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Abstract

Krylov iterative methods are frequently used on High-Performance Computing (HPC) systems
to solve the extremely large sparse linear systems and eigenvalue problems from science and
engineering fields. With the increase of both number of computing units and the heterogene-
ity of supercomputers, time spent in the global communication and synchronization severely
damage the parallel performance of iterative methods. Programming on supercomputers tends
to become distributed and parallel. Algorithm development should consider the principles: 1)
multi-granularity parallelism; 2) hierarchical memory; 3) minimization of global communica-
tion; 4) promotion of the asynchronicity; 5) proposition of multi-level scheduling strategies and
manager engines to handle huge traffic and improve the fault tolerance.

In response to these goals, we present a distributed and parallel multi-level programming
paradigm for Krylov methods on HPC platforms. The first part of our work focuses on an
implementation of a scalable matrix generator to create test matrices with customized eigenvalue
for benchmarking iterative methods on supercomputers. In the second part, we aim to study the
numerical and parallel performance of proposed distributed and parallel iterative method. Its
implementation with a manager engine and runtime can handle the huge communication traffic,
fault tolerance, and reusability. In the third part, an auto-tuning scheme is introduced for the
smart selection of its parameters at runtime. Finally, we analyse the possibility to implement
the distributed and parallel paradigm by a graph-based workflow runtime environment.

Keywords:
Distributed and parallel programming Krylov iterative methods Linear systems High Per-
formance Computing Preconditioning Techniques Asynchronous communication Heteroge-
neous and homogenous architectures Exascale supercomputer





Résumé

Les méthodes itératives de Krylov sont utilisées sur les plate-formes de Calcul Haute Perfor-
mance (CHP) pour résoudre les grands systèmes linéaires issus des domaines de la science et
de l’ingénierie. Avec l’augmentation du nombre de cœurs et de l’hétérogénéité des superor-
dinateurs, le temps consacré à la communication et synchronisation globales nuit gravement
aux leurs performances parallèles. La programmation tend à être distribuée et parallèle. Le
développement d’algorithmes devrait prendre en compte les principes: 1) parallélisme avec multi-
granularité; 2) mémoire hiérarchique; 3) minimisation de la communication globale; 4) promotion
de l’asynchronicité; 5) proposition de stratégies d’ordonnancement et de moteurs de gestion pour
gérer les trafic et la tolérance aux pannes.

En réponse à ces objectifs, nous présentons un paradigme de programmation multi-niveaux
distribués et parallèls pour les méthodes de Krylov sur les plates-formes de CHP. La première
partie porte sur la mise en œuvre d’un générateur de matrices avec des valeurs propres prescrites
pour la référence des méthodes itératives. Dans la deuxiéme partie, nous étudions les perfor-
mances numériques et parallèles de la méthode itérative proposée. Son implémentation avec un
moteur de gestion peut gérer le communication, la tolérance aux pannes et la réutilisabilité.
Dans la troisième partie, un schéma de réglage automatique est introduit pour la sélection intel-
ligente de ses paramètres lors de l’exécution. Enfin, nous étudions la possibilité d’implémenter
ce paradigme dans un environnement d’exécution de flux de travail.

Keywords:
Programmation distribuée et parallèle Méthodes itératives de Krylov Systèmes linéaires Cal-
cul Haute Performance Techniques de préconditionnement Communications asynchrones
Architectures hétérogeènes et homogènes Superordinateur exascale





Contents

List of Figures x

List of Tables xii

List of Algorithms xiv

List of Symbols xv

1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State-of-the-art in High-Performance Computing 7
2.1 Timeline of HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Modern Computing Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 CPU Architectures and Memory Access . . . . . . . . . . . . . . . . . . . 9
2.2.2 Parallel Computer Memory Architectures . . . . . . . . . . . . . . . . . . 11
2.2.3 Nvidia GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Intel Many Integrated Cores . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 RISC-based (Co)processors . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Parallel Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Shared Memory Level Parallelism . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Distributed Memory Level Parallelism . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Partitioned Global Address Space . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Task/Graph Based Parallel Programming . . . . . . . . . . . . . . . . . . 22

2.4 Exascale Challenges of Supercomputers . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Increase of Heterogeneity for Supercomputers . . . . . . . . . . . . . . . . 24
2.4.2 Potential Architecture of Exascale Supercomputer . . . . . . . . . . . . . 25
2.4.3 Parallel Programming Challenges . . . . . . . . . . . . . . . . . . . . . . . 27

3 Krylov Subspace Methods 31
3.1 Linear Systems and Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 31



CONTENTS

3.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Stationary and Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Non-stationary Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Krylov Subspace methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Krylov Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Basic Arnoldi Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Different Krylov Subspace Methods . . . . . . . . . . . . . . . . . . . . . 37

3.4 GMRES for Non-Hermitian Linear Systems . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Basic GMRES Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Variants of GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 GMRES Convergence Description by Spectral Information . . . . . . . . . 40

3.5 Preconditioners for GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.1 Preconditioning by Selected Matrix . . . . . . . . . . . . . . . . . . . . . . 46
3.5.2 Preconditioning by Deflation . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Preconditioning by Polynomials - A Detailed Introduction on Least Squares

Polynomial Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Arnoldi for Non-Hermitian Eigenvalue Problems . . . . . . . . . . . . . . . . . . 60

3.6.1 Basic Arnoldi Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.2 Variants of Arnoldi Methods . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Parallel Krylov Methods on Large-scale Supercomputers . . . . . . . . . . . . . . 62
3.7.1 Core Operations in Krylov Methods . . . . . . . . . . . . . . . . . . . . . 63
3.7.2 Parallel Krylov Iterative Methods . . . . . . . . . . . . . . . . . . . . . . 65
3.7.3 Parallel Implementation of Preconditioners . . . . . . . . . . . . . . . . . 65
3.7.4 Existing Softwares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Toward Extreme Computing, Some Correlated Goals . . . . . . . . . . . . . . . . 68

4 Sparse Matrix Generator with Given Spectra 73
4.1 Demand of Large Matrices with Given Spectrum . . . . . . . . . . . . . . . . . . 73
4.2 The Existing Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Test Matrix Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Matrix Generators in LAPACK . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Mathematical Framework of SMG2S . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Numerical Algorithm of SMG2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Matrix Generation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Our Parallel Impementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.1 Basic Implementation on CPUs . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 Implementation on Multi-GPU . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.3 Communication Optimized Implementation with MPI . . . . . . . . . . . 84

4.6 Parallel Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.2 Strong and Weak Scalability Evaluation . . . . . . . . . . . . . . . . . . . 85

ii



CONTENTS

4.6.3 Speedup Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 Accuracy Evaluation of the Eigenvalues of Generated Matrices with respect to

the Given Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7.1 Verification based on Shift Inverse Power Method . . . . . . . . . . . . . . 88
4.7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.7.3 Arithmetic Precision Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8 Package, Interface and Application . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8.1 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8.2 Interface to Other Programming Languages . . . . . . . . . . . . . . . . . 97
4.8.3 Interface to Scientific Libraries . . . . . . . . . . . . . . . . . . . . . . . . 98
4.8.4 GUI for Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Krylov Solvers Evaluation using SMG2S . . . . . . . . . . . . . . . . . . . . . . . 102
4.9.1 SMG2S workflow to evaluate Krylov Solvers . . . . . . . . . . . . . . . . . 102
4.9.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Unite and Conquer GMRES/LS-ERAM Method 105
5.1 Unite and Conquer Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Iterative Methods based on Unite and Conquer Approach . . . . . . . . . . . . . 106

5.2.1 Preconditioning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.2 Separation of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.3 Benefits of Separating Components . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Proposition of UCGLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.1 Selection of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Distributed and Parallel Implementation . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.1 Component Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2 Parameters Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.3 Distributed and Parallel Manager Engine Implementation . . . . . . . . . 120

5.5 Experiment and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.2 Parameters Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.3 Convergence Acceleration Evaluation . . . . . . . . . . . . . . . . . . . . . 129
5.5.4 Fault Tolerance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5.5 Impacts of Spectrum on Convergence . . . . . . . . . . . . . . . . . . . . 133
5.5.6 Scalability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 UCGLE to Solve Linear Systems in Sequence with Different Right-hand Sides143
6.1 Demand to Solve Linear Systems in Sequence . . . . . . . . . . . . . . . . . . . . 143
6.2 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.1 Seed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.2 Krylov Subspace Recycling Methods . . . . . . . . . . . . . . . . . . . . . 144

iii



CONTENTS

6.3 UCGLE to Solve Linear Systems in Sequence by Recycling Eigenvalues . . . . . 146
6.3.1 Relation between Least Squares Polynomial Residual and Eigenvalues . . 148
6.3.2 Eigenvalues Recycling to Solve Sequence of Linear Systems . . . . . . . . 148
6.3.3 Workflow to Recycle Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 UCGLE to Solve Linear Systems Simultaneously with Multiple Right-hand
Sides 157
7.1 Demand to Solve Linear Systems with Multiple RHSs . . . . . . . . . . . . . . . 157
7.2 Block GMRES Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2.1 Block Krylov Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2.2 Block Arnoldi Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.3 Block GMRES Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2.4 Cost Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2.5 Challenges of Exising Methods for Large-scale Platforms . . . . . . . . . . 163

7.3 m-UCGLE to Solve Linear Systems with Multiple Right-hand Sides . . . . . . . 163
7.3.1 Shifted Krylov-Schur Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3.2 Block Least Squares Polynomial for Multiple Right-hand Sides . . . . . . 165
7.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4 Implementation of m-UCGLE and Manager Engine . . . . . . . . . . . . . . . . . 167
7.4.1 Component Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.4.2 Asynchronous Communication . . . . . . . . . . . . . . . . . . . . . . . . 167
7.4.3 Implementation on Hetergeneous Platforms with GPUs . . . . . . . . . . 168
7.4.4 Checkpointing, Fault Tolerance and Reusability . . . . . . . . . . . . . . . 168
7.4.5 Practical Implementation of m-UCGLE . . . . . . . . . . . . . . . . . . . 169

7.5 Parallel and Numerical Performance Evaluation . . . . . . . . . . . . . . . . . . . 172
7.5.1 Hardware Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.5.2 Software Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.5.3 Test Problems Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.5.4 Specific Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5.5 Convergence Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5.6 Time Consumption Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 176
7.5.7 Strong Scalability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.5.8 Fault Tolerance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.5.9 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

iv



CONTENTS

8 Auto-tuning of Parameters 183
8.1 Auto-tuning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1.1 Different Levels of Auto-tuning . . . . . . . . . . . . . . . . . . . . . . . . 183
8.1.2 Selection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.2 UCGLE Auto-tuning by Automatic Selection of Parameters . . . . . . . . . . . . 187
8.2.1 Selection of Parameter for Auto-tuning . . . . . . . . . . . . . . . . . . . . 187
8.2.2 Multi-level Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.2.3 Heuristic and Auto-tuning Algorithm . . . . . . . . . . . . . . . . . . . . 190
8.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9 YML Programming Paradigm for Unite and Conquer Approach 197
9.1 YML Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.1.1 Structure of YML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.1.2 YML Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.1.3 Workflow and Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.1.4 YvetteML Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.1.5 YML Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
9.1.6 Multi-level Programming Paradigm: YML/XMP . . . . . . . . . . . . . . 203
9.1.7 YML Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

9.2 Limitations of YML for Unite and Conquer Approach . . . . . . . . . . . . . . . 206
9.2.1 Possibility Analysis to Implement UCGLE using YML . . . . . . . . . . . 206
9.2.2 Asynchronous Communications . . . . . . . . . . . . . . . . . . . . . . . . 208
9.2.3 Mechanism for Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.3 Proposition of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.3.1 Dynamic Graph Grammar in YML . . . . . . . . . . . . . . . . . . . . . . 208
9.3.2 Exiting Parallel Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.4 Demand for MPI Correction Mechanism . . . . . . . . . . . . . . . . . . . . . . . 214
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10 Conclusion and Perspective 217
10.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Bibliography 221

Construct the Optimal Ellipse 239

Scientific Communication 243

v



CONTENTS

vi



List of Figures

2.1 Peak performance of the fastest computer every year since the 1960s. [175] . . . . 8
2.2 No. 1 machine of HPL Performance each year since 1993. [209] . . . . . . . . . . 9
2.3 Computer architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Memory Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Parallel Computer Memory Architectures. . . . . . . . . . . . . . . . . . . . . . . 12
2.6 CPU vs GPU architectures [163]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Architecture and memory modes of Intel Knights Landing processor. . . . . . . . 15
2.8 The architecture of a sw26010 manycore processor. [95] . . . . . . . . . . . . . . 16
2.9 OpenMP fork-join Model [220]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Processing flow on CUDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 MPI point to point send and receive Model. . . . . . . . . . . . . . . . . . . . . . 19
2.12 Different modes of collective operations provided by MPI. . . . . . . . . . . . . . 20
2.13 Programmer’s and actual views of memory address in the PGAS languages. . . . 21
2.14 Workflow of Cholesky factorization for a 4×4 tile matrix on a 2×2 grid of proces-

sors. Figure by Bosilca et al. [41] . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.15 HPL Performance in Top500 by year. [209] . . . . . . . . . . . . . . . . . . . . . 25
2.16 Number of systems each year boosted by accelerators. [209] . . . . . . . . . . . . 26
2.17 Multi-level parallelism and hierarchical architectures in supercomputers. . . . . . 26
2.18 Top10 HPCG list in the November 2018. Source: https://www.top500.org . . . 27

3.1 Algebraic multigrid hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The action of A on Vm gives VmHm plus a rank-one matrix. . . . . . . . . . . . . 36
3.3 The polygon of samllest area containing the convex hull of λ(A). . . . . . . . . . 56
3.4 Communication Scheme of SpMV. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Classic Parallel implementation of Arnoldi reduction. . . . . . . . . . . . . . . . . 65

4.1 Nilpotent Matrix. p off-diagonal offset, d number of continuous 1, and n matrix
dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Matrix Generation. The left is the initial matrix M0 with given spectrum on the
diagonal, and the h lower diagonals with random values; the right is the generated
matrix Mt with nilpotency matrix determined by the parameters d and p. . . . . 81

4.3 Matrix generation pattern example. The initial and generated matrices have same
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



LIST OF FIGURES

4.4 The structure of a CPU-GPU implementation of SpGEMM, where each GPU is
attached to a CPU. The GPU is in charge of the computation, while the CPU
handles the MPI communication among processes. . . . . . . . . . . . . . . . . . 83

4.5 AM and MA operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 Strong and weak scaling results of SMG2S on Tianhe-2. A base 2 logarithmic

scale is used for X-axis, and a base 10 logarithmic scale for Y-axis. . . . . . . . . 87
4.7 Strong and weak scaling results of SMG2S on Romeo-2013. A base 2 logarithmic

scale is used for X-axis, and a base 10 logarithmic scale for Y-axis. . . . . . . . . 88
4.8 Strong and weak scaling results of SMG2S on Romeo-2013 with multi-GPUs. A

base 2 logarithmic scale is used for X-axis, and a base 10 logarithmic scale for
Y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 Weak scaling speedup comparison over PETSc-based SMG2S with 4 CPUs on
Romeo-2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 SMG2S verification workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.11 Spec1: Clustered Eigenvalues I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.12 Spec2: Clustered Eigenvalues II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.13 Spec3: Clustered Eigenvalues III. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.14 Spec4: Conjugate and Closest Eigenvalues. . . . . . . . . . . . . . . . . . . . . . . 93
4.15 Spec5: Distributed Eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.16 Home Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.17 Home Screen Plot Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.18 Home Screen Custom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.19 SMG2S Workflow and Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.20 Convergence Comparison using a matrix generated by SMG2S. . . . . . . . . . . 103

5.1 An overview of MERAM, in which three ERAM communicate with each other by
asynchronous communications [84]. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 An example of MERAM: MERAM(5,7,10) vs. ERAM(10) with af 23560.mtx ma-
trix. MERAM converges in 74 restarts, ERAM does not converge after 240 restarts
[84]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Cyclic relation of three computational components. . . . . . . . . . . . . . . . . . 111
5.4 Workflow of UCGLE method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5 GMRES Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6 ERAM Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.7 LSP Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.8 Convergence comparison of UCGLE method vs classic GMRES. . . . . . . . . . . 118
5.9 Creation of Several Intra-Communicators in MPI. . . . . . . . . . . . . . . . . . . 119
5.10 Communication and different levels parallelism of UCGLE method . . . . . . . . 121
5.11 Data sending scheme from one group of process to the other. . . . . . . . . . . . 121
5.12 Data receiving scheme from one group of process to the other. . . . . . . . . . . . 122
5.13 Evaluation of GMRES subspace size mg varying from 50 to 180. d = 10, lsa = 10,

freq = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

viii



LIST OF FIGURES

5.14 Evaluation of Least Squares polynomial degree d varying from 5 to 25, and mg =
100, lsa = 10, freq = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.15 Evaluation of Least Squares polynomial preconditioning applied times lsa varying
from 5 to 18, and mg = 100, d = 10, freq = 1. . . . . . . . . . . . . . . . . . . . 126

5.16 Evaluation of Least Squares polynomial frequency freq varying from 1 to 5, and
mg = 100, lsa = 10, d = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.17 Evaluation of eigenvalue number neigen, with and mg = 100, lsa = 10, d =
10, freq = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.18 Two strategies of large and sparse matrix generator by a original matrix utm300
of Matrix Market. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.19 MEG1: convergence comparison of UCGLE method vs conventional GMRES . . 130
5.20 MEG2: convergence comparison of UCGLE method vs conventional GMRES . . 131
5.21 MEG3: convergence comparison of UCGLE method vs conventional GMRES . . 131
5.22 MEG4: convergence comparison of UCGLE method vs conventional GMRES . . 132
5.23 Impacts of Spectrum on Convergence. . . . . . . . . . . . . . . . . . . . . . . . . 135
5.24 Impacts of Spectrum on Convergence. . . . . . . . . . . . . . . . . . . . . . . . . 136
5.25 Polygone region H with real part of eigenvalues positive and negative. . . . . . . 138
5.26 Scalability per iteration comparison of UCGLE with GMRES with or without

preconditioners on Tianhe-2 and Romeo-2013. A base 10 logarithmic scale is
used for Y-axis of (a); a base 2 logarithmic scale is used for Y-axis of (b). . . . . 139

6.1 GCR-DO workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2 Workflow of UCGLE to solve linear systems in sequence by recycling of eigenvalues.150
6.3 Mat1: time comparison for solving a sequence of linear systems. (a) shows the

solution time for 9 sequent linear systems; (b) shows the cases extracted from (a)
after obtaining the optimal parameters in UCGLE. . . . . . . . . . . . . . . . . . 153

6.4 Mat2: time comparison for solving a sequence of linear systems. (a) shows the
solution time for 9 sequent linear systems; (b) shows the cases extracted from (a)
after obtaining the optimal parameters in UCGLE. . . . . . . . . . . . . . . . . . 154

6.5 Mat3: time comparison for solving a sequence of linear systems. (a) shows the
solution time for 9 sequent linear systems; (b) shows the cases extracted from (a)
after obtaining the optimal parameters in UCGLE. . . . . . . . . . . . . . . . . . 155

7.1 Structure of block Hessenberg matrix. . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2 Manager Engine Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.3 Manager Engine Implementation for m-UCGLE. This is an example with three

block GMRES components, and two s-KS components, but these numbers can
be customized for different problems. . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.4 Different strategies to divide the linear systems with 64 RHSs into subsets: (a)
divide the 64 RHSs into to 16 different components of m-UCGLE, each holds 4
RHSs; (b) divide the 64 RHSs into to 4 different components of m-UCGLE, each
holds 16 RHSs; (c) One classic block GMRES to solve the linear systems with 64
RHSs simultaneously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

ix



LIST OF FIGURES

7.5 Comparison of iteration steps and consumption time (s) of convergence and on
CPUs. A base 10 logarithmic scale is used for Y-axis of Time. The × means the
test do not converge in acceptable number of iterations. . . . . . . . . . . . . . . 177

7.6 Strong scalability and speedup on CPUs and GPUs of solving time per iteration
for m-BGMRES(4)*16, m-UCGLE(4)*16, m-BGMRES(16)*4, m-UCGLE(16)*4,
BGMRES(64). A base 10 logarithmic scale is used for Y-axis of (a) and (c); a base
2 logarithmic scale is used for Y-axis of (b) and (d). . . . . . . . . . . . . . . . . 178

7.7 Fault Tolerance Evaluation of m-UCGLE. . . . . . . . . . . . . . . . . . . . . . . 179

8.1 Heuristic of lsa in UCGLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.2 Auto-tuning workflow for UCGLE. . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.3 Convergence Comparison for UCGLE with and without Auto-tuning. . . . . . . . 194

9.1 YML Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.2 YML workflow and dataflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.3 Workflow of Sum Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9.4 Tasks and workflow of m-UCGLE. . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.5 Exiting Parallel Branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

1 Two-point ellipse(a, c, d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
2 Three-way ellipse(a, c, d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

x



List of Tables

4.1 Comparison of memory and operation requirement between SMG2S and xLATME
in LAPACK for generating a large-scale matrix with a very small bandwidth. . . 81

4.2 Details for weak scaling and speedup evaluation. . . . . . . . . . . . . . . . . . . 87
4.3 Accuracy verification results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Krylov solvers evaluation by SMG2S with matrix row number = 1.0× 105, con-

vergence tolerance = 1× 10−10 (dnc = do not converge in 8.0× 104 iterations,
the solvers and preconditioners are provided by PETSc.) . . . . . . . . . . . . . . 104

5.1 Information used by preconditioners to accelerate the convergence. . . . . . . . . 109
5.2 Test Matrix from Matrix Market Collection. . . . . . . . . . . . . . . . . . . . . . 124
5.3 Test matrices information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 Summary of iteration number for convergence of 4 test matrices using SOR,

Jacobi, non preconditioned GMRES,UCGLE_FT(G),UCGLE_FT(G) and UC-
GLE: red × in the table presents this solving procedure cannot converge to accu-
rate solution (here absolute residual tolerance 1× 10−10 for GMRES convergence
test) in acceptable iteration number (20000 here). . . . . . . . . . . . . . . . . . . 129

5.5 Spectrum generation functions: the size of all spectra is fixed as N = 2000, i ∈
0, 1, · · · , N − 1 is the indices for the eigenvalues. . . . . . . . . . . . . . . . . . . 133

6.1 Mat1: iterative step comparison for solving a sequence of linear systems. . . . . . 152
6.2 Mat2: iterative step comparison for solving a sequence of linear systems. . . . . . 155
6.3 Mat3: iterative step comparison for solving a sequence of linear systems. . . . . . 156

7.1 Operation Cost [107]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2 Storage Requirement [107]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3 Extra cost of Block GMRES comparing with s times GMRES [107]. . . . . . . . 162
7.4 Extra cost of Block GMRES comparing with s times GMRES. [107] . . . . . . . 163
7.5 Memory and communication complexity comparison between m-UCGLE and

block GMRES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.6 Spectral functions to generate six test Matrices. . . . . . . . . . . . . . . . . . . . 174
7.7 Alternative methods for experiments, and the related number of allocated com-

ponent, RHS number per component and preconditioners. . . . . . . . . . . . . . 175



LIST OF TABLES

7.8 Iteration steps of convergence comparison (SMG2S generation suite SMG2S(1, 3, 4, spec),
relative tolerance for convergence test = 1.0× 10−8), Krylov subspace size mg =
40, lsa = 10, d = 15, freq = 1, dnc = do not converge in 5000 iteration steps). . 176

7.9 Consumption time (s) comparison on CPUs (SMG2S generation suite SMG2S(1, 3, 4, spec),
the size of matrices = 1.792 × 106, relative tolerance for convergence test =
1.0 × 10−8), Krylov subspace size mg = 40, lsa = 10, d = 15, freq = 1, dnc
= do not converge in 5000 iteration steps). . . . . . . . . . . . . . . . . . . . . . 176

8.1 Iteration steps and Time Comparison. . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2 lsai vs lsai for each restart in AT-UCGLE. . . . . . . . . . . . . . . . . . . . . . 195

xii



List of Algorithms

1 Fine-coarse-fine loop of MG method . . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Arnoldi Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Arnoldi Reduction with Modified Gram-Schmidt process . . . . . . . . . . . . . . 37
4 Arnoldi Reduction with Incomplete Orthogonalization process . . . . . . . . . . . 38
5 Basic GMRES method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6 Restarted GMRES method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7 Left-Preconditioned GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8 Right-Preconditioned GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9 Incomplete LU Factorization Algorithm . . . . . . . . . . . . . . . . . . . . . . . 49
10 AMG-Preconditioned GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
11 GMRES-DR(A,m, k, x0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12 Chebyshev Polynomial Preconditioned GMRES . . . . . . . . . . . . . . . . . . . 56
13 Least Square Polynomial Generation . . . . . . . . . . . . . . . . . . . . . . . . . 60
14 Hybrid GMRES Preconditioned by Least Squares Polynomial . . . . . . . . . . . 60
15 ERAM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
16 IRAM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
17 Krylov-Schur Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
18 xLATME Implementation in LAPACK . . . . . . . . . . . . . . . . . . . . . . . . 77
19 Matrix Generation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
20 Parallel MPI AM Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
21 Parallel MPI MA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
22 Shifted Inverse Power method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
23 Implementation of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
24 The seed-GMRES algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
25 GCRO-DR algorithm [169] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
26 UCGLE for sequences of linear systems . . . . . . . . . . . . . . . . . . . . . . . 151
27 Block Arnoldi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
28 Block GMRES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
29 Shifted Krylov-Schur Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
30 Update block GMRES residual by block Least Squares polynomial . . . . . . . . 166
31 s-KS Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
32 B-LSP Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
33 BGMRES Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



LIST OF ALGORITHMS

34 Manger of m-UCGLE with MPI Spawn . . . . . . . . . . . . . . . . . . . . . . . 173
35 GMRES Component Implementation for Auto-tuing UCGLE . . . . . . . . . . . 191
36 YML Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
37 YML Scheduler Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xiv



List of Symbols

The next list describes several symbols that will be later used within the body of the document

ADLB Asynchronous Dynamic Load Balancing

AI Artificial Intelligence

ALU Arithmetic Logic Unit

AMG Algebraic Multigrid

API Application Programming Interface

ARM Advanced RISC Machine

BiCGSTAB Biconjugate Gradient Stabilized Method

BLAS Basic Linear Algebra Subprograms

BLAS3 Basic Linear Algebra Subprograms - Level 3

CAF Coarray Fortran

CFD Computational Fluid Dynamics

CG Conjugate Gradient Method

COO Coordinate Matrix Format

CPE Compute-Processing Element

CPU Central Processing Unit

CSR Compressed Sparse Row Matrix Format

CUDA Compute Unified Device Architecture

DAG Directed Acyclic Graph

DIA Diagonal Matrix Format

DRAM Dynamic Radom-Acess Memory

DSP Digital Signal Processor



LIST OF ALGORITHMS

ERAM Explicitly Restarted Arnoldi Method

FDA Fisher Discriminant Analysis

FEM Finite element method

FLOPS Floating-point Operations Per Second

FPGA Field-Programmable Gate Array

GCRO-DR Generalized Conjugate Residual method with inner Orthogonalization
and Deflated Restarting

GMG Geometric Multigrid

GMRES Generalized Minimal Residual Method

GMRES-DR Deflated GMRES

GPDSP General-Purpose Digital Signal Processor

GPGPU General-Purpose Computing on Graphics Processing Units

GPU Graphic Processing Unit

GUI Graphic User Interface

HPC High-Performance Computing

HPCG High-Performance Conjugate Gradients

HPL High-Performance LINPACK

I/O Input/Output

IDL Interface Description Language

IDR Induced dimension reduction

ILU Incomplete LU Factorization

IRAM Implicitly Restarted Arnoldi Method

LAPACK Linear Algebra PACKage

MERAM Multiple Explicitly Restarted Arnoldi method

MG Multigrid method

MIC Many Integrated Cores

MINRES Minimal Residual

MPE Management Processing Element

xvi



LIST OF ALGORITHMS

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

OpenACC Open Accelerators

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OS Operating system

PCA Principal Component Analysis

PDE Partial Differential Equation

PETSc Portable, Extensible Toolkit for Scientific Computation

PGAS Partitioned Global Address Space

Pthreads POSIX Threads

QCD Lattice Quantum Chromodynamics

QMR Quasi Minimal Residual

RAM Random Access Memory

RHS Right-hand Sides

RISC Reduced Instruction Set Computer

ScaLAPACK Scalable Linear Algebra PACKage

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SLEPc Scalable Library for Eigenvalue Problem Computations

SMP Symmetric Multiprocessor

SOR Successive Overrelaxation

SpGEMM Sparse Matrix Matrix Multiplication

SPMD Single Program Multiple Data

SpMV Sparse Matrix Vector Multiplication

SSOR Symmetric Successive Overrelaxation

SVD Singular Value Decomposition

SWIG Simplified Wrapper and Interface Generator

xvii



LIST OF ALGORITHMS

TFQMR Transpose-free Quasi Minimal Residual

UMA Uniform Memory Access

XMP XcalableMP

xviii



Chapter 1
Introduction

1.1 Motivations

HPC provides much larger computing power that cannot achieve with the typical desktop com-
puters or workstations. At the early age, the HPC clusters are constructed in the UMA and
NUMA models, in which all the computing units are able to access the gobal memory. That
is the shared memory architecture of supercomputers, which provides a user-friendly parallel
programming paradigm for the users. With the evolution of supercomputers, the lack of scal-
ability between memory and CPUs made it difficult to construct much larger supercomputers.
Therefore, the distributed memory architecture was introduced for modern supercomputing, in
which each processor has its local memory. This architecture can scale the supercomputers with
millions cores and more. The parallel programming for users on distributed memory architec-
ture is much more complicated, since it is the users’ responsability to explicitly define the data
communication methologies between different computing units.

Nowadays, the exascale era of HPC will come soon, and the first exascale machine will be
available around 2020, in which, the researchers hope to make unprecedented advancements in
many fields of science and industry. In fact, the world’s most powerful machine now has al-
ready more than a million cores. With the introduction of GPUs and other accelerators on the
distributed memory architecture, HPC cluster systems will not only continue to expand the
number of compute nodes and CPU cores, but will also increase the heterogeneity of compo-
nents. This causes the trend of transition to multi- and many cores within compute nodes that
communicate explicitly through a faster interconnected network. The heterogeneity of comput-
ing units on supercomputers introduces hierarchical memory and communications. Applications
on these hierarchical supercomputers can be seen as the intersection of distributed and parallel
computing. Nevertheless, due to the lack of good scalability on extreme large clusters, only a
few applications may achieve sustainable performance.

Many scientific and industrial applications can be formulated as linear systems. A linear
system can be described by an operator matrix A, an input x and an output b. The linear
solvers which aim to solve these systems, are the kernels of many applications and softwares.
When the operator matrix A is sparse, a collection of Krylov subspace methods, such as GMRES,
CG, and BiCGSTAB, are widely used methods for solving linear systems. The Krylov subspace
methods approximate the exact solution of a linear system from a given initial guess vector
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through the Krylov subspace.
Linear systems are associated with the real-world applications, such as the fusion reactions,

earthquake, and weather forecast. As the complexity of applications increases, their dimension
grows rapidly. For example, linear systems for seismic simulations have more than 10 billions
unknowns. Therefore, Krylov subspace methods are deployed on supercomputing platforms to
solve such large-scale linear systems in parallel. Nowadays, with the increase of the number
of computing units and the heterogeneity of supercomputers, the communication of overall
reduction and global synchronization of Krylov subspace methods become the bottleneck, which
seriously damages their parallel performance. In detail, when a large-scale problem is solved by
Krylov subspace methods on parallel architectures, their cost per iteration becomes the most
significant concern, typically due to communication and synchronization overhead. Consequently,
large scalar products, overall synchronization, and other operations involving communications
among all cores have to be avoided. Parallel implementations of numerical algorithms should be
optimized for more local communications and less global communications. In order to efficiently
utilize the full computing power of such hierarchical computing systems, it is central to explore
novel parallel methods and models for solving linear systems. These methods should not only
accelerate convergence, but also have the ability to accommodate multiple granularity, multi-
level memory, improve fault tolerance, reduce synchronization, and promote asynchronization.

1.2 Objectives and Contributions

The subject of my dissertation is related to this research context, and it focuses on the proposi-
tion and analysis of a distributed and parallel programming paradigm for smart hybrid Krylov
methods targeting at the exascale computing. Since more than thirty years ago, different hy-
brid Krylov methods were introduced to accelerate the convergence of iterative solvers by using
the selected eigenvalues of systems, e.g., Chebyshev polynomial preconditioned hybrid ERAM
presented by Saad [182] to accelerate the convergence of ERAM to solve eigenvalue problems;
another implementation of hybrid Chebyshev Krylov subspace algorithm introuced by Elman et
al. [82], which uses the Arnoldi method to simultaneously compute the required eigenvalues; a
hybrid GMRES algorithm via a Richardson iteration with Leja ordering presented by Nachtigal
et al. [155] and an approach introduced by Brezinski et al. [44] for solving linear systems by the
combination of two arbitrary approximate solutions of two methods. The research of this thesis
relies on the Unite and Conquer approach proposed by Emad et al. [83], which is a model for
the design of numerical methods that combines different computational components by asyn-
chronous communication to work for the same objective. These different components can be
deployed on different platforms such as P2P, cloud and the supercomputer systems, or different
processors on the same platform. The ingredients of this dissertation on building a Unite and
Conquer linear solver come from previous research, e.g., the hybrid methods firstly implemented
by Edjlali et al. [79] on network of heterogeneous parallel computers to solve eigenvalue problem,
and a hybrid gmres/ls-arnoldi method firstly introduced by Essai et al. [86]. Unite and Con-
quer approach is suitable to design a new programming paradigm for iterative methods with
distributed and parallel computing on modern supercomputers.

Before investigating the Krylov subspace methods for solving linear systems, the first con-
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tribution of this work is to develop SMG2S1: a Scalable Matrix Generator with Given Spectra,
due to the importance of spectral distribution for the convergence of iterative methods. SMG2S
allows the generation of large-scale non-Hermitian matrices using user-given eigenvalues. These
generated matrices are also non-Hermitian and non-trivial, with very high dimensions. Recent
research on social networking, big data, machine learning, and AI has increased the necessity
for non-Hermitian solvers associated with much larger sparse matrices and graphs. For decades,
iterative linear algebra methods have been an important part of the overall computation time of
applications in various fields. The analysis of their behaviors is complex, and it is necessary to
evaluate their numerical and parallel performances to solve the extremely large non-Hermitian
eigenvalue and linear problems on parallel and/or distributed machines. Since the properties of
spectra have impacts on the convergence of iterative methods, it is critical to generate large
matrices with known spectra to benchmark them. The motivation for proposing SMG2S is also
that there is currently no set of test matrices with large dimensions and different kinds of spec-
tral characteristics to benchmark the linear solvers on supercomputers. Throughout my thesis,
SMG2S serves as an important tool for studying the performance of newly designed iterative
methods.

After the implementation of SMG2S, the second contribution of my dissertation is to design
and implement an distributed and parallel UCGLE (Unite and Conquer GMRES/LS-ERAM)
method based on the Unite and Conquer approach. UCGLE is proposed to solve large-scale non-
Hermitian linear systems with the reduction of global communications. Most hybrid and deflated
iterative methods are able to be transformed into distributed and parallel scheme based on Unite
and Conquer approach. However, this dissertation only implements UCGLE as an example,
which is based on a hybrid GMRES method preconditioned by Least Squares polynomial. UC-
GLE consists of three computational components: ERAM Component, GMRES Component, and
LSP (Least Squares Polynomial) Component. GMRES Component is used to solve the systems,
LSP Component and ERAM Component serve as the preconditioning part. The information
used to speed up convergence are the eigenvalues. The key feature of UCGLE is asynchronous
communication between these three components, which reduces the number of synchronization
points and minimizes global communication. There are three levels of parallelisms in UCGLE
method to explore the hierarchical computing architectures. The convergence acceleration of
UCGLE is similar to a normal hybrid preconditioner. The difference between them is that the
improvement of the former one is intrinsic to the methods. It means that in the conventional
hybrid methods, for each preconditioning, the solving procedure should stop and wait for the
temporary preconditioning procedure using the information from previous Arnoldi reduction
procedure. The latter’s asynchronous communication can cover the synchronization overhead.
Asynchronous communications between different computational components also improve the
fault tolerance and the reusability of this method. Separating the procedure for calculating the
preconditioning information (dominant eigenvalues in UCGLE) to be a component independent
of the solution procedure can improve the flexibility of preconditioning, and this leads to a
further improvement in numerical performance.

Moreover, both the mathematical model and the implementation of UCGLE have been ex-

1. https://smg2s.github.io
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tended to solve linear systems in sequence which share the same operator matrix but have
different RHSs. This extension is even suitable for a series of linear systems with different op-
erator matrices, which share a same portion of dominant eigenvalues. The eigenvalues obtained
by UCGLE in solving previous systems can be recycled, improved on the fly and applied to
construct new initial guess vectors for subsequent linear systems, which can achieve continu-
ous acceleration to solve linear systems in sequence. Numerical experiments on supercomputers
using different test matrices indicate a substantial decrease in both computation time and iter-
ation steps for solving sequences of linear systems, when approximate eigenvalues are recycled
to generate initial guess vectors.

Afterwards, since many problems in the field of science and engineering often require to solve
simultaneously large-scale linear systems with multiple RHSs, we proposed another extension of
UCGLE by combining it with block version of GMRES. This variant of UCGLE is implemented
with newly designed manager engine, which is capable of allocating multiple block GMRES
at the same time, each block GMRES solving the linear systems with a subset of RHSs and
accelerating the convergence using the eigenvalues approximated by eigensolvers. Dividing the
block linear system with multiple RHSs into subsets and solving them simultaneously using
different allocated linear solvers allow localizing calculations, reducing global communication,
and improving parallel performance.

An adaptive UCGLE is proposed with an auto-tuning scheme for selected parameters, that
have the influence on its numerical and parallel performance. This work was achieved by ana-
lyzing the impacts of different parameters on the convergence.

1.3 Outline

The dissertation is organized as follows. In Chapter 2, we will give the state-of-the-art of HPC,
including the modern computing architectures for supercomputers (e.g., CPU, Nvidia GPGPU,
and Intel MIC) and the parallel programming models (including OpenMP, CUDA, MPI, PGAS,
the task/graph based programming, etc.). Finally, in this chapter, we will discuss the challenges
of the upcoming exascale supercomputers that the whole HPC community faces.

Chapter 3 covers the existing iterative methods for solving linear systems and eigenvalue
problems, especially the Krylov Subspace methods. At the beginning, this chapter gives a brief
introduction of the stationary and non-stationary iterative methods. Then different Krylov Sub-
space methods will be presented and compared. Apart from the basic introduction to methods,
different preconditioners used to accelerate the convergence will be discussed, in particular the
Least Squares polynomial method for constructing UCGLE will be described in detail. The re-
lation between the convergence of Krylov subspace methods for solving linear systems and the
spectral information of operator matrix A will also be analyzed in this chapter. Finally, we give
an introduction of the parallel implementation of the Krylov subspace methods on modern dis-
tributed memory systems, then discuss the challenges of iterative methods facing on the coming
of exascale platforms, and finally summarize the recent efforts to fit the numerical methods to
much larger supercomputers.

In Chapter 4, we present the parallel implementation and numerical performance evalua-
tion of SMG2S. It is implemented on CPUs and multi-GPU platforms with specially optimized
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communications. Efficient strong and weak scaling performance is obtained on several super-
computers. We have also proposed a method to verify its ability to guarantee the given spectra
with high accuracy based on the Shift Inverse Power method. SMG2S is a released open source
software developed using MPI and C++11. Moreover, the packaging, the interfaces to other
programming languages and scientific libraries, and the GUI for verification are introduced. In
the final part, we give an example to evaluate the numerical performance of different Krylov
iterative methods using SMG2S .

In Chapter 5, the implementation of UCGLE based on the scientific libraries PETSc and
SLEPc for both CPUs and GPUs are presented. In this chapter, we describe the implementation
of components, the manager engine, and the distributed and parallel asynchronous communi-
cations. After implementation, the selected parameters, the convergence, the impact of spectral
distribution, the scalability and fault tolerance are evaluated on several supercomputers.

Chapter 6 describes the extension of UCGLE for solving linear systems in sequence with
different RHSs by recycling the eigenvalues. We give a survey on existing algorithms, including
the seed and Krylov subspace recycling methods, and then develop the mathematical model
and manager engine of UCGLE to solve linear systems in sequence. This chapter also shows the
results of experiments on different supercomputers.

In Chapter 7, the variant of UCGLE to solve simultaneously linear systems with multiple
RHSs is presented, which is denoted as m-UCGLE. This chapter introduces the existing block
methods for solving linear systems with multiple RHSs, and then analyzes the limitations of
block methods on large-scale platforms. After that, a mathematical extension of Least Squares
polynomial for multiple RHSs is given, and then a special novel manager engine is developed.
This engine allows allocating a user-defined number of computational components at the same
time. This special version of UCGLE is implemented with the linear and eigen solvers provided
by the Belos and Anasazi packages of Trilinos. Finally, we give the experimental results on
large-scale machines.

UCGLE is a hybrid method with the combination of three different numerical methods. Thus
the auto-tuning of different parameters is very important. In Chapter 8, we propose the strategy
of auto-tuning for selected parameters in UCGLE. The auto-tuning heuristic is able to select
the optimal parameter value for each restart of GMRES Component at runtime. Experimental
results demonstrate the effectiveness of this auto-tuning scheme.

All Unite and Conquer methods, including UCGLE, are able to use the workflow/task-
based programming runtimes to manage the fault tolerance, load balance and asynchronous
communication of signals, arrays and vectors. In Chapter 9, we give a glance at the YML
framework, and then analyze the workflow of UCGLE and the limitations of YML for Unite
and Conquer approach. Finally, we propose the solutions for YML syntax and implementation,
including the dynamic graph grammar, and the mechanism of exiting a parallel branch.

In Chapter 10, we summarize the key results obtained in this thesis and present our con-
cluding remarks. Finally, we suggest some possible paths to future research.
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Chapter 2
State-of-the-art in High-Performance
Computing

High-Performance Computing most generally refers to the practice of aggregating com-
puting power in a way that provides much higher performance than typical desktop
computers or workstations to solve large-scale problems in science, engineering, or busi-
ness. HPC is one of the most active areas of research in Computer Science because it is
strategically essential to solve the large challenge problems that arise in scientific and in-
dustrial applications. The development of HPC relies on the efforts from multi-disciplines,
including the computer architecture design, the parallel algorithms, and programming
models, etc. This chapter gives the state-of-the-art of HPC: its history, modern comput-
ing architectures, and parallel programming models. Finally, with the advent of exascale
supercomputers, we discuss the key challenges that the entire HPC community faces.

2.1 Timeline of HPC

The terms high-performance computing and supercomputing are sometimes used interchangeably.
A supercomputer is a computing platform with a high level of performance, that consists of a
large number of computing units connected by a local high-speed computer bus. HPC technology
is implemented in a variety of computationally intensive applications in the multidisciplinary
fields, including biosciences, geographical simulation, electronic design, climate research, neu-
roscience, quantum mechanics, molecular modeling, nuclear fusion, etc. Supercomputers were
introduced in the 1960s, and the performance of a supercomputer is measured in FLOPS. Since
the first generation of supercomputers, the megascale performance was reached in the 1970s, and
the gigascale performance was passed in less than decade. Finally, the terascale performance was
achieved in the 1990s, and then the petascale performance was crossed in 2008 with the instal-
lation of IBM Roadrunner at Los Alamos National Laboratory in the United States. Fig. 2.1
shows the peak performance of the fastest computer every year since the 1960s.

Since 1993, the TOP500 project1 ranks and details the 500 most powerful supercomputing

1. https://www.top500.org
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Figure 2.1 – Peak performance of the fastest computer every year since the 1960s. [175]

systems in the world and publishes an updated list of the supercomputers twice a year. The
project aims to provide a reliable basis for tracking and detecting trends in HPC and bases
rankings on HPL [76], a portable implementation of the high-performance LINPACK benchmark
written in Fortran for distributed-memory computers. HPL is a software package that solves a
(random) dense linear system in double precision (64 bits) arithmetic on distributed-memory
computers. The algorithm used by HPL can be summarized by the following keywords:

• two-dimensional block-cyclic data distribution;

• right-looking variant of the LU factorization with row partial pivoting featuring multiple
look-ahead depths;

• recursive panel factorization with pivot search and column broadcast combined;

• various virtual panel broadcast topologies;

• bandwidth reducing swap-broadcast algorithm;

• backward substitution with look-ahead of depth 1.

According to the latest Top500 list in November 2018, the fastest supercomputer is the
Summit of the United States, with a LINPACK benchmark score of 122.3 PFLOPS. Sunway
TaihuLight, Sierra and Tianhe-2A follow closely the Summit, with the performance respectively
93 PFLOPS, 71.6 PFLOPS, and 61.4 PFLOPS. Fig. 2.2 gives the No. 1 machine of HPL per-
formance every year since 1993.

The next barrier for the HPC community to overcome is the exascale computing, which refers
to the computing systems capable of at least one exaFLOPS (1018 floating point operations per
second). This capacity represents a thousandfold increase over the first petascale computer which
came into operation in 2008. The world first exascale supercomputer will be launched around
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2020. China’s first exascale supercomputer will be put into use by 2020. First exascale computer
of United States is planned to be built by 2021 at Argonne National Laboratory. The post-K
announced by Japan, public services will begin around 2021, and the first exascale supercomputer
in Europe will appear around 2022. Exascale computing would be considered as a significant
achievement in computer engineering, for it is estimated to be the order of processing power of
the human brain at the neural level.

Considering the development of HPC, there are always two questions proposed by the users
who want to develop applications on supercomputers:

• How to build such powerful supercomputers?

• How to develop the applications to effectively utilize the total computational power of a
supercomputer?

In order to answer the above two questions, firstly, Section 2.2 outlines the modern computing
architectures for building supercomputers. Different parallel programming models for developing
applications on supercomputers are given in Section 2.3.

2.2 Modern Computing Architectures

Different architectures of computing units are designed to build the supercomputers. In this
section, the state-of-the-art of modern CPUs and accelerators will be reviewed.

2.2.1 CPU Architectures and Memory Access

The development of modern CPUs is based on the Von Neumann architecture. The proposition
of this computer architecture is based on the description by the mathematician and physicist
John von Neumann and others in the First Draft of a Report on the EDVAC [214]. All the
modern computing units are related to this concept, which consists of five parts:
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Figure 2.3 – Computer architectures.

• A processing unit that contains an arithmetic logic unit and processor registers;

• A control unit that contains an instruction register and program counter;

• Memory that stores data and instructions;

• External mass storage;

• Input/output mechanisms.

As shown in Fig. 2.3a, the Von Neumann architecture uses the shared bus between the
program memory and data memory, which leads to its bottleneck. Since the single bus can only
access one of the two types of memory at a time, the data transfer rate between the CPU and
memory is rather low. With the increase of CPU speed and memory size, the bottleneck has
become more of a problem.

The Harvard architecture is another computer architecture that physically separates the
storage and bus of the instructions and data. As shown in Fig. 2.3b, the limitation of a pure
Harvard architecture is that the mechanisms must be provided to load the programs to be
executed into the instruction memory and load any data onto the input memory. Additionally,
read-only technology of the instruction memory allows the computer to begin executing a pre-
loaded program as soon as it is powered up. The data memory will now be in an unknown state,
so it is not possible to provide any kind of pre-defined data values to the program.

Today, most processors implement the separate pathways like the Harvard architecture to
support the higher performance concurrent data and instruction access, meanwhile loosen the
strictly separated storage between code and data. That is named as the Modified Harvard archi-
tecture (shown as Fig. 2.3c). This model can be seen as the combination of the Von Neumann
architecture and Harvard architecture.

Modified Harvard architecture provides a hardware pathway and machine language instruc-
tions so that the contents of the instruction memory can be read as if they were data. Initial data
values can then be copied from the instruction memory into data memory when the program
starts. If the data is not to be modified, it can be accessed by the running program directly
from instruction memory without taking up space in the data memory. Nowadays, most CPUs
have Von Neumann like unified address space and separate instruction and data caches as well
as memory protection, making them more Harvard-like, and so they could be classified more as
modified Harvard architecture even using unified address space.
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The most common modification of modified Harvard architecture for modern CPUs is to build
a memory hierarchy with a CPU cache separating instructions and data based on response time.
As shown in Fig. 2.4, the top of the memory hierarchy which provides the fastest data transfer
rate are the registers. Target data with arithmetic and logic operations will be temporarily held
in the register to perform the computations. The number of registers is limited due to the cost.
CPU cache is the hardware that the CPU uses to reduce the average cost (time or energy) of
accessing data from main memory. A cache is a smaller, faster memory, closer to a processor
core, which stores copies of the data from frequently used main memory locations. Most CPUs
have different independent caches, including instruction and data caches, where data cache is
usually organized as a hierarchy of more cache levels. The lowest level is main memory, which is
made of DRAM with the lowest bandwidth and the highest latency compared to registers and
caches.

2.2.2 Parallel Computer Memory Architectures

The parallel computer memory architectures can be divided into shared and distributed memory
types. Shared memory parallel computers come in many types, but typically have the ability to
access all of the memory as a global address space for all processors. Multiple processors can
operate independently but share the same memory resources. Changes in a memory location
affected by one processor are visible to all other processors. Historically, shared memory ma-
chines have been classified as UMA (shown as 2.5a) and NUMA (shown as 2.5b), based upon
memory access times. UMA is most commonly represented today by SMP machines with identi-
cal processors. These processors require the same memory access time. NUMA is often made by
physically linking two or more SMPs, one SMP can directly access memory of another SMP. Not
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all processors have equal access time to all memories, memory access across the link is slower.
The advantages of shared memory architectures are:

(1) global address space provides a user-friendly programming perspective to memory;

(2) due to the proximity of the memory to the CPU, data sharing between tasks is fast and
uniform.

The disadvantages are:

(1) lack of scalability between memory and CPUs, in fact, adding more CPUs can geomet-
rically increase traffic on the shared memory-CPU path, and for cache coherent systems,
geometrically increase traffic associated with cache/memory management;

(2) programmers’ responsibility for synchronization operations that ensure correct access of
global memory. It is impossible to construct today’s multi-petaflop supercomputers with
hundreds of thousands of CPU-cores.

The distributed-memory architecture was then proposed, which takes many multicore com-
puters and connects them using a network. With a fast enough network, we can in principle
extend this approach to millions of CPU cores and higher. As shown in Fig. 2.5c, inside dis-
tributed memory system, processors have their local memory. Memory addresses in one processor
do not map to another processor, so there is no concept of global address space across all pro-
cessors. Because each processor has its local memory, it operates independently. Changes made
to its local memory do not affect the memory of other processors. Therefore, the concept of
cache coherency does not apply. When a processor needs to access data in another processor,
it is usually the task of programmers to explicitly define how and when data is communicated.
Synchronization between tasks is likewise also programmers’ responsibility. The advantages of
distributed memory architecture are:
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(1) Memory is scalable with the number of processors. The number of processors and the size
of memory increases proportionally;

(2) Each processor can quickly access its memory without interference, and there is no overhead
incurred in trying to maintain global cache coherency;

(3) Cost-effectiveness.

The disadvantages are:

(1) the programmers are responsible for many of the details associated with data communi-
cation between processors;

(2) mapping existing data structures based on global memory to the distributed memory
organization can be difficult;

(3) data that resides on the remote node requiring longer access time than the local node.

Nowadays, the largest and fastest computers in the world employ both shared and distributed
memory architectures (shown as Fig. 2.5d). The shared memory component can be a shared
memory machine and/or GPU. The distributed memory component is a network of multiple
shared memory/GPU machines, which know only about their memory - not the memory on
another computer. Therefore, network communications are required to move data from one
machine to another. The current trend indicates that this type of memory architecture will
continue to dominate and grow at HPC for the foreseeable future.

In a word, shared-memory systems are challenging to build but easy to use and are ideal
for laptops and desktops. Distributed-shared memory systems are easier to build but harder
to use, including many shared-memory nodes with their separate memory. Distributed-shared
memory systems introduce much more hierarchical memory and computing with multi-level
of parallelism. The critical advantage of distributed-shared memory architectures is increasing
scalability, and the important drawback is the added complexity of the program.

2.2.3 Nvidia GPGPU

GPGPUs use GPUs, which typically only process computer graphics calculations to perform
more general computation of complex applications that are traditionally processed by CPUs.
Modern GPUs are very efficient at manipulating computer graphics and image processing. Due
to its special features, GPGPU can be used as an accelerator for CPUs to improve the overall
performance of the computer. Nowadays, it is becoming increasingly common to use GPGPU to
build supercomputers. According to the latest list of the Top500 in November 2018, five of the
top ten supercomputers in the world use GPGPUs.

As shown in Figure 2.6, the architectures of CPU and GPU are different: the CPU has a
small number of complex cores and massive caches while the GPU has thousands of simple cores
and small caches. The massive ALUs of GPU are simple, data-parallel, multi-threaded which
offer high computing power and large memory bandwidth. In brief, graphics chips are designed
for parallel computations with lots of arithmetic operations, while CPUs are for general complex
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Figure 2.6 – CPU vs GPU architectures [163].

applications. The host character of CPU requires complex kernels and deep pipelines to deal with
all kinds of operations. It usually runs at a higher frequency and supports branch prediction.
The GPU only focuses on simple data-parallel operations thus the pipeline is shallow. The same
instructions are used on large datasets in parallel with thousands of hardware cores, so the
branch prediction is not necessary, and important arithmetic operations instead of caching hide
memory access latency. GPGPU is also regarded as a powerful backup to overcome the power
wall.

Introduced in mid-2017, the newest Tesla V100 card can deliver 7.8 TFLOPS in double-
precision floating point and 15.7 TFLOPS in single-precision floating point.

2.2.4 Intel Many Integrated Cores

The performance improvement of processors comes from the increasing number of computing
units within the small chip area. Thanks to advanced semiconductor processes, more transis-
tors can be built in one shared-memory system to perform multiple operations simultaneously.
From a programmer’s perspective, this can be realized in two ways: different data or tasks exe-
cute in multiple individual computing units (multi-thread) or long uniform instruction decoders
(vectorization).

In 2013, Intel officially first revealed the latest MIC codenamed Knights Landing (KNL), its
organization is given as Fig. 2.7a. Being available as a coprocessor like previous boards, KNL
can also serve as a self-boot MIC processor that is binary compatible with standard CPUs
and boot standard OS. These second generation chips could be used as a standalone CPU,
rather than just as an add-in card. Another key feature is the on-card high-bandwidth memory
which provides high bandwidth and large capacity to run large HPC workloads. Due to the
memory wall, memory bandwidth is one of the common performance bottlenecks in computing
applications. KNL implements a two-level memory system to address this issue. Shown as Fig.
2.7b, it provides three types of memory modes, including the cache mode, the flat mode and the
hybrid mode. The main difference between Xeon Phi and a GPGPU like Nvidia Tesla is that
Xeon Phi with x86-compatible cores can run software originally targeted at a standard x86 CPU
with less modification.
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(a) KNL organization [177]. (b) KNL cache modes [223].

Figure 2.7 – Architecture and memory modes of Intel Knights Landing processor.

2.2.5 RISC-based (Co)processors

A RISC is such a processor that has a small set of simple and general instructions instead of
a bunch of complex and specialized instructions. A type of well-known RISC-based computing
units are the ARM architecture processors. In the 21st century, the use of smartphones and
tablet computers provides a broad user base for RISC-based systems. Since the installation of
Sunway TaihuLight2, RISC processors also start to be used in supercomputers. RISC-based
supercomputers enable low energy consumption per core and cheaper chips since they do not
contain complex instruction sets. In this section, we list two types of RISC based (co)processors
for the supercomputers.

The first type of processor is sw26010, which is a 260-core manycore processor [95] designed
by the National High-Performance Integrated Circuit Design Center in Shanghai. It implements
the Sunway architecture, a 64-bit RISC architecture designed by China. As shown in Fig. 2.8, the
sw26010 has four clusters of 64 CPEs which are arranged in an eight-by-eight array. The CPEs
support SIMD instructions and are capable of performing eight double-precision floating-point
operations per cycle. Each cluster is accompanied by a more conventional general-purpose core
called the MPE that provides supervisory functions. Each cluster has its own dedicated DDR3
SDRAM controller and a memory bank with its own address space. The processor runs at a
clock speed of 1.45.

Matrix-2000 [219] is a 64-bit 128-core many-core processor designed by NUDT and introduced
in 2017. This chip was specifically designed as an accelerator for China’s Tianhe-2A supercom-
puter installed in the National Supercomputing Center in Guangzhou3 to upgrade and replace

2. http://www.nsccwx.cn
3. http://www.nscc-gz.cn
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Figure 2.8 – The architecture of a sw26010 manycore processor. [95]

the aging Intel Knights Corner accelerators. The Matrix-2000 has 128 RISC cores operating at
1.2 GHz, reaching 2.46 and 4.92 TFLOPS respectively for double-precision and single-precision
floating point, with a peak power dissipation of 240W. The Matrix-2000 consists of 128 cores,
eight DDR4 memory channels, and 16 PCIe lanes. The chip consists of four supernodes consisting
of 32 cores each operating at 1.2 GHz with a peak power dissipation of 240 Watts.

The applications and codes should also be implemented and optimized for modern RISC pro-
cessors, e.g., Daydé et al. introduced efficient code design on high-performance RISC processors
for both full and sparse linear solvers [65], and they presented also a blocked implementation of
level 3 BLAS for RISC processors [66].

2.2.6 FPGA

FPGA is an integrated circuit designed to be configured with an array of programmable logic
blocks and reconfigurable interconnects. The FPGA architecture provides the flexibility to cre-
ate a massive array of application-specified ALUs that enable both instruction and data-level
parallelism. FPGA has very high energy efficiency because it requires the low frequency and
unused computing blocs do not consume energy. FPGAs can serve as accelerators on the super-
computers, e.g., Paderborn Center for Parallel Computing4 installed several prototype hybrid
machines by combining FPGAs with Intel Xeon CPUs. FPGAs are by no means anything new

4. https://pc2.uni-paderborn.de
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in the HPC sector – ten years ago they were all the rage but proved very difficult to program,
and now they are coming back in vogue because the C, C++ and Fortran applications for these
devices have become easier.

2.3 Parallel Programming Model

After introducing the hardware architectures, this section describes the parallel programming
models for developing applications on supercomputers. Most modern supercomputers are of dis-
tributed shared memory architectures that introduce multi-level parallel programming models,
including shared memory/thread-level parallel models, distributed memory/process-level paral-
lel models, PGAS models, and task/workflow-based parallelism models.

2.3.1 Shared Memory Level Parallelism

In this section, we introduce various runtimes developed to support the shared memory paral-
lelism of different computing architectures.

2.3.1.1 OpenMP

OpenMP [62] is an API that supports multi-platform shared memory parallel programming in
C, C++, and Fortran. OpenMP supports most platforms, instruction set architectures, and op-
erating systems. It consists of a set of compiler directives, library routines, and environment
variables. OpenMP provides the ability to progressively parallelize serial programs by inserting
specific directives. The compiler can ignore these directives, and the application can be exe-
cuted in a sequential way when target machines do not support OpenMP. OpenMP is designed
for multi-processor/core, shared memory machines. The underlying architecture can be shared
memory UMA or NUMA. OpenMP programs accomplish parallelism exclusively through the
use of threads.

Figure 2.9 – OpenMP fork-join Model [220].

As shown in Fig. 2.9, OpenMP uses the fork-join model to support parallel execution. All
OpenMP programs begin with a single process that continues until sequentially the first parallel
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region construct is encountered. Then this thread creates a team of parallel threads and assigns
the workload to them and make them work at the same time. When the team threads complete
the statements in the parallel region construct, they are synchronized and terminated, leaving
only the main thread. The new released OpenMP begins to support task scheduling strategies,
the SIMD directives for high-level vectorization and the offload directives for heterogeneous
systems.

2.3.1.2 CUDA

CUDA [164] is a parallel programming platform and application programming interface model
created by Nvidia. It allows software developers and engineers to perform general processing
using GPUs that support CUDA. The CUDA software layer provides direct access to GPU’s
virtual instruction set and parallel computational elements to execute the compute kernels. The
CUDA platform is designed to work with programming languages such as C, C++, and Fortran.
This accessibility makes it easier for parallel programming specialists to use GPU resources. Fig.
2.10 gives the four steps of processing flow on CUDA:

(1) Copy the processing data from main memory to memory for GPU;

(2) Load the executable from CPU to GPUs;

(3) Execute the operations in each core in parallel;

(4) Copy back the results from memory for GPU to the main memory.

CPU Memory CPU

GPUGPU Memory

Step 1 Step 4 Step 2

Step 3

Figure 2.10 – Processing flow on CUDA.

2.3.1.3 OpenCL

OpenCL [152] is a framework for writing programs that execute across heterogeneous plat-
forms consisting of CPUs, GPUs, DSPs, FPGAs, and other processors or hardware accelerators.
OpenCL specifies programming languages (based on C99 and C++11) for programming these
devices and APIs to control the platform and execute programs on the compute devices. OpenCL
provides a standard interface for parallel computing using task- and data-based parallelism.
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2.3.1.4 OpenACC

OpenACC [218] is a programming standard for parallel computing developed by Cray, CAPS,
Nvidia and PGI. The standard is designed to simplify parallel programming of heterogeneous
CPU/GPU systems. As in OpenMP, the programmer can annotate C, C++ and Fortran source
code to identify the areas that should be accelerated using compiler directives and additional
functions. Like OpenMP 4.0 and newer, OpenACC can target both the CPU and GPU archi-
tectures and launch computational code on them.

2.3.1.5 Kokkos

Kokkos [81] implements a programming model in C++ for writing performance portable appli-
cations for all major HPC platforms. To this end, it provides abstractions for parallel executions
of code and data management. Kokkos is designed for complex node architectures with N-
level memory hierarchies and multiple types of execution resources. It currently uses OpenMP,
Pthreads, and CUDA as backend programming models.

2.3.2 Distributed Memory Level Parallelism

In the distributed memory platforms, each processor owns a private memory that cannot be
accessed from other processors. The only way for processors to exchange data is to use explicit
communication to send and receive messages.

2.3.2.1 Message Passing Interface

MPI [104] is a standardized and portable message-passing standard designed by a group of
researchers from academia and industry to support a variety of parallel computing architectures.
MPI provides basic users with an easy-to-use, portable interface that is powerful enough to
allow programmers to use the high-performance messaging operations available on advanced
computers. Most MPI implementations consist of a specific set of routines that can be called
directly from C, C++, Fortran, and any languages that interface with these libraries. MPI
library functions include, but are not limited to, basic point-to-point send/receive operations,
aggregate functions involving communication between all processes, synchronous nodes (barrier
operations), one-way communication, dynamic process management, I/O, and so on.

data data

CPU 1 CPU 2
Process 0 Process 1

Send Receive

Figure 2.11 – MPI point to point send and receive Model.
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Figure 2.12 – Different modes of collective operations provided by MPI.

As shown in Fig. 2.11, point-to-point operations support the communication in both syn-
chronous and asynchronous ways. Point-to-point operations, as these are called, are particularly
useful in irregular communication, for example, a master-slave architecture in which the master
sends new task data to a slave whenever the prior task is completed. MPI supports mechanisms
for both blocking and non-blocking point-to-point communication mechanisms, as well as the
so-called ’ready-send’ mechanism whereby a send request can be made only when the matching
receive request has already been made.

Collective functions (shown as Fig. 2.12) involve communication among all processes in a
process group (which can mean the entire process pool or a program-defined subset). A typical
function is the MPI_Bcast call (short for "broadcast"). This function takes data from one node
and sends it to all processes in the process group. A reverse operation is the MPI_Reduce call,
which takes data from all processes in a group, operates (such as summing), and stores the
results on one node. MPI_Reduce is often useful at the start or end of a largely distributed
calculation, where each processor operates on the part of the data and then combines it into
a result. Fig. 2.12 gives six modes of collective communications, including broadcast, scatter,
gather, reduction, all gather and all reduction.

In modern computing platforms with multiple shared-memory nodes, the shared memory
programming models such as OpenMP and message passing programming such as MPI can be
considered as complementary programming approaches, and can be used together in a hybrid
way. This hybrid model is called MPI+X.
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2.3.3 Partitioned Global Address Space

In computer science, PGAS is a parallel programming model. Shown as Fig. 2.13, it assumes
a global memory address space that is logically partitioned and a portion of it is local to each
process, thread, or processing element. The novelty of PGAS is that the portions of shared mem-
ory space may have an affinity for a particular process, thereby exploiting locality of reference.
There are different implementation based on PGAS model, such as Unified Parallel C, CAF,
Chapel, X10, UPC++, DASH, XcalableMP, etc. PGAS attempts to combine the advantages of
an SPMD programming style for distributed memory systems (as employed by MPI) with the
data referencing semantics of shared memory systems. This is more realistic than the traditional
shared memory approach of one flat address space because hardware-specific data locality can
be modeled in the partitioning of the address space.

Process 1

Global Pointer

Process 2 Process 3

Programmer’s View

Process 1

Base Address

Actual View

Process 2

Base Address

Process 3

Base Address

Figure 2.13 – Programmer’s and actual views of memory address in the PGAS languages.

2.3.3.1 XcalableMP

XcalableMP [131] is a PGAS language extension of C and Fortran for parallel programming on
distributed memory systems that helps users reduce programming efforts. XcalableMP provides
two programming models.

• Global view model, which supports typical parallelization based on the data and task
parallel paradigm, and enables parallelizing the original sequential code using minimal
modification with simple, OpenMP-like directives. In the global view model, users specify
the collective behaviors of nodes in the target program to parallelize them. The compiler
is responsible for doing this when the user specifies the data and how the calculations
are distributed across the nodes. This model is suitable for regular applications, such as
domain-decomposition problems, where each node works in a similar way.

• Local view model, which allows using CAF-like expressions to describe inter-node commu-
nication. In the local-view mode, users specify the behavior of each node, just like MPI.
Communications in this model can be specified in a one-sided manner based on CAF. This
model is suitable for applications where each node performs a different task.
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Figure 2.14 – Workflow of Cholesky factorization for a 4×4 tile matrix on a 2×2 grid of proces-
sors. Figure by Bosilca et al. [41]

2.3.4 Task/Graph Based Parallel Programming

As the complexity of applications on supercomputers increases, it becomes increasingly diffi-
cult for developers to maintain parallel code on modern computing architectures. The task/-
graph based parallel programming models are proposed to express the task parallelism and data
dependencies of complex codes. An application can be divided temporally and spatially into
inter-dependent tasks of different natures. A good scheduler can manage the complex tasks effi-
ciently across a large number of cores on the supercomputing systems, e.g., a parallelization on
an MIMD computer with real-time scheduler was introduced with Gauss-Jordan method as an
example [170]. Fig. 2.14 gives a workflow of Cholesky factorization for a 4×4 tile matrix on a
2×2 grid of processors proposed by Bosilca et al. [41].

The concept of granularity is introduced to describe the amount of work or task that can be
performed before communicating or synchronizing with others. The choice of grain size is impor-
tant for the parallel applications. In fact, for coarse-grained tasks, there may not be enough par-
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allel execution. In contrast, a large number of fine-grained tasks will cause unnecessary parallel
overhead. Modern applications on supercomputers should consider multi-levels of granularities to
accommodate hierarchical systems. In this section, we list several well-known task/graph based
parallel programming runtime environments that were developed to support coarse-grained or
fine-grained tasks.

2.3.4.1 StarPU

StarPU5 [17] is a task programming library for hybrid architectures with shared memory. The
application provides algorithms and constraints both the CPU/GPU implementations of tasks
and the graphs of tasks, using either the StarPU’s high-level GCC plugin pragmas, StarPU’s
rich C/C++ API, or OpenMP pragmas. StarPU handles runtime issues: task dependencies, opti-
mized heterogeneous scheduling, optimized data transfer/replication between main and discrete
memories, and optimized cluster communication.

2.3.4.2 OmpSs

OmpSs6 is a task-based programming environment which covers both heterogeneous and homo-
geneous architectures. Its target is the programming of multi-GPU or many-core architectures
and offers asynchronous parallelism in the execution of the tasks [78]. OmpSs is built on top of
Mercurium compiler [23] and Nanos++ runtime system [172]. Nanos++ is able to schedule and
run these tasks, taking care of the required data transfers and synchronizations on the accurate
resources. Tasks in OmpSs are annotated with data directionality clauses that specify the use
of data, and how it will be used (read, write or read & write). Dependencies are then deduced
at runtime from user-supplied annotations of data accesses which are translated into a format
that can be exploited by Nanos++. Nanos++ proposes several scheduling policies that define
how ready tasks are executed.

2.3.4.3 YML

YML7 [71, 72, 69] was introduced and designed in May 2000 by Serge Petiton and Olivier
Delannoy, while Olivier Delannoy was beginning his Master internship at the CNRS laboratory
Application du Calcul Scientific Intensif (ACSI) of the National CNRS Supercomputer Center
IDRIS in Saclay. A first prototype was developed by Olivier Delannoy during his intership and
evaluated on some block dense linear algebra methods [70]. Since 2001, YML is developed,
improved, and evaluated on several methods and platforms (including P2P platforms, Grids,
cloud and supercomputing) by researchers worldwide. The website and the main team are now
hosted by the University of Versailles and led by Nahid Emad. International collaborations with
researchers from Japan and Germany are supported by the national agencies of these countries.
The French side is led by Serge Petiton.

YML can describe a complex parallel application regardless of the execution platform. The
YvetteML language is used to express the task graph of applications. The nodes of the graph are

5. http://starpu.gforge.inria.fr
6. https://pm.bsc.es/ompss
7. http://yml.prism.uvsq.fr
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the tasks described by components, and the edges correspond to dependencies or communica-
tions. The components are written in XML. Each component implementation can contain C++,
XMP-C, XMP-FORTRAN or other code. Each component implementation can be expressed in
parallel with finer grain. The combination of YML, XMP and StarPU provides a three-level
parallelism programming paradigm to develop applications on supercomputers. YML will be
discussed in detail in Chapter 9.

2.3.4.4 Swift

Swift8 [221] is a data-flow oriented coarse-grained scripting language that supports dataset typing
and mapping, dataset iteration, conditional branches, and procedural composition. Swift scripts
are primarily concerned with processing (possibly large) collections of data files, by invoking
programs to do that processing. Swift handles execution of such programs at remote sites by
choosing sites, handling the staging of input and output files to and from the chosen sites and
remote execution of programs. Swift/T is an implementation of the Swift language for HPC,
which translate the Swift script into an MPI program that uses the Turbine and ADLB runtime
libraries9 for highly scalable dataflow processing over MPI, without single-node bottlenecks.

2.3.4.5 Legion

Legion10 [103] is a data-centric parallel programming system for writing portable high per-
formance programs for distributed heterogeneous architectures. Legion provides abstractions
which allow programmers to describe properties of program data (e.g., independence, locality).
By making the Legion programming system aware of the structure of program data, it can auto-
mate many of the tedious tasks programmers face today, including correctly extracting task- and
data-level parallelism and moving data around complex memory hierarchies. A novel mapping
interface provides explicit programmer controlled data placement in the memory hierarchy and
assignment of tasks to processors in a manner that is orthogonal to correctness, making the
Legion application easy to port and tune to the new architecture.

2.4 Exascale Challenges of Supercomputers

The era of exascale computing is coming. In this section, we will analyze the increasing trend
of heterogeneity in modern supercomputers and then summarize the challenges of parallel pro-
gramming for exascale systems.

2.4.1 Increase of Heterogeneity for Supercomputers

Hardware architectures have great impacts on the development of supercomputers. In the early
days, processor performance was primarily improved by increasing the number of transistors per
integrated circuit. According to Moore’s law, the number of transistors per integrated circuit
doubles every 18 months. This means that the size of the transistor is reduced to half, which

8. http://swift-lang.org
9. https://cs.mtsu.edu/ rbutler/adlb

10. http://legion.stanford.edu
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Figure 2.15 – HPL Performance in Top500 by year. [209]

allows for a faster clock rate. Before 2002, Moore’s law was found to be totally acceptable.
Since then, the overheating introduced by higher frequency reaches the limit of air cooling.
This is the famous power wall. Fig. 2.15 shows the HPL performance by year in Top500 List.
Moore’s law is not totally acceptable in recent years, where the performance’s development
of supercomputer has slowed down. Since then, modern computing architectures tend to have
multiple processors on-chip, lower operating frequency and hierarchical architectures, such as the
GPGPU, Intel MIC, the many-core sw26010, and Matrix-2000 GPDSP, etc. Moreover, Europe
(Mont-Blanc [176], CEA and Atos [87]) and Japan (RIKEN and Fujitsu [88]) are now pushing
the development of ARM supercomputers. Fig. 2.16 shows the trend of supercomputers equipped
with accelerators by year. According to the Top 500 list in November 2018, 137 of 500 systems use
accelerator or co-processor technology. The introduction of accelerators on the supercomputers
with a large number of cores extremely increases their heterogeneity of communications, memory
and computing units.

Compared with the traditional computing architectures such as Intel, AMD CPUs which
dedicate to multiple different purposes that result in lousy energy efficiency in HPC, the intro-
duction of low frequency and/or less complex architecture improve the energy efficiency. In the
Green500 list11 of November 2016, 8 out of 10 the most efficient supercomputers are equipped
with the Nvidia GPGPU, and the No.1 machine of Green500 list ZettaScaler-2.2 installed by
RIKEN is powered by the Intel low-frequency processor (Xeon D-1571 16C 1.3GHz).

2.4.2 Potential Architecture of Exascale Supercomputer

This section attempts to create a blueprint (shown as Fig. 2.17) for the upcoming exascale
machine, which is based on the future Aurora Exascale system architecture discussed in [208].

As shown in Fig. 2.17, the exascale supercomputers will consist of more than 100,000 inter-
connected nodes. Each compute node is packed with the thin cores and fat cores. The fat cores
refer to the Intel, AMD X86 CPUs dedicated to more complex operations. The thin cores can be

11. https://www.top500.org/green500/
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the accelerators and co-processors (e.g., GPGPU, Matrix-2000, FPGA, etc.) with low frequency
and/or less complex operations. A typical fat-thin mode is the Nvidia Host and device architec-
ture. The fat cores are connected with RAM which has high capacity and low bandwidth, and
the thin cores are connected with the memory which has low capacity and high bandwidth.

This fat core-thin core hybrid approach can also be found in the sw26010 processor deployed
in the Sunway TaihuLight supercomputer. As shown in Fig. 2.8, this processor is designed with
one fat core (MPE) which provides supervisory functions, and four auxiliary meshes of skinny
cores (CPEs) conducted to computing operations, each with 64 cores, for a total of 260 cores.
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Figure 2.17 – Multi-level parallelism and hierarchical architectures in supercomputers.
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These hierarchical computing architectures introduces multiple level parallelism:

(1) 1st level is the inter-node parallelism between compute nodes: MPI is the considered model
to manage the communication among the compute nodes, manager engine or other complex
software stacks are required to handle huge traffic and failure of applications;

(2) 2nd level is the intra-node parallelism, including:

• shared memory parallelism with NUMA among cores and/or sockets in each compute
node;

• heterogeneous computing with different accelerators, memory space, and bandwidth;

(3) 3rd level are the vectorization techniques, which can compute a full vector of data with the
same set of operations simultaneously. These techniques include the SIMD vectorization
on CPUs, and the SIMT vectorization on GPGPUs, etc.

2.4.3 Parallel Programming Challenges

As the number of cores and compute nodes in a supercomputer increases, communication time
will exceed computation time and become a huge bottleneck for modern applications using su-
percomputers. Facing the challenges, parallel programming should consider highly hierarchical
computation and memory architectures, increasing levels and degrees of parallelism, the het-
erogeneity of computing, memory and scalability. HPL benchmark is a little outdated, which
cannot represent the common operations and applications on modern supercomputers.

HPCG
List

Top500
List Computer HPCG

[Pflop/s]
Rpeak

[Pflop/s]
Rmax

[Pflop/s] HPCG/Peak HPCG/HPL

1 1 Summit 2.93 200.79 143.50 1.50% 2.04%

2 2 Sierra 1.80 125.71 94.64 1.40% 1.90%

3 18 K computer 0.60 11.28 10.50 5.3% 5.70%

4 6 Trinity 0.55 41.46 20.16 1.33% 2.70%

5 7 AI Bridging Cloud 
Infrastructure 0.51 32.58 19.88 1.57% 2.57%

6 5 Piz Daint 0.50 27.15 21.23 1.84% 2.36%

7 3 Sunway
TaihuLight 0.48 125.44 93.01 0.40% 0.50%

8 13 Nurion 0.39 25.71 13.93 1.52% 2.80%

9 14 Oakforest-PACS 0.39 24.91 13.56 1.56% 2.88%

10 12 Cori 0.36 27.88 14.01 1.29% 2.57%

Figure 2.18 – Top10 HPCG list in the November 2018. Source: https://www.top500.org
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Thus, HPCG benchmark [75] was proposed by Dongarra et al. in 2015. In mathematics, the
CG method is an algorithm for numerical solutions of particular linear systems, namely those
whose matrix is symmetric and positive-definite. These linear systems are typically modeled by
PDEs and are used to simulate many aspects of the physical world. CG can be considered a good
representation of modern applications on supercomputers. HPCG project aims to create a new
metric for ranking HPC systems, which is intended to complement the HPL benchmark. HPL’s
computing and data access models still represent some important scalable applications, but not
all. HPCG is designed to exercise computational and data access patterns that more closely
match a different and broad set of important applications, and to give incentive to computer
system designers to invest in capabilities that will have the impact on the collective performance
of these applications.

HPCG is a complete, stand-alone code that measures the performance of basic operations in
a unified code:

• Sparse matrix-vector multiplication.

• Vector updates.

• Global dot products.

• Local symmetric Gauss-Seidel smoother.

• Sparse triangular solve (as part of the Gauss-Seidel smoother).

• Driven by multigrid preconditioned conjugate gradient algorithm that exercises the key
kernels on a nested set of coarse grids.

• Reference implementation is written in C++ with MPI and OpenMP support.

Fig. 2.18 lists the Top10 computers in the HPCG List of November 2018. We could conclude
that the HPCG tests on the world most powerful machines typically only achieve an extremely
tiny fraction of the peak FLOPS of computers. Lots of modern algorithms are much more
complex than the HPCG, and their parallel performance tends to be even worse. Therefore, the
programming paradigm for parallel applications should be re-considered and re-designed.

In fact, as the heterogeneity of supercomputers increases, HPC tends to be somewhat similar
to Grid computing, which uses a widely distributed computer resource connected to a network
(private, public, or Internet) to achieve a common goal. Grid computing is distinguished from
HPC systems in that Grid computers have each node set to perform a different task/applica-
tion. The geographically dispersed of Grid computers leads in many heterogeneous properties
compared with HPC systems. Due to its heterogeneity, coordinating Grid computing applica-
tions can be a complex task, especially when coordinating information flows across distributed
computing resources. Hence workflow management systems have been developed specifically to
compose and execute a series of computational or data manipulation steps, or a workflow. Cur-
rent parallel applications can be seen as the intersection of distributed and parallel computing.

The parallel performance of a common application in HPC is measured by the scalability
(also referred as the scaling efficiency). This measurement indicates how efficient an application is
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when using increasing numbers of parallel processing elements (CPUs/cores/processes/threads,
etc.). There are two basic ways to measure the parallel performance of a given application,
depending on whether or not one is CPU-bound or memory-bound. These are referred to as
strong and weak scaling, respectively:

• strong scaling which is defined as how the solution time varies with the number of proces-
sors for a fixed total problem size;

• weak scaling which is defined as how the solution time varies with the number of processors
for a fixed problem size per processor.

In order to improve parallel performance and achieve optimal scalability on modern super-
computers, several principles should be considered for the development of applications:

(1) Algorithms should have multiple grain parallelism to accommodate the heterogeneity of
the computer architecture.

(2) Applications should be able to adapt to the hierarchical memory on supercomputers.

(3) The data movements should be limited, and the amount of global communications should
be minimized.

(4) The parallel programming should reduce synchronizations and promote the asynchronicity;

(5) Multi-level scheduling strategies should be proposed, and the manager engine or other
complex software stacks should be implemented to handle large amounts of traffic and
improve the fault tolerance and resilience, similarly to Grid computing.

In the following sections, we will focus on the design and implementation of new numerical
methods for modern supercomputers following these principles.
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Chapter 3
Krylov Subspace Methods

An important application on supercomputers is to solve the linear systems and eigenvalue
problems. The chapter gives an overview of the relevant iterative methods to solve these
problems with large-scale non-Hermitian operator matrices. Many applications in science
and engineering fields can be formulated as such problems with large dimensions. Large
matrices that arise in most applications are almost sparse. That is, the vast majority
of their entries are zero. In numerical linear algebra, these systems are often solved
by iterative methods. An iterative method is a mathematical procedure that uses an
initial guess to generate a sequence of improved approximate solutions for a class of
problems, in which the n-th approximation is derived from the previous ones. Krylov
subspace methods are very useful and popular iterative methods to solve large-scale
sparse systems because of their simplicity and generality. In this chapter, firstly we give
a summary on the existing stationary and non-stationary iterative methods, especially
the Krylov subspace methods. Then, the mathematical definitions of GMRES to solve
non-Hermitian linear systems and Arnoldi methods to solve non-Hermitian eigenvalue
problems are given in detail. The convergence properties of GMRES is also described
by the spectral information of operator matrix. For some applications, the convergence
of conventional Krylov subspace methods cannot always be guaranteed. Thus various
kinds of preconditioners are introduced to accelerate the convergence. In the end, this
chapter gives a survey on the parallel implementation of Krylov subspace methods on
distributed memory platforms, and also the related challenges on the upcoming exascale
supercomputers. The material covered in this chapter will be helpful in establishing the
mathematical base of this dissertation. Additionally, a large part of constant efforts in
this field are reviewed, even some of them have less connection with the motivation of
this thesis.

3.1 Linear Systems and Eigenvalue Problems

Given a matrix A ∈ Cn×n and a n-vector b ∈ Cn, the problem considered is: find x ∈ Cn such
that:

Ax = b. (3.1)
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This problem is a linear system, A is the coefficient matrix, b is the RHS, and x is the vector
of unknowns. In most cases, the linear systems are constructed by solving complex PDE systems.
In general, the discretization of these PDEs into a cell-centered Finite Volume scheme in space
and a Euler implicit method in time, leads to a nonlinear system which can be solved with a
Newton’s method. For each Newton step by time, the system is linearized then solved using a
linear solver.

Eigenvalue problems occur in many areas of science and engineering, such as structural anal-
ysis [196, 195, 124], wave modes simulations [138, 137, 166, 139] and electromagnetic applications
[46, 135, 58], and eigenvalues are also important in analyzing numerical methods. The standard
eigenvalue problem can be defined as: given a matrix A ∈ Cn×n, find scalar λ ∈ C and nonzero
vector v ∈ C such that:

Av = λv. (3.2)

In this formula, λ is an eigenvalue of A, and v is its corresponding eigenvector, λ may be
complex even if A is real. The spectrum of A is the set of all eigenvalues of A, denoted it as
λ(A), and the Spectral radius of A ρ(A) is max{|λ| : λ ∈ λ(A)}.

3.2 Iterative Methods

Iterative methods approach the solution x of Equation (3.1) by a number of iterative steps.
Compared with the direct methods such as LU and Gauss Jordan which need an overall compu-
tational cost of the order 2

3n
3, the cost of iterative methods is the order of n2 operations for each

iteration. Iterative methods are especially competitive with direct methods in the case of large
sparse matrices, to avoid the potential introduction of the dramatic fill-in by the direct methods.
This section gives an overview of both stationary and non-stationary iterative methods.

3.2.1 Stationary and Multigrid Methods

The iterate of stationary methods to solve Equation (3.1) can be expressed in the simple form

xk = Bxk−1 + c, (3.3)

where neither B nor c depends upon the iteration count k. The four well-known stationary
methods are the Jacobi method [230], Gauss-Seidel method [232], SOR method [3], and SSOR
method [18]. Beginning with an initial guess vector, these methods modify one or a few com-
ponents of the approximation at each iterative step, until the convergence is reached. These
modifications are called relaxation steps. Theoretically, the stationary methods are applicable
for all linear systems, but they are more efficient only for the applications arising from the finite
difference discretization of Ellipse PDEs. Though the inefficiency of stationary methods for most
linear problems, they are often used by combining with the more efficient methods described
later in this chapter.

For Jacobi method, the Formula (3.3) is extended as:
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xk = D−1(L+ U)xk−1 +D−1b,

where the matrices D, −L, and −U represent the diagonal, strictly lower triangular, and
strictly upper triangular parts of A, respectively.

The convergence condition for the Jacobi method is the situation that the spectral radius of
the matrix D−1(L+ U) is less than 1:

ρ(D−1(L+ U)) < 1.

For general cases, the convergence of Jacobi method can be slow. A sufficient (but not
necessary) condition for the convergence is that the matrix A is strictly or irreducibly diagonally
dominant.

For Gauss-Seidel method, the Formula (3.3) is extended as:

xk = (D − L)−1(Uxk−1 + b).

The Gauss-Seidel method is similar to the Jacobi method except that it uses updated values
as soon as they are available. It generally converges faster than the Jacobi method, although
still relatively slow.

The Gauss-Seidel method can converge if either:

(1) The matrix A is strictly or irreducibly diagonally dominant;

(2) A is symmetric positive-definite.

For SOR method, the Formula (3.3) is extended as:

xk = (D − ωL)−1[ωU + (1− ω)D]xk−1 + ω(D − ωL)−1b,

The SOR method can be derived from the Gauss-Seidel method by introducing an extrap-
olation parameter ω. If ω = 1, the SOR method can be simplified to the Gauss-Seidel method.
A theorem due to Kahan [119] shows that SOR fails to converge if ω is outside the interval
(0, 2). In general, it is not possible to compute in advance the value of ω that will maximize the
rate of convergence of SOR. This method can converge faster than Gauss-Seidel by an order of
magnitude.

Finally, SSOR method is useful as a preconditioner for other methods. However, it has no
advantage over the SOR method as a stand-alone iterative method.

In general, many stationary methods have the smoothing property, where oscillatory modes
with short wave-length of the errors of linear systems can be eliminated effectively, but the
smooth modes with long wave-length are damped very slowly. Thus MG methods [117, 115, 27]
are introduced for solving differential equations using a hierarchy of discretizations. The main
idea of MG methods is to accelerate the convergence of stationary iterative methods (known as
relaxation process) by a global correction on the approximative solution of the fine grid from
time to time. This global correction is achieved by solving a coarse problem. The coarse grids
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can be used to compute an improved initial guess for the fine-grid processes. The reason for the
coarse grid are:

(1) Relaxation on the coarse-grid is much cheaper;

(2) Relaxation on the coarse-grid has a marginally better convergence rate;

(3) Smooth error is relatively more oscillatory in the coarse-grid processes, and the relaxation
will be more effective

The steps 2-4 in Algorithm 1 is the kernel of MG method, which gives the restriction-coarse
solution-interpolation processes. The involved matrices in this algorithm are:

A = Ah = orginal matrix

R = R2h
h = restriction matrix

I = I2h
h = interpolation matrix

A2h = R2h
h AhI

h
2h = RAI = coarse grid matrix

Algorithm 1 Fine-coarse-fine loop of MG method
1: Relaxion Iterate on Ahu = bh by stationary methods to reach uk.
2: Restrict the residual rh = bh −Ahuh to the coarse grid by r2h = R2h

h rh.
3: Solve A2hE2h = r2h.
4: Interpolate E2h as Eh = Ih2hE2h. Add Eh to uh.
5: Iterative more times on Ahu = bh starting from the improved uh + Eh.

One extension of MGmethod is the AMG [179, 212, 42, 43]. AMG constructs their restriction,
interpolation, and coarse grid matrices directly from the matrix of a linear system. AMG is
regarded as advantageous when GMG is too difficult to apply, e.g., unstructured meshes, graph
problem, etc. Fig. 3.1 gives an example of hierarchical multi-level AMG.

3.2.2 Non-stationary Methods

In practice, the stationary methods talked in the previous section cannot always get the con-
vergence quickly for more general matrices which are not constructed from PDEs. The GMG
and AMG which use the relaxation steps of stationary methods can speed up the convergence
for more general matrices, but the construction of restriction, interpolation, and coarse matrices
either from geometric PDE problems or the operator matrix A is far more difficult, and these
operations matter the convergence. There is no free lunch for AMG which is hard to control and
get optimal performance. In my dissertation, I will talk about the non-stationary methods which
are easy to implement and have better convergence performance than the stationary methods.
The difference of non-stationary methods compared with stationary methods is that the in-
volved computational information changes at each step of the iteration. The most well-known
non-stationary methods are the suite of Krylov subspace methods.
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Figure 3.1 – Algebraic multigrid hierarchy.

3.3 Krylov Subspace methods

This section presents the Krylov Subspace projection and the basic Arnoldi reduction in the
Krylov subspace.

3.3.1 Krylov Subspace

In linear algebra, the m-order Krylov subspace [186] generated by a n×n matrix A ∈ Cn×n and
a vector b ∈ Cn is the linear subspace spanned by the images of b under the first m powers of
A, that is

Km(A, b) = span(b, Ab,A2b, · · · , Am−1b).

The Krylov subspace provides the ability to extract the approximations from anm-dimensional
subspace Km. Since Km is the subspace of all vectors in Cn, for all x ∈ Km, it can be written
as x = p(A)b, with p a polynomial of degree not exceeding m− 1.

3.3.2 Basic Arnoldi Reduction

Arnoldi reduction is well used to build an orthogonal basis of the Krylov subspace Km. One
variant of basic Arnoldi reduction algorithm is given in Algorithm 2. In this algorithm, at each
step of Arnoldi reduction, the algorithm times the previous Arnoldi vector ωj by matrix A,
and get an orthogonal vector ωj against all previous ωi by a standard Gram-Schmit procedure.
It will stop if the vector computed in line 9 is zero. Then the vectors ω1, ω2. · · · , ωm form an
orthonormal basis of the Krylov Subspace.

Denote by Ωm, the n×m matrix with column vectors ω1, ω2. · · · , ωm, by Hm, the (m+1)×m
Hessenberg matrix whose nonzero entries hi,j are defined by Algorithm 2, then note Hm as the
matrix obtained from Hm by deleting its last row (shown as Fig. 3.2). The following relations
are given:
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Algorithm 2 Arnoldi Reduction
1: function AR(input:A,m, ν, output: Hm,Ωm)
2: ω1 = ν/||ν||2
3: for j = 1, 2, · · · ,m do
4: for i = 1, 2, · · · , j do
5: hi,j = (Aωj , ωi)
6: end for
7: ωj = Aωj −

∑j
i=1 hi,jωi

8: hj+1,j = ||ωj ||2
9: if hj+1,j = 0 then Stop

10: end if
11: ωj+1 = ωj/hj+1,j
12: end for
13: end function

𝐴 =Ω# +𝜔#𝑒#'

𝐻#

Ω#

Figure 3.2 – The action of A on Vm gives VmHm plus a rank-one matrix.

AΩm = ΩmHm + ωme
T
m = Ωm+1Hm. (3.4)

ΩT
mAΩm = Hm. (3.5)

In case that the norm of ωj in line 9 of Algorithm 2 vanishes at a certain step j, the next
vector ωj+1 cannot be computed and the algorithm steps, Hm turns to be Hj with dimension
j × j.

3.3.3 Orthogonalization

There are different orthogonalization schemes to construct the orthogonal basis of Krylov sub-
space, in this section, we list four variants.

(1) Classic Gram-Schmit Orthogonalization: Algorithm 2 gives an example of Arnoldi reduc-
tion using the Classic Gram-Schmit Orthogonalization to create a basis vector by vector.
The benefit of Classic Gram-Schmit Orthogonalization is the parallelism in computing hi,j
and ωj in steps 5 and 7.

(2) Modified Gram-Schmit Orthogonalization: An alternative (See Algorithm 3), in which the
number of subtractions is reduced, resulting in a less chance of cancellations. Though
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Algorithm 3 Arnoldi Reduction with Modified Gram-Schmidt process
1: function AR-MGS(input:A,m, ν, output: Hm,Ωm)
2: ω1 = ν/||ν||2
3: for j = 1, 2, · · · ,m do
4: for i = j, 2, · · · , j do
5: hi,j = (Aωj , ωi)
6: ωj = ωj − hi,jvi
7: end for
8: hj+1,j = ||ωj ||2
9: if hj+1,j = 0 then Stop

10: end if
11: ωj+1 = ωj/hj+1,j
12: end for
13: end function

Modified Gram-Schmit Orthogonalization is more stable than Classic Gram-Schmit Or-
thogonalization, it is less parallelizable than Classic Gram-Schmit Orthogonalization. In
Classic Gram-Schmit Orthogonalization, the orthogonalization process from line 5 to 7 can
be overlapped, while the same process of Modified Gram-Schmit Orthogonalization has a
data dependency. Thus the parallel implementation of Arnoldi reduction still prefers Clas-
sic Gram-Schmit Orthogonalization, and a preconditioner or a reorthogonalization process
can compensate its deficiency of numerical stability.

(3) Householder Orthogonalization: the Arnoldi reduction can also be operated by the House-
holder orthogonalization, which is more numerically robust than the Gram-Schmit orthog-
onalization.

(4) Incomplete Orthogonalization: The orthogonalization process in Arnoldi is expensive be-
cause each vector accumulated in the basis is orthogonalized against all previous ones.
Thereby, the orthogonalization process number of iterations k is bounded to the Krylov
subspace size, thus higher values of m will imply more computations and memory space
in order to create the Krylov orthonormalized vector basis. With the aim to reduce the
cost induced by the Arnoldi orthogonalization process, it is possible to truncate it by or-
thogonalizing each vector against a subset of the basis vectors, i.e., the q precedent basis
vectors (Algorithm 4). In this case, the resulting upper Hessenberg matrix Hm is not fully
orthogonalized and has the propriety to be banded of bandwidth q. Incomplete orthogonal-
ization can speed up the construction of Krylov subspace basis, with the loose of numerical
accuracy.

3.3.4 Different Krylov Subspace Methods

Different variants of Krylov subspace methods are developed, such as the Arnoldi [215], Lanczos
[217], CG [129], IDR(s) [211], GMRES, BiCGSTAB [198], QMR [94], TFQMR [29], and MINRES
[167] methods. This dissertation concentrates on GMRES which is used to solve non-Hermitian
linear systems.
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Algorithm 4 Arnoldi Reduction with Incomplete Orthogonalization process
1: function AR-Incomplete(input:A,m, ν, output: Hm,Ωm)
2: ω1 = ν/||ν||2
3: for j = 1, 2, · · · ,m do
4: for i = max{1, j − q + 1}, · · · , j do
5: hi,j = (Aωj , ωi)
6: ωj = ωj − hi,jvi
7: end for
8: hj+1,j = ||ωj ||2
9: if hj+1,j = 0 then Stop

10: end if
11: ωj+1 = ωj/hj+1,j
12: end for
13: end function

3.4 GMRES for Non-Hermitian Linear Systems

GMRES is a well-known Krylov iterative method to solve non-Hermitian linear systems Ax = b.
This section gives an introduction in-depth about the fundamentals of GMRES.

3.4.1 Basic GMRES Method

GMRES (Algorithm 5) is a kind of projection method which extracts an approximate solution
xm of given problem in a well-selected m-dimensional Krylov subspace Km(A, v) from a given
initial guess vector x0. GMRES method was introduced by Saad and Schultz in 1986 [185].

Algorithm 5 Basic GMRES method
1: function BASICGMRES(input: A,m, x0, b, output: xm)
2: r0 = b−Ax0, β = ||r0||2, and ν1 = r0/β
3: Compute an AR(input:A,m, ν1, output: Hm,Ωm)
4: Compute ym which minimizes ||βe1 −Hmy||2
5: xm = x0 + Ωmym
6: end function

In fact, any vector x in subspace x0 +Km can be written as

x = x0 + Ωmy, (3.6)

with y a m-dimensional vector, Ωm an orthonormal basis of the Krylov Subspace Km. The
norm of residual R(y) of Ax = b is given as:

R(y) = ||b−Ax||2 = ||b−A(x0 + Ωmy)||2
= ||Ωm+1(βei −Hmy)||2 = ||βei −Hmy||2.

(3.7)

The approximation of GMRES xm can be obtained as xm = x0 + Ωmym where ym =
argminy||βei−Hmy||2. The minimizer ym is inexpensive to compute since it requires the solution
of an (m+ 1)×m Least Squares problem if m is typically small. This gives the basic GMRES
method as Algorithm 5.
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If m is very large, GMRES can be restarted after some iterations, to avoid large memory and
computational requirements with the increase of Krylov subspace projection number. It is called
the restarted GMRES. The restarted GMRES will not stop until the condition ||b−Axm|| < εg is
satisfied. See Algorithm 6 for restarted GMRES algorithm in detail. A well-known difficulty with
the restarted GMRES algorithm is that it can stagnate when the matrix is not positive definite.
A typical method is to use preconditioning techniques whose goal is to reduce the number of
required iteration steps for the convergence.

Algorithm 6 Restarted GMRES method
1: function RESTARTEDGMRES(input: A,m, x0, b, εg, output: xm)
2: BASICGMRES(input: A,m, x0, b, output: xm)
3: if (||b−Axm||2 < εg) then
4: Stop
5: else
6: set x0 = xm and GOTO 2
7: end if
8: end function

3.4.2 Variants of GMRES

Several variants of GMRES are proposed, such as:

(1) Restarted GMRES [150]: the cost of the iterations grow as O(n2), where n is the iteration
number. Therefore, the method is sometimes restarted after a number, say k, of iterations,
with xk as an initial guess. The resulting method is called restarted GMRES. This method
suffers from stagnation in convergence as the restarted subspace is often close to the earlier
subspace.

(2) Truncated GMRES [68]: a version of GMRES with incomplete orthogonalization, which
reduces the computing and memory requirement of the Arnoldi process in GMRES with
the cost of the accuracy of orthogonalization.

(3) Deflated GMRES [85]: Restarted GMRES with deflation. As we have just seen, restarting
of GMRES results in a loss of useful information, which might slow down the convergence
after a restart. To overcome this problem, restarted GMRES with deflation (GMRES-DR)
was introduced. The deflation in GMRES-DR makes restarted GMRES more robust and
makes it converge much faster for tough problems with small eigenvalues.

(4) Pipelined GMRES [100]: A particular variant of GMRES which hides the global commu-
nication latency for parallel implementation.

(5) FGMRES [93]: Flexible GMRES is a variant of GMRES with the advantage of being
able to switch preconditioners on the fly according to specific heuristics in the GMRES
process without any additional computation. This method is interesting because it allows
developing robust and easily parallelizable methods. FGMRES is developed based on the
right-preconditioner which will be presented later in Section 3.5.1.1.
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3.4.3 GMRES Convergence Description by Spectral Information

After the brief introduction of GMRES algorithm, in this section, we will review the recent
research to describe the convergence behavior of GMRES. This analysis makes it possible for
the users to select suitable linear solvers according to their applications and problems. Different
techniques are used to give the upper and lower bound for the convergence of GMRES, mainly
including the spectral information, the ε-pseudospectrum and the polynomial hull.

3.4.3.1 Spectral Information and Convergence

In this section, we will briefly review how spectral information influences the convergence be-
havior of GMRES. This introduction benefits from the previous work of Liesen et al. [134, 133].

For a linear systems Ax = b with a general nonsingular matrix A, the initial residual of
GMRES is given as r0 = b−Ax0. For the n-th step of GMRES, the projection process assure a
Least Squares problem (Algorithm 5 step 4), and the optimal property is:

||rn||2 = min
xn∈x0+Kn(A,r0)

||b−Axn||2. (3.8)

The Formula (3.8) can be transformed into the formula below with a residual polynomial Rd

||rn||2 = min
Rd(0)=1,
d≤n

||Rd(A)r0||2. (3.9)

A can be decomposed as A = SJS−1, with J = diag(J1, · · · , Jk) a matrix in Jordan Canon-
ical form. Then (3.9) leads to a GMRES convergence bound as:

||rn||2 = min
Rd(0)=1,
d≤n

||Rd(A)r0||2 = min
Rd(0)=1,
d≤n

||SRd(J)S−1r0||2 (3.10a)

≤ ||S||2||S−1r0||2 min
Rd(0)=1,
d≤n

max
1≤i≤k

||Rd(Ji)||2 (3.10b)

≤ κ(S)||r0||2 min
Rd(0)=1,
d≤n

max
1≤i≤k

||Rd(Ji)||2, (3.10c)

where κ(S) is the condition number of S. Thus the relative residual in the GMRES can be
bounded as:

||rn||2
||r0||2

≤ κ(S) min
Rd(0)=1,
d≤n

max
1≤i≤k

||Rd(Ji)||2. (3.11)

If A is a normal matrix, which is unitarily diagonalisable A = UΛU∗, with eigenvalues
λ1, · · · , λk, then κ(S) = κ(U) = 1, and this leads to the formula below:

||rn||2
||r0||2

≤ min
Rd(0)=1,
d≤n

max
1≤i≤k

|Rd(λi)|. (3.12)

Hermitian Indefinite Matrix: For A is Hermitan Indefinite, it has positive and negative
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real eigenvalues, and these egenvalues can be described as the unition of two intervals containing
them and excluding the origin, denoted as I− ∪ I+ = [λmin, λs]∪ [λs+1, λmax] with λmin ≤ λs <
0 < λs+1 ≤ λmax. Note that if one or several eigenvalues of A are zero, then the maximum-
minimum problem (3.12) would be constant for all d, which results that this bound would be
useless.

The maximum-minimum problem in (3.12) leads to the bound

min
Rd(0)=1,
d≤n

max
1≤i≤k

|Rd(λi)| ≤ min
Rd(0)=1,
d≤n

max
z∈I−∪I+

|Rd(z)|. (3.13)

When both intervals I− and I+ are of the same length, Liesen [134] gives an upper bound
as

min
Rd(0)=1,
d≤n

max
z∈I−∪I+

|Rd(z)| ≤ 2
(√
|λminλmax| −

√
|λsλs+1|√

|λminλmax|+
√
|λsλs+1|

)[n/2]

, (3.14)

where [n/2] denotes the integer part of n/2.

Set α2 = min(λmax, |λmin|) and β2 = max(λs, |λs+1|), the right-hand side of formula (3.14)
can be reduced to

2
(
ακ(A)− β
ακ(A) + β

)[n/2]
, (3.15)

with κ(A) the condition number of matrix A.

In the general case when the two intervals I− and I+ have different lengths, the explicit solu-
tion of this minimum-maximum approximation problem on I− ∪ I+ becomes quite complicated,
no explicit and straightforward bound on its value is known.

For this general case, we set also γ2 = max(λmax, |λmin|) and δ2 = min(λs, |λs+1|), and a
superset ∆ of I− ∪ I+ can be defined as [−γ2,−δ2] ∪ [δ2, γ2], where the two intervals have the
same length. Thus we have

min
Rd(0)=1,
d≤n

max
z∈I−∪I+

|Rd(z)| ≤ min
Rd(0)=1,
d≤n

max
z∈∆
|Rd(z)| ≤ 2

(
γκ(A)− δ
γκ(A) + δ

)[n/2]
. (3.16)

A particular case for the real eigenvalues are all positive or negatives. Denote respectively
the maximum and minimum eigenvalues as λmax and λmin, the maximum-minimum problem in
(3.12) leads to the bound

min
Rd(0)=1,
d≤n

max
1≤i≤k

|Rd(λi)| ≤ min
Rd(0)=1,
d≤n

max
z∈[λmin,λmax]

|Rd(z)|. (3.17)
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A upper bound of this formula can be given as

min
Rd(0)=1,
d≤n

max
z∈[λmin,λmax]

|Rd(z)| ≤ 2
(∣∣√|λmax| −√|λmin|∣∣√

|λmax|+
√
|λmin|

)n
(3.18a)

= 2
(√

κ(A)− 1√
κ(A) + 1

)n
. (3.18b)

With the upper bounds defined as 3.15, 3.16 and 3.18, the effects of spectral information for
Hermitian Indefinite matrices can be described in different ways:

(1) the eigenvalues close to the origin point damage the convergence rate of GMRES. If it
exists λ ≈ 0, GMRES cannot achieve the convergence. Therefore, the preconditioners can
be constructed which can remove or deflate the eigenvalues which are close to 0;

(2) the dominant eigenvalues with large Euclidean norm accelerate the convergence of GMRES.
For the eigenvalue with largest and smallest Euclidean norm having a fixed distance, larger
Euclidean norm makes the defined upper bounds much smaller than 1, which signifies much
larger convergence rate for each iteration in GMRES;

(3) the condition number κ(A) of matrix A can also be used to qualify the convergence of
GMRES. Large κ(A) slows down the convergence of GMRES. Hence, the preconditioning
can also be constructed by transforming the matrix A to another one with smaller condi-
tion number. This impact of κ(A) can also be translated as the clustering of eigenvalues
stimulating the convergence. Thus, the preconditioning techniques can be constructed by
enlarging the Euclidean norm of dominant eigenvalues, or transforming the spectral dis-
tribution of A with more clustering properties.

General Normal Matrix: for the case that A is a general normal matrix (or is close to
normal with κ(S) ≈ 1), the bound (3.12) still makes sense, which signifies that the right-hand
sides of (3.11) depend entirely (or mostly) on the eigenvalues of A. In such cases, the eigenvalues
can be used to obtain a reasonable estimate of the worst-case convergence behavior of GMRES.
Similarly, it is necessary to solve a maximum-minimum problem for a set of complex eigenvalues
in the real-complex plain. It is much more difficult to give an explicit formula for this problem,
but it can be approximated by the good selection of optimal polynomials. Usually one works
with connected inclusion sets since polynomial approximation on disconnected sets is not well
understood (even in the case of two disjoint intervals; see above). Because of the normalization
of the polynomials at zero, the set should not include the origin.

The simplest result is obtained when the spectrum of A is contained in a disk πn in the
complex plane (that excludes the origin), say with radius r > 0 and center at c ∈ C. Then the
polynomial Rn(z) = ( c−zc )n ∈ πn can be used to show that

min
R∈πn

max
k
|R(λk)| ≤ |

r

c
|n. (3.19)
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In particular, a disk of a small radius that is far from the origin guarantees fast convergence
of the GMRES residual norms. More refined bounds can be obtained using the convex hull Ξ of
of an ellipse instead of a disk. For example, suppose that the spectrum is contained in an ellipse
with center at c ∈ R, focal distance d > 0 and major semi axis a > 0. If 0 /∈ Ξ, it can be shown
that:

min
R∈πn

max
k
|R(λk)| ≤

Cn(a/d)
|Cn(c/d)| ≈

(
a+
√
a2 − d2

c+
√
c2 − d2

)n
, (3.20)

where Cn(z) denotes the n-th complex Chebyshev polynomial, for details in [188]. These
polynomials are able to predict the correct rate of convergence of this minimum-maximum
approximation problem. With the definition of this upper bound for the general (quasi-)normal
matrix, the similar remarks with Hermitian Indefinite matrix can also be given as below

(1) the eigenvalues close to the origin point damage the convergence rate of GMRES. The
eigenvalues with too small Euclidean norm make GMRES be difficult to obtain the con-
vergence;

(2) the dominant eigenvalues with large Euclidean norm accelerate the convergence of GMRES.
The dominant eigenvalues are the ones far from the origin point in the real-imaginary
plane. If the refined ellipse by the dominant eigenvalues has small focal distance d and
major semi axis a, and large |c| for its center, GMRES can quickly converge. This can also
be translated as the clustering of eigenvalues stimulating the convergence.

(3) of course, one would like to find a set Ξ in the complex plane that yields the smallest
possible upper bound. Both a disk and the convex hull of an ellipse are convex, so one
can probably improve the convergence bound by using the smallest convex set containing
all the eigenvalues, i.e., the convex hull of the eigenvalues. However, all convex inclusion
sets Ξ are limited in their applicability by the strict requirement that 0 /∈ Ξ, in particular,
if zero is inside the convex hull of the eigenvalues of A, then no convex inclusion set for
these points can be used. Moreover, if the convex hull is close to the origin, then any
bound derived from this set will be poor, regardless of the distance of the eigenvalues to
the origin.

Non-normal Matrix: Finally, if A is far from normal in the sense that κ(S) is very large,
then the bound (3.12) may fail to provide any reasonable information about the actual behavior
of convergence of GMRES. When S is ill-conditioned, the transition from (3.10b) to (3.10c)
is over-amplified. Consequently, this minimization problem can lack any relationship with the
problem that is minimized by GMRES.

It should be clear by now that in the non-normal case the GMRES convergence behavior
is significantly more difficult to analyze than in the normal case. A general approach to under-
stand the worst-case GMRES convergence in the non-normal case is to replace the complicated
minimization problem by another one that is easier to analyze. Natural bounds on the GMRES
residual norm arise by excluding the influence of the initial residual r0. Some approaches for
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understanding at least the worst-case convergence of GMRES for non-normal matrices are based
on the following upper bounds.

||rn||2
||r0||2

= min
R∈πn

||R(A)r0||2
r0

(GMRES) (3.21a)

≤ max
||v||2=1

min
R∈πn

||R(A)v||2 (worst-case GMRES) (3.21b)

≤ min
R∈πn

||R(A)||2 (ideal GMRES) (3.21c)

The approach of analyzing the worst-case GMRES via bounding the ideal GMRES approx-
imation problem is certainly useful to obtain a priori convergence estimates in terms of some
properties of A, and possibly to analyze the effectiveness of preconditioning techniques. However,
none of the bounds stated above indeed characterizes (concerning properties of A) the conver-
gence behavior of GMRES in the non-normal case. In the following section, we will describe a
different approach to investigate the link between spectral information and GMRES.

3.4.3.2 ε-pseudospectrum

A possible way to approximate the value of the matrix approximation problem (3.21c) is to
determine sets Ξ ∈ C and Ξ̂ ∈ C, that are somehow associated with A, and that provide lower
and upper bounds on (3.21c), i.e.,

c min
Rd(0)=1,
d≤n

max
λ∈Ξ
|Rd(λ)| ≤ min

Rd(0)=1,
d≤n

||Rd(A)||2 ≤ ĉ min
Rd(0)=1,
d≤n

max
λ∈Ξ̂
|Rd(λ)|. (3.22)

Here c and ĉ should be some (moderate size) constants depending on A and possibly on n.
This approach represents a generalization of the idea for normal matrices, where the appropriate
set associated with A is the spectrum of A and c = ĉ = 1.

Trefethen [210] has suggested taking Ξ̂ to be the ε-pseudospectrum of A,

Λε(A) = {z ∈ C : ||(zI −A)−1||2 ≥ ε−1}. (3.23)

Denote by L the arc length of the boundary of Λε(A), the following bound can be derived

min
Rd(0)=1,
d≤n

||Rd(A)||2 ≤
L

2πε min
Rd(0)=1,
d≤n

max
λ∈Λε(A)

|Rd(λ)|. (3.24)

The parameter ε gives some flexibility, but choosing a good value can be tricky. Note that in
order to make the right-hand side of (3.24) reasonably small, one must select ε large enough to
make the constant L

2πε small, but small enough to make the set Λε(A) not too large. This bound
only works well for some situations.

3.4.3.3 Field of Values and Polynomial Hull

Another approach is based on the field of values of A, which is defined by
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F (A) ≡ v∗Av : ||v||2 = 1, v ∈ Cm. (3.25)

The distance of F (A) from the origin in the complex plane is

v(F (A)) ≡ min
λ∈F (A)

|A|. (3.26)

We will not give in detail of this approach, but only take the result from [202] as below:

min
Rd(0)=1,
d≤n

||Rd(A)||2 ≤ (1− v(F (A))v(F (A−1)))n/2. (3.27)

The field of values analysis can be advantageous when the given linear system comes from
the discretization of elliptic PDEs by the Galerkin finite element method.

A generalization of the field of values of A is the polynomial numerical hull, introduced by
Nevanlinna [159] and defined as

Hn(A) = λ ∈ C : ||Rd(A)||2 ≥ |Rd(λ)|, ∀ polynomials Rd of degree ≤ n. (3.28)

It can be shown that H1(A) = F (A), and the set Hn(A) provides the lower bound:

min
Rd(0)=1,
d≤n

max
λ∈Hn(A)

|Rd(λ)| ≤ min
Rd(0)=1,
d≤n

||Rd(A)||2. (3.29)

3.4.3.4 Summary

For the general normal (or quasi-normal) matrices, the relation between the convergence of
GMRES and the spectral information of operator matrix is clear. The spectrum of A can be
used to give an acceptable upper bound for the convergence of GMRES. For the linear systems
which are difficult to achieve the convergence by GMRES, different preconditioners can be
constructed to either transform the spectral distribution into another one with smaller condition
number, deflate the smallest eigenvalues or enlarge the dominant eigenvalues to accelerate the
convergence. Different preconditioning techniques will be presented in the Section 3.5.

In many practical applications, one can observe a correlation between the eigenvalues of a
general non-normal matrix A and the convergence rate of GMRES. Considering the results in
this section, linking eigenvalues and the convergence of GMRES for a non-normal matrix A must
always be based on convincing arguments. They can consist of, e.g., demonstrating a special re-
lationship between the initial residual (or the right-hand side if x0 = 0) and the eigenvectors
of A. Such connection may compensate for the influence of ill-conditioned eigenvectors, so that
the approximation problem actually solved by GMRES is indeed (close to) an approximation
problem on the eigenvalues of A. In some cases, ε-pseudospectra, the field of values or the poly-
nomial numerical hull can be used to find close estimates of the norm of Rd(A) and hence of the
ideal GMRES approximation. The convergence behaviors of GMRES for non-normal matrices
are far more complicated, the conventional preconditioners which focus on the operations on the
smallest or largest eigenvalues, might be not acceptable. However the preconditoners might be
built based on the ε-pseudospectrum, the field of values and polynomial hull for special cases.
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3.5 Preconditioners for GMRES

In practice, one weakness of GMRES discussed in the previous section is the lack of robustness,
it is likely to suffer from slow convergence for some problems. Preconditioning is a kind of tech-
niques to accelerate the convergence of Krylov subspace methods by transforming the original
linear systems from one to another. The conventional preconditioners are effective by removing
and deflating the smallest eigenvalues, enlarging the dominant eigenvalues and decreasing the
condition number of operator matrix. In this section, we summarize different types of existing
preconditioners, including the preconditioning by a selected matrix, by the deflation, and by a
selected polynomial.

3.5.1 Preconditioning by Selected Matrix

The first alternative is to use the preconditioning matrix M . This M can be defined in many
different ways, and it makes it much easier to solve linear systems Mx = b compared with
the original linear systems Ax = b. After the selection of M , there are three ways to apply
this preconditioning matrix M to the original systems: the left, right and split preconditioning.
This type of preconditioners are general more used for the linear systems with normal and
quasi-normal matrices. They are effective to accelerate the convergence of iterative methods by
changing the spectral properties of operator matrices.

3.5.1.1 Left, Right and Split Preconditioning

The left preconditioning of matrix on the original linear system can be defined as:

M−1Ax = M−1b. (3.30)

GMRES is applied to solve the Equation (3.30) instead of the original matrix. The left
preconditioned version GMRES is given as Algorithm 7.

Algorithm 7 Left-Preconditioned GMRES
1: r0 = M−1(b−Ax0), β = ||r0||2, and ν1 = r0/β
2: for i = 0, · · · ,m− 1 do
3: z ←M−1Aνi
4: hj,i ← 〈z, νj〉, z = z − hj,iνj j = 1, · · · , i
5: if hj+1,j == 0 then
6: stop
7: else
8: νi+1 = z/hi+1,i, and hi+1,i = ||z||2
9: end if

10: end for
11: Compute ym which minimizes ||βe1 −Hmy||2
12: xm = x0 + Vmym

As shown in Algorithm 7, M is applied to each step of GMRES iteration, and the Krylov
subspace constructed by the Arnoldi process tends to be:
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span{r0,M
−1Ar0, · · · , (M−1A)m−1r0}. (3.31)

The residual vectors in this algorithm can be defined as rm = M−1(b−Axm), instead of the
unpreconditioned one b−Axm.

The right preconditioning of M makes GMRES solve linear systems as follows instead of the
original systems:

AM−1u = b, u = Mx. (3.32)

The right-preconditioned GMRES is given as Algorithm 8. As shown in this algorithm, the
Krylov subspace spanned by the right preconditioning can be defined as:

Algorithm 8 Right-Preconditioned GMRES
1: r0 = b−Ax0, β = ||r0||2, and ν1 = r0/β
2: for i = 0, · · · ,m− 1 do
3: z ← AM−1νi
4: hj,i ← 〈z, νj〉, z = z − hj,iνj j = 1, · · · , i
5: if hj+1,j == 0 then
6: stop
7: else
8: νi+1 = z/hi+1,i, and hi+1,i = ||z||2
9: end if

10: end for
11: Compute ym which minimizes ||βe1 −Hmy||2
12: xm = x0 +M−1Vmym

Span{r0, AM
−1r0, · · · , (AM−1)m−1r0}. (3.33)

The essential difference of right preconditioning compared with left preconditioning is that
the residual vectors can be obtained as b − Axm = b − AM−1um, which is equal the ones of
unpreconditioned systems, and independent from the selection of M . Thus this precondition-
ing matrix can vary with different selections for each iteration of GMRES, that is the flexible
GMRES, which can be useful for several linear systems.

Another alternative is to use the split preconditioning, which can be seen as a combination
of left and right preconditioning. Suppose that a preconditioning matrix M can be factorized as
the form:

M = LU. (3.34)

Then, the split preconditioned linear systems to be solved by GMRES can be defined as:

L−1AU−1u = L−1b, x = U−1u. (3.35)

The residual vectors of this type of GMRES is that form L−1(b − Axm). In fact, a split
preconditioner may be much better if A is nearly symmetric.
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3.5.1.2 Jacobi, SOR, and SSOR Preconditioners

The preconditioners are able to be constructed based on stationary methods, such as Jacobi,
SOR and SSOR.

Their general form for the preconditioning can be given as:

xk+1 = M−1Nxk +M−1b, (3.36)

where M and N are created by the splitting of A as:

A = M −N. (3.37)

The above formula can be rewritten as:

xk+1 = Gxk + f, (3.38)

with f = M−1b and G = M−1N = I −M−1A.

The Expression (3.38) attempts to solve:

(I −G)x = f. (3.39)

which can be rewritten as:

M−1Ax = M−1b. (3.40)

For Jacobi Preconditioner, the preconditioning matrix M can be defined as:

MJacobi = D−1. (3.41)

For Gauss-Seidel Preconditioner, the preconditioning matrix M can be defined as:

MGauss = (D − E)D−1(D − F ). (3.42)

For SSOR preconditioner, the preconditioning matrix M can be defined as:

MSSOR = (D − ωE)D−1(D − ωF ). (3.43)

3.5.1.3 Imcomplete LU Preconditioners

In numerical linear algebra, an ILU of a matrix is a sparse approximation of the LU factorization.
It is often used as a preconditioner.

For a linear system Ax = b, it is often solved by computing the factorization A = LU , with
L a lower triangular and U upper triangular. One then solves efficiently Ly = b and Ux = y

in sequence since U , and L are all triangular. It is well known that usually in the factorization
procedure, the matrices L and U have more non zero entries then A. These extra entries are
called fill-in entries.
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An incomplete factorization [187, 194, 130, 140] instead seeks triangular matrices L and U
such that

A ≈ LU.

An example of ILU is given as Algorithm 9. For a typical sparse matrix, the LU factors
can be much less sparse than the original matrix - a phenomenon called fill-in. The memory
requirements for using a direct solver can then become a bottleneck in solving linear systems.
One can combat this problem by using fill-reducing reorderings of the matrix’s unknowns.

Algorithm 9 Incomplete LU Factorization Algorithm
1: for i = 2, · · · , n do
2: for k = 1, · · · , i− 1 do
3: if (i, k) /∈ P then
4: ai,k = ai,k/ak,k
5: for j = k + 1, · · · , n do
6: if (i, j) /∈ P then
7: ai,j = ai,j − ai,kak,j
8: end if
9: end for

10: end if
11: end for
12: end for

Let S be a subset of all positions of the original matrix generally including the main diagonal,
and ∀(i, j) such that ai,j 6= 0. An incomplete LU factorization of A only allows fill-in positions
which are in S, which is designated by the elements to drop at each step. S has to be specified in
advance statically by defining a zero pattern which must exclude the main diagonal. Therefore,
for any zero patterns P , such that

P ⊂ {(i, j)|i 6= j; 1 ≤ i, j ≤ n} (3.44)

Solving for LUx = b can be done quickly but does not hield the exact solution to the given
problem. So a matrix is

MLU = LU,

often used as a preconditioner for another iterative method such as GMRES. For an in-
complete factorization with no-fill, named ILU(0), we define the pattern P as the zero patterns
of A. However, more accurate factorization can be obtained by allowing some fill-in, denoted
by ILU(p) where p stands for the desired level of fill. This class of preconditioners have some
difficulties to converge in a reasonable number of iterations for ill-conditioned systems.

3.5.1.4 Preconditioning by Multigrid Solvers

MG methods, including GMG and AMG, are the most complex preconditioners. The MG meth-
ods speed up the convergence of stationary iterative methods by smoothing the low-frequency
modes of the errors of linear systems with the construction of a series of coarse representations.
The main difference between the GMG and AMG is the strategy to construct the restriction
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and coarse matrices. AMG preconditioners need an amount of time for the pre-processing, but
they can accelerate convergence much more significantly.

When AMG is applied as a preconditioner (e.g. [173, 132, 229, 145]), the setup phase of
restriction matrix R2h

h and the interpolation matrix I2h
h need to be complex as the standalone

AMG solvers. The creation of a given number of sub-domains, and each domain representing by
only one value at the coarse level is enough. After dividing the nodes of mesh into groups, the
projection matrix can be defined as W . W is used to build the coarse-system matrix A2h of an
original matrix A:

A2h = W TAW. (3.45)

Thus, W is the restriction operation R2h
h , and W T is the interpolation matrix I2h

h . After the
creation of transfer operation W , it can be applied into the fine-coarse-fine loop of MG method
to generate an approximate solution of original linear systems. Algorithm 10 gives an example
of AMG preconditioned GMRES.

Algorithm 10 AMG-Preconditioned GMRES
1: r0 = b−Ax0, β = ||r0||2, and ν1 = r0/β
2: for i = 0, · · · ,m− 1 do
3: Get up by p relaxions on Au = νi starting from u0 using stationary methods.
4: Find the residual: rp = νi −Aup.
5: Project rp one the coarse level: rpc = W T rp.
6: Solve the coarse-level residual system: A2hEpc = rpc.
7: Project back Epc the fine level: Ep = Wepc.
8: Correct the fine-level approximation: up = up + Ep.
9: Iterate p times on Au = νi starting from up, get the final approximation û.

10: set νi = û.
11: z ← Aνi
12: hj,i ← 〈z, νj〉, z = z − hj,iνj j = 1, · · · , i
13: if hj+1,j == 0 then
14: stop
15: else
16: νi+1 = z/hi+1,i, and hi+1,i = ||z||2
17: end if
18: end for
19: Compute ym which minimizes ||βe1 −Hmy||2
20: xm = x0 +M−1Vmym

3.5.2 Preconditioning by Deflation

As discussed in Section 3.4.3, it is not always true, but the convergence of Krylov subspace
methods for most (normal and quasi-normal) linear systems depends on the distribution of
eigenvalues. The removing or deflation of the small eigenvalues might greatly improve the con-
vergence performance. If the dimension of Krylov subspace is large enough, some deflation occurs
automatically. But for the restarted GMRES, the limitation of the dimension of Krylov subspace
is not enough for these deflations, and convergence cannot be achieved accordingly. Thus de-
flation schemes should be constructed for each cycle of the restart, and this technique is called
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the deflated preconditioners. Kharchenko et al. [122] built a deflation preconditioner using the
approximate eigenvectors. In [85], Erhel et al. developed a deflation technique based on an in-
variant subspace approach; Burrage et al. [47] improved this deflation technique by considering
the eigenpairs outside the Krylov subspace of GMRES. Both Chapman et al. [52] and Gaul et
al. [99] presented the deflated and augmented Krylov subspace techniques. Giraud et al. [102]
proposed a novel algorithm that attempts to combine the numerical features of deflated GM-
RES, and the flexibility of FGMRES. Kutsukake et al. [128] developed a new deflated flexible
GMERS which uses an approximate inverse preconditioner.

In this section, we give a example of deflated GMRES(m, k) (denoted as GMRES-DR(m, k))
developed by Morgan et al. [151]. GMRES-DR is a deflation preconditioned GMRES uses the
thick restarting iterations. It has two parametersm and k, wherem is the restart size of GMRES,
and k is the number of eigenvectors used for the deflation during the restart. The first cycle
is the same as GMRES(m), which is able to generate Vm and Hm. The k smallest eigenpairs
(λk, gk) of matrix Hm +βH−Tm eme

T
m can be calculated. Then a matrix Gk can be formulated as:

Gk = [g1, g2, · · · , gk], (3.46)

and then Gk+1 can be generated as:

Gk+1 = ((Gk), c− H̄my). (3.47)

Qk+1 can be gotten from Gk+1, hence Vk+1 and Hk are generated, where Vk+1 is a n×(k+1)
matrix and Hk is a k× k matrix. Therefore, it becomes necessary to extend Vk+1 and Hk to Vm
and Hm by the Arnoldi method that starts at the (k+ 1)-th iteration. This method is shown in
Algorithm 11. GMRES-DR is efficient and numerical stable for deflating the small eigenvalues
and accelerating the convergence.

3.5.3 Preconditioning by Polynomials - A Detailed Introduction on Least
Squares Polynomial Method

In the context of iterative methods for solving linear systems, polynomial preconditioners have
been studied extensively. In this section, we recall some of the results regarding simple poly-
nomial preconditioners, and then give an introduction about the Least Squares Polynomial
preconditioner.

3.5.3.1 Polynomial Preconditioners for Linear Solvers

In order to approximate the solution of linear system

Ax = b,

one approach is to get the inverse of A, denote it as A−1, and then the solution can be easily
obtained as

x = A−1b.

.
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Algorithm 11 GMRES-DR(A,m, k, x0)
1: r0 = b−Ax0, β = ||r0||2, and ν1 = r0/β
2: for i = 0, · · · ,m− 1 do
3: z ← Aνi
4: hj,i ← 〈z, νj〉, z = z − hj,iνj j = 1, · · · , i
5: if hj+1,j == 0 then
6: stop
7: else
8: νi+1 = z/hi+1,i, and hi+1,i = ||z||2
9: end if

10: end for
11: Compute ym which minimizes ||βe1 −Hmy||2
12: Compute the k smallest eigenpairs (λk, gk) of Hm + βH−Tm eme

T
m

13: Set Gk = [g1, g2, · · · , gk]
14: Orthonormalize Gk into Qk which is a n× k matrix
15: Extend Qk to length m + 1 by appending a zero entry to each. Then orthonormalize the

vector c− H̄md against them to form qk+1. Note c− H̄md is a vector of length m+ 1, Qk+1
can be formulated by combining Qk and qk+1

16: Set V new
k+1 = Vk+1Qk+1 and H̄k

new = QHk+1H̄m

17: Reorthogonalize vk+1 against the earlier columns of V new
k+1

18: Apply the Arnoldi iteration from this point to form the rest of Vm+1 and H̄m, with β =
hm+1,m

19: Set c = V T
m+1r0 and solve min ||c− H̄md||2 for d

20: Set xm = x0 + Vmd, rm = b−Axm = Vm+1(c− H̄md)
21: if ||rm|| < tol then
22: Stop
23: end if
24: Compute the k smallest eigenpairs (λk, gk) of Hm + βH−Tm eme

T
m

25: set x0 = xm and Go to Step 1

Suppose that the characteristic polynomial for A:

q(A) = γnA
n + γn−1A

n−1 + · · ·+ γ1A+ γ0I = 0. (3.48)

The polynomial representation of A−1 with γ0 6= 0 can be given as:

A−1 = 1
γ0

(−γnAn−1 − γn−1A
n−1 − · · · − γ1I) = p(A). (3.49)

Therefore, it makes sense to approximate A−1 by a polynomial in A. Better selection of this
kind of polynomial can approximate more quickly the solution of linear systems.

3.5.3.2 Neumann series polynomials

The simplest p is the polynomial with the Neumann series expansion:

I +N1 +N2 + · · · , (3.50)

with:
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N = I − ωA, (3.51)

and ω is a scaling parameter. The above series can be obtained by the expansion of the
inverse of ωA:

(ωA)−1 = [D − (D − ωD−1A)]−1

= [I − (I − ωD−1A)]−1D−1,
(3.52)

where D can be the Identity matrix I, the diagonal of A, or even a block diagonal of A.
Setting:

N = I − ωD−1A, (3.53)

and truncating this series, a polynomial preconditioner of degree k can be defined as:

pk(A) = [I +N1 +N2 + · · ·+Nk]D−1. (3.54)

Denote the exact solution of Ax = b as x = A−1b and the approximate solution by pk(A) as
x′ = pk(A)b. The error of between x′ and x is bounded as:

||x− x′||2 = ||A−1b− pk(A)b||2
= ||(I − pk(A)A)A−1b||2
= ||Nk+1A−1b||2 ≤ ||N ||k+1

2 ||A−1b||2.

(3.55)

The performance of preconditioning by Neumann polynomial can be improved with the
enlargement of polynomial degree of pk, but matrix operation can be difficult numerically for
large k.

3.5.3.3 Chebyshev Polynomials

In order to accelerate the convergence with the degree k as small as possible, a kind of minimum-
maximum polynomials are proposed. A polynomial preconditioner can be more abstractly de-
fined as any polynomial Pd(A) of degree d− 1.

The iterates of this polynomial to approximate the solution can be written as

xd = x0 + Pd(A)r0, (3.56)

where x0 is a selected initial approximation to the solution, and r0 the corresponding residual
norm. A polynomial of d degree Rd can be set such that

Rd(λ) = 1− λPd(λ). (3.57)

Rd is called the residual polynomial. The residual rd generated by a d degree polynomial can
be expressed as equation

rd = Rd(A)r0, (3.58)
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with the constraint Rd(0) = 1. It is necessary to find a kind of polynomial which can minimize
||Rd(A)r0||2, with ||.||2 the Euclidean norm.

If A is a n × n diagonalizable matrix with its spectrum denoted as σ(A) = λ1, · · · , λn, and
the associated eigenvectors u1, · · · , un. Expanding the initial residual vector r0 in the basis of
these eigenvectors as

r0 =
n∑
i=1

ρiui. (3.59)

Moreover, then the residual vector rd can be expanded in this basis of these eigenvectors as

rd =
n∑
i=1

Rd(λi)ρiui, (3.60)

which allows getting the upper limit of ||rd||2 as

||rd||2 ≤ ||r0||2 max
λ∈σ(A)

|Rd(λ)|. (3.61)

In order to minimize the norm of rd, it is possible to find a polynomial Pd which can minimize
the Equation (3.61). And it tends to be a minimum-maximum problem with the constraint
Rd(0) = 1 and λ ∈ σ(A)

min maxλ∈σ(A)|Rd(λ)|. (3.62)

This mimimum-maximum problem can be expressed as

min maxλ∈H |Rd(λ)|, (3.63)

where H is taken to be an ellipse with center c and focal distance f , which contains the
convex hull of λ(A). In order to solve the last problem, a well known method is the Chebyshev
polynomial iterative method, If the origin is outside of this ellipse, the minimal polynomial can
be reduced to a scaled and shifed Chebyshev polynomial:

Rd(λ) =
Td( c−λf )
Td( cf ) , (3.64)

with Td a Chebyshev polynomial. The three-term recurrence for the Chebyshev polynomials
results in the following three-term recurrences

Tk+1( c
f

) = 2 c
f
Tk(

c

f
)− Tk−1( c

f
), k = 1, 2, 3, · · · , (3.65)

with

T0( c
f

) = 1, T1( c
f

) = c

f
. (3.66)

and
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Rk+1(λ) = 1
Tk+1( cf )

[
2c− λ

f
Tk(

c

f
)Rk(λ)− Tk−1( c

f
)Rk−1(λ)

]

=
Tk( cf )
Tk+1( cf )

[
2c− λ

f
Rk(λ)−

Tk−1( cf )
Tk( cf ) Rk−1(λ)

]
, k ≥ 1,

(3.67)

with

R0(λ) = 1, R1(λ) = 1− λ

c
. (3.68)

Denote

ρk =
Tk( cf )
Tk+1( cf ) , k = 1, 2, 3, · · · (3.69)

We have


ρk = 1

2 cf − ρk−1

Rk+1(λ) = ρk

[
2( c
f
− λ

f
)Rk(λ)− ρk−1Rk−1(λ)

]
, k ≥ 1

(3.70)

After the construction of three-term recurrence for Rd by the optimal ellipseH, the difference
between two successive residual vectors can be given as

rk+1 − rk = (Rk+1(A)−Rk(A))r0. (3.71)

Thus for the approximated solution xk+1 and xk corresponding respectively to rk+1 and rk,
we have

xk+1 − xk = ρk

[
ρk−1(xk − xk−1) + 2

f
(b−Axk)

]
. (3.72)

A Chebyshev polynomial preconditioned GMRES is given as Algorithm 12. After m-steps
GMRES with approximate solution x̃, a new ellipse can be refined with the newly gotten eigen-
values from the Hessenberg matrix. Denote this optimal ellipse as ellipse(a, c, f), with a the
major axis, c the center, and f the focal. A new solution can be updated by the recurrence of
Chebyshev polynomial from x̃, and it will be used as an initial vector for the next restart of
GMRES.

3.5.3.4 Least Squares Polynomial Method

An important drawback for Chebyshev polynomial preconditioner is that the optimal ellipse
which encloses the spectrum often does not accurately represent the spectrum. This might
result in slow convergence. Based on the normalized Chebyshev polynomial, the Least Squares
polynomial methods are introduced. The spectrum of A is discrete, it is possible to introduce
one or more polygonal regions without the origin, which has a relatively small number of edges
instead of ellipses [200]. The problem tends to find a polynomial Pd on the boundary of H which
we note as ∂H, that maximizes the modulus of |1 − λPd(λ)|. Then we get the Least Squares
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Algorithm 12 Chebyshev Polynomial Preconditioned GMRES
1: Compute current residual vector r = b−Ax̃
2: Run m steps of GMRES for solving Ad = r.
3: Update x̃ by x̃ = x̃+ d.
4: Get eigenvalue estimates from the eigenvalues of the Hessenberg matrix.
5: Refine a new ellipse ellipse(a, c, f) with novel eigenvalue estimates.
6: Compute the current residual vector r0 = b−Ax̃, ρ0 = f

c , d = 1
c r0;

7: for k = 0, 1, · · · = d− 1 do
8: xk+1 = xk + dk
9: rk+1 = rk −Adk

10: ρk+1 = (2 cf − ρk)−1

11: dk+1 = ρk+1ρkdk + 2ρk+1
f rk+1

12: end for
13: Update x̃ as x̃ = xd.
14: Test for convergence.
15: If solution converged then STOP, else GOTO 1.

problem with respect to some weight w(λ) on the boundary of H and the constraint Rd(0) = 1.

Polygon

Ellipse

Real part

Im
ag

in
ar

y 
pa

rt

Figure 3.3 – The polygon of samllest area containing the convex hull of λ(A).

Weight Function and Gram Matrix: Suppose that matrix A is real, we know that its
spectrum is symmetric with the real axis, which means we will only need the upper half part
H+ of the convex hull H.

Suppose that ∂H+ the upper part of boundary H and v = 1, · · · , µ that ∂H+ = ∪µv=1Ev.
And then, suppose cv and fv, the center and focal distance of edge Ev. The inner product of
two complex polynomials p and q associated with the weight function ωv on the edge Ev can be
expressed as.
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(p, q)w = 2<
[ v∑
v=1

∫
Ev
p(λ)q(λ)wv(λ)dλ

]
. (3.73)

wv(λ) = 2
π
|f2
v − (λ− cv)2|−

1
2 . (3.74)

This function is the weight function of one edge Ev generated by the basis of Chebyshev
polynomials, which facilitates to calculate the inner product.

And then, each polynomial ti(λ) can be expressed in terms of the Chebyshev polynomial
(3.75) constructed by the ellipse ξ(a, cv, fv) with i ≥ 0 as the Fourmule (3.76).

Tl(
λ− cv
fv

). (3.75)

ti(λ) =
i∑
l=0

γ
(i)
l,vTl(

λ− cv
fv

). (3.76)

Since the polygon have µ different edges, thus each polynomial ti(λ) will have µ different
expressions in terms of Formula (3.76), on each edge Ev. Clearly, one of these expressions is
normally enough to fully determine the polynomial ti(λ). However, we construct it with a linear
combination of them, which allows stably performing an efficient computation.

With this polynomial basis, a so-called modified Gram matrix Md = mi,j can be obtained,
which is well-conditioned. The entries mi,j of Md defined as the relation below where i, j ∈
1, · · · , d+ 1

mi,j = (ti−1, tj−1)ω (3.77)

Thus the coefficients of the Gram matrix Md are given by

mi+1,j+1 = 2<
[ µ∑
v=1

(
2γ(i)

0,vγ
(j)
0,v +

j∑
l=1

γ
(i)
l,vγ

(j)
l,v

)]
, (3.78)

for all i, j such that 0 ≤ i ≤ j ≤ d.
Because of the three term-recurrence of the Chebyshev polynomials, it is possible to carry the

computation of these coefficients recursively. The recurrence relation for the shifted Chebyshev
polynomials are rewritten in the form

βi+1ti+1(z) = (z − a)ti(z)− δiti−1(z)

= (z − αi)
i∑
l=0

γ
(i)
l,vTl(

z − cv
fv

)− δi
i−1∑
l=0

γ
(i−1)
l,v Tl(

z − cv
fv

),
(3.79)

with the convention that t−1 = 0 and δ0 = 0. This formula provides the expressions for ti+1

from those of ti and ti−1 by exploiting the following relations


z − cv
fv

Tl(
z − cv
fv

) = 1
2[Tl+1(z − cv

fv
) + Tl−1(z − cv

fv
)] l > 0,

z − cv
fv

T0(z − cv
fv

) = T1(z − cv
fv

)
(3.80)
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Finally, for v = 1, 2, · · · , µ, the expansion coefficients γ(i)
l,v satisfy the recurrence relation

βi+1γ
(i+1)
l,v = fv

2

[
γ

(i)
l+1,v + γ

(i)
l−1,v

]
+ (cv − αi)γ(i)

l,v − δiγ
(i−1)
l,v , (3.81)

for l = 0, 1, · · · , i+ 1 with the notational convention,

γ
(i)
−1,v = γ

(i)
1,v, γ

(i)
l,v = 0, ∀l > i. (3.82)

Compute the Best Polynomial: For two polynomials p and q of degree d, their inner
product can be described as

(p, q)ω = (Mdη, θ), (3.83)

with η = (η1, · · · , ηd) and θ = (θ1, · · · , θd), the coordinates of polynomials p and q in basis
ti.

Expanding the polynomial Pd of (3.56) into the Chebyshev basis, and then we can get Rd as
equation below,

Pd =
d−1∑
i=0

ηiti. (3.84)

The residual polynomial Rd can be expressed as

Rd(λ) = 1− λPd(λ)

= 1−
d−1∑
i=0

ηiλti(λ)
(3.85)

and in the end we obtain the following equations with the three terms recurrence (3.79):

Rd(λ) = t0 −
d−1∑
i=0

ηi(βi+1ti+1 + αiηi + δiηi+1)ti. (3.86)

Then Rd can be expressed into e1 − Tdη with its coordinations in the polynomial ti, where
Td is a (d+ 1)× d matrix as

Td =



α0 δ1

β1 α1 δ2

β2 α2 δ3

δd−1

βd−1 αd−1

βd


(3.87)

With the definition of inner product in the polynomial basis, the function which needs to be
minimized can be expressed under the form of the equation below.

R2
d = (Rd, Rd)ω

= (Md(e1 − TdHd), e− TdHd).
(3.88)
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As Md is symmetric, we can get the factorization of Md under the form Md = LdL
T
d , and in

the end we obtain the equation as below with Fd = LTd Tk a (d+1)×d upper Hessenberg matrix.

R2
d = (Rd, Rd)ω

= (LTd (e1 − TdHd), LTd (e1 − TdHd)).
(3.89)

In the end, ||Rd||2 can be defined as

||Rd||2 = ||LTd (e1 − TdHd)||2
= ||l1,1 − FdHd||2

(3.90)

The coefficients Hd are the solution of problem min ||l1,1e1 − FdHd||2 with Hd ∈ IRd. This
problem can maybe be solved easily by Givens rotations and QR factorization. The process
to generate the Least Squares Polynomial’s parameters by three terms recurrence using the
eigenvalues are given in Algorithm 13.

Compute the Iteration Form: the iteration form of Least Squares polynomial is xd =
x0 +Pd(A)r0 with Pd the least square polynomial of degree d− 1 under the Formula (3.91). The
polynomial basis ti meet the three terms recurrence relation (3.92).

Pd =
d−1∑
i=0

ηiti. (3.91)

ti+1(λ) = 1
βi+1

[λti(λ)− αiti(λ)− δiti−1] (3.92)

The parameters H = (η0, η1, · · · , ηd−1) can be computed by a Least Squares problem of the
formula

min‖l11e1 − FdHd‖ (3.93)

We therefore need to compute the vectors ωi = ti(A)r0, and get the linear combination of
formula (3.91). The recurrence expression of ωi is given as (3.94) and the final solution as (3.95).
The hybrid GMRES preconditioned by least squares polynomial methods is given as Algorithm
14.

ωi+1 = 1
βi+1

(Aωi − αiωi − δiωi−1) (3.94)

xd = x0 + Pd(A)r0

= x0 +
d−1∑
i=1

ηiωi.
(3.95)

Non-Hermitian Linear Systems: For the non-Hermitian linear systems, the acceleration
of Least Squares polynomial preconditioner depends on the spectral distribution. If the polygon
generated by the dominant eigenvalues is able to well approximate the spectral distribution,
Least Squares polynomial might speed up the convergence efficiently. If the spectral distribution
is far non-symmetric with the real-axis, the acceleration of Least Squares polynomial is limited.
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Algorithm 13 Least Square Polynomial Generation
1: function LSP-Pretreatment(input: A, b, d,Λr, output: Ad, Bd,∆d, Hd)
2: construct the convex hull C by Λr
3: construct ellispe(a, c, f) by the convex hull C
4: compute parameters Ad, Bd,∆d by ellispe(a, c, f)
5: construct matrix T (d+ 1)× d matrix by Ad, Bd,∆d

6: construct Gram matrix Md by Chebyshev polynomials basis
7: Cholesky factorization Md = LLT

8: Fd = LTT
9: Hd satisfies min ‖l11e1 − FdHd‖

10: end function

Algorithm 14 Hybrid GMRES Preconditioned by Least Squares Polynomial
1: Compute current residual vector r = b−Ax
2: Run m1 steps of GMRES for solving Ad = r.
3: Update x by x = x+ d.
4: Get eigenvalue estimates from the eigenvalues Λr of the Hessenberg matrix.
5: LSP-Pretreatment(input: A, b, d,Λr, output: Ad, Bd,∆d, Hd)
6: r0 = f −Ax0, ω1 = r0 and x0 = 0
7: for k = 1, 2, · · · , lsa do
8: for i = 1, 2, · · · , d− 1 do
9: ωi+1 = 1

βi+1
[Aωi − αiωi − δiωi−1]

10: xi+1 = xi + ηi+1ωi+1
11: end for
12: end for
13: set x0 = xd
14: Test for convergence.
15: If solution converged then Step, else GoTo 1.

Even for the general non-normal matrices, the Least Squares polynomial preconditioner might
perform better than the conventional preconditioners. Since it is constructed by the polynomial
hull, which might be effcient for several cases with non-normal matrices.

3.6 Arnoldi for Non-Hermitian Eigenvalue Problems

The dominant eigenvalues of a non-Hermitian eigenvalue problem can be approximated by the
Arnoldi method. The dominant eigenvalues means the ones with large Euclidean norms. In the
section, we present the basic algorithm of Arnoldi method and its variants.

3.6.1 Basic Arnoldi Methods

Arnoldi algorithm [13] is widely used to approximate the eigenvalues of large sparse matrices.
The kernel of Arnoldi algorithm is the Arnoldi reduction, which gives an orthonormal basis
Ωm = (ω1, ω2, · · · , ωm) of Krylov subspace Km(A, v), by the Gram-Schmidt orthogonalization,
where A is n× n matrix, and ν is a n-dimensional vector. Since Arnoldi reduction can reduce a
matrix A to be an upper Hessenberg matrix Hm with relation ΩT

mAΩm = Hm, the eigenvalues
of Hm are the approximated ones of A, which are called the Ritz values of A. With the Arnoldi
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reduction, the r desired Ritz values Λr = (λ1, λ2, · · · , λr), and the corresponding Ritz vectors
Ur = (u1, u2, · · · , ur) can be calculated by Basic Arnoldi method.

The numerical accuracy of the computed eigenpairs by basic Arnoldi method depends highly
on the size of the Krylov subspace and the orthogonality of Ωm. Generally, the larger the subspace
is, the better the eigenpairs approximation is. The problem is that firstly the orthogonality of the
computed Ωm tends to degrade with each basis extension. Also, the larger the subspace size is,
the larger the Ωm matrix gets. Hence available memory may also limit the subspace size, and so
the achievable accuracy of the Arnoldi process. To overcome this, Saad [189] proposed to restart
the Arnoldi process, which is the ERAM. Inside ERAM, the subspace size is fixed as m, and
only the starting vector will vary. After one restart of the Arnoldi process, the starting vector
will be initialized by using information from the computed Ritz vectors. In this way, the vector
will be forced to be in the desired invariant subspace. The Arnoldi process and this iterative
scheme will be executed until a satisfactory solution is computed. The implementation of ERAM
is given by Algorithm 15, where εa is a tolerance value, r is desired eigenvalues number and the
function g defines the stopping criterion of iterations.

Algorithm 15 ERAM algorithm
1: function ERAM(input: A, r,m, ν, εa, output: Λr)
2: Compute an AR(input:A,m, v, output: Hm,Ωm)
3: Compute r desired eigenvalues λi (i ∈ [1, r]) of Hm

4: Set ui = Ωmyi, for i = 1, 2, · · · , r, the Ritz vectors
5: Compute Rr = (ρ1. · · · , ρr) with ρi = ||λiui −Aui||2
6: if g(ρi) < εa (i ∈ [1, r]) then
7: stop
8: else
9: set v = ∑d

i=1Re(νi), and GOTO 2
10: end if
11: end function

3.6.2 Variants of Arnoldi Methods

There are various strategies to restart the basic Arnoldi method and to accelerate the convergence
by the deflation of unwanted eigenvalues. This section lists three variants:

(1) ERAM [149]: Arnoldi algorithm restarted explicitly by the combination of Ritz values
and vectors.

(2) IRAM [201]: IRAM is a variant of Arnoldi algorithm with deflation of unwanted eigen-
values. It can shift the unwanted eigenvalues of matrix implicitly without the explicit
construction of filter polynomial during the process of Arnoldi reduction. The Algorithm
16 illustrates this method. The shift of unwanted values of matrix A can be transferred to
be a shifted QR factorization of Hessenberg matrix Hm. IRAM can operate in parallel to
solve the large problem without extra memory space.

(3) Krylov-Schur Method [204]: It is another implementation of Arnoldi algorithm with
deflation of unwanted eigenvalues. Krylov-Schur method is mathematically equal to IRAM.

61



Chapter 3 – Krylov Subspace Methods

Algorithm 16 IRAM algorithm
1: function IRAM(input: A, r,m, ν, εa, output: Λr)
2: Compute an AR(input:A,m, v, output: Hm,Ωm)
3: Compute the spectrum of Hm: Λ(Hm).
4: if converge then
5: stop
6: else if
7: thenselect set of p shifts µ1, µ2, · · · , µp
8: end if
9: qT = eTm

10: for j = 1, 2, 3, · · · , p do
11: Factor [QJ , Rj ] = QR(Hm − µjI)
12: Hm = qTj HmQj , Vm = VmQj , qT = qTQj
13: end for
14: fk = vk+1Hm(k+1,k) + fmq

T (k), Vk = Vm(1:n,1:k), Hk = Hm(1:k,1:k)
15: Beginning with the k-step Arnoldi factorization, AVk = VkHk + fke

T
k , apply p additional

steps of the Arnoldi process to obtain a newm-step Arnoldi factorization as AVm = VmHm+
fme

T
m

16: end function

Algorithm 17 Krylov-Schur Method
1: function Krylov-Schur(input: A, x1,m, output: Λk with k ≤ p)
2: Build an initial Krylov decomposition of order m
3: Apply orthogonal transformations to get a Krylov-Schur decompostion
4: Reorder the diagonal blocks of the Krylov-Schur decompostion
5: Truncate to a Krylov-Schur decompostion of order p
6: Extend to a Krylov decomposition of order m
7: If not satisfied, go to step 3
8: end function

Its two advantages over IRAM: 1) it is easier to deflate converged Ritz vectors; 2) it avoids
the potential forward instability of the QR algorithm. The Algorithm 17 gives this method.
During the Arnoldi reduction procedure, the Hessenberg matrix Hm is decomposed by the
Schur deposition as Hm = SmTmSm with unitary matrix Sm and upper triangular matrix
Tm. The upper triangular form of Tm eases the analysis of Ritz pairs. The wanted and
unwanted Ritz values in Tm can be reordered into two separate parts as Tm−k and Tk.
Tm−k can be extended to m-dimension without unwanted values through further k steps
of Krylov subspace projection.

3.7 Parallel Krylov Methods on Large-scale Supercomputers

Since decades, Krylov subspace methods are generally implemented in parallel on the supercom-
puters to solve very large linear systems and eigenvalue problems. In 1992, an implementation
of parallel subspace was already introduced by Petiton for non-Hermitian eigen-problems on
the Connection Machine 2 (CM2) [171]. This section discusses the scheme to implement Krylov
methods in parallel on modern distributed memory systems.
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3.7.1 Core Operations in Krylov Methods

It is necessary to identify the main operations in Krylov methods before the parallel implemen-
tation. Considering the Algorithm 2, we identify four types of operations, which are:

• Matrix-vector products in line 5 of Algorithm 2;

• AXPY operation in line 7 of Algorithm 2;

• Dot products in line 8 of Algorithm 2;

• Orthogonalization of vector for the loop from line line 4 to line 6 in of Algorithm 2.

This section gives the parallel implementation of these four operations in detail.

3.7.1.1 AXPY Operation

AXPY is in the form:

y = αx+ y, (3.96)

with x and y two vectors, and α is a scalar. This operation is used to update vectors inside
Krylov subspace methods. On distributed memory platforms, it is necessary to assume that
the vectors x and y should be distributed in the same manner across all the processor. The
distributed AXPY is simple without requiring communication. It can be regarded as several
AXPY of local vectors in serial on each processor.

3.7.1.2 Dot product and Global Reduction Operation

The dot product is the operation that use all the components of given vectors to compute a
single floating-point scalar. In the Arnoldi reduction process, this scalar is always needed by all
processors. Equation (3.97) gives the formula of dot product operation.

v · w = 〈v1, v2, · · · , vn〉 · 〈w1, w2, · · · , wn〉 = v1w1 + v2w2 + · · ·+ vnwn. (3.97)

The distributed version of the dot-product is needed to compute the inner product of two
vectors v and w and then distribute the result across all the processors. This type of operations
are termed the All Reduction Operations, which can be seen as the combination Reduction
Operations and Broadcast Operations. In Krylov subspace methods, the dot-product operation
is typically needed to perform the vector update on each processor. If the number of processors
is large, this kind of operations can introduce enormous communication costs. The computation
of the Euclidean norm of distributed vectors is also a global reduction operation which is similar
to the dot-product.

3.7.1.3 Orthogonalization of Vector

In the Arnoldi reduction (as shown by Algorithm 2) for non-Hermitian matrices, the vector
Avi should be orthogonalized against all the previous vectors. In practice, the classic Gram-
Schmidt process is preferred than the Modified Gram-Schmidt, even the presence of round-offs
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and cancellations within Classic Gram-Schmit orthogonalization diminish its numerical stability.
In Classic Gram-Schmit orthogonalization, the orthogonalization process is overlapped, while the
same process of Modified Gram-Schmit orthogonalization has a data dependency, which is not
possible to get good parallel performance. A preconditioner or a reorthogonalization process can
compensate for the deficiency of numerical stability.

=∗

Figure 3.4 – Communication Scheme of SpMV.

3.7.1.4 SpMV Operation

In practice, the parallel version of Arnoldi orthogonalization is memory/communication bounded.
The most critical operation with the high communication intensity is the substantial number
of matrix-vector multiplications Avi. The parallel implementation of Krylov iterative methods
depends heavily on the data structure to store the matrix. Different distributed sparse ma-
trix format introduces different matrix-vector implementation schemes and finally results in the
different parallel performance.

The standard used sparse matrix storage format includes: COO which stores respectively the
row index, column index and values into three arrays; CSR which stores respectively the row
offset, the column index and data values into three arrays; ELLPACK which stores the column
index and values into two two-dimensional arrays according their row index; and DIA which
store the diagonal offsets into one-dimensional array, and the values sorted by diagonal into a
two-dimensional array.

For the parallel implementation of SpMV on modern parallel systems, the matrix with se-
lected storage format should be distributed across different processors with considering the load
balance and reduction of communications. Fig. 3.4 gives the communication scheme of SpMV
on distributed memory systems.
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Figure 3.5 – Classic Parallel implementation of Arnoldi reduction.

3.7.2 Parallel Krylov Iterative Methods

Fig. 3.5 describes the parallel implementation of the Arnoldi reduction process inside GMRES.
For each loop inside, it can be divided into two parts: the Gram-Schmidt and the normaliza-
tion processes. The SpMV in Gram-Schmidt process is implemented in parallel with the com-
munication among the processors, and the distributed version of dot-product operation is the
combination of Reduction and Broadcast Operations, which introduce a synchronization point,
and the AXPY is implemented in parallel without communications. In the normalization pro-
cess, the computation of the norm of the distributed vectors also introduce the synchronization
points. In the Arnoldi reduction, this loop is executed in sequence for m times to generate an
orthonormal basis in the m-dimensional Krylov subspace. For large-scale supercomputers, the
SpMV operations involving global communications, and the synchronization points produced by
the Reduction and Broadcast operations become bottleneck.

3.7.3 Parallel Implementation of Preconditioners

On modern parallel computers, the preconditioning techniques should have a high degree of
parallelism. The selection of preconditioners should consider not only their intrinsic numerical
qualities, but also their ability to explore multi-level parallelism. In this section, we discuss the
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ability of different preconditioners presented in Section 3.5 to explore the parallelism.

3.7.3.1 Natural Parallelizable Preconditioners

Deflation and polynomial preconditioners for iterative methods are intrinsically parallel pre-
conditioners, which means that they are parallelizable because of their mathematical scheme.
The deflated and polynomial preconditioners take place after each restart of Krylov iterative
methods. Their preconditioning procedure can be divided into two parts:

(1) the iterative steps, which are similar to the ones in the Arnoldi reduction, and their kernels
are the parallel SpMV and AXPY operations;

(2) the LAPACK operations executed in serial redundantly on all computing units, such as the
solution of small dimensional Least Squares problem and eigenvalue problems for different
preconditioning techniques. The operations are always implemented with the Allreduction
of MPI standard, which introduces extra synchronization points.

3.7.3.2 Non-Natural Parallelizable Preconditioners

There is a limited amount of parallelism can be extracted from the standard precondition-
ers such as ILU and SSOR. According to the conventional wisdom, these preconditioners are
primarily serial in nature. The row-by-row, upward-looking factorizations for the ILU precon-
ditioner, and the relaxation steps in SSOR preconditioner introduce a large number of task
and data dependencies for all entries of matrices, which restrict their parallel performance on
modern supercomputing systems. Thus, a number of alternative techniques are developed that
are specifically targeted at parallel environments. Block Jacobi preconditioner is the simplest
approach. The Jacobi method splits the coefficient matrix as A = L + D + U , with a diagonal
matrix D = ({aii}), a lower triangular factor L = ({aij} : i > j), and an upper triangular factor
U = ({aij} : i < j). The Block Jacobi method is an extension that gathers the diagonal blocks
of A into D = (D1, D2, · · · , DN ), with Di ∈ Rmi×mi , i = 1, 2, · · · , N , and n = ∑N

i=1mi. The
remaining elements of A are then partitioned into matrices L and U such that L contains the
elements below the diagonal blocks in D, while U contains those above them. The Block Ja-
cobi method is well defined if all diagonal blocks are nonsingular. The resulting preconditioner,
M = D, is particularly effective if the blocks succeed in reflecting the nonzero structure of the
coefficient matrix, which arises from PDEs [9]. Each block can set separately different iterative
solvers and preconditioners.

Apart from the Block Jacobi preconditioner, there are also other more complex precondition-
ers which decompose the entire linear systems into several subdomains. For each local system,
they can be solved either by a direct solver or using a standard preconditioned Krylov solver.
They are the Domain-Decomposition-Type preconditioners, such as Additive Schwarz precondi-
tioners [48] and Schur-complement based preconditioners [190], etc.

3.7.4 Existing Softwares

Recent years, there are several efforts to provide the parallel Krylov methods on different com-
puting architectures. This section gives a glance at two famous ones of them.
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3.7.4.1 PETSc/SLEPc

PETSc [24], is a suite of data structures and routines developed by Argonne National Laboratory
for the scalable (parallel) solution of scientific applications modeled by PDEs. It employs the
MPI standard for all message-passing communication. PETSc provides many of the mechanisms
needed within parallel application code, such as simple parallel matrix and vector assembly
routines that allow the overlap of communication and computation. PETSc provides the parallel
implementation of Krylov methods and several preconditioners.

SLEPc [111] is a software library for the parallel computation of eigenvalues and eigenvectors
of large, sparse matrices. It can be seen as a module of PETSc that provides solvers for different
types of eigenproblems, including linear (standard and generalized) and nonlinear (quadratic,
polynomial and general), as well as the SVD. It also uses the MPI standard for parallelization.
Both real and complex arithmetics are supported, with single, double and quadruple precision.
When using SLEPc, the application programmer can use any of the PETSc’s data structures
and solvers. Other PETSc features are incorporated into SLEPc as well. The module EPS in
SLEPc provides Krylov subspace methods such as Krylov-Schur, Arnoldi, and Lanczos to solve
sparse eigenvalue problems.

3.7.4.2 Trilinos

Trilinos [113] is a collection of open source software libraries, intended to be used as building
blocks for the development of scientific applications. Trilinos was developed at Sandia National
Laboratories from a core group of existing algorithms and utilizes the functionality of software
interfaces such as the BLAS, LAPACK, and MPI. Trilinos supports many different packages
which are defined to implement the iterative linear and eigensolvers methods. There are some
packages which are widely used as follows:

• Kokkos [81]: Kokkos implements a programming model in C++ for writing performance
portable applications targeting all major HPC platforms. Kokkos is designed to target com-
plex node architectures with N-level memory hierarchies and multiple types of execution
resources. It currently can use OpenMP, Pthreads, and CUDA as backend programming
models.

• Epetra [112]: Epetra provides the fundamental construction routines and services function
that are required for serial and parallel linear algebra libraries. Epetra provides the un-
derlying foundation for all Trilinos solvers. It implements linear algebra objects including
sparse graphs, sparse matrices, and dense vectors.

• Tpetra [21]: Tpetra is the next version of Epetra with better support for shared-memory
parallelism. Many Trilinos packages and applications are implemented based on Tpetra’s
linear algebra objects, or depend on Tpetra’s parallel data redistribution facilities. Tpetra
supports at least two levels of parallelism: MPI for distributed-memory parallelism and any
of various shared-memory parallel programming models (OpenMP, Pthreads or Nvidia’s
CUDA) boosted by Kokkos package within an MPI process. Tpetra has the following
unique features:
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– Native support for representing and solving very large graphs, matrices, and vectors;

– Matrices and vectors may contain many different kinds of data, such as floating-point
types of different precision and complex-valued types;

– Support for many different shared-memory parallel programming models based on
Kokkos.

• AztecOO [114]: Preconditioners and Krylov subspace methods (CG, GMRES, etc.), com-
patible with Epetra only.

• Belos [31]: Classical and block Krylov subspace methods, including the implementations
of CG, block CG, block GMRES, pseudo-block GMRES, block FGMRES, and GCRO-DR
iterations). Belos is compatible with Epetra and Tpetra.

• Anasazi [20]: It provides algorithms for the numerical solution of large-scale eigenvalue
problems. Anasazi is compatible with Epetra and Tpetra.

• Komplex [64]: Complex-valued system solver, Komplex is an add-on module to AztecOO
that allows users to solve complex-valued linear systems. Komplex solves a complex-valued
linear system by solving an equivalent real-valued system of twice the dimension.

3.8 Toward Extreme Computing, Some Correlated Goals

This section gives the challenges of numerical methods facing the development of HPC platforms.
In Section 2.4, we discussed the trend of future exascale supercomputing architectures and the
related challenges of parallel programming to develop the applications to profit efficiently from
these supercomputers. The main objective for the parallel implementation of numerical methods
is to minimize the global computing time. The global computing time of an algorithm can be
reduced by either accelerating the convergence or improving its parallel scaling performance
with much more computing units. In 2014, the mathematics and algorithms research opportuni-
ties which will enable scientific applications to harness the potential of exascale computing are
identified by seventy members of the applied mathematics community [74]. In this section, we
list more in detail the correlated goals of iterative methods toward the extreme computing:

(1) Accelerate the convergence: When solving linear systems by Krylov subspace, the conver-
gence cannot be guaranteed for the ill-conditioned matrix or when the restart strategy
is used. Thus, a critical issue for the iterative methods is to propose different kinds of
preconditioners which have better speedup on the convergence, and also enough numerical
stability. Moreover, facing the upcoming exascale computing, the proposed preconditioners
should either with better parallel performance across a large number of cores or be able to
promote the asynchronicity and benefit from the more complex architectures of modern
supercomputers. In summary, the novel preconditioners should be proposed either to be
stronger or with better parallel performance.

(2) Minimize the number of communications: When solving huge problems on parallel architec-
tures, the most significant concern becomes the cost per iteration of the method – typically
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because of communication and synchronization overheads. In general, the complexity of
algorithms (number of operations performed) is used to express their performance rather
than the quantity of data movement and communications. In fact, on the exascale com-
puters, the global communications across millions of cores are very expensive, and the
computing operations inside each core will be nearly free. To address the critical issue
of communication costs, researchers need to investigate algorithms that minimize com-
munication. For the Arnoldi reduction process inside Krylov iterative methods such as
GMRES, CG, and Lanczos, the operations of loop inside introduce much more global
communications.

When matrix A in Krylov subspace methods is very sparse, the SpMV invokes even more
communications. Hence, strategies for reducing communication overheads in Arnoldi or-
thogonalization have been proposed to address this bottleneck. In order to reduce the
global communication of SpMV for sparse matrices, the first approach is to select the
best sparse matrix storage format, which can produces less communications (e.g. [147,
136, 203, 144, 32, 33, 127, 15]). Another approach is to use the Hypergraph Partitioning
Models to optimize the SpMV scheme on parallel computers, e.g., in 1999, Catalyurek
et al. proposed two computational hypergraph models which avoid this crucial deficiency
of the graph model for SpMV [51]; Vastenhouw et al. tried to reduce the communication
volume of SpMV through a recursive bi-partitioning of the sparse matrix [213]; Chen et
al. proposed a communication optimization scheme based on the hypergraph for basis
computation of Krylov subspace methods on multi-GPUs [54]; a Locality-aware parallel
sparse matrix-vector and matrix-transpose-vector multiplication on many-core processors
is introduced by Karsavuran et al. [120]; and spatiotemporal graph and hypergraph parti-
tioning models for SpMV on many-core architectures is presented by Abubaker et al. with
better scaling performance through enhancing data locality in the operations [2], etc.

(3) Promote the asynchronicity and reduce the synchronization points: One algorithm often
must do the synchronize operations during the computation. The global data synchroniza-
tion across a number of cores in the distributed memory systems is expensive especially for
a hybrid platform with accelerators. Inside Krylov subspace methods, the dot product is
a good example which needs the global synchronization. For the extreme-scale platforms,
synchronizations become bottlenecks. Hence, the algorithm should be designed with as few
synchronization points as possible.

Attempts have been made to restructure existing algorithms for the exascale computing
so that the number of synchronizations is reduced. Communication-avoiding and pipelined
variants of Krylov solvers are critical for the scalability of linear system solvers on future
exascale architectures. Firstly, the impact of global communication latency at extreme
scales on Krylov methods are analyzed by Ashby et al. [16]. The strategy of hiding global
synchronization latency in GMRES and the preconditioned CG was presented by Ghysels
[101, 100]; Fujino et al. evaluated performance of parallel computing of revised BiCGSafe
and BiCGStar-plus method, and made clear that the revised single synchronized BiCGSafe
method outperforms other methods from the viewpoints of elapsed time and speed up
on parallel computer with distributed memory [96]; Rupp et al. implemented pipelined
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iterative solvers with kernel fusion for GPUs [180]; Sanan et al. presented variants of CG,
CR, GMRES which both pipelined and flexible [192]; Yamazaki et al. proposed to improve
the performance of GMRES by reducing communication and pipelining global collectives
[228]; Swirydowicz et al. presented low synchronization variants of iterated Classic Gram-
Schmit orthogonalization and Modified Gram-Schmit orthogonalization algorithms that
require one and two global reduction communication steps; the reduction operations are
overlapped with computations and pipelined to optimize performance [206], etc. Moreover,
an essential consideration for the restructuring an algorithm to reduce synchronization and
communication is their numerical stability.

(4) Mixed arithmetic: In order to develop numerical methods for the exascale computing, it
is important to identify and exploit the existence of mixed precision mathematics. Low-
precision floating-point operation is a powerful tool for accelerating scientific computing
applications, especially artificial intelligence. In fact, 32-bit operations can achieve at least
twice the acceleration of 64-bit operational performance on the modern computing archi-
tectures. In addition, through the combination of 32-bit and 64-bit floating-point opera-
tions, the performance of many linear algebra algorithms can be significantly enhanced by
32-bit precision operations while maintaining the 64-bit precision of the final solution. The
mixed arithmetic can be applied to different computing architectures, including traditional
CPUs and accelerators such as GPUs. The creation of a mixed-precision algorithms allow
for more efficient use of heterogeneous hardware. Minor modifications to existing code can
provide significant acceleration by considering existing hardware attributes.

In 2014, Kouya et al. [126], evaluate the performance of Krylov subspace methods by
using highly efficient multiple precision SpMV. They show that SpMV implemented in
these functions can be more efficient. Yamazaki et al. [227] present a mixed-precision
Cholesky factorization, which has 1.4× speedup over the standard approach on GPU. In
2018, Haidar et al. [108] investigate how HPC applications can be accelerated by the mixed
arithmetic technique. In detail, they developed the architecture-specific algorithms and
highly tuned implementations of a solver based on mixed-precision (FP16-FP64) iterative
refinement for the general linear system, Ax = b, where A is a large dense matrix, and
a double precision (FP64) solution is needed for accuracy. Their paper show how using
half-precision Tensor Cores (FP16-TC) for the arithmetic can provide up to 4× speedup.
Maynard et al. [143] present a mixed-precision implementation of Krylov solver for the
numerical weather prediction and climate modeling, the beneficial effect on run-time and
the impact on solver convergence. The complex interplay of errors arising from accumulated
round-off in floating-point arithmetic and other numerical effects is discussed. They employ
now the mixed-precision solver in the operational forecast to satisfy run-time constraints
without compromising the accuracy of the solution.

(5) Minimize energy consumption: The generated heat also affects the performance of super-
computers such as the arising failure rate of hardware, and the energy consumption also
becomes a tremendous financial burden for supercomputer centers, because it takes up a
large portion in the total cost. That is the Power wall, another roadblock to approach
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the exascale computing. In recent years, the HPC community has begun to address this
issue, and it is necessary to establish numerical methods and libraries for energy awareness,
control and efficiency.

In 2013, an analysis of energy-optimized lattice-Boltzmann CFD simulations from the
chip to the highly parallel level was introduced by Wittmann et al. [222]. Padoin et al.
[165] evaluated the application performance and energy consumption on hybrid CPU/GPU
architecture. In 2015, Anzt et al. [8] unveil some energy efficiency and performance fron-
tiers for sparse computations on GPU-based supercomputers. Aliaga et al. [5] unveil the
performance-energy trade-off in iterative linear system solvers for multithreaded proces-
sors. In order to gain insights about the benefits of hands-on optimizations, they analyze
the runtime and energy efficiency results for both out-of-the-box usage relying exclusively
on compiler optimizations, and implementations manually optimized for target architec-
tures, that range from CPUs and DSPs to manycore GPUs.

(6) Multi-level Parallelism: The increase of heterogeneity of modern supercomputers intro-
duces the multi-level parallelism of memory and communication. The implementation of
numerical iterative methods should be considered to adapt to the multi-level parallelism.
The multi-level parallelism includes the distributed memory level parallelism across the
platforms, the shared memory level parallelism inside the thread or accelerator and the
vectorization level parallelism.

(7) Load balance: For the exascale computing with millions of cores and accelerators, even
naturally load-balanced algorithms on homogeneous hardware will present many of the
same load-balancing problems. Dynamic scheduling based on DAGs has been identified as
a path forward, but this approach will require new approaches to optimize for resource
utilization without compromising spatial locality. The DAGs runtime environments such
as StarPU, OmpSs are good candidatures for the fine-grained parallelism. The workflow
runtime environment such as YML can be used for the coarse-grained parallelism.

(8) Auto-tuning: Current supercomputer have complex architectures, with millions of cores
utilizing non-uniform memory access and hierarchical cases. The introduction of GPUs
and other accelerators increases the heterogeneity of computers. Such adaptation must
deal with the complexity of discovering and applying the best algorithm for diverse and
rapidly evolving architectures. Thus, tuning the performance of softwares becomes dif-
ficult. Moreover, the science and industrial applications on the supercomputing systems
tend to be more and more complex. It is necessary to propose strategies and method-
ologies to auto-tune them for achieving the best performance. Auto-tuning refers to the
automatic generation of a search space of possible implementations of a computation that
are evaluated through machine learning based models or empirical measurement to identify
the most desirable implementation [22]. In general, the code variant in the libraries, the
hardware and the parameters of algorithms are all necessary to be auto-tuned. The main
goal of auto-tuning for the iterative methods is the minimization of the execution time of
applications. The combination of different auto-tuning schemes might optimize the paral-
lel performance, the energy efficiency and reliability of applications. Besides, auto-tuning
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has to be extended for the optimization of data layout (e.g., storage formats for sparse
matrices, hypergraph strategies for SpMV kernels). Aquilanti et al. [12] present a general
parallel auto-tuned linear solver approach based on the tuning of the Arnoldi incomplete
orthogonalization process within GMRES by monitoring the convergence in order to re-
duce the time of computation needed for a solver to attain a solution. Katagiri et al. [121]
presented a smart tuning strategy for restart frequency of GMRES with hierarchical cache
sizes.

(9) Fault tolerance, resilience: Exascale computing poses the challenges for assessing and en-
suring the correctness of numerical simulation results. Adaptability to failure has been
identified as a key requirement for future HPC systems. The emergence of the exascale
platforms is predicted to increase the error rate. The iterative approach is an important
core of many simulations. These simulations can take days, weeks, or even months to
complete, which increases the exposure of the calculation to the failure. The frequency
of both hard and soft faults tends to be much higher. Uncorrected soft faults can dam-
age the solution to the calculation. Hard faults require dynamic processing, which will be
prohibitively expensive at the exascale. Dynamically recovering from either type of fault
will introduce nondeterministic variability in resource usage. The checkpointing mecha-
nism should be implemented for the iterative methods to improve the resilience to the
faults. Fault management will require developments in hardware, programming environ-
ments, runtime systems, and programming models. The research will be required to devise
efficient application-level fault-tolerance mechanisms and new procedures to verify code
correctness at scale.

The work of this dissertation tries to propose a potential smart multi-level parallel pro-
gramming with auto-tuning scheme for solving linear systems which address on the goals of
accelerating the convergence, minimizing the number of communications, promoting the asyn-
chronisity, reducing the synchronize points and fault tolerance.
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Chapter 4
Sparse Matrix Generator with Given
Spectra

In Chapter 3, we have discussed the convergence of iterative methods and their relation
to the spectral distribution of linear systems. Indeed, algorithms and applications from di-
verse fields can be formulated as eigenvalue problems. The eigenvalues are also extremely
important for the analysis of preconditioners to solve linear systems. In machine learning,
pattern recognition and AI, it is often demanded to solve the eigenvalue problems for
both supervised and unsupervised learning algorithms, such as PCA [61], FDA [36], and
clustering [89], etc. Insufficient precision and failure of the eigenvalue and linear solvers
typically result in poor approximation of the original discrete problem and failure of the
entire algorithm, respectively. A good selection of solvers becomes especially essential.
Thus it is crucial to have the test matrices to benchmark the numerical performance
and parallel efficiency of different methods. In this chapter, we present SMG2S, includ-
ing its parallel implementation and optimization for both CPU and GPU clusters, the
verification mechanism, and the release of open source package.

4.1 Demand of Large Matrices with Given Spectrum

As described in Chapter 3, the size of eigenvalue problems and the supercomputer systems
continue to scale up. The entire ecosystem of HPC, especially linear system applications, should
be adjusted to these large clusters. In this context, there are four special requirements for the
test matrices to evaluate numerical algorithms on extreme-scale platforms:

(1) their spectra must be known and customizable;

(2) they should be both sparse, non-Hermitian and non-trivial;

(3) they could have a very high dimension, including the non-zero element numbers and/or
the matrix dimension, to evaluate the numerical algorithms on large-scale systems, which
means that the proposed matrix generator should be able to be parallelized to profit from
the large distributed memory supercomputers.
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(4) their sparsity patterns should be controllable.

In order to provide numerically robust solvers of eigenvalue or linear system problems, the
researchers need the matrices whose spectra are known, which help to analyze the numerical
accuracy. Some scientific communities may be interested in matrices with clustered, conjugated
eigenvalues, and the closest eigenvalues in random distribution or contained in a specified inter-
val. It is significant to develop a suite of large non-Hermitian test matrices whose eigenvalues
can be given.

The properties of being sparse, non-Hermitian and non-trivial together can add many math-
ematical features to simulate real-world matrices. Besides, the test matrices should be of very
high size for experiments on large scale platforms. Furthermore, since the large matrices are
generated in parallel, their different slices are already distributed on separate computing units,
which can be used directly to evaluate the required linear and eigenvalue solvers, without having
to consider loading large matrix files from the file systems. It can save time and improve the
efficiency for applications.

In this chapter, we introduce SMG2S (Scalable Matrix Generator with Given Spectra) for
testing the linear and eigenvalue solvers on large-scale platforms. In Section 4.2, we introduce
the related work of proposing test matrix collections. In Section 4.3, we present the proof of
mathematical models of SMG2S to generate matrices with given spectra. In Section 4.4, the
numerical algorithm and practical implementation of SMG2S are given. In section 4.5, firstly,
we provide an initial implementation of SMG2S based on PETSc for homogenous platforms
and PETSc+CUDA for heterogeneous machines with multi-GPU. Then an open source package
with specific communication optimization based on MPI and C++ is available. In Section 4.6,
the evaluations of its scalability and the accuracy to keep the given spectra are presented on
different supercomputing platforms. We propose to verify the capacity of the generated matrix
to keep the given spectra based on the Shifted Inverse Power Method in Section 4.7, and the
accuracy verification for various spectral distributions is also presented in this section. In Section
4.8, we introduce the SMG2S package as a released software, including interfaces to different
programming languages and scientific computational libraries, and GUI for verification. Finally
examples which evaluate the Krylov solvers using SMG2S are given in Section 4.9.

4.2 The Existing Collections

It is rare, but there are already several efforts to supply test matrix collections for linear problems.

4.2.1 Test Matrix Providers

SPARSEKIT [181] implemented by Saad contains a variety of simple matrix generation subrou-
tines. Z. Bai et al. [19] presented a collection of test matrices for the development of numerical
algorithms to solve nonsymmetric eigenvalue problems. There are also three widely spread ma-
trix providers, the Hawell Boeing sparse matrix collection [77], the Tim Davis collection [63]
and Matrix Market [40]. They all contain many matrices with various mathematical properties
coming from different scientific fields. However, the spectra of matrices in these collections are
fixed, and that cannot be whatever we want. A test matrix generation suite with given spectra

74



4.2. The Existing Collections

was already introduced by Demmel et al. [73] in 1989 for the benchmark of LAPACK. They
proposed a method of transferring a diagonal matrix with a given spectrum into a dense matrix
with the same spectrum using an orthogonal matrix, and then reducing them to an asymmetric
band by Householder transformation. This method requires O(n3) time and O(n2) storage even
for generating a small bandwidth matrix. Moreover, this method was implemented for the shared
memory systems, rather than for larger distributed memory systems. Therefore, it is difficult to
generate large-scale test matrices that are customized for testing on extremely large scale clus-
ters. As far as we know, this matrix generation suite is the only example which was implemented
in parallel for generating test matrices with given spectra. This is our motivation for SMG2S,
which can generate large-scale non-Hermitian matrices with a given spectrum on modern paral-
lel platforms with less time and storage, and can be easily implemented in distributed memory
systems.

4.2.2 Matrix Generators in LAPACK

In LAPACK, a suite of test matrix generation software is implementation, which generates ran-
dom matrices with various controlled properties. The three mains routines are called xLATMR,
xLATMS and xLATME.

4.2.2.1 xLATMR, xLATMS and xLATME

xLATMR [73] generates a random matrix with off-diagonal entries. It is the simplest and fastest
routines in this suite, and permits no direct control over the eigenvalues of the generated matrices,
the properties of xLATMR are given as:

• Elements of A formed from one of three distributions

• Symmetric or nonsymmetric.

• Optionally graded (by row and/or column), banded, "sparsified".

• Bandwidth optionally reduced to a specified value.

xLATMS [73] generates random real symmetric and complex Hermitian matrices with given
eigenvalues and bandwidth, or a random nonsymmetric or complex symmetric matrix with given
singular values and upper and lower bandwidth.

• Matrix of singular values specified by the user or chosen from one of six different distribu-
tions.

• A is formed as UDV T , where V is random orthogonal.

• Bandwidth optionally reduced to a specified value by further unitary transformations
(possibly combined with the previous step).

xLATME [73] generates a random nonsymmetric square matrix with specified eigenvalues.
For example, xLATME is able to generate random Hessenberg matrices with given eigenvalues
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and sensitivities, and this is useful for testing QR factorization algorithms for nonsymmetric
eigenproblems. xLATME is able to generate the dense matrix with prescribed eigenvalues, and
this matrix can be reduced into band with user-defined upper and lower bandwidth by a series
of Householder transformation operations.

• Matrix of singular values specified by the user or chosen from one of seven different distri-
butions:

(1) Input by users;

(2) D(1) = 1 and the other D(i) = 1
COND , where COND is the condition number

specified by the users;

(3) D(n) = 1
COND and the other D(i) = 1;

(4) The D(i) form a geometric sequence from 1 to 1
COND ;

(5) The D(i) form a arithmetic sequence from 1 to 1
COND ;

(6) The D(i) are random in the range [ 1
COND , 1] with uniformly distributed logarithms;

(7) The D(i) are random with the same distribution as the other matrix entries;

Additionally, each D(i) may optionally be multiplied by a random number with absolute
value 1.

• A is formed as USV DV ′S−1V U ′, where (V , V ′) and (U , U ′) are two pairs of randomly
generated unitary matrices. Here A is generated as a dense matrix with given spectra.

• Bandwidth optionally reduced to a specified value by further Householder transformations.

4.2.2.2 Procedure of xLATME

The implementation of xLATME in LAPACK is given as Algorithm 18. The procedure of gen-
eration matrix by xLATME can be given as follows:

(1) Specify the diagonal of A by D = diag(λi), and the entries of D can be computed by one
of the provided modes;

(2) The upper triangle of A is filled with random numbers;

(3) Generate randomly the unitary matrix pairs (V , V ′) and (U , U ′);

(4) Generate a singular matrix S by one of the provided modes. Thus S is a random dense
nonsymmetric matrix whose singular values may be chosen with the same options as D;

(5) pre-multiply and post-multiply the unitary matrices and singular matrix on A, thus A =
USV DV ′S−1V U ′. A is a dense matrix generated with a given spectrum;

(6) If the user so specifies, either the upper or lower bandwidth (but not both) is reduced to
any positive value desired;

(7) Scale A, if desired, to have a given maximum absolute entry.
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Algorithm 18 xLATME Implementation in LAPACK
1: Generate a complex array D by a selected mode containing n eigenvalues
2: Setup the diagonal of A by D
3: Setup the upper triangle of A to random numbers
4: Generate a real array S by a selected mode containing n singular values
5: Generate random n-dimensional unitary matrix V and V ′, with V V ′ = I
6: Compute A = V AV ′

7: Compute A = SAS−1

8: Generate random n-dimensional unitary matrix U and U ′, with UU ′ = I
9: Compute A = UAU ′, then A is a dense matrix containing given eigenvalues

10: for i = lbandwidth+ 1, · · · , n− 1 do
11: Householder transformation to reduce the column of number n+ lbandwidth− i in A
12: end for
13: for j = ubandwidth+ 1, · · · , n− 1 do
14: Householder transformation to reduce the row of number n+ ubandwidth− j in A
15: end for

In practice, xLATME is implemented with the subroutines provided by LAPACK. Thus only
the dense matrix storage format is supported. xLATME uses n2 +O(n) space and O(n3) time
even for generating a very small bandwidth matrix. xLATME cannot fufill our requirements.
The reasons are not only its existing parallel implementation on shared memory architectures
but also the difficulty to implement its mathematical scheme with good scaling performance on
modern supercomputers. In next section, we will propose a technique to generate test matrices
in parallel with given spectra which requires less time and operations. A mechanism to verify
the capacity of the generated matrices to keep the given spectra is also proposed in this chapter.

4.3 Mathematical Framework of SMG2S

In this section, we summarize this theorem and related proof based on preliminary theoretical
research of Gachlier et al. [98], and the initial introduction of this theorem can also be found in
the dissertation of Boillod-Cerneux [37].

Theorem 4.3.1. Let’s consider the matrix A ∈ Cn×n, M0 ∈ Cn×n, n ∈ N∗. If M verifies:
dM(t)
dt

= AM(t)−M(t)A,

M(t = 0) = M0.

Then the matrices M(t) and M0 are similar, ∀A ∈ Cn×n.

Proof. Denote respectively σ(M0) and σ(Mt) the spectra ofM0 andMt. IfM0 is a diagonalisable
matrix, ∀λ ∈ σ(M0), it exists an eigenvector v 6= 0 satisfies the relation:

M0v = λv. (4.1)

Denote v(t) by the matrix B ∈ In:

v(t) = Btv = etABv. (4.2)
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We can get:
d(Mtv(t)− λv(t))

dt
= dMt

dt
v(t) +Mt

dv(t)
dt
− λdv(t)

dt

= A(Mtv(t)− λv(t)) + λAv(t)

−MtAv(t) +Mt
dBt
dt

v − λdBt
dt

v.

(4.3)

With the definition of Bt in Equation (4.2), we have:

dBt
dt

= ABt. (4.4)

Thus the Equation (4.3) can be simplified as

d(Mtv(t)− λv(t))
dt

= A(Mtv(t)− λv(t)). (4.5)

The initial condition for the Equation (4.5) is:

Mtv(t)− λv(t)|t=0 = M0Bv − λBv

= M0v − λv

= 0.

(4.6)

Hence the solution of the differential Equation (4.5) is 0 and ∀λ ∈ σ(M0), we have λ ∈ σ(Mt).
Since dim(M0) = dim(Mt), we have σ(M0) = σ(Mt). Thus, M0 and Mt are similiar with same
eigenvalues, but different eigenvectors.

4.4 Numerical Algorithm of SMG2S

Based on the previous mathematical work by Gachlier at al., a matrix M0 with given spectra
can be transferred to another oneM(t) that verifies Theorem 4.3.1 and keeps the spectra ofM0.
We propose a matrix generation method by selecting many parameters including the matrices
A and M0.

4.4.1 Matrix Generation Method

The idea is to impose the desired spectra toM0 and obtain aMt matrix that verifies the Theorem
4.3.1 and our hypothesis. The Mt spectrum is the same as M0, however we recall that the Mt

eigenvectors are not the same as M0. The idea may seem very simple, but many parameters
need to be determined to achieve our objective.

Firstly, we define the linear operator ÃA such that: ÃA :Mn×n →Mn×n,

M → AM −MA.
(4.7)

At the present time, we did not imposed any conditions on the matrix A. The ÃA operator
verifies that:
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Figure 4.1 – Nilpotent Matrix. p off-diagonal offset, d number of continuous 1, and n matrix
dimension.

ÃA(Id) = 0, ∀A ∈Mn×n. (4.8)

Based on the Theorem 4.3.1 and the linear operator ÃA definition, we can rewrite the ordi-
nary differential equation such that:


dM(t)
dt

= ÃA(M(t)),

M(t = 0) = M0.

(4.9)

We apply the exponential operator (which is possible as ÃA has no time dependency) to
Equation (4.9). This leads to the fact that the solution of Equation (4.9), can be expressed as
follows:


Mt = e(ÃAt)M0,

Mt =
∞∑
k=0

tk

k! (ÃA)kM0.
(4.10)

The k-times power operation of ÃA(M0) can be given as

(ÃA)k(M0) =
k∑

m=0
(−1)mCmk Ak−mM0A

m. (4.11)

With the loop
Mi+1 = Mi + 1

i! (ÃA)i(M0), i ∈ (0,+∞), (4.12)

a very simple initial matrix M0 ∈ Cn×n can be converted into a new sparse, non-trivial and
non-Hermitian matrixM+∞ ∈ Cn×n, which has the same spectra but different eigenvectors with
M0.
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Chapter 4 – Sparse Matrix Generator with Given Spectra

However, it is unreasonable to generate a matrix through an infinite number of iterations.
Therefore, a good selection matrix A which can make (̃AA)

i
tend to 0 in limited steps is very

necessary. We define the matrix A as the formula A = Q−1PQ with Q ∈ Rn×n and P ∈ Nn×n.
Besides, P is set to be a nilpotent matrix, which means that there is an integer k such that:
P i = 0 for all i ≥ k. Such k is called the nilpotency of P . In this chapter, we set the matrix Q
to be the identity matrix I ∈ Nn×n for simplification. Thus A is also a nilpotent matrix. The
selection of a nilpotent matrix will affect the sparsity pattern of the upper band of the generated
matrix.

The exact shape of A is given in Fig. 4.1. Inside an n × n matrix A, its entries default to
0, except in except for the upper diagonal of the distance p from the diagonal. In this diagonal,
its entries begin with d continuous 1 and a 0, this pattern is repeated until the end. Matrix A
should be nilpotent with good choices of the parameters p, d and n. The determination of this
series of matrices to be nilpotent or not might be difficult, but the cases that p = 1 or p = 2 are
straightforward, which can completely fulfill our demands.

If p = 1, with d ∈ N∗, or p = 2 with d ∈ N∗ to be even, the nilpotency of A and the upper
band’s bandwidth of generated matrix are respectively d+1 and 2pd. Obviously, there is another
constraint that the matrix size n should be greater or equal to the upper band’s width 2pd. For
p = 2, if d is odd, the matrix A will not be nilpotent, thus we do not take it into account.

4.4.2 Numerical Algorithm

As shown in Algorithm 19, the procedure of SMG2S is simple. Firstly, it reads an array Specin ∈
Cn, as the given eigenvalues. Then it inserts the elements in h lower diagonals of the initial matrix
M0 according to the parameters p and d, and sets its diagonal to be Specin, and scales it with
(2d)!. Meanwhile, it generates a nilpotent matrix A with the parameters d, p and n. The final
matrix Mt can be generated as Mt = 1

(2d)!M2d, where M2d is the result after 2d times of loop
Mi+1 = Mi + (∏2d

k=i+1 k)(ÃA)i(M0). The slight modification of the loop formula is to reduce
the potential rounding errors coming from numerous division operations on modern computer
systems.

Algorithm 19 Matrix Generation Method
1: function matGen(input:Specin ∈ Cn, h, d, output: Mt ∈ Cn×n)
2: Insert the entries in h lower diagonals of Mo ∈ Nn×n
3: Insert Specin on the diagonal of M0
4: M0 = (2d)!M0
5: Generate nilpotent matrix A ∈ Cn×n with selected parameters d, p and n
6: for i = 0, · · · , 2d− 1 do
7: Mi+1 = Mi + (∏2d

k=i+1 k)(ÃA)i(M0)
8: end for
9: Mt = 1

(2d)!M2d
10: end function

For Mt, if M0 is a lower triangular matrix having h non zero diagonals, it will be a band
diagonal matrix, whose number of new diagonals in the upper triangular zone will be at most
2pd−1. Thus the maximal number of the bandwidth of matrix Mt is: width = h+ 2pd−1, as in
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h h

l < 2pd

Figure 4.2 – Matrix Generation. The left is the initial matrix M0 with given spectrum on the
diagonal, and the h lower diagonals with random values; the right is the generated matrix Mt

with nilpotency matrix determined by the parameters d and p.

Fig. 4.2. In general, researchers use these matrices to test the iterative methods for sparse linear
systems. The h lower diagonals of the initial matrix can set to be sparse, which ensures the
sparsity of the final generated matrix, as shown in Fig. 4.3. Moreover, the permutation matrix
can also be applied to change the sparsity of the generated matrix further.

The operations complexity C of Algorithm 19 is given as:

C ≈ 2(2d2 + (4h− 2)d− (h+ 5))n− h(h+ 1)(h+ 4d− 4). (4.13)

In Equation (4.13), the complexity of SMG2S is max(O(hdn),O(d2n)). The worst case would
be an O(n3) problem for operations with large d and h, and it would require O(n2) memory
storage. But if we want to generate a band matrix with small bandwidth which means d � n

and h � n, it turns to be a O(n) problem with good potential scalability and to consume
O(n) memory storage. Table 4.1 gives the comparison of memory and operation requirement
between SMG2S and xLATME in LAPACK for generating a large-scale matrix with a very small
bandwidth.

Table 4.1 – Comparison of memory and operation requirement between SMG2S and xLATME
in LAPACK for generating a large-scale matrix with a very small bandwidth.

Methods Memory Requirment Operation Requirement

SMG2S O(n) O(n)

xLATME O(n2) O(n3)

4.5 Our Parallel Impementation

In this section, we will introduce parallel implementations of SMG2S on homogeneous and het-
erogeneous supercomputing platforms. The first prototype of this method introduced by Hervé
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Figure 4.3 – Matrix generation pattern example. The initial and generated matrices have same
spectrum.

Galicher to generate a non-Hermitian matrices with given eigenvalues was developed by Boillod-
Cerneux during her PhD thesis [37]. She implemented initially this method based on PETSc
for multi-CPU systems. It was part of a French-Japanese project FP3C [7] supported by the
French ANR and the Japanese JST. She proposed also to evaluate the spectrum conservation
accuracy by computing a small subset of the dominant eigenvalues using Arnoldi and Krylov-
Schur eigensolvers provided by SLEPc. Based on previous research, we would like implement this
matrix generator as a complete and standard software with better parallel performance which
is able to be accessed and reused by all the researchers in the fields of numerical algorithms.
We implemented PETSc-based SMG2S on the CPUs and then another version for multi-GPUs
based on MPI, CUDA and PETSc. We chose PETSc for the initial implementation because it
provides the basic operations optimized for different computer architectures. An open source
parallel software with specific optimized communication is also implemented based on MPI and
C++, which can generate the test matrices with less time. The accuracy verification for all the
given eigenvalues based on Shift Inverse Power method will be introduced in Section 4.7. Com-
pared with the mechanism proposed by Boillod-Cerneux based on Krylov solver, this accuracy
verification based on Shift Inverse Power method is able to evaluate the spectrum conservation
accuracy for all given eigenvalues, which is not a classical eigenvalue problem researchers have
to solve.

4.5.1 Basic Implementation on CPUs

For the initial CPU implementation, we chose PETSc instead of ScaLAPACK because we would
like to evaluate the solvers for sparse linear systems. As shown in Algorithm 19, the kernel of
generation is the SpGEMM operation of AM and MA, and the matrix-matrix addition (AYPX
operation) as AM −MA. All the sparse matrices during the generation procedure are stored by
the block CSR format which is provided by PETSc by default. We use the matrix operations
supported by PETSc to facilitate implementation. The block diagonal parallel matrix based on
MPI are partitioned and stored into several sub-matrices. For example, if there are three MPI
process: proc1, proc2 and proc3, the matrix can be divided into blocks as the Formula (4.14).
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Figure 4.4 – The structure of a CPU-GPU implementation of SpGEMM, where each GPU is
attached to a CPU. The GPU is in charge of the computation, while the CPU handles the MPI
communication among processes.

The sub-matrices A, B and C are stored in proc1, D, E and F in proc2, and G, H and I is stored
in proc3. In each process, the diagonal and the off-diagonal parts are separately stored into two
sequence block matrices. The parallel SpGEMM and AXPY operations for CPUs are already
supported by PETSc [25]. We use these functions directly to facilitate the implementation.

A B C

D E F

G H I


(4.14)

4.5.2 Implementation on Multi-GPU

PETSc does not supply the SpGEMM and AXPY operations for GPU clusters. Thus we im-
plemented them using MPI, CUDA and cuSPARSE library based on the PETSc data structure
definitions. The structure of implementation is given in Fig. 4.4 which uses sparse matrix A

and B multiplication as an example. Firstly, the same as in PETSc, A and B are divided into
slices, and each slice is saved in a process. In each process numbered i, the local matrices are all
saved as two separate sequence matrix, labeled as Aidia and Aioff for matrix Ai, Bi

dia and Bi
off
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for matrix Bi. Then Bi
dia and Bi

off are combined together as a novel sequence matrix noted
as Bi

loc in each process i. Using MPI features, each CPU collects all the remote data of matrix
B from the other processes, and construct them into a new sequence matrix Bi

oth. Copy these
matrices from each process to one attached GPU, and calculate Ci = AidiaB

i
loc +AioffB

i
oth. The

matrix operations on each GPU device is supported by the cuSPARSE. The final result C can
be obtained by gathering all slices Ci from all devices.

4.5.3 Communication Optimized Implementation with MPI

In fact, the parallel SpGEMM kernel’s communication can be specifically optimized based on
the particular property of nilpotent matrix A. Since A is determined by three parameters p, d
and n as we mentioned in Section 4.4, it is not necessary to implement this nilpotent matrix
in parallel. We note this nilpotent matrix as A(p, d, n). Denote J(i, j) the entry in row i and
column j of matrix J ; J(i, :) all the entries of row i; and J(:, j) all the entries of column j. As
shown in Fig. 4.5a, the right-multiplication A(p, d, n) will cause all the entries of the first n− p
columns ofM to shift right by an offset p. DenoteMA the result gotten by the right-multiplying
A on M . We have MA(:, j) = M(:, j−p),∀j ∈ p, · · · , n−1, and MA(:, j) = 0,∀j ∈ 0, · · · , p−1.
Similarly, the left-multiplying A(p, d, n) on M will shift up the whole entries of last n − p

rows by an offset p. Denote AM the matrix gotten by the left-multiplying A on M . We have
AM(i, :) = M(i+ p, :), ∀i ∈ 0, · · · , n− p− 1, and AM(i :, ) = 0,∀i ∈ p, · · · , n− 1. Moreover, the
parameter d decides that MA(:, r(d+ 1)) = 0 and AM(r(d+ 1), :) = 0 with r ∈ 1, · · · , b n

d+1c.

For the parallel implementation on distributed memory systems, the three parameters p, d
and n are distributed across all MPI processes, then operations AM and MA are different from
a general parallel SpGEMM. Firstly, the matrix M is one-dimensional distributed by row across
m MPI process. As shown in Fig. 4.5b, for MA, there is no communication between different
MPI processes since the data are moved inside each row. Ensure that b nmc ≥ p, for AM , the
intercommunication of MPI takes place when the MPI process k (k ∈ 1, · · · ,m− 1) should send
the first p rows of their sub-matrix to the closest previous MPI process numbering k − 1. The
communication complexity for each process is O(np). When generating the band matrix with
low bandwidth b, it tends to be a O(bp) with p = 1 or 2. The MPI-based optimization imple-
mentations of AM and MA are respectively given by Algorithm 20 and 21. The communication
between MPI process is implemented by the asynchronous sending and receiving functions. In
this algorithm, Mk, MAk and AMk imply the sub-matrices on process k with t rows. The rows
and columns of these sub-matrices in Algorithm 20 and 21 are all indexed by the local indices.

The communication-optimized SMG2S is implemented based on MPI and C++. The subma-
trix on each process is stored in ELLPACK format, using the key-value map containers provided
by C++. The key-value map implementation facilitates the indexing and moving of the rows
and columns. We did not implement a GPU version of SMG2S with this kind of communication
optimization since its core is the data movement among different computing units, which is not
well suitable for the multi-GPU architecture.
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Figure 4.5 – AM and MA operations.

4.6 Parallel Performance Evaluation

In this section, we present the parallel performance of SMG2S on the supercomputing systems.

4.6.1 Hardware

We implement SMG2S on the supercomputers Tianhe-2 and Romeo-2013. Tianhe-2 system
ranked first in the Top500 rankings six times, which is installed at the National Super Computer
Center in Guangzhou of China. It is a heterogeneous system made of Intel Xeon CPUs and Intel
Knights Corner (KNC), with 16000 compute nodes in total. Each node composes 2 Intel Ivy
Bridge 12 cores @ 2.2 GHz.

Romeo-2013 is located at University of Reims Champagne-Ardenne, France. It is also a
heterogeneous system made of Xeon CPUs and Nvidia GPUs, with 130 BullX R421 nodes. Each
node composes 2 Intel Ivy Bridge 8 cores @ 2.6 GHz and 2 NVIDIA Tesla K20x GPUs.

4.6.2 Strong and Weak Scalability Evaluation

In this section, we will use double-precision real and complex values to evaluate the strong
and weak scalability of SMG2S’s different implementations on multi-CPUs and multi-GPUs.
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Algorithm 20 Parallel MPI AM Implementation
1: function AM(input: matrixM , matrix row number n, p, d, proc number m; output: matrix
AM)

2: Distribute t row blocks Mk of M to MPI process k
3: for p+ 1 ≤ i < t do
4: for 0 ≤ j < n do
5: if M(i, j) 6= 0 then
6: AMk(i− p, j) = Mk(i, j)
7: end if
8: end for
9: end for

10: for 0 ≤ i < p do
11: if k 6= 0 then
12: isend ith row Mk(i) to k − 1
13: end if
14: if k 6= m− 1 then
15: irecv ith row Mk(i) from k + 1
16: AMk(t− p+ i) = Mk(i)
17: end if
18: end for
19: end function

Algorithm 21 Parallel MPI MA Implementation
1: function MA(input: matrixM , matrix row number n, p, d, proc number m; output: matrix
MA)

2: Distribute t row blocks Mk of M to process k
3: for 0 ≤ i < t do
4: for p+ 1 ≤ j < n do
5: if Mk(i, j) 6= 0 then
6: MAk(i, j + p) = Mk(i, j)
7: end if
8: end for
9: end for

10: end function

All the test matrices in this chapter are generated with h set to be 10 and d to be 7. The
details of the weak scaling experiments are given in Table 4.2. The matrix size of the strong
scaling experiments on Tianhe-2 with CPUs, Romeo-2013 with CPUs and, Romeo-2013 with
GPUs are respectively 1.6× 107, 3.2× 106 and 8.0× 105. The results are given in Fig. 4.6,
Fig. 4.7 and Fig. 4.8. The weak scaling for the PETSc implementation of SMG2S on Tianhe-2
trends to be bad when MPI processes number is greater than 768, with communication overhead
becoming more and more important compared to the required time for computation. However,
for communication-optimized SMG2S, both strong and weak extensions perform well when the
number of MPI processes is greater than 768. Experiments show that SMG2S implemented with
GPUs can still have good strong and weak scalability. In conclusion, SMG2S has always good
strong scaling performance when d and h are much smaller than the dimension of the matrix n,
because it turns to be a O(n) problem. The weak scalability is good enough for most cases. The
reason is that the nilpotent matrix A in SpGEMM is simple with not many non-zero elements.
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Table 4.2 – Details for weak scaling and speedup evaluation.

(a) Matrix size for the CPU weak scaling tests on Tianhe-2.

CPU number 48 96 192 384 768 1536

matrix size 1× 106 2× 106 4× 106 8× 106 1.6× 107 3.2× 107

(b) Matrix size for the CPU weak scaling on Romeo-2013.

CPU number 16 32 64 128 256

matrix size 4× 105 8× 105 1.6× 106 3.2× 106 6.4× 106

(c) Matrix size for the GPU weak scaling and speedup evaluation on Romeo-2013.

CPU or GPU number 16 32 64 128 256

matrix size 2× 105 4× 105 8× 105 1.6× 106 3.2× 106
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(a) CPU strong scaling on Tianhe-2.

48 96 192 384 768 1536
Number of CPUs (Tianhe-2)

100

101

102

103

T
im
e
(s
)

complex double

real double

complex double (optimized)

real double (optimized)

(b) CPU weak scaling on Tianhe-2.

Figure 4.6 – Strong and weak scaling results of SMG2S on Tianhe-2. A base 2 logarithmic scale
is used for X-axis, and a base 10 logarithmic scale for Y-axis.

Therefore there is not enormous communication among different computing units. The weak
scalability has its drawback in case that the computing unit number come to be huge for the
SMG2S implementation based on PETSc, where the communication overhead become dominant.
The specific implementation of communication-optimized SMG2S makes his strong and weak
scalability better. The results show that for the basic SMG2S implementation, the time taken to
generate a double-precision complex matrix is almost twice that of a double-precision real, but
the time consumption of the complex and real-matrix generation with the optimized SMG2S
seems similar. The reason is that there are no numerical value multiplications anymore in the
optimized implementation of SMG2S.

4.6.3 Speedup Evaluation

The speedup of both SMG2S on multi-GPU and communication-optimized SMG2S on the CPUs
compared with the PETSc-based implementation on CPU are also tested on Romeo-2013. Based
on previous assessments that complex and real value types always have good scalability, we select
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(a) CPU strong scaling on Romeo-2013.
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(b) CPU weak scaling on Romeo-2013.

Figure 4.7 – Strong and weak scaling results of SMG2S on Romeo-2013. A base 2 logarithmic
scale is used for X-axis, and a base 10 logarithmic scale for Y-axis.
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Figure 4.8 – Strong and weak scaling results of SMG2S on Romeo-2013 with multi-GPUs. A
base 2 logarithmic scale is used for X-axis, and a base 10 logarithmic scale for Y-axis.

the double precision complex values for the speedup evaluation. Details of experiments are also
given in Table 4.2c. The results are shown in Fig. 4.9. We can find that the GPU version of
SMG2S has almost 1.9× speedup over the PETSc CPU version. The communication-optimized
SMG2S on CPUs has about 8× speedup over the basic PETSc CPU version.

4.7 Accuracy Evaluation of the Eigenvalues of Generated Ma-
trices with respect to the Given Ones

In the previous section, we showed the good parallel performance of SMG2S, and then it was
necessary to verify that the generated matrices are able to maintain given spectra with sufficient
accuracy.

4.7.1 Verification based on Shift Inverse Power Method

Generally, iterative eigenvalue solvers such as the Arnoldi or other Krylov methods are applied to
approximate the dominant eigenvalues. However, this accuracy verification is an opposite case.
The scenrio of accuracy verification for each given value can be summarized as finding its nearest
eigenvalue, and verifying if this value is near enough to the given one. If yes, the accuracy for this
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Figure 4.9 – Weak scaling speedup comparison over PETSc-based SMG2S with 4 CPUs on
Romeo-2013.

Algorithm 22 Shifted Inverse Power method
1: function sipm(input: Matrix A, initial guess for desired eigenvalue σ, initial vector v0,
output: Approximate eigenpair (θ, v))

2: y = v0
3: for i = 1, 2, 3 · · · do
4: θ = ||y||∞
5: v = y/θ
6: Solve (A− σI)y = v
7: end for
8: end function

value is acceptable, otherwise, this verfication cannot be approved. These iterative methods are
not able to handle this validation directly and efficiently. In this section, we present a method for
accuracy verification using the Shifted Inverse Power method, which can be easily implemented
in parallel.

The Power method is an algorithm to approximate the greatest eigenvalue. Meanwhile, the
Inverse Power method is a similar iterative algorithm to find the smallest eigenvalue. The middle
eigenvalues can be obtained by the Shifted Inverse Power method [110]. This method is given
in Algorithm 22. Its operation complexity is O(n3). The Shifted Inverse Power method is used
to compute the eigenvalue which is the nearest one to a given value in a few steps of iterations.
The related eigenvector can be easily calculated by its definition and used to check if this given
value is an eigenvalue of the matrix.

Fig. 4.10 gives the workflow of this verification operation. In detail, in order to check if the
given value λ is the eigenvalue of a matrix, we choose a shift value σ which is close enough to λ. An
eigenpair (λ′, v′) with the relation Av′ = λ′v′ can be approximated in very few steps by Shifted
Inverse Power method, with λ′ is the closest eigenvalue to σ. Since σ is very close to λ, it should
be that λ and λ′ are the same eigenvalue of a system, and v′ should be the eigenvector related
to λ. In reality, even if the computed eigenvalue is very close to the true value, the associated
eigenvector may be quite inaccurate. For the correct eigenpairs, the formula Av′ ≈ λv′ should be
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Figure 4.10 – SMG2S verification workflow.

satisfied. Based on this relationship, we define the relative error as Formula (4.15) to quantify
the accuracy.

error = ||Av
′ − λv′||
||Av′||

(4.15)

If this error is 0, λ′ = λ, if not, this generated matrix do not have an exact eigenvalue as λ. In
real experiments, the exact solution cannot always be guaranteed with the arithmetic rounding
errors of floating operations during the generation. A threshold could be set for accepting it or
not.

Table 4.3 – Accuracy verification results.

Matrix No Size Spectra Acceptance (%) max error

1 100 Spec1 93 2× 10−2

2 100 Spec2 94 3× 10−2

3 100 Spec3 100 7× 10−5

4 100 Spec4 100 3× 10−7

5 100 Spec5 100 1× 10−7

4.7.2 Experimental Results

In the experiments, we test the accuracy of SMG2S with five selected cases among the various
tests of different spectral distributions. Fig. 4.11 and Fig. 4.13 are cases of clustered eigenvalues
with different scales. Fig. 4.12 is a special case with the dominant part of eigenvalues clustered
in a small region. Fig. 4.14 is a case that composes the conjugate and closest pair eigenvalues.
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Figure 4.11 – Spec1: Clustered Eigenvalues I.

Fig. 4.15 is a case with discrete distribution of eigenvalues in the complex plain. These figures
compare the difference between the given spectra (labeled as initial eigenvalues in the figures)
and the approximated ones (labeled as computed eigenvalues) by the Shifted Inverse Power
Method. Clearly, the matrices generated by SMG2S can keep almost all the given eigenvalues in
the four cases even if they are very clustered. The acceptance threshold is set to be 1.0× 10−3.

This acceptance for cases of Fig. 4.11, Fig. 4.12, Fig. 4.13, Fig. 4.14 and Fig. 4.15 (shown as
Table 4.3) are respectively 93%, 94%, 100%, 100% and 100%. The maximum error for them are
respectively 2× 10−2, 3× 10−2, 7× 10−5, 3× 10−7 and 1× 10−7. After the tests, we conclude
that even for very concentrated and closest eigenvalues, SMG2S is able to accurately maintain
given spectra. In some cases, a very small number of over-aggregated eigenvalues may result in
inaccurate eigenvalues, but in general, the generated matrix satisfies the need to evaluate linear
systems and eigenvalue solvers.

4.7.3 Arithmetic Precision Analysis

Any floating operation introduces rounding errors, which are not negligible for generating large
matrices. Regarding the non-Hermitian matrix, its eigenvalues may be extremely sensitive to
perturbation. This sensibility is bounded by

bound(λ) ≤ ||E||2Cond(λ),
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Figure 4.12 – Spec2: Clustered Eigenvalues II.
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Figure 4.13 – Spec3: Clustered Eigenvalues III.
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Figure 4.14 – Spec4: Conjugate and Closest Eigenvalues.
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Figure 4.15 – Spec5: Distributed Eigenvalues.
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with Cond(λ) the condition number of related eigenvalue λ and ||E||2 the Euclidean norm of
errors [189]. Cond(λ) = 1 for the Hermitian matrices, but for the non-Hermitian ones, it can be
excessively high. There are two solutions to solve this problem. The first one is to ensure the
eigenvalues to be well-conditioned. The second is to use the integer values to generate matrices,
since only integers and the operations +, −, and × on the microprocessor can make absolutely
exact computations. As shown in Algorithm 19, most of the operations in SMG2S are +, − and
×, except the step 9 with a division operation. Without step 9, we can introduce a special SMG2S
fully using integers to avoid the risks of rounding errors [98]. The spectra of the generated matrix
will be (2d)! times of the given one. Moreover, the upper band’s width of generated depends on
the parameter d. The factorial of 2d can easily reach the limit of integer, even with unsigned
long long type. Thus a special factorial function using multiple integers should be implemented
in order to enlarge the upper band’s width.

4.8 Package, Interface and Application

SMG2S is packaged and released as an open source software based on MPI and C++. In this
section, we present the package information of SMG2S and its interface to various programming
languages and scientific computational libraries. For more details on this package, please refer
to the relevant manual [224]. Then, we give examples which use SMG2S to evaluate different
Krylov solvers. The homepage of SMG2S is https://smg2s.github.io.

4.8.1 Package

4.8.1.1 Installation Prerequisites

The following packages and libraries should be available on the computer platform before using
SMG2S:

(1) C++ compiler with c++11 support;

(2) MPI;

(3) CMake (version minimum 3.6);

(4) (Optional) PETSc and SLEPc are necessary for the verification of accuracy of generated
matrices to keep the given spectra.

4.8.1.2 Functions

SMG2S provides the following subsets of functions:

• the setup of parallel matrix and vector;

• the construction of particular nilpotent matrix.

• the matrix generation function;

• the interfaces to other languages and libraries;
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• the mechanism of accuracy verification;

• the GUI facilitating the verification and comparison.

4.8.1.3 Generation Workflow

SMG2S is a collection of C++ header files. This section provides the workflow for SMG2S to
generate test matrices. SMG2S’s C++ template support allows the generation of matrices of
different sizes, scalar types and precision. The workflow details as follow:

(1) Include the header file

# include <smg2s/smg2s.h>

(2) Generate the Nilpotent Matrix Object:

Nilpotency<int> nilp;
nilp.NilpType1(length,probSize);

(3) Create the parallel Sparse Matrix Object Mt:

parMatrixSparse<std::complex<double>,int> *Mt;

(4) Generate a new matrix by SMG2S:

MPI_Comm comm; //working MPI Communicator
Mt = smg2s<std::complex<double>,int>(probSize, nilp,

lbandwidth, spectrum, comm);

Here, in step (4), the probsize parameter represents the matrix size, nilp is the nilpotency
matrix object that we have declared previously in step 2, lbandwidth is the bandwidth of lower-
diagonal band. spectrum is the file path of given spectra file, if spectrum is set as " ", SMG2S
will use the internal function to generate the spectral distribution. comm is the basic MPI
communicator that the processes for SMG2S are involved in.

The given spectra file is in pseudo-Matrix Market Vector format. For complex eigenvalues, the
given spectrum is stored in three columns, as shown below, the first column are the coordinates,
the second column are the real part of the complex values, and the third column are the imaginary
part of the complex values.
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%%SMG2S given eigenvalues complex general
3 3 3
1 10 6.5154
2 10.6288 3.4790
3 10.7621 5.0540

For the real eigenvalues, the given spectrum is stored in two columns, as shown below, the
first column are the coordinates. The second column are eigenvalue.

%%SMG2S given eigenvalues real general
3 3
1 10
2 10.6288
3 10.7621

If users want to generate the eigenvalues at the runtime without loading from local file, they
can customize their eigenvalues generation by the function specGen in the file ./smg2s/specGen.h,
and set the parameter spectrum of smg2s to be " ".

template<typename T, typename S>
void parVector<T,S>::specGen(std::string spectrum)

In this function, the eigenvalues are stored by the distributed vector parVector. And the
filling of values on this parVector can be done by the function SetValueGlobal implemented in
parVector, which takes the global indices to set values.

We know that the bandwidth of lower band of initial matrix can be set by the parame-
ter lbandwidth of smg2s. Additionaly, the distribution of entries of initial matrix can also be
customized by the function matInit provided by the file ./smg2s/specGen.h. In default, these
entries are filled in random. The different mechanism to fill them will influence the sparsity of
final generated sparse matrix.

template<typename T, typename S>
void matInit(

parMatrixSparse<T,S> *Am,
parMatrixSparse<T,S> *matAop,
S probSize,
S lbandwidth

)

In this function, distributed matrix Am and matAop should be filled with the same way.
And these entries of matrix can be filled by the method Loc_SetValue implemented in parMa-
trixSparse. Loc_SetValue uses the global indices of matrix to set values.
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4.8.2 Interface to Other Programming Languages

Until now, SMG2S provides interfaces to programming languages C and Python.

4.8.2.1 Interface to C

SMG2S install command will generate a shared library libsmg2s.so (libsmg2s2c.dylib on OS
X platform) into ${INSTALL_DIRECTORY}/lib. It can be used to profit the C wrapper of
SMG2S.

A minimum example to use the interface of SMG2S to C is given as Listing 1. SMG2S
provides the C interface to different data types. For the data type of matrix size, it can be either
int or longint; for the data type of matrix entries, it can be either complex or real with single
or double precision.

Listing 1 A minimum example of SMG2S’s interface to C.

# include <interface/C/c_wrapper.h>

/*create Nilpotency object*/
struct NilpotencyInt *n;
n = newNilpotencyInt();
NilpType1(n, 2, 10);
/*create the parallel Sparse Matrix Object*/
struct parMatrixSparseRealDoubleInt *m;
m = newParMatrixSparseRealDoubleInt();
/*Generation by SMG2S*/
smg2sRealDoubleInt(m, 10, n, 3 ," ",MPI_COMM_WORLD);
/*Release Nilpotency Object and parMatrixSparse Object*/
ReleaseNilpotencyInt(&n);
ReleaseParMatrixSparseRealDoubleInt(&m);

C interface implements the Nilpotent Matrix object for both int and long int as below:

struct NilpotencyInt;
struct NilpotencyLongInt;

For all the public functions in parMatrixSparse Object and smg2s function, SUFFIX below
can be added them to provides the implementations for different data types:

• ComplexDoubleLongInt;

• ComplexDoubleInt;

• ComplexSingleLongInt;

• ComplexSingleInt;

• RealDoubleLongInt;

• RealDoubleInt;

• RealSingleLongInt;

• RealSignleInt.
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4.8.2.2 Interface to Python

SMG2S uses SWIG1 to generate its wrapper to Python. This interface is available through either
the Python package management system pip or from a local installation.

Listing 2 Install SMG2S with Python supporting.

#install online from pypi
CC=mpicxx pip install smg2s

#bulid in local
cd ./interface/Python
CC=mpicxx python setup.py build_ext --inplace
#or
CC=mpicxx python setup.py build
#or
CC=mpicxx python setup.py install

#run
mpirun -np 2 python generate.py

Before the utilization, make sure that mpi4py is installed. A minimum example to use the
interface of SMG2S to Python is given as Listing 3.

Listing 3 A minimum example of SMG2S’s interface to Python.

from mpi4py import MPI
import smg2s

#create the nilpotent matrix
nilp = smg2s.NilpotencyInt()

#setup the nilpotent matrix: 2 = continous 1 nb, 10 = matrix size
nilp.NilpType1(2,10)

#Generate Mt by SMG2S
Mt = smg2s.parMatrixSparseDoubleInt()
Mt = smg2s.smg2sDoubleInt(10,nilp,lbandwidth," ", MPI.COMM_WORLD)

4.8.3 Interface to Scientific Libraries

One benefit of SMG2S is that the test matrices generated are already distributed onto different
computing units across the whole platforms. These distributed data can be directly by users

1. http://www.swig.org
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to efficiently evaluate the numerical linear methods of the scientific libraries or their personal
implementation without involving I/O operations, whose time consumption is enormous if the
matrix size is large. In the package of SMG2S, we provide the interface to PETSc and Trilinos,
which can convert the generated matrices into the sparse matrix storage format corresponding
to these libraries.

4.8.3.1 Interface to PETSc and SLPEc

SMG2S provides the interface to scientific computational softwares PETSc and SLEPc. The way
of usage is shown as follows:

(1) Include the header file:

# include <interface/PETSc/petsc_interface.h>

(2) Create parMatrixSparse type matrix :

parMatrixSparse<std::complex<double>,int> *Mt;

(3) Restore this matrix into CSR format :

Mt->Loc_ConvertToCSR();

(4) Create PETSc MAT type :

Mat A;
MatCreate(PETSC_COMM_WORLD,&A);

(5) Convert to PETSc MAT format :

A = ConvertToPETSCMat(Mt);

4.8.3.2 Interface to Trilinos/Teptra

SMG2S is able to convert its distributed matrix into the CSR format of distributed matrix
defined by Teptra in Trilinos. The way of usage:

(1) Include header file

# include <interface/Trilinos/trilinos_interface.hpp>

(2) Create parMatrixSparse type matrix :
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parMatrixSparse<std::complex<double>,int> *Mt;

(3) Create Trilinos/Teptra MAT type :

Tpetra::CrsMatrix<std::complex<double>, int, int> K;

(4) Convert to Trilinos MAT format :

K = ConvertToTrilinosMat(Mt);

4.8.4 GUI for Verification

SMG2S provides a GUI for users to compare and verify the prescribed spectra and eigenvalues
of generated matrices. This GUI is implemented by Python. When the users launch this GUI, a
new window opens like Fig. 4.16.

Figure 4.16 – Home Screen

The files which store the original spectrum and final eigenvalues can be respectively loaded
from local filesystems into the GUI. After that, you can click on Display to build and open the
graphic on the right side of the window, as shown by Fig. 4.17.

This GUI also supports the zoom in/out operations of a small part of figures, which allows
the users to see more details of spectral distribution. In addition, the display can also be done
with the users’ selected scale by inputting the minimum and maximum values for the x-axis and
y-axis, as shown by Fig. 4.18.
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Figure 4.17 – Home Screen Plot Capture

Figure 4.18 – Home Screen Custom
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Figure 4.19 – SMG2S Workflow and Interface.

4.9 Krylov Solvers Evaluation using SMG2S

SMG2S is suitable to evaluate different kinds of linear system and eigenvalue solvers. We give
some examples to demonstrate its workflow and ability to evaluate the Krylov solvers. In this
section, we do not mean to propose new points on the Krylov methods, but to show the benefits
of SMG2S. A class of Krylov subspace iterative methods is one of the most powerful tools
to solve large and sparse linear systems. Convergence analysis of these methods is not only
of great theoretical importance, but it can also help to answer practically relevant questions
about improving their performance using the preconditioners. The convergence of Krylov solvers
depends on the spectral distribution of matrices. And most preconditioners are applied to change
the spectral distribution in order to accelerate the convergence. Anyway, the spectrum has a
significant impact on the convergence of Krylov methods. We can use SMG2S to generate the
test matrices with different spectral distributions and to study their influence on the convergence.

4.9.1 SMG2S workflow to evaluate Krylov Solvers

SMG2S workflow for evaluating the solvers is shown in Fig. 4.19. It generates the matrix in
parallel. The interfaces provided to PETSc, Trilinos, and other public or personal parallel solvers,
can restore the distributed data into the necessary data structures of different libraries. This
feature can significantly reduce the I/O of applications and improve their efficiency to evaluate
the numerical methods.

4.9.2 Experiments

Fig. 4.20 shows the comparison of conventional GMRES without preconditioning, GMRES pre-
conditioned by Jacobi and SOR, and a hybrid GMRES with Least Squares polynomial, using
the matrix generated SMG2S. This figure demonstrates that it is effective to evaluate the con-
vergence of different implementation of GMRES with the matrices generated by SMG2S.

We evaluate also three different restarted Krylov linear system solvers using SMG2S. The
test methods include GMRES, BiCGStab, and TFQMR, with/without the basic parallel precon-
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Figure 4.20 – Convergence Comparison using a matrix generated by SMG2S.
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ditioners SOR or Jacobi. In the experiments, matrices with different spectral distributions are
generated by SMG2S, including the clustered, closest, conjugate eigenvalues, eigenvalues with
dominant values, etc. With the interface of SMG2S to PETSc, we use the parallel Krylov solvers
and preconditioners provided by PETSc for the evaluations.

Table 4.4 shows iterative steps for convergence of different solvers. We can conclude that
different matrices generated by SMG2S with different spectral distributions have different con-
vergence performance with different solvers and preconditioners. The six cases listed in Table 4.4
are not cover much more different types of spectral distributions, and the tested preconditioners
are relatively simple because it is not the primary purpose of this chapter. But we can say that
SMG2S is a reliable tool which can be used to evaluate the different numerical methods, and in
the future, we will make use of it to do more tests with different solvers and novel preconditioners
and to analyse their performance with different spectral distributions.

4.10 Conclusion

In this chapter, we have presented a scalable matrix generator with the given spectra and its
parallel implementation on homogeneous and heterogeneous clusters. This method allows gen-
erating large-scale test matrices with customized eigenvalues to evaluate the influence of spectra
on the linear and eigenvalue solvers targeting the large-scale platform. SMG2S is designed with
less memory requirement and operation complexity. We have evaluated its parallel scalability
and the accuracy to keep the spectra of matrices generated by this matrix generator. The exper-
iments proved that this method has good scalability and acceptable accuracy to keep the given
spectra. One more important benefit of SMG2S is that the matrices are generated in parallel.
Thus the data are already allocated to different processes. These distributed data can be used
directly by users to efficiently evaluate the numerical linear methods of the scientific libraries or

103



Chapter 4 – Sparse Matrix Generator with Given Spectra

Table 4.4 – Krylov solvers evaluation by SMG2S with matrix row number = 1.0× 105, con-
vergence tolerance = 1× 10−10 (dnc = do not converge in 8.0× 104 iterations, the solvers and
preconditioners are provided by PETSc.)

Krylov Methods Preconditioner Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

GMRES
None 2160 dnc dnc dnc 50773 dnc

Jacobi 17 dnc 129 dnc 12056 dnc

SOR 3 dnc 4 dnc dnc dnc

BiCGStab
None 220 6859 dnc 771 53 dnc

Jacobi 9 1097 66 214 56 dnc

SOR 2 168 3 12 8 dnc

TFQMR
None 510 dnc dnc dnc dnc dnc

Jacobi 18 dnc 128 dnc dnc dnc

SOR 3 dnc 5 22 dnc dnc

their personal implementation without concerning the I/O operation, whose time consumption
is enormous if the matrix size is large. In the future, in order to augment the bandwidth of the
generated matrix, a special data structure and function for the very large factorial operation
should be implemented. And the interface to more scientific linear and eigenvalue solver libraries
should be provided. The trend of computing units for the future exascale machines targeting at
the AI applications with low-precision floating and integer operations requires the implementa-
tion of an variant of SMG2S with only integer operations, which has extremely high capacity to
keep the accuracy of given spectra.
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Chapter 5

Unite and Conquer GMRES/ LS-ERAM
Method

Facing with the challenges of numerical linear algebra methods on a large-scale machine
discussed in Section 3, new programming models should be proposed with well-suited
characteristics on modern architectures. These features should include optimized com-
munications, asynchronicity, diversity of natural parallelism and fault tolerance. In such
numerical methods, the avoidance of operations involving synchronous communications
is the most important. Consequently, large scalar products and overall synchronization,
and other operations involving communications between all cores have to be avoided.
On the other hand, asynchronicity of communications has to be promoted. Indeed, this
kind of communications could allow overlapping the computation operations inside a
task and the tasks constituting these methods. The diversity of natural parallelism ex-
isting in such methods can be exploited to take advantage of heterogeneity of targeted
architectures. Fault tolerance and reusability should be also important integral parts of
these methods. These characteristics allow the improvement of the performance of ap-
plications built on the basis of existing methods. In this chapter, we present UCGLE, an
asynchronous distributed and parallel method to solve sparse non-Hermitian systems on
large platforms. The key feature of UCGLE compared with the classical hybrid methods
using Least Squares polynomial preconditioner [86, 109] is its distributed and parallel
asynchronous communication and the manager engine implementation between three
components, which are specified for the extreme-scale supercomputing platforms. We
summarize the Unite and Conquer approach in Section 5.1. In Section 5.2, we analyze
the possibility to construct different iterative methods based on Unite and Conquer ap-
proach. The workflow of UCGLE is given in Section 5.3. In Section 5.4, we present its
distributed and parallel implementation, including the computational components, the
manager engine, and the asynchronous communications. The experimental results on
different supercomputers which evaluate the convergence, the parameters, the impact of
spectral distribution, the scalability, and the fault tolerance are shown in Section 5.5.

105



Chapter 5 – Unite and Conquer GMRES/LS-ERAM Method

5.1 Unite and Conquer Approach

As discussed in Section 1.2, Unite and Conquer approach is to make the collaboration of sev-
eral iterative methods to accelerate the convergence of one of them. This approach is a model
for the design of numerical methods by combining different computational components to work
for the same objective, with asynchronous communication among them. Unite implies the com-
bination of different computational components, and conquer represents different components
work together to solve one problem. Different independent components with asynchronous com-
munications can be deployed on various platforms such as P2P, cloud and the supercomputer
systems. The idea of mixing asynchronously resarted Krylov methods using distributed and par-
allel computing was initially introduced by Guy Edjlali and Serge Petiton [79, 80] in 1991 at
the Etablissement Central de l’Armement in Arcueil, France. They experimented those hybrid
Krylov methods asynchronously on networks of heterogenous parallel computers (e.g., using two
Connection Machines, a CM5 and a CM200 and a network of workstations). The concept of
Unite and Conquer was introduced by Nahid Emad et al. [84, 83].

MERAM is an example of Unite and Conquer approach to solve eigenvalue problems based
on an ERAM with multiple projections. MERAM was firstly implemented by Edjlali et al. on
parallel computers [79], then more details of numerical evaluations of MERAM were presented
in [84]. This method projects an eigenproblem on a set of subspaces and thus creates a whole
range of differently parameterized ERAM processes which cooperate to compute a solution of
this problem efficiently. As shown in Fig. 5.1, in MERAM, the restarting vector of each ERAM
is updated by taking into account the interesting eigen-information obtained by the other ones.
In detail, different ERAM processes inside MERAM begin with several subspaces spanned by
a set of initial vectors and a set of subspace sizes. If the convergence does not occur for any of
them, then the new subspaces will be defined with initial vectors updated by taking into account
the intermediary solutions computed by all the ERAM processes. As shown in Fig. 5.2, which
is an experimental results extracted from [84], MERAM is able to accelerate the convergence
of ERAM. The numerical experiments have demonstrated that this variant of MERAM is often
much more efficient than ERAM.

5.2 Iterative Methods based on Unite and Conquer Approach

Based on the Unite and Conquer approach, most of the hybrid and deflated iterative methods
are able to be transformed into distributed and parallel schemes by dividing them into different
computational components. In this section, we analyze the possibilities of building different
iterative methods based on Unite and Conquer approach.

5.2.1 Preconditioning Techniques

As presented in Section 3.5, different preconditioning techniques are applied to accelerate the
convergence. The reconstruction of iterative methods based on Unite and Conquer approach
should take into account their preconditioners.
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Figure 5.1 – An overview of MERAM, in which three ERAM communicate with each other by
asynchronous communications [84].

5.2.1.1 Preconditioning by Matrix

The first alternative is to use the preconditioning matrix M , and replace the original system by
Mx = b, which is much easier to be solved. M can be applied to the original systems either by
the left, right or split preconditioning. Well-known preconditioners include SOR, Jacobi, AMG,
ILU, etc.

5.2.1.2 Preconditioning by Deflation

As presented in Section 3.4.3, it is not always true, but in general, the convergence of Krylov
subspace methods for solving linear systems depends on the distribution of eigenvalues. The
removing or deflation of small eigenvalues might greatly improve the convergence performance.
Hence deflated preconditioners should be constructed for each cycle of the restart. The small
eigenvalues can be explicitly or implicitly deflated, e.g., the former uses the approximated Ritz
pairs from Hm to construct new restart residual vectors for linear solvers; the latter implicitly
deflates these eigenvalues by special operations on Hm and Vm [85, 47, 151]. For example, a
deflated GMRES introduced in [151], firstly it approximates k smallest eigenpairs of Hm +
βH−Tm eme

T
m, secondly, these eigenpairs are used to construct new Hm and Vm with the implicit

deflation of these smallest eigenvalues.
The iterative methods for solving eigenvalue problems can be explicitly deflated by the Ritz

values and vectors approximated through previous Arnoldi reduction procedures. ERAM uses
the Ritz pairs to construct a new restart vector, which can deflate the gotten eigenvalues and
accelerate the convergence. Two well-known implicitly deflated Krylov subspace methods for
eigenvalue problems are IRAM and Krylov-Schur method, which remove the unwanted eigen-
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Figure 5.2 – An example of MERAM: MERAM(5,7,10) vs. ERAM(10) with af 23560.mtx matrix.
MERAM converges in 74 restarts, ERAM does not converge after 240 restarts [84].

values implicitly by QR factorization and Krylov-Schur decomposition, respectively.

5.2.1.3 Preconditioning by Polynomial

In order to approximate the solution of linear system (3.1), one approach is to get the inverse ofA,
denote it as A−1, and then an approximate solution can be easily obtained as x̃ = A−1b. x̃ can be
applied as a new residual vector for the subsequent restart, that is the polynomial preconditioning
for linear solvers. In detail, the cycle step of iterative methods is able to construct a Hessenberg
matrixHm by the Arnoldi reduction. Then some dominant eigenvalues are approximated through
the Ritz values of Hm. The preconditioning step is to get the optimal polynomial pk by these
Ritz values to approximate A−1, and pk is used to generate a new x̃ for the next time restart of
iterative methods.

The idea of polynomial preconditioning for the iterative solvers of eigenvalue problems is
similar to the one for linear systems. In detail, a selected polynomial pk can be constructed by
the set of unwanted eigenvalues and new gotten Ritz values from previous Arnoldi reduction,
and the operator A can be replaced by Bk = pk(A). This polynomial is able to amplify the
wanted eigenvalues of A into the eigenvalues of Bk with much larger norms compared with other
remaining eigenvalues, which will result in much faster convergence. The eigenvalues of A can
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be obtained from the ones of Bk by a Galerkin projection. The polynomial pk can be formulated
either by the Chebyshev basic with the best ellipse constructed by the unwanted and known
eigenvalues[184], or by a polygon refined with these unwanted and known eigenvalues [142].

5.2.1.4 Preconditioning by Shift-Invert

Classic Krylov method is able to approximate the dominant eigenvalues. If the wanted values are
not dominant, it is necessary to enlarge the Krylov subspace size, which requires larger memory
and computational operations. One of the most effective techniques for solving such problems
is to iterate with the shifted and inverted matrix (A− σI)−1. The eigenvalues approximated by
this new operator are the ones around the given shift σ. Different fractions of eigenvalues can
be efficiently calculated by changing σ.

5.2.1.5 Analysis

Table 5.1 summarizes the required information for the deflation, polynomial and Shift-Invert
preconditioners of linear and eigensolvers. For the explicit deflation of iterative methods, the
Ritz pair obtained from Hm are used to perform the preconditioning. The implicitly deflated
solvers use directly the Hessenberg matrix Hm and the orthonormal basis of Krylov subspace
Vm to accelerate the convergence. The polynomial preconditioners for solving linear systems use
the dominant eigenvalues approximated from Hm to construct the best polynomial, and the un-
wanted Ritz values to formulate the preconditioning polynomial for solving eigenvalue problems.
A special Shift-Invert preconditioner for eigenvalue problems is able to quickly approximate dif-
ferent parts of eigenvalues by selecting different shift value σ. The preconditioners implemented
based on matrices is not listed in Table 5.1.

Table 5.1 – Information used by preconditioners to accelerate the convergence.

Precond

Info Solver

Linear Solver Eigen Solver

Explicit Deflation Ritz values and vectors Ritz values and vectors
Implicit Deflation Hm and Vm Hm and Vm

polynomial Dominant Ritz values unwanted Ritz values
Shift-Invert × shift value σ

5.2.2 Separation of Components

As presented in Section 3.8, iterative methods for solving linear systems and eigenvalue problems
on extreme-scale platforms should be modified and optimized by minimizing global communica-
tion, reducing synchronization points, and promoting asynchronicity. Recent studies have focused
more on the optimization of different parts inside iterative methods, e.g., the communication
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avoiding techniques for linear algebra operations [116, 50] and pipelined strategies for Krylov
methods [148, 60]. Since modern supercomputing can be seen as distributed and parallel com-
puting, it is necessary to divide the applications into different complex components according to
their functionalities. They should be implemented with asynchronous communications and con-
trolled by a manager engine. The first step is to identify different components of preconditioned
iterative methods.

5.2.2.1 Component Identification inside Iterative Methods

Based on Table 5.1, the mechanism to divide the numerical methods into different computational
components is proposed. For the deflation and polynomial preconditioned iterative methods, the
important information for the preconditioning is either Hm and Vm or the Ritz pairs obtained
from Hm and Vm. Immediately, they can be divided into two parts: the solving and precon-
ditioning parts. Moreover, a supplementary computational component should also be provided
which is able to generate the information used by the preconditioners. Finally, these algorithms
can be divided into three kinds of computational components:

• Solver Component for solving problems;

• Information Generator Component to generate this information used by the precondition-
ers;

• Preconditioner Component for the preconditioning pretreatment for the solvers.

Fig. 5.3 gives a cyclic relation of the proposed three components for the deflation and the
polynomial preconditioned methods, which communicate with each other by asynchronous com-
munications. Various existing algorithms can be transformed into the three types of components,
e.g., for the polynomial preconditioned solver for linear systems, three types of computational
components are:

(1) an iterative method to solve the systems;

(2) an eigensolver to approximate the dominant eigenvalues;

(3) a preconditioning pretreatment component to generate the preconditioning parameters,
either by the ellipse or the refinement of polygon constructed by the approximated Ritz
values.

and for the deflated eigensolvers, three types of computational components are:

(1) an eigensolver to solve the problems;

(2) another eigensolver with different settings (e.g., the Krylov subspace size, the shift value) to
generate the information for preconditioning, such as Hm and Vm for the implicit deflation
and Ritz pairs for the explicit deflation;

(3) best preconditioning information can be selected by the Preconditioner Component using
the information of previous two components (e.g., for explicit deflation, the best informa-
tion can be the combination of Ritz vectors from different components), and it can achieve
better numerical performance than conventional deflated iterative methods.
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Iterative 
Solvers

Preconditioning
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Preconditioning
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Figure 5.3 – Cyclic relation of three computational components.

For the shift-invert preconditioned eigensolvers, they can be divided into several similar
solvers with different shift value σ. These components can be tickly restarted with much smaller
Krylov subspace size to approximate a small fraction of wanted eigenvalues. The total wanted
ones can be a combination the subsets of different components. This is similar to the spectrum
slicing strategies for restarted Lanczos methods introduced by Campos et al. [49].

For the matrix preconditioned methods, it is difficult to divide the solver and preconditioning
matrix into two independent components with asynchronous communications, since the precon-
ditioned matrixM should be left or right multiplied with the operator A for each time projection
inside the Arnoldi reduction process, which cannot be explicitly separated.

5.2.2.2 Distributed and Parallel Implementation of Components

By dividing the preconditioned iterative methods into different components, they can be im-
plemented in a distributed manner. Each component can be implemented in parallel. These
different components communicate with others by asynchronous communications. They can
concentrate on their own tasks independently from other components unless the necessary data
are asynchronously received from others. The dependencies of tasks for the preconditioning in-
side iterative methods can be reorganized in a more flexible way. For each component, it can
be replaced by the implementation with the linear algebra operations optimized by the recent
research, which introduce a potential improvement for the parallel performance of each com-
ponent. The separation of components makes it easier to take advantage of current research
to optimize linear algebra operations within iterative methods, thereby improving the parallel
performance of each computational component.
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5.2.3 Benefits of Separating Components

Dividing iterative methods into components with asynchronous communication introduces both
numerical and parallel benefits for them.

Numerical benefits: for conventional deflation and polynomial preconditioned methods, the
information used is obtained from previous Arnoldi reduction, and it might be difficult to explore
larger subspace. Therefore, the convergence might be slowed down. For the methods implemented
with the proposed paradigm, the solving and preconditioning parts are independent, thus for the
Information Generator Component, different Arnoldi reduction procedures can be implemented
in the same time with much larger Krylov subspace or other parameters. This information applied
to the deflation or polynomial preconditioned Solver Components can be different from their own
Arnoldi reduction, which improve the flexibility the algorithms, e.g., much more eigenvalues and
larger searching space for the deflation. Hence the limitation of spectral information caused by
restarting might be broken down, and faster convergence might be obtained. The numerical
benefits for linear and eigensolver are already respectively discussed in [225] and [84].

Parallel benefits: parallel performance of iterative methods can be improved by the promotion
of asynchronization and reduction of synchronizations and global communications, especially the
synchronization points for the preconditioning. Separating components improves also the fault
tolerance and reusability of algorithms.

Multi-level parallelism: the iterative solvers implemented based on Unite and Conquer ap-
proach is able to explore multi-level parallelism of the distributed memory computing architec-
tures. The three-level parallelism is listed below:

(1) Coarse Grain/Component level: this paradigm allows the distribution of different numerical
components on different platforms, processors or computing nodes;

(2) Medium Grain/Intra-component level: each computational component is able to be de-
ployed in parallel with a collection of cores/nodes on distributed memory systems;

(3) Fine/Thread level for shared memory: either the thread level parallelism in CPU or accel-
erator level parallelism if GPUs or other accelerators are available.

5.3 Proposition of UCGLE

In this section, we try to propose a new multi-level parallelism programming paradigm to solve
linear systems based on the Unite and Conquer approach. We select the hybrid method precon-
ditioned by the Least Squares polynomial to construct a distributed and parallel linear solver,
that is the UCGLE method. Firstly, Section 5.3.1 present different computational components
inside UCGLE. In Section 5.3.2, we give the workflow and implementation of UCGLE.

5.3.1 Selection of Components

We list the details of the three computational components in UCGLE as below,

(1) Solver Component: this component is implemented with restarted GMRES to solve non-
Hermitian linear systems.

112



5.4. Distributed and Parallel Implementation

(2) Information Generator Component: the materials for Least Squares polynomial precon-
ditioner are the dominant eigenvalues, thus this type of component is implemented with
ERAM to approximate the eigenvalues.

(3) Preconditioner Component: this component is to generate the Least Squares polynomial
preconditioning parameters using the approximated eigenvalues by the ERAM Component.
In this thesis, it is denoted as LSP component.

5.3.2 Workflow

In the conventional implementation of this hybrid method, the eigenvalues used to construct the
Least Squares polynomials are computed by the Hessenberg matrix Hm after each time Arnoldi
reduction cycle of GMRES. In UCGLE, the linear solver, the approximation of eigenvalues and
the construction of Least Squares polynomials are separated into three different parts. These
three computing components work independently with each other, and they share the necessary
information by the asynchronous communications.

UCGLE method is mainly composed of two parts: the first part uses the restarted GMRES
method to solve the linear systems; in the second part, it computes a certain number of approx-
imated eigenvalues, and then applies them to the Least Squares polynomial method and gets a
new preconditioned residual, as a new initial vector for restarted GMRES.

Figure 5.4 gives the workflow of UCGLE method with three computational components.
ERAM Component and GMRES Component are implemented in parallel, and the communica-
tion between them is asynchronous. ERAM Component computes a desired number of eigenval-
ues, and then sends them to LSP Component; LSP Component uses these received eigenvalues to
output the preconditioning parameters, and sends them to GMRES Component; GMRES Com-
ponent uses these parameters to generate a new restarted initial vector for solving non-Hermitian
linear systems.

5.4 Distributed and Parallel Implementation

This section gives the distributed and parallel implementation of UCGLE, including the compo-
nents, the multi-level parallelism, the manager engine, and the asynchronous communications.

5.4.1 Component Implementation

This section describes the basic implementation and workflow of each component in UCGLE.
Algorithm 23 details the entire implementation of UCGLE.

5.4.1.1 GMRES Component

GMRES Component aims to solve a linear system Ax = b. It takes an operator matrix A and
two vectors, x the initial guess vector and b the related RHS as input. GMRES approximates
the solution starting from this initial guess vector until the exact solution is found or if a
stopping criterion is met, for example, that the residual norm is below a given threshold (e.g.,
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Figure 5.4 – Workflow of UCGLE method.

||r||2 ≤ 10e−8). In practice, GMRES are restarted after m steps of iterations in order to reduce
the memory requirement.

Fig. 5.5 gives the workflow of GMRES Component. GMRES Component loads the parame-
ters A,mg, x0, b, εg, freq, lsa to solve the linear systems. At the beginning of execution, it behaves
like the basic GMRES method. When it finishes the mth iteration, it will check if the condition
||b − Axm|| < εg is satisfied, if yes, xm is the approximated solution of linear system Ax = b,
or GMRES Component will be restarted using xm as a new initial vector. A parameter count
is used to count the times of restart. All these processes are similar to a restarted GMRES.
However, when count is an integer multiple of freq (number of GMRES restarts between two
times preconditioning of Least Squares polynomial), it will check if it has received the param-
eters Ad, Bd,∆d, Hd from LSP Component. If yes, these parameters will be used to construct
a preconditioning polynomial Pd, which can be used to generate a preconditioned residual xd,
then set the initial vector x0 as xd, and restart the basic GMRES, until the exit condition is
satisfied. We reused PETSc’s GMRES implementation and modified it to include sending and
receiving data and calculating the new residual by Least Squares polynomial.
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Figure 5.5 – GMRES Component.

5.4.1.2 ERAM Component

Fig. 5.6 gives the workflow of ERAM Component. ERAM Component loads the parameters
ma, v, r, εa and the operator matrix A, then launches ERAM function. When it receives a new
vector X_TMP from GMRES Component, this vector will be stored in ERAM Component.
This vector is updated with the continuous receiving of a new one from GMRES Component.
If the r eigenvalues Λr are approximated by ERAM Component, it will send them to LSP
Component, at the same time, it is able to save the eigenvalues into the local file. We reused
SLEPc’s ERAM implementation by adding the sending and receiving functionalities.

5.4.1.3 LSP Component

Fig. 5.7 gives the workflow of LSP Component. LSP Component will not start work until it
receives the eigenvalues Λr sent from ERAM Component. Then it will use them to compute
the parameters Ad, Bd,∆d, Hd, whose dimensions are related to d, the Least Squares polynomial
degree, and send these parameters to GMRES Component. The Cholesky factorization inside
LSP Component is implemented by the routine provided by LAPACK.

Algorithm 23 Implementation of Components
1: function LOADERAM(input: A,ma, ν, r, εa)
2: while exit==False do
3: ERAM(A, r,ma, ν, εa, output: Λr)
4: Send (Λr) to LSP Component
5: if saveflg == TRUE then
6: write (Λr) to file eigenvalues.bin
7: end if

115



Chapter 5 – Unite and Conquer GMRES/LS-ERAM Method

Load Data: A, b

Set ERAM Parameters

Stop?

Receive new initial 
vector from GMRES if 

available 

Compute 
Eigenvalues

No

Send Eigenvalues to LS 
Component

Yes

Figure 5.6 – ERAM Component.

8: if Recv (X_TMP ) then
9: update X_TMP

10: end if
11: if Recv (exit == TRUE) then
12: Send (exit) to LSP Component
13: stop
14: end if
15: end while
16: end function
17: function LOADLS(input: A, b, d)
18: if Recv(Λr) then
19: LSP-Pretreatment(input: A, b, d,Λr, output: Ad, Bd,∆d, Hd)
20: Send (Ad, Bd,∆d, Hd) to GMRES Component
21: end if
22: if Recv (exit == TRUE) then
23: stop
24: end if
25: end function
26: function LOADGMRES(input: A,mg, x0, b, εg, freq, lsa, output: xm)
27: count = 0
28: BASICGMRES(input: A,m, x0, b, output: xm)
29: X_TMP = xm

30: Send (X_TMP ) to ERAM Component
31: if ||b−Axm|| < εg then
32: return xm

33: Send (exit == TRUE) to ERAM Component
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34: Stop
35: else
36: if count | freq then
37: if recv (Ad, Bd,∆d, Hd) then
38: r0 = f −Ax0, ω1 = r0 and x0 = 0
39: for k = 1, 2, · · · , lsa do
40: for i = 1, 2, · · · , d− 1 do
41: ωi+1 = 1

βi+1
[Aωi − αiωi − δiωi−1]

42: xi+1 = xi + ηi+1ωi+1

43: end for
44: end for
45: set x0 = xd, and GOTO 28
46: count+ +
47: end if
48: else
49: set x0 = xm, and GOTO 28
50: count+ +
51: end if
52: end if
53: if Recv (exit == TRUE) then
54: stop
55: end if
56: end function
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5.4.2 Parameters Analysis
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Figure 5.8 – Convergence comparison of UCGLE method vs classic GMRES.

UCGLE method is a combination of three different methods, there are a number of param-
eters, which have impacts on its convergence rate. We summarize these different related ones,
and classify them according to their relations with different components.

1. GMRES Component

(a) mg: GMRES Krylov Subspace size

(b) εg: absolute tolerance for the GMRES convergence test

(c) Pg: GMRES core number

(d) lsa: number of times that polynomial applied on the residual before taking account
into the new eigenvalues

(e) freq: number of GMRES restarts between two times of Least Squares polynomial
preconditioning

2. ERAM Component

(a) ma: ERAM Krylov subspace size

(b) r: number of eigenvalues required

(c) εa: tolerance for the ERAM convergence test

(d) Pa: ERAM core number

3. LSP Component

(a) d: Least Squares polynomial degree

118



5.4. Distributed and Parallel Implementation

Intracom
LSP

Intracom
GMRES

Intracom
Manager

Intracom
ERAM

MPI_COMM_WORLD

Intercom Intercom

Intercom Intercom

Figure 5.9 – Creation of Several Intra-Communicators in MPI.

Suppose that the convex hull constructed for Least Squares polynomial contains eigenvalues
λ1, · · · , λm, the residual given by Least Square polynomial of degree d− 1 is

r =
m∑
i=1

ρiRd(λi)ui +
n∑

i=m+1
ρiRd(λi)ui

In practice, it is limited for choosing the degree of polynomial degree by the fact that the
moment matrix Md becomes difficult to compute and to factor as the degree d increases. A
classical solution to this problem is to compound lsa times a small degree polynomial. The
residual given by Least Squares polynomial tends to be

r =
m∑
i=1

ρi(Rd(λi))lsaui +
n∑

i=m+1
ρi(Rd(λi))lsaui

The first part of this residual is minimized by the Least Square polynomial method using the
eigenvalues inside convex hull Hm, and the second part is large since the related eigenvectors
associated with the eigenvalues outside Hm. With the number of approximated eigenvalues
increasing, the first part will be much closer to zero and the second part keeps enormous. The
next restart process of GMRES can be still accelerated since it restarts with the combination
of eigenvectors. The more eigenvalues are known, the more significant acceleration will be. The
convergence comparison of UCGLE and classic GMRES is given in Fig. 5.8. The large peaks
appear in the UCGLE curve for each time restart. It means that the residual turns to be large,
and then will drop down very quickly with the acceleration of Least Squares polynomial method.
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5.4.3 Distributed and Parallel Manager Engine Implementation

GMRES method has been implemented by PETSc, and ERAM method is provided by SLEPc.
Additional functions have been added to the GMRES and ERAM provided by PETSc and
SLEPc to include the sending and receiving functions of different types of data. For the imple-
mentation of LSP Component, it computes the convex hull and the ellipse encircling the Ritz
values of matrix A, which allows the generation of a new Gram matrix Md based on the se-
lected Chebyshev polynomial basis. This matrix should be factorized into LLT by the Cholesky
algorithm. The Cholesky method is ensured by PETSc as a preconditioner but can be used as a
factorization method. Implementation based on these libraries allows recompilation of UCGLE
code to accommodate CPU and GPU architectures. The experimentation in this chapter did
not consider the OpenMP thread level of parallelism because the implementation of PETSc and
SLEPc was not thread-safe due to its complex data structure. The data structures of PETSc
and SLEPc makes it more difficult to partition the data among the threads to prevent conflict
and to achieve good performance [26].

5.4.3.1 Implementation of the Inter-component Communication Network

In order to establish different computational components with asynchronous communications,
the first solution is to create several communicators inside of MPI_COMM_WORLD and their
inter-communication. The topology of communication among these groups is a circle shown
in Figure 5.9. The total number of computing units supplied by the user is thus divided into
four groups according to the following distribution: Pt is the total number of processes, then
Pt = Pg + Pa + Pl + Pm, where Pg is the number of processes assigned to GMRES Component,
Pa the number of processes to ERAM component, Pl the number of processes allocated to LSP
Component and Pf the number of processes allocated to Manager Process proxy. Pg and Pa are
greater than or equal to 1, Pl and Pm are both exactly equal to 1. LSP Component is a serial
component. According to Section 3.5.3.4, the generation of Least Squares polynomial parameters
by the Cholesky factorization and least squares problem are implemented by the subroutines
provided by LAPACK with small size dense matrices, on process can fulfill the requirements.

Pt is thus divided into several MPI groups according to a color code. The minimum number
of processes that our implementation requires is 4. We utilize the mechanism of standard MPI
to fully support the communication of our application. The communication layer that does not
depend on the application, which allows the replacement and scalability of various components
provided.

5.4.3.2 Asynchronous Communication Mechanism

As shown in Figure 5.10, UCGLE has three levels of parallelism which is suitable for the mod-
ern supercomputers. In fact, the main characteristic of UCGLE method is its asynchronous
communication. But the synchronous communication takes place inside of GMRES and ERAM
components. Distributed and parallel communication involves different types of exchange data,
such as vectors, scalar arrays, and signals among different components. When the data are sent
and received in a distributed way, it is essential to ensure the consistency of data. In our case,
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Figure 5.10 – Communication and different levels parallelism of UCGLE method

we choose to introduce an intermediate node as a proxy to carry out only several types of ex-
changes and thus facilitate the implementation of asynchronous communication. This proxy is
called Manager Process as in Figure 5.10. One process can fulfil all the data exchanges.
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Copy data into 
sending buffer

Send data to each 
process

Cancel previous 
sending

Figure 5.11 – Data sending scheme from one group of process to the other.

Asynchronous communication allows each computational component to conduct indepen-
dently the work assigned to it without waiting for the input data. The asynchronous sending
and receiving operations are implemented by the non-blocking communication of MPI. Sending
takes place after the sender has completed the task assigned to it. Before any prior shipment,
the component checks whether several sendings are now on the way. If yes, this task will be
canceled to avoid the competition of different types of sending tasks. Sent data are copied into a
buffer to prevent them from being modified while sending. For the asynchronous data receiving,
before starting this task, the component will check if data is expected to be received. Once the
receiving buffer is allocated, the component performs the receiving of data while respecting the
distribution of data globally according to the rank of sending processes. It is also essential to
validate the consistency of receiving data before any use of them by the tasks and components.

Asynchronous Sending: The sending operation (shown as Fig. 5.11), as we described, will
start by verifying if the previous sending operations are pending or not. If some operations are
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Figure 5.12 – Data receiving scheme from one group of process to the other.

not finished, they are canceled so as not to be in a state where several sending operations with
different data are in competition. In the practical implementation, we use the MPI_Request to
track the state of an asynchronous request. Once the verification is validated, then the data to be
sent will be copied to a buffer to prevent them overwritten by other work operations. Then, this
data is sent to the different nodes of the other components, respecting the distribution negotiated
during the initialization of the communications via the standard asynchronous sending function
MPI_Isend.

Asynchronous Receiving: In the context of send-and-receive communication mechanisms,
the receiving operation (shown as Fig. 5.12) is often the most difficult to implement because it
requires a synchronization point. As far as we are concerned, we have hidden this synchronization
point thanks to an input verification step. Indeed, we have chosen to implement a test function
before proceeding with asynchronous receiving operation instead of going through a purely
asynchronous reception function. The data input test is done via the MPI_Iprobe function
and the MPI_Recv reception. The latter is blocking or synchronous, that is, once called the
computing node would wait for data to be received before returning to the calling function.

At first glance, it would seem wiser to go through the non-blocking receiving function
MPI_Irecv. However, in practice, this function requires to know in advance the size of the
data to be received, which is not the case where our components work with a dynamic receiving
buffer, e.g., the receiving buffer for the eigenvalues should be resized with more and more eigen-
values approximated by ERAM. In our implementation, this dynamic buffer is allocated thanks
to the information provided by the operation MPI_Get_count using structure MPI_Status
filled in by the function MPI_Iprobe. Also, apart from this difference, our asynchronous receiv-
ing mechanism is fundamentally similar to the MPI_Irecv function in that it only receives data
if it is available.

In addition to the implementation of asynchronous sending and receiving functions, we inte-
grated a mechanism for checking the consistency of the received data. In order to allow different
independent groups of computing nodes (our components), we have used the tools that are the
intra-communications and inter-communicators MPI. The problem of this type of implemen-
tation is that it does not allow collective communications between the different nodes of two
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communicating groups. The communications between groups of nodes (or components) through
the intercommunication only allow collective communications between one master process of a
group and the nodes of others groups. It is therefore quite limited when the goal is to carry out
entirely collective communications, that is to say, to allow all the nodes of a group to communi-
cate with all the nodes of another group. Indeed, even if we go through the proxy to facilitate
communication control, data consistency must be checked before any prior use. For example of
a distributed vector, if a vector is partially received, it can not be used, otherwise, we could
witness a disaster from a numerical point of view. Also, to avoid this kind of pitfall, we have
integrated a validation mechanism that will check if the received data are consistent before they
are used. The consistency check is conveniently performed by comparing the total size of the
data received by each component node against the size of the data to be received at all. If this
is consistent, then the receiving buffer data is placed in the working memory of each node of the
receiving component.

5.5 Experiment and Evaluation

5.5.1 Hardware

In experiments, we implement UCGLE on the supercomputers Tianhe-2 and Romeo-2013. The
details of the two machines are already given in Section 4.6.1.

5.5.2 Parameters Evaluation

After the implementation of UCGLE, at first, we evaluate the influence of different parameters
on its convergence. The selected parameters to be evaluated are:

(1) Krylov subspace size for GMRES;

(2) Least Squares polynomial degree;

(3) Least Squares polynomial applied times;

(4) Least Squares polynomial frequency;

(5) Number of eigenvalues.

5.5.2.1 Test Matrix Suite

UCGLE has been evaluated using the test matrices from Matrix Market collections, shown as
Table 5.2. In this section, we select to use matrix utm300 to understand the influence of different
parameters on the convergence of UCGLE.

The matrix utm300 is constructed from an electromagnetic problem, with its condition num-
ber number being 8.466435× 105.
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Table 5.2 – Test Matrix from Matrix Market Collection.

Matrix Size NNZ Domain

utm300 300 3155 R

utm1700b 1700 21509 R

pde2961 2961 14585 R

young4c 841 4089 C

5.5.2.2 Influence of Different Parameters on the Convergence

In order to highlight the impacts of different parameters inside UCGLE, we conducted several
sets of experiments, which vary one parameter mentioned above, and keep the other parameters
fixed. In this section, we will present the results of these experiments and then analyze the
impact of each parameter on the preconditioning, thus the acceleration of convergence. We study
the parameters including the Krylov subspace size of GMRES mg, the times of Least Squares
preconditioning applied on the GMRES lsa, the frequency of Least Squares preconditioning
applied freq, the number of eigenvalues approximated by ERAM Component neigen, and the
degree of Least Squares polynomial d.

Krylov subspace size: The parameter mg, which means the restarted subspace size of
GMRES, has important influence on the convergence of UCGLE. This effect is similar with the
case on the conventional GMRES without preconditioning. For the experiments of UCGLE, we
vary mg from 50 to 180, and keep l = 10, lsa = 10, freq = 1. Moreover, we evaluate also
the classic GMRES with mg to be 100 and 150. The results are given in Fig. 5.13. First of all,
we can conclude that in the case that mg is too small (see UCGLE(mg = 50) in Fig. 5.13),
even the Least Squares preconditioning is applied, the convergence cannot be achieved. With
the augmentation of mg, UCGLE is able to achieve the convergence with fewer iteration steps.
Secondly, with the preconditioning of Least Squares polynomial, UCGLE can converge with
mg = 100, but the classic GMRES cannot converge using the same value of this parameter.

In conclusion, the Krylov subspace size of GMRES Component is a very important parameter
of UCGLE. If this parameter is too small, it is difficult to get the convergence even with the
Least Squares polynomial preconditioning. It is not practical to use very large mg since the
limitation of memory. Thus, it is essential to determine a good value of mg which is able to able
to accelerate the convergence by Least Squares polynomial preconditioning. Moreover, UCGLE
is able to converge with smaller Krylov subspace size that classic GMRES cannot achieve the
convergence with. The smaller Krylov subspace size is effective to reduce the number of global
communications of SpMV inside Arnoldi reduction, and also the memory requirement.

Least Squares polynomial degree: The parameter d means the degree of Least Squares
polynomial applied to the temporary residual of GMRES. If this polynomial is formulated by the
polygon built by all the eigenvalues of operator A, the larger d is, the better the approximation
of solution will be, theoretically. In the experiments, d are set respectively to be 5, 10, 15, 20
and 25, and the parameters mg, lsa, and freq are respectively fixed as 100, 10 and 1. Fig. 5.14
shows the convergence curves of all the tests. The influence of d is clear, with the increase of d,
the residual norm of the restart vector produced by Least Squares polynomial will be enlarged,
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Figure 5.13 – Evaluation of GMRES subspace size mg varying from 50 to 180. d = 10, lsa = 10,
freq = 10.
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Figure 5.14 – Evaluation of Least Squares polynomial degree d varying from 5 to 25, and mg =
100, lsa = 10, freq = 1.
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Figure 5.15 – Evaluation of Least Squares polynomial preconditioning applied times lsa varying
from 5 to 18, and mg = 100, d = 10, freq = 1.

and GMRES Component will be accelerated. UCGLE with d = 25 has more than 2× speedup
than it with d = 5.

In conclusion, d is a very important parameter for the convergence of UCGLE. A good
selection of this parameter should make a balance between the Least Squares polynomial pre-
conditioning acceleration and the enlargement of the restarted residual norm. In practice, it is
limited for choosing the degree of polynomial degree by the fact that the moment matrixMd be-
comes difficult to compute and to factor as the degree d increases. The kernel operations for a d
degree Least Squares polynomial are d-times SpMV, which involve with global communications.
A classical solution to this problem is to compound several times a small degree polynomial.
This is done by performing the iteration from line 39 to 44 in Algorithm 23 several times. We
will evaluate this parameter lsa in the next step.

Least Squares polynomial applied times: The parameter Least Squares polynomial
applied times lsa means the number of times the Least Squares polynomial preconditioning pa-
rameters will be applied to the temporary solution of GMRES Component before its restart after
mg iterations. In the experiments, lsa are set respectively to be 5, 10 and 18, and the parameters
mg, d, and freq are respectively fixed as 120, 10 and 1. An additional test is done with lsa being
18 and freq being 2. Fig. 5.15 shows the convergence curves of all the tests. Firstly, it is obvious
that lsa has an effect on the peaks for each time Least Squares polynomial preconditioning. The
greater it is, the bigger the peak will be. As talked in Section 5.4.2, these peaks mean the Eu-
clidean norm of restart vector produced by Least Squares polynomial. By comparing the curves
in Fig. 5.15, we can conclude that the augmentation of lsa will accelerate the convergence of
UCGLE. The influence of lsa is clear, with the increase of lsa, the residual norm of the restart
vector produced by Least Squares polynomial will be enlarged. In the beginning, the test with
lsa = 10 performs better than lsa = 5, since Least Squares polynomial enlarges the norm of
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residual associated with dominant eigenvalues. However, if lsa = 18, the residual norm is too
large, the speedup of Least Squares polynomial is covered, and the convergence might be slowed
down. For the larger lsa, we could select a larger freq, which might reduce the influence of too
large residual norm caused by lsa. This means lsa cannot be too large, otherwise it might lead
to a too large norm of the residual of the restarted vector generated by Least Squares polyno-
mial preconditioning process and finally, damage the convergence. We will give an auto-tuning
scheme for this parameter later in Chapter 8.

To conclude on the effects of this parameter, it is necessary to select the best value with
considering the selection of the setting of Least Squares polynomial power d. The two parameters
seem particularly intricate together, and the choice of one will depend on the choice of the other.
In the practical implementation, this parameter d implies a series of SpMV and AXPY operations
in parallel. The larger d is, the more operations will be executed. Thus the more time will be
occupied with more global communications. The good selection of the parameters lsa and d

should make a balance between the reduction of iteration steps of GMRES components and
additional time caused by these SpMV and AXPY operations.
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Figure 5.16 – Evaluation of Least Squares polynomial frequency freq varying from 1 to 5, and
mg = 100, lsa = 10, d = 10.

Least Squares polynomial frequency: The Least Squares polynomial frequency freq

represents the number of restarts between which a GMRES preconditioning will take place
by the Least Squares polynomial to the temporary solution. Also, we noticed in the previous
experiments that after each preconditioning, a peak of the residual norm would be generated
before the acceleration. This size of this peak depends on the influence of several parameters, and
too large peak would damage the convergence. In order to characterize the latency parameter,
the Krylov subspace mg, lsa and d are respectively fixed as 100, 10, 10, and freq ranges from
1 to 5. The results are shown in Fig. 5.16. For the cases with freq being 1, 2 and 3, their
convergence performances are similar. If freq is too large, there will not enough Least Squares
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Figure 5.17 – Evaluation of eigenvalue number neigen, with and mg = 100, lsa = 10, d =
10, freq = 1.

polynomial preconditioning applied to UCGLE, and their convergence might be heavily slowed
down. Ultimately, the latency parameter must be chosen to allow sufficient consideration of the
preconditioning in the successive cycles at this stage while not being too important so that the
convergence can continue to benefit from its effect at a satisfactory pace. If the UCGLE with
larger freq can achieve a similar performance to the one with a smaller freq, the former is
preferred since it employs less SpMV operations for the iterations.

Number of eigenvalues: The parameter neigen means the number of eigenvalues used to
construct the polygon for the Least Squares preconditioning. We select to change the Krylov
subspace size of ERAM ma to control the number of eigenvalues applied to Least Squares
preconditioning. In the experiments, the Krylov subspacemg is fixed as 150. The parameters lsa,
d, and freq are respectively fixed as 10, 10 and 1. The numbers of eigenvalues approximated by
ERAM with different Krylov subspace sizes are respectively 12, 15, 32 and 49. The convergence
comparison is given in Fig. 5.17. We can conclude that with the augmentation of the number
of eigenvalues applied to the Least Squares polynomial, the convergence of UCGLE can be
accelerated, e.g., the test with 49 eigenvalues has more than 2× speedup compared with the
one with 12 eigenvalues. Another phenomenon we can find is that the restart residual norm will
be significantly decreased. The reason is that with the much larger number of eigenvalues, the
polygon constructed by them will be able to approximate the spectrum of operator matrix A
better. The solution of the minimum-maximum problem inside Least Squares preconditioning is
better, which results in the decrease of restart residual norm. The Krylov subspace size of ERAM
cannot be as large as we want since it is necessary for the ERAM Component to approximate
enough number of eigenvalues and send them to GMRES Component in time.
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Table 5.3 – Test matrices information

Matrix Name n nnz Matrix Type

MEG1 1.8× 107 2.9× 107 non-Symmetric
MEG2 1.8× 107 1.9× 108 non-Symmetric
MEG3 1.024× 107 7.27× 109 non-Hermitian
MEG4 5.1× 106 3.64× 109 non-Hermitian

5.5.3 Convergence Acceleration Evaluation

After the evaluation the effects of different parameters on the convergence of UCGLE, in this
section, we will compare the acceleration of UCGLE with conventional preconditioned GMRES.
We have selected four large-scale test matrices to evaluate the convergence speedup of UCGLE
method. The test matrices MEG1 and MEG2 are built by placing several copies of the same
small unsymmetrical matrix (utm300 ) onto the diagonal. For the generation of MEG1, several
parallel lines with different values can be added to the off-diagonal. For MEG2, the first block
column matrix as also filled by the small matrix utm300. The exact shapes ofMEG1 andMEG2
are given in Fig. 5.18. The test matrix MEG3 and the second matrix MEG4 are all generated
by SMG2S with the prescribed eigenvalues distributed randomly inside an annulus with the
different scales which is symmetric to the real axis in the complex plane. The information of the
fours tests matrices is given in Table 5.3.

The convergence of UCGLE is compared with:

(1) restarted GMRES without preconditioning;

(2) restarted GMRES with Jacobi preconditioner;

(3) restarted GMRES with SOR preconditioner.

We select the Jacobi and SOR preconditioners for the experimentations because they are
implemented in parallel by PETSc. The parallel implementation of ILU preconditioner in PETSc
is limited, which supports only the real scalar operations. The GMRES restarted parameter for
MEG1, MEG2, MEG3 and MEG4 are respectively 250, 280, 30 and 40.

Table 5.4 – Summary of iteration number for convergence of 4 test matrices using SOR, Jacobi,
non preconditioned GMRES,UCGLE_FT(G),UCGLE_FT(G) and UCGLE: red × in the table
presents this solving procedure cannot converge to accurate solution (here absolute residual
tolerance 1× 10−10 for GMRES convergence test) in acceptable iteration number (20000 here).

Matrix Name SOR Jacobi No preconditioner UCGLE_FT(G) UCGLE_FT(G) UCGLE

MEG1 1430 × 1924 995 1073 900
MEG2 2481 3579 3027 2048 2005 1646
MEG3 217 386 400 81 347 74
MEG4 750 × × 82 × 64

Fig 5.19, Fig 5.20, Fig 5.21 and Fig 5.22 present respectively the convergence experiments of
MEG1, MEG2, MEG3 and MEG4. The numbers of iteration step for convergence are given
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Matrix utm300 from Matrix Market

Figure 5.18 – Two strategies of large and sparse matrix generator by a original matrix utm300
of Matrix Market.

in Table 5.4. We find that UCGLE method has spectacular acceleration on the convergence
rate compared these conventional preconditioners. It has almost two times of acceleration for
MEG1, MEG2 and MEG3, and more than 10 times of acceleration for MEG4 than the con-
ventional preconditioner SOR. The SOR preconditioner is already much better than the Jacobi
preconditioner for the test matrices.
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Figure 5.19 – MEG1: convergence comparison of UCGLE method vs conventional GMRES

5.5.4 Fault Tolerance Evaluation

The fault tolerance of UCGLE is studied by the simulation of the loss of either GMRES or ERAM
Components. UCGLE_FT(G) in Fig. 5.19, Fig. 5.20, Fig. 5.21 and Fig. 5.22 represents the fault
tolerance simulation of GMRES, and UCGLE_FT(E) implies the fault tolerance simulation of
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Figure 5.20 – MEG2: convergence comparison of UCGLE method vs conventional GMRES
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Figure 5.21 – MEG3: convergence comparison of UCGLE method vs conventional GMRES
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Figure 5.22 – MEG4: convergence comparison of UCGLE method vs conventional GMRES

ERAM.

The failure of ERAM Component is simulated by fixing the execution loop number of ERAM
algorithm, in this case, ERAM exits after a fixed number of solving procedures. We mark the
ERAM fault points of the two test matrices in Fig. 5.19, Fig. 5.20, Fig. 5.21 and Fig. 5.22
respectively 500, 560, 60 and 30 iteration step for each case. The UCGLE_FT(E) curves of
the experimentations show that GMRES Component will continue to solve the systems with-
out Least Squares polynomial preconditioning acceleration. Table 5.4 shows that the iteration
number for convergence of UCGLE_FT(E) is greater than the normal UCGLE method but less
than the GMRES method without preconditioning.

The failure of GMRES Component is simulated by setting the allowed iteration number of
GMRES algorithm to be much smaller than the needed iteration number for convergence. The
values of these cases are respectively 600, 700, 70 and 48. They are also marked in Fig. 5.19, Fig.
5.20, Fig. 5.21 and Fig. 5.22. We can find that after the quitting of GMRES Component without
the finish of its task, ERAM computing units will automatically take over the jobs of GMRES
component. The new GMRES solving procedure will use the temporary solution xm as a new
restarted initial vector received asynchronously from the previous restart procedure of GMRES
Component before its failure. In this case, ERAM Component no longer exists. Thus the solving
task can be continued as the classic GMRES without Least Squares polynomial preconditioning.
In Fig. 5.19, Fig. 5.20, Fig. 5.21 and Fig. 5.22, we can find the difference between UCGLE_FT(E)
and UCGLE_FT(G). In UCGLE_FT(G), the new GMRES Component takes xm of previous
restart procedure. Thus it will repeat the iteration steps of previous restart iterations until
the failure of GMRES. Another fact of UCGLE_FT(G) which cannot be concluded, but can
be easily obtained, is that the solving time will be different if the computing unit numbers of
previous GMRES and ERAM Components are different.
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5.5.5 Impacts of Spectrum on Convergence

The Least Squares Polynomial uses the dominant eigenvalues to accelerate the convergence of
iterative methods. With the help of SMG2S, we could study the impacts of spectral distribution
on the convergence of UCGLE. In this section, we evaluate the acceleration of UCGLE with
eight types of spectra, they are generated by the functions listed in Table 5.5. The dimension
for all eight test matrices is fixed as 2000. The experimental results are given in Fig. 5.23 and
Fig. 5.24. For all the tests, the Krylov subspace size ma for ERAM Component is limited. Thus
the accuracy of approximated eigenvalues is also low. However, the speedup of Least Squares
polynomial preconditioning is still splendid. The purpose to limit ma is to make sure generate
enough eigenvalues for the first time restart of GMRES Component inside UCGLE. If this
subspace size is too large, or the conditions for the eigenvalues to be accepted are too strict,
there will be no acceleration by Least Squares polynomial preconditioning.

Table 5.5 – Spectrum generation functions: the size of all spectra is fixed as N = 2000, i ∈
0, 1, · · · , N − 1 is the indices for the eigenvalues.

No real part imaginary part

I 0.6 + (rand(0, 0.01) + 0.55) cos(2πi/N − π) (rand(0, 0.01) + 0.1) sin(2πi/N − π)

II 0.3 + (rand(0, 0.01) + 0.55) cos(2πi/N − π) (rand(0, 0.01) + 0.1) sin(2πi/N − π)

III −0.6 + (rand(0, 0.01) + 0.55) cos(2πi/N − π) (rand(0, 0.01) + 0.1) sin(2πi/N − π)

0.2 + (rand(0, 0.01) + 0.1) sin(4πi/N −π) ∀i < 1000
IV 0.6 + (rand(0, 0.01) + 0.55) cos(4πi/N − π)

−0.2−(rand(0, 0.01)+0.1) sin(4πi/N−π) ∀i ≥ 1000

V 0.006 + rand(0, 0.5) 0.0

VI −0.006 + rand(0, 0.5) 0.0

VII
60.0+(rand(0, 0.0001)+0.00012) cos(2πi/N−π) ∀i < 50 (rand(0, 0.0001) + 0.00012) sin(2πi/N − π) ∀i < 50

0.6 + (rand(0, 0.01) + 0.55) cos(2πi/N − π) ∀i ≥ 50 (rand(0, 0.01) + 0.1) sin(2πi/N − π) ∀i ≥ 50

−60.0−(rand(0, 0.0001)+0.00012) cos(2πi/N−π) ∀i < 50 (rand(0, 0.0001) + 0.00012) sin(2πi/N − π) ∀i < 50

VIII −0.6− (rand(0, 0.01) + 0.55) cos(2πi/N − π) ∀i ≥ 50 (rand(0, 0.01) + 0.1) sin(2πi/N − π) ∀i ≥ 50

The generated spectrum I is quasi-symmetric to the real axis, and all the real parts of
these eigenvalues are positive, shown as Fig. 5.23a. The Ritz values approximated by ERAM
are marked as the red cross in the figure. The parameters d and lsa for the Least Squares
polynomial preconditioning are all set to be 10. In the experiments, mg is the Krylov subspace
size of GMRES Component. For UCGLE with mg = 20, it has more than 3× speedup over
the conventional GMRES for the convergence. But for the case UCGLE with larger Krylov
subspace size mg = 80 in GMRES Component, it only has about 1.4× over the conventional
GMRES. In fact, for all the matrices with a spectral distribution similar to spectrum I, the Least
Squares polynomial preconditioning is always very effective, and it is better to benefit from this
preconditioning as soon as possible. Hence, GMRES Component with smallermg might converge
much more rapidly than the case with largermg, since it can profit the Least Squares polynomial
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preconditioning in time.
The spectrum II is also quasi-symmetric to the real axis, its shape is nearly an ellipse. The

real part of some eigenvalues in the spectrum is positive, and for the others, the real part is
negative, shown as Fig. 5.23b. In this case, UCGLE cannot achieve the convergence even with
much larger Krylov subspace size mg = 200. When the original point is inside the spectrum of
the operator matrix. As we presented in Chapter 3, the maximum-minimum problem of Least
Squares polynomial method cannot be solved. In the current implementation of Least Squares
polynomial preconditioning, for most cases with the origin point inside spectrum, UCGLE with
Least Squares polynomial preconditioning is not applicable.

The spectrum III in Fig. 5.23c is also quasi-symmetric to the real axis, and the real part
of all the eigenvalues are negative. The Ritz values approximated by ERAM Component are
also marked as the red cross in the figure. This case is similar to the one in Fig. 5.23a. The
acceleration of Least Squares polynomial preconditioning inside UCGLE is obvious, and this
kind of spectral distribution is suitable for the polynomial preconditioning.

The spectrum IV in Fig. 5.23d consists of two ellipses which are symmetric to the real axis,
and the real part of all eigenvalues are positive. The Ritz values approximated by ERAM are
marked as the red cross in the figure. We could conclude that UCGLE is suitable for this case
with almost 4× speedup compared the conventional GMRES.

The spectrum V in Fig. 5.24a is generated in random with all the eigenvalues located on the
real axis, the imaginary part of all eigenvalues is zero, and the real part is positive. The Ritz
values approximated by ERAM are complex, which are also marked by the red cross in this
figure. UCGLE has more than 6× speedup for this spectrum, compared with the conventional
GMRES.

The spectrum VI in Fig. 5.24b is also generated in random on the real axis using a different
shift value with the one in Fig. 5.24a. The imaginary part of all the eigenvalues is also zero.
However, the real part of a small number of eigenvalues are negative, and the real part of the
others are positive. Since the origin point is inside of the spectrum, the convergence both for
GMRES and UCGLE is hard to be obtained. However, UCGLE has still a little speedup over
the conventional GMRES. If we enlarge the degree of Least Squares polynomial from 10 to 25,
we can continue to have some acceleration.

The spectrum VII and VIII in Fig. 5.24c and Fig. 5.24d are also quasi-symmetric to the real
axis, and the real parts of the eigenvalues for the two spectra are respectively all positive and
negative. The two spectra are generated with a special manner which makes the eigenvalues
be grouped into two separate clustered set with a relative long distance in the real-imaginary
plane. With the change of Krylov subspace ma of ERAM, different numbers of eigenvalues can
be approximated. Three cases in the experiments are denoted as eigen1, eigen2 and eigen3,
which are marked with different colors in Fig. 5.24c and Fig. 5.24d. In the experiments, eigen1

and eigen2 are the Ritz values which approximate a few eigenvalues in both two clustered group.
However, eigen3 are only the Ritz values which approximate the eigenvalues in only one clustered
group (the right clustered group in Fig. 5.24c, and the left clustered group in Fig. 5.24d). eigen1

approximates more eigenvalues in the both two clustered group than eigen2. We could conclude
from Fig. 5.24c and Fig. 5.24d that UCGLE with eigen1 converge the most rapid, with about

134



5.5. Experiment and Evaluation

0 20 40 60 80 100 120 140 160 180 200

GMRES iteration steps

1e-10

1e-8

1e-6

1e-4

1e-2

1
R
es
id
u
a
l

GMRES(mg = 20)

GMRES(mg = 80)

UCGLE(mg = 20)

UCGLE(mg = 80)

0.0 0.5 1.0

Real Axis

−1.0

−0.5

0.0

0.5

1.0

Im
a
g
in
ar
y
A
xi
s

Given Eigenvalues

Approximated Eigenvalues

(a) Spectral Distribution I: matrix size = 2000, d = 10, lsa = 10, freq = 1.
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(b) Spectral Distribution II: matrix size = 2000, mg = 200, d = 10, lsa = 10, freq = 1.
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(c) Spectral Distribution III: matrix size = 2000, mg = 20, d = 10, lsa = 10, freq = 1.
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(d) Spectral Distribution IV: matrix size = 2000, mg = 20, d = 10, lsa = 10, freq = 1.

Figure 5.23 – Impacts of Spectrum on Convergence.
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(a) Spectral Distribution V: matrix size = 2000, mg = 10, d = 10, lsa = 10, freq = 1.
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(b) Spectral Distribution VI: matrix size = 2000, mg = 50, lsa = 10, freq = 1.
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(c) Spectral Distribution VII: matrix size = 2000, mg = 20, d = 10, lsa = 10, freq = 1.
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(d) Spectral Distribution VIII: matrix size = 2000, mg = 20, d = 10, lsa = 10, freq = 1.

Figure 5.24 – Impacts of Spectrum on Convergence.
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3× speedup than the conventional GMRES, eigen2 has almost 2× speedup, and eigen3 diverge
quickly in a few iteration steps. The reason is that eigen3 approximates only one clustered group,
and the polygon constructed by eigen3 cannot represent the real spectral distribution, which
makes the norm of residual vector generated by Least Squares polynomial explode in short time,
and it is impossible to achieve the convergence.

We can conclude that:

(1) If the real part of the eigenvalues of the operator matrix is all positive or negative, and
the spectrum is (quasi-)symmetric to the real axis, UCGLE can always accelerate the
convergence.

(2) If the real part for some eigenvalues of the operator matrix is positive and for some is
negative, the divergence of UCGLE can be easily achieved, UCGLE is not suitable for this
case; however, it might exist some particular matrices which can obtain the speedup of
UCGLE.

(3) For the matrices with a good spectral distribution as we talked in (1), the approximated
eigenvalues do not need to be too accurate to allow the speedup by UCGLE.

(4) The more eigenvalues approximated to construct the Least Squares polynomial, the more
acceleration UCGLE will achieve.

(5) For the eigenvalues distributed into the different clustered groups with their real part to be
all positive or all negative, much more Ritz values are required for constructing the Least
Squares polynomial preconditioning. At least, the Ritz values should be able to represent
the different clustered groups of eigenvalues. If the different groups of clustered eigenvalues
are very discrete, it is difficult for ERAM to approximate all of them with small Krylov
subspace size. Thus the implementation of UCGLE with multiple ERAM Components is
required. Each ERAM is executed with different shift value to approximate the different
parts of eigenvalues with thick restarting. The difficulties are:

(a) current implementation of manager engine does not allow adding more computational
components since it is implemented by statically dividing MPI_COMM_World into
four communicators;

(b) for the matrices of real applications, we cannot know the clustering situations of their
spectra. Thus the selection of shift value for different ERAM Components seems some-
how blind. It is necessary to have the mechanism which can predict the distribution
of clustered groups of eigenvalues with a relatively long distance.

(6) The implementation of Least Squares polynomial in UCGLE should be extended for the
eigenvalues with both positive and negative real parts. One possible solution is to imple-
ment two separate LSP components to construct two Least Squares polynomials by the
Ritz values with the positive and negative real part and exclude the origin point. Denote
the two residual polynomial to be Rd and R′d′ constructed by H1 and H2 in Fig. 5.25. Rd is
constructed with m dominant eigenvalues with positive real parts, and R′d′ is constructed
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with m′ eigenvalues with largest magnitude and negative real part. The restarted residual
vector generated by two Least Squares polynomials should be

r =
m∑
i=1

ρi(Rd(λi))lsaui+
n∑

i=m+1
ρi(Rd(λi))lsaui+

m′∑
j=1

ρj(R′d′(λj))lsauj+
n∑

j=m′+1
ρj(R′d′(λj))lsauj .

Figure 5.25 – Polygone region H with real part of eigenvalues positive and negative.

5.5.6 Scalability Evaluation

When solving large-scale linear systems on the modern supercomputing platforms, the main
concern of the conventional preconditioned Krylov methods is the cost of global communications
and synchronization overheads. We select the test matrix MEG1 for the scalability evaluation.
The average time cost per iteration of these methods is computed by a fixed number of iterations.
Time per iteration is suitable for demonstrating scaling behavior. The scaling performance of
UCGLE is evaluated both on Tianhe-2 and Romeo-2013.

For the evaluation of UCGLE on Romeo-2013 with CPUs, the core amount of GMRES
Component is set respectively to be 1, 2, 4, 8, 16, 32, 64, 128, 256, and both the core amount
of LSP Component and Manager Component is 1. ERAM Component should ensure to supply
the approximated eigenvalues in time for each time restart of GMRES Component. Thus the
core amount is respectively 1, 1, 1, 1, 4, 4, 4, 10, 16, referring to different GMRES Component
core number. For the evaluation with multi-GPU on Romeo-2013, both LSP Component and
Manager Component allocate only one core on CPU. The GPU amount of GMRES Component is
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Figure 5.26 – Scalability per iteration comparison of UCGLE with GMRES with or without
preconditioners on Tianhe-2 and Romeo-2013. A base 10 logarithmic scale is used for Y-axis of
(a); a base 2 logarithmic scale is used for Y-axis of (b).
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set respectively to be 2, 4, 8, 16, 32, 64, with the GPU amount of ERAM Component respectively
1, 1, 1, 4, 4, 4. The computing resource number of classic and preconditioned GMRES always
keeps the same with the core number of GMRES Component in UCGLE. Thus it ranges from
1 to 256 for CPU performance evaluation, and from 2 to 64 for GPU performance evaluation.

For the evaluation of UCGLE on Tianhe-2 with CPUs, the core number of GMRES Com-
ponent is set respectively to be 24, 48, 96, 192, 384, 768, and both the core number of LSP
Component and Manager Component is 1. Thus we select the core number is respectively 16,
32, 64, 128, 256, 512 referring to different GMRES Component core number. The GMRES core
number of conventional GMRES is equal to the one of GMRES Component in UCGLE.

In Fig. 5.26a and Fig. 5.26c, we can find that these methods have good scalability with the
augmentation of computing units except the SOR preconditioned GMRES. The classic GMRES
has the smallest time cost per iteration. The Jacobi preconditioner is the simplest precondi-
tioning form for GMRES, and its time cost per iteration is similar to the classic GMRES. The
GMRES with SOR preconditioner has the largest time cost per iteration since SOR precondi-
tioned GMRES has the additional matrix-vector and matrix-matrix multiplication operations
in each step of the iteration. These operations have global communication and synchronization
points. The communication overhead makes the SOR preconditioned GMRES more easily lose
its good scalability with the augmentation of computing unit number. There is not much differ-
ence between the time cost per iteration of classic GMRES and UCGLE with the help of the
asynchronous communication implementation of UCGLE method. Since the resolving part and
preconditioning part of UCGLE work independently, its global communication and synchronize
points is similar to the classic GMRES without preconditioning. That is the benefits UCGLE’s
asynchronous communication.

Since UCGLE requires additional computing units for the manager engine, LSP Component
and especially ERAM Component, it is necessary to compare UCGLE with other methods when
the total computing resource number of UCGLE and other methods keeps the same computing
resource number of UCGLE and other methods the same. Thus we have tested the classic
and conventional preconditioned GMRES on Romeo-2013 with the CPU core number fixed
respectively as 4, 5, 7, 11, 22, 38, 70, 140, 274 and the GPU number fixed respectively as 3,
5, 9, 20, 36, 68, referring to the previous scaling performance evaluation of UCGLE. In the
evaluation on the GPU cluster, the two CPUs for LSP Component and Manager Component
have been ignored because they have a minor influence. For the evaluation on Tianhe-2, the
computing unit number is fixed as 38, 74, 146, 290, 578, 1154. The performance comparison on
Tianhe-2 and Romeo-2013 are respectively given as Fig. 5.26b and Fig. 5.26d . We can find that
if the computing resource number is small, the time per iteration of classic and conventional
preconditioned GMRES is much better than UCGLE since the latter allocates extra computing
resources for other components. With the augmentation of computing resources, the scalability
of the SOR preconditioned GMRES trends to be bad, and the average time cost per iteration of
UCGLE method tends to be better than the SOR preconditioned GMRES with good scalability.
Although the scalability of classic and Jacobi is good, and their time per iteration is smaller than
UCGLE, but since UCGLE can accelerate the convergence of solving linear systems, thus better
performance can be expected. For test matrix MEG1 on Romeo-2013, UCGLE method has
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similar speedup on the solving time per iteration compared with the classic GMRES when the
computing resource number is larger than 22 for CPUs and larger than 5 for GPUs, but it can
decrease significantly more than 5× iteration step number for the convergence, thus about 5×
acceleration for the time of the whole resolution. In the end, the better performance of UCGLE
method compared with other methods can be concluded.

5.6 Conclusion

In this chapter, we have presented a distributed and parallel method UCGLE for solving large-
scale non-Hermitian linear systems. This method has been implemented with asynchronous com-
munication among different computational components. In the experimentation, we observed
that UCGLE method has following features: 1) it has significant acceleration for the conver-
gence than the conventional preconditioners as SOR and Jacobi; 2) the spectrum of different
linear systems has influence on its improvement of convergence rate; 3) it has better scalability
for the very large-scale linear systems; 4) it is able to speed up using GPUs; 5) it has the fault
tolerance mechanism facing the failure of different computational components. We conclude that
UCGLE method is a good candidate for emerging large-scale computational systems because
of its asynchronous communication scheme, its multi-level parallelism, its reusability and fault
tolerance, and its potential load balancing. The coarse grain parallelism among different com-
putational components and the medium/fine grain parallelism inside each component can be
flexibly mapped to large-scale distributed hierarchical platforms.
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Chapter 6
UCGLE to Solve Linear Systems in
Sequence with Different Right-hand Sides

Many problems in science and engineering often require to solve a long sequence of large-
scale non-Hermitian linear systems with different RHSs but a unique operator. Efficiently
solving such problems on extreme-scale platforms requires also the minimization of global
communications, reduction of synchronization points and promotion of asynchronous
communications. UCGLE method introduced in Chapter 5 is a suitable candidate with
the reduction of global communications and the synchronization points of all computing
units. In this chapter, we extend both the mathematical model and the implementation of
UCGLE method to adapt to solve sequences of linear systems. The eigenvalues obtained in
solving previous linear systems by UCGLE can be recycled, improved on the fly and applied
to construct a new initial guess vector for subsequent linear systems, which can achieve a
continuous acceleration to solve linear systems in sequence. Numerical experiments using
different test matrices to solve sequences of linear systems on supercomputer indicate a
substantial decrease in both computation time and iteration steps when the approximate
eigenvalues are recycled to generate the initial guess vectors.

6.1 Demand to Solve Linear Systems in Sequence

In this chapter, we consider to solve a long sequence of general linear systems

Ax(i) = b(i), i = 1, 2, · · · , p with p > 1 (6.1)

where A ∈ Cn×n is a fixed matrix, and the RHS b(i) ∈ Cn which changes from one system
to another. Moreover, these systems are typically not available simultaneously. Many scientific
applications require to solve this kind of sequent linear systems, such as the finite element analysis
in modeling fatigue [160, 106, 205], diffuse optical tomography [123, 14, 193], electromagnetic
[30, 174, 231] and wave-propagation for the earthquake simulation [97, 146, 56], etc. Generally,
these systems are formulated by the time-dependent applications, where the operator matrix
A keeps the same, but the RHS b(i) cannot be gotten in the same time. In many fields, the
next RHS of the linear system depends on the previous solution. Thus only one linear system
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is available at a time. Another type of applications to solve linear systems in sequence are the
Newton methods for solving nonlinear equations (e.g., [45, 125, 34, 92, 6]). If the direct solvers
are applicable, their decompositions can be shared and reused for the successive linear systems by
the forward/backward solves. When the matrix has a large dimension or special sparsity pattern,
and the direct solvers are not applicable, then the iterative methods based on Krylov subspace,
such as CG for symmetric systems, and GMRES for non-Hermitian systems, are considerable.
Obviously, this naive implementation is not efficient enough, since the sequence of linear systems
shares the same matrix A. The intermediate information computed from the previous system’s
solution can be reused to speed up the solution of the next systems.

6.2 Existing Methods

There are already several methods proposed to take advantage of this temporary information in
order to speed up the procedures to solve the sequences of linear systems.

6.2.1 Seed Methods

The first approach is to use the seed methods (e.g., [183, 168, 199, 105, 197, 1]). As an example of
seed GMRES method shown by Algorithm 24, the seed methods select one seed system and solve
it by the Krylov iterative method, and then a Galerkin projection of the other RHSs is performed
onto the Krylov subspace generated by the seed system. It is efficient since the Krylov subspace
generated by the previous time solving linear system develops a good approximation to the
eigenvectors of small eigenvalues of A, and the projection of the other RHSs over this subspace
can remove the components of their residual vectors in the directions these eigenvectors. The
seed methods require more memory space to store the subspace of seed systems. The speedup
cannot always be guaranteed for the uncorrelated RHSs. It can also be inefficient for the restarted
methods, in this case, even the convergence of solving the seed system maybe stagnate.

6.2.2 Krylov Subspace Recycling Methods

Another more general approach is to improve the convergence of solving a sequence of linear
systems by the process of Krylov Subspace Recycling (e.g. [169, 118, 123, 231]). For example, by
recycling the Krylov subspace generated by previous solution, the GCRO-DR method proposed
by Parks [169] allows to speed up the solution of systems from one RHS to another or even
between two times restart of iterative methods through the maintain of the Arnoldi subspace
orthogonalization and the deflation of smallest eigenvalues.

In this section, we choose GCRO-DR as an example to detail the idea of Krylov Subspace
Recycling methods to solve sequences of linear systems with continuous improvement. This
method is called GCRO-DR because it is a combination of GMRES-DR and GCRO [67]. The
pseudocode of GCRO-DR is given as Algorithm 25. When solving a single linear system, GCRO-
DR and GMRES-DR are algebraically equivalent. The primary advantage of GCRO-DR is its
capability for solving sequences of linear systems.

The Krylov Subspace Recycling methods are proposed for the solution of sequences of general
matrices, and do not assume that all matrices are pairwise close or that the sequence of matrices
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Algorithm 24 The seed-GMRES algorithm
1: Choose nmax, the maximum size of the subspace. For each RHS b(i), choose an initial guess
x

(i)
0 and compute r(i)

0 = b(i) −Ax(i)
0 . The recast problem is the error system A(x(i) − x(i)

0 ) =
r

(i)
0 , choose a RHS k, the first on which a cycle of GMRES is applied. Set Zp = (z1, · · · , zp),
p vectors of size m, to zero.

2: run one cycle of GMRES(nmax) on r
(k)
0 , either it converges in n = n1 step or stops after

n = nmax steps. This GMRES provides us with Vn+1, that has orthonormal columns, and
Hn+1,n such that AVn = Vn+1Hn+1,n. The approximate solution for the k-th system writes
xn = x

(k)
0 + MVny

(k)
n but is not computed as such. The vector zk is updated via zk =

zk + Vny
(k)
n and the residual can be formatted via x(k) = x

(k)
0 +Mzk. If all the systems have

converged, stop.
3: For each RHS i 6= k that has not converged, form c(i) = V T

n+1r
(i)
0 and compute y(i)

n the
solution of the Least Squares problems ||Hn+1,ny− c(i)||2. Compute zi = zi +Vny

(i)
n and the

residual r(i)
n = (Im − Vn+1V

T
n+1)r(i)

0 + Vn+1(c(i) −Hn+1,ny
(i)
n ). If the system has i converged,

form the approximate solution x(i) = x
(i)
0 +Mzi. If all the systems have converged, stop.

4: For each RHS i that has not converged, set r(i)
0 = r

(i)
n . Choose a vector to run a cycle of

GMRES. Traditionaly we take the first i in the list k, k + 1, · · · p, so that the system i has
not converged and go to step 2.

converges to a particular matrix. The recycling techniques are effective under these assumptions
that:

(1) the method must be able to identify and converge to an effective subspace for recycling
(the recycle space) in a reasonable number of iterations, it must be able to converge to
an effective recycle space over the solution of multiple linear systems. Otherwise, a good
recycle space may never be found for a sequence of changing matrices;

(2) a significant convergence improvement for the linear solver should be obtained with a
relatively small recycle space;

(3) the method must be able to converge quickly to an effective perturbed recycle space for
an updated matrix, and it must provide an inexpensive mechanism for regularly updating
the recycle space to reflect the changes in the linear systems.

The workflow of GCR-DO (shown as 6.1) for solving sequences of linear systems by recycling
the Krylov subspaces is:

(1) Perform m steps of Arnoldi reduction in parallel, and generate the subspace Vm+1 and
Hessenberg matrix Hm;

(2) Solve the Least Squares problem ||c−Hmy||2 in sequence;

(3) solve the eigenvalue problem (Hm + h2
m+1,mH

−H
m eme

H
m)zλ = θλzλ in sequence;

(4) perform the reduced QR factorization in sequence;

(5) compute Uk, Vm+1, Wm+1 and Gm in parallel;
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(6) solve the Least Squares problem ||WH
m+1ri−1 −Gmy||2 and perform the reduced factoriza-

tion in sequence;

(7) for the next iteration until the convergence;

(8) for the subsequent systems, the first step is recycling the matrices Ck and Uk in parallel,
and then perform the iterations until the convergence.

Load 
𝐴,𝑥,𝑏(&)

𝑖 = 1?

m steps Arnoldi 
Iteration in Parallel

Solve Least Square 
Problem # 1 in Serial

Solve an Eigenvalue 
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Solve Reduced QR 
Factorization in Parallel

Converge ?

Find 𝐶 and 
𝑈	in Parallel

𝑚−𝑘 steps 
Arnoldi Iteration 

in Parallel

Compute 𝑈,	𝑉
and	W in Parallel

Solve Least Square 
Problem # 1 in Serial

Solve Reduced QR 
Factorization in Parallel

Save Recycle 
Information

YesNo

Yes

No

Figure 6.1 – GCR-DO workflow.

GCR-DO is a useful iterative methods to solve sequences of linear systems with acceleration
by recycling the Krylov subspace. The only limitation of the different synchronization points
introduced by the procedure of recycling. For the implementation of iterative methods on large-
scale platforms, these synchronization points should be avoided.

GCR-DO is able to converted into distributed and parallel scheme based on the Unite and
Conquer approach. But in this chapter, we prefer to extend our UCGLE with special strategy
to solve long sequences of linear systems by recycling of approximated Ritz values.

6.3 UCGLE to Solve Linear Systems in Sequence by Recycling
Eigenvalues

In this section, we introduce the extension of UCGLE to solve sequences of non-Hermitian linear
systems for modern computer architectures. Inside of UCGLE, the dominant eigenvalues are used
to accelerate the convergence of iterative methods. The more the eigenvalues are calculated, the
more accurate these values are, the more significant the acceleration will be. When using UCGLE
to solve sequences of linear systems, the eigenvalues computed during the solving procedures of
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Algorithm 25 GCRO-DR algorithm [169]
1: Choose m, the maximum size of the subspace, and k, the desired number of approximate

eigenvectors. Let tol be tge convergence tolerance. Choose an initial guess x0.
2: r0 = b−Ax0
3: set i = 1
4: if Uk is defined from solving previous systems then
5: if Ai 6= Ai−1 then
6: [Q,R] = distributed qr(AiUk)
7: Ck = Q
8: Uk = UkR

−1

9: end if
10: x1 = x0 + UkC

H
k r0

11: r1 = r0 − CkCHk r0
12: else
13: v1 = r0/||r0||2
14: c = ||r0||2e1
15: m steps of GMRES, solving min ||c−Hmy||2 for y and generating Vm+1 and Hm.
16: x1 = x0 + Vmy
17: r1 = Vm+1(c−Hmy)
18: solve (Hm + h2

m+1,mH
−H
m eme

H
m)zλ = θλzλ

19: store the k eigenvectors zλ associated to the smallest eigenvalues in magnitude in Pk
20: [Q,R] = qr(HmPk)
21: Ck = Vm+1Q
22: Uk = VmPkR

−1

23: end if
24: while not converge do
25: i+ = 1
26: Perform m-k steps of GMRES with (I−CkCHk )Ai, , thus generatingVm+1−k, Hm−k and

Bm−k and letting vi = ri−1/||ri−1||2.
27: let Dk be a diagonal scaling matrix such that Uk = UkDk with the columns having unit

norm.
28: Vm = [Uk Vm−k].
29: Wm+1 = [Ck Vm−k+1].

30: Gm =
[
Dk Bm−k

0 Hm−k

]
31: find y such that min ||WH

m+1ri−1 −Gmy||2
32: xi = xi−1 + Vmy
33: ri = ri−1 −Wm+1Gmy
34: Rj = Bi −AiXj

35: if Ai 6= Ai−1 then
36: Compute the k eigenvectors zi ofGHmGmzi = θiG

H
mW

H
m+1Vmzi associated with smallest

magnitude eigenvalues θi and store in Pk
37: Ym = VmPk
38: [Q,R] = qr(GmPk)
39: Ck = Wm+1Q
40: Uk = YkR

−1

41: end if
42: end while
43: let Yk = Uk for the next system.
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previous linear systems can be reused, and sometimes improved, to solve the following different
linear systems in sequence. Theoretically, the continuous amelioration of convergence for the rest
of the linear systems can be achieved. Moreover, the eigenvalues computed from the procedure
of solving previous linear systems can be used to construct an approximate solution for the
subsequent linear systems by Least Squares polynomial method and serve as an initial guess
vector to speedup up the solving procedure of next system.

6.3.1 Relation between Least Squares Polynomial Residual and Eigenvalues

In Section 5.4, we have already analyzed the relation between Least Squares polynomial residual
and the computed eigenvalues λ1, · · · , λm to construct the convex hull. The residual given by
Least Squares polynomial of degree d is

rd =
m∑
i=1

ρi(Rd(λi))lsaui +
n∑

i=m+1
ρi(Rd(λi))lsaui, (6.2)

this residual can be divided into two parts. The first part is formulated with the first known
m eigenvalues which are used to compute the convex hull by LSP Component. The second part
represents the residual with unknown eigenpairs. In this chapter, we present this relation one
more time in detail in order to illustrate the methology to solve sequences of linear systems by
recycling of dominant eigenvalues.

In practice, for each time preconditioning by Least Squares polynomial method, it is often
repeated for several times to improve its acceleration of convergence, that is the meaning of
parameter lsa in Equation (6.2). The Least Squares polynomial preconditioning applies rd as
a restarted vector for each time GMRES restart process. Fig. 5.14 in Section 5.5 gives the
comparison between classic GMRES and UCGLE with different values for the parameter lsa. As
shown in this figure, the first part in Equation (6.2) is small since the Least Squares polynomial
method finds Rd minimizing |Rd(λ)| in the convex hull, but not with the second part, where
the residual will be rich in the eigenvectors associated with the eigenvalues outside Hm. As
the number of approximated eigenvalues m increasing, the first part will be much closer to
zero, but the second part keeps still large. This results in an enormous increase of restarted
GMRES preconditioned vector norm. Meanwhile, when GMRES restarts with the combination
of a number of eigenvectors, the convergence will be faster even if the residual is enormous, and
the convergence of GMRES can still be significantly accelerated. The peaks are shown in Fig.
5.14 for each time restart of UCGLE represent these enormous residuals. The lsa times repeat
of rd before applying to next time restart can still enlarge its norm, and the selection of lsa is
important for the acceleration. In the example of Fig. 5.14, we conclude that if lsa is too large,
the norm trends enormous, which slows down the speedup, if lsa is small, the acceleration may
not be evident.

6.3.2 Eigenvalues Recycling to Solve Sequence of Linear Systems

After the analysis of relation between Least Squares polynomial residual and the approximated
eigenvalues, it is apparent that these dominant eigenvalues used by LSP Component to acceler-
ate the convergence, can be recycled and improved from the procedure of solving system with
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one RHS to another, which will introduce a potential continuous improvement for solving a long
sequence of linear systems. Eigenvalues recycling technique proposed in this section is applica-
ble for the series of linear systems with their operator matrices shared a portion of dominant
eigenvalues. However, in this chapter, we only consider the case that A do not change.

In order to solve the sequence of linear systems Ax = b(t) with t ∈ 1, 2, 3, · · · . We enlarge the
Krylov subspace size ma inside ERAM Component to approximate more eigenvalues. Suppose
that m(1)

a for the first system, the exact implementation of ERAM Component for t ∈ 2, 3, · · ·
is shown in Equation (6.3), m(t)

a is equal to the sum of m(t−1)
a and a given constant a. And k(t),

the number of eigenvalues computed by ERAM Component for Ax = b(t) can be described by a
function f which maps the relation between m(t)

a and k(t). Obviously, k(t) ≥ k(t−1). The residual
r

(t)
d for each restart of Ax = b(t) with t ∈ 2, 3, · · · is also given in (6.3).



m(t)
a = (ma)(t−1) + a

k(t) = f(m(t))

r
(t)
d =

k(t)∑
i=1

(Rd(λi))lsaρiui +
n∑

i=k(t)+1

(Rd(λi))lsaρiuis

(6.3)

With the enlargement of Krylov subspace size inside ERAM Component, the more eigen-
values are calculated, then the first part of r(t)

d in Equation (6.3) are more important, and the
more significant the acceleration will be. The continuous amelioration of convergence for solving
linear systems in sequence can be gotten. With the changing of ERAM component Krylov sub-
space size, it may not be guaranteed to get the demanded eigenvalues in time for each restart
of GMRES component if this size is too large compared with GMRES Component Krylov sub-
space size. In order to improve the robustness of UCGLE, the previously calculated eigenvalues
are kept in memory and updated if there come the new ones. These values in memory can
be utilized in case that the failure of ERAM component when the parameters are too strict.
In Equation (6.3), we did not define the upper limit for m(t)

a , which depends on properties of
operator matrices and Pg and Pa for GMRES and ERAM components.

For t ∈ 2, 3, · · · , since the eigenvalues calculated when solving Ax = b(t−1) are kept in
memory, they can be used to construct an approximative solution for the current linear system
Ax = b(t) through the Least Squares polynomial method before its solve by GMRES. This
approximative solution can be used as a non-zero initial guess vector x(t)

0 to solve Ax = b(t).
It will introduce an acceleration on the convergence for solving the linear systems in sequence.
With the number of linear systems to be solved increasing, there will be more eigenvalues
approximated, the initial guess vector constructed by LSP component will be more accurate,
and thus the speedup for solves from one to another can be still gotten. The impact of the initial
guess vector on the convergence is different from the restarted residual vector inside the iterative
method. We propose a new parameter (lsa′)(t) for the initial guess generation procedure which
is different from the lsa in Least Squares polynomial preconditioning part. The residual vector
g

(t)
d for Ax = b(t) with t ∈ 2, 3, · · · is given in Equation (6.4), which is constructed by the k(t−1)

number of eigenvalues calculated when solving Ax = b(t).
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g
(t)
d =

k(t−1)∑
i=1

(Rd(λi))(lsa′)(t−1)
ρiui +

n∑
i=k(t−1)+1

(Rd(λi))(lsa′)(t−1)
ρiui. (6.4)

In this section, two parameters are added in order to solve linear systems in sequence using
UCGLE. They are listed as below:

1. m(t)
a : ERAM Krylov subspace size for solving Ax = b(t)

2. (lsa′)(t): times that Least Squares polynomial applied for the generation of initial guess
vector for solving Ax = b(t)

It is predictable that this speedup for solving successive systems will stagnate after the
optimized values of ma and (lsa′)(t) are found. It is useless to use the ERAM Component
to approximate the eigenvalues continuously. Thus Pa computing units allocated for ERAM
Component can be redistributed to GMRES Component. It is expected to get an extra speedup
on the performance with more computing resources.

Load 
𝐴,𝑥,𝑏(&)

𝑖 = 1?
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Problem # 1 in SerialConverge ?

Generate LS 
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in serial

m steps Arnoldi 
Iteration in Parallel

Figure 6.2 – Workflow of UCGLE to solve linear systems in sequence by recycling of eigenvalues.

6.3.3 Workflow to Recycle Eigenvalues

The Algorithm 26 and Fig. 6.2 give the procedure of UCGLE for solving a sequence of linear
systems Ax = b(t) with t ∈ 1, 2, 3, · · · . Initially, Pg and Pa are respectively set to be procg and
proca. If t = 1, UCGLE loads normally the three computational components with the ERAM
component’s Krylov subspace to be m(1)

a , and the initial guess vector for GMRES component
to be zero. For solving the successive linear systems, before the update of three components, a
INITIAL_GUESS function is performed which is the same as the LSP component but with
different parameter (lsa′)(t). The INITIAL_GUESS function will generate an initial guess
vector gd(t). Inside the GMRES component, the initial guess vector is updated by gd(t) before the
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Algorithm 26 UCGLE for sequences of linear systems
1: for (t ∈ (1, 2, 3, · · · )) do
2: if (t = 1) then
3: set Pg = procg and Pa = proca
4: LOADERAM(input : A,ma, v, r, εa)
5: LOADLS(input : A, b, d)
6: LOADGMRES(input : A,mg, x0, b

(1), εg, freq, l, output : xm)
7: else
8: set Pg = procg and Pa = proca

9: INITIAL_GUESS(input : A, b(t), d, output : g(t)
d )

10: update LOADGMRES(input : A,mg, g
(t)
d , b(t), εg, freq, l, output : xm)

11: update m(t−1)
a by m(t)

a in LOADERAM(input : A,m(t)
a , v, r, εa)

12: update LOADLS(input : A, b(i), d)
13: if (optmized m(op)

a and (lsa′)(op) found) then
14: save the eigenvalues to eigenvalues.bin
15: set Pg = procg + proca − 1 and Pa = 1
16: INITIAL_GUESS(input : A, b(t), d, output : g(t)

d ) by loading eigenvalues.bin
17: LOADGMRES(input : A,mg, gd

(t), b(t), εg, freq, (lsa′)(op), output : xm)
18: replace LOADERAM by a simple useless function
19: LOADLS(input : A, b(i), d) by loading eigenvalues.bin
20: end if
21: end if
22: end for

start of solving procedure. Moreover, the Krylov subspace Size of ERAM Component is replaced
by (ma)(t). When the optimized values of (ma)(op) and (lsa′)(op) are found, the eigenvalues are
kept into a local file eigenvalue.bin. The Pg and Pa are respectively updated as procg+proca−1
and 1. The INITIAL_GUESS function executes by loading eigenvalue.bin. LOADGMRES

is restarted with the redeployment of its data onto procg + proca − 1 computing units. LSP
Component also executes with eigenvalue.bin. The retainment of 1 computing unit for ERAM
Component aims to ensure the distributed and parallel implementation of UCGLE with high
fault tolerance. However, the inside kernel of ERAM Component is replaced by a simple function
with keeping the data sending and receiving functionalities.

6.4 Experiments

In this section, we evaluate the UCGLE for solving the sequences of linear systems on the
supercomputer using different test matrices generated by SMG2S. UCGLE with or without
initial guess vector generation is compared with conventional restarted GMRES with or without
available preconditioners (Jacobi and SOR) in our implementations. The parallel performance
on different homogeneous and heterogeneous platforms is presented in Chapter 5. Thus this
chapter concentrates on the numerical performance of UCGLE for solving non-Hermitian linear
systems in sequence, and the parallel performance comparison will not be discussed. It is fair
to prove the benefits of Unite and Conquer approach by comparing it with the implementations
of classic solvers based on the same basic operations (distribution of matrix across the cores,
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Table 6.1 – Mat1: iterative step comparison for solving a sequence of linear systems.

Method 1 2 3 4 5 6 7 8 9

GMRES 509 505 501 505 527 510 523 516 518

GMRES+SOR 169 165 172 130 172 173 130 170 130

GMRES+Jacobi 274 273 270 276 269 274 280 276 273

UCGLE w/o initial guess 120 90 90 90 90 90 90 90 90

UCGLE with initial guess 120 36 35 35 36 36 36 33 35

parallel sparse matrix-vector operation, the orthogonalization in Arnoldi reduction, etc.) without
specific optimization for different platforms. If we optimize the parallel implementation of classic
solvers and also the components (especially GMRES Component) in UCGLE at the same time,
the benefits of UCGLE by reducing the global communications and promoting the asynchronous
communications are still there.

6.4.1 Hardware

UCGLE is implemented on the supercomputer Tianhe-2. The details of this machine is already
given in Section 4.6.1.

6.4.2 Results

We evaluate UCGLE for solving sequences of linear systems using three test matrices of size
1.572 × 107 generated by SMG2S with different given spectra. They are respectively denoted
as Mat1, Mat2 and Mat3. The different RHSs of these sequent linear systems are generated
at random. The parameter lsa for all tests using UCGLE keeps the same as 10. The numbers
of CPUs for GMRES and ERAM Components in UCGLE are respectively 768 and 384. Five
methods are compared in the experiments, and their notations are given below:

• GMRES: classic restarted GMRES;

• GMRES+SOR or SOR: GMRES with SOR preconditioner;

• GMRES+Jacobi or Jacobi: GMRES with Jacobi preconditioner;

• UCGLE without (w/o) initial guess: UCGLE without using previously obtained eigenval-
ues to generate an initial guess vector for the next system by Least Squares polynomial
method;

• UCGLE with initial guess: UCGLE using previously obtained eigenvalues to generate an
initial guess vector for the next system by Least Squares polynomial method.

ERAM and LSP components in UCGLE demand additional computing units. It is unfair to
test only the conventional methods of their numbers of CPUs equal to the number of GMRES
components in UCGLE. Therefore, experiments have also been tested that the numbers of
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Figure 6.3 – Mat1: time comparison for solving a sequence of linear systems. (a) shows the
solution time for 9 sequent linear systems; (b) shows the cases extracted from (a) after obtaining
the optimal parameters in UCGLE.

computing units of the classical iterative method are equal to the total CPU in UCGLE (hence,
the CPUs for GMRES and ERAM components are included). In the captions of figures, a given
method "with total CPUs" means that its number of CPUs equals the total CPU in UCGLE. The
time comparisons for solving nine sequent linear systems of Mat1, Mat2 and Mat3 are given
respectively in Fig. 6.3a, Fig. 6.4a and Fig. 6.5a, the comparison of the number of iteration
for convergence are respectively given in Table 6.1, Table 6.2 and Table 6.3. From these three
tables, we conclude that UCGLE can speed up the convergence to solve linear systems with test
matrices comparing with the conventional methods. The generation of initial vectors using the
eigenvalues for subsequent linear systems can still speed up the convergence over the UCGLE
without initial guess.

For the tests of Mat1, the GMRES restart size is 30, the Krylov subspace of ERAM Com-
ponent for solving the first three linear systems are respectively 10, 20 and 30, the size of this
subspace of ERAM for the remaining systems keeps being 30. For the tests ofMat2, the GMRES
restart size is 300, the Krylov subspace of ERAM Component for solving the first three linear
systems are respectively 100, 150 and 200, the size of this subspace of ERAM for the remaining
systems keeps being 200. For the cases that UCGLE with initial guess, the parameter (lsa′)(t)

for Mat1 and Mat2 keeps 30. With the augmentation of the size of ERAM Krylov subspace,
there will be more eigenvalues to be approximated, and we find that there is acceleration with
the accumulation of more eigenvalues for both the case UCGLE with and without initial guess.
The influence of subspace of ERAM can be found through the curves of UCGLE with/without
initial guess in Fig. 6.3a and Fig. 6.4a. However, it is not practical to enlarge too much the
Krylov subspace of ERAM to approximated more eigenvalues, since if it is too large, it takes too
much time by ERAM, LSP Component cannot receive the eigenvalues in time, thus it will be
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difficult for the GMRES Component to perform the Least Squares polynomial preconditioning
for its each time restart.
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Figure 6.4 – Mat2: time comparison for solving a sequence of linear systems. (a) shows the
solution time for 9 sequent linear systems; (b) shows the cases extracted from (a) after obtaining
the optimal parameters in UCGLE.

For the tests of Mat3, the GMRES restart size is 150, and the Krylov subspace size of
ERAM Components keeps the same to be 200. Meanwhile, for the 2nd, 3rd and 4th linear
systems, the parameter (lsa′)(t) of initial guess are respectively 20, 30 and 40, for the remaining
linear systems, this parameter keeps 40. For solving the linear systems by UCGLE with initial
guess, we can find that with the augmentation of (lsa′)(t), the iteration numbers for the first
four linear systems decrease quickly from 360 to 283 with approximately 1.3× speedup. For
Mat3, SOR preconditioned GMRES is already good, but UCGLE with initial guess has still
about 2.2× speedup of convergence. Even in the case that the computing unit number of SOR
preconditioned GMRES equals the total number of UCGLE, UCGLE with initial guess can
achieve 2.2× speedup of execution time. With the augmentation of the parameter (lsa′)(t), there
will be a strong impact on the convergence. Since the Mat3 is generated with the clustered
eigenvalues which are randomly distributed inside a fixed region of the real-imaginary plain, if
(lsa′)(t) is larger, it can be seen as there are much more eigenvalues generated, even they are
not very accurate compared with the real ones. The inaccuracy of eigenvalues can result in the
enlargement the norm in Equation (6.3), but it can still very quickly converge. It is effective to
generate an initial guess vector with very large (lsa′)(t), but not the same case for the parameter
lsa inside each preconditioning, since too many times of repeats for each time restart will amplify
quickly this inaccuracy of norm, and it is easy to result in the difficulties for convergence.

In order to use UCGLE for solving a large number of linear systems in sequence, it is
necessary to choose the suitable parameters by the evaluation of a small number of sequent
linear systems. After the selection of parameters, we compare the best cases of each method
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Table 6.2 – Mat2: iterative step comparison for solving a sequence of linear systems.

Method 1 2 3 4 5 6 7 8 9

GMRES 1316 1277 1460 1278 1409 1325 1472 1369 1342

GMRES+SOR 1197 1219 1336 1173 1290 1194 1335 1289 1213

GMRES+Jacobi 1278 1185 1283 1220 1191 1184 1218 1159 1239

UCGLE w/o initial guess 666 671 831 689 701 685 837 736 714

UCGLE with initial guess 666 595 470 491 544 464 485 532 440
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Figure 6.5 – Mat3: time comparison for solving a sequence of linear systems. (a) shows the
solution time for 9 sequent linear systems; (b) shows the cases extracted from (a) after obtaining
the optimal parameters in UCGLE.

with the least time-consumption. The results for three test matrices are shown in Fig. 6.3b,
Fig. 6.5b and Fig. 6.4b. Except UCGLE with initial guess, the best methods for three tests are
respectively GMRES+SOR, GMRES+Jacobi and GMRES+Jacobi. By comparing them with
the tests of UCGLE with initial guess, we conclude that for Mat1, UCGLE with initial guess
has about 4.4× for the acceleration of convergence and 1.7× for the speedup of execution time.
For Mat2, it has about 2.6× acceleration for the convergence and 4.3× for the speedup of time.
For Mat3, it has about 3.2× acceleration for the convergence and 2.7× for the speedup of time.

6.4.3 Analysis

In conclusion, UCGLE, especially it with the recycling eigenvalues to generate initial guess
vector using the eigenvalues, can significantly accelerate the convergence and reduce the time
consumption for solving a sequence of linear systems. However, the time employed by the Least
Squares polynomial iterative recurrence, especially a small number of SpMV operations inside
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Table 6.3 – Mat3: iterative step comparison for solving a sequence of linear systems.

Method 1 2 3 4 5 6 7 8 9

GMRES 914 912 892 885 895 905 911 892 904

GMRES+SOR 895 871 856 885 879 870 868 838 868

GMRES+Jacobi 894 888 875 864 876 887 892 888 872

UCGLE w/o initial guess 673 364 355 360 367 363 363 351 364

UCGLE with initial guess 673 396 291 283 339 338 274 279 267

makes the time speedup not consistent with the convergence speedup. For example, in Table
6.3, UCGLE with initial guess has almost 3.0× acceleration on the convergence over the classic
GMRES for solving the 3rd linear system. However, it has only about 2.0× acceleration on the
performance in the case that the classic GMRES and GMRES Component inside UCGLE have
the same number of computing units. It is caused by the recurrence of Least Squares polynomial
iterations to perform the preconditioning on GMRES Component after receiving the parameters
from LSP Component. Nevertheless, UCGLE is more efficient to solve the sequences of linear
systems, and with its distributed and parallel communication framework, it is a good candidate
for solving non-Hermitian linear systems in sequence on much larger machines.

6.5 Conclusion

In this chapter, we proposed an extended version of the distributed parallel method UCGLE,
which is used to solve a large number of linear systems with unique matrix and different RHSs
on a large platform. UCGLE method was proposed to solve large-scale linear systems on modern
computing platforms, which is able to minimize the global communication, cover the synchro-
nization points in the parallel implementation, improve the fault tolerance and reusability and
speed up the convergence. In this chapter, it is proved this developed variant of UCGLE method
can solve the linear systems with special spectral distribution in sequence more effectively than
several preconditioned iterative methods. The recycling of a small group of dominant eigenval-
ues and generating initial guess vector using them by Least Squares polynomial method has a
significant impact on the performance improvement for solving linear systems in sequence.
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Chapter 7
UCGLE to Solve Linear Systems
Simultaneously with Multiple Right-hand
Sides

Many problems in science and engineering often require to solve simultaneously large-
scale non-Hermitian sparse linear systems with multiple RHSs. Efficiently solving such
problems on extreme-scale platforms also requires the minimization of global communi-
cations, reduction of synchronization points and promotion of asynchronous communi-
cations. In this chapter, we develop another extension of UCGLE method by combining
it with block GMRES method to solve non-Hermitian linear systems with multiple RHSs,
using novel designed manager engine implementation. This engine is capable of allo-
cating multiple block GMRES at the same time, each block GMRES solving the linear
systems with a subset of RHSs and accelerating the convergence using the eigenvalues
approximated by other eigensolvers. Dividing the entire linear system with multiple RHSs
into subsets and solving them simultaneously with different allocated linear solvers allow
localizing calculations, reducing global communication, and improving parallel perfor-
mance. Meanwhile, the asynchronous preconditioning using eigenvalues can speed up
the convergence and improve the fault tolerance and reusability. Numerical experiments
using different test matrices on supercomputer Romeo-2018 indicate that the proposed
method achieves a substantial decrease in both computation time and iterative steps
with good scaling performance.

7.1 Demand to Solve Linear Systems with Multiple RHSs

In this chapter, we consider solving the system

AX = B, (7.1)

where A ∈ Cn×n is a large, sparse and non-Hermitian matrix of order n, X = [x(1), · · · , x(s)] ∈
Cn×s and B = [b(1), · · · , b(s)] ∈ Cn×s are rectangular matrices of dimension n × s with s ≤ n.
In this chapter, the rectangular matrices such as B is also called block vector, which can be
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seen as the combination of s vectors bi, with i ∈ 1, 2, · · · , s. This kind of linear systems with
multiple RHSs arise from a variety of applications in different scientific and engineering fields,
such as the QCD [191, 157, 91], the wave scattering and propagation simulation [141], dynamics
of structures [28, 90, 162], etc. The block Krylov methods are good candidates if we want to
solve these large linear systems at the same time, because the block methods can expand the
search space associated with each RHS and may accelerate the convergence. Another feature of
block Krylov methods is that they can be implemented using the subroutines of BLAS3, which
improves the locality and reusability of data and reduces the memory requirement on modern
computer architectures [4]. The block Krylov methods replace the SpMV in each iterative step
of the conventional Krylov methods with the SpGEMM.

7.2 Block GMRES Method

This section details block Krylov subspace and block GMRES to solve linear systems with
multiple RHSs.

7.2.1 Block Krylov Subspace

In linear algebra, the m-order block Krylov subspaces K�
m×s [107] generated by an operator

matrix A ∈ Cn×n and a vector B ∈ Cn×s is

K�
m×s(A,B) = Block span{B,AB, · · · , Am−1B} ∈ Cn×s. (7.2)

A block Krylov subspace method for solving the linear systems (7.1) is an iterative method
that generates an approximate solution Xn such that

Xn −X0 ∈ K�
m×s(A,R0), (7.3)

where R0 = B − AX0 is the block vector of initial guess residual. For each RHS b(i) with
i ∈ 1, 2, · · · , s, its Krylov subspace generated by the block operation of A and R0 can be defined
as

Km×s(A,R0) = Km(A, r(1)
0 ) + · · ·+Km(A, r(s)

0 )

= Span{r(1)
0 , · · · , r(s)

0 , Ar
(1)
0 , · · · , Ar(s)

0 , · · · , Am−1r
(1)
0 , · · · , Am−1r

(s)
0 }.

(7.4)

Thus K�
m×s(A,R0) is just the Cartesian product of s copies of Km×s

K�
m×s = ×

s times
Km×s. (7.5)

Thus x(i)
0 +Km×s is the affine space where the approximation solution x(i)

n of the solution of
the i-th systems Ax(i) = b(i) is constructed from

x(i)
m ∈ x

(i)
0 +Km×s. (7.6)
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Clearly, if all the ms vectors Akb(i) ∈ Cn are linearly independent,

dim Km×s = ms. (7.7)

But this may not always be true, especially for different b(i) that are correlated. However
even for the case that dim Km×s < ms, the searching space for each RHS b(i) can be enlarged,
and a potential acceleration might be achieved. More exactly: block methods are most effective
if

dim Km×s(A,R0)�
s∑

k=1
dim Km(A, r(k)

0 ). (7.8)

7.2.2 Block Arnoldi Reduction

In this section, we introduce the block version of Arnoldi reduction. Firstly, we define block-
orthogonal and block-normalized. Denote the zero and unit matrix in Cs×s by o and ι. The block
vectors X and Y ∈ Cn×s is block-orthogonal if X ∗ Y = o, and we call X block-normalized if
X ∗ X = ι. A set of block vectors {Xn} is block orthonormal if these block vectors are block-
normalized and mutually block-orthogonal. So, a set of block-orthonormal block vectors has the
property that all the columns in this set are normalized vectors that are orthogonal to each
other (even if they belong to the same block).

For matrix A ∈ Cn×n and V ∈ Cn×s, a block Arnoldi reduction is able to generate nested
block-orthonormal basis for the block Krylov subspace K�

m×s(A, V ). Each column in the ba-
sis of K�

m×s(A, V ) form at the same time an orthonormal basis of at most ms-dimensional
space Km×s(A, V ). A version of block Arnoldi reduction with modified Gram-Schmit orthogo-
nalization is given as Algorithm 27. The initialization step with a QR factorization generate an
orthonormal baisis of K1×s as V0. For the subsequent m steps yield nests orthonormal bases for
K2×s, · · · ,K(m+1)×s.

Algorithm 27 Block Arnoldi Algorithm
1: function Block Arnoldi(input:A,m, V ∈ Cn×s of full rank, output: Hm,Ωm)
2: V0P0 := V . QR factorization: P0 ∈ Cs×s, V0 ∈ Cn×s, V ∗0 V0 = I
3: for j = 0, 1, 2, · · · ,m do
4: Uj = AVj
5: for i = 1, 2, 4, · · · , j do
6: Hi,j = V T

i Uj
7: Uj = Uj − ViHi,j

8: end for
9: Uj = Vj+1Hj+1,j . QR factorization: Hj+1,j ∈ Cs×s, Vj+1 ∈ Cn×s, V ∗j+1Vj+1 = I

10: end for
11: end function

Then we define the n×m matrices

V̄m = (V0 V1 · · · Vm−1)

and the (m+ 1)s×ms matrix as Fig. 7.1, with block matrix H1,0, · · · , Hm,m−1 in the band
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to be upper triangle.
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Figure 7.1 – Structure of block Hessenberg matrix.

Finally the Arnoldi relation can be obtained as:

AVm = Vm+1Hm. (7.9)

7.2.3 Block GMRES Method

The block GMRES is constructed based the block Arnoldi reduction (shown as Algorithm 27) to
solve the linear systems with multiple RHSs. Similar with the standard GMRES, block GMRES
starts with a given initial guess solution X0 ∈ Cn×s of Equation (7.1), the related residual is of
form

R0 = B −AX0 (7.10)

The temporary solution Xm in the m-dimensional block Krylov subspace is

Xm = X0 + VmYm, (7.11)

and the m-th block residual vector Rm can be obtained as

Rm = B −AXm = R0 −AVmYm. (7.12)

With the relation (7.9) of Arnoldi reduction, and R0 = Vm+1e1P0, we have

Rm = Vm+1(e1P0 −HmYm). (7.13)

where

• e1 the first s columns of the (m+ 1)s× (m+ 1)s unit matrix,

160



7.2. Block GMRES Method

• P0 ∈ Cs×s upper triangular, obtained in Arnoldi’s initialization step,

• Hm the leading (m+ 1)s×ms submatrix of Hm,

• Ym ∈ Cms×s the "block coordinates" of Xm −X0,

In order to get Ym, a least squares problem should be solved

min ||Rm||F with Xm −X0 ∈ K�
m×s. (7.14)

where the operation ||.||F for a block vector Q ∈ Cn×s is defined as

||Q||F =

√√√√ s∑
j=1
||x(j)||22 =

√√√√ s∑
j=1

n∑
i=1
|x(j)
i |2. (7.15)

But this least square problem is equivalent to

min ||r(i)
m ||2 with x(i)

m − x
(i)
0 ∈ Km×s, ∀i = 1, 2, · · · , s. (7.16)

Since Vm has orthonormal columns, finally, we have

min ||e1p
(i)
0 −Hmy

(i)
m ||2 with y(i)

m ∈ Cm×s,∀i = 1, 2, · · · , s. (7.17)

These s least squares problems with the same matrix Hm can be solved efficiently by re-
cursively computing the QR factorization of Hm. An example of block MGRES is shown as
Algorithm 28.

Algorithm 28 Block GMRES Algorithm
1: function Block GMRES(input:A,m,B,X0 ∈ Cn×s of full rank, output: X)
2: R = B −AX0
3: V0R0 := R . QR factorization: P0 ∈ Cs×s, V0 ∈ Cn×s, V ∗0 V0 = I
4: for j = 0, 1, 2, · · · ,m do
5: Uj = AVj
6: for i = 1, 2, 4, · · · , j do
7: Hi,j = V T

i Uj
8: Uj = Uj − ViHi,j

9: end for
10: Uj = Vj+1Hj+1,j . QR factorization: Hj+1,j ∈ Cs×s, Vj+1 ∈ Cn×s, V ∗j+1Vj+1 = I
11: end for
12: Wm = [V1, V 2, · · · , Vm], Hm = {Hi,j}0≤i≤j;1≤j≤m
13: Find Ym, s.t. ||β −HmYm||2 is minimized
14: X = X +WmYm
15: end function

7.2.4 Cost Comparison

In this section, we list the computational cost of the block Arnoldi process and block GMRES,
and compare it with the cost of solving each system separately.
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Here is a table of the cost of m steps of block Arnoldi compared with s times the cost of m
steps of conventional Arnoldi. Clearly, block Arnoldi is more costly than s times Arnoldi.

Table 7.1 – Operation Cost [107].

Operations Block Arnoldi s times Arnoldi

MVs ms ms

SDOTs 1
2m(m+ 1)s2 + 1

2ms(s+ 1) 1
2m(m+ 1)s

SAXPYs 1
2m(m+ 1)s2 + 1

2ms(s+ 1) 1
2m(m+ 1)s

The next table shows the storage requirements of m steps of block Arnoldi compared with
those of m steps of Arnoldi:

Table 7.2 – Storage Requirement [107].

Operations Block Arnoldi s times Arnoldi

y0, · · · , ym ms(s+ 1)n (m+ 1)n

ρ0, Hm
1
2s(s+ 1) + 1

2ms(ms+ 1) +ms2 1 + 1
2m(m+ 1) +m

If we apply conventional Arnoldi s times, we can always use the same memory if the resulting
orthonormal basis and Hessenberg matrix need not be stored. However, if we distribute the s
columns of V0 on s processors with distributed memory architecture, then block Arnoldi requires
a lot of communication.

The extra cost of m steps of block GMRES on top of block Arnoldi compared with s times
the extra cost of m steps of GMRES is given in the following table:

Table 7.3 – Extra cost of Block GMRES comparing with s times GMRES [107].

Operations Block GMRES s times GMRES

MVs s s

SDOTs ms2 ms

scalar work O(m2s3) O(ms)

In particular, in the (k + 1)-th block step we have to apply first ks2 Givens rotations to the
k-th block column (of size (k + 1)s× s) of Hm, which requires O(ks3) operations. Summing up
over k yields O(m2s3) operations. Moreover, s times back substitution with a triangularms×ms
matrix requires also O(m2s3) operations.

Table 7.4 summarizes these numbers and gives the mean cost per iteration of block GMRES
compared with s times the mean cost per iteration of GMRES:
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Table 7.4 – Extra cost of Block GMRES comparing with s times GMRES. [107]

Operations Block GMRES s times GMRES ratio

MVs (1 + 1
m)s (1 + 1

m)s 1

SDOTs 1
2(m+ 1)s2 + 1

2s(s+ 1) 1
2(m+ 1)s s+ s+1

m+1

SAXPYs 1
2(m+ 3)s2 + 1

2s(s+ 1) 1
2(m+ 3)s s+ s+1

m+3

scalar work O(ms3) O(ms) O(s2)

Recall that the most important point in the comparison of block and ordinary Krylov space
solvers is that the dimensions of the search spaces Km×s and Km differ by a factor of up to
s. This could mean that block GMRES may converge in roughly s times fewer iterations than
GMRES. Ideally, this might even be true if we choose

mblock GMRES = 1
s
mGMRES . (7.18)

This assumption would make the memory requirement of both methods comparable. Unfor-
tunately, the numerical experiments indicate that it is rare to fully achieve this factor 1

s .

7.2.5 Challenges of Exising Methods for Large-scale Platforms

However, nowadays, HPC cluster systems continue to scale up not only the number of compute
nodes and CPU cores but also the heterogeneity of components by introducing GPUs and
many-core processors. These hierarchical supercomputers can be seen as the intersection of
distributed and parallel computing. The communication of overall reduction operations and
global synchronization of applications are the bottleneck. When solving linear systems by block
Krylov methods on large-scale distributed memory platforms, the cost of using BLAS3 operations
to enlarge search space and reduce the memory requirement is apparent: the communication
bound of SpGEMM in each step of Arnoldi projection damages heavily their performance, which
cannot be compensated by the advantages of the block methods. Even using classic Krylov
methods, such as GMRES, to solve a large-scale problem on parallel clusters, the cost per
iteration of them becomes the most significant concern, typically caused by communication and
synchronization overheads. Consequently, large scalar products, overall synchronization, and
other operations involving communication among all cores have to be avoided.

7.3 m-UCGLE to Solve Linear Systems with Multiple Right-
hand Sides

We propose to combine the block GMRES with UCGLE [225] to solve Equation (7.1) in parallel
on modern computer architectures. In this chapter, firstly, we develop a block version of Least
Squares polynomial method based on [184], then replace the three computational components
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of UCGLE respectively by the block GMRES, Shifted Krylov-Schur and block Least Squares
polynomial methods. Thus, the three types of computational components in m-UCGLE are:

(1) BGMRES Component to solve the linear systems with multiple RHSs. Multiple BGMRES
Components can be allocated, and each solve the linear systems with a subset of RHSs;

(2) s-KS Component to approximate the dominant eigenvalues of operator matrix. Multiple
s-KS Components can also be allocated to compute more eigenvalues with thick restarting;

(3) B-LSP Component perform the pretreatement for the block Least Squares polynomial
preconditioning for block GMRES.

Additionally, in order to solve linear systems with multiple RHSs and reduce the global
communication produced by SpGEMM inside block methods, we design and implement a new
manager engine to replace the former one in UCGLE. This novel engine allows to allocate
and deploy multiple BGMRES and/or s-KS Components at the same time and support their
asynchronous communications. Each allocated BGMRES Component is assigned to solve the
linear systems with a subset of RHSs. This extension is denoted as multiple-UCGLE or m-
UCGLE even though the ERAM Component is replaced by Shifted Krylov-Schur method.

7.3.1 Shifted Krylov-Schur Algorithm

UCGLE uses the dominant eigenvalues to accelerate the convergence of GMRES, and theoret-
ically, the more eigenvalues are applied, the acceleration of Least Squares polynomial will be
more significant. In order to approximate more eigenvalues by ERAM Component, the easiest
way is to enlarge the size of related Krylov Subspace. In m-UCGLE, we replace ERAM Com-
ponent by Shifted Krylov-Schur method which is another variant of the Arnoldi algorithm with
an effective and robust restarting scheme and numerical stability [204]. The Krylov subspace
of Shifted Krylov-Schur method cannot be too large. Otherwise BGMRES Component is not
able to receive the eigenvalues in time to perform the block Least Squares polynomial accelera-
tion. With the novel developed manager engine of m-UCGLE in this chapter, several different
s-KS components can be allocated at the same time to approximate efficiently the different part
of dominant eigenvalues of matrix A, by the shift with different values and thickly restarting
with smaller Krylov subspace sizes. The algorithm of Shifted Krylov-Schur method is given in
Algorithm 29.

Algorithm 29 Shifted Krylov-Schur Method
1: function s-KS(input: A, x1,m, σ, output: Λk with k ≤ p)
2: A← A− σI
3: Build an initial Krylov decomposition of order m
4: Apply orthogonal transformations to get a Krylov-Schur decomposition
5: Reorder the diagonal blocks of the Krylov-Schur decomposition
6: Truncate to a Krylov-Schur decomposition of order p
7: Extend to a Krylov decomposition of order m
8: If not satisfied, go to step 3
9: end function
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7.3.2 Block Least Squares Polynomial for Multiple Right-hand Sides

The Least Squares polynomial method is an iterative method proposed by Saad [184] to solve
linear systems. It is applied to calculate a new preconditioned residual for restarted GMRES in
UCGLE. In this section, we will present the block Least Squares polynomial method, which is a
block extension of Least Squares polynomial method to solve linear systems with multiple RHSs
at the same time. The iterates of block Least Squares polynomial method can be written as
Xd = X0 +Pd(A)R0, where X0 ∈ Cn×s is a selected initial guess to the solution, R0 ∈ Cn×s the
corresponding residual block vector, and Pd a polynomial of degree d− 1. We set a polynomial
of degree d as Rd such that

Rd(λ) = 1− λPd(λ)

.
The residual of dth steps iteration Rd can be expressed as equation Rd = Rd(A)R0, with the

constraint Rd(0) = 1. We want to find a kind of polynomial which can minimize

||Rd(A)R0||F . (7.19)

Similarly for the Least Squares problem (7.14) in block GMRES, the maximum-minmum
problem (7.19) is equivalent to

||R(p)
0 ||2 max

λ∈σ(A)
|Rd(λ)|, ∀p ∈ 0, 1, · · · , s− 1. (7.20)

Suppose A is a diagonalizable matrix with its spectrum denoted as σ(A) = λ1, · · · , λn, and
the associated eigenvectors u1, · · · , un. Expanding the each component of Rd in the basis of
these eigenvectors as R(p)

d = ∑n
i=1Rd(λi)ρiui, which allows to get the upper limit of ||R(p)

d ||2
with p ∈ 0, 1, · · · , s− 1 as:

||R(p)
0 ||2 max

λ∈σ(A)
|Rd(λ)| (7.21)

In order to minimize the norm of Rd, it is possible to find a polynomial Pd which can minimize
the Equation (7.21). Therefore, for all s linear systems with different RHSs, they share the same
best Least Squares polynomial Rd. As presented in Section 3.5.3, Pd can be expanded with a
basis of Chebyshev polynomial tj(λ) = Tj

λ−c
f

Tj
c
f

, where ti is constructed by an ellipse englobing
the convex hull formulated by the computed eigenvalues, with c the center of ellipse, and f the
focal distance of this ellipse. Pd is under form that Pd = ∑d−1

i=0 ηiti. The selected Chebyshev
polynomials ti meet still the three terms recurrence relation (7.22).

ti+1(λ) = 1
βi+1

[λti(λ)− αiti(λ)− δiti−1] (7.22)

For the computation of parameters Hd = (η0, η1, · · · , ηd−1), we construct a modified gram
matrix Md with dimension d× d, and matrix Td with dimension (d+ 1)× d by the three terms
recurrence of the basis ti. Md can be factorized to be Md = LLT by the Cholesky factorization.
The parameters Hd can be computed by a least squares problem of the formula:
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min‖l11e1 − FdHd‖ (7.23)

With the definition of Ωi ∈ Rn×s by Ωi = ti(A)R0, we can obtain the Equation (7.24), and
in the end iteration (7.25).

Ωi+1 = 1
βi+1

(AΩi − αiΩi − δiΩi−1) (7.24)

Xn = X0 + Pd(A)R0 = X0 +
n−1∑
i=1

ηiΩi (7.25)

The pre-treatement of this method to obtain the parameters Ad = (α0, · · · , αd−1), Bd =
(β1, · · · , βd), ∆d = (δ1, · · · , δd−1), and Hd = (η0, · · · , ηd−1) is already presented by Algorithm 13
in Section 3.5.3, where A is a n× n matrix, d is the degree of Least Squares polynomial, Λr the
collection of approximate eigenvalues, a, c, f the required parameters to fix an ellipse in the plan,
with a the distance between the vertex and center, c the center position and b the focal distance.
The iterative recurrence implementation of Equation (7.24) and (7.25) using the parameters
gotten from the pre-treatement procedure to construct the restarted residual for block GMRES
by block Least Squares polynomial method is given in Algorithm 30. In this algorithm, X0 is
the temporary solution in block GMRES before performing the restart. Compared with Least
Squares polynomial method for single RHS, the difference in block Least Squares polynomial
method is to replace the SpMV in each iteration step with SpGEMM, as shown in Equation
(7.25).

Algorithm 30 Update block GMRES residual by block Least Squares polynomial
1: function LSUpdateResidual(input:A,B,Ad, Bd,∆d, Hd)
2: Get X0, which is temporary solution in block GMRES
3: R0 = B −AX0, Ω1 = R0
4: for k = 1, 2, · · · , l do
5: for i = 1, 2, · · · , d− 1 do
6: Ωi+1 = 1

βi+1
[AΩi − αiΩi − δiΩi−1]

7: Xi+1 = Xi + ηi+1Ωi+1
8: end for
9: end for

10: Update GMRES restarted residual by Xd

11: end function

7.3.3 Analysis

Suppose that the computed convex hull by block Least Squares polynomial method contains
eigenvalues λ1, · · · , λm, the restarted residual for block GMRES generated by block Least
Squares polynomial method for solving Equation (7.1) can be also divided into two parts:

Rn =
m∑
i=1

s∑
j=1

ρ((R(j)
d )(λi)lsa)ui +

n∑
i=m+1

s∑
j=1

ρ((R(j)
d )(λi)lsa)ui (7.26)

The first part is constructed with the m known eigenvalues used to compute the convex hull

166



7.4. Implementation of m-UCGLE and Manager Engine

in B-LSP Component, and the second part represents the residual with unknown eigenpairs. In
the practical implementation, for each time preconditioning by the block Least Squares polyno-
mial method, it is often repeated for several times to improve its acceleration of convergence,
that is the meaning of parameter lsa in Equation (7.26). The block Least Squares polynomial
preconditioning applies Rd as a deflation vector for each time restart of block GMRES. The first
part in Equation (7.26) is small since the block Least Squares polynomial finds Rd minimizing
|Rd(λ)| in the convex hull, but not with the second part, where the residual will be rich in
the eigenvectors associated with the eigenvalues outside Hm. As the number of approximated
eigenvalues m increasing, the first part will be much closer to zero, but the second part keeps
still large. This results in an enormous increase of restarted block GMRES preconditioned vector
norm. Meanwhile, when block GMRES restarts with the combination of some eigenvectors, the
convergence will be faster even if the residual is enormous, and the convergence of block GMRES
can still be significantly accelerated.

Similar to the block GMRES, the block Least Squares polynomial is also able to enlarge the
search space with a maximum factor s. Compared with Least Squares polynomial preconditioning
with one RHS, this block version of Least Squares polynomial preconditioning might have further
speedup. For a small operator matrix, the selection of the degree d and the applied times lsa
of Least Squares polynomial preconditioning in m-UCGLE should be different with the ones in
UCGLE, since the combination of multiple RHSs can already enlarge the Euclidean norm of
residual produced by the block Least Squares polynomial preconditioning. The optimal values
for the two parameters might be different with the ones for UCGLE with single RHS.

7.4 Implementation of m-UCGLE and Manager Engine

In this section, we give the implementation of the newly designed manager engine, which is able
to allocate multiple computational components at the same time, and manager the asynchronous
communications, checkpointing and fault tolerance. Then, we give the practical implementation
of m-UCGLE using this new manager engine.

7.4.1 Component Allocation

The manager engine allocates the components through MPI_Comm_Spawn. One process can
fulfill the operations of this manager engine. Each component is identified with a unique identified
number as long as its creation by the manager engine. All the data and messages on the manager
engine are respectively stored according to their identified number, which facilitates the control
of different components. A private MPI intra-communicator between the manager engine and
each component is created, which conduct the asynchronous exchanges of data between them.
The CPUs are assigned by MPI_Comm_Spawn to each component using a specified hostfile
which lists the related hostnames.

7.4.2 Asynchronous Communication

Distributed and parallel communication among components involves different types of data, such
as vectors, arrays, and signals. The manager engine serves as a proxy to carry out these exchanges
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Figure 7.2 – Manager Engine Implementation.

with asynchronous communications. The asynchronous data sending and receiving operations
are implemented by the non-blocking communication of MPI. The asynchronous communication
is implemented with the same manner for the static manager engine introduced in Section 5.4.3.
However, for the newly designed manager engine, these communications only take place between
the manager engine and each component inside their private communicator.

7.4.3 Implementation on Hetergeneous Platforms with GPUs

For the implementation on heterogeneous platforms of iterative solvers based on the proposed
paradigm, each component spawned by MPI can automatically select the GPU devices binded
to it. In order to avoid the competition of different nodes of various computational components
for the same GPUs, it is necessary to use the hostfiles to manually allocate the computing nodes
for each component. In practice, the BGMRES and s-KS components prefer to be implemented
with multi-GPUs, and it is enough for the B-LSP to use on MPI process, since it only performs
the LAPACK operations with small matrices.

7.4.4 Checkpointing, Fault Tolerance and Reusability

The fault tolerance of the proposed paradigm can be guaranteed by the combination of a check-
point function and an error detection function.

The checkpoint function takes the backup of necessary data of different components onto the
manager engine, e.g., the temporary solution of each restart of linear solvers or the obtained
Ritz values. These data on the manager engine are frequently updated. If some computational
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components are in fault, these data can be redistributed to new allocated components and
recover the state before failures.

The error detection function is guaranteed by the frequent messages from the components to
the manager engine, which can be seen as a push technique introduced by Chen et al.[55]. For the
manager engine, if there is no news updated from one component for a fixed time interval, this
component will be marked as failed. If it is BGMRES Component, it will be recovered using the
computing units of s-KS components and checkpoint data saved on the manager engine. If s-KS
components are detected in fault, BGMRES components can still work using the checkpoint
data from the manager engine, but without the continuous improvement of preconditioning
information.

The reusability of iterative solvers based on this new paradigm can be improved. Since the
preconditioning and solving parts are separated, the information used for the preconditioning
can be saved into local files and reused to solve the subsequent problems sharing the same
operator.

7.4.5 Practical Implementation of m-UCGLE

The previous implementation of manager engine for UCGLE in Chapter 5, based on MPI_Split
cannot meet the requirement of m-UCGLE. Thus, in order to extend UCGLE method to solve
non-Hermitian linear systems and to reduce the global communication and synchronization
points, we design and implement a new manager engine for m-UCGLE. As shown in Figure 7.3,
the new engine allows creating a number of different computational components at the same
time. Suppose that we have allocated ng BGMRES Components, nk s-KS Components and 1
B-LSP Component. The exact implementation for s-KS, B-LSP, BGMRES Components and
manager process are respectively given in Algorithm 31, 32, 33 and 34. Denote the BGMRES
Components as BGMRES[k] with k ∈ 1, 2, · · · , ng, and the s-KS Components as s-KS[q] with
q ∈ 1, 2, · · · , na. The matrix B in Equation (7.1) can be decomposed as:

B = [B1, B2, · · · , Bk, · · · , Bng ] (7.27)

Each BGMRES[k] will solve the linear systems with multiple RHSs Bk, which is a subgroup
of B:

AXk = Bk (7.28)

Table 7.5 gives the comparison of memory and communication complexity of SpGEMM
operation inside m-UCGLE and block GMRES with the same number of RHSs. The factors
n, nnz, s, Pg and ng represent respectively the matrix size, the number of non-zero entries of
matrix, the number of multiple RHSs, the total number of computing units for block GMRES,
and the number of BGMRES Components allocated by the manager engine of m-UCGLE. The
average memory requirement for block GMRES on each computing unit is O(nnz(1+s)

Pg
). For

m-UCGLE, the matrix is duplicated ng times into different allocated linear solvers. Thus the
required memory to store the matrix should be scaled with the factor ng compared with block
GMRES. Due to the localization of computation inside m-UCGLE, the total number global
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Figure 7.3 – Manager Engine Implementation for m-UCGLE. This is an example with three
block GMRES components, and two s-KS components, but these numbers can be customized
for different problems.

communication can be reduced with a factor 1
ng

compared with block GMRES. In practice, the
selection of the number to allocate the BGMRES Components should make a balance between
the increase of memory requirement and the reduction of global communication.

Here we present in detail the workflow of this new engine. At the beginning, the manager
engine will simultaneously allocate the required number of three kinds of computational compo-
nents. For each BGMRES[k], it will load a full matrix A and its related subgroup Bk, and then
start to solve Equation (7.28) separately. Meanwhile, each s-KS[q] load a full matrix A from
local, and start to find the required part of eigenvalues of A, through the Shifted Krylov-Schur
method, using different parameters such as the shift value σq, the Krylov subspace size (ma)q,
etc. If the eigenvalues of the required number are approximated on s-KS[q], these values will
be asynchronously sent to the manager process. The manager process will always check if new
eigenvalues are available from different s-KS Components, if yes, it will collect and update the
new coming eigenvalues together and send them to B-LSP Component. B-LSP Component will
use all the eigenvalues received from manager process to do the pre-treatment of the block Least
Squares polynomial preconditioning, the parameters gotten will be sent back to the manager
process. Immediately, these parameters will be distributed to BGMRES[k]. BGMRES[k] can use
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Table 7.5 – Memory and communication complexity comparison between m-UCGLE and block
GMRES.

m-UCGLE block GMRES ratio

Memory O(nnz(ng+s)
Pg

) O(nnz(1+s)
Pg

) ng+s
1+s

Communication O(nnzsPgng
) O(nnzsPg) 1

ng

Algorithm 31 s-KS Component
1: function s-KS-EXEC(input: A,ma, ν, r, εa)
2: while exit==False do
3: s-KS(A, r,ma, ν, εa, output: Λr)
4: Send (Λr) to B-LSP Component
5: if Recv (exit == TRUE) then
6: Send (exit) to B-LSP Component
7: stop
8: end if
9: end while

10: end function

the block Least Squares polynomial residual constructed by these parameters to speed up the
convergence. If the exit signals from all BGMRES Components are received by manager process,
it will send a signal to all other components to terminate their executions.

The allocation of a different number of computational components is implemented with
MPI_SPAWN, and their asynchronous communication is assured by the MPI non-blocking
sending and receiving operations between the manager process and each computational compo-
nents.

Algorithm 32 B-LSP Component
1: function B-LSP-EXEC(input: A, b, d)
2: if Recv(Λr) then
3: LSP-Pretreatment(input: A, b, d,Λr, output: Ad, Bd,∆d, Hd)
4: Send (Ad, Bd,∆d, Hd) to GMRES Component
5: end if
6: if Recv (exit == TRUE) then
7: stop
8: end if
9: end function

Same as UCGLE, m-UCGLE has multiple levels of parallelism for distributed memory sys-
tems:

(1) Coarse Grain/Component level: it allows the distribution of different numerical compo-
nents, including the preconditioning part (B-LSP and s-KS) and the solving part (BGM-
RES) on different platforms or processors;

(2) Medium Grain/Intra-component level, BGMRES and s-KS components are both deployed
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Algorithm 33 BGMRES Component
1: function BGMRES-EXEC(input: A,mg, X0, B, εg, L, l, output: Xm)
2: count = 0
3: BGMRES(input: A,m,X0, B, output: Xm)
4: if ||B −AXm|| < εg then
5: return Xm

6: Send (exit == TRUE) to manager process
7: Stop
8: else
9: if count | L then

10: if recv (Ad, Bd,∆d, Hd) then
11: LSUpdateResidual(input:A,B,Ad, Bd,∆d, Hd)
12: count+ +
13: end if
14: else
15: set X0 = Xm

16: count+ +
17: end if
18: end if
19: if Recv (exit == TRUE) then
20: stop
21: end if
22: end function

in parallel;

(3) Fine Grain/Thread parallelism for shared memory: the OpenMP thread-level parallelism,
or the accelerator level parallelism if GPUs or other accelerators are available.

7.5 Parallel and Numerical Performance Evaluation

In this section, we evaluate the numerical performance of m-UCGLE for solving non-Hermitian
linear systems compared with conventional block GMRES.

7.5.1 Hardware Settings

After the implementation of m-UCGLE, we test it on the supercomputer with selected test
matrices. The purpose of this section is to give the details about the hardware/software settings
and test sparse matrices.

Experiments were obtained on the supercomputer Romeo-2018, a system located at Uni-
versity of Reims Champagne-Ardenne, France. Made by Atos, this cluster relies on totally 115
the Bull Sequana X1125 hybrid servers, powered by the Xeon Gold 6132 (products formerly
Skylake) and NVidia P100 cards. Each dense Bull Sequana X1125 server accommodates 2 Xeon
Scalable Processors Gold bi-socket nodes, and 4 NVidia P100 cards connected with NVLink. In
total, this supercomputer includes 3,220 Xeon cores and 280 Nvidia P100 accelerators. Romeo-
2018 is updated version of Romeo-2013, which was used to evaluate the numerical and parallel
performance of UCGLE for single RHS in Chapter 5.
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Algorithm 34 Manger of m-UCGLE with MPI Spawn
1: function Master(Input : ng, na)
2: for i = 1 : ng do
3: MPI_Spawn executable BGMRES-EXEC[i]
4: end for
5: for j = 1 : nk do
6: MPI_Spawn executable s-KS-EXEC[j]
7: end for
8: MPI_Spawn executable B-LSP-EXEC
9: for j = 1 : nk do

10: if Recv array[j] from s-KS-EXEC[j] then
11: Add array[j] to Array
12: end if
13: end for
14: if Array 6= NULL then
15: Send Array to B-LSP-EXEC
16: end if
17: if Recv LSArray from B-LSP-EXEC then
18: for i = 1 : ng do
19: Send LSArray to BGMRES-EXEC[i]
20: end for
21: end if
22: for i = 1 : nk do
23: if Recv flag[i] for BGMRES-EXEC[i] then
24: if flag[i] == exit then
25: flag=true
26: else
27: flag=false
28: end if
29: end if
30: end for
31: if flag == true then
32: Kill B-LSP-EXEC
33: for i = 1 : ng do
34: Kill BGMRES-EXEC[i]
35: end for
36: for j = 1 : nk do
37: Kill s-KS-EXEC[j]
38: end for
39: end if
40: end function
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Figure 7.4 – Different strategies to divide the linear systems with 64 RHSs into subsets: (a)
divide the 64 RHSs into to 16 different components of m-UCGLE, each holds 4 RHSs; (b) divide
the 64 RHSs into to 4 different components of m-UCGLE, each holds 16 RHSs; (c) One classic
block GMRES to solve the linear systems with 64 RHSs simultaneously.

Table 7.6 – Spectral functions to generate six test Matrices.

Name spec

TEST 1 (rand(21.0, 66.0), rand(-21.0,24.0))

TEST 2 (rand(0.5, 3.0), rand(-0.5,2.0))

TEST 3 (rand(0.2, 5.2), rand(-2.5,2.5))

TEST 4 (rand(-5.2, -0.2), rand(-2.5,2.5))

TEST 5 (rand(-0.23, -0.03), rand(-0.2,0.2))

TEST 6 (rand(-9.3, -3.2), rand(-2.1,2.1))

7.5.2 Software Settings

The MPI used is the OpenMPI 3.1.2, all the shared libraries and binaries were compiled by
gcc (version 6.3.0). The released scientific computational libraries Trilinos (version 12.12.1) and
LAPACK (version 3.8.0) were also compiled and used for the implementation of m-UCGLE.
m-UCGLE on multi-GPUs are boosted by Kokkos, compiled with its underlying compiler nvcc
wrapper. The related CUDA version is 9.2.

7.5.3 Test Problems Settings

We use the SMG2S [226] to generate large-scale test matrices. In the experiments, the total
number of RHSs for linear systems to be solved is fixed as 64. These RHSs are generated in
random using different given seed states. The test matrices from TEST 1 to TEST 6 are all
generated by SMG2S(spec). spec implies the spectral distribution functions, and their definition
are shown in Table 7.6. For example, the spec of TEST 1 is given as (rand(21.0, 66.0), rand(-
21.0,24.0)), the first part rand(21.0, 66.0) defines that the real parts of eigenvalues for TEST
1 are the floating numbers generated randomly in the fixed interval [21.0, 66.0], similarly its
imaginary parts are randomly generated in the fixed interval [-21.0, 24.0].
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7.5.4 Specific Experimental Setup

Table 7.7 – Alternative methods for experiments, and the related number of allocated component,
RHS number per component and preconditioners.

Method Component nb RHS nb per component Preconditioner

BGMRES(64) 1 64 None

m-BGMRES(16)*4 4 16 None

m-BGMRES(4)*16 16 4 None

m-UCGLE(16)*4 4 16 block Least Squares polynomial

m-UCGLE(4)*16 16 4 block Least Squares polynomial

In the experiments, the total number of RHSs of linear systems to be solved for each test
is fixed as 64. As shown in Figure 7.4, we propose three strategies to divide these systems into
various subgroup:

(1) 4 allocated BGMRES Components in m-UCGLE with each holding 16 RHSs (shown by
Figure 7.4(a));

(2) 16 allocated BGMRES Components in m-UCGLE with each holding 4 RHSs (shown in
Figure 7.4(b));

(3) 1 group with all 64 RHSs solved by classic BGMRES (shown by Figure 7.4(c)).

Moreover, for m-UCGLE with 4 or 16 allocated components, they can be applied either with
or without the preconditioning of block Least Squares polynomial using approximate eigenvalues.
Denote the special variant of m-UCGLE without block Least Squares polynomial precondition-
ing as m-BGMRES. m-BGMRES is also able to reduce the global communications through
allocating multiple BGMRES components by the manager engine. Table 7.7 gives the naming
of the five alternatives to solve linear systems with 64 RHSs, the numbers of their allocated
components and the numbers of RHSs per component.

7.5.5 Convergence Evaluation

Various parameters have impacts on the convergence of iterative methods. For all tests: Krylov
subspace size mg is fixed as 40. The number of times that block Least Squares polynomial
applied in m-UCGLE and the degree of Least Squares polynomial are respectively set as 10
and 15. The relative tolerance is fixed as 1.0 × 10−8. Fig. 7.5 and Table 7.8 give the iteration
steps of different tests for convergence. We define the iteration steps for m-BGMRES(16)*4,
m-BGMRES(4)*16, m-UCGLE(16)*4 and m-UCGLE(4)*16 as the maximal ones among their
allocated components. Firstly, for TEST 1, 2, 3, and 6, the enlargement of searching subspace
with more RHSs in BGMRES is effective to accelerate the convergence. However, for TEST 4
and 5, m-BGMRES(16)*4 with less RHSs converges much faster than BGMRES(64). Secondly,
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Table 7.8 – Iteration steps of convergence comparison (SMG2S generation suite
SMG2S(1, 3, 4, spec), relative tolerance for convergence test = 1.0 × 10−8), Krylov subspace
size mg = 40, lsa = 10, d = 15, freq = 1, dnc = do not converge in 5000 iteration steps).

Method m-BGMRES(4)*16 m-UCGLE(4)*16 m-BGMRES(16)*4 m-UCGLE(16)*4 BGMRES(64)

TEST 1 239 160 102 51 51

TEST 2 dnc 176 187 62 78

TEST 3 dnc 310 dnc 81 657

TEST 4 dnc 320 629 99 942

TEST 5 600 235 170 99 270

TEST 6 80 160 85 51 38

Table 7.9 – Consumption time (s) comparison on CPUs (SMG2S generation suite
SMG2S(1, 3, 4, spec), the size of matrices = 1.792 × 106, relative tolerance for convergence test
= 1.0×10−8), Krylov subspace size mg = 40, lsa = 10, d = 15, freq = 1, dnc = do not converge
in 5000 iteration steps).

Method m-BGMRES(4)*16 m-UCGLE(4)*16 m-BGMRES(16)*4 m-UCGLE(16)*4 BGMRES(64)

TEST 1 34.2 35.3 133.9 98.9 362.8

TEST 2 dnc 40.9 231.3 111.5 580.6

TEST 3 dnc 66.0 dnc 145.8 522.5

TEST 4 dnc 68.2 768.3 178.2 6829.3

TEST 5 132.3 50.1 209.4 120.5 1959.5

TEST 6 11.4 34.1 87.8 91.7 275.8

if we compare m-UCGLE and the related m-BGMRES with the same number of RHSs, we can
conclude that B-LSP Component can splendidly accelerate the convergence, except for TEST
6. For TEST 2, 3, 4, and 5, m-UCGLE(16)*4 with less RHSs works even much better than
BGMRES(64). TEST 4 is an extreme special case, wherem-UCGLE(4)*16 andm-UCGLE(16)∗4
converge respectively 3× and 9.5× faster over m-BGMRES(64).

In conclusion, m-UCGLE(16)*4 converges the fastest for most cases. The convergence of
block methods can converge quickly with enough RHSs and the preconditioning by block Least
Squares polynomial method. Compared with classic block GMRES, m-UCGLE with less RHSs
and smaller searching space can still have better acceleration. Thus, the potential damages
on the convergence caused by the reduction of global communications with less RHSs of each
component inside m-UCGLE can be covered.

7.5.6 Time Consumption Evaluation

Time consumption for different methods with the same matrices and parameters as the previous
section are also compared. The results are also given in Fig. 7.5 and Table 7.9. The dimension
of all matrices are set as 1.792 × 106, the total numbers of CPU cores for Solver Components
(either BGMRES Components inm-UCGLE andm-GMRES or conventional block GMRES) are
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Figure 7.5 – Comparison of iteration steps and consumption time (s) of convergence and on
CPUs. A base 10 logarithmic scale is used for Y-axis of Time. The × means the test do not
converge in acceptable number of iterations.

respectively fixed as 1792. From Fig. 7.5, we can find that m-UCGLE(4)*16 take the least time
to converge for TEST 2, 3, 4 and 5. For TEST 1 and 6,m-BGMRES(4)*16 takes a little less time
than m-UCGLE(4)*16 for convergence. TEST 4 is an extreme case, where m-UCGLE(4)*16 has
about 100× speedup in time consumption over BGMRES(64).

7.5.7 Strong Scalability Evaluation

The most import advantage of m-UCGLE is to reduce the global communications of SpGEMM
and synchronization points of preconditioner by dividing the algorithms into components. In
order to evaluate the parallel performance of m-UCGLE on both homogeneous and heteroge-
neous (multi-GPUs) systems, we compare the average time cost and speedup per iteration of
five alternatives. For the evaluation with CPUs, the test matrix is generated by SMG2S with
a fixed size of 1.792 × 106, and for the evaluation with multi-GPUs, the test matrix size is set
as 3.2 × 105. No larger matrices are tested, due to the memory limitation during the Arnoldi
projection of block GMRES. The Krylov subspace size mg for all tests keeps still as 40. The
average time per iteration is calculated after 100 iterative steps. The total CPU core number
for both B-GMRES(64) and Solver Component in m-UCGLE and m-BGMRES ranges from 224
to 1792. Thus for each BGMRES Component of m-BGMRES(4)*16 and m-UCGLE(4)*16, this
number ranges from 14 to 112. Similarly, for each BGMRES Component of m-BGMRES(16)*4
and m-UCGLE(16)*4, this number ranges from 56 to 448. The total GPU number ranges from
16 to 128. Thus for each BGMRES Component ofm-BGMRES(4)*16 andm-UCGLE(4)*16, this
number ranges from 1 to 8. This number ranges from 4 to 32 for each BGMRES Component of
m-BGMRES(16)*4 and m-UCGLE(16)*4. All the tests allocate only 1 s-KS Component which
always has the same number of CPU cores with one BGMRES Component inside m-UCGLE.

Figure 7.6a gives the comparison of average time per iteration on CPUs, and Figure 7.6b
shows the related speedup. Firstly, we can conclude that the strong scaling ofm-BGMRES(4)*16
and m-UCGLE(4)*16 perform well, the strong scalability of the rest are bad, especially BGM-
RES(64). At the beginning, the scalability of m-BGMRES(16)*4 and m-UCGLE(16)*4 is good,
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Figure 7.6 – Strong scalability and speedup on CPUs and GPUs of solving time per iteration for
m-BGMRES(4)*16, m-UCGLE(4)*16, m-BGMRES(16)*4, m-UCGLE(16)*4, BGMRES(64). A
base 10 logarithmic scale is used for Y-axis of (a) and (c); a base 2 logarithmic scale is used for
Y-axis of (b) and (d).
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Figure 7.7 – Fault Tolerance Evaluation of m-UCGLE.

but it turns bad quickly with the increase of CPU number. It is well demonstrated that the
advantages of m-UCGLE to promote the asynchronous communication and localize of compu-
tation can improve the parallel performance significantly to solve linear systems with multiple
RHSs. Additionally, for the m-BGMRES and m-UCGLE with the same number of RHSs, the
time per iteration of former is a little less the latter, since m-UCGLE introduces the iterative
operations (SpGEMM) by block Least Squares polynomial preconditioning.

Figure 7.6c gives the comparison of average time per iteration on GPUs. Figure 7.6d shows the
comparison of speedup. At the beginning, the scaling of all tests performs well. With the augmen-
tation of GPU number, the scaling of BGMRES(64), m-UCGLE(16)*4 and m-GMRES(16)*4
tends worse, but the scaling of m-UCGLE(4)*16 and m-GMRES(4)*16 keeps good.

Sincem-UCGLE uses additional computing units for other components especially s-KS Com-
ponent, it is unfair only to compare the scaling performance that total CPU/GPU number of
all BGMRES Components in m-UCGLE equals to these numbers of m-GMRES and BGM-
RES(64). Thus we plot two more curves of m-UCGLE(4)*16 and m-UCGLE(16)*14 with all
their CPU/GPU numbers (including the ones of s-KS Component) in Figure 7.6a and 7.6c.
The two additional curves are the ones with the marker set as the triangle. It is shown that
m-UCGLE(4)*16 and m-UCGLE(16)*4 can still have respectively up to 35× and 4× speedup
per iteration against BGMRES(64) on multi-CPUs. For the tests on multi-GPUs, at the begin-
ning, each iteration of them takes longer time than BGMRES(64), but it tends better with the
augmentation of GPU number, and the scaling of BGMRES(64) becomes bad.

7.5.8 Fault Tolerance Evaluation

Similar to the fault tolerance evaluation of UCGLE in Chapter 5, the fault tolerance of m-
UCGLE is also studied by the simulation of the loss of either GMRES or s-KS Components.
m-UCGLE_FT(G) in Fig. 7.7 represents the simulation of BGMRES Components in fault, and
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m-UCGLE_FT(E) implies the fault simulation of s-KS. The curves of m-UCGLE and classic
BGMRES represent the normalm-UCGLE and BGMRES without preconditioning, respectively.

The failure of s-KS Component is simulated by fixing the execution loop number of s-KS
algorithm, it exits after a fixed number of iterations. We mark the s-KS fault point of tests in Fig.
7.7. The m-UCGLE_FT(E) curves of the experimentations show that BGMRES Component
will continue to solve the systems with Least Squares polynomial preconditioning using the
eigenvalues stored on the manager engine. There is not much difference between the curves of
m-UCGLE_FT(E) and m-UCGLE.

The failure of BGMRES Component (marked in Fig. 7.7) is simulated by fixing a small
number of iterations before the achievement of convergence. We can find that after the fault of
BGMRES Component, s-KS computing units will automatically take over the jobs of BGMRES
component. This new BGMRES Component is recovered from the stat of the previous backup
of the temporary solution xm, and then continue to solve the linear systems with the checkpoint
data. Thus in the curve of UCGLE_FT(G), the linear solver repeats a few steps of previous
iterations from the fault point.

For the classic BGMRES, if it is in fault, its execution will be totally exit, and it is not
possible to continue to solve the linear systems, even with lower performance.

7.5.9 Analysis

In conclusion, m-UCGLE(4)*16 and m-GMRES(4)*16 with the most decrease of global com-
munications have the best strong scaling performance. m-UCGLE cost a little more time per
iteration compared with m-BGMRES with the same number of RHSs, but this might be made
up by its decrease of iterative steps with block Least Squares polynomial preconditioning. The
experiments in this section demonstrate the benefits of m-UCGLE to reduce global communica-
tion and promote the asynchronization. Two more important points that cannot be concluded
from the experiments in this chapter are:

(1) The increase of memory requirement should be considered when dividing the whole RHSs
into subsets;

(2) The number of RHSs per component of m-UCGLE to enlarge the search space and the
computation time per iteration should be balanced to achieve the best performance.

7.6 Conclusion

This chapter presents m-UCGLE, an extension of distributed and parallel method UCGLE to
solve large-scale non-Hermitian sparse linear systems with multiple RHSs on modern super-
computers. m-UCGLE is implemented with three kinds of computational components which
communicate by the asynchronous communication. A special engine is proposed to manger the
communication and allocate multiple different components at the same time. m-UCGLE is able
to accelerate the convergence, minimize the global communication, cover the synchronous points
for solving linear systems with multiple RHSs on large-scale platforms. The experiments on su-
percomputers prove the good numerical and parallel performance of this method. The fault
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tolerance and reusability of m-UCGLE is also proved by the simulation of failures of different
components. Various parameters have impacts on the convergence. Thus, the auto-tuning scheme
is required in the next step, where the systems can select the dimensions of Krylov subspace,
the numbers of eigenvalues to be computed, the degrees of Least Squares polynomial according
to different linear systems and cluster architectures. Different deflation and polynomial pre-
conditioned iterative methods could be transformed according to this proposed paradigm, and
further study should be done to compare them. A complete runtime for this paradigm should
be developed to replace the prototype implementation of this chapter.
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Chapter 8
Auto-tuning of Parameters

Different optimization techniques were developed to accelerate convergence of Krylov
iterative methods in order to reduce the number of iterations and calculate solutions in
the shortest possible time. UCGLE and m-UCGLE are more complicated because it is
a combination of several different computational components. Thus, a large number of
parameters affect their numerical and parallel performance. The purpose of this chapter
is to design adaptive methods to automatically optimize and select these parameters so
that they can be adapted to different systems and hardware. In this chapter, we will
at first study different auto-tuning schemes and optimizations that have contributed to
them. Then we will focus on the proposition of heuristic algorithm to automatically select
the parameters of Least Squares polynomial preconditioning of UCGLE at runtime.

8.1 Auto-tuning Techniques

Current supercomputer have hierarchical architectures, with millions of cores utilizing non-
uniform memory access and hierarchical caches. The introduction of GPUs and other accelera-
tors has increased the heterogeneity of computers. Therefore, it is increasingly difficult to tune
the performance of software. Moreover, the science and industrial applications on the super-
computing systems tend to be more and more complex. It is necessary to propose strategies
and methods to automatically adjust them for optimal performance. Auto-tuning refers to the
automatic generation of a search space of possible implementations of a computation that are
evaluated through models and/or empirical measurement to identify the most desirable imple-
mentation [22]. The main goal of auto-tuning is the minimization of execution time of appli-
cations. If the auto-tuning schemes with different objectives are combined together, this might
achieve to optimize the numerical and parallel performance, the energy efficiency and reliability
of applications.

8.1.1 Different Levels of Auto-tuning

Different aspects affect the performance of applications on supercomputers. In this section, we
will discuss different levels of auto-tuning that are relatively different in appearance but have

183



Chapter 8 – Auto-tuning of Parameters

the same goal: reduce computation time to achieve a solution.

8.1.1.1 Algorithm Auto-tuning

The first level is to auto-tune the algorithm for a fixed application. Different numerical meth-
ods have been designed for problems with different characteristics. These methods have their
own unique advantages and limitations. Numerical toolkits such as PETSc/SLEPc and Trilinos
provide a large number of parallel implementation of solvers for large sparse linear systems and
eigenvalue problems, including the direct methods and iterative methods with different precon-
ditioning techniques. It is difficult for the user to select the routines to correctly and efficiently
solve their problems. Thus different auto-tuning schemes should be proposed to classify numer-
ical methods. Lighthouse Project [161] use the machine learning methods to classify the solvers
and preconditioners based on a small number of features of applications. These classifiers are
trained based on a large number of training set of linear systems and eigenvalue problems. For
the users, the features of applications are used as the input, and the output is a collection of
solvers and their configurations that may perform well. In [156], the development of this project
is described, with an emphasis on the analysis of the sparse eigensolvers provided by SLEPc.

8.1.1.2 Code Variant Auto-tuning

The second level is to auto-tune the code variants inside the selected algorithm. Code variants in
complex applications represent alternative implementations of a computational operation. For
each code variant, it has the same interface, and its functionality equivalent to the other vari-
ants but may employ fundamentally different algorithms or implementations strategies [154]. A
well-known example is the implementation of SpMV operation, which is the kernel of Arnoldi
reduction of Krylov iterative methods. In Tpetra package of Trilinos, the SpMV operation is
implemented with different matrix storage format across different parallel architectures, e.g.,
MPI for distributed-memory systems, OpenMP and Pthreads for shared memory platforms,
and CUDA for GPUs. Aquilanti et al. [12] proposed the auto-tuning strategy for the incomplete
orthogonalization inside parallel GMRES. OSKI (Optimized Sparse Kernel Interface) library im-
plemented by Vuduc et al. [216] is a collection of low-level primitives that provide automatically
tuned computational kernels on sparse matrices, for use by solver libraries and applications. A
fully run-time auto-tuned sparse iterative solver with OpenATLib was introduced by Naono et
al. [158]. Using APIs of OpenATLib, a fully auto-tuned sparse iterative solver called Xabclib
was developed, which provides numerical computation policy that can optimize memory space
and computational accuracy.

Different Domain Specific Languages and code generation strategies are also provided, which
are able to generate the parallel optimized code variant specified for different computing archi-
tectures from a serial algorithm, e.g., PATUS [57] presented by Christen et al., which is a code
generation and auto-tuning framework for parallel iterative stencil computations on modern mi-
croarchitectures; and Pochoir [207] a Domain Specific Language in which the user only specifies
a stencil (computation kernel and access pattern), boundary conditions and a space-time domain
while all optimizations are handled by a compiler.
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8.1.1.3 Hardware Auto-tuning

The third level is to auto-tune the applications according different computer architectures. In
order to achieve performance portability of algorithms, decisions on parallelization and memory
hierarchy optimizations (e.g., data placement, blocking/tiling and tile size) will necessarily de-
pend on the architecture, e.g., Chen et al. [53] proposed a model-guided empirical optimization
for memory hierarchy; Ren at al. [178] introduced a tuning framework for software-managed
memory hierarchies, and Katagiri et al. [121] presented a smart tuning strategy for restart
frequency of GMRES with hierarchical cache sizes.

8.1.1.4 Parameter Auto-tuning

This last level is the auto-tuning of various complex numerical parameters of algorithms. The
modern applications on supercomputers are complex, both their numerical and parallel per-
formance depends on different parameters, e.g., for the Krylov iterative methods with restart
strategy, if the Krylov subspace size m is small, their parallel performance is good, since the
limitation of the requirement of memory and the reduction of global communications of SpMV
operations, but small m might slow down even diverge the iterative methods for solving selected
linear systems, which results in the increase of time and energy consumptions. Thus for the
parameter m, an auto-tuning strategy should be proposed to make a balance between its nu-
merical and parallel performance. Iterative methods reconstructed based on Unite and Conquer
approach are the combination of different computational components. The separation of the solv-
ing and preconditioning parts increase the flexibility of applications, and the auto-tuning scheme
is critical for them to get the optimal performance. The proposition of auto-tuning scheme for
multiple parameters is not easy. In [11, 10], Aquilanti et al. tried to propose an auto-tuning
for the Krylov subspace size and the incomplete orthogonalization inside Arnoldi reduction at
the same time. Boillod-Cerneux [38, 39, 37] investigated the possibility to propose auto-tuning
scheme by mixing multiple restarting strategies.

8.1.2 Selection Modes

The different levels of alternatives for auto-tuning are selected by different search modes. In
this section, we discuss the empirical search, the machine learning based and the automatic
contextual selection.

8.1.2.1 Empirical Search Selection

The simplest approach for the selections is to execute each code variant, measure its runtime
(or other objective function), evaluate the performance of all variants, select the best one, and
include that variant in the final code to be run. These are called empirical auto-tuners. For a
compute kernel of a sparse matrix, the search space is the set of data structures and the operation
implementation corresponding to these structures. Each structure is designed to improve the
locality (thus improving computational performance) by exploiting a class of sparse matrix
format with specific characteristics: blocks, diagonals, bands, symmetry or the combination of

185



Chapter 8 – Auto-tuning of Parameters

all this. Thus, the analysis is based on heuristic and empirical data taking into account not only
the data used at runtime, but also the mathematical context.

8.1.2.2 Machine Learning Based Selection

When analytical performance models based on empirical search become too difficult for a given
complicated scientific workload and HPC architecture, machine learning based selection is an
effective alternative. In this approach, a small subset of parameter configurations (code variants)
are evaluated on the target machine to measure the required performance metrics, and a pre-
dictive model is built by using machine learning approaches. Here, the choice of the supervised
machine learning algorithm for building the surrogate performance model is crucial. Often this
choice is driven by an exploratory analysis of the relationship between the parameter configu-
rations and their corresponding runtimes. Bergstra et al. [35] presented a method for predictive
auto-tuning based on boosted regression trees. They showed that machine learning methods for
non-linear regression can be used to estimate timing models from data, capturing the best of
both approaches. Nitro [153] is a framework for adaptive code variant tuning, which provides a
library interface that permits programmers to express code variants along with meta-information
trained by a machine learning model that aids the system in selecting among the set of variants
at runtime. MasiF introduced by Collions et al. [59] is a tool to auto-tune the parallelization
parameters of skeleton parallel programs. It reduces the size of the parameter space using a
combination of machine learning, via nearest neighbor classification, and linear dimensionality
reduction using PCA.

8.1.2.3 Automatic Contextual Selection

For most numerical methods, their performance depends on several parameters. The effects of
these parameters might change in different manners at runtime, especially for the restarted
iterative methods. It is impossible for the users to select the optimal parameters in advance.
These optimal parameters for each restart might vary, depending on the many factors, such as
the selected preconditioners, the convergence rate, etc. The automatic contextual selection means
that certain parameters of the restarted iterative method are dynamically adjusted based on the
selected criteria and heuristics. This kind of selection is always in real-time. These techniques
used at runtime depend on heuristics computed in real-time without dependence on the data or
on the computing environment (whether software or hardware). In addition, these techniques
also have the role of assisting the users during the parameterization by proposing tuners for
specific purposes, e.g., minimizing the calculation time, maximizing numerical accuracy. All of
this will be explored in the following sections through the auto-tuning of internal parameters
of UCGLE, which have significant impacts on the convergence of GMRES Component. The
approach we have just discussed focuses on the contextual optimization of computation, but
this optimization also exists in terms of computing resources, data structures, and so on.

186



8.2. UCGLE Auto-tuning by Automatic Selection of Parameters

8.2 UCGLE Auto-tuning by Automatic Selection of Parameters

As presented in Section 5.4.2, many parameters affect the convergence performance of UCGLE.
The impacts of selected parameters are also evaluated in Section 5.5.2, including the Krylov sub-
space size of GMRES Component mg, the Least Squares polynomial degree d, the Least Squares
polynomial preconditioning applied times lsa, the Least Squares polynomial preconditioning
applied frequency freq, the number of eigenvalues approximated by ERAM Component neigen.
These comparison results help us well understand the way of different parameters to influence
the convergence of GMRES Component inside UCGLE. However, the selection of optimal value
for each parameter is an arduous mission. Since the selected values vary from one application
to another. Moreover, some parameters also depend on the hardware systems. It is necessary to
propose an auto-tuning scheme for UCGLE which is able to automatically select the best values
for all parameters at runtime. In this section, we select one of the most important parameters
in UCGLE, and propose an auto-tuning scheme which adjusts this parameter at runtime, and
makes sure the performance with the least loss compared with the case using the best parameter
that we have manually selected. The auto-tuning of parameters for UCGLE should be proposed
based on the automatic contextual selection.

8.2.1 Selection of Parameter for Auto-tuning

The Krylov subspace size mg is an important factor for both numerical and parallel performance
of UCGLE. However, the auto-tuning of this parameter is simple. In [10], Aquilanti introduced
the bi-directional scheme based on the hierarchical cache sizes for the auto-tuning of Krylov
subspace in GMRES. It is better to choose the most representative parameters in UCGLE for
the auto-tuning tests, which are the ones related to the Least Squares polynomial precondi-
tioning. The most relevant parameters are the Least Squares polynomial degree d and the Least
Squares preconditioning applied times lsa. Theoretically, it is better to select high Least Squares
polynomial degree, since the larger d is, the better approximation of Least Squares residual will
be, and the more acceleration will occur on the GMRES Component. However, in practice, this
parameter is limited by the fact that the moment matrix Md is difficult to construct with the
increase of Least Squares polynomial degree. Additionally, there will also much more SpMV
operations for the Least Squares preconditioning, which introduce more global communications
across all the computing units of GMRES Component. lsa is a complementary to improve the
speedup of Least Squares polynomial preconditioning by performing several times a small de-
gree polynomial. Compared with d, the increase of lsa is cheap, which introduces more AXPY
operations without global communications. Hence, we decide to propose an auto-tuning scheme
for lsa in the next section.

8.2.2 Multi-level Criteria

Fig. 5.15 in Section 5.5.2 evaluate the influence of lsa on the convergence of GMRES Component.
In this figure, we can find that when lsa is small, with the increase of its value, there will be more
acceleration on the convergence. At the same time, the residual norm for restarting will also be
enlarged. With the several times repeat of Least Squares polynomial before applying on the
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restarting, the acceleration of Least Squares polynomial preconditioning will also be enhanced.
Meanwhile, as presented in Section 5.3, the Least Squares polynomial is constructed with a few
dominant eigenvalues, and the ones excluded the polygon will make the algorithm numerically
instable. This instability will be still amplified if the Least Squares polynomial is repeated lsa
times. That is the reason that the peaks in Fig. 5.15 is enlarged with the augmentation of lsa.
In the end, if this amplification of instable errors cannot be compensated by the acceleration of
Least Squares polynomial, the speedup becomes weak, and the GMRES Component might even
obtain the divergence.
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Figure 8.1 – Heuristic of lsa in UCGLE.

It is necessary to select suitable value of lsa for different linear systems. The auto-tuning
proposed should be able to vary this parameter inside a given interval depending on several pre-
defined criteria. In this dissertation, we implement two modes to vary the value of lsa, which is
to reduce or increase this parameter value by a fixed step size for each Least Squares polynomial
preconditioning from a given maximum or minimum value. As shown in Fig. 8.1, we list three
important parameters to define the multi-level criteria as follows:

(1) ||ri−1||2: Euclidean norm of previous time restarting residual vector before the Least
Squares polynomial preconditioning;

(2) ||ri||2: Euclidean norm of this time restarting residual vector before the Least Squares
polynomial preconditioning;

(3) ||Ri||2: this time restarting residual norm after the Least Squares polynomial precondi-
tioning.

In order to auto-tune the parameter lsa, we define three different criteria.
1st criterion: The first criterion cri is defined as follows, with i indexing different restart

times of GMRES Component.
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cri = ||ri||2
||ri−1||2

. (8.1)

This parameter is defined as a ratio between ||ri||2 and ||ri−1||2. ||ri||2 and ||ri−1||2 represent
respectively the Euclidean norm of this and previous time restarting residual vector before
the Least Squares polynomial preconditioning, shown as Fig. 8.1. This criterion is defined to
quantify the acceleration rate (see the slope of the red dashed line in Fig. 8.1 which connects two
restarting points) of UCGLE with previous value of lsa, and the modification of this parameter
for this time of Least Squares polynomial preconditioning should depend on the evaluation of
cri. cri < 1 means the convergence of GMRES component, and the smaller it is, the more
significant the acceleration will be. If cri = 1, there is no convergence for last time m steps of
GMRES. If cri > 1 which means ||ri−1||2 > ||ri||2, and the GMRES Component diverge. This
first criterion is weak, which assures the convergence of GMRES, but it is impossible to control
the acceleration rate by Least Square polynomial preconditioning.

2nd criterion: The second criterion ratioi is defined as follows, with i indexing different
restart times of GMRES Component.

ratioi = ||Ri||2
||ri||2

. (8.2)

This parameter is defined as a ratio between ||Ri||2 and ||ri||2. ||Ri||2 represents the restarted
residual norm after the Least Squares polynomial preconditioning, shown as the peaks of the
residual norms for the restarting in Fig. 8.1. The parameter ratioi defines the amplification
of Least Squares polynomial preconditioning residual norm over the residual norm before the
preconditioning. In other words, the value of ratioi determines the length of peaks in Fig. 8.1.
In UCGLE, the peaks cannot be too large, otherwise the convergence will be slowed down,
and GMRES Component might easily obtain the divergence. The definition of this criterion
gives an relative upper limit for the residual norm generated by Least Squares polynomial
preconditioning, and it will select the optimal value of parameter lsa for each restarting at
runtime. This parameter can be seen as a strong factor to evaluate the quality of Least Squares
polynomial preconditioning.

3rd criterion: The third criterion ||Ri||2 is defined as follows, with i indexing different restart
times of GMRES Component.

||Ri||2. (8.3)

The definition of this criterion is really simple, which is just the absolute residual norm
generated by Least Squares polynomial for each restarting. This parameter determines that the
absolute norm of Least Squares polynomial preconditioning should not be too enormous. The
second criterion ratioi and ||Ri||2 can be seen as a complementary for each other. The former
defines a relative amplification of residual norm caused by lsa, and the latter introduces a roof for
the absolute enlargement of this residual norm. The combination of the two criteria can control
the Least Squares polynomial preconditioning norm always in a good situation, and avoid the
possibility of slowing down or divergence. The good selections of thresholds for them are really
important.
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8.2.3 Heuristic and Auto-tuning Algorithm

After the definition of criteria, in this section, we present the heuristic and auto-tuning algorithm
for selecting lsa at runtime. We give respectively the algorithm and workflow in Algorithm 35 and
Fig . 8.2. Before the introduction of the heuristic in detail, different parameters of auto-tuning
are listed as below:

• lsa: the initial value of applied times of Least Squares polynomial preconditioning pre-
defined by users, the automatic selection this parameter at runtime will start from this
value, by two different modes.

• cri = ||ri||2
||ri−1||2 : the 1st criterion to control the convergence rate of GMRES Component. The

threshold of this criterion can be prescribed by the users, which will define the acceptable
of convergence rate. However, in this dissertation, we fix it to be 1, which means this
criterion judge only if GMRES Component converge or not.

• ratioi = ||Ri||2
||ri||2 : the 2nd criterion to determine the length of peaks generated by Least

Squares polynomial preconditioning. This criterion the relative amplification of residual
norm.

• ||Ri||2: the 3nd criterion to determine the absolute amplification of residual norm produced
by Least Squares polynomial preconditioning.

• lsai: the value of lsa determined by the 1st criterion cri for the restart indexing by i.
Hence, the initial given value lsa1 = lsa.

• lsai: the value of lsa determined by the 2nd criterion ratioi and 3rd criterion ||Ri||2. Thus
it is the final determined value which will be applied to the Least Squares polynomial
preconditioning.

• lsamin: the minimum value that lsa should not break in max mode.

• lsamax: the maximum value that lsa should not break in min mode.

• ratiomax: the threshold of ratioi, and the acceptable value should not exceed it.

• mode: two modes to vary the value of lsa at runtime:

– max: maximum mode which decreases lsai starting from lsa.

– min: minimum mode which increases lsai starting from lsa..

• normmax: the threshold of ||Ri||2, and the acceptable value should not exceed it.

• length: the step length to vary the value of lsai, either in max or min mode.

• m: the Krylov subspace of GMRES Component. this parameter is fixed when auto-tuning
lsa.

• d: the degree of Least Squares polynomial. This parameter is also fixed to a given value
during the procedure of auto-tuning.
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Algorithm 35 GMRES Component Implementation for Auto-tuing UCGLE
1: function AT-UCGLE(mode, lsa, lsamax, lsamin, length, normmax, ratiomax)
2: i = 1, lsa1 = lsa and give initial guess x0
3: while not converged do
4: ri−1 = b−Axx−1
5: ri = b−Axi , and vi = ri−1

||ri−1||2
6: for q = 1, 2, · · · ,m do
7: Compute hp,q = (Avq, vp) for p = 1, 2, · · · , q
8: Compute vq+1 = AVq −

∑q
p=1 hp,qvp, hq+1,q = ||vq+1||2, and vq+1 = vq+1/hq+1,q

9: end for
10: xi = xi−1 + Vmym, with ym minimize ||βe1 −Hmy||2
11: if use Least Squares polynomial preconditioning then
12: if i > 1 then
13: cri = ||ri||2

||ri−1||2
14: if cr < 1 then
15: switch mode do
16: case max
17: lsai = lsa− length× (i− 1)
18: if lsai < lsamin then
19: lsai = lsamin
20: end if
21: end case
22: case min
23: lsai = lsa+ length× (i− 1)
24: if lsai > lsamax then
25: lsai = lsamax
26: end if
27: end case
28: end switch
29: end if
30: end if
31: for j = 0, 1, · · · , lsai − 1 do
32: for i = k, 2, · · · , d− 1 do
33: ωk+1 = 1

βk+1
[Aωk − αkωk − δkωk−1]

34: xk+1 = xk + ηk+1ωk+1
35: end for
36: xi = xi + xl
37: Ri = b−Axi
38: ratio = ||Ri||2

||ri||2
39: if ratio < ratiomax and ||Ri||2 < normmax then
40: continue
41: else
42: lsai = j + 1
43: break
44: end if
45: end for
46: end if
47: i = i+ 1
48: Go to 4 to restart GMRES
49: end while
50: end function
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After the introduction of parameters in the auto-tuning algorithm, here we present the auto-
tuning scheme in detail. This auto-tuning can be divided into two parts. This first part is to
varying the value lsa in either max or min mode according to the 1st criterion cri. After am-step
GMRES indexing by i, if the convergence achieves, GMRES Component will exit. Otherwise,
if Least Squares polynomial preconditioning is not available, GMRES will be restarted in a
standard way using xi as a initial vector for the next m-step GMRES. If the preconditioning is
applicable, and i = 1, the value of lsa1 is given as lsa. For i > 1, the lsai−1 will be evaluated
by calculating cri. If cri < 1, which means the GMRES with lsai−1 is able to converge. We can
continue to try to generate a new lsai based on the different modes. If the lsai is either too
large or too small for the two modes, lsai will be fixed to be lsamin and lsamax, respectively. In
a word, this part of auto-tuning will produce a value lsai based on the condition of cri.

The second part of the auto-tuning is more important, since it is directly linked to the
iterations of Least Squares polynomial preconditioning. For each i, the loop from line 31 to 45
in Algorithm 35, is the operation that applies lsai times Least Squares polynomial. In this loop,
for each j ∈ 0, 1, 2, · · · , lsai − 1, a temporary solution xl will be generated by a d degree Least
Squares polynomial. Then xl will be continuously added to xi. For each j, current residual Ri
can be defined as b − Axi, and a ratio = ||Ri||2

||ri||2 will also be calculated. If the condition that
ratio < ratiomax and ||Ri||2 < normmax are both satisfied at the same time, it means that
both the peak and absolute residual norm sizes are acceptable. Thus the loop can continue
until the end of loop. In this case, we have lsai = lsai. If at least one of the two conditions
cannot be satisfied, it means that either the peak size or the absolute residual Least Squares
polynomial preconditioning is too large, and the loop will be immediately broken. In this case,
we have lsai < lsai. In summary, the real value of lsa applied for the Least Squares polynomial
preconditioning is lsai. The combination of criteria ratioi and ||Ri||2 can really select the good
value of lsai at runtime, which assures the rapidest convergence produced by Least Squares
polynomial preconditioning.

8.2.4 Experiments

After the proposition of heuristic, we will evaluate this auto-tuning scheme in this section.

8.2.4.1 Test Methods Setting

Since we have evaluated the influence of different parameters on the convergence using the test
matrix utm300 from the Matrix Market collection, we continue to use it for the auto-tuning
tests. The Krylov subspace size m for GMRES Component in different methods is fixed as 90,
and the degree of Least Squares polynomial is set to be 10. The parameters length, ratiomax,
normmax are respectively given as 2, 1.0×105 and 1.0×104 for UCGLE with auto-tuning scheme
(denote it as AT-UCGLE). We list the test methods as below.

• UCGLE(lsa = 4): UCGLE implementation without auto-tuning scheme, and lsa = 4;

• UCGLE(lsa = 10): UCGLE implementation without auto-tuning scheme, and lsa = 10;

• UCGLE(lsa = 20): UCGLE implementation without auto-tuning scheme, and lsa = 20;
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Figure 8.2 – Auto-tuning workflow for UCGLE.

• AT-UCGLE(max, lsa = 20): UCGLE implementation with auto-tuning scheme, varying
the value of lsa in max mode, and initial value of lsa is set to be 20;

• AT-UCGLE(max, lsa = 30): UCGLE implementation with auto-tuning scheme, varying
the value of lsa in max mode, and initial value of lsa is set to be 30;

• AT-UCGLE(min, lsa = 4): UCGLE implementation with auto-tuning scheme, varying the
value of lsa in min mode, and initial value of lsa is set to be 4.

8.2.4.2 Convergence Comparison

The convergence comparison for UCGLE with and without auto-tuning is given as Fig. 8.3. In
this figure, firstly we can find that UCGLE(lsa = 10) has the fastest convergence. However, it is
difficult for UCGLE(lsa = 4) and UCGLE(lsa = 20) to achieve the convergence. For the former,
the peak for each restarting is relative small, and the acceleration of Least Squares polynomial
preconditioning is weak. For the latter, the absolute norm of restart residual generated by Least
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Figure 8.3 – Convergence Comparison for UCGLE with and without Auto-tuning.

Squares polynomial is too large which exceeds 1.0× 1015, and it is also difficult for UCGLE to
quickly converge. It is not marked in Fig. 8.3, but a large number of tests indicate that lsa = 10
is the optimal value for UCGLE without auto-tuning scheme if all the other parameters are
fixed.

In practice, for a given application, the users are unable to directly select the optimal value
for lsa in advance. Thus the auto-tuning scheme is proposed to automatically select the best
value inside a given interval at runtime. For AT-UCGLE(max, lsa = 20) and AT-UCGLE(max,
lsa = 30) which start the iterations with a very large value for lsa (respectively 20 and 30),
they can obtain the convergence much more quickly than UCGLE(lsa = 20). They need a
little more steps for the convergence compared with the best case UCGLE(lsa = 10). For AT-
UCGLE(min, lsa = 4) which starts the iteration with a small pre-defined lsa = 4, its iteration
steps for convergence is also competitive with the best case UCGLE(lsa = 10). For AT-UCGLE
in max starts from a very large lsa, it will produce an enormous residual normal which damages
the convergence (see UCGLE(lsa = 20) and AT-UCGLE(max, lsa = 20) in Fig. 8.3). The
constraint of ||Ri||2 can ensure this norm always in an acceptable condition, and the speedup of
convergence is obvious. In a word, two modes of varying lsa are both effective to approximate
the best numerical performance with a too large or small prescribed lsa.

Table. 8.1 shows the exact number of iterations and time of execution for different methods.
Moreover, both the effectiveness of iterations and time are also given in this table. The iteration
effectiveness is defined as the ratio between the iteration number of the best case UCGLE(lsa =
10) and the one of the method to be compared. The time effectiveness can be also defined in a
similar way. In this table, we can find that AT-UCGLE(max, lsa = 20) achieve 95.8% iteration
effectiveness and 97.2% time effectiveness. AT-UCGLE(min, lsa = 4) can achieve respectively
93.4% and 92.1% for the iteration and time effectiveness. The effectiveness of iteration and time
for AT-UCGLE(max, lsa = 30) are respectively 88% and 85.3%.
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Table 8.1 – Iteration steps and Time Comparison.

Methods Iterations Iteration Effectiveness Time (s) Time Effectiveness

UCGLE(lsa = 10) 1169 100% 0.35 100%
UCGLE(lsa = 4) 2513 46.5% 0.72 48.6%
UCGLE(lsa = 20) 3226 36.2% 1.08 32.4%

AT-UCGLE(max, lsa = 20) 1220 95.8% 0.36 97.2%
AT-UCGLE(max, lsa = 30) 1328 88% 0.41 85.3%
AT-UCGLE(min, lsa = 4) 1252 93.4% 0.38 92.1%

In summary, two modes are both meaningful with high iteration and time effectiveness
compared with the best case of UCGLE without auto-tuning. However, the selection of initial
value of lsa value is still a factor which influences the convergence. In max mode, if lsa is extreme
large, the effectiveness might be a little low. That is the reason that AT-UCGLE(max, lsa = 30)
achieves only 88% iteration effectiveness, but AT-UCGLE(max, lsa = 20) can achieve about
95.8%.

8.2.4.3 Analysis

The auto-tuning scheme proposed in this dissertation is able to select a good value for the
parameter lsa in two steps for each time Least Squares polynomial preconditioning. For each
restarting indexing i, the first step is to generate a lsai using a simple heuristic based on cri. This
parameter can ensure the convergence for the next m-steps GMRES not worse than the previous
one, but it cannot make decision for the speedup of Least Squares polynomial preconditioning,
which is the kernel of UCGLE. The second step is to select a best lsai according ratioi and
||Ri||2. Table 8.2 gives the comparison of lsai and related lsai at each restarting inside AT-
UCGLE. In this table, we can find the benefits of the criteria ratioi and ||Ri||2, which can limit
the value of lsai always in a good situation.

Table 8.2 – lsai vs lsai for each restart in AT-UCGLE.

Method
Restarting times

1 2 3 4 5 6 7 8 9 10 11 12 13 14

AT-UCGLE(max, lsa = 20) lsai 20 18 16 14 12 10 8 6 4 4 4 4 4
AT-UCGLE(max, lsa = 20) lsai 5 8 8 9 10 8 6 6 4 4 4 4 4
AT-UCGLE(max, lsa = 30) lsai 30 28 26 24 22 20 18 16 14 12 10 8 6 4
AT-UCGLE(max, lsa = 30) lsai 5 8 8 9 10 10 10 10 11 10 10 8 6 4
AT-UCGLE(min, lsa = 4) lsai 4 6 8 10 12 14 16 18 20 22 24 26 28
AT-UCGLE(min, lsa = 4) lsai 4 6 8 10 11 10 9 11 10 11 11 10 11

8.3 Conlusion

In this chapter, we investigated the different auto-tuning modes for the iterative methods. We
implement an automatic contextual selection scheme for the selected parameter of UCGLE. This
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auto-tuning heuristic is established with the definition of multiple level criteria and a workflow for
the selection of best value for parameters at runtime. The effectiveness of proposed auto-tuning
scheme is proved by the experimental results using one test matrix. The experiments show the
importance of auto-tuning for UCGLE method. The proposed scheme should be verified with
more test matrices. In the future, a more flexible workflow should be proposed to vary the value
inside a given interval. Moreover, UCGLE has a large number of parameters which have impact
on its numerical and parallel performance, hence the final goal is to implement an adaptive
version of UCGLE, which can auto-tune various parameters at the same time.
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Chapter 9
YML Programming Paradigm for Unite and
Conquer Approach

After the validation of numerical and parallel performances of m-UCGLE, a major diffi-
culty to profit from Unite and Conquer methods including m-UCGLE is to implement the
manager engine which can well handle their fault tolerance, load balance, asynchronous
communication of signals, arrays and vectors, the management of different comput-
ing units such as GPUs, etc. In Chapter 7, we tried to give a naive implementation
of an engine to support the management computational components on the homoge-
neous/heterogeneous platforms based on MPI_SPAWN and MPI non-blocking sending
and receiving functionalities. The stability of this implementation of the engine cannot
always be guaranteed. Thus we are also thinking about to select the suitable workflow/-
task based environments to manage all these aspects in the Unite and Conquer approach.
YML1 is a good candidate, which is a workflow environment to provide the definition of
the parallel application independently from the underlying middleware used. The special
middleware and workflow scheduler provided by YML allows defining the dependencies of
tasks and data on the supercomputers [69]. YML, including its interfaces and compiler to
various programming languages and libraries, will facilitate the implementation of Unite
and Conquer based methods with different numerical components. In this chapter, firstly
we give a quick summary of the YML framework and then analyze the limitations of
existing YML implementation for Unite and Conquer approach. In the end, we propose
related solutions.

9.1 YML Framework

YML is a workflow environment dedicated to the execution of parallel and distributed ap-
plications on different Grid platforms and supercomputers. The YML framework enables the
description of the complicated parallel applications based on the tasks. The task-based applica-
tion written based on YML language can be executed on several runtime systems or middleware
without changes. YML is a software layer between the end-user and the runtime system of a

1. http://yml.prism.uvsq.fr/
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supercomputer and/or the middleware of a distributed system, which is in charge of communi-
cation.

9.1.1 Structure of YML

YML is composed of three main parts: an IDL, a kernel and a backend allowing interactions
with the runtime system or middleware. As shown in Fig. 9.1, the kernel of YML consists
of a high-level workflow language, a just-in-time scheduler and a system of service integration.
The high-level language (YvetteML) which is XML-based permits the description of the graph of
application with dependencies or communications. The language integrates the ability to describe
computation and their workflow on the same time. This language provides a way to specify the
communication between components during the execution of the application. The graph can
contain parallel and sequential sections and standard construction of most languages including
branching, exceptions, and loops. The graph language describes the dependencies between the
components during the execution by the notion of events. The compiler translates the graph of
components of applications in an internal representation containing a set of components calls.
The scheduler manages application execution and acts as a client for the underlying runtime
system accurately requiring computing resources. During the execution, the scheduler detects
tasks ready for execution and solves their dependencies at runtime. Each scheduling step may
generate different types of tasks (parallel or serial), which are supported dedicated middleware
and backends. With the component-oriented design of YML, a service in YML can be any kind
of components such as a library, a data repository, or a catalog of binary components. The
computational components can be written in different programming languages like C, C++ and
XcalableMP.

9.1.2 YML Design

The aim of YML is to provide users with an easy-of-use method to run parallel applications on
different Grid platforms and supercomputers. The framework can be divided into three parts
which are the end-users interface, frontend, and backend. The end-users interface is used to
provide an intuitive way to submit their applications, which are described using a workflow
language YvetteML. Frontend is the main part of YML which includes a compiler, scheduler,
data repository, abstract and implementation components (shown as Fig. 9.1). The backend is
the part to connect different Grid, P2P and cluster middlewares.

The development of a YML application is based on the components approach, and then we
will discuss the three kinds of components in detail.

• Abstract component defines the communication interface with the other components.
This definition gives the name, and the communication channels correspond to a data
input, data output or both and are typed. This component is used in the code generation
step and to create the graph.

• Implementation component is the implementation of an abstract component. It de-
scribes computations through YvetteML language. The implementation is done by using
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Figure 9.1 – YML Architecture.

common languages like C or C++. They can have several implementations for the same
abstract component.

• Graph component carries a graph expressed in YvetteML instead of a description of
computation. It provides the parallel and sequential parts of an application and the syn-
chronization events between dependent components. It is a straightforward way for scien-
tific researchers to develop their application.

Moreover, those three components are independent of middleware, which can be reused on
various platforms. In order to run an application on other computing environments with a
different middleware, the user needs to compile each component for the selected middleware.
YML eases components creation. Existing codes can be reused by importing libraries as some
new components without any adaptation. Those components are called by the application when
computational tasks have to be started. Moreover, the notions of abstract and implementation
descriptions of components bring three interesting features for the scheduler that can be included
in the framework.

• data migration can be easily quantified at the start and at the end of the application
thanks to the abstract definition.

• data used by a component is clearly defined in the abstract and implementation defini-
tions, therefore this can be used in a checkpointing feature to move a component from a
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node to an other.

• computation time of a component can be evaluated thanks to the implementation defi-
nition.

The use of Data Repository Servers hides the data migrations to the developer and ensure
that necessary data are always available to all components of the application.

9.1.3 Workflow and Dataflow

The workflow programming environment YML facilitates the expression of parallelism for the
user, which is able to implement the applications in a way very close to the algorithms. YvetteML,
the high-level language provided by YML, is able to describe easily the complex workflow of
applications. The Abstract provides the interface of components including the input and output
data. When a graph of tasks is constructed, the dataflow can be deduced by the input/output
data types defined in the Abstract of components. As shown in Fig. 9.2, YML enables the
optimization combining two aspects:

• workflow;

• dataflow

Out: A

Out: B

Out: C

In: A, B, C

Figure 9.2 – YML workflow and dataflow.

9.1.4 YvetteML Language

The YvetteML language provides different features for creating applications. These features are
described as below:
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• Parallel Section: they are used to explicitly define sections which will be executed in
parallel. The formule of this operation is given as: par section 1 // ... // section N endpar ;

• Sequential loop: they are loops with iterators, which are executed sequentially. The
formule of this operation is given as: seq (i:=begin;end) do ... enddo;

• Parallel loop: they are loops with iterators, which are executed in parallel. The formule
of this operation is given as: par (i:=begin;end) do ... enddo;

• Conditional structure: they are the condition structure to control the execution of tasks
by the condition. The formule of this operation is given as: if (condition) then ... else ...
endif ;

• Synchronization: The formule of this operation is given as: wait(event) / notify(event);

• Component calls: the role of component calls is to submit a new task to the Local
Ressource Manger providing the name of the component defined earlier and the different
input parameters. The formule of this operation is given as: compute NameOfCompo-
nent(args,...,...).

9.1.5 YML Scheduler

In computing, scheduling is a method in which work specified in some way is assigned to resources
that complete work. The scheduler performs scheduling activities, and the scheduler is usually
implemented to keep all computing resources busy. A scheduler may aim to one of many goals,
maximizing throughput (the total amount of work completed per time unit), minimizing response
time (time from work becoming enabled until the first point it begins executing resources),
minimizing latency (the time between work becoming enabled and its subsequent completion)
or maximizing fairness (equals CPU time to each process, or more generally appropriate times
according to the priority and workload of each process).

9.1.5.1 Scheduler Architecture

For the scheduling, the YML environment is defined in two parts:

(1) The first part is what we call the frontend. Its mission is to analyze the application code
written by YvetteML and dispatch the tasks for the backend and middlewares.

(2) The second part is the backend. It deals with the distribution of tasks onto different
computing units.

9.1.5.2 Frontend

Now we are talking about the scheduler of YML. It is responsible for reading the dependency
graph by compiling the graph of application. This graph contains all inner-steps dependencies.
The scheduler is closely linked to the worker component. Indeed the worker component is a
component responsible for the execution of a service. Services represent computations needed
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for the realization of a workflow process, the execution of a service can be decomposed in the
following steps:

(1) When the worker component is started, it first analyzes a work description. This work
description contains all the information needed to execute the service. It consists of a list
of resources to retrieve from the data repository component, the parameter of the service
as well as the destination of the results. The resources retrieved are the service and its
input. The service is then executed.

(2) It generates a set of results as well as some meta-information such as the status reported
by the service, the list of results produced and a trace of the execution of a service.

(3) The information is published to the data repository component together with the results
of the service.

(4) The worker finally cleans up the peer and finishes its execution. The workflow scheduler
component is responsible for executing workflow processes.

As shown by Algorithm 36, the scheduler executes two main operations sequentially. Firstly,
it schedules the execution of workflow by solving the dependencies among its activities and
submit them to the backend. The generation of new tasks is following a new schedule rule
updated from the scheduler. The second operation is the monitoring of the task currently being
executed. Once tasks have started their execution, the scheduler of the application regularly
checks if new works have entered the finished state. The scheduler interacts with the backend
layer through the data repository and backend components. Every time a work status changed
to ready, the scheduler prepares the execution of a service by creating a script describing the
work. This script is processed by the worker component of the backend layer. In the meantime,
the work channels are stored in an archive in order to be easily exchanged between the data
repository and the worker. If a task is finished, it will be deleted, and its status will be updated
to the scheduler. Besides, the scheduler is able to manage the execution errors of computational
components.

9.1.5.3 Backend

The backend component is responsible for the interaction with the resource scheduler service of
the middleware. It translates the abstract work description composing a workflow into requests
to the resource scheduler of a middleware. Each middleware has its own backend component.
The backend component acts as a client of the middleware. The abstract work request which
is processed by the backend component leads to the execution of a worker component on a
peer selected by the middleware resource scheduler. The worker component analyzes the work
description and is responsible for its execution. Its means the acquisition of the concrete service
used to do the computation and the data required for the computation. Then, the worker executes
the concrete service corresponding to the work. And finally, the worker as well as the kernel layer
interact with the data repository component. This component is responsible for the acquisition
as well as the publishing of data in the workflow environment. The model thus defines two
operations:
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Algorithm 36 YML Scheduler
1: while status == EXECUTING do
2: while task == finished do
3: ++taskFinished
4: delete(task)
5: end while
6: UpdateStatus
7: if status==ERROR then
8: continue . Task terminates with error, execution stopped
9: end if

10: UpdateSchedulingRule
11: while (task = nextTaskReady) !=0 do
12: ++taskSubmitted
13: queue(task)
14: end while
15: if !SchedulingPendingTask then
16: break . Execution finished with error
17: end if
18: updateStatus
19: end while
20: finalizeExecution

• put: this operation is used to publish data within a data repository or a network of
repositories. Publishing data is similar to write operation on a memory area;

• get: this operation is used to acquire data stored in a data repository. Acquiring a data is
similar to read operation on a memory area.

The backend component allows the submission of asynchronous invocation of applications
on peers. The resource scheduler selects arbitrary a peer and assigns it to the execution of
the request. The content of the request varies significantly from one middleware to another.
The backend component translates YML service execution into requests understandable by the
resource scheduler of the middleware currently used. A backend component maintains a list of
active requests and a list of finished requests. The polling of the middleware allows the backend
to move requests from the active queue to the queue of finishde requests. In YML, a request
consists in the execution of the worker component by a peer, thus the backend allows YML to
ask the middleware to execute many instances of the YML worker and to be notified when one
terminates.

9.1.6 Multi-level Programming Paradigm: YML/XMP

A multi-level programming model on the supercomputing systems is established by combing
YML and XMP. YML/XMP programming model requires a specific middleware OmniRPC-
MPI. The multi-level parallelism including:

• High level: communication inter nodes/group of nodes

– YML - coarse grain parallelism - asynchronous communication
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• Low level: group of nodes / cores

– PGAS language XMP programming with pragma

The multi-level programming paradigm YML/XMP is supported by the OmniRPC-MPI
middleware. OmniRPC is a thread-safe remote procedure call (RPC) system, based on Ninf, for
cluster and grid environment. It supports typical master/worker grid applications. Workers are
listed in an XML file named as the host file. For each host, the maximum number of job, the
path of OmniRPC, the connection protocol (ssh, rsh) and the user can be defined.

An OmniRPC application contains a client program which calls remote procedures through
the OmniRPC agent. Remote libraries which contain the remote procedures are executed by the
remote computation hosts. There are implemented like an executable program which contains
a network stub routine as its main routine. The declaration of a remote function of the remote
library is defined by an interface in the Ninf IDL. The implementation can be written in familiar
scientific computation language like FORTRAN, C or C++. There are two versions of OmniRPC.
One is for the Grid computing and distributed architecture of large numbers of computers and
the other for supercomputer (OmniRPC-MPI). The scheduler of OmniRPC is simple. It is just a
classic Round-Robin scheduling algorithm. As the term is generally used, time sliced are assigned
to each process in equal portions and circular order, handling all processes without priority (also
known as the cyclic executive).

9.1.7 YML Example

In this section, we give an example to understand the grammar and implementation of YML. The
workflow of this example is given as Fig. 9.3. Its scenario is: firstly two seperate sum operations
of four given floating numbers are executed, which result in two different floating numbers, these
two numbers are added together to output the final results.

`
`

`
`

Figure 9.3 – Workflow of Sum Application.

9.1.7.1 Abstract

The Abstract defines the communication interface with the other components. This definition
gives the name, and the communication channels correspond to a data input, data output or
both and are typed. This component is used in the code generation step and to create the graph.
As shown in the Listing 4, the sum operation requires two input parameters a and b, and an
output parameter res. These three parameters are all of scalar type real.
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Listing 4 Abstract Component Example

<?xml version="1.0" encoding="utf-8"?>
<component type="abstract" name="test_abstract"
description="sum of two doubles">

<param type="real" mode="out" name="res" />
<param type="real" mode="in" name="a" />
<param type="real" mode="in" name="b" />

</component>

9.1.7.2 Implementation

The Implementation Component is the implementation of an abstract component. It provides
the description of computations through YvetteML language. The implementation is done by
using common languages like C, C++ or XMP. As shown by the Listing 5, this sum operation
is implemented with C++ to sum the input parameters a and b into the output parameter res.

Listing 5 Implementation Component Example

<?xml version="1.0" encoding="utf-8"?>
<component type="impl" name="test_impl" description="sum of two doubles">

<impl lang="CXX" libs="">
<header><![CDATA[

#include <stdlib.h>
]]>

</header>
<source lang="CXX" libs="">

res = a + b;
</source>
<footer></footer>

</impl>
</component>

9.1.7.3 Application

The Application carries a graph expressed in YvetteML. It provides the parallel and sequential
parts of an application and the synchronization events between dependent components. The
Listing 6 below describes the workflow given in Fig. 9.3, the two first sum operations are executed
in parallel, and the output of these operations res[0] and res[1] are added together by the
subsequent sum operation, which gives the final output value result.
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Listing 6 Application Component Example

<?xml version="1.0" encoding="utf-8"?>
<application name="test_app">

<description> sum application </description>
<params></params>
<graph>

nb:=2;
par (i:=0; nb-1)
do

compute test(res[i], 1.0, 2.0); #res[0 or 1]= 3.0
enddo
endpar
compute test(result, res[0], res[1]); #result = 6.0

</graph>
</application>

9.2 Limitations of YML for Unite and Conquer Approach

In this section, we analyze the limitations of YML for the implementation of the Unite and
Conquer approach.

9.2.1 Possibility Analysis to Implement UCGLE using YML

In order to analyze the possibility to implement Unite and Conquer methods by YML framework,
in this section, we give the workflow of m-UCGLE as an example (shown as Fig. 9.4). When the
application starts, various number of components/tasks are allocated (e.g., three GMRES, two
s-KS and one B-LSP components in Fig. 9.4). The algorithm of m-UCGLE is decomposed into
a number of computational tasks as below:

• bgmres_init;

• bgmres_ar ;

• bgmres_ls;

• bgmres_precond;

• bgmres_check;

• bgmres_restart;

• ks_init;

• ks_ar ;

• ks_eigen;

• ks_update;

• ks_restart;

• lsp_pretreatment.

The first state for BGMRES and s-KS components are the bgmres_init and ks_init (denoted
as I in Fig. 9.4) which loads the matrix and vectors. Then the ks_ar and bgmres_ar are executed,
which are respectively the Arnoldi reduction inside s-KS and BGMRES components (denoted
as A in Fig. 9.4). For BGMRES, temporary solutions can be approached by bgmres_ls which
solves a Least Squares problem (denoted as L in 9.4). These temporary solutions are checked for
the acceptable tolerance by bgmres_check (denoted as C in Fig. 9.4). If the condition to stop is
satisfied, BGMRES components will exit. For s-KS Components, a number of eigenvalues can be
approximated by ks_eigen (denoted as E in the figure). These eigenvalues are asynchronously
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Figure 9.4 – Tasks and workflow of m-UCGLE.

sent to B-LSP component and it generates the Least Squares polynomial preconditioning pa-
rameters by lsp_pretreatment (denoted as LP in Fig. 9.4). If the convergence of BGMRES are
not achieved, these parameters are asynchronously sent to BGMRES and perform the iterative
steps to generate a new preconditioned residual vector by bgmres_precond (denoted as P in 9.4),
and then restart BGMRES by bgmres_restart (denoted as R in 9.4); if no parameters received
from B-LSP component, BGMRES are restarted with the residual vector gotten from L. For
s-KS Components, after each cycle, a new vector is generated by ks_update which is used as a
new initial vector for the next cycle restarted by ks_restart.

We would like to implement these components inside m-UCGLE and manage their workflow
by the YvetteML language and the related scheduler. However, the actual version of YML has
several limitations of the implementation of restarted iterative methods based on the Unite and
Conquer approach. The first limitation is the lack of a mechanism to handle the asynchronous
communication between the components, and the second is the lack of a mechanism to check
the convergence of restarted iterative methods. In the following sections, we discuss in detail the
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two limitations.

9.2.2 Asynchronous Communications

The first limitation of YML framework for Unite and Conquer approach is that it does not
support the special asynchronous communications (shown as the red dashed arrows in Fig. 9.4)
for the three operations bgmres_precond, ks_eigen and lsp_pretreatment. They send and receive
the eigenvalues asynchronously and preconditioning parameters between different computational
components. In details, this type of operations can be summarized as:

• check the receiving of data asynchronously from other components;

• if received, operate with these data; if not, perform another operation without these data.

9.2.3 Mechanism for Convergence

The second limitation of YML framework for Unite and Conquer approach is the lack of a mech-
anism to check the convergence of iterative methods. In detail, for the BGMRES components
in Fig. 9.4, they all perform the loop of Arnoldi reduction until the convergence criteria are
satisfied or they exceeded the maximum number of iterations allowed. YML does not allow the
mechanism to break the loop in halfway with some given condition. The iterative methods can
only be implemented with a fixed number of iterative steps. This kind of implementations is
inefficient for the iterative methods, and the convergence cannot always be guaranteed. In the
acutal implementation of YML, it is not possible to exit the parallel section/loop of multiple
operations until all of them are finished.

9.3 Proposition of Solutions

We reviewed the grammar and scheduler implementations of YML framework, and propose the
solution of its limitations for Unite and Conquer approach discussed in Section 9.2.

9.3.1 Dynamic Graph Grammar in YML

The special asynchronous communications of Unite and Conquer approach be expressed with
extending YML grammar to support the dynamic graphs.

9.3.1.1 Variable for Dynamic Graph

The dynamic graphs are the types of graph modifiable depends on the variables and/conditions.
The dynamic graph can be supported with the introduction of a new variable for the dynamic
graph in the Abstract components:

<param type="var_graph" mode="inout" name="foo">
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The variable for the dynamic graph can be the mode of in, out or inout. These parameter
may be evaluated and modified inside a task, or only as logical into Yvette “if (logical) then · · ·
else · · · ".

9.3.1.2 Scheduler Component for Dynamic Graph

If the computation to evaluate the logical is too complex, we may use a task with a special
indication, added on the Implementation component, such as “graph_scheduler_evaluation”:
then the scheduler may manage those tasks as others, or run it “itself”.

9.3.1.3 Implementation for m-UCGLE

For the implementation of asynchronous communication, it is enough for creating variables to
manage the dynamic grammar. In this section, we give the templates to implement the three
computational components: bgmres_precond, ks_eigen and lsp_pretreatment. This is only an
example to show the implementation of variables and the related logic inside the components,
so no further detailed information is given. For the rest components without asynchronous
dependencies, they can be normally implemented by YML, and we have no intention to give the
details in this section.

Abstract: three types of Abstract components are constructed as the codes below. In
ks_eigen (shown as Listing 7), a dynamic graph variable eigen is created with the mode "out".
In lsp_pretreatment (shown as Listing 8), a dynamic graph variable lp is created with the mode
"out", and another variable eigen is also created with the mode "in". In bgmres_precond (shown
as Listing 9), a dynamic graph variable lp is also created with the mode "inout".

Listing 7 ks_eigen Abstract Component Implementation

<?xml version="1.0" encoding="utf-8"?>
<component type="abstract" name="ks_eigen_abstract"
description="Eigensolver">
... //defintion of other parameters
<param type="vector_complex" mode="out" name="eigenvalues" />
<param type="var_graph" mode="out" name="eigen" />
</component>

Implementation: three Implementation components are respetively constructed as Listing
10, 11 and 12 . We only give the logic inside each component to manage the dynamic graphs.
In ks_eigen, a eigenvalue problem is solved by LAPACK functions. If enough eigenvalues are
approximated, the dynamic graph variable will be set as "true", if not, it will be as "false".
This variable is output into lsp_pretreatment. In lsp_pretreatment, if the input dynamic graph
variable eigen is "true", Least Squares polynomial pretreatment operation is executed generate
the array lsparams, and lp is set to be "true". The dynamic graph variable in bgmres_precond
is lp input from lsp_pretreatment. If this variable is true, a new Least Squares preconditioning
residual will be generated using lsparams.
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Listing 8 lsp_pretreatment Abstract Component Implementation

<?xml version="1.0" encoding="utf-8"?>
<component type="abstract" name="lsp_pretreatment_abstract"
description="Least Square Pretreatement">
... //defintion of other parameters
<param type="vector_complex" mode="in" name="eigenvalues" />
<param type="var_graph" mode="in" name="eigen" />
<param type="var_graph" mode="out" name="lp" />
<param type="vector_real" mode="out" name="lsparams" />
</component>

Listing 9 bgmres_precond Abstract Component Implementation

<?xml version="1.0" encoding="utf-8"?>
<component type="abstract" name="bgmres_precond_abstract"
description="Least Square Preconditioning">
... //defintion of other parameters
<param type="vector_real" mode="in" name="lsparams" />
<param type="var_graph" mode="in" name="lp" />
<param type="vector_complex" mode="inout" name="residual" />
</component>

9.3.2 Exiting Parallel Branch

The implementation of exiting parallel branch needs the optimization of scheduler. In this sec-
tion, we propose novel implementation of YML scheduler and the related policies for different
types of exiting parallel branch.

9.3.2.1 Different Types of Exiting Parallel Branch

In YML, it provides the parallel section and loop, which are able to define explicitly the sections
and tasks to be executed in parallel. Inside m-UCGLE, the first level parallel sections are the
different types of computational components, including BGMRES, s-KS, and B-LSP. For each
parallel section, a number of tasks can be also executed in parallel, e.g., for a number of BGMRES
components can be generated in parallel to solve the linear systems with a subset of RHSs, that
is the second level of parallel sections inside m-UCGLE. Inside each second level task, a series
sub-tasks are executed in sequence. For the example of restarted iterative methods with YML,
a mechanism for checking the convergence should be established which allows the exiting of
parallel section if some conditions are satisfied. In practice, different modes to exit a parallel
branch are required, as shown by Fig. 9.5. Here we list these modes as below:

(1) the application may exit the parallel branch if all the running tasks are completed (shown
as Fig. 9.5a), e.g., if there are several BGMRES components in parallel to solve linear
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Listing 10 ks_eigen Implementation Component Implementation

<?xml version="1.0" encoding="utf-8"?>
<component type="impl" name="ks_eigen_impl" description="Eigensolver">
<impl lang="CXX" libs="">
<header><![CDATA[ ]] > </header>
<source lang="CXX" libs="">
</source>
/*solving eigenvalue problem in sequence*/
eigen = false;
eigensolver(&eigenvalues);
if (enough eignevalues){

eigen = true;
}
<footer></footer>
</impl>
</component>

systems, this parallel section should be exit if all the BGMRES component achieve the
convergence;

(2) the application may exit the parallel branch if only one task among all are completed
(shown as Fig. 9.5b), e.g., in the MERAM algorithm, several ERAM components are
executed in parallel to approximate the eigenvalues of a matrix, if one of these components
approximates enough eigenvalues, the whole parallel section should be exited;

(3) the application may exit the parallel branch if only several tasks among all are completed
(shown as Fig. 9.5c);

(4) for the application with multi-level parallelism, we may decide to exit several levels of
parallel branch, (shown as Fig. 9.5d, which has three levels of the parallel branch);

(5) the application may exit with saving selected data into the local filesystems, which will
improve its fault tolerance and reusability, e.g., lsparams generated by the B-LSP Com-
ponent could be saved into local, which will be used for solving the linear systems in
future.

9.3.2.2 Optimization of YML Scheduler

In order to handle the mechanism to exit the parallel branch, a exit feature for YvetteML should
be implemented to support the different modes of exiting a parallel branch:

(1) exit(complete=all): all the running tasks of the level are finished before to exit;

(2) exit(level=p,auto): we add to each abstract components if the task has to be finished, data
saved or not, we exit the parallel branch ( </exit finish = “yes” />) ;
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Listing 11 lsp_pretreatment Implementation Component Implementation

<?xml version="1.0" encoding="utf-8"?>
<component type="impl" name="lsp_pretreatment_impl" description="LSP">
<impl lang="CXX" libs="">
<header><![CDATA[ ]] > </header>
<source lang="CXX" libs="">
</source>
lp = false;

/*generating Least Squares polynomial parameters if the eigenvalues available*/
if(eigen){

LS_Pretreatement(eigenvalues, &lsparams);
lp = true;

}
<footer></footer>
</impl>
</component>

(3) exit(level=p): we exit p levels of parallelism (p loops if it is parallel loops);

(4) we can also add a "save_exit" type in the asbtract component for the selected parameter
as <param type="real" mode="inout" name="A" save_exit="yes"/>. This parameter will
be saved into local file before exiting the branch.

The different types defined above can be used together, which introduces the more flexible
logic.

(1) exit(complete=all, auto): all the running tasks of the level are finished before to exit, except
the tasks defined with ( </exit finish = “no” />);

(2) exit(complete=all, level=p): we exit p levels of parallelism if all the tasks in this level are
finished;

It is necessary to optimize the YML scheduler policies to support the exit grammar. Algo-
rithm 37 gives the YML scheduler optimization. The scheduler algorithm is modified as shown
by Algorithm 36. For each task in the parallel branch, its execution status is frequently updated
to the scheduler. The scheduler make the decision according grammar and the newest status
of these tasks in a same parallel branch. This generated exiting rule by the scheduler will be
updated to all the tasks in the same parallel branch. Each task will be determined to exit or not
according to this rule.

For the parallel branch with multiple BGMRES components, they will be exit when all the
tasks in this parallel level are finished. For the s-KS and B-LSP components, their tasks will
be exited if only all the BGMRES components are finished, and they also keep the eigenvalues
and lsparams into local filesystems, respectively. We give the tentative graph implementation of
m-UCGLE with the exit feature in Listing 13. In this implementation, for the second level of

212



9.3. Proposition of Solutions
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Figure 9.5 – Exiting Parallel Branch.

the parallel branch with various BGMRES components in execution at the same time, we add
exit(complete=all). This means that these BGMRES tasks should be exited until all the tasks
are completed with all BGMRES components achieving the convergence.

For the tasks of B-LSP and s-KS components, they should be exited only if all the tasks
of BGMRES Components are finished. Thus in the implementation of their Abstract Compo-
nents, we add the parameter (</exit finish = "no">), which means these tasks need not be
finished before exiting. In the Abstract Components of ks_eigen, the definition of the parameter
eigenvalues is modified to be <param type="vector_complex" mode="out" name="eigenvalues"
save_exit="yes"/>, which means that the approximated eigenvalues should be saved into local
file before exiting. Similarly, the parameter lsparams should also be saved, and its definition is
changed to be <param type="vector_real" mode="out" name="lsparams" save_exit="yes"/>.
In order to exit the parallel branch of level 1 which express the parallel execution of BGMRES,
B-LSP and s-KS, we add exit(complete=all, auto). In this level of the parallel branch, the tasks
will be executed until all the tasks are finished, except the tasks are defined with (</exit finish
= "no">). Hence the logic is: if all the tasks in second level of the parallel branch of BGMRES
are finished, they will exit this level of the branch. For the branch of first level, all the tasks
completed means the finish of all tasks of BGMRES, thus, if all the BGMRES obtain the con-
vergence, they will exit the level 2, and then immediately exit the level 1, and m-UCGLE is
exit.
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Listing 12 bgmres_precond Implementation Component Implementation

<?xml version="1.0" encoding="utf-8"?>
<component type="impl" name="bgmres_precond_impl"
description="LSP Preconditioning">
<impl lang="CXX" libs="">
<header><![CDATA[ ]] > </header>
<source lang="CXX" libs="">
</source>
if(lp){

/*updating Least Squares polynomial residual by lsparams*/
residual=lspreconditioning(lsparams);

}
<footer></footer>
</impl>
</component>

9.4 Demand for MPI Correction Mechanism

For the multi-level parallel programming paradigm YML/XMP, it is necessary to investigate
the application of scalable correctness checking methods to YML, XMP and selected features
of MPI. This will result in a clear guideline how to limit the risk to introduce errors and how
to best express the parallelism to catch errors that for principle reasons can only be detected
at runtime, as well as extended and scalable correctness checking methods. MUST2 is a good
candidate which detects usage errors of the MPI and reports them to the user. As MPI calls
are complex and usage errors common, this functionality is extremely helpful for application
developers that want to develop correct MPI applications. To detect errors, MUST intercepts
the MPI calls that are issued by the target application and evaluates their arguments. The
two main usage scenarios for MUST arise during application development and when porting an
existing application to a new system. When a developer adds new MPI communication calls,
MUST can detect newly introduced errors, especially also some that may not manifest in an
application crash. Further, before porting an application to a new system, MUST can detect
violations to the MPI standard that might manifest on the target system. MUST reports errors
in a log file that can be investigated once the execution of the target executable finishes. On the
large-scale computing systems, it is necessary to use MUST as a tool to check all kinds of MPI
errors during the whole life cycle of YML/XMP applications.

9.5 Conclusion

In this chapter, we investigate the prossibility to implement the iterative methods based on Unite
and Conquer approach using the YML workflow runtime. There are two limitations of current
implementation: 1) asynchronous communication between the computational components; 2)

2. https://tu-dresden.de/zih/forschung/projekte/must
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Algorithm 37 YML Scheduler Optimization
1: while status == EXECUTING do
2: while task == finished do
3: ++taskFinished
4: end while
5: UpdateStatus
6: UpdateSchedulingRuleForExiting
7: if SchedulingRuleForExiting == true then
8: delete(task)
9: end if

10: UpdateStatus
11: if status==ERROR then
12: continue . Task terminates with error, execution stopped
13: end if
14: UpdateSchedulingRule
15: while (task = nextTaskReady) !=0 do
16: ++taskSubmitted
17: queue(task)
18: end while
19: if !SchedulingPendingTask then
20: break . Execution finished with error
21: end if
22: updateStatus
23: end while
24: finalizExecution

exit the parallel branch. We propose the solution by adding variable to handle the dynamic
graphs, and optimize the scheduler rules to manage different modes of exiting parallel branches.
These proposed solution should be embedded into YML in the future.
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Listing 13 Tentaive implememtation of m-UCGLE’s graph

<?xml version="1.0" encoding="utf-8"?>
<application name="dyntest_app">
<description> m-UCGLE prototype </description>
<params></params>
<graph>
ngmres: = 3; neram: = 2;
par
do

par(gid: = 0; ngmres-1)
do

compute bgmres_init(gid, ... );
seq(g_restart: =0; max_restart_nb-1)
do

compute bgmres_ar(gid, ... );
compute bgmres_ls(gid, ... );
compute bgmres_precond(gid, ... );
compute bgmres_check(gid, ... );
compute bgmres_restart(gid, ... );
exit(complete=all);

enddo
enddo
endpar
par(eid: = ngmres; ngmres+neram-1)
do

compute ks_init(eid, ... );
seq(e_restart: =0; max_restart_nb-1)
do

compute ks_ar(eid, ... );
compute ks_eigen(eid, ... );
compute ks_update(eid, ... );
compute ks_restart(eid, ... );

enddo
enddo
endpar
compute lsp_pretreatment(ngmres+neram, ... );
exit(complete=all, auto);

enddo
endpar
</graph>
</application>



Chapter 10
Conclusion and Perspective

10.1 Synthesis

The contributions of this thesis address several interconnected problems in the fields of HPC and
the numerical iterative methods for linear systems and eigenvalue problems. This dissertation
focuses on the proposition and analysis a distributed and parallel programming paradigm for
smart hybrid Krylov methods targeting at the exascale computing.

In the first part, we gave the state-of-the-art of HPC, including the modern computing
architectures for supercomputers and the parallel programming models. We also discussed the
current challenges of HPC facing the coming of exascale supercomputers.

In the second part, we summarized Krylov iterative methods for the linear systems and eigen-
values problems. We introduced the algorithms of these methods and then analyze the relation
between their convergence performance and the spectral information of the operator matrix.
We presented different preconditioning techniques to accelerate the convergence of restarted it-
erative methods, including the preconditioning by matrix, deflation and a selected polynomial.
We explained how to implement the iterative methods and their preconditioners in parallel on
distributed memory supercomputers. We identified also the correlated goals for the research of
parallel implementation of numerical methods facing the upcoming of exascale computing.

In the third part, the parallel implementation and evaluation of SMG2S were given. SMG2S
can generate large-scale non-Hermitian test matrices using the user-defined spectrum and ensur-
ing their eigenvalues as the given ones with high accuracy. SMG2S was implemented in parallel
both on homogeneous and heterogeneous platforms with good scaling performance. SMG2S is
released as an open source software to benchmark the numerical and parallel performance of
iterative methods. The proposition of SMG2S was an essential factor for the continuation of my
thesis on the evaluation of Krylov methods.

In the fourth part, we supplied the initial implementation of UCGLE and its manager en-
gine based on the scientific libraries PETSc and SLEPc for both CPUs and GPUs. We de-
scribed the implementation of components, the manager engine, and the distributed and par-
allel asynchronous communications. The selected parameters, the convergence, scalability and
fault tolerance were evaluated on several supercomputers. We analyzed the impacts of spectral
distributions on the convergence of UCGLE using different test matrices generated by SMG2S.
UCGLE method was proved to be a good candidate for large-scale computing systems because
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of its asynchronous communication scheme, its multi-level parallelism, its reusability and fault
tolerance, and its potential load balance. The multi-level parallelism of UCGLE can be flexibly
mapped to large-scale distributed hierarchical platforms.

In the fifth part of this dissertation, we have extended UCGLE to solve a series of linear
systems in sequence with different RHSs, and showed how to improve the acceleration for solving
subsequent linear systems by recycling the dominant eigenvalues. This extension of UCGLE
recycles the eigenvalues obtained in solving previous systems, improves them on the fly and
constructs a new initial guess vector for subsequent linear systems. Numerical experiments using
different test matrices indicated a substantial decrease in both computation time and iteration
steps.

In the sixth part, we revisited the implementation of UCGLE and proposed a new variant to
solve simultaneously linear systems with multiple RHSs, that is m-UCGLE. It was implemented
with a newly designed manager engine, which can allocate various GMRES components at the
same time. The Solver Component was implemented with block GMRES algorithm, which was
intended to solve the linear systems with a subset of RHSs. A mathematical extension of Least
Squares polynomial was also proposed for the linear systems with multiple RHSs. m-UCGLE
was implemented with the packages Belos and Anasazi packages of Trilinos. Its implementation
on multi-GPUs was boosted by Kokkos. The experiments on supercomputers proved its good
numerical and parallel performance.

In the seventh part, we proposed an adaptive scheme for the selection of the applied times of
Least Squares polynomial preconditioning for each restarting, which is one of the most critical
parameters for the Least Squares polynomial preconditioning inside UCGLE.

In the last part, we investigated the possibility of UCGLE using the workflow programming
environment YML. Two limitations of the actual version of YML were found; 1) it does not
support the special asynchronous communications between different computation tasks; 2) the
lack of a mechanism to check the convergence of iterative methods. We propose the solution
by adding a variable to handle the dynamic graphs and optimize the scheduler rules to manage
different modes of exiting parallel branches.

10.2 Future Research

The initial goals of the thesis have been completed, but there are still a lot of problems that
should be further explored for the current work.

Since the GPU version of SMG2S was implemented with the data structures and functions
provided by PETSc, a specific optimized version for GPUs could be implemented based on
CUDA and packaged into the open source software SMG2S in the future.

With the help of SMG2S, the relationship between different existing hybrid and deflated
iterative methods and preconditioners for solving non-Hermitian linear systems and the spectral
information of operator matrices can be investigated. This work will guide users to select suitable
iterative methods according to their applications from the real world.

For UCGLE, a new version should be developed for the case that some eigenvalues of the
operator matrix have the positive real part, and the others have the negative part. The possible
solution is to construct to two Least Squares polynomials using two polygons built by the
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eigenvalues either with the all positive or negative real part, separately. This modification can
exclude the origin point and might accelerate the convergence of this kind of spectral distribution.

YML, including its grammar and the scheduler policies, should be re-developed to support
the implementation of Unite and Conquer approach, then the performance of UCGLE imple-
mented based on workflow can be evaluated. An autotuning scheme can be provided for adaptive
selections of all the complicated parameters of UCGLE at runtime.

Finally, the implementation of UCGLE with distributed and parallel programming paradigm
is only the beginning of a long adventure. It is necessary to test the Unite and Conquer methods
on the upcoming exascale machines with much more computing units. More deflated or hybrid
methods can also be transformed into the Unite and Conquer scheme, and implemented with a
distributed and parallel manner. Further research should study both the numerical and parallel
performance of other iterative methods with Unite and Conquer scheme.
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Appendix

Construct the Optimal Ellipse

The Least Squares polynomial preconditioning in UCGLE method relies on the computation
of a polynomial constructed from an optimal ellipse which enclosing the spectrum of operator
matrix. This ellipse is constructed by the polygon H constructed by the dominant eigenvalues
approximated from ERAM Component. A good selection of this optimal ellipse, therefore, a
crucial algorithm for the implementation. Denote the optimal ellipse as ellipse(a, c, d), with a

the length of major axis, d the center, and c the focal of this ellipse. The optimal ellipse can be
calculated by either two or three discrete points. The best ellipse is either an ellipse that passes
through three vertices of H and encloses H or an ellipse of smallest area passing through two
vertices of H. In practice, this ellipse is implemented to be symmetric about the real axis. We
list the formulas used of the computation of optimal ellipses in our implementation of UCGLE.
Both the two way of finding the optimal ellipse come from the existing literature.

Two-point Ellipse

The formules of two-point optimal ellipse are given by Saad in [189]. As shown in Fig. 1, suppose
that two points λ1 = x1 + iy1 and λ2 = x2 + iy2 are used to construct an optimal ellipse(a, c, d)
of smallest area. Assume that y1 6= y2.

Denote that

A = 1
2(x2 − x1), B = 1

2(x2 + x1),

S = 1
2(y2 − y1), T = 1

2(y2 + y1),

Q = 1
2
(S
T

+ T

S

)
.

(1)

The three parameters a, c and d of the optimal ellipse can be calculated by the following
formulas.
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Figure 1 – Two-point ellipse(a, c, d).

d = A√
Q2 + 3 + sgn(AS)Q

+B,

c2 = 1
d−B

[(d−B + AT

S
)(d−B + AS

T
)(d−B − ST

A
)],

a2 = (d−B + AT

S
)(d−B + AS

T
).

(2)

Three-way Ellipse

Three points to construct is presented by Manteuffel in [142]. Shown as Fig. 2a and 2b, suppose
that three points λ1 = x1+iy1, λ2 = x2+iy2, λ3 = x3+iy3 are used to construct an ellipse(a, c, d).
Assume that x1 < x2 < x3. The optimal ellipse can be determined by the following formules.

d = 1
2

(y2
1(x2

2 − x2
3) + y2

2(x2
3 − x2

1) + y2
3(x2

1 − x2
3))

(y2
1(x2 − x3) + y2

2(x3 − x1) + y2
3(x1 − x3)) ,

a2 = d2 − (y2
1x2x3(x2 − x3) + y2

2x1x2(x3 − x1) + y2
3x1x2(x1 − x3))

(y2
1(x2 − x3) + y2

2(x3 − x1) + y2
3(x1 − x3)) ,

c2 = a2
(

1− (y2
1(x2 − x3) + y2

2(x3 − x1) + y2
3(x1 − x3))

(x1 − x2)(x2 − x3)(x3 − x1)

)
.

(3)
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Figure 2 – Three-way ellipse(a, c, d).
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