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Quelques approches non linéaires en réduction
de complexité

Résumé
Les méthodes de réduction de modèles offrent un cadre général permettant une

réduction de coûts de calculs substantielle pour les simulations numériques. Dans
cette thèse, nous proposons d’étendre le domaine d’application de ces méthodes. Le
point commun des sujets discutés est la tentative de dépasser le cadre standard «bases
réduites» linéaires, qui ne traite que les cas où les variétés solutions ont une petite
épaisseur de Kolmogorov. Nous verrons comment tronquer, translater, tourner, étirer,
comprimer etc. puis recombiner les solutions, peut parfois permettre de contourner
le problème qui se pose lorsque cette épaisseur de Kolmogorov n’est pas petite. Nous
évoquerons aussi le besoin de méthodes de stabilisation sur-mesure pour le cadre
réduit.

Mots clés : Réduction de modèles, décomposition de domaine, épaisseur de Kolmogorov, méth-
ode de freezing, calibration, hyper-reduction, control optimal, stabilité de schémas numériques
pour la mécanique des fluides, décomposition orthogonale en modes propres
...
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A few non linear approaches in model order
reduction

Abstract
Model reduction methods provide a general framework for substantially reducing

computational costs of numerical simulations. In this thesis, we propose to extend
the scope of these methods. The common point of the topics discussed here is the
attempt to go beyond the standard linear "reduced basis" framework, which only
deals with cases where the solution manifold have a small Kolmogorov width. We
shall see how truncate, translate, rotate, stretch, compress etc. and then recombine
the solutions, can sometimes help to overcome the problem when this Kolmogorov
width is not small. We will also discuss the need for tailor-made stabilisation methods
for the reduced frame.

Keywords Model order reduction, domain decomposition, Kolmogorov n-width, freezing method,
calibration, hyper-reduction, optimal control, stabilization, proper orthogonal decomposition,
Dynamic Mode Decomposition
...
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Préambule

Le chapitre introductif commence par une description du problème cible, l’objectif que nous nous
sommes fixé en début de thèse. Après avoir décrit brièvement une méthode type, empirique,
utilisée aujourd’hui pour résoudre ce problème cible, nous motivons le besoin pour une approche
plus rigoureuse, qui tienne compte de la très grande complexité du problème due aux nombreuses
échelles spatiales impliquées. Dans cette direction, nous décrivons la méthode de bases réduites,
qui répond simultanément aux deux contraintes: un cadre théorique rigoureux ainsi que des coûts
de calculs réduits. La fin du chapitre introductif insiste sur le fait que certaines questions liées à
l’application de méthodes type «bases réduites» au problème cible n’ont pas encore été résolues.
C’est à quelques unes de ces questions que nous tentons de répondre dans les autres chapitres.

Dans le chapitre 2, nous étudions la facette «variabilité géometrique» du problème cible,
et nous le faisons indépendamment des autres difficultés soulevées dans le chapitre introductif.
Il apparait assez clair que cette problématique est proche des méthodes de décomposition de
domaine, et que notre méthode devra être adaptée au contexte qui est celui de la réduction de
modèles. Après avoir rappelé les quelques approches de la littérature proches de nos besoins, nous
concluons sur la nécessité du développement d’une nouvelle méthode, plus flexible et proposons
un cahier des charges. Le reste du chapitre est consacré à la description et à l’analyse d’une
méthode répondant aux besoins fixés.

Dans le chapitre 3, nous cherchons de nouveaux outils à ajouter à la réduction de modèles
standard et qui permettent de traiter des problèmes pour lesquels les variétés solutions ont
une grande épaisseur de Kolmogorov. Nous commençons par décrire la méthode de Freezing,
disponible dans la litterature et qui est une réponse possible, mais pas entièrement satisfaisante
à la problématique du chapitre. Le reste du chapitre est consacré à la description d’une méthode
alternative, la calibration. Des tests numériques sur l’équation de Burgers visqueux dans le cas
périodique, viennent confirmer la viabilité de l’approche.

Dans le chapitre 4, nous appliquons la méthode de calibration à un problème plus réaliste:
un écoulement autour d’un profil NACA. L’application de la calibration à ce problème qui est un
problème en dimension deux, hyperbolique, et non périodique, pose de nouvelles difficultés que
nous tentons de résoudre. De nombreux ingrédients sont nécessaires pour la résolution complète
de ce problème. Par conséquent, la section numérique se concentre sur quelques aspects, ceux
qui nous paraissent les plus importants.

La calibration dans les chapitres 3 et 4 est utilisée pour réduire l’épaisseur de Kolmogorov
de variétés solutions. Le chapitre 5 part du constat que la calibration amène une propriété
supplémentaire: elle ajoute à la régularité des solutions, comme fonction des paramètres. Ceci
est vrai quelque soit le problème étudié. Un exemple particulièrement parlant, et celui que nous
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Préambule

avons choisi de traiter dans ce chapitre, est celui de problèmes hyperboliques, avec une forte
dépendence de la position du choc aux paramètres. Nous décrivons quelques idées préliminaires
vers le calcul des dérivées des solutions par rapport aux paramètres, une première étape vers la
résolution de problèmes de control optimal dans ce contexte.

Les deux derniers petits chapitres de cette thèse sont un peu à part, mais sont le résultats de
réflexions connexes à celles des chapitres principaux. Pour le calcul de la décomposition en modes
propres orthogonaux pour des problèmes instationnaires et/ou des espaces de paramètres qui ne
sont pas de toute petite dimension, il est intuitif de vouloir utiliser une méthode «diviser pour
régner». C’est à la question de l’erreur due à une telle approche que nous tentons de répondre
dans le chapitre 6.

Le point de départ du chapitre 7 est le constat que les méthodes inspirées par le big data ren-
contrent un intérêt croissant dans la communauté «bases réduites». Nous mentionnons quelques
travaux récents et prometteurs dans cette direction. Nous nous arrêtons ensuite plus longuement
sur la méthode DMD ( Decomposition en Modes Dynamiques ) et utilisons son analyse pour met-
tre en garde sur le fait qu’il existe des situations dans lesquelles une phase d’apprentissage «force
brute» ne remplace pas une bonne modélisation, et ce quelle que soit la quantité de données
assimilées.



Preamble1

The introductive chapter starts with a description of the target problem, the initial goal of the
thesis. After briefly discussing existing empirical models, we motivate the need for an approach
with a stronger theoretical background: we choose to use reduced order modeling. We give a
quick overview of how ROM is usually performed, and insist on the properties a problem should
satisfy in order to be a good ROM candidate. We then provide evidences showing that the target
problem is not, at first glance, suitable for ROM, and that additional steps need to be performed.

In chapter 2, we study difficulties due to the geometry variability of the target problem. We
work with a model problem, that helps isolating this one issue from the other mentioned in
the introductive chapter. We then give a quick overview of the ROM methods available in the
literature that are designed to handle geometry variations. We show that there is a need for a
method more flexible than the existing ones. The remainder of the chapter is devoted to the
development of such a method.

In chapter 3, we try to develop a method that allows for the use of ROM in the context of
solution manifolds with large Kolmogorov n-widths. We describe the method of Freezing that
is a interesting answer to this specific problem, but not entirely satisfactory in our opinion.
The remainder of the chapter focuses on the description of an alternative method: the so-called
calibration. Numerical experiments are performed on the periodic viscous Burgers equation, and
tend to confirm the viability of the method.

In chapter 4, we apply the calibration method to a more realistic problem: the flow around
a NACA airfoil. This leads to additional challenges, as the solutions present shocks, whose
positions are strongly parameter dependent. Also, the domain is now two dimensional, and we
are not in the favorable periodic setting. A complete numerical scheme is quite involved, and
we have rather chosen to focus on a reduced number of issues, the ones we consider the most
important.

The calibration is used in chapter 3 and 4 to diminish the Kolmogorov n-width of solution
manifolds. Chapter 5 starts by noticing that calibration adds a bonus property: it improves
the regularity of the dependency of the solutions with respect to the parameters. This is true
whatever the problem studied. An especially enlightening example, and the one we have chosen
to study in this chapter, is the one of hyperbolic problems, where the shock positions’ sensitivity
to parameter variations is high. We end the chapter by deriving a few preliminary results,
towards the development of numerical schemes for the computation of parameter derivatives of
the solutions.

1This a translation of Préambule.
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The last two small chapters of this manuscript are a little different, but discuss connected
topics. For the computation of proper orthogonal modes for time dependent problems and/or for
parameter spaces with moderate dimensions, it is natural to apply a divide and conquer strategy.
Chapter 6 gives bounds on the errors due to this kind of approach.

The starting point of chapter 7 was to notice that big data related ideas were receiving more
and more attention in the reduced basis community. We start by mentioning some recent and
promising results in that direction. We then discuss the DMD ( Dynamic Mode Decomposition
) method, and use its analysis to warn for inconsiderate use of such approaches. There are some
cases, where brute force can not replace a good model, whatever the amount of data assimilated.
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Chapter 1

Introduction

This first chapter is an extended introductory chapter. We start with a short description

of the target problem, the original objective of this thesis. After briefly discussing existing

empirical models, we motivate the need for an approach with a stronger theoretical back-

ground: we choose to use reduced order modeling. We give a quick overview on how ROM

is usually performed, and insist on the properties a problem should satisfy in order to be a

good ROM candidate. We then provide evidences showing that the target problem is not, at

first glance, suitable for ROM, and that additional steps need to be performed. We finally

detail how each of the chapters of this thesis is a new step towards the objective.

The first section states the starting point of the thesis. We briefly discuss the context in
which this study takes place. The introductory section ends with a motivation for the use of
Reduced Order Modeling (ROM). We then give an overview of the ROM framework. Instead of
a general, heavy presentation, we have chosen to illustrate it on a simple heat equation. The end
of this chapter is devoted to showing that there were (and still are) many ingredients missing
to provide a complete ROM based solution to solve the initial objective. Following this remark,
we have focused on simpler, more reasonable objectives. Some of them will seem far away from
the initial goal. we consider them as steps, or elementary bricks, towards a sensible and robust
solution to the initial objective.

1.1 Vertical axis wind turbine placement optimization

Wind farms have started catching attention for clean energy production for a few decades now.
To get a grasp of their growing importance, one can for instance take a peak into the list of
major European offshore wind farms, in [103]. The infatuations of the beginning have opened up
to a more mature market where optimization of cost, production and maintenance hold a bigger
place.

Whatever the precise objective function, these optimization problems have many layers of
complexity. Indeed, for such problems, many length scales are involved, each having interacting
influences. The scales identified a priori are: the scale of the boundary layer, the scale of the
wing (shape, material etc.), the scale of the farm (for instance, the relative placement of the
turbines), and finally the atmospheric scale (required for boundary conditions). The first two
scales have already received some attention because of the many different applications among
which aeronautics. It also benefits the fact that experiments in wind tunnels can easily be
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programmed and conducted. The last two scales are more difficult to study, from a theoretical
stand point as well as numerically and experimentally.

In this thesis, the focus has been put on optimization at the scale of the farm. The analysis
of the measurements of working wind farms have shown that the average power loss due to
the influence of upstream turbines averages 10% to 20%. It is also shown that in the wake,
one finds higher level of turbulence, and thus higher loads on the turbines, which means higher
maintenance costs. Many different configurations have been and are currently being tested. We
mention two of them: in [15], the authors describe a bow shaped windfarm. A more natural
’grid’ type farm is studied in [56]. The question that has naturally risen is: is there a way to
diminish the wake effect as well as the load imposed on the turbines by adjusting the placement
of the turbines ?

The (very ambitious) objective of the thesis was to give an optimized wind farm layout given
the shape (or model) of a turbine, some constraints on the positioning of turbines and some other
physical parameters (such as boundary and initial conditions). We have restricted the study to
offshore windfarms and vertical wind turbines. This provides with useful assumptions: we do
not have to take into account the topography. Also, vertical wind turbines allow for the use
of a cylindrical symmetry. The turbines are not sensible to the inflow direction, and the only
parameters for a given turbine shape are the direction and speed of rotation.

We note right away that even if the optimization only takes place at the scale of the farm, the
behavior at other scales aforementioned still need to be modeled. In other words, the computation
for one specific configuration is already a challenging task. But the situation is even worse: the
objective being optimization, we are in a many-query context. This means that a focus needs to
be put on the computational cost of the method.

The majority of the literature on the computation of the power output of wind farms uses
rough empirical models1. We start our journey by giving a very quick overview on how these
models are constructed, and on the theoretical results they rely on. We then give the major draw-
backs of these approaches. This serves as a justification for the central discussion of this thesis:
how to use the theory of Partial Differential Equations (PDE) and Reduced Order Modeling
(ROM) to solve the optimization problem at hand.

A complete state of the art of the engineering methods currently being used to estimate a
priori the output of a wind turbine farm is out of the scope of this thesis. We refer to [38, 55]
for surveys, and have rather chosen to briefly present one ’generic engineering method’. We
underline some of its flaws and thus motivate the need for more advanced models. We also take
this opportunity to once again highlight the overall complexity of the task at hand.

The first component, common to all rough engineering models, is a wake deficit to power
output relation. We describe one possible route. Let some cylindrical control volume around the
rotor, with the longitudinal axis in the direction of the flow. The process is illustrated in Figure
1.1. We apply the conservation of momentum equation and suppose that the viscous term, the
pressure term, basically all terms except the convective term and the force due to the turbine
are negligible. Some hypotheses can be justified by physical considerations and we refer to the
aforementioned articles for more details. We denote with u the velocity, with T a source term
that represents the force acting on the turbine, with fl the density and with Ê the cylindrical
control volume of interest. We end up with a relation such as:

⁄

Ê

Ò · (flu ¢ u) ¥ T.

Denote uin and uout respectively the inflow and the outflow. We apply the divergence theorem
1 Big-data approaches to solve CFD problems will be discussed in chapter 7.
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uin uout

Cylinder w

Turbine

Figure 1.1: One possible starting point for engineering models

and assume rotational invariance. Let ˆÊsec be one section of Ê. At first order in uin ≠ uout, we
have: ⁄

ˆÊsec

fluout(uin ≠ uout) ¥ T. (1.1)

We can see how, by placing such models end to end, one can derive a first naive way of estimating
the power output of wind farms with aligned turbines.

To get more advanced models and results for more general configurations, one needs to add
other components to try and account for other various physical phenomenon. We mention a
few of them, but there are as many variants as there are paper on the topic. For instance, one
needs to model the wake geometry, or equivalently a procedure to select the downstream turbines
that are being impacted by a given wake. In [82] they try using a reasoning similar to the one
that lead to equation (1.1) to account for the interaction between wakes. Other models have
been constructed to estimate the power loss due to an increase in the turbulence intensities, see
for instance [15]. This type of rough modeling is currently being used on real life data. The
numerical results presented in the literature often compare the energy output of the model with
experimental data. Thanks to the extra degrees of freedom given by parameters in the model, a
reasonable match is (most of the time) found between the two.

The examples of more advanced modeling just mentioned illustrate something important:
there are many effects that need to be taken into account. The propagation of the wake, the
wake interactions, and the change in the nature of the flow (increasing turbulence levels) have
important effects on the output. One can not conclude, a priori, on the effects that can be ne-
glected. For instance, a model that accounts for wake interaction, without discussing turbulence
levels may be dubious.

I draw two important conclusions from this short analysis. The first one is that there is
a need for more advanced modeling, to better understand the different mechanisms and their
influences. The second conclusion is that it will be hard to find intermediate steps between the
rough calculations resulting in relations such as in (1.1), and the full solution of the problem. The
objective of this thesis is to find such steps (that might look like sideway steps) towards a complete
resolution of the problem, or at least towards a model with rigorously justified assumptions.

1.2 PDE models

As a more realistic approach, we have chosen to use the theory of Partial Differential Equations
(PDE). We take advantage of this section to define some notations that will be used throughout
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Chapter 1. Introduction

this manuscript. Ω denotes a smooth domain in R
d where d œ 1, 2, 3. The problems considered

will often be time dependent PDEs and the model equation that we have chosen to work with
is:

’t œ [0, T ],
ˆu

ˆt
+ L(u) = f on Ω. (1.2)

To complete the system, and have a chance to have a well posed problem, one needs to provide
appropriate initial u(t = 0) = u0 and boundary conditions for u or ˆu

ˆn
on ˆΩ. L will be

throughout this manuscript a first or second order partial differential operator.
We make a constant use of the following functional spaces: L2(Ω) the space of square in-

tegrable functions over Ω; H1(Ω) :=
Ó

u œ L2(Ω), Òu œ
!
L2(Ω)

"d
Ô

. Also, denote H1
0 (Ω), the

elements of H1(Ω) with zero trace. That is H1
0 (Ω) :=

)
u œ H1(Ω), and u = 0 a.e on ˆΩ

*
.

Let Y be any real Hilbert space. We will denote by < ·, · >Y and Î · ÎY :=
Ô

< ·, · >Y the
scalar product and the norm respectively. The dual space of Y will be denoted Y Õ. For instance,
!
H1

0

"Õ
(Ω) = H≠1(Ω). For an introduction on Sobolev spaces, we refer to the reference book on

the subject [4].
In this thesis, our focus will be put mainly on three equations. A rigorous theoretical presen-

tation of each of them is not in the scope of this thesis, nor is it its topic. We briefly state here
some of their characteristics, and detail the chapters of the thesis and the particular contexts in
which each of them appears.

Burgers We will encounter in this manuscript both the viscous ‘ > 0 and inviscid cases ‘ = 0.
The viscous case is a one dimensional non linear but simplified model of the Navier-Stokes
equations. It allows for simple numerical experiments, as will be conducted in chapter 3.

The inviscid case is a simple hyperbolic problem, and is often chosen as a first test case
for hyperbolic solvers in the literature. We will throughout this manuscript focus on the
viscosity, physically meaningful solutions. We will use it in chapter 5 as a model for Euler
equation.

Euler We will study this equation in a two dimensional setting in chapters 4 and 5. It is, as
the inviscid Burgers equation, an hyperbolic problem. Our main focus will be put on the
development of shocks.

Navier-Stokes This is the target equation. Because of the issues that will be raised in section
1.5, we will actually not work with it a lot in this manuscript. We present in Figure
1.2 the model problem we work with in chapter 2. The wind turbines are modeled by
cylinders, to focus on the optimization of the geometry of the farm, rather than on the
realistic computation of a CFD flow around a turbine. Navier-Stokes simulations are also
performed in the numerical experiments of section 3.9.

1.2.1 Numerical methods

A discussion about the (many) different numerical schemes used for CFD computations is not
in the scope of this manuscript. This is the topic of many books in the literature, for instance
[8] or the more recent [34]. Also, a more specific overview of PDE solvers’ specificities for
the computation of flows around wind turbines can be found in [134]. We only briefly come
back one aspect. Instead of considering realistic physical blade bodies, one can model the wind
turbines with equivalent source terms. The most commonly used methods in that direction are
the actuator disk and actuator line models. A presentation of both methods can be found in
[97]. The form of the source term is chosen using basic physical considerations in the same
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Figure 1.2: The chosen model problem for chapter 2

vein as the ones that were used in section 1.1. The numerical results obtained for wind farm
flow computations are promising. But as for the engineering models, they require parameter
fitting. More precisely, one has to tweak the parameters of the modeled blade for each numerical
simulation. One can argue that the quality of the results presented is mitigated by this parameter
fitting. Nevertheless, this method can be seen as an intermediate method between the complete
numerical solution, and the basic engineering models such as the one presented in section 1.1.

This type of methods will not be further studied in this manuscript, and this for a very
simple reason: we use even coarser approximations in the course of this thesis. In chapter 2, we
use cylinders to model the windturbines. The chapters that follow use simpler shapes or even
different equations, to focus on very specific issues.

We conclude this short section by stating one important assumption, that we will have to
keep in mind all through this manuscript. It actually explains why we do not further discuss the
standard numerical CFD methods. We assume that we have a fine solver that exactly captures
the true physical solution. This fine solver can for instance be of Finite Elements (FE) type,
of Finite Volumes (FV) type or a Discontinuous Galerkin (DG) scheme. To insist on the fact
that the resulting solution cannot be distinguished from the continuous solution, it is often
referred to as ’truth approximation’. The reasons for this point of view is easily understandable.
Behavior/structures that can not be captured by fine schemes, are out of reach of the desired
cheap approximate solvers. The best thing the latter can do is try and match the ’best known’
solutions, which are the ones obtained with fine schemes.

Remark 1 Only a few references do not use this premise. In [93, 127], the idea is to use data
fitting in addition to some learned model. Instead of trying to match the fine solutions as best as
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possible, we allow for a bias in the model.

We denote from now on N the number of degrees of freedom of the chosen fine solver providing the
truth solution. This gives us a reference computational cost. More precisely, any computational
cost of order N will be considered a high cost.

1.3 A first try at optimization

Figure 1.3: One possible empirical optimization algorithm: the surface method

We present one more method before entering the core of this manuscript. It is intermediate
between the engineering models of section 1.1 and the full reduced model framework of the
remainder of this thesis. Let D be a parameter space and let J be a functional defined on
D that we are trying to minimize. What we describe is a typical surface type method, an
empirical answer to parametrized problems that can be easily implemented. We present a possible
implementation in Algorithm 1 below.

Data: Parameter space: D
Result: µopt

Define Ξ0 some coarse sampling of the parameter space;
Compute the solution u(µ) for each µ œ Ξ0;
repeat

Find Êk µ D such that J(µ) is small for µ œ Ξk fl Êk ;
Sample more finely D in wk: Ξk+1;
Compute the solution u(µ) for each µ œ Ξk+1;
k Ω k + 1 ;

until some accuracy/computational cost condition;
Algorithm 1: Surface type method

An illustration of this algorithm for a parameter space embedded into R
2 is shown in Figure

1.3. The blue dots represent parameters for which the truth solution has been computed. This
method requires the estimation of J in between sampled points. This is achieved using an
interpolation procedure. The latter is an important component of the method and has a big
impact on the overall accuracy. But as there is no theoretical results associated, it is done
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empirically. The direct consequence is that in order to achieve a decent accuracy, one needs
to perform many fine scheme computations. It is obvious that this is not in accordance with
the goal of computational cost reduction. Moreover, this issue is made even worse because of
the curse of dimensionality. Indeed, as the parameter space is a subspace R

dim(D), for a fixed
discretization step in the parameter space (and so equivalently for a fixed accuracy) the number
of fine computations required grows exponentially with dimension of the parameter space. The
model order reduction framework gives a theoretically more sound and computationally more
reasonable answer to this kind of parametrized problem.

1.4 Model order reduction

We start with a macroscopic overview of the framework as well as its main requirements. We
then detail the steps and key results. For a more thorough presentation, we refer to the two
recent books on the subject, [68] and [109]. We denote from now on with µ a generic parameter
and with D a generic parameter space.

The objective is to construct a method that allows for many queries of the type µ æ u(µ).
Let µ œ D. The solutions u(µ) are typically solutions to some PDE:

Y

__]

__[

ˆu(·,t;µ)
ˆt

+ L(u(·, t; µ)) = f in Ω

u(µ)(t = 0) = u0 in Ω

u or ˆu
ˆn

= g on ˆΩ.

(1.3)

ROM assumes no a priori parametric dependence. f , u0, g, Ω and L may depend on the parameter
µ. We will always explicitly state the parametric dependency. The question that model order
reduction tries to answer is: is there some regularity, whatever the precise meaning, of

;
D æ X
µ ‘æ u(µ)

(1.4)

and if so, can we take advantage of it to accelerate the computation of (1.4). Our motivation in
this manuscript is optimization. Note that this can also be used to solve inverse problems. In the
course of this thesis, the regularity of (1.4) will take various forms. It ranges from differentiable
with an explicit derivative, as in section 1.4.1, to cases that require a preconditioning step, see
section 1.5.1.

The fundamental notion for ROM that will be used throughout this manuscript, is the concept
of solution manifold. Several definitions are possible depending on the context, see for instance
the introduction of chapter 3. The most common one2, that will be used unless specified, is given
by:

M := {u(·, t; µ), µ œ D, t œ [0, T ]} . (1.5)

The name manifold is not chosen loosely. The premise of ROM is to think of M as a smooth
manifold, embedded in a well chosen Hilbert space X, even if no theoretical results regarding
regularity are available for most real life problems.

As we are aiming for the reduction of the computational cost of solutions in M, one sensible
first step is to try to capture and compress the characteristics of this manifold. One adapted

2One sometimes considers a space time formulation, which results in a different solution manifold, see for
instance [20].
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M

u(t0; µ0)

u(t1; µ1)

Figure 1.4: Solid line: Graphical representation of the solution manifold M. Dotted line: A
possible trial space

theoretical tool is the notion of Kolmogorov n-width. This quantity measures the ’linear width’
of any subset of normed spaces. More precisely, for any manifold M it is defined as:

dn(M, X) := inf
En

sup
fœM

inf
gœEn

Îf ≠ gÎX . (1.6)

The first infimum is taken over all linear spaces of dimension n embedded in X. A graphical
example is presented in Figure 1.4. The Kolmogorov n-width returns the worst approximation,
on the best linear space of dimension n. A few theoretical results are available to estimate a
priori this n-width. In [99], they prove n-width estimates for solutions to elliptic problems where
the parameter dependence is on the source term. The latter is taken in some compact of a high
order Sobolev space. A more recent result gives estimates of the Kolmogorov n-width under
holomorphic mappings [35]. More precisely, they show that the exponential decay of the n-width
is conserved through the image of a Frechet differentiable function.

We conclude this overview of ROM by introducing the offline/online paradigm. The capture
and modeling of the characteristics of the solution manifold M can be seen as a learning phase,
referred to as offline in the ROM community 3. It often amounts to creating a linear space of
moderate dimension, that represents well M. The target error, for a fixed basis size, is given
by the Kolmogorov n-width. This learning phase is expensive from a computational cost, as
it involves the computation of a moderate number of fine solutions. The online phase uses
this learning phase, and provides a way of computing approximations of members of M at a
reduced cost4. The analytical example of the next section will help understand this concept of
offline/online stages.

3 A tabular expliciting other similarities between ROM and machine learning algorithms is presented in
chapter 7.

4Recall that the reference high cost, is the cost of a fine computation, with N degrees of freedom.
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1.4. Model order reduction

1.4.1 Analytical example

As stated in the preamble, we have chosen to tackle the description of ROM by focusing on
toy examples. The first one we study is a favorable case, as the regularity of the problem with
respect to the parameter is explicit. Let the following heat equation:

;
≠Ò · (µÒu) = f in Ω

u = 0 on ˆΩ.
(1.7)

We choose a parameter space D that satisfies:
I

D is a compact subspace of LŒ(Ω)

÷µmin œ R
+ú, ’µ œ D, µ > µmin a.e in Ω.

How do the solutions u(µ) behave when we change the diffusion coefficients ? Existence and
uniqueness of the solution in H1(Ω) are guaranteed by classic Lax-Milgram theory for coercive
and continuous operators.

We study the limit of u(µ + h‹) ≠ u(µ) for a fixed direction ‹ contained in the unit ball of
tangent space of D and h œ R. Let uh := u(µ + h‹) and let vh := uh ≠ u(µ). Using the linearity
of the equation, the latter is solution of:

;
≠Ò · (µÒvh) = ≠hÒ · (‹Òuh) in Ω

vh = 0 on ˆΩ.

We can compute the standard a priori estimates for vh. For this, multiply the first equation by
vh and integrate by parts: ⁄

Ω

µÒvh · Òvh = h

⁄

Ω

‹ÒuhÒvh.

We have used vh zero on ˆΩ. We use the hypotheses on D and on Î‹ÎLŒ to show the a priori
estimate:

µmin|vh|H1 Æ h|uh|H1 .

To conclude, we use the a priori estimates on uh:

µmin|uh|2H1 Æ ÎfÎH≠1ÎuhÎH1 ,

with the Poincare inequality:

÷C œ R, s.t µmin|uh|H1 Æ CÎfÎH≠1 ,

to finally obtain the following a priori estimates on vh:

|vh|H1 Æ 1
µ2

min

ChÎfÎH≠1 . (1.8)

Let w(µ, ‹) œ H1
0 (Ω) be the solution to

;
≠Ò · (µÒw) = ≠Ò · (‹Òu(µ)) in Ω

w = 0 on ˆΩ.

To prove Gateaux differentiability, we will prove estimates on:

÷ :
;

D, D,R æ H1(Ω)
(µ, ‹, h) ‘æ u(µ) ≠ u(µ + h‹) ≠ hw(µ, ‹).

15



Chapter 1. Introduction

We know:
≠Ò · (µÒ÷(µ, ‹, h)) = ≠Ò · (µÒ (u(µ) ≠ u(µ + h‹) ≠ hw(µ, ‹))

= Ò · ((h‹)u(µ + h‹)) + hÒ · (µw(µ, ‹))

= Ò · ((h‹)u(µ + h‹)) + hÒ · (‹u(µ))

= Ò · ((h‹)Ò(u(µ + h‹) ≠ u(µ)).

This gives a priori estimates on ÷:

µmin|÷(µ, ‹, h)|2H1 Æ h|÷(µ, ‹, h)|H1 |u(µ + h‹) ≠ u(µ)|2H1 .

We use the estimates on vh = u(µ + h‹) ≠ u(µ), see equation (1.8), and obtain:

µmin|÷(µ, ‹, h)|H1 Æ 1
µ2

min

Ch2ÎfÎH≠1 . (1.9)

This concludes on the Gateaux differentiability of the application, in the direction ‹, with deriva-
tive w(µ, ‹). Moreover, since for all µ œ D,

w(µ, ·) :
;

D æ H1
0

‹ ‘æ w(µ, ‹)

is linear and continuous, we conclude on the Frechet differentiability of the parametrized problem
over D.

From this analysis, we have one natural way of developing a method to approximate µ æ u(µ)
at reduced cost. The first step is construct a good representation of the solution manifold M.
The Frechet differentiability provides an easy solution, that we illustrate in Figure 1.5. Define

M

u(µ0)
u(µ1)

Figure 1.5: One way of constructing a reduced basis: the Frechet differentiable case

some threshold ‘, the maximum approximation error that we want on our solution manifold M.
Sample the parameter space such that:

’µ œ D, ÷µi œ D, s.t Îu(µ) ≠ u(µi) ≠ wµi
(µ ≠ µi)ÎH1 Æ ‘.

The a priori estimates on ÷, see equation (1.9), allow us to compute a rigorous distribution of
{µi}i and the corresponding Frechet derivatives {wµi

}i. This ends the offline phase as introduced
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1.4. Model order reduction

in the previous section. The online phase is even easier in this setting. For any µ œ D, we just
have to pick µ0 in the pre computed set the closest to µ. We then have an explicit formula for an
approximation of u(µ). The guaranteed error estimate is the chosen threshold ‘. Because of the
Frechet differentiability, independent of the direction, we feel that we are starting to overcome
the curse of dimensionality.

We note the main differences with a realistic case. First of all, the smoothness with respect
to the parameter does not often translate into an explicit formulation. Sometimes, the manifold
even needs some preconditioning to enforce smoothness, see for instance chapter 5. Also, it feels
like this type of construction neglects a lot of redundancy. For instance, we expect redundant
pieces of information to be found in solutions for parameters far away in the parameter space.
Nevertheless, the methodology developed on this analytic example is exactly the same as what is
being done for ROM for real life problems, and is enlightening in that respect. The next section
describes a typical offline phase.

1.4.2 ROM, the offline phase

As already stated, the first necessary step is to construct a basis that captures most of M. More
precisely, we are looking for Ψ, a set of N functions in X the underlying Hilbert space, such that:

’u œ M, ÷uN œ span Ψ, Îu ≠ uN ÎX small .

This first necessary step is the sampling of the parameter space. That is, we need to choose a
representative set:

Ξ := {µk, k = [1 . . . N ]} µ D.

It is easy to see that the size of Ξ influences the offline computational cost as well as the online
accuracy of the method. The selection of the set Ξ is almost always 5 done empirically. The
reduced basis is then picked as a subspace of:

span {u(µk), µk œ Ξ} µ X.

The way the compression of the information contained in {u(µ), µ œ Ξ} is done, varies among
the many methods available. We mention here a few of them, the ones we feel the closest to
our objective. A geometric approach close to the Centroidal Voronoi Tesselation (CVT) has
been developed in [46, 25]. The parameter space is splitted using a CVT algorithm. In solid
mechanics, the most commonly used algorithm is the Proper Generalized Decomposition (PGD)
[83]. This greedy approach results in a separable approximation of the solution, along the different
dimensions: time, space and parameter for instance. It is empirical for most applications. We
mention some of the theoretical results are available. If the problem actually is a separable
problem, then the PGD algorithm reduces to a POD algorithm (that we will detail below), see
[102]. Also, for the Poisson equation in the 2 dimensional unit square, it can be shown that each
greedy iteration is well posed, and that the algorithm converges, see [85]. Finally, we mention
the Balanced Truncation method [118], which is built on a ’Linear Time Invariant’ form of the
system to solve.

We now give more details on the two methods that will be used in the rest of the manuscript.
They are dominating in the ROM community, especially for CFD computations. We underline
the up and downsides of both methods and conclude on the purposes they should be used for.

5The only example using a different sampling strategy we are aware of is presented in [81].
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Chapter 1. Introduction

1.4.2.1 Reduced Basis (RB)

In this section, we give an overview of the reduced basis method. It relies heavily on the existence
of a cheap, rigorous error estimator. That is, for each reduced basis Ψ := {Âi}, it requires an
application:

∆Ψ :
;

D æ R

µ ‘æ ∆Ψ(µ),

that is an upper bound on the actual error made on the reduced basis approximation. More
precisely, for u(µ) the truth approximation and uN (µ) the reduced basis Galerkin approximation,
it should satisfy:

’µ œ D, Îu(µ) ≠ uN (µ)ÎX Æ ∆Ψ(µ).

The construction of such an error estimator is described in chapter 3. The greedy algorithm
follows naturally:

Data: Fine sampling of the parameter space D: Ξ

Threshold ‘

Maximum size of the basis Nmax

Result: Reduced basis Ψú

k Ω 0;
µ0 Ω random parameter in D;
Ψ0 := {u(µ0)};
while k < Nmax and ∆Âk

> ‘ do
µk+1 := argsup

µ
∆Ψk

(µ);

Ψk+1 := Ψk fi u(µk+1);
k Ω k + 1;

end
Ψú := Ψk;

Algorithm 2: The greedy RB method

Recent results [23] show that if the Kolmogorov n-width of the solution manifold M decays
exponentially, i.e if:

÷c, C œ R
2 s.t ’n dn(M, X) Æ ce≠Ck, (1.10)

then the basis obtained using the greedy algorithm described above inherits this property:

÷(cÕ, C Õ) œ R
2, depending on (c, C) s.t ’N,

supuœM infuN œΨN

.

.u ≠ uN
.
.

X
Æ cÕe≠CÕN

(1.11)

Similar results are available if the argsup during the greedy algorithm is not done exactly [43].
This method’s main advantage is obviously its computational cost. Indeed, only a moderate

number fine computations need to be performed, thanks to the error estimator. Another inter-
esting property is that we have a guaranteed error bound on a fine sample of D. The major
downside is that that for non linear problems, the error estimators available are not reliable, as
the bounds are not tight. This reduces a lot the range of application of this method. It will
be discussed in section 1.4.3.1 where we explain how to construct the error estimator. We will
also discuss it in 3 when discussing a posteriori error estimations for the one dimensional viscous
Burgers equation.
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1.4. Model order reduction

1.4.2.2 Proper Orthogonal Decomposition (POD)

In the RB algorithm, the objective is to mimic the search for the optimal space in the sense given
by the Kolmogorov n-width. The only difference is the replacement of the true error by an error
estimator. The Proper Orthogonal Decomposition (POD) uses a different objective function.
Let N be some prescribed size for the reduced basis and let J be the following functional:

J :

I

XN æ R

(Â1, ..., ÂN ) ‘æ q

µjœΞ Îu(µj) ≠ Πu(µj)Î2
X

(1.12)

where Π is the orthogonal projection6 onto span {Âi, i = [1 . . . N ]}. The objective of the POD
method is to minimize J over all orthogonal basis of cardinality N in X. We will prove in the
course of this section that J has a unique minimizer and that the resulting basis is in fact in
span {u(µj), µj œ Ξ} .

Remark 2 When using discretized solutions (i.e when X is finite dimensional), the POD reduces
to a (correctly reweighted) Singular Value Decomposition (SVD), see for instance [63].

Remark 3 This problem has a solution even when considering continuous snapshots in X (in-
stead of the sampled case described in this section). With our notation, we can replace the discrete
q

µjœΞ by the continuous
s

D dµ, for an appropriate measured parameter space D.

We start by deriving the first order optimality conditions, a set of necessary conditions on
an hypothetical optimal basis Ψ := {Âi, i = [1, . . . , N ]}. For this, we formulate the optimal
problem as:

min
ΨœXN

J(Â) s.t < Âi, Âj >X= ”ij , ’i, j.

To avoid redundant constraints, define the following:

ej :
;

Xj æ R
j

(Âk)kœ[1,...,j] ‘æ ((Âk, Âj)Y ≠ ”kj) .

For all k, denote ⁄k œ R
k the lagrange multiplier associated with the constraint ek and construct

the Lagrangian L:

L :
;

XN ◊ ΠN
k=1R

k æ R

{Âi}, {⁄k} ‘æ J(Ψ) +
qN

k=1 < ek, ⁄k >Rk = 0

We compute ˆL
ˆÂi

, for some i œ [1, . . . , N ] in the direction ”Â:

ˆL
ˆÂi

”Â = ≠ q

µjœΞ < ”Â, u(µj) >< Âi, u(µj) >

+
qi≠1

p=1(< ”Â, Âp >Y )⁄p
i

+2⁄i
i < ”Â, Âi > ≠ qN

k=i+1(< Âk, ”Â >Y )⁄i
k.

First order optimality conditions state that for the basis Ψ to be optimal, it needs to satisfy:

’i œ [1, . . . , N ], 2
ÿ

µjœΞ

< Âi, u(µj) > u(µj) =
i≠1ÿ

p=1

Âp⁄
p
i + 2⁄i

iÂi ≠
Nÿ

k=i+1

Âk⁄i
k. (1.13)

6 We note that POD uses the Hilbert space structure, where RB can be performed in a any Banach space.
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Define the following functional on X:

R :
;

X æ X

Â ‘æ q

µjœΞ < u(µj), Â >X u(µj).

We show that for each N , size of the basis, the first order optimality conditions, (1.13), are
equivalent to:

{’i œ [1, . . . , N ], Âi is an eigenfunction of R} .

The proof is done by induction on N . For N = 1, equation (1.13) becomes:
ÿ

µjœΞ

< Â1, u(µj) > u(µj) = ⁄1
1Â1,

which concludes. Suppose it is true for some N . We know that the set of Âs satisfy:

’i œ [1, . . . , N + 1], 2R(Âi) =
i≠1ÿ

p=1

Âp⁄
p
i + 2⁄i

iÂi ≠
N+1ÿ

k=i+1

Âk⁄i
k (1.14)

Let i < N + 1. We use the orthogonality of the basis to show that:
I

2 < R(Âi), ÂN+1 >X= ≠⁄i
N+1

2 < R(ÂN+1), Âi >X= ⁄i
N+1.

As R is symmetric, we easily conclude ’i < N + 1, ⁄i
N+1 = 0. The first order optimality

conditions are thus equivalent to:
I

’i Æ N, 2 R(Âi) =
qi≠1

p=1 Âp⁄
p
i + 2⁄i

iÂi ≠ qN
k=i+1 Âk⁄i

k

R(ÂN+1) = ⁄N+1
N+1ÂN+1

We conclude using the induction hypothesis.

Remark 4 In the literature, the inductive proof is not always conducted properly. It sometimes
takes for granted that the optimal basis is hierarchical, i.e that:

argmin
rank N+1

J(Â) = argmin
rank N

J(Â) fi Ân+1

where Ân+1 is the solution of some other minimization problem 7. This is not trivial, and should
be proved (using the same simple steps above).

To prove that this necessary condition is in fact sufficient requires more work. The first thing is
to prove the existence of such eigenfunctions/eigenvectors. For finite dimensional scalar products,
this is a simple consequence of the spectral theorem. The extension to X = L2(Ω) is presented
in appendix and uses the Hilbert-Schmidt theorem. The last ingredient is to show that the basis
Ψ constructed using the first N (when ordered with decreasing eigenvalues) eigenfunctions of R
is effectively minimizing the functional J . The proof is done by a direct argument, i.e by showing
that:

’ Ψ̃ orthogonal basis of cardinality N in X, J(Ψ) Æ J(Ψ̃).

The proof can be found for instance in [136].

7The rank 1 POD of the projection of the original set onto the POD basis of rank N .
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1.4. Model order reduction

Remark 5 In the literature, it is not unusual to work with centered solution manifold in this
context. More precisely, one can subtract the mean field or the stationary solution to the snapshot
set before performing POD compression. A motivation for this additional procedure can be found
in [138, 70].

The major downside of the POD method is its computational cost. We discuss this issue in a
small chapter in this thesis see 6. There is one other downside. As we are optimizing the mean
projection error, it is possible that at the end of the algorithm, there exists a subset of D for
which the basis behaves very poorly. This issue is solved by the variant of the standard POD
described in the next section.

1.4.2.3 Localized RB

To complete this small introduction on the construction of reduced basis, we mention adaptive
RB methods. Adaptive is here to be understood in the following sense: instead of one single
basis used on the whole parameter space D, we construct a small number of reduced bases, each
of them with a domain of validity. The initial work in that direction was done in [49]. They
define the notion of trust region in the parameter space. A more involved version has later been
proposed in [96]. Their idea is to construct offline a metric in the parameter space. We present in
Figure 1.6 a graphical illustration. Ideas related to hp can be implemented in the same spirit, see

M

RB 1
RB 2

RB 3

Figure 1.6: Localized Reduced Basis

for instance [48]. We also mention a related method which uses interpolation between reduced
basis [7].

1.4.3 ROM, the online phase

In this section, we present how the basis constructed in the previous section are being used. This
corresponds, using the ROM vocabulary, to the online phase. We once again work with the heat
equation, see (1.7). We modify the setting compared to section 1.4.1, and put ourselves in a more
classical ROM framework. The parameter dependency is now characterized by some function g

over D:

g :
;

D æ LŒ

µ ‘æ g(·; µ).
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The objective is to propose a method that allows for an efficient computation of an approximation
of u(µ) œ X := H1(Ω), the solution to:

;
≠Ò · (g(·; µ)Òu) = f in Ω

u = 0 on ˆΩ
(1.15)

when µ varies in D. As usual, we denote with C(µ) and –(µ) the continuity and coercivity
constants of the bilinear form associated with the weak form of the equation. Suppose that we
have managed, through POD or RB method for instance, to find an appropriate basis, that is, a
linear space

XN := span {„i, i œ [1 . . . N ]} µ H1
0 (Ω),

that is almost as good as the optimal Kolmogorov n-width basis. This hypothesis can be formu-
lated as:

’u œ M, ÷uN œ XN , Îu ≠ uN ÎX ¥ dN (M, X).

The optimal representant is here the orthogonal projection of the true solution onto XN . As the
true solution is not known, we need another way of choosing a good representant in XN . Good
in the sense that the error should be controlled by the best projection error.

Remark 6 This question is the same as the one that appears when one looks for a finite element
solution.

The choice is almost always the Galerkin method8, as in the FE context. Pick uN (µ) œ XN

that cancels the projection of the residual onto XN . In other words, pick uN (µ) in XN such
that: ;

≠Ò · (g(·; µ)ÒuN (µ)) = f in the dual space of XN

uN (µ) = 0 on ˆΩ.
(1.16)

We can put (1.16) in variational form:

’vN œ XN ,

⁄

Ω

g(·; µ)ÒuN (µ)ÒvN =
⁄

Ω

fvN

Cea’s Lemma guarantees, for this elliptic coercive problem the following estimate on the Galerkin
approximation:

’µ, Îu(µ) ≠ uN (µ)ÎX Æ C(µ)
–(µ)

inf
vN œXN

Îu(µ) ≠ vN ÎX .

That is, the error is controlled by the best approximation error.

Remark 7 More general cases such as saddle problems, objective oriented problems and prob-
lems with non compliant outputs can be treated. See for instance [65] for a review.

How do we implement the resolution of problem (1.16) ? We use the fact that both vN and
uN (µ) lie on a finite dimensional space. The search for uN (µ) can thus be reduced to the search
of a set {–i}iœ[1...N ] œ R

N , such that uN (µ) =
qN

i=1 –i„i and thus:

’j œ [1, . . . , N ],
Nÿ

i=1

–i

⁄

Ω

g(·; µ)Ò„iÒ„j =
⁄

Ω

f „j .

8Other choices such as the Petrov-Galerkin method can also be used in a ROM context.
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The desired set of coordinates is the solution to a system of small size, as problem (1.16) can be
expressed as:

A(µ)– = F, where

I

Ai,j(µ) :=
s

Ω
g(·; µ)Ò„iÒ„j

Fj :=
s

Ω
f „j .

We now make explicit the offline/online paradigm introduced section 1.4 in this specific case.
The objective is to pre compute as many quantities as possible in the offline phase. The hope is
that during the online phase, whatever the parameter µ considered, no quantity with a complexity
dependent on N the number of degrees of freedom of the truth solver has to be performed. In our
example for instance, the vector F can be computed once and for all, as it is independent of the
parameter µ. The cheap computation of µ æ A(µ) requires additional properties on µ æ g(·; µ).
This will be discussed in section 1.5.2.1.

We end this quick overlook of reduced order modeling by mentioning a key feature, the a
posteriori error estimators.

1.4.3.1 A posteriori error estimator

One of the problems with the engineering methods of section 1.1, and similarly with the method
of section 1.3 is the fact that we have no way of certifying (or at least assessing) the answer given.
Fortunately, this desired feature is available in the ROM framework. Let µ œ D. For simplicity
we drop the µ dependency and denote u the continuous solution and uN its RB approximation.
Define the following residual operator r in the dual space of X:

r :

Y

_]

_[

X æ R

v ‘æ
s

Ω
g(·; µ)ÒuN Òv ≠

s

Ω
f v

æ
s

Ω
g(·; µ)(ÒuN ≠ Òu)Òv.

Because we are using a Galerkin method, we know that the restriction of r onto XN cancels,
but of course, r does not cancel over X. The objective is to give an estimation of the RB
error Îu ≠ uN ÎX as a function of the norm of the residual ÎrÎXÕ . Using the coercivity of the
initial problem, whose property is passed to both finite element discretization and reduced basis
approximation, we have:

.

.u ≠ uN
.
.

2

H1 Æ 1
–

-
-
-
-

⁄

Ω

g(·; µ)(Òu ≠ ÒuN )2

-
-
-
-

=
1
–

-
-r(uN ≠ u)

-
-

This gives us directly the desired upper bound on the RB error:
.
.u ≠ uN

.

.
H1 Æ 1

–
ÎrÕÎXÕ

The resulting question concerns the computational cost of this residual norm. It is often achieved
by computing r’s Riesz representant, i.e ê œ X, and by using the well known property: ÎêÎX =
ÎrÎXÕ . A typical offline/online decomposition of such an error estimator will be presented in
chapter 3.

Remark 8 The resulting error bound guarantees a maximum between the reduced solution and
the truth solution. Again, the underlying assumption is that the truth solution and the continuous
solution are indistinguishable.

Remark 9 The a posteriori error estimations heavily relies on the structure of the continuous
partial differential operator. We have presented one simple case, but the formulation is well
understood for a large class of problems. A review can be found in [111].
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1.5 Specificities of the problem at hand

The previous section could have ended the introductive chapter. The roadmap is clear: construct
an adapted reduced basis offline. Then build a computationally efficient scheme that estimates
the power output of a wind farm. Finally use a posteriori error estimators to certify the answer.
Unfortunately, things are not so easy.

The previous ROM framework does not apply directly to our problem, for several reasons.
The geometric variability is the most visible issue. It makes the raw notion of Kolmogorov n-
width obsolete, and thus the rest of the analysis of section 1.4 unusable. This is the topic of
chapter 2. Other, bigger, problems, inherent to ROM for fluid simulations, will be discussed in
the remainder of this section. We start by presenting some toy examples leading to continuous
solution manifolds with large Kolmogorov n-width. We then present examples where the con-
tinuous solution manifold is well behaved, but where standard numerical schemes involve terms
with large n-widths. As the smallness of the n-width is a necessary premise of any ROM method,
we end this section by discussing two classes of methods to deal with these issues.

1.5.1 Continuous solution manifold with large Kolmogorov n-width

One can easily construct examples inspired by realistic fluid dynamics problems, where the raw
reduced order modeling presented in section 1.4 fails. We mention two of them.

1.5.1.1 Strong influence of the inflow direction

Let us take a wind turbine (or obstacle) fixed in Ω. Suppose that the main inflow direction varies,
either in time or with respect to some parameter. We can propose a few reasons for this specific
behavior. One can for instance think of the modification of the outside boundary conditions, or
of the deviation of the flow due to the presence of an upstream turbine. In any case, a basis
reproducing flow structures propagating in all directions will necessarily be of big cardinality.
As a consequence, instead of the standard solution manifold, see equation (1.5), it seems more
adapted to consider a ’transformed’ solution manifold. A natural choice is:

M̃ := {u(r◊(t;µ)(x), t; µ), µ œ D},

where r◊ is the 2 dimensional rotation matrix. Intuitively, we expect that

’n, dn(M) ∫ dn(M̃),

for a well chosen (t, µ) ‘æ ◊(t; µ). It is clear that this choice of modified solution manifold causes
many problems, among which the choice of ◊ during the simulation, the matching of this rotating
domain with an outside solution. These two issues will be discussed respectively in chapter 2
and chapter 3.

1.5.1.2 A propagating front

Propagating fronts/shocks are known to be a limiting case for ROM, see for instance [2]. In this
section, we provide some quantitative evidences using a model example. We then try to give an
explanation of why such strategies are still being used in the literature, and why the numerical
results are not as poor as expected. This discussion is closely related to the one we will have

24



1.5. Specificities of the problem at hand

in the next section about numerical stabilization. The specific toy example we discuss here is
inspired by [126]. We consider the following continuous solution manifold:

M =
)

u(·; µ) œ L2(0, 1), µ œ (0, 1)
*

, (1.17)

where

u(x; µ) =
;

0 if x < µ

1 otherwise.
(1.18)

This can be thought of as the solution manifold of the transport of a step function. Its n-width
can be explicitly computed. Let {µj , j = [1, . . . , N ]} be a set of ordered parameters in D, and
the corresponding snapshots: {u(·; µj), j = [1, . . . , N ]}. Let XN be the space spanned by these
snapshots. We start by computing the distance from XN to one member of M. Let µ œ D:

inf
vœXN

Îu(·; µ) ≠ vÎL2 =

Y

__]

__[

1
(µ≠µj)(µj+1≠µ)

µj+1≠µj

2 1
2

on [µj , µj+1]

|µ ≠ µ1| 1
2 on [0, µ1]

|µ ≠ µN | 1
2 on [µN , 1].

(1.19)

We estimate the n-width as follows:

inf
{µj}œD

max

Q

c
c
c
c
c
a

sup
µœ[µj ,µj+1]

1
(µ≠µj)(µj+1≠µ)

µj+1≠µj

2 1
2

sup
µœ[0,µ1]

|µ ≠ µ1| 1
2

sup
µœ[µN ,1]

|µ ≠ µN | 1
2 .

R

d
d
d
d
d
b

(1.20)

It is easy to see why the first infimum is obtained for a parameter distribution {µj , j œ [1, . . . , N ]}
such that the three quantities appearing in (1.20) balance. That is, the optimal distribution
satisfies:
Y

]

[

÷K œ R, s.t ’j œ [1, . . . , N ≠ 1], µj+1 ≠ µj = K

µ1 and µN are such that sup
µœ[0,µ1]

|µ ≠ µ1| 1
2 = sup

µœ[µN ,1]

|µ ≠ µN | 1
2 = sup

µœ[µj ,µj+1]

1
(µ≠µj)(µj+1≠µ)

µj+1≠µj

2 1
2

The second condition is equivalent to µ1 = K
4 = (1≠µN ). With this new condition, we can com-

pute explicitly the distance between the optimal parameters: K = 1
N≠ 1

2

, and the corresponding

distance between XN and M:

dist (XN , M) =

Û

1
N ≠ 1

2

This is obviously a bad convergence rate, and it jeopardizes the framework of section 1.49.
The real life situation is even worse, because the output of a numerical scheme is not as good

as the optimal error given above. Also, it is known that compression algorithms (such as POD or
RB) would result in oscillating basis, causing stability issues. Nevertheless, one can found in the
literature such strategies being used, and they are associated with decent numerical results and
convergence rates. I suggest one explanation. Suppose that instead of trying to reproduce the

9We insist that for problems where the shock/front’s position is constant in time or parameter wise, the
current discussion does not apply, and the n-width of the solution manifold is not an issue.
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full solution manifold M given equation (1.18), you are trying to reproduce the discrete training
set:

Mtrain :=
)

u(·; µk), k œ [1, . . . , Nsnap]
*

.

We can see right away that the new n-width at hand is better behaved, as dn(Mtrain) = 0
for n > Nsnap, and independent of the dimension N of the underlying truth approximation
space. One possibility to detect such behavior, without adding to much complexity to the
implementation, is to modify the time step/parameter step being used in the online phase. In
the case described above, one would keep in the online phase the parameter range of the offline
phase [µ0, µNsnap ], but with a different sampling strategy.

1.5.2 Numerical schemes involving large n-widths

The causes of the failure of ROM for the two previous examples are visible and easily under-
standable. This section is devoted to the presentation of another class of sets with less obvious
non decreasing n-widths. Numerical schemes for CFD computations often involve some sort
of numerical stabilizer. In this manuscript, the latter have two major origins: they are either
related to the closure of Navier-Stokes equation or pure numerical tools that help enforcing phys-
ical properties on the solutions. Among the second class of methods, we will focus on methods
that aim at preserving the Total Variation Diminishing (TVD) nature of entropic solutions to
conservation laws. Even though these two classes have different natures, we can extract common
properties:

• they are working at a different, smaller scale than the approximation error , i.e the n-width
of the solution manifold measured in X norm. More precisely, the stabilization terms
should be bounded by the desired consistency error

• most of them have a highly non linear dependence on the state variable.

We start by saying a few things on how non linearities are usually handled in the ROM framework.
We then describe one example of TVD stabilization that is not a proper candidate for standard
ROM. We then discuss the closure of Navier-Stokes equation. We compare our conclusions with
some numerical examples in the literature. We end the introductive chapter by giving possible
methods to deal with this specific issue.

1.5.2.1 Handling non linear terms in ROM

In this section, we discuss the computational costs incurred by non linear terms. This is one
of the main topic of research in the ROM community at the moment. The most commonly
used method is the Empirical Interpolation Method (EIM). It was originally developed in [14]
for a restricted set of applications among which the case where one of the physical parameters
of the problem has a non trivial dependency on the parameter µ. We work once again with
the model equation (1.15). In order to follow computational steps described in section 1.4,
we need a good online/offline decomposition. A sufficient condition on g(x; µ) for this is its
so called ’affine decomposability’. More precisely, we need a set of cardinality M of functions
{gk, k = 1, . . . , M} œ XM , such that

’µ œ D, ÷{hk(µ), k = 1, . . . , M} œ R
M , s.t g(·; µ) =

Mÿ

k=1

gk(x)hk(µ).
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1.5. Specificities of the problem at hand

The EIM method provides a way of constructing an approximate decomposition of such a type for
situations where g is not rigorously affinely decomposable. It also provides a priori error estimates
on the resulting approximation. Note that the strength of this method is that it does not solve
the computational cost related problems by resorting to linearization or local linearization10.

The simplicity of EIM have lead authors to widen its scope of application. It is now used
when there is a non linear dependency on the solution itself. Denote R : X æ X some generic
non linear 11 function of u and {„i, i = 1, . . . , N} some well chosen reduced basis. A standard
Galerkin method, see section 1.4, requires the efficient computation of terms such as:

< R(
Nÿ

j=1

–j„j), „i >X , ’i œ [1, . . . , N ] for reasonable sets {–j , j = 1, . . . , N}.

How is this case being handled by EIM ? A sufficient condition is again the existence of an
approximate affine decomposition of µ æ R(u(·; µ)), that is the existence of a set of cardinality
M of functions {gk(x), k = 1, . . . , M} œ XM such that:

’µ œ D, ÷ {hk(µ), k = 1, . . . , M} œ R
M , R (u(·; µ)) ¥

Mÿ

k=1

gk(x)hk(µ). (1.21)

We can extract two key ingredients that impact the overall accuracy of the method. The first
one the is the existence of such a family {gk(x), k = 1, . . . , M} œ XM . A necessary condition is
for

R(M) := {R (u(·; µ)) , µ œ D}
to have a small n-width, in the norm of the underlying Hilbert space, the X norm. As we will
see, this property can be hard to satisfy for non linear stabilization mechanisms.

The second ingredient is less important but is still worth noting. It is related to the procedure
that selects the representant on the EIM basis, i.e the set {hk(µ), k = 1, . . . , M} in equation
(1.21). In the EIM framework, the latter are chosen using pointwise estimates. As a consequence,
the a priori estimates available are given in LŒ norm. Moreover, the upper bound appearing
in the error estimate, the Lebesgue constant, depends on the size of the EIM basis. This is
less favorable than its counterpart in the standard Galerkin method12. We draw one important
conclusion from the previous discussion for standard non linearities: in order not to deteriorate
the overall accuracy, we either need R(M) to have a faster decaying Kolmogorov n-width than
M or to work with an EIM basis bigger than the POD or RB basis.

1.5.2.2 Constructing a reduced TVD scheme

One needs to be careful when trying to apply an EIM type method to stabilization terms. As
already mentioned above, these non linear terms act at the consistency error scale, and not at the
approximation error scale. Denote Rlim some operator acting on X and serving as stabilization
mechanism for the truth numerical scheme. The following inequality will often hold:

ÎRlimÎXÕ π dN (M, X) .

10In the bonus chapter 7, we present one such method, namely Dynamic Mode Decomposition.
11Note that this non linearity can originate from the continuous differential form or from the numerical scheme.
12We have seen in section 1.4 that Galerkin gives a priori estimates in X norm, independent of the size of the

reduced space.
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Thus, when performing an EIM (or any other reduction) algorithm on such terms, taking as
threshold some estimation of dN (M, X) does not guarantee a correct approximation Rlim. Nev-
ertheless, discussing the question of the n-width of dn(Rlim(M)) is still relevant: we need to fit
the computation of this term into the ROM framework. We make a few preliminary remarks:

• this term is inherently linked to the underlying mesh and corresponding truth approxima-
tion space. The n-width at hand is thus a "discrete" n-width

• its action is local

• the solutions we are trying to stabilize live in the projection of the solution manifold onto
some reduced space MN := ΠXN M and not in M

As a result, the natural n-width to estimate is the following:

dn(Rlim(MN ), lŒ),

and for these terms to correctly enter the ROM framework, we need something like:

÷n π N , s.t dn

!
Rlim(MN ), lŒ

"
π d0

!
Rlim(MN ), lŒ

"
, (1.22)

or for some other right hand side that correctly characterizes the size of the limitation term. We
provide now one example that illustrates the fact that for some standard discretization scheme,
and their associated stabilization methods, a property such as equation (1.22) is not verified. We
will deduce that trying to use such methods in a ROM framework is not a good strategy.

Let a one dimensional transport equation. The parameter is chosen as the convection param-
eter:

ut + µux = 0.

Denote u(·, t; µ) the fine solution transported at speed µ, at time t. The initial condition is chosen
to be smooth to ensure the smallness of the n-width of the continuous solution manifold M :=
{u(·, t; µ), t, µ œ D}. Let ‘ be some prescribed accuracy. One can find some N dimensional
vector space XN such that:

’u œ M, ÷uN œ XN , s.t Îu ≠ uN Î Æ ‘.

The question that arises is how to construct a stable procedure u(·, t; µ) ‘æ u(·, t + ”t; µ). The
situation is illustrated in Figure 1.7. The solid line is the trajectory of the continuous (or
equivalently stabilized truth) solution. The plane represents the low dimensional linear space
associated to some RB or POD basis: XN . The dotted line is the best projection error. A well
conducted offline phase guarantees that the error between dotted and solid line remains small,
here bounded by the chosen ‘. The problem is that the solution of a numerical scheme without
proper stabilization might diverge. This is illustrated by the dashed line and we have denoted
uw the reduced solution when no proper stabilization is provided.

We now describe an hypothetical situation, that will help us understand the issue at hand.
Say that the truth numerical scheme we are using uses forward Euler time discretization and a
space discretization operator denoted L. For each time step tn, we compute the truth solution
un+1 as:

un+1 = un + ∆tL(un).

A standard way of guaranteeing the TVD nature of numerical approximations to conservation
laws, is to use flux limiters. We roughly state the goal, and refer to specialized literature for
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Πu0

u0

Πu(·, tk)

u(·, tk)

uw(·, tk)

Figure 1.7: Solid line: truth solution; Dotted line: Best projection onto some reduced basis;
Dashed line: Output of a system with no proper stabilization

a more precise description of this problem, see for instance [62]. Godunov’s theorem state that
linear high order13 schemes for the resolution of conservation laws are not monotone, and thus
subject to stability issues. A reasonable choice is thus to use the high order scheme everywhere,
except where it behaves poorly, i.e where solutions exhibit sharp gradients or reach a local ex-
tremum. At those locations, the flux limiters enforce the use of a first order scheme. For our
current problem, as we are dealing with smooth solutions, we consider that our truth discretiza-
tion differential operator L is composed of a sum of one linear component, the high order spatial
discretization operator, denoted Atruth, plus a non linear correction term, a local ingredient that
only acts at local extrema, denoted Rlim. We have:

un+1 = un + ∆t
!
Atruth(un) + Rlim(un)

"
.

For simplicity, suppose that the solutions in M only posses one local maximum. The stabilization
term is then given by:

’µ œ D, ’t, Rlim(u(·, t; µ)) ≥ – (u(·, t; µ)) ”pmax(t;µ),

where pmax(t; µ) is the index of the control volume where the maximum of the solution for
parameter µ and time t is located and ” is the standard Kronecker delta. Denote by N lim(D)
the cardinality of {pmax(t; µ), t, µ œ D}. We expect N lim(D) to be of order N , the size of the
underlying truth discretization space.

Let us try to construct a reduced scheme mimicking this stabilization procedure. For each
time step tn, we compute the reduced solution uN,n+1 as:

uN,n+1 = uN,n + ∆tΠXN L(uN,n).

Denote ARB = ΠXN Atruth. We have:

uN,n+1 = uN,n + ∆tARB(uN,n) + ∆tΠXN

!
Rlim(uN,n)

"
. (1.23)

13High order means here more than 2nd order
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Because of the structure of Rlim, there is no hope in reducing its computational cost. Indeed,
we can explicitly compute its n-width:

dn(Rlim(XN ), lŒ) =
;

maxt;µ{–(u(·, t; µ)} if n < N lim(D)
0 if n > N lim(D).

(1.24)

We thus expect no decay before n ¥ N .
One can argue that trying to reproduce the corrective term alone is a naive approach, and

that a more reasonable one is to reproduce directly the limited term over Ω. That is, one can try
and perform an EIM procedure on L(XN ). We provide a partial answer in what follows. The
assumption of the form of the scheme is that:

L(XN ) = Atruth(XN ) + Rlim(XN ).

For all p, denote Ep a generic linear space of dimension p embedded in X. The n-width of the
manifold of intereset, is given by:

dn(L(XN ), lŒ) := inf
En

sup
fœL(XN )

inf
gœEn

Îf ≠ gÎlŒ ,

and it satisfies for all n:

dn(L(XN ), lŒ) Ø inf
En

sup
fœAtruth(XN )+Rlim(XN )

inf
gœEn+Atruth(XN )

Îf ≠ gÎlŒ

Ø inf
En

sup
fœRlim(XN )

inf
gœEn+Atruth(XN )

Îf ≠ gÎlŒ

Ø inf
En+N

sup
fœRlim(XN )

inf
gœEn+N

Îf ≠ gÎlŒ

= dn+N (Rlim(XN ), lŒ).

The first inequality comes from the fact than En µ En + Atruth(XN ). The last inequality comes
from the fact that the infimum over all spaces of dimension (n + N) is better than the infimum
over all spaces of dimension n plus Atruth(XN ). For our one dimensional transport equation, this
means that the Kolmogorov n-width, measured in the lŒ norm, of the limited flux is constant
for n < N ≠ N . This is not satisfactory from a ROM point of view.

Remark 10 The previous analysis of course does not constitute a proof of the impossibility
to create a stable, reduced scheme for this class of problems. For instance, it is very easy to
taylor a reduced scheme that can handle the transport of smooth quantities. Nevertheless, we
have provided evidences that tend to show that we can not guarantee the reconstruction of local,
stabilization terms. This will be further discussed in section 1.5.5.

1.5.3 Instability for Navier-Stokes equation

In this section we discuss another common source of instability in CFD codes, the one associated
with the numerical approximation of solutions to the Navier-Stokes equation. Let ·̄ be some
filtering operation. It can be:

• a spatial filtering operation, as in the Large Eddy Simulation (LES) methods

• a time filtering operation as in the Reynolds Averaged Navier Stokes (RANS) simulations

• the orthogonal projection onto some well chosen reduced basis, still denoted XN , for RB
type methods
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For LES and RANS methods, the filtering operation can be done using some convolution kernel.
More precisely, denote for all state variable w:

w̄ := G ú w,

where G any convolution kernel and ú is the standard convolution operator in time (RANS) or
in space (LES).

Whatever the filtering operation chosen, the pair (ū, p̄) is solution to the following system:
I

ˆū
ˆt

+ ū · Òū ≠ µ∆ū + Òp̄ = ū · Òū ≠ (u · Òu)

Ò · ū = 0.
(1.25)

In all three cases, (LES, RANS and RB), the system (1.25) is underdetermined. This is due to
the filtering of the quadratic term u · Òu. The right hand side of the first equation is called the
residual stress tensor. It represents the interaction between the resolved and unresolved scales,
and needs to be modeled in order to close the system.

1.5.3.1 Closure for LES and RANS methods

One of the approaches that can be considered is to set the residual stress tensor to zero. For
sufficiently fine meshes, this leads to stable schemes, as all scales are resolved: this is called Direct
Numerical Simulation (DNS) in the literature. For reasonable (computational wise) mesh size,
these schemes are often instable. Figure 1.7 is also a good illustration of this type of instability.
The dashed line uw is in this context the output of a reduced scheme that uses zero residual
stress tensor.

To my knowledge, there is consensus to interpret this instability, at least for LES type meth-
ods. The starting point is the existence of an energy cascade between the different length scales
coexisting, see for instance [86, 79]. More precisely, the conjecture is that there is creation of
energy at large scales and that the mechanism ensuring global stability is the dissipation occur-
ring at small scales. Because of the filtering operation, the small scales are not resolved. The
conclusion is that the methods with zero residual stress tensor lack a dissipation mechanism. To
our knowledge, the numerical study of this cascade mechanism has received little attention. We
mention here one of the results we are aware of. In [79], they study of the spectral decomposition
of Navier-Stokes solutions and show that the energy transfers14 are local, in the wave number
space.

Following these considerations, the most common option is to model the residual stress tensor
with a viscous term. A profusion of closure models are available in the literature. We mention
a few of them:

• for RANS, common choices are the k ≠ ‘ and k ≠ Ê models

• for LES: Smagorinsky, Variational Multiscale (VMS), Dynamic Subgrid Scale etc.

For the most advanced LES models, the eddy viscosity is a highly non linear function of the state
variables and needs to be recomputed at each time step and in each cell of the physical domain.
In the Dynamic Subgrid Scale, it is even more complicated, since you are using two different
filters corresponding to different cut off length scales, each of them with its own eddy viscosities
model.

14These results depend of course of the way you define the energy transfer between modes.
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1.5.3.2 Theoretical results

We now mention another class of method, not directly applicable to Navier-Stokes equation, but
that is backed by firm theoretical results. These have been developed studied in [129] and related
references. We briefly present the results, but stay at a formal level since the rigorous proofs are
quite involved and far from the scope of this thesis.

The class of problems considered is the class of dissipative partial differential equations. That
is, the differential operator L, see (1.2), can be splitted into two contributions, one linear viscous
term and one non linear term. We also require the linear part to be dominating, in some sense.
Let L such a generic differential operator. Denote A the linear contribution and R the non linear
part. Equation (1.2) becomes:

ˆu

ˆt
+ A(u(t)) + R(u(t)) = F. (1.26)

The starting point of the method is to consider the (complete) set of eigen functions of A in X.
Denote {„i, i = 1, . . . , Œ} this basis, ordered in decreasing eigenvalues. In the remainder of this
section, we denote:

• PN the orthogonal projection onto span {„i, i = 1 . . . N}

• QN the projection onto span {„i, i > N}

• p = PN u and q = QN u

With this notation, the objective appears clearly. We want to solve for the high energy modes
components, denoted p. The other components, stored in q, are the so-called unresolved scales.
We project (1.26) onto the two orthogonal spaces PN X and QN X and get a system equivalent
to the initial problem:

I

PN
ˆu
ˆt

+ PN A(u(t)) + PN R(u(t)) = PN F

QN
ˆu
ˆt

+ QN A(u(t)) + QN R(u(t)) = QN F.

We use the fact that the basis {„i}i is independent of time, and that the projection operators
PN and QN commute with A. We get a coupled system equivalent to (1.26):

I
ˆp
ˆt

+ A(p(t)) + PN R(p + q) = PN F

ˆq
ˆt

+ A(q(t)) + QN R(p + q) = QN F.

To get familiar with the notation, we can reformulate some standard methods in this framework:

• a zero residual stress tensor method uses PN R(p + q) = PN R(p)

• eddy viscosity closure models assume that:

PN R(p + q) = PN R(p) + ‹eddy(p)A(p).

We now describe the ideal case. Suppose you are able to construct a function Φ : X æ X
such that the system’s dynamics are exactly captured by

ˆp

ˆt
+ Ap + PN R(p + Φ(p)) = PN F. (1.27)
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Then, the knowledge of Φ gives us a well posed problem on the high energy modes p. In [54],
it is shown that when the diffusion operator A has a spectral gap, such a function Φ exists, at
least asymptotically in time. The graph of Φ is in that situation called inertial manifold.

There is no spectral gap for the two dimensional Navier-Stokes equation, and there is yet
no proof of any similar property. To my knowledge, the strongest results are the existence of
determining forms, see for instance [53, 52] and the references therein. Again, these results are
true asymptotically in time. To put it simply, they say that the state of the two dimensional
Navier-Stokes system is completely determined by a finite (small) number of degrees of freedom.
It is obvious that this is not as strong as (1.27), and not sufficient to construct self sufficient
schemes.

1.5.4 Closure models for RB methods

The closure of system (1.25) is an open question for RB type methods, and no standard procedure
has yet taken over. The first idea is to take a zero residual stress tensor, and hope that the
situation is better than for LES. One reason for that would be the existence of an intrinsic
stability due to the fact that the reduced solution manifold only contains physically relevant
solutions/structures. The corresponding well behaved trial and test spaces should thus give a
more stable numerical scheme than say a full Finite Element method. This is true to some extent.
For instance, in one of the numerical experiments of chapter 3, we show that the CFL condition
is much less stringent for the reduced scheme, than the one of the fine scheme. Unfortunately,
this intrinsic stabilization mechanism does not seem to be enough. It is now well accepted in the
ROM community that a scheme with zero residual stress tensor generally fails for two and three
dimensional Navier-Stokes problems, see for instance [138].

The concept of energy cascade introduced for LES also applies in this context. In [37],
they numerically study the energy transfers between POD modes for the backward facing step
problem. They show that for integer pairs (n, m) such that |m ≠ n| > 25, the energy transfers
are neglectable. The underlying idea is that high energy POD modes contain large structures,
whereas low energy modes contain small structures, and so that the discussion about energy
cascade for LES also applies here.

The specific form of the filtering operation in the RB case has lead to new interpretations of
the instability. For instance, in [113, 84] they construct an enlightening example that we have
chosen to include here. It is a simple finite dimensional example that tries to give a geometrical
interpretation of the instability15 The high dimensional complete system considered here is three
dimensional, and possess a stable limit cycle, captured by a low dimensional subspace (here
two dimensional). We have plotted typical trajectories in Figure 1.8. This stable limit cycle is
contained in the z = 0 plane and is represented as a thick line. The problem has been chosen
such that the projected system onto the z = 0 subspace is unstable. We show in Figure 1.9 a
graphical illustration of the mechanism at hand. The plane on which the scheme is projected can
be seen as the space spanned by the high energy POD mods (or first RB modes). The projection
of the scheme is unstable, as there is creation of energy. The physical stabilization mechanism,
here the diffusion that occurs at small scales, is materialized by the z direction. This point of
view have lead to the development of geometrical answers such as the one proposed in [40]. They
are interested in steady state solutions and they advise adding transient snapshots to the basis.
This amounts to adding a neighborhood of the low dimensional subspace.

15Note that the instability of the toy example discussed in this section is not of the same nature as the one of
a Galerkin method for Navier-Stokes equation. The system described here is not linearly stable.
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Figure 1.8: Trajectories for the finite dimensional model problem

Figure 1.9: Analysis of the model problem. Left: projection onto the x ≠ y plane. Right:
projection onto the x ≠ z plane

We cite one more result related to this subject. It can not be applied to the resolution of
Navier-Stokes equation, but is a theoretical result on a closely related issue. In [112], they give
sufficient conditions on L so that the error of the projected system is controlled by the best
projection error. Unfortunately, the constraints are far from any real life application. For
instance, one of the requirements is the Lipschitz continuity of the system in the direction
orthogonal to the space of projection.

We conclude this section with the most common methods. As already mentioned eddy vis-
cosity methods are by far the most widely used approaches in LES and RANS methods. They
have naturally been transposed to ROM. We mention a few references [138, 18, 71], but note
that there is an extensive literature on the subject.

1.5.5 Study of reduced basis for CFD numerical results in the litera-
ture

In this section we present a sample of numerical results taken from the literature. These have
been carefully chosen to illustrate some of the hypotheses/conclusions that we have drawn in the
previous sections. The first class of problems that we have chosen to discuss are the ones for which
the truth scheme uses zero residual stress tensor, and no additional numerical stabilization. This
happens when the underlying mesh is fine enough to capture all scales. In this situation, we expect
that a reduced scheme which also uses zero residual stress tensor and no additional stabilization
mechanism to both give satisfactory results and be computationally efficient. Recent, preliminary
results tend to confirm this conjecture, see [98, 124].
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The next class of examples we have chosen are situations for which the truth schemes uses
some sort of stabilization that correctly enters the ROM framework. One example can be found
in a recent paper [33]. They study the backward facing step for moderate Reynolds, 50 to 450,
and use a Smagorinsky eddy viscosity model. This term is linked to the underlying discretization
space. In each cell K, one adds an eddy viscosity ‹K

eddy such that:

‹K
eddy Ã hK |Òu|K

where hK is the characteristic size of mesh element K and |Ò · |K is the Frobenius norm of
the gradient in element K. We are in the situation of equation (1.23) and we need to keep in
mind that the Smagorinsky contribution is acting at the consistency error scale, and not at the
approximation error scale. The Frobenius norm of the gradient of a state variable is rougher
than the state variable itself. We thus expect its relative n-width to decay slower. Neverthe-
less, because of the specific problem studied (there are no complex structures propagating), the
situation is not as bad as the one described in 1.5.2.2. The numerical results show that an EIM
basis of size 73 is enough to guarantee a small relative error for the Smagorinsky term. By com-
parison, the RB needed to represent the solution manifold is of size 17. As the reduced scheme
correctly reproduces all the contributions of the fine solver, the resulting reduced scheme gives
good results.

The next step it to solve problems with more complex stabilization mechanisms. This has
been done for instance in [29, 11, 31]. More complex can in this context mean the use of
local/directional quantities such as upwinded flux, utilization of approximate Riemann solvers,
directional gradient reconstruction (ENO or WENO schemes for instance) in a FV context,
characteristics-Galerkin method (see [22]) in the FE context. We once again use the notation
introduced in 1.5.2.2. The first step in all the references mentioned is to compute the contribution
L(uN,n) exactly at each time step. Such a method has a computational complexity of the
same order as the original fine scheme. This make the usage of the RB framework dubious.
Nevertheless, the fact that the resulting schemes give good results guarantees that the cumulative
approximation error is not too big of an issue, even for very challenging CFD problems. At this
point, the problem seems to have narrowed down to the reduction of the computational cost of
L(uN,n) at each time step.

To study this issue, we focus on the final numerical experiment presented in [31], but similar
considerations could be derived by looking at [29, 11]. The objective is to compute the flow around
the Ahmed body, for one fixed set of parameters. The fine mesh they used has several million
nodes. The fine scheme used to produce the training set involves several local ingredients. For
instance, it uses a Roe scheme to discretize convective fluxes. The unsteady simulation they are
trying to reproduce has around 1200 snapshots. We denote by M the solution manifold {un, n œ
[1, . . . , 1200]}. They show that a basis of size 283 captures 99.99% of the energy. In order to
reduce the complexity of L(uN,n) at each time step, they have applied a reduction algorithm
(here gappy POD) directly. As L involves local ingredients, and following the discussion of
1.5.2.2, we expect the n-width of stabilization terms appearing in the numerical scheme to reach
a plateau for n < N ≠ N , for N in the order of millions. They find that using a subsample of
1500 nodes in the gappy POD is enough to obtain a stable scheme. At first, this does not seem
to match our conclusions.

Before going further, we repeat something that has already been been mentioned in section
1.5.1.2, when discussing solution manifolds with large n-widths. When an RB type method is
used only to reconstruct the training set of small cardinality, the overall complexity is not in N
the number of spatial degrees of freedom, but rather in Nsnap the number of snapshots in the
training set. For instance, for the TVD example of section 1.5.2.2, this means that N lim(D) is
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of order Nsnap, and not of order N .. We thus expect the plateau behavior to stop at Nsnap ≠ N

instead at N ≠ N .
Back to the Ahmed body problem. My interpretation is the following: as the space {L(un), n œ

[1, . . . , 1200]} is roughly of dimension 1200, one needs to find enough sampling points {xi} so
that the matrix {un(xi), (i, n)} is of rank 1200. For this three dimensional challenging example,
because of conditioning, the actual number of points needed for the gappy POD is 1500. The
gappy POD can then be understood as the following application:

;
{un, k œ [1, . . . , 1200]} æ X
{u(xi), i œ [1, . . . , 1500]} ‘æ L(u).

If this interpretation is correct, this is not satisfactory from a ROM point of view, as this
method would not work for a multiparameter setting, and because this is very sensible to the
time discretization.

1.6 A few methods to deal with the issues

We now propose two classes of methods that are partial answers to the problems mentioned in
section 1.5. The first one uses the fact that the reduced scheme does not need to be the same as
the fine scheme. The second class of methods is of a different nature. It handles manifolds with
large n-widths by adding a pre-conditioning step.

1.6.1 A new class of stabilization mechanisms

One possible direction is to use in the online section a different scheme than the one used in the
offline, learning phase. This constitutes a natural approach after the discussion of section 1.5.2.
One can for instance use, in the reduced scheme, a different, simpler, eddy viscosity model than
the one used for the truth scheme. We mention a few references that perform such procedure
[73, 138, 107, 140] and the references therein. In a recent paper [50], another strategy is advised.
They enforce stability by using a constrained Galerkin method. The constraints are chosen in
the offline phase. The initial numerical results are promising, and additional tests need to be
performed to get a deeper understanding of the mechanism at hand.

Whatever the ROM stabilization mechanism chosen, one important ingredient was missing.
It has been recently provided in [92]. It explicits the key hypothesis when using this kind of
strategy. Their setting is the following: during the offline phase, they use a fine scheme with
SUPG type stabilization, unfit for ROM. On the other hand, their reduced scheme uses a simpler
stabilization, adapted to ROM. More precisely, they add viscosity increasingly with the mode
number, a variant of the Spectral Vanishing Viscosity (SVV) method [128]. As expected, the
solution obtained with the reduced scheme happens to be different from the one obtained with the
fine discretization. They reconcile the two by stating that there is a one to one correspondence
between the two stabilized solution manifolds. The truth solution is then retrieved using a so
called rectifier, a one to one mapping between the SUPG solution manifold and the SVV solution
manifold16. This rectifier is constructed during the offline phase.

In my opinion, one ingredient could be added to the offline stage, to give a more physically
sound stabilization mechanism. Suppose that you know that you want/need to add diffusion at

16An interesting open question is whether this concept of ’underlying truth solution, independent of the stabi-
lization mechanism’, can be interpreted in terms of determining forms, see [52]
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some prescribed scales. The following algorithm could be implemented:
Data: Set of snapshots {u(µi)}, spatial scale ‘

Result: Adapted Reduced Basis Ψ‘

Filter the snapshots: {u(µi)} æ {ū‘(µi)} ;
Ψ̄‘

k := POD {ū‘(µi)};
’i, ũ‘(µi) := u(µi) ≠ ΠΨ̄‘u(µi);
Ψ̃‘

k := POD {ũ‘(µi)};
Ψ‘ := Ψ̄‘ fi Ψ̃‘;

Algorithm 3: Construction of basis adapted to SVV
The resulting basis Ψ‘ is perfectly adapted to the Spectral Vanishing Viscosity method.

Indeed, by playing with the parameter ‘, one can choose the scales that need to be damped
and how they should be damped. It is obvious that Algorithm 3 can be extended to a version
with multiple spatial scales using different damping coefficients. This method should add less
numerical viscosity than a standard SVV to the reduced solutions, and should thus lead to a
better behaved rectification step.

I mention one other approach that fits the ROM framework, and that could be numerically
investigated. It follows the presentation of section 1.5.3.2, and we will use the notations defined
there. Even if no ’inertial manifold type’ results are available for the two dimensional Navier
Stokes system, this sound framework can inspire new numerical stabilization algorithms. We
propose one here, inspired by the one developed in [130]. Let M > N . We replace QN the
projection onto all unresolved scales by the projection PM onto the largest unresolved scales. We
are looking for ΦM :

Φ
M :

;
PN X æ (PM ≠ PN )X
p ‘æ ΦM (p),

that mimics the behavior of the application Φ in the inertial manifold case. We can for instance
take it as the limit of a fixed point algorithm:

Φ
M : p æ A≠1

!
PM f ≠ PM R(p + Φ

M (p))
"

. (1.28)

This involves taking the projection of the residual onto the largest non resolved scales and invert-
ing the dominant part of the operator. There are no major obstacles to fit those computations
into a ROM framework. Also, it matches the energy cascade principle. Indeed, this method
models the interaction between the resolved scales and the largest unresolved scales. The other
unresolved scales (for n > M) should not impact the stability of the method. This method is
not backed by any rigorous results and, of course, we have no guarantee that this would be more
stable than for instance a raw Galerkin scheme using the first M modes. I nevertheless believe
that it is worth some numerical investigation. A version of this algorithm was tested numerically
on a one dimensional reaction diffusion equation in [51].

1.6.2 Calibration

Another direction is to transform the original problem, in order to enforce the smallness of the
n-width of the problematic terms. For discontinuous solutions, see section 1.5.1.2, this means
forcing the position in the mesh of the singularity. The same idea can be applied for stabilization
terms. For instance, for flux limitation, this means forcing that the position of the maximum, so
that it remains always positioned in the same mesh element.

In this introductive chapter, we stick to a quick glance at the method, as it is actually the
main contribution of this thesis, and will thus be extensively described in chapters 4 and 5. We
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consider the transport equation again. This time, say we are able to recenter the maximum at
each time step. We denote M̃ the resulting modified solution manifold. The corrective term that
needs to be added to the scheme is now concentrated in the same cell p0, whatever the member
ũ of M̃ considered: Rlim(ũ) Ã ”p0 . The Kolmogorov n-width is (greatly) reduced, whatever the
norm Î · Î considered:

dn(Rlim(M̃), Î · Î) = 0 for n Ø 1.

This can be compared to the n-width in the original case, see equation (1.24). Moreover, we
have a bonus property, Rlim is now a linear function of u.

Remark 11 The linearity does not appear like a useful property for flux limitation. If you
transpose this discussion to upwinding, or any directional procedure, then it becomes a valuable
property. This will be discussed in chapter 5.
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Appendix

Let Ξ be some proper sampling of D, of cardinality Nsnap. The objective is to extend the proof
of the existence of an optimal POD basis to the case X = L2(Ω). Define r as:

r :
;

Ω ◊ Ω æ R

(x, y) ‘æ qNsnap

k=1 u(x; µk)u(y; µk)

The optimal basis, if it exists, is given by eigen functions of the following operator :

R :
;

X æ X

Â ‘æ x ‘æ (
s

Ω
Â(y)r(x, y)dy).

The existence of a complete eigenfunction set of R is a consequence of the Hilbert-Schmidt
theorem, see for instance [114]. The first thing is to prove that the image of R is included in L2(Ω).
We then need to show that R is a bounded, self-adjoint and compact operator L2(Ω) æ L2(Ω).

’Â œ L2(Ω), ÎRÂÎ2
L2 =

⁄

Ω

5⁄

Ω

Â(y)r(x, y)dy

62

dx

Cauchy-Schwarz’s inequality in L2 gives

’Â œ L2(Ω), ÎRÂÎ2
L2 Æ ÎÂÎ2

L2

⁄

Ω

⁄

Ω

r(x, y)2dydx

We then use the fact that r is separable, and the Cauchy Schwarz inequality in R
Nsnap

:

’Â œ L2(Ω), ÎRÂÎL2 Æ ÎÂÎL2

Nsnap

ÿ

k=1

Îu(µk)Î2
L2

This concludes that R is a continuous function X æ X. Using Fubini, we get the self-adjoint
property. Compactness is trivial, as the image of R is a finite dimensional subspace of X.
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Chapter 2

Domain decomposition in ROM con-
text, for configurations with vary-
ing structures

The objective of this chapter is to propose a ROM based method to solve problems with

challenging geometry variations, in the context of CFD. Our target application has been

discussed in the introduction of this thesis, chapter 1, and the corresponding illustration

can be found in Figure 1.2. In this chapter, we start with a quick overview of the ROM

methods available in the literature that are designed to handle geometry variations. We

then show that there are important properties missing before being able to solve the target

problem. This analysis leads us to propose a variation of the RBEM method, both more

flexible and computationally more challenging than the original version. After discussing

the a priori estimates, we conclude by discussing possible implementations and the overall

computational complexity.

.

2.1 Introduction

The objective of this chapter is to tackle one of the issues raised when discussing the initial goal
of this thesis, see the introductive chapter 1. We show in Figure 2.1 the target problem that we
will be focusing on. It can be seen as a model version of the original problem. The wind turbines
have been replaced by cylinders. Also, we replace Navier-Stokes equation with the following
model convection diffusion equation, with Dirichlet boundary conditions

;
≠–∆u + — · Òu = 0 in Ω

u = uD on ˆΩ.
(2.1)

These simplifications will allow us to focus on the unusual parameter dependency. It is the
number Nobs and position of the obstacles inside Ω:

D = {xk œ Ω, k œ [1 . . . Nobs]} .

The physical domain will be denoted from now on Ω(µ). The solutions to (2.1) onto Ω(µ)
will be denoted u(µ). With this unusual parameter dependency comes a new set of questions.

41



Chapter 2. Domain decomposition

x1

x2

x3

x4

x5

x6

Ω

Figure 2.1: The chosen model problem. Here, Nobs = 6

What is the correct reduced space ? Indeed, the standard solution manifold M defined as:

M := {u(µ), µ œ D}
is not embedded in any obvious Hilbert space. We can reduce this question to a simpler one:
how do you compare solutions with different number of obstacles?

The intuition is that the correct space to look at is the manifold of the restriction of solutions
on subdomains of Ω. One can for instance study M̂ defined as:

M̂ := {u(µ)|Ωk
, µ œ D, Ωk some subdomain of Ω}.

An illustration is depicted in Figure 2.2. Following this initial remark, we expect that solving the

x1

x2

x3

x4

x5

x6

Ω

Figure 2.2: An illustration of the concept of solution partitioning

target problem will involve matching solutions defined on neighboring domains. This is exactly
the purpose of domain decomposition methods.
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The first section will be a discussion on existing domain decomposition methods. More
specifically we will give a short review of the intersection between domain decomposition and
reduced order modeling. We will explicit the reasons why none of the existing methods is adapted
for our specific need, and conclude on specifications required to solve the target problem. The rest
of the chapter will be devoted to the analysis of the proposed method, as well as computational
considerations.

2.2 ROM and domain decomposition

This section will start as most talks and lectures on domain decomposition methods, by presenting
their origin. Suppose that you know how to solve a PDE separately on elementary domains, given
any boundary conditions. Can you solve the same PDE on a combination of the elementary
domains ? The situation where there are two elementary domains, one circle and one square is
presented in Figure 2.3. Many variations were developed around the method proposed initially

Ω1 Ω2

Figure 2.3: The original Schwarz problem

by Schwarz. As our purpose is not to review all existing methods, we will (very) briefly describe
one of them, taken from [87].

Let u0
1 and u0

2 be some ’guessed solution’ inside Ω1 and Ω2. The following iterative algorithm

≠–∆un+1
i + — · Òun+1 = 0 in Ωi

un+1
i = un

(i+1)%2 on Ω
u

ˆΩi

un+1
i = uD on ˆΩ

u
ˆΩi

converges towards the solution to the full problem (2.1) under conditions on the overlap Ω1 flΩ2.
These ideas have found many applications and are widely used. They are the building block of
the design of parallel PDE solvers, see for instance [45] and the references therein. As we will
see, we use them here in a different setting.

To continue exploring the specificities of the problem at hand, we present a version of the
Schwarz problem, closer to the target problem of this chapter. It will be used in the next
section to illustrate the fact that existing methods are not suited to solve our problem. Let
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a parametrized version of the problem depicted in Figure 2.3. The parameter is taken to be
the distance between the barycenters of the elementary domains. We can put this into a ROM
framework:

• denote µ the distance between the barycenter of the subdomains Ω̂1 and Ω̂2. Denote
Ω1 := Ω̂1 and Ω2 := Ω̂2(· ≠ µ)

• denote Ω(µ) the global domain, for a parameter µ:

Ω(µ) = Ω1 fi Ω2

• denote D, the parameter space in which µ lives. It is some interval of R such that Ω1 and
Ω2 overlap

This problem resembles the one that lead to the first domain decomposition method by Schwarz.
We know how the restriction of the solution to both subdomains Ω̂1 and Ω̂2 behave. Can we
propose a ROM strategy to quickly solve the combined parametrized problem ?

Remark 12 The computational difficulties due to this specific parameter dependence already
appear on this simple toy example. We expect this to be even worse when multiple domains are
intersecting, as in the target problem. We will see in the numerical section how to mitigate these
issues.

We now recall some of the methods used in the ROM community to solve problems with
geometric variations. Some of them will seem far from the target problem, but they will help
understand the context in which this work takes place. We discuss the method in section 2.2.1
because it is the most widely used ROM method for variation of geometries. We try to apply it
to the toy problem (Figure 2.3) and show that it is not adapted. The reasons why we discuss
the method in section 2.2.3 will become clear at the end of this chapter.

2.2.1 Domain Deformation

One option to deal with geometric variations is to use domain deformation. More precisely, one
can build an equivalent problem for which the parameter dependency appears in the variational
form. A complete description can be found for instance in [110, 42]. It assumes the existence of
a reference domain Ω̂ and of a family of smooth mappings {Fµ} such that the physical domains
in which we want to solve the problem Ω(µ) can be expressed as

Ω(µ) = Fµ(Ω̂).

The mappings can be:

• affine: x = G(µ)x̂ + g where G is a R
d◊d matrix.

• non affine: x = T (µ, x̂) where T is a smooth mapping R
d æ R

d.

The geometric variability is then handled as follows: in an offline stage, perform the fine com-
putation for several values of µ. Define the mapped solution manifold M̂ as:

M̂ := {u(µ) ¶ Fµ, µ}.

Use standard compression algorithm on M̂. In an online stage, modify the variational form to
make the problems on Ω(µ), µ œ D equivalent to the problem on Ω̂.
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Remark 13 When the mapping is non affine, the additional terms in the variational form have
non affine parameter dependence. The EIM method [14] can be used to reduce the computational
cost.

Is this idea adapted to solve the toy problem depicted in Figure 2.3 ? We need to choose a
reference domain Ω̂ and smooth mappings Fµ such that ’µ œ D, Ω(µ) = Fµ(Ω̂). Let µ̂ be some
parameter in D. We take Ω̂ = Ω(µ̂). We take the affine by parts mapping that is the identity in
some neighborhood of the circle and that linearly stretches the rectangle, away form the overlap.
Let x̂0 be some abscissa, away from the overlap. Let xr(µ) be the abscissa of the right edge of
the rectangle. This situation is illustrated in Figure 2.4. We take the following mapping

x̂ æ
I

x̂ for x̂ < x̂0

x̂0 + (x̂ ≠ x̂0) xr(µ)≠x̂0

xr(µ̂)≠x̂0
for x̂ > x̂0.

This method is far-fetched in this situation; it is not using the underlying structure of the

x̂0 xr(µ̂)

Figure 2.4: As possible reference mesh Ω̂

problem. Also, the extension to the target problem, with multiple intersections is not reasonable.

2.2.2 Reduced basis element method

The reduced basis element method (RBEM) is using ingredients that better match the target
problem. It follows the following recipe:

• decompose the domain into non overlapping elementary blocks

• eventually use domain deformation onto well chosen reference blocks

• perform standard reduced order modeling to get a reduced basis onto each reference block

• glue solutions together using domain decomposition methods. The matching constraints
on the interfaces can for instance be enforced using reduced basis, coarse finite element
spaces or low order spectral spaces

This method was initially developed and tested on the heat equation [95]. Results for the two di-
mensional Navier-Stokes equation are presented in [90]. We also mention the static condensation
reduced basis element method [133, 47] which is an ’industrial’ version of the RBEM, as well as
ArbiLoMod [24], a recently developed variant that allows for online local basis enrichment. All
of these methods require a structured geometric decomposition. A quick look at Figure 2.1 will
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convince the reader that the target problem lacks this property: we have no a priori idea of the
geometry of the overlaps. The method we will propose is an extension of the RBEM, that deals
with this issue.

2.2.3 Rotating obstacle

[131] handles another geometry related problem. The stages of the method proposed are:

• build local (reduced) basis around objects

• rotate the objects during the simulation

• match these local solutions to an ’outside solution’

The exact relation of this method to the target problem is not obvious. We refer to the discussion
in the concluding section of this chapter for more details.

in Figure 2.5, we present a simplified version of their problem. The global domain Ω is
decomposed into three non overlapping subdomains, Ω0, outside, Ωint, a rotating domain and
Ωtampon which makes the junction between the two other domains. Define the rotation operator

Ω0

Ωtampon

Ωint

Figure 2.5: Method developed in [131]

r◊ as:

’◊, r◊ :

Y

]

[

Ω æ Ω

(x, y) ‘æ
3

cos(◊) ≠sin(◊)
sin(◊) cos(◊)

4 3
x

y

4

Let ◊ be some prescribed rotation parameter. They suggest using the following mapping:

x = F◊(x̂) =

Y

]

[

x̂ if x̂ œ Ω0

r◊Õ(x̂) if x̂ œ Ωtampon, where ◊Õ = ◊
rext≠Îx̂Î2

rext≠rint

r◊(x̂) if x̂ œ Ωint
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Let Ω̂ be some reference mesh such as the one presented Figure 2.6. The effect of the mapping

Figure 2.6: The chosen reference mesh. In red: Ω̂int; in black: Ω̂tampon

F◊, for various values of the rotation angle ◊ is shown in Figure 2.7. This specific mapping

Figure 2.7: F◊(Ω̂), for various values of ◊

insures global continuity of the mapping. To get higher regularity, we could choose something
more involved than linearly going from rotation of angle ◊ to identity.

Remark 14 Trying to build mappings with smooth transitions between neighboring domains is
one of the topic discussed in chapter 4.

With our application to fluid dynamics simulation in mind, suppose that we have Karman
vortices following a mean flow direction, taken here as the parameter. We model this situation
by considering the following solution manifold:

M := {u0 ¶ r◊, ◊ œ D}

where u0 is some reference solution. A few snapshots taken from this manifold are presented
in Figure 2.8. The inflow has a fi

4 amplitude variation, and the structures are modeled by 2
dimensional gaussian functions. We present in Figure 2.9 the snapshots mapped back onto the
reference domain, that is {F ≠1

◊ (u0 ¶ r◊)}. Inspecting the results, we can see that the structures
are distorted in the patching domain. The method does not resolve the complexity of the
directional problem. It brings it out of the direct vicinity of the blade, to the patching domain.
The underlying hope is that the complexity is much smaller away from the objects.
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Figure 2.8: Three snapshots taken from M

Figure 2.9: Three snapshots mapped back onto the reference domain

2.2.4 One last example

In [59] is studied a electromagnetic field problem where the geometric variability resembles the
one we are dealing with. What ’saves’ them, is that they transform their problem into a surfacic
one. The distance between the obstacles, which is the parameter, then appears explicitly in the
modelisation of the interactions.

From this analysis of the literature, we can draw some conclusions:

• RBEM type methods require a structured geometry. We would like to have something
more general.

• because of the applications we have in mind, we have to be careful on how we choose to
impose the matching conditions, see section 2.2.3

• the number of basis functions in each domain is small. The number of matching constraints
that we can impose on each overlap is thus reduced

We will propose two versions of an OverlappingRBEM (ORBEM) method.
The first one is a conforming method that is close the partition of unity method introduced

by Babuska et al [100]. This method uses a priori knowledge of the solution inside a localized
subdomain. For instance, you can pick as trial space some coarse finite element function on Ω,
plus some sharp gradient where you know it will appear. The a priori error estimations show
that the global error depends on:

• local errors: the error in each subdomain using the local approximation space

• terms that depend on the smoothness of the partition of unity functions

We will see in subsection 2.4.1 that despite the fact that this approach matches some of the
objectives of our target problem, it does not fit well into a reduced order modeling context.

The second one is a non conforming method, close the Arlequin method described in [44] and
for which a mathematical analysis can be found in [16]. It was developed in these references in
a solid mechanics context. We add to this approach the reduced order modeling aspect, as well
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as a more rigorous mathematical analysis. The latter is also close to the analysis of the mortar
with overlapping, see for instance [3].

2.3 The set up

We are still solving the parametric PDE defined in equation (2.1), on domains such as the one
displayed in Figure 2.1. We will denote by a the associated bilinear form. Suppose that we have
identified offline

• a set of ’generic’ subdomains denoted by Ω̂j , j = 1 . . . J

• for each Ω̂j , a reduced basis
Ó

„̂j,l, l œ [1 . . . Nred
j ]

Ô

of small cardinality.

For all µ, we assume that the physical domain Ω(µ) can be decomposed into an overlapping set

Ω(µ) = Ω0 fi
A

Ndom€

k=1

Ωk

B

.

such that

• ’k > 0, Ωk is the image through some linear transformation of a generic Ω̂j . One can for
instance think of rotation or translation. In the case where only translation is considered,
this means that we have a satisfactory reduced basis noted {„k,l}, given as the translated
version of the generic reduced basis:

’k, ÷j s.t , „k,l = „̂j,l(· ≠ xk), l œ [1, . . . Nred
j ]

For the rest of this chapter, j(k) denotes the application that gives the index of the corre-
sponding generic domain. xk is the translation parameter.

• there are no complex structures on Ω0. That is, u|Ω0
can be represented by a coarse FE

space

• ’k > 0, dist(ˆΩk, ˆΩ) > 0.

These assumptions can be used to define a new notion. Our parameterized initial problem is
assumed to have a small ’local Kolmogorov n-width’. It is

• small in the Ωk, k > 0 even if there are small scales represented. Indeed, we have found a
good basis given by a translated version of {„̂j(k),l, l œ [1, . . . , Nred

j ]}

• small in Ω0 because we only need coarse scales.

We show in Figure 2.10 an illustration of possible generic subdomains. The different color here
represents the fact there can exist different basis for the same shape. We have two applications
in mind. Either a very sparse collection of interesting subdomains, but with no underlying
regularity in the positioning. This situation is depicted in Figure 2.11. Or a more dense collection
of interesting subdomains, but with some kind of underlying organization. A typical situation is
presented in Figure 2.12. Most of the rest of the analysis will be common to these two type of
applications. The only difference will be in the numerical section.

Both methods require the construction of a partition of unity. This family of functions defined
on Ω will be denoted {‰i}iœ[0..Ndom]. It needs to satisfy the following properties:
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Chapter 2. Domain decomposition

Figure 2.10: Possible generic subdomains Ω̂j

Figure 2.11: First application of ORBEM: a sparse collection of interesting subdomains

• ’i, ‰i is smooth on Ω

• qNdom

i=0 ‰i = 1 on Ω

• ’i, ‰≠1
i (1) µ Ω is a closed domain, with non empty interior

• supp ‰i µ Ωi

The characteristics of the set {‰i} will appear explicitly in the numerical analysis of the method.
Until the end of the chapter, we will denote

• Ωint =
t

i=1...Ndom
supp (‰i)
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2.4. The ORBEM method

Figure 2.12: Second application of ORBEM: a dense collection of subdomains, following a
pattern

• Ω0 = supp (‰0)

2.4 The ORBEM method

In both conforming and non conforming methods, we will follow the same steps:

• make sure that at the continuous level, the method is equivalent to the initial problem

• prove the well posedness of the discretized problem

• compute a priori error estimation of the discretized solutions

• give computational details

2.4.1 Conforming method

There is not much to say about the analysis of the continuous problem. We are simply solving
problem (2.1) using a particular subspace of H1(Ω).
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Chapter 2. Domain decomposition

2.4.1.1 Numerical approximation

To approximate H1
0 (Ωint), we will use Xint,” defined as:

Xint,” = span {‰k„k,l} µ H1
0 (Ωint) (2.2)

where k œ [1 . . . Ndom], l œ [1, . . . Nred
k ]. On Ω0, we take the following approximation space

X0,” = ‰0 span{hk}, (2.3)

where {hk} is a coarse finite element space on Ω0. With an abuse of notation, we still denote
with Xint,” and X0,” the spaces of functions extended by zero to the whole domain Ω. The
discretized space for the whole problem is then given by:

X” = Xint,” + X0,”. (2.4)

Wrapping things up, we are looking for an approximation of the solution u œ H1(Ω) as:
I

u” =
q

k

q

l ‰k–kl„k,l +
q

n ‰0–0nhn

u” = uD on ˆΩ
(2.5)

2.4.1.2 Well posedness

As we are dealing with a conforming approximation of a coercive elliptic problem, the well
posedness of the discretized problem is a direct consequence of the well posedness of the original
problem.

2.4.1.3 Best approximation error

This is a conforming method for an elliptic coercive problem. Let – be the coercive constant and
C the continuity constant of the bilinear form a. Let u be the truth solution to problem (2.1).
Let u” be the solution obtained with the Galerkin method in X”. Cea’s Lemma gives

Îu ≠ u”ÎH1 Æ C

–
inf

v”œX”

Îu ≠ v”ÎH1

We want to link this global error to local error estimates, that is we would like to have an
inequality such as

inf
v”œX”

Îu ≠ v”ÎH1 .
ÿ

k

inf
v”œ span {„k,l}

Îu|Ωk
≠ v”ÎH1(Ωk) .

We follow the lines of [100]. For v” œ X”, denote {v”,k}k the decomposition onto the basis. That
is,

v” :=
ÿ

k

‰kv”,k.

We have

’v” œ X”, ÎÒ(u ≠ v”)Î2
L2 =

.

.

.

.

.
Ò

A
ÿ

k

‰k(u ≠ v”,k)

B.
.
.
.
.

2

L2

As the ‰k are assumed to be smooth, we have:

’v” œ X”, ÎÒ(u ≠ v”)Î2
L2 Æ 2

.

.

.

ÿ

‰kÒ(u ≠ v”,k)
.
.
.

2

L2
+ 2

.

.

.

ÿ

Ò‰k(u ≠ v”,k)
.
.
.

2

L2
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2.4. The ORBEM method

Let noverlap be the maximum number of subdomains that contain any given point in Ω. We
have:

’v” œ X”, ÎÒ(u ≠ v”)Î2
L2 Æ 2 noverlap

A
ÿ

k

Î‰kÒ(u ≠ v”,k)Î2
L2 +

ÿ

k

ÎÒ‰k(u ≠ v”,k)Î2
L2

B

(2.6)

We conclude that there exists a constant K, function of C, –, noverlap, Î‰kÎLŒ , ÎÒ‰kÎLŒ ,such
that:

Îu ≠ u”ÎH1 Æ K
ÿ

k

inf
v”,k

Îu ≠ v”,kÎH1(Ωk)

Forgetting about computational errors, the overall error depends on

• the parameters of the original problem

• the smoothness of the partition of unity

• the local approximation errors

This is exactly the property that we wanted. Let’s look at the computational side.

2.4.1.4 Computational cost

In practice, this conforming method reduces to finding –kl and –0n such that
Y

__]

__[

q

Ωk

q

l –kla (‰k„k,l, ‰p„p,q) +
q

n –0na(‰0hn, ‰p„p,q) = 0 ’p œ [1 . . . Ndom], ’q œ [1 . . . Nred]
q

Ωk

q

l –kla (‰k„k,l, ‰0hm) +
q

–0na(‰0hn, ‰0hm) = 0 ’hm œ coarse Finite Element space

u” = uD on ˆΩ

(2.7)
This formulation requires the computation of coupled terms such as:

Kk,l,p,q :=
⁄

Ω

Ò(‰k„k,l)Ò(‰p„p,q).

We would like to get rid of the coupled terms, coming from Kk,l,p,q when p is not equal to k.
We will see that, in that respect, a non conforming approach makes more sense. We will insist
on this property in the numerical section.

2.4.2 Non conforming method

Unlike the conforming method, we will work a little bit at the continuous level. For simplicity, we
will assume throughout this section that u0 is known, having in mind a fluid dynamics problem,
where inflow and outflow would be taken as uniform flow. The case with u0 in a coarse finite
element space would be treated the same way.

We work in the following Hilbert space

X =

I

(uk)k=1..Ndom
œ

NdomŸ

k=1

H1(Ωk)

J

. (2.8)

X is induced with the following broken norm:

ÎuÎ2
ú :=

ÿ

k

ÎuÎ2
H1(Ωk). (2.9)
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The appropriate bilinear form is given by:

a :
;

X ◊ X æ R

(u, v) ‘æ q

k

s
‰kÒukÒvk +

q

k

s
‰k— · Òuk vk.

(2.10)

The non conforming formulation is to look for u in X such that
Y

]

[

≠∆u + — · Òu = 0 in each Ωk in the distributional sense
< (uk ≠ ul), Ψ >L2(ΩkflΩp) = 0 ’Ψ œ L2(Ωk fl Ωp),

< uk, Ψ >L2(ΩkflΩ0) = < u0, Ψ >L2(ΩkflΩ0) ’Ψ œ L2(Ωk fl Ω0)
(2.11)

For k, p, denote Mk,p := L2(Ωk fl Ωp) and Mk,0 := L2(Ωk fl Ω0). We define the following bilinear
forms

• bk,p(u, Ψ) the set of ’internal’ matching conditions, i.e for u œ X and Ψ œ Mk,p. These
correspond to the second equation in (2.11).

• bk,0(u, Ψ) the set of matching conditions with Ω0, i.e for u œ X and Ψ œ Mk,0. These
correspond to the third equation in (2.11).

For all {gk œ L2(Ωk fl Ω0)}, define V ({gk}):

V ({gk}) =
;

u œ X, s.t
’k, p, ’Â œ Mk,p, bk,p(u, Ψ) = 0

’k, ’Â œ Mk,0, bk,0(u, Ψ) = < gk, Ψ >L2(ΩkflΩ0)

<

(2.12)

By considering the isomorphism between V (0) and H1
0 (Ω \ Ω0), it is easy to see that our initial

problem is equivalent to the following: find u œ V (u0) such that

’v œ V (0), a(u, v) = 0. (2.13)

2.4.2.1 Discrete formulation/ well posedness

We need to pick a discretization space for X. It is natural to pick

’k, Wk := span
)

„k,l, l = 1 . . . Nred
k

*
. (2.14)

The global discretization space is then given by:

X” =

I

(uk)k=1..Ndom
œ

NdomŸ

k=1

Wk

J

(2.15)

It is more tricky to choose a suitable discretization space for Mk,p and Mk,0. We do not
specify them yet, and denote with M”,k,p and M”,k,0 some generic discretization space of Mk,p

Mk,0, respectively. As in the continuous case, define, for {gk œ L2(Ωk fl Ω0)}:

V”({gk}) =
;

u œ X”, s.t
’Ψk,p œ M”,k,p, bk,p(u, Ψk,p) = 0
’Ψk,0 œ M”,k,0, bk,0(u, Ψk,0) = < gk, Ψk,0 >L2(ΩkflΩ0)

<

.

(2.16)
With this notation, the discretized problem becomes: find u” œ V”(u0) such that:

’v” œ V”(0), a(u”, v”) = 0

In order to prove the well posedness of the resulting discrete problem, we need to prove the V”(0)
ellipticity of a.
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2.4. The ORBEM method

Remark 15 Unlike in the conforming case, V”(0) is not a subspace of V (0). The ellipticity is
not trivial.

Let v in V”(0). We have:

a(v, v) =
Ndomÿ

k=1

⁄

Ωk

‰k|Òvk|2 +
Ndomÿ

k=1

⁄

Ωk

‰k— · Òvk vk

A rigorous proof will not be presented here, and we will stick to formal arguments. Let some
domain Ωk. Away from the boundary ˆΩk, ‰k is bounded from below. The problem occurs
near the boundary as ‰k|Òvk|2 from the bilinear form can not compete with |Òvk|2 of the
broken norm. The hope comes from the fact that where ‰k is small, there exist p œ [0, Ndom]
such that ‰p is big, and because of the matching conditions (v is in V”(0)), vp is close to vk.
The ellipticity constant should thus be close to the ellipticity constant of the continuous non
conforming case, if the matching is good enough. More quantitative arguments can be found in
the next subsubsection.

2.4.2.2 A priori error estimations

We start with an application of Strang’s 2nd lemma [125], which is the standard tool for a priori
estimation for non conforming methods. With an abuse of notation, we also denote by u the
representant of the truth solution in X:

u := {uk, k œ [1 . . . Ndom]} .

Let u” := {u”,k}k be the solution to the discretized problem. Strang’s 2nd lemma states:

Îu ≠ u”Îú Æ C

–

A

inf
v”œV”(u0)

Îu ≠ v”Îú + sup
v”œV”(0)

a(u, v”)
Îv”Îú

B

. (2.17)

The best approximation error will depend on the offline phase and on the choice of the reduced
basis. Our hypothesis in this whole chapter is that this error is small, see the definition of local
Kolmogorov n-width section 2.3. We will thus focus on the consistency error. This error measures
’how far’ we are from having a global H1 solution.

Define the following linear form on X”:

K :

I

X” æ R

v” ‘æ qNdom

k=1

s

Ωk
‰kÒukÒv”,k +

qNdom

k=1

s

Ωk
‰k— · Òuk v”,k

As u is in H1(Ω) and thus consistent over overlapping subdomains, we have:

’v” œ X”, K(v”) =
⁄

Ω

Òu ·
A

Ndomÿ

k=1

‰kÒv”,k

B

+
⁄

Ω

A
Ndomÿ

k=1

‰kv”,k

B

— · Òu

We use
qNdom

k=1 ‰kv”,k œ H1
0 (Ω) and that u is the solution to the initial problem, to show that:

⁄

Ω

ÒuÒ
A

Ndomÿ

k=1

‰kv”,k

B

+
⁄

Ω

A
Ndomÿ

k=1

‰kv”,k

B

— · Òu = 0.
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Combining the two previous relations, we have:

’v” œ X”, K(v”) =
Ndomÿ

k=1

⁄

Ω

Òu · Ò‰kv”,k (2.18)

On domains that do not overlapp, the previous quantity is zero. Let’s handle a situation with
two subdmains overlapping. Let Ωk, Ωp these subdomains. Define Kkp the restriction of K on
this intersection, that is:

Kkp : v” æ
⁄

ΩkflΩp

ÒuÒ‰pv”,p +
⁄

ΩkflΩp

ÒuÒ‰kv”,k =
⁄

ΩkflΩp

ÒuÒ‰p (v”,p ≠ v”,k)

In order to get an idea of the consistency error, we need to bound Kk,p on the subspace V”(0).
We first follow the lines of the RBEM method. As we will see, this path does not match all of

the objectives set up for the method, but will help get a better understanding of the differences
with RBEM. A natural choice for M”,k,p is to pick some reduced basis that represents well the
space spanned by:

)
Ò‰kÒ„k,l, l = 1, . . . , Nred

k

* € )
„k,l, l = 1, . . . , Nred

k

*
. (2.19)

As v” œ V”(0), we have:
v”,k ≠ v”,p œ M‹

”,k,p.

We deduce the following estimate for Kkp:

’v” œ V”(0), Kkp(v”) Æ
.
.
.Π

‹
M”,k,p

(Ò‰p · Òu)
.
.
.

L2(ΩkflΩp)

.

.

.Π
‹
M”,k,p

(v”,p ≠ v”,k)
.
.
.

L2(ΩkflΩp)

As for each overlap, the set given in (2.19) is of small n-width, we know that we can find a reduced
space M”,k,p of small dimension that guarantees a satisfactory upper bound on Kk,p, and thus on
the consistency error. Nevertheless, this strategy does not entirely fulfill our objectives. Indeed,
it requires the knowledge of the sets given in (2.19) and thus the knowledge of the overlaps a
priori. We will see in the next section an alternative, weaker but more flexible matching.

2.5 Implementation details

The offline section does not cause specific issues. The first step is to identify the generic sub-
domains. These can be given for instance by the geometry of the mesh (hole with a specific
shape, object of complex shape etc.), or by localized singularities of some physical parameter.
We then restrict the solutions to these generic subdomains, and perform standard reduced order
modeling. This involves some mesh interpolation, but nothing to dangerous.

For the online section and unlike for the conforming method, we only need to compute the
bilinear form a in each subdomain independently. Indeed, the quantities appearing during the
online phase are given by:

’k, ’(l, m),
⁄

Ωk

‰kÒ„k,pÒ„k,m =
⁄

Ω̂j(k)

‰k(· + xk)Ò„̂j(k),lÒ„̂j(k),m. (2.20)

Two big issues remain:
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2.5. Implementation details

• the partition of unity {‰k(µ), k œ 1, . . . , Ndom} carries all the geometric variability. Its
construction is a challenging task. We will propose two ways of mitigating the associated
online computational cost.

• the matching constraints are very involved numerically. Both the stability and accuracy of
the method depend on the properties of the discretization spaces M”,k,p and M”,k,0.

2.5.1 Partition of unity

We can follow two routes in order to solve the complexity implied by the geometric variability.
We can either limit the geometric variability, or accept a high set up cost, at the beginning of
the simulation.

2.5.1.1 High set up cost

Suppose that we are solving a time dependent PDE. There will be a set up process before the
actual resolution of the problem. During this set up, we compute the set of {‰i, i = 0, . . . , Ndom]}
and the associated quantities, see (2.20). This will be computationally expensive, but will only
be done once.

2.5.1.2 Structured problem

If we are dealing with a problem such as depicted in Figure 2.12, the pattern in the geometry
will induce a pattern in the partition of unity functions {‰i, i = 1, . . . , Ndom}. That is, there will
be a limited number of generic partition of unity functions {‰̂k}, such that:

’i œ [1, . . . , N ], ÷k(i), s.t ‰i = ‰̂k(i)(· ≠ xi).

This means a highly reduced online computational cost.

2.5.1.3 Start from a non overlapping decomposition

The idea of this section was taken from [104]. This method starts with a non-overlapping
decomposition of Ω:

{Qk, k = 0 . . . Ndom}.

Remark 16 This premise restricts the number of situations that can be handled.

Different shapes can coexist in the family {Qk}k. The only requirement is that it covers Ω.
Let Θ a 2 dimensional smooth ’window function’, with a support included in a small neigh-

borhood of the origin, and such that
s

Ω
Θ = 1. We define our partition of unity functions

{‰k, k = 0 . . . Ndom}, as:
’k œ [1, . . . , Ndom], ‰k = Θ ú 1Qk

(2.21)

where the operator ú denotes the standard convolution operator. Such a family of function
satisfy:

• ’x œ Ω,
qNdom

k=1 ‰k(x) = 1

• supp(‰k) = Qk + supp(Θ)
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• the resulting partition of unity functions are translated version of a generic function: ‰k =
‰̂j(k)(· ≠ xk)

The first point is easily checked:

’x œ Ω,
ÿ

k

‰k(x) =
ÿ

k

⁄

R2

Θ(x ≠ y)1Qk
(y)dy =

⁄

Ω

Θ(x ≠ y)dy = 1 (2.22)

as long as ’k > 0, dist(ˆΩk, ˆΩ) > characteristic size of the support of Θ.
With this choice, the partition of unity functions are independent of the non overlapping

cover of Ω. It thus involves no additional online computational cost.

2.5.2 Matching

We will give a possible computationally reasonable choice for M”,k,p, subspace of Mk,p = L2(Ωk fl
Ωp). As usual, we focus on one particular overlap, say Ωk fl Ωp.

2.5.2.1 One possible choice for constraints

As in the previous section, we use Θ some two dimensional ’window’ function, of small support.
We propose the following matching constraints:

’m œ [1 . . . M ],
⁄

ΩkflΩp

÷(vk)(·)Θ(· ≠ xm) =
⁄

ΩkflΩp

÷(vp)(·)Θ(· ≠ xm)

for some well chosen {xm, m œ [1, M ]} in Ωk flΩp, and for ÷ some linear operator H1(Ωk flΩp) æ
L2(ΩkflΩp). For instance, when ÷ is the identity, this imposes that the average in some predefined
neighborhood of xm of vk and vp match.

First question to answer is to see if it fits into the framework of section 2.4.2.1. Define Γk,p

as:

Γk,p(xm) :
;

H1(Ωk fl Ωp) æ R

v ‘æ (v ú Θ)(xm) =
s

ΩkflΩp
÷(v)(·)Θ(· ≠ xm)

and take M”,k,p := span {Γk,p(xm), m œ [1, . . . , M ]}. The associated bilinear form bk,p is given
by:

’v œ X”, bk,p(v, Γk,p(xm)) =
⁄

ΩkflΩp

Θ(· ≠ xm)(÷(vk) ≠ ÷(vp)).

With this particular choice of M”,k,p, what can we say about the consistency error? Recall that
for two subdomains overlaping, it is given by:

sup
v”œV”(0)

A

1
Îv”Îú

⁄

ΩkflΩp

ÒuÒ‰p (v”,p ≠ v”,k)

B

.

As one of our premises is that for all k, Wk is of small n-width, we know that:
)

wk,p := (v”,k ≠ v”,p)|ΩkflΩp
, v”,k œ Wk, v”,p œ Wp

*

also has a small n-width, whatever the particular overlap Ωk fl Ωp considered. Thus, if we
manage to find enough independent matching conditions, this should be sufficient to guarantee
the smallness of Îv”,p ≠ v”,kÎL2(ΩkflΩp), and thus of the global consistency error. One can for
instance think that by equating enough local averages of the solution and local averages of the
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vorticity, one can correctly match the solutions of a CFD problem, even if this is not done in an
optimal fashion as in the RBEM version presented above. We note the difference with equation
(2.19). Where we were explicitly constructing a taylored reduced basis for a specific overlap, we
now hope to find local (averaged) quantities that characterize the solution on any overlap. The
precise quantities to consider and the size of the support of the window function Θ are of course
problem dependent, and should be chosen in the offline section.

2.5.2.2 Offline, online decomposition

We show how to efficiently impose the matching condition proposed in the previous section. For
this, we need a procedure to select a set of {xm} in the overlap as well as a way of efficiently
computing the corresponding Γk,p(xm)(v) defined in the previous section. For simplicity, we will
use ÷ the identity mapping, but note that the same procedure could be performed for any linear
operator acting on H1(Ωk fl Ωp).

Define Λk,l as:

Λk,l :

I
Ωk fl Ωp æ R

x ‘æ
s

ΩkflΩp
„k,l(·)Θ(· ≠ x)

Let v œ X” and {–k,l, l = 1 . . . Nred
k } be the coordinates of v on Wk. We know that

’x, Γk,p(x)(v) =
Nred

kÿ

l=1

–k,lΛk,l(x) (2.23)

We have replaced the problem of estimating Γk,p(xm)(v) by the estimation of Λk,l(xm), using
linearity.

Let j(k) in J and Ω̂j(k) be the generic obstacle corresponding to Ωk. Select offline some
points in Ω̂j(k) denoted {x̂j(k),n}. We pre compute the local quantities:

’j œ J, Λ̂j,l,n :=
⁄

Ω̂j

„̂j,lΘ(· ≠ x̂j,n).

We use the translation invariance to show that:

’x̂ œ Ω̂j(k), Λk,l(xk + x̂) =
⁄

ΩkflΩp

„k,lΘ (· ≠ (xk + x̂)) =
⁄

Ω̂j(k)

„̂j(k),lΘ(· ≠ x̂)

and thus that:
Λk,l(xk + x̂j(k),n) = Λ̂j(k),l,n.

Finally, Λk,l is a function defined on Ωk, smooth, whose value is known at a discrete set of points,
namely {xk + x̂j(k),n, n}.

This ends the matching procedure. Indeed, let {xm} œ Ωk be a set of points chosen online.
We use some interpolation method to approximate the Λk,l(xm). Then, with equation (2.23)
we have an estimation of bk,p(v, Γk,p). The accuracy of the interpolation procedure needs to be
assessed in the offline section.

2.6 Conclusion

We have proposed in this chapter an overlapping version of the RBEM method. This method
has been constructed to handle situations with a high geometric variability. The main difference
with the RBEM method is the way the matching constraints are imposed.
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Chapter 2. Domain decomposition

What has been presented is a preliminary work and a lot of questions still need to be answered.
We have sketched a procedure to efficiently build partition of unity functions. This should be
numerically investigated. Also, I have the feeling that the matching procedure could be improved.
We have to keep its adaptability, but try to find an alternative resulting in a stronger matching.

We have one bonus property with the non conforming version of ORBEM. It matches the
objective of the method presented in section 2.2.3. Each local basis can be modified independently
online through non linear transformations. For instance, suppose that we are dealing with
problems where the inflow direction varies in time. We would like the ’local’ basis to rotate
accordingly. This is illustrated in Figure 2.13. This can be handled simply by changing the

x1

x2

x3

x4

x5

x6

Figure 2.13: The ORBEM method allows for the rotation of the local basis

mapping between the generic domains Ω̂j and the instances of these subdomains Ωk, as they
will now involve a rotation. We do not need more evaluation of the bilinear form a, as it only
involves local terms and is rotation invariant. Also, the matching process can be used as such.
Summing up, for a prescribed rotation parameter on each local basis, the algorithm is exactly
the same.

How to pick, online, a ’good’ rotation parameter, such that the flow is best represented by
the local basis is the topic of the next chapter 3.
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Chapter 3

On the construction of a calibra-
tion procedure

The reduced basis method allows to propose accurate approximations for many parameter

dependent partial differential equations, almost in real time, at least if the Kolmogorov

n-width of the set of all solutions, under variation of the parameters, is rapidly decaying.

The idea is that any solutions may be well approximated by the linear combination of

some well chosen solutions that are computed offline once and for all (by another, more

expensive, discretization) for some well chosen parameter values. In some cases however,

such as problems with large convection effects, the linear representation is not sufficient

and, as a consequence, the set of solutions needs to be transformed/twisted so that the

combination of the proper twist and the appropriate linear combination recovers an accurate

approximation. This chapter presents a simple approach towards this direction, preliminary

simulations support this approach. There is an article version of this chapter available, see

[27]. Note that we used Freefem++ [67] for some of the numerical simulations used in this

chapter.

.

3.1 Introduction

Fast reliable solutions to many queries parametric Partial Differential Equations (PDE) have
many applications among which real time systems, optimization problems and optimal control.
Many different methods for reducing the complexity of the computations when such many queries
are required have blossomed for answering this specific need. One of the approaches that have
emerged is reduced order modeling (ROM). Methods in this category have been developed and
are now well understood and set on firm grounds, both for steady cases or time dependent
problems where time can be considered as another parameter.

The reduced basis method, which is the method that we focus on in this chapter, enters in this
frame and consists in, i) defining a sequence of low dimensional spaces for the approximation of
the whole set of the solutions to the parametric PDE when the parameters vary (called hereafter
the solution manifold associated to our problem); ii) once such a sequence of low dimensional
spaces (known as reduced basis spaces) is determined, an approximate solution is sought in such
a chosen reduced space to the PDE for the values of the parameter we are interested in. The
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Chapter 3. Calibration

approximation is often based on a Galerkin formulation. For such reduced basis methods, both
the variety of applications and the theory are now quite sound. For instance, reliable algorithms
with a priori estimates and certified a posteriori errors have been developed for elliptic and
parabolic problems, with or without so-called affine parameter dependence, see e.g. the two
recent books on the subject [68] and [109] and, of course, the publications therein.

Reduced basis methods, classically, consider the solution manifold associated to the parametrized
problem as outlined above and are appropriate if this manifold can be approximated accurately
by a sequence of finite dimensional spaces. The mathematical frame for this is inherently linked
to the notion of Kolmogorov width of solution manifolds, i.e. on how well the solution manifold
can be approximated by a finite dimensional linear space. More precisely, let M be a manifold
embedded in some normed linear space X. The Kolmogorov n-width of M is defined as:

dn(M, X) = inf
En

sup
fœM

inf
gœEn

Îf ≠ gÎX (3.1)

The first infimum being taken over all linear subspaces En of dimension n embedded in X.
Even if, from the practical point of view, there are various ways for checking that M can be

approximated by a series of reduced spaced with small dimension, the first natural mathematical
question is to provide an estimation of the Kolmogorov n-width of M. Second, the question of
an applied mathematician is if one can actually build an optimal, or close to optimal sequence
of basis sets for these spaces?

Of course, in the vast majority of real cases, there is no analytical expression for this dimension
but there are some papers giving bounds for some restricted classes of problems in the literature.
For instance, in [99] bounds on dn are found for solution manifolds corresponding to regular
elliptic problems and where the parameter dependence is on the forcing term. More general
cases can be handled using the results in [35]. The hypothesis therein is on the regularity of
the solution with respect to the parameter dependence, it is proven that, under analyticity
assumption on the behavior of the parameters in the PDE, the small Kolmogorov n-width of the
manifold of parameters D (Æ cn≠t, t > 1) implies the smallness of the Kolmogorov n-width of
the associated solutions manifold MD (Æ cn≠s, s < t ≠ 1).

In practice, instead of the “optimal” linear subspace of dimension n in the sense described
earlier, we build a “good” linear subspace. In the literature, the two most classical algorithms
are the greedy method based on a certified (or at least fair enough) a posteriori estimator, and
the Proper Orthogonal Decomposition (POD). We proceed assuming that the chosen algorithm
has given a “good” basis “close” to the optimal one, that is, we assume that our reduced family
of spaces {Xn}n satisfies:

dn(M, X) ¥ sup
fœM

inf
gœXn

Îf ≠ gÎX (3.2)

A first paper on this subject is [94], where the authors derived error bounds on the error for the
Reduced Basis Method (RBM) approximation in case of a single parameter dependent elliptic
PDE. More general results have been obtained more recently for the greedy approach of the RBM
[21, 43]. The optimality considered in the case of POD is slightly different. The POD focuses on
minimizing the average error (parameter wise), in some norm. More precisely, we have the well
known relation ⁄

D

Îu(µ) ≠ ΠP ODu(µ)Î2 dµ =
ÿ

i>NP OD

⁄i (3.3)

where ΠP OD is the orthogonal projection onto the POD reduced space of dimension NP OD and
the ⁄i are the eigenvalues of the associated correlation operator, in decreasing order. The faster
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the decay of the eigenvalues, the fewer modes are needed for a good (in average) reconstruction
of the solution manifold.

Up to now, most of the literature on the subject, deals with problems where one can expec-
t/check/prove/ or hope, that the solution manifold MD has a small Kolmogorov n-width. There
are however cases where the plain approach does not work and some transformation of MD needs
to be done. An example is for instance the use of the Piola transform in the processing of the
velocity field when the PDE is the Stokes or Navier Stokes problem and the parameter includes
the geometry of the computational problem (see e.g. [90]). The choice of the Piola transform
indeed provides better reduction than a simple change of variables.

The most classical and simple example illustrating limitations of reduced models due to large
Kolmogorov n-width is the pure transport equation, with constant speed c > 0. Formally, we
consider the following parametric PDE over the domain Ω = (a, b) µ IR

Y

]

[

ut(x, t) + cux(x, t) = 0, in Ω◊]0, T [
u(x, 0) = u0(x), in Ω

c œ D := [cmin, cmax].
(3.4)

The analytic solution is given by

u(x, t; c) = u0(x ≠ ct). (3.5)

We can consider two solution manifolds. Either the space time solution manifold

Mx,t
D = {u(·, ·; c), c œ D} , (3.6)

or a more natural solution manifold in our context is the snapshot solution manifold

Mx
D = {u(·, t; c), t œ [0, T ], c œ D} . (3.7)

We will first give an illustrative idea of dn(Mx
c ), i.e for a fixed convection parameter. Thus, the

only “parameter” left is time and dn(Mx
c ) is, of course, smaller than dn(Mx

D).
Suppose now that our initial solution is compactly supported and let ¸ denote the Lebesgue

measure of its support. Let us assume in addition that its support is included in ]a, a + ¸[.
Then, there are at least (b ≠ a)/¸ snapshots {u(·, tk; c)}k obtained for tk = k¸/c that are two
by two orthogonal proving that a lower bound of the Kolmogorov n-width is (b ≠ a)/¸. For a
given accuracy, reducing ¸, we can make the size of the reduced basis needed arbitrarily large.
Another example of badly behaved manifold space can also be found in [126], or in chapter 1 of
this manuscript.

The objective here is to give a proper framework and to introduce notations generalizing the
following observation: apart from translation, the solution manifold for the whole time simulation
can be represented by a unique basis. However, let us stress that this translation is not a linear
process hence the Kolmogorov process cannot capture it. An additional ingredient to existing
reduced order methods has thus to be added so as to capture this very simple problem structure.

Most of the literature in the reduced order modeling community on convection dominated
problem focus on the stabilization issue, and not on the reduction of the Kolmogorov n-wdith.
For instance, the authors in [39] have proven that using, as usual, the residual of the PDE
as a surrogate for the true error, is not adapted if convection is dominating as the relative a
posteriori estimator is not fair enough. Their method involves other norms than the natural
ones, and increases the stability at each iteration by enriching the trial space. Once again, their
method improves the stability of the construction of a reduced basis, but does not handle the
fact that the solution manifold can have a large Kolmogorov n-width.
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Chapter 3. Calibration

In the same direction let us quote the papers related to the so called GNAT approach [30, 31]
where the authors propose also an alternative reduction approach for these type of problems.

In [2], the authors address the stability issue in another direction. They give ideas and
show numerical examples illustrating the fact that using L1-minimisation, instead of the — more
classical — L2-minimisation (corresponding to a Galerkin scheme, which is natural in the reduced
modeling context), does a better job for handling shocks (as appears in non linear convection
problems) and provides more stable results. However this approach does not cure the problem
that we have indicated above related to the large dimension of the solution manifold.

Let us also mention at this level, as an intermediate approach, the paper [28]. As standard
reduced order modeling fails, the author chooses, in a preprocessing step, to “chop off” the
reduced basis functions resulting in a kind of adaptive coarse enriched finite element method.

Very few papers tackle the n-width issue directly. In [126], the authors propose a method that
is the first attempt to use shock fitting related ideas in the context of reduced order modeling.
The idea is to decompose the spatial domain into zones separated by shocks. In each zone,
classical reduced order modeling is performed, and the shocks dynamic is handled using another
equation. For them, it is given by Rankine-Hugoniot conditions. This method, just as any other
shock fitting method, is somehow limited to one dimensional problems.

In [60], the authors develop a method where the POD basis is reconstructed at each time step
to follow the propagation of the phenomenon. More precisely, by referring to Lax–pairs, they
choose as reduced basis the modes of the Schrödinger operator where the potential is taken as
the solution at the previous time step. Even if no theoretical proof of this ansatz is presented,
the numerical results presented in that paper illustrate the interest of the approach for selecting
the reduced space and adding stability to the process without curing however the large increase
of the dimension of the reduced space when the accuracy requirement increases.

The method presented in [74] is similar to our work in many aspects, in particular in looking
for a change of variable for better representing the solution manifold. Their approach relies on
the existence of a main mode u0 that, by convection, represents most of the solution. The proper
change of variable (written as a sum of advection modes) is fitted by evaluating Wasserstein dis-
tances between the snapshots in Mx

D, with modes being obtained by solving Monge-Kantorovich
optimal transport problems w.r.t. the reference mode u0. Various numerical results illustrate the
approach, however only in cases where the solution exhibits indeed such a main mode u0 which
is doubtful in nonlinear processes. We will come back on their ideas in the following sections.

In the first section, we introduce the notion of "calibration" of a solution manifold based
on our knowledge of the process (differing here somehow from the optimal transport problem
approach in [74]). We detail the steps of a procedure using the calibration manifold, the so-
called freezing method [19, 105]. As will quickly appear, the mathematical ingredients needed
for a rigorous analysis of the freezing method are very involved. In the end of the section, we
motivate the need for a lighter, more natural framework. The rest of this chapter is devoted to
the development of this alternative method. We extensively describe its specificities on the one
dimensional unsteady viscous Burger equation. We propose a self sufficient reduced scheme, with
efficient offline/online decomposition. We then present some numerical simulations confirming
the overall feasibility of the method. The last sections of this chapter describe possible extensions
to the method.
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3.2. Formal presentation

3.2 Formal presentation

Let us consider a general time dependent parametric PDE in some physical space Ω µ IRd,
d = 1, 2, 3

Y

]

[

ut + Lµ(u) = 0 in [0, T ] ◊ Ω

u(·, t = 0; µ) = u0(·, µ) in Ω

B(u; µ) = 0 on ˆΩ

(3.8)

where µ varies in some compact parameter space D. Our approach considers the corresponding
snapshot solution manifold Mx

D as defined in (3.7), that we assume embedded in some Hilbert
space X.

Let us assume that the solution manifold has a simple structure, not reflected though by the
Kolmogorov n-width but hidden by a transformation of the solution manifold. As stated in the
introduction, we can think of the transport equation as being the simplest example for which
this is occurring. The objective is, through a “calibration” step, to recover the simple structure
of the solution manifold.

3.2.1 Specifications

This first section will be formal. We will try to dress up a list of specifications that we would
like our calibration process to satisfy. We are looking for a family of applications

F := {“ : X æ X} ,

and for

“ :
;

([0, T ], D) æ F
(t, µ) ‘æ “(t; µ)

such that

1. the transformed solution manifold,

M̃ =
)

“(t; µ)≠1 (u(·, t; µ)) , µ œ D, t œ [0, T ]
*

has a faster decaying n-width

2. for all µ, we can find a well posed equation satisfied by “(·; µ)≠1 (u(·, ·; µ)). This equation
will be called ’calibrated equation’. A necessary condition is the smoothness of:

’µ, t æ “(t; µ)≠1.

The sense in which this should be understood can vary depending on the framework con-
sidered. Namely, it depends on the way the family F acts on the solution manifold. It will
be explicited for one example in the next section.

3. the following application:

’“ œ F , “ :
;

X æ X

u ‘æ “(u)

is smooth. This property will be needed to derive the calibrated equation. It also naturally
appears when studying the stability and accuracy of numerical schemes.
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Chapter 3. Calibration

4. the application “ ¶ Lµ should have an explicit form such as:

’µ œ D, ’“ œ F , ÷Mµ,“ , Lµ (“(v)) = “ (Mµ,“(v))

where Mµ,“ is some differential operator.

5. from the knowledge of the calibrated solution “(t; µ)≠1 (u(·, ·; µ)), and of the current cali-
bration parameter “(t; µ), we need to be able to go back to the true, ’uncalibrated’ solution.
This means that the applications “ œ F should be invertible.

Remark 17 The smoothness with respect to µ is never discussed here, as it is not required. We
refer to the chapter 5 of this thesis, where we will try to adapt optimal control methods to this
particular framekwork.

Following [19], we call such a process a decomposition of a solution u(·, t; µ) into two compo-
nents:

• phase: the calibration function “(t; µ) œ F

• shape: the solution "calibrated" v := “(t; µ)≠1 (u(·, t; µ)).

We will now present one framework that satisfies the previous specifications.

3.2.2 One possible framework

This section describes the freezing method, introduced in [19]. The mathematical analysis is
based on Lie group theory. We refer to [78] and the references therein for a rigorous presentation
of Lie groups and Lie group actions, and restrict ourselves to formal arguments. From now on,
let G be a Lie group and let us denote by a some group action on X:

a : G ◊ X æ X

(“, u) ‘æ a(“, u).
(3.9)

If we compare to the previous section, that means that we parametrize our family of applications
F by some group G. The Lie group setting makes sense for two reasons. First, the applications
should be invertible. Second, the parameters should lie on a smooth manifold. The problem is
now to find appropriate

• Lie group: G

• group action: a

• application “:
[0, T ] ◊ D æ G

(t, µ) ‘æ “(t; µ)
(3.10)

satisfying the list of specifications of the previous section. The most important one, and the sole
reason of this whole chapter, is that the calibrated solution manifold

M̃ = {a(“(t; µ)≠1, u(·, t; µ))} µ X (3.11)

has a Kolmogorov n-width with good decay properties.
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We restrict ourselves to group actions acting linearly on X. That is, we choose

’“ œ G, a(“, ·) :
;

X æ X

v ‘æ a(“, v)

as a linear application. This solves right away the 3rd point in the specifications section. Other
choices are in theory possible, but the analysis of the calibrated equations would require more
involved ingredients than the one that will be discussed here. The 5th point of the specifications
is also trivially satisfied in this Lie group framework, as the group action is invertible.

Throughout this section, we explicit the different notions on one simple example. We consider
the pure transport equation with constant speed:

;
ut + cux = 0 on R

u(t = 0) = u0
(3.12)

where the parameter space is D = [cmin, cmax]. Is natural to pick G = R
d and the following

group action:

a :
;

R
d ◊ X æ X

(“, u) ‘æ u(· + “)
(3.13)

It is clear that this group action, for fixed “, acts linearly on X. The only sensible choice for “ is:

“(c, t) := ct. (3.14)

With these choices, we can check the remaining specifications:

1. the calibrated solution manifold has a (very) satisfactory n-width:

dn(M̃) =
;

1 if n = 0
0 else .

(3.15)

That is, one shape function is enough to capture the whole simulation.

2. “ is a smooth function of t

3. as L : u æ cux, it is trivial to check

’“ œ G, ’u œ X, a(“, L(u)) = L (a(“, u)) .

So we have M“ = L, for all “.

The question is now to find a calibrated equation, whose solution would be in the calibrated
manifold, equivalent to the initial problem.

3.2.3 The freezing method

We go back to the general case. We start by a formal derivation of an equivalent formulation
on the shape component. Let

{g(t; µ) œ G, (t, µ) œ ([0, T ] ◊ D)}

be some fixed, well chosen, phase component function. The corresponding calibrated solution
manifold is:

M̃ :=
)

v(·, t; µ) := a
!
g(t; µ)≠1, u(·, t; µ)

"
, (t; µ) œ [0, T ] ◊ D

*
(3.16)
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The PDE satisfied by v is given by:

(a(g(t; µ), v(·, t; µ)))t + Lµ (a(g(t; µ), v(·, t; µ))) = 0. (3.17)

We need some smoothness hypothesis on the group action. This corresponds to the second
specification. We restrict ourselves to the group actions such that:

’v œ X, a(·, v) :
;

G æ X

g ‘æ a(g, v)
(3.18)

is continuously differentiable. Denote a1 its derivative.

’v œ X, “ œ G, a1(“, v) :
;

T“G æ X

⁄ ‘æ a1(“, v)⁄
(3.19)

a1 is supposed to be a continuous linear operator and T“G is the tangent space of G at “.

Remark 18 For details on Lie algebras, see [78].

In [19], they assume that L is equivariant under the group action, that is:

’“ œ G, a (“, Lµ (u)) = Lµa (“, u) (3.20)

We rather use a weaker assumption. We suppose that there exists (a possibly different) differ-
ential operator Mµ,“ such that

’“ œ G, Lµ (a (“, u)) = a (“, Mµ,“ (u))

We want to insist on the fact that equivariance is not a core requirement for the method. This
is discussed in section 3.8.

The equation satisfied by the calibrated solution, equation (3.17) is equivalent to:

a (g(t; µ), vt(·, t; µ)) + a1(g(t; µ), v(·, t; µ))gt(t; µ) + a (g(t; µ), Mµ,“(v(·, t; µ))) = 0

Using the fact that the group action is invertible, we get:

vt(·, t; µ) + a
!
g(t; µ)≠1, [(a1(g(t; µ), v(·, t; µ))gt(t; µ))]

"
+ Mµ,“(v(·, t; µ)) = 0 (3.21)

To better grasp the new ingredients, we go back to our model translation problem. The
tangent space can be identified with R

d. What does the smoothness of the group action, equation
(3.18), imply in this simple case ? Let ⁄ œ R

d.

’h œ R, a(“ + h⁄, v) ≠ a(“, v) = v(· + (“ + h⁄)) ≠ v(· + “) (3.22)

If we suppose that X is embedded in C1(R), then a is differentiable in the sense of (3.18) and
the corresponding derivative a1 is given by:

a1(“, v)⁄ = a(“, Òv · ⁄). (3.23)
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3.2.4 Phase component

The previous section assumed no restriction on the choice of the phase function, apart from its
smoothness. We now have to show how to add a constraint on the phase function that actually
reduces the n-width. They propose in [19] the following generic coupled problem:

;
vt(·, t; µ) + a

!
g(t; µ)≠1, (a1(g(t; µ), v(·, t; µ))gt(t; µ))

"
+ Mµv(·, t; µ) = 0

Φ(v, g) = 0 in Aú (3.24)

where A is the tangent space of G at g and Aú the dual space of A.
We give one example of constraint that enters this frameowkr. Let uú be some reference

solution. Suppose that the calibration is chosen so that solutions in the calibrated solution
manifold are as close to uú as possible, in X norm. That is, we choose g œ G as:

g : v æ arginf
gœG

Îa(g, uú) ≠ vÎ2
X .

First of all, it is easy to see why this constraint goes towards a quicker decay of the n-width.
First order optimality constraint gives:

’”g œ A, < a1(g, uú)”g , a(g, uú) ≠ v >X= 0,

where < ·, · >X denotes the standard scalar product in X. We are thus interested in the zeros
of the following application:

’v œ X, ’g œ G, Φv,g :
;

A æ R

”g ‘æ < a1(g, uú)”g, a(g, uú) ≠ v >X .

This enters the framework of equation (3.24).
The existence of solutions to the coupled system depends on the properties of the constraint

equations. Given v, a necessary condition is for the constraint equation to be well posed, and to
result in a smooth calibration parameter g. We refer to [19] for more details.

3.2.5 Conclusions on the freezing method

This is it, we have a method to overcome the difficulties associated with the development of
ROM for (a restricted class of) solution manifolds with large n-width. Corresponding numerical
example for can be found in [105]. The purpose of this section is to motivate the need for an
alternative.

One disadvantage of the freezing method has appeared from the beginning: it is its complexity.
The development of a theoretically sound framework combining the study of PDE’s with Lie
group and Lie algebra theory is not only (far) from the scope of this thesis, it is also (to my
knowledge) not available in the literature. To my understanding, the strongest general result in
[19] concerns smooth solutions (say continuously differentiable), and is only local in time.

We now discuss another property of the freezing method. Let the inviscid Burgers equation:

ut +
3

u2

2

4

x

= 0.

Taking translation as the calibration process, it is easy to see why the calibrated equation is
given by:

vt + (v ≠ “(t))vx = 0
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for some function t ‘æ “(t), that can for instance be the shock’s speed. To numerially solve this
equation on the shape function, one needs to construct a scheme taylored for this task. Using a
scheme designed for convection dominated problems to solve for v is not a viable strategy. The
fact that the calibration procedure has made us lost track of the physical intuition can make the
construction of such a scheme a complex task.

What we do in this chapter is less ambitious. We construct a method that whilst still
using the calibrated solution manifold, manages to keep the properties of the original, physically
meaningful equation.

3.2.6 Road Map

We are ready to set up the notations. They will be used until the end of the chapter. F denotes
a family of applications:

F =
)

F : Ω æ Ω
*

. (3.25)

Note right away that we have restricted the choice of F to family of smooth mappings. The
elements of F will be parametrized by t and µ, that is, we consider:

[0, T ] ◊ D æ F
(t, µ) ‘æ Ft;µ

Finally, we take the action group resulting in the following calibrated solution manifold:

Mx
F,D :=

)
u(F ≠1

t;µ (·), t; µ), µ œ D, t œ [0, T ]
*

(3.26)

As for the freezing method, the set F is based on a priori expertise on the behavior of the solution.
The offline section is also similar as we pick elements in F to make the n-width of Mx

F,D as small
as possible. The novelty appears on the way we use the calibrated solution manifold in the online
stage.

3.3 Algorithm

For simplicity, let us assume that we are using an explicit Euler scheme for the time discretization.
Extensions to implicit, higher order time discretization, or more involved conservative numerical
scheme, is straightforward1. Our semi-discretized PDE then becomes

Y

]

[

un+1≠un

dt
+ L(un; µ) = 0 in Ω

u(·, t = 0; µ) = u0(·, µ) in Ω

B(un; µ) = 0 on ˆΩ

(3.27)

Here, as is classical, dt denotes the time step, and un an approximation for the solution to (3.8)
at time ndt.

Assume that we have a basis {„i} such that span{„i} approaches the calibrated solution
manifold Mx

F,D defined in (3.26) to a given accuracy. Since Mx
F,D is assumed to be of small

Kolmogorov n-width, we expect that we can find such a basis of moderate size. At each time

1Note that, of course, this choice of an explicit scheme involves a limitation on the time step due to a CFL
condition that can be severe for an accurate finite element or finite difference scheme but reveals to be moderate
in the reduced basis framework.

70



3.3. Algorithm

step, we look for coordinates (–n+1
i )i on the reduced basis and an application Fn+1 œ F such

that u(·, tn+1; µ) is well approximated by:

un+1 :=
Mÿ

i=1

–n+1
i „i ¶ Fn+1. (3.28)

In order to expect the search for Fn+1 be computationally tractable, let us assume that our
family F can be parametrized by a few parameters: that is

’Ft;µ œ F , ÷(“j)j , such that Ft;µ = F [“1(t; µ), . . . , “m(t; µ)] . (3.29)

In the discrete setting, the search for Fn+1 then reduces to the search for (“n+1
j )j , and we set

Fn+1 = F
#
“n+1

1 , . . . , “n+1
m

$
.

We are thus simultaneously looking for a proper appropriate reduced space (defined as the
span of the („i ¶ Fn+1)i) and for coordinates on this reduced space. We have chosen to derive
our solution from some minimization problem of the form:

(“n+1
j , –n+1

i ) = argmin
(“j ,–i)

.

.

.

.

.

ÿ

i

–i „i ¶ F ([“j ]j) ≠ un + dtL(un; µ)

.

.

.

.

.
(3.30)

for some appropriate norm Î · Î on X.

Remark 19 It is interesting to note that our approach, in this context, may be presented as
a shock fitting method, and thus one may fear that it will suffer from the classical drawback
of this class of approach, especially the difficulty to generalize to multidimensional framework.
One reassuring element is that the position of the fitting Fn is not defined through the Rankine-
Hugoniot conditions but through the minimization process (3.30), and the evolution in time can
be chosen to follow any appropriate conservative numerical scheme.

Several choices are possible for the sense in which we will minimize this quantity. One example
will be given in the next section. We propose the following generic algorithm.

Initialize –i and “j

(–n+1,0
i , “

n+1,0
j ) = (–ini

i , “ini
j ) (3.31)

–ini
i and “ini

j will depend on the previous timesteps, namely on (–k
i )i and (“k

j )j for k Æ n.

Then, assuming that (–n+1,q
i , “

n+1,q
j ) are known for some internal iteration q Ø 0, we proceed

Fit the –i given [“n+1,q
j ]j

Find (–n+1,q+1
i )i that minimizes the following quantity (in some sense):

ÿ

i

–
n+1,q+1
i „i ¶ F

1

[“n+1,q
j ]j

2

≠ un + dtL(un; µ) (3.32)
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Fit the “j given (–n+1,q+1
i )i

Find (“n+1,q+1
j )j that minimizes the following quantity (in some sense):

ÿ

i

–
n+1,q+1
i „i ¶ F

1

[“n+1,q+1
j ]j

2

≠ un + dtL(un; µ) (3.33)

until convergence (for which, say q = qú). Then, we set

(–n+1
i , “n+1

j ) = (–n+1,qú+1
i , “

n+1,qú+1
j ). (3.34)

3.4 Illustration on the viscous Burger’s equation in one
dimension

The viscous Burger’s equation has already received some attention in the reduced modeling
context. We mention [135] for the stationary case and when the solution manifolds can be well
represented by a small finite dimensional linear space, without any calibration.

We consider Ω = (≠1, 1), and solve for the time dependent viscous Burger equation with no
forcing term and periodic boundary conditions (we will see later why these are important in our
analysis):

Y

]

[

ut + ‹uux ≠ ‘uxx = 0 in [0, T ] ◊ Ω

u|t=0 = u0

u periodic
(3.35)

The parameters of this problem are the triplets: µ = (u0, ‹, ‘). We want to choose a parameter
domain D in order that the problem is

• convection dominated so that the solution manifold has a large Kolmogorov n-width

• not too stiff so as not to be bothered by stabilization issues as mentioned in the introduction,
hence, we shall only consider the cases ‘ Ø ‘0 > 0 (see the recent paper [92] that tackles
this problem).

We have identified the following parameter range:

D =

Y

]

[

⁄ œ [0.5, 1.3],
‹ œ [4., 6.],
‘ œ [0.04, 0.2].

(3.36)

3.4.1 Variational formulation and truth approximation

For the truth approximation to the solution of problem (3.35), let us consider a semi implicit
scheme (so as not to be bothered by a two stringent stability constraint) with time step dttruth.
Let

X = H1
per(Ω) (3.37)

and let us denote by È·, ·Í and Î·Î the usual L2 inner product and norm. For each µ = (u0, ‹, ‘) œ
D, for the semi-discrete (in time) truth problem, we are looking for un+1 œ X (approximation of
u(., (n + 1)dttruth, µ)) such that: ’v œ X

Èun+1(µ), vÍ + dttruth‘a(un+1(µ), v) = Èun(µ), vÍ ≠ dttruth‹c(un(µ), un(µ), v) (3.38)
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3.4. Illustration on the viscous Burger’s equation in one dimension

Figure 3.1: Snapshots of the solution to the unsteady viscous Burger equation with
u0 = ⁄ + sin(x), ⁄ = 1.3, ‹ = 4, ‘ = 0.04

where

c(w, z, v) =
⁄

Ω

w zx v and a(w, v) =
⁄

Ω

wx vx. (3.39)

This semi-discretized problem is trivially well posed. In order to finalize the discretization, let
us introduce an appropriate finite element discretization, the truth approximation space, XN .
We pick it fine enough so that, with the chosen time step dttruth, it is able to represent well
our solution manifold. From now on, we will consider that the exact solution u(·, t; µ) and the
“truth” solution uN (·, t, µ) cannot be distinguished.

3.4.2 Model order reduction — offline stage

As mentioned earlier, the first question we need to answer is: does our solution manifold
Mx

D (in practice represented by Mx,truth
D ) have a large Kolmogorov n-width? And if so,

can we find better behaved “calibrated" manifold solution? Figure 3.1 shows some snapshots
)

u(·, tk; µ), k œ 1 . . . K
*

taken in Mx
D for some parameters.

From basic expertise on the Burger’s equation, we choose the following mapping family:
F = {Ft;µ}, where Ft;µ are defined as translation operators:

Ft;µ : Ω æ Ω

x ‘æ x ≠ “(t; µ)
(3.40)

with “(t; µ) œ R. With this choice, our family of mappings is a one parameter family, i.e:

F = {F (“), “ œ R} . (3.41)

Unlike in the pure translation problem of the introduction (3.4), our parameter “ is not constant
(it is a function of µ and time) and has no analytical expression. One possible calibration (and
the most natural one) is presented in Figure 3.2, where we pick “ manually so that all steepest
points coincide. Our calibrated solution manifold is then

Mx
F,D = {u(· ≠ “(t; µ), t; µ), t in [0, T ], µ œ D}, (3.42)

that is represented in Figure 3.2 where we understand that the Kolmogorov n-width of Mx
F,D is

smaller than the original one represented in Figure 3.1.
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Figure 3.2: Calibrated set of the above snapshots for u0 = ⁄ + sin(x), ‹ = 4, ‘ = 0.04

Figure 3.3: Eigenvalues of the POD decomposition of the original set of snapshots ( in red) and
of the calibrated set of snapshots (in green)

This is confirmed in Figure 3.3 which presents the decay of the POD eigenvalues in logarithmic
scale for Mx

D and Mx
F,D. As we could have expected, to achieve a fixed accuracy, the number

of POD modes needed to represent the calibrated manifold is much smaller than the number of
modes needed for the original solution set. To confirm this, we present in Figure 3.4 the 3rd
and 6th POD modes of the calibrated and non calibrated simulations. As we can see, in the
calibrated case, with just 3 modes, our L2-projection focuses on reproducing the shock, whereas
in the non calibrated case, the modes desperately try to represent shocks centered anywhere in
Ω. We mention again the fact that even in the calibrated case, our algorithm could be improved
using L1-minimization. We present in Figure 3.5 the projection of one of the snapshot on the
first three POD modes. With 10 POD modes in the uncalibrated case, the projection shown in
Figure 3.5 exhibit the oscillatory behavior as described in [2].

At this stage, we suppose that we have found a “calibrated” solution manifold, with nice
Kolmogorov n-width decay. That is, we have calibrated an original dataset, and obtained a
reduced orthonormal basis:

span {„i, i = 1 . . . M} µ X (3.43)

that approximates well the calibrated solution manifold Mx
F,D.

We now need to explicit the algorithm presented in the section 3.3. The biggest question is
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3.4. Illustration on the viscous Burger’s equation in one dimension

Figure 3.4: 3rd (left) and 6th (right) POD modes for the calibrated (green) and original (red)
simulations

Figure 3.5: Projection of a snapshot (blue) on:

• left: 3 POD modes in the calibrated case

• center: 3 POD modes in the non calibrated case

• right: 10 POD modes in the non calibrated case

how do we pick the F œ F at each time step?

3.4.3 Model order reduction — online stage

As was introduced in the previous section (see (3.27)), for the time semi-discretization of the
RBM approach, we use a forward Euler discretization with a time step dt that may be different
from dttruth, at each time step we are looking for the solution to the following elliptic problem 2:

un+1 = un ≠ dt‹unun
x + dt‘un

xx (3.44)

with periodic boundary conditions over (≠1, 1), which leads to the following variational formu-
lation that will be used to provide the Galerkin formulation of the RBM: knowing un, compute
un+1 œ X such that

’v œ X, Èun+1(µ), vÍ = Èun(µ), vÍ ≠ dt‹c(un(µ), un(µ), v) ≠ dt‘a(un(µ), v). (3.45)

One could fear that a problem with this discretization is the stringent CFL condition on
the time-step. Our reduced basis formulation will allow for very fast computation, which will
mitigate this issue on which we shall dwell upon later. As said already, we could also consider
an implicit Euler scheme. We refer to [135] (stationary) and [101] (non stationary), for the
development of reduced order model in that case.

2Indeed there is no reason why using the same discretization in time for the truth solution and for the reduced
basis scheme
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The full RBM discretization starts from the knowledge of the (supposedly accurate) approx-
imation of un as an expansion

un :=
Mÿ

i=1

–n
i „i ¶ Fn, (3.46)

where the {„i}i are the reduced basis elements of the good approximation of the calibrated
solution manifold that have been introduced in (3.43) as a result of the offline process. Fn is here
F (“n) where “n is the current translation value. In order to deduce the next approximation,

un+1 :=
Mÿ

i=1

–n+1
i „i ¶ Fn+1, where Fn+1 = F (“n+1) (3.47)

as described in the previous section, we iterate between the search for the reduced coordinates
(–n+1

i )i and for the mapping Fn+1 i.e. for the translation parameter “n+1, we initialize these
entities as follows:

–
n+1,0
i = –n

i

“n+1,0 = “n +
!
“n ≠ “n≠1

"
.

(3.48)

In the first part of the iterative step indexed by q, assuming we know ((–n+1,q
i )i, “n+1,q) we fit

the –i for a fixed translation parameter “, i.e.we are looking for (–n+1,q+1
i )i that satisfy

{–
n+1,q+1
i } = argmin

(–i)iœRN

.

.

.

.

.

ÿ

i

–i„i ¶ F (“n+1,q) ≠ un ≠ dt‹unun
x + dt‘un

xx

.

.

.

.

.

2

2

(3.49)

The nice feature with the chosen norm is that we pick our reduced coordinates such that our
residual is orthogonal to the translated reduced space, the space spanned by the {„i¶F (“n+1,q)}i.
Using un’s expansion on its reduced basis, the coefficients {–

n+1,q+1
i }i are given by the first-order

optimality condition:

–
n+1,q+1
i =

q

j –n
j È„j ¶ F (“n), „i ¶ F (“n+1,q)Í

≠ dt‹
q

j

q

p –n
j –n

p È„j ¶ F (“n) („p ¶ F (“n))
x

, „i ¶ F (“n+1,q)Í
≠ dt‘

q

j –n
j È(„j ¶ F (“n))

x
,
!
„i ¶ F (“n+1,q)

"

x
Í.

(3.50)

In order to evaluate this expression, we need to compute the following integrals:
Y

__]

__[

’i, j,
s

Ω
„j ¶ F (“n)(x)„i ¶ F (“n+1,q)(x)

’i, j, p,
s

Ω
„j ¶ F (“n)(x) („p ¶ F (“n))

x
(x)„i ¶ F (“n+1,q)(x)

’i, j,
s

Ω
„j ¶ F (“n)

x
(x)„i ¶ F (“n+1,q)x(x)

(3.51)

We will see in the next subsection how to achieve efficient offline/online decomposition for these
quantities.

Once this is done, we fit the “. Let us define first the residual function r(“):

r(“) =

.

.

.

.

.

ÿ

i

–
n+1,q+1
i „i ¶ F“ ≠ un ≠ dt‹unun

x + dt‘un
xx

.

.

.

.

.

2

2

, (3.52)

then we choose “n+1,q+1 as the "best", i.e residual minimizing, translation parameter. It is given
by:

“n+1,q+1 = argmin
“

r(“) (3.53)
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3.4. Illustration on the viscous Burger’s equation in one dimension

Next we develop r(“):

r(“) =
.
.
.
q

i –
n+1,q+1
i „i ¶ F (“)

.

.

.

2

2
+ Îun ≠ dt‹unun

x + dt‘un
xxÎ2

2

≠2Èqi –
n+1,q+1
i „i ¶ F (“), un ≠ dt‹unun

x + dt‘un
xxÍ.

(3.54)

The second term is independent of “. The first one, using periodicity, happens also to be
independent of “. We can thus replace the minimization of r by the minimisation of the following
quantity r̃:

r̃(“) = ≠È
ÿ

i

–
n+1,q+1
i „i ¶ F (“), un ≠ dt‹unun

x + dt‘un
xxÍ. (3.55)

Here again, we we need to evaluate the quantities
Y

__]

__[

’i, j,
s

Ω
„j ¶ F (“n)(x)„i ¶ F (“)(x)

’i, j, p,
s

Ω
„j ¶ F (“n)(x) („p ¶ F (“n))

x
(x)„i ¶ F (“)(x)

’i, j,
s

Ω
„j ¶ F (“n)

x
(x)„i ¶ F (“)x(x)

(3.56)

for various values of “ in order to derive the value of “ that minimizes r (or r̃).

3.4.4 Offline/Online decomposition of the expressions depending on γ.

In both the search for “ (see (3.55)) and (–i)i (see (3.51)), we need to compute scalar products
of the form:

ÈÂi ¶ F (“n), Âj ¶ F (“)Í (3.57)

where Â can be one of the POD basis or one of its x-derivatives. “n and “ can take any value in
Ω. Our key ingredient here is that, due to translation invariance (because we are in a periodic
settings), we can replace the previous terms by

ÈÂi ¶ F (“n ≠ “), ÂjÍ = ÈÂi ¶ F (∆“), ÂjÍ. (3.58)

We have plotted in Figure 3.6 these quantities (after rescaling) as a function of ∆“ for some pairs
of chosen Â’s and we notice that, as can be expected because we are essentially using a primitive
function of the integrant, these are regular functions of ∆“.

For a sufficiently small time step, we expect ∆“ to be of order dt ú c where c is some local
characteristic velocity. We have chosen the following method:

• precompute the scalar products for a predefined set of values of ∆“

• using some regularity hypothesis, use spline interpolation to get approximated values for
all “ in [≠dt ú cmax, dt ú cmax], where cmax is the maximum expected shock speed during
the simulation.

Remark 20 For the optimization of r̃ we have also tested to linearize our problem around “n

which leads to a doable method but does not work better that the above.

Remark 21 A common comment about this method is about mesh interpolation, and the related
numerical errors. In the offline part, we have indeed to interpolate between meshes. But, as the
computational time is not much an issue, this can be done as precisely as required. During the
online section, the only thing that is required is the interpolation between the discrete quantities
computed in (3.58). This error can be quantified offline. See figure 3.6 for an idea of the
quantities that we are interpolating. This point will be discussed in section 3.8 of this chapter.
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Figure 3.6: A few values of the quantities (3.57) as a function of ∆“. The x axis is scaled to
multiples of c ú ∆t.

3.5 Numerical results

3.5.1 About the CFL Condition

We represent in Figure 3.7 the value of the CFL condition of our reduced scheme using the space
calibrated Mx

F,D as a function of the dimension M of the discrete space expressed in Equation
(3.46). Of course, the bigger the reduced basis, the smaller the time step required for stability.
We remark that there is a plateau for large values of M that is above the CFL-condition for the
truth solver. More importantly, for M = 5, we can use a discrete time step 3, 000 times bigger
than the one of the fine (finite element) scheme (that was dttruth Æ 10≠6).

3.5.2 Convergence Illustration

On the next Figure 3.8, we have plotted the L2-error of the solution of (3.30) in case of problem
(3.35) as a function of time for different values of the reduced basis for dt = 2.5 10≠4. The
different colors represent various values of M used in (3.46) (Note that on the same figure, the
plots close the x axis represent the projection errors (best approximation) of the solution onto
the set Mx

F,D with the exact value of the translation “). We see that our numerical scheme is
convergent, as a function of M . The final accuracy is somehow difficult to grasp since it is a
function of ∆t and the number of degrees of freedom used in the spatial direction (here M) as
for any discretization of an evolution problem. It is also a function of the way the value of “

is found as each time step as a solution of the full minimization problem (3.30). These results
are not entirely satisfactory, as there is an order of magnitude difference between error of the
reduced scheme and the best approximation error. We will propose one explanation in the next
section.
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3.5. Numerical results

Figure 3.7: A few values of the quantities (3.57) as a function of ∆“. The x axis is scaled to
multiples of c ú ∆t.

Figure 3.8: Relative L2-error of the solution as a function of time for different values of the
reduced basis. The three curves close to the x-axis (almost overlapping at this scale) are the

associated best approximation errors.
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3.5.3 Interpretation

In order to explain the order of magnitude difference between the errors obtained with the reduced
scheme and the best approximation errors, we compare the results for various parameters. We
start by constructing a basis that reproduces well solutions for parameters in D, chosen in (3.36).
The first step is to discretize D. We randomly pick the following:

⁄ œ {1.3, 1, 0.8, 0.5}
‹ œ {4, 5, 6}
‘ œ {0.04, 0.08, 0.16, 0.2}

(3.59)

We compute the truth approximation solutions of each of these triplets. Because of the com-
putational cost, we have chosen to use the two level POD presented in chapter 6. That is, we
perform a POD on each of the 48 time simulations and then perform a weighted POD on these
POD basis. The error incurred by this divide and conquer strategy is controlled.

We present in Figure 3.9, the mean (in time) relative L2 best projection error, using a basis
of size 10, at each sampled parameter. As we can see, the mean projection error is slightly worse

Figure 3.9: Relative L2 best projection errors, on the training set

for small viscosities. One argument is that lower the viscosity, the stiffer the propagating front.
Since our calibration procedure is not exact, the calibrated solution manifold is more difficult to
capture.

We now want to compare the previous plot with the errors on the reduced solutions. Their
relative L2 error are displayed in Figure 3.10. Similar to what we have seen on the convergence
plot, there is an order of magnitude of difference between the best projection error and the output
of the reduced scheme. More importantly, the scatter plot is much more spread out. The low
viscosities behave much worse, compared to the other simulations. My interpretation is that
the order of magnitude difference is due to the raw Galerkin scheme used in the online section.
We can not reproduce the solutions of the truth scheme, that are obtained using an upwinding
scheme. This could be solved either using rectification ideas [92], or using the ideas developed
in chapter 5.
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3.6. Extension to non periodic setting

Figure 3.10: Relative L2 error of the reduced solutions, on the training set

This concludes the analysis of the one dimensional Burgers viscous equation. In the remaining
sections, we propose variations around the calibration procedure.

3.6 Extension to non periodic setting

The periodicity has held an important role in the analysis of the calibration method so far. We
try in this short section to extend the latter to a non periodic setting. The model equation that
we work with is: Y

]

[

un+1≠un

dt
+ L(un; µ) = 0 in Ω

u(·, t = 0; µ) = u0(·, µ) in Ω

B(un; µ) = gn on ˆΩ.

(3.60)

We start by presenting a typical problem entering this framework. Suppose that there is a com-
plex phenomenon/shock/front moving inside Ω. We want to use the ideas of the previous section,
that is, we want to use the fact that only the relative positions of the phenomenon/shock/front
between two successive time steps is relevant. The absolute position in Ω has not a big influence.
How can we translate this into a reduced basis framework ?

3.6.1 The method

We suppose that there exists an ’interior’ domain Ωint and a calibrating function “,

“ :
;

[0, T ] ◊ C æ R

(t; µ) ‘æ “(t; µ),

such that the calibrated solution manifold Mint defined as

Mint := {u(· ≠ “(t; µ), t; µ)|Ωint
, t œ [0 . . . T ], µ œ C}

has a small n-width. To put it in other words, because we have removed periodicity, we need to
truncate around the phenomenon/shock/front.
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We require one more assumption in order to make this method relevant. Let {„i}i be some
well chosen reduced basis of Mint, and ΠΨ the orthogonal projection onto any orthogonal basis
Ψ embedded in X. We suppose that

M0 :=
)

u(· ≠ “(t; µ), t; µ) ≠ Π„i¶F (“(t;µ))u(· ≠ “(t; µ), t; µ), t œ [0 . . . T ], µ œ C
*

(3.61)

has also a small n-width.

Remark 22 This resembles the notion of ’local Kolmogorov n-width’ introduced in chapter 2.

We can rephrase this using the notations of chapter 2. We decompose Ω into two overlapping
subdomains : one outside domain, that is supposed to handle the boundary conditions Ω0(“) and
one inside domain, supposed to handle the complex structure moving : Ωint(“). The difference
with chapter 2 is that these two subdomains are function of the translation parameter “. One
possible setting is presented in Figure 3.11. We need a few assumptions on Ω0 and Ωint:

’“, Ω = Ω0(“) fi Ωint(“)

’“, ˆΩ µ Ω0(“)

÷–, ’“, dist(Ωint(“), ˆΩ) > –

÷—, ’“, mes(Ωint(“) fl Ω0(“)) > —

Using assumption (3.61), we will now denote by {hk} a good reduced basis of M0. In the course

Ω

Ω0

Ωint

Figure 3.11: This method requires an overlapping decomposition of Ω

of this section, it will be thought of as Fourier/polynomial, coarse Finite Element, and RB type.
We take the following conforming approximation space of X :

XN (“) := span {„i, i = 1 . . . M} ¶ F (“) + span{hk}.

We could also have used a non conforming method, such as the one presented in chapter 2. The
reasons why the non conforming approach was necessary do not apply here.

Remark 23 We need to multiply our ’inside basis’ „i by a smooth indicator function. This is
necessary so that the ’outside’ solution is smooth. It is also necessary so that we can ’safely’
compute the scalar products between {„i} and {„i ¶ F (”)}. We will now assume that the basis
functions {„i}i have zero trace on ˆΩint(“).

3.6.2 Conditioning

One key element of such a method is, of course, the conditioning of the resulting mass/stiffness
matrices. It is closely related to the linear dependency of the basis XN (“). For standard ROM
methods, the conditioning can be controlled in the offline phase by using procedures such as
Gram-Schmidt orthogonalization. Here, the approximation space depends continuously on the
translation parameter “, and so does the condition number of the mass/stiffness matrix.
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3.6. Extension to non periodic setting

For polynomial or Fourier basis, one way of having a better conditioned system, is to subtract
to the fine basis {„i} the projection on the first few modes {hk}. Indeed, these basis are invariant
by translations. Thus, imposing

’i, ’k < N, < „i, hk >Ωint
small

guarantees
’i, ’k < N, < „i ¶ F (“), hk >Ωint(“) small .

Another option is to use constrained optimization in the online phase, as done in [9].

3.6.3 Computational details

Just as for the periodic setting, at each time step, we are looking simultaneously for the coordi-
nates on the reduced space XN (“) and for the correct calibrating parameter “. We have chosen
to use the same iterative process as the one described in section 3.3. The only difference is the
discretization space.

Let “n be the calibrating parameter at time step n. We need to evaluate the following
quantities, for “ in a small neighborhood of “n:

Y

__]

__[

’i, j,
s

Ω
„i ¶ F (“n) „j ¶ F (“)

’k, l,
s

Ω
hkhl

’i, k,
s

Ω
„i ¶ F (“) hk

(3.62)

As we have chosen the {„i} to have zero trace on ˆΩint, the first term will be handled just as
in the periodic case as it only involves relative translations. The second term will not cause
any problem, as the basis {hk} is independent of the translation parameter and is as a premise
supposed to be of small cardinality. The tricky part is the matching term, as it does not only
involve the relative translation. We detail in the next section a few options available.

3.6.3.1 Coarse Finite element space

We will present one possible solution, when {hk} is a coarse Finite Element space, on a regular
grid. Let

• K = {k, supp(hk) fl supp(„i) not empty }.

• K(“) = {k, supp(hk) fl supp(„i) ¶ F (“) not empty }.

• l the Lebesgue measure of the support of the „i

• ∆x the characteristic size of the coarse mesh.

Online, we need to compute

’k œ K(“),
⁄

Ωint(“)

„i ¶ F (“)hk

Let “0 = Â “
∆x

Ê and ” = “ ≠ “0. Using the fact that the mesh is uniform, it is clear that the
previous quantity is equal to:

’k œ K,

⁄

Ωint

„ihk ¶ F (”).
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One just needs to be careful while assembling the global system. An interpolation such as the
one proposed in section 3.4.4 concludes: let {”p}p be some discretization of [0, ∆x] and compute
offline

’p, ’k œ K,

⁄

Ωint

„ihk ¶ F (”p). (3.63)

Interpolate for estimations of
s

Ωint
„ihk ¶ F (”x) for ”x Æ ∆x.

3.6.3.2 Polynomial/Fourier basis

Suppose that we have a coarse basis, globally defined on Ω, that has an explicit expression
through calibration. More precisely, suppose that

’“, hk ¶ F (“) œ span {hp(·)}p (3.64)

and that the coordinates on the basis have an explicit form. By a simple change of variable, we
have: ⁄

Ωint(“)

„i(· ≠ “)hk(·) =
⁄

Ωint

„i(·)hk(· + “). (3.65)

This method works for instance for a global polynomial or Fourier basis.

3.6.3.3 A third idea

This method presents similarities with the adaptive empirical projection method presented in
[123]. We focus on the ’coarse solution’ manifold : M0 defined on equation (3.61). Construct
the basis of the restrictions of the functions in M0 to subdomains of measure mes (Ωint) :

Ξ := {v ¶ F (“)|Ωint
, v œ M0, “ œ Ω}.

A natural discretization, is to take the “s as multiple of ”xfine, the characteristic size of the
fine mesh on Ωint. Ξ is then of cardinality card(M0) ú mes(Ω)/”xfine. We use a compression
algorithm on Ξ to get a reduced basis of small cardinality, {◊j}j with support Ωint.

We then learn offline the following scalar products :

’i, j, < „i, ◊j >Ωint
(3.66)

Online, we need to estimate terms such as :
⁄

Ωint

„ihk ¶ F (“)

We can use an EIM type method to express hk ¶ F (“) on the basis {◊j}j .

3.6.4 Numerical results

What is presented here has to be taken as a proof of concept. More involved numerical simulations
should be performed. We have chosen the following test case:

• a gaussian initial condition

• homogeneous Neumann boundary condition
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3.6. Extension to non periodic setting

• a small viscosity such that the classical ROM fails, but big enough so that our centered
reduced scheme gives decent results, see section 3.4.

in Figure 3.12, we display the first offline steps of the method. The left Figure shows the original
snapshots. We use an offline calibration process, such as the one described in section 3.4.2 to
obtain the calibrated solution manifold displayed on the central picture. The choice for the

Figure 3.12: Snapshot sets at different steps of the offline stage. From left to right: snapshots
with no calibration; centered snapshots; truncated snapshots

truncation window should be studied as it has a big influence on the condition number and
overall feasibility of the method. Here, it has been done empirically. The resulting snapshots are
presented on the right picture of Figure 3.12.

Following remark 23, we taylor an indicator function, as presented in Figure 3.13. We have

Figure 3.13: The indicator function, that depends strongly on the solution manifold at hand

chosen this indicator function to be non symmetric, as our snapshot set is not symmetric. Taking
it stiff on the right makes sense to capture the shock. Taking it smooth on the left makes sense, as
we want the complement to be well represented by a low dimensional space. These complements
are members of the manifold M0 introduced above. Some snapshots are represented in Figure
3.14. We have reduced the propagation of a shock, in a non periodic setting into two parts:
one stiff part that can be handled exactly as in the previous section. The other part is the
transport of a smooth quantity, which should be doable using a coarse basis. Indeed, what is
being transported is much more regular that what we had initially.

We present numerical evidence backing this remark in Figure 3.15. It compares the projection
onto a non calibrated basis of cardinality 15, with the projection onto the union of a calibrated
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Chapter 3. Calibration

Figure 3.14: Snapshots in the resulting "coarse" solution manifold M0

Figure 3.15: Top left : projection of one snapshot, with no calibration, on a basis of cardinality
15; Top right : projection of the truncated snapshot onto an adapted basis; Bottom : projection

of the complement on a small Fourier basis

basis of cardinality 5 and a coarse global basis of cardinality 10. We mention one last argument.
To obtain the same accuracy as the calibrated 5 + 10 basis, the uncalibrated case requires 40
Fourier modes.

This concludes this small section on an extension of calibration to non periodic settings. The
most important thing left to do is to conduct numerical investigations to make sure that the
conditioning problem discussed in section 3.6.2 can be overcome. The different offline-online
decomposition strategies should also be assessed.
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3.7. Calibrating step

3.7 Calibrating step

In this section, we give some insight on how to chose the calibration parameters in the offline
stage. More precisely, say we start with some raw solution manifold M, and suppose that some
a priori knowledge of the problem has given us some family F of transformations. As usual, we
are looking for:

F :
;

[0, T ] ◊ D æ F
t, µ ‘æ Ft;µ

so that the calibrated solution manifold is better behaved. For most of the examples we have
studied (and we will study) in this thesis, an a priori knowledge is enough to select the Ft;µ offline.
In this section, we handle the situation when they are out of reach and propose an alternative,
generic algorithm.

Let Ξ be a representative snapshot set of M of cardinal say Nsnap. We introduce the
problematic by presenting in Algorithm 4 a simple greedy algorithm.

Data: Representative snapshot set Ξ of MD

Result: Calibration parameters {Fv, for v œ Ξ}
V0 := span u0;
k = 1;
while k < Nsnap do

’F œ F , I(F ) := Îuk ¶ F ≠ ΠVk≠1
(uk ¶ F )Î ;

Fk Ω argmin
F œF

I(F ) ;

Vk := span (Vk≠1 + uk ¶ Fk) ;
k Ω k + 1 ;

end
Algorithm 4: Finding offline calibration parameters

3.7.1 Optimal method

Here, we rather use ideas close to the optimal snapshot location developed in [81]. Instead of
a greedy algorithm, the resulting basis is optimal, in a sense that will be made clear later. As
in the description of the POD method, in the introductive chapter 1, we start by defining the
correlation operator:

RF : {Fp}p œ FNsnap æ
;

X æ X

Â ‘æ qNsnap

k=1 < uk ¶ Fk, Â > uk ¶ Fk.

This operator is well defined, and we denote {⁄i({Fp}p)}i the eigenvalue set of R({Fp}p), for
each {Fp}p œ FNsnap and by {„i({Fp}p)}i the corresponding eigen vector/ eigen function set.
The existence of the previous quantities for general scalar products is discussed in chapter 1.

We know that the set of ⁄s is related to the average approximation error. More precisely, we
know that:

’{Fp}p œ FNsnap , ’M œ N,
ÿ

i>M

⁄i({Fp}p) =
Nsnapÿ

k=1

.

.

.

.

.
uk ¶ Fk ≠

Mÿ

i=1

< uk ¶ Fk, „i({Fp}p) > „i({Fp}p)

.

.

.

.

.

2

.

We are starting get a sense in which we are looking for an optimal calibration: we look for the
set of {Fp}p that minimizes the average projection error.
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Let M œ N. Let JM be the following functional:

JM :
;

FNsnap ◊ R
Nsnap ◊ XNsnap æ R

{Fp}p, {⁄p}p, {„p}p ‘æ q

i>M ⁄i
(3.67)

We are trying to minimise JM , subject to:
I

’i, (RF ({Fp}p) ≠ ⁄i)„i = 0

’i, (1 ≠ Î„iÎ2) = 0
(3.68)

We can show the existence of a minimzer. We will only sketch the proof and refer to [81]
for a complete description. Let

!
{F n

p }p, {⁄n
p }p, {„n

p }p

"

n
be a minimizing sequence in FNsnap ◊

R
Nsnap ◊ XNsnap

. Suppose that F is compact. This will be the case in all the examples we will
be using. For instance, in the translation case in dimension d, F is a bounded domain in R

d. We
can extract a converging subsequence in FNsnap

. For simplicity, we still denote ({F n
p }p)n this

subsequence. Denote {F ú
p }p the limit.

We can conclude using arguments given in [77]. The sequence of operators (RF ({F n
p }p))n are

close in a sense which ensures convergence of eigenvalues and eigenvectors towards the eigenvalues
and eigenvectors of the limit operator RF ({F ú

p }p). This concludes on the existence of a minimizer
of RF in FNsnap

.
How do we approach this minimizer ? Define a modified objective equation

J̃M :
;

FNsnap æ R

{Fp}p ‘æ q

i>M ⁄i({Fp}p)
(3.69)

This problem is of course equivalent to problem (3.67), (3.68). We want to compute the Gateaux
derivative of JM . Let j œ [1, Nsnap], we start with a formal computation of ˆJM

ˆFj
. The arguments

for the existence of these derivatives are given below. We have:

ˆJM

ˆFj

=
ÿ

i>M

ˆ⁄i({Fp}p)
ˆFj

.

We use the fact that the ⁄({Fp}p) are eigenvalues of the operator RF ({Fp}p) and the product
rule:

’i, ’p,

3
ˆRF

ˆFj

≠ ˆ⁄i

ˆFj

4

„i({Fp}p) + (RF ({Fp}p) ≠ ⁄i({Fp}p))
ˆ„i

ˆFj

= 0

We take the scalar product of the previous quantity with „i({Fp}p):

’i, ’p, <

3
ˆRF

ˆFj

≠ ˆ⁄i

ˆFj

4

„i({Fp}p), „i({Fp}p) > + < (RF ({Fp}p) ≠ ⁄i({Fp}p))
ˆ„i

ˆFj

, „i({Fp}p) >= 0.

As RF is an autoadjoint operator, and („i({Fp}p), ⁄i({Fp}p)) is an associated eigenfunction/eigen-
value pair, the second term cancels. We thus have

’i, ’p, <

3
ˆRF

ˆFj

4

„i({Fp}p), „i({Fp}p) >=
ˆ⁄i

ˆFj

(3.70)

We use the definition of RF :

ˆRF

ˆFj

:

I

X æ X

Â ‘æ <
ˆ(uj¶Fj)

ˆFj
, Ψ > uj ¶ F+ < uj ¶ F, Ψ >

ˆ(uj¶Fj)
ˆFj
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Plugging this into (3.70), we have:

’i, ’p,
ˆ⁄i

ˆFj

= 2 <
ˆ(uj ¶ Fj)

ˆFj

, „i({Fp}p) >< uj ¶ Fj , „i({Fp}p) >

We can then express the gradient of our functional J as

ÒJ =
ÿ

i>M

2 <
ˆ(uj ¶ Fj)

ˆFj

, „i({Fp}p) >< uj ¶ Fj , „i({Fp}p) > (3.71)

All of the previous derivatives with respect components of F œ F exist if and only if the solutions
in the original solution manifold have a smooth dependence on F .

We will explicit it in the case of translations, in the periodic one dimensional case. F is the
family of translations, with parameter “ œ Ω.

ˆu ¶ F (“)
ˆ“

= ≠ux ¶ F (“)

So the previous derivation is rigorous if and only if the original solution manifold M is embed-
ded in C1(Ω). For discontinuous solution, one can use a similar algorithm, but restricting the
computations to Ωd a subdomain of Ω away from the discontinuity. This idea is used in chapter
4 of this manuscript.

3.7.2 Algorithm

We are looking for a minimum of the functional JM . A standard quasi Newton algorithm goes
a follows:

Data: Representative snapshot set Ξ of MD

Result: Calibration parameters Fk for uk œ Ξ

Let {F 0
k }k œ FNsnap

be an initial guess ;
n := 0 ;
repeat

Compute ⁄({F n
k }) and „({F n

k });
Compute ÒJ({F n

k }) using equation (3.71);
Approximate the Hessian B, using BFGS for instance ;
”F := ≠B≠1ÒJ({F n

k });
’k, F n+1

k+1 Ω line search (F n
k , ”F );

n Ω n + 1;
until some computational/accuracy threshold;

Algorithm 5: Finding offline calibration parameters

This method is computationally very expensive. We propose a method to mitigate this issue.
It is a divide a conquer type of method. We first decompose our snapshot set Ξ into smaller
batches {Ξp}. We can then perform the previous algorithm onto each batch independently. The
fusion step can be done using the same algorithm.
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Chapter 3. Calibration

Data: Representative snapshot set Ξ of MD

Result: Calibration parameters Fk for uk œ Ξ
Let {Ξp} be some decomposition of the original Ξ ;
’p, {Fp,k}k Ω Algorithm 5({Ξp} );
Let „

p
0({Fp,k}k) be the first POD basis of the pth batch using the calibration parameter

{Fk,p}k ;

{Gp}p Ω Algorithm 5
1

{„
p
0({Fp,k)}k}

p

2

;

’p, ’k, F ú
p,k Ω Gp ¶ Fp,k ;

Algorithm 6: Finding offline calibration parameters
An iterative version with several layers follows easily. We could also chose other type of

representants of the ’batch’ POD basis. Another computationally cheaper version of algorithm
5 is discussed in section 3.9.

Remark 24 This method can seem scary, as it involves many mesh interpolations at each it-
eration. The computational cost set aside, some may worry about the accuracy of the resulting
method. The answer to this, is that we are trying to compress the information contained in M.
That is, even if one specific calibration loses some detail, it may still be in the final reduced basis.
Also, as we are in the offline setting, we can afford to interpolate as precisely as we want. A
final argument is that we can, instead of minimizing J , we can accept less precise calibration that
preserves more informations, without degrading the resulting calibrated manifold too much.

Of course, we do not have any theoretical convergence results on the quasi-newton algorithm
for this specific functional. A possible issue is then to get stuck at a local minimum. This
has happened to us when applying the optimization algorithm on the dataset used in section
3.4 above. The output of the algorithm is presented in Figure 3.16. We have reached a local
minimum where the shock fronts have clustered at two distinct locations. Among the many ways

Figure 3.16: On possible ouput of an offline calibration procedure such as algorithm 5

of handling this situation, we have chosen one coming from the machine learning community:
a clustering algorithm, and more precisely a hierarchical clustering algorithm. This empiric
approach is easy to implement and seems adapted for our particular need. The output for the
dataset presented in Figure 3.16 is presented in Figure 3.17. We will briefly describe how to
read this so-called dendogram and refer to [5] for more details on this method. This algorithm’s
purpose is to decompose sets into clusters. The starting point is some user-defined metric on the
set. To obtain the previous Figure, we have simply chosen the norm of the underlying Hilbert
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3.8. Two dimensional example

Figure 3.17: The output of the hierarchical clustering algorithm, for the snapshot set presented
Figure 3.16

space. Then, the lines’ length represent the distance between two members of the set. Here, green
lines correspond to the cluster of the snapshots of the end of the simulations. The associated
distance are really small as the solution manifold is almost a constant propagating front. The
beginning of the simulations, when the front has not yet formed, shows a bigger ’inner cluster’
distance, in red in Figure 3.17. The distance between members of different clusters is much
bigger than any ’inner-cluster’ distance, and corresponds to the blue line in Figure 3.16.

This algorithm should be able to spot any situations such as the one presented in Figure
3.16. One option is then to split the dataset into two disjoints sets: the outputed clusters and
then to perform a compression algorithm on each subset. Finally, just as in algorithm 6, we can
find a good ’transformation’ between representative basis of the two subsets. The global offline
calibration parameter can be taken as a composition of a global calibration (to make the clusters
match) and of a relative calibration (inter cluster).

This method for offline calibration has potential. We now have a way of calibrating sets for
which the calibration parameters are not obvious. We have raised concerns on the associated
computational cost but have proposed small improvements to mitigate the issue. What is left to
do is to try this method on more challenging numerical examples, to assess its performances.

3.8 Two dimensional example

We briefly present a two dimensional extension for the calibration method. This section does not
introduce any major novelty compared to what has been done before. It serves two purposes.
The first one is to illustrate the fact that the equivariant property, see section 3.2.3, which was
stated as necessary requirement in [19], can be replaced by a less stringent hypothesis. In other
words, the calibrated differential operator can be different from the original one. The second
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Chapter 3. Calibration

purpose here is to interpret our calibration procedure as a reduced order modeling version of
mesh adaptation.

Remark 25 For a true, challenging, two dimensional example, we refer to chapter 4.

We choose the following favorable setting: we are given some parabolic equation in some two
dimensional domain Ω with periodic boundary conditions such that the solution manifold MD

benefits from translation. F is thus chosen as a subspace of two dimensional translations. We
skip the description of the offline section, and assume right away that we have a calibrated basis:

{„i, i = 1 . . . Nred}

such that:
’u(·, t; µ) œ MD, ÷Ft;µ œ F s.t u(·, t; µ) œ span {„i · Ft;µ}.

3.8.1 On the equivariance of Lµ

The objective of this section is to show that equivariance is not a necessary property for the
application of the calibration procedure. For this, we have chosen a family of mapping F for
which the parameter dependency is of the following form:

Ft;µ :
3

x

y

4

æ
3

x ≠ ◊t;µ(y)
y

4

. (3.72)

The underlying idea is to be able to handle transformations around the affine mapping:

Fµ :
3

x

y

4

æ
3

x ≠ µy

y

4

which transforms the lines x = cte into x ≠ µy = cte. For this restricted class of mappings, the
determinant of the Jacobian is constant over Ω, and equal to one. We also have an explicit form
of the inverse mappings:

’µ œ D, F ≠1
t;µ :

3
u

v

4

æ
3

u + ◊t;µ(v)
v

4

.

Suppose that the differential operator Lµ involves a Laplace operator. It is clear, with our choice
of mappings, that ∆(u ¶ Ft;µ) ”= (∆u) ¶ Ft;µ (say in the sense of distributions). Nevertheless, we
will show that the calibration procedure can still be applied.

A standard online section requires the efficient computation of the variational form. We focus
on two standard terms:

I s

Ω
„i(Ft;µ(x, y)) „j(FtÕ;µ(x, y))dxdy

s

Ω
Ò(„i ¶ Fµ)(x, y) · Ò(„j ¶ FtÕ;µ)(x, y)dxdy.

L2 scalar products are directly handled by a simple change of variables:
⁄

Ω

„i(Ft;µ(x, y)) „j(FtÕ;µ(x, y))dxdy =
⁄

Ω

„i(u + ◊tÕ;µ(v) ≠ ◊t;µ(v), v) „j(u, v)dudv. (3.73)

As for all the examples in this chapter, we suppose the smoothness of t ‘æ Ft;µ. Thus ◊tÕ;µ(v) ≠
◊t;µ(v) is close to 0 and these terms can be estimated using an interpolation method, see section
3.4.4.
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There is a little bit more work for the H1 scalar products. For clarity, we will denote ˆ
ˆ1 and

ˆ
ˆ2 the derivatives with respect to first and second variables. With our specific form of mapping,
we know that:

ˆ(„i ¶ Ft;µ)
ˆx

=
ˆ„i

ˆ1
¶ Ft;µ

and that:
ˆ(„i ¶ Ft;µ)

ˆy
=

ˆ„i

ˆ2
¶ Ft;µ ≠ ◊Õ

t;µ

ˆ„i

ˆ1
¶ Ft;µ.

The evaluation of the H1 scalar product between two consecutive time steps will involve the
computation of terms such as:

s

Ω
ˆ(„i¶Ft;µ)

ˆy
(x, y)

ˆ(„j¶FtÕ;µ)

ˆy
(x, y) =

s

Ω
ˆ„i

ˆ2 (x ≠ ◊t;µ(y), y) ˆ„j

ˆ2 (x ≠ ◊tÕ;µ(y), y)

≠
s

Ω
◊Õ

t;µ(y) ˆ„i

ˆ1 (x ≠ ◊t;µ(y), y) ˆ„j

ˆ2 (x ≠ ◊tÕ;µ(y), y)

≠
s

Ω
ˆ„i

ˆ2 (x ≠ ◊t;µ(y), y)◊Õ
tÕ;µ(y) ˆ„j

ˆ1 (x ≠ ◊tÕ;µ(y), y)

+
s

Ω
◊Õ

t;µ(y) ˆ„i

ˆ1 (x ≠ ◊t;µ(y), y)◊Õ
tÕ;µ(y) ˆ„j

ˆ1 (x ≠ ◊tÕ;µ(y), y)

With the proper change of variables, and because of periodicity, we can express these quantities
in terms of relative variations:

s

Ω
ˆ(„i¶Ft;µ)

ˆy
(x, y)

ˆ(„j¶FtÕ;µ)

ˆy
(x, y) =

s

Ω
ˆ„i

ˆ2 (u + ◊tÕ;µ(v) ≠ ◊t;µ(v), v) ˆ„j

ˆ2 (u, v)

≠
s

Ω
◊Õ

t;µ(v) ˆ„i

ˆ1 (u + ◊tÕ;µ(v) ≠ ◊t;µ(v), v) ˆ„j

ˆ2 (u, v)

≠
s

Ω
ˆ„i

ˆ2 (u + ◊tÕ;µ(v) ≠ ◊t;µ(v), v)◊Õ
tÕ;µ(v) ˆ„j

ˆ1 (u, v)

+
s

Ω
◊Õ

t;µ(v) ˆ„i

ˆ1 (u + ◊tÕ;µ(v) ≠ ◊t;µ(v), v)◊Õ
tÕ;µ(v) ˆ„j

ˆ1 (u, v)

Remark 26 For these terms to be properly defined, ’(µ, t), y ‘æ ◊t;µ(y) needs to be smooth.

The offline/online decomposition of the global method depends on the offline/online decomposi-
tion of ◊µ. A sufficient conditions is for ◊µ to be affine (or close to) affine decomposable, see the
description of the EIM section 1.5.2.1.

3.8.2 Calibration seen as mesh adaptation

The idea of this section could have been discussed earlier in this chapter, and is not specific to the
two dimensional problem at hand. I have chosen to mention it here, as the current setting provides
good and yet easily understandable illustrations. This interpretation of calibration in terms of
mesh adaptation was not in the first version of this work. It is indeed not necessary, and it does
not provide any additional results. I have nevertheless chosen to add it here because calibration,
as presented so far, is not being seen by many as a reasonable option from a numerical point of
view. On the other hand, mesh adaptation in finite volume and finite element communities, for
similar problems, is considered standard/mandatory. We thus hope to convince skeptical readers
of the validity of calibration.

We have chosen to illustrate this simple setting with a two dimensional version of Burgers
equation. For simplicity, we work with a superposition of 1D problem. More precisely, we are
solving for the scalar function u œ H1(Ω) such that:

ut + c(
u2

2
)x ≠ ‘uxx = 0,
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where forall µ, c(µ) is a smooth function over some two dimensional rectangle Ω. We plot in
Figure 3.18 some snapshots for various times, and various parameters µ. The initial condition is
the same as for the 1D problem, see section 3.4, and is plotted on the top left picture. The top
right figure shows a solution for c(x, y) ‘æ 1 + –y. Third figure shows a solution for c(x, y) ‘æ
1 + —(y ≠ ȳ)2, where ȳ denotes the mid height of the rectangle Ω. This results in solutions
presenting various front shapes, and it is exactly fitted for the Ft;µ introduced in equation (3.72).

Figure 3.18: Snapshots for various times, and various convection parameters c(µ)

We display in Figure 3.19 one reference mesh on Ω, on which the truth, calibrated, solutions
M̃ are defined. If the calibration procedure is successfully performed, the shock of such calibrated
solutions should always be located in the refined portion of the mesh. Now, what happens in

Figure 3.19: Reference mesh

the online phase ? Say we are at time tn, with a well chosen calibrating function F n and the
corresponding calibrated solution ûn. Equivalently, that means that we have a physical solution
un := ûn ¶ F n defined on an adapted mesh. Meshes for front such as the one presented in Figure
3.18 are presented in Figure 3.20. The iterative algorithm of section 3.3 can be seen as an adaptive
mesh procedure, where we are looking for the best mesh to represent un+1. In FE or FV contexts,
this adaptation is done using some inter cell computations, as no more information is available,
see for instance [57]. In our reducing context, we do have some additional pieces of information.
More precisely, the iterative algorithm selects a small variation around the identity, such that
the modified basis (or mesh) best represents un+1. As already stated, because our calibration
functions in F are easily invertible, all the computations can be made on the same reference
mesh (for instance the one depicted Figure 3.19) whatever the parameter/time considered. For
ideas on the numerical errors due to this process, we refer to remark 21. We want to insist on one
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Figure 3.20: Meshes on which the physical solutions un = ûn ¶ F n are defined

point: all the critics made on the calibration method can be exactly transposed to the standard
mesh interpolation methods. We even mitigate some of the issues:

• only a limited number of mesh interpolation have to be computed, and all the computations
are done in the offline phase (and thus can be done as precisely as we want, with methods
as costly as we want)

• the underlying interpolation error in the online phase is controlled: for this, we refer to
Figure 3.7 and the associated discussion

• the counterpart to the error indicator used in the FE/FV context, is here perfectly adapted
to the reduced framework, and can be assessed in an offline phase

This will again be discussed in the concluding chapter of this manuscript. One last remark
on a related subject. It seems like the calibration method could be applied to problems with
moving boundaries or moving interfaces. Such problems have received some attention in the
reducing community recently, see for instance [106]. It seems like the raw solution manifolds for
such problems would suffer the same n-width issue as propagating fronts. I believe that these
problems could be treated as the two dimensional Burgers problem with varying front shapes.
This idea has not been further investigated in this manuscript.

3.9 Rotating obstacle

The example we build in this section is a little different from the ones we have seen so far, since
the calibration process is not a translation. It as already been mentioned in the introductive
chapter, and in chapter 2. The setting is a rotating obstacle, fixed inside Ω. The mesh used
for the computation of the fine/truth solutions is presented in Figure 3.21. We solve the incom-
pressible Navier-Stokes equation in Ω. For a certain range of Reynolds number, we know that
this particular problem leads to the creation of a Karman vortex street. We also know that the
direction of the vortex street is roughly the same as the main inflow direction. Following this
remark, we try to construct an example on which standard ROM fails and that would benefit
from calibration. We choose as parameter the inflow direction:

uin(·, t; µ) =

A

cos(◊(t; µ))

sin(◊(t; µ))

B

.

For sufficiently big parameter range for ◊, we expect that the raw solution manifold M is not an
adapted candidate to standard ROM.
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Figure 3.21: Fine mesh on which the offline stage is performed

3.9.1 Offline phase

We propose a more adapted procedure. Decompose the domain Ω into one circular domain
around the obstacle Ωint and one outside domain Ω0. Just as in section 3.6, that means that
instead of considering the global raw solution manifold M, we study two disjoints manifolds:

Mint := {u(·, t; µ)|Ωint
, t œ [0, T ], µ œ D}

and
M0 := {u(·, t; µ)|Ω0 , t œ [0, T ], µ œ D} .

M0 is far away from the obstacle, and for a ’proper’ choice of Ωint, it should deal with less
complex structures, and not be as heavily direction dependent, as the initial problem. This
translates into a better behaved Kolmogorov n-width. We use the following calibration family
for Mint:

Ft;µ :

Y

]

[

Ω æ Ω
3

x

y

4

‘æ
3

cos(◊(t; µ)) ≠sin(◊(t; µ))
sin(◊(t; µ)) cos(◊(t; µ))

4 3
x

y

4

Note that even if the problem is two dimensional, the family F is a one parameter family. The
definition of the calibration manifold Mint,F,D naturally follows:

Mint,F,D :=
)

u(F ≠1
t;µ (·, t; µ), t œ [0, T ], µ œ D

*
.

We expect this manifold to have a smaller n-wdith that the one of the original problem. This
concludes the preliminary analysis. We have the proper candidates for ROM procedure, M0 and
Mint,F,D.

As an introductive example, we have chosen to consider a problem where the only parameter is
time. Also, ◊ is chosen as a linear function with ◊(0) = ≠ fi

4 and ◊(T ) = fi
4 . As an illustration, we
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IsoValue
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Figure 3.22: Left: A snapshot near the beginning of the simulation; Right: a snapshot near the
end of the simulation

present in Figure 3.22 the horizontal velocity component for some t ¥ 0 and one with t ¥ T . By
inspecting these two snapshots, it appears clearly that standard ROM is not adapted. Indeed, the
two solutions are close to orthogonal for all reasonable scalar products. Another way of putting
this is that a compression algorithm such as POD or RB would not find much redundancy of
information in such a solution manifold.

The offline section continues smoothly. We start by truncating our solutions around the
obstacles, on Ωint. The size of the latter is problem dependent, and should be investigated. Our
choice of mesh for Ωint is presented in Figure 3.23. The restriction of the solutions of Figure

Figure 3.23: The truncated mesh

3.22 on Ωint are presented in Figure 3.24.
We have to calibrate the snapshots offline. For each snapshot u(·, tn), the parameters Fn can

be chosen, as for the other examples, using some a priori knowledge. Here, it is the known inflow
direction at time tn. A more realistic possibility is to use the algorithm proposed in section 3.7.
The computational cost issues that were raised are still valid. It is even worse as we are dealing
with a two dimensional problem. In order to make the method of Algorithm 5 computationally
tractable, we propose a small variation. It relies on the use of filtering. For instance, let ÷ be
some smooth indicator function of some small neighborhood of 0. One can smooth any function
defined on Ω, say u, by looking at ū defined as:

ū : x æ (u ú ÷)(x) =
⁄

Ω

u(·)÷(x ≠ ·).
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Figure 3.24: Truncated versions of the solutions presented in Figure 3.22

Data: Uncalibrated solution manifold MD

Result: Calibration parameters ◊ú(t; µ), t œ [0, T ], µ œ, D
Define G0 some coarse filter and ú the standard convolution operator ;
Let G0 ú M0 be a filtered version of the solution manifold ;
◊0(t; µ) Ω Algorithm5 (G0 ú M0);
M̂◊0 :=

)
u(t; µ) ¶ F◊0(t;µ), t, µ

*
;

repeat
Let Gk be a filter finer than Gk≠1 ;

◊k(t; µ) Ω Algorithm5
1

Gk ú M̂◊k≠1

2

;

M̂◊k :=
;

u(t; µ) ¶ Fq
k

p=1
◊p(t;µ)

, t, µ

<

;

k Ω k + 1;
until some accuracy/computational cost condition;

◊ú(t; µ) :=
qk

p=0 ◊p;
Algorithm 7: Finding offline calibration parameters

The idea is that as k increases, the filter are becoming finer. At the same time, algorithm
5 is being run on roughly calibrated solutions. To put it in other words, the range in which to
look for better calibration parameters ◊ in algorithm 5 diminishes when k increases.

To highlight the gain of this preconditioning process, we present on Figure 3.25 three POD
modes (2nd, 5th and 10th) for both original (left) and rotated (right) sets. Just as in the 1D

case, without calibration, the reduced basis cannot reproduce the small scales of the flow, but
rather has to deal with the inflow direction. The latter plays the exact same role as the position
of the propagating front, in the one dimensional Burgers case.

3.9.2 Online Phase

The complete construction of a reduced scheme is not in the scope of this small section. We refer
to chapter 2 for details on how to glue the reduced solution in Ωint to the outside domain Ω0.
We rather focus here on the novelty: finding a ’good’ rotation parameter online. It is not easy
to find a simple problem that asseses the search for a calibration parameter. The method we
have come up with can seem far-fetched, but it will nevertheless help us draw some preliminary
conclusions on the feasibility of the method. This method starts with a fine, truth approximation
of the solution {u(·, tn)}n. We insist on the fact that in the remaining of this section, the full
simulation is known.
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Figure 3.25: Top: 2nd POD mode; Middle: 5th POD mode; Bottom: 10th POD mode

Left: Uncalibrated case; Right: Calibrated case

Let {„i, i = 1, . . . , N}i be the calibrated reduced space on which the reduced solutions in Ωint

are living. Following the discussion in the offline section, it is assumed to be of small cardinality
and to represent well Mint,F,D:

’u œ Mint,D, ÷◊ œ [≠fi, fi], s.t u œ span{„i ¶ F (◊), i = 1, . . . , N}.

We need another reduced basis, {Âj , j = 1, . . . , M}j , ’bigger’ than {„i, i = 1, . . . , N}. We
have M > N . We choose it such that it represents well the calibrated solution manifold, with
rotations around the identity

’û œ Mint,F,D, ’|”◊| Æ ‘, û ¶ F (”◊) œ span{Âj , j = 1 . . . , M}.

We reassure the worried reader. This is not suppose to be the description of a real online scheme.
It is just an attempt to asses the reconstruction of calibration parameter.

As we know the truth solution u(·, tn+1), we can compute its coordinates on the big basis at
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time tn, i.e its coordinates on {Âj ¶ F (◊n), j = 1, . . . , M}:

u(·, tn+1) :=
qM

j=1 < u(·, tn+1), Âj ¶ F (◊n) > Âj ¶ F (◊n)

=
qM

j=1 —n+1
j Âj ¶ F (◊n).

(3.74)

◊n is not the optimal parameter to represent u(tn+1). As for Burgers, we assume smoothness
of the calibration parameter and look for ◊n+1 in a small neighborhood of ◊n. This and the
assumption on {Âj , j = 1, . . . , M} guarantees that the projection error remains small. In a way,
they play the same role as the iterative algorithm of section 3.3.

The second step is to look for a rotation angle denoted ◊n+1 such that

u(·, tn+1) œ span {„i ¶ F (◊n+1), i = 1, . . . , N}. (3.75)

Just as in the translation case, we compute the norm of the orthogonal projection of u(·, tn+1)
on rotated versions of the calibrated basis, trying to minimize the projection error. That is, we
are trying to minimize J defined as:

J :
;

[≠fi, fi] æ R

◊ ‘æ
.
.u(·, tn+1) ≠ Π„i¶F (◊)u(·, tn+1)

.

.
2

.
(3.76)

Using the orthogonality of {„i, i = 1, . . . , N}, and thus the orthogonality of {„i ¶ F (◊), i =
1, . . . , N}, it is equivalent to maximizing J̃ :

’◊, J̃(◊) =
Nÿ

i=1

!
< u(·, tn+1), „i ¶ F (◊) >

"2
.

Using the rotation invariance, J̃ can be expressed as:

’◊, J̃(◊) =
Nÿ

i=1

!
< u(tn+1) ¶ F (≠◊n), „i ¶ F (◊ ≠ ◊n) >

"2

This is where we use the coordinates of u(tn+1) on the basis {Âj ¶ F (◊n)}:

’◊, J̃(◊) =
Nÿ

i=1

Q

a

Mÿ

j=1

—n+1
j < Âj , „i ¶ F (◊ ≠ ◊n) >

R

b

2

We once again use the assumption on the smoothness of t æ ◊(t) and look for ◊n+1 in a small
neighborhood of ◊n. Let (”◊)max be the maximum rotation angle possible between two successive
time steps. Let Ξ be some fine discretization of [≠”◊max, ”◊max]. We pre compute the following
quantities

’i œ [1, N ] , j œ [1, M ], ’”◊ œ Ξ, < Âj , „i ¶ F (”◊) >Ωint
(3.77)

We find the ’optimal’ new rotation parameter, at a cheap cost, using interpolation or polynomial
fitting, see section 3.4.4.

This specific setting was tested on our initial example with rotating inflow condition. The
results are presented in Figure 3.26. In green is plotted the true inflow direction, that changes
linearly with time. In blue is the ’cumulative’ optimal angle.

With this simple numerical test, we have proven two things. First, that the optimization
procedure proposed in (3.76), that was proven to give descent results for viscous Burgers, can
extend to more challenging problems. We have also shown that the interpolations of terms such
as (3.77) make sense. This is just a first result, and we do not pretend that it concludes on the
feasibility of the whole method. It is nevertheless a necessary first step. A computationally viable
matching method needs to be implemented before a full reduced scheme can be constructed.
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Figure 3.26: Green: the ’true’ inflow direction; Blue: the guessed angle

3.10 A posteriori error estimation

In this section, we show that the tools developed in the ROM community for a posteriori estimates
directly apply to our calibration framework. We remind the reader that rigorous a posteriori
estimates are functions:

∆ :
;

[0, T ] ◊ D æ R

(tk, µ) ‘æ ∆(tk; µ)
(3.78)

that satisfy an inequality such as:

’tk, ’µ œ D, Îu(tk, µ) ≠ uk(µ)Î Æ ∆(tk; µ), (3.79)

where u is the truth approximation solution, and uk is the reduced solution at time tk.
The common step, when trying to construct ∆, whatever the equation considered, is to find a

relation between the norm of the error (that we want to estimate), and the norm of the residual.
It has been done for a simple model elliptic equation in the introductive chapter, section 1.4.3.1.
More generally, it is standard for coercive elliptic PDEs, see for instance [65]. It has also been
done for the unsteady viscous Burgers in [101]. We will thus focus here on the computation of
the norm of the residual.

We work with a general time dependent equation, say (3.27). For simplicity, we choose an
explicit time discretization. The residual in that setting is defined as:

r :
;

X æ R

v ‘æ < un+1≠un

dt
, v > +L(un; µ)(v)

(3.80)

Let ê be the Riesz representant in X of r, i.e

’v œ X, < ê, v >= r(v).

ê is such that ÎêÎX = ÎrÎXÕ . For all n, let g(un; µ) œ X such that

’v œ X < g(un; µ), v >X= L(un; µ)(v)

We know that:

ÎêÎX =

.

.

.

.

un+1 ≠ un

dt
+ g(un; µ)

.

.

.

.
X

.
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We can sum up what we have so far. To compute the norm of the residual, we need to compute
ÎunÎX , Îun+1ÎX , Îg(un; µ)ÎX , < un+1, g(un; µ) >X , < un+1, un >X and < un, g(un; µ) >X . To
make the error estimation useful, these terms need to be computed efficiently. We thus need to
have a proper offline/online decomposition. For this, we write the decomposition of each term
on their respective basis. For the first two terms, there is no problem. Indeed, as {„i ¶ F n} is
an orthonormal basis in X, we have:

÷–i, ÎunÎ2
X =

.

.

.

.

.

ÿ

i

–i„i ¶ F n

.

.

.

.

.

2

X

=
ÿ

i

–2
i Î„i ¶ F nÎ2

X =
ÿ

i

–2
i

The offline/online decomposition of the terms involving g(un; µ) depends on the nature of the
operator L. It can eventually be handled using an EIM type method. Anyway, it is not impacted
by calibration, and will thus not be further discussed. The only novelties are the quantities
involving scalar products of terms not defined on the same basis, i.e terms for which we have no
orthogonality property. For instance,

< un+1, un >X=
ÿ

i

ÿ

j

–n+1
i –n

j < „i ¶ F n+1, „j ¶ F n >X

Just as in the previous sections, the terms only involve the relative transformation (F n+1)≠1¶F n.
As usual, we pre compute a few terms for ”F in the neighborhood of the identity in F , and
interpolate.

Unfortunately, we do not present any numerical experiments for the test case of section
3.4. There are two major reasons why. First of all, the error estimator’s tightness is strongly
dependent on the relative influence between convective and diffusive terms [101] . Our convection
dominated Burgers test case is not adapted. Also, as we are solving a time dependent problem,
the error estimate grows exponentially (cumulative error). To mitigate this issue, a space-time
formulation has recently been developed in [142] for viscous Burgers.

We have shown in this subsection that the a posteriori estimates naturally extend to our
calibration method. Nevertheless, our method inherits the flaws of the standard method: the a
posteriori error estimators are not adapted to convection dominated problems and are tedious
for time dependent ones.

3.11 Conclusion

In this chapter, we have started by showing that standard reduced basis method (or actually
most model reduction methods) were not adapted for convection dominated phenomenon. We
have then described the freezing method, which was designed to answer this specific problem.
After highlighting its undesirable properties, we have proposed a simpler, alternative, method.
Unlike the freezing method, it does not act at the continuous level, but works with a semi-
discretized scheme. We have extensively discussed this method on one favorable example, the one
dimensional periodic viscous Burgers equation. We have shown that the resulting self-sufficient
reduced scheme could be efficiently implemented in the standard online/offline paradigm.

The last sections of this chapter have been devoted to presenting extensions to this generic
algorithm. We have started by showing how to extend this method to non periodic problems.
We have then proposed one method that would help for problems where the offline calibration
parameters can not be picked using some a priori knowledge, but rather have to be numerically
approximated. In section 3.8, we have given ideas for the extension to two dimensional problems.

102



3.11. Conclusion

The last ’bonus’ section shows how to extend the a posteriori error estimators to the calibration
framework.

The next chapter of this thesis will be devoted to using the calibration idea for a more involved
problem: the two dimensional flow around a NACA airfoil.
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Chapter 4

Calibration for a challenging two
dimensional example

The objective of this chapter is to use the calibration procedure introduced in the previous

chapter, to solve a more challenging problem: the two dimensional Euler equation around a

NACA airfoil. We start by showing that standard ROM is not fitted to solve such problem,

as the shock’s position is parameter dependent and thus that the Kolmogorov n-width of

the solution manifold is large. We then propose an adapted calibration procedure, that

uses Gordon-Hall (or transfinite) mappings. We conclude the offline phase by showing that

the resulting calibrated solution manifold is better behaved. We then derive an online

phase, that follows the lines of the previous chapter, by making use of the fact that only the

relative (between two successive time step) shock’s position are relevant. The computational

complexity is controlled thanks to hyper-reduction ideas. We conclude with preliminary

numerical results, that are strong evidences that a complete reduced scheme is within reach.

.

This work is the result of a collaboration with R. Crisovan and R. Abgrall from UZH Zurich.
An article version of this chapter is available, see [26]. Some of the numerical experiments of this
chapter have been done using Freefem++ [67].

4.1 Introduction

The objective of this chapter is to apply the calibration idea developed in the previous chapter,
to more realistic problems than the one dimensional Burgers equation. We have decided to focus
on the steady two dimensional Euler equation around an airfoil. The precise setting will be
discussed in Section 4.2. To motivate the calibration idea in this specific setting, we refer to
the illustrative Figure 4.1. The coloured lines are going through the barycenters of the mesh
elements in which the gradient of the solution is the largest, for various pair of parameters: Mach
number and angle of attacks (AoA). Each black line is a fitted line through the position of these
barycenters. It is obvious that this example suffers the same problem as the one dimensional
Burgers case. Because of the moving shock, the Kolmogorov n-width of the raw data set MD will
not have the good decay properties required for standard ROM. We thus need a preconditioning
step, and will propose an appropriate calibration.
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Figure 4.1: Position of the shock for various AoA and Mach numbers.
Coloured lines: Barycenters of the cells in which the shock is located;

Black lines: Fitted line through these barycenters

The choice in this note is to follow the steps of chapter 3, for this 2D hyperbolic problem.
That is, we want to:

• calibrate the offline computed solution, to get a reduced basis as small as possible;

• have an online scheme that builds a "calibrated problem", making use of the calibrated
reduced basis.

We highlight the differences with chapter 3:

• we were solving Burgers’ equation in 1D with one propagating front i.e, there was only
one calibration parameter. The shock’s position and shape might require more calibration
parameters;

• we were using periodic boundary conditions, so there was no matching with any exterior
domain. As a result, the calibrated problem was just a translated version of the initial
problem;

• we were using a standard Galerkin scheme in the online phase. This scheme is easily put
in a reduced framework and, although different from the one used in the offline phase,
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was stable for the parabolic problem studied. As we are now working in an hyperbolic
setting, it seems like we will require some form of numerical stabilization, which can lead
to difficulties in a reduced setting. This issue has already been introduced in chapter 1.

In the first section of this chapter, we completely describe the problem we want to solve. We
then give details on the ’truth’ scheme we are using. In the second section, we describe our choice
of family of mappings F , as well as one possible choice for µ æ Fµ. We use this to perform the
’offline phase’. We make sure that the calibration procedure leads to a better behaved solution
manifold. In the third section, we propose a cheap ’online’ algorithm. This is the central part of
this chapter, as most related work simply perform the offline calibration, and do not propose any
numerical scheme actually using the calibrated manifold MF,D, see [74, 141, 115]. In the online
phase, we propose a standard L2 minimization algorithm and a L1 extension, as was advised in
[2]. In order to make the overall method computationally efficient, we describe how one could
adapt hyper-reduction ideas [119]. The final section is devoted to numerical experiments. We
present different mappings and we show the importance of the smoothness of the mappings in
F . We conclude this chapter by presenting some ideas that could be further investigated and
implemented.

4.2 Problem setting

4.2.1 Naca0012 test case

We have chosen to perform our calibration ideas on the following well documented external flow
test-case: the two-dimensional, inviscid, transonic flow past the NACA 0012 airfoil. The explicit
form of the wing is given as:

y = w(x) := 0.6·
1

0.2969·Ôx≠0.1260·x≠0.3516·x2+0.2843·x3≠0.1015·x4
2

, for x œ [0, 1]. (4.1)

We are using subsonic boundary conditions on the outside boundary and slip boundary conditions
on the wing. The latter is a Neumann type boundary condition that imposes that the velocity
of the fluid is tangent to the wing.

It is commonly known, that from a certain threshold of Mach number, a shock appears. Both
the position and the form of the shock depend on many parameters among which the Mach
number and the angle of attack (AoA), i.e the inflow mean direction.

4.2.2 2 dimensional Euler equation

We are interested in the numerical approximation of the two dimensional Euler equations. Let
us denote by Ω some domain around the airfoil described in the previous section, W the state
vector of conserved variables and f = (fx, fy) the flux:

W =(fl, flu, flv, E)T

fx(W ) =(flu, flu2 + p, fluv, u(E + p))T

fy(W ) =(flv, fluv, flv2 + p, v(E + p))T ,

fl is the density, u and v are the components of the velocity, E = fl‘ + 1
2 fl(u2 + v2) is the total

energy and ‘ is the specific internal energy. The system is closed by the equation of state relating
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the pressure p to the conserved variables:

p = (“ ≠ 1)
!
E ≠ 1

2
fl(u2 + v2)

"
= (“ ≠ 1)fl‘,

where the ratio of the specific heat “ is constant, with “ = 1.4 in our applications.
We are interested in the steady solutions. We will take them as the steady limit of the

following evolution equation:
I

ˆW
ˆt

+ divf(W ) = 0, t > 0, x œ Ω

W (x, 0) = W0(x), x œ Ω.
(4.2)

This problem is supplemented with the boundary conditions specified in the previous subsection.
We will take a quick glance at the fine computational method we are using, the Residual

Distribution (RD) method. It is a second order oscillation free method. A complete description
of this method for steady problems can be found, for example, in [1, 41].

4.2.3 Residual distribution scheme

This short presentation of the RD scheme follows the lines of [41]. In order to approximate
the solutions (4.2), we are using a conforming mesh with triangular elements. We will denote
with T some generic element in the mesh, with N the number of elements in the mesh and by
M a generic vertex. In the RD schemes, the data are stored at the vertices. Wi will denote
an approximation of W (Mi). The scheme also requires a continuous approximation of the flux
f(W ) over elements. It will be denoted (f(W ))h.

Definition 1 Let Wi be some current state, and (f(W ))h the corresponding continuous approx-
imation of the flux.

1. ’T œ [1, . . . , N ] compute the residual

Φ
T :=

⁄

T

div((f(W ))h)dx =
⁄

ˆT

(f(W ))h · n̨ dx̃. (4.3)

2. ’T œ [1, . . . , N ] distribute the functions of ΦT to each node of T . Denote by ΦT
i the local nodal

residual for the node Mi œ T . By construction one must have

ÿ

MiœT

Φ
T
i = Φ

T . (4.4)

Equivalently, denoting by —T
i the distribution coefficient of node Mi:

—T
i =

ΦT
i

ΦT
(4.5)

with ÿ

MiœT

—T
i = 1. (4.6)

3. Possibly add some numerical stabilization

’T œ [1, . . . , N ], ’Mi œ T, —
T,stab
i := —T

i + ‘T
i (4.7)
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4. Assemble the contribution for all vertices M , and solve:
ÿ

T s.t MœT

—
T,stab
M ΦT = 0. (4.8)

Note that as we are dealing with a system, the previous equality is to be understood in R
4. The

resolution uses an iterative process (pseudo time-stepping) to get to the solution {Wi}i.

This is a very general formulation and many classical schemes can be formulated within this
framework. First, one can modify the way the the residual of each triangle is distributed among
nodes, that is, the choice of the —i. For instance, distributing the residual evenly among nodes
corresponds to a Lax-Friedrichs type of scheme. One can achieve upwindng by taking into account
the transport direction when distributing the residual. Second, many stabilization mechanism
can be implemented with the use of specific ‘i in (4.7). We have chosen a Lax-Friedrichs type
of scheme, with an SUPG stabilization. The consequences of these particular choices will be
discussed in the online section.

Remark 27 Reduced Order Modeling does not necessarily require a deep understanding of the
underlying truth solver. We give these details about the CFD code because we intend to use it as
part of our online scheme.

The used fine CFD mesh has 4510 grid points which corresponds to a total of 18040 unknowns.
Snapshots in this solution manifold can be visualized in Figure 4.2. We have identified a range
of parameters, for which the sensitivity of the shock position to Mach and AoA is high :

D :=
;

Mach œ [0.81, 0.83]
AoA œ [0.0¶, 3.0¶].

The positions of the shock for sample parameters in D are depicted in Figure 4.1. This problem
has been already studied in [2] in the context of model reduction using L1-norm minimization.
It was shown the existence of discrepancies in the reduced solution, for problems with shocks.
This is actually the motivation of this work.

In the rest of this chapter, we will denote u a generic component of the state vector W . For
instance, one component of the output of the CFD code for parameter µ will be denoted u(·; µ).
This choice of notation is not made to confuse the reader, but rather to match the standard
notation in the ROM community.

4.3 Offline phase

As we will use a POD method to construct a reduced basis, we first need to select a moderate
but representative snapshot set inside MD. We have chosen the following set of cardinality 12:

Mach œ {0.81, 0.82, 0.83}
AoA œ {0.0¶, 1.0¶, 2.0¶, 3.0¶}.

These snapshots are presented in Figure 4.2. We plot a few basis resulting from the application of
POD to this data set in Figure 4.4. One can observe that just as in the 1D Burgers’ case, in order
to take into account the variability of the shocks’ position and shape, the reduced basis tend to
oscillate. This behavior is even clearer when looking at the restriction of the POD basis at the
wing, see Figure 4.3. The first objective of this section is to propose a calibration procedure to
mitigate this issue. For this, we construct in the next section a family of mappings F as well as
an application µ æ Fµ.
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(a) Mach=0.81,AoA=0.0¶ (b) Mach=0.81,AoA=1.0¶ (c) Mach=0.81,AoA=2.0¶ (d) Mach=0.81,AoA=3.0¶

(e) Mach=0.82,AoA=0.0¶ (f) Mach=0.82,AoA=1.0¶ (g) Mach=0.82,AoA=2.0¶ (h) Mach=0.82,AoA=3.0¶

(i) Mach=0.83,AoA=0.0¶ (j) Mach=0.83,AoA=1.0¶ (k) Mach=0.83,AoA=2.0¶ (l) Mach=0.83,AoA=3.0¶

Figure 4.2: The solutions of the problem for AoA={0.0¶, 1.0¶, 2.0¶, 3.0¶} and
Mach={0.81, 0.82, 0.83 }

Figure 4.3: The x velocity component at the wing in the uncalibrated case : a few POD basis
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4.3. Offline phase

Figure 4.4: 1st, 3th and 5th POD basis at the wing in the uncalibrated case for the full domain
Ω

4.3.1 Preliminary remarks

As mentioned in the introduction, calibration starts with some a priori knowledge of the so-
lution manifold. By analogy with the first dimensional Burgers’ case, we choose the following
calibration: let Ω̂ be some reference domain and x̂0 some abscissa in Ω̂. Construct F a family of
mappings from Ω æ Ω̂ such that

’µ œ D, ÷Fµ œ F ,
Ó

(x̂, ŷ) œ Ω̂ s.t u
!
F ≠1

µ (·); µ
"

is discontinuous
Ô

µ {(x̂0, ŷ)}

To put it in other words, with this choice of calibration, the solutions in the calibrated manifold

MF,D :=
)

u
!
F ≠1

µ (·); µ
"

, µ œ D
*

have vertical shocks, at position x̂0. Again, using the analogy with the one dimensional Burgers
case, we expect that the POD representation of the calibrated manifold would be more repre-
sentative of the shape of the solutions and not try to catch the moving discontinuity.

How do we achieve this calibration ? The first task is to locate the position of the shock. We
have chosen the following simple strategy: first find the boundary element (on the wing) where
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the quantity of interest has the highest gradient. Then look at neighboring elements and pick
the one with the highest gradient. Iterate until the end of the shock (i.e some condition on the
gradient) or until one reaches some predefined distance to the wing. One can use other methods
in order to locate more precisely the shock. For instance, in [121], they use ENO related ideas
to locate the inner-cell position of the shock.

We denote as x = s(y; µ), µ œ D the true shape of the shock and we will make the following
assumption :

÷k small , ’µ œ D, ÷Pµ œ Pk(R), s(y; µ) = Pµ(y). (4.9)

That is, the shock can be represented by a low order polynomial. All numerical experiments
presented in this chapter have been done using a polynomial of degree 1:

Pµ(y) = a0(µ) + a1(µ) y. (4.10)

In Figure 4.1, the colored lines are the barycenters of the control volumes with the highest
gradient. In black, is the fitted polynomial, characterized by two parameters, a0(µ) and a1(µ).

Second step now, we need to construct the family F . The global picture is presented in Figure
4.5. We decompose Ω into three subdomains

Ω0

ΩL ΩR

Figure 4.5: Physical domain Ω

• Ω0 where we will use the identity mapping

• ΩL and ΩR, where we will perform the calibration

We have chosen to use a Gordon-Hall (G-H) type mapping [64]. Its properties have been studied
in [89]. Examples in fluid dynamics have been numerically studied in [90]. There are multiple
reasons for this choice. First, for the offline part, what is important is its simplicity and its
flexibility. Second, we will give computational cost related arguments in the online section
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4.3. Offline phase

below. The rest of this section will detail the application of the Gordon-Hall method onto ΩL.
Similar work is, of course, performed on the right subdomain ΩR.

The reference domain has to be a rectangle in the original G-H algorithm. This fits in our
framework, as we want the calibrated shock to be a vertical line. The situation is depicted in
Figure 4.6, where we have plotted one possible instance of F ≠1

µ (Ω̂). Contrary to most examples
using Gordon-Hall type method in the literature, our domain of interest is embedded in a bigger
domain. The mapping thus needs to be (at least) continuous on ˆΩL, and ˆΩR. More precisely,
we need

(x1, y1) = (x̂1, ŷ1)
(x3, y1) = (x̂3, ŷ1)
(x3, y2) = (x̂3, ŷ2)
(x1, y2) = (x̂1, ŷ2)

Ω̂RΩ̂L

(x̂1, ŷ1) (x̂3, ŷ1)

(x̂3, ŷ2)(x̂1, ŷ2) (x̂2, ŷ2)

(x̂2, ŷ1)

ΩRΩL

(x1, y1) (x3, y1)

(x3, y2)(x1, y2) (s(y2; µ), y2)

(s(y3; µ), y3)

Figure 4.6: The reference domain Ω̂, and one possible instance Ω(µ) := F ≠1
µ (Ω̂)

4.3.2 The actual G-H method

The G-H method is conceptually easy to understand. We denote with Γi the edges of ΩL. We
choose a clockwise numbering, starting from the left boundary. Their counterparts on Ω̂L are
denoted Γ̂i. The steps are the following:

• map each edge of Ω̂L onto its counterpart on ΩL. That is define f such that :

’i, fµ|
Γ̂i

= Γi

• define the weights functions „i:

Ω̂L æ [0, 1]
(x̂, ŷ) ‘æ „i

satisfying the following necessary conditions :

’i œ [1, . . . , 4],
;

„i + „i+2 = 1
„i|Γ̂i

= 1

These functions represent the relative positioning between the opposing edges.
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• define the projection functions fii;

Ω̂L æ [0, 1]
(x̂, ŷ) ‘æ fii

satisfying the following necessary condition :

’i œ [1, . . . , 4],

Y

_]

_[

fii|Γ̂i+1
= 1

fii|Γ̂i≠1
= 0

fii|Γ̂i
œ [0, 1].

These functions define a new coordinate system in Ω̂L.

• for any point (x̂, ŷ) on Ω̂L, compute the projection on each edge fii(x̂, ŷ). Then, use a
weighted combination of the fµ(fii(x̂, ŷ)). The weights are the „i(x̂, ŷ).

Remark 28 The conditions on the sets {„i} and {fii} stated above are necessary conditions.
We have no explicit sufficient conditions to ensure the bijectivity of the G-H mapping.

As a first easy step, we have chosen to linearly stretch/shrink the domain. That is, we choose
the following parametrization of the Γi :

fµ|
Γ̂1

: (x̂1, ŷ) æ (x̂1, ŷ)
fµ|

Γ̂2
: (x̂, ŷ2) æ (x̂1 + x̂ · (s(ŷ2; µ) ≠ x̂1), ŷ2)

fµ|
Γ̂3

: (x̂2, ŷ) æ (s(ŷ2 + ŷ · (ŷ3 ≠ ŷ2); µ), ŷ2 + ŷ · (ŷ3 ≠ ŷ2))
fµ|

Γ̂4
: (x̂, ŷ1) æ (s(ŷ3; µ) + x̂ · (x̂1 ≠ s(ŷ3; µ)), w(s(ŷ3; µ) + x̂ · (x̂1 ≠ s(ŷ3; µ))),

(4.11)

where w is defined in (4.1) and s is given in (4.9). For example, take the left edge of the reference

domain Γ̂1, the set
Ó

(x̂, ŷ) œ Ω̂, s.t ŷ œ [ŷ1, ŷ2] and x̂ = x̂1

Ô

. The vector valued function fµ|
Γ̂1

chosen above is one possible parametrization of Γ1.
We use, for now, the same weight and same projection functions as in the original G-H

formulation:

„1(x̂, ŷ) =
ŷ ≠ ŷ1

ŷ2 ≠ ŷ1
„3(x̂, ŷ) = 1 ≠ ŷ ≠ ŷ1

ŷ2 ≠ ŷ1

„2(x̂, ŷ) =
x̂ ≠ x̂1

x̂2 ≠ x̂1
„4(x̂, ŷ) = 1 ≠ x̂ ≠ x̂1

x̂2 ≠ x̂1
.

and

fi1(x̂, ŷ) =
ŷ ≠ ŷ1

ŷ2 ≠ ŷ1
fi3(x̂, ŷ) =

ŷ ≠ ŷ2

ŷ3 ≠ ŷ2

fi2(x̂, ŷ) =
x̂ ≠ x̂2

x̂3 ≠ x̂2
fi4(x̂, ŷ) =

x̂3 ≠ x̂

x̂3 ≠ x̂1
.

The standard G-H mapping is given by :

GH(x̂, ŷ; µ) = „1(x̂, ŷ) · fµ(x̂1, ŷ) + „2(x̂, ŷ) · fµ(x̂, ŷ2)

+ „3(x̂, ŷ) · fµ(x̂2, ŷ) + „4(x̂, ŷ) · fµ(x̂, ŷ1)

≠
4ÿ

i=1

„i(x̂, ŷ) · „i+1(x̂, ŷ) · fi;µ,

(4.12)
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4.3. Offline phase

where fi;µ is the value of fµ in the corner between Γi and Γi+1. Here, we have

f1;µ = (x1, y1), f2;µ = (x1, y2)

f3;µ = (x3, y2), f4;µ = (x3, y1).

We will use, in the course of this chapter, the following notation :

R
2 æ F

(a0, a1) ‘æ G-H(·; a0, a1)
(4.13)

This application takes as argument a shock position, and returns the corresponding G-H mapping
in F .

Remark 29 It is important to know that the fi’s, the „’s and fµ can be chosen independently
from each other. This will be made clearer in Section 4.7.2 when we try to improve the method.

It is clear that this mapping suffers from major drawbacks :

• this mapping is continuous at the boundary, but has discontinuous derivatives;

• this mapping linearly stretches/shrinks the domain; this is not the best choice to diminish
the Kolmogorov n-width;

• in x1 and x3, the boundary ˆΩ̂ is not C1.

These issues will be fixed in the numerical section 4.7.2. They are not a problem for the
offline section. Thus, for simplicity, we will illustrate the usefulness of calibration using this
rough mapping. We have computed separate POD basis on Ω̂L and Ω̂R. We present in Figure
4.7 the counterpart of Figure 4.3, that is, the x component of the velocity on the left part of
the wing. As one can see, using calibration we got rid of the oscillations. We present in Figure

Figure 4.7: The x velocity component at the wing in the calibrated case : a few POD basis

4.8 the first, third and fifth POD basis in the calibrated case, as a counterpart of Figure 4.4.
As expected, the calibrated POD captures most of the information in the first 4 basis. The 5th
basis only contains numerical noise. The first objective of this chapter has been solved, we know
how to build a better behaved solution manifold.

We present in the next section a reduced scheme with a computational complexity indepen-
dent of the size of the truth problem, based on the calibrated basis that we have just constructed.
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Figure 4.8: 1st, 3th and 5th POD basis in the calibrated case for the left subdomain

4.4 Online phase

For the remaining of this section, we drop out the µ dependency, as we are focused on reducing
one particular simulation. It will reappear in the offline/online decomposition section. Also, we
use the following notation:

• tn is the discrete pseudo time;

• Fn the mapping chosen at time step n. It maps Ω onto Ω̂. The inverse mapping will be
denoted F ≠1

n ;

• {„i} is some reduced basis on the reference mesh, of cardinality Nred. The one constructed
in section 4.3.

We denote by un the solution at pseudo time step tn and ûn it’s counterpart on the reference
mesh. That is, we have

ûn = un ¶ F ≠1
n on Ω̂.

We see three paths, that we present with increasing difficulty:

• The easiest method we can think of is the following:
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– suppose we have some reduced solution at iteration n, ûn, defined on the reference
domain Ω̂, and a "well chosen" mapping Fn;

– map this reduced solution onto the real mesh, using Fn;

– use the CFD code, on Ω, using ûn ¶ Fn as initial condition, to get un+1;

– map un+1 back onto Ω̂. This implies finding a "good" (in some sense) mapping Fn+1,
and the corresponding reduced coordinates.

• The second method is smarter, and more in the spirit of what has been done previously, in
chapter 3

– just as for the first method, suppose we have some reduced solution at iteration n,
ûn, defined on the reference domain Ω̂, and a "well chosen" mapping Fn;

– use a CFD code on Ω̂ using ûn as initial condition. This implies of course the modifi-
cation of flux and boundary conditions to make this "non physical problem" equivalent
to the initial one Denote ũn+1 the output. By construction, we have:

ũn+1 ¥ u(·, tn+1) ¶ F ≠1
n ;

– deduce a new "relative" mapping: Fn+1 ¶ F ≠1
n best suited to represent ũn+1. From

this, compute a better calibrated solution ûn+1 and the corresponding mapping Fn+1

such that
u(·, tn+1) ¥ ûn+1 ¶ Fn+1;

• a third approach is to construct a self sufficient reduced scheme. As mentioned in chapter
1, standard CFD codes often imply numerical stabilization unfit for the reduced setting.
The self sufficient scheme will thus necessarily rely on new ingredients, such as the one
introduced in section 1.6.1.

The first method will not be further discussed here, as the numerous mesh interpolations imply
very high computational costs, as well as numerical errors. The third method is out of the scope
of this chapter. We have chosen to prove the feasibility of the second method. It assumes the
existence of a fully functioning CFD code. In the lines of what has been done [31], the idea is
to keep the stability and accuracy properties of the existing code. The computational savings
would be obtained using EIM/hyper reduction ideas.

The objective is to recast the original problem defined on Ω, onto an equivalent problem
defined on Ω̂. This is a well studied problem in the elliptic and parabolic communities, see for
instance [110, 88]. It relies on the variational form of the PDE at hand. A similar procedure
for our hyperbolic problem could be performed on a non conservative formulation. There are
two issues with this approach in our setting. The first one is that this derivation is not rigorous
as some of the quantities appearing are not properly defined for discontinuous solutions. Also,
this formulation is not suited for our purpose, as the resulting problem is no longer posed as a
conservation law, and thus require some intrusion into the CFD code. The intent here is to find
a mapping procedure fitted for conservation laws. We will see that it involves a modifications of
both flux and boundary conditions.

We start with a step common to Finite Volume schemes and Residual Distribution schemes.
Let {Êi, i œ [1, . . . , N ]} be the set of control volumes in Ω and let u be any state variable. The
integration of the conservation law in space and time, in control volume i gives:

⁄

Êi

u(w, tn+1)dw ≠
⁄

wi

u(w, tn)dw +
⁄

Êi

⁄ tn+1

tn

Ò · f(u)dtdw = 0. (4.14)
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It is known that equation (4.14) is equivalent to:
⁄

Ê̂i

û(ŵ, tn+1)|JF ≠1
n

|dŵ ≠
⁄

Ê̂i

û(ŵ, tn)|JF ≠1
n

|dŵ +
⁄

Ê̂i

⁄ tn+1

tn

Òŵ · (NT
n f(û))dtdŵ = 0 (4.15)

where û := u ¶ Fn, Ê̂i = F ≠1
n Êi and NT

n f is the correct modified flux with

NT
n =

5
(JF ≠1

n
)22 ≠(JF ≠1

n
)12

≠(JF ≠1
n

)21 (JF ≠1
n

)11

6

n

,

where JF denotes the Jacobian of any mapping F . This equality is known as the Piola transform,
which is usually used in a different context. For more details, we refer for instance to [90]. We
will make the assumption that the determinant of the Jacobian is sufficiently smooth and the
mesh is fine enough so that we can consider NT

n constant per element. The error due to this
approximation will not be investigated in this chapter.

Remark 30 Some more rigorous approaches could be developed, but would lead to more intrusion
into the CFD code. In [36] for instance, they choose to work with the average of û|JF ≠1

n
| over

control volumes, instead of û.

We arrive to the following equation in each control volume ŵi.
⁄

Ê̂i

û(ŵ, tn+1)dŵ ≠
⁄

Ê̂i

û(ŵ, tn)dŵ +
1

|JF ≠1
n

|i

⁄

Ê̂i

⁄ tn+1

tn

Òŵ · (NT
n f(û))dtdŵ = 0.

We have all the ingredients to feed the CFD code:

• a mesh: here it is the reference mesh, over Ω̂;

• the average of the solution over control volumes:

ûi =
1

mes(ŵi)

⁄

ŵi

û(ŵ, tn)

• a flux, in a closed form: with the Piola transform, here it just amounts to

NT
n f

where the NT term will depend on the time step and is not constant over Ω̂. We will see in
Section 4.6.3 that using G-H type mapping allows for a proper offline/online decomposition

• boundary conditions: we do not need to worry about the outside boundary conditions, as
they are not be affected by the mapping. The slip boundary conditions for the original
problem are given by

u · n̨ = 0 on the wing.

In our case, these are imposed as follows: treat the boundary nodes as any other node,
and add the correct quantity to impose the slip boundary condition. More precisely, let
n = (n1, n2) be the norm at the boundary . The flux at nodes on the boundary are given
by:

(fx, fy) · n =

Q

c
c
c
c
c
c
a

fl
1

(u, v) · n
2

flu
1

(u, v) · n
2

+ pn1

flv
1

(u, v) · n
2

+ pn2
1

(u, v) · n
2

(E + p)

R

d
d
d
d
d
d
b
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We enforce the slip boundary condition by subtracting the following quantity:

(f̃x, f̃y) · n =

Q

c
c
c
c
c
c
a

fl
1

(u, v) · n
2

flu
1

(u, v) · n
2

flv
1

(u, v) · n
2

1

(u, v) · n
2

(E + p)

R

d
d
d
d
d
d
b

We can use the Piola transform again for these terms. The subtracted quantity formulated
in terms of the reference variables is simply given by

⁄

ˆK̂

(f̃x(û), f̃y(û)) · (NT · n).

The conclusion from this analysis is that under the assumption that the determinant of the
Jacobian is constant per element, changing the normals in the CFD code is enough to compute
the total residual in each triangle. This is the first part of the RD scheme, see section 4.2.3.
What follows is the distribution of the residual among nodes, in each element. As mentioned in
the offline section, the CFD code is of Lax-Friedriechs type. The residual is evenly distributed.
This procedure is independent of the mesh and of the solution. There is no additional work. For
an upwinding scheme, this is a much more difficult problem to tackle, not in the scope of this
chapter.

As mentioned in section 4.2.3, the truth scheme uses SUPG type stabilization. We have
not studied in this chapter how to modify this term in order to have an equivalent stabilization
procedure on û. We will discuss this approximation in the numerical experiment section.

We now assume that we have performed the n+1th iteration with the CFD code. The output
is denoted ũn+1 and by construction, ũn+1 ¶Fn ¥ un+1. As Fn is not, a priori, the right mapping
for un+1, we are looking simultaneously for:

• a better suited mapping Fn+1

• the corresponding ûn+1 expressed in terms of the reduced basis defined on Ω̂.

Following the lines of chapter 3, define the following objective function, for p œ {1, 2}:

Jp :

Y

]

[

F ◊ R
Nred æ R

F, {–k}k ‘æ
.
.
.ũn+1 ¶ Fn ≠ qNred

k=1 –k„k ¶ F
.
.
.

Lp(Ω)
.

(4.16)

4.5 Finding the coordinates, for a fixed mapping

In this section, we are working for fixed ũn+1 and Fn. We first propose an optimization procedure
when the mapping F in (4.16) is assumed to be known. Fix F œ F and define J

p
F as:

J
p
F :

Y

]

[

R
Nred æ R

{–k}k ‘æ
.
.
.ũn+1 ¶ Fn ≠ qNred

k=1 –k„k ¶ F
.
.
.

Lp(Ω)

(4.17)

We are going to discuss 2 particular cases. First the p = 2 case, standard in ROM and then an
extension to p = 1 minimization, which was advised in [2].
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4.5.1 L2 minimization, standard Galerkin projection

The objective functional is thus given by:

J2
F : {–k, k œ [1, . . . , Nred]} æ

.

.

.

.

.

.

ũn+1 ¶ Fn ≠
Nred

ÿ

k=1

–k„k ¶ F

.

.

.

.

.

.
L2(Ω)

First order optimality condition gives us the –s. One needs to take into account the fact that
the basis {„k ¶ F}k will most probably not be an orthogonal basis.

Q

c
c
c
a

–1

–2

...
–Nred

R

d
d
d
b

= A

Q

c
c
c
a

< ũn+1 ¶ Fn, „1 ¶ F >L2(Ω)

< ũn+1 ¶ Fn, „2 ¶ F >L2(Ω)

...
< ũn+1 ¶ Fn, „Nred ¶ F >L2(Ω)

R

d
d
d
b

where Ai,j :=< „i ¶ F, „j ¶ F >X is a symmetric invertible square matrix of size Nred. Define
”F := F ¶ F ≠1

n . We have

’i, < ũn+1 ¶ Fn, „i ¶ F >L2(Ω) =
s

Ω̂
ũn+1„i ¶ ”F |JF ≠1

n
|

’i, j, < „i ¶ F, „j ¶ F >L2(Ω) =
s

Ω̂
„i„j |JF ≠1 |

As in the previous chapter, we have replaced the expensive problem involving the absolute
mapping by a problem where mappings are close to the identity. We will see in section 4.6.3 how
to achieve efficient offline/online decomposition.

4.5.2 L1 minimization

The objective functional is here given by:

’– œ R
Nred

, J1
F (–) =

Nÿ

i=1

⁄

Ê̂i

-
-
-
-
-
-

ũn+1 ¶ Fn ≠
Nred

ÿ

k=1

–k„k ¶ F

-
-
-
-
-
-

.

Once again, a standard change of variable gives:

’– œ R
Nred

, J1
F (–) =

Nÿ

i=1

⁄

Ê̂i

-
-
-
-
-
-

ũn+1 ¶ ”≠1
F ≠

Nred

ÿ

k=1

–k„k

-
-
-
-
-
-

|JF ≠1 | (4.18)

In each control volume i, we choose a set of Nquad
i quadrature points {x̂i,j , j œ [1, . . . , Nquad

i ]}
and the corresponding weights {“i,j , j œ [1, . . . , Nquad

i ]}. We have:

J1
F (–) =

Nÿ

i=1

N
quad

iÿ

j=1

“i,j

-
-
-
-
-
-

ũn+1(”≠1
F (x̂i,j)) ≠

Nred

ÿ

k=1

–k„k(x̂i,j)

-
-
-
-
-
-

|JF ≠1(x̂i,j)| . (4.19)

This is handled as in [2] by recasting it as a linear programming problem. For now, the size of
the problem is of order N , the number of control volumes of the mesh. We will see in section
4.6.3 how to reduce the computational cost.
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4.6 Finding the mapping

One important remark, similar to the one made in chapter 3 is that the shock’s position evolves
smoothly in time. This is rigorously justified by Rankine-Hugoniot conditions. Let Â0 and Â1

be the maximum absolute values for the variation between two successive pseudo time steps of
respectively position and slope of the shock. These are roughly given by:

’i œ {0, 1}, Âi ¥ W 1,Œ (maximum shock speed).

We use these values to define the following neighborhood of the identity in F :

Frel :=
Ó

G-H(â0, â1), |âi| Æ Âi

Ô

,

where the application G-H has been defined in equation (4.13).

4.6.1 Alternative differentiable objective function

Let û œ MF,D. It is clear that for solutions with shocks, the following application is not smooth:

Frel æ X

”F ‘æ û(”F (·)).

More precisely, the derivative in the sense of distributions has a Dirac mass at the shock. We
give here a formal proof, and refer to [13, 6] for a rigorous one. Denote

Σ0 :=
Ó

(x̂, ŷ) œ Ω̂, s.t û is discontinuous
Ô

and v æ [v] the standard jump operator.

By construction, Σ0 is independent of û œ MF,D. Each solution in the calibrated solution
manifold can be decomposed into a smooth component and one discontinuity:

’û œ MF,D, ÷ûsmooth and ûj , s.t û = ûsmooth + [ûj ]|Σ0

û ≠ û ¶ ”F = ûsmooth ≠ ûsmooth ¶ ”F + [ûj ]|Σ0
≠ [ûj ¶ ”F ]|”F ≠1(Σ0)

The derivative in the sense of distributions has thus also two components:

û ≠ û ¶ ”F ¥ ˆûsmooth + ”|Σ0ˆΣ

where ”|Σ0
is the Dirac mass at Σ0.

We propose one option to circumvent this issue, an alternative and differentiable objective
function. For ũn+1 the output of one iteration of the CFD code, denote

Σ(ũn+1) :=
Ó

(x̂, ŷ) œ Ω̂ s.t, ũn+1 is discontinuous
Ô

As already mentioned, because of R-H condition, Σ(ũn+1) will be close to Σ0. We use the p = 1
notation, but the following approach can be directly transposed to the p = 2 case. It is easy to
see why for x̂i,j sufficiently far from the shock so that

’”F œ Frel, ”F (x̂i,j) is on the same side of Σ0 as x̂i,j (4.20)

121



Chapter 4. Calibration for 2d Euler

the following application is differentiable:
;

Frel æ R

”F ‘æ ũn+1(”F (x̂i,j)).

Following this remark, we denote Ω̂d the subdomain of Ω̂ where we have removed some neigh-
borhood of the shock. More precisely, let

Ω̂d :=
€

Ê̂i, for i œ [1, . . . , N ], s.t ’j œ [1, . . . , Nquad
i ], x̂i,j satisfies condition (4.20) .

We denote Ωd it’s counterpart in the physical domain.

Remark 31 For the L1 norm, the overall problem as presented is not differentiable. This can
be solved using Huber type minimization instead of the raw L1 [2].

Following the previous discussion, we define smaller objective functions. For every Ωsub

subdomains of Ω, define the following JΩsub
:

Jp
Ωsub,F : {–k}k æ

.

.

.

.

.

.

ũn+1 ¶ Fn ≠
Nred

ÿ

k=1

–k„k ¶ F

.

.

.

.

.

.
Lp(Ωsub)

.

With this new notation, we replace the original problem Jp
F with the differentiable objective

function Jp
Ωd,F . We can now perform standard optimization algorithm to get the desired mapping

”F , as
[≠Â0, Â0] ◊ [≠Â1, Â1] ◊ R

Nred æ R

â0, â1, {–k} ‘æ JΩd,G-H(â0,â1)(–)
(4.21)

is a smooth application.

4.6.2 One possible algorithm

We now present one way of performing in practice the optimization of the quantity defined in
(4.21).

• discretize the set [≠Â0, Â0] and [≠Â1, Â1]: {âk
0 , k œ [1, . . . , N0]} and {âk

1 , k œ [1, . . . , N1]}

• denote ΨFrel the following sample of Frel:

ΨFrel := {G-H(âk
0 , âp

1), k œ [1, . . . , N0], p œ [1, . . . , N1]}.

• compute the coordinates for all mappings in ΨFrel using section 4.5 and deduce the corre-
sponding value of the objective function:

’”F œ ΨFrel , compute inf
–œRNred

JΩd,”F
(–).

• interpolate the previously computed quantities to get an estimate of

inf
–œRNred

JΩd,”F
(–) over Frel.

Deduce the value of the optimal coefficients âopt
0 and âopt

1 , as in chapter 3
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• deduce the reduced coordinates for the corresponding mapping G-H(âopt
0 , â

opt
1 ) using sec-

tion 4.5

Remark 32 Other ideas to find Fn+1 can be implemented. They are however less natural in our
framework.

• Shock fitting: close to what has been described in the offline section. Find the control
volumes such that ũn+1 has highest gradient and fit a polynomial. This is made computa-
tionally efficient because we do not need to look for highest gradient all over Ω: Σ(ũn+1) is
close to Σ0.

• RH condition: update the shock’s position and slope using the shock’s speed’s explicit
form given by Rankine-Hugoniot.

4.6.3 Online/offline decomposition

We have not yet discussed the computational complexity of our full algorithm. For now, at each
time step, we need to run the full CFD code to get ũn+1 over Ω̂. Until we manage to build a
self sufficient reduced scheme, see the third method described in section 4.4 , this computational
time is not easily reducible. The only ideas available in the literature are hyper reduction [119].

In the previous section, we have restricted the problem from Ω to Ωd because of differentiabil-
ity. Here, we replace Ωd by an even smaller, denoted generically Ωsub because of computational
cost. Of course, we will look for Ωsub subsets of Ωd to keep the differentiability property. The
hyper-reduction method is an empirical procedure that aims at selecting a "good" Ωsub.

We present here a version of the hyper-reduction procedure that uses a different objective
function than J

p
Ωsub,F defined in the previous section. Note that many different variants around

the algorithm we propose here are possible. For û œ MF,D, define

I
p

Ω̂sub

(û) :
)

–k, k œ [1, . . . , Nred]
*

‘æ

.

.

.

.

.

.

û ≠
Nred

ÿ

k=1

–k„k

.

.

.

.

.

.
Lp(Ω̂sub)

.

During the hyper-reduction procedure, we try to find Ω̂sub such that:

’û œ MF,D, arginf
{–k}œRNred

Ip

Ω̂sub

(û)
!)

–k, k œ [1, . . . , Nred]
*"

¥ arginf
{–k}œRNred

Ip

Ω̂d

(û)
!)

–k, k œ [1, . . . , Nred]
*"

.

That is, we want the optimization not to be affected too much by the reduction of the size of
the problem. Of course, we do not know the continuous set MF,D. Let us denote ΞMF,D

a
representative set of the continuous manifold, and let ‘ be some threshold. We perform the
following greedy algorithm.
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Data: ΞMF,D
,{„k, k œ [1, . . . , Nred]}

Result: Ω̂hyper,Nhyper

Initialize Ω̂hyper :=
t

iœIini
Ê̂i ;

repeat
’û œ ΞMF,D

, {—k(û), k œ [1, . . . , Nred]} :=
arginf

{–k, kœ[1,...,Nred]}

Ip

Ω̂hyper

(û)
!)

–k, k œ [1, . . . , Nred]
*"

;

i := argsup
pœN

sup
ûœΞMF,D

Î qNred

k=1 —k(û)„k ≠ ûÎLp(ŵp);

Ω̂hyper := Ω̂hyper

t
Ê̂i

until convergence;
Nhyper := card(Ω̂hyper);

Algorithm 8: One possible algorithm to select Ω̂sub

The idea of hyper reduction is that on the solution manifold there is a one to one correspon-
dence between the restriction of the solution on Ω̂hyper and the full solution. For the problem at
hand, we expect that the solutions in the solution manifold are characterized by their behavior
in the vicinity of the shock. Because of calibration, the knowledge of the solutions in a reduced
number of control volumes around Σ0, independent of µ, should thus be enough to completely
characterize the solution.

4.6.4 Implementation details

For our choice of online implementation, the computation of the NT terms is not a pressing issue,
as these are only required in a moderate number of cells, denoted by Nhyper. We will nevertheless
emphasize that these terms, because of the choice of Gordon-Hall type mapping, would not be
a computational problem even with no hyper reduction. By inspecting the structure of the G-H
mapping, see equation (4.12), we can see that the weights and the projection functions are not
parameter dependent. Also, in our problem, µ æ Âi(·; µ) for i œ {1, 2, 3} are linear function of
µ. Most of the terms appearing in equation (4.12) are thus trivially affinely decomposable. The
fact that the computation of terms involving Â4 also fall into the offline/online decomposition
paradigm requires more work. We do not enter the details, but one could show it by using a
variation of the G-H method, see section 4.7.2, and the fact that away from Γ1, the wing can be
approximated by a polynomial.

4.7 Numerical Experiments

The framework presented in this chapter present many similarities with the method described
in chapter 3. The choice in this chapter has thus been to focus the numerical effort on the real
novelty: the resolution of an equivalent calibrated problem on a reference mesh using the Piola
transform, see section 4.4. Of course, the overall performance of such an approach relies on the
ability to construct a smooth family of mappings F . This has been challenging and is a big part
of the numerical experiments presented below.

4.7.1 Mapping on a flat domain

The first experiment we discuss is a preliminary, alpha test: we try to reproduce one snapshot,
using the Piola transform and a reference mesh. We are running the CFD code for Mach = 0.81
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and AoA = 3.0¶. The truth solution that we are trying to recover is presented in Figure 4.9. We

Figure 4.9: Truth solution for velocity component with Mach=0.81 and AoA=3.0¶

first perform a ’control sample’ test. We run the original CFD code on the reference mesh of
section 4.3. The output solution is presented in Figure 4.10. As expected, it is not comparable
with the truth solution: u(µ). Indeed, the problem solved is not equivalent to the original one.
We need to modify fluxes and boundary conditions, as presented in section 4.4. As the steady

Figure 4.10: The identity mapping velocity component on a flat domain

solution u(·; µ) is known, we can compute its shock position and slope: a0(µ) and a1(µ). We
use the G-H mapping, see equation (4.12) on both Ω̂R and Ω̂L, and run the modified CFD code.
Note that with this preliminary approach, the NT term is not updated at each pseudo time
step. Figure 4.11 shows the resulting solution, that we denote û(µ). One can observe that the
general behavior is correct. The shock is more or less located at the correct position and it
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has been straightened. In other words, quantitatively we have u(µ) ¶ GH (a0(µ), a1(µ)) ¥ û(µ)
on Ω̂. This preliminary result is a first answer to the viability of using the Piola transform
to construct equivalent problems on reference meshes. Nevertheless, we can see that we have
some non physical behavior close to the wing. This could have been anticipated, as the mapping
constructed in Section 4.3 suffers major flaws. The biggest problem seems to be at the wing and
a consequence of the high gradient at the bottom left corner of the domain of Ω̂L. We conclude

Figure 4.11: The mapped solution for velocity component on a flat domain

that we need a smoother mapping, more than continuous on ˆΩ̂L and ˆΩ̂R.

4.7.2 Mapping on a curved domain

The choice of a flat wing of the previous sections was intentional in order to remind that the
reference domain on which we are solving the problem is not the physical one. Nevertheless,
because of the lack of smoothness of the resulting mapping, we have decided to use a more
advanced mapping than the raw Gordon-Hall. Our starting point is the method developed in
[89], applied to the domains depicted in Figures 4.12 and 4.13. As in section 4.3, to enforce
continuity of the global mapping, we require that the four corners of reference and physical
domain match, i.e we require:

(x1, y1) = (x̂1, ŷ1)
(x5, y1) = (x̂5, ŷ1)
(x4, y2) = (x̂4, ŷ2)
(x2, y2) = (x̂2, ŷ2)

4.7.2.1 Original formulation

This extension of the G-H mapping, also called generalized transfinite extension in the literature,
has the same structure as the original G-H. For each boundary on the reference domain, Γ̂i, we
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(x̂1, ŷ1)

(x̂2, ŷ2)

(x̂5, ŷ1)

(x̂4, ŷ2)

(x̂3, ŷ3)

(x̂3, ŷ2)

Figure 4.12: Reference domain Ω̂

(x1, y1)

(x2, y2)

(x5, y1)

(x4, y2)(s(y2; µ), y2)

(s(y3; µ), y3)

Figure 4.13: Physical domain Ω

need one parametrization of the physical counterpart Γi, that is

Âi ¶ fii|Γ̂i
:

I

Γ̂i æ Γi

(x̂, ŷ) ‘æ (x, y)

The mapping is then taken as a weighted combination of these mapped boundaries :

GH(x̂, ŷ) =
4ÿ

i=1

[„i(x̂, ŷ)Âi(fii(x̂, ŷ), µ) ≠ „i(x̂, ŷ)„i+1(x̂, ŷ)Âi(1, µ)]. (4.22)

where „i and fii are respectively the weight and projection functions associated to Γ̂i, see section
4.3.2. The linear weights and projection functions are not an option any more, as the reference
domain Ω̂ is not a rectangle.

We will first present the choice of weights and projections proposed in the original version
[89]. This was done in a very general case, and the focus was put on the smoothness of the overall
mapping. The weights functions are taken as the solutions of the following Laplace problems :

’i œ [1, . . . , 4],

Y

__]

__[

≠∆„i = 0 in Ω̂

„i = 1 on Γ̂i

„i = 0 on Γ̂i+2
ˆ„i

ˆn
= 0 on Γ̂i≠1 fi Γ̂i+1.

(4.23)
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The projection functions are also chosen as solutions to a Laplace problem :

’i œ [1, . . . , 4],

Y

_____]

_____[

≠∆fii = 0 in Ω̂

fii = t on Γ̂i, t monotone and smooth
fii = 1 on Γ̂i+1

fii = 0 on Γ̂i≠1
ˆfii

ˆn
= 0 on Γ̂i+2.

(4.24)

Remark 28 on the bijectivity of the resulting mapping still holds in this extended version of the
Gordon-Hall method.

4.7.2.2 Additional ingredients

We will now deal with the issues mentioned in Section 4.3 one by one. The smoothness of ˆΩ̂

is solved, with the new choice of Ω̂. Also, we had noticed in our flawed flat approximation that
missing to take into account the curvature of the wing represents a too rough approximation. We
thus need to chose fi4 and Â4 accordingly. The proper way of dealing with this curved boundary
is to use the standard arclength definition. For instance, the projection function on the wing fi4

is chosen as :

fi4|Γ4 : (x̂, ŷ) æ
⁄ x̂

0

Û

1 +
3

ˆw

ˆx̂

42

.

The same holds for Â4.
We also need to be closer to the identity mapping on the left boundary. In the original

formulation, homogeneous Neumann boundary conditions are imposed on neighboring edges
when computing the projection function, see (4.24). This choice is not the right one for our
particular problem. We present in Figure 4.14 on the left, the projection function fi3 in the
transfinite version of [89]. Remember, fi3 is the projection onto the edge Γ̂3. It is clear that
this particular choice deforms the coordinate system. This is one of the causes of the lack of
smoothness of the mapping on the left edge Γ̂1. The right picture in Figure 4.14 presents fi3 for
a better suited boundary condition.

Figure 4.14: Left: fi3 in the original formulation, with homogeneous Neumann boundary
condition; Right: fi3 for a more suitable boundary condition

Towards the same objective, we do not want any stretching of the solution around the left
boundary and close to the shock. Indeed, we need smooth transitions to neighboring domains.
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In order to enforce this, one necessary step is to modify Â2 and Â4 from the original version.
Denote with H(x) some smoothed Heaviside step function. We write it for Â2, but note that the
same can be done for Â4. We pick the following :

Ẫ2(x̂, ŷ, µ) = fi2(x̂, ŷ)· x̂3 ≠ x̂2

s(y2; µ) ≠ x2
·(1≠H(fi2(x̂, ŷ)))+

3

1 + (fi2(x̂, ŷ) ≠ 1) · x̂3 ≠ x̂2

s(y2; µ) ≠ x2

4

·H(fi2(x̂, ŷ)).

That is, we want no stretching for fi2(x̂, ŷ) ¥ 0 or 1. A graphical illustration is presented on the
left picture of Figure 4.15 for an hypothetical stretching of 4/3. The dashed red lines correspond
to a non stretched mapping.

Figure 4.15: Modification of weights and projection functions to get smoother transitions on Γ̂1

and Γ̂3

We will modify one more ingredient. We take steeper weight functions for boundaries 1 and
3. For instance, we can pick:

„̃1(x̂, ŷ) = H („1(x̂, ŷ)) ,

where the „1 is the solution the the Laplace problem, see (4.23). This is presented on the right
picture of Figure 4.15. What this achieves is that close to left boundary, the exact shape of the
right physical boundary has no influence, and the converse.

Finally, we choose the following set of {Âi, i œ [1, . . . , 4]}:

Â1(fi1(x̂, ŷ), µ) :=
1

x1 + fi1(x̂, ŷ) · (x2 ≠ x1), y1 + fi1(x̂, ŷ) · (y2 ≠ y1)
2

Â2(fi2(x̂, ŷ), µ) :=
1

x2 + fi2(x̂, ŷ) · (s(y2; µ) ≠ x2), y2

2

Â3(fi3(x̂, ŷ), µ) :=
1

s(y2 + fi3(x̂, ŷ) · (y3 ≠ y2); µ), y2 + fi3(x̂, ŷ) · (y3 ≠ y2)
2

Â4(fi4(x̂, ŷ), µ) :=
1

arclen≠1(fi4(x̂, ŷ)), y3

2

Remark 33 The offline/online decomposition of the global method will strongly depend on the
way we pick the set of „i’s, fii’s and Âi’s.
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Remark 34 This smarter choice of functions not only makes the G-H mapping smoother but it
also makes

D æ F
µ ‘æ Fµ

smoother. This can be an interesting property in a optimal control context (see chapter 5).

To assess the gain of this more advanced mapping, we perform the same test as in subsection
4.7.1, this time with the new and improved G-H mapping, given by equation (4.22). The output
solution û(µ) is presented in Figure 4.16. As for the results obtained with the original G-H, the
overall behaviour is correct as û(µ) has a similar shape as u(µ) ¶ GH(a0(µ), a1(µ)). The novelty
is that we have managed to remove the non physical behavior at the boundary that we had in
the raw G-H scenario, Figure 4.11.

Figure 4.16: The mapped solution for velocity component on a curved domain

Remark 35 One must not forget that this case is no different from the flat boundary scenario
of subsection 4.7.1. The fact that the reference domain has the same body as the physical domain
is required for smoothness purposes only.

Before a more involved test run, we present yet another improvement. This goes one step
further in building a smooth mapping at the boundaries. One recent development on transfinite
maps is defined in [75] and is called boundary displacement dependent transfinite map (BDD
TM). The idea is not to construct the whole mapping, but to construct a relative displacement
with respect to the identity. Most of the method is the same, the only difference is that instead of
Âi function, which represent the position on the physical domain, a new function di : [0, 1]◊D æ
R is introduced and it will represent the displacement:

di(t, µ) = Âi(t, µ) ≠ Â̂i(t).

Each of the boundaries in the reference domain is parametrized by Â̂i : [0, 1] æ R. Like this,
the mapping will take into account the original positions of the points in the reference domain
Ω̂ and will move them by weighting only the difference between the original boundaries and
the deformed ones. Let (x̂, ŷ) be a point in the reference domain Ω̂, the idea of BDD TM is
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to displace it through the quantity (x̂, ŷ) +
qn

i=1 „i(x̂, ŷ)di(fii(x̂, ŷ), µ). In the end, the BDD
transfinite mapping is defined as:

GHBDDT M (x̂, ŷ) = (x̂, ŷ) +
nÿ

i=1

1

„i(x̂, ŷ)di(fii(x̂, ŷ), µ) ≠ „i(x̂, ŷ)„i+1(x̂, ŷ)di(1, µ)
2

(4.25)

This has one major effect, on the left boundary for instance, where we want zero displacement.
The resulting mapping restricted to a neighborhood of this boundary will be the identity, which
guarantees overall smoothness.

Remark 36 The improvements on „’s and Â’s presented for the TM method still apply to the
BDD TM.

After this long preamble, we are ready to illustrate numerically the gain obtained from the
methods just described. We present in Figure 4.17 the comparaison between the original method,
section 4.7.2.1 and the pimped one, taylored for our specific application. We show one of the
entries of NT . We have picked the one varying the most i.e ˆx

ˆx̂
. It is obvious that the preivous

improvements to G-H have helped for the smoothness between neighboring domains.

Figure 4.17: One of the entries of the Jacobian matrix, namely (JF ≠1
n

)11. Left: with no
additional smoothing ingredients; Right: with some smoothing ingredients

4.7.3 Final experiment

What is presented in this section does not correspond to any actual step of the online section.
The purpose is to provide a more quantitative result on the utilization of the Piola transform for
resolution of a problem on a reference mesh. For this, we have chosen to perform the following
test:

• pick a small number of pairs {(a0, a1)} and construct the corresponding G-H mappings:
{G-H(a0, a1)}

• as in the previous subsection, launch the CFD code, using the modified flux and boundary
conditions. Denote the output û(a0, a1) for each mapping G-H(a0, a1). Once again, the
mapping is not updated at each pseudo time step
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• compare the output with the mapped ’truth’ solution, i.e compare

u ¶ (G-H(a0, a1)) with û(a0, a1)

We have chosen a simple comparison criteria: the position and slope of the shock. We present
the results for two pairs (a0, a1) in Figure 4.18. Blue represents the shock of the truth solution
mapped onto the reference domain, u ¶ GH(a0, a1). Red is the shock of û(a0, a1). Green is the
position of the shock of u, and has been plotted for control purposes. We have fitted one degree
polynomials through each shock. The discrepancy on the left picture, between the output of the

Figure 4.18: Comparison of the outputs

modified CFD code and the mapped truth scheme can be due to many factors:

• numerical errors on the computation of the NT terms;

• the SUPG stabilization has not been touched, to avoid too much intrusion in the code.
This means that we are not using the same stabilization procedure as the truth scheme.
We refer to [92] for a study of this situation. They advise using an a posteriori procedure,
called rectification;

• our method to locate the shock is basic. We would need something more involved to
quantify the error

4.8 Conclusion

The purpose of this chapter was to propose a complete calibration procedure to make standard
ROM methods fitted for solving the two dimensional Euler equation around an airfoil. We
have proposed an offline calibration procedure, have shown that it leads to better behaved, non
oscillatory basis. We have then proposed a fully functioning reduced scheme. The computational
complexity and the optimization procedures have been theoretically studied. We have finally
developed numerical experiments that serve as a proof of concept for the global method.

Most of the stages in this chapter can be further investigated. Future work could involve :

• a deeper study of the offline calibration and its effect on the Kolmogorov n-width. We have
proposed online some advanced mappings, where we impose no stretching in the vicinity
of the shock. A numerical investigation has to be conducted
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• the construction of fully reduced scheme, with the procedure advised in Section 4.4. This
could lead to an interesting comparison between L1 and L2 minimization. Also, the opti-
mization procedure can be studied. The differentiability issues can be also tested.

• the hyper reduction procedure can be numerically investigated. The conjectures made on
the resulting Ω̂hyper, namely that the interesting control volumes are close to the shock,
which is fixed in Ω̂ can be tested

• the smoothness of the entries of the NT matrix has to be studied. All the smoothing
ingredients proposed in section 4.7 could be further investigated.

• a more long term objective could be to use this method to try new airfoils shapes. As
mentioned, the G-H is a very flexible algorithm. We could use the NACA 00012 as reference
domain, but use fantasist choices for physical domains. This is a well suited framework for
optimal control (for more details, see chapter 5)
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Chapter 5

Calibration for optimal control prob-
lems: illustration on solutions to
hyperbolic problems with shocks

In this chapter, we have chosen to use the calibration ideas introduced in chapter 3 to

help solving optimal control problems. The starting point was to notice that calibration

was increasing in some sense the regularity of the solution’s dependency to the parameter at

hand. We have chosen to illustrate this idea by studying the optimal control of an hyperbolic

equation, for solutions with shocks. We start this chapter by showing how optimal control

is usually performed. Of course, this procedure depends on the regularity of the solution

with respect to the parameter, and is dubious for solutions with shocks. We thus propose

an optimal control method that uses calibration, and illustrate it on the one dimensional

inviscid Burgers equation. We conclude by sketching a procedure to solve the optimal design

of a NACA airfoil.

.

The title of this chapter should not mislead the reader. The ambition of this chapter on the
optimal control side is modest. The point of view adopted here is rather to try and use the
calibration ideas developed in the previous chapters, as well as reduced order modeling, in an
optimal control context. As already mentioned several times in this manuscript, optimal control
is a natural application of ROM and there is an extensive literature on the subject, see for
instance [80, 108]. In this chapter, we add a calibration process to the resolution of an optimal
control problem, for an hyperbolic equation with solutions with shocks. In that setting, it serves
two purposes. The first one has has already been discussed in the introductive chapter 1. The
calibration helps enforce regularity to both the solution and some numerical schemes with respect
to the parameter, see section 1.5.2. The second one is that the domains where the calibrated
solution remains smooth are constant in time and constant parameter wise. We can thus build
reduced basis on each domain and perform the classical model order reduction.

We start by introducing optimal control on a simple elliptic example. We insist on all the
properties required to get to a well posed problem. We then follow these steps for an hyperbolic
problem. We show the major differences caused by the existence of discontinuities whose position
is function of the parameter. We finally use calibration and show that it is an adapted framework
as it enforces smoothness with respect to the parameter in a way that can be handled by ROM.
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Chapter 5. Optimal control

Most of the ideas are illustrated using the inviscid one dimensional Burgers equation with periodic
boundary conditions. We end this section by roughly stating a way of using this idea to perform
optimal design of an airfoil.

5.1 What is optimal control

Let Uad be some admissible parameter set. We consider the following time dependent parametrized
PDE

ˆu(·, t; µ)
ˆt

+ L(u(·, t; µ)) = f(µ), (5.1)

supplemented with proper boundary and initial condition. Suppose also that we are given some
objective functional

;
X ◊ Uad æ R

(u, µ) ‘æ J(u, µ).

We are interested in the solution of an optimization problem of the form:

inf
µœUad

J(u(µ), µ)

where u(µ) is the solution to equation (5.1).
What are the formal steps ?

• make sure that equation (5.1) has good properties. The problem has to be well posed and
there needs to be some form of regularity on µ æ u(µ)

• pick some minimizing sequence µn. Use hypothesis on Uad to show that µn converges, in
some sense, towards a limit µú œ Uad

• use the regularity µ æ u(µ) to prove that u(µn) converges to u(µú) in some sense

• use hypothesis on J to conclude on the existence of minimizers:

J(u(µú), µú) = inf
µœUad

J(u(µ), µ).

A bonus property is the uniqueness of the minimizer

• look for (one of) the minimizers. This often is done using some gradient descent algorithm,
and involves differentiating µ æ J(u(µ), µ)

In this chapter, we focus solely on the last step.

5.1.1 Introductive elliptic case

To give a better understanding of these formal steps, we apply them to a simple example. Let
Ω be some domain and Γ := ˆΩ. We are interested by the solutions of the following elliptic
problem:

I
≠∆u + u = f(µ) in Ω

ˆu
ˆn

= g(µ) on Γ.

The objective functional is chosen as

J(u, µ) =
1
2

⁄

Ω

(u ≠ ud)2 +
Ÿ

2

⁄

Γ

g(µ)2.
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Suppose that Uad is embedded in some normed linear space, that

’µ œ Uad, f(µ) œ L2(Ω)
’µ œ Uad, g(µ) œ L2(Γ)

and that f and g have continuous dependence on µ. From Lax-Milgram, we have:

Uad æ H1(Ω)
µ ‘æ u(µ)

is well defined. The hypothesis on µ æ f(µ) and µ æ g(µ), and the linearity are sufficient to
show the continuity of this application.

Let {µn} be a minimizing sequence in Uad. We suppose that Uad is chosen such that there is
a subsequence converging to µú. From the continuity, we know that u(µn) æ u(µú) in H1(Ω).
To conclude that µú is a minimizer of J , we need: J(u(µn), µn) æ J(u(µú), µú). We develop:

’n, J(u(µn), µn) ≠ J(u(µú), µú) =
1
2

s

Ω
(u(µn) ≠ u(µú))(u(µn) + u(µú) ≠ 2ud)

+ Ÿ
2

s

Γ
(g(µn) ≠ g(µú))(g(µn) + g(µú))

This concludes the existence of a minimizer µú of J . The strict convexity of u æ J(u) guarantees
the uniqueness.

The next topic on the line is the computation of ˆJ
ˆµ

. Formally,

ˆJ

ˆµ
=

⁄

Ω

(u ≠ ud)
ˆu

ˆµ
+ Ÿ

⁄

Γ

ˆg

ˆµ
g.

Can we give a meaning to ˆu
ˆµ

? This requires new assumptions on the regularity of µ æ f(µ)
and µ æ g(µ). Namely, we assume that f and g are Frechet differentiable and denote Aµ and
Bµ their derivative. Denote ˆµu the application from Uad æ H1(Ω) given by:

ˆµu : ”µ æ the solution to
;

≠∆w + w = Aµ”µ
ˆw
ˆn

= Bµ”µ

We can easily show that ˆµu is the Frechet derivative of u. We have now a rigorous definition of
the Frechet derivative ˆµJ :

ˆµJ :
;

Uad æ R

”µ ‘æ
s

Ω
(u ≠ ud)ˆµu”µ + Ÿ

s

Γ
gBµ”µ

The standard way of looking for the minimizer, is to express ˆµJ as a function of the solution,
denoted p, to the dual equation. This avoids having to solve for ˆµu directly. The dual equation
is here given by:

; ≠∆p + p = u ≠ ud in Ω
ˆp
ˆn

= 0 on ˆΩ.

We start with the first term of ˆµJ :

s

Ω
(u ≠ ud)ˆµu”µ =

s

Ω
(≠∆p + p)ˆµu”µ

=
s

Ω
p(≠∆ˆµu”µ + ˆµu”µ) +

s

Γ
pBµ”µ

=
s

Ω
pAµ”µ +

s

Γ
pBµ”µ.
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Wrapping everything up, we get the following expression for ˆµJ :

ˆµJ(”µ) =
⁄

Ω

pAµ”µ +
⁄

Γ

(p + Ÿg)Bµ”µ

This gives a direction for a standard gradient descent algorithm. For instance, taking Aµ”µ to
be ’close’ to p over Ω is a natural strategy.

As we will see in the next sections, some of the steps above are not as easy for more challenging
problems, and different parameter dependencies. Next section is devoted to the study of some
hyperbolic equations in the presence of shocks. In that case, the derivative of µ æ u(µ) in the
sense of distributions has a dirac mass. Of course, this has consequence on the smoothness of
µ æ J(µ). Lastly, we have to be more careful with the dual equation.

5.2 Burgers equation

We first focus on one favorable case: Burgers equation with periodic boundary conditions. We
have chosen to restrict the study to a parameter dependency on the initial condition. That is,
we are solving

Y

]

[

ˆtu + ˆx( u2

2 ) = 0 on Ω ◊ [0, T ]
u(t = 0, ·) = u0(µ) on Ω

u periodic
(5.2)

for µ varying in some parameter space once again denoted Uad.
At the core of both optimal control and ROM, there is some form of regularity on µ æ

u(·, ·; µ). It will not be as obvious as in the elliptic case. We assume that:

• Uad and µ æ u0(µ) are chosen so that the solutions are L2(Ω)

• µ æ u0(µ) is smooth

• for all µ and all times, the solutions considered have at most one discontinuity. Its position
for time t and parameter µ will be denoted „(t; µ)

• (µ, t) æ „(t; µ) is smooth. We will see in a later section that this property is guaranteed
by the Rankine Hugoniot condition and by the smoothness of the solution away from the
shock.

5.2.1 Objective function

We work with the following objective functional:

J :
; Uad æ R

µ ‘æ 1
2

s

Ω

-
-u(x, T ; µ) ≠ ud(x)

-
-
2

dx
(5.3)

where u(·, ·; µ) is the entropic solution of (5.2) with initial condition u0(µ).

Remark 37 The precise form of the objective function will have a big importance in the following
section. The new ingredient that will be introduced in section 5.3 will allow us to consider a wider
range of J .
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t = 0

t = T

x

t
„(t; µ)

„(0; µ)

Figure 5.1: We restrict ourselves to solutions with at most one shock

We give the steps of the proof of the existence of a minimizer in that setting, and refer to
[32] for a complete description. The ingredients are quite different from the elliptic case, as
the solutions are not in the same functional spaces. Let {µn} be a minimizing sequence, and
{u(·, ·; µn)} the corresponding entropic solutions,

• suppose Uad is chosen such that we can extract a subsequence that converges towards a µú,
in some sense.

• we use Oleinik one sided Lipschitz condition:

’µ, ’t,
u(x, t; µ) ≠ u(y, t; µ)

x ≠ y
Æ 1

t

to extract from {u(x, t; µn)}n a subsequence that converges in L2(Ω)

• proving that the limit is u(·, ·; µú) concludes the proof.

The focus of this chapter is put on studying the differentiability of J . For simplicity, we
restrict ourselves to the case where Uad is a compact subset of R

M for some M . That is, we
suppose that the variations on u0 can be described by a moderate number of parameters. More
general parameter dependence would not impact the method proposed here, but would just
complicate the notation. The generic ˆµJ that will be used in the rest of the chapter has to be
understood as the derivative with respect to one of the M parameters.

Formally differentiating the objective function, see equation (5.3), gives:

ˆµJ =
⁄

Ω

ˆµu(x, T ; µ)
!
u(x, T ; µ) ≠ ud(x)

"
dx.

Questions arise:

• can we give a meaning to ˆµu away from the shock ?

• as u(·, T ; µ) is discontinuous, we can anticipate that the derivative of u in the sense of
distributions will involve a dirac mass. How does this influence ˆµJ ?

• how do we compute ˆµJ efficiently ? is the dual method described in the simple elliptic
equation still relevant ?
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Chapter 5. Optimal control

5.2.2 Smoothness away from the shock

We show in this section that the derivative of the solution with respect to the parameter is
smooth, away from the shock. This is an important property and will be used constantly in this
chapter. We use the following notation:

’s, t, ’x, Z
µ
s,t(x) is the position at time t of the characteristics that passes through (x, s).

For instance, for fixed x œ Ω, Z
µ
0,t(x) is the position at time t of the characteristics that started

at time 0 at x. For classical solutions to Burgers equation, i.e for solutions with no shocks, it is
well known that the characteristics are straight lines:

’µ œ Uad, ’t œ [0, T ], Z
µ
0,t :

;
Ω æ Ω

x ‘æ x + tu0(µ)(x).

For simplicity, we start by restricting the analysis to the set of classic solutions. Fix some
(x, t) œ Ω ◊ [0, T ]. The first step is to prove that µ æ Z

µ
t,0(x) is smooth. This function returns

the position of the foot of the characteristics that gets to (x, t) when the parameter µ varies.
The situation is illustrated in Figure 5.2.

t = 0 x

t

(x, t)

Z
µ
t,0

(x)Z
µ+”µ
t,0

(x)

Figure 5.2: Away from the shock, the foot of the characteristics are close

Let ”µ œ R. As we are only considering classical solutions, we know:
;

x = Z
µ
t,0(x) + t u0,µ(Zµ

t,0(x))
x = Z

µ+”µ
t,0 (x) + t u0,µ+”µ(Zµ+”µ

t,0 (x)).

So we have
Z

µ+”µ
t,0 ≠ Z

µ
t,0 = tu0,µ(Zµ

t,0) ≠ tu0,µ+”µ(Zµ+”µ
t,0 ). (5.4)

Decompose the right hand side of (5.4) into two quantities:

• the foot of the characteristics are not the same:

tu0,µ+”µ(Zµ
t,0) ≠ tu0,µ+”µ(Zµ+”µ

t,0 )

• the velocities of the characteristics are not the same:

u0,µ(Zµ
t,0) ≠ u0,µ+”µ(Zµ

t,0) = ”µˆµu
µ
0 (Zµ

t,0) + O(”µ)2
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5.2. Burgers equation

Equation (5.4) becomes

Z
µ+”µ
t,0 ≠ Z

µ
t,0 = tu0,µ+”µ(Zµ

t,0) ≠ tu0,µ+”µ(Zµ+”µ
t,0 ) + t”µˆµu0,µ(Zµ

t,0) + O(”µ)2.

This gives:

Z
µ+”µ
t,0 ≠Z

µ
t,0 = ≠t(Zµ+”µ

t,0 ≠Z
µ
t,0)ˆxu0,µ(Zµ

t,0)+O(Zµ+”µ
t,0 ≠Z

µ
t,0)2+t”µˆµu0,µ(Zµ

t,0)+O(”µ)2. (5.5)

We need one more argument before we can conclude on the differentiability of µ æ Z
µ
t,0(x),

and it will be given by the fact that no shock is created in the vicinity of the characteristics
considered. This is illustrated in Figure 5.3. The thick line is the characteristic for u(·, ·; µ)
that passes through (x, t). The foot of the characteristic is thus Z

µ
t,0(x). The dashed line is

the characteristic of u(·, ·; µ + ”µ), emitted from Z
µ
t,0(x). The dotted line is the parallel of this

characteristic that passes through (x, t). What can we say about Z
µ+”µ
t,0 (x) ? It cannot be one

the left of the dashed line. Otherwise, two characteristics of u(·, ·; µ + ”µ) would intersect, thus
leading to the formation of a shock. A similar arugment prevents it from beeing on the right of
the dotted line. The foot of the dotted line Zdotted is given by:

x = Zdotted + tu0;µ+”µ(Zµ
t,0(x)).

With this, we can bound Z
µ+”µ
t,0 ≠ Z

µ
t,0:

|Zµ+”µ
t,0 (x) ≠ Z

µ
t,0(x)| Æ |Zµ

t,0(x) ≠ Zdotted|
Æ

-
-tu0;µ(Zµ

t,0(x)) ≠ tu0;µ+”µ(Zµ
t,0(x))

-
-

Æ T |”µ ˆµu0;µ| + O(”µ)2.

This hypothesis that no shock is created is necessary in order to prove the differentiability of
µ ‘æ Z

µ
t,0(x).

t = 0 x

t

(x, t)

ZdottedZ
µ
t,0

(x)

Figure 5.3: Size of
-
-
-Z

µ+”µ
t,0 ≠ Z

µ
t,0

-
-
-

We can now go back to equation (5.5). For fixed x œ Ω and t œ [0, T ], we have: µ æ Z
µ
t,0(x) œ

C1(Uad) and its derivative is given by:

ˆµZ
µ
t,0(x) =

tˆµu0,µ(Zµ
t,0(x))

1 + tˆxu0,µ(Zµ
t,0(x))

. (5.6)
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Remark 38 The upper bound on t suggested by the equation (5.6) is the same as the one ap-
pearing when discussing the breakdown of classical solutions.

We go back to the initial objective: the smoothness of

Uad æ L2(Ω ◊ [0, T ])
µ ‘æ u(·, ·; µ)

for classical solutions. We use the fact that the solutions considered are constant on the charac-
teristics:

u(x, t; µ + ”µ) ≠ u(x, t; µ) = u0,µ+”µ(Zµ+”µ
t,0 ) ≠ u0,µ(Zµ

t,0, 0)

Once again, we decompose the right hand side into two quantities:
I

u0,µ+”µ(Zµ+”µ
t,0 ) ≠ u0,µ+”µ(Zµ

t,0) the foot of the two characteristics are close

u0,µ+”µ(Zµ
t,0) ≠ u0,µ(Zµ

t,0) the transported informations are close

We use the previous result on the smoothness of µ æ Z
µ
t,0:

u(x, t; µ + ”µ) ≠ u(x, t; µ)
”µ

= ˆµZ
µ
t,0 ˆxu0,µ(Zµ

t,0) + ˆµu0,µ(Zµ
t,0) + O(”µ)

We conclude that for fixed (x, t), µ æ u(x, t; µ) is smooth. By inspecting the actual form of the
derivative, we conclude that µ ‘æ u(·, ·; µ) is a smooth function Uad æ L2(Ω ◊ [0, T ]).

The previous analysis has been done for classical solutions. We provide formal arugments
to show that this result extends to solutions with shock, but away from the shock. Let (x, t) œ
Ω ◊ [0, T ] away from the shock for parameter µ, i.e such that x ”= „(t; µ). As (t, µ) ‘æ „(t; µ) is
a smooth function, we know that there is a neighborhood of µ, say V(µ), such that:

’µÕ œ V(µ), u(·, ·; µÕ)’s shock is away from (x, t).

The argument illustrated in Figure 5.3 then applies just as for classical solutions. We conclude
that:

Uad æ L2 ((Ω \ neighborhood of the shock ) ◊ [0, T ])
µ ‘æ u(·, ·; µ)

is smooth, for solutions satisfying the hypothesis described in the begining of section 5.2.

5.2.3 Control with no calibration

We need to introduce new notations before going further in the analysis. For all µ, denote ‡(µ) the
locus of the {(„(t; µ), t œ [0, T ]}. It is a smooth curve. Let Ω≠(µ) and Ω+(µ) be a non overlapping
cover of Ω such that ‡(µ) is one of their common boundaries. For instance, for Ω = (0, 1), one can
take Ω≠(µ) :=

!
(„(t; µ) ≠ 1

2 )%1, „(t; µ)
"

◊ [0, T ], and Ω+(µ) :=
!
„(t; µ), („(t; µ) + 1

2 )%1
"

◊ [0, T ].
We also need the following notations:

• Q≠ =
t

µ Ω≠(µ)

• Q+ =
t

µ Ω+(µ)

• Σ =
t

µ ‡(µ). By hypothesis, it is a smooth surface in R
3.
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5.2. Burgers equation

µ

x

t

Figure 5.4: Ω ◊ [0, T ] ◊ Uad in the non calibrated case

One graphical illustration is presented in Figure 5.4. As we are dealing with discontinuous
solutions, we will use:

• [u]σ = u+|σ ≠ u≠|σ the standard jump operator

• ūσ = 1
2 (u+|σ + u≠|σ) the average operator

For fixed µ, the normals to the smooth curve ‡(µ) in Ω ◊ [0, T ] will be denoted:

‹ := (‹x, ‹t) =
1



1 + (ˆt„)2
(1, ≠ˆt„).

We want to find the derivative in the sense of distributions of ˆµu(x, t; µ). Let Q = Ω◊[0, T ]◊Uad

and w œ D(Q):
⁄

Q

u(x, t; µ)ˆµw = ≠
⁄

Q+

ˆµu(x, t; µ)w ≠
⁄

Q≠

ˆµu(x, t; µ)w +
⁄

Σ

[u]φ(t;µ)ˆµ„(t; µ)w.

The derivative of u with respect to µ can thus be decomposed into one function, smooth by
parts, denoted ˆµup, and a measure concentrated on the surface Σ. More precisely, it is given
by:

ˆµu(x, t; µ) = ˆµup(x, t; µ) ≠ ˆµ„(t; µ)[u]φ(t;µ)”Σ (5.7)

in the sense of distributions. Can we find an equation satisfied by ˆµu(x, t; µ) ? It is a weak
solution if and only if, for all test function w œ D(Q):

I =
⁄

Q

uˆµˆtw +
⁄

Q

u2

2
ˆµˆxw +

⁄

Ω◊Uad

u0(µ)ˆµw(x, 0, µ).

When integrating by parts, one must take into account the fact that all these quantities are
discontinuous on Σ. We just cite the result here, and refer to [13] for the full derivation. ˆµu is
the solution of:

Y

]

[

ˆtˆµup + ˆx(uˆµup) = 0 on Q≠
t

Q+

ˆµu(x, 0) = ˆµu0(x)
(ˆt + ūˆx)(ˆµ„(t; µ)[u]φ(t;µ)) = ‹x[uˆµup]φ(t;µ) + ‹t[ˆµup]φ(t;µ) on ‡(µ)

(5.8)
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Chapter 5. Optimal control

Remark 39 The proof is given in the calibrated case in the appendix.

First equation of (5.8) is a linear equation on ˆµup. It needs to be solved pointwise away from
the shock. Unlike for Burgers equation, we have no physical Rankine Hugoniot condition at the
shock. The third equation of (5.8) is the equation solved by ˆµˆt„. It determines the measure
component in ˆµu. We can see another interesting feature. The characteristics for ˆµu are the
same as the characteristics for u. We will see how to take advantage of that numerically in a
ROM context.

5.2.3.1 Computation of ˆµJ

Using the same kind of calculations as in the previous subsection, and assuming for now that ud

is smooth at „(T ; µ), we get:

ˆµJ =
⁄

Ω

ˆµup(x, T ; µ)
!
u(x, T ; µ) ≠ ud(x)

"
dx ≠ ˆµ„(T ; µ)[u]„(T ;µ)(ū„(T ;µ) ≠ ud).

Remark 40 The case where the shocks of ud and u(·, T ; µ) are aligned needs a different treat-
ment, as it involves the product of a dirac mass and a discontinuous function.

Fix µ œ Uad. In [13], they propose one possible approach to compute ˆµJ , inspired by the
elliptic case. Let p the solution of the dual equation:

I
ˆp
ˆt

+ u(·, ·; µ) ˆp
ˆx

= 0

p(·, T ) = pT (·).
(5.9)

The idea is to re write the objective function’s derivative in terms of the solution to the dual
equation, just as in the introductive elliptic case in section 5.1.1. This implies finding a set of
boundary and initial conditions for the dual equation such that ˆµJ can be easily expressed in
terms of p. Inspecting the form of (5.9), it appears that the characteristics are the same as for u.
Thus, solving this backward equation will involve going back up the characteristics. For solutions
with shocks, some characteristics enter the shock before t = T . We thus expect to have to define
a boundary condition for p on ‡(µ). Figure 5.5 illustrates this process. The dotted lines are the
characteristics from Ω≠ and Ω+ subdomains entering the shock at t = T . The value of p inside
the dotted lines depends on the boundary condition on ‡(µ).

Keeping in mind these preliminary remarks, we follow the steps of the elliptic case. We start
with the equation satisfied by p, see (5.9). Multiply by ˆµup and integrate over Ω and [0, T ]:

⁄

Ω◊[0,T ]

ˆµup(x, t; µ)
3

ˆp

ˆt
+ u

ˆp

ˆx

4

= 0.

We integrate by parts and get:
s

Ω◊[0,T ]
ˆµup(x, t; µ) ˆp

ˆt
= ≠

s

Ω◊[0,T ]
ˆt (ˆµup(x, t; µ)) p

+
s

σ(µ)
‹t [ˆµup(x, t; µ)p(x, t)]

φ(t;µ)

+
s

Ω
ˆµup(x, T ; µ)p(x, T )

≠
s

Ω
ˆµup(x, 0; µ)p(x, 0)

s

Ω◊[0,T ]
ˆµup(x, t; µ)u ∂p

∂x
= ≠

s

Ω◊[0,T ]
ˆx (uˆµup(x, t; µ)) p

+
s

σ(µ)
‹x [uˆµup(x, t; µ)p(x, t)]

φ(t;µ) .
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5.2. Burgers equation

t = 0

t = T

x

t

| |
Ωs

Figure 5.5: Solving for p(x, 0)

We choose to impose the same boundary condition on p on both sides of ‡(µ): [p]|σ(µ) = 0. This
and the first equation of (5.8) give:

0 =
s

σ(µ)
‹x [uˆµup(x, t; µ)]

φ(t;µ) p(x, t) +
s

σ(µ)
‹t [ˆµup(x, t; µ)]

φ(t;µ) p(x, t)

+
s

Ω
ˆµup(x, T ; µ)p(x, T ) ≠

s

Ω
ˆµup(x, 0; µ)p(x, 0)

We choose p constant over ‡(µ) and use the third equation in (5.8):
⁄

σ(µ)

(ˆt+ūˆx)(ˆµ„(t; µ)[u]φ(t;µ))p = ˆµ„(T ; µ)[u]φ(T ;µ) p(„(T ; µ), T )≠ˆµ„(0; µ)[u]φ(0;µ) p(„(0; µ), 0).

Finally:
0 =

s

Ω
p(x, T )ˆµup(x, T ; µ) ≠

s

Ω
p(x, 0)ˆµu0

+ˆµ„(T ; µ)[u]φ(T ;µ) p(„(T ; µ), T ) ≠ ˆµ„(0; µ)[u]φ(0;µ) p(„(0; µ), 0)

The inspection of ˆµJ suggests choosing p(x, T ) := u(x, T ; µ) ≠ ud(x), and p|σ(µ) = ūφ(T ;µ) ≠ ud.
This choice fits the objective, as the derivative of the objective functional can now be computed
using the solution of the dual equation:

ˆµJ =
⁄

Ω

p(x, 0)ˆµu
p
0 + ˆµ„(0; µ)[u]φ(0;µ)

!
ūφ(T ;µ) ≠ ud

"
. (5.10)

This requires the value of p on the t = 0 line. Let Ωs as depicted in Figure 5.5:

Ωs :=
)

x œ Ω, s.t t æ Z
µ
0,t(x) enters the shock before T

*
.

Following the discussion on the characteristics, we know that the value of p(x, 0) outside Ωs will
depend on p(·, T ), and that the value of p(x, 0) for x œ Ωs will depend on the boundary condition
p on ‡(µ).

Remark 41 By construction, p(·, 0) will be discontinuous at ˆΩs.

We sum up the conditions on p:

• p constant over ‡(µ)
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• ’t, p(„(t; µ), t) = ū„(T ;µ) ≠ ud

• p(·, T ) = u(x, T ; µ) ≠ ud(x) away from „(T ; µ)

At that point, a few questions remain unanswered:

• if ud and u(·, T ; µ) have aligned shocks, then ˆµJ is not properly defined.

• equation (5.10) suggests taking ˆµu
p
0 = p(x, 0) which is discontinuous. This is very likely

to create solutions with more than one shock

These issues are partially solved in [32]. By inspecting the resulting form of the derivative of
J , equation (5.10), they choose to decompose the variation of the initial condition into two
independent infinitesimal variations:

• the variation of the smooth part of the initial condition; this corresponds to the first term
in (5.10)

• the variation of the position and intensity of the shock at t = 0; this corresponds to the
second term in (5.10)

They alternate between these two optimizations and manage to mitigate the previous issues.
Nevertheless, the method they propose relies on the exact form of the objective function beeing
used. Also, their method does not fulfill one of our objectives here: fit this control problem in
the presence of shock into a ROM framework. This is the topic of the rest of this chapter. We
will use the calibration ideas developped in chapters 3 and 4

5.3 Calibration

The work done until now has highlighted the difficulties due to the non smoothness of µ æ
u(x, t; µ). This makes both the development of standard optimal control strategy, and of standard
ROM methods tedious. The central aspect of the method proposed in this chapter is calibration.
As in chapter 3, denote v the calibrated solution:

v :=
;

Ω ◊ [0, T ] ◊ Uad æ R

x, t; µ ‘æ u(x ≠ „(t; µ), t; µ).

The point of view adopted until the end of this chapter is to consider that u and „ are known.
One can for instance think that we have solved for u using the method of chapter 3. v is then
just a translated version of the known u. The focus is now put on computing the derivatives
of v and „ with respect to the parameter. Note that this idea of using calibrated solutions for
conservation laws is not new. For instance, it was used in [61] to study the linearized stability
of solutions. The main difference with what is presented here, is that the authors eventually go
back to the initial equation, as it is its stability that is beeing studied. Calibration was in that
context used a detour to get properties on the solutions to the original problem. In this section,
we use calibration to modify the objective function, and work solely with calibrated solutions.

Remark 42 Recall that the method proposed in chapter 3 does not necessarily capture the exact
position of the shock. Unlike shock fitting methods, calibration allows for a discrepancy between
the calibration parameter and the true shock position. The consequences of this discrepancy are
unclear, and will not be discussed in this chapter. In consequence, we will make the strong
assumption that the calibration method captures the exact position of the shock.

We will re use the notation of section 5.2.3. This time Ω≠,Ω+,Q+ and Q≠ are independent of µ.

146



5.3. Calibration

5.3.1 Smoothness away from the shock

This will be a very short section. We simply want to insist on the fact that the calibration has
not destroyed the smoothness property away from the shock. We can follow the steps of section
5.2.2.

Let (x, t) œ Ω. We need to make sure that v(x, t; µ + ”µ) and v(x, t; µ) are close. Thanks
to calibration, we now know that they both stand on the same side of the shock. Then, the
associated characteristics are emitted from close points on the t = 0 line. We use the smoothness
of v(x, t = 0; µ) as a function of µ to conclude. A more rigorous proof would use the precise form
of the characteristics for v and the smoothness hypothesis on µ æ „(t; µ), see next section.

5.3.2 Smoothness at the shock

The surface in Ω ◊ [0, T ] ◊ Uad where the calibrated solutions v are discontinuous is now a plane:
(„0, t; µ). An illustration is presented in Figure 5.6. For fixed µ, the normals to the calibrated

µ

x

t

Figure 5.6: Ω ◊ [0, T ] ◊ Uad in the calibrated case

‡(µ) are defined as:
‹ := (‹x, ‹t) = (1, 0).

The key property of the calibrated solution is that the measure component in the derivative is set
to zero. Its derivative is a smooth by part function. To put it in the notation of the uncalibrated
case, we have:

ˆµv(x, t; µ) = ˆµvp(x, t; µ).

The proof is trivial, we just have to follow the derivation of subsection 5.2.3.
⁄

Q

v(x, t; µ)ˆµw = ≠
⁄

Q+

ˆµv(x, t; µ)w ≠
⁄

Q≠

ˆµv(x, t; µ)w.

We insist a little bit. Usually, the derivative of a discontinuous function makes a dirac mass pop.
Here, even if (x, t) æ v(x, t; µ) is discontinuous, we have :

Uad æ L2 (Ω ◊ (0, T ))
µ ‘æ v(·, ·; µ)
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in C1(Uad). This is it, we have found a better candidate for optimal control, than the original
state variable.

5.3.3 The calibrated solution

It is easy to derive the equation satisfied by v. We know:

ˆtu(x, t; µ) = ˆtv(x + „(t; µ), t; µ) + ˆt„(t; µ)ˆxv(x + „(t; µ), t; µ)

ˆxu(x, t; µ) = ˆxv(x + „(t; µ), t; µ)

The calibrated Burgers equation is thus given by:

ˆtv + ˆt„(t; µ) ˆxv + ˆx

3
v2

2

4

= 0. (5.11)

Remark 43 This is the freezing method of section 3.2.2, in the simple translation case.

As for Burgers equation, we can interpret this problem in terms of characteristics. Equation
(5.11) can be written in what is usually called non conservative form as:

ˆtv + (ˆt„(t; µ) + v) ˆxv = 0.

Let µ œ Uad. Let Xcal;µ be the solution of the following simple ODE:

ˆtXcal;µ(t) = v (Xcal;µ(t), t; µ) + ˆt„(t; µ).

Until Xcal;µ enters the shock, we have:

v(Xcal;µ(t), t; µ) = v(Xcal;µ(0), 0; µ).

A simple illustration is presented in Figure 5.7. As the original solution, v is constant on
characteristics. The difference is that the latter are no longer are straight lines.

t = 0

t = T

x

t

„0

Figure 5.7: Characteristics in the calibrated case
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5.3. Calibration

ˆµv is solution of the following system:
Y

__]

__[

ˆtˆµv + ˆx(ˆµvv) + ˆµˆt„ ˆxv + ˆt„ ˆxˆµv = 0 in Q≠ fi Q+

ˆµv(t = 0) = ˆµv0 on Ω ◊ Uad

ˆµˆt„ = ˆµv

(5.12)

The first two equations are a consequence of the smoothness of µ æ v(·, ·; µ) away from the shock.
The last equation can be rigorously derived by following the lines of [13]. This is presented in
the appendix.

Once again, we can use characteristics to better understand the structure of this system. The
first equation of (5.12) is equivalent to:

ˆtˆµv + (v + ˆt„) ˆxˆµv = ≠ˆµˆt„ ˆxv ≠ ˆxvˆµv.

Note that the characteristics are the same as the ones of the equation involving v: Xcal;µ. But
unlike v, ˆµv is not constant on the characteristics, but is solution to a first order ODE. More
precisely, denote h the value of ˆµv over some characteristic:

h : t æ ˆµv(Xcal;µ(t), t; µ),

it is a solution of:
ˆth = ≠ˆxvh, ≠ˆµˆt„ ˆxv.

This equation can be explicitly solved.

Remark 44 Again, because of calibration, ˆxv is a well defined term outside of the fixed shock.
The integration of the ODE does not cause any particular problem.

This interpretation in terms of characteristics will be used in the numerical section.

5.3.4 Objective function

With no calibration, the derivative of the objective function was given by something like:

ˆµJ(µ) ¥
⁄

Ω

!
u(x, T ; µ) ≠ ud(x)

"
ˆµu(x, T ; µ) + some pointwise value at the shock

We propose a few possible objective functions adapted to the calibrated framework:

• the calibrated solution should look like some prescribed solution ud

• the shock should be located at some prescribed location „obj at t = T

• some combination of the two previous objectives

Let K œ R. We choose the last option:

JK(µ) =
⁄

Ω

|v (x, T ; µ) ≠ ud(x)|2dx + K(„(T ; µ) ≠ „obj)2

where K is the weight given to the shock positioning objective. The computation of the derivative
is straightforward:

ˆµJK(µ) =

s

Ω

!
v(x, T ; µ) ≠ ud(x)

"
ˆµv(x, T ; µ)

+K ˆµ„(T ; µ)
!
„(T ; µ) ≠ „obj

"
.
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Chapter 5. Optimal control

Unlike in the uncalibrated case, there is no problem in interpreting the first term as both quan-
tities are functions, smooth by parts. The measure component has been set to zero thanks to
calibration.

We have solved the first objective: we have modified the state variable as well as the objective
function to get smooth dependencies µ æ v(·, ·; µ) and µ æ JK(µ). The next topic on the line is
finding an efficient way of computing ˆµJK(µ). This involves the numerical estimation of ˆµˆt„.

Remark 45 The computation of ˆµ„(T ; µ) will not be an issue, as it has a simple explicit form:

ˆµ„(T ; µ) = ˆµ„(µ, 0) +
⁄ T

0

ˆtˆµ„(t; µ).

because of the smoothness in time discussed in section 5.2.

5.3.5 The estimation of ∂µ∂tφ

We could use the derivative of the R-H condition with respect to the parameter at the shock,
see third equation of (5.12). Instead, we propose a method that can also be used for classical
solutions. More precisely, we will show how the problem of finding ˆµˆt„ can be treated as was
the problem of finding (“n+1 ≠ “n) in chapter 3 and Fn+1 ¶ F ≠1

n in chapter 4. Let {Φi} be some
reduced basis of the calibrated solution manifold, computed offline. The ROM premise is that:

’µ œ Uad, ’t œ [0, T ], ÷{–i}, s.t u(·, t; µ) =
ÿ

i

–i(t; µ)Φi(· ≠ „(t; µ)). (5.13)

The smoothness of the calibrated solution with respect to time and to parameter can be expressed
as:

’i, (t, µ) æ –i(t; µ) œ C1(Uad ◊ [0, T ],R).

With this assumption, we have an explicit form for ˆµv:

ˆµv(·, t; µ) : (t; µ) æ
ÿ

i

ˆµ–i(t; µ)Φi(·).

We want to construct a procedure to estimate ˆµˆt„ mimicking the methods of chapter 3 and 4.
Towards this objective, for each smooth functional

Â :
;

[0, T ] ◊ Uad æ R

(t, µ) ‘æ Â(t; µ),
(5.14)

define

vÂ :

I

Uad ◊ [0, T ] æ X

(µ, t) ‘æ u(· ≠ Â(t; µ), t; µ).

This corresponds to a badly calibrated solution. With this notation, the true calibrated solution
v is denoted v„. A wrong estimation for ˆµˆt„ while solving (5.12) is equivalent to working with
vÂ where Â is such that

Y

_]

_[

Â(µ, t) = „(µ, t)

ˆtÂ(µ, t) = ˆt„(µ, t)

ˆµÂ(µ, t) ”= ˆµ„(µ, t).
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5.3. Calibration

Away from the shock (i.e where v is smooth), we have:

vÂ = v ≠ (Â ≠ „)ˆxv. (5.15)

Thus, away from the shock:

ˆµvÂ = ˆµv
¸˚˙˝

œ span Φi

≠ˆµ(Â ≠ „) ˆxv
¸˚˙˝

œ span ˆxΦi

≠(Â ≠ „) ˆxˆµv
¸ ˚˙ ˝

œ span ˆxΦi

.

A wrong calibration means a bigger component onto the derivative of the underlying ROM basis.
We are in the proper setting to propose a method with the desired properties. Let {Φ̃i}i be

some orthogonal basis. We choose it such that:
; q

i

q

j < Φ̃i, Φj >2 not too small
Φ̃i ”œ span {ˆxΦj}, away from the shock .

(5.16)

The first property ensures that {Φ̃i} captures enough of the calibrated solution manifold. The
quality of the estimation on ˆµˆt„ will depend on the second property.

A thorough investigation of the construction of the basis {Φ̃i} is out of the scope of this
chapter. We just mention the simplest method we can think of. One could use some variant
of the Gram-Schmidt orthogonalization procedure on the basis {Φj} to remove the components
parallel to span {ˆxΦj}. We have no guarantee that the resulting basis would still satisfy the
first property of (5.16).

Remark 46 A rough offline calibration procedure makes the construction of {Φ̃i} complicated,
as the x derivatives are in the basis.

We now assume the existence of such a basis. We have everything we need to construct an
algorithm similar to the one used in chapter 3. Start by computing (ˆµv)n+1 for several guesses
for ˆµˆt„ and compute the corresponding norm of the orthogonal projection onto {Φ̃i}. Then
interpolate to get an optimal estimate of ˆµˆt„. More precisely, we are choosing „ as

„ := argsup
Â

.

.ΠΦ̃ˆµvÂ(·, t; µ)
.
.

L2(Ωsub)
(5.17)

where ΠΦ̃ denotes the orthogonal projection onto the basis
)

Φ̃i

*
, and Ωsub is some domain away

from the shock. This idea of restricting the physical domain before an optimization procedure
has already been used in chapter 4.

Remark 47 This method, unlike R-H conditions, works for solutions where the shock has not
yet appear. We just have to define (t; µ) æ „(t; µ) as the line of highest gradient that eventually
forms a shock. This ensures the required smoothness in µ and t.

5.3.6 On the computation of ∂µv

The last objective is to propose a well behaved numerical method to solve equation (5.12) at
time tn+1, for a fixed value of ˆµˆt„. For simplicity, one can think of an explicit Euler time
discretization:

(ˆµv)n+1 ≠ (ˆµv)n + dt ˆx ((ˆµv)nvn) + dt (ˆµˆt„)nˆxvn + dt (ˆt„)n(ˆx(ˆµv)n) = 0. (5.18)

The purpose of the following sections is to try to extend the properties of a scheme used to
compute v, to the computation of ˆµv. This is the most natural choice in order to have a
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’well behaved’ scheme in this context, but note that other choices are possible. This discussion
resembles the one we had in chapter 1 about the fact that reduced scheme and truth scheme could
be different. Similarly here, tailored scheme for the computation of ˆµv could be constructed.
Nevertheless, adapting the numerical tools used for the computation of v is the simplest way to
guarantee stability.

5.3.7 Upwinding

To solve numerically a convection dominated problem with a finite volume method, it is advised to
use upwinded flux instead of centered flux, to enforce stability. It appears obvious that whatever
the parameter dependency, the upwinding direction used to compute ˆµv should be the same
as the one used for v. This appears clearly when the parameter is on the initial condition, see
section 5.3.2. An example with varying boundary conditions is mentioned in section 5.4.3. This
particular fact, that pieces of information about the computations of the state variables could
be used to compute the derivative with respect to some parameter, was already used in [61].

For a non calibrated problem, the upwinding procedure is trivially not smooth with respect
to the parameter. We have no guarantee that the resulting scheme on ˆµv will be stable and
we can expect that terms with irreductible n-widths would appear, as described in section 1.5.2.
Calibration is helping in that respect. For instance, in the simple viscous Burgers numerical
examples of chapter 3, the upwinded flux are linear functions of the calibrated solution considered.
Using the premise that µ æ v(·, ·; µ) is a smooth function, we conclude that the upwinding
procedure has a smooth parameter dependence, and can thus be handle by ROM. In the next
section, we explicit this idea for another standard stabilization mechanism: slope limitation.

5.3.8 Slope limiters

The development in this section will be closely related to the discussion about flux limiters in
the introductive chapter, section 1.5.2. We denote Th some mesh in Ω and P 0(Th) some constant
per element discretization space. Γ denotes a generic boundary in Th.

High order finite volume method require the estimation of the solution at the boundaries of
control volumes, using reconstructed quantities. The most common procedure is the reconstruc-
tion of the gradient over a control volume, using the average of the solution in neighboring cells.
Let vi be the average of the state variable v in control volume i. The values at some interface Γ

are then estimated using the first order expansion :

v|Γ = vi + Òi · (x|Γ ≠ x centroid ). (5.19)

Òi is a function of the average of v in the neighboring cells, {vj}. The cells actually used are
often referred to as stencil. Òi needs to be chosen so that:

• the scheme is stable

• the scheme is accurate

• the added computational cost is reasonable

The rest of this section takes place in a one dimension context, where Th is an uniform mesh.
This favorable setting offers rigorous theoretical results. Indeed, it is known [17] that a scheme
using a reconstructed gradient such that:

• Òi = 0 at local maximas
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5.3. Calibration

• the reconstruction process does not create new local maximas

is a TVD scheme.
The most common gradient limitation procedure is the usage of a modified gradient:

Ò̃i := „iÒi,

where Òi is a standard gradient reconstruction, ENO or LS for instance and where the limiter „

is chosen as a function of the ratio of forward and backward differences:

’i, „i = „(Ri) where Ri =
vi+1 ≠ vi

vi ≠ vi≠1
.

Many different choices are possible for „. We will restrict ourselves to the smooth ones that
guarantee the TVD property. One example is the Van-Leer limitor given by:

„ : R æ
;

2R
R+1 for R > 0
0 for R < 0.

We denote by Ò some standard gradient reconstruction process. In control volume i:

Òi :
;

Uad æ R

µ ‘æ Òi({vj(µ)}).

We denote by ÒÕ
i the derivative of Òi with respect to µ, when it exists:

ÒÕ
i :=

1
”µ

Òi({vj(µ + ”µ)}) ≠ Òi({vj(µ)}).

For central differences, least squares (or any process independent of the solution), we know that
this application is smooth. For instance, for central difference, the reconstructed gradient is
chosen as: Òi : µ æ vi+1(µ)≠vi≠1(µ)

2 . This application is trivially smooth, and the derivative is
given by:

ÒÕ
i : µ æ (ˆµv(µ))i+1

2
≠ (ˆµv(µ))i≠1

2
.

For ENO, WENO and other scheme more involved (with a notion of direction) the smoothness
of the gradient reconstruction process is not guaranteed in the general case. We need stronger
hypothesis, that will be satisfied because of the calibration process. These hypothesis are:

• the local maximas do not move with the parameters

• the direction of the flow, in the calibrated domain, does not change with the parameters

A direct consequence of the first point, is that the limiting process is smooth, even at local
maximas. A direct consequence of the second point is that ENO type gradient reconstructions
will be smooth with respect to the parameter.

We now have Ò a smooth application. Let’s show „ is also a smooth function of the parameter:

„i :
;

Uad æ R

µ ‘æ „i(Ri)

Away from local extremums, we have:

ˆµRi = ˆµ(vi+1≠vi)(vi≠vi≠1)≠ˆµ(vi≠vi≠1)(vi+1≠vi)
(vi≠vi≠1)2

= 1
vi≠vi≠1

[ˆµ(vi+1 ≠ vi) ≠ Rˆµ(vi ≠ vi≠1)] .
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At local extremums, we have ˆµ„i = 0.
We go back to the first order expansion, see equation (5.19). All the quantities involved are

smooth with respect to µ. We can thus use the product rule to get an explicit form for the
derivative of vΓ with respect to µ:

ˆµvΓ := ˆµvi(µ) +„Õ(Ri) ˆµRiÒi · (x|Γ ≠ xcentroid)

+„(Ri) ÒÕ
i · (x|Γ ≠ xcentroid)

For VanLeer limitor „Õ : R æ 2
(R+1)2 .

We have shown in the two previous sections how to extend the properties of numerical schemes
for convection dominated problems to the computation of the derivatives of the state variables.
Once again, this is not the only viable strategy. Nevertheless, this perfectly fits within the
calibration framework.

5.4 Euler 2d

We will apply the ideas of the previous sections to the problem studied in chapter 4. Suppose
that we have some NACA airfoil inside a domain. It is standard in that context to take as
objective functional J , the integral over the body of some function of the pressure and of the
normal at the boundary:

J(µ) :=
⁄

ˆΩ

j(P (µ), nw)ds.

For simplicity, one can think of a parameter dependency on physical parameters such as Mach
number, angle of attack etc. But using what has been done in chapter 4, recall that we can also
handle parametrized wing shapes.

5.4.1 Initial remarks

From chapter 4, we know that the shock’s existence as well as its position and shape depend on
the angle of attack, the mach number and the shape of the wing. As for inviscid Burgers, we
need hypothesis on the type of solutions considered:

• ’µ œ Uad, there is one shock. Denote „(µ) œ R its position on the wing

• the solutions are smooth with respect to parameter variation away from the shock. The
main arguments, just as for one dimensional Burgers, are the finite speed of propagation
of the information, as well as the smoothness of initial and boundary conditions

• µ æ „(µ) is smooth

Without any calibration, we expect the derivative of J to contains a dirac mass at the shock’s
position:

ˆµJ = some smooth by part function of ˆµj + ”(x ≠ „(µ))[j(P (µ, nw)]|„(µ)ˆµ„.

This exact setting has been studied in [10].

154



5.4. Euler 2d

5.4.2 Equation for the derivative

Far from the shock, the µ derivatives of the state variables are solution of the linearized equation,
see [10]. We will use the notation of chapter 4 directly. Mimicking what has been done for
Burgers, we do not try to solve for the original state variables ˆµu, but rather for the calibrated
ones: ˆµû := ˆµ (u ¶ Fµ). A rigorous derivation of the equation solved by ˆµû is not in the
scope of this paper. Nevertheless, we expect that the work done in the previous sections can be
transposed exactly. We will highlight a few aspects.

5.4.3 Computational details

Just as for Burgers, one has to be careful on the numerical method used to solve for ˆµu (or
ˆµû). For instance, suppose that one of the parameters of the problem is the angle of attack.
That is, on Γext, we have a Dirichlet boundary condition on the velocity of the form

(u, v) = (cos(µ), sin(µ)).

The derivative of the solution will satisfy the linearized equation, with the following boundary
condition on Γext:

(ˆµu, ˆµv) = (≠sin(µ), cos(µ)).

Intuitively, we know that giving this boundary conditions to a black box solver will give non
satisfactory results. Indeed, some of the inflow and outflow boundaries are exchanged. This
is not reasonable physically. As for Burgers, we need to take as upwinding direction for the
derivatives the same as the upwinding direction for the original variables. The calibration helps
with the smoothness of the upwinding directions.

5.4.4 Estimation of ∂µN

This is the equivalent to the estimation of ˆµ„ in the previous section. Once again, we could
use RH conditions. We rather propose a ROM oriented method. Let F be a family of mapping
and Fµ œ F the correct calibration. An error on ˆµFµ while solving for ˆµ(u ¶ Fµ) corresponds
to a badly calibrated solution ũ(µ) := u ¶ G with G ”= Fµ. For Burgers, we were looking for an
orthogonal basis satisfying Φ̃j ”œ span {ˆxΦi}. The counterpart is here:

Ψ̃j ”œ span {Ψi ¶ ”F }

where ”F are variations around the identity, among the family F of mappings considered. The
optimization procedure can be conducted as follows: first compute the solution of the equation
on the derivative for several values of ˆµFµ. Then, interpolate to get the ˆµFµ that maximizes
the projection of ˆµ(u ¶ Fµ) onto the basis {Ψ̃j}.

5.4.5 Optimal control on the shape of the wing

We can combine the work that has been done in chapter 4 and in this one to propose a procedure
to solve the optimal control problem of the design of airfoils. We give here a roadmap.
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First, the offline phase

Data: Continuous collection of wing shapes
Result: Calibrated basis
Select a moderate number of wing shapes ;
Compute the solutions using a fine solver ;
Restrict the parameter range so that all considered candidates satisfy the hypothesis of
section 5.4.1 ;

Pick some reference wing shape, as in chapter 4 ;
Map the fine solutions to the reference mesh ;
Store scheme informations, such as upwinding direction or gradient limitation ;

Algorithm 9: Offline

Then, the online phase

Data: Continuous collection of wing shapes, calibrated reduced basis
Result: Optimal wing shape
Set up, as in 4, the fine solver with modified flux boundary conditions, gradient
limitations etc. ;

Start the optimization algorithm, using the method developed in this chapter;
The output is some ’optimal mapping’ ;
Deduce an optimal wing shape;

Algorithm 10: Online

5.5 Conclusion

In this chapter, we have constructed a method to solve optimal control problems in the context
of solutions with shocks. With the proper calibration and an appropriate choice of objective
function, we have shown that we recover the smoothness of µ æ J(µ) which is at the core of
any optimal control problem. Using toy examples, we have shown that some specific care had
to be put in the construction of numerical schemes for the computation of the derivatives of the
solutions (calibrated and non calibrated). We have shown how to use calibration to extend the
stability properties of standard numerical scheme to the computation of the derivatives.

Another objective of this chapter was to use ROM. This task is completely solved by calibra-
tion, see section 5.3.5. We have adapted the ideas of chapter 3 and 4 to propose an alternative
of the R-H conditions for the computation of ˆµ„.

All the ideas developed in this chapter need to be numerically studied. The first step is to
check the premise for an utilization of ROM, see equation (5.13). It could for instance be done in
the context of the numerical section in chapter 3. Also, the method proposed to estimate ˆµˆt„

has to be investigated. It relies on the construction of what we have denoted {Φ̃i}. Finally we
need to test using the characteristics of the fine solver used for v to compute ˆµv.

The ultimate application of what has been done in chapter 4 and this one is to perform
wing shape optimization, such as described in section 5.4.5. There is still a long way to go, as
all ingredients have only been skimmed over. Nevertheless, I believe that this is an adapted
framework to solve this real-life problem.
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Appendix

We will prove the result given in equation (5.12). The proof is just a variation of the one given
in the calibrated case in [13]. ˆµv is a weak solution if and only if:

’w œ D(Q),
⁄

Q

v ˆtˆµw +
⁄

Q

ˆt„(t; µ)v ˆxˆµw +
⁄

Q

3
v2

2

4

ˆxˆµw +
⁄

Ω◊Uad

v0ˆµw = 0.

Let w œ D(Q). We will first compute the new terms coming from calibration. We start by
integrating by parts with respect to µ.

s

Q
ˆt„ vˆµˆxw = ≠

s

Q
ˆµ (ˆt„ v) ˆxw +

s

Σ
ˆµ„ˆt„[v]ˆxw

= ≠
s

Q
ˆµˆt„ vˆxw ≠

s

Q
ˆt„ ˆµvˆxw +

s

Σ
ˆµ„ˆt„[v]ˆxw.

Now, we integrate by parts with respect to x:
s

Q
ˆt„ vˆµˆxw =

s

Q
ˆµˆt„ ˆxvw +

s

Q
ˆt„ ˆxˆµvw +

s

Σ
ˆµ„ˆt„[v]ˆxw

≠
s

Σ
‹x (ˆµˆt„[v]w + ˆt„[ˆµv]w) .

The others three terms (already dealt with in [13]) are:

s

Q
vˆtˆµw = ≠

s
ˆµvˆtw +

s

Σ
ˆµ„[v]ˆtw

=
s

Q
ˆtˆµvw +

s

Σ
‹t[ˆµv]w +

s

Σ
ˆµ„[v]ˆtw ≠

s

Ω◊Uad
ˆµv(t = 0)w

s

Q

1
v2

2

2

ˆxˆµw = ≠
s

Q
(v ˆµv) ˆxw +

s

Σ
ˆµ„[v2]ˆxw

=
s

Q
ˆx (v ˆµv) w +

s

Σ
‹x[vˆµv]w +

s

Σ
ˆµ„[v2]ˆxw

s

Ω◊Uad
v0ˆµw = ≠

s

Ω◊Uad
ˆµv0w +

s

Σ0◊Uad
ˆµ„[v0]w

We regroup all volume contributions:
⁄

Q

ˆµˆt„ ˆxvw+ˆt„ ˆxˆµvw+
⁄

Q

ˆtˆµvw+
⁄

Q

ˆx (v ˆµv) w≠
⁄

Ω◊Uad

ˆµv0w≠
⁄

Ω◊Uad

ˆµv(t = 0)w = 0.

For ˆµv to be weak solution, the previous equation needs to be true for all w œ D(Q). As usual,
we start with w such that w(·, t = 0; µ) = 0, this gives us the linear PDE solved by ˆµv:

ˆtˆµv + ˆx(ˆµvv) + ˆµˆt„ ˆxv + ˆt„ ˆxˆµv = 0.

Taking w(·, t = 0; µ) non zero, we have the expected initial condition:

ˆµv(·, t = 0; ·) = ˆµv0(·; ·).

The surface contributions now. Because of ˆµ„ = 0 and ‹t = 0, most of the terms cancel.
We are left with: s

Σ
ˆµˆt„[v]w

s

Σ
ˆt„[ˆµv]w

s

Σ
[vˆµv]w
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Chapter 5. Optimal control

We then just have to use: [vˆµv] = [v]ˆµv +[ˆµv]v̄, and the classical Rankine Hugoniot: v̄ = ˆt„.
We are left with:

ˆµˆt„[v] = [v]ˆµv̄

which is the same as result as the one obtained by formally differentiating the RH condition.
Summing up, ˆµv is solution of the following PDE:

Y

__]

__[

ˆtˆµv + ˆx(ˆµvv) + ˆµˆt„ ˆxv + ˆt„ ˆxˆµv = 0 in Q≠ fi Q+

ˆµv(t = 0) = ˆµv0 on Ω ◊ Uad

ˆµˆt„ = ˆµv

which is the desired result.
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Chapter 6

Analysis of the two level POD method

The problem we propose to deal with in this section is the computation of POD basis of very
large sets. One reviewer has brought to my attention that this issue has already been recently
solved in a more general setting in [69]. Suppose that we have a set of Nsnap snapshots, all living
in some N dimensional truth discretized space (say finite element space). We know that the
computational cost of the POD method is roughly given by:

min(N 2Nsnap, N N2
snap).

This is pretty clear when looking at the method of snapshots, see [122].
There are several ways to circumvent this issue. The first one is to use a POD greedy type

method such as the one developed in [65]. The associated convergence rate has recently been
studied in [66]. These methods, as all RB type methods, need a cheap, tight upper bound on
the error. It is well known that this task can be difficult when dealing with non linear PDEs.
Another option available in the literature is to perform the POD in parallel in the N direction,
as in [139]. Here, we follow a third route, see [12], and propose a two level POD method.

Let Ξ be some fine discretization of a solution manifold denoted M embedded in some Hilbert
space X. Start by creating subsets of Ξ, that we will call batches from now on and denote them
{Ξp}

p
. The idea is to parallelize the computation of the POD basis of Ξ using a divide and

conquer approach. More precisely, we start by computing the POD basis of each batch. We then
re combine the ’sub POD’ basis, as best as we can. The rest of this section is devoted to the
analysis of this recombination.

One particular application we have in mind is time-parameter solution manifolds. We will
use this specific notations, as it will make our calculations a little more intuitive: each batch
corresponds to a time simulation for one parameter µp:

Ξp :=
)

u(·, tk; µp), tk œ [0, T ]
*

.

From now on, we will denote:

• P the number of batches

• Np
snap the number of time-snapshots for the simulation for parameter µ = µp

• N
p
red the size of the POD basis corresponding to the simulation µ = µp
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Chapter 6. Analysis of the two level POD method

• Ntot the size of the final basis

• „
µp

i the ith basis of the batch Ξp

• „tot
j the jth basis, after re combination of the „

µp

i .

• „stand
j the jtth basis returned by the standard POD algorithm on Ξ.

What do we want to control ? let Ntot be some prescribed size of the final basis. We want to
minimize the following quantity:

JNtot
({„j}j) :=

ÿ

p

Np
snapÿ

k=1

.

.

.

.

.

.

u(·, tk; µp) ≠
Ntotÿ

j=1

+
u(·, tk; µp), „j

,

X
„j

.

.

.

.

.

.

2

X

. (6.1)

As already mentioned, minimizing J over all orthogonal basis in X is the usual POD al-
gorithm, see the introductive chapter, section 1. The resulting optimal basis is in fact in
span

)
u(·, tk; µp), p œ [1 . . . P ], k œ [1 . . . Np

snap]
*

.
Here we rather look for a global basis {„tot

j } embedded in span
)

„
µp

i , p œ [1 . . . P ], i œ [1 . . . N
p
red]

*
.

This is natural in the divide and conquer strategy. We refer to Figure 6.1 for an illustration of
this process.

{u(·, t, µ0)}

{„
µ0

i }

{u(·, t, µ1)}

{„
µ1

i }

{u(·, t, µP )}

{„
µP

i }

{„tot
j }

Figure 6.1: Divide and conquer

Several different methods could be implemented here. We choose to look for {„tot
j } as a

weighted POD of
)

„
µp

i , p œ [1 . . . P ], i œ [1 . . . N
p
red]

*
. This is the most natural way to go in this

particular setting. We model this easier problem by defining the following functional J̃ :

J̃ :

Y

____]

____[

R

q

p
N

p

red ◊ XNtot æ R

)
–

µp

i

*

i,p
, {„j}j ‘æ J̃(–, „j) =

q

p

qN
p

red

i=1

.

.

.



–
p
i „

µp

i ≠ qNtot

j=1

e

–
p
i „

µp

i , „j

f

X
„j

.

.

.

2

X

=
q

p

qN
p

red

i=1 –
p
i

.

.

.„
µp

i ≠ qNtot

j=1

+
„

µp

i , „j

,

X
„j

.

.

.

2

X

We will denote by {„tot
j (–)} the optimal basis for a specific choice of weights and by {⁄tot

j (–)}
the corresponding eigenvalue set. Recall that they are the eigenfunctions and eigenvalues of the
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operator R̃(–) defined as:

R̃(–) :

I

X æ X

Â ‘æ q

p

qN
p

red

i=1 –
p
i

+
„

µp

i , Â
,

X
„

µp

i ,
(6.2)

and that we have the well known POD property:

’–, J̃
!
–, „tot

j (–)
"

=
ÿ

j>Ntot

⁄tot
j (–).

Remark 48 Of course, we do not have the standard ROM property between the decay of the
{⁄tot

j }j and the global error. This is actually the purpose of this note.

We will prove two things:

• we can control the global error by a combination of the local ’in batch’ errors and of the
error made when ’combining’ the PODs

• the loss incurred by this divide an conquer strategy is controlled: there exists a constant
C (data set independent) such that

’Ntot, ÷{N
p
red}p, ÷{–

µp

i }i,p œ R

q

p
N

p

red s.t JNtot
({„tot

j (–)}) Æ CJNtot
({„stand

j }).

For the sake of readability, we will from now on denote:

• {Π„µp } the orthogonal projection onto {„
µp

i , i œ [1 . . . N
p
red}

• {Π„tot(–)} the orthogonal projection onto {„tot
j (–), j œ [1 . . . Ntot]}

• the projections onto orthogonal sets will be denoted Π‹

6.1 A posteriori error bound

Let (p, k) œ [1 . . . P ] ◊ [1 . . . Np
snap]. We have:

.

.u(·, tk; µp) ≠ Π„tot(–)u(·, tk; µp)
.
. Æ

.

.u(·, tk; µp) ≠ Π„µp u(·, tk; µp)
.
.

+
.
.Π„µp u(·, tk; µp) ≠ Π„tot(–)Π„µp u(·, tk; µp)

.

.

+
.
.Π„tot(–)u(·, tk; µp) ≠ Π„tot(–)Π„µp u(·, tk; µp)

.

. .

We know that the operator norm of Π„tot is smaller than 1. We thus have:
.
.u(·, tk; µp) ≠ Π„tot(–)u(·, tk; µp)

.

. Æ 2
.
.u(·, tk; µp) ≠ Π„µp u(·, tk; µp)

.

.

+
.
.Π„µp u(·, tk; µp) ≠ Π„tot(–)Π„µp u(·, tk; µp)

.

. .

As
.
.u(·, tk; µp) ≠ Π„µp u(·, tk; µp)

.

. depends only on the in batch approximations, we have:

’p œ [1 . . . P ],

Np
snapÿ

k=1

.

.u(·, tk; µp) ≠ Π„µp u(·, tk; µp)
.
.

2 Æ
ÿ

i>N
p

red

⁄
p
i .
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To handle the second term, we consider the following dataset:

Ξproj :=
)

Π„µp u(·, tk; µp), p œ [1 . . . P ], k œ [1 . . . Np
snap]

*
. (6.3)

Let RΞproj
be the standard POD operator, defined in the introductive chapter 1, applied to the

previous dataset:

RΞproj
:

I

X æ X

Â ‘æ q

p

qNp
snap

k=1 < Π„µp u(·, tk; µp), Â >X Π„µp u(·, tk; µp).

For (p, k), denote {x
p
k,i}i the coordinates of u(·, tk; µp) onto the basis {„

µp

i }. We have:

’Â œ X, RΞproj
(Â) =

ÿ

p

Np
snapÿ

k=1

N
p

redÿ

i=1

N
p

redÿ

j=1

x
p
k,ix

p
k,j < „

µp

i , Â > „
µp

j .

We use another key property of the POD method:

’i, j œ [1 . . . N
p
red],

Np
snapÿ

k=1

x
p
k,ix

p
k,j = ⁄

p
i ”i,j .

The proof of this well known result is recalled in the appendix. We thus have:

’Â œ X, RΞproj
(Â) =

ÿ

p

N
p

redÿ

i=1

⁄
p
i < „

µp

i , Â >X „
µp

i .

This is the same operator as R̃(⁄) defined equation (6.2) with the following choice of weights:

’p œ [1 . . . P ], ’i œ [1 . . . N
p
red], –

p
i := ⁄

p
i .

Denote
)

„tot
j (⁄)

*
and {⁄tot(⁄)} the corresponding eigenvector and eigenvalue sets. We use

standard property:

ÿ

p

Np
snapÿ

k=1

.

.Π„µp u(·, tk; µp) ≠ Π„tot(⁄)Π„µp u(·, tk; µp)
.
.

2
=

ÿ

j>Ntot

⁄tot
j (⁄),

and thus reach the first desired result:

JNtot
({„tot

j (⁄)}) Æ 8
q

p

q

i>N
p

red
⁄

p
i

+ 2
q

j>Ntot
⁄tot

j (⁄).
(6.4)

We can now safely use the two level POD, as we have a rigorous upper bound on the global error.
One possible algorithm is presented below:

Data: Fine discretization Ξ of some solution manifold M, ‘ some threshold
Result: Reduced basis such that

q

uœΞ Îu ≠ Π„totuÎ2
X Æ ‘

Decompose Ξ into batches {Ξp} ;
Compute {„

µp

i , ⁄
p
i } = POD (Ξp) ;

Choose N
p
red such that 8

q

p

q

i>N
p

red
⁄

p
i Æ ‘

2 ;

Compute {„tot
j (⁄), ⁄tot

j (⁄)} = POD (


⁄
p
i „

µp

i ) ;
Choose Ntot such that 2

q

j>Ntot
⁄tot

j (⁄) Æ ‘
2 ;

Algorithm 11: Performing two level POD
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6.2 Comparison with the standard POD

We now turn to the second objective. We want to guarantee that for a fixed accuracy, the basis
resulting from a two level POD is not much bigger than the one resulting from a standard POD.
We fix Ntot. In this section, we restrict ourselves to the case N

p
red Ø Ntot. Indeed, to have a

rigorous bound, we need to be able to handle the case P = 1, and the case with identical batches.
We will denote: Π„stand the orthogonal projection onto {„stand

j , j œ [1 . . . Ntot]}. We have one
easy inequality:

JNtot
({„stand

j }) =
q

p

qNp
snap

k=1 Îu(·, tk; µp) ≠ Π„standu(·; tk; µp)Î2
X

Ø q

p

1
qNp

snap

k=1 Îu(·, tk; µp) ≠ Π„pu(·; tk; µp)Î2
X

2

Ø q

p

q

n>Ntot
⁄p

n.

This uses the standard POD equality and the fact that for a fixed size, the spaces chosen on each
subbasis are better adapted than a global one as well as N

p
red Ø Ntot.

The natural follow up is to compare {⁄stand} and {⁄tot(⁄)}. Recall that ⁄tot(⁄) is the output
of a standard POD algorithm applied to the dataset Ξproj defined in (6.3). Intuitively, Ξproj

should be ’smaller’ than the original dataset, so we expect the {⁄tot(⁄)} to be not far from the
original {⁄stand}.

Following this initial remark, we start with a simpler problem. Let Ξ be any dataset in X

and let {Ân}n be some orthogonal basis in X. We want to compare the decay of the eigenvalues
of the POD algorithm applied to Ξ versus the one applied to {ΠÂv, v œ Ξ}. Denote

• {„orig} and {⁄orig} the eigenvector/eigenvalues sets for the original dataset

• {„proj} and {⁄proj} the eigenvector/eigenvalues sets of the projected dataset

• Π the projection on the first N basis in both original and projected cases

We know that: ÿ

kœΞ

Îuk ≠ Π„orig ukÎ2
X =

ÿ

n>N

⁄orig
n

ÿ

kœΞ

ÎΠÂuk ≠ Π„proj ΠÂukÎ2
X =

ÿ

n>N

⁄proj
n

The optimal property of the basis {„proj} gives:
ÿ

kœΞ

ÎΠÂuk ≠ ΠprojΠÂukÎ2 Æ
ÿ

kœΞ

ÎΠÂuk ≠ ΠoriginΠÂukÎ2
.

ÿ

n>N

⁄proj
n Æ 2

ÿ

kœΞ

ÎΠÂ (uk ≠ Πoriginuk)Î2 + 2 Î(ΠÂΠorigin ≠ ΠoriginΠÂ) ukÎ2
.

Using the fact that the orthogonal projector has unit norm, we have
ÿ

n>N

⁄proj
n Æ 2

ÿ

n>N

⁄origin
n + 2 Î(ΠÂΠorigin ≠ ΠoriginΠÂ) ukÎ2

As {„proj} is the POD basis of the projected set, we know that „proj œ span {Ân}, and thus
that:

ΠÂΠ„proj = Π„proj ΠÂ = Π„proj .
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Unfortunately, this is not true for the original basis {„orig}. We need to use something else:

(ΠÂΠorigin ≠ ΠoriginΠÂ) =
!
Π‹

Â Π‹
origin ≠ Π‹

originΠ‹
Â

"

This concludes this digression and we go back to our original problem. As {„tot
j } is optimal to

represent the set Ξproj defined in (6.3), we have:

q

j>Ntot
⁄tot

j (⁄) Æ q

p

qNp
snap

k=1

.

.Π„µp u(·, tk; µp) ≠ Π„standΠ„µp u(·, tk; µp)
.
.

2

Æ 2
q

p

qNp
snap

k=1

.

.Π„µp

!
u(·, tk; µp) ≠ Π„standu(·, tk; µp)

".
.

2

+2
q

p

qNp
snap

k=1

.

.Π„µp Π„standu(·, tk; µp) ≠ Π„standΠ„µp u(·, tk; µp)
.
.

2

q

j>Ntot
⁄tot

j (⁄) Æ 2
q

n>Ntot
⁄stand

n + 2
q

p

qNp
snap

k=1

.

.

.

1

Π‹
„pΠ‹

„stand ≠ Π‹
„standΠ‹

„p

2

u(·, tk; µp)
.
.
.

2

Æ 2
q

n>Ntot
⁄stand

n + 4
q

p

qNp
snap

k=1

3.
.
.Π‹

„standu(·, tk; µp)
.
.
.

2

+
.
.
.Π‹

„pu(·, tk; µp)
.
.
.

2
4

Æ 10
q

n>Ntot
⁄stand

n

We have once again used N
p
red Ø Ntot.

As a conclusion, we went from

ÿ

p

Np
snapÿ

k=1

.

.

.

.

.

.

u(·, tk; µp) ≠
Ntotÿ

j=1

+
u(·, tk; µp), „stand

j

,

X
„stand

j

.

.

.

.

.

.

2

X

Æ
ÿ

n>Ntot

⁄stand
n (6.5)

to

ÿ

p

Np
snapÿ

k=1

.

.

.

.

.

.

u(·, tk; µp) ≠
Ntotÿ

j=1

+
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For manifolds for which the standard POD gives quickly decaying eigenvalues, the size of the
final basis with a two level POD method is guaranteed not to be much bigger than the one
obtained with the standard POD algorithm.

6.3 Computational cost

What have we gained ? For simplicity, let’s say that each batch has size Nsnap

p
. We need to

perform

• P sub POD computations, of size Nsnap

P
. That amounts to a complexity of PN ( Nsnap

P
)2

• Let Nred be a typical sub basis side (one of the N
p
red). The recombination requires

N (PNred)2 computations

What is the tradeoff then ? The bigger P , the cheaper the sub POD basis computations. But in
order to have decent accuracy, one must take enough basis at the recombination step. Typically,
one must take for each batch the same number of basis as in the final basis, see section 6.2.

Hypothetical situation. We have 20 parameters. Each time simulation consists in 300 time
steps, and we are expecting a final basis of size 40. Using standard POD costs (20 ú 300)2N .
This double POD costs (20 ú 3002 + (40 ú 20)2)N . We have reduced the total computational cost
by 20.
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Appendix

Let Ξp be one batch and RΞP
the standard POD operator on this set:

RΞp
:

I

X æ X

Â ‘æ qNp
snap

k=1 < u(·, tk; µp), Â >X u(·, tk; µp).

Using the fact that {„
µp

i } is a set of eigenfunctions of RΞp
and is orthogonal, we have:

’i, j, < RΞp
(„µp

i ), „
µp

j >X = ⁄
p
i < „

µp

i , „
µp

j >X

= ”i,j⁄
p
i .

Denote for all triplet (i, k, p), x
p
k,i :=< u(·, tk; µp), „

µp

i >X . We have the desired result:

’i, j œ [1 . . . N
p
red],

Np
snapÿ

k=1

x
p
k,ix

p
k,j = ⁄

p
i ”i,j .
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Chapter 7

ROM and big data: a common method-
ology

In this short bonus chapter we will discuss the new trend in the reduced order modeling com-
munity that consists in adapting ’big data’ methods. The underlying idea is to replace part/all
of a PDE resolution by some learning algorithm inspired by big data.

We do not intend to present a thorough list of applications but have chosen a small set of
examples, that illustrate the broad spectrum of possibilities. In a recent paper [58], they propose
an original way to combine ROM and big data. The physical domain is decomposed, using
some a priori knowledge of the solution, into disjoint subdomains. The reduced basis in each
subdomain is then chosen among a set of reduced basis using some learning process. In [72], they
adapt the Local Linear Embedding (LLE), that was originally developed for image processing, to
the numerical resolution of PDEs. More precisely, they build a ’model free’ method for elasticity
problems. The modeling of the relation between displacement field and stress tensor is replaced
by a learning algorithm. Finally, in [137] they have chosen to evolve the POD coefficients of a
Navier-Stokes simulation, using a neural network.

The focus in this short chapter is put on a method with growing importance in a part of the
reduced order modeling community. This method is referred to as Dynamic Mode Decomposition
(DMD) [120, 132, 117]. It uses a learning algorithm in order to deal with the computational
complexity incurred by the presence of non linear functions of the solution, in a ROM context.
We end this chapter, by presenting a fully ’model free’ solver that has been developed in the
computer graphics community [76].

7.1 DMD

DMD aims at accelerating the online computation of non linear functions of the solution, while
solving some PDE. Figure 7.1 shows a typical situation. We have computed snapshots over some
solution manifold M, {uk}k and have computed their image through some non linear application
F , {F (uk)}k. The objective is then to find a ’cheap’ way of computing the image of any member
of M through F . We have presented in the introductive chapter, section 1.5.2.1 the most common
way of dealing with this in a ROM context, the Empirical Interpolation Method (EIM).
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uk µ M µ X {F (uk)}k µ X

F

Figure 7.1: Non linear operator acting on the solution manifold

DMD method, as the LLE method mentioned earlier, is of a different type. It handles the non
linear dependency by building an equivalent linear model. The associated computational gain is
obvious. The novelty compared to other linearization methods is its theoretical foundation. The
method supposes the existence of a space, somehow related to M, on which the possibly highly
non linear application F , is linear. A graphical representation can be found Figure 7.2

{Â(uk), Â œ M}k {Â(F (uk)), Â œ M}k

Linear application

Figure 7.2: The action of F , on the subspace, is simpler

The method relies on the Koopman theory, and more precisely on the construction of a
so-called Koopman Operator. In this section, we denote:

• X either the manifold of continuous solutions, or equivalently a ’truth’ discretized space

• a generic non linear application X æ X, denoted by F

• O some observable space over X, that is, a set of functionals over X. Note that these are
not necessarily linear

In that framework, the dots of Figure 7.2 are the images of the elements of X through the
observables O. The latter can for instance be thought of as the scalar product with some
reduced basis {„i}i:

O :=
;

X æ R

u ‘æ < u, „i >X , i œ [1, . . . , Nred],
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or, in the spirit of EIM, as the evaluation of a function X at Nred discretization points in Ω:

O :=
;

X æ R

u ‘æ u(xk), xk œ Ω, k œ [1, . . . , Nred].

Whatever the space of observables, the idea is to replace the non linear transformation on X
by a linear transformation on O. For that, the key component is the Koopman operator K, a
linear operator acting on the vector space spanned by the elements of O as:

’g œ span O, Kg = g ¶ F. (7.1)

Note that the previous equality is an equality between functionals over X. We can now refor-
mulate the premise of the DMD method: it supposes that the complicated non linear behavior,
restricted to the reduced basis (or some other observables space) is well represented by a linear
transformation.

This is precisely the assumption that we discuss in this section. To get a little more context,
I have chosen to reproduce a paragraph found in [132], which is among the most cited paper in
the DMD literature:

Without these connections, the use of DMD to analyze nonlinear dynamics appears dubious,

since there seems to be an underlying assumption of (approximately) linear dynamics (see

Section 3.1), as in (1). One might well question whether such an approximation would

characterize a nonlinear system in a meaningful way. However, so long as DMD can be

interpreted as an approximation to Koopman spectral analysis, there is a firm theoretical

foundation for applying DMD in analyzing nonlinear dynamics.

It is the firm theoretical foundation that we will try to understand.

7.1.1 The Koopman operator

We show in this section how the DMD community intends to use the knowledge of the eigenfunc-
tions of K to solve the target objective. Suppose that there exists a complete set of eigenfunc-
tion/eigenvalue pairs {(Âj , ⁄j), j = 1 . . . Nred} for the operator K. In other words, we suppose
that:

’g œ span O, ÷{cj(g)} œ R
Nred

, s.t , g =
Nred

ÿ

j=1

cj(g)Âj .

Let g œ O. The objective is to be able to compute efficiently g ¶F over X. With the previous
assumption, we have:

÷{cj(g)} œ R
Nred

, g ¶ F =
Nred

ÿ

j=1

cj(g) (Âj ¶ F ) . (7.2)

Using the Koopman definition, and the fact that {Âj} is an eigenfunction set, we have:

g ¶ F =
Nred

ÿ

j=1

cj(g) (KÂj) =
Nred

ÿ

j=1

⁄jcj(g)Âj . (7.3)

The rest of the derivation will be done in the case where the observables are taken as the scalar
products with some reduced basis {„i}i, but note that there would be no difference for other
choices of observables spaces. To avoid confusion, we denote by „̃i the observable in O that
corresponds to the scalar product with „i.
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Offline, start by computing the couples {(Âj , ⁄j)}j . We show in the next section how this is
performed. Then, compute the coordinates of the observables onto the space spanned by the
eigenfunctions of K: the set {cj(„̃i)}i,j .

Online, evaluate the observables applied to the non linear term as:

’u œ M, ’i, „̃i(F (u)) =< F (u), „i >X=
Nred

ÿ

j=1

⁄jcj(„̃i)Âj(u) (7.4)

From this discussion, we need a priori Nred eigenfunctions of K. We will come back on this in
section 7.1.4.

In order to fit DMD into a standard offline/online paradigm, we need more assumptions on
the set of eigenfunctions {Âj}. By inspecting the form of the quantities needed online, see (7.4),
the functionals in the eigenfunction set either need to have a computationally cheap action on X

(linear or quadratic functionals for instance) or to involve a reduced number of spatially localized
estimates. This of course restricts the observable spaces O that can be considered. The next
section is devoted to the search for approximate eigenfunctions.

7.1.2 Details on the offline stage

The objective of this section is to propose a method to compute some1 eigenfunctions of the
Koopman operator. We are still in the situation where the observables {„̃i} are the projection
onto some reduced basis {„i}. Let {uj}j be a representative/well chosen snapshot set of M in
X, of cardinality M . Define U as the following Nred ◊ M matrix:

Uij := „̃i(uj) =< uj , „i >X (7.5)

Compute the image through the non linear application F , and store the result into Y :

Yij := „̃i(F (uj)) =< (F (uj)) , „i >X . (7.6)

Denote A œ R
Nred◊Nred

any linear model fitting X to Y . The most common choice is to use the
least squares approximations:

A = argmin
BœRNred◊Nred

ÎBU ≠ Y Î2
2

given by:
A = Y U+ (7.7)

where ·+ denotes the Moore Penrose pseudo inverse.
There is only one result in the DMD literature on the computation of eigenfunctions of K.

It links eigenvectors of A with eigenfunctions of K under very stringent conditions. Let Â be an
eigenfunction of K, and ⁄ its eigenvalue. As it is in span{„̃i}, the set of observables, we have:

÷{—i} œ R
Nred , Â =

Nred

ÿ

i=1

—i„̃i.

1Note that we have no results on the existence nor on the number of eigenfunctions of K.
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Using the linearity of the Koopman operator, we know:

KÂ =
Nred

ÿ

i=1

—iK„̃i =
Nred

ÿ

i=1

—i„̃i ¶ F (7.8)

Let

• uk œ X a solution in the training set (used to build A)

• Uk the Nred dimensional vector
)

„̃i(uk) =< „i, uk >X

*

i

• Yk the vector
)

„̃i(F (uk)) =< „i, F (uk) >X

*

i

We know that
’k, AUk = Yk + rk (7.9)

where rk œ R
Nred

is residual of the linear fit. We can think of it as the least square residual.
Now,

’k, KÂ(uk) = —T Yk = —T AUk ≠ —T rk

= ⁄—T Uk.
(7.10)

The first equality comes from equation (7.8). Second equality comes from equation (7.9). The
last equality comes from the fact that Â is an eigenfunction of K. If the residual of the least
squares approximation vanishes, we have:

’k, —T AUk = ⁄—T Uk. (7.11)

Equation (7.11) is equivalent to:
—T AU = ⁄—T U.

We are ready to state the result: if Â is an eigenfunction of K such that:

• Â is in the span of the observables

• the linear fit (say least squares approximation) is exact on the training set {uk}k

• U is of rank Nred. This is equivalent to UUT invertible, as we expect M ∫ Nred. The
underlying idea is that {uk} needs to be a big enough sample

then Â can can be found by computing the eigenvectors of AT . More precisely, there exists —

eigenvector of AT such that

Â :=
Nred

ÿ

i=1

—i„̃i.

Before moving on to a simple illustrative example, we discuss the hypotheses made in this
section. First of all, as the residual will most likely not vanish, we have no result guaranteeing
that the error made on the approximate eigenfunction is controlled by the residual error. More
importantly, we have no proof of the existence of eigenfunctions of K in the space spanned by
the observables, for a general function F : X æ X.
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7.1.3 Discrete system

The theory of Koopman operator was first developed for discrete systems. One two dimensional
system example is developed in [116]. The model non linearity is chosen as:

F :=
5

z1

z2

6

‘æ
5

⁄z1

µz2 + (⁄2 ≠ µ)cz2
1

6

(7.12)

for some ⁄, µ and c. Suppose that we take z1, z2 and z2
1 as observables. Define „1 and „2 as:

„1(z) = z1

„2(z) = z2 ≠ cz2
1 .

(7.13)

Easy computations show that both these functions are eigenfunctions of the Koopman operator:

„1 ¶ F

5
z1

z2

6

= ⁄z1 = ⁄„1

5
z1

z2

6

„2 ¶ F

5
z1

z2

6

= µz2 + (⁄2 ≠ µ)cz2
1 ≠ c⁄2z2

1 = µ„2

5
z1

z2

6

The associated eigenvalues are ⁄ and µ respectively. In this carefully tailored example, „1 and
„2 are the desired Koopman eigenfunctions in the span of the observables. Unfortunately, even
in this toy example, we do not really solve the computational cost issue, as the evaluation of

F

5
z1

z2

6

still requires the evaluation of z1, z2 and z2
1 . We now go back to a more reasonable

example, using the usual reduced order modeling framework.

7.1.4 A more realistic example

Let M be some continuous solution manifold to some PDE, embedded in a well chosen Hilbert
space X. An eigenfunction Â in the span of the observables satisfies:

I

÷{–i}i, s.t Â =
qNred

i=1 –i„̃i

’u œ M, KÂ(u) = ⁄Â(u) = Â ¶ F (u).

When O is the space of scalar products with a reduced basis, this condition becomes:

÷⁄, ÷{–i} œ R
Nred

, s.t ’u œ M, < ⁄u ≠ F (u),
Nred

ÿ

i=1

–i„i >X= 0. (7.14)

Recall that in order to have a proper offline/online decomposition, we need enough of such eigen-
functions. We can state a necessary and sufficient condition: there exists N œ N,

)
Âj œ span O, j œ [1, . . . , Nred]

*

and {⁄j œ R, j œ [1, . . . , N ]} such that:

’u œ M,

;
’j œ [1, . . . , N ], < F (u), Âj > = ⁄j < u, Âj >
’j > N, < F (u), Âj > = 0.

(7.15)

This is a very stringent condition, and we cannot expect it to be satisfied for general F . I will
try to make my point a little clearer: in my opinion, the DMD method does not constitute a
proof of the validity of the linear model. It is merely a way of finding the components with a
’close to linear’ behavior in a non linear system.
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7.1.5 Link with EIM

Using as observable a small set of pointwise evaluations, say {u(xi), u œ M}i can lead to think
that this method is some kind of generalization of EIM, allowing for a larger choice of observable
space O. This is not the case, as DMD linearly fits:

{u(xi), i œ [1, . . . , Nred]} æ {F (u)(xi), i œ [1, . . . , Nred]}.

The power of EIM is that it does not reduce a non linearity to a linear (or locally linear) problem,
as do DMD and LLE methods.

7.1.6 Conclusions on DMD

I believe that the DMD’s theoretical analysis forgets that the eigenfunction of the Koopman
operator, if any, are out of reach. My intuition is that the eigenvectors coming from the least
squares approximation performed offline have nothing to do with eigenfunctions of the Koopman
operator.

I have chosen to present this method in the big data section because it is often implied
in the DMD literature that if you feed enough data, you will eventually find these Koopman
eigenfunctions. My opinion on this method is that it is a ’best linear fit’ approximation of a
non linear model. In the literature, they advise using the DMD linear proxy only locally in X.
DMD can then be assimilated to a local linearization, with all the limitations that this implies.
We end this bonus chapter by peaking into the reduction of complexity as imagined by another
community.

7.2 Machine learning

We have chosen to end this chapter by presenting a model free method developed in the ma-
chine learning community. Indeed, as stated many times in this manuscript, ROM and machine
learning have a lot in common, in terms of methodology. Tabular 7.1 recalls the equivalence
between notions. The strength of reduced order modeling is the strong theoretical background

Community Reduced Order Modeling Machine Learning

Stages
Offline Training stage
Online Prediction/Classification

Offline Reduced basis construction Feature selection

Online
Reduced basis Feature vector

Reduced Scheme Regressor

Error estimation
A priori error estimation Validation set

A posteriori error estimation ??

Table 7.1: Equivalence between ROM and machine learning

that ensures among other things, stability results and rigorous error estimations.
In this section, we follow the lines of [76]. Instead of working at a macroscopic scale on aver-

aged quantities, we use a microscopic description and study the behavior of individual particles.
From now on, we fix a set of N particles characterized by their positions and velocities.

’t, {Xk(t) = (xk(t), vk(t)), k œ [1 . . . N ]} .

173



Chapter 7. ROM and big data: a common methodology

How does a standard machine learning method goes ?

• find, in a training step, a correct set of features characterizing the state and environment
of a particle

• in a training set still, find a good regressor. It returns the quantity of interest from the
feature vectors

• online, for each evaluation, compute the feature vectors then use the regressor to classify/-
cluster/predict

A first naive idea, is to use brute force, with no modeling whatsoever. Let k be one particle.
Let J(k) be the index of some ’relevant’ neighbors. Use as feature vector the relative positions
and velocity of particles in J(k) to update the velocity and the speed of particle k. In compact
form, we want to build a regressor that does the following:

{xj(tn), vj(tn), j œ J(k)} æ
!
xk(tn+1), vk(tn+1)

"
.

This specific choice of feature vector uses translation invariance, through the choice of ’local
neighbors’. The main problem here is that with no modeling imposed, we are not using any
inertia invariance property. This problem is too complex, and as a consequence, we go from
’no model’ to ’rough model’ still in the lines of [76]. The method chosen is derived from the
Smoothed Particle Hydrodynamics (SPH) method, see for instance [91].

The features are taken as averaged quantities around each particle. For instance, let A be
some quantity of interest. It is evaluated at each point x of Ω as:

A(x) =
ÿ

jœJ(x)

mj

flj

AjW (x ≠ xj)

where W is a smooth ’window’ function, (mj , flj) are respectively the mass and the density
associated to particle j and J(x) is some neighborhood of x. The reason for this specific form is
clear when you evaluate the density at x:

fl̃(x) =
ÿ

jœJ(x)

mjW (x ≠ xj).

Now, let some particle X(t) = (x(t), v(t)). The time derivative of the velocity of this particle is
given by

d

dt
v (x(t), t) =

ˆ

ˆt
v + v · Òv

We know that this time derivative will depend on viscous and pressure forces. The choice of
features follows naturally:

• Φvisc ¥ ≠∆v(x)

• Φpressure ¥ Òp(x)

More advanced models could consider more forces such as surface tension for instance.
The regressor in that situation is chosen as a function that estimates the acceleration of

particle j from the local feature vectors. It is constructed, using some learning algorithm, during
the training stage:

!
Φ

visc(xj , tn), Φ
pressure(xj , tn)

"
æ aj(tn+1)
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The last thing to do in order to close the method is to choose an approach to update the full
state vector: I )

vj(tn), aj(tn), aj(tn+1)
*

æ vj(tn+1)
)

xj(tn), vj(tn), vj(tn+1), aj(tn), aj(tn+1)
*

æ xj(tn+1)

When using this ’model free’ approach, we are of course far from solving the Navier-Stokes
equation. As mentioned in the introduction, in this framework we loose all error estimations, as
well as key physical properties such as incompressibility, positive pressure etc.

7.3 Conclusion

This concludes this short chapter. We have presented big data ideas, sometimes applied directly
in the ROM framework, or at least that follow a similar methodology and computational cost
reduction objective. We have also, by dissecting the DMD method, presented evidence on the
fact that, when facing a challenging problem, feeding data to an empiric model is not (always)
enough. Where EIM correctly preserves the non linear nature of a transformation and provides
rigorous error estimates, the DMD does linearly fits, whatever the amount of data assimilated.
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Chapter 8

Conclusion

Looking back at the topics discussed in this thesis, it seems, at first glance, like we have ended
up pretty far from the initial objective stated in the introductory chapter. We take advantage
of this concluding chapter to try once more to give some coherence to the work that has been
presented, and to conclude on the next major steps towards the objective.

In the introductive chapter, I have highlighted the fact that a raw ROM approach, directly
applied to the target problem, was doomed to fail. The first problem, the geometric variability,
has been discussed in chapter 2 and in section 3.6. To solve it, we have introduced the notion of
local solution manifolds and local Kolmogorov n-width. The offline section was pretty straight-
forward, and the focus has been put on the construction of an efficient matching method. The
second problem is not specific to the target objective, and the issues raised can be transposed to
the resolution of a wide variety of problems. The starting point was to notice that because of
the profusion of ROM related methods, and the fact that they can be combined, and used one of
top of the other, some of the literature tends to forget some of the key, mandatory, requirements
for ROM. For instance, if the solution manifold has a large n-width, no POD/RB/EIM combo
will ever give satisfactory results. We have discussed the illustrative case of a steep convection
problem in chapters 1 and 3. We have shown how advanced numerical stabilization mechanisms
for CFD problems also fall into this category. Thus, this issue needs to be dealt with to solve the
target problem. We have proposed in the end of the introductive chapter two classes of methods.
Chapters 3, 4 and 5 are devoted to the analysis of one of them, the so-called calibration.

Calibration is sometimes being criticized because of its supposed lack of robustness. From
what I have understood, these comments are often made because calibration can be seen, at first
glance, as a variation around the shock fitting method. Indeed, the calibration function can be
seen as a ’best known shock position’. In that setting, the physically relevant speed, given by the
RH condition, is replaced by an empiric optimization procedure. Of course, seen as such, this
method does not seem very appealing. It suffers the same drawbacks as shock fitting (namely
the difficulty to extend to higher dimensions), and is even worse because it uses a non physical
shock speed.

In section 3.8, we propose an alternative interpretation: calibration as an h or p adaptive
method, tailored for ROM. We try to show here why this is a more suited analogy than shock
fitting, and answer at the same time some of the robustness concerns. First of all, the calibrated
function does not need to capture the exact the position of the shock. Using a larger calibrated
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manifold (with space derivatives for instance) would allow for some error in the calibration
function. Also, calibration can be used for more general problems than hyperbolic problems
with shocks, see section 3.9.

Shed in that light, we have one common property of all the methods proposed in this thesis.
They are a transposition of h or p adaptivity, that end up either in tailored domain decomposition,
calibration, or both. Instead of refining the computational mesh or of increasing the degree of the
(polynomial or Fourier) underlying basis, as usually performed in standard adaptive methods,
we directly tailor a basis. This fits perfectly with the ROM framework, as the premise is that we
have an a priori idea of the (local or global) solution manifolds at hand. We are not seeing the
underlying computational mesh, but look directly for an adapted basis at a continuous level.

The important ingredient of h and p adaptive methods is the construction of a refinement
function. In the most simple cases, the latter can be taken as the zones where the solutions
encounters large variations. This can for instance be measured by zones with large gradients, or
where a reconstructed Hessian has a large component. Other, more involved, methods require
the computation of error estimators. As the output of say a FE method is the best one can
say for a given computational mesh, and given trial space and test space, these error estimators
necessarily involve subcell computations. The learning phase of the ROM framework helps us in
that respect. To avoid any additional expensive, online, procedure, we rather precompute and
store offline quantities that help estimate the quality of a mesh (or more precisely a basis) to
represent a given solution manifold. The error estimator we have chosen in this thesis is the
most natural one and is given by the best projection error. Other choices could be numerically
investigated.

With this interpretation, the robustness issues that can be (and have been) raised for the
methods developed in this thesis have their exact counterpart in standard adaptive methods,
and thus, although relevant, these issues are certainly not sufficient to reject calibration as a nu-
merically viable procedure. What is true though, is that more numerical experiments should be
performed to assess the overall method. The intuition is that one should not perform adaptation
(and thus should not update the calibration parameter) at each time step, as this implies numer-
ical errors. There is a compromise to be found between reducing the n-width of the calibrated
solution manifold, but not having to update the calibration parameter at each time step. One
natural option would be to balance the estimation of the numerical errors due to the underlying
mesh interpolation, with the best projection error on the reduced basis.

I now discuss a (pretty big) missing ingredient in this thesis: the lack of numerical experiments
in some of the chapters. The domain decomposition method proposed in chapter 2 needs to be
numerically investigated, and this has not been done in this manuscript. The reason is that I
have tried to solve the matching problem and the stability issues inherent to CFD computations
simultaneously. A more realistic next step is to apply this method to simpler, smoother problems.
One evidence showing that this is a reasonable method is the fact that the ORBEM method
shares many components with the Arlequin method [44], and that the latter has been successfully
implemented on solid mechanics examples.

The optimal control method for solutions with shock proposed in chapter 5 also requires
numerical investigation. Optimal control for the one dimensional Burgers equation is a well
studied problem, and the comparison of the results obtained with the reduced method we propose
is an objective within hand’s reach. In the end of the chapter, we extend the method to the
optimal design of an airfoil. There is still a long way to go before a complete framework and
numerical experiments. We refer to the conclusion of the chapter for the unresolved issues. In any
case, the roadmap has been set up and the scariest part, which is the resolution of an equivalent
calibrated problem has been successfully tested in the numerical section of chapter 4.
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We can now conclude on what’s left to be done in order to solve the initial objective. We
split its resolution into two disjoint components:

• a robust local reduced model around one wind turbine. For this, we can either transpose
the stability and accuracy features of a fine solver to a ROM model: this will most likely
involve some form of calibration. The other option is to construct a self sufficient reduced
scheme, with a tailored stabilization mechanism, see section 1.6.1.

• a robust and accurate matching method. As discussed in chapter 2, it should allow for
independent rotations in each domains and translations between domains

Unfortunately, this thesis has not lead to firm conclusions on either of these aspects. Nevertheless,
I believe that some of the ideas and methods discussed have paved the way to a new class of ROM
methods, that could be used to solve the target problem, and more generally to solve problems
that were previously out of reach.
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Chapter 8. Conclusion
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