodeling function results in a larger region of entrainment for sinusoidal waves
and an improved entrainment overall for square waves.
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Figure D.3: Period change with the parameter γp for the system with the closed-loop
control.
Period decreases as γp increases, similarly to what may be observed in Fig. 3.4.

Table D.2: Parameters of the reduced clock model.

p Numerical Value

VR 44.4 %.h−1

kRr 80.1 %
VB 0.142 %.h−1

VD2 19.0 %.h−1

γrev 0.241 h−1

γdb 0.156 h−1

γbp 2.58 %−1.h
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D. Supporting Information for the Circadian Clock Model

Figure D.4: Changes of FWHM of the clock proteins as the period changes via
increased PER phosphorylation.
As the period decreases in a manner consistent with the tau mutation the FWHM of several
clock proteins, such as REV and PER decrease in linearly with the period, while the FWHM
of BMAL1 varies less and the FWHM of CRY1 is approximately constant. Here the results are
the same of Fig. 3.9, but shown differently.
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Figure D.5: Changes of the mean value of the clock proteins as the period changes
via increased PER phosphorylation.
As the period decreases in a manner consistent with the tau mutation the mean value of expres-
sion of all clock proteins decreases.
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D. Supporting Information for the Circadian Clock Model

Figure D.6: Changes of the amplitude of the clock proteins as the period changes via
increased PER phosphorylation.
As the period decreases in a manner consistent with the tau mutation the amplitude of all clock
proteins decreases.
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Figure D.7: Variation in the mean values of clock core proteins with the phase dif-
ference between two external hormonal signals ∆φ.
We observe that in general the mean value of most clock proteins is higher when the signals are
more in phase.

125



D. Supporting Information for the Circadian Clock Model

Figure D.8: Variation in the amplitude of clock core proteins with the phase difference
between two external hormonal signals ∆φ.
We observe that in general the amplitude of most clock proteins is higher when the signals are
more in phase.
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Figure D.9: Sensitivity analysis and robustness of the reduced clock model (param-
eters of Table D.2).
Each parameter is varied 20% around its central point and oscillations are maintained. Increasing
the value of VR increases the period of the system while increasing kRr, γrev and γdb decreases
the period.
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E

Boolean Model of the Circadian Clock

Boolean Model Equations:

d[BMAL1]

dt
= REV ∨ PER : CRY (E.1)

d[DBP ]

dt
= BMAL1 (E.2)

d[REV ]

dt
= DBP (E.3)

d[PER : CRY ]

dt
= DBP ∨BMAL1 (E.4)

In order to reduce the model we consider the effect of BMAL1 via DBP directly acting on

REV and PER:CRY.

Reduced Boolean Model Equations:

d[BMAL1]

dt
= REV ∨ PER : CRY (E.5)

d[REV ]

dt
= BMAL1 (E.6)

d[PER : CRY ]

dt
= BMAL1 ∨BMAL1 (E.7)

Fig. E.1 shows a scheme of the reduced discrete model, the solution has collapsed into one

of the sub-cycles of the bigger model (see main article). PER:CRY is always up (see equation

E.7). This allows to understand why oscillation is not possible in the continuous model reduced

model without DBP.
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E. Boolean Model of the Circadian Clock

Figure E.1: Reduced boolean model output.
The solution of the reduced boolean model is a sub-cycle of the solution of the complete boolean
model. Here PER:CRY doesn’t oscillate.
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Supporting Information of Chapter 4

F.1 Scaling of parameters for the coupled clock/cell cycle systems

Changes the time scale of the systems dynamics consists in multiplying by constants the subsets

of calibrated parameters that represent rates of change (px and py for the cell cycle and clock

respectively). Thus, for the cell cycle we make px → β px on parameters of Table 2.1, where:

px =



γ1

Vc

Vw

Vm

Vk

GF


(F.1)

and β = 10. Note that GF is varied through the majority of coupling studies. For the

circadian clock we make py → µ py on parameters of Table D.2, where

py =



VR

VB

VD2

γrev

γdb

γbp


(F.2)

and µ = 18.6
24 = 0.775, thus changing the period from 18,6 h to 24 h. As both systems were

previously normalized to a certain concentration value, the solution of the coupled system is

unitless.
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Table F.1: Parameters of the models for the two oscillators after scaling.

p Numerical Value

VR 34.4 h−1

kRr 80.1
VB 0.11 h−1

VD2 14.7 h−1

γrev 0.187 h−1

γdb 0.121 h−1

γbp 2.0 h

γ1 0.162 h−1

Vc 2260 h−1

kc 130
Vw 7480 h−1

kw 138
km 99
kn 0.116
Vm 1.68 h−1

Vk 1.07 h−1

MPFmax 284

F.2 Supplementary Figures of Coupled Oscillators Analysis
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F.2. Supplementary Figures of Coupled Oscillators Analysis

Figure F.1: Oscillations and phase portraits of BMAL1 and MPF in a 3:2 period-lock.
With GF = 40 and coupling strength cm = 0.08 the solution shows a 3:2 period-lock, where
during each time interval where a periodic repetition of four peaks of BMAL1 occurs, there are
six peaks of MPF. There are also two relevant peaks of REV (above mean REV value) for each
three relevant peaks of MPF (above mean MPF value). The cell cycle period is kept constant
at 14,5 h in the unidirectional coupling, the clock period (computed as the average of the time
difference between peaks of BMAL1) is 21,7 h.
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F. Supporting Information of Chapter 4

Figure F.2: Oscillations and phase portraits of BMAL1, REV and MPF in a 2:1
period-lock.
While keeping GF = 40, the cell cycle period is kept constant at 14,5 h in the unidirectional
coupling. The coupling strength cm = 0.04 results in a solution with a 2:1 period-lock, where
the clock period is 28,9 h.
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F.2. Supplementary Figures of Coupled Oscillators Analysis

Figure F.3: Oscillations and phase portraits of BMAL1, REV and MPF for a point
outside of the devil’s staircase.
While keeping GF = 40, the cell cycle period is kept constant at 14,5 h in the unidirectional
coupling. The coupling strength cm = 0.1 results in a solution where the clock has a complex
behavior.
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F. Supporting Information of Chapter 4

Figure F.4: Variation of the intrinsic clock period with the Dex and IB added inputs.
Dex and IB are varied in the region of oscillation (from 0 to 11): Dex leads to a slower clock,
while IB accelerates the clock.

Figure F.5: Input of Dex in the model coupled via BMAL1 repression of MPF.
With cb = 10 values of 4 ≤ GF ≤ 15 and Dex = 0 lock in 1:1 state. The introduction of Dex in
this system promotes decoupling and a behavior similar to that of a smaller cb value for a very
limited region of GF (13 ≤ GF ≤ 15) .
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F.2. Supplementary Figures of Coupled Oscillators Analysis

Figure F.6: Evolution of clock period with parameter α1

In general the period of the clock increases with the value of α1, tending towards saturation.
Values of α1 < 1 are representative of the introduction of an R-box agonist in the system and
values of α1 > 1 represent activity of R-box antagonistic drugs.

Figure F.7: Evolution of the oscillators period and synchronization state with GF for
α = 2 in the unidirectional coupling via clock-controlled wee1 activation.
By increasing γrev by a factor of 2, the clock is sped from 24 h to 16,5 h, leading to several
different synchronization states between clock and cell cycle. This strategy is successfull in
slowing down the cell cycle for small GF, where the 1:2 period entrainment occurs.
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Figure F.8: Evolution of the oscillators period and synchronization state with GF for
β = 1, 5 in the unidirectional coupling via clock-controlled wee1 activation.
By increasing γdb by a factor of 1,5, the clock is sped from 24 h to 12,4 h, leading to several
different period-locked states between clock and cell cycle. The GF region for which the cell
cycle is slower than the clock is very wide, however only in a small region the cell cycle period
is higher than that of the intrinsic γdb value (24 h with β = 1).

Figure F.9: GF effect on the oscillators’ period and synchronization state with bidi-
rectional coupling via MPF-controlled REV degradation and BMAL1-induced wee1
expression.
GF is a control parameter for the ratio of period-lock (rT ). With cm = 0.2 and cb = 30, for 4
≤ GF ≤ 80 the system locks in 1:1 for the majority of GF values, for high GF other rational
ratios appear constant by intervals.
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F.2. Supplementary Figures of Coupled Oscillators Analysis

Figure F.10: Period-lock for different values of cb and cm with GF = 5.
Varying cb and cm for fixed GF = 5 results in different period-lock ratios. In the white region
there is no oscillation.

Figure F.11: Period-lock for different values of cb and cm with GF = 10.
Varying cb and cm for fixed GF = 10 results in different period-lock ratios. In the white region
there is no oscillation.
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Figure F.12: Period-lock for different values of cb and cm with GF = 30.
Varying cb and cm for fixed GF = 30 results in different period-lock ratios. In the white region
there is no oscillation.

Figure F.13: Period-lock for different values of cb and cm with GF = 40.
Varying cb and cm for fixed GF = 40 results in different period-lock ratios. In the white region
there is no oscillation.
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F.2. Supplementary Figures of Coupled Oscillators Analysis

Figure F.14: An oscillatory solution with a very long period in bidirectional coupling.
The solution for cm = 0.01, cb = 70 and GF=20 results in a very long period: Tclock = Tcellcycle =
956 h; the system is in 1:1 period-lock.
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Figure F.15: An oscillatory solution with complex behavior and a very long period
in bidirectional coupling.
The solution for cm = 0.1, cb = 40 and GF=10 results in a very long period with a complex
behavior, where six peaks of MPF and APC:cdc20 occur every 347 h, interleaved by a long time
interval where REV is up. Tclock = Tcellcycle = 347 h and in the region of MPF/BMAL1 peaks
the two oscillators lock in 3:2 synchronization.
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F.2. Supplementary Figures of Coupled Oscillators Analysis

Figure F.16: Variation of clock and cell cycle periods with Dex.
When applying an increasing Dex input, the clock and cell cycle periods vary non-linearly: first
with a region without oscillation then decreasing and then increasing again.
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Figure F.17: Time series of BMAL1 and MPF for Tpulse at the responsive and at the
non-responsive region.
Analyzing the three cycles following the pulse application (as was done in our computations of
Fig. 4.24 and in experimental settings), there is approximately one peak of BMAL1 for each
peak of MPF for Tpulse = 1500 h (Tclock = 24,3 h and Tcell cycle = 24,4 h) and two peaks of
BMAL1 for each three peaks of MPF for Tpulse = 1510 h (Tclock = 27,9 h and Tcell cycle = 18,1h).
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Figure F.18: Time series of BMAL1 and MPF for Tpulse = 1510 h.
Same simulation as in the bottom panel of Fig. F.17 for a longer running time: the return to
1:1 synchronization can be seen.

Figure F.19: Clock period change with GF in the GF-controlled clock system.
As GF increases the period of the circadian clock decreases. Thus GF as a similar speeding up
effect in the periods of both the clock and the cell cycle.
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