
HAL Id: tel-02447084
https://theses.hal.science/tel-02447084v1

Submitted on 21 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A realistic named data networking architecture for the
Internet of things

Amar Abane

To cite this version:
Amar Abane. A realistic named data networking architecture for the Internet of things. Networking
and Internet Architecture [cs.NI]. Conservatoire national des arts et metiers - CNAM; Université
Mouloud Mammeri (Tizi-Ouzou, Algérie). Faculté de génie électrique et informatique, 2019. English.
�NNT : 2019CNAM1255�. �tel-02447084�

https://theses.hal.science/tel-02447084v1
https://hal.archives-ouvertes.fr

École Doctorale Informatique, Télécommunications et Électronique (Paris)

Centre d’Études et de Recherche en Informatique et Communications

Faculté de Génie Électrique et d’Informatique

Laboratoire de Recherche en Informatique

THÈSE DE DOCTORAT

présentée par : Amar ABANE

soutenue le : 02 Décembre 2019

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Spécialité : Informatique

A Realistic Named Data Networking Architecture
for the Internet of Things

THÈSE dirigée par
Mme. Bouzefrane Samia Professeur, CNAM
M. Daoui Mehammed Professeur, UMMTO

RAPPORTEURS
Mme. Benzaid Chafika Maître de conférences, USTHB
M. Baccelli Emmanuel Directeur de recherche, Inria Saclay

EXAMINATEURS
M. Afifi Hossam Professeur, Telecom ParisTech
M. Laghrouche Mourad Professeur, UMMTO

INVITÉ

M. Muhlethaler Paul Directeur de recherche, Inria Paris

Résumé

L’Internet des objets (IdO) utilise l’interconnexion de milliards de petits ap-

pareils informatiques, appelés «Objets», pour fournir un accès à des services

et à des informations partout dans le monde. Cela a été rendu possible par la

démocratisation des smartphones et des ordinateurs portables, et plus impor-

tant encore, par le caractère abordable des dispositifs d’acquisition de données

à ressources limitées et des technologies de communication sans fil correspon-

dantes. Cependant, la pile de protocoles IP sur laquelle est basée l’IdO a été

conçue il y a plusieurs décennies dans un but totalement différent, et les fonc-

tionnalités de l’IoT soulignent désormais les limites de l’IP. Néanmoins, l’IP

peut toujours prendre en charge les systèmes IdO via des couches logicielles

intermediaires, à savoir CoAP, 6LoWPAN, RPL, REST et autres solutions.

Toutefois, les efforts considérables déployés dans les solutions IP actuelles

consistent simplement à faire en sorte que les périphériques IdO prennent

en charge la suite de protocoles IP existante, alors que de nombreuses autres

nouvelles fonctionnalités doivent être incluses dans le réseau. En parallèle aux

efforts d’adaptation de l’IP à l’Internet des objets, des architectures alterna-

tives basées sur les réseaux orientés information (Information Centric Net-

working) promettent de satisfaire nativement les applications Internet émer-

gentes. L’une de ces architectures est appelée réseau de données nommées

(Named Data Networking). Nos objectifs à travers le travail rapporté dans ce

manuscrit peuvent être résumés en deux aspects. Le premier objectif est de

montrer que NDN est adapté à la prise en charge des systèmes IdO. Pour y

parvenir, une discussion détaillée sur les limites de l’IP et les fonctionnalités

3

NDN est présentée, suivie de la conception et du déploiement d’une archi-

tecture NDN-IdO réaliste montrant la simplicité de NDN. De plus, un outils

de simulation des reseaux NDN pour l’IdO et une modélisation des reseaux

NDN sans fil sont proposés pour quantifier et analyser les avantages de NDN

dans notre contexte. Le deuxième objectif est la conception de deux solutions

de communication legères pour les réseaux sans fil contraints avec NDN. Ces

deux solutions prennent en compte la technologie IEEE 802.15.4 et utilisent

uniquement des communications de diffusion. La première solution repose sur

une technique d’apprentissage par renforcement et fonctionne au niveau de la

couche réseau, tandis que la seconde est inspirée de l’accès au support basé

sur les priorités et fonctionne au niveau de la couche liaison.

Mots clés : Réseaux de données nommées, Réseaux orientés information, Internet des

Objets, IEEE 802.15.4, Réseaux sans fil.

4

6

Abstract

The Internet of Things (IoT) uses the interconnection of billions of small

computing devices, called “Things”, to provide access to services and informa-

tion all over the world. This has been made possible by the democratization

of smartphones and laptops, and more importantly by the affordability of

resource-constrained data acquisition devices and corresponding wireless com-

munication technologies. However, the IP protocol stack which IoT uses cur-

rently has been designed decades ago for a completely different purpose, and

IoT features now highlight the limitations of IP. That said, IP can still support

IoT systems through adaptations and middleware, namely CoAP, 6LoWPAN,

RPL, REST and other solutions. However, the significant efforts expended in

current IP solutions is just to make IoT devices support the existing IP pro-

tocol suite, whereas many other new features have to be included in devices.

While adapting IP for the IoT might be seen as cutting corners, alternative

architectures based on the Information Centric Networking (ICN) paradigm

promise to natively satisfy emerging Internet applications. One of these archi-

tectures is Named Data Networking (NDN). Our objectives through the work

reported in this manuscript can be summarized in two aspects. The first ob-

jective is to show that NDN is suitable to support IoT networking. To achieve

that, a detailed discussion on IP limits and NDN features is presented, fol-

lowed by the design and deployment of a realistic NDN-IoT architecture that

shows the simplicity of NDN. Moreover, a simulation framework for NDN-

IoT and a model for NDN wireless forwarding are proposed to quantify and

analyse the advantages of NDN. The second objective is the design of two so-

7

lutions for lightweight forwarding in constrained wireless networks. These two

solutions consider the IEEE 802.15.4 technology and use only broadcast com-

munications. The first solution is based on a reinforcement learning scheme

and operates at network layer, while the second is inspired of priority-based

medium access and operates at link-layer.

Keywords: NDN, ICN, IoT, IEEE 802.15.4, Broadcast, Wireless Networks

8

Dedication

In memory of my father Abane Boussad.

In memory of my granduncle Abane Ramdane, hero of the Algerian war.

À la mémoire de mon père Abane Boussad.

À la mémoire de mon grand-oncle Abane Ramdane, héros de la guerre d’Algérie.

10

Contents

General Introduction 43

Context of the Thesis . 43

Objectives and Contributions . 46

Organisation of the Manuscript . 48

1 IP vs. ICN: The IoT Challenge 51

1.1 Introduction . 51

1.2 The Internet of Things . 51

1.2.1 Description . 51

1.2.2 Examples . 54

1.3 IoT puts IP to the test: Challenges and Shortcomings 55

1.3.1 Brief Story of IP . 55

1.3.2 IoT over IP . 56

1.3.3 Requirements and Solutions . 59

1.4 From IP limitations to ICN . 67

1.4.1 Summary of IP-for-IoT Efforts . 67

1.4.2 Shifting to Information Centric Networking 69

1.4.3 ICN Principles . 70

1.5 Conclusion . 72

11

CONTENTS

2 Named Data Networking for the Internet of Things 75

2.1 Introduction . 75

2.2 Named Data Networking . 75

2.2.1 Origins and Overview . 75

2.2.2 Naming and Packets . 77

2.2.3 Communication process . 83

2.2.4 Routing and Forwarding . 86

2.2.5 Caching and Mobility . 87

2.2.6 Security . 88

2.3 NDN and Internet . 93

2.4 NDN meets IoT . 93

2.4.1 Architectures . 94

2.4.2 Forwarding . 98

2.4.3 Link layer . 101

2.4.4 Mathematical models . 103

2.4.5 Comparing NDN and IP . 104

2.4.6 Projects . 105

2.5 Conclusion . 108

3 A Realistic NDN Architecture for the IoT 109

3.1 Introduction . 109

3.2 NDN Integration Approaches . 110

3.3 Proposed NDN-802.15.4 architecture . 112

3.3.1 Adopted Integration Approach . 112

3.3.2 Wireless Technology . 114

3.3.3 Communication Architecture . 118

12

CONTENTS

3.3.4 Integration Mechanisms . 121

3.4 Additional Features . 128

3.4.1 Packet Fragmentation . 128

3.4.2 Push Traffic . 129

3.4.3 Caching and Energy Management 131

3.5 Conclusion . 133

4 Evaluation Tools 135

4.1 Introduction . 135

4.2 Testbed . 136

4.2.1 Hardware Technologies . 137

4.2.2 Gateway Design . 138

4.2.3 End-device Design . 141

4.2.4 Applications . 142

4.2.5 Deployment and Evaluation . 142

4.3 NDN-OMNeT Simulation Framework . 150

4.3.1 Framework Design . 150

4.3.2 Host and Application Modules . 151

4.3.3 NDN Layer Modules . 153

4.3.4 Messages and Packets . 155

4.3.5 Framework Use . 156

4.4 Analytical Model . 156

4.4.1 Forwarding Strategy Considered . 157

4.4.2 Assumptions and Notation . 157

4.4.3 Content Popularity . 159

4.4.4 Model Formulation . 160

13

CONTENTS

4.5 Conclusion . 162

5 NDN Wireless Forwarding in Low-end IoT 165

5.1 Introduction . 165

5.2 NDN Forwarding in Wireless Networks . 166

5.2.1 AODV: An Intruder With a Similar Model 168

5.2.2 CF: The Basic NDN Forwarding . 169

5.2.3 RONR: An Improvement With Unicast 170

5.2.4 LFBL: A Better Use of Delayed Transmissions 172

5.2.5 NAIF: A Different Approach . 174

5.2.6 Q-routing: A Search-and-Learn Approach 177

5.2.7 Constrained Flooding: A Paradigm-agnostic Approach 179

5.2.8 Summary . 180

5.3 Broadcast in Constrained Networks . 181

5.3.1 Simple Networks: Tree Topology . 181

5.3.2 Complex Networks: Grid Topology 188

5.3.3 Lightweight Wireless Forwarding: Guidelines 192

5.4 L3 Solution: R-LF . 193

5.4.1 Approach and Assumptions . 193

5.4.2 General description . 194

5.4.3 Details and mathematical formalism 196

5.4.4 Evaluation . 199

5.4.5 Discussion . 211

5.5 L2 solution: ND-CSMA . 213

5.5.1 Approach . 213

5.5.2 Legacy CSMA . 214

14

CONTENTS

5.5.3 The Named-Data CSMA Scheme . 215

5.5.4 Evaluation . 215

5.5.5 Discussion . 218

5.6 Summary and Discussion . 220

5.7 Conclusion . 220

General Conclusion and Perspectives 223

Summary . 223

Towards an NDN Product for IoT . 224

Ongoing and Future Work . 225

Publications 227

Bibliography 229

15

CONTENTS

16

List of Tables

1.1 IoT phases and corresponding technologies 54

1.2 COAP methods and usage example . 57

1.3 Classes of constrained devices . 61

1.4 IP-based solutions for IoT vs. ICN features 70

1.5 ICN projects/architectures comparison . 72

2.1 Name component types . 78

2.2 Possible security attacks in NDN and countermeasures 92

2.3 NDN vs TCP/IP support of the Internet . 93

2.4 IoT requirements mapped to ICN features 94

2.5 CCN vs. IP: memory consumption on RIOT platform 96

2.6 Comparison of NDN, CoAP and MQTT protocols for IoT 96

2.7 Main features of wireless ad hoc networks 99

2.8 CCN for wireless networking: main benefits 100

2.9 NDN and link-layer interaction approaches 103

3.1 Most common wireless technologies in the IoT 114

3.2 Packet fields classification . 127

4.1 Hardware Technologies Considered . 138

4.2 Typical FIB at the gateway . 141

17

LIST OF TABLES

4.3 Testbed deployment parameters . 146

4.4 NDN-802.15.4 and 6LoWPAN features comparison 147

4.5 Memory and processing measurements . 149

4.6 Communication measurements at the gateway 149

4.7 Model variables . 159

5.1 Summary of some NDN wireless forwarding approaches 180

5.2 Evaluation parameters . 182

5.3 Interest satisfaction rate . 184

5.4 Simulation parameters . 202

5.5 R-LF measures on Arduino . 211

5.6 Default values for IEEE 802.15.4 CSMA . 215

18

List of Figures

1 Aperçu général de l’IoT [Amadeo et al. 2016] 28

2 Les solutions IP pour l’IoT [Wikipedia a] 28

3 Intégrations possibles de NDN . 33

4 Architecture NDN-802.15.4 . 34

1.1 A global view of the Internet of Things [Amadeo et al. 2016] 53

1.2 IoT architecture components [RS Components Ltd.] 53

1.3 IoT applications domains and main scenarios 55

1.4 Internet evolution timeline . 57

1.5 Global IoT architecture with REST, CoAP and 6LoWPAN [Wikipedia a] . 59

1.6 Types of devices in the IoT [Eclipse IoT White Paper 2017] 60

1.7 Security solutions in IoT with 6LoWPAN [Wikipedia a] 66

1.8 IP standardization efforts for IoT . 68

1.9 Current IP-based IoT stack [Shang et al. 2016a] 69

1.10 Illustration of the ICN communication paradigm [Amadeo et al. 2016] . . . 72

2.1 Interest and Data fields . 82

2.2 Interest TLV encoding example . 82

2.3 NDN node and data structures [Jacobson et al. 2009a] 84

2.4 NDN communication process illustration . 85

2.5 Interest and Data processing inside a node 85

19

LIST OF FIGURES

2.6 Hourglass architecture of NDN and TCP/IP [Zhang et al. 2014] 93

2.7 Proposed NDN-IoT architecture [Amadeo et al. 2014a] 95

3.1 NDN integration approaches . 113

3.2 NDN-802.15.4 architecture . 120

3.3 NDN-802.15.4, OSI model and 6LoWPAN stack 120

3.4 Name-Payload-Fields estimations . 124

3.5 Packet fragmentation header in NDN-RIOT [Shang et al. 2016b] 129

3.6 Push-mode mechanism illustration: (a) Virtual Polling Interest, (b) Adver-

tising Interest . 132

4.1 Architecture of the gateway . 139

4.2 NDN-802.15.4 process operations . 140

4.3 Architecture of the ED . 142

4.4 Picture of an ED . 143

4.5 Producer application code running on an ED - Main program 144

4.6 Producer application code running on an ED - Interest processing 145

4.7 Compression improvement . 148

4.8 NDN L3 module and its entities . 151

4.9 NDN simple wireless host (e.g., router) . 152

4.10 NDN wireless host with applications (producer and/or consumer) 153

4.11 Tree topology example with N = 3 . 158

5.1 AODV route discovery example [Wikipedia b] 170

5.2 CF example in a binary-tree network . 171

5.3 Representation of eligible forwarders [Michael et al. 2010] 173

5.4 Forwarding rate illustration in NAIF . 176

20

LIST OF FIGURES

5.5 CPR: dw = 127, α = 1.5 . 184

5.6 CPR: dw = 127, α = 2 . 185

5.7 CPR: dw = 127, α = 2.5 . 185

5.8 RPR: dw = 127, α = 1.5 . 186

5.9 RPR: dw = 127, α = 2 . 186

5.10 RPR: dw = 127, α = 2.5 . 187

5.11 CPR: dw = 255, α = 2 . 187

5.12 RPR: dw = 255, α = 2 . 188

5.13 NDN-MAC mapping simulation results . 191

5.14 Common forwarding situations with R-LF 196

5.15 Delay function example . 198

5.16 Simulated topology example . 201

5.17 Impact of the learning rate . 204

5.18 a-values example . 205

5.19 Multiple data-flows scenario results . 206

5.20 Multiple consumers and caching scenario results 207

5.21 Producer speed scenario results . 208

5.22 R-LF and AODV comparison with multiple data-flows 211

5.23 R-LF and AODV comparison with multiple consumers 212

5.24 ND-CSMA algorithm . 216

5.25 ND-CSMA evaluation . 219

21

LIST OF FIGURES

22

Résumé de la Thèse

Une Architecture NDN realiste pour l’Internet des Objets

Introduction

L’Internet des objets (Internet of Things, IoT) utilise l’interconnexion de milliards de

petits appareils informatiques, appelés «Things», pour fournir un accès à des services et

à des informations partout dans le monde (Figure 1). Cela a été rendu possible par la

démocratisation des smartphones et des ordinateurs portables, et plus important encore,

par le caractère abordable des dispositifs d’acquisition de données à ressources limitées

tels que les capteurs et des technologies de communication sans fil correspondantes. À

titre d’exemple, les coûts des capteurs ont diminué de près de 200% entre 2004 et 2016.

En conséquence, quatre fois plus d’objets seront connectés à Internet d’ici la fin de cette

année. Le marché est évidemment impacté par cette évolution. On prévoit que le marché

de l’IoT passera de 656 millions de dollars en 2014 à 1,7 milliards en 2020. L’impact

économique de l’IoT pourrait être compris entre 3,1 et 3,9 milliards de dollars par an d’ici

2025.

En pratique, les appareils de l’IoT sont alimentés par batterie, disposent de processeurs

à faible puissance et quelques dizaines de Kb de mémoire. Dans un système IoT, ces

périphériques contraints communiquent entre eux ou avec les applications des utilisateurs

via Internet. Cette communication est réalisée via la suite de protocoles TCP/IP et

l’interconnexion sans fil est réalisée à l’aide de technologies sans fil à faible consommation.

Cependant, la suite de protocoles IP a été conçue il y a plusieurs décennies dans un

but totalement différent, et les fonctionnalités de l’IoT soulignent désormais les limites

23

RÉSUMÉ DE LA THÈSE

de l’IP. Par exemple, la sécurité est toujours centrée sur les canaux de communication

lorsque les données elles-mêmes doivent être sécurisées. De plus, les systèmes IoT ont

besoin d’une prise en charge efficace pour la dénomination et la découverte des ressources,

ce qui n’est pas facile à déployer avec l’IP dans des infrastructures contraintes. Cela dit,

l’IP peut toujours prendre en charge les systèmes IoT via des adaptations de protocoles.

C’est la raison pour laquelle nous entendons parler de CoAP, 6LoWPAN, RPL, REST et

autres solutions. Toutefois, les efforts considérables déployés dans les solutions IP actuelles

consistent simplement à faire en sorte que les périphériques IoT supportent la suite de

protocoles IP existante, alors que de nombreuses autres nouvelles fonctionnalités doivent

être incluses dans les périphériques. Ainsi, si le support de la communication dans les

appareils pouvait être simplifié et rendu robuste, il constituerait un catalyseur fondamental

pour un écosystème IoT global. De plus, la simplification des solutions de communication

pour les applications IoT réduira considérablement les coûts de développement.

Alors que l’adaptation de l’IP à l’Internet des objets se poursuit toujours, des architec-

tures alternatives suivant le paradigme des réseaux orientés sur les contenus (Information

Centric Networking, ICN) promettent de satisfaire nativement les applications Internet

émergentes. L’une de ces architectures est appelée réseaux de données nommées (Named

Data Networking, NDN). Le projet NDN a été financé par la National Science Foundation

(NSF) dans le cadre du programme Future Internet Architecture (FIA). Dans un réseau

NDN, l’entité principale est le contenu, tel qu’une video, une page Web, etc. Les opéra-

tions de communication sont effectuées sur les noms des ces contenus, et les hôtes (sans

adresses logiques) récupèrent les contenu nommés directement du réseau. Des fonctions

importantes sont obtenues via ce principe; telles que la communication de bout en bout

sans établir de connexion ni de résolution de nom à adresse. De plus, aucune session

consommateur-fournisseur n’a besoin d’être maintenu, ce qui fournit une prise en charge

native des interruptions de connexion résultant de la mobilité.

Un réflexe naturel que nous pouvons avoir lorsque nous entendons parler de NDN est

de savoir comment tirer parti de ses fonctionnalités sans attendre durant des décennies

la future architecture de l’Internet. Cependant, des modifications fondamentales doivent

être apportées aux équipements, aux protocoles et aux applications actuelles basés sur l’IP,

24

RÉSUMÉ DE LA THÈSE

car le paradigme NDN fonctionne sur des noms des contenus plutôt que sur des adresses

d’hôtes. En outre, tant que les solutions IP fonctionnent pour les applications actuelles, il

reste difficile de convaincre les utilisateurs d’IP et les industriels des avantages de NDN.

Heureusement, ces dernières années, de nombreuses études ont examiné l’utilité de NDN

dans l’IoT, le rendant de plus en plus puissant. Avec tout ce travail motivant, de réels

déploiements de NDN peuvent être envisagés. Bien que NDN ne soit pas prêt pour les

déploiements IoT globaux, des conceptions réalistes enrichiront les expériences NDN et

aideront à déterminer ce qui est nécessaire pour faire de NDN une réalité.

Pour y parvenir, l’intégration de NDN dans les appareils de l’IoT et des technologies

sans fil à faible consommation est primordiale en raison de l’importance de ces technologies

dans les solutions IoT. De plus, l’IoT est encore au stade de développement, même avec

l’IP, ce qui permet de faire de NDN un élément important des solutions IoT dans un court

laps de temps. Pour saisir cette opportunité, nous avons basé notre travail sur un dé-

ploiement réaliste de NDN dans l’IoT. Le concept de réalisme dans ce contexte comprend

de nombreux aspects. Tout d’abord, il vise à intégrer NDN dans l’infrastructure Internet

actuelle. Autrement dit, les scénarios qui ne peuvent pas être déployés maintenant ne

sont pas pris en compte. Deuxièmement, réaliste signifie utiliser NDN pour concevoir des

solutions pour les équipements IoT actuels tels que les cartes de prototypage. Troisième-

ment, l’objectif d’une approche réaliste est de fournir une solution NDN-IoT viable qui

doit être facile à utiliser, à faible coût, simple et légère. Enfin, l’approche réaliste envis-

agée ici s’inscrit dans le même esprit de deux ou trois amis cherchant à lancer un produit

informatique révolutionnaire grâce à une start-up.

Des études indiquent que 50% de toutes les solutions IoT sont développées par des

start-ups ou des petites entreprises qui souvent ne possèdent pas les ressources financières

pour concevoir et réaliser un produit IoT prêt à être commercialisé. Par conséquent,

pour réussir à créer une application IoT, les startupers utilisent souvent une validation

de principe (Proof of Concept, PoC) pour montrer que leur solution peut connaître un

succès commercial. Ceci est généralement réalisé à l’aide de systèmes sur puce (System

on Chip, SoC), de micro-contrôleurs et d’ordinateurs à carte unique tels que Arduino,

BeagleBoard et Raspberry Pi. De plus, le fait de disposer d’un prototype opérationnel

25

RÉSUMÉ DE LA THÈSE

augmente considérablement les chances de financement d’une entreprise.

Cette thèse propose une vision en deux étapes sur la manière dont ICN/NDN peut être

considéré dans l’IoT. La première étape est une opportunité d’explorer certaines solutions

IP populaires pour l’IoT et de comprendre comment NDN peut être introduit dans les

systèmes IoT. Après cela, les communications NDN dans les réseaux sans fil restreints est

identifié comme l’un des problèmes à résoudre pour que NDN devienne une réalité dans

les solutions IoT. La deuxième étape nous permet d’explorer en détail les communications

NDN sans fil dans les réseaux soumis à des contraintes, ce qui est un aspect important

à la fois pour l’IoT et NDN. Par conséquent, nos objectifs à travers le travail rapporté

dans ce manuscrit peuvent être résumés en deux aspects. Le premier objectif est de

montrer que NDN est adapté à la prise en charge d’un réseau IoT. Pour y parvenir, une

discussion détaillée sur les limites IP et les fonctionnalités NDN sera présentée en premier

lieu, suivie de la conception et du déploiement d’une architecture NDN réaliste pour l’IoT

utilisant IEEE 802.15.4 (NDN-802.15.4), qui montre la simplicité de NDN et la faisabilité

de notre approche. De plus, un outil de simulation pour NDN-802.15.4 et un modèle

mathématique pour les communications NDN sans fil sont proposés pour quantifier et

analyser les avantages de NDN. Le deuxième objectif est la conception de deux solutions

de transfert légeres dans des réseaux sans fil contraints. Ces deux solutions prennent

en compte la technologie IEEE 802.15.4 et utilisent uniquement des communications de

diffusion. L’utilité de la diffusion dans les réseaux NDN sera également étudiée. En bref,

la première solution repose sur un schéma d’apprentissage par renforcement et fonctionne

au niveau de la couche réseau, tandis que la seconde repose sur un accès au cannal de

transmission (CSMA) basé sur les priorités et fonctionne au niveau de la couche liaison.

IP et ICN : Les défis de l’IoT

En moins de 40 ans, les réseaux de protocole Internet (IP) ont créé l’Internet et son

contenu actuel, mais les réseaux IP n’ont pas été conçus pour cela. C’est une réflexion

intéressante pour résumer l’évolution de l’Internet et sa situation actuelle avec l’IoT et les

applications émergentes. Dans cette partie de la thèse, nous allons expliquer cette idée

et montrer pourquoi elle est vraie. Nous considérons que l’IoT est un bon point de vue

26

RÉSUMÉ DE LA THÈSE

pour comprendre les limites de l’IP car il apporte des exigences qui reflètent l’évolution

de la technologie et de la société. Par conséquent, nous étudions comment l’architecture

IP prend en charge les systèmes IoT et nous exposons les solutions et leurs inconvénients

(Figure 2). Nous pensons que le fait de discuter l’approche IP pour l’IoT et ses faiblesses

est un moyen rationnel de montrer l’opportunité que représente le concept ICN pour la

construction de meilleurs systèmes IoT. De plus, nous montrons que les solutions IP pour

l’IoT ressemblent aux fonctionnalités natives offertes par ICN dans la couche réseau. Nous

présentons donc l’approche réseau ICN en tant que solution regroupant les fonctionnalités

essentielles requises pour répondre efficacement aux exigences de l’IoT.

Le concept de ICN a été introduit par Ted Nelson en 1979. Vingt ans plus tard,

l’architecture TRIAD (Translating Relaying Internetwork Architecture) intégrant Active

Directory (ADI) a été proposée comme architecture Internet de nouvelle génération pour

éviter les recherches DNS. En 2002, Brent Baccala a publié un article présentant les

différences entre la mise en réseau orientée hôte et la mise en réseau orientée données.

En 2006, l’architecture de réseau orientée données (DONA) à Berkeley proposait la pre-

mière architecture ICN, suivie quelques années plus tard (2009) par PARC qui annonçait

l’architecture CCN et l’implémentation open source CCNx. En septembre 2010, le projet

NDN a été fondé dans le cadre du programme FIA (Future Internet Architecture) de la

NSF.

Les fonctionnalités natives d’ICN sont prises en charge différemment d’une réalisation

à l’autre. Il est à noter qu’aucune architecture ICN n’a été spécialement conçue pour

l’IoT. Néanmoins, l’approche ICN est toujours dans une phase de recherche, ce qui est une

opportunité pour concevoir de futures architectures en tenant compte les applications de

l’IoT.

Parmi les architectures ICN apparues ces dernières années, la mise en réseau de données

nommées (NDN) est une des plus prometteuse. Par conséquent, plutôt que de présenter

les fonctionnalités ICN abstraites, nous verrons dans la suite de la thèse comment la

conception NDN fournit des fonctionnalités ICN et comment elle peut prendre en charge

les applications IoT, de manière native ou avec quelques adaptations simples.

27

RÉSUMÉ DE LA THÈSE

Figure 1: Aperçu général de l’IoT [Amadeo et al. 2016]

Figure 2: Les solutions IP pour l’IoT [Wikipedia a]

28

RÉSUMÉ DE LA THÈSE

Les réseaux de données nommées et l’IoT

Nous avons compris précédemment que la pile de protocoles IP ne convient pas à un

écosystème global de l’IoT. Au cours des dernières années, NDN est devenu une architec-

ture prometteuse capable de supporter de manière efficace les contraintes de l’IoT. Pour

donner une idée simple de NDN, on peut l’imaginer comme le modèle de requête-réponse de

HTTP exécuté au niveau de la couche réseau. La principale différence avec HTTP réside

dans le fait que NDN prend en charge le modèle requête-réponse par le biais de paquets

portant des noms comme information principale, et que toutes les opérations de mise en

réseau (acheminement, routage, etc.) fonctionnent sur ces noms et non sur des adresses

réseau binaires. Cependant, nous devons observer que NDN est plus qu’un cas de décalage

de HTTP vers la couche réseau. Deux différences importantes doivent être soulignées: (i)

Dans le NDN, les paquets de données sont immuables; c’est-à-dire qu’une fois qu’une don-

née est produite avec un certain nom, elle ne peut plus être modifiée. Lorsqu’une nouvelle

version des données est disponible, le producteur doit générer un nouveau paquet avec un

nouveau nom. (ii) chaque paquet de données est auto-sécurisé en portant une signature

numérique qui lie son nom à son contenu. Cette signature est générée par le producteur au

moment de la création du paquet. Lors de la récupération des données, le consommateur

vérifie la signature pour s’assurer que le contenu correspond au nom demandé et a bien

été produit par la bonne entité. Cette approche de sécurité fournit à NDN une sécurité

basée sur le contenu au lieu de sécuriser les canaux de communication entre deux hôtes.

Pour montrer comment NDN convient aux architectures IoT, nous rapportons des

études et des propositions que nous considérons comme une source d’inspiration pour

les contributions présentées plus loin dans cette thèse. Malgré les diverses études liées

à NDN pour l’IoT, il n’existe actuellement aucun chemin de développement clair pour le

réseau ICN/NDN qui pourrait être utilisé pour montrer la supériorité du NDN sur l’IP. En

pratique, des différences fondamentales telles que la mise en cache et la dénomination des

données rendent difficile l’établissement de comparaisons directes équitables entre NDN

et IP. Par conséquent, notre objectif est de fournir un environnement complet permettant

d’étudier les avantages de NDN dans les déploiements IoT actuels. Plutôt que de discuter

29

RÉSUMÉ DE LA THÈSE

des défis NDN globaux pour le futur Internet, nous avons choisi d’étudier la faisabilité d’un

déploiement IoT avec NDN dans un scénario typique avec des équipements IoT populaires

(e.g., Arduino). Par conséquent, la première étape consiste à concevoir et à déployer une

architecture réaliste basée sur NDN, qui souligne les principaux défis à relever. Dans ce qui

suit, nous proposons une telle architecture, en précisant ses composants et les principaux

défis qu’elle soulève.

Une architecture NDN réalise pour l’IoT

Nous avons compris jusqu’ici que NDN est potentiellement plus approprié que l’IP

pour construire des solutions IoT efficaces. Son modèle de communication ne nécessite ni

l’attribution ni la gestion d’adresses et opère directement sur le contenu nommé des appli-

cations. Il sécurise le contenu de bout en bout quels que soient les protocoles de transport

ou les canaux. Cela produit des paquets de données sécurisés réutilisables et donne à NDN

une prise en charge native de la mise en cache, de la diffusion et de la multidiffusion. De

plus, NDN n’utilise pas de format de paquet prédéfini ni d’exigences minimales en matière

de MTU, et sa simplicité permet de mettre en œuvre des implémentations avec une taille de

code plus petite dans les périphériques. Cependant, le déploiement pratique de NDN doit

être défini pour tirer parti de ces fonctionnalités dans les solutions IoT actuelles. En effet,

l’intégration de NDN dans l’infrastructure Internet actuelle est vitale et aura un impact

sur de nombreux aspects liés au réseau et aux applications. Actuellement, un déploiement

global de NDN n’est pas réalisable en raison de la différence entre les paradigmes IP et

NDN. Pratiquement, pour déployer le protocole NDN sur des réseaux IP, les hôtes et les

routeurs doivent au minimum prendre en charge le routage basé sur le nom, le traitement

de paquets et mettre en œuvre certaines stratégies d’acheminement. De plus, les solu-

tions à court terme nécessitent la coexistence de NDN et IP dans le même réseau global.

Pour cela, nous devons nous assurer que les périphériques NDN et IP n’interfèrent pas les

uns avec les autres, tout en garantissant qu’un tel déploiement entraînera des avantages

croissants pour les applications.

Gardant cela à l’esprit, l’intégration de NDN telle qu’elle est envisagée dans cette

thèse se veut réaliste et progressive. C’est-à-dire que nous proposons une conception

30

RÉSUMÉ DE LA THÈSE

basée sur NDN pour l’IoT pouvant coexister avec l’infrastructure IP et les équipements

IoT actuels. Par cela, nous visons à rendre NDN facilement accessible en l’activant du

côté des objets de l’IoT. En d’autres termes, nous fournissons aux appareils de l’IoT

une identité de couche réseau (L3) centrée sur les données, plus naturelle et plus efficace

que l’identité IP actuelle. Nous commençons tout d’abord par identifier et discuter des

approches d’intégration NDN possibles en fonction des travaux correspondants. Au niveau

de la couche réseau, un déploiement NDN nécessite que les entités prennent en charge le

routage et le traitement des paquets basés sur les noms, ainsi que la mise en œuvre de

stratégies d’acheminement et des procédures de sécurité. En outre, davantage d’espace de

stockage est nécessaire pour la mise en cache et les structures de données nécessaires à

l’acheminement des paquets. Considérant l’infrastructure de réseau IP globale, le NDN

peut être déployé en superposition sur IP, il peut remplacer IP en tant que protocole de

réseau natif sur la couche liaison (e.g., NDN sur Ethernet), ou IP et NDN peuvent coexister

dans le même réseau.

La première approche, la superposition, est facile à déployer et crée une couche uni-

forme centrée sur le contenu. Le banc d’essai NDN déployé modialement est un exemple

d’une telle approche. Cependant, cette solution crée une complexité et une surcharge pour

le protocole réseau sous-jacent, et les applications basées sur IP doivent supporter les noms

NDN pour pouvoir utiliser le réseau comme décrit plus haut. De plus, la superposition

considère NDN comme un protocole de transport ou d’application pour IP, et ne permet

donc pas une coexistence entre les deux protocoles de réseau (c’est-à-dire IP et NDN).

Plus important encore, la mise en œuvre de piles NDN et IP n’est pas réalisable avec des

périphériques contraints de l’IoT qui peuvent à peine supporter la pile IP actuelle.

La seconde approche, qui consiste à déployer NDN en tant que protocole de réseau

natif, ne fonctionne que pour les environnements qui n’ont pas besoin de communiquer

avec les réseaux IP globaux, tels que les réseaux de véhicules isolés ou les réseaux locaux.

La troisième et dernière approche consiste à faire coexister IP et NDN au sein du

réseau mondial. Cette approche peut soit utiliser NDN au cœur du réseau et conserver

l’IP à la périphérie du (NDN-core), soit déployer NDN en périphérie du réseau et maintenir

l’IP au cœur du réseau (NDN-edge). Avec une approche NDN-core, les applications IP

31

RÉSUMÉ DE LA THÈSE

n’ont pas besoin d’être modifiées, mais un déploiement mondial de NDN en tant que

protocole réseau natif n’est actuellement pas réalisable, comme indiqué précédemment. A

titre d’exemple exceptionnel, le projet POINT a dû travailler avec les FAI pour déployer

un prototype du monde réel dans lequel une architecture ICN est utilisée au cœur du

réseau. Le prototype introduit ensuite l’ICN dans le réseau central sans modifier le reste

(c’est-à-dire la périphérie) de l’Internet.

Avec une approche NDN-edge, le réseau principal continue de fonctionner sur IP, tandis

que les applications et les périphériques fonctionnent avec du NDN natif. Cette solution

est facile à déployer et ne nécessite pas de modifications profondes de l’infrastructure. De

plus, il fournit une intégration progressive du NDN. Dans les NDN-core et les NDN-edge,

la coexistence d’IP et de NDN peut être obtenue en utilisant des nœuds périphériques tels

que des passerelles pour la conversion entre les noms NDN et les informations de pile de

protocole IP. Par exemple, le hICN de Cisco code les noms en tant que adresses IPv6 pour

permettre le traitement des paquets hICN par des routeurs basés sur ICN et sur IP, et

Zhang et. Al. ont proposé un système à double pile pour la coexistence de commutateurs

NDN et de commutateurs IP dans des réseaux locaux. Au niveau de l’application, lorsque

les piles NDN et IP doivent coexister, une translation entre les paquets NDN et IP est

nécessaire. Celle-ci peut se faire au niveau TCP/UDP ou HTTP.

Pour éviter la traduction, il est possible d’adopter un déploiement hybride combinant

des approches de NDN-edge avec superposition de NDN sur IP afin d’obtenir le maximum

d’intégration possible de NDN (Figure 3). Cette combinaison est réaliste dans la mesure

où les appareils IoT à ressources limitées implémentent uniquement le NDN et que les

équipements puissants prendront en charge le NDN sur IP.

L’architecture NDN-802.15.4 que nous proposons est basée sur cette solution hybride.

Lorsqu’elle est appliquée à l’IoT, l’intégration NDN-edge correspond au déploiement de

NDN en périphérie de l’IoT. En d’autres termes, le NDN est utilisé là où le contenu est

produit et consommé. D’une part, les périphériques IoT exécutent des applications NDN

natives via une technologie de couche de liaison sans fil. D’autre part, l’utilisation de

protocoles de transport basés sur NDN sur IP tels que UDP permet aux applications sur

ordinateurs et smartphones de communiquer avec des périphériques IoT via NDN. En

32

RÉSUMÉ DE LA THÈSE

plus d’être tout à fait réalisable dans l’infrastructure Internet actuelle, cette approche tire

parti de toutes les fonctionnalités NDN telles que le nom du contenu, la sécurité centrée

sur les données et la mise en cache. De plus, la conception de l’IoT étant à ses débuts,

en particulier pour l’IoT bas de gamme, cette approche constitue un point de départ

raisonnable pour créer des périphériques compatibles NDN avec des applications natives

NDN sans perte de temps. De plus, l’intégration de NDN à partir de la périphérie du

réseau permet une intégration progressive et incrémentale. L’expérience des déploiements

locaux conduira à une architecture NDN plus forte et diverses possibilités peuvent être

envisagées à long terme.

Figure 3: Intégrations possibles de NDN

Après avoir identifié la bonne approche d’intégration de NDN, la conception d’une

architecture NDN-802.15.4 (Figure 4), comprenant des mécanismes spécifiques à NDN,

est présentée et discutée. Grâce à l’architecture NDN-802.15.4, nous visons à former un

duo NDN-IoT viable avec les objectifs suivants:

1. Étudiez comment l’intégration du paradigme NDN aux technologies sans fil à faible

débit et basse consommation peut être conçue par rapport à l’intégration IP (e.g.,

6LoWPAN).

2. Montrez qu’il est possible d’activer NDN dans les périphériques IoT en explorant

33

RÉSUMÉ DE LA THÈSE

des mécanismes qui ne peuvent pas être envisagés avec IP.

3. Activez la vision du NDN dans les applications IoT réelles pour tirer parti des fonc-

tionnalités de NDN.

Figure 4: Architecture NDN-802.15.4

Cependant, la fourniture de mécanismes de prise en charge des paquets NDN via IEEE

802.15.4 ne constitue que la première étape de l’intégration NDN-802.15.4 à laquelle nous

aspirons. Un aspect majeur du réseau doit être examiné, ce qui aura inévitablement un

impact sur la façon dont les communications NDN sont gérées dans les environnements

sans fil à faible débit. Cette préoccupation importante concerne le transfert de paquets

dans les réseaux maillés IEEE 802.15.4. En effet, outre la réduction de la taille des paquets,

une stratégie de transmission légère pour les réseaux maillés sans fil est nécessaire pour

compléter l’architecture NDN-802.15.4.

Comme mentionné précédemment, l’utilisation de NDN directement sur la couche de

couche liaison est un choix judicieux dans les réseaux sans fil. Cela soulève diverses ques-

tions sur la manière de concevoir des stratégies de transfert. Premièrement, nous devons

déterminer si les adresses MAC unicast doivent être mappées sur des noms NDN ou si un

transfert de diffusion est plus efficace. Deuxièmement, bien qu’une stratégie de transfert

soit prise en charge au niveau de la couche réseau NDN, elle peut avoir un impact sur les

composants de la couche liaison sous-jacents tels que l’algorithme CSMA. Pour répondre à

ces questions, les bancs d’essai peuvent être utilisés comme outils d’évaluation réels, mais

34

RÉSUMÉ DE LA THÈSE

ils ne sont pas suffisants car ils sont limités par le nombre de nœuds, les possibilités de scé-

nario et la précision des mesures. Pour permettre une évaluation rapide et à grande échelle

des stratégies de transfert sans fil, un simulateur prêt à l’emploi pour le NDN sans fil dans

l’IoT est nécessaire. Des modèles analytiques sont également nécessaires pour améliorer

davantage la précision et comprendre l’impact des paramètres. Dans ce qui suit, nous

décrivons comment nous prenons en charge l’évaluation des conceptions NDN-802.15.4 à

l’aide de trois outils qui constituent notre environnement d’évaluation: le banc de test,

l’outil de simulation et le modèle mathématique.

Outils d’évaluation

Nous présentons dans cette partie de la thèse les outils que nous avons développés et

utilisés pour nos propositions. Comme vu précédemment, les communications sans fil via

IEEE 802.15.4 est une fonctionnalité importante à prendre en charge dans notre archi-

tecture NDN-802.15.4. Cependant, il convient de noter que les communications sans fil

NDN, en particulier dans les réseaux contraints, est légèrement différent de la communica-

tion NDN habituellement utilisée dans les réseaux câblés. La raison principale est que, en

utilisant une radio sans fil, les nœuds n’ont pas la possibilité de choisir entre différentes in-

terfaces pour transmettre les paquets; tous les paquets sont transmis via la même interface

réseau. De plus, le transfert de paquets doit traiter la redondance si la diffusion est utilisée.

De toute évidence, le principal défi d’une stratégie de communication sans fil consiste à

réduire la consommation des ressources et les retransmissions inutiles, tout en maintenant

une disponibilité et une diffusion efficaces des données. Pour pouvoir concevoir et tester

des stratégies de transfert sans fil, nous avons mis en place un environnement d’évaluation

comprenant trois outils complémentaires: un réseau de test, un outil de simulation basé

sur le simulateur OMNeT ++ et un modèle mathématique.

Premièrement, le réseau de test reflète l’architecture NDN-802.15.4 présentée plus haut,

avec quelques nœuds fixes. Il permet de mesurer des opérations à petite échelle telles que le

delais de communication, l’utilisation de la mémoire et le délai de compression des paquets.

Deuxièmement, pour évaluer des scénarios plus complexes, nous avons développé l’outil de

simulation NDN-OMNeT. NDN-OMNeT reflète également les communications passerelle-

35

RÉSUMÉ DE LA THÈSE

à-appareil et appareil-appareil de notre architecture, mais permet une évaluation à plus

grande échelle, avec des noeuds mobiles ou non, avec différentes topologies de réseau et

différentes solutions de couche liaison telles que 802.11 et 802.15.4. Le principal objectif

de cet outil est de comparer et d’évaluer rapidement les stratégies de communication sans

fil. Troisièmement, nous modélisons la stratégie de transmission de base de NDN dans

les réseaux sans fil proposée dans la littérature et décrite plus loin dans cette thèse. Le

modèle mathématique est utilisé pour étudier l’efficacité de NDN dans une topologie de

réseau sans fil simple sous différentes popularités de contenu.

Les strategies d’acheminement NDN-802.15.4 proposées

Pour déployer NDN dans des périphériques IoT, l’une des principales fonctionnalités

à prendre en charge est la communication NDN dans un réseau maillé sans fil à faible

débit, tel que les réseaux IEEE 802.15.4. Cette partie de la thèse présente nos solutions de

communication dans les réseaux maillés sans fil sous contrainte en général, et IEEE 802.15.4

en particulier. Les stratégies de communication sans fil NDN reposent généralement sur

un mécanisme de diffusion et d’apprentissage. Cette approche utilise une phase dans

laquelle les Interest sont diffusés jusqu’à ce que le contenu soit trouvé, puis les Interest

suivantes sont transmis avec plus de précision en fonction des informations apprises. Par

conséquent, l’utilisation de la diffusion est nécessaire dans les réseaux sans fil NDN. De

plus, les résultats de l’évaluation rapportés plus loin dans cette thèse suggèrent que la

diffusion est le modèle le mieux adapté pour créer une stratégie d’acheminement éfficace,

concernant la mobilité des hôtes et la disponibilité du contenu.

Les stratégies de communication allégée pour les environnements NDN sans fil sont

rares dans la littérature. De plus, à notre connaissance, aucune solution n’a étudié éx-

plicitement les communications NDN dans les réseaux maillés IEEE 802.15.4. Par con-

séquent, nous commençons par étudier d’abord les principales approches d’acheminement

pour NDN figurant dans la littérature connexe. Deuxièmement, les stratégies basées sur

la diffusion étant simples et efficaces pour la diffusion de données et conformes au modèle

de communication natif ICN/NDN, nous devons déterminer comment utiliser la diffusion

tout en réduisant les besoins en temps système, en mémoire et en traitement. Pour cela,

36

RÉSUMÉ DE LA THÈSE

nous étudions l’impact du modèle de diffusion dans les réseaux sans fil restreints en termes

de redondance des données, de nombre de paquets transmis, de disponibilité des données

et de précision des décisions. Notre étude considère deux scénarios: (i) un réseau sans

fil simple avec une topologie en arborescence binaire et des nœuds fixes et (ii) un réseau

relativement complexe avec une topologie en grille et des nœuds mobiles. Cette étude

aboutit à un ensemble de directives de conception pour une stratégie de communication

sans fil légère basée sur la diffusion.

Enfin, avec toutes les considérations nécessaires, nous proposons deux solutions conçues

à deux niveaux différents. Au niveau de la couche liaison, nous proposons une adapta-

tion de l’algorithme CSMA utilisé dans la spécification IEEE 802.15.4 pour améliorer les

communications NDN dans une topologie simple. Au niveau de la couche réseau, nous

proposons une stratégie légère d’acheminement des paquets basée sur le renforcement,

destiné à prendre en charge des scénarios de réseau complexes. L’idée dans les deux ap-

proches est de rendre la diffusion aussi précise que le monodiffusion, en termes de décisions

d’acheminement et de nombre de trames transmises. Par conséquent, nous nous concen-

trons sur la conception de techniques de compromis légères capables de maintenir des

performances satisfaisantes dans différents scénarios de communication et configurations

de réseau.

Contributions de la thèse

Les contributions impliquées dans cette thèse peuvent être présentées dans l’ordre dans

lequel elles ont été conduites comme suit.

NDN sur IEEE 802.15.4

Ces dernières années, plusieurs projets de recherche ont démontré la capacité de NDN

à prendre en charge les applications IoT émergentes telles que la domotique, les villes

intelligentes et les applications d’agriculture intelligente. Motivé par cela, notre premier

travail consistait à intégrer NDN dans la technologie IEEE 802.15.4 afin de mieux prendre

en charge les applications IoT qui nécessitent en outre une faible consommation d’énergie.

37

RÉSUMÉ DE LA THÈSE

À cette fin, nous avons conçu un schéma de communication NDN sur IEEE 802.15.4 basé

sur des modules radio ZigBee. Ce travail peut être considéré comme notre premier pas

vers une utilisation réaliste de NDN dans une architecture IoT.

Architecture NDN-IoT réaliste

La technologie sans fil IEEE 802.15.4 permet aux périphériques contraints de commu-

niquer avec un débit de données, une taille de charge utile et une plage de distance satis-

faisants, le tout avec une consommation d’énergie réduite. Pour fournir aux périphériques

IoT une identité Internet globale, 6LoWPAN définit l’adaptation IPv6 pour la communica-

tion sur IEEE 802.15.4. Motivés par le fait que 6LoWAP nécessite toujours des protocoles

supplémentaires pour prendre en charge d’autres exigences IoT, nous avons décidé de con-

cevoir une architecture IoT réaliste basée sur NDN et notre intégration de NDN avec IEEE

802.15.4. Les problèmes d’intégration sont discutés avec certaines solutions et la concep-

tion proposée a été mise en œuvre dans un scénario réel d’agriculture intelligente. Des

résultats de simulation sur la consommation d’énergie et la surcharge du réseau ont été

rapportés par rapport aux solutions IP telles que AODV.

Simulateur NDN-OMNeT

Les solutions NDN-IoT nécessitent également une évaluation précise au niveau du

réseau et du système. Ce travail présente NDN-OMNeT, notre module NDN pour le simu-

lateur OMNeT++. Conçu pour les appareils et les passerelles de l’IoT, cet outil est capable

de simuler des scénarios NDN aux limites du réseau et du système. L’implémentation est

présentée et utilisée pour étudier un aspect typique de l’intégration NDN dans des pé-

riphériques IoT.

Une stratégie de communication pour NDN dans les réseaux sans fil IoT

Pour compléter l’architecture NDN-IoT basée sur IEEE 802.15.4, une communication

à sauts multiples entre périphériques doit être prise en charge. Par conséquent, nous

présentons une stratégie de transmission allégée pour NDN sur IEEE 802.15.4. La stratégie

utilise des communications de diffusion et est conçue pour réduire au maximum la charge

38

RÉSUMÉ DE LA THÈSE

du réseau, tout en maintenant des performances satisfaisantes dans différents scénarios

d’application IoT. Pour transférer des contenus nommés sans adresses de nœud, la stratégie

repose sur une technique d’apprentissage par renforcement qui fournit des décisions de

transfert précises, basées sur la diffusion, avec un temps système réduit. Cette solution,

appelée stratégie d’acheminement légère basée sur le renforcement (R-LF), fonctionne au

niveau du réseau (L3) avec la couche de liaison IEEE 802.15.4 existante.

Modélisation et amélioration des communications NDN sur IEEE 802.15.4

Pour concevoir un solide déploiement NDN-IoT, des adaptations des technologies de

l’IoT actuelles seront nécessaires. Des exemples de telles technologies sont les normes

sans fil à faible consommation telles que IEEE 802.15.4. Dans cette contribution, nous

voulons gérer les communication NDN au niveau de la couche liaison (L2). À cette fin,

nous explorons le transfert NDN via IEEE 802.15.4 en deux étapes. Premièrement, nous

modélisons une stratégie de transfert sans fil NDN simple, basée sur la diffusion dans des

réseaux simples. Le modèle proposé prend en compte la popularité du contenu et estime

le nombre moyen de trames transmises par demande et le temps moyen d’aller-retour.

Deuxièmement, sur la base du modèle et des observations expérimentales du transfert

basé sur la diffusion au niveau du réseau (L3), nous constatons que le niveau de couche

liaison (L2) peut être adapté pour réduire les effets de diffusion en termes de redondance

des paquets, de temps d’aller-retour et consommation d’énergie. Par conséquent, nous

élaborons une adaptation de l’algorithme CSMA (Carrier-Sense Multiple Access) de IEEE

802.15.4 pour améliorer la stratégie de transfert modélisée. Les résultats préliminaires

obtenus montrent qu’une adaptation de l’algorithme CSMA devrait être envisagée pour

améliorer certaines technologies actuellement prises en charge par NDN.

Conclusion

Le travail effectué dans cette thèse a commencé avec un objectif principal qui était

d’activer NDN dans des environnements IoT périphériques. Pour y parvenir, nous avions

besoin d’une combinaison d’outils complémentaires nous permettant d’atteindre des ob-

jectifs partiels et qui font maintenant partie du travail mondial. De manière générale, nous

39

RÉSUMÉ DE LA THÈSE

avons cherché à tirer le meilleur parti possible de NDN pour l’appliquer à l’IoT. À cette fin,

une architecture réaliste NDN-802.15.4 a été conçue et construite en considérant la tech-

nologie sans fil IEEE 802.15.4. Après avoir identifié l’intégration de NDN dans l’IoT pé-

riphérique comme étant l’approche la plus réaliste, les principaux problèmes d’intégration

ont été discutés et certaines propositions ont été avancées en revoyant certaines solutions

IP pour l’IoT, telles que 6LoWPAN. Les mécanismes proposés témoignent de la flexibilité

de NDN pour la prise en charge de technologies sans fil à faible débit telles que IEEE

802.15.4. L’architecture NDN-802.15.4 obtenue a pour objectif de former un duo nouveau

et fort du NDN-IoT. Plus important encore, le transfert NDN léger dans les réseaux sans

fil avec diffusion a été étudié. Les résultats obtenus montrent que nous pouvons utiliser les

communications par diffusion pour prendre des décisions de transfert relativement précises

avec des couts réduits et des performances satisfaisantes. En bref, nous avons pu préserver

les avantages de la radiodiffusion tout en réduisant ses inconvénients.

Lors de la recherche sur le transfert sans fil avec NDN, un environnement comprenant

des outils d’évaluation différents mais complémentaires a été mis au point. Ces outils

peuvent fournir des mesures du monde réel, des résultats de simulation et une analyse

mathématique du transfert NDN dans des réseaux sans fil. En outre, cet environnement

d’évaluation peut être à nouveau exploité à d’autres fins connexes.

Globalement, la principale limitation que nous pouvons identifier dans ce travail est

l’absence de comparaison directe des performances entre NDN et IP. Bien que cela puisse

être utile, cela peut s’expliquer par plusieurs raisons. Premièrement, nous nous appuyons

beaucoup sur les discussions sur les limitations IP et les fonctionnalités natives NDN

pour montrer la supériorité du NDN, incontestable dans de nombreux aspects tels que la

sécurité, la mise en cache native et la simplicité. Deuxièmement, les comparaisons directes

entre NDN et IP ne sont pas concluantes en raison de la différence de paradigme évoquée

au début de la thèse. Troisièmement, les implémentations NDN, y compris celle présentée

dans ce document, en sont encore au stade expérimental, tandis que les solutions IP sont

matures et généralement bien optimisés.

Enfin, la dernière pensée pour conclure sur les contributions présentées dans ce manuscrit

est la suivante. Ils ne représentent pas la finalisation d’un travail, mais plutôt un point de

40

RÉSUMÉ DE LA THÈSE

départ qui ouvre la voie à des étapes plus passionnantes. Un exemple est la conception

d’un produit ou d’une plate-forme IoT, basée sur NDN, comme décrit plus loin.

Nous fournissons un scénario simple dans lequel le travail présenté dans cette thèse

peut être utilisé pour concevoir un PoC pour un produit IoT avec NDN. Comme indiqué

dans l’introduction, le développement d’une PoC peut être la clé de la création et de la

commercialisation d’un produit IoT. Premièrement, il faut trouver une idée originale sur

le service ou l’application à concevoir et définir un cas d’utilisation précis. Cela peut être,

par exemple, une serre connectée. Une serre connectée est une installation agricole qui

utilise des capteurs pour capturer des données sur la croissance des plantes, l’irrigation,

l’utilisation de la lutte antiparasitaire et l’éclairage, et les envoyer à un serveur local ou sur

le Cloud. En utilisant les données collectées, une application Web permet aux agriculteurs

de configurer les paramètres du système et de prendre des décisions, tandis qu’une applica-

tion mobile génère des alertes et des rapports sur les performances de la serre. La plupart

des solutions de serre connectées peuvent utiliser des dispositifs simples prenant en charge

plusieurs types de capteurs, utiliser une connectivité sans fil à faible débit, consommer peu

d’énergie et pouvant être insérées dans le sol ou fixées à des tiges. La communication en-

tre les périphériques IoT et Internet peut être réalisée via un réseau maillé IEEE 802.15.4

standard, à travers lequel les nœuds échangent des données et transmettent des messages

envoyés par des capteurs jusqu’à ce qu’ils atteignent la passerelle. Plusieurs passerelles

peuvent être installées dans la serre, permettant aux capteurs de se connecter à Internet

et de transmettre des données au serveur. Le coût d’une solution IoT personnalisée pour

la serre est estimé entre 100 000 et 150 000 dollars. La somme couvre le développement

de systèmes embarqués, une application Web et un client mobile pour les notifications

d’alerte, ainsi que des services de conseil concernant le choix des composants matériels.

La deuxième étape consiste à créer un PoC. Selon la description de projet ci-dessus, notre

architecture NDN-802.15.4 inclut toutes les fonctionnalités nécessaires à la création d’un

prototype opérationnel, y compris la sécurité. Avec le prototype opérationnel, les mesures

et les résultats de la simulation, nous pensons que des démonstrations étonnantes peuvent

être faites et que les investisseurs peuvent gagner un intérêt particulier.

Au moment de la rédaction de ce manuscrit, les travaux sont toujours en cours. Pre-

41

RÉSUMÉ DE LA THÈSE

mièrement, le schéma ND-CSMA proposé a été conçu pour une topologie d’arbre binaire.

Ainsi, il n’est pas prévu de travailler sur des réseaux complexes tels que des topologies de

grille avec mobilité. Les résultats obtenus avec la stratégie R-LF suggèrent qu’une adap-

tation plus sophistiquée de CSMA devrait être envisagée en exploitant les informations

R-LF telles que le coût fournis par apprentissage. Autrement dit, une meilleure stratégie

d’acheminement peut être obtenue en combinant les atouts de R-LF avec l’efficacité de

ND-CSMA afin de réduire le temps d’aller-retour. Cette idée est actuellement à l’étude.

Le deuxième travail en cours concerne la mise en œuvre du banc de test, que nous visons

à améliorer avec une pile NDN plus efficace comprenant des PIT et des FIB légers pour

réduire l’utilisation de la mémoire, basée par exemple sur des filtres de bloom. Enfin, le

dernier travail réalisé dans cette thèse était le modèle analytique pour le transfert sans fil

avec NDN. Cependant, il est actuellement simple et limité à la stratégie de transfert de base

NDN dans une topologie d’arbre binaire. L’étape suivante consiste à prendre en charge

des topologies plus complexes dans le modèle. Nous visons à modéliser une topologie de

réseau similaire au DAG utilisé dans RPL et à effectuer des comparaisons analytiques sup-

plémentaires entre RPL et NDN dans un réseau maillé sans fil. Dans l’intervalle, l’outil de

simulation NDN-OMNeT propose de nouvelles fonctionnalités afin d’offrir aux utilisateurs

davantage de possibilités.

42

General Introduction

Context of the Thesis

The Internet of Things (IoT) uses the interconnection of billions of small computing

devices, called “Things”, to provide access to services and information all over the world.

This has been made possible by the democratization of smartphones and laptops, and

more importantly by the affordability of resource-constrained data acquisition devices and

corresponding wireless communication technologies. As an example, sensor costs dropped

by almost 200% between 2004 and 2016 [Andrei Klubnikin a]. Consequently, four times

more devices than people are expected to be connected to the Internet by the end of

this year [IoT online store]. The market is obviously impacted by this evolution. IoT is

expected to grow from US$656 billion in 2014 to US$1.7 trillion in 2020. The economic

impact of the IoT could be between US$3.9 trillion and US$11.1 trillion per year by 2025.

In practice, IoT devices are battery powered, have tens to thousands of Megahertz CPU

and tens to thousands of Kilobytes memory. In an IoT system, these constrained devices

communicate with one another or with user applications over the Internet. This commu-

nication is achieved through the TCP/IP protocol suite and the wireless interconnection

is achieved with low-power and lossy wireless technologies. However, the IP protocol suite

was designed decades ago for a completely different purpose as shown further, and IoT

features now highlight the limitations of IP. For example, most of security protocols for IP

are based on communication channels while the data itself needs to be secured. Moreover,

IoT systems need efficient support for resource naming and discovery, which is not easy

to deploy with IP in constrained infrastructures.

That being said, IP can still support IoT systems through adaptations and middleware.

43

CONTEXT OF THE THESIS

This is why we hear about CoAP, 6LoWPAN, RPL, REST and other solutions. However,

the significant efforts expended in current IP solutions is just to make IoT devices support

the existing IP protocol suite, whereas many other new features have to be included in

devices. Thus, if the support of communication in devices could be simplified and made

robust, it would be a fundamental enabler for a global IoT ecosystem. Moreover, simplify-

ing communication solutions for IoT applications would significantly reduce development

cost.

While adapting IP for the IoT might be seen as cutting corners, alternative architec-

tures based on the Information Centric Networking (ICN) paradigm promise to natively

satisfy emerging Internet applications. One of these architectures is Named Data Net-

working (NDN). The NDN project was funded by the National Science Foundation (NSF)

under the Future Internet Architecture (FIA) program. The main entity in NDN is the

content. Networking operations are performed on names, and hosts (without logical ad-

dresses) request named-content directly from the network. Native features come along

with this principle, such as communication without establishing end-to-end connections

and name-to-address resolution. Moreover, no consumer-provider path or session needs to

be maintained, which provides a native support of connection disruption resulting from

mobility.

A natural reflex when hearing about NDN, is to ask how we can take advantage of its

features without waiting decades for the future Internet architecture. However, fundamen-

tal modifications must be made to the current IP-based networking equipment, protocols

and applications since the NDN paradigm operates on content names rather than host

addresses. Furthermore, as long as IP solutions work for current applications, convinc-

ing IP-enthusiasts and industrial players about the benefits of NDN will remain difficult.

Fortunately, in recent years, many studies have investigated the suitability of NDN for

the IoT, making NDN increasingly powerful. With all this motivating work, real deploy-

ments of NDN can now be envisioned. Although NDN is not ready for worldwide IoT

deployments, real-world designs will enrich NDN experiments and help to figure out what

is needed to make NDN a reality.

However, despite the increasing interest that NDN is gaining, the success of the NDN

44

CONTEXT OF THE THESIS

project (as well as other ICN projects) is not guaranteed. Indeed, NDN is currently an

academic project handled by students and universities, and an industry support has not

emerged yet. Consequently, a great attention should be given when using NDN for the IoT,

particularly in the case of a thesis. For example, if the NDN project fails, the contributions

of a thesis may loose their importance if they are too much focused on a pure and isolated

NDN scenario. For these reasons, we believe that enabling ICN principles (through NDN)

in current IoT designs is a more suitable approach than considering an isolated NDN

solution for the IoT.

We believe that integrating NDN in low-end IoT devices over a low-power wireless tech-

nology is a suitable approach to use NDN in the IoT, given the importance of constrained-

devices in IoT systems. Moreover, low-end IoT is still in a development stage even with IP,

which provides an opportunity to make NDN an important part of IoT solutions in a short

period of time. To take this opportunity, we base our work on a realistic NDN deployment

in the IoT. The concept of realistic in this context includes many aspects. First, it aims

to enable NDN in the current Internet infrastructure. That is, scenarios that can not be

deployed now are not considered. Second, realistic means using NDN to design solutions

that work on current IoT equipment such as prototyping boards. Third, the objective of a

realistic design is to provide a viable NDN solution for the IoT that must be easy-to-use,

low-cost, simple and lightweight. We can think of the realistic approach envisioned here

as the development path followed by two or three startupper-friends aiming to launch a

revolutionary IT product. According to Gartner, 50% of all IoT solutions are developed

by start-ups or small companies that often do not possess the financial resources to design

and produce a market-ready IoT product from scratch [Andrei Klubnikin a]. There-

fore, to succeed in creating an IoT application, startuppers often use a Proof-of-Concept

(PoC) to show that their solution can find commercial success [Hemendra Singh] . This

is commonly achieved using systems on a chip (SoCs), micro-controllers and single-board

computers like Arduino, BeagleBoard and Raspberry Pi. Moreover, having a working

prototype significantly increases a company’s chances of getting funded.

45

OBJECTIVES AND CONTRIBUTIONS

Objectives and Contributions

At a global level, this thesis proposes a vision about how ICN/NDN can be considered

in the IoT. This first step is a chance to explore some popular IP-based solutions for the

IoT, and figure out how NDN can be brought into IoT systems. After that, the NDN

forwarding in constrained wireless networks is identified as one of the issues to address to

make NDN a reality in IoT solutions. This second step allows us to explore in details the

wireless forwarding in constrained networks, which is an important aspect in both IoT and

NDN.

Hence, our objectives through the work reported in this manuscript can be summa-

rized in two aspects. The first objective is to show that NDN is suitable to support IoT

networking. To achieve that, a detailed discussion on IP limits and NDN features will be

presented first, followed by the design and deployment of a realistic NDN architecture for

the IoT using IEEE 802.15.4 (NDN-802.15.4) that shows the simplicity of NDN. Moreover,

a simulation framework for NDN-802.15.4 and a model for NDN wireless forwarding are

proposed to quantify and analyse the advantages of NDN. The second objective is the

design of two solutions for lightweight forwarding in constrained wireless networks. These

two solutions consider the IEEE 802.15.4 technology and use only broadcast communica-

tions. The utility of broadcast in NDN networks will also be studied. In short, the first

solution is based on a reinforcement learning scheme and operates at the network layer,

while the second is based on priority-based medium access and operates at the link-layer.

The contributions involved in this thesis can be presented in the order in which they

were conducted as follows.

NDN over IEEE 802.15.4. In recent years, several research projects have demon-

strated the ability of NDN to support emerging IoT applications like home automation,

smart cities and smart farming applications. Motivated by this, our first work was to inte-

grate NDN with IEEE 802.15.4 to give NDN a better support for IoT applications that are

known to require wireless sensing/actuating abilities, mobility support and low power con-

sumption. To this end, we designed an NDN-over-802.15.4 communication scheme based

on ZigBee radio modules. This work can be considered as the first step towards a realistic

46

OBJECTIVES AND CONTRIBUTIONS

use of NDN in low-end IoT architectures.

Realistic NDN-802.15.4 architecture. The IEEE 802.15.4 wireless technology

allows constrained devices to communicate with a satisfactory data rate, payload size

and distance range, all with reduced energy consumption. To provide IoT devices with

a global Internet identity, 6LoWPAN defines the IPv6 adaptation to communicate over

IEEE 802.15.4. Motivated by the fact that 6LoWAP still needs additional protocols to

support other IoT requirements, we decided to design a realistic IoT architecture based on

NDN and our NDN-802.15.4 integration. Integration challenges are discussed with some

solutions and the proposed design has been implemented in a real-world smart agriculture

scenario. Simulation results have been reported on energy consumption and network

overhead in comparison to IP-based solutions such as AODV.

NDN-OMNeT simulator. NDN solutions for IoT need accurate evaluation at both

the network and system levels. This work introduces NDN-OMNeT, our NDN framework

for the OMNeT++ simulator. Designed for low-end devices and gateways of the IoT, the

framework is capable of simulating NDN scenarios at the boundary of the network and the

system. The framework implementation is presented and used to study a typical aspect

of NDN integration in IoT devices.

A lightweight forwarding strategy for NDN in low-end IoT. To complete the

NDN-802.15.4 architecture, multi-hop communication between devices must be supported.

Therefore, we present a lightweight forwarding strategy for NDN over IEEE 802.15.4. The

forwarding strategy uses broadcast communications and it is designed to reduce network

overhead to the bare minimum, while keeping satisfactory performance in different IoT

application scenarios. To forward named content items without node addresses, the strat-

egy is based on a reinforcement-learning technique that provides accurate broadcast-based

forwarding decisions with a reduced overhead. This solution, called Reinforcement-based

Lightweight Forwarding strategy, operates at the network level (L3) with legacy IEEE

802.15.4 link-layer.

Modeling and Improving NDN forwarding over IEEE 802.15.4. To design a

strong NDN-802.15.4 deployment, adaptations of current IoT technologies will be required.

Examples of such technologies are low-power wireless standards such as IEEE 802.15.4.

47

ORGANISATION OF THE MANUSCRIPT

In this contribution we want to handle NDN forwarding at the link layer (L2). For that

purpose, we explore NDN forwarding over IEEE 802.15.4 according to two steps. First,

we model a simple broadcast-based NDN wireless forwarding strategy over constrained

networks. The proposed model considers content popularity and estimates the average

number of frames transmitted per request and the mean round-trip time. Second, based

on the model and experimental observations of the broadcast-based forwarding at the

network level (L3), we find that the link-layer level (L2) can be adapted to reduce broadcast

effects in terms of packet redundancy, round-trip time and energy consumption. Hence,

we develop an adaptation of the Carrier-Sense Multiple Access (CSMA) algorithm of the

IEEE 802.15.4 to enhance the modeled forwarding strategy. Preliminary results show that

an adaptation of the CSMA algorithm should be considered to improve some of the current

technologies support of NDN.

Organisation of the Manuscript

This manuscript includes five chapters each containing five sections, except the last

chapter which contains seven. Chapter 5 is the heart of this document as it gathers all

the concepts introduced in the four first chapters, to tackle the question of lightweight

forwarding in constrained networks with NDN. It is thus the most technical chapter and

includes an extensive evaluation of the presented work. Before getting to that part, in

Chapter 1, we discuss existing IP solutions for the IoT and their limits, which ends by

introducing the ICN concept with NDN as one of the most promising alternatives to

IP. Chapter 2 introduces NDN principles, communication process and some NDN-for-IoT

related work, which we consider as inspiring and necessary for this document. In Chapter

3, we study the possibilities of deploying NDN in realistic solutions, then we choose the

most realistic approach and present our NDN-802.15.4 architecture and its mechanisms.

We finish this chapter by identifying NDN forwarding in wireless mesh networks as the

main feature we need to support. Chapter 4 presents the three tools we develop in our

environment to investigate the forwarding problem, namely: the NDN-802.15.4 testbed,

the simulation framework NDN-OMNET, and the analytical model. Finally, in Chapter

5 we present our propositions for the wireless forwarding problem at two different levels,

48

ORGANISATION OF THE MANUSCRIPT

namely: a general network level solution and a link-layer solution with IEEE 802.15.4.

Our contributions in this thesis start from Chapter 3.

Although the chapters are ordered and related, they are organized such that they may

be read separately according to the reader’s background. For example, a reader already

familiar with IP limitations can start directly at Chapter 2; a reader who is familiar with

NDN and its utility for IoT can start reading at Chapter 3; reader who is only interested

in NDN evaluation environments can read Chapter 4, and a reader who is focusing on

wireless forwarding strategies and evaluation can go directly to Chapter 5.

49

ORGANISATION OF THE MANUSCRIPT

50

Chapter 1

IP vs. ICN: The IoT Challenge

1.1 Introduction

In less than 40 years, Internet Protocol (IP) networks have created the Internet with

today’s world of content, despite that fact that IP networking was not designed for it.

This is a meaningful thought to summarize the evolution of the Internet and its current

situation with the Internet of Things (IoT) and emerging applications. In this chapter,

we shall explain this idea and show why it is true. We consider that the IoT is a good

point of view to understand IP limits as it brings requirements that reflect the evolution of

the technology as well as society itself. Therefore, we investigate how the IP architecture

supports IoT systems, and we present the solutions and their shortcomings. Finally we

introduce the ICN/NDN networking approach as a solution that gathers the essential

features required to efficiently meet IoT requirements.

1.2 The Internet of Things

1.2.1 Description

Massive technological innovations towards electronic miniaturization, associated with

affordable System on Modules (SOMs) and single board computers have fostered the emer-

gence of billions of devices, through which people and “Things” are becoming connected

over the Internet. This new trend of cyber-physical Internet (see Figure 1.1) is commonly

known as the Internet of Things (IoT) [Atzori et al. 2010].

51

1.2. THE INTERNET OF THINGS

The IoT can be seen as the latest (and arguably the first) evolution of the Internet, and

it is gaining an essential role in providing access to services and information all over the

world. This has became possible through the interconnection of billions of small computing

devices (called Things) that allow the physical world to be monitored and controlled. A

global view of the IoT includes devices of various types, that can be resource-constrained,

powerful and virtualized objects.

The figures relating to the IoT are astounding. In 2008, there were already more objects

connected to the Internet than people. In 2016, the number of IoT connections grew by

45% to 410 million. By 2020, 90% of cars will be connected to the Internet, whereas only

10% were connected in 2012. In 2020, the total number of connected things will reach 50

billion for 4 billion connected people, with over 25 million apps.

Typically, an IoT system consists of a large number of wireless devices, deployed within

an infrastructure (e.g., buildings, cities), and reachable over the Internet. Worldwide

networking in today’s IoT applications is widely supported by the TCP/IP protocol suite.

The low-end IoT (i.e., the “Things” side) is built with battery powered devices, that

have limited resources (i.e., 10s to 100s of MHz CPU and 10s to 100s of KB memory)

and which are often mobile. The interconnection of these resource-constrained devices is

achieved with low-power and lossy wireless networks (LLNs), which allow communication

with a satisfactory data rate (10s to 100s kbps), payload size (10s to 100s bytes) and

distance range (10s to 100s meters), and some low-power devices possess years of battery

lifetime. LLN technologies such as IEEE 802.15.4, BLE and low-power Wifi provide the

best compromise for resource-constrained devices.

Beside LLNs, lpWANs are a new form of wireless technologies for IoT applications.

They were designed with the aim of offering equipment a means of communicating over

very long distances (kilometers) with very low energy consumption. LPWAN solutions

such as LoRa [LoRa Alliance] and Sigfox [Sigfox] are typically used for IoT applications

in which equipment (e.g., sensors) generate small volumes of data and a reduced number

of packets per hour.

Figure 1.2 depicts the typical components of the IoT architecture and their relation-

ships.

52

1.2. THE INTERNET OF THINGS

Typically, IoT applications fetch data from devices, often use it for analytic and/or

to make decisions using Artificial Intelligence (AI) algorithms, and may control other

devices such as actuators. Table 1.1 summarizes IoT phases and their corresponding

technologies. All these operations are commonly performed according to the request-

response communication model.

Figure 1.1: A global view of the Internet of Things [Amadeo et al. 2016]

Figure 1.2: IoT architecture components [RS Components Ltd.]

53

1.2. THE INTERNET OF THINGS

Table 1.1: IoT phases and corresponding technologies

IoT phase Solutions
1. Acquisition and sensing RFID, WSN, Bluetooth, NFC

2. Data transmission Ethernet, WiFi, VANET/MANET; 4G/5G
3. Data processing, analysis and management Cloud computing, Big Data, Machine learning

4. Decision and action Application, actuators

1.2.2 Examples

1- Smart homes are one of the most popular IoT applications [IoT online store]. In

a smart home, IoT devices such as sensors and actuators are integrated to monitor and

control homes using a smartphone or a personal computer. Various products, ranging

from light switches to smart TVs are proposed to customers.

2- By 2050, the agriculture Internet of Things will boost food production by 70%

[Andrei Klubnikin b]. IoT systems are deployed as precision agriculture solutions to

help improve productivity by making better and faster decisions. Farmers can deploy IoT

devices to collect data such as temperature/humidity in crops, or motion on livestock. The

collected data feeds machine learning algorithms that can predict diseases or events such

as frost. Decisions can then be taken accordingly.

3- We consider a specific precision agriculture scenario to illustrate the concepts pre-

sented in this document. A cow monitoring system that uses sensors (e.g. movement,

temperature, microphone.) to monitor health, fertility and location of each cow individ-

ually. The collected data may be analyzed to detect whether a cow is sick, or to forecast

cows’ activities such as heat periods to make breeding decisions more accurate. The de-

vices are generally installed in a collar on every cow. As the cows are mobile, data may be

published from various places: inside, in the field, or in the milking parlor. The collected

data can be visualized on the farmer’s smartphone or stored/analyzed on the farm’s main

computer.

Figure 1.3 depicts the main application domains currently known in the IoT [Atzori

et al. 2010].

54

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

Figure 1.3: IoT applications domains and main scenarios

1.3 IoT puts IP to the test: Challenges and Shortcomings

1.3.1 Brief Story of IP

To understand how IoT features are currently supported by IP, a short recap of the cre-

ation and the vision of IP networking is useful. The revolutionary feature of IP networking

is that it made it possible to concatenate networks of different kinds by abstracting their

lower-level characteristics (i.e. Layer 2 technologies). That allowed networks to be uni-

formly connected regardless of their respective protocols, to form bigger networks, which

were further concatenated to make the Internet. At the beginning, only a few computers

were connected. They were very expensive as indeed were resources required to make

them work, such as tape drives and printers. As resources were expensive and devices

rare, the main usage of networking was to share these precious resources. For example,

with networking, one printer can be used by two or more computers in a lab; that makes

the machines busy while making the most of resources to improve productivity. For this

reason (i.e. sharing resources between computers), networking protocols were developed

on the basis of identifying hosts, ranging from computers to printers and so on. These

protocols focused on having a point-to-point conversation between two hosts over the net-

work. Logical addresses were then used to identify hosts. It is worth noting that data was

55

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

not carried on computers at that time, but was kept on storage devices such as tapes and

hard disk drives.

Naturally, this produced the Internet with an architecture that considers the com-

puter/host as the main entity. Its communication model was an extension of the telephone

model to support exchanging host-dependent packets. Therefore, IP’s central feature was

to deliver packets between a source host and a destination host. When exchanging data

was needed, additional layers and protocols were developed, above this network layer, to

support flow control, end-to-end reliability and user applications, creating today’s Internet

protocol stack (i.e. TCP/IP).

In the meantime, revolutionary Internet applications (e.g. the Web) shifted the focus

from identifying hosts (IP) to identifying resources (URI) leading to the creation of the

Domain Name System (DNS) service. Consequently, two namespaces following two differ-

ent models are currently involved in the Internet protocol stack: IP addresses and resource

names.

Figure 1.4 depicts a timeline of the Internet evolution, and some interesting facts.

A recent evolution of Internet, the IoT, puts IP networking to the test, and definitely

highlights the mismatch between IP’s host-centric paradigm and application needs, as is

explained below.

1.3.2 IoT over IP

The request-response communication model used in the IoT to get data from sensors

and send commands to actuators is commonly achieved using the REST (REpresentational

State Transfer) architecture [Mueller 2013] just like in Web services. To enable the

REST architecture in IoT applications, the IETF CoRE WG defined the Constrained

Application Protocol (CoAP) standard [Shelby et al. 2014]. CoAP can be seen as a

lighter version of the HTTP protocol. It is a data transfer protocol that provides a

REST communication over UDP for constrained environments. CoAP can support caching

through some adaptations.

CoAP and its variants make it possible to provide three communication primitives

56

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

Figure 1.4: Internet evolution timeline

Table 1.2: COAP methods and usage example

Action example Description
GET /temp Read a temperature from a sensor
POST /door Open or close a door
PUT /config Configure a sensor or actuator

DELETE /sensor/42 Tell a controller to remove a sensor
from the list that it uses for its actions

required in common IoT scenarios. First, pull is the common request response commu-

nication pattern (e.g., HTTP). Second, push allows devices publishing new events and

data. Third, publish-subscribe mechanisms are useful when producers and consumers are

decoupled in time, and data is not yet available when the request is issued. Delayed data

delivery in publish-subscribe is supported in an extension, CoAP observe [Hartke 2015].

Table 1.2 gives an example of how the RESTful architecture is used in CoAP to manage

an IoT environment.

Another solution developed to support IoT scenarios with IP is the Message Queue

Telemetry Transport (MQTT) protocol [OASIS]. MQTT is a broker-based publish-subscribe

messaging protocol. Clients can publish content, subscribe to content, or both. Brokers

(servers) distribute messages between publishing and subscribing clients. MQTT is a

57

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

lightweight protocol suitable for constrained IoT devices.

MQTT relies on TCP to provide reliable communications. However, MQTT imple-

ments its own Quality of Service through three QoS levels. With QoS-0, a receiver gets

a message at most once without re-transmission on the application layer. QoS-1 ensures

that at least one receiver gets the published message. In other words, the sender stores

its message until an acknowledgement is received, and re-transmits the message when an

acknowledgement is missing. QoS-2 ensures that a message is received exactly once, to

avoid packet loss or processing of duplicates at the MQTT receiver side.

MQTT-SN [IBM 2013] is an adaptation of MQTT to constrained networks such as

IEEE 802.15.4. For example, publish/subscrie topic names (strings) are replaced by IDs

(numbers) to reduce header complexity. Moreover, MQTT-SN is able to run on top of

UDP unlike the initial MQTT.

Since the IoT became a reality, IETF WGs have made significant efforts to adapt the

traditional TCP/IP stack to IoT systems. These efforts made the IoT more accessible to

most users, and resulted in extensions to TCP/IP protocols and the appearance of various

other protocols acting like middleware between the application layer and the network layer.

However, we can observe that IP addressing is not expressive enough to manage device

identity, data names and security at once. New requirements such as content discovery,

caching, mobility and multicast communications make the task even more complicated for

IP networking. To illustrate that, most IP solutions support IoT by implementing new

features at the application layer using REST. This indicates that the TCP/IP stack has

reached its limit to support these new requirements.

Figure 1.5 depicts the current IoT environment with its typical related solutions. In

the following, we examine in detail the main requirements of the IoT, how current IP-based

IoT systems support them, and what are the limits of these solutions.

58

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

Figure 1.5: Global IoT architecture with REST, CoAP and 6LoWPAN [Wikipedia a]

1.3.3 Requirements and Solutions

1.3.3.1 Heterogeneous constrained environment

The IoT is typically characterized by its diversity of communication technologies and

limited resources. Current devices used in IoT deployments may use various communica-

tion technologies, and provide different interfaces with their respective protocols. Further-

more, they may adopt different addressing schemes and implement different middleware

to bridge the gap between the network layer and the application layer. This creates a

very heterogeneous environment in which applications and devices have to exchange data.

Figure 1.6 depicts the three types of devices present in an IoT environment [Eclipse IoT

White Paper 2017].

Although request-response APIs standardize communications at application level, they

require maintaining a mapping between device interfaces and the data identified through

URIs. Mappings that make API available over a host-centric protocol stack become even

more complicated when the environment changes dynamically due to mobility and coex-

istence of many different technologies. Although solutions such as ZigBee WSNs [ZigBee

59

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

Figure 1.6: Types of devices in the IoT [Eclipse IoT White Paper 2017]

Alliance] and Cloud-based platforms provide satisfactory IoT applications based on the

TCP/IP stack, they only support a specific technology or a particular network type, with-

out a totally secured environment. In the cow monitoring example, the analyser requests

data through its name, while the data is collected by a sensor with a certain IP address.

Moreover, different technologies may be used at the same time according to the environ-

ment and deployment cost, which may also bring different link-layer addressing. Therefore,

a continuous mapping between addresses and names is needed to ensure data availability.

Table 1.3 gives the typical resources available in constrained devices as defined in [Bor-

mann et al. 2014]. Resource-constrained devices present in IoT systems provide limited

communication and processing capabilities. To save energy, devices spend most of their

lifetime in sleep mode. To deal with that, protocols must provide energy-efficient design

which is currently not supported at the network layer. Rather, lower and upper layer solu-

tions are combined to manage energy. This is done in the MAC layer through clustering,

synchronization, etc., and in the transport layer through connection-less and asynchronous

communications over UDP. Furthermore, approaches like IPv6 header compression may re-

duce communication time and save energy, but at the cost of more memory and processing

requirements.

This takes us to the other limitation of IoT constrained environments: the reduced

60

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

Table 1.3: Classes of constrained devices

Class Data size (e.g., RAM) Code size (e.g., Flash)
Class 0 ≪ 10 KiB ≪ 100 KiB
Class 1 ∼ 10 KiB ∼ 100 KiB
Class 2 ∼ 50 KiB ∼ 250 KiB

MTUs offered by low-power wireless links. One of the technologies that enables massive

device deployment in the IoT is the IEEE 802.15.4 which has a frame size around 127

bytes of which no more than 100 bytes are available for the payload. The problem is that

IP was not designed to support such reduced MTUs. IPv6 uses a fixed length header of

40 bytes to improve packet processing speed, and assumes a minimum MTU of 1280 bytes

to avoid fragmentation. This is reasonable for traditional networks but the constraints

of the IoT are not considered at all. To cope with this issue, 6LoWPAN [Montenegro

et al. 2007] was introduced as an adaptation layer between the network layer and the link

layer to enable IPv6 networking over IEEE 802.15.4. This layer includes the mechanisms

needed to support small MTUs such as header compression and packet fragmentation.

Header compression is used for IPv6 headers and UDP to reduce the size of the header

in the majority of the transmitted packets, providing more space for application data.

Packet fragmentation consists in splitting a standard IPv6 packet (i.e., 1280 bytes) into

multiple link layer frames (i.e., 127 bytes). Although these two operations enable IPv6 in

low-power wireless networks such as IEEE 802.15.4, they bring additional overhead and

processing, and consume more memory which is already rare in IoT devices. Furthermore,

the need for this adaptation layer shows one of the limits of traditional IP design to support

resource-constrained IoT devices.

The standardization effort in the IETF has made the new standard for header com-

pression, ROHC [Jonsson et al. 2006]. Its main advantage is its ability to withstand high

error rates and delays. Although the effort initially focused on UDP because this proto-

col is the media flow vector, work is underway to improve the efficiency of TCP stream

compression.

Nevertheless, the IP protocol only moves packets between two hosts. How to move

a data object over the network is not defined in the IP specification (i.e. RC791) be-

61

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

cause it is a transport problem. In the TCP layer, data streams between a sender and

a receiver are used to provide reliable packet delivery and congestion control. However,

some TCP features do not accommodate constrained IoT environments. As an example,

in the cow monitoring system, devices need to send only a small amount of data at one

time. Establishing connections to send the temperature of a cow is not reasonable, and

it is not feasible to maintain connections while IoT devices are frequently in sleep mode.

To provide connectionless communication and reduce overhead, UDP is frequently used

in IoT protocols such as CoAP. However, UDP only provides data stream multiplexing

in the transport layer, which forces the application layer to implement complex transport

functionalities when needed.

1.3.3.2 Wireless networks

As mentioned above, IoT devices typically use wireless links to communicate with

the rest of the Internet. Devices then typically get Internet access through a gateway.

To reach the gateway, devices are connected either in a star or mesh topology. While

the star topology is easy to deploy and simple to manage, every device in the network

must be able to reach the gateway in one hop in order to communicate. In the mesh

topology, any device that can reach another device may receive and transmit packets. In

this way, nodes may act as routers and relay packets from any node to the gateway, and

vice-versa. In our cow monitoring example, the star topology can be adopted in closed

environments where the cows are relatively close to the gateway. However, the mesh

topology can be useful to provide connectivity in the fields, for example to keep using a

technology with good reliability but a small communication range. Routing packets in

a mesh network can be envisioned either at the network layer (known as route-over) or

the link layer (known as mesh-under). In the mesh-under approach, multiple link-layer

hops form a single IP hop, while the route-over approach associates each link-layer hop

to an IP-hop. To support mesh-under routing, a link-layer addressing scheme is used to

reflect the topology configuration, and nodes maintain link-state information with their

neighbors. However, when the network topology changes, the address allocation process

needs to be performed again to adapt to the new one.

62

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

The first routing protocol standardized by IETF to support LLNs is the IPv6 Routing

Protocol for Low-Power and Lossy Networks (RPL) [Alexander et al. 2012]. RPL is a

route-over solution that supports point-to-point, multipoint-to-multipoint and point-to-

multipoint communication patterns. RPL organizes the network topology as a Directed

Acyclic Graph (DAG) divided into Destination-Oriented DAGs (DODAGs). One RPL

instance has one or more DODAG roots. When two nodes inside a DODAG communicate

with each other, their packets are forwarded up to a common ancestor (or the root), then

sent down to the destination. However, maintaining routing tables can be challenging in

certain situations (e.g. nodes near the the root). Although a mode where only the root

maintains the routing table exists, the full route information needs to be inserted in the

packet by the root. Hence, memory usage is reduced on the other nodes but the header

size is increased in some packets. Moreover, RPL has difficulties to support dense networks

and mobile environments [Lamaazi et al. 2018].

In short, the challenges that IP faces in wireless mesh routing come from logical node

addressing that requires explicit routing information to operate. Unlike in traditional IP

networks, maintaining per-node and link-state information can rapidly become an issue in

resource-constrained IoT devices, especially under dynamic topologies.

1.3.3.3 Resource discovery

In the cow monitoring scenario, some types of data need to be published in specific

situations or at a given time (e.g., in the milking parlor). Therefore, devices may need to

know if there is a service to which they can publish their data, or the analyser software

may need to know which data are provided by each sensor. For that, a resource discovery

mechanism is useful. Resource discovery in IP networks involves three operations in order

to be effective: automatic assignment of network addresses for devices, automatic distri-

bution and resolution of host names, and automatic location of network services, such as

a printing device. In traditional networks, resource discovery is based on DNS, and called

DNS-based Service Discovery (DNS-SD) [Cheshire and Krochmal 2013]. However, DNS-

SD is designed to discover services identified by running programs whereas IoT applications

handle more general resources such as services, devices, data and so on. DNS-SD often

63

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

uses Multicast DNS (mDNS) communication for service discovery in the local network,

but multicast traffic may not be supported efficiently in IP-based constrained networks.

The main limit of this approach is that direct discovery of resources is frequently not

feasible due to sleeping nodes, dynamic networks and link-layer constraints. Furthermore,

multicast requires trusting the entire network rather than a designated DNS server, which

makes it vulnerable to spoofing attacks.

For IoT environments, the IETF CoRE WG has developed a resource discovery mech-

anism based on CoAP. CoRA-RD [Lynn et al. 2019] uses a Resource Directory (RD)

to store resources provided by hosts. However, such an important feature for the IoT

would be more useful if were supported in the network layer as it could be combined with

packet routing for example. This happened because TCP/IP layers are not designed to

understand named resources used by applications. As a result, the Neighbor Discovery

protocol for IPv6 can only discover configurations at the network layer and below, whereas

resources are related to IP addresses and port numbers such as in DNS-SD.

1.3.3.4 Mobility

IP communications require an IP address for every device and every interface, and a

valid address is required every time the location changes. In the cow monitoring scenario,

devices (i.e., cows) are frequently moving, and each area may form its specific local network.

Monitoring may be able to fetch and authenticate data from each cow regardless of its

location on the farm, and with a minimum of latency. However, mobility in our scenario

is relatively reduced compared to other IoT applications.

According to [Meisel et al. 2010], current Internet protocols are not suitable for

highly mobile environments like MANETs and VANETs. To support node mobility with

IP, most solutions (e.g., Mobile IP [Perkins 2002]) rely on a mapping between the stable

IP address of the mobile and its changing address, and use traffic redirection. When its

location changes, a mobile updates the mapping service. However, tracking and updating

location changes of each mobile raises scalability issues. Moreover, this approach does

not deal with content mobility, particularly when new communication patterns such as

many-to-many are present. In addition, since IP security is based on IP addresses, the

64

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

secured communication must be reestablished when a communicating node moves. This

is inefficient when nodes move frequently. Opportunistic solutions have been proposed to

take advantage of the broadcast nature of wireless technologies. For example, one approach

[Biswas and Morris 2005] consists in framing data units within bundles and provides a

binding of data names to host address. However, the content delivery is still based on IP

addresses, and as long as IP address assignment and management is required, the limits

remain the same.

1.3.3.5 Security

Security in IoT deployments is important as devices that interact with the physical

world can be requested and controlled over the Internet. IP does not integrate security

as a native feature and it has had to be designed later on and supported somewhere at

data-link, network, transport or application layer.

The security model provided by IP is channel-based; that is, it provides and maintains a

secured communication channel between two hosts. Hence, all IP-based security protocols

(e.g., IPsec [Frankel and Krishnan 2011], TLS/SSL [Rescorla and Dierks 2008] , DTLS

[Rescorla and Modadugu 2012]) are based on host network addresses. However, since

security protocols are based on the TCP/IP model, they inherit its overhead issues for

establishing a secured channel (e.g. two or more rounds of security handshake for TLS),

and maintaining channel states requires more memory usage, which increases linearly

with the number of peers the node is simultaneously communicating with. Moreover,

channel-based security makes it difficult to ensure data security in the presence of caching

for example, as it requires both client and server nodes to be online to secure the data.

Nevertheless, securing a channel when exchanging data does not ensure that the content

received is itself authentic, and the security of the content is the most important for

applications. Moreover, securing channels in the case of a communication that involves

mobile devices or multiple parties is cumbersome and increases network overhead. For

example, mDNS requires trusting the entire network rather than a designated DNS server,

which makes it vulnerable to spoofing attacks by any system within the multicast IP

range. It can be used by attackers to get detailed knowledge of the network. Because of

65

1.3. IOT PUTS IP TO THE TEST: CHALLENGES AND SHORTCOMINGS

this, applications should still authenticate and encrypt traffic to remote hosts (e.g. via

RSA, SSH, etc.) after discovering them through DNS-SD/mDNS. Figure 1.7 illustrates

the security solutions involved in IoT deployments with 6LoWPAN.

In short, IP-based security does not meet IoT requirements because it secures channels

between things whereas IoT applications require securing the things themselves together

with their data. A typical example that illustrates a security situation is a device deployed

in the cow monitoring system. Such a device may communicate over several interface types:

low-power wireless, Ethernet or USB. Exchanging data and executing actions over each

of these interfaces requires different networking stacks: power-aware communication over

the wireless radio, IP for Ethernet, and file-based access for USB. Each stack has different

security solutions. Further, securing a channel between devices must deal with device

identity, verify data authenticity and express trust relationships.

To overcome the channel-based security limitations, the IETF CoRE WG proposed an

Object Security for Constrained RESTful Environments (OSCORE) mechanism [Selander

et al. 2019]. It is an object-based security solution for application-layer data protection

over CoAP. OSCORE is designed for constrained nodes and provides end-to-end protection

between endpoints communicating using CoAP. For that, each data object should carry

authentication information such as digital signatures so that anyone receiving the data

can verify its validity regardless of how the data is retrieved.

Figure 1.7: Security solutions in IoT with 6LoWPAN [Wikipedia a]

66

1.4. FROM IP LIMITATIONS TO ICN

1.3.3.6 Caching

In our cow monitoring application, devices are frequently in sleep mode to save energy.

Hence, a device related to a cow may not be online when a data collection is triggered by the

analyser. In addition, such a dynamic scenario makes it difficult to maintain connections

between hosts. To deal with this, caching and proxying techniques can be included in the

system. Caching and proxying mainly aim to save bandwidth and reduce latency. For

example, a node can store content to serve similar future requests. A proxy node can

prefetch and store content on behalf of sleeping nodes, and the same approach can be

used by content producers that select proxy nodes to act on their behalf (reverse-proxy).

However, these techniques are in contradiction with the TCP/IP protocols which require

that both the client and a the server are online during the communication. Consequently,

caching/proxying techniques are implemented at application level (CoAP and HTTP) and

create several issues in IoT environments. The selected nodes need to be explicitly chosen,

and additional computation and communication is required to find the appropriate node

for each communicating host. In dynamic environments, nodes need to frequently re-

configure proxies and update information. Security protocols are based on end-to-end

connections, but storing and reusing cached data makes it unsecured.

It is worth observing that issues raised by caching are basically due to addressing hosts

combined with the fact that content is completely opaque to the network layer. Indeed,

caching handles application data while network protocols are based on IP addresses, and

ensuring a continuous binding between data and hosts generates communication overhead

and extra complexity in network configuration.

1.4 From IP limitations to ICN

1.4.1 Summary of IP-for-IoT Efforts

The IETF is making considerable efforts to design protocols for constrained environ-

ments based on IP. The Constrained RESTful Environments (CoRE) group proposes CoAP

to allow IoT devices to exchange data as in the Web, and OSCORE for securing data ob-

jects at application level. The 6LoWPAN-WG is handling the adaptation of IPv6 over

67

1.4. FROM IP LIMITATIONS TO ICN

low-power low-rate networks such as IEEE 802.15.4, by designing mechanisms for IPv6

header compression to deal with small MTUs. The ROLL WG is developing routing strate-

gies and self-configurable mechanisms in low power networks and is working closely with

6LoWPAN-WG. IETF has standardized RPL for communication in constrained wireless

networks. The Light-Weight Implementation Guidance (LWIG) working group is help-

ing to build minimal and interoperable IP-capable devices for constrained environments.

The Thing-2-Thing Research Group (T2TRG) focuses on issues that may influence stan-

dardization processes in the IETF, to form the real IoT in which constrained devices can

communicate with each other and with the global Internet. Figure 1.8 shows the IP-based

standardization efforts located in a typical network protocol stack.

Figure 1.8: IP standardization efforts for IoT

However, by looking at the solutions proposed to provide a viable IoT over IP, we

observe that the most important functionalities are implemented in the application layer,

using REST as a common architecture for communication. Therefore, the heart of the cur-

rent IP-based IoT architecture is the application layer with REST instead of the network

layer with IP, as it is supposed to be.

This is because the host-based IP model can not support IoT requirements by itself;

it needs a richer and more flexible architecture (e.g. REST) to provide caching, resource

discovery and efficient security. This situation is schematized in Figure 1.9, in which a

complete IP-based IoT stack is represented. Even though these solutions (i.e., implemented

68

1.4. FROM IP LIMITATIONS TO ICN

in application-layer) may hide IP limitations to the final users of the IoT, the conceptual

mismatch between the application-layer features and the TCP/IP architecture is a reality,

in particular for developers, and often leads to more complex solutions.

Figure 1.9: Current IP-based IoT stack [Shang et al. 2016a]

1.4.2 Shifting to Information Centric Networking

One can easily imagine what will happen if we move the functionalities provided by the

current IP-based IoT stack (see Figure 1.9) from the application layer to the network layer.

In addition to being completely feasible, this can be more efficient, will reduce complexity

in the application layer and greatly simplify application development. The stack obtained

will then be pretty close to the Information-Centric Networking (ICN) paradigm [Ahlgren

et al. 2012]. To show that, Table 1.4 summarizes the IP-based solutions for IoT discussed

abovecompared to the main ICN native features, which will be presented below. We

observe that the recent solutions which currently make IoT over IP feasible correspond

exactly to the ICN features, except that they are provided by the core network in ICN.

ICN is attracting great interest to design the future Internet architecture. Unlike the

host-centric IP networking, ICN operates with natural names. In ICN, every piece of

content is identified by a unique name which applications use to request and retrieve data.

Content names are independent from the host location, which means that a content item

keeps the same name everywhere; at the content producer, caches and consumers. This

feature is combined with self-secured content to provide reusable packets and enable in-

69

1.4. FROM IP LIMITATIONS TO ICN

Table 1.4: IP-based solutions for IoT vs. ICN features

IoT requirements IP-based efforts ICN native features
Resource naming DNS, URI Named content

Application data security Object-based security Self-secured packets
Request-response model CoAP, REST Consumer driven model

Small MTU 6LoWPAN No fixed packet size
Caching At application layer In-network caching

Content dissemination/discovery Multicast, CoRA-RD Broadcast/multicast friendly

network caching, since a packet is independent from its source and destination nodes. By

considering data names rather than host addresses, ICN can match most IoT applications

that focus on the content regardless of where it is located or how it is transported. IoT

deployments for ICN are investigated within the ICN Research Group (ICNRG) of the

IRTF [Kutscher et al. 2016].

1.4.3 ICN Principles

In recent years, various ICN architectures have been proposed such as NDN, SNAIL,

PURSUIT and NetInf. Although they have different protocol designs, they share the same

following principles:

• Content abstraction

• Content-centric naming and security

• Connectionless receiver-driven communication model

With these principles, all ICN architectures provide two main features: name-based

networking operations and native in-network caching.

Content abstraction: ICN architectures work on Named Data Objects (NDOs). An

NDO can be a web page, a photo, sensor data, or any object that computers can store

and access. The NDO has a name that remains the same everywhere in the network. This

means that copies of an NDO (e.g. copies in different caches) are all equally able to satisfy

requests. Depending on the architecture, NDOs can be full objects or divided into packets.

Content-centric naming and security: To identify NDOs, ICN names need to

be globally unique. An ICN architecture can adopt hierarchical, flat, or attribute-value

70

1.4. FROM IP LIMITATIONS TO ICN

names. Hierarchical names are URI-like names of variable length. Flat names are in the

form P:L, where P is the ciphered hash of the public key of the content owner, and L is

a unique label that identifies one content item from that owner. In the attribute-value

naming, each attribute has a name, a type and a set of possible values.

In ICN, the content is self-authenticated and uniquely identified, no matter where it

is. To provide an authenticity verification mechanism that works regardless of content

location, ICN establishes a binding between the content, its name and the entity that

created it, to allow integrity and authenticity verification. The source of the content signs

together the content, its name and its origin immediately before introducing the content-

object into the network. To verify whether received content is legitimate, the user just

checks the signature. A security mechanism based on the content allows protection and

trust to be carried in the packet itself, rather than relying on secured communication

channels.

Connectionless receiver-driven communication model: Figure 1.10 gives an

example of a typical data retrieval in ICN. In practice, the cow monitoring deployment

with an ICN architecture does not require allocating an address to every device including

cows. Rather, a consumer (e.g., farmer’s smartphone) collects a cow’s data by simply

sending requests to the network for the named content it needs. A request is similar to a

question in the form: “Does anybody have a content that matches this names?” and the

content returned by the network is the answer. Hence, retrieving data in ICN is receiver-

driven and consists of two phases: (i) issuing and forwarding a request from the consumer

to the producer or a cache in between, and (ii) the delivery of the content back to the

requester. An ICN architecture supports content discovery either through name-based

routing (NBR) or using a lookup-based resolution system (LRS).

With NBR, the consumer requests content by issuing an Interest, which is forwarded

hop-by-hop by intermediate nodes. The forwarding is based on a table and uses name

matching to figure out which interface the Interest is sent to. Once the content has been

found, it is sent back to the consumer by following the reverse patch of the Interest. To

provide a reverse path for the content packet, each forwarder locally keeps a trace of

forwarded Interests until the content is received or after a timeout. The forwarding table

71

1.5. CONCLUSION

Table 1.5: ICN projects/architectures comparison

Project NDN MobilityFirst PURSUIT NetInf
Naming Hierarchical Flat Flat with structure Flat with structure

Human-readable names Possible No No No
Security Signature and Trust Schema Signature, PKI indep. Signature, PKI indep. Signature and content hash

NDO granularity Packets Objects Objects Objects

Forwarding
-Name-based

-Stateful (Interest)
-Reverse path (Data)

-Distributed name resolution
maps names to locators
(i.e., network addresses)

-forwarding based on locators

-Name resolution and rendezvous
-Source routing with

Bloom Filters in packets

-Hybrid name resolution and
name-based forwarding
-Reverse path or direct

IP connection
Communication Pull-based Pull-based Publish/Subscribe Pull-based

is basically populated by a routing protocol (e.g. using names advertising).

With LRS, the request is handled by a resolution system. Each architecture using LRS

adopts data structures to collect and provide information to create forwarding paths. The

content is then forwarded to the consumer according to the resolution system’s decisions.

Figure 1.10: Illustration of the ICN communication paradigm [Amadeo et al. 2016]

Table 1.5 gives an overview of the best-known ICN architectures, adapted from [Ahlgren

et al. 2012] and [Amadeo et al. 2016].

1.5 Conclusion

In this chapter, we introduced ICN after investigating and analysing IP solutions for

the IoT. We then deduced that these solutions resemble the native features offered by ICN

in the core network. We believe that discussing the IP-based approach for IoT and its

shortcomings is a rational way to show the opportunity that ICN represents for building

72

1.5. CONCLUSION

better IoT systems.

It is worth noting that no ICN architecture was especially designed for the IoT. Nev-

ertheless, the ICN approach is still in a research phase, which is an opportunity to design

future architectures with the IoT in mind.

Among the ICN architectures that have emerged in recent years, Named Data Net-

working (NDN) is a promising one. As mentioned above, the native features of ICN are

supported differently from one realization to another. Therefore, rather than presenting

the abstract ICN features, we will see in the next chapter how the NDN design provides

ICN features, and how it can support IoT applications, either natively or with some simple

adaptations.

73

1.5. CONCLUSION

74

Chapter 2

Named Data Networking for the
Internet of Things

2.1 Introduction

In the previous chapter, we found out that even if IP is applicable for IoT systems, the

complexity of IP-based solutions (e.g., 6LoWPAN) makes one wonder about alternatives

that can be more suitable for a global IoT ecosystem. In the recent years, NDN has

emerged as new and a promising ICN architecture to efficiently support IoT requirements.

However, various approaches are possible to take advantage of NDN in the IoT.

In this chapter we first explain the principles of NDN and its features. After that, we

show how NDN is suitable for IoT architectures, by reporting on studies and proposals

that we consider as inspiring work for the contributions subsequently presented in this

document.

2.2 Named Data Networking

2.2.1 Origins and Overview

The concept of ICN was first introduced by Ted Nelson in 1979 [Xylomenos et al.

2014]. Twenty years later, the Translating Relaying Internetwork Architecture Integrating

Active Directories (TRIAD) was proposed as the next generation Internet architecture to

avoid DNS lookups. In 2002, Brent Baccala presented an Internet draft presenting the

differences between host-oriented and data-oriented networking [Baccala 2002]. In 2006,

75

2.2. NAMED DATA NETWORKING

the Data-Oriented Network Architecture (DONA) [Koponen et al. 2007] project at UC

Berkeley proposed the first ICN architecture, followed a few years later (2009) by PARC

which announced the CCN architecture and open source implementation CCNx [Jacobson

et al. 2009b]. In September 2010, the NDN project [Zhang et al. 2010] was funded by

the National Science Foundation (NSF) as one of the four projects under NSF’s Future

Internet Architecture (FIA) program. The NDN vision is based on the following principles

as stated in the project [NDN Website]:

1. Universality: NDN should be a common network protocol for all applications and

network environments.

2. Data-Centricity and Data Immutability: NDN should fetch uniquely named, im-

mutable “data packets” requested using “interest packets”.

3. Securing Data Directly: Security should be the property of data packets, staying the

same whether the packets are in motion or at rest.

4. Hierarchical Naming: Packets should carry hierarchical names to enable demulti-

plexing and provide structured context.

5. In-Network Name Discovery: Interests should be able use incomplete names to re-

trieve data packets.

6. Hop-by-Hop Flow Balance: Over each link, one Interest packet should bring back no

more than one Data packet.

To give a simple idea of NDN, we can imagine it as the HTTP’s request-response

model running at the network layer. In the remainder of this document, a “consumer”

is an application that issues requests for content while a “producer” is the application

that sends the response to satisfy this request. To return to the cow monitoring example,

producers are running on sensors deployed on the cows, and a consumer may be the

farmer’s smartphone that requests and displays collected data.

The main difference with HTTP is that NDN supports the request-response pattern

through packets carrying names as the main information, and all the networking operations

76

2.2. NAMED DATA NETWORKING

(e.g., routing, forwarding, etc.) operate on those names, not on binary network addresses.

We should observe that NDN is more than just a case of shifting HTTP to the network

layer. Two important differences must be highlighted: (i) In NDN, Data packets are

immutable; that is, once a Data has been produced with a certain name it can not be

modified. When a new version of the Data is available, the producer must generate a

new packet with a new name. (ii) every Data packet is self-secured by carrying a digital

signature that binds its name to its content. This signature is generated by the producer

at the packet creation time. Upon retrieving a Data, the consumer verifies the signature to

ensure that the content corresponds to the requested name and has actually been produced

by the right entity. This security approach provides NDN with a content-based security

instead of securing communication channels.

2.2.2 Naming and Packets

Another dissimilarity between NDN and IP is that NDN packets (including names)

are encoded in the TLV (Type-Length-Value) format [Team]. TLV encoding represents

an NDN packet as a collection of sub-TLVs, without a packet header or protocol version.

A TLV block consists on a sequence of bytes starting with a predefined number (Type),

followed by its Length and its Value.

Two types of packets are defined in NDN to perform communication: Interest and

Data. Both packets contain a name and may carry additional information according to

the defined fields described below. In the remaining of this document, Interest and Data

(with capital letter) refer to the NDN Interest and Data packets respectively. Although

Interest and Data packets have default and optional fields respectively (see Figure 2.1),

they do not have predefined packet size or field sizes.

2.2.2.1 Names

A content is identified through hierarchical name that contains a sequence of name

components [NDN Project Team 2014].

Each packet must contain a Name element. Name is represented by a 2-level nested

TLV. The outer TLV indicates the complete Name element through the TLV-type (7).

77

2.2. NAMED DATA NETWORKING

Table 2.1: Name component types

Type TLV-type Description
ImplicitSha256DigestComponent 1 Implicit SHA-256 digest

ParametersSha256DigestComponent 2 SHA-256 digest of Interest Parameters
GenericNameComponent 8 Generic name component
KeywordNameComponent 32 Well-known keyword
SegmentNameComponent 33 Segment number

ByteOffsetNameComponent 34 Byte offset
VersionNameComponent 35 Version number

TimestampNameComponent 36 Unix timestamp in microseconds
SequenceNumNameComponent 37 Sequence number

Inner TLVs should be NameComponent elements as defined in Table 2.1. GenericName-

Component is a generic name component, without any restrictions on the content of the

value. Functional name components can express time stamping and/or versioning to

distinguish which data is the most recent, segmenting to split large data into smaller

packets, and sequencing to handle sequential data collections. In particular, Implicit-

Sha256DigestComponent is an implicit SHA-256 digest component and it is required to

contain a value of 32 octets. ParametersSha256DigestComponent is a component carrying

the SHA-256 digest of Interest parameters (see Interest below) and it is required to contain

a value of 32 octets.

For example, the name "/farm/room/1/cow/21/temp" may identify the temperature

value related to the cow with Id. 21 located in room 1. With hierarchically struc-

tured names, the same data type related to another cow in another room can be named

"/farm/room/2/cow/34/temp".

Naming schemes are defined by the applications, which provides flexibility in the way

the content is named and requested. Consequently, names are opaque to the network.

In other words, routers access name components separately for routing and forwarding

purposes, but they do not interpret the whole name. This allows application developers

and users to design the name-space that suits their needs, without the need to maintain a

mapping between network requirements and application configuration.

78

2.2. NAMED DATA NETWORKING

2.2.2.2 Packets

Applications use units of information to represent the data they handle in a most

suitable form. These are commonly designated as Application Data Units (ADUs). For

example in the cow monitoring system, ADUs may be the sensor readings.

NDN applications communicate by exchanging Interest and Data packets identifying

data names. To send large ADUs (e.g., video streaming) over the network, the first option

at application level is to use segmenting and/or sequencing. This approach is simple

and does not cause extra computation or additional header in the link-layer. Sensor

readings of cow movements over a day can rapidly grow in size. To transmit all the

collected data, a producer can split it into segments explicitly identified in the names. A

straightforward way to name these segments is to use sequentially incremented numbers,

such as "/farm/room/1/cow/21/mvmnt/1", "/farm/room/1/cow/21/mvmnt/2", etc.

Using the name matching properties of NDN, a consumer application that requests cow

movement data for the name "/farm/room/1/cow/21/mvmnt" will receive a Data packet

named "/farm/room/1/cow/21/mvmnt/1". The consumer can then send Interests that

specify explicit segment numbers to retrieve all segments of the requested data.

The major difference between how TCP/IP and NDN handle segmentation is that,

TCP segment numbering does not necessarily correspond to ADUs boundaries, which can

only be known after segment reassembly at the receiver application. In NDN, data names

expose the ADU boundaries, therefore segmentation obeys ADU boundaries.

However, splitting content into multiple explicitly-named chunks is not always the best

solution. For example, since each chunk is a signed Data packet, segmentation can become

computationally expensive for both producers and consumers, particularly when using

public key cryptography. Moreover, in some networks with reduced MTUs (e.g. IEEE

802.15.4), and given that Data signature, of at least 32 bytes (to 255 bytes) is mandatory,

it is difficult to make every Data packet fits into one frame even with segmentation.

The second option is then to use packet fragmentation. In traditional networks with

NDN, a hop-by-hop fragmentation and reassembly is used when a packet is larger than

the link MTU. Because routers need the entire Interest and Data packets to perform

79

2.2. NAMED DATA NETWORKING

NDN operations (i.e. forwarding, matching, caching), each fragmented packet must be

immediately reassembled by the next node. This fragmentation mode seems to be the

only one possible for NDN; the reasons are widely explained in [Afanasyev et al. 2015].

Several approaches have been already proposed. In the case of low-power wireless

technologies, [Shang et al. 2016b] uses a lightweight fragmentation scheme that introduces

3-byte header to each fragment to transmit large packets over IEEE 802.15.4 links. Another

approach is used in [Shi and Zhang 2012] and [Mosko and Tschudin 2016], which consists

on a new NDN message type to encapsulate message fragments. Obviously, this approach

brings more complexity in the NDN architecture and requires more memory consumption

and control messages.

However, packet fragmentation usually causes extra computation, larger header size

and increases latency, especially with resource-constrained devices. Given this, packet

fragmentation/reassembly should be avoided as much as possible.

A popular solution to avoid fragmentation while increasing the amount of data trans-

mitted is known as header compression. This approach is widely used in IP network as

described further. Although header compression for NDN is not mature yet, we investigate

one possible approach presented in this dissertation.

2.2.2.3 Interest packet

An Interest represents the request issued by a consumer (see Figure 2.1).

CanBePrefix, MustBeFresh, InterestLifetime, and ForwardingHint are optional ele-

ments that give more information on Interest matching or forwarding. The presence of

MustBeFresh indicates that a forwarder can not satisfy the Interest with a Data from its

local CS if it is stale (see FreshnessPeriod in Data packet). The ForwardingHint element

contains a list of name delegations. Each delegation implies that the requested Data packet

can be retrieved by forwarding the Interest along the delegation path.

The Nonce contains a value of four random octets. The combination of Name and

Nonce should uniquely identify an Interest packet, and used to detect looping Interests.

Nonce is required when an Interest is transmitted over the network links. That is, a

80

2.2. NAMED DATA NETWORKING

forwarder must add a Nonce to the Interest if it is missing.

InterestLifetime indicates the time (in ms) remaining before the Interest times out.

The timeout is relative to the arrival time of the Interest at the current node. Forwarders

may decrease the lifetime of an Interest to account for the time spent in the node be-

fore forwarding, although it is not required. The value of InterestLifetime is set by the

application, and the default value is 4000 ms.

The HopLimit element indicates the number of hops the Interest is allowed to be

forwarded. The value is encoded as a 1-byte unsigned integer value in the range 0 − 255.

An optional ApplicationParameters element may be included in the Interest. This

element can carry any arbitrary data that parameterizes the request for Data.

If an Interest contains InterestSignatureInfo and InterestSignatureValue, it is considered

a Signed Interest. Signature is defined through two consecutive TLV blocks: InterestSig-

natureInfo and InterestSignatureValue. To ensure uniqueness of the signed Interest name

and to mitigate potential replay attacks, the InterestSignatureInfo element can include a

SignatureNonce element, SignatureTime element, and/or SignatureSeqNum element.

The signature in the InterestSignatureValue element covers all the NameComponent

elements inside Name up to, but not including, ParametersSha256DigestComponent com-

ponent, and the complete TLVs starting from ApplicationParameters up until, but not

including, InterestSignatureValue.

2.2.2.4 Data packet

A Data represents the response sent by the producer (or intermediate cache) that

contains the requested content (see Figure 2.1). The Name is required and has the same

role as in the Interest.

The Content element contains the actual data, and can carry any arbitrary sequence

of bytes.

TheFreshnessPeriod indicates how long (in ms) a node that stores the Data in its CS

should wait before marking it “stale”. Consequently, if an Interest contains the MustBe-

Fresh element, a node can not return a stale Data in response to this Interest. The effect

81

2.2. NAMED DATA NETWORKING

is the same as if that Data does not exist in the CS.

The optional FinalBlockId identifies the final block in a sequence of fragments.

Signature element is required. It is defined at the end of the packet and signature com-

putation covers all the elements before Signature. Signature is defined as two consecutive

TLV blocks: SignatureInfo and SignatureValue. SignatureInfo is included in the signature

calculation and fully describes the signature, signature algorithm, and any other relevant

information to obtain parent certificate(s). SignatureValue is excluded from the signature

calculation and represents actual bits of the signature and any other supporting signature

material.

Figure 2.2 shows an example TLV representation of an Interest with a Name and Nonce.

The Interest is identified by the type value: 0x05, the Name by 0x07, a Name-component

by 0x08 and the Nonce by 0x0a.

Figure 2.1: Interest and Data fields

Figure 2.2: Interest TLV encoding example

82

2.2. NAMED DATA NETWORKING

2.2.3 Communication process

Each NDN node requires three data structures to process packets: FIB (Forwarding

Interest Base), PIT (Pending Interest Table) and CS (Content Store). The data structures

in a node are represented in Figure 2.3 and described below:

• The PIT maintains an entry for every forwarded Interest until its corresponding Data

is received or until the entry lifetime has expired. A typical PIT entry contains the

Interest, its incoming interface(s), the interface(s) to which it has been forwarded

and a timer for Interest timeout. PIT entries are used to keep trace of Interests in

order to forward the Data packet to the consumer(s) according to the exact matching

of Interest and Data names. The PIT is also used to filter Interests requesting the

same content to avoid redundancy.

• The CS: Since Data packets are self-secured and not related to specific hosts, each

Data packet can be reused to satisfy other Interests requesting the same content.

This provides NDN with a native in-network caching, and it is managed using the

CS. After retrieving a Data packet, an NDN router may store a copy of that packet

in the CS before forwarding it to the next hop. Since the CS has a limited size,

caching placement and replacement policies such as LRU (Least Recently Used) are

used to make the most of the CS.

• The FIB contains information about the reachability of the content. A FIB entry

associates a content-name prefix to the interface(s) from which the content can be

retrieved. The FIB is populated by routing protocols and is checked every time a

node needs to forward an Interest upstream using a longest prefix matching. When

a matching is found, the Interest is forwarded to the corresponding face(s).

The typical NDN communication process applied in our cow monitoring scenario is

represented in Figure 2.4 and operates as follows:

1. The NDN communication is initiated by the consumer that requests the data. The

consumer application in the farmer’s smartphone requests data by sending an Interest

carrying the name of the data (e.g. /farm/room/1/cow/21/temp).

83

2.2. NAMED DATA NETWORKING

Figure 2.3: NDN node and data structures [Jacobson et al. 2009a]

2. Upon receiving an Interest, a router first checks if matching Data already exists in

its CS. If the corresponding Data is found, it is sent back as a response without

forwarding the Interest any further. When no matching data is found in the CS, the

router checks the PIT to know whether an Interest for the same content is already

waiting; if so the new Interest is not forwarded and only the originating interface

is added to the existing PIT entry (Interest filtering). The Interest is forwarded

only if no corresponding data is found in the CS and no similar Interest is already

in the PIT. In this case, the Interest is forwarded according to the longest prefix

match (LPM) against the FIB entries. For example, for this Interest name, FIB may

find possible LPMs like "/farm", "/farm/room/1" and even "/farm/room/1/cow/21",

and the longest one is chosen. After that, the router records the Interest in the PIT

and forwards it to the corresponding interface. If no matching is found, either the

Interest is flooded to all outgoing interfaces or is deleted, according to the forwarding

strategy.

3. When the Interest reaches the content producer (i.e., the sensor) or an intermediate

cache node, the Data packet containing the requested content is sent back. The Data

packet follows the reverse path of the Interest following traces left in the PIT of each

router. When a Data packet reaches a router, it is forwarded to the interfaces from

84

2.2. NAMED DATA NETWORKING

which the corresponding Interests were received. That is, all interested users (e.g.,

laptop and smartphone) will receive a copy of that Data. After that, the router

discards the entry from the PIT, and stores the recent Data packet in its CS. If no

matching entry exists in the PIT for the Data packet, (e.g., because Interest lifetime

has expired), the Data is dropped.

The processing steps of Interest and Data packets at a node are depicted in Figure 2.5.

Figure 2.4: NDN communication process illustration

Figure 2.5: Interest and Data processing inside a node

85

2.2. NAMED DATA NETWORKING

2.2.4 Routing and Forwarding

The NDN communication process can be split into two phases: routing and forwarding.

In the routing phase, reachability of the content is propagated and maintained through

routing protocols. The forwarding phase exploits routing tables to deliver packets from

the source to the destination. However, these two phases are different between NDN

and the IP architecture. In IP, only the routing operation is smart in the sense that

different routing protocols can be envisioned. The forwarding operation always consists

in finding the longest match available in the routing table and sending the packet to the

corresponding next hop. In NDN, in addition to the routing operation, which can be smart

as in IP, multiple approaches are possible to handle packet forwarding with more or less

additional information and with or without caching.

NDN uses routing protocols to propagate information about the reachability of the con-

tent. This information consists in content name prefixes. Each NDN router uses routing

information to populate the FIB in order to forward Interest packets later on. Basically,

routing protocols in NDN propagate content name prefixes in the same way that IP rout-

ing protocols propagate address prefixes. Hence, routing algorithms used in the Internet

(e.g., link-state, distance vector) can be used for NDN with minimal adaptations such as

changing the messages to Interest/Data and adding a support for multipath forwarding.

While NDN routing protocols support long-term changes of network topologies and popu-

late/update the FIB, the forwarding process makes performance decisions about the usage

of FIB information.

The forwarding strategy tries to choose the best interface(s) to forward packets based

on the FIB information and other design options such as flooding or best path, and in-

terface(s) probing. For example, an NDN router monitors the forwarding tables to get

forwarding state information, which can be used to calculate packet delivery performance,

link failures, network congestion and even suspect behaviours (e.g., DoS attacks, etc.).

Wireless networks typically require a slightly different forwarding approach than wired

networks, especially in constrained wireless environments. For example, counter-based

broadcasting and packet overhearing are used to minimize redundancy and collisions. A

86

2.2. NAMED DATA NETWORKING

complete and detailed study of wireless forwarding in NDN is given in Chapter 5.

2.2.5 Caching and Mobility

One of the main benefits of ICN architectures is in-network caching. The native in-

network caching feature is managed in NDN using the CS. CS can be compared to buffer

memory in IP routers. However, packets in the CS can be reused to satisfy similar requests,

while IP packets cannot be reused for another communication. In addition to accelerating

retransmission after a packet loss, this feature allows NDN to achieve high performance

data delivery for static content and dynamic content when multicast is needed (e.g., real-

time videoconferencing). Many studies have focused on caching efficiency and optimization

regarding energy consumption, wireless networks caching and so on.

By accessing content by names rather than host addresses, mobile nodes in NDN do

not need to acquire an address after each location change and may continue their commu-

nication with minimal disruptions. Consequently, NDN natively supports consumer-side

mobility. In the cow monitoring application, the farmer may request content items through

a gateway when he is in a room. After that, he moves to another room next to the first one.

The Data packet will not be received by the farmer as it will be sent to the old location.

Here, the farmer’s mobile application has only to re-issue the same Interest to retrieve

the Data packet from a closer cache, namely the first common cache/router between the

two rooms. In general, this provides a smooth hand-off because if the consumer moves to

another location, then the requested content will be cached in intermediate routers.

Regarding producer-side mobility, a native support is not possible. Basically, producer

mobility is supported through the following approach: the namespace under which the

producer publishes its content is used as an identifier for the mobile producer. Then, a

mapping can be set between the identifier and the locator of the producer when it moves.

The locator can be the name prefix of the local network and can be found by broadcasting,

for example. The Interest aggregation in NDN allows data to be fetched from a mobile

producer with minimal overhead, even when multiple consumers are interested in the

content.

Generally speaking, some studies have shown promising results in supporting mobility

87

2.2. NAMED DATA NETWORKING

with NDN. In [Etefia et al. 2012], the authors demonstrated that NDN has better perfor-

mance in a mobile lossy environment compared to the TCP/IP protocol suite. The authors

in [Tyson et al. 2012] surveyed several new Internet architecture projects and identified

benefits and challenges involved in transforming to information-centric communication in

terms of mobility support.

2.2.6 Security

Security in NDN and TCP/IP are fundamentally different due to the fact that NDN

names content whereas IP identifies hosts. NDN security is based on packet signature and

verification through public-key cryptography. Every entity participating in communication

(e.g., an application) uses name(s) and public-private key pair(s). The binding between

an application, the name(s) it uses and its key(s) is provided by certificates. In practice, a

certificate is a normal Data packet that contains public key information related to a certain

name, and certifies that the name and the key belong to the specified user. That is, the

certificate must be signed by a superior entity that issued it. Typically, an entity can

issue certificates to other entities allowed to produce content under its sub-namespaces.

Following this approach, each entity in the system is certified by its superior entity, until

we reach the authority of the system. Hence, the authority of each system needs a local

trust anchor that proves its identity to allow recursive identity verification of each entity.

Access control and confidentiality are also supported through public-key (combined with

symmetric key) encryption.

The required elements to produce authenticated and verifiable content are the trust

anchor, the certificates, and trust policies. A trust policy is defined by the applications

and gives the rules that must be respected to verify the trustworthiness of a packet. This

means that, consumers can only accept packets with appropriate names and signed by the

appropriate keys. Policies can be expressed as proposed in [Yu et al. 2015]. Trust policies

limit the power of each signing key and ensure that each trustworthy packet is signed by

a legitimate key, providing data authenticity at a fine granularity.

To illustrate the NDN security principles, sample steps to secure the cow monitoring

application are given below.

88

2.2. NAMED DATA NETWORKING

NDN security example

In our cow monitoring security example, we consider the farmer’s laptop (designated

as “Farmer”) that requests and analyses data produced by cow sensors (designated as

“Cow”). For that, all data produced by “Cow” and “Farmer” must be be authenticable.

The system must also prevent malicious users from producing fake data.

To control who can access and who can produce data within the farm, the farm manager

entity (designated as “Alice”) is needed to issue and authenticate certificates locally. Alice

allows only “Farmer” to access the private data produced by “Cow”. In the following, we

will show how the security mechanisms in NDN can be used to achieve this according to

the steps given in [Zhang et al. 2018].

Step 1: Security bootstrapping

The first step in securing NDN applications is to ensure that entities (i.e., applica-

tions) obtain trust anchors, certificates, and learn trust policies. Since Alice is the local

farm manager, the trust anchor for entities within the farm is Alice’s certificate. Let

Alice’s certificate name be “/farm/aliceFarm/KEY/key001/farm-agent/version”, where

name components before “KEY” form the prefix allocated to Alice, and the components

after “KEY” give information about the certificate, such as key number, issuer identity

and version.

1. Alice obtains her certificate in another network than the farm network, where the

trust anchor is “/farm/KEY/...”. That is, Alice obtains its certificate from the

authority of the namespace “/farm”, which can be a service provider for example.

2. Each consumer needs trust anchors to verify data authenticity. The minimal level

of security is to trust the certificate signer that issues certificates to data producers.

Trust anchors can be pre-configured or obtained through a secured data exchange.

We assume in our example that Alice’s certificate has been manually installed in the

Cow and Farmer applications.

3. In order to generate authenticable data under the name “/farm/aliceFarm/cow/temp”,

Cow needs to obtain a certificate for that name. Here, Cow and Farmer apply for a

89

2.2. NAMED DATA NETWORKING

certificate from Alice. This way, two certificates, “/farm/aliceFarm/cow/KEY/1/farm-

agent/version” and “/farm/aliceFarm/farmer/KEY/1/farm-agent/version” will be

issued to Cow and Farmer, respectively.

4. To verify the authenticity of a received Data, Farmer needs trust policies. We as-

sume Farmer has pre-configured trust policies and relies on Alice to update the

configuration if needed.

Step 2: Data authenticity and integrity

After security bootstrapping, both Cow and Farmer will trust Alice and each will have

trust policies and certificates under “/farm/aliceFarm”. Possessing the right certificates,

Cow and Farmer can produce Data packets within their corresponding namespaces and

sign them using their corresponding private keys.

1. Trust Policies verification: In a trust policy, the data name, the signing key name and

the trust anchor name must follow explicit relationship rules as defined in [Yu et al.

2015]. To verify a Data packet, a consumer first assesses the packet’s trustworthiness

using trust schema. An example of a trust policy rule can be as follows: accept Data

packets whose (i) name prefix is “/farm/aliceFarm”, (ii) signing key name prefix

is “/farm/aliceFarm/KEY”, and (iii) certificate chain ends with the trust anchor

“/farm/aliceFarm”. Accordingly, only packets signed by Alice and strictly under

Alice’s prefix are accepted.

2. Signature verification: After trust policy verification, the consumer retrieves the

certificate of the corresponding producer as identified by the key name in the Data

packet. This certificate will recursively point to its signer’s certificate and finally

arrive at an anchor. The packet is considered to be valid if all fetched certificates,

including the anchor, have valid signatures and can satisfy the trust policies.

Step 3: Data confidentiality

In this example, we use a NAC (Named-based Access Control) process to illustrate

confidentiality and access control. In NAC, each encryption key name will be explicitly

90

2.2. NAMED DATA NETWORKING

appended to the name of the corresponding Data packet. For instance, a Data packet

produced by Cow has the name:

“/farm/alicefarm/cow/data/ENCRYPTED-BY/farm/aliceFarm/E-KEY/cow”, where

the components after “ENCRYPTED-BY” are the encryption key name. In order to allow

only Farmer to access Cow data, the production and encryption process can be as follows:

1. Alice will first generate a key pair (“E-KEY”, “D-KEY”) for encryption and decryp-

tion, respectively. She then produces two Data packets carrying “E-KEY” in plain

text and “D-KEY” encrypted by Farmer’s public key. The “E-KEY” packet name fol-

lows the format “/farm/aliceFarm/E-KEY/cow”, while the “D-KEY” packet name

follows the format:

“/farm/aliceFarm/D-KEY/farmer/ENCRYPTED-BY/farm/aliceFarm/farmer”.

2. When producing data, Cow first generates a symmetric key for content encryption.

Then, it fetches “E-KEY” and encrypts the symmetric key with it. Finally, it packs

the encrypted symmetric key into a Data whose name is:

“/farm/aliceFarm/cow/data/ENCRYPTED-BY/farm/aliceFarm/E-KEY/cow”.

3. When Farmer wants to consume this data, it starts by fetching the Data packet.

The Data name indicates that the content is encrypted by “E-KEY”. To decrypt

the content, Farmer fetches the corresponding “D-KEY” (the fetched “D-KEY” is

actually encrypted by Farmer’s own key). By decrypting the content in the fetched

“D-KEY” Data, Farmer obtains “D-KEY” and can decrypt the symmetric key and

use it to finally decrypt the content.

To send commands to Cow or other actuators in the farm, Interest packets can also

be signed by the controller of the device. When receiving an Interest packet containing a

command, a device can authenticate the Interest using the same process as the one used

to validate Data packets.

However, the NDN security is not perfect. Even though data authenticity, integrity

and access control are efficiently supported as shown above, the main threat to which an

NDN network may be exposed is DoS attacks and its variants. Man-in-the-middle attacks

91

2.2. NAMED DATA NETWORKING

Table 2.2: Possible security attacks in NDN and countermeasures

Possible attacks Resilience Countermeasures
Network sniffing Partial Encrypt content and names

Man-in-the-middle Yes Connectionless and content encryption
Black hole Partial Pull-based symmetric communication
Congestion Partial Forwarding-rate limit

Cache monitoring Partial -Unpredictable name
-Tunneling

Object discovery Partial Encrypt content names

Interest flooding Partial

-Monitoring unsatisfied Interest
per interface

-Token bucket with per interface fairness
-FIB-based Interest flooding

Content/cache poisoning Partial Content authentication

Cache pollution Partial -Selective caching
-Add delay for cached content

Scanning Yes Scanning all possible
names is impossible

are almost infeasible in NDN because packets are not related to the communication of

two identified hosts. Similarly, creating black-holes using prefix hijacking is attenuated by

the communication mechanism of NDN which ensures a symmetry between Interest and

Data. However, Interest flooding can be considered as the simplest attack that can be

performed in an NDN network. The attacker can achieve that by using an existing prefix

name to which it appends a sequential number. To address that, many solutions have

been proposed, such as limiting the number of forwarded Interests per face, and Interest

acceptance according to their satisfaction rate. The same type of attack can be performed

in caches to cause cache pollution. This can be handled by setting an expiry delay for

cached Data for example.

Table 2.2 summarizes some security attacks possible in NDN and their possible coun-

termeasures adapted from [Saxena et al. 2016].

92

2.3. NDN AND INTERNET

Table 2.3: NDN vs TCP/IP support of the Internet

TCP/IP NDN
Addressing -IP addresses -Content names

Routing

-IP prefixes
-Single-path forwarding

-Stateless forwarding
-Loop-free handled by routing protocols

-Name prefixes
-Multipath forwarding
-Stateful forwarding

-Interests can not loop (Name and Nonce)

Transport
-Congestion control by protocols (e.g., TCP)

-Data acknowledgment by protocols
-Data stream multiplexing by protocols

-FIB-rate limit
-Data itself

-Names used for multiplexing
Error detection -Link and transport -Link and network

Caching -Application level -In-network caching
Security -Channel-based with protocols -Network layer with signed data

2.3 NDN and Internet

Returning to the TCP/IP protocol stack used in the Internet, we present a global

comparison between NDN features and TCP/IP features. In Table 2.3, we summarize

how NDN and TCP/IP support Internet functionalities. Then, in Figure 2.6 we show the

hourglass architecture that characterizes the Internet with both the TCP/IP and NDN

protocols.

Figure 2.6: Hourglass architecture of NDN and TCP/IP [Zhang et al. 2014]

2.4 NDN meets IoT

As mentioned, NDN was not designed explicitly for the IoT. However, there are many

NDN proposals and studies that can be useful for the IoT. In this section, we present

some of the studies that either technically improve the NDN support for IoT, or propose

93

2.4. NDN MEETS IOT

Table 2.4: IoT requirements mapped to ICN features

IoT Requirements ICN Features
Scalability Naming, in-network caching

Naming and addressing Naming and name resolution
Mobility Content naming, receiver-driven mode, location independent names

Security and privacy Content-based security, Receiver-driven mode
Heterogeneity and inter-operability Naming, strategy layer

Data availability In-network caching, conectionless mode
Energy efficiency In-network caching, naming

designs and visions to enable a viable NDN solution for IoT. Obviously, not all the NDN

studies related to IoT are presented here; rather, we focus on those that were inspiring,

encouraging, or solutions that can address challenges identified in this document. In

addition, useful implementations and tools are reported as related work since our purpose

is to realize a realistic IoT deployment with NDN.

2.4.1 Architectures

In [Arshad et al. 2019], a state-of-the-art on how ICN is used in the IoT is presented.

The authors first give an overview of the components involved in the IoT and the required

features for an IoT network architecture. They also present important challenges and issues

in creating an ICN-based IoT. In Table 2.4, we report the proposed mapping between ICN

features and IoT requirements.

A high-level NDN architecture is presented in [Amadeo et al. 2014a] to support the

IoT features. The designed architecture consists of three layers: Thing, Network and Ap-

plication layer as reported in Figure 2.7. The network layer is supported by NDN through

two components: the Data plane that handles operations related to the packets, which

are naming, security, caching and strategy. The second component is the Management

and Control plane intended to support device configuration and management operations.

Although the proposed architecture is well discussed with a use case, it lacks technical

content and there is no implementation to demonstrate the proposed NDN stack.

In [Shang et al. 2016c], the authors also explore how NDN can support the IoT vision

through its native features. However, the study distinguishes itself by comparing ongoing

IoT implementations and design with NDN to the solutions currently used in IP. The

94

2.4. NDN MEETS IOT

Figure 2.7: Proposed NDN-IoT architecture [Amadeo et al. 2014a]

authors also discuss various scenarios to enable the IoT over NDN. Finally they identify

the following challenges for NDN in the IoT: (1) Naming with Multiple Hierarchies, (2)

Routing over Infrastructure-less Environments, (3) Implementation for Highly Constrained

Devices and, (4) Push-Style Data Collection.

In [Baccelli et al. 2014], the authors explore the ICN-based approach for the IoT

through real-world experiments using NDN. The CCN-lite implementation on top of RIOT

[Baccelli et al. 2018] is used to that purpose. The experiment is based on a deploy-

ment of 60 IoT devices distributed in different rooms, floors, and buildings. Each node

is equipped with a radio chip and sensors provide temperature and humidity measure-

ments. The advantages of using NDN are analysed and an experimental comparison with

6LoWPAN/RPL/UDP is provided. Positive results are obtained, which show that NDN

can be an alternative to build an IoT architecture. The most interesting result is the

comparison between the ROM and RAM sizes of the binaries compiled for NDN and

6LoWPAN/RPL stacks in the RIOT and Contiki platforms. According to those measure-

ments, the ICN/NDN approach can significantly outperform common IoT protocols in

terms of ROM size (down to 60% less) and RAM size (down to 80% less). The results

95

2.4. NDN MEETS IOT

Table 2.5: CCN vs. IP: memory consumption on RIOT platform

Module ROM RAM
RPL+6LoWPAN 53412 bytes 27739 bytes

CCN-Lite 16628 bytes 5112 bytes

Table 2.6: Comparison of NDN, CoAP and MQTT protocols for IoT

NDN CoAP MQTT
Transport N/A UDP TCP UDP (MQTT-SN)
Pub/Sub Possible [Carzaniga et al. 2011] Possible (CoAP-Observe) Yes

Push Possible [Amadeo et al. 2014b] Yes Yes
Pull Yes Yes No

Flow Control Yes No Possible
Reliability Yes Confirmable mode With QoS

are summarized in Table 2.5. We should note that the difference is too significant to be

related to programming tricks. Rather, it mainly results from the ICN paradigm, which

requires less mechanisms and no translations between names and addresses. The study

also reports that even a basic NDN forwarding technique (detailed in Chapter 5) gener-

ates less overhead than RPL/UDP. However, we still need to know if the data availability

and communication reliability can be complete with RPL. Nevertheless, some challenges

concerning NDN solutions for IoT are also presented and discussed such as the need for

packet fragmentation, header compression, and adapted caching mechanisms. This work

is one of the most encouraging and inspiring for the contributions proposed in this thesis.

Regarding performance comparison between NDN and IP solutions in the IoT, the

authors in [Gündogan et al. 2018a] provide a comparative measurement study between

NDN and different variants of CoAP and MQTT. First, they provide a feature comparison

between the three solutions, which we report and enhance in Table 2.6 with other NDN

mechanisms for the IoT.

Second, extensive experimental evaluations are conducted in the study. These evalua-

tions measure memory consumption, network utilization by control and data traffic such as

protocol overhead and packet retransmissions. Communication performance is also mea-

sured through data loss, throughput at application level, and round-trip delay between

issuing a request and getting a data. The IoT deployments considered in the study consist

96

2.4. NDN MEETS IOT

of typical class-2 devices with IEEE 802.15.4 radios, arranged in single-hop or multi-hop

networks. Different traffic patterns were tested, as present in IoT applications: (i) sched-

uled periodic sensor readings, (ii) unscheduled and uncoordinated data updates, and (iii)

on demand notifications or alerting.

The single-hop topology network consists of approximately 70 nodes, which are within

the same radio range. Two arbitrary nodes are chosen to run all single-hop experiments:

one is a content producer, and the other acts as a consumer. The multi-hop topology

network consists of approximately 350 nodes spread evenly in a building. 50 low-end IoT

device and one gateway/broker are arbitrarily chosen to run all multi-hop experiments.

All low-end devices operate as content producers.

Based on the results obtained, the authors draw up the following conclusions. In

single-hop topologies, the three approaches present approximately the same behaviour.

However, lightweight adaptations such as MQTT-SN and CoAP Observe operate faster,

and consume less energy. In multi-hop scenarios, NDN achieves better flow balancing and

efficient data delivery with few packet retransmissions. Moreover, such complex scenarios

quickly degrade CoAP and MQTT performance.

The NDN-ACE framework [Shang et al. 2015] describes an NDN-based control ac-

cess protocol using signed Interests. Its design principle consists in allowing resource-

constrained devices to use symmetric cryptography to authenticate the actuation com-

mands. Then, key distribution and management is delegated to powerful stations such as

gateways and servers, designated as Authorization Servers (AS). For example, an actuator

generates a root symmetric key and shares it with the AS which can derive access keys

for each client and each service according to the privileges. When an actuator receives

a command Interest, it recomputes the access key and verifies the command. As NDN-

ACE does not maintain secured connections, it reduces the overhead in comparison to the

CoAP+DTLS solution. Moreover, a proof-of-concept implementation demonstrates the

feasibility of the NDN-ACE approach. However, the proposed solutions handle only the

case of sending commands such as in the lighting control case, so a more general mechanism

is suitable.

V-NDN [Grassi et al. 2014] is a design proposed to enable NDN in vehicular networks

97

2.4. NDN MEETS IOT

(VANETs) to provide a unified architecture. To address VANET challenges, the authors

take advantage of the NDN model that decouples data naming from hosts’ addresses.

Consequently, a car can utilize any available interfaces to fetch data from any other nodes

as soon as physical connectivity is possible. A prototype of V-NDN with around 10 cars

has been implemented and tested in the UCLA Vehicular Testbed. A large-scale evaluation

has been conducted through simulations.

In [Dauphin et al. 2017], NDN has been applied for networking in IoT robots. The

Robot Operating System (ROS) is used to create distributed software modules that com-

municate with one another in a publish/subscribe fashion using named and typed data.

Hence, the authors use NDN as a network primitive to support this communication model

which seems to be flexible enough for this type of communication.

To push ICN to industrial IoT systems, an ICN-to-MQTT gateway has been designed

in [Gündogan et al. 2017] to enable a publish-subscribe mechanism for NDN. The gateway

translates NDN names to MQTT topics and a demo is implemented with RIOT and CCN-

lite.

2.4.2 Forwarding

In the literature, various studies investigated the information-centric paradigm use on

wireless networks such as MANETs/VANETs [Amadeo et al. 2014c; Grassi et al. 2015],

and WSNs [Ren et al. 2013; Amadeo et al. 2013; Hail et al. 2015]. Some of these

solutions consider ICN/NDN as an overlay on top of the IP layer while other proposals

use an ICN architecture directly on top of the link layer.

In [Amadeo et al. 2014c], authors investigate the applicability of CCN in wireless

networks under various constraints such as mobility and limited resources. They study

the main features of wireless ad hoc networks (see Table 2.7), the applicability of CCN

principles to wireless networks, the strengths and the main research challenges for CCN

deployments. They identified and summarized the motivation for CCN-based wireless

networks as follows:

• Node mobility is easily supported in CCN with minimal or no additional mechanism,

98

2.4. NDN MEETS IOT

Table 2.7: Main features of wireless ad hoc networks

Features MANETs VANETs WSNs
Mobility Medium High MEdium to static

Battery constraints Medium to low No constraints High
Storage capabilities Medium to low Very high Low

Main technology IEEE 802.11a/b/g/n IEEE 802.11p IEEE 802.15.4

as described above for NDN.

• CCN/NDN does not require any node identity or location knowledge to retrieve

content. This can greatly facilitate the support of mobile application scenarios where

only content names matter.

• Most current applications (e.g., VANETs, traffic, weather, and parking information)

consist of information addressed to more than one recipient. Data can be dissemi-

nated from servers (e.g., news, weather information) or it can be shared in a group

of consumers (e.g., road traffic and security) or it can be generated by single users

to a group of interested recipients (e.g., social networks). All these communica-

tion models are efficiently supported through multicast and broadcast data delivery.

With Interest filtering and Data caching, CCN/NDN architectures take advantage

of wireless communication supports and natively support these emerging communi-

cation models.

• With a connection-less and consumer-driven model, CCN/NDN can cope well with

intermittent connectivity and dynamic topologies in wireless ad hoc environments,

while ensuring satisfactory data delivery and security.

The authors also discussed naming, routing/forwarding, caching, security and trans-

port challenges to address in CCN/NDN solutions for wireless ad hoc networks. A sum-

mary is given in Table 2.8.

The main observation that came out from this survey is that most of the related

literature supports CCN/NDN as a clean-slate solution (i.e., directly over the Layer 2).

According to the authors, an overlay of CCN/NDN on IP should be avoided in ad hoc

networks for two main reasons: (i) the end-to-end route set-up and maintenance between

99

2.4. NDN MEETS IOT

Table 2.8: CCN for wireless networking: main benefits

CCN features Main benefits

Naming -Low-cost network configuration
-Theoretically unbound namespace

Security -Content-based security
-No need to secure channels

Routing and
Forwarding

-Lightweight node setup and maintenance
-Easy multicast/multipath

-Broadcast friendly

Caching -Coping with intermittent connectivity and error prone channels
-Shortening latency

Transport Connection-less communication

overlay nodes induce high control overhead; (ii) the overlay design forces point-to-point

communications, without exploiting broadcast and in-network caching.

Regarding broadcast communication with NDN, the applicability of the broadcast-

based self-learning to NDN has been studied in [Shi et al. 2017]. Basically, self-learning is

useful in local ad hoc networks to find packet delivery paths. A forwarder node performs

this process by broadcasting the first Interest and observing where the Data packets come

from. The node can then create the corresponding FIB entry so that future Interests will

be forwarded in unicast or more accurate broadcast. The authors studied two main issues

in using broadcast-based self-learning: (i) how a forwarder can figure out which is the

prefix in the name of the returned Data packet, in order to create the FIB entry. (ii) how

nodes can know whether a learned prefix-name is legitimate or malicious (i.e., sent by an

attacker to perform a spoofing attack). To address these issues, solutions are proposed

and summarized below with their applicability to an IoT deployment. To work out how

to extract the name-prefix from the Data name, three solutions are proposed:

• Derive the prefix from the name of the Data packet by removing the last k com-

ponents, where k is predefined by the application naming scheme. This solution is

simple and does not require complex operations or communication overhead. We

believe that it can be sufficient to support local communications (e.g., sensing) in

most IoT deployments.

• Aggregate prefixes in the FIB as new prefixes are added. For example, if "/A/B/C",

100

2.4. NDN MEETS IOT

"/A/B/D" and "/A/B/E" correspond to the same next hop, they are aggregated

into an "/A/B" entry pointing to that next hop. However, computational overhead

is required to perform prefix aggregation, which can be infeasible for constrained

devices.

• Producer announces its prefix explicitly. The producer can attach a prefix announce-

ment on a Data packet sent in response to a flooded Interest. The prefix announce-

ment is a Data packet containing the prefix and is signed by the producer. However,

this solution requires longer link-layer frames, which makes it hardly applicable in

low-power wireless networks such as IEEE 802.15.4.

To ensure that a prefix announcement is trustworthy, we can apply the trust model

used before to provide data authenticity. Every switch/router in the network is configured

with a trust model for authenticating prefix announcements. Upon receiving a prefix

announcement, a forwarder can verify that: (i) the announcement has a valid signature

matching the public key in the announcement signer certificate, (ii) that the announced

name prefix matches the allowed prefix encoded as part of the certificate name, and (iii)

that the certificate is issued by the network’s certificate authority. To prevent replay

attacks (i.e., reuse authentic announcements with malicious Data packets), the authors

propose that every prefix announcement carries the trust model for Data packets under

their announced prefix.

An important observation to make is that self-learning can be used to associate prefixes

to other types of information than link-layer addresses. For example, a forwarding strategy

can use self-learning broadcast to associate name prefixes to a real value (e.g., cost, round-

trip time) to know if a node can forward an Interest or not.

2.4.3 Link layer

Given that current IoT wireless devices can filter a packet only by MAC address, the

side effect of broadcast is that all NDN packets are processed by the CPU. This causes

more load on resource constrained devices and obviously generates network overhead.

Fortunately, solutions do exist to reduce the effect of broadcast transmissions while keeping

101

2.4. NDN MEETS IOT

its advantages, as detailed in Chapter 5.

To find an alternative to broadcast, the authors in [Kietzmann et al. 2017] investigate

mapping solutions between NDN names and MAC addresses. In their study, the authors

propose a mapping of names to MAC addresses to efficiently handle NDN packets, and

explore different mapping schemes as follows:

1. Interest Broadcast, Data Broadcast (IBDB). All nodes will send an Interest by broad-

cast when a matching name prefix is found in the FIB, and send a Data by broadcast

when a corresponding PIT entry is found.

2. Interest Broadcast, Data Unicast (IBDU). Similar to mapping 1, all nodes of the

broadcast domain will create a PIT entry after re-broadcasting an Interest. However,

each node will keep the MAC source address of the Interest, so when a Data packet

is received it will be sent to the unicast source address.

3. Interest Unicast, Data Broadcast (IUDB). The FIB in this case associates each prefix

name to a unicast address (next hop). Hence, when a matching name prefix is found

in the FIB the Interest is sent only to the unicast address. However, Data packets

are always retransmitted by broadcast.

4. Interest Unicast, Data Unicast (IUDU). Interest as well as data packets are sent to

a unicast MAC address using name to address bindings in both FIB and PIT.

Note that, mappings 3 and 4 sometimes need to broadcast Interests when no infor-

mation is available in the FIB. According to the authors, IBDB creates Data redundancy

and provides several path possibilities, but requires more resources and generates high

overhead. IBDU has Interest forwarding redundancy but reduces Data duplication as it

uses unicast. IUDU consumes the lowest resources and has the lowest overhead among

the four mappings. However, path redundancy and caching capabilities are reduced to

the minimum due to the unicast transmissions. IUDB brings little benefit to NDN, as the

unicast Interest forwarding does not exploit the redundancy of Data.

Experiments have been conducted with different network sizes and different content

chunk sizes. In summary, the results attest that unicast can improve the battery lifetime of

102

2.4. NDN MEETS IOT

Table 2.9: NDN and link-layer interaction approaches

Approach Description Standard Reference

Adaptation layer Additional layer between link-layer and NDN
Support ACK, retransmission, etc. 802.11 [Shi and Zhang 2012]

Unicast mapping Mapping between NDN names
and MAC addresses 802.15.4 [Kietzmann et al. 2017]

Hardware-based Name-based filtering
at NIC Ethernet [Shi et al. 2016]

Broadcast reduction Delayed retransmissions
and packet overhearing 802.11 [Wang et al. 2012]

devices by keeping CPU-wakeups and processing overhead at a minimum, and can benefit

from MAC layer ACK and retransmission. However, additional memory may be required

to maintain the name-to-MAC mappings. Furthermore, unicast does not follow the NDN

vision, which is designed to take advantage of the broadcast channels and data redundancy.

Other approaches have been proposed to support NDN-MAC interaction. NDNLP [Shi

and Zhang 2012] is a specific link-layer for NDN designed between the NDN layer and the

link layer. It supports packet fragmentation/reassembly and acknowledgment/retransmission.

In [Grassi et al. 2015], the same approach is used to design a link adaptation layer for

vehicular networks. A different approach consists in reducing risks of collision and packet

redundancy while using broadcast (i.e., IBDB). To do so, delayed retransmissions and

packet overhearing are used, but the overhead is still high and not acceptable in IoT en-

vironments as simulations show in Chapter 5. Another approach proposes to modify the

device driver of the NIC to support frame filtering based on the names rather than MAC

addresses. Good performances are achieved but the solution implies re-engineering a part

of the hardware, which makes it unusable with current popular IoT devices. We have

summarized these approaches in Table 2.9.

2.4.4 Mathematical models

Most of the models on ICN/NDN are conducted exclusively around caching, such as

cache deployment, cache decision and cache replacement. Other studies are devoted to

ICN/NDN transport and routing performance, often with comparison to TCP/IP, such as

in [G. et al. 2013].

However, very few analytical models for ICN/NDN consider modeling networks of

103

2.4. NDN MEETS IOT

caches and the interaction between caching and transport; those models consider tradi-

tional wired networks [Guo-qing et al. 2013; Yongmao et al. 2017; A et al. 2013]. In

the same context, some studies have been presented in the context of Web caching with

ICN under LRU replacement policy. One of these studies [G. et al. 2011] is adapted in

our model presented in Chapter 4 to compute cache miss rate probabilities.

To the best of our knowledge, no model has been formulated on NDN in wireless net-

works with cache consideration, whether for constrained or traditional wireless networks.

2.4.5 Comparing NDN and IP

Ideally, the improvement that can be provided by NDN in the IoT (and Internet in

general) should be demonstrated by direct comparisons between NDN and IP protocols

(e.g., IP, TCP/UDP, HTTP, CoAP, MQTT). Regarding the studies mentioned before that

propose direct experiments to compare NDN and IP, we argue that such comparisons are

difficult to carry for several reasons.

First, NDN and IP solutions are based on different paradigms which makes it difficult

to fit their respective communication models in one fair scenario. For example, a great

attention should be given to URL and name length as they highly impact processing and

communication performance. However, names and URLs are not processed at the same

level in NDN and IP. Moreover, the size ratio between a request and a response is not the

same in NDN and IP. Another example related to networking paradigm difference is the

security. Indeed, if the security overhead is not considered in the comparison, it should be

ignored in NDN, which is not fair as it is one of NDN design principles that requires more

processing time. If the security aspect is considered, it is difficult to accurately estimate

the overhead of each approach, given that IP protocols use secured sessions whereas NDN

uses packet signature. Moreover, key and certificate distribution is an important part of

NDN communication, thus it should be often considered as network overhead.

Second, NDN natively benefits from features that clearly increase its performance,

such as caching that improves data delivery efficiency. On the other side, the IP stack

can support almost any feature at the application layer such as caching and object-based

security as mentioned in Chapter 1. Consequently, in-network caching considerably in-

104

2.4. NDN MEETS IOT

creases NDN performance, but one may argue that caching can also be implemented with

IP, which then provides IP with similar performance. However, the difference resides in

how caching (or another feature) is supported in NDN and IP, and how much complexity

is required to support caching (or another feature). We believe that, this kind of com-

parison is mainly related to common sens and empirical estimation of the required effort.

Another point of comparison is implementation complexity and required memory in IoT

environments. All the studies that carry such comparisons, as mentioned before, report

that NDN implementations are much lighter than IP implementations. However, there is

no guarantee that future improvements of NDN, such as security, will keep providing this

advantage for NDN. Moreover, NDN is currently an academic project, which means that

it does not benefit yet from optimized implementations that industry usually provides as

it is the case for IP protocols for example.

Generally speaking, the most common comparison provided in the literature is related

to the features such as security and caching, and how they are supported by each of NDN

and IP.

2.4.6 Projects

2.4.6.1 Platforms/Deployments

• NDN Forwarding Daemon (NFD) [NDN a] is a software module that implements

the NDN forwarding mechanisms and its features. It evolves together with the NDN

protocol and allows NDN to be experimented in the real world. The first release was

made by the NDN team project but contributions from the broad community are

currently included.

• NDNoT project [NDN b] is a toolkit that allows the development of smart home

networks. It runs on Raspberry Pi and supports sensing/actuating functions via

GPIO. It provides functionalities such as: (i) adding and removing devices and ser-

vices, (ii) managing control access, and (iii) collecting data and sending commands.

The platform proposes an on-boarding mechanism to authenticate and add new de-

vices to the home network. The hierarchical structure of NDN names is exploited

105

2.4. NDN MEETS IOT

and signed Interests are proposed to authenticate commands. The toolkit includes

a sample application that can switch a connected television on and off depending on

room occupancy.

• NDN-BMS [Shang et al. 2014] is an NDN secured Building Monitoring System

deployed at UCLA, and uses its existing building monitoring system. This system

supports collecting data from sensors through gateways and publishing it with a

secured control access based on NDN names and security mechanisms. It uses a

naming scheme that expresses data’s physical types (voltage, light, etc.) according

to their geographical provenance (building, floor, room, etc.) and its temporal aspect

(date, time) giving an easy and human-friendly way to retrieve the desired data. The

same idea can be used as a naming scheme in our cow monitoring scenario: the prefix

"/farm/area/1/room/1/cow/22" covers the data generated by cow 22 located in room

1 in area 1. A Data packet can append more components to express more information

about the content such as ".../temp/201902070850" for the temperature measured at

8:50 a.m. on February 7, 2019. NDN-BMS security is based on data encryption and

access control through public key distribution and privilege management. However,

device/gateway communications use legacy protocols while only data publishing and

access control are NDN-based.

• The NDN protocol stack has been ported to the RIOT platform with NDN-RIOT

[Shang et al. 2016b]. RIOT is a lightweight operating system designed for con-

strained IoT devices. It includes drivers for Ethernet and IEEE 802.15.4 network

interfaces. It also supports IoT-related network protocols such as IPv6, UDP, 6LoW-

PAN, RPL and CoAP. The NDN-RIOT initial implementation provides a basic sup-

port of the IEEE802.15.4 using broadcast communication with a simple packet frag-

mentation and reassembly mechanism. The implementation provides a high-level

application interface with data security support and shows the feasibility of porting

NDN on constrained devices.

106

2.4. NDN MEETS IOT

2.4.6.2 Libraries/Frameworks

• NDN-CCL [NDN c] is a set of libraries for developing NDN applications with sev-

eral languages. The languages currently supported are C++ (NDN-CPP), Python

(PyNDN2), Java (jNDN), JavaScript (NDN-JS) and .NET (NDN-DOT-NET). The

libraries basically provide implementation for NDN entities and concepts such as the

Name, Interest, Data, Face, etc.

• A collection of networking tools is available for NDN [NDN d]. These tools pro-

vide monitoring and debugging for NDN networks and essentially resemble IP-based

networking tools. The collection is called ndn-tool and includes the following:

– peek: transmit a single packet between a consumer and a producer

– chunks: segmented file transfer between a consumer and producer

– ping: test reachability between two nodes

– dump: analyze traffic on wire

– dissect: inspect TLV structure of NDN packet format

– dissect-wireshark: Wireshark extension to inspect TLV structure of NDN pack-

ets

– pib: a service to manage the public information of keys and publish certificates

• A lightweight version of the NDN-CPP library has been developed to support resource-

constrained platforms such as Arduino. This library eliminates dynamic data struc-

tures of PIT, CS and FIB to provide NDN applications that fit Arduino constrained

resources devices.

2.4.6.3 Simulation/Emulation

• The NDN research testbed [NDN e] is a shared resource created for research pur-

poses, that includes software routers at several participating institutions, application

host nodes, and other devices. An emulated NDN testbed that runs in the Open

Network Laboratory (ONL) is available to evaluate NDN applications. It runs on

real servers and uses the same software as the testbed (i.e., NFD and NLSR). This

107

2.5. CONCLUSION

allows testing, debugging, and evaluating applications quickly and without any risk

of disturbing the NDN testbed.

• ndnSIM [Afanasyev et al. 2012] is the official NDN simulator. It is based on ns-3

and implements the NDN model as a network layer protocol which can run either

on top of link layer, network-layer or transport-layer protocols. The implementation

started in 2011 and the first release has been available since June 2012. ndnSIM is

widely used by the NDN research community.

• Mini-NDN [NDN f] is a lightweight networking emulation tool that enables testing,

experimentation, and research on the NDN platform. Based on Mini-CCNx, which is

a fork of Mininet, Mini-NDN uses the NDN libraries, NFD, NLSR, and tools released

by the NDN project to emulate an NDN network on a single system.

2.5 Conclusion

Despite the various studies related to NDN for IoT, no clear ICN/NDN development

path currently exists that could be used to show NDN’s superiority over IP. In practice,

fundamental differences such as caching and naming data make it difficult to provide

fair direct comparisons between NDN and IP. Therefore, we aim to provide a multi-level

environment that helps to study the benefits of NDN in current IoT deployments.

Rather than discussing global NDN challenges for the future Internet that may include

the IoT only as a part, we choose to study the feasibility of an IoT deployment with

NDN in a typical scenario with popular IoT equipment (e.g., Arduino) and applications.

Therefore, the first step is to design and deploy a realistic NDN-based architecture which

highlights the main challenges that should to be addressed by NDN. In the next chapter,

we propose such an architecture, and specify its components and the main challenges it

raises.

108

Chapter 3

A Realistic NDN Architecture for
the IoT

3.1 Introduction

It appears through the previous chapters that NDN can be more suitable to build IoT

systems than IP. Its communication model does not require issuing and managing device

addresses, and operates directly on the application’s named content. It secures content

regardless of transport protocols, sessions or channels. This provides reusable secured Data

packets and gives NDN a native support of caching, broadcast and multicast. Moreover,

NDN does not have a predefined packet format or minimum MTU requirements, and

its simplicity produces implementations with smaller code size in the devices as shown

previously.

However, the practical deployment of NDN must be defined to take advantage of

these features in current IoT solutions. Indeed, the integration of NDN in the existing

Internet infrastructure is vital and it will impact many networking and application aspects.

Currently, a global NDN deployment is not feasible due to the difference between IP and

NDN paradigms. In practice, to deploy the NDN protocol in IP networks, hosts and

routers need at least to support name-based routing, packet processing, and implement

some forwarding strategies. Moreover, short-term solutions require the coexistence of NDN

and IP in the same global network. For that, we must ensure that NDN and IP devices

do not interfere with each other, while guaranteeing that such deployment will lead to

109

3.2. NDN INTEGRATION APPROACHES

increasing benefits for applications.

Bearing this in mind, the integration of NDN as it is envisioned in this dissertation

strives to be realistic and incremental. This means that, we propose an NDN-based design

for IoT that can co-exist with the IP infrastructure and current IoT equipment. In this

way, we aim to make NDN easily accessible by enabling it on the “thing” side of the IoT.

In other words, we provide low-end IoT devices with a Layer-3 data-centric identity which

we believe is more natural than the current IP identity. This requires the integration of

NDN with current IP-based infrastructure through a realistic architecture.

This chapter draws the picture of a real-world NDN integration in the IoT. We start

by identifying and discussing possible NDN integration approaches according to related

work. Then, a realistic deployment approach with pragmatic NDN-specific operations is

proposed to enable NDN in constrained devices. Finally, we identify the main features to

support in such an architecture with some potential solutions.

3.2 NDN Integration Approaches

At the network layer, an NDN deployment requires network entities to support name-

based routing, packet processing, and implement some forwarding strategies and security

procedures. In addition, more storage is needed for caching and stateful forwarding.

Considering the global IP network infrastructure, NDN can be deployed as an overlay

over IP, it can replace IP as a native network protocol over the link layer (e.g., NDN

over Ethernet), or IP and NDN can coexist in the same network. The first approach, the

overlay, is easy to deploy and creates a uniform content-centric layer. The NDN testbed

[NDN e] is an example of such approach. However, this solution creates complexity and

overhead for the underlying network protocol, and IP-based applications must switch to

NDN in order to use the network. Moreover, the overlay approach considers NDN as a

transport/application protocol for IP, and thus does not provide a coexistence between the

two network protocols (i.e., IP and NDN). More importantly, implementing both NDN and

IP stacks is not feasible with IoT constrained devices that can barely support the current

IP stack. The second approach, deploying NDN as a native network protocol, works

110

3.2. NDN INTEGRATION APPROACHES

only for environments that do not need to communicate with global IP networks, such as

isolated vehicular networks or local networks. The third and last approach is to make IP

and NDN coexist within the global network. This approach may either use NDN at the

core and keep IP at the edge of the network (NDN-core), or deploy NDN at the edge and

keep IP networking at the core (NDN-edge).

With an NDN-core approach, IP applications do not need to be changed at all, but

a global deployment of NDN as a native network protocol is currently not feasible, as

previously mentioned. As an exceptional example, the POINT project [Xylomenos et al.

2018] had to work with ISPs to deploy a real-world prototype in which an ICN architecture

is used at the core of the network. The prototype then introduces ICN in the core network

without changing the rest (i.e., the edge) of the Internet.

With an NDN-edge approach, the core network keeps running IP, while applications

and devices run native NDN. This solution is easy to deploy and does not require deep

changes in the infrastructure. Moreover, it provides a progressive integration of NDN.

In both NDN-core and NDN-edge, the coexistence of IP and NDN can be achieved by

using peripheral nodes such as gateways to translate between NDN names and IP protocol

stack information. For example, Cisco’s hICN [Muscariello et al. 2018] encodes names as

IPv6 addresses to allow hICN packets to be processed by both ICN-based and IP-based

routers, and Zhang et. al. [Wu et al. 2017] proposed a dual-stack scheme for NDN

switches and IP switches to coexist in local area networks.

At application level, when NDN and IP stacks have to coexist together, NDN requires

completely different mechanisms than IP-based applications, and vice-versa. As the pur-

pose is to make the most of NDN while providing reasonable solutions, we identify two

possible translation approaches between NDN and IP as described in [Liang et al. 2018]:

• The first solution is to provide a translation between TCP/IP or UDP/IP and NDN.

The advantage of this approach is that it supports various application protocols with

the same transport-level translation. However, as network and transport layers in the

IP stack have limited expressiveness, some NDN features will not be exploited. For

example, translating a TCP packet into an NDN packet may use information from

111

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

TCP/IP headers to generate NDN names. That is, the name will be associated to

the specific TCP connection. This provides benefits such as caching within the same

TCP connection (e.g., efficient retransmission of lost packets), but cannot support

caching across different TCP connections (e.g., multicast to different consumers).

Moreover, data-centric security of NDN will be limited as names are still related to

hosts and connections.

• The other approach consists in translating between application-level protocols such

as HTTP to NDN. Application-level information is much more expressive and data-

oriented than network and transport information. Thus, NDN names generated from

HTTP headers will be more meaningful regardless of hosts and connections. This

allows this approach to make much more of NDN benefits than the previous one.

Furthermore, to avoid translation, a hybrid deployment can be adopted combining

NDN-edge with NDN-overlay approaches to achieve the maximum possible integration of

NDN. This combination is realistic since low-end IoT devices implement only NDN and

core network equipment has enough resources to support NDN over IP even with some

additional overhead. The NDN-802.15.4 architecture we propose is based on this hybrid

solution and is discussed below. Integration approaches discussed above are summarized

in Figure 3.1.

3.3 Proposed NDN-802.15.4 architecture

This section describes the realistic NDN architecture we envision for the IoT. After

studying the integration possibilities, we chose the NDN-edge approach combined with

an NDN over UDP/IP in the core network. Our motivation for that is explained below,

followed by an overview of the possible wireless technologies in the IoT and our choice.

Then, the architecture, its components and specific mechanisms are described.

3.3.1 Adopted Integration Approach

When applied to the IoT, the NDN-edge integration corresponds to the deployment

of NDN in low-end IoT. In other words, NDN is used where the content is produced and

112

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

Figure 3.1: NDN integration approaches

consumed. On the one hand, IoT devices run native NDN applications over a wireless link-

layer technology. On the other hand, using NDN over IP-based transport protocols such as

UDP allows applications on computers and smartphones to communicate with IoT devices

via NDN. In addition to being completely feasible in the current Internet infrastructure,

this approach takes advantage of all NDN features such as naming content, data-centric

security, and caching. Moreover, as IoT design is in its early stages, particularly at low-end

IoT, this approach is a reasonable starting point to create NDN-capable devices together

with NDN native applications without wasting time. In addition, integrating NDN from

the edge of the network supports a progressive and incremental integration. Experience

gained from local deployments will lead to a stronger NDN architecture and various pos-

sibilities can be envisioned for the long term.

Furthermore, most IoT applications rely on the Internet to reach cloud servers. How-

ever, there are scenarios when Internet connectivity is not available but local network

connectivity exists, such as in smart agriculture deployments. Typically, NDN applica-

tions can discover names and exchange data between two locally connected devices without

going through the Cloud.

113

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

Table 3.1: Most common wireless technologies in the IoT

Technology Frequency Data Rate Range Power Usage Cost
2G/3G Cellular Bands 10 Mbps Several Miles High High

Bluetooth/BLE 2.4 Ghz 1, 2, 3 Mbps 300 Feet Low Low
IEEE 802.15.4 subGhz, 2.4 Ghz 40, 250 Kbps > 100 Square Miles Low Low

LoRa subGhz < 50 Kbps 1-3 Miles Low Medium
LTE Cat 0/1 Cellular Bands 1-10 Mbps Several Miles Medium High

NB-IoT Cellular Bands 0.1-1 Mbps Several Miles Medium High
SigFox subGhz < 1 Kbps Several Miles Low Medium
Wi-Fi subGhz, 2.4/5 Ghz 0.1-54 Mbps < 300 Feet Medium Low

3.3.2 Wireless Technology

The IEEE 802 Standard is a set of networking standards for both wired and wireless

networks. The most well-known wireless specifications include 802.11 [IEEE 2016] (e.g.,

WiFi), 802.15.4 [IEEE 2011] (e.g., ZigBee) and 802.15.1 [IEEE 2005] (e.g., Bluetooth).

Due to its satisfactory bandwidth and admissible cost, WiFi nicely meets LAN require-

ments and is widely used in businesses and homes. However, IoT local networks focus on

other aspects such as low power consumption, large numbers of nodes and long range com-

munication. Although communication solutions for IoT do not generally require a large

bandwidth, they need an efficient power management plan, a low cost of production and

must support a large number of (mobile) nodes in a simple way. To support that, many

physical and link-layer specifications exist. For example, Bluetooth Low Energy (BLE) and

ZigBee are designed for wireless personal area networks (WPANs) and allow satisfactory

data rates with low-power consumption and reasonable complexity. Other communica-

tion specifications are available for specialized networks, such as WAVE [IEEE 2019] for

VANETs and 3G/4G for very long distances. More recently, new wireless technologies

explicitly designed for the IoT have appeared, such as Sigfox [Sigfox] and LoRa [LoRa

Alliance]. However, these technologies are still expensive for customers in comparison to

ZigBee and BLE. To summarize, Figure 3.1 gives a comparison of the relevant wireless

technologies involved in IoT deployments, according to important evaluation criteria such

as power usage and cost.

Among these wireless technologies, two popular ones appear to offer a satisfactory

compromise between range, power consumption and cost. For this reason, they are cur-

114

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

rently dominating IoT systems: Bluetooth Low Energy (BLE) and IEEE 802.15.4. Both

are low-power low-rate technologies. They operate in the 2.4 GHz ISM spectrum, but

have their own modulation scheme, bit rate, channel map and channel spacing, and upper

layers. In the following, we provide a description of these technologies, followed by a brief

performance comparison adapted from [Narendra et al. 2016].

BLE. This technology uses frequency hopping over 37 channels for bidirectional com-

munication and 3 for unidirectional advertising, with a bitrate of 1 Mbps. In Bluetooth

4.0, the link-layer MTU is 27 bytes, increased to 251 bytes in Bluetooth 4.2. Frames are

protected with a 24-bit CRC.

BLE networks form a star topology, with a master orchestrating bidirectional com-

munication with one or several slaves. Nodes have different link-layer states including

advertising, scanning and connection. An advertising device (typically a low-power node)

periodically broadcasts packets over channels 37, 38, 39 which are spread over the 2.4

GHz ISM spectrum so they do not overlap the most common WiFi channels 1, 6 and 11.

A scanning device (e.g. a smartphone) listens on these advertising channels, waiting for

advertisement packets. Upon receiving an advertisement, the scanning device may initi-

ate a connection with a ‘connection request’ packet. The advertising device becomes the

slave and the scanning device the master. To manage connections, BLE uses a Connection

Interval parameter, which is the interval between connection events. It ranges from 7.5

ms to 4 s, and may change after connection has been established. Another parameter is

Slave Latency which defines how many connection events a slave device can skip in a row.

Skipping connection events is used by slave devices to save energy.

IEEE 802.15.4. This technology uses 27 non-overlapping channels, including 16 in

the 2.4 GHz and 11 in the sub-GHz bands. The 2.4 GHz band has a bitrate of 250 kbps.

The MTU is typically 127 bytes, and frames are protected with a 16-bit CRC.

IEEE 802.15.4 networks support star, cluster tree and mesh topologies. IEEE 802.15.4

is widely used in the research area and features many different MAC layers such as Carrier

Sense Multiple Access (CSMA), and Time Slotted Channel Hopping (TSCH) [Watteyne

et al. 2015]. Some are part of the standard, others research prototypes.

115

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

With CSMA, nodes keep their radio always on, operate on a single channel, and access

the medium through a contention algorithm, CSMA, in a slotted or unslotted mode. In

unicast transmissions, link-layer acknowledgments are used to confirm reception and enable

retransmissions. The CSMA is one of the MAC layers defined in IEEE 802.15.4-2011.

With TSCH, all the nodes are globally synchronized and form a mesh network. The

communication is slotted and each slot is long enough for the transmission of a frame

and its acknowledgment (typically 10 or 15 ms). Slots are grouped into one or several

slot-frames, which repeat over time and form a schedule. At every slot, the nodes know

exactly whether they are supposed to sleep, transmit or receive, and deterministically

select a channel to use from a pseudo-random hopping sequence. This improves inter-

ference resilience and supports link dynamics. As IEEE 802.15.4 includes only physical

and MAC layer, many upper layers are possible to run above IEEE 802.15.4 such as Zig-

Bee and 6LoWPAN. The IETF Working Group 6TiSCH [Thubert 2019] is proposing an

architecture for 6LoWPAN/TSCH networks.

Comparison. Unlike IEEE 802.15.4, which is restricted to the physical and MAC

layers, BLE is a full protocol stack. It is thus potentially more complex to manage.

To compare the performances of BLE and IEEE 802.15.4, we report on experiments

conducted in [Narendra et al. 2016] focusing on latency, data rate, reliability, and energy

consumption. In all the experiments two nodes are communicating; a master and a slave

for BLE, a coordinator and simple node for IEEE 802.15.4. In all the experiments, the

nodes use a transmission power of 0 dBm. The reported metrics are the following:

• Latency: the time taken in the application layer to get data in a request-response

communication.

• Data Rate: the amount of link-layer payload per unit of time.

• Energy: time spent with the radio turned on, referred to as Radio Duty Cycle (RDC).

• Reliability: the number of packets received over the number of packets sent at the

link-layer, referred to as Packet Reception Ratio (PRR).

The first experiment is a request-response communication to measure the latency for

116

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

fetching data from another node. Nodes are at a distance of 10 cm from each other and

the request-response cycle is repeated 1000 times for each test.

According to the measures, the lowest latency is achieved with BLE with a connection

interval of 7.5 ms, but this requires a high duty cycle of above 20%. The second lowest

latency is achieved by 802.15.4-CSMA, but with a duty cycle of 100%, which increases

energy consumption. Both BLE and 802.15.4-CSMA achieved a latency under 50 ms.

802.15.4-TSCH and BLE with a connection interval of 125 ms achieved an interesting

latency-energy balance, with a duty cycle between 0.6 and 1.3%, and a latency between

100 and 200 ms. The lowest energy consumption is achieved by BLE with a slave latency

of 65, at the cost of a very high latency of 750 ms.

The second experiment is a bulk-transmission process to compare the maximum data

rate with and without WiFi interference. Nodes are placed at a distance of 1m and a WiFi

router is placed 2.5m away from the two nodes to generate interference. The maximum

payload allowed by each link-layer is used; 27 for BLE and 110 for IEEE 802.15.4. Each

run of the experiment lasts one minute in order to measure a stable mean data rate. The

metrics measured in this experiment are data rate, energy, and reliability.

The results show that 802.15.4-CSMA achieves the highest data rate with 155 kbps,

but with a higher energy consumption as it keeps the radio turned on almost all the time.

BLE achieved a PRR of 99.9%, due to channel hopping and short frames. The same

behaviour is observed with and without WiFi interference. IEEE 802.15.4 has a higher

data rate and consumes more energy. TSCH and BLE, through channel hopping, are

less affected by interference than the single-channel CSMA. With the help of link-layer

retransmissions, both BLE and TSCH achieved 100% reliability.

Overall, both IEEE 802.15.4 and BLE are suitable for IoT deployments. They can both

achieve latency-energy trade-offs. Furthermore, Siekkinen et al. [Siekkinen et al. 2012]

focused on the relation between throughput and energy, and found that BLE had a constant

energy utility, while IEEE 802.15.4 became more energy-efficient as throughput increased.

However, IEEE 802.15.4 defines only the physical and MAC layers, and natively supports

a mesh network topology. Thus, it allows more flexibility than BLE while providing

satisfactory performance.

117

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

Consequently, we adopt the IEEE 802.15.4 technology in our architecture design. In

the remainder of this chapter, the distinction between link-layer protocols used in IEEE

802.15.4 is not necessary as our design assumes the IEEE 802.15.4 features independently

of the underlying MAC protocol. However, in the next chapters, when a specific link-layer

has to be considered, we assume the CSMA link-layer which is the most common.

Some studies have been dedicated to NDN communication over Bluetooth. In [Attam

and Moiseenkoy 2013], the authors propose to fit NDN model into constrained Bluetooth

stack. They design a proxy layer that provides NDN connectivity over Bluetooth. At the

time of writing this manuscript, NDN over Bluetooth Low Energy (BLE) is still under

investigation. Recently, the authors in [Petersen et al. 2019a] demonstrate an NDN-

over-BLE implementation on a multihop network. They design a mapping of NDN to

BLE primitives inspired from the concepts of IPv6-over-BLE. In a related study [Petersen

et al. 2019b], the authors compare Bluetooth mesh networking and ICN, conceptually

and through real-world experiments. The objective is to investigate how much Bluetooth

mesh has in common with ICN principles. The authors identify major differences, such as

the fact that Bluetooth mesh uses flooding without caching mechanisms, which is a native

ICN principle to add in future versions. Another interesting conclusion from reported

experiments is that, according to the authors, NDN can utilize network resources more

efficiently than Bluetooth mesh stack.

3.3.3 Communication Architecture

The first benefit of integrating NDN with IEEE 802.15.4 is to make IoT end-devices an

integral part of the NDN network, whether they are producers or consumers. Therefore,

sending Interest and Data packets over IEEE 802.15.4 frames is not the only operation

required. An efficient integration should also consider packet transformation at the inter-

section between the wireless local network and the backbone, to accommodate constrained

devices while making the best use of their resources. Bearing this in mind, we designed

the NDN-802.15.4 architecture detailed below.

We consider a local wireless mesh network formed by a set of various IoT devices

(e.g., sensors). This local network is connected to the Internet via a gateway. Typically,

118

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

the gateway forwards Interests issued from user applications, whereupon nodes can reply

with Data packets that they produced or stored in their cache. The wireless link between

devices, including the gateway, is based on IEEE 802.15.4.

We assume that each device is a source of data and thus is a content producer, while

the gateway forwards Interests issued from applications and thus acts as a local consumer.

Each device generates data under a specific prefix name obtained together with the required

security materials (e.g., signature keys, certificates) through a pairing process. Each device

has a different content name but a common prefix is shared between devices and the

gateway within the local network.

As we envision a realistic integration, we adopt a typical IoT architecture in which

native NDN is integrated in the edge (i.e. gateway-device) and NDN over UDP/IP in the

backbone. A Wireless Local Area Network (WLAN) is formed by a gateway and a set of

devices. Each WLAN is accessible via the gateway under a Common Prefix (CP). To sum

up, architecture’s components are the following:

1. End-devices (EDs): Wireless nodes running the NDN protocol and communicating

through an IEEE 802.15.4 transceiver.

2. Local Manager (LM): LM’s role is to manage device identities, access control, etc.

Thus, it can handle a pairing process for EDs, an authentication server, etc. LM is

a software component typically included in the gateway.

3. WLAN: A gateway, including the LM, and a set of EDs form a wireless local network

accessible via a common prefix (CP).

Figure 3.2 illustrates an example of our architecture deployed in the cow monitoring

scenario described in Chapter 1.

This architecture resembles most usual IoT deployments; with the same equipment,

technologies and entities. Only networking is different as it is based on NDN. To provide a

better support of NDN over IEEE 802.15.4, we include two mechanisms to control packets

size. These mechanisms do not represent an additional layer or middleware for NDN as it

is common in IP. Rather, they exploit the flexibility of NDN to better suit the constraints

119

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

Figure 3.2: NDN-802.15.4 architecture

of IoT devices, such as small MTU, limited memory and limited CPU. The proposed

operations are implemented in the EDs and the gateway. However, EDs do not necessarily

include the same operations as the gateway; while the latter can support more complex

operations, the former only implements the basic ones.

These mechanisms are presented below and for comparison, Figure 3.3 depicts the NDN

protocol stack with IEEE 802.15.4 integration, a simplified OSI model and the 6LoWPAN

stack.

Figure 3.3: NDN-802.15.4, OSI model and 6LoWPAN stack

120

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

3.3.4 Integration Mechanisms

In the following, we detail the two operations designed to manage NDN communication

over IEEE 802.15.4: Name-Payload-Field size control, and stateless packet compression

scheme.

3.3.4.1 Name-Payload-Field size control

So far, propositions to support NDN in constrained environments have been based on

predefined restrictions. For example, a lightweight version of CCN has been designed for

WSNs in [Ren et al. 2013], in which restrictions are imposed on name length and packet

fields to control packet sizes. However, excluding some fields and limiting name length

arbitrarily or intuitively is not suitable to cover all use cases. An application may require

more expressive names but sends small amounts of data, while another might require

accurate data information, achieved through packet fields, but uses short names and small

content. To illustrate that, two application scenarios can be given: (1) A sensor network

that needs to name small-sized data according to the location, the timestamp, the data

type and the version, requires maximum name length at the expense of the payload. (2)

A livestock monitoring system that needs to identify each animal individually with all

its related information may name data according to an ID and timestamp, but a larger

payload is required for the content.

As we can observe, name length in NDN directly impacts Interest length, Data length

and thus payload size. Moreover, name length impact becomes more critical in Data

packets as they must carry signatures and content, thus they are generally much bigger

than Interest packets.

To efficiently manage the small frames of IEEE 802.15.4, it is useful to control Data

packet structures since no predefined size and format exist. We believe that it is important

to understand the proportion in length between name, payload and fields in a Data packet.

Therefore, we propose a Name-Payload-Field balancing function to control the size of each

part.

The following notation is adopted to describe the function:

121

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

• F : payload size of the frame considered (e.g. F = 100 bytes)

• d: length of the Data packet with the defined fields and all necessary Type-Length

bytes. Here, the fields include all Data packet fields, except Name and Content since

they represent the name of the Data and its payload respectively.

• p: payload length of the Data packet

• s: length of the signature included in the Data packet

• f(p): size allowed for the Name according to the payload

Here, a Payload-Name relationship, f(p), can be defined by subtracting from the frame

length the sum of the Data packet parts; which are the payload, the signature and the

rest of the Data packet fields. This can be intuitively evaluated as:

(3.1) f(p) = F − (p + d + s)

However, d changes dynamically according to the number of fields defined in the Data

packet and their types. Moreover, the relationship between defined fields and data size

(d) is not constant since each application is free to define the fields it needs, and they do

not have the same length.

To find a relation between the structure of the Data packet and its size d, we want

to derive a function that gives an estimation of a Data packet size according to the num-

ber of fields it includes, independently of their types. For that, we study possible field

combinations and their corresponding sizes according to the following approach:

1. We consider only the fields that can directly contain a value, a Name or a Name-

Component field. This gives the set :

Ω = ContentType, FreshnessPeriod, F inalBlockId, SignatureType, KeyLocator.

2. Since each field from om can be defined only once in a packet, the number of com-

binations C is as follows: C =
(N

k

)
, where N = |Ω| and k = 0, 5.

122

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

3. For every possible field combination, we calculate the size of the corresponding Data

packet including all necessary bytes, except Name and Content fields. For the com-

binations that have the same number of fields, their average size is calculated.

Since the focus is on small-sized frames (i.e. ≤ 100 Bytes), we expect reasonable field

lengths so that packets can fit in IEEE 802.15.4 frames. For security-related fields (i.e.

SignatureInfo and SignatureValue), we consider a symmetric cryptography with HMAC

authentication. Although Type-Length bytes of KeyLocator field are included in the Data

structure size, its actual value is not included. Since KeyLocator contains a Name, it is up

to the application to compute its length and subtract it from Name length. Figure 3.4a

(square marker) gives the average Data size d according to the number of fields included.

To verify the accuracy of this approach, we calculate the Pearson correlation coefficient

r:

(3.2) r =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2∑N

i=1(yi − ȳ)2

Where x̄ and ȳ are the means of x and y values respectively.

The correlation coefficient between field number x and data size y is r = 0.9964. That

is, an accurate linear regression relation can be calculated as follows:

(3.3) d(x) = α + βx

Where β =
∑N

i=1(xi−x̄)(yi−ȳ)∑N

i=1(xi−x̄)2
and α = ȳ − βx̄.

Calculated α and β are 4.36 and 8.93 respectively. Figure 3.4a (plain line) gives the

linear regression relation d(x) between the number of fields x and data size d.

With this linear regression, the Payload-Name relationship defined in Equation 3.1 can

be improved to Payload-Name-Field relationship, expressed as follows:

(3.4) f(p) = F − (p + (8.93 + 4.36m) + s)

where, m is the number of fields included in the Data packet.

Figure 3.4b gives the payload-name relation according to the number of fields defined

in the Data packet, considering an HMAC signature (i.e. = 32 Bytes).

123

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

(a) Expected Data packet size according to the
number of fields

(b) Allowed Name length according to the pay-
load and the number of fields

Figure 3.4: Name-Payload-Fields estimations

As a result, the f(p) function estimates the size allowed for the Data packet name

according to the payload length and the structure of the packet. However, it is not

intended to be used to calculate the sizes of Data packets on creation. Rather, f(p) should

be used as a dynamic guider for EDs and/or the gateway to set the appropriate naming

scheme for the content, while balancing with payload size and packet fields. Moreover, the

proposed function is general and assumes all existing fields, but other field assumptions

can be envisioned to find a more accurate Name-Payload-Field balancing function.

3.3.4.2 Stateless packet compression

Interest packets issued by applications can rapidly become large, due to long names and

optional fields. The corresponding Data will be even larger due to content and signature.

However, we observe that requested content can be retrieved from EDs without sending

all Interest fields. Missing fields can be computed based on predefined configurations,

the packet specification, and previously shared information. Following the same principle,

Data packets produced by EDs can be sent with missing fields that will be completed by

the gateway. To exploit this feature, we designed a simple packet compression scheme to

reduce overhead in the WLAN and avoid packet fragmentation.

As mentioned in Chapter 1, IP stack already uses header compression whose main

benefit is to reduce packet sizes sent over WLANs and thus avoid fragmentation. More-

over, sending small packets reduces the probability of packet loss caused by bit errors on

wireless links. To give an idea of the packet compression approach, we refer to the header

compression scheme used in IP, particularly 6LoWPAN.

124

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

The IP protocol stack relies on packet headers to describe and manage communications

through multiple hops over the network. Typically, headers carry source and destination

addresses, port numbers, protocol versions, sequence numbers and other flags. However,

most of this information does not change over time, or changes in specific patterns such as

by incrementation. Those fields that keep the same value or change in a predictable way,

do not need to be sent in each packet, or they can be represented with a smaller number

of bits than their actual value. In short, the underlying principle of header compression

is to reduce not only the redundancy of the information contained in a packet header,

but also the redundancy between several consecutive headers. Thus, information that

does not change is sent only at the beginning of the session or at a slow pace. For the

changing fields, a prediction or dependency mechanism makes it possible to further reduce

the amount of information transmitted.

Header compression mechanisms use context to store some header values and redundant

information in the data stream. The compressor and decompressor have a copy of the

context with the information of the last header. Context is refreshed each time a value in

the header changes.

In addition to the context, header compression mechanisms usually classify the fields

of the headers. The analysis for the classification is based on how the values of these fields

change during the connection. The classification is done according to different criteria,

and it is used for the definition of compressed packet formats. The criteria for the fields

classification are different in each compression mechanism. For example, the Van Jacob-

son mechanism [Jackobson 1990] simply divides the fields by having a CONSTANT or

VARIABLE value. For another example, more advanced classification can be adopted as

follows:

• INFERRED: are fields with a value that can be known by examining the package

and are never sent

• RANDOM: are fields with a variable value and are sent in each package

• NO_CHANGE: are the fields with a fixed value and are sent at the beginning of the

transmission

125

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

• DELTA: are the fields with a variable value but which is also predictable as the

sequence number and are sent encoded in all compressed packets.

Based on the same principle as for IP header compression, we adopt a packet fields

classification according to which packets are compressed. The field classification is sum-

marized in Table 3.2 and the description of the classes is the following:

• Static: fields shared by EDs and the gateway/LM in the local wireless network. For

example, CP is a part of content Name shared by all WLAN nodes. Such fields are

never sent between the gateway and EDs, either in Interest or in Data packets.

• Inferred: fields that are not exactly the same for the gateway/LM and all the EDs,

but they can be calculated using WLAN shared configuration and conventions (e.g.

trust conventions). For instance, we assume that common information has been

shared between the gateway and EDs through a pairing process. When such infor-

mation exists, related fields are not transmitted.

• Default value: fields with a default value defined in the NDN specification. That is,

these fields are not transmitted when they have the default value, but are transmitted

otherwise. For example, ContentType in a Data packet is not transmitted when the

packet contains application data.

• Variable: fields that can not be inferred and are not common to WLAN entities.

Thus, they must always be transmitted.

• Unsupported: fields that EDs and/or the WLAN do not support because their pro-

cessing is too complex for constrained devices. They are never transmitted. This

class is intended to support Interest/Data packet field restrictions for future NDN

over IEEE 802.15.4 forwarding mechanisms. When no explicit restriction is defined,

these fields are transmitted.

Unlike in IP, our compression scheme is stateless. That is, nodes do not maintain a con-

text to process packets since the information required for compression and decompression

126

3.3. PROPOSED NDN-802.15.4 ARCHITECTURE

Table 3.2: Packet fields classification

Class Fields Treatment
STATIC (part of) Name, NameComponent Not transmitted

INFERRED SignatureType, KeyLocator Not transmitted

DEFAULT_VALUE ContentType, FreshnessPeriod, HopLimit
InterestLifetime, MustBeFresh, CanBePrefix Not transmitted when default value

VARIABLE Nonce, Content, SignatureValue, Parameters Always transmitted
UNSUPPORTED Rest of the fields (e.g. ForwardingHint). Not transmitted

is shared through a secured pairing process. The reasons for choosing a stateless compres-

sion are multiple. First, as the information compressed in NDN packets mainly consists in

names (i.e., characters), even a simple compression scheme will significantly reduce packet

sizes. That means, a context is not required to achieve an efficient compression ratio. Sec-

ond, stateless compression does not require additional memory and overhead to operate,

and is simple to implement in constrained devices. Third, from an implementation point

of view, a stateless compression process consists in omitting/updating certain bytes when

sending the packet. Thus, the sender does not need to maintain the two states of the

packet (i.e. compressed and decompressed) as in IP. Similarly, the receiver decompresses

the packet by adding/updating certain bytes.

In addition, we should note that the proposed packet compression does not always

require a decompression. Indeed, the gateway and EDs perform different (de)compression

operations. When an ED receives a compressed Interest, it does not need to calculate

all the missing fields to generate the Data or to forward the Interest. Furthermore, if

a decompression is required, each field can be extracted separately with TLV encoding.

When a Data packet reaches the gateway, it is decompressed by adding/updating the

necessary bytes, and then forwarded to the backbone.

Regarding security, data authenticity is not compromised by packet compression. When

each ED signs its Data, the original (i.e decompressed) Data packet is signed before the

compression. At the gateway, the decompression process adds the exact bytes needed

to make the signature verification correct. In this way, if the gateway is partially com-

promised, the decompressed packet will contain errors, and this will be detected by the

consumer upon Data authentication. When the Data signature is delegated to the gateway,

the Data packet is signed by the gateway after decompression.

127

3.4. ADDITIONAL FEATURES

At the time of presenting this packet compression scheme, ICNLoWPAN [Gündoğran

et al. 2018] has been published with a header compression support for NDN. It consists of

a stateless compression scheme that exploits the TLV encoding to create shorter field rep-

resentation. A stateful compression scheme is also designed. As for IP header compression,

the stateful scheme relies on shared contexts that are either distributed and maintained in

the whole network, or are generated and maintained on-demand for a particular Interest-

Data path. In short, shared contexts use IDs to replace frequently appearing information

such as name prefixes, suffixes, and meta information (e.g., Interest lifetime).

In comparison, our compression scheme can be considered as a hybrid approach be-

tween the stateful and stateless mechanisms proposed in ICNLoWPAN. On the one hand,

we rely on onboarding process and security configuration to avoid the transmission of some

shared information. On the other hand, we avoid sending frequently appearing informa-

tion, but using field classification instead of a shared context.

3.4 Additional Features

In this section, we discuss features that are not currently implemented in our architec-

ture, but are either included in the design or intended to be in the future.

3.4.1 Packet Fragmentation

As frequently mentioned, MTUs in low-rate wireless networks are around 100 bytes.

Although IoT applications generally do not have to send a large amount of data in one

packet, it is not easy to guarantee that NDN packets, including signatures, fit into small

MTUs.

Indeed, the mandatory Data signature is frequently achieved with public key encryp-

tion, making it difficult to fit a Data packet with payload and signature into one IEEE

802.15.4 frame. Although RSA signatures are too complex for constrained devices, lighter

cryptographic algorithms (e.g. ECDSA) can be envisaged. They also require less compu-

tational power and are more suitable for constrained devices. Using the proposed packet

compression, we expect fragmentation to be required only when public key cryptography is

128

3.4. ADDITIONAL FEATURES

used. In this case, a lightweight link-layer fragmentation mechanism is proposed in [Shang

et al. 2016b]. It uses a 3-byte fragmentation header represented in Figure 3.5. In the

header, the first bit is set to 1 to indicate that the packet is fragmented. An unfragmented

packet will start with the type code for Interest (5) or Data (6) packet, whose highest-order

bit is always 0. The More-Fragment (MF) bit indicates whether the current packet is the

last fragment. The sequence number (SEQ) and identification fields provide ordering of

the fragments, which are used by the receiver to reassemble the original NDN packet.

Figure 3.5: Packet fragmentation header in NDN-RIOT [Shang et al. 2016b]

To support the cohabitation of NDN and IPv6 in IEEE 802.15.4 networks, the authors

in [Gündogan et al. 2018b] propose to reuse the 6LoWPAN dispatching framework to

benefit from the protocol-independent link fragmentation. In their design, a fragmented

NDN packet includes 4-byte fragmentation dispatch header identifying the original packet

and its size. Subsequent fragments contain 1 additional byte that indicates the fragment

offset. Fragments are reassembled on the next hop and passed to the NDN module as

regular packets.

3.4.2 Push Traffic

In pull communication mode, an ED waits for an incoming Interest to respond with a

Data packet. This is the native communication mode of NDN; it supports many common

use cases like monitoring sensors and controlling actuators. However, this mode typically

requires EDs to always be on-line, which may cause faster battery exhaustion. Moreover,

an NDN architecture for IoT must allow devices to instantly transmit data such as alarms

or status changes.

To handle such scenarios, the NDN communication mechanism can be adapted to

support a push-based data dissemination. In push mode, an ED publishes its data auto-

matically when it is available, thereby saving itself from always having to wait and listen

129

3.4. ADDITIONAL FEATURES

for incoming interests.

To support push traffic efficiently in NDN, the authors in [Amadeo et al. 2014b]

propose three schemes: Interest Notification, Unsolicited Data, and Virtual Interest Polling

(VIP). When applied to our architecture, the first solution suggests that EDs include their

data in the Interest name. The second solution is to allow the gateway tp accept Data

packets from EDs without sending an Interest for it. The last approach consists in using

an Interest that it is maintained in the PIT for a longer time period than usual, in such

a way that it will be satisfied by a Data packet from ED when it is produced. Note that

VIP assumes a negotiation phase between EDs and the gateway to set the maximum time

between two Data productions.

However, Interest notification can carry only small amounts of data. In addition,

it does not feature the data-centric security of NDN and the produced content can not

be cached. In the Unsolicited Data approach, EDs produce Data packets that are not

routable according to the NDN scheme since there is no Interest for them. Thus, Data

packets can only be retransmitted by broadcast. Moreover, accepting unsolicited Data

may be dangerous for the network and the gateway as it opens a breach for DoS attacks.

For our architecture, we decide to retain only the third solution. Despite additional

resources required at routers in between a consumer-producer path, this scheme does not

raise security and overhead issues. It can be used in our scenario where the consumer

is typically hosted in a powerful node such as the gateway. The VIP scheme works as

follows (see Figure 3.6(a)). In the configuration phase, the ED and the gateway exchange

information about the maximum interval between successive Data generation, let this

parameter be τ .

Then, the gateway may send a long-lived Interest (ll-INT) and waits for a virtual

timeout interval (vTO), slightly higher than τ , to receive the Data. Here, vTO is relatively

long and corresponds to the ll-INT lifetime. If the content is received before vTO expires,

the gateway simply refreshes the ll-INT lifetime and does nothing. Otherwise, if the vTO

timer expires without receiving any Data, the gateway transmits a standard Interest with

the usual and relatively short timeout (TO). If a Data packet is not received within TO,

a new Interest is retransmitted by the gateway. Otherwise, at the successful reception of

130

3.4. ADDITIONAL FEATURES

the Data packet, a vTO timer is started afresh.

We should note that VIP is useful when EDs produce data periodically, and may

be even more useful if the data are produced quite frequently. In this case, keeping an

Interest in the PIT for a long period of time may consume fewer resources than issuing a

new Interest each time new data is available.

For the case when a push communication is not frequently needed, another mechanism

that we can use is the Advertise Interest (AdvInt). AdvInt works as follows (see Figure

3.6(b)). When the ED needs to push data, it sends an Interest to advertise it to applica-

tions. The Interest name is composed of the prefix name allowed to the device, followed

by the advertised Data name. The advertise Interest can be routed normally with NDN

until it reaches an interested consumer, such as the gateway. The gateway can then fetch

the advertised Data name and send an Interest to retrieve it. This mechanism creates

an overhead as it requires the ED to send one additional Interest. However, it can be

acceptable if it is not used frequently.

3.4.3 Caching and Energy Management

Caching is an important feature to ensure data availability and reduce energy consump-

tion. In the following, we report on some work related to caching in NDN constrained

wireless networks such as WSNs. These solutions can be envisioned to improve our archi-

tecture.

In [Hahm et al. 2017], the authors propose a side-protocol for NDN, called CoCa,

to enable distributed cooperative caching of IoT content. Extensive real-world large-scale

experiments have been performed on IoT networks with up to 240 nodes, and on an

emulator with up to 1000 nodes. Results show that with NDN+CoCa, devices can achieve

a 90% reduction in energy consumption compared to the state-of-the-art while maintaining

recent IoT content availability above 90%.

More importantly, the authors argue that cooperative distributed caching in general

could also be implemented on top of IP. However, NDN uses caching capabilities built in the

network layer. In comparison, an IP stack does not provide built-in caching capabilities,

131

3.4. ADDITIONAL FEATURES

Figure 3.6: Push-mode mechanism illustration: (a) Virtual Polling Interest, (b) Advertis-
ing Interest

132

3.5. CONCLUSION

but still uses a large part of the RAM on low-end IoT devices (e.g. on IoT devices with

16kB of RAM or less). Hence, on low-end IoT devices, NDN can dedicate significantly

more RAM to content caching compared to similar solutions using IP. Results indicate

that even a small amount of additional cache size (e.g., 5 kB) can significantly increase

the content availability. Thus, solutions such as NDN+CoCa can provide a significant

advantage over a similar approach with IP in terms of energy efficiency.

In [Hail et al. 2015], the authors propose a probabilistic CAching STrategy for the IN-

ternet of thinGs (pCASTING) to improve caching efficiency in NDN wireless IoT networks.

It relies on the freshness of data, the energy level and storage capacity of constrained de-

vices to dynamically adapt the caching probability of each node. Simulation results show

that the approach outperforms traditional NDN caching mechanisms in terms of data

retrieval and network energy efficiency.

Sleep mode of IoT devices introduces the problem of data availability. To cope up with

that, a Dataset Synchronization protocol for WSN has recently been proposed in [Xu et al.

2018]. The protocol divides sensors into groups, each has a shared dataset; through dataset

synchronization within each group. The protocol ensures that the group’s latest dataset is

always accessible from its active sensors. Reliable dataset synchronization, NDN’s Interest

aggregation and Data caching are exploited to optimize energy consumption. Simulation

results show that a data availability close to 100% can be achieved under various network

conditions with negligible overhead.

3.5 Conclusion

In this chapter, the practical deployment of NDN in IoT systems has been investigated.

An integration of NDN from the edge of the network has been identified as a reasonable

approach after studying all the possibilities. Based on this choice, a realistic NDN-802.15.4

architecture, including NDN-specific mechanisms, has been designed and discussed. This

is considered as a first step towards enabling the ICN/NDN paradigm in the IoT. Through

the NDN-802.15.4 architecture, we aim to shape a viable NDN-IoT duo with the following

objectives:

133

3.5. CONCLUSION

1. Investigate how the integration of the NDN paradigm with low-rate low-power wire-

less technologies can be designed in comparison with IP integration (i.e., 6LoWPAN).

2. Show the flexibility of enabling NDN in IoT devices by exploring mechanisms that

cannot be envisaged with IP such as Name-Payload-Field balancing.

3. Enable the vision of NDN in real-life IoT applications to take advantage of NDN

features.

However, providing mechanisms to support NDN packets over IEEE 802.15.4 is only

the first stage of the NDN-802.15.4 integration that we aim to achieve. A major network-

ing aspect should be examined, which will inevitably impact the way NDN communication

is handled in low-rate wireless environments. This important concern is the packet for-

warding in IEEE 802.15.4 mesh networks. Indeed, in addition of reducing packet size,

a lightweight forwarding strategy for wireless mesh networks is needed to complete the

NDN-802.15.4 integration.

As mentioned before, using NDN directly on the link-layer layer is a wise choice in

wireless networks. This raises various questions on how to design forwarding strategies.

First, we need to figure out whether unicast MAC addresses must be mapped to NDN

names, or a broadcast forwarding is more efficient. Second, while a forwarding strategy is

supported at the NDN network layer, it may impact the underlying link-layer components

such as the CSMA algorithm.

To answer these questions, testbeds can be used as real-world evaluation tools, but

are not sufficient as they are limited by the number of nodes, scenario possibilities and

measurement accuracy. To allow large-scale and quick evaluation of wireless forwarding

strategies, a ready-to-use simulator for wireless NDN in IoT is needed. To further enhance

the accuracy and understand the impact of the parameters, analytical models are also

needed. In the next chapter, we describe how we support the evaluation of NDN-802.15.4

designs through three tools that make up our evaluation environment: the testbed, the

simulation framework and the mathematical model.

134

Chapter 4

Evaluation Tools

4.1 Introduction

As pointed out in the previous chapter, an important feature to support in our NDN-

802.15.4 architecture is the wireless forwarding over IEEE 802.15.4. However, we should

note that NDN wireless forwarding, particularly in constrained networks, is slightly dif-

ferent from the usual NDN forwarding used in wired networks. The main reason is that

using one wireless radio, nodes have no possibility to choose among different interfaces to

forward packets; all packets are transmitted through the same network interface. More-

over, packet forwarding must deal with redundancy if broadcast is used, or deal with MAC

addresses when unicast is used. Obviously, the main challenge for a wireless forwarding

strategy is to reduce network overhead and useless retransmissions while keeping efficient

data availability and dissemination.

To be able to design and test wireless forwarding strategies, we set up a research

environment that includes three complementary tools: a testbed, a simulation framework

based on the OMNeT++ simulator, and a mathematical model. First, the testbed reflects

the NDN-802.15.4 architecture presented in the previous chapter with a small number of

fixed nodes. It allows us to measure small-scale operations such as one-hop round-trip

time, memory usage and packet compression delay.

Although an open-access testbed such as IoT-Lab [Adjih et al. 2015] provides the

needed features to test and evaluate IoT solutions, we decided to design a new testbed for

our evaluation. The main reason is that we want the testbed to evolve to a prototype for

135

4.2. TESTBED

cow health monitoring system with NDN. Therefore, we use the testbed in an incremental

way to integrate new features, instead of supporting only the evaluated aspect as it is

usually the case in a general purpose testbed.

Second, to overcome the limitations of a testbed in evaluating complex forwarding sce-

narios, such as node mobility, we developed the NDN-OMNeT framework. NDN-OMNeT

also reflects the gateway-to-ED and ED-to-ED communications of our architecture, but

allows evaluation with many more nodes, mobile or not, with various network topologies,

and different link-layer solutions such as IEEE 802.11 and IEEE 802.15.4. The main pur-

pose of this framework is to quickly compare and evaluate wireless forwarding strategies

as our implementation includes several state-of-the-art solutions.

Using the ndnSIM simulator [Afanasyev et al. 2012] mentioned in Chapter 2, broadcast-

based wireless forwarding strategies used for evaluation are not natively supported, and

need to be implemented. Therefore, we decided to implement these forwarding strate-

gies along with NDN behaviour in another simulator, OMNeT++ which does not support

NDN. We believe this will help to bring NDN to an additional simulation tool, which is

widely used in IoT, VANETs, and WSNs community.

Finally, we model the basic NDN forwarding strategy proposed in the literature and

introduced later in this chapter, CF (Controlled Flooding). The mathematical model is

used to study the efficiency of NDN in a simple wireless network topology under different

content popularity. The three tools are presented below in their respective sections, and

used in the next chapter.

4.2 Testbed

The NDN-802.15.4 architecture has been initially designed and tested in a cow monitor-

ing system, as previously mentioned. However, since it is not easy to deploy experimental

features in a farm production environment, particularly with livestock, the deployment

has been reused as a testbed in our lab. The testbed includes a WLAN with one gate-

way and four EDs. To achieve that, we designed a typical NDN-802.15.4 gateway, a set of

NDN-802.15.4 constrained devices, and a monitoring application. Together with the IEEE

136

4.2. TESTBED

802.15.4 technology, we chose typical hardware to use in our architecture. The hardware

equipment considered, followed by the design of each aforementioned entity are described

below.

4.2.1 Hardware Technologies

As the focus is on realistic deployments, we consider current IoT equipment available

for IoT users. First, Arduino single-board microcontrollers are a typical example of con-

strained devices to create EDs; with a low-power, slow-speed CPU and a few kilobytes of

RAM and Flash. When deploying IoT applications in environments such as agricultural

fields, it is common to use sensors and actuators running on such constrained equipment.

These devices are intended to support NDN stack implementation and run a simple NDN

producer application that basically creates, names and signs Data packets, and processes

Interests received from the gateway. To communicate with the gateway and with other

EDs, a wireless radio module is connected to the Arduino chip. The wireless radio is

chosen according to the underlying wireless technology, which is IEEE 802.15.4. Second,

the gateway typically has more CPU and memory resources than EDs. It also has more

power as it is commonly plugged in to a constant source of energy. The class of equipment

we use as gateways is represented by Raspberry-Pi single-board computers. Raspberry-Pi

hardware is widely used for prototyping and making IoT low-cost applications for testing

and developing Proofs-of-Concept and embedded systems.

Finally, wireless communication within the WLAN is based on the IEEE 802.15.4

technology using XBee modules. XBee is the brand name of ZigBee compatible radio

modules from Digi International. ZigBee is a suite of high-level communication protocols

based on the IEEE 802.15.4 specification. XBee modules can be used to deploy wireless

mesh networks using small, low-cost and low-power digital radios. XBee radio modules

are very popular in embedded applications, wireless sensor networks, monitoring and IoT

applications. We should note that we use XBee modules as IEEE 802.15.4 radios, without

any ZigBee feature or related configuration. Each of the hardware technologies considered

has different product types available on the market, Table 4.1 reports on the equipment

particularly used to prototype our architecture.

137

4.2. TESTBED

Table 4.1: Hardware Technologies Considered

Name Usage Features/resources

Arduino Uno

32 KBytes Flash Memory
2 KBytes SRAM

16 MHz CPU
SoC: ATmega328P

Size: 68 mm X 53 mm
Price: $24.95

Arduino Due Equipment used to create EDs that
support NDN over IEEE 802.15.4.

EDs include sensors and/or actuators
to collect data (e.g., temperature)

and/or execute actions (e.g., lock a door).

512 KBytes Flash memory
96 KBytes SRAM

84 MHz CPU
SoC: ARM Cortex M3
Size: 101 mm x 53 mm

Price: $32.13

Arduino Mega

256 KBytes Flash memory
8 KBytes of SRAM

16 MHz CPU
SoC: ATmega2560

Size : 101 mm x 53 mm
Price: $38.50

Raspberry Pi 2 Model B

Equipment used to create the gateway.
It uses NDN over IEEE 802.15.4 to communicate with EDs,

and uses NDN over UDP/IP/Ethernet
to communicate with applications over the Internet.

Thus, it includes at least two network interfaces:
IEEE 802.15.4 radio and Ethernet/Wifi.

1GB RAM
900MHz quad-core ARM Cortex-A7 CPU

Linux OS
Size: 85 mm x 56 mm

Price: $39.95

XBee transceiver

Equipment used to provide EDs and gateways with
connectivity over low-power low-rate wireless technology.

We use the IEEE 802.15.4 standard
supported by this equipment.

Each WLAN device is equipped with one XBee transceiver,
connected via a serial communication.

250 Kbps data rate
Frequency Band 2.4 GHz

Range: 90 m indoor
Size: 24 mm x 27 mm

Price: $39

4.2.2 Gateway Design

The gateway is implemented using a Raspberry Pi [Wikipedia] with an XBee radio

[Digi International Inc. 2008] for wireless communication. To provide Raspberry Pi

with NDN-over-802.15.4 communication, we implemented a process that runs next to the

NDN module (i.e., NFD). The role of this process is to intercept Interests with a certain

prefix name and to send them through the IEEE 802.15.4 radio. Figure 4.1 depicts the

software and hardware components involved in the Raspberry Pi after integrating NDN-

over-802.15.4. Details of the software structure and forwarding are provided below.

4.2.2.1 Software Structure

The NDN-802.15.4 process manages sending Interests and getting Data, and receiving

Interests and sending Data. That is, the gateway is able either to receive Interests from

EDs, forward them to the backbone and get the Data back, or to forward Interests from the

backbone to EDs and get Data packets back. In our design, the IEEE 802.15.4 technology

138

4.2. TESTBED

Figure 4.1: Architecture of the gateway

is a link-layer for NDN. It uses the broadcast address 0xFF to send packets over IEEE

802.15.4.

Figure 4.2 gives a simplified version of the NDN-802.15.4 process running on the gate-

way.

4.2.2.2 Routing and Forwarding

In our testbed, the NDN-802.15.4 process intercepts Interests with a certain prefix p

to send them over the wireless link. For example, p may be “/farm”. This prefix has to

be set to forward all Interests with names starting with p to the IEEE 802.15.4 WLAN.

To achieve that, the NDN-802.15.4 process registers a Face to NFD, which creates a FIB

entry to bind prefix p to the local Face of the NDN-802.15.4 process. Then, NFD acts in

a normal way: it forwards Interests with prefix p to the NDN-802.15.4 process, and when

the corresponding Data comes back it sends it to the appropriate application or next hop

according to the PIT. That is, in the gateway NFD uses NDN routing information to

forward Interests from the backbone to the WLAN and Data from the WLAN to the

backbone.

As an illustration, Table 4.2 gives the typical FIB at the gateway. When Interests are

issued from the WLAN (i.e., EDs are consumers), the gateway forwards those Interests to

139

4.2. TESTBED

/* callback for incoming Interest from the backbone */
function onInterest(interest) :

frameBuffer = encodeAndCompress(interest)
ieee802154.broadcast(frameBuffer)

/* callback for incoming Data from the backbone */
function onData(data) :

frameBuffer = encodeAndCompress(data)
ieee802154.broadcast(frameBuffer)

function main() :
/* to receive Interests from the backbone */
backboneFace = Face()
prefix = "/farm"
backboneFace.registerPrefix(prefix, onInterest)

/* connect to the 802.15.4 radio */
ieee802154 = Ieee802154()

while True:
/* process incoming packets from the backbone */
backboneFace.processEvents()

/* process incoming packets from the WLAN */
frame = ieee802154.wait_read_frame(0.01)
if frame :

if frame.isData() :
data = decodeAndDecompress(frame)
backboneFace.put(data)

else if frame.isInterest() :
interest = decodeAndDecompress(frame)
backboneFace.issue(interest)

Figure 4.2: NDN-802.15.4 process operations

140

4.2. TESTBED

Table 4.2: Typical FIB at the gateway

Prefix Face Cost
/farm NDN-802.15.4 process 0 (local)

the corresponding next hop in the wired network. Once the Data is received, the gateway

sends it over the IEEE 802.15.4 link towards the ED that requested it.

4.2.2.3 Implementation

The packet compression scheme in our architecture is implemented in the NDN-802.15.4

process. Moreover, to process IEEE 802.15.4 frames according to the specification, we

implemented a simple library that interacts with the XBee module via the serial port.

The NDN-802.15.4 process is implemented in Python using the PyNDN2 library. It

can run on any Linux-based distribution with NFD installed such as Ubuntu, Debian and

Raspbian. The library that handles IEEE 802.15.4 frames is also implemented in Python.

4.2.3 End-device Design

End-devices are implemented using Arduino boards with XBee radios for wireless com-

munication. A lightweight version of the NDN protocol stack is available on Arduino

thanks to the ndn-cpp Lite library. This library supports encoding and decoding TLV

packets, and includes cryptographic algorithms such as HMAC and ECSDA. To imple-

ment EDs as described in our architecture, we extended ndn-cpp Lite with a simple IEEE

802.15.4 communication library that makes it possible to handle XBee modules to send

and receive NDN packets over IEEE 802.15.4 frames, in the same way as the gateway does.

In practice, to access XBee modules, our extension library uses a serial communication

library included in the Arduino environment. To support forwarding strategies, we also

implemented light versions of the NDN structures; FIB, PIT, and CS, as they are not

included in the version of ndn-cpp Lite that we used.

As mentioned above, EDs typically run producer applications. Thus, having the ndn-

cpp Lite library and the IEEE 802.15.4 extension, a simple producer application can be

written as an Arduino sketch.

141

4.2. TESTBED

Figure 4.3 depicts the ED architecture including software modules and libraries. Figure

4.4 is a picture of an ED actually used in the testbed, here with an Arduino DUE and

an accelerometer. Figures 4.5 and 4.6 contain the typical producer application sketch in

which the ED receives an Interest from the IEEE 802.15.4 radio, processes it, and replies

with the corresponding Data.

Figure 4.3: Architecture of the ED

4.2.4 Applications

To complete the testbed, we implemented a typical NDN consumer application that

collects and displays data produced by EDs. The application runs on a traditional com-

puter or laptop and periodically issues Interests that are forwarded by the gateway to the

WLAN. Depending on the purpose of the monitoring, variants of the application exist and

can display data on a map, on a dashboard, or simply store it. Applications are developed

in Python using the NDN library PyNDN2.

4.2.5 Deployment and Evaluation

The NDN-802.15.4 testbed has been deployed in a smart agriculture scenario that

reflects the cow health monitoring example presented throughout this document. We

recall that cow health monitoring systems use sensors (e.g. movement, temperature, etc.)

installed on cows to collect individual cow data. The data are then analyzed to detect

142

4.2. TESTBED

Figure 4.4: Picture of an ED

whether a cow is sick, or to forecast activities such as heat periods to make breeding

decisions.

The deployment consists in one WLAN with one gateway and four EDs. The equipment

used consists in a Raspberry Pi as the gateway/LM and Arduino boards as EDs. A

consumer application runs on a laptop connected to the gateway on the local network

(LAN) and periodically sends Interests to collect data and visualize data.

The WLAN is identified by the common prefix CP = /cowHelath/farm/area/1. Each

ED serves content under a name /cowHelath/farm/area/1/cow/<cowID>/temp, formed

by the CP, a cow ID, and data type which is temperature in our case. Here, <cowID> is

a 1-byte number that identifies each cow.

A 32-byte HMAC signature is used to secure Data packets. The secret keys are di-

rectly hard-coded in EDs and the monitoring application since key management is beyond

the scope of this work. However, the security support descibed in [Zhang, Yu, Zhang,

Newberry, Mastorakis, Li, Afanasyev, and Zhang 2018] and presented in Chapter 2 can

be deployed as well.

An Interest packet issued by the consumer (i.e., uncompressed) carries the Name, a

143

4.2. TESTBED

#include "node.h" /* NDN-802.15.4 library */
#include "MPU9250.h" /* Accelerometer library */
#include "ndn-cpp/lite/data-lite.hpp"
#include "ndn-cpp/lite/interest-lite.hpp"
#include "ndn-cpp/lite/util/crypto-lite.hpp"
#include "ndn-cpp/lite/encoding/tlv-0_2-wire-format-lite.hpp"
MPU9250 myIMU; /* Accelerometer object */
using namespace ndn; /* to use ndn-cpp objects */
Node node = Node(); /* NDN producer node */
/* signature key */
const uint8_t keyBytes[] = {...};
/* prefix for producer */
struct ndn_NameComponent prefixComponents[3];
NameLite prefix(prefixComponents, sizeof(prefixComponents) /

sizeof(prefixComponents[0]));

void setup() {
Serial.begin(57600);
node.begin(Serial); /* init serial connection to 802.15.4 radio */
prefix.append("2");
prefix.append("mvmnt");
node.setPrefix(prefix, &onInterest); /* set producer prefix */
delay(500);
/* Accelerometer init and calibration */
/* ... */
randomSeed(analogRead(0));

}
void loop()
{

node.processEvents();
/* read and process accelerometer data */
/* ... */

}

Figure 4.5: Producer application code running on an ED - Main program

144

4.2. TESTBED

/* callback to process Interests */
void onInterest(const InterestLite& interest)
{

digitalWrite(greenLed, HIGH);
ndn_Error error;
uint64_t cowID = 0;
/* get cow ID */
if ((error = interest.getName().get(2).toSegment(cowID)))
{

return;
}
/* some control on Interest name */
/* ... */
/* If OK: Create and send Data */
ndn_NameComponent dataNameComponents[3];
DataLite data(dataNameComponents, sizeof(dataNameComponents) /

sizeof(dataNameComponents[0]), 0, 0);
data.setName(interest.getName());
data.setContent(BlobLite((const uint8_t*) contentBuffer, strlen(contentBuffer)));
data.getSignature().setType(ndn_SignatureType_HmacWithSha256Signature);
/* First encoding */
uint8_t encoding[100];
DynamicUInt8ArrayLite output(encoding , sizeof(encoding), 0);
size_t encodingLength, dSignedPortionBeginOffset, dSignedPortionEndOffset;
if ((error = Tlv0_2WireFormatLite::encodeData(data, &dSignedPortionBeginOffset,
&dSignedPortionEndOffset, output, &encodingLength))){

return;
}
/* Data signature */
uint8_t signatureValue[ndn_SHA256_DIGEST_SIZE];
CryptoLite::computeHmacWithSha256(keyBytes, sizeof(keyBytes),

encoding + signedPortionBeginOffset,
signedPortionEndOffset - signedPortionBeginOffset, signatureValue);
data.getSignature().setSignature(BlobLite(signatureValue, ndn_SHA256_DIGEST_SIZE));
/* Encode again to include the signature.*/
if ((error = Tlv0_2WireFormatLite::encodeData(data, &signedPortionBeginOffset,
&signedPortionEndOffset, output, &encodingLength))){

return;
}
/* Compress and send Data */
node.compressAndPutData(data);

}

Figure 4.6: Producer application code running on an ED - Interest processing

145

4.2. TESTBED

Table 4.3: Testbed deployment parameters

Parameter Value
Interest size (uncompressed) 44 bytes

Data size (uncompressed) 105 bytes
Data signature size (HMAC) 32 bytes

Payload size (Content) 20 bytes
Number of EDs 4

Nonce, a MustBeFresh indicator to accept only fresh data, and has a lifetime with the

default (i.e., 4 seconds).

In the uncompressed Data packet created by the ED, the Name contains an additional

component that represents the timestamp of the data collection. The Data name obtained

is then /cowHelath/farm/area/1/cow/<cowID>/temp/<timestamp>. Each Data packet

has a 4-byte content that contains the measured temperature. In MetaInfo field, a 1-byte

ContentType indicates that the packet carries raw content, followed by a 2-byte Fresh-

nessPeriod field. Finally, the Signature TLV component contains a 1-byte SignatureType

and a 16-byte KeyLocator.

Testbed parameters are summarized in Table 4.3. A typical Interest-Data exchange

operates as follows. The Interest issued by the application is forwarded to the gateway

over UDP/IP. Then, the gateway compresses it and sends it over the IEEE 802.15.4 link.

After the wireless forwarding process, the corresponding ED responds to the Interest by a

signed Data with the corresponding content. Finally, the gateway decompresses the Data

packet and forwards it toward the consumer application.

Various types of evaluation are reported in the following: (i) a features comparison

between our NDN-802.15.4 architecture and 6LoWPAN, with a discussion on the feasibility

in terms of implementation and security, (ii) a theoretical evaluation of the gain achieved

with the packet compression scheme, (iii) results on code size and communication delays

measured in our deployment.

146

4.2. TESTBED

Table 4.4: NDN-802.15.4 and 6LoWPAN features comparison

Feature NDN-802.15.4 6LoWPAN
Fragmentation Yes Yes

Packet structure Flexible packet format Fixed packet format
Compression Stateless packet compression Stateful header compression

Mobility (consumer side) Simple adaptations Additional protocols
NEMO, AdapterMIPv6, etc.

Security Native data-centric security MAC and TLS security

4.2.5.1 Features and Feasibility

The main objective of the implemented schemes is to show that traditional operations

such as header compression can be designed more simply in NDN while gaining interesting

improvements. Therefore, the purpose is not to design a strong and complete compression

mechanism, which requires intensive investigation of NDN application behaviour, which is

not yet well known.

As mentioned before, the packet compression does not always require decompression.

Using the data-centric security of NDN, the data related to each cow is signed directly

when it is collected by the corresponding ED. Hence, every cow has a unique identity (not

an address) in the network system. This identity is securely bound to its data at network

level.

As an empirical evaluation, we report in Table 4.4 an overall comparison between

NDN-802.15.4 and 6LoWPAN features.

4.2.5.2 Theoretical Performance

Figure 4.7 depicts a comparison between initial (i.e., uncompressed) Interest and Data

packets and their compressed versions. The Data packet represented here does not include

the signature, which is about 32 bytes in both initial and compressed Data. Considering

the packet structures in the deployment described above, the size of the Interest is reduced

from 57 bytes to 24 bytes. Similarly, the Data packet size is reduced from 93 bytes to 34

bytes.

Note that the most part of the compression gain is achieved by reducing name size in

147

4.2. TESTBED

the packets. That is, when CP becomes longer such as in large scale deployments, the

compression gain will increase. Moreover, this compression gain comes at the cost of only

few microseconds of delay, as no complex processing or context storage is required.

Figure 4.7: Compression improvement

4.2.5.3 Prototype Measurements

Table 4.5 reports on memory and processing time required by the NDN stack imple-

mentation in EDs considering both Arduino UNO (16 Mhz MCU) and DUE (84 Mhz

MCU).

Concerning memory space required by the implementation, only 28% of flash memory

and 50% of RAM are needed in the Arduino UNO. The implementation on the Arduino

DUE occupies 6% of the total memory. The evaluated implementation includes the three

NDN data structures, the communication over IEEE 802.15.4 including packet compression

scheme and the R-LF strategy described in Chapter 5. Although these values increase when

adding NDN packet definition and security algorithms, the leeway is still large for such

components.

As an empirical comparison, some open source implementations of the IPv6 stack over

IEEE 802.15.4 on Arduino (Mega) take about 12% storage and 45% RAM, while our NDN

stack occupies about 3% storage and 12% RAM on an Arduino Mega board.

Table 4.6 reports on the one-hop Round Trip Time (RTT) measured at the gateway

148

4.2. TESTBED

Table 4.5: Memory and processing measurements

Operation Arduino UNO Arduino DUE
Interest forwarding 145µs 55µs

Data forwarding 50µs 10µs

Required memory 28% (Flash)
50% (RAM) 6% (Total)

Table 4.6: Communication measurements at the gateway

Operation Measure
Round-Trip Time 72ms

Compression Delay 6µs

to send an Interest and get the corresponding Data using Arduino DUE devices, and the

Compression Delay (CD) added to the communication due to packet compression.

In comparison, the measured RTT is below 6LoWPAN performance usually reported

(e.g 9 to 25 ms) [Brendan, David, Desmond, Ricardo, Meriel, and Ciaran 2009; Gardase-

vic, Mijovic, Stajkic, and Buratti 2015]. However, 6LoWPAN packets are not signed and

additional layers are required to support data naming, while the measured RTT includes

Data creation and signature, and Interest-Data (de)compression. Moreover, we recall that

our implementation is a prototype that can be improved.

The compression delay (CD) does not exceed 6µs as it only consists on adding/skipping

bytes while transmitting a packet.

NDN-based solutions for IoT need accurate evaluation to convince industrialists, in-

vestors and IP-enthusiasts. Although some aspects of IoT solutions can be evaluated in

a testbed, real-world deployments are commonly based on realistic needs, and sometimes

do not support certain features or “outlandish” scenarios. In such situations, network

simulators become essential. To handle those situations, we designed an NDN simulation

tool for IoT introduced in the next section.

149

4.3. NDN-OMNET SIMULATION FRAMEWORK

4.3 NDN-OMNeT Simulation Framework

Beside wireless forwarding, use cases in which simulations can be useful are manifold;

ranging from NDN for public safety and tactical networks [Gibson et al. 2017] to NDN

for WSN [Amadeo et al. 2013]. However, networking and system are tightly related

in IoT, and a pure network simulator does not allow us to model interactions inside an

IoT device for example. Therefore, experimental NDN designs for IoT require the best of

both worlds: a tool capable of simulating network protocols and system-level interactions.

Moreover, a graphical visualisation of the simulated networks can be helpful to illustrate

scenarios. For these reasons, we chose to implement the NDN behaviour on the OMNeT++

simulator [OMNet++]. In addition to being widely popular in IoT and WSN research

community, OMNeT++ can be used to simulate wired and wireless networks as well as

on-chip networks, and so on. OMNeT++ is not a native network simulator. However,

ready-to-use domain-specific functionalities are provided by frameworks such as INET

[INET], which contains models for the IP protocol stack, link-layer protocols, mobility,

etc. In this section, we describe our NDN-OMNeT framework for IoT. This framework is

based on INET and is designed to meet the following objectives:

1. Evaluate how a design affects NDN internal structures in a given topology/scenario.

2. Provide a good visualization of the NDN communication process for testing and

teaching purposes.

3. Provide an easy-to-use framework to quickly experiment wireless forwarding strate-

gies without additional implementation.

4.3.1 Framework Design

The NDN core module is designed as a network layer (NdnL3) that implements the net-

work layer interface of INET (INetworkLayer). Within an NDN host, NdnL3 is connected

to the upper layer; expected to be the application layer, and the lower layer consisting of

wired/wireless network interfaces. However, the NDN network layer can run on top of (or

beside) IP with minimal adaptations. Following the modular approach of OMNeT++, we

150

4.3. NDN-OMNET SIMULATION FRAMEWORK

designed the NDN entities as independent modules included in the NdnL3 module (see

Figure 4.8). OMNeT++ modules use message passing through connected Gates to com-

municate. The notion of Gate provides a native abstraction of the Face concept, making

the NdnL3 module interact with upper (i.e. application) and lower (i.e. link) layers in a

transparent way.

In the following, we present the main components of NDN-OMNeT and provide a

description of the packet representation it uses.

Figure 4.8: NDN L3 module and its entities

4.3.2 Host and Application Modules

NDN hosts. To represent devices such as EDs in the NDN-802.15.4 architecture, a

base NDN wireless host (NdnWirelessHostBase) is implemented. It includes the typical

wireless host components and the NDN layer (NdnL3). This module is used directly as a

relay node since it does not include any application (see Figure 4.9). By extending Nd-

nWirelessHostBase, a typical IoT end-device is created (NdnWirelessHost) with consumer

and/or producer applications.

Applications. Two base applications are implemented. A producer (ProducerApp-

Base) with the following parameters: (i) prefix; under which the content is produced. (ii)

dataLength; if not provided, the TLV length is computed and used. (iii) startTime. (iv)

stopTime. (v) dataFreshness.

A consumer (ConsumerAppBase) with the following parameters: (i) startTime. (ii)

151

4.3. NDN-OMNET SIMULATION FRAMEWORK

Figure 4.9: NDN simple wireless host (e.g., router)

152

4.3. NDN-OMNET SIMULATION FRAMEWORK

stopTime. (iii) prefix; for which Interests are issued, with additional name components

(e.g. sequential number) (iv) interestLength; if not provided, the TLV length of the Interest

is computed and used. (v) sendInterval; time to wait between two issued Interests. (vi)

numInterests; number of Interest to issue. (vii) interestReTx; maximum number of Interest

retransmissions. (viii) interestLifetime; value of the Interest lifetime field.

Figure 4.10 shows a typical NDN end-device with applications (NdnWirelessHost).

Figure 4.10: NDN wireless host with applications (producer and/or consumer)

4.3.3 NDN Layer Modules

Pending Interest Table. IPit is an abstraction of the PIT. It includes a typical entry

which stores the following information: (i) A copy of the forwarded Interest, (ii) Incoming

Face(s) of the Interest, (iii) Face(s) to which the Interest is forwarded, (iv) Expire time

of the entry and, (v) Source MAC. IPit supports the following functions: (i) Lookup, (ii)

Create, (iii) Remove, (iv) Update, (v) Print.

153

4.3. NDN-OMNET SIMULATION FRAMEWORK

On Interest timeout, IPit can emit a signal with a notification that includes the Interest,

its incoming Face(s) and source MAC address(es).

A base implementation (PitBase) of IPit is provided with the following parameters: (i)

interestLifetime. If no value is provided, the lifetime value of the Interest is used instead.

(ii) maxSize. When the PIT is full, no Interest can be forwarded.

Forwarding Information Base. IFib is an abstraction of the FIB. It includes

a typical entry which keeps the following information: (i) Name prefix, (ii) Face(s), (iii)

Destination MAC address, (iv) Expire time of the entry (optional). IFib provides the

following functions: (i) Lookup, (ii) Create, (iii) Remove, (iv) Update, (v) Register prefix;

used to create an entry to the local application and, (vi) Print.

When a prefix expires, IFib implementations can emit a signal with a notification that

includes the prefix and its corresponding Face(s) and MAC address(es).

A base implementation of IFib (FibBase) is provided with the following user parame-

ters: (i) entryLifetime and, (ii) maxSize.

Content Store. ICs is an abstraction of the CS. It includes a typical entry which

stores the following information: (i) A copy of the Data packet and, (ii) A stale flag to

manage the freshness of the Data. ICs provides the following functions: (i) Lookup, (ii)

Add, (iii) Remove, (iv) Update freshness, (v) Print.

A base implementation of ICs (CsBase) is provided. It supports FIFO and LRU

replacement policies and the cache size can be defined (maxSize).

Experimental unit. Some internal NDN processes that can be imagined to improve

efficiency cannot be assimilated to the forwarding strategy, and are not related to native

NDN entities (i.e. PIT, FIB, CS). Packet compression described before and Fuzzy logic

NDN forwarding [Mastorakis et al. 2018] can be cited as examples of such processes. To

provide a clean and flexible way to implement such experimental design without disturbing

the NDN base implementation, an eXperimental Unit module (XU) is included. This

module is designed to evaluate future AI-based operations such as semantics extraction

from names, intelligent routing, etc.

IXu is an abstraction of the eXperimental Unit. The following signals can be emitted

154

4.3. NDN-OMNET SIMULATION FRAMEWORK

by IXu implementations to notify on processing progress: (i) Packet received, (ii) Packet

processing begin, (iii) Packet processing end, (iv) Packet processing error and, (v) Packet

processing success.

Forwarding. The forwarding module is the main component of our design and it is con-

nected to PIT, FIB, CS and XU. The forwarding process is abstracted in the IForwarding

interface which provides the following functions: (i) processLLInterest; process Interest

coming from lower layer. (ii) processLLData; process Data coming from lower layer. (iii)

processHLInterest; process Interest coming from higher layer (i.e. application layer). (iv)

processHLData; process Data coming from higher layer. (v) forwardInterestToRemote;

forward Interest to remote Face (e.g. radio). (vi) forwardDataToRemote; forward Data

to remote Face. (vii) forwardInterestToLocal ; forward Interest to local application. (viii)

forwardDataToLocal ; forward Data to local application. (ix) map-ToMAC ; encapsulate

Interest or Data considering the given unicast or broadcast MAC address. (x) onInterest-

Timeout; when receiving an Interest timeout signal. (xi) onPrefixExpired; when receiving

a prefix expired signal.

The communication with PIT, FIB, CS and XU can be either through message pass-

ing or direct module access as provided by OMNeT++. However, the message passing

communication allows us to model the processing time of each module separately and

independently. The forwarding module implementation is intended to subscribe to PIT,

FIB and XU signals in order to handle NdnL3 events.

The current framework implementation includes a base forwarding strategy (Forwarding-

Base). It supports the following parameters: (i) ndnMacMapping; code of the NDN-to-

MAC mapping to use. (ii) cacheUnsolicited ; whether to cache unsolicited Data packets

or not. (iii) forwarding; whether to forward Interests (router) or not (end-device).

4.3.4 Messages and Packets

To represent NDN packets, we use the OMNeT++ message representation in order to

provide an easy way to create packets and access their fields. However, for packet-related

evaluations, a set of tool functions are provided to generate the TLV representation and

to compute the actual size of a packet from the OMNeT++ packet representation. For

155

4.4. ANALYTICAL MODEL

evaluation purposes, Interest and Data have a common superclass (NdnPacket) which

includes non-NDN fields. These fields are of two types: (i) inherited from OMNeT++

Packet class and, (ii) additional fields that include a sequence number, a type (i.e. Interest

or Data), a hop count and other fields that are useful for collecting statistics.

4.3.5 Framework Use

The NDN-OMNeT framework is intended to be used to evaluate NDN for low-end

IoT solutions, by focusing on both local wireless networks and system state of constrained

devices. Although for some evaluations, a simulation cannot serve as a suitable substitute

for a real-world testbed, the proposed framework can quickly provide accurate results

for different aspects of the solution. Currently, the framework includes some forwarding

strategies needed later in this dissertation: Blind Flooding described in the next section,

RONR and R-LF described in the next Chapter. Moreover, it can be used for example to

evaluate aspects such as hybrid NDN-IP gateways, and the impact of NDN name-to-MAC

mapping approaches.

We should note that the current implementation does not support all NDN features.

For example, the forwarding process implemented is based only on names, whereas hop

limit and lifetime should also be considered.

Having the NDN-OMNeT framework for low-end IoT simulations, we can formulate

analytical models and evaluate their accuracy by simulation. Thereafter, models may be

used for more accurate analysis of the behaviour. The next section introduces such a

model.

4.4 Analytical Model

One purpose of the following model is to highlight the importance of link-layer adapta-

tion for NDN, particularly in constrained wireless networks. For that reason, we model a

simple broadcast-based forwarding approach considering a binary-tree topology and con-

tent popularity. We describe below the forwarding strategy considered, the assumptions

behind the model and its formulation. Then, the model will be evaluated and exploited in

156

4.4. ANALYTICAL MODEL

the next chapter to understand the relevance of a link-layer adaptation in NDN wireless

networks.

4.4.1 Forwarding Strategy Considered

To retain the benefits of flooding/broadcast while reducing overhead and redundancy,

a simple mechanism can be used to reduce unnecessary transmissions. We refer to this

simple forwarding strategy as Controlled Flooding (CF). Nodes in CF exploit broadcast

communications to overhear packets and possibly avoid forwarding some packets. To do

so, every node defers a packet transmission with a random delay during which it keeps

listening on the shared wireless medium. While waiting, if the node overhears a packet

(i.e., Interest or Data) with the same name, it cancels its retransmission.

In practice, Interest and Data transmissions are deferred for ∆I and ∆D periods of

time respectively. Both ∆I and ∆D are computed based on an interval, defer window

(dw), from which an integer value is randomly chosen to generate the waiting delays as

follows [Amadeo et al. 2015]:

(4.1) ∆D = rand[0, dw − 1] × DeferSlotT ime

(4.2) ∆I = rand[dw, 2dw] × DeferSlotT ime

where DeferSlotT ime is a short period of time.

Here, ∆I and ∆D are selected in disjoint intervals with ∆I > ∆D to give higher priority

to Data packet transmissions and avoid useless Interest broadcasts. During the ∆I waiting

time, a potential forwarder listens to the channel: if it overhears the same Interest or the

requested Data, it cancels its own transmission.

4.4.2 Assumptions and Notation

We consider an IoT deployment with consumer applications requesting content pro-

duced by wireless devices. Each IoT device is provided with a single IEEE 802.15.4 inter-

157

4.4. ANALYTICAL MODEL

Figure 4.11: Tree topology example with N = 3

face and consumers request data through a gateway.

The model assumes ideal physical-layer conditions. The network topology is considered

as a full binary tree of depth N , in which the root and the leaves represent the gateway

and the end-devices respectively, and the other nodes represent the relay-nodes (see Figure

4.11). The binary-tree topology is assumed to simplify the study, but no host addresses

are required to build the topology. Nodes are fixed, sibling nodes can overhear each other,

but for the sake of simplicity we assume that no packet is transmitted between them.

Consequently, only one path is possible between the gateway and each content producer.

Relay-nodes (including the gateway) at the same level have caches of the same size. This

means that the cache size is larger in the nodes closer to the gateway, and the gateway

has the largest cache size.

The modeled metrics are the following:

• Cost-per-request (CPR). The number of packets transmitted in the network to re-

trieve some content requested from the gateway.

• Round-trip time per request (RPR). The mean delay time (in ms) measured by the

gateway from sending an Interest to receiving a matching Data.

158

4.4. ANALYTICAL MODEL

Table 4.7: Model variables

Notation Meaning
pk, pk(i) Cache miss probability for class k content at the gateway, at level i > 1.

pt Probability that two sibling nodes re-transmit the same Interest given that a cache miss has occurred in both nodes.
N Tree depth.
K Number of popularity classes.
M Number of total content items (m = M/K in each class k).
x Cache size in number of chunks.

λ, λ(i) Content request rate at the gateway, at level i > 1.
λk Content request rate at the gateway for class k.
σ Average content size in number of chunks.

qk, qk(i) Content popularity distribution of requests at the gateway, at level i.
dw Defer window.
rI Time needed to send an Interest over one hop (excluding waiting delays).
rD Time needed to send a Data over one hop (excluding waiting delays).
τ Defer slot-time.
pf Probability that the link-layer avoids a collision given that two nodes transmitted an Interest.

4.4.3 Content Popularity

Each relay-node in the network has a cache managed with the LRU replacement policy.

We consider a set of M content items equally divided into K classes, each one containing

m = M/K content items. Each class represents a different popularity to be requested

with probability qk, k = 1, 2, ..., K.

The content requested in our scenario can be considered as Web content which usually

follows Zipf distribution [Breslau et al. 1999]. Hence, to model the popularity of content

classes we use a Zipf distribution, qk = c/kα with α > 1 and c = 1/
∑K

k=1 1/kα. As

content in the modeled application consists of a small amount of data, we consider that

each content item is transmitted in one Data packet.

We assume that content items are produced uniquely and uniformly by end-devices

located at the leaves of the tree. In other words, each end-device produces the same number

of content items of each class, and an item can not be produced by two different devices.

The gateway issues the requests (i.e., Interests) originated by consumer applications. The

request arrival process is modeled through a Markov Modulated Rate Process (MMRP) of

intensity λ. Requests for content in class k are generated according to a Poisson process of

intensity λk = λqk, and the requested content within the class is uniformly chosen among

the m different content items in the given class. That is, a given item in class k is requested

with probability qk/m. The notations and their meanings are summarized in Table 4.7.

159

4.4. ANALYTICAL MODEL

4.4.4 Model Formulation

We start by defining pk, pk(i) and pt. According to the topological assumptions, a

node can cache only content retrieved from its sub-tree. Since content items are uniquely

and uniformly produced by end-devices, there is no data duplication among caches at the

same level. This allows us to consider all the caches at each level i simply as one cache.

Given this, and with the content request arrival process described previously, at the first

level (which corresponds to the gateway in our topology), the stationary miss popularity

for chunks of class k, pk is defined and proven in [G., M., L., and D. 2011] as follows:

(4.3) pk ≡ pk(1) ≈ exp− λ
m

qkgxα

for relatively large x, where 1/g = λcσαmα−1Γ(1 − 1
α)α

Considering a binary tree with N levels and an MMRP content request process with

rate λ(i), under the popularity distribution given above, the miss probability at level

i ∈ [2, N) is also defined and proven in [G. et al. 2011] as follows:

(4.4) log pk(i) = log pk(1)
i−1∏
l=1

pk(l)

For more details on Equations 4.3 and 4.4, including proof and discussions, readers

may refer to [G. et al. 2011].

When a cache miss occurs at two sibling nodes, they will both try to forward the Inter-

est after a random delay, as defined in Section 4.4.1. Given the random delays computed

in Equation 4.1, the same Interest may be forwarded by both nodes if they choose random

numbers with a difference smaller than s = rI/τ . Hence, the probability that two sibling

nodes transmit the same Interest is equivalent to the probability that two random numbers

chosen from the interval of length S = dw + 1 have a difference smaller than s. This can

be formulated as follows:

(4.5) pt = 1 −
((

S − 2s

S

)2
+ 2

s−1∑
i=0

(
S − (i + s)

S2

))

160

4.4. ANALYTICAL MODEL

Here, we can define the CPR for retrieving a class k content item as follows:

(4.6) CPRk =
N∑

i=1

⎛⎝(1 − pk(i))
i−1∏
j=1

pk(j)

⎞⎠×
(

2(i − 1) +
i−1∏
l=2

ptCk(l)
)

where:

(4.7) Ck(l) = 1 + pf

⎛⎝(N − l − 1) +
N−1∏

n=l+1
ptCk(n)

⎞⎠
Note that Equation 4.6 models the CPR only for the requests that have been satisfied.

That is, pk(N) = 0.

Equation 4.6 is obtained based on the following approach. As the content can be found

at any level from 1 to N , the cost is defined as a weighted sum of the transmitted packets

associated to each level i. Then, the weights correspond to the cache hit probability

(1 − pk(i)) at level i given that a cache miss occurred at all the previous levels (i.e., 1 to

i − 1).

For every possible level i, the number of packets is composed of two parts: 2(i − 1)

corresponds to the number of packets transmitted along the path from the gateway to

the level-i device, plus the number of packets transmitted if the sibling of each previous

node (from level 2 to i − 1) has also transmitted the Interest, which has a probability pt

of occurring for each pair of siblings.

Here, Equation 4.7 assumes that when the brother of a node (at level l) transmits

an Interest, the cost can be recursively computed using the same approach as Equation

4.6 in its sub-tree (i.e. from level l + 1 to N). The only difference is that, on this side

of the network, we directly consider the path from level l to the leaf level N , since the

requested content has already been found elsewhere (according to Equation 4.6) and there

is no data duplication. However, in each sub-tree, the first Interest is always transmitted,

but the number of transmissions recursively computed is subject to the probability that

no collision occurs between the first sibling nodes of the sub-tree (i.e., pf).

Following the same approach, we define the mean RPR for a class k content item as

161

4.5. CONCLUSION

follows:

(4.8) RPRk =
N∑

i=1

⎛⎝(1 − pk(i))
i−1∏
j=1

pk(i)

⎞⎠Ri

where Ri = (i − 1)(rI + rD + δI + δD).

Similarly to CPR, as the content can be found at any level from 1 to N , the mean

RPR is a weighted sum of the total time Ri required to send the Interest and get the Data

associated to each level i. The weights correspond to the cache hit probability (1 − pk(i))

at level i given that a cache miss occurred at all the previous levels (i.e., 1 to i − 1).

Here, Ri is obtained by multiplying the number of hops (i − 1) for level i by the total

delay needed to send an Interest and get Data; which includes waiting delays (δI + δD)

and time-on-air (rI + rD).

When two sibling nodes delay their transmissions, the node with the shortest delay will

transmit the packet first. Furthermore, the round-trip delay measured by the consumer

(e.g., gateway) will be affected by the shortest waiting delay computed at each level.

Hence, the global estimation of δI and δD is not the half way between the lowest and the

highest values (e.g., dw/2τ). To approximate the values of δI and δD, we consider the

mean of the lowest half of [0, dw − 1] and [dw, 2dw] intervals respectively. This gives us

δI = ((3dw)/4)τ and δD = ((dw − 1)/4)τ .

4.5 Conclusion

Generally speaking, the tools presented in this chapter are necessary to test and eval-

uate NDN designs in low-end IoT. First, the testbed shows the feasibility of the proposed

NDN-802.15.4 architecture and enables NDN in real-world IoT applications. It is also use-

ful in providing some preliminary measurements and empirical comparison with IP-based

solutions. For example, the deployment may show the lightweight and simplicity of NDN

implementations for IoT. Moreover, such a deployment is ready to host most IoT Proofs-of-

Concept to demonstrate NDN-based solutions proposed by startups, for instance. Second,

the simulation framework enables NDN in the OMNeT++ simulator, which is very pop-

ular in the IoT community. Positive feedback from the OMNeT++ community has been

162

4.5. CONCLUSION

already collected regarding the NDN-OMNeT framework. Nevertheless, this tool will al-

low us to quickly evaluate our forwarding approaches in wireless networks and compare

them to existing propositions, under complex scenarios and various parameters. This will

be illustrated through the extensive use of simulations in the next chapter. Third, the

mathematical model we formulate is intended for analyzing the NDN behaviour in wire-

less mesh networks. As we show in the next chapter, one objective of the model is to study

whether caching can attenuate the transmission overhead generated by broadcast commu-

nications. Another objective is to study the relevance of investigating the link layer in

NDN wireless forwarding strategies. Although the current model is simple as it considers

only binary-tree topology networks with a simple forwarding strategy, it is the first one

that models NDN in wireless mesh networks.

In short, the combination of these tools will help us to study, understand, take appro-

priate design choices and then evaluate our approaches with different levels of accuracy,

as is shown in the next chapter. Moreover, to tackle the problem of lightweight wireless

forwarding with NDN, in the next chapter we bring together all the concepts and tools

described throughout the previous chapters.

163

4.5. CONCLUSION

164

Chapter 5

NDN Wireless Forwarding in
Low-end IoT

5.1 Introduction

To deploy NDN in IoT devices, one of the main features to support is NDN forwarding

in a low-rate wireless mesh network, such as IEEE 802.15.4 networks. NDN wireless for-

warding strategies are generally based on a broadcast-and-learn mechanism. This approach

uses a phase in which Interests are broadcast until the content is found, then subsequent

requests are forwarded more accurately based on the information learned. Therefore, the

use of broadcast is necessary in NDN wireless networks. Moreover, evaluation results re-

ported later in this chapter suggest that broadcast is the most compliant pattern to handle

content dissemination, mobility and caching.

Lightweight forwarding strategies for wireless NDN environments are rare in the lit-

erature. This chapter introduces our solutions for lightweight forwarding in constrained

wireless mesh networks in general, and IEEE 802.15.4 in particular. To that end, in

Section 5.2 we first study the main forwarding approaches for NDN existing in related

literature. Second, as broadcast-based strategies are simple and efficient in disseminating

data, and are compliant with the native communication pattern of ICN/NDN, we have

to find out how we can use broadcast while reducing overhead, memory and processing

requirements. For that, in Section 5.3 we study the impact of the broadcast pattern in

constrained wireless networks in terms of data redundancy, number of packets transmitted,

165

5.2. NDN FORWARDING IN WIRELESS NETWORKS

data availability and decision accuracy. Our study considers two scenarios: (i) a simple

wireless network with a binary-tree topology and fixed nodes and, (ii) a complex network

with a grid topology and mobile nodes. This study ends with a set of design guidelines

for a lightweight broadcast-based wireless forwarding strategy.

Finally, with all the necessary considerations, in Sections 5.4 and 5.5 we propose two

solutions designed at two different levels. At the link-layer level, we propose Named-Data

CSMA (ND-CSMA), an adaptation of the CSMA algorithm used in the IEEE 802.15.4

specification to handle NDN communications in a simple topology. At the network-

layer level, we propose a Reinforcement-based Lightweight Forwarding (R-LF) strategy,

a lightweight forwarding mechanism based on reinforcement learning to support complex

networking scenarios.

The idea behind both approaches is to make broadcast as accurate as unicast, in terms

of forwarding decisions and the number of transmitted frames. Therefore, we focus on

designing lightweight trade-off techniques that can maintain satisfactory performance in

different communication scenarios and network configurations.

5.2 NDN Forwarding in Wireless Networks

As mentioned before, NDN forwarding approaches in wireless networks are based on a

broadcast-and-learn mechanism. In practice, an Interest flooding phase is used to discover

and learn about content sources (i.e. producers or caches), and subsequent Interests are

forwarded more accurately based on the information learned. That is, the flooding phase

is a sequence of Interest broadcasts performed by relay nodes to discover the source of a

content item.

Although NDN wireless forwarding has been mostly investigated in MANETs, mecha-

nisms proposed so far represent an interesting starting point for any wireless forwarding

strategy with NDN.

According to [Amadeo et al. 2015], forwarding approaches for NDN in ad-hoc networks

can be based on either blind forwarding or aware forwarding. Blind forwarding consists in

simple schemes used to limit the impact of the broadcast/flooding in the network. Aware

166

5.2. NDN FORWARDING IN WIRELESS NETWORKS

forwarding are schemes that use additional information and processing about the content

source(s) and/or the neighborhood to allow more accurate and more efficient forwarding

decisions. Typically, more packets have to be exchanged between nodes to collect forward-

ing information. However in constrained networks, aware forwarding solutions are not

systematically better that blind forwarding mechanisms. Indeed, often the performance

offered by aware forwarding comes at the cost of additional overhead, memory and com-

plex processing. In other words, a blind forwarding mechanism can be more appropriate

in some scenarios. For this reason, we explore both approaches in our proposals.

At this point of the study, it is useful to distinguish between two types of mobility

introduced by the content-centric aspect of IoT applications and emerging Internet appli-

cations. The physical mobility of nodes and the logical mobility of data are two of the

main causes of dynamics in multi-hop wireless networks. While physical mobility results

from moving hosts, logical mobility can be related to the case when chunks of the same

content item are produced by more than one host, for example.

In this section, we introduce the main approaches proposed in the related literature

to handle NDN forwarding in wireless ad hoc networks. These solutions cover both blind

and aware forwarding. Traditional wireless forwarding approaches for IP networks are

not considered here for several reasons. First, they are based on IP addressing, and

rely on point-to-point communications. This does not allow IP-based protocols for ad-

hoc networks to deal with logical mobility directly, and their performance depends on

the level of physical mobility in the network. Second, typical IP routing solutions for

wireless networks are proactive. For example, RPL creates a logical topology and updates

routes using host addresses. This approach is completely different from the NDN wireless

forwarding and thus is difficult to adapt to NDN or to compare with.

Nevertheless, in order to have an IP-based protocol as a reference in our study, we

consider the the Ad-hoc On-Demand Distance Vector protocol (AODV) [Das et al. 2003].

Therefore, we start by introducing this well-known routing protocol for ad hoc networks.

Although it may be considered something of an intruder in this section, it is based on a

mechanism that creates routes on-demand and thus resembles the NDN receiver-driven

model. Thus, it is worth describing it and using it later in comparative evaluations.

167

5.2. NDN FORWARDING IN WIRELESS NETWORKS

5.2.1 AODV: An Intruder With a Similar Model

In the wireless IP world, the closest approach to NDN forwarding is AODV, a routing

protocol for mobile ad hoc networks. This protocol communicates via UDP/IP to discover

and maintain unicast routes between nodes within the wireless network. The AODV

protocol establishes routes on the fly when they are needed and maintains them as long

as they are being used. The routing approach used by AODV consumes low energy, low

memory and does not require large computing power, which makes it easy to deploy on

small mobile devices. AODV is designed for networks with tens to thousands of mobile

nodes with relatively high mobility, while reducing network overhead to improve scalability

and performance. AODV uses three types of messages: (i) Route Requests (RREQs), (ii)

Route Replies (RREPs) and, (iii) Route Errors (RERRs). Typically, RREPs and RERRs

are not blindly forwarded as they are destined for a particular host, but RREQs have to be

flooded throughout the network to reach the destination. The range of RREQs flooding

is controlled by the TTL in the IP header.

Figure 5.1 illustrates an example of AODV route discovery. The dashed arrows repre-

sent a one-hop communication between two neighbor nodes. To reach a destination node

located at a distance of several hops, a source node has to find a route. For that, the

source node broadcasts an RREQ message which carries information such as the source,

the destination, the TTL and a Sequence Number that uniquely identifies the message. In

the example, Node A wishes to communicate with Node J . To discover a route to Node

J , Node A sends out an RREQ message. The RREQ is heard by Node A’s neighbors

which are Nodes B, C and D. When Node A’s neighbors receive the RREQ message,

they have two choices; if they know a route to Node J they can send a unicast RREP

message back to Node A, otherwise they will rebroadcast the RREQ to their neighbors.

The message is re-broadcasted hop-by-hop until it reaches Node J or until its TTL is over.

In the example, a route to Node J is found by Node D, which finally replies to Node A’s

RREQ by an RREP. Nodes B and C on the other hand do not find a route to Node J ,

but in another case they may find a route and reply to Node A.

To avoid packet-loops and handle route freshness, nodes use sequence numbers in

168

5.2. NDN FORWARDING IN WIRELESS NETWORKS

messages and each node records the sequence number of all the nodes it talks to. Every

time a node sends out any type of message it increases its own sequence number. That is,

a higher sequence number means a fresher route. In the example, Node B may forward

another RREP to Node A. If Node A notices that the route in the RREP is more recent

than the route in its table, it may replace the route it currently has with the route in Node

B’s RREP.

To cope up with network dynamics resulting from mobility, AODV uses RERR mes-

sages. When a node receives an RERR, it removes all the routes impacted by the error.

RERRs can be used in different cases. For example, if a node receives a unicast packet that

it is supposed to forward but it does not have a route to the destination. This situation

indicates that there are nodes that have wrong route information about that destination.

For another example, a node detects that it cannot communicate with one of its neighbors.

When this happens, it looks at the route table for routes that use that neighbor as a next

hop and marks them as invalid, and sends an RERR to invalidate those routes.

Although the communication scheme of AODV is close to that of NDN, it is still based

on host addresses and operates on explicit route between nodes. Therefore, AODV is

largely affected by the physical mobility of the nodes. To handle nodes mobility, AODV

has to track and update the state of some of the links in the network, which causes more

communication and processing. Moreover, AODV does not support logical mobility of the

data.

5.2.2 CF: The Basic NDN Forwarding

Blind Flooding all packets on a broadcast medium for every content request (i.e.,

Interest/Data) may cause high overhead and packet redundancy. Controlled Flooding

(CF) is a simple improvement of Blind Flooding (BF) with a packet suppression technique.

To keep the benefits of flooding while reducing the overhead, nodes exploit broadcast

communications to overhear packets and possibly avoid forwarding some packets. To do

so, every node defers a packet transmission with a random delay during which it keeps

listening on the shared wireless medium. While waiting, if the node overhears a packet

(i.e., Interest or Data) with the same name, it cancels its retransmission.

169

5.2. NDN FORWARDING IN WIRELESS NETWORKS

Figure 5.1: AODV route discovery example [Wikipedia b]

In practice, Interest and Data transmissions are deferred for ∆I and ∆D periods of

time respectively. Both ∆I and ∆D are computed based on an interval, defer window

(dw), from which an integer value is randomly chosen to generate the waiting delays, as

defined previously in 4.1 and 4.2 respectively.

∆I and ∆D are selected in disjoint intervals with ∆I > ∆D to give higher priority to

Data packet transmissions and avoid useless Interest broadcasts. During the ∆I waiting

time, a potential forwarder listens to the channel: if it overhears the same Interest or the

requested Data, it cancels its own transmission. An example of CF applied in a binary-tree

topology network is given in Figure 5.2.

Note that the CF strategy is mainly used in MANETs with IEEE 802.11 technologies

as it requires quite a high bandwidth to achieve good performance. However, CF can be

envisioned over IEEE 802.15.4 when extremely low latency is not required.

5.2.3 RONR: An Improvement With Unicast

One forwarding strategy proposed for constrained IoT networks is the Reactive Opti-

mistic Name-based Routing (RONR) [Baccelli et al. 2014]. It has been deployed in IEEE

802.15.4 networks with the objective of reducing overhead compared to BF and CF, while

keeping a satisfactory data retrieval rate and a minimum forwarding state in nodes.

RONR resembles AODV; after retrieving the first content by Interest broadcast, a node

170

5.2. NDN FORWARDING IN WIRELESS NETWORKS

Figure 5.2: CF example in a binary-tree network

keeps a temporary FIB entry in order to avoid flooding subsequent Interests. The FIB

entry binds the content name prefix to the content source MAC address. The nodes also

use the Interest source MAC address to forward back the Data packet. This is equivalent

to the IUDU mapping introduced in Chapter 2. When the FIB entry for the requested

content does not exist, or it is deleted, the flooding phase is performed again to discover

another content source.

For example, in our NDN-802.15.4 testbed, after flooding an Interest for content

/farm/cow/21/temperature, nodes on the reverse path traversed by the Data packet will

create a temporary FIB entry for /farm/cow/21. Thus, subsequent Interests for content

/farm/cow/21/movement can be forwarded via unicast using the established path, instead

of flooding.

Using a mapping between unicast MAC addresses and NDN name prefixes, RONR

significantly reduces network overhead. Measurements collected in a real-world IoT de-

ployment show that RONR can decrease the number of radio transmissions by about 50%

compared to BF. More importantly, the number of broadcast transmissions is reduced be-

cause only the first Interest packet of a content item is flooded, while subsequent Interests

are unicast. Consequently, RONR supports larger networks than BF and also matches

devices energy requirements better. Moreover, RONR does not require any control traffic

and occupies only some temporary FIB entries, in addition to PIT entries common to all

171

5.2. NDN FORWARDING IN WIRELESS NETWORKS

NDN forwarding mechanisms.

However, RONR suffers from important limitations. First, using addresses makes

the communications point-to-point, which is not compliant with NDN according to some

ICN-enthusiasts. Second, it does not take advantage of the broadcast naturally offered

by wireless links and natively supported by NDN. That is, RONR has no means to select

the shortest path to retrieve contents. Third, as its name indicates, RONR is optimistic

because it assumes that the node which contains a content chunk contains the whole

content item. However, this is not always the case, particularly with caching. Moreover,

one can easily see that mapping names to unicast addresses can not support node mobility

and simultaneous data flows in the network.

5.2.4 LFBL: A Better Use of Delayed Transmissions

The Listen First Broadcast Later (LFBL) [Michael et al. 2010] technique adopts the

same listen-before-transmit approach used in CF, but with some improvements. First,

instead of systematically forwarding an Interest, each relay node decides whether it is an

eligible forwarder or not based on the distance to the data source. The distance can be

propagated through the number of hops traversed by packets (see Figure 5.3). Second, if

a node is an eligible forwarder according to the distance comparison, it delays the Interest

transmission for a period that is proportional to its eligibility; instead of a random delay.

In other words, a potential forwarder waits and listens if a more optimal node forwards

the packet first. The closer is the forwarder to shorted is the waiting delay. If a potential

forwarder does not hear the same Interest transmission during the waiting delay, it forwards

the packet itself.

LFBL does not require any explicit knowledge about the network topology. To evaluate

the distance, each content source in the network is uniquely identified and each node inserts

its distance to the content source before sending an Interest.

A node that receives an Interest has to first determine if it is an eligible forwarder.

This decision is based on whether the node is closer to the destination than the previous

node that sends the Interest. If the node is eligible, it has to decide how long to wait before

forwarding the Interest. During the waiting delay, the forwarder listens to know whether

172

5.2. NDN FORWARDING IN WIRELESS NETWORKS

Figure 5.3: Representation of eligible forwarders [Michael et al. 2010]

another node performs the forwarding task. The waiting delay is computed in such a way

that the closer is the node to the source, the shorter is the waiting time. As in CF, the

waiting delay also contributes to avoid the risk of collisions; by reducing the chance that

two eligible forwarders will forward the Interest simultaneously and cause a collision.

LFBL has been evaluated by simulation considering a IEEE 802.11 network. Evalu-

ations are based on networks of 100 nodes randomly placed in an area of 1500 by 1500

meters generating a bidirectional flow composed of a requester and a responder.

The following metrics were considered: round-trip delay, delivery ratio, overhead, and

total data transferred. The round-trip delay is the amount of time elapsed from when a

request is sent by a requester until it receives a response. The delivery ratio is the total

number of packets received (by any node, requester or responder) divided by the number

of packets sent. Overhead corresponds to the portion of transmissions used for something

other than the successful delivery of application-layer data. Total data transferred is the

sum of all bytes received by all requesters over the entire duration of the simulation.

The results obtained show that LFBL can outperform AODV for all the metrics. Par-

ticularly, under high dynamics, LFBL can deliver up to five times more packets than

AODV with comparable overhead. That is, LFBL performs extremely well in highly dy-

173

5.2. NDN FORWARDING IN WIRELESS NETWORKS

namic environments, independently of node mobility and data location. Moreover, the

eligibility-based forwarding allows LFBL to generate reduced overhead by avoiding useless

transmissions and propagating packets fast. However, LFBL nodes maintain distance ta-

bles, which requires additional memory in the NDN process, and endpoint identification is

used for source and destination nodes, which slightly evokes the host-based communication

model.

5.2.5 NAIF: A Different Approach

Instead of delayed transmissions, the Neighborhood-Aware Interest Forwarding (NAIF)

[Yu et al. 2013] uses a forwarding rate adjustment to refine forwarding decisions. Given

a relay node in the network, its forwarding rate is the ratio of Interests it may forward

among the number of Interests it receives. Without explicit communication, each node

exploits broadcast overhearing to collect forwarding statistics by monitoring Interests and

Data packets forwarded by itself and one-hop neighbors. These forwarding statistics are

collected for each name prefix during an update interval, and are as follows: (i) sint, the

number of distinct Interest packets sent, (ii) rdata, the number of distinct Data packets

received, (iii) c, the number of distinct Interest packets cleared, according to the PIT, (iv)

rint, the number of distinct non-cached Interest packets received. A non-cached Interest

is defined as an Interest requesting a Data that is not cached at the given node. The

statistics are used to periodically update the retrieval rate and the forwarding rate for

each name prefix. After each update, the forwarding statistics are reset.

The NAIF forwarding decision is based on two forwarding parameters computed locally

at each relay node: (i) The data retrieval rate R, which is the ratio of the number of Data

packets successfully retrieved to the number of Interests sent. (ii) The forwarding rate F ,

which is the fraction of incoming Interests that a given node can forward.

The data retrieval rate is used to measure the effectiveness of a node in retrieving Data

packets for a name prefix. At the end of an update interval of duration t, the data retrieval

174

5.2. NDN FORWARDING IN WIRELESS NETWORKS

rate is computed:

(5.1) Rt = c

Sint

Here, c corresponds to the number of satisfied Interests and cleared from the PIT. The

forwarding rate is defined as the fraction of Interest packets sent by a node. At the end of

an update interval t, the forwarding rate during t is:

(5.2) Ft = sint

rint

The purpose of the forwarding rate adjustment is to share the workload among neigh-

boring nodes. At a given node, when the neighborhood is efficiently retrieving Data

packets for a given name prefix, the node may reduce its own forwarding rate. When a

node drops an Interest and relies on its neighbors to send it, this Interest is considered

missed if the retrieval of the corresponding Data is unsuccessful. Assuming the number of

missed Interests, δ is known, the forwarding rate is adjusted by:

(5.3) F̃t =
{

min(sint − 1/rint, F̃t−1 − α) if δt−β = ... = δt−1 = δt = 0
(sint + δt)/rint otherwise

If there are no missed Interests in the previous intervals, the node gradually reduces its

forwarding rate. Otherwise, the node increases its forwarding rate based on δ which each

node locally estimates. If a node received an Interest and dropped it, and the node does

not overhear the corresponding Data later, the Interest may have been missed. Therefore,

the number of missed Interest is obtained by:

(5.4) δ = (rint − sint) − (rdata − c)

Then, the NAIF algorithm is applied only to Interest forwarding at relay nodes and

consists of two phases. The first phase eliminates the ineligible forwarders based on their

175

5.2. NDN FORWARDING IN WIRELESS NETWORKS

Figure 5.4: Forwarding rate illustration in NAIF

data retrieval rate for the requested content and their distance to the data consumer. That

is, if a node has a low data retrieval rate or it is too far away from the data consumer,

the node drops the Interest. At the second phase, the eligible forwarder probabilistically

drops the Interest based on the updated forwarding rate (F) for the requested content.

Figure 5.4 gives an illustrative example of the forwarding rate adjustment used in

NAIF. When the data producer moves, the each node on the new path detects that the

number of unsatisfied Interests increases and adjust its own forwarding rate accordingly.

NAIF has been evaluated in a network environment similar to the one used with

LFBL. Comparative evaluation results show that NAIF achieve a 30-60% higher delivery

ratio in multi-consumer data retrieval scenarios than LFBL. Moreover, NAIF significantly

reduces bandwidth usage by half while maintaining round-trip time comparable to BF.

Furthermore, although LFBL performs well in single-consumer data retrieval scenarios,

176

5.2. NDN FORWARDING IN WIRELESS NETWORKS

BF and NAIF are more robust in multi-consumer scenarios.

Overall, good performances are obtained with NAIF in terms of delivery ratio, but the

round-trip time is quite high. Since NAIF is based on a purely statistical method, nodes

need to first get enough information and reactively adapt to changes in the situation. This

makes the approach slow to converge under dynamic configurations in which small and

independent content items are requested. Thus, it is more suitable for downloading large

content (e.g. files) but is not so suitable for chunks of small content items of IoT appli-

cations. According to the reported results, NAIF achieves almost the same performance

as the BF strategy under high mobility scenarios. More importantly, the NAIF algorithm

greatly relies on statistics that require nodes to listen to every communication in their

neighborhood. This approach is not reasonable in constrained networks with reduced

bandwidth and limited energy.

5.2.6 Q-routing: A Search-and-Learn Approach

Routing mechanisms in wireless mesh/ad-hoc networks can broadly adopt a structure-

based or a structure-less approach. Basically, structure-based protocols operate on logical

routing topologies (e.g., RPL) or establish explicit routes between endpoints (e.g., AODV).

To achieve that, an initialization phase is frequently used and a maintenance of routes or

topologies is required to keep routing information updated. This becomes even more

important in the case of dynamic networks.

Instead of maintaining routing structures, structure-less protocols use numerical values,

such as a cost-to-go, to derive routing decisions. Cost-to-go values can be carried in packets

as thus be propagated and updated implicitly throughout the hosts. Typically, hosts are

mapped to cost-to-go values that express their eligibility to reach an objective. Cost-to-go

can express any value that has to be minimized; for example, if the shortest path is the

routing objective, cost-to-go is the minimum number of hops from a node to the sink node.

Search-and-learn protocols such as Q-routing [Boyan and Littman 1993] presented

here, and flooding protocols such as Constrained Flooding [Zhang and Fromherz 2006]

described further are structure-less protocols.

177

5.2. NDN FORWARDING IN WIRELESS NETWORKS

In Machine Learning, reinforcement learning basically makes an agent able to learn by

interacting with its environment, without training on a dataset or help from an expert.

Q-learning [Watkins and Dayan 1992] is an efficient model-free reinforcement learning

framework in which an agent learns, by trial-and-error, the best action to perform accord-

ing to its current state. During the exploration phase, the agent tries an action a and gets

a reinforcement value. The agent uses the reinforcement to estimate which action is the

best in each state. The reinforcement is formed by the observed reward and the estimation

of the best future state-value. The incremental algorithm that updates the value of a state

s with an action a is expressed by the following equation:

(5.5) Q(si, ai) = (1 − α)Q(si, ai) + α
(
ri + γmax

a
Q(si+1, a)

)

Where r is the reward for the current state. α is the learning rate that controls how

much the new state-value overrides the old value, γ is the discount factor that determines

the importance of the optimal future reward (i.e. Q(si+1, a)). Each evaluated state-action

combination is stored in a two-dimension Q-values table. The exploitation phase uses the

learned values to construct a policy that chooses the best actions to reach the goal.

The Q-learning framework was adapted for routing operations long ago (i.e., 1994).

The idea is to use Q-learning to learn a representation of the state of the network through

Q-values, and then these values are used to make forwarding decisions.

Each node x in the network represents its own view of the network state through its

Q-table Qx.

Given this representation, the action a at node x is to choose the neighbor y such that

it takes minimum time for a packet to reach node d.

That is, the action space corresponds to the possible next-hop nodes (i.e., neighbors),

and the states correspond to the destination nodes.

In Q-Routing, each node x maintains a table of Q-values Qx(y, d), where d ∈ V , the

set of all nodes in the network, and y ∈ N(x), the set of all neighbors of node x. To learn a

path about a destination d, node x tries a next hop y among its available neighbors. Then,

178

5.2. NDN FORWARDING IN WIRELESS NETWORKS

x immediately gets the shortest remaining trip time as estimated by y, and evaluates the

reward as the measured trip time from x to y. The future state value is returned by y

and corresponds to its minimal learned trip time to the destination d, obtained through

its own trial-and-error process. The Q-values table plays then the role of a routing table

and is checked to take forwarding decisions.

In the steady state, when the Q-values in all the nodes represent the true state of net-

work, the Q-values of neighboring nodes x and y should satisfy the following relationships:

(5.6) Qx(y, d) ≤ δy + Qy(z, d)∀y ∈ N(x)and∀z ∈ N(y)

where δy is the round-trip delay (including time in queue) measured between x and y.

After sending a packet through node y, node x gets the minimum estimation from y

estimates the new learned value as follows:

(5.7) Qx(y, d) = (1 − α)Qx(y, d) + α(Qy(ẑ, d) + δy)

where Qy(ẑ, d) is the lowest round-trip delay estimated by node y (i.e., equivalent to

min Qy(z, d)).

The update rule given by Equation 5.7 guarantees that if the old learned value satisfies

the inequality (Equation 5.6), then its updated value also satisfies it. This gives the

following property:

(5.8) Qx(y, d) ≤ δy + Qy(z, d) ⇒ Q′
x(y, d) ≤ δy + Qy(z, d)

where Q′
x(y, d) is the updated value of Qx(y, d).

This property proven in [Shailesh Kumar 1998] using the Q-learning update properties

and initial Q-routing conditions.

5.2.7 Constrained Flooding: A Paradigm-agnostic Approach

Constrained Flooding [Zhang and Fromherz 2006] is very similar to Q-routing. How-

ever, we consider it as paradigm-agnostic since it does not use any host identification or

179

5.2. NDN FORWARDING IN WIRELESS NETWORKS

Table 5.1: Summary of some NDN wireless forwarding approaches

Name Approach principle Pros Cons Evaluation

CF Interest flooding
Random-delayed transmissions

Satisfaction rate
Mobility support

High overhead
Packet redundancy Simulation (IEEE 802.11)

LFBL Proportional-delay transmission
Content source identification

Low round-trip time
Low overhead

Distance table
Node identification

Mobility
Simulation (IEEE 802.11)

NAIF Adaptive Forwarding rate Mobility support
Satisfaction rate

High round-trip time
High overhead Simulation/Emulation (IEEE 802.11)

RONR Interest flooding
Prefix to MAC address mapping

Low round-trip time
Low overhead

Mobility
NDN potential limited by unicast Real-world (IEEE 802.15.4)

point-to-point communication. Thus, it can be used for IP as well as NDN networks. It

has been proposed as a forwarding solutions to route packets to a single node (e.g., sink)

in Wireless Sensor Networks. In Constrained Flooding, each node takes advantage of

broadcast to overhear packets and to learn by reinforcement its ability to forward packets.

Each packet carries the cost value learned by its sender node. Upon receiving a packet,

the potential relay uses its own learned cost to decide whether to forward the packet or

not; if so, the delay time to wait before transmitting is computed based on the difference

between the relay’s cost and the sender’s cost (contained in the packet).

However, this approach was designed to handle simple sensors communication toward

one destination, which makes it unsuitable for complex communication modes introduced

by IoT deployments. Moreover, forwarding with NDN is not based on host addresses, may

involve multiple data flows and caching. That is, improvements are required, but feasible,

to build a constrained flooding technique for NDN.

5.2.8 Summary

Table 5.1 summarizes the main forwarding approaches presented in this section with

their advantages and disadvantages.

Given that most of solutions for wireless NDN forwarding use broadcast, we need to

study the relevance of the broadcast pattern in NDN constrained networks. This study is

reported in the next section.

180

5.3. BROADCAST IN CONSTRAINED NETWORKS

5.3 Broadcast in Constrained Networks

To investigate the advantages and disadvantages of the broadcast in constrained net-

works, we separate our study into two aspects. First, a simple scenario in which we study

the CF strategy in a tree-topology network, using the analytical model presented in the

previous chapter. The purpose is to find if there are reasonable conditions under which

a simple broadcast forwarding strategy can be used. Furthermore, we aim to establish

which aspects have to be improved in order to design an efficient forwarding scheme in a

simple network topology over IEEE 802.15.4. Second, a more complex scenario in which

we study different NDN-to-MAC mappings and their impact on communication perfor-

mance in a grid-topology network with mobile nodes. The objective here is to understand

the mechanisms needed to build an efficient forwarding strategy based on broadcast. For

that, we use the NDN-OMNeT simulation framework. Finally, a summary of what we

learn through this study is presented, followed by some guidelines for the propositions

formulated later.

5.3.1 Simple Networks: Tree Topology

In this section, we assess the accuracy of the model formulated in the previous chapter,

and we study the impact of broadcast communications in a simple NDN network. To do

so, we simulate the CF strategy with the NDN framework for OMNeT++ [Abane et al.

2018].

For the reader’s convenience, we recall in Table 5.2 the relevant model parameters

introduced in the previous chapter.

We consider a binary-tree topology of depth N = 4. The gateway requests content

from a total of M = 3000 items, distributed in K = 50 classes of decreasing popularity,

each one with m = 60 items. Different popularity distributions have been simulated with

α ∈ {1.5, 2, 2.5}. The request rate at the gateway is λ = 1 request/s. Each simulation

result corresponds to a run of 10 hours.

Each Interest packet has a size of 30 bytes and each Data packet 90 bytes. We set up

a cache of size x = 300 packets at each level of the tree. That is, the nodes at each level

181

5.3. BROADCAST IN CONSTRAINED NETWORKS

Table 5.2: Evaluation parameters

Parameter Meaning
N Tree depth.
K Number of popularity classes.
M Number of total content items (m = M/K in each class k).
x Cache size in number of chunks.
λ Content request rate at the gateway.
α Zipf distribution parameter for content popularity (α > 1).

dw Defer window used in the CF strategy.
τ Defer slot-time.
rI Time needed to send an Interest over one hop (excluding waiting delays).
rD Time needed to send a Data over one hop (excluding waiting delays).
pf Probability that the link-layer avoids a collision given that two nodes transmitted an Interest.

have to totalize approximately 26 kb of RAM for caching. According to the measurements

reported in the previous chapter, this is feasible considering Arduino DUE at lower levels

(e.g., level 1 and 2), and Arduino UNO at higher levels (i.e., close to leaves) as the number

of devices is higher so every device stores only a little part of the 300 packets.

Preliminary simulations have been used to set optimal values at dw = 127 and τ =

0.032µs. We also measured rI = 1.36ms, rD = 3rI and pf = 0.8 with preliminary

simulations.

The Interest satisfaction rate is reported in Table 5.3. We observe that in our configu-

ration, dw = 127 always achieves better Interest satisfaction rate than 255. The reason is

that 127 is low enough to make relay nodes transmit more packets and explore the network

without being too low to create a lot of collisions. However, the remaining results show

that this Interest satisfaction rate is achieved at the cost of much more transmissions than

dw = 255.

Figures 5.5, 5.6 and 5.7 show the CPR according to content popularity for α = 1.5,

2 and 2.5 respectively. According to the results, the value of α has in impact on the

efficiency of NDN. In fact, small values of α reduce popularity difference between classes,

which introduces more diversity in the requests and thus increases the cache miss rate and

CPR. Inversely, when α is high (e.g., 2) applications frequently request the most popular

content classes, which takes advantage of caching and reduces the CPR.

The model is also affected by α but can accurately predict the CPR according to

popularity classes. The highest discrepancies between the model and simulations are

182

5.3. BROADCAST IN CONSTRAINED NETWORKS

observed for higher values of α. The reason is that a cache miss is more likely to occur

when α is higher, which leads to more transmissions. Since dw = 127 is not high enough

to avoid all redundancies, the behavior of the nodes becomes more dependent on the

link-layer, which is not included in the model.

As a reference, we represent the CPR for a perfect-unicast scenario, which refers to

the CPR expected in the tree if a host-based routing protocol is used instead of NDN. We

note that NDN with CF outperforms perfect-unicast concerning the most popular content.

This shows that transmission overhead induced by broadcast can be attenuated by small

caches in the presence of popular content. Moreover, this attenuation can outperform

the unicast communication pattern, which is here theoretical as it does not include route

discovery/maintenance cost.

Figures 5.8, 5.9 and 5.10 report on the mean RPR for α = 1.5, 2 and 2.5 respectively.

The same type of observations can be made as for CPR, but a greater dissimilarity is

observed between the model and simulations. The reasons are the same as for CPR, with

an additional fact related to medium access time. As mentioned above, dw is not high

enough to avoid redundant packet transmissions. Hence, the link-layer has to resolve more

medium access contentions, leading to less accuracy in our model. This can be confirmed

by observing raw simulation results (i.e., blue dots) which present higher scatter as α gets

higher.

Figures 5.11 and 5.12 show the CPR and RPR respectively for α = 2 with dw = 255.

We observe that CPR becomes better when a higher value of dw is used. Compared to

dw = 127, up to two transmissions per request are saved for the least popular content

when using dw = 255. This makes NDN even more efficient than the host-based (unicast)

approach. However, this comes at the cost of a higher RPR since waiting delays also

increase when dw is higher. With dw = 255, an increase of 15ms of round-trip delay per

request is observed for the least popular content then whith dw = 127.

Overall, we find that a trade-off between cost and round-trip delays is difficult to

achieve with the CF mechanism. On the one hand, trying to reduce waiting delays by

reducing dw increases the number of transmissions and collisions as nodes do not have

enough time to listen to each other. We should note that this situation becomes even

183

5.3. BROADCAST IN CONSTRAINED NETWORKS

Table 5.3: Interest satisfaction rate

dw = 127 dw = 255
α = 1.5 87.8% 84.1%
α = 2.0 95.1% 93.2%
α = 2.5 98.2% 97.4%

Figure 5.5: CPR: dw = 127, α = 1.5

184

5.3. BROADCAST IN CONSTRAINED NETWORKS

Figure 5.6: CPR: dw = 127, α = 2

Figure 5.7: CPR: dw = 127, α = 2.5

185

5.3. BROADCAST IN CONSTRAINED NETWORKS

Figure 5.8: RPR: dw = 127, α = 1.5

Figure 5.9: RPR: dw = 127, α = 2

186

5.3. BROADCAST IN CONSTRAINED NETWORKS

Figure 5.10: RPR: dw = 127, α = 2.5

Figure 5.11: CPR: dw = 255, α = 2

187

5.3. BROADCAST IN CONSTRAINED NETWORKS

Figure 5.12: RPR: dw = 255, α = 2

worse in a complex topology when more than two forwarders are available. On the other

hand, reducing cost with higher values of dw will induce higher waiting delays. Moreover,

nodes are still listening to transmissions when waiting, which is not helpful for energy

consumption.

5.3.2 Complex Networks: Grid Topology

To reduce link-layer broadcast in constrained IoT networks, the authors in [Kietzmann

et al. 2017] investigated the possible mappings between content names and MAC host

addresses. The study includes the following mapping schemes:

1. Interest Broadcast, Data Broadcast (IBDB). All nodes forward Interests by broadcast

when a matching prefix is found in the FIB. When a node receives a Data with a

corresponding PIT entry, the Data is also forwarded by broadcast.

2. Interest Broadcast, Data Unicast (IBDU). Similarly to IBDB, all nodes forward

Interests by broadcast when a matching prefix is found in the FIB. However, when

188

5.3. BROADCAST IN CONSTRAINED NETWORKS

a node receives the corresponding Data packet, it forwards the Data by unicast to

the sender of the Interest alone, according to the PIT entry.

3. Interest Unicast, Data Broadcast (IUDB). Every node keeps in the FIB a binding

between discovered prefix-names and unicast addresses (i.e., next hop). When a

matching prefix is found in the FIB, the Interest is sent only to that unicast address.

However, Data packets are always forwarded by broadcast, regardless of the address

to which the Interest is associated in the PIT.

4. Interest Unicast, Data Unicast (IUDU). Similarly to IUDB but Data packets are

forwarded to the unicast address to which the Interest is associated in the PIT.

Real-world experiments have been conducted with a network of 30 nodes, with 1 con-

sumer, 20 producers and 10 content items per producer. The following two setups have

been considered: (i) a direct assignment of the next-hop MAC address to the corresponding

face on the path to the producer, and (ii) a common prefix route where the corresponding

face is mapped to a broadcast MAC address.

Overall, results show that forwarding packets with unicast significantly reduces energy

consumption and processing time in comparison to broadcast forwarding. However, unicast

forwarding suffers from packet loss whereas broadcast forwarding is much more efficient

in retrieving content. The efficiency of a unicast mapping requires a route maintenance

mechanism and thus additional overhead and processing.

These observations lead us to study the NDN-to-MAC mapping in a more complex

networking scenario in terms of network overhead, communication efficiency.

For that purpose, we simulate the RONR strategy in a constrained IoT network using

the four name-to-address mappings listed above. We consider a complex scenario that

reflects a small-scale IoT monitoring application. The network topology is inspired by

mobile WSNs. It consists of 16 fixed routers organized in a grid of 180 x 180 meters, in

which 4 mobile consumers request content from 1 mobile producer that is moving following

the Random Waypoint Mobility model. The MAC layer configuration reflects the IEEE

802.15.4 properties.

189

5.3. BROADCAST IN CONSTRAINED NETWORKS

For all the simulations, the reported results correspond to the average values obtained

with 10 random executions. The following metrics are measured:

• The total number of transmitted packets, which reflects the accuracy of each for-

warding decision and its overhead.

• The mean round-trip time (RTT) for an Interest-Data exchange.

• The Interest satisfaction rate, which measures the efficiency of each approach to

retrieve content

• The mean hop count of received Data, which reflects the ability of each mapping to

find the nearest source (producer or cache) for the requested content.

Note that the evaluated mappings are not necessary all viable mechanisms; we test

all the possible mappings to better understand the impact of broadcast and unicast for

Interest and Data transmissions. Furthermore, the results found in this short study help

us to choose a communication pattern and draw design guidelines for the R-LF strategy.

According to the results reported in Figure 5.13, mappings with Interest broadcast (i.e.

IBDB and IBDU) always transmit the highest number of frames, as expected. Indeed, the

broadcast generates more Interests in the network, which leads to more retransmissions

and more collisions. For the same reason, both IUDU and IUDB generate the lowest

number of frames.

IBDB and IUDB achieve, respectively, the first and the second best Interest satisfaction

rate. This shows an advantage of Data broadcast, and NDN in general, to satisfy multiple

pending Interests with one Data packet transmission. Moreover in IBDB, the exploratory

nature of Interest broadcast takes advantage of caching in relay nodes, which gives the

best satisfaction rate. This is confirmed by the mean hop count of received Data, which

is the smallest in IBDB and the highest in IUDU.

However, a significant difference is observed in the Interest-Data round-trip time. Data

broadcast in IUDB as well as in IBDB causes a high medium-access competition, which

leads to higher round-trip time than with Data unicast (i.e. IUDU and IBDU). This

raises an important concern about the necessity of using accurate timers to defer packet

190

5.3. BROADCAST IN CONSTRAINED NETWORKS

transmissions. That being said, since mappings with Data broadcast provide the highest

satisfaction rate, we can not design a forwarding strategy for NDN without considering

the Data broadcast.

To sum up, the results suggest that Interest broadcast and Data broadcast (all-broadcast)

mapping should be considered, as it increases content dissemination efficiency and pro-

vides a good Interest satisfaction rate. However, the large overhead caused by the Interest

broadcast requires a careful design to reduce unnecessary Interest transmissions. More-

over, the vision of NDN that consists in retrieving content without using any host address

is nicely satisfied with a broadcast strategy.

Figure 5.13: NDN-MAC mapping simulation results

191

5.3. BROADCAST IN CONSTRAINED NETWORKS

5.3.3 Lightweight Wireless Forwarding: Guidelines

5.3.3.1 Summary and Understandings

Through the two previous sections, we studied the impact of broadcast on NDN wireless

forwarding. The advantages of broadcast over unicast in terms of content dissemination

and simplicity are clear. Particularly, the all-broadcast approach that consists in sending

both Interest and Data via broadcast presents considerable features. First, broadcast is

the natural communication pattern on wireless links, and point-to-point communication

is artificially supported using frames filtering at the equipment level based on destination

addresses. Second, when all transmissions are broadcast, nodes can overhear neighborhood

transmissions, which allows them to get knowledge about the network without any explicit

or additional transmissions such as control packets. Third, broadcast has a very robust

support for network dynamics and topology changes due to node mobility. Moreover, it

provides path redundancy and data duplication over the network, which can be exploited to

enhance reliability. Fourth, our model shows that, in a simple network topology, broadcast

combined with caching can outperform unicast in terms of cost in the presence of popular

content. Fifth, NDN tables store less information when using broadcast as they do not

have to include MAC addresses. In particular, compression techniques can be used to

create a constant-sized PIT if Interest source addresses are not required.

However, using broadcast has its shortcomings and raises some challenges. First, unlike

unicast, broadcast at the link-layer does not provide any acknowledgement mechanism to

handle frame retransmissions, for example. Second, without a control mechanism, broad-

cast generates an extremely large network overhead and unnecessary packet duplication.

Moreover, duplicated packets, particularly Interests, lead to important link-layer access

contention and increase the risk of collisions. Third, as no packet filtering for broadcast is

supported by current wireless equipment, all received packets have to be processed by the

CPU, which is not reasonable with resource-constrained devices. Fourth, the overhearing

possibilities offered by broadcast come at a cost of active listening to radio transmissions,

which consumes a significant amount of energy.

192

5.4. L3 SOLUTION: R-LF

5.3.3.2 Design Guidelines

The results obtained on various evaluation scenarios, and observations on the ap-

proaches described before can be combined to draw up the following guidelines and re-

quirements for a lightweight forwarding strategy:

1. Rely on a minimal state to process packets without maintaining explicit routes;

2. Avoid reverting to a random Interest flooding phase in order to provide accurate

forwarding decisions while reducing collision risks, network congestion and overhead;

3. Avoid node identification or addressing to correctly match the NDN vision;

4. Avoid additional data structures to preserve the lightweight aspect of the NDN stack

and allow more space for caching;

5. Distribute decisions and computation tasks over the network, and minimize com-

plexity to meet IoT device capabilities.

Taking the choice of using broadcast, and based on the guidelines designed to limit its

disadvantages, we designed two approaches; the first one operates at the network layer

and the second one at the link layer, as detailed in the two next sections.

5.4 L3 Solution: R-LF

5.4.1 Approach and Assumptions

Routing and forwarding operations are significantly different in NDN and IP. In IP,

only the routing operation is smart in the sense that different routing protocols can be en-

visioned. The forwarding operation always consists in finding the longest match available

in the routing table and sending the packet to the corresponding next hop. In NDN how-

ever, in addition to the routing operation that may be smart as in IP, multiple approaches

are possible to handle packet forwarding with more or less additional information and with

or without caching.

Our proposed strategy does not use an explicit routing phase to gather or update

forwarding information. The routing phase is implicit as in the mechanisms presented in

193

5.4. L3 SOLUTION: R-LF

the related work. R-LF operates according to the following steps: (i) the nodes overhear

Data packets and learn a cost value by reinforcement, (ii) the nodes decide to forward an

Interest with a delay according to their cost-based eligibility, (iii) the nodes update their

cost from the result, which can be an Interest timeout or a received Data packet.

We should note that Reinforcement Learning has been adapted before to NDN in

[Chiocchetti et al. 2013], [Fu et al. 2017], [Akinwande 2018] and [Zhang et al. 2018].

However, all these solutions use the Reinforcement Learning for NDN in wired networks

scenarios, without dealing with wireless broadcast and overhearing mechanisms. To the

best of our knowledge, there is no NDN forwarding strategy based on Reinforcement Lean-

ing for wireless networks, particularly constrained environments such as IEEE 802.15.4.

The following describes the general R-LF approach and the mathematical formaliza-

tion.

5.4.2 General description

To forward packets, a node traditionally decides in terms of what the next hop is,

which can be considered as a spatial forwarding decision. However, as NDN forwarding is

based on content names and R-LF uses only broadcast directly on top on the MAC layer,

a node decides in terms of when it should forward the Interest; i.e., how long it should

wait before forwarding. Such a process can be seen as a temporal forwarding decision. As

reported above, this vision has already been proposed, and its basic principle consists in

ensuring that the most eligible node will forward the Interest first.

To describe the forwarding approach, the following assumptions are made:

• Interest and Data packets carry the cost value of the sending node, denoted as C-field.

• An Interest flooding with random delays is used to find the producer when the first

Interest is issued for an unknown content item.

• Nodes are able to overhear Interest and Data packets related to other communica-

tions.

R-LF operates according to two phases: (i) a reinforcement learning that consists in

194

5.4. L3 SOLUTION: R-LF

maintaining a cost value for each available content prefix, (ii) an adjustment of the waiting

delay based on the neighborhood activity.

The first learning phase starts after a source node receives a randomly flooded Interest,

and acts as follows (see Figure 5.14 steps 1 and 2): (i) the source node responds with a

Data packet carrying the initial cost, (ii) the first forwarder on the source-consumer path

computes its cost with a reinforcement technique, replaces the C-field with the value

obtained, and forwards back the Data packet, (iii) each node on the path follows the same

procedure until the Data packet reaches the consumer, (iv) in the vicinity of the path,

the nodes that overhear the Data packet can perform a passive cost update to learn their

eligibility relative to the data source.

The random flooding phase is then over, and the first learning phase is set up. Each

node updates the cost related to the corresponding content prefix after retrieving (or over-

hearing) a Data packet with a smaller cost. Let us refer to this phase as the reinforcement

phase.

To describe the forwarding process, we define the delay to wait before forwarding an

Interest as Φ(a). The formal definition of Φ(a) will be detailed later. The forwarding

decision in a relay node consists in finding the appropriate value of a that gives a correct

delay to wait. Since a is calculated in two steps, let a = ∆ + θ, with ∆ and θ as explained

in the following.

Let Cx(p) and Cy(p) be the current cost for prefix p at nodes x and y respectively.

Whenever node x receives an Interest issued (or forwarded) by node y, it computes the

value ∆ = Cy(p) − Cx(p). Here, ∆ quantifies the global eligibility of node x to forward

the Interest. If ∆ ≥ 0 then node x can potentially forward the Interest.

The value of θ is locally computed by the forwarder based on its neighborhood activity

to refine ∆ before calculating the delay time. Let us refer to this phase as the Delta

adjustment phase.

After computing a, the Interest forwarding is delayed for Φ(a) units of time. During

the delay-listening time, if node x detects that a forwarder z is transmitting a packet with

the same name, it deduces that z is more eligible to handle the Interest and cancels its

195

5.4. L3 SOLUTION: R-LF

Figure 5.14: Common forwarding situations with R-LF

pending transmission (see Figure 5.14 step 3).

With the delta adjustment, the random-delayed forwarding is used only when the

prefix is unknown by the forwarder (x) and is reset by the sender (y). Thus, even after an

Interest timeout in x and y, the value of θ can be used in most cases to distinguish nodes

eligibility (see Figure 5.14 step 4).

The next subsection provides the mathematical details.

5.4.3 Details and mathematical formalism

Reinforcement phase: The cost value at node x is updated according to the following

reinforcement equation 5.9:

(5.9) Cx(p) = (1 − α)Cx(p) + α (r + min Cy(p))

In this equation used in Q-routing, α is the learning rate, r is the reward, Cx(p) is the

cost at node x for the prefix p, and min Cy(p) is the smallest cost heard by node x from

node y.

196

5.4. L3 SOLUTION: R-LF

Assuming the hop-count as a metric, the reward is always equal to 1, and the cost

of each node increases as the distance to the content source increases. The cost at the

content source is 0.

The cost values reflect the distance to the content source, and are used to decide on a

forwarder’s eligibility. Moreover, the approximate nature of the update formula produces

a large number of possible cost values over the network, which helps to avoid obtaining

the same waiting delay for different nodes.

Since the nodes remember only the smallest heard cost, a node may have an obsolete

estimation of its cost value. To avoid that, after an Interest timeout, a node resets its

cost value (i.e. Cx(p)) to 0 and the smallest heard cost (i.e. min Cy(p)) to the maximum

cost ∆̂, in order to accept cost updates. Note that in Interest packets, a cost value of

0 indicates that the sender has reset its cost or it has no information about the content

prefix. Thus, it does not interfere with the 0 cost value of a Data packet which actually

means that the packet has been sent by the producer. The estimation of ∆̂ is presented

below.

When caching is enabled, the cost carried in a cached Data packet may introduce un-

certainty in the reinforcement calculus, especially when a relay node has cached only a

few chunks of the requested content. To overcome this, when a cached Data is returned

by a relay node, the cost carried in that Data is the highest expected value (i.e., ∆̂). In

this way, cached Data packets do not lead to a reinforcement update at other nodes, since

cached Data packets may not carry accurate cost information.

Delta adjustment: The adjustment serves two purposes: it refines ∆ to deal with

local uncertainty in real time, and allows each node to handle multiple content prefixes

simultaneously. In fact, using only ∆ to compute delays, even if it is accurate, does not

allow different content names cohabitation to be supported.

To compute θ, let Na be the neighborhood activity rate for all data names. From the

perspective of a node, Na can be computed by Na = Du/Id, where Du is the number

of unsolicited received Data and Id is the number of non-forwarded Interests (dropped

197

5.4. L3 SOLUTION: R-LF

Interests).

Then, θ may be simply defined as

(5.10) θ = Th − Na

where Th ≤ 1 is the activity threshold above which the waiting time should be increased.

For simplicity, but without losing accuracy, Na is kept between 0 and 1. Thus, if Th is

lower than 1 (e.g. 75%), θ can be negative. In this case, the value of ∆ is reduced, which

will increase the waiting time. When no statistic is available, Na = Th.

Delay function: After defining the appropriate value of a, the delay time is computed

with a function that is inversely proportional to the value of a. Such a function can be

intuitively defined by:

(5.11) Φ(a) = M

ea/2 + m

This function ensures that when two nodes can both forward an Interest, the node with

the highest value of a will delay its transmission for a shorter time than the node with the

lowest value, as depicted in Figure 5.15. In addition, m forces the forwarder to wait for

a minimum time to allow the transmission of the corresponding Data packet if any, while

M controls the upper-bound of the calculated delays.

Figure 5.15: Delay function example

198

5.4. L3 SOLUTION: R-LF

The importance of Φ is capital and a parameter calibration is needed to have an efficient

distribution of waiting times.

We can observe that lima→∞ Φ(a) = m. Therefore, we need to ensure that Φ(â) > m,

where â is an estimation of the highest value of a.

According to Equation 5.10, θ is ≤ Th. Given that the lowest cost value that can be

computed by a node is close to 0, we can deduce the highest gap between two cost values

as being the highest cost value in the network. For that, we use the following property of

the Q-learning formula presented in Equation 5.6.

Given that NDN packets do not loop by design and considering a grid topology of

n nodes, we assume that the average distance between two nodes should not exceed
√

n

hops. Then, we use Equation 5.8 to recursively estimate the maximum expected value of

∆ as ∆̂ = (
√

n + 1). After that, we deduce an estimation of â to set the parameters of

Φ(a).

The forwarding decision process for a node x with a cost of Cx(p), receiving an Interest

from node y with a cost of Cy(p) for a prefix p is summarized in Algorithm 1.

5.4.4 Evaluation

For evaluation purposes, we implemented the NDN module in the OMNeT++ sim-

ulator including R-LF, CF and RONR forwarding strategies. We first study the impact

of the learning rate (α) on R-LF performances, and we fix the values for parameters M,

m and Th. Then, we evaluate R-LF in comparison with RONR, a completely unicast

approach, and CF which is a broadcast-only mechanism that uses delayed transmissions.

The evaluation studies three configurations: (i) a variable number of simultaneous data

flows, (ii) one data flow with multiple consumers and cache enabled in relay-nodes, (iii)

multiple data flows with a variable producer mobility speed.

After that, we compare R-LF to AODV in order to study the advantages of NDN, with

an all-broadcast forwarding, over IP networks, with a host-based routing protocol. The

evaluation configuration has been adapted to accommodate both NDN and IP approaches,

and are detailed in Section 5.4.4.6.

199

5.4. L3 SOLUTION: R-LF

Function ProcessInterest
Data: Interest packet
begin

if p is unknown then
if Cy(p) == 0 then

Broadcast with random delay
else

Drop Interest (node not eligible)
end

else
if Cy(p) == 0 then

∆ = ∆̂ − Cx

else
∆ = Cy − Cx

end
if ∆ ≥ 0 then

θ = Th − Na

a = ∆ + θ
Broadcast with Φ(a) delay

else
Drop Interest (node not eligible)

end
end

end
Algorithm 1: Interest forwarding process

Finally, some experimental measures are reported on the R-LF implementation on the

Arduino platform over IEEE 802.15.4.

5.4.4.1 Simulation design

We consider a scenario that reflects a small-scale IoT monitoring application. The

topology consists of 16 fixed relay-nodes organized in a grid of 180m x 180m, through

which producer and consumer nodes move following the Random Way Point mobility

model.

The purpose of this simulation is to verify if the impact of the broadcast is attenuated

by the forwarding strategy relatively to the network size. Moreover, the forwarding strat-

egy is intended to be used in local networks of IoT devices. Given that R-LF strategy does

not store additional topology (or node) information, the efficiency of NDN in terms of scal-

ability achieved through caching and Interest filtering is fully preserved. Thus, a network

200

5.4. L3 SOLUTION: R-LF

of 16 nodes has been chosen as a typical local network size to evaluate the communication

overhead of R-LF.

In practice, wireless NDN should operate without considering a logical topology based

host identifications (i.e., addresses) and point-to-point links. That is, the evaluation topol-

ogy does not provide any particular information to the R-LF strategy; the design of R-LF

itself is clearly topology-independent. Instead, the grid topology ensures that each host

is connected to 2, 3 or 4 neighbors. Permanent host connectivity is required in R-LF to

overhear packets and learn content names. Moreover, the grid topology is commonly used

to evaluate (mobile) WSNs routing protocols considering mobile sensors/sink for example.

The MAC layer configuration reflects the IEEE 802.15.4 properties. Figure 5.16 gives

an example of the simulated topology, and Table 5.4 reports the relevant simulation pa-

rameters.

Figure 5.16: Simulated topology example

In all result figures, BF represents the broadcast-based Controlled Flooding (CF)

strategy, RONR represents the unicast-based Reactive Optimistic Name-based Routing

(RONR), and R-LF stands for our reinforcement-based forwarding strategy.

In all the simulations, the reported results correspond to the average values obtained

with 10 random executions. The following metrics are measured:

• The total number of successfully transmitted packets, to study the accuracy of the

201

5.4. L3 SOLUTION: R-LF

Table 5.4: Simulation parameters

Parameter Value
Data packet size 100 B

Interest packet size 50 B
Interest send interval 1 s

Interest lifetime 2 s
Max Interest re-transmissions (at consumer node) 1

Cache size 20 packets
Cache replacement FIFO

Data freshness 10 s
Wireless bit-rate 250 Kbps

Wireless MAC protocol IEEE 802.15.4 CSMA
Communication range 35 m

forwarding decisions and the generated overhead.

• The mean round-trip time (RTT) for an Interest-Data exchange.

• The Interest satisfaction rate to, measure the global efficiency of the approach.

• The mean hop count of received Data, to study the ability of the strategy to find

the nearest source (producer or cache) for the requested content.

These metrics have been chosen for three reasons. First, they are related to the ob-

jective of our forwarding strategy, which is to take advantage of broadcast without its

drawbacks. That is, the number of transmitted frames over the network indicates if the

broadcast effect is attenuated, the hop-count shows the efficiency of each strategy in choos-

ing the right forwarder, the RTT is used to check that waiting delays (when present) are

not too high, and the Interest satisfaction rate measures the data delivery efficiency of

each approach. Second, the four metrics mutually impact one another, and it is difficult

to optimize all of them at same time. Third, evaluation of forwarding strategies in related

work (as reported above) usually measures these metrics or equivalent ones.

5.4.4.2 Impact of the learning rate

R-LF involves a set of parameters that need to be calibrated to provide the best

performance. Empirical simulation observations give the parameter values as follows:

202

5.4. L3 SOLUTION: R-LF

M=5, m=2.5 and Th=0.75.

Fixing the learning rate is required. Considering the four metrics at the same time and

their respective stability over multiple simulations (i.e., confidence interval), an optimal

value should be found and used further in the comparative simulations.

To study the impact of α on R-LF performance, we simulate a scenario in which two

consumers request the same content served by one producer, with 20 packets caching

enabled in relays nodes. The results are presented in Figure 5.17.

Small values of α (i.e. ≤ 0.6) globally give poor performances. This can be explained

by the fact that small values of α prevent nodes from learning fast by slowing down the

update process. Likewise, when 0.9 < α ≤ 1.0, the nodes overwrite previously learned

values, which leads to more similar values and thus to more frequent collisions.

We find that 0.8 ≤ α ≤ 0.9 generally gives the best performance results. Moreover,

these values provide stable results through the different executions. Even if α = 0.9 and

α = 1.0 achieve good performances, α = 0.8 is more likely to keep the same performance

through different executions. We conclude that 0.85 is a good value to obtain a satisfactory

performance for the metrics studied. The value of α is fixed to 0.85 for the rest of the

simulations.

Figure 5.18 shows the distribution of the values of a over time for the 16 relay nodes.

Globally, only a few similarities are observed in the values and the range of the possible

values is completely exploited by the nodes. This is due to the reinforcement formula

and the delta adjustment that helps to reduce similarities in the computed values. More

similarities in a-values are observed between -0.5 and 1.5. However, according to the Φ

function (see Figure 5.15), the delays corresponding to this range are high enough to let a

node with a higher value of a re-transmit first.

5.4.4.3 Multiple data-flows

The forwarding strategy has to support multiple namespace co-habitations. To create

multiple data flows, each pair of consumer-producer exchanges packets under one name

prefix. For example, consumer C1 requests content created by producer P1 under the

203

5.4. L3 SOLUTION: R-LF

Figure 5.17: Impact of the learning rate

prefix /ndn/home/humidity/*, and consumer C2 requests content created by producer

P2 under the prefix /ndn/home/temperature/*. In practice, this case may occur when

data is collected according to its type, or when multiple applications are running in the

same wireless network. Since only one consumer is requesting contents from one producer,

caching is disabled in all nodes for this simulation. Figure 5.19 shows the metric measured

according to 2, 4 and 8 simultaneous data-flows, which we believe is reasonable in a local

monitoring application.

The total number of frames transmitted by R-LF is very low, given that it is a

broadcast-only technique. We observe that the number of frames transmitted with R-

LF is much closer to RONR (unicast) than to CF (broadcast). The low number of frames

is the result of the Interest forwarding controlled by the reinforcement learning, followed

by the delta adjustment step which can increase the waiting delay if the neighborhood

activity is high. Moreover, the same difference between the three approaches is observed

for 2, 4 and 8 data flows.

The satisfaction rate is roughly the same for the three approaches. However, the broad-

204

5.4. L3 SOLUTION: R-LF

Figure 5.18: a-values example

cast strategies (i.e. R-LF and CF) seem to be more suitable to support more simultaneous

data-flows.

On average, R-LF and CF retrieve content with almost one hop fewer than RONR.

Indeed, the unicast forwarding approach needs the expiration of the FIB entry to update

the next hop address, while the broadcast forwarding can retrieve a content item from

any available source in the vicinity of the forwarder. However, we can observe that this

performance is achieved by CF at the cost of a large overhead, while R-LF gives the same

efficiency with an overhead close to RONR.

R-LF provides an RTT lower than CF as it uses proportional timers instead of random

ones. Moreover, R-LF scales better with more nodes/data-flows and becomes close to

RONR in terms of RTT. Obviously, RONR achieves the lowest RTT as forwarders do not

use any delays before forwarding packets. Having a reduced RTT is the main advantage

of using a unicast strategy in this configuration.

5.4.4.4 Multiple consumers

In this case, only one content prefix (e.g. /ndn/home/*) is involved in the network.

Multiple consumers simultaneously request content provided by one producer, and/or by

intermediate caches. This case is much closer to a many-to-one communication, such as a

gateway-to-devices communication. However, it can also be considered as many-to-many

due to caching that allows any relay node to be a partial source of a content.

205

5.4. L3 SOLUTION: R-LF

Figure 5.19: Multiple data-flows scenario results

Figure 5.20 shows the results obtained for 2, 4 and 8 consumers.

Broadcast approaches (i.e. CF and R-LF) make better use of caching and achieve

the highest satisfaction rate. The difference in the hop-count for received Data packets

is still to the advantage of R-LF and CF. However, R-LF keeps its reduced overhead in

comparison to CF.

When enabling caches, CF and R-LF are clearly penalized by the RTT in comparison to

RONR. This is certainly due to the high competition access to the medium as the number

of content sources increases with caching. Here, it seems that accurate Interest broadcast

and delayed forwarding of R-LF are not sufficient to reduce medium access contention and

provide a low RTT.

206

5.4. L3 SOLUTION: R-LF

Figure 5.20: Multiple consumers and caching scenario results

5.4.4.5 Producer speed

This case is the same as the first simulation scenario, with 4 dataflows. To study the

forwarding strategies support for higher mobility, we increase the producer speed from 1

mps to 7 mps.

Figure 5.21 shows the results obtained. As for the first scenario, the R-LF performance

is close to the best among RONR and CF for each metric. We observe that when producers

move faster, the RTT achieved by R-LF becomes close to RONR, whereas it increases in

the CF strategy. However, the satisfaction rate with RONR decreases significantly when

the speed increases, whereas it decreases reasonably with R-LF.

Even under producer mobility, CF achieves a good satisfaction rate as broadcast is not

much affected by mobility. However, the high satisfaction rate achieved by CF comes with

207

5.4. L3 SOLUTION: R-LF

a very large overhead, as shown by the total number of transmitted frames. Moreover, we

observe that the number of frames transmitted in R-LF is slightly higher than RONR, but

very low in comparison to CF. Finally, the shortest path is still ensured by R-LF, even

with a higher speed. The unicast mapping shows its limitations as regards keeping a good

performance in the presence of mobile nodes, while R-LF is able to provide a satisfactory

performance.

Figure 5.21: Producer speed scenario results

5.4.4.6 Comparison to host-based networking

We compare R-LF to AODV according to two scenarios. In the first scenario, multi-

consumer, we consider one content producer and a set of consumers; thus, one data-flow

is present in the network. This means that one destination is requested in AODV and one

prefix-name is requested in R-LF. In the second scenario, multiple data-flows, different

208

5.4. L3 SOLUTION: R-LF

numbers of consumer-producer pairs are tested. For that, each consumer-producer pair

uses a separate prefix-name in R-LF, and each consumer requests content from one host

(i.e., producer) in AODV.

In both scenarios all nodes are static to accommodate AODV, which does not perform

well under high network dynamics. In order to get a fair comparison, link-layer frame

acknowledgement is disabled for AODV (i.e., unicast communications). Moreover, no

packet/frame retransmission is enabled; the content request simply operates as the ping

process for AODV. The measured metrics are the following: (i) the number of successfully

transmitted frames, (ii) the mean RTT, which corresponds to the delay for an Interest-

Data exchange for R-LF and a request-response in AODV, (iii) the Interest and request

satisfaction rate for R-LF and AODV respectively, (iv) the total back-off time spent by a

node on average to access the wireless medium.

Figure 5.23 and 5.22 show the results obtained in the multi-consumer and the multiple

data-flows scenarios respectively.

AODV and R-LF are based on different paradigms and use completely different routing

approaches. The objective of this comparison is to show how a full-broadcast forwarding

technique can approach, and sometimes outperform, a host-based routing protocol that

relies on explicit routes and host addresses. The results obtained show that this is com-

pletely feasible, although a broadcast-based forwarding without explicit routes can not

outperform the unicast approach in all aspects.

With multiple consumers and one content source, request satisfaction is kept stable

with AODV while it slightly decreases with R-LF. Under multiple consumers and pro-

ducers (i.e., multiple data-flows), R-LF can approach and outperform AODV in terms

request/Interest satisfaction. This is consistent with the multicast-friendly feature of

ICN/NDN.

In terms of round-trip delay, R-LF approaches AODV when multiple consumers are

involved. The same behaviour can be observed in the multiple data-flows scenario when

the number of consumers increases. This can be considered as a significant achievement

since R-LF uses delayed transmissions, which proves that delays are relatively accurate

209

5.4. L3 SOLUTION: R-LF

and not superfluous.

In both scenarios, when the number of consumers is low, R-LF is almost as accurate

as AODV as shown through the number of transmitted frames and mean backoff-time.

Obviously, the number of frame transmissions in R-LF becomes much higher than AODV

when more nodes are communicating (i.e., more consumers). This is expected as R-LF

is based on broadcast only while AODV mostly uses unicast, especially here when only

one destination is requested (e.g., multi-consumers). For the same reasons, the mean

backoff-time is also higher for R-LF due to the high medium access contention. However,

the difference is not too great if we consider the obvious simplicity of R-LF compared to

AODV.

Overall, AODV performs better than R-LF when the number of consumers increases

under the same data-flow, while R-LF achieves a better satisfaction rate when multiple

data-flows are present.

In similar scenarios with mobile nodes, the performances achieved by AODV were very

poor in comparison to R-LF. For this reason, we chose not to report them here.

5.4.4.7 Implementation on IoT devices

The R-LF strategy has been implemented and tested in our NDN-802.15.4 testbed

described in the last chapter. As equipment and libraries have not changed, we evaluate

the impact of R-LF by measuring the time required to forward Interest and Data for both

Arduino UNO (16 Mhz) and DUE (84 Mhz) with R-LF.

The results are reported in Table 5.5. The R-LF forwarding process delay for the first

Interest (i.e., unknown prefix name) is approximately 145µs on Arduino UNO and 55µs on

Arduino DUE. Subsequent Interests forwarding (i.e., known prefix name) takes about 50µs

on Arduino UNO with 5 entries in the FIB, and 10µs on Arduino DUE considering 10 FIB

entries. This delay difference between first and subsequent forwarding is mainly due to the

random number generation which is used in R-LF for only the first Interest forwarding.

With R-LF, a FIB entry update after receiving a Data packet consists on a reinforcement

learning computation and takes 70µs on Arduino UNO and 18µs on Arduino DUE. The

210

5.4. L3 SOLUTION: R-LF

Figure 5.22: R-LF and AODV comparison with multiple data-flows

measured values show the simplicity of forwarding decisions in the R-LF strategy.

As concerns the memory space required by the implementation, the measurements

reported in Chapter 4 already include the R-LF implementation, as mentioned.

Table 5.5: R-LF measures on Arduino

Operation Time (UNO) Time (DUE)
First Interest forwarding 145µs 55µs

Subsequent Interest forwarding 50µs 10µs

Data forwarding 50µs 10µs

Reinforcement 70µs 18µs

5.4.5 Discussion

In the three simulated scenarios, the R-LF performance is always close to the best one

among RONR and CF for all the metrics. This shows the adaptability of R-LF to handle

211

5.4. L3 SOLUTION: R-LF

Figure 5.23: R-LF and AODV comparison with multiple consumers

different communication scenarios. The only exception to this observation is the RTT in

the multi-consumer scenario, which certainly requires more sophisticated techniques for

forwarding cached Data packets.

In our strategy, random Interest flooding rarely occurs, as the delta adjustment step

can be used to compute a waiting delay even if the cost value is reset. This contributes

to significantly reduce the network overhead and represents an important improvement

regarding the basic broadcast-and-learn schema.

The reinforcement learning provides a satisfactory performance without requiring an

explicit exploration phase. Hence, to forward an Interest, a node only needs a simple FIB

look-up as expected in NDN.

In wireless forwarding strategies so far, the efficiency of broadcast comes at the cost

of high overhead while the performance of unicast holds only in simple communication

212

5.5. L2 SOLUTION: ND-CSMA

scenarios, such as with static nodes. Indeed, more complex scenarios show that RONR

is beaten by R-LF in terms of Interest satisfaction-rate, hop count, and their respective

latency become the same. For example, when producer speed increases, the RONR sat-

isfaction rate drastically drops whereas R-LF is still stable. Hence, considering different

communication scenarios, the results obtained show that R-LF is a satisfactory trade-off

solution in many configurations.

5.5 L2 solution: ND-CSMA

5.5.1 Approach

Considering the CF strategy studied in Section 5.3.1, an ideal improvement one may

look for is to reduce the round-trip time and energy consumption by eliminating waiting

delays while keeping the lowest number of frame transmissions (i.e., CPR). Since elimi-

nating waiting delays will significantly impact the CPR, we have to question whether a

trade-off theoretically exists that may achieve reasonable CPR, low RTT and a reasonable

Interest satisfaction rate.

According to the CF strategy model, the tree is explored depending on whether both

sibling-nodes forward the Interest or only one of them does. In the model evaluation, we

find that the best performance for CF is achieved with dw = 127. Let the corresponding

Interest transmission probability for each sibling-node pair be p∗
t . Then, we can easily

observe that there is no value of pt lower than p∗
t that can achieve the same or better

satisfaction rate. That is, a compromise at L3 level that achieves optimal performance is

not possible in our configuration.

We believe that this is due to the fact that in the forwarding decision of a node, only

the sibling-node is involved. Therefore, by shifting the transmission decision to the L2 level

(with some modifications) instead of using deferred transmissions, one may expect better

performances since the CSMA algorithm natively considers multiple-access contention.

As mentioned before, eliminating waiting delays will inevitably increase the number

of unnecessary packet transmissions and channel access contention. To handle that, we

consider pt = 1, which corresponds to dw = 0, and we modify the CSMA algorithm of

213

5.5. L2 SOLUTION: ND-CSMA

the IEEE 802.15.4 in such a way that the number of attempts to access the channel is

lower when transmitting an Interest than when transmitting a Data. In practical terms,

we replace the waiting delays by a priority-based CSMA scheme designed for NDN. In this

section, we describe the legacy CSMA algorithm followed by the design and evaluation of

the ND-CSMA scheme.

5.5.2 Legacy CSMA

IEEE 802.15.4 [IEEE 2011] defines a standard for the physical and MAC layers of

low-rate wireless networks. The standard uses slotted or unslotted CSMA as a medium

access mechanism. In this section, we consider the unslotted version of CSMA.

The CSMA algorithm works with a set of default parameters and each node maintains

two values when running the algorithm: Number of Back-offs (NB) and Back-off Exponent

(BE). NB is always initialized to 0 for a new packet transmission, and it denotes the number

of access attempts for the current packet transmission. BE is used to compute the random

back-off period that a device should wait before attempting to assess the channel. Default

parameter values are shown in Table 5.6.

The CSMA algorithm operate as follows:

1. Step 1. The values of NB and BE are initialized according to the IEEE 802.15.4

standard.

2. Step 2. The delay of random back-off period is selected in the range from 0 to

2BE−1.

3. Step 3. After the waiting time, the node performs a Clear Channel Assessment

(CCA). If the channel is idle, the node starts transmission. If the channel is as-

sessed to be busy, the algorithm increments NB by 1 and updates BE as follows:

BE = min(BE + 1, aMaxBE). Then, if NB is lower than the maximum number

of back-offs (i.e., macMaxCSMABackoffs) the algorithm goes to Step 2; if not, the

transmission is canceled and considered to have failed.

214

5.5. L2 SOLUTION: ND-CSMA

Table 5.6: Default values for IEEE 802.15.4 CSMA

Parameters Value
AMaxBE 5

MacMaxCSMABackoffs 4
MacMinBE 3

5.5.3 The Named-Data CSMA Scheme

In legacy CSMA, all nodes access the shared channel with a fair chance. However,

priority-based CSMA [ZHAO et al. 2013] uses the difference in traffic type to introduce

differentiated channel access for nodes. Therefore, the priority-based CSMA mechanism

is designed to make nodes with high priority traffic have a greater chance of accessing the

channel. The ND-CSMA algorithm we propose is inspired by the priority-based CSMA

approach.

The frames are classified into two priority classes according to the packet type they

transmit: (i) frames that contain a Data packet at any node, and frames that contain

a locally issued Interest (i.e., consumer node) are assigned a priority 0. (ii) frames that

contain an Interest packet to forward (i.e., at relay nodes) are assigned a priority 1. The

other CSMA parameters and values are kept the same in ND-CSMA.

By distinguishing between Interest and Data frames, the ND-CSMA algorithm operates

in the same way as legacy CSMA described above, with one difference. When the channel

is assessed to be busy, retrying another back-off depends on the priority class of the frame

to transmit. If the frame has a priority 1, the number of back-off attempts is limited by a

threshold value th. Then, the transmission is canceled if the number of attempts reaches

th. The algorithm operates as usual for the frames of priority 0. According to the number

of back-offs allowed by the CSMA parameters, the values of th should be between 1 and

4, while th = 5 makes ND-CSMA equivalent to the legacy CSMA.

ND-CSMA scheme is summarized in Figure 5.24.

5.5.4 Evaluation

To evaluate the ND-CSMA scheme, we simulate three scenarios.

215

5.5. L2 SOLUTION: ND-CSMA

Figure 5.24: ND-CSMA algorithm

216

5.5. L2 SOLUTION: ND-CSMA

• CF. The CF strategy as described in Section 4.4.1 with the legacy CSMA algorithm.

• BF. The BF strategy presented in Section 5.2.2, also using the legacy CSMA. Notice

that this scenario is equivalent to the CF strategy without waiting delays.

• ND-CSMA-x. The BF strategy using the ND-CSMA mechanism with th = x.

In the BF strategy, upon receiving an Interest or Data, a node immediately tries to

forward the packet and lets the link-layer medium access algorithm (i.e., legacy CSMA or

ND-CSMA) resolve the contention.

All the scenarios are simulated under the same conditions and parameters as those used

in Section 5.3.1: a tree topology with depth N = 4, M = 3000 content items distributed

in K = 50 classes, each one with m = 60 items, and a cache of size x = 300 packets at

each level. We set α = 2.0. For the CF strategy, we use dw = 127 and τ = 0.032µs. We

measure the following metrics:

• RPR. The mean time needed for the gateway to retrieve a content item from a

device.

• Transmitted frames. The total number of frames transmitted during the simula-

tion. We also refer to this metric as the cost.

• Interest satisfaction rate. This corresponds to the number of Data received by

the gateway over the number of Interests it sent.

• Mean back-off time. The average time the nodes spent in back-off to access the

wireless medium. This is also used as an indicator for energy consumption.

Figure 5.25 shows the results obtained. The objective of the ND-CSMA mechanism

is to provide a trade-off between cost and round-trip time while keeping an acceptable

Interest satisfaction rate.

The results show that ND-CSMA with th = 1 achieves the lowest RPR compared to

CF and even BF with legacy CSMA. The mean back-off time with ND-CSMA-1 is the

smallest among the evaluated scenarios, while BF achieves the highest back-off time due to

217

5.5. L2 SOLUTION: ND-CSMA

the large number of forwarding decisions generated after eliminating waiting delays. That

means, legacy CSMA with BF has to resolve medium access contention with more back-off

periods whereas ND-CSMA has the possibility to cancel some Interest transmissions when

the channel is busy rather than waiting for other back-off periods. For this reason, the

RPR achieved by BF with legacy CSMA is slightly higher than ND-CSMA. CF also is

capable of canceling scheduled transmissions using deferred transmissions. However, it

achieves that with a wait-and-listen mechanism which induces higher round-trip delays,

and a relatively high back-off time is required when the chosen random delays are not

different enough.

Moreover, the results show that forwarding with ND-CSMA-1 can ensure necessary

packet transmissions while keeping the total cost at a minimum compared to the two

other schemes. The Interest satisfaction rate is quite similar for all the approaches, which

indicates that ND-CSMA, even with low th does not reduce the efficiency of Interest

flooding/broadcast. Furthermore, simulations with small caches (e.g., tens of packets)

achieved approximately the same results, but with a slightly lower satisfaction rate for

ND-CSMA.

Overall, ND-CSMA-1 seems to be the best compromise for the measured metrics. To

return to our theoretical expectations, the results confirm that a link-layer adaptation is

able to keep the benefits of a broadcast-based forwarding strategy in terms of satisfaction

rate, while reducing medium access contention and the number of transmissions; it then

achieves the trade-off we were looking for.

5.5.5 Discussion

To return to our theoretical expectations, the results confirm that an L2 mechanism

is able to keep the benefits of a forwarding strategy with pt = 1 in terms of satisfaction

rate while reducing medium access contention and the number of transmissions; it then

achieves the trade-off we were looking for.

Based on a simple modification of the IEEE 802.15.4, preliminary results shed light

on the necessity of rethinking typical link-layer schemes for ICN/NDN such as the CSMA

algorithm. Moreover, the results show that forwarding with ND-CSMA can ensure neces-

218

5.5. L2 SOLUTION: ND-CSMA

Figure 5.25: ND-CSMA evaluation

219

5.6. SUMMARY AND DISCUSSION

sary packet forwarding while keeping the total cost at a minimum compared to the two

other broadcast-based schemes.

However, we can easily foresee that the ND-CSMA adaptation is specific to the topology

and scenario under consideration, and thus can not be applied as a general solution to all

network configurations.

5.6 Summary and Discussion

To support the NDN wireless forwarding over IEEE 802.15.4, we proposed two broadcast-

based solutions operating at two different levels.

The first solution, R-LF, operates at network level and exploits broadcast communi-

cations with reinforcement learning to take accurate forwarding decisions. According to

the results, the R-LF performance is always close to the best among RONR and CF for

all the metrics. This shows the adaptability of R-LF to different communication scenarios

including complex ones. The results obtained through different scenarios show that the

accuracy of the unicast mapping can be approached by a broadcast-based strategy. More-

over, they show the adaptability of the R-LF approach to support multiple data-flows,

multiple consumers and node mobility.

In the second solution, we explored the link-layer level to design an adaptation of the

IEEE 802.15.4 CSMA algorithm. The purpose of this adaptation is to reduce the overhead

effect of broadcast while keeping its advantages. To the best of our knowledge, no previous

proposals have been made to adapt the CSMA scheme of the IEEE 802.15.4 link-layer to

improve NDN wireless forwarding.

5.7 Conclusion

The NDN forwarding in wireless mesh networks brings a different vision of communica-

tion in wireless environments. To be in keeping with the NDN vision, wireless forwarding

must focus on content names without any host identification such as MAC addresses.

Moreover, the communication pattern in the IoT suggests that communications can in-

volve more than two identified hosts as the same content can be shared between multiple

220

5.7. CONCLUSION

nodes. Therefore, disseminating content in IoT networks may be achieved more efficiently

with broadcast communications, which are more natural and more compliant with wireless

diffusion technologies. For example, issuing a command towards all the cow sensors in our

cow health monitoring system may be achieved more naturally using reliable broadcast

communications. However, most existing (host-based) solutions would do this using mul-

ticast with the point-to-point communication pattern. This is due to the fact that IP is

not compliant with the broadcast pattern, whereas the NDN communication scheme is

completely broadcast-friendly.

In this context, our first objective through the two approaches proposed in this chapter

is to show that broadcast can be used successfully in constrained networks, while ensuring

reduced overhead and accurate forwarding decisions. For that, we designed a forward-

ing strategy based only on content names, and broadcast without any host identification.

Moreover, to further reduce overhead, we designed a reactive strategy that does not re-

quire additional communication to maintain forwarding information. Results obtained by

our forwarding approach show that a compromise between communication efficiency and

reduced overhead can be achieved using broadcast.

The second objective is to explore how current communication technologies can be af-

fected by the NDN paradigm. For that, we designed an adaptation of the CSMA algorithm

used in IEEE 802.15.4 to support Interest and Data distinction to handle medium access

contentions. Although this adaptation is simple, the results obtained attest that link-layer

adaptations of current technologies can improve forwarding efficiency.

221

5.7. CONCLUSION

222

General Conclusion and
Perspectives

At the end of this manuscript, we shall summarize the work carried out, followed by

a discussion on its main limitations, and a typical scenario that may fully exploit the

achievements presented in this thesis. Finally, we draw up some perspectives and ongoing

work for new lines of research.

Summary

The work done in this thesis started with one main purpose which was enabling NDN

in low-end IoT environments. To achieve that, we needed a combination of complementary

tools that allowed us to achieve partial objectives, and which have now become a part of

the global work. Broadly speaking, we investigated how to take advantage of NDN for the

IoT as soon as possible. To that purpose, a realistic NDN-802.15.4 architecture has been

designed and built considering the IEEE 802.15.4 wireless technology. After identifying the

integration of NDN in the low-end IoT as the most realistic approach, the main integration

issues have been discussed, and some propositions have been made by giving another look

at some IP-based solutions for the IoT, such as 6LoWPAN. The proposed mechanisms show

the flexibility of NDN to support low-rate wireless technologies such as the IEEE 802.15.4.

The NDN-802.15.4 architecture obtained aims to shape a novel and strong NDN-IoT duo.

More importantly, lightweight NDN forwarding in wireless networks with broadcast has

been investigated. The results obtained show that we can use broadcast communications

to achieve relatively accurate forwarding decisions with reduced overhead and satisfac-

tory performance. In short, we were able to preserve the advantages of broadcast while

223

TOWARDS AN NDN PRODUCT FOR IOT

reducing its drawbacks. While investigating wireless forwarding with NDN, an environ-

ment has been developed including different but complementary evaluation tools. These

tools can provide real-world measurements, simulation results and mathematical analysis

of NDN forwarding in wireless networks. Furthermore, this evaluation environment can

be exploited again for other related purposes.

Overall, the main limitation we may identify in this work is the lack of direct per-

formance comparisons between NDN and IP. Although it could be useful, this can be

explained by several reasons. First, we greatly rely on the discussions about IP limitations

and NDN native features to show the superiority of NDN, which is indisputable in many

aspects such as security, native caching and simplicity. Second, direct comparisons between

NDN and IP are inconclusive due to the paradigm difference as discussed in Chapter 2.

Third, NDN implementations, including the one presented in this document, are still in an

experimental stage while IP-based solutions are mature and commonly industry-oriented.

Finally, the last thought to conclude about the contributions presented in this manuscript

is the following. They do not represent and end in themselves or a finalization of a work,

but rather, a starting point that paves the way for some really exciting steps. One exam-

ple is the design of an IoT product, or platform, based on NDN, as described in the next

section.

Towards an NDN Product for the IoT

In this section, we provide a simple scenario in which the work presented in this

manuscript can be used to design a PoC for an IoT product with NDN. As mentioned

in the introduction, developing a PoC may be the key to creating and commercializing an

IoT product.

First, an original idea on the service or the application to design must be found, and

an accurate use case should be defined. This can be, for example, a connected greenhouse.

A connected greenhouse is a farming facility that uses sensors to capture data on plant

growth, irrigation, pest control usage and lighting, and send it to a local or Cloud-based

server. Using collected data, a web application allows farmers to configure the system’s

224

ONGOING AND FUTURE WORK

settings and take decisions, while a mobile application generates alerts and reports on the

greenhouse’s performance. Most connected greenhouse solutions can use simple devices

which support multiple types of sensors, use low-rate wireless connectivity, consume little

power and can be inserted into soil or attached to stems. The communication between IoT

devices and the Internet can be achieved through a standard IEEE 802.15.4 mesh network,

through which nodes exchange data and forward messages sent by sensors until they reach

the gateway. Several gateways can be installed across the greenhouse, enabling sensors to

connect to the Internet and push data to the server. The cost of a custom IoT greenhouse

solution is estimated at $100-150 thousand [Andrei Klubnikin b]. The sum covers the

development of embedded systems, a web-based application and a mobile client for alert

notifications, as well as consulting services regarding the choice of hardware components.

The second step is to create a PoC. According to the above project description, our

NDN-802.15.4 architecture includes all the features needed to create a working prototype,

including security. With the working prototype, measurements and simulation results, we

believe that amazing demonstrations can be made and particular interest can be gained

from investors.

Ongoing and Future Work

At the time of writing this manuscript, work is still in progress. First, the proposed

ND-CSMA scheme has been designed for a binary-tree topology. Thus, it is not intended to

work on complex network such as grid topologies with mobility. Results obtained with the

R-LF strategy suggest that a more sophisticated CSMA adaptation should be envisioned by

exploiting R-LF information such as the cost-to-go. That is, a better forwarding strategy

may be obtained by combining the strengths of R-LF with the efficiency of ND-CSMA

to reduce round-trip time. This idea is currently being investigated. The second ongoing

work concerns the implementation of the testbed, which we aim to improve with a more

efficient NDN stack that includes lightweight PIT and FIB to reduce memory usage, for

example based on bloom filters. Finally, the last work realized in this thesis was the

analytical model for wireless forwarding with NDN. However, it is currently simple and

restricted to the basic NDN forwarding strategy in a binary-tree topology. The next step

225

ONGOING AND FUTURE WORK

is to support more complex topologies in the model. We aim to model a network topology

similar to the DAG used in RPL, and make further analytical comparisons between RPL

and NDN in a wireless mesh network. In the meantime, the NDN-OMNeT simulation

framework is getting additional features in order to provide users with more possibilities.

226

Publications

1. [Published] A. Abane, M. Daoui, S. Bouzefrane, and P. Muhlethaler. "NDN-over-

ZigBee: A ZigBee support for Named Data Networking". Future Generation Com-

puter Systems, Volume 93, Pages 792-798. March 2017.

2. [Published] A. Abane, P. Muhlethaler, M. Daoui and H. Afifi. "A Down-to-Earth

Integration of Named Data Networking in the Real-World IoT". 6th International

Conference on Future Internet of Things and Cloud Workshops. August 2018,

Barcelona (Spain).

3. [Published] A. Abane, P. Muhlethaler, S. Bouzefrane, M. Daoui, and A. Bat-

tou. "Towards evaluating named data networking for the IoT: A framework for

OMNeT++". OMNeT++ Community Meeting. September 2018, Pisa (Italy).

4. [Published] A. Abane, M. Daoui, S. Bouzefrane, S. Banerjee, and P. Muhlethaler.

"A Realistic Deployment of Named Data Networking in the Internet of Things".

Journal of Cyber Security and Mobility. June 2019.

5. [Published] A. Abane, P. Muhlethaler, S. Bouzefrane, and A. Battou. "Broadcast-

Based Yet Lightweight Forwarding for Wireless Named Data Networking". Named

Data Networking Community Meeting 2019. September 2019, Gaithersburg, MD

(USA).

6. [Published] A. Abane, M. Daoui, S. Bouzefrane, and P. Muhlethaler. "A lightweight

forwarding strategy for Named Data Networking in low-end IoT". Journal of Network

and Computer Applications. September 2019.

7. [Published] A. Abane, P. Muhlethaler, S. Bouzefrane, and A. Battou. "NDN over

227

PUBLICATIONS

IEEE 802.15.4: Modeling and Challenges". The 8th IFIP/IEEE International Con-

ference on Performance Evaluation and Modeling in Wired and Wireless Networks

(PEMWN2019).

228

Bibliography

M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera, R. L. Aguiar, and

A. V. Vasilakos. Information-centric networking for the internet of things: challenges

and opportunities. IEEE Network, 30(2):92–100, March 2016. ISSN 0890-8044. doi:

10.1109/MNET.2016.7437030.

Wikipedia. 6LoWPAN, a. URL https://fr.wikipedia.org/wiki/6LoWPAN.

RS Components Ltd. What is the Internet of Things? URL https://uk.rs-online.

com/web/generalDisplay.html?id=i/iot-internet-of-things.

Eclipse IoT White Paper. The three software stacks required for iot archi-

tectures, 2017. URL https://iot.eclipse.org/resources/white-papers/

EclipseIoTWhitePaper-TheThreeSoftwareStacks2RequiredforIoTArchitectures.

pdf.

Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. Challenges in IoT networking

via TCP/IP architecture. Technical Report NDN-0038, NDN, February 2016a.

Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.

Briggs, and Rebecca L. Braynard. Networking named content. In Proceedings of the

5th International Conference on Emerging Networking Experiments and Technologies,

CoNEXT ’09, pages 1–12, New York, NY, USA, 2009a. ACM. ISBN 978-1-60558-

636-6. doi: 10.1145/1658939.1658941. URL http://doi.acm.org/10.1145/1658939.

1658941.

Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick Crow-

229

https://fr.wikipedia.org/wiki/6LoWPAN
https://uk.rs-online.com/web/generalDisplay.html?id=i/iot-internet-of-things
https://uk.rs-online.com/web/generalDisplay.html?id=i/iot-internet-of-things
https://iot.eclipse.org/resources/white-papers/Eclipse IoT White Paper - The Three Software Stacks 2Required for IoT Architectures.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse IoT White Paper - The Three Software Stacks 2Required for IoT Architectures.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse IoT White Paper - The Three Software Stacks 2Required for IoT Architectures.pdf
http://doi.acm.org/10.1145/1658939.1658941
http://doi.acm.org/10.1145/1658939.1658941

BIBLIOGRAPHY

ley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. Named Data Networking.

ACM SIG-COMM Computer Communication Review, 44(3):66–77, July 2014.

Marica Amadeo, Claudia Campolo, Antonio Iera, and Antonella Molinaro. "named data

networking for iot: an architectural perspective". Conference on European Networks

and Communications (EuCNC), pages 1–5, June 2014a.

W. Shang, A. Afanasyev, and L. Zhang. The design and implementation of the ndn

protocol stack for riot-os. In 2016 IEEE Globecom Workshops (GC Wkshps), pages 1–6,

Dec 2016b. doi: 10.1109/GLOCOMW.2016.7849061.

Wikipedia. Ad-hoc On-demand Distance Vector, b. URL https://fr.wikipedia.org/

wiki/Ad-hoc_On-demand_Distance_Vector.

Meisel Michael, Pappas Vasileios, and Zhang Lixia. Listen first, broadcast later: Topology-

agnostic forwarding under high dynamics. In Annual conference of international tech-

nology alliance in network and information science, 2010.

Andrei Klubnikin. Internet of things: How much does it cost to build

iot solution?, a. URL https://r-stylelab.com/company/blog/iot/

internet-of-things-how-much-does-it-cost-to-build-iot-solution.

IoT online store. IoT by Numbers. URL http://www.iotonlinestore.com/

IoT-by-Numbers/10.

Hemendra Singh. How much does it cost to develop an iot application? URL http://

customerthink.com/how-much-does-it-cost-to-develop-an-iot-application/.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. "the internet of things: A survey".

Computer Networks Elsevier, pages 2787–2805, 2010.

LoRa Alliance. "website LoRa Alliance". URL https://www.lora-alliance.org/.

Sigfox. "website Sigfox". URL http://www.sigfox.com/.

Andrei Klubnikin. IoT Agriculture: How to Build Smart Green-

house?, b. URL https://r-stylelab.com/company/blog/iot/

iot-agriculture-how-to-build-smart-greenhouse.

230

https://fr.wikipedia.org/wiki/Ad-hoc_On-demand_Distance_Vector
https://fr.wikipedia.org/wiki/Ad-hoc_On-demand_Distance_Vector
https://r-stylelab.com/company/blog/iot/internet-of-things-how-much-does-it-cost-to-build-iot-solution
https://r-stylelab.com/company/blog/iot/internet-of-things-how-much-does-it-cost-to-build-iot-solution
http://www.iotonlinestore.com/IoT-by-Numbers/10
http://www.iotonlinestore.com/IoT-by-Numbers/10
http://customerthink.com/how-much-does-it-cost-to-develop-an-iot-application/
http://customerthink.com/how-much-does-it-cost-to-develop-an-iot-application/
https://www.lora-alliance.org/
http://www.sigfox.com/
https://r-stylelab.com/company/blog/iot/iot-agriculture-how-to-build-smart-greenhouse
https://r-stylelab.com/company/blog/iot/iot-agriculture-how-to-build-smart-greenhouse

BIBLIOGRAPHY

John Mueller. "Understanding SOAP and REST Basics And Differ-

ences", 2013. URL https://smartbear.com/blog/test-and-monitor/

understanding-soap-and-rest-basics/.

Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application Protocol

(CoAP). RFC 7252, June 2014. URL https://rfc-editor.org/rfc/rfc7252.txt.

Klaus Hartke. Observing Resources in the Constrained Application Protocol (CoAP).

RFC 7641, September 2015. URL https://rfc-editor.org/rfc/rfc7641.txt.

OASIS.

IBM. Mqtt for sensor networks (mqtt-sn), 2013. URL http://www.mqtt.org/new/

wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf.

ZigBee Alliance. "what is ZigBee?". URL http://www.zigbee.org/what-is-zigbee/.

Carsten Bormann, Mehmet Ersue, and Ari Keränen. Terminology for Constrained-Node

Networks. RFC 7228, May 2014. URL https://rfc-editor.org/rfc/rfc7228.txt.

Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore Kushalnagar. Trans-

mission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944, September 2007.

URL https://rfc-editor.org/rfc/rfc4944.txt.

Lars-Erik Jonsson, Kristofer Sandlund, and Ghyslain Pelletier. RObust Header Compres-

sion (ROHC): ROHC over Channels That Can Reorder Packets. RFC 4224, January

2006. URL https://rfc-editor.org/rfc/rfc4224.txt.

Roger Alexander, Anders Brandt, JP Vasseur, Jonathan Hui, Kris Pister, Pascal Thubert,

P Levis, Rene Struik, Richard Kelsey, and Tim Winter. RPL: IPv6 Routing Protocol for

Low-Power and Lossy Networks. RFC 6550, March 2012. URL https://rfc-editor.

org/rfc/rfc6550.txt.

Hanane Lamaazi, Nabil Benamar, and Antonio J. Jara. Rpl-based networks in static

and mobile environment: A performance assessment analysis. Journal of King Saud

University - Computer and Information Sciences, 30(3):320 – 333, 2018. ISSN 1319-1578.

231

https://smartbear.com/blog/test-and-monitor/understanding-soap-and-rest-basics/
https://smartbear.com/blog/test-and-monitor/understanding-soap-and-rest-basics/
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7641.txt
http://www.mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://www.mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://www.zigbee.org/what-is-zigbee/
https://rfc-editor.org/rfc/rfc7228.txt
https://rfc-editor.org/rfc/rfc4944.txt
https://rfc-editor.org/rfc/rfc4224.txt
https://rfc-editor.org/rfc/rfc6550.txt
https://rfc-editor.org/rfc/rfc6550.txt

BIBLIOGRAPHY

doi: https://doi.org/10.1016/j.jksuci.2017.04.001. URL http://www.sciencedirect.

com/science/article/pii/S1319157816301574.

Stuart Cheshire and Marc Krochmal. DNS-Based Service Discovery. RFC 6763, February

2013. URL https://rfc-editor.org/rfc/rfc6763.txt.

Kerry Lynn, Peter Van der Stok, Michael Koster, and Christian Amsüss. CoRE Resource

Directory: DNS-SD mapping. Internet-Draft draft-ietf-core-rd-dns-sd-04, Internet En-

gineering Task Force, March 2019. URL https://datatracker.ietf.org/doc/html/

draft-ietf-core-rd-dns-sd-04. Work in Progress.

Michael Meisel, Vasileios Pappas, and Lixia Zhang. Ad hoc networking via named data.

In Proceedings of the Fifth ACM International Workshop on Mobility in the Evolving

Internet Architecture, MobiArch ’10, pages 3–8, New York, NY, USA, 2010. ACM.

ISBN 978-1-4503-0143-5. doi: 10.1145/1859983.1859986. URL http://doi.acm.org/

10.1145/1859983.1859986.

Charles E. Perkins. IP Mobility Support for IPv4. RFC 3344, August 2002. URL https:

//rfc-editor.org/rfc/rfc3344.txt.

Sanjit Biswas and Robert Morris. Exor: Opportunistic multi-hop routing for wireless

networks. In Proceedings of the 2005 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communications, SIGCOMM ’05, pages 133–144,

New York, NY, USA, 2005. ACM. ISBN 1-59593-009-4. doi: 10.1145/1080091.1080108.

URL http://doi.acm.org/10.1145/1080091.1080108.

Sheila Frankel and Suresh Krishnan. IP Security (IPsec) and Internet Key Exchange (IKE)

Document Roadmap. RFC 6071, February 2011. URL https://rfc-editor.org/rfc/

rfc6071.txt.

Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2.

RFC 5246, August 2008. URL https://rfc-editor.org/rfc/rfc5246.txt.

Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security Version 1.2.

RFC 6347, January 2012. URL https://rfc-editor.org/rfc/rfc6347.txt.

232

http://www.sciencedirect.com/science/article/pii/S1319157816301574
http://www.sciencedirect.com/science/article/pii/S1319157816301574
https://rfc-editor.org/rfc/rfc6763.txt
https://datatracker.ietf.org/doc/html/draft-ietf-core-rd-dns-sd-04
https://datatracker.ietf.org/doc/html/draft-ietf-core-rd-dns-sd-04
http://doi.acm.org/10.1145/1859983.1859986
http://doi.acm.org/10.1145/1859983.1859986
https://rfc-editor.org/rfc/rfc3344.txt
https://rfc-editor.org/rfc/rfc3344.txt
http://doi.acm.org/10.1145/1080091.1080108
https://rfc-editor.org/rfc/rfc6071.txt
https://rfc-editor.org/rfc/rfc6071.txt
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc6347.txt

BIBLIOGRAPHY

Göran Selander, John Mattsson, Francesca Palombini, and Ludwig Seitz. Object Se-

curity for Constrained RESTful Environments (OSCORE). Internet-Draft draft-ietf-

core-object-security-16, Internet Engineering Task Force, March 2019. URL https:

//datatracker.ietf.org/doc/html/draft-ietf-core-object-security-16. Work

in Progress.

Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Börje

Ohlman. "A Survey of Information-Centric Networking". IEEE Communications Mag-

azine, 50(7):26–36, July 2012.

Dirk Kutscher, Suyong Eum, Kostas Pentikousis, Ioannis Psaras, Daniel Corujo, Damien

Saucez, Thomas C. Schmidt, and Matthias Wählisch. Information-Centric Networking

(ICN) Research Challenges. RFC 7927, July 2016. URL https://rfc-editor.org/

rfc/rfc7927.txt.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A survey of

information-centric networking. IEEE Communications Magazine, 50(7):26–36, July

2012. ISSN 0163-6804. doi: 10.1109/MCOM.2012.6231276.

G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.

Katsaros, and G. C. Polyzos. A survey of information-centric networking research. IEEE

Communications Surveys Tutorials, 16(2):1024–1049, Second 2014. ISSN 1553-877X.

doi: 10.1109/SURV.2013.070813.00063.

Brent Baccala. Data-oriented networking. Internet-Draft draft-baccala-data-networking-

00, Internet Engineering Task Force, August 2002. URL https://datatracker.ietf.

org/doc/html/draft-baccala-data-networking-00. Work in Progress.

Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun Kim,

Scott Shenker, and Ion Stoica. A data-oriented (and beyond) network architecture.

SIGCOMM Comput. Commun. Rev., 37(4):181–192, August 2007. ISSN 0146-4833. doi:

10.1145/1282427.1282402. URL http://doi.acm.org/10.1145/1282427.1282402.

Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.

Briggs, and Rebecca L. Braynard. Networking named content. In Proceedings of the

233

https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-16
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-16
https://rfc-editor.org/rfc/rfc7927.txt
https://rfc-editor.org/rfc/rfc7927.txt
https://datatracker.ietf.org/doc/html/draft-baccala-data-networking-00
https://datatracker.ietf.org/doc/html/draft-baccala-data-networking-00
http://doi.acm.org/10.1145/1282427.1282402

BIBLIOGRAPHY

5th International Conference on Emerging Networking Experiments and Technologies,

CoNEXT ’09, pages 1–12, New York, NY, USA, 2009b. ACM. ISBN 978-1-60558-

636-6. doi: 10.1145/1658939.1658941. URL http://doi.acm.org/10.1145/1658939.

1658941.

Lixia Zhang, Deborah Estrin, and Jeffrey Burke. "named data networking NDN project".

Technical Report NDN-0001, NDN, October 2010. URL http://named-data.net/

techreports.html.

NDN Website. NDN Protocol Design Principles. URL https://named-data.net/

project/ndn-design-principles/.

NDN Team. "NDN Packet Format Specification". URL http://named-data.net/doc/

NDN-packet-spec/current/.

NDN Project Team. "NDN technical memo: Naming conventions". Technical Report

NDN-0022, NDN, July 2014. URL https://named-data.net/wp-content/uploads/

2014/08/ndn-tr-22-ndn-memo-naming-conventions.pdf.

Alexander Afanasyev, Junxiao Shi, Lan Wang, Beichuan Zhang, and Lixia Zhang. Packet

fragmentation in NDN: Why NDN uses hop-by-hop fragmentation. Technical Report

0032, NDN, May 2015. URL https://named-data.net/publications/techreports/

ndn-0032-1-ndn-memo-fragmentation/.

Junxiao Shi and Beichuan Zhang. NDNLP: A Link Protocol for NDN. Technical Report

NDN-0006, NDN, July 2012.

Marc Mosko and Christian Tschudin. ICN "Begin-End" Hop by Hop Fragmen-

tation. Internet-Draft draft-mosko-icnrg-beginendfragment-02, Internet Engineer-

ing Task Force, December 2016. URL https://datatracker.ietf.org/doc/html/

draft-mosko-icnrg-beginendfragment-02. Work in Progress.

B. Etefia, M. Gerla, and L. Zhang. Supporting military communications with named data

networking: An emulation analysis. In MILCOM 2012 - 2012 IEEE Military Commu-

nications Conference, pages 1–6, Oct 2012. doi: 10.1109/MILCOM.2012.6415685.

234

http://doi.acm.org/10.1145/1658939.1658941
http://doi.acm.org/10.1145/1658939.1658941
http://named-data.net/techreports.html
http://named-data.net/techreports.html
https://named-data.net/project/ndn-design-principles/
https://named-data.net/project/ndn-design-principles/
http://named-data.net/doc/NDN-packet-spec/current/
http://named-data.net/doc/NDN-packet-spec/current/
https://named-data.net/wp-content/uploads/2014/08/ndn-tr-22-ndn-memo-naming-conventions.pdf
https://named-data.net/wp-content/uploads/2014/08/ndn-tr-22-ndn-memo-naming-conventions.pdf
https://named-data.net/publications/techreports/ndn-0032-1-ndn-memo-fragmentation/
https://named-data.net/publications/techreports/ndn-0032-1-ndn-memo-fragmentation/
https://datatracker.ietf.org/doc/html/draft-mosko-icnrg-beginendfragment-02
https://datatracker.ietf.org/doc/html/draft-mosko-icnrg-beginendfragment-02

BIBLIOGRAPHY

Gareth Tyson, Nishanth Sastry, Ivica Rimac, Ruben Cuevas, and Andreas Mauthe. A sur-

vey of mobility in information-centric networks: Challenges and research directions. In

Proceedings of the 1st ACM Workshop on Emerging Name-Oriented Mobile Networking

Design - Architecture, Algorithms, and Applications, NoM ’12, pages 1–6, New York,

NY, USA, 2012. ACM. ISBN 978-1-4503-1291-2. doi: 10.1145/2248361.2248363. URL

http://doi.acm.org/10.1145/2248361.2248363.

Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, and Lixia Zhang.

"schematizing trust in named data networking". In The ACM Conf. on Information-

Centric Networking (ICN’15), pages 177–186, 2015.

Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li, A. Afanasyev, and

L. Zhang. An overview of security support in named data networking. IEEE

Communications Magazine, 56(11):62–68, November 2018. ISSN 0163-6804. doi:

10.1109/MCOM.2018.1701147.

Divya Saxena, Vaskar Raychoudhury, Neeraj Suri, Christian Becker, and Jiannong Cao.

Named data networking: A survey. Computer Science Review, 19:15 – 55, 2016.

ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2016.01.001. URL http://www.

sciencedirect.com/science/article/pii/S1574013715300599.

S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo. Recent advances in information-

centric networking based internet of things (icn-iot). IEEE Internet of Things Journal,

pages 1–1, 2019. ISSN 2327-4662. doi: 10.1109/JIOT.2018.2873343.

Wentao Shang, Adeola Bannisy, Teng Liangz, Zhehao Wangx, Yingdi Yu, Alexander

Afanasyev, Jeff Thompsonx, Jeff Burkex, Beichuan Zhangz, and Lixia Zhang. Named

Data Networking of Things (Invited paper). In The 1st IEEE Intl. Conf. on Internet-

of-Things Design and Implementation, Berlin, Germany, April 2016c. URL https:

//named-data.net/publications/ndn-iotdi-2016/.

Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C. Schmidt, and Matthias

Wählisch. Information centric networking in the iot: Experiments with ndn in the wild.

In Proceedings of the 1st ACM Conference on Information-Centric Networking, ACM-

235

http://doi.acm.org/10.1145/2248361.2248363
http://www.sciencedirect.com/science/article/pii/S1574013715300599
http://www.sciencedirect.com/science/article/pii/S1574013715300599
https://named-data.net/publications/ndn-iotdi-2016/
https://named-data.net/publications/ndn-iotdi-2016/

BIBLIOGRAPHY

ICN ’14, pages 77–86, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3206-4. doi:

10.1145/2660129.2660144. URL http://doi.acm.org/10.1145/2660129.2660144.

E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann, M. S. Lenders, H. Petersen,

K. Schleiser, T. C. Schmidt, and M. Wählisch. Riot: An open source operating sys-

tem for low-end embedded devices in the iot. IEEE Internet of Things Journal, 5(6):

4428–4440, Dec 2018. doi: 10.1109/JIOT.2018.2815038.

Cenk Gündogan, Peter Kietzmann, Martine S. Lenders, Hauke Petersen, Thomas C.

Schmidt, and Matthias Wählisch. Ndn, coap, and mqtt: A comparative measurement

study in the iot. CoRR, abs/1806.01444, 2018a.

Antonio Carzaniga, Michele Papalini, and Alexander L. Wolf. Content-based pub-

lish/subscribe networking and information-centric networking. In Proceedings of the

ACM SIGCOMM Workshop on Information-centric Networking, ICN ’11, pages 56–61,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0801-4. doi: 10.1145/2018584.

2018599. URL http://doi.acm.org/10.1145/2018584.2018599.

Marica Amadeo, Claudia Campolo, and Antonella Molinaro. "internet of things via named

data networking: The support of push traffic". In International Conference and Work-

shop on the Network of the Future (NOF), pages 1–5, 2014b.

Wentao Shang, Yingdi Yu, Teng Liangy, Beichuan Zhangy, and Lixia Zhang. "NDN-ACE:

Access control for constrained environments over named data networking". Technical Re-

port NDN-0036, NDN, December 2015. URL https://named-data.net/wp-content/

uploads/2015/12/ndn-0036-1-ndn-ace.pdf.

G. Grassi, D. Pesavento, G. Pau, R. Vuyyuru, R. Wakikawa, and L. Zhang. Vanet via

named data networking. In 2014 IEEE Conference on Computer Communications Work-

shops (INFOCOM WKSHPS), pages 410–415, April 2014. doi: 10.1109/INFCOMW.

2014.6849267.

Loïc Dauphin, Emmanuel Baccelli, Cedric Adjih, and Hauke Petersen. NDN-based IoT

Robotics. ACM ICN’17 - 4th ACM Conference on Information-Centric Networking,

September 2017. URL https://hal.inria.fr/hal-01666539. Poster.

236

http://doi.acm.org/10.1145/2660129.2660144
http://doi.acm.org/10.1145/2018584.2018599
https://named-data.net/wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdf
https://named-data.net/wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdf
https://hal.inria.fr/hal-01666539

BIBLIOGRAPHY

Cenk Gündogan, Peter Kietzmann, Thomas C. Schmidt, Martine Lenders, Hauke Pe-

tersen, Matthias Wählisch, Michael Frey, and Felix Shzu-Juraschek. Information-

centric networking for the industrial iot. In Proceedings of the 4th ACM Confer-

ence on Information-Centric Networking, ICN ’17, pages 214–215, New York, NY,

USA, 2017. ACM. ISBN 978-1-4503-5122-5. doi: 10.1145/3125719.3132099. URL

http://doi.acm.org/10.1145/3125719.3132099.

Marica Amadeo, Claudia Campolo, Antonella Molinaro, and Giuseppe Ruggeri. Content-

centric wireless networking: A survey. Computer Networks, 72:1 – 13, 2014c. ISSN

1389-1286. doi: https://doi.org/10.1016/j.comnet.2014.07.003. URL http://www.

sciencedirect.com/science/article/pii/S1389128614002497.

G. Grassi, D. Pesavento, G. Pau, L. Zhang, and S. Fdida. Navigo: Interest forwarding

by geolocations in vehicular named data networking. In 2015 IEEE 16th International

Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),

pages 1–10, June 2015. doi: 10.1109/WoWMoM.2015.7158165.

Z. Ren, M. A. Hail, and H. Hellbrück. CCN-WSN - A lightweight, flexible Content-Centric

Networking protocol for wireless sensor networks. In 2013 IEEE Eighth International

Conference on Intelligent Sensors, Sensor Networks and Information Processing, pages

123–128, April 2013. doi: 10.1109/ISSNIP.2013.6529776.

M. Amadeo, C. Campolo, A. Molinaro, and N. Mitton. Named data networking: A natural

design for data collection in wireless sensor networks. In 2013 IFIP Wireless Days (WD),

pages 1–6, Nov 2013. doi: 10.1109/WD.2013.6686486.

M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer. Caching in named data networking

for the wireless internet of things. In 2015 International Conference on Recent Advances

in Internet of Things (RIoT), pages 1–6, April 2015. doi: 10.1109/RIOT.2015.7104902.

J. Shi, E. Newberry, and B. Zhang. On broadcast-based self-learning in named data

networking. In 2017 IFIP Networking Conference (IFIP Networking) and Workshops,

pages 1–9, June 2017.

237

http://doi.acm.org/10.1145/3125719.3132099
http://www.sciencedirect.com/science/article/pii/S1389128614002497
http://www.sciencedirect.com/science/article/pii/S1389128614002497

BIBLIOGRAPHY

Peter Kietzmann, Cenk Gündogan, Thomas C. Schmidt, Oliver Hahm, and Matthias

Wählisch. The Need for a Name to MAC Address Mapping in NDN: Towards Quan-

tifying the Resource Gain. In ACM ICN 2017 - 4th ACM Conference on Information-

Centric Networking , Berlin, Germany, September 2017. URL https://hal.inria.fr/

hal-01666601.

Junxiao Shi, Teng Liang, Hao Wu, Bin Liu, and Beichuan Zhang. Ndn-nic: Name-based

filtering on network interface card. In ICN, 2016.

Lucas Wang, Alexander Afanasyev, Romain Kuntz, Rama Vuyyuru, Ryuji Wakikawa, and

Lixia Zhang. Rapid traffic information dissemination using named data. In Proceedings

of the 1st ACM Workshop on Emerging Name-Oriented Mobile Networking Design -

Architecture, Algorithms, and Applications, NoM ’12, pages 7–12, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1291-2. doi: 10.1145/2248361.2248365. URL http:

//doi.acm.org/10.1145/2248361.2248365.

Carofiglio G., Morabito G., Muscariello L., Solis I., and Varvello M. From content delivery

today to information centric networking. Computer Networks, 57(16):3116 – 3127, 2013.

ISSN 1389-1286. doi: https://doi.org/10.1016/j.comnet.2013.07.002. URL http://www.

sciencedirect.com/science/article/pii/S1389128613002156. Information Centric

Networking.

WANG Guo-qing, HUANG Tao, LIU Jiang, CHEN Jian-ya, and LIU Yun-jie. Modeling in-

network caching and bandwidth sharing performance in information-centric networking.

The Journal of China Universities of Posts and Telecommunications, 20(2):99 – 105,

2013. ISSN 1005-8885. doi: https://doi.org/10.1016/S1005-8885(13)60035-7. URL

http://www.sciencedirect.com/science/article/pii/S1005888513600357.

Ren Yongmao, Li Jun, Li Lingling, Shi Shanshan, Zhi Jiang, and Wu Haibo. Model-

ing content transfer performance in information-centric networking. Future Generation

Computer Systems, 74:12 – 19, 2017. ISSN 0167-739X. doi: https://doi.org/10.1016/

j.future.2017.04.013. URL http://www.sciencedirect.com/science/article/pii/

S0167739X17305861.

238

https://hal.inria.fr/hal-01666601
https://hal.inria.fr/hal-01666601
http://doi.acm.org/10.1145/2248361.2248365
http://doi.acm.org/10.1145/2248361.2248365
http://www.sciencedirect.com/science/article/pii/S1389128613002156
http://www.sciencedirect.com/science/article/pii/S1389128613002156
http://www.sciencedirect.com/science/article/pii/S1005888513600357
http://www.sciencedirect.com/science/article/pii/S0167739X17305861
http://www.sciencedirect.com/science/article/pii/S0167739X17305861

BIBLIOGRAPHY

Udugama A, Palipana S., and Goerg C. Analytical characterisation of multi-path content

delivery in content centric networks. In 2013 Conference on Future Internet Communi-

cations (CFIC), pages 1–7, May 2013. doi: 10.1109/CFIC.2013.6566319.

Carofiglio G., Gallo M., Muscariello L., and Perino D. Modeling data transfer in content-

centric networking. In 2011 23rd International Teletraffic Congress (ITC), pages 111–

118, Sep. 2011.

NDN. NFD - Named Data Networking Forwarding Daemon, a. URL http://named-data.

net/doc/NFD/current/.

NDN. Named Data Network Internet of Things Toolkit (NDN-IoTT), b. URL https:

//github.com/remap/ndn-pi.

Wentao Shang, Qiuhan Ding, Alessandro Marianantoni, Jeff Burke, and Lixia Zhang.

Securing building management systems using named data networking. IEEE Network

Journal, 28(3):50–56, 2014.

NDN. NDN Common Client Libraries (NDN-CCL) Documentation, c. URL https:

//named-data.net/codebase/platform/ndn-ccl/.

NDN. ndn-tools, d. URL https://github.com/named-data/ndn-tools.

NDN. NDN Testbed status page, e. URL http://ndndemo.arl.wustl.edu/.

Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnsim: ndn simulator for ns-3.

01 2012.

NDN. What is Mini-NDN?, f. URL http://minindn.memphis.edu/.

George Xylomenos, Yannis Thomas, Xenofon Vasilakos, Michael Georgiades, Alexander

Phinikarides, Ioannis Doumanis, Stuart Porter, Dirk Trossen, Sebastian Robitzsch, Mar-

tin J. Reed, Mays F. Al-Naday, George Petropoulos, Konstantinos V. Katsaros, Maria-

Evgenia Xezonaki, and Janne Riihijärvi. IP over ICN goes live. CoRR, abs/1804.07511,

2018. URL http://arxiv.org/abs/1804.07511.

239

http://named-data.net/doc/NFD/current/
http://named-data.net/doc/NFD/current/
https://github.com/remap/ndn-pi
https://github.com/remap/ndn-pi
https://named-data.net/codebase/platform/ndn-ccl/
https://named-data.net/codebase/platform/ndn-ccl/
https://github.com/named-data/ndn-tools
http://ndndemo.arl.wustl.edu/
http://minindn.memphis.edu/
http://arxiv.org/abs/1804.07511

BIBLIOGRAPHY

Luca Muscariello, Giovanna Carofiglio, Jordan Auge, and Michele Papalini. Hybrid

Information-Centric Networking. Internet-Draft draft-muscariello-intarea-hicn-01, In-

ternet Engineering Task Force, December 2018. URL https://datatracker.ietf.

org/doc/html/draft-muscariello-intarea-hicn-01. Work in Progress.

H. Wu, J. Shi, Y. Wang, Y. Wang, G. Zhang, Y. Wang, B. Liu, and B. Zhang. On

incremental deployment of named data networking in local area networks. In 2017

ACM/IEEE Symposium on Architectures for Networking and Communications Systems

(ANCS), pages 82–94, May 2017. doi: 10.1109/ANCS.2017.18.

Teng Liang, Ju Pan, and Beichuan Zhang. Ndnizing existing applications: Research issues

and experiences. In 5th ACM Conference onInformation-Centric Networking (ICN ’18),

September 2018. doi: 10.1145/3267955.3267969.

IEEE. Ieee standard for information technology—telecommunications and information

exchange between systems local and metropolitan area networks—specific requirements

- part 11: Wireless lan medium access control (mac) and physical layer (phy) specifica-

tions. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pages 1–3534, Dec

2016. doi: 10.1109/IEEESTD.2016.7786995.

IEEE. Ieee standard for local and metropolitan area networks–part 15.4: Low-rate wireless

personal area networks (lr-wpans). IEEE Std 802.15.4-2011 (Revision of IEEE Std

802.15.4-2006), pages 1–314, Sep. 2011. doi: 10.1109/IEEESTD.2011.6012487.

IEEE. Ieee standard for information technology– local and metropolitan area networks–

specific requirements– part 15.1a: Wireless medium access control (mac) and physical

layer (phy) specifications for wireless personal area networks (wpan). IEEE Std 802.15.1-

2005 (Revision of IEEE Std 802.15.1-2002), pages 1–700, June 2005. doi: 10.1109/

IEEESTD.2005.96290.

IEEE. Ieee draft trial-use standard for wireless access in vehicular environments (wave) -

resource manager. IEEE Std P1609.1/D17, Jul 2006, pages 1–66, April 2019.

PrithviRaj Narendra, Simon Duquennoy, and Thiemo Voigt. Ble and ieee 802.15.4 in

the iot: Evaluation and interoperability considerations. In Benny Mandler, Johann

240

https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-01
https://datatracker.ietf.org/doc/html/draft-muscariello-intarea-hicn-01

BIBLIOGRAPHY

Marquez-Barja, Miguel Elias Mitre Campista, Dagmar Cagáňová, Hakima Chaouchi,

Sherali Zeadally, Mohamad Badra, Stefano Giordano, Maria Fazio, Andrey Somov, and

Radu-Laurentiu Vieriu, editors, Internet of Things. IoT Infrastructures, pages 427–438,

Cham, 2016. Springer International Publishing. ISBN 978-3-319-47075-7.

Thomas Watteyne, Maria Rita Palattella, and Luigi Alfredo Grieco. Using IEEE 802.15.4e

Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem State-

ment. RFC 7554, May 2015. URL https://rfc-editor.org/rfc/rfc7554.txt.

Pascal Thubert. An Architecture for IPv6 over the TSCH mode of IEEE

802.15.4. Internet-Draft draft-ietf-6tisch-architecture-20, Internet Engineering

Task Force, March 2019. URL https://datatracker.ietf.org/doc/html/

draft-ietf-6tisch-architecture-20. Work in Progress.

Matti Siekkinen, Markus Hiienkari, Jukka K. Nurminen, and Johanna Nieminen. How

low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4,

pages 232–237. 2012. ISBN 978-1-4673-0682-9. doi: 10.1109/WCNCW.2012.6215496.

Arjun Attam and Ilya Moiseenkoy. "NDNBlue: NDN over bluetooth". Technical Report

NDN-0015, November 2013. URL http://named-data.net/techreports.html.

Hauke Petersen, Peter Kietzmann, Thomas C. Schmidt, and Matthias Wählisch. Ndn

meets ble: A transparent gateway for opening ndn-over-ble networks to your smart-

phone. In Proceedings of the 6th ACM Conference on Information-Centric Network-

ing, ICN ’19, pages 175–176, New York, NY, USA, 2019a. ACM. ISBN 978-1-4503-

6970-1. doi: 10.1145/3357150.3357411. URL http://doi.acm.org/10.1145/3357150.

3357411.

Hauke Petersen, Peter Kietzmann, Cenk Gündoğnan, Thomas C. Schmidt, and Matthias

Wählisch. Bluetooth mesh under the microscope: How much icn is inside? In Proceedings

of the 6th ACM Conference on Information-Centric Networking, ICN ’19, pages 134–

140, New York, NY, USA, 2019b. ACM. ISBN 978-1-4503-6970-1. doi: 10.1145/3357150.

3357398. URL http://doi.acm.org/10.1145/3357150.3357398.

241

https://rfc-editor.org/rfc/rfc7554.txt
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-architecture-20
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-architecture-20
http://named-data.net/techreports.html
http://doi.acm.org/10.1145/3357150.3357411
http://doi.acm.org/10.1145/3357150.3357411
http://doi.acm.org/10.1145/3357150.3357398

BIBLIOGRAPHY

Van Jackobson. Compressing TCP/IP Headers for Low-Speed Serial Links. RFC 1144,

February 1990. URL https://rfc-editor.org/rfc/rfc1144.txt.

Cenk Gündoğran, Peter Kietzmann, Thomas C. Schmidt, and Matthias Wählisch. Icn-

lowpan: Header compression for the constrained iot. In Proceedings of the 5th ACM

Conference on Information-Centric Networking, ICN ’18, pages 184–185, New York,

NY, USA, 2018. ACM. ISBN 978-1-4503-5959-7. doi: 10.1145/3267955.3269006. URL

http://doi.acm.org/10.1145/3267955.3269006.

Cenk Gündogan, Peter Kietzmann, Thomas C. Schmidt, and Matthias Wählisch. Icn-

lowpan - named-data networking for low power iot networks. 2019 IFIP Networking

Conference (IFIP Networking), pages 1–9, 2018b.

Oliver Hahm, Emmanuel Baccelli, Thomas C. Schmidt, Matthias Wählisch, Cédric Adjih,

and Laurent Massoulié. Low-power internet of things with ndn & cooperative

caching. In Proceedings of the 4th ACM Conference on Information-Centric Networking,

ICN ’17, pages 98–108, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5122-5. doi:

10.1145/3125719.3125732. URL http://doi.acm.org/10.1145/3125719.3125732.

X. Xu, H. Zhang, T. Li, and L. Zhang. Achieving resilient data availability in wireless

sensor networks. In 2018 IEEE International Conference on Communications Workshops

(ICC Workshops), pages 1–6, May 2018. doi: 10.1109/ICCW.2018.8403581.

C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-Gibollet,

F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne. Fit iot-lab: A large scale

open experimental iot testbed. In 2015 IEEE 2nd World Forum on Internet of Things

(WF-IoT), pages 459–464, Dec 2015. doi: 10.1109/WF-IoT.2015.7389098.

Wikipedia. "Raspberry Pi". URL https://en.wikipedia.org/wiki/Raspberry_Pi.

Digi International Inc. XBee/XBee-PRO DigiMesh 2.4 OEM RF modules. Tech-

nical report, Digi International, 2008. URL http://www.digi.com/products/

xbee-rf-solutions/modules/xbee-802-15-4.

Cody-Kenny Brendan, Guerin David, Ennis Desmond, Simon Carbajo Ricardo, Huggard

Meriel, and Mc Goldrick Ciaran. Performance evaluation of the 6lowpan protocol on

242

https://rfc-editor.org/rfc/rfc1144.txt
http://doi.acm.org/10.1145/3267955.3269006
http://doi.acm.org/10.1145/3125719.3125732
https://en.wikipedia.org/wiki/Raspberry_Pi
http://www.digi.com/products/xbee-rf-solutions/modules/xbee-802-15-4
http://www.digi.com/products/xbee-rf-solutions/modules/xbee-802-15-4

BIBLIOGRAPHY

micaz and telosb motes. In Proceedings of the 4th ACM Workshop on Performance Mon-

itoring and Measurement of Heterogeneous Wireless and Wired Networks, PM2HW2N

’09, pages 25–30, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-621-2. doi:

10.1145/1641913.1641917. URL http://doi.acm.org/10.1145/1641913.1641917.

G. Gardasevic, S. Mijovic, A. Stajkic, and C. Buratti. On the performance of 6lowpan

through experimentation. In 2015 International Wireless Communications and Mobile

Computing Conference (IWCMC), pages 696–701, Aug 2015. doi: 10.1109/IWCMC.

2015.7289168.

C. Gibson, P. Bermell-Garcia, K. Chan, B. Ko, A. Afanasyev, and L. Zhang.

Opportunities and challenges for named data networking to increase the agility

of military coalitions. In 2017 IEEE SmartWorld, Ubiquitous Intelligence Com-

puting, Advanced Trusted Computed, Scalable Computing Communications, Cloud

Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6, Aug 2017. doi: 10.

1109/UIC-ATC.2017.8397416.

OMNet++. OMNeT++ discrete event simulator. URL https://www.omnetpp.org/.

INET. "INET Framework". URL https://inet.omnetpp.org/.

Spyridon Mastorakis, Kevin Chan, Bongjun Ko, Alexander Afanasyev, and Lixia Zhang.

Experimentation with fuzzy interest forwarding in named data networking. CoRR,

abs/1802.03072, 2018. URL http://arxiv.org/abs/1802.03072.

Marica Amadeo, Claudia Campolo, and Antonella Molinaro. Forwarding strategies in

named data wireless ad hoc networks: Design and evaluation. Journal of Network

and Computer Applications, 50(Supplement C):148 – 158, 2015. ISSN 1084-8045.

doi: https://doi.org/10.1016/j.jnca.2014.06.007. URL http://www.sciencedirect.

com/science/article/pii/S1084804514001404.

L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web caching and zipf-like

distributions: evidence and implications. In IEEE INFOCOM ’99. Conference on Com-

puter Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE

243

http://doi.acm.org/10.1145/1641913.1641917
https://www.omnetpp.org/
https://inet.omnetpp.org/
http://arxiv.org/abs/1802.03072
http://www.sciencedirect.com/science/article/pii/S1084804514001404
http://www.sciencedirect.com/science/article/pii/S1084804514001404

BIBLIOGRAPHY

Computer and Communications Societies. The Future is Now (Cat. No.99CH36320),

volume 1, pages 126–134 vol.1, March 1999. doi: 10.1109/INFCOM.1999.749260.

Samir R. Das, Charles E. Perkins, and Elizabeth M. Belding-Royer. Ad hoc On-Demand

Distance Vector (AODV) Routing. RFC 3561, July 2003. URL https://rfc-editor.

org/rfc/rfc3561.txt.

Y. T. Yu, R. B. Dilmaghani, S. Calo, M. Y. Sanadidi, and M. Gerla. Interest propagation

in named data manets. In 2013 International Conference on Computing, Networking

and Communications (ICNC), pages 1118–1122, Jan 2013. doi: 10.1109/ICCNC.2013.

6504249.

Justin A. Boyan and Michael L. Littman. Packet routing in dynamically changing

networks: A reinforcement learning approach. In Proceedings of the 6th Interna-

tional Conference on Neural Information Processing Systems, NIPS’93, pages 671–

678, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. URL http:

//dl.acm.org/citation.cfm?id=2987189.2987274.

Y. Zhang and M. Fromherz. Constrained flooding: a robust and efficient routing framework

for wireless sensor networks. In 20th International Conference on Advanced Information

Networking and Applications - Volume 1 (AINA’06), volume 1, pages 6 pp.–, April 2006.

doi: 10.1109/AINA.2006.132.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, pages

279–292, 1992.

Shailesh Kumar. Confidence-based dual reinforcement q-routing: an on-line adaptive

network routing algorithm. Master’s thesis, The University of Texas at Austin, 1998.

Amar Abane, Paul Muhlethaler, Samia Bouzefrane, Mehammed Daoui, and abdella bat-

tou. Towards evaluating named data networking for the iot: A framework for omnet++.

09 2018.

Raffaele Chiocchetti, Diego Perino, Giovanna Carofiglio, Dario Rossi, and Giuseppe

Rossini. Inform: A dynamic interest forwarding mechanism for information centric net-

working. In Proceedings of the 3rd ACM SIGCOMM Workshop on Information-centric

244

https://rfc-editor.org/rfc/rfc3561.txt
https://rfc-editor.org/rfc/rfc3561.txt
http://dl.acm.org/citation.cfm?id=2987189.2987274
http://dl.acm.org/citation.cfm?id=2987189.2987274

Networking, ICN ’13, pages 9–14, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-

2179-2. doi: 10.1145/2491224.2491227. URL http://doi.acm.org/10.1145/2491224.

2491227.

B. Fu, L. Qian, Y. Zhu, and L. Wang. Reinforcement learning-based algorithm for efficient

and adaptive forwarding in named data networking. In 2017 IEEE/CIC International

Conference on Communications in China (ICCC), pages 1–6, Oct 2017. doi: 10.1109/

ICCChina.2017.8330354.

Olumide Akinwande. Interest forwarding in named data networking using reinforcement

learning. Sensors, 18(10), 2018. ISSN 1424-8220. doi: 10.3390/s18103354. URL https:

//www.mdpi.com/1424-8220/18/10/3354.

Yi Zhang, Bo Bai, Kuai Xu, and Kai Lei. Ifs-rl: An intelligent forwarding strategy based on

reinforcement learning in named-data networking. In Proceedings of the 2018 Workshop

on Network Meets AI & ML, NetAI’18, pages 54–59, New York, NY, USA, 2018. ACM.

ISBN 978-1-4503-5911-5. doi: 10.1145/3229543.3229547. URL http://doi.acm.org/

10.1145/3229543.3229547.

Lu ZHAO, Guang wei BAI, Hang SHEN, and Zhen min TANG. Priority-based ieee 802.15.4

csma/ca mechanism for wsns. The Journal of China Universities of Posts and Telecom-

munications, 20(1):47 – 53, 2013. ISSN 1005-8885. doi: https://doi.org/10.1016/

S1005-8885(13)60006-0. URL http://www.sciencedirect.com/science/article/

pii/S1005888513600060.

http://doi.acm.org/10.1145/2491224.2491227
http://doi.acm.org/10.1145/2491224.2491227
https://www.mdpi.com/1424-8220/18/10/3354
https://www.mdpi.com/1424-8220/18/10/3354
http://doi.acm.org/10.1145/3229543.3229547
http://doi.acm.org/10.1145/3229543.3229547
http://www.sciencedirect.com/science/article/pii/S1005888513600060
http://www.sciencedirect.com/science/article/pii/S1005888513600060

BIBLIOGRAPHY

246

Amar ABANE
A Realistic Named Data Networking

Architecture for the Internet of Things

Résumé :
L’Internet des objets (IdO) utilise l’interconnexion de milliards de petits appareils informatiques, appelés
«Objets», pour fournir un accès à des services et à des informations partout dans le monde. Cependant,
la suite de protocoles IP a été conçue il y a plusieurs décennies dans un but totalement différent, et les
fonctionnalités de l’IoT soulignent désormais les limites de l’IP. En parallèle aux efforts d’adaptation
de l’IP à l’IdO, des architectures alternatives basées sur les réseaux orientés information promettent de
satisfaire nativement les applications Internet émergentes. L’une de ces architectures est appelée réseau
de données nommées (NDN). Nos objectifs à travers le travail rapporté dans ce manuscrit peuvent être
résumés en deux aspects. Le premier objectif est de montrer que NDN est adapté à la prise en charge
des systèmes IdO. Le deuxième objectif est la conception de deux solutions de communication legères
pour les réseaux sans fil contraints avec NDN.

Mots clés :
Réseaux de données nommées, Réseaux orientés information, Internet des Objets, IEEE 802.15.4, Réseaux
sans fil.

Abstract :
The Internet of Things (IoT) uses the interconnection of billions of small computing devices, called
“Things”, to provide access to services and information all over the world. However, the IP proto-
col suite has been designed decades ago for a completely different purpose, and IoT features now
highlight the limitations of IP. While adapting IP for the IoT might be seen as cutting corners,
alternative architectures based on the Information Centric Networking (ICN) paradigm promise to
natively satisfy emerging Internet applications. One of these architectures is Named Data Network-
ing (NDN). Our objectives through the work reported in this manuscript can be summarized in
two aspects. The first objective is to show that NDN is suitable to support IoT networking. The
second objective is the design of two solutions for lightweight forwarding in constrained wireless networks.

Keywords :
NDN, ICN, IoT, IEEE 802.15.4, Broadcast, Wireless Networks

	General Introduction
	Context of the Thesis
	Objectives and Contributions
	Organisation of the Manuscript

	IP vs. ICN: The IoT Challenge
	Introduction
	The Internet of Things
	Description
	Examples

	IoT puts IP to the test: Challenges and Shortcomings
	Brief Story of IP
	IoT over IP
	Requirements and Solutions

	From IP limitations to ICN
	Summary of IP-for-IoT Efforts
	Shifting to Information Centric Networking
	ICN Principles

	Conclusion

	Named Data Networking for the Internet of Things
	Introduction
	Named Data Networking
	Origins and Overview
	Naming and Packets
	Communication process
	Routing and Forwarding
	Caching and Mobility
	Security

	NDN and Internet
	NDN meets IoT
	Architectures
	Forwarding
	Link layer
	Mathematical models
	Comparing NDN and IP
	Projects

	Conclusion

	A Realistic NDN Architecture for the IoT
	Introduction
	NDN Integration Approaches
	Proposed NDN-802.15.4 architecture
	Adopted Integration Approach
	Wireless Technology
	Communication Architecture
	Integration Mechanisms

	Additional Features
	Packet Fragmentation
	Push Traffic
	Caching and Energy Management

	Conclusion

	Evaluation Tools
	Introduction
	Testbed
	Hardware Technologies
	Gateway Design
	End-device Design
	Applications
	Deployment and Evaluation

	NDN-OMNeT Simulation Framework
	Framework Design
	Host and Application Modules
	NDN Layer Modules
	Messages and Packets
	Framework Use

	Analytical Model
	Forwarding Strategy Considered
	Assumptions and Notation
	Content Popularity
	Model Formulation

	Conclusion

	NDN Wireless Forwarding in Low-end IoT
	Introduction
	NDN Forwarding in Wireless Networks
	AODV: An Intruder With a Similar Model
	CF: The Basic NDN Forwarding
	RONR: An Improvement With Unicast
	LFBL: A Better Use of Delayed Transmissions
	NAIF: A Different Approach
	Q-routing: A Search-and-Learn Approach
	Constrained Flooding: A Paradigm-agnostic Approach
	Summary

	Broadcast in Constrained Networks
	Simple Networks: Tree Topology
	Complex Networks: Grid Topology
	Lightweight Wireless Forwarding: Guidelines

	L3 Solution: R-LF
	Approach and Assumptions
	General description
	Details and mathematical formalism
	Evaluation
	Discussion

	L2 solution: ND-CSMA
	Approach
	Legacy CSMA
	The Named-Data CSMA Scheme
	Evaluation
	Discussion

	Summary and Discussion
	Conclusion

	General Conclusion and Perspectives
	Summary
	Towards an NDN Product for IoT
	Ongoing and Future Work

	Publications
	Bibliography

