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1.! INTRODUCTION 

________________________________________________________________ 

Mumps is a highly contagious infectious disease that was first described by one of the fathers 

of medicine Hippocrates in his work Epidemics in 5th century BC. The epidemic of mumps 

affected people from Thasos island in Ancient Greece with specified symptoms as fever, 

headache, swelling near the ears, sore throat, and, more rarely, swollen testicles [Tsoucalas et 

al., 2013]. 

 

The word “mumps” likely comes from an old English verb (17th century) that means to grimace 

or to mumble [Online Etymology Dictionary]. The French version of “oreillons” derives from 

the clinical signs of the pain in the area of ears (oreilles) [Dictionnaire électronique de l’AF]. In 

the 18th century, the physician Hamilton found an effect of mumps disease on the central 

nervous system [T.E.C., 1970]. But only in 1945 the infecting agent, mumps virus, was isolated 

and the year later the first inactivated vaccine was developed. 

 

Nowadays, despite the fact that mumps disease mostly affects children, and the use of vaccines 

has become routinary, mumps outbreaks among highly vaccinated populations still occur. In 

my opinion, this leads to review the concept of prevention and control of viral infections and, 

emphasizes the need for searching for highly effective medicines that take into the account 

complicated viral cycle mechanisms. 

 

In this chapter, I will discuss basic concepts of the mumps disease and existing treatments 

against it, describe the molecular structure of the pathogen and the most significant objectives 

of this scientific study, i.e. the structure and interactions of the viral proteins and the functional 

role of their intrinsically disordered regions. 

________________________________________________________________ 

 

1.1.! Mumps disease 

Mumps disease is caused by mumps virus, a member of the Paramyxoviridae family, the 

morphology of which will be discussed later. Primarily, the virus affects the salivary glands 

(parotitis) that usually starts with headache, fever, muscle pain, malaise. After 2-10 days the 

symptoms disappear, in some cases (50-60% of patients) following with asymptomatic 

cerebrospinal fluid alterations, rarely with aseptic meningitis (15% of cases) and encephalitis 

(0.02-0.3%). 10-20% of postpubertal males suffer from orchitis (inflammation of the testicles) 

that can lead to permanent subfertility. Pregnant women (gestational age below 12 weeks) 

infected with mumps virus have spontaneous abortion in 25% of cases. In addition, there are 
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no reported cases of the effect of mumps disease on the foetal development. Although the 

fatality rate from mumps disease is quite low, complications concerning the central nervous 

system and reproductive organs disorders are non-negligible. Humans are the only natural 

host for mumps virus. It is believed that the virus is transmitted from human to human through 

the respiration of salivary droplets or direct contact. Mumps is a childhood disease affecting 

children from about 5 to 9 years. Nevertheless, adolescents and adults can also develop 

mumps. The incubation times varies from 16-18 days to 2-4 weeks [Rubin et al., 2015]. 

 

1.1.1.! Prevention and treatment 
No specific therapy against mumps exists. Usually, the basic treatment is symptomatic. Once 

infection with mumps virus gives a natural lifelong protection. Consequently, the use of 

vaccines in order to prevent and control the virus spreading, remains the only way of mumps 

prophylactic treatment. 

 

The generation of the first mumps vaccine that consists of inactivated virus in 1946 was 

followed by its licensure in 1948 in the USA.  It was used in the period of 1950 - 1978 but did 

not provoke efficient immune protection. Since then other countries developed a variety of 

attenuated (cultivated under conditions disabling its virulence) mumps vaccines that differed 

historically in cell substrates used for vaccine preparation and manufacturing, and are effective 

in successful reduction of mumps cases. Table 1.1 represents the list of vaccines in current use 

worldwide. 

 

In the USA, the recommended vaccination procedure consists of the introduction of two 

vaccine doses to children: first dose is given at the age of 12-18 months and second at least one 

month later, usually, before going to school, at 5-6 years. In France, first dose is introduced for 

12 months old infants and second between 13 and 24 months. Contraindications are mostly 

based on allergic reactions, thus, it is not recommended to introduce the vaccine to patients 

with immune suppression or deficiency and pregnant women [Mumps virus vaccines. Wkly 

Epidemiol Rec, 2007]. 

Jeryl Lynn vaccine 

The strain of mumps virus used in this vaccine is named after Jeryl Lynn Hillerman, daughter 

of Merck scientist Maurice Hillerman, that first collected the virus from her throat in 1963 and 

transferred first to embryonated hen’s eggs and after to chicken embryo cultures. The vaccine 

was brought to market in 1967. Currently, Jeryl Lynn is a part of combinational MMR 

(measles-mumps-rubella) vaccine. Serological studies on antibody titers showed evidence of 

80-100% efficacy (proportionate reduction in cases among vaccinated persons compared to an 
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unvaccinated group). However, during outbreaks it ranges between 63 and 96% [Hilleman et 

al., 1967; Weibel et al., 1967]. 

 

Table 1.1. Available mumps vaccines. 

Vaccine 
strain 

Genotype Manufacturer Name Main 
distribution 

area 

Jeryl Lynn A Merck / Aventis Pasteur MMRII® 

MMR-

Vaxpro® 

ProQuad® 

Worldwide 

Europe 

Worldwide 

GlaxoSmithKline (RIT 

4385 strain) 

Priorix® 

PriorixTetra® 

Worldwide 

Europe 

Netherlands Vaccine Inst. BMR vaccine® Netherlands 

Sevapharma Inc. Pavivac® 

Trivivac® 

Chech Republic 

Slovak Republic 

Dalian Jinjang-Andi 

Bioproducts 

S79 China 

Leningrad-3 - Moscow State Facility for 

Bacterial preparations 

Leningrad-3 Russia 

Leningrad-

Zagreb 

- Inst. Of Immunology, 

Zagreb 

Serum Institute of India 

Leningrad-

Zagreb 

Croatia, 

Slovenia 

Worldwide 

Urabe Am9 B Sanofi-Pasteur Trimovax® Worldwide 

Biken Pluserix® Japan 

Torii Takeda Pharmaceutical Torii Japan 

Hoshino Kitasato Institute Hokken 

Hoshino 

Japan, Korea 

S-12 H Razi State Serum and 

Vaccine Institute 

S-12 

 

Iran 

Crucell Vaccines BBM-18® Europe 

 

It was found that Jeryl Lynn vaccine consists of two distinct viral substrains JL-5 and JL-2 

[Afzal et al., 1993] that are different from each other for 414 nucleotides and exist in 5:1 ratio 

[Amexis et al., 2002]. Mechanisms responsible for the generation of these substrains are 

unclear. The newer strain RIT 4385, derived from JL-5 vaccine, showed almost the same 
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seroconversion rates of about 96% against 97% of Jeryl Lynn. Being a biological medical 

product, Jeryl Lynn vaccine has some adverse effects that are mostly based on the allergic 

reactions to the vaccine components [MMR – Vaccine use and strategies, 1998]. No 

relationship between the use of vaccine and development of encephalitis, optic neuritis and 

orchitis was found. However, mild parotitis under the administration of Jeryl Lynn was 

observed in 1% of vaccinated patients [Fescharek et al., 1990]. 

Leningrad-3 and Leningrad-Zagreb vaccines 

Developed in former Soviet Union, Leningrad-3 (L-3) vaccine was used in a large scale nation 

immunisation program since 1981 [Medynicin, 2003]. It was elaborated in guinea-pig kidney 

cell culture, further passaged in Japanese quail embryos [Smorodintsev et al., 1970]. L-3 has 

protective efficacy of 92-99% [Unanov, 1977] and only a limited number of clinical trials 

identify side effects after vaccination. However, it was reported about asymptomatic 

transmission of L-3 vaccine from healthy vaccinated to previously vaccinated patients 

[Atrasheuskaya et al., 2005]. 

 

The further attenuation of L-3 strain was obtained in Croatia with a different passage 

procedure in chick embryo fibroplast cell cultures. Leningrad-Zagreb (L-Z) vaccine has a rate 

of protection from 97 to 100% [Beck, 1989]. Nevertheless, recent studies showed evidence of 

L-Z association with aseptic meningitis  [da Cunha, 2002]. 

Urabe Am9 vaccine 

The vaccine was first licensed in Japan in 1979, and later in Belgium, France and Italy. Urabe 

is usually prepared in the amnion of embryonated hen’s eggs or in chick embryo cell cultures 

[Vesikari, 1983]. Immunogenic properties were reported to be quiet different depending on the 

country where the clinical trial investigations were made and the age of patients: from 75% in 

India to 100% in South Africa for 15 months old children [Singh, 1994]. The safety of Urabe 

vaccine is under discussion. Being a mixture of viruses, it was found to provoke the same 

adverse effects as L-3 [Sawada et al., 1993]. 

 

Other vaccines 

Among the vaccines that were officially declared to be ineffective and not recommended to 

routine use by the World Health Organisation (WHO) is Rubini (Switzerland). Torii, Hoshino, 

Miyahara and NKM-46 have limited scale use only in Japan and Korea. Their immunological 
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properties are approximately equal to those of Urabe  [Mumps virus vaccines. Wkly Epidemiol 

Rec, 2007]. 

 

1.1.2.! Mumps outbreaks 
After the introduction of vaccine, mumps disease incidences in industrialised countries 

decreased by more than 95%. However, the early 2000s were characterised by several notable 

outbreaks that occurred in the USA, Belgium, United Kingdom, Sweden, Netherlands, Canada, 

Czech Republic [Cohen et al., 2007; Sartorius et al., 2005; Vandermeulen et al., 2004; 

Brockhoff et al., 2010; Boxall et al., 2008]. In the USA, where the mumps epidemiological 

surveillance was followed from the beginning of the 20th century on, during post-vaccinated 

era, mumps epidemics with relatively large number of cases started to concern national and 

international health authorities (Figure 1.1) [Principi and Esposito, 2018]. 

 

 
Figure 1.1. Mumps cases reported in the USA from the year of the introduction of mumps 

vaccine in 1967 to nowadays (2016) with the time scale of 1996-2016 [NNDS system]. 

 

After the addition of Jeryl Lynn to the MMR vaccine and launch of second dose, reported cases 

of mumps disease decreased to an annual average of 300 in the end of the 90s and beginning 

of the 2000s. The outbreak of 2006 with 6584 registered cases in a majority of Midwest states 

was unexpected, as the overall vaccination coverage of concerned population was almost 90% 
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(62,5% two doses and 24,8% one dose) and affected mostly young adults (18-22 years old) in 

crowded environments such as schools, university campuses and dormitories [Dayan et al., 

2008]. In 2009-2010 two large outbreaks occurred in New York city and the US Territory of 

Guam. The next epidemic peak happened in 2016, located in Iowa and Illinois states, with 6369 

cases [CDCP report 2016]. In 2017 the number of preliminary confirmed cases was more than 

5500 [NNDS system]. 

 

 
Figure 1.2. The mumps epidemiological situation in France from 1985 to 2016, with scale to 

the last decade (2006-2016) [Sentinelles, 2016]. 

 

In France, the Sentinelle network has performed epidemiological data collection from 1986 on 

(Figure 1.2.), when the MMR vaccine was introduced to the national immunisation program. 

Mumps is claimed to be not a notifiable disease (disease that needs to be reported to state 

authorities) in France [Maladies à declaration obligatoire]. Despite a recent outbreak occurred 

in 2013, 16,281 mumps cases were reported. As an example, at that time sixty-two cases were 

identified among students of an engineering school in Grenoble (average age about 21 years). 

Vaccination status with one or two doses was confirmed for 27 patients (43.5%) [Maillet et al., 

2015]. However, the current critical situation with measles outbreak in Europe has led to the 

adoption of a new legislation, which obliges all children born after 1st of January 2018 to be 

vaccinated against 11 diseases (including mumps) in order to be accepted in child care facilities; 
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this regulation is also applied to medical and army staff [République française – Loi n° 2017-

1836]. 

 

In Ukraine, my homeland country, the number of mumps cases tends to progressively diminish 

after the introduction of the second vaccine dose in 2000 (Leningrad-3 was replaced by 

Priorix®, Belgium) [Hrynash et al., 2008] (Figure 1.3). 

 

Compared to the measles and rubella epidemical situation with higher disease occurrence and 

mortality, there is a global tendency that mumps is not considered to be important and 

prioritised in research investments. However, mumps outbreaks among healthy and 

vaccinated populations become an alarm bell to turn the international attention to the 

increasing risk of the appearance of infectious diseases that would be difficult to prevent and 

control in very near future [Ramanathan et al., 2018]. 

 

 
Figure 1.3. Ukrainian mumps situation for 1999-2016 [WHO/IVB database]. The grey circles 

indicate the absence of data for corresponding years. 

 

1.1.3.! Factors influencing mumps outbreaks 
Despite the fact that in several countries mumps disease is declared to be vanquished, several 

aspects affecting appearance and development of mumps epidemics still exist. It is critical to 

highlight low vaccination coverage, vaccine immune escape and waning immunity (progressive 
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loss of protective antibodies against mumps virus) as leading factors causing mumps outbreaks 

in the post-vaccine period [Ramanathan et al., 2018; Principi and Esposito, 2018]. 

Low and incomplete vaccination coverage 

Vaccine controversy and misinformation historically accompany public health immunisation 

campaigns. One of the examples of a major vaccine scare is the scandal created in 1999 by the 

fraudulent paper of the British doctor Andrew Wakefield claiming the existence of a link 

between the use of MMR vaccine and the appearance of symptoms of “autistic enterocolitis”, 

an inexistent disease that combines gastroenteric and development disorders in children, who 

received the above mentioned vaccine [Wakefield, 1998]. This publication heightened the 

critics of the safety and vaccine hesitancy among the society. Despite a vast number of scientific 

documentations and reports contradicting the harmfulness of MMR vaccine [Stratton et al., 

2001; Immunisation safety review, 2004 etc.] and further retraction of Wakefield’s paper from 

The Lancet journal in 2010, anti-vaccination movement still has a major impact on the 

declining confidence and acceptance of the vaccination procedure [Chang, 2018]. 

 

In addition to the pseudoscientific arguments against vaccine use, there are individual’s 

freedom violation reasons (religious and civil), conflicts of interests and financial motives. As 

follows, Japan banned the MMR vaccine and permanently introduced instead the national 

monovalent mumps Urabe vaccine [Why Japan banned MMR vaccine, Dly Mail Online, 2013] 

that was previously withdrawn by Canadian authorities due to its side effects (aseptic 

meningitis) [Prevention and control of mumps outbreaks in Canada, 2009]. 

 

Statistical data showed evidence that during outbreaks most patients suffering from mumps 

did not even get a single dose of mumps vaccine. The observation was made in the UK, Sweden 

and Canada [Mumps epidemic – UK, 2006; Sartorius et al., 2005; Public Health Agency of 

Canada, 2010]. Ukraine, which is currently suffering from a measles epidemic crisis, according 

to WHO and UNICEF, is the country in Europe with the lowest immunization range that in the 

last decades (2006-2016) has decreased to less than 50% [Ukraine – estimation of the 

immunisation coverage, 2017].  The access to Ukrainian educational institutions is restricted 

by the Law on protection of the population against infectious diseases [Verkhovna Rada of 

Ukraine, Law 1645-III, 2000]. This means that non-vaccinated children can not be accepted 

to kinder gardens, schools and universities which is brutally ignored by the corrupt medical 

system. Parents in doubt of vaccine safety for their children due to its low quality and under 

anti-vaccine movement, passively refuse the vaccination by falsifying health certificates. Of 
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course, these events give false data to the statistics when “officially“ vaccinated patients still 

develop preventable diseases  [Suprun, 2018]. 

 

However, comparing the percentage of vaccinated people and the extent of mumps outbreaks 

in developed European countries and the USA in last decades, the vaccine coverage is not the 

only evident problem that needs a solution. 

Antigenic variation and immune escape 

Another factor that can explain the mumps resurgence is the phylogenetic diversity of mumps 

virus circulating over the outbreaks which can differ from the viral genotype used for 

vaccination, and, therefore, the levels of the viral neutralization are not same. Currently, twelve 

mumps virus genotypes exist: from A to L. The classification and epidemiological survey is 

based on sequencing of mumps SH protein gene that varies with the strain. 

 

Several studies failed to reveal evidence of immune escape by showing high levels of 

neutralising activity of antibodies stimulated by Jeryl-Lynn mumps vaccine against different 

virus genotypes [Santak et al., 2013]. However, there are findings suggesting good in vitro 

cross-neutralisation rates between the strains for F viral protein and significantly low rates for 

HN protein [Rubin et al., 2012]. In general, identifying the viral clusters based on sequencing 

of genes encoding HN and F proteins, that are immunodominant antigens for the host 

antibodies production, is one of the promising methods to analyse and track the evolution and 

transmission of mumps virus [Gouma et al., 2016]. 

Vaccine failure and waning immunity 

All available vaccines against mumps are highly immunogenic, which has been proven 

clinically in the first years after their introduction. This can be different after a long period of 

use due to the vaccine waning immunity. On the contrary, during outbreaks, the effectiveness 

of the Jeryl Lynn vaccine was found to be very low. Due to measles outbreaks in 1980s, the 

second dose of MMR vaccine was introduced in 1989 in most European countries and the USA. 

At the same time, the effect of the second boost of mumps vaccine on induced immunity was 

not statistically followed. The secondary effects of several vaccines that are also considered as 

one of the causes of the vaccine malfunction should not be underestimated. 

 

In addition to the primary vaccine failure, waning immunity and time-dependent protection 

after the injection of vaccine were demonstrated. This means that the risk of infection by 
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mumps increases over time after vaccination, possibly more than 10 years later [Dayan et al., 

2008]. This may explain why recent outbreaks mostly concerned adult population. 

 

1.1.4.! Solutions to the mumps prevention problem 
The influence and contribution of the multiple factors in recurrent mumps outbreaks discussed 

above could not be estimated because of the lack of statistical, epidemiological and biochemical 

data. Large scale vaccination remains the best defence for prevention and eradication of 

mumps. It clearly appears that the encouragement of vaccination, its strict control by 

legislation and overall education can solve the problem of insufficient vaccine coverage in order 

to avoid outbreaks. Meanwhile, vaccine non-confidence among the global public can be 

explained by its partial inefficiency and rare but severe side effects. This problem needs to 

result in the development of novel harmless and efficient vaccine which assures the society in 

a safety and tolerability of vaccination. 

 

The problem of vaccine immunisation properties declining over time can be addressed by the 

introduction of a third MMR vaccine dose - a promising preventive action was shown during 

acute mumps outbreaks at the University of Iowa, USA, in 2015 [Cardemil et al., 2017].  

However, the immune stimulating effect of the introduction of the additional booster is 

temporary and rapidly decreased over time. Certainly, the immune escape is a second 

argument for the correction, improvement and optimisation of existent vaccines. Strategies of 

introduction of specifically structured and polyvalent vaccines for each epidemical situation 

were proposed [May et al., 2017] as emergent solutions. 

 

The first mumps vaccine that saved thousands of lives was invented more than 50 years ago 

with limited knowledge about the mechanisms of viral invasion and host immune response - it 

simply worked. Nowadays, it is important to fill the gaps between the epidemiological analysis 

carried out manually and discoveries about viral behaviour under human infection at the 

molecular level. In order to develop a targeting vaccine or any other antiviral medicine, more 

research needs to be dedicated, firstly, to the study of virus components (proteins and RNA) 

and their interactions with host factors, also in the context of mumps genotype diversity.  

 

1.2.! Mumps virus 

1.2.1.! Paramyxoviridae family 
Mumps virus (MuV) belongs to the family Paramyxoviridae, genus Rubulavirus. 

Paramyxoviridae family members, from Greek para (alternate) and myxa (mucus) due to the 

virus binding to host mucoproteins, are classified in Mononegavirales order of membrane 
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enveloped nonsegmented single negative strand RNA viruses (Figure 1.4). The classification is 

based on common morphology criteria, genome organisation and biological functions of viral 

proteins and nucleic acids. Until 2016, the Pneumoviridae family was formally a part of 

Paramyxoviridae and was named as subfamily Pneumovirinae [Afonso et al., 2016]. Having 

some structural and functional similarities with Paramyxoviridae family, Rhabdoviridae, 

Filoviridae and Pneumoviridae members will also be discussed in this manuscript.  

 

 
Figure 1.4. Virus classification of Mononegavirales order according to the recent taxonomy 

[ICTV, 2017] with examples of viral species and the position of mumps virus in red. 

 

1.2.2.! Virion structure 
Paramyxoviridae viral particles (virions) are mostly spherical. However, they can be 

pleomorphic (different in size and shape) as well as filamentous. For example, the diameter of 

these particles varies from 110 to 540 nm for Sendai virus (SeV), 50-510 nm for measles virus 

(MeV), and the size for MuV virions ranges from 100 to 600 nm [Cox & Plemper, 2017]. 

 

Virions enveloped by a lipid bilayer derived from the host cell membrane from which the virus 

buds (Figure 1.5). Glycoproteins are inserted in the membrane and are easily visualised by 

electron microscopy as “spikes” positioned 8-10 nm from the virus surface. Two glycoprotein 

complexes hemagglutinin-neuraminidase (HN) and fusion (F) proteins are essential for virus 

attachment to cell receptors and fusion with the host plasma membrane. This process occurs 

under neutral pH conditions. Inside the virus, the viral RNA is enveloped by the nucleoprotein 

(N) in filamentous structures called nucleocapsids (NCs). NCs together with the 
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phosphoprotein P (a polymerase cofactor) and large protein L (the viral RNA-dependent RNA-

polymerase) form the transcription-replication complex. The matrix protein (M) connects 

external and internal parts of the virion by associating with N and glycoproteins. Rubulavirus 

members, such as MuV and parainfluenza virus 5 (PIV5), also possess a small hydrophobic 

protein (SH) with unclear function [Knipe & Howley, 2013]. 

  

 
Figure 1.5. Schematic representation of MuV particle. Illustrated relative molecule size, 

protein abundance and relative localisation are drawn approximately [ViralZone, 2009]. 

 

1.2.3.! Viral genome 
The size of Paramyxoviral RNA genomes ranges between 15,000 to 19,000 nucleotide base 

pairs. Its short non-coding 3! extremity (“leader”) of about 50 nucleotides is a signal for 

initiation of RNA synthesis by the viral polymerase and transcription to subgenomic, capped 

and polyadenylated messenger RNAs (mRNAs). Another control region is located in the 5! end 

(from 50 to 161 nucleotides) and is called “trailer” (Figure 1.6). After protein biosynthesis, the 

trailer functions as a signal for genome packaging. The antigenome trailer becomes the 3! 

promoter for negative polarity genome replication [Noton & Fearns, 2015]. 

 



 21!

The viral genome encodes for 5-9 proteins. The order of genes that starts with N, follows with 

P/V/I, M, F, HN and ends with L (with additional gene for SH between F and HN) is highly 

conserved among Paramyxoviridae family members. However, length, nucleotide 

composition and some protein names are different (Figure 1.6). Between the boundaries of 

protein genes there are intergenic regions with length of 3 nucleotides for MeV and SeV, and 

quite variable (1-47 base pairs) for MuV and PIV5. The viral RNA has an extended coding 

capacity by the mRNA editing through overlapping of open reading frames (ORFs): one coding 

for P protein and two others leading to the further generation of different proteins: V/I, V/W 

etc [Field’s Virology, 2013]. 

 

 
Figure 1.6. Schematic representation of the viral RNA genes of typical members of 

Paramyxoviridae family with indication of genome length in bp. 

 

Inside the host cell the viral genome is always found associated with N that protects it from 

ribonuclease digestion (Figure 1.7). In addition, capsids rather than naked RNA serve as 

template for mRNA and for the positive strand (antigenome) synthesis [Acheson, 2011]. Each 

nucleoprotein unit binds to six RNA residues [Gutsche et al., 2015; Alayyoubi et al., 2015] by  

following the “rule of six” [Calain & Roux, 1993]. Under the replication of RNA chains at 5! end, 

first 6 nucleotides become immediately packaged into one N molecule. According to this rule, 

for further polymerase recognition, the 3! end of nucleotide sequence needs to be a multiple of 

6. The rule could be evolved from the mechanism of prevention of RNA edited genes replication 

and encapsidation, and, therefore, generation of erroneous virions [Acheson, 2011]. 

 

1.2.4.! Nucleoprotein 
The gene encoding nucleoprotein is the first gene to be transcribed in Paramyxoviridae 

genome. Its size ranges from 489 to 553 amino acids throughout the paramyxoviral family. 

Structurally N is composed of two distinct regions: conserved among Mononegavirales - a 
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structured Ncore and a non-conserved Ntail (Figure 1.8), which is disordered, i.e. without 

stable three-dimensional structure. Ncore is separated in two subdomains - the N- and C-lobes 

terminated by flexible loops to N- and C-arms respectively.  

 
Figure 1.7. Electron micrographs of nucleocapsids isolated from cells infected by different 

Paramyxoviridae [Finch & Gibbs, 1970]. 

 

 
Figure 1.8. Schematic representation of some Paramyxoviral N sequences with important 

functional regions. Folded domain Ncore is represented in cyan rectangles, N- and C-arms in 

50 nm
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white rectangles, disordered Ntail in bold line and transient secondary structure MoRe in black 

rectangle. 

 

Generally, Ncore is responsible for binding to the viral RNA. For MeV, the function of Ntail, 

especially, of its molecular recognition element (MoRE), a transient secondary structure 

region, is to associate with the  phosphoprotein, as part of the integral polymerase complex 

[Longhi et al., 2003; Chan et al., 2004; Houben et al., 2007; Jensen et al., 2008; Jensen et al., 

2011; Communie et al., 2013; Habchi et al., 2011; Johansson et al., 2003]. Contrary to other 

representative Paramyxoviridae, MuV Ntail was not found to interact with P, and its function 

therefore remains unknown [Kingston et al., 2004]. In infected cells, N exists in two forms: 

associated with RNA in NCs and in monomeric soluble N0 form. 

Nucleocapsids and ring-like particles 

N has a high affinity for the RNA and encapsidates both negative and positive viral genomes. 

Apart from protection against RNA degradation, the N envelope limits annealing of mRNA to 

complementary genomic RNA, and also participates in assembly of NC into virions by 

interacting with matrix proteins [Field’s Virology, 2013]. Practically, bacterial expression of N 

alone leads to the formation of NCs or/and ring-like particles (RLPs), also called N-rings, 

always with incorporation of random RNA sequence. 

 

Known Paramyxoviridae NCs have a left-handed helical symmetry of diameter about 20 nm 

and length of about 1 µm, around 13 nucleoprotein units incorporated per turn. Pitch and 

central hole are about 5 nm [Egelman et al., 1989; Schoehn et al., 2004; Cox et al., 2014]. For 

the moment (September 2018), only one high resolution cryo-EM reconstructed structure of 

MeV NC is available [PDB 4UFT] (Figure 1.9B, C).  

 

According to Gutsche et al., 2015, besides the RNA interaction that occurs between the Ncore 

N- and C-lobes, oligomerisation of nucleoprotein units is mediated by N- and C-arms 

interaction with neighbouring Ni+1 and Ni-1 units respectively. In more detail, the N-arm is 

inserted into the groove of C-lobe of Ni+1 while the C-arm remains bound on top of the C-lobe 

by leaving the intrinsically disordered Ntail to go between NC helical turns (Figure 1.9E, F) 

[Jensen et al., 2011]. The presence of Ntail allows the NCs to be more flexible. Consequently, 

NC trypsination leads to the cleavage of Ntail and the appearance of more coiled rigid NCs with 

low pitch between turns [Desfosses et al., 2010]. The same effect was discovered under both 

low and high salt conditions [Haggeness et al., 1980]. 
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Concerning MuV, several structural models were proposed for MuV nucleocapsid in low 

resolution  [Cox et al., 2014; Severin et al., 2016]. In the first case, NCs were purified from 

virions formed in transfected cells. These NCs showed a significant level of flexibility. 

Consequently, the structure of the nucleocapsids was solved at relatively low (18 Å) resolution. 

Furthermore, the authors investigated a 25 Å structure of the complex NC-PCTD which appeared 

having larger diameter than NC alone (Figure 1.10). In the study by Severin et al., 2016, the 

resolution of the structure was improved to 10,4 Å by coexpressing full length N and P with 

further proteolysis and RNAse I treatment. As a result, the NCs were empty (RNA free). 

 

 
Figure 1.9. Cryo-EM reconstructed structure of MeV NC. Schematic protein sequence of MeV 

Ncore with important regions (A). Isosurface representation of 3D NC in front (B) and in 

cutaway (C) with RNA in green. Ncore monomer represented in ribbon (D). The way N 

protomers interact with each other from exterior (E) and interior (F) of NC helix [Gutsche et 

al., 2015]. 

 

RLPs formation was observed for numerous Mononegavirales: RSV, VSV, rabies, PIV5 and 

MuV [Tawar et al., 2009; Green et al., 2006; Albertini et al., 2006; Alayyoubi et al., 2015; Cox 
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et al. 2009] (Figure 1.11). Consistently, N-rings do not exist under viral infection. However, 

they can be considered as building blocks for NCs and are usually more amenable to structural 

biology studies. 

 

 
Figure 1.10. Cryo-electron microscopy reconstruction of MuV NCs (A) and complex PCTD-NCs 

(B) from Cox et al. In the complex of N (in blue/green) and P (yellow/red), it is still difficult to 

confirm as the last could be interpreted as part of N C-terminal domain. Recombinant RNA-

free NCs (in grey) were compared to authentic nucleocapsids (in blue) [Severin et al., 2016]. 

 

 
Figure 1.11. Mononegavirales intact recombinant nucleocapsids and ring-like particles 

produced from bacterial cell culture. Adapted from [Alayyoubi et al., 2015; Cox et al. 2009; et 

al., Ruigrok et al., 2011; Green et al., 2010; Peng et al., 2016]. 

 

The crystal structure of PIV5 N-rings [PDB 4XJN] reveals 13 nucleoprotein molecules 

enveloping 78 nucleotides. As for measles virus NC, the diameter of RLP is measured to be 20 

nm (Figure 1.12). PIV5 rings have narrow outside top which is positively charged and wide 

inside bottom which is negatively charged [Alayyoubi et al., 2015], probably, by attracting them 
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to each other, this can be modulated by Ntail proteolysis and ionic conditions [Cox et al., 2009]. 

The stabilisation of Ncore lobes and arms through N protomer oligomerisation is essentially 

identical to that described above for MeV NC. 

 
Figure 1.12. Crystal structure of PIV5 RLPs in cartoon representation which contains 13 N 

units marked in different colours and RNA strand in black, white rectangles indicate NTD and 

CTD of Ncore (A). Molecular surface representation of N-rings coloured in the respect of 

electrostatic potential ranging from −10 kT/e(red) to +10 kT/e (blue) from the top (B), bottom 

(C) and side views (D). RNA is marked in salmon and with white arrow [Aggarwal et al., 2017]. 

 

For Mononegavirales, post-translational modifications (PTMs) of N, in particular, 

phosphorylation, can influence viral genome transcription, replication and stability [Hagiwara 

et al., 2008; Huang et al., 2011; Yang et al., 1999]. For MuV N, a major site of phosphorylation 

was identified at the position of S439 located in Ntail [Zengel et al. 2015]. The authors show, 

that mutation of S439 to A increased viral RNA synthesis, which is unique among other 

Mononegavirales members. 
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N0P complex 

Another functional form of nucleoprotein is the N0P complex in which an N-terminal region of 

P chaperones N in its monomeric RNA-free state. During viral replication, formation of N0P 

complex is necessary in order to prevent assembly of newly synthetized nucleoprotein 

molecules which serve for nascent RNA encapsidation. The increasing number of available 

atomic resolution N0P structures of Paramyxoviridae and related viruses (NiV, PIV5, MeV, 

VSV, EBOV, HMPV, MARV) allows the determination of the structural role of P peptide in N0P 

(Figure 1.13A).  

 

 
Figure 1.13. N0P complexes of different Mononegavirales. P peptide is in violet and Ncore is 

in cyan (A). Overlay of PIV5 N in monomeric N0P (in green and its CTD in light green) and 
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polymeric (in salmon) NC form (B). RNA is marked in black, C-arm in blue and N-arm in violet, 

P peptide in red [Alayyoubi et al., 2015] (B). 

 

Superimposition of nucleoprotein structures in monomeric N0 and oligomeric NC states shows 

the existence of two switchable Ncore conformations. Open conformation is adopted by N0P, 

while in the presence of RNA, the N- and C-lobes are in a closed conformation (Figure 1.13B), 

meaning that, probably, P hinders the closure of the N molecule and prevents RNA 

encapsidation. 

 

The common feature for P peptide is its binding mostly to C-lobe of Ncore at the place of the 

neighbouring N-arm from Ni-1 protomer in NC. However, there are some differences in P and 

N binding. For Rhabdoviridae, in particular VSV [Leyrat et al., 2011], P was found to occupy 

the RNA-binding pocket and keeps N’s closed conformation. For NiV N0P, P peptide interacts 

with the surface on N that, in the capsid, interacts with both N- and C-arms [Yabukarski et al., 

2014]. However, for example, in HMPV N0P, C-arm of N blocks the RNA binding site [Renner 

et al., 2016]. 

 

Practically, in order to keep MeV N in RNA-free state, N was coexpressed with N-terminal 

region of P [Guryanov et al., 2015], which makes possible NC self-assembly experiments under 

addition of short viral RNA to N0P [Milles et al., 2016]. However, this conversion was not 

observed for EBOV N0P [Kirchdoerfer et al., 2015] which can be explained by the fact that 

assembly depends on RNA sequence. Equally, the deletion of nucleoprotein N- and/or C-arm 

parts from PIV5, NiV and EBOV N0Ps which was done for complex stabilization prevents it 

from oligomerising in presence of RNA [Aggarwal et al., 2017; Yabukarski et al;, 2014; 
Kirchdoerfer et al., 2015]. 

 

1.2.5.! P gene proteins 
As mentioned before, for several subfamilies of Paramyxoviridae three different proteins can 

be generated from the P gene upon mRNA editing – P, V and I (W). This phenomenon is based 

on the insertion of one or two non-templated guanosines (G) when viral polymerase slides back 

on the mRNA sequence (Figure 1.14). For measles and Sendai viruses expression of P protein 

is a result of non-edited gene sequence, whereas in MuV and PIV5, phosphoprotein ORF is 

altered by addition of two G-residues (Table 1.2) [Vidal et al., 1990; Paterson & Lamb, 1990; 

Curran et al., 1991; Cattaneo et al., 1989; Lo et al., 2009].. P, V and I (W) share the same N-

terminal and have different C-terminal regions. 
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Phosphoprotein 

Despite various phosphoprotein lengths (from 391 amino acids for MuV to 709 for NiV) and 

low sequence homology in the intrinsically disordered region, the architecture of 

Paramyxoviridae P proteins is very similar (Figure 1.15). The N-terminal domain (NTD) 

predicted to be in a random coil conformation. The last 50 residues of the C-terminal domain 

(CTD) are structured (also named XD) and found to be conserved among viral family members. 

And finally, for several viruses (MuV, MeV, SeV, NiV, MARV etc), the P oligomerisation 

domain (OD), situated in the middle of polypeptide sequence, adopts a coiled coil structure, 

whose conformation has been resolved by X-ray crystallography. As concerns functional 

properties, in addition to the formation of the complex with L, P interacts with N as well as 

some host cellular proteins. 

 

Table 1.2. Different Paramyxoviridae P gene ORFs. 
 

Examples 

mRNA insertion 

0 + 1G + 2G 

PIV5, MuV V I P 

MeV, SeV, NiV, HeV P V W 

NDV P V I 

 

Generally, approximately the first 60 residues of intrinsically disordered PNTD are responsible 

for interaction with Ncore in order to form the N0P complex [Guryanov et al., 2015; Renner et 

al., 2016; Leyrat et al., 2011; Yabukarski et la., 2014; Aggarwal et al., 2018]. Recently, by 

replacing the short peptide by full-length MeV P N-terminal domain in N0P complex, another 

region was found in the middle of NTD that weakly interacts with Ncore and is important for 

viral RNA transcription-replication processes [Milles et al., 2018]. Concerning MuV PNTD, it 

was reported to bind RLPs [Cox et al., 2013] and uncoil authentic nucleocapsids [Cox et al., 

2014]. 

 

Connected to OD by a flexible linker, the C-terminal domain of P forms a 3-helix bundle (Figure 

1.16). Crystal and NMR structures are available for MeV, HeV and SeV, as well as for MuV 

[Johansson et al., 2008; Blanchard et al., 2004; Kingston et al., 2008]. However, under 

physiological conditions recombinant MuV XD does not have a stable tertiary structure in 

solution, for this reason, crystallisation occurred under the addition of TMAO (trimethylamine 

N-oxide) [Kingston et al., 2008]. In contrast to morbillivirus, respirovirus and henipavirus, 

where XD binds to Ntail [Longhi et al., 2003; Johansson et al., 2003; Chan et al., 2004; 
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Houben et al., 2007; Habchi et al., 2011], there is a clear evidence, that MuV P C-terminal 

domain interacts with Ncore when Ntail was deleted [Kingston et al., 2004]. Another 

interaction site in the position between two neighbouring nucleoprotein units in NCs was 

discovered for VSV [Green et al., 2009].  

 

 
Figure 1.14. Schematic representation of MuV mRNA editing process in order to get V, I and 

P proteins. 

 

 
 

Figure 1.15. Schematic representation of some Paramyxoviridae P sequences with important 

functional regions. Folded domains are represented with violet rectangles, disordered domains 

with bold lines. 
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Figure 1.16. Conserved three-helix bundle structures of Paramyxoviridae phosphoprotein 

C-terminal domain (XD), that starts from blue N- and ends by red C-termini. SeV XD is an 

NMR-solved structure, only one conformation from ensemble is visualised. 

 

 
Figure 1.17. Crystal structures of Mononegavirales phosphoprotein (or polymerase cofactor 

analogues) oligomerisation domains. All ODs have parallel coiled coil orientation except MuV 

which is an antiparallel dimer of parallel dimers. 
 

Phosphoprotein is a self-associated oligomer. For all known Mononegavirales, the OD is 

represented by parallel orientation of two, three or four monomeric units bound to each other 

by hydrophobic surfaces (Figure 1.17). The oligomerisation mode is different and unique for 

MuV: a pair of parallel α-helices interacts with a second one in the opposite direction by 

making 2 NTD and 2 CTD extremities on both sides of the P protein [Cox et al., 2013; Pickar et 

al., 2015]. This finding is in agreement with the tendency of MuV P N- and C-terminal domains 

to interact with NC. The proposed mechanism is based on the hypothesis that under viral 

genome replication, P NTD and CTD act together by inducing changes in NC. MuV PCTD (XD) 

specifically recognises NC, while PNTD uncoils NC by disrupting N-N interactions and by 
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opening the “gate” to the RNA for viral polymerase. In addition, uncoiling of NC may facilitate 

and enhance viral RNA synthesis, as was suggested from minigenome activity in the presence 

of an excess of isolated PNTD [Cox et al., 2014]. 

 

Rich in threonines and serines, especially in the disordered regions, P protein was found to be 

heavily phosphorylated in infected cells. In general, Paramyxoviridae protein 

phosphorylation plays a major role in regulation of viral RNA synthesis [Fuentes et al., 2010]. 

Post-translational modification occurs with the help of host kinases: casein kinase II (CKII) for 

RSV and MeV P [Villanueva et al;, 1994; Das et al., 1995], protein kinase C isoform zeta (PKC-

ζ) for HPIV3 and SeV P [De et al;, 1995; Huntley et al., 1997], Polo-like kinase 1 (PLK1) for 

PIV5 P [Sun et al., 2009]. Having structural similarities with the sequentially closest PIV5, 

MuV P phosphorylation with PLK1 was tested [Pickar et al., 2015]. The authors found that 

interaction with N enhances P phosphorylation which involves residues S292 and S294 located 

in PCTD linker; the binding site for associated kinase was identified to be in PNTD region (T147). 

Overall phosphorylation decreases MuV viral gene expression. 

V protein 

In addition to the unfolded part of P N-terminal region, Paramyxoviridae V protein has a 

conserved C-terminal region composed of 7 cysteins and 1 tryptophane that bind two Zn2+ ions 

and forms a zinc-finger domain (ZFD) (Figure 1.18A, B). 

 

 
Figure 1.18. Schematic representation of MuV V and P structural domains (A) and ZFD (B) 

which consists of two Zn-cations (in red) coordinated with 1 histidine H and 7 cysteins C (in 

grey), other residues are shown in one letter code. 

 

V protein plays an important role in viral pathogenesis by supressing host immune response. 

It blocks several cellular signalling pathways early after infection. V antagonises the antiviral 

activity of MDA5 (melanoma differentiation-associated gene 5) which detects viral cytosolic 

RNA and induces the signalling cascade of interferon production [Andrejeva et al., 2004]. The 

ZFD of PIV5 V in complex with MDA5 was recently crystallised [Motz et al., 2013]. 
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V interacts with STAT1/STAT2 (signal transducer and activator of transcription), host 

transcription factors for α/β interferon gene expression, and mediates their degradation 

[Rosas-Murrieta et al., 2010; Caignard et al., 2009]. Targeting DDB1 (DNA damage-binding 

protein 1) is the way V protein induces STAT2 ubiquitination. It is interesting that despite 

having a disordered region on its N-terminal, full-length PIV5 V protein was crystalized with 

DDB1 in order to hijack the ubiquitin ligase complex [Li et al., 2006]. This result leads to the 

hypothesis that having already a structured cysteine-rich domain, VNTD could be entirely folded 

upon the interaction with viral and host cell partners. 

 

As about interaction with viral proteins, association of V and N was described for PIV5 and 

SeV [Randall & Bermingham, 1996; Horikami et al., 1996]. The ability of PIV5 VNTD to 

chaperone N in a monomeric N0 complex that is more stable than with P, might be required 

for RNA transcription inhibition by regulating a switch between the viral transcription and 

replication which will be described further. VZFD also binds to N and serves to inhibit RNA 

synthesis by an unclear mechanism [Yang et al., 2015]. 

I protein 

The function of the I protein, also known as W and D, is not clearly defined. I comprises on 

average less than 5% of total P/V/I transcripts. Practically, I protein is a truncated PNTD protein 

(for MuV I is 171 amino acids long with its first 156 residues shared with P) and in theory, it 

can be considered to potentially interact with N and together with P and V control viral RNA 

synthesis. 

 

1.2.6.! Large protein 
The viral polymerase L is the largest protein among other viral structural units (molecular 

mass of about 250 kDa), it is found in low amounts inside the virions. For the moment, no 

Paramyxoviridae L structure is available. However, the structure of polymerase of vesicular 

stomatitis virus (VSV) with fragment of P, was resolved recently [Liang et al., 2015] (Figure 

1.19A). The viral polymerase protein sequence is mostly conserved among Mononegavirales 

and is structurally composed of six functional domains (Figure 1.19B). The first three domains 

(RdRp region) form a catalytic core. In particular, domain II is involved in RNA binding by 

positively charged regions, domain III has a conserved active site GDNQ motif for RNA 

polymerisation. Domains IV and V (capping region) participate in polyadenylation and 

capping of mRNA. Methyl-transferase function is performed by domain VI and partially by C-

terminal domain (CTD). Connector between V and VI domains might be responsible for 

structural reconfiguration [Liang et al., 2015; Fearns & Plemper, 2017]. Binding of polymerase 
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to phosphoprotein, which actually constitutes the polymerase complex, serves as a bridge to 

link the nucleocapsid and L, A more detailed role of polymerase in viral genome transcription 

and replication will be discussed later. 

 
Figure 1.19. Structure of VSV polymerase [PDB 5A22] with identified domains in blue, green, 

yellow, orange and red (A). Linear representation of polymerase sequence for two viral species 

RSV and SeV from Pneumoviridae and Paramyxoviridae families respectively showing the 

amino acids boundaries of the domains (B) [Fearns & Plemper, 2017]. 

 

1.2.7.! Other viral proteins 

Glycoproteins 

Being an important antigenic species that is detected by the host immune system, for the 

moment, viral glycoproteins are the most intensively studied among Paramyxoviridae viral 

proteins. The HN glycoprotein (also known as H or G) is responsible for the virus attachment 

to the host cell surface receptors.  It appears as a homotypic dimer and is classified as a type II 

integral membrane protein. HN has a propeller-like head fold with receptor-binding ability 

and the enzymatic activity is carried out by the C-terminal part of the protein, while the N-

terminus is a transmembrane part with cytoplasmic tails. After attachment, another 
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glycoprotein named F protein mediates the viral envelope fusion with the host cell membrane. 

This process is pH independent and is one of the crucial criteria for Paramyxoviridae family 

classification. Unlike HN, the homotrimeric fusion protein is a type I integral membrane 

protein, its C-terminal part is placed inside the plasma membrane. The long external N-

terminal part consists of two subunits connected to each other by a disulphide bridge which is 

cleaved under fusion of membranes and virion entry to the host cell. Characteristic for 

rubulavirus, SH protein is supposed to block virus induced apoptosis by forming ion channels 

in the membrane [Cox & Plemper, 2017]. 

Matrix protein 

In virions, M multimerises and creates grids which interact with lipid membranes and 

cytoplasmic tails of HN and F proteins. At the same time, M dimer associates with 

nucleocapsids through positively charged regions [Battisti et al., 2012]. For several 

Paramyxoviridae, transient expression of M resulted in formation of empty virus-like particles 

(VLPs) [Harrison et al., 2010].  However, in the case of rubulavirus, in particular, MuV, VLP 

assembly can occur only co-expressing M, N and glycoproteins [Schmitt et al., 2009]. It is 

believed that budding and viral particle release is triggered by MuV M-N interaction. Several 

crystal structures of dimeric M are available in the PDB database: HeV (PDB 6BK6), NDV (PDB 

4G1G), RSV (PDB 4D4T) and VSV (PDB 1LG7). All of them have similar structural properties. 

 

1.2.8.! Viral life cycle 

To summarise the way paramyxoviral proteins act together under infection of a host cell, a 

detailed description of viral life cycle will be provided in this subchapter which was written 

with the help of Acheson, 2011; Knipe & Howley, 2013; Ortín & Martín-Benito, 2015, Fearns & 

Plemper, 2017. 

 

After attachment of the virus HN protein to cellular receptors, the viral membrane fuses with 

the host cell membrane with the help of the F protein that goes through a conformational 

change on its coiled coil domain and brings the two membranes together. Due to different pH 

levels inside the virion and the cell, M-N contacts disrupt which leads to the release of the 

nucleocapsid and P and L proteins into the cytoplasm where all processes of viral gene 

expression occur (Figure 1.20). As all the processes of gene synthesis occurs in the host cell 

cytoplasm, the virion polymerase uses cellular ribonucleoside triphosphates. It is assumed that 

Mononegavirales genome is not infectious by itself, only when it is encapsidated by N and 

associated with P and L. 
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Figure 1.20. Schematic representation of Paramyxoviridae virus life cycle (example of MuV) 

that occurs in host cell cytoplasm and starts from virion attachment to cell receptors (1), its 

fusion with the cellular membrane (2) and release of the nucleocapsid (3). With the help of 

viral polymerase, the encapsidated parental RNA is transcribed into mRNAs (4) in order to 

allow for translation (5) of viral proteins necessary for further replication (6). HN, F and SH 
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proteins after translation are transported from endoplasmic reticulum to the Golgi apparatus 

and after to the plasma membrane (not shown). Primary RNA is first replicated to the 

antigenome (6) and then copied to the negative strands RNA copies (7). Resulting 

encapsidated genome and proteins are assembled to the virion (8) which buds from cellular 

membrane (9). 

 

The viral genome has negative polarity, in order to be multiplied, it needs to be first copied into 

the positive complementary antigenome nucleotide sequence. But first, parental RNA is 

transcribed into the mRNAs for the corresponding protein genes. After accumulation of the 

necessary viral proteins, genome amplification can be started. 

 

 
Figure 1.21. Proposed model of viral transcription for MuV. The initiation occurs under the 

polymerase recognition of NC by phosphoprotein XD and its further uncoiling by disordered 

NTD. Elongation starts by adding methylated cap to the nascent mRNA and ends by 

polyadenine sequence. After transcribing the first gene, the polymerase can continue sequester 

the next gene or switch to the replication mode. 

 

Transcription begins from polymerase template recognition following by generation of 

initiation complex at 3! leader region of viral RNA. L in cooperation with P transcribes a short 

region of 40-60 bp, after termination releases an uncapped leader RNA and starts mRNA 

synthesis of first protein gene. L adds methylation G cap to the  5! end of the growing mRNA, 

elongates it and reaches the polyadenylation site in 3! end which is post-transcriptionally 

generated from complementary polyuracil part. The same process is repeated for the second 
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RNA region in the sequence of protein genes. The mRNAs produced in this way are not 

encapsidated by N. After release of mRNA the polymerase can dissociate from the substrate 

and associate back to the leader. This is why, more proteins are produced close to the leader 

region of parental RNA: N, P and M, rather than L, gene of which lies last on viral genome 

sequence (Figure 1.21). 

 

The switch between transcription and replication is regulated by nucleoprotein concentration, 

as N is needed to envelope all the products of RNA multiplication and avoid their annealing 

with viral mRNAs. During genomic replication, L changes the mode of synthesis, does not 

recognise termination signals and continues to make the full-length antigenome which is 

immediately covered with N with the help of the earlier described N0P complex. The next step 

is L and P association with the trailer end of the positive strand RNA and its further replication 

into negative strand viral RNAs, which are then encapsidated by N (Figure 1.22). It is important 

to note, that the first 6 residues on the 5! antigenome and 5! genome RNA are detected by N 

which upon interaction with them induces assembly of other N-units in NC without specific 

RNA sequence recognition. 

 

 
Figure 1.22. Model of viral genome amplification after generation of antigenome for MuV. 

Replication can be possible when there are enough produced nucleoproteins chaperoned by 

phosphoprotein (N0Ps). Elongation occurs with the help of N0P and results in formation of 

negative strand RNA. 
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During synthesis, envelope proteins are inserted into the membrane of endoplasmic reticulum 

and are transported via the Golgi apparatus to the cell membrane. After replication, newly 

synthetized nucleocapsid also migrates to the plasma membrane and interacts with M which 

associates with HN and F tails. When the whole complex of proteins is formed, the virion starts 

budding from the membrane (Figure 1.20). The effect of interferon inhibition by V can occur 

during the viral RNA replication process. 

 

Understanding the behaviour of the virus inside the human cell is important for development 

of antiviral drugs. Therefore, each step of viral life cycle envolving host and viral proteins can 

be considered as a potential therapeutic target. The nature and mechanisms of antivirals 

ranges from small molecules to short peptides and RNAs, that either block the protein 

conformation or perturb the interaction substrate. Targeting proteins could not be a great idea 

due to continuous mutagenesis [Aguilar & Lee, 2012]. However, immunostimulants as a part 

of host-directed therapy are now widely used during infectious diseases outbreaks. 

 

The most promising inhibition approach was made for viral polymerase catalytic activities 

[Fearns & Plemper, 2017]. Nucleoside analogue inhibitors, especially for RSV and VSV 

treatment, act as chain terminators during viral replication [Aljabr et al., 2015]. Non-

nucleoside antivirals are mostly based on binding to N and perturbing viral replication 

complex formation [Challa et al., 2015]. Therefore, intrinsically disordered protein regions 

(IDRs) of P and N can be also considered for drug development strategies. 

 

1.3.! Intrinsically disordered proteins 

Proposed about 130 years ago by Emil Fischer, the concept describing the “lock-and-key” 

mechanism of enzyme catalysis is not applicable to intrinsically disordered proteins (IDPs), 

which became the subject of scientific interest in the last two decades. IDPs and IDRs do not 

adopt a stable secondary and tertiary structure under physiological conditions and in the 

absence of an interaction partner, they are usually described as an ensemble of several 

structural conformations. The amino acid composition determines their inability to fold. 

However, they modulate interactions with other molecules [Tompa, 2002; Dunker et al., 

2002]. 

 

IDPs are predicted to compose one third of eukaryotic proteomes, and were found to play a 

crucial role in cellular signalling and regulation processes which were linked to the 

development of neurogenerative disorders, several cancers and type II diabetes [Dyson & 

Wright, 2005; Uversky, 2013].  
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The absence of stable structure can be viewed as an important advantage of IDPs. The ability 

to bind several partners, opens the opportunity for certain multifunctionality enabling several 

interaction sites along the polypeptide chain. It is also common for IDPs to contain molecular 

recognition sites and undergo disorder-order transition upon binding. However, it is also 

suggested, that upon interaction IDPs form so called “fuzzy complexes” by remaining mostly 

unfolded in bound state. In addition, IDPs are able to self-associate, sometimes in the presence 

of nucleic acids, and form separate protein-dense droplets. These properties are widely used 

in viral transcription-replication machineries: the organelles are also called varial factories, or 

Negri bodies, well studied for RABV [Lahaye et al., 2009; Nikolic et al., 2017]. IDPs are 

accessible for PTM enzymes which can induce protein structural changes, their stabilisation 

and destabilisation [Theillet et al., 2012]. 

 

Of course, due to IDP heterogeneous and fluctuating structure, classical drug discovery 

methods cannot be used for targeting them, as they almost do not reach nanomolar affinities 

with therapeutic agents which is one of the main requirements for drug licensure [Tsafou et 

al., 2018]. Therefore, the design of the drug needs to be changed for these challenging systems, 

but this would be possible only after clear understanding of the nature of dynamic 

conformations describing IDPs behaviour. 

 

1.3.1.! Characterisation of IDPs 
The convenient way to represent protein conformations is to use free energy landscapes 

(Figure 1.23). In statistical mechanics, for folded proteins, the most populated conformational 

(native) state corresponds to the minimum which can often be determined experimentally (by 

crystallization or NMR, for example), resulting in its three dimensional coordinates being 

made available in the PDB. In IDPs with a large number of local minima, conformations are 

described by their statistical weight and also by transition rates between these conformations, 

they can be represented as structural ensembles. Some states may be undetectable by NMR 

because of their low population below the sensitivity of a given experiment. [Felli & Pieratelli, 

2015]. 

 

In order to provide structural and functional interrogation of IDPs, theoretical (bioinformatic) 

and experimental methods are usually combined. Information about protein covalent bond 

lengths, dihedral angles and rotameric states of side chains can be collected through the use of 

force fields of molecular dynamics (MD) simulations or protein structure databases. Protein 

sequence based tools can predict IDRs from disorder signature algorithms, for example, 

IUPred, DisEMBL, PONDR, DisPROT, AUCpreD, RONN [Dosztányi et al., 2005; Linding et 

al., 2003; Todorova, 2012; O-Piovesan et al., 2017; Wang et al., 2016; Yang et al., 2005]. The 



 41!

predictors can use different methods but the principle of disorder prediction is based on the 

observation that IDRs have specific amino acid sequences designated for disorder and the 

capacity to form stabilizing contacts. For example, protein regions with a large number of 

highly polar residues, low hydrophobicity, low aromaticity, rich in prolines and overall do not 

show sequence complexity. These characteristics suggest proteins to adopt random coil 

conformations.  

 

 
Figure 1.23. Examples of free energy landscapes for folded and unfolded proteins [Howton 

et al., 2016]. 

 

Because IDPs have fluid conformational properties, their behaviour is best described using 

solution state techniques. Experimental data can be derived from a number of biophysical 

methods such as nuclear magnetic resonance (NMR), small angle X-ray scattering (SAXS), 

single-molecule fluorescence Förster resonance energy transfer (smFRET), surface plasmon 

resonance (SPR), circular dichroism (CD), ion-mobility mass spectrometry (IM-MS). 

 

1.3.2.! IDRs in viral proteins and objects of this work 

The tendency for conformational disorder in Paramyxoviridae proteins can be correlated with 

extreme pathogenicity of these viruses. Under evolution, they elaborate the production of 

multifunctional and adaptable proteins, which are essential for the effective and optimised 

amplification of viral genetic material. In most cases, IDRs are alternated with folded regions 

which probably are able to modulate conformational preferences of flexible parts. Despite the 

structural complexity and challenging characterisation, viral IDPs constitute a good system 

that could be used in studying functional mechanisms of disordered proteins of other species 

and systems. 

 

As mentioned before, Paramyxoviridae P and N are composed of structured and unstructured 

regions. For the moment, only several small regions have established functional regions, the 
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role of other parts in the polypeptide sequence are unknown. However, recent scientific 

findings revealed the existence of conserved small transient helices in RSV PNTD being in long-

range contacts between each other, they can be recognised as potential interaction sites 

[Pereira et al., 2017]. Referring to [Milles et al., 2018], the short motif HELL conserved among 

Paramyxoviridae and situated in the middle of PNTD sequence was found to bind to the N-

terminal lobe of monomeric Ncore. The interesting feature of this interaction is that although 

it was characterised as ultra-weak, the mutation to AAAA abolished the viral transcription in 

minigenome activity test by limiting the interaction between P and N which is essential for the 

viral RNA synthesis machinery. 

 

 
Figure 1.24. IUPred disorder prediction for MuV phosphoprotein (A) and nucleoprotein (B). 

Large unfolded regions are present in PNTD, between OD and XD and in Ntail regions. 

 

As for structural organisation of MuV P and N, apart from crystal structures of P folded 

domains (OD and XD), IDRs remain unstudied. Several protease digestion assays and disorder 

prediction software suggest that the disordered PNTD region comprises first 215 amino acid 

residues, the OD is located roughly between amino acids 215 and 272, followed PCTD region 

with unfolded linker and XD (343-391) (Figure 1.24A). The short N-terminal region of P is 

believed to be sufficient for N chaperoning in the monomeric state, although this has never 

been shown for MuV. No findings are available for MuV N0P. Also it is remains unclear why 
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PXD crystallisation failed and required a stabilising agent for three dimensional folding. 

Information is missing also from the long disordered linker (272-342) connecting OD and XD 

of phosphoprotein. 

 

For the moment, although MuV N has amino acid sequences that are similar to those of PIV5 

(52% identity mostly in Ncore region), there are some differences, in particular, the sequence 

of Ntail is not conserved and has a different amino acid length. Consequently, MuV 

nucleocapsids can still have different structural characteritics, so it appears essential. To 

characterize them in detail. As mentioned before, MuV Ntail does not interact with PXD as, for 

example, MeV, SeV, HeV that have MoRE interaction site, the existence and interactions of 

which have been characterized in detail, for example by NMR. There is no available structural 

information for MuV N in NC and N0P and the function of disordered Ntail (Figure 1.24B). No 

clear and obvious research was carried out concerning post-translational modification of N 

and P, particularly, of their disordered regions. 

 

In this work, I will perform the first studies of MuV P and N disordered and structured regions 

and discuss the idea of their functional relevance during viral life cycle. I will try to answer the 

following questions that can be defined as goals of this project: 

 

•! What is the role of conformational disorder in MuV viral proteins N and P? In 

particular, what is the role of MuV Ntail and what are the potential partners it interacts 

with? Does this domain interact with P, as is the case for other Paramyxoviridae, and 

if so how?  
•! What are the dynamic properties of the disordered N-terminal domain of MuV P? What 

is the functional role of this domain and how does it interact with other viral proteins 

during the replication cycle? 
•! How does phosphorylation of N and P influence the protein structure, dynamics and 

interactions of the domains, and the interactions between MuV N and P? 
•! What is the role of the disordered linker between OD and XD of phosphoprotein? Can 

the apparent interaction between PXD and Ncore be described at atomic resolution? 
•! Is it possible to study MuV NCs with RNA issued from bacterial cell expression? Is it 

possible to develop optimal protocols for MuV RLPs purification, and to investigate the 

structure of N-subunit in oligomeric NC? 
•! Can a peptide issued from PNTD stabilise N in the monomeric state in N0P complex? If 

yes, what are the conditions to achieve NC assembly from N0P in vitro? Can the 

structure of MuV N0P be characterized? 
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These problems and other challenges will appear along the project realisation. In the next 

chapters I will describe methods and materials I have used to get a clear illustration of MuV 

proteins structure and dynamics, and further important results and conclusions.  
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2.! NUCLEAR MAGNETIC RESONANCE 

________________________________________________________________ 

Nuclear magnetic resonance (NMR) spectroscopy is one of the most essential techniques used 

in this project. It allows not only to get atomic resolution structural information, it is also 

crucial for the study of the molecular dynamics and flexibility on time scales ranging from 

picoseconds (ps) to seconds (s). As this manuscript is mostly focused on protein intrinsically 

disordered regions, the use of NMR, offering residue-specific resolution coupled with other 

techniques, is the most suitable method to describe their conformational behaviour, and to 

attempt to understand their function. 

 

2.1.! General outlines 

2.1.1.! Phenomenon 
An NMR experiment is based on placing an NMR active nuclear spin in a static magnetic field, 

thus generating spin polarization, and on its subsequent perturbation by application of electro-

magnetic radio-frequency (RF) pulses. 

 

Not all atomic nuclei can be studied by NMR. To identify which nucleus is active for NMR, 

firstly, we need to refer to atomic quantum numbers, in particular, to the spin number I which 

is dependent on the number of protons and neutrons of the nucleus protons+neutronsXprotons. Only 

atoms having an odd number of protons and neutrons and any number of protons with I = 1/2 

are easily observed by NMR such as 1H1 (proton), 13C6, 15N7, 31P15. These nuclei are commonly 

used in biomolecular NMR. Nuclei with evenXodd having I = 1 (or more generally I > 1/2) are 

considered to be quadrupolar nuclei, for example, 2H1 (deuterium), whose detection is 

complicated by spectral line broadening. Another characteristic nuclear property is its natural 

abundance. Table 2.1 represents the isotope distribution of the elements found in biological 

molecules most commonly studied by NMR. Due to the low natural abundance of 13C and 15N 

in biological samples, investigation of a particular protein requires production in media 

enriched with 13C and 15N isotopes. 

 

In the presence of a static magnetic field B0, the I = 1/2 nucleus gives rise to two energy levels 

represented by the Zeeman splitting (Figure 2.1A), and characterised by the spin quantum 

number mS of +½ (α state) and -½ (β state). In general, the number of states is given by 2I + 

1. In such manner, for quadrupolar nuclei 2H1 with, for example, I = 1, the energy splitting will 

lead to the appearance of three energy levels. 
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Table 2.1. The most used nuclear isotopes in biomolecular NMR, their natural abundance and 

gyromagnetic ratios. 

 

Nucleus 

Natural 

abundance, % 

Gyromagnetic 

ratio γ, 107 rad s-

1 T-1 

 

Nucleus 

Natural 

abundance, % 

Gyromagnetic 

ratio γ, 107 rad s-

1 T-1 

1H 99,985 26,751 13C 1,07 6,728 

2H 0,015 4,106 14N 99,632 1,933 

12C 98,93 - 15N 0,368 -2,711 

 

Coming back to the two states, at thermal equilibrium, they are degenerate, and therefore, they 

have the same energy and eqial population. Interaction of nuclear spins with B0 leads to the 

difference between two energy levels and in their population Nα and Nβ (Figure 2.1B). As the 

lower energy α state is more populated (this population difference is very small, about 1 in 

10.000 for 1H in 11.74 T magnetic field), it results in a net magnetization M0 oriented in the 

direction of the applied B0 field (Figure 2.1B). It is important to note that here we do not talk 

about single spin, about net magnetisation instead, which is over all the spins in the ensemble. 

 

 
Figure 2.1. Zeeman splitting of energy levels for a nucleus with spin number ½ (A). In the 

presence of B0, α and β states become different in magnetic moments population (number of 

spins) according to the Boltzmann distribution (B). The small population difference gives the 

net magnetization M0 in the direction of B0. The higher the field used, the greater will be the 

population difference between states and M0. 

 

According to the selection rule (possibility of system transition from one quantum state to 

another), only energy transitions having a ΔmS equal to ±1 are allowed (equation 2.1). This 

makes it possible to extract the frequency of transition ναβ from the Planck relation which 

depends on m: 

 
∆-. = -0 − -2 = ±1     (2.1) 
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∆4 = ℎ(-070 − -272)               702 = ! 70 − 72   (2.2) 

 
Alternatively, the energy difference can be expressed in terms of the nuclear magnetic moment 

µ of the individual spin, which, in the presence of B0, precesses with angular frequency ν0 called 

Larmor frequency: 

 
9 = ℏ-;<!!!!!!!!4 = −9=> = !−ℏ-;=>!!!!!!!!∆4 = ℏ;=> =

?

@A
;=>  (2.3) 

 
  ∆4 = ℎ702 = ℏ;=>!!!!!!!!!!!!!!!!7> = !−

B

@A
;=>!    (2.4) 

 
where γ is the gyromagnetic ratio which varies for each nucleus (Table 2.1) and defines the 

sense of spin precession, sensitivity, relaxation, strength of NMR-measurable interactions, h –

Planck constant 6,62×10-34 J×s, ħ – reduced Planck constant, equal to h/2π, 1/2π was used to 

convert rad/s in Hz. ν0 is negative as the sign indicates that the spin precesses around B0 in a 

clockwise direction. 

 

The principle of the NMR experiment is based on the perturbation of M0 by applying an 

electromagnetic field with the frequency of the resonance ν0 and further detection of M0 while 

returning to equilibrium along the z-axis (Figure 2.2). 

 

 
Figure 2.2. Vector model of magnetization M0, and the individual magnetic moment 

precession at ν0 Larmor frequency of an isolated spin ½ (A). The application of an 

electromagnetic field B1 (pulse) via the radio-frequency coil (designated along x-axis) generates 

the energy transition which corresponds to M0 tilt. The duration of the pulse determines the 

angle of M0 tilt (B), after M0 returns to the equilibrium (C) which is actually detected in an 

NMR experiment. 
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2.1.2.! Rotating frame 
The strong B0 field supplied by a powerful superconducting magnet maintains M0 along the z-

axis, so the only way to move the vector from z-axis is to apply the small magnetic field B1 along 

x-axis which is oscillating with the same (resonant) Larmor frequency ω0 (ω0 = 2πν0). In order 

to understand how the B1 field works, we need to introduce the rotating frame, which moves 

with the same frequency ωrot. fr. as the one of magnetization ω0, by resulting the apparent 

frequency (offset) Ω which will be equal to zero: 

 
Ω = D> −!DEFG.!!IE.     (2.5) 

 
In the rotating frame, the apparent reduced field ΔB will become small and B1 field will be 

dominant: 

 
∆= = !−

J

K
      (2.6) 

 
From the perspective of the rotating frame, there are two magnetic fields being applied B1 and 

ΔB0. The resulting effective field Beff can be simply calculated from the Pythagorian theorem 

(Figure 2.3). For practical reasons, here we work with the frequency units where ω1 is the 

frequency of B1 field (transmitter frequency): 

 

=LII = =B
@
+ Δ=@!!!!!!!!!!!!!!!DLII = DB

@ + Ω@   (2.7) 
 
So, to achieve Beff equal to B1 the transmitter frequency is applied and tilts magnetization at 

the angle θ = 90° (π/2) during a time t, which means to apply a pulse: 

 
  DB =

O

G
      (2.8) 

 

 
Figure 2.3. In the rotating frame the effective field Beff is the vector sum of the reduced static 

field ΔB and the RF B1 field. Practically, the magnetic field can be expressed in the frequency 

units. 
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2.1.3.! Signal detection and Fourier transformation 
Magnetization can be measured in the xy-plane. Generally, the coil detects the x- and y-

component of M0 (Figure 2.4A), so MX can be expressed by the simple geometry, where β - 

angle of tilted M0 towards the x-axis by Mx = M0 sin β, while My is equal to zero. After 

introducing the time component t with the frequency ω0 (in rad/s), the Mx and My dependency 

over time appears as (Figure 2.4B, C): 

 
PQ = P> sin U cos(D>X)!!!!!!!!!!!!!PY = −P> sin U sin(D>X)  (2.9) 

 
In the rotating frame system, ω0 is replaced by the offset frequency Ω: 

 
PQ = P> sin U cos( ΩX)!!!!!!!!!!!!!!!PY = P> sin U sin( ΩX)   (2.10) 

 
By assuming that β = 90° (hard pulse), the Mx and My components can be described by: 

 
PQ = P> cos( ΩX)!!!!!!!!!!!!!!!PY = P> sin( ΩX)    (2.11) 

 

 
Figure 2.4. View of M0 tilt in xz-plane (A) and M0 oscillation over t in the xy-plane with 

trigonometric extraction of x- Mx and y-components My of M0 (B). The plot of the Mx and My 

showed as the sine and cosine functions of time (C). 

 

Due to the action of spin relaxation, magnetization (signal) will decay away over time T2 (t = 

T2, T2 = 1/ R2). For this reason, it is called free induction decay (FID). The easier way to 

interpret the NMR data is to transform the time dependent FID into the frequency domain 

function. This is possible via the Fourier transformation (FT) (Figure 2.5). 

 

If the signal S(t) is proportional to the Mx and My precessing in the xy-plane of the rotating 

frame, it can be expressed as complex number: 

 
Z X = ZQ X + [ZY X = Z> cos(ΩX) + [Z> sin(ΩX) = Z> exp [ΩX  (2.12) 

 
Resulting exponential decay with constant T2, or rate R2 = 1/T2 will be equal to: 
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Z X = Z> exp [ΩX exp −
G

_̀
= ! Z> exp [ΩX exp −a@X   (2.13) 

 
Further Fourier transformation of S(t) to S(ν) leads to the absorption Lorentzian line shape 

(NMR spectrum peak): 

 
Z X !

b_

!Z 7 =
c`

d(Aef)`gc`
`    (2.14) 

 

 
Figure 2.5. Fourier transformation of signal evolution S as a function of time t gives a 

spectrum peak which is a frequency ν domain function. 

 

The shape of the peak is dependent of the homogeneity of the field (so it needs to be well 

calibrated and “shimmed”), as well as of T2. More precisely half-height width Δν of NMR line 

(Figure 2.5) is related to T2 by the equation Δν = 1/(πT2) (Figure 2.5). However, other factors 

can contribute to the line broadening. 

 

2.2.! NMR parameters 

2.2.1.! Chemical shift 
Chemical shifts (CSs) are the most frequently used parameters obtained from NMR 

spectroscopy for structural studies of IDPs. According to the previous description, the NMR 

spectrum of protein composed from active 1H, 15N and 13C spins would only have 3 peaks with 

different Larmor frequency. However, in addition to the action of B0 field, nuclear spins can be 

influenced by local magnetic fields induced by electronic magnetic moments currents 

circulating on the molecular orbitals. Thus, an atom in close proximity to another nucleus can 

perturb its NMR frequency which, consequently, is sensitive to the nuclear chemical 

environment. 

 

Practically, from equation 2.4, it is clear, that the stronger the magnet used to generate B0, the 

bigger sthe value of ν0 will be. To exclude the instrument dependency, the chemical shift δ is 

introduced. δ is equal to the resonance frequency ν of the nucleus relative to the resonance 

frequency of a reference compound νref, both measured in the same field: 

FT

t

S I

ν

FID Spectrum

Δν



 53!

 
h = 10i!×!

fk!flmn

flmn
     (2.15) 

 
Usually, the values of δ are relatively small. Due to this they are expressed in parts per million 

(ppm). As νref is often in MHz, while substraction ν - νref in Hz, therefore, ratio Hz/MHz gives 

ppm. 

 

Among the factors influencing nuclear CSs, shielding (increasing) and deshielding 

(decreasing), it is possible to distinguish: 

 

•! electronegativity (ability of an atom to attract a shared pair of electrons) of the 

neighbouring chemical groups will increase the δ value of the surrounding groups, 

for example, an atom of nitrogen decreases the electron density of the connected 

hydrogen through the hydrogen bond and shields its chemical shifts; 
•! anisotropy refers to the induced magnetic field generated by the circulation of 

electrons. Often the π-electrons from alkene, alkyne bonds, aromatics or any other 

conjugated structures at the molecule can have paramagnetic or diamagnetic effects 

depending of their orientation (parallel or opposite) relative to the applied 

magnetic field. 
 

Therefore, chemical shifts are very sensitive to the electronic and anisotropic environment of 

the nucleus. Perturbation in CSs it is not only the change in covalent bonds but also non-

covalent interactions with solvent or upon binding to a partner. A variety of the frequencies 

from all the protein nuclei can be used in the comparison to those protein CSs associated with 

structures of folded proteins that have been determined. This can help to predict protein 

secondary structure, as constraints for molecular structure calculation and sometimes to 

investigate protein dynamic properties. 

Secondary chemical shifts 

The presence of α-helix and β-sheet conformations can be extracted by comparing measured 

chemical shifts for a given residue with those theoretically predicted from complete random 

coil structures. This difference Δδ is called secondary chemical shifts (SCS): it is mostly used 

for carbon values, as 15N and 1HN chemical shifts are less informative due to their rigid 

positioning in peptide bond planes. 

 

Negative secondary shifts for Cα correspond to β-sheet structures, while positive SCS are 

observed for α-helices, while for Cβ positive SCS are characteristic of protein α-structures and 
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negative are characteristic of β-sheets. By reference to March et al, 2006, different SCSs are 

combined and re-compared with the chemical shifts for α- and β-structures (derived from 

reference data bases of CSs from resolved protein structures by NMR) resulting in the 

secondary structure propensity (SSP) score. In the case of IDPs, the SSP can be used to identify 

partially structured regions that can, in some cases, correlate with regions of the protein that 

are found to bind to partners. 

Chemical shift anisotropy 

The chemical shift also depends on the local magnetic fields induced by atomic electrons. The 

effect of the electron density on the total magnetic field experienced by the nucleus is correlated 

with the spin orientation relative to the external magnetic field. In general, the B0 field is 

reduced by shielding factor σ which can be described by a second rank tensor representing the 

different local field variations in three orthogonal directions: 

 

o =

oQQ oQY oQp
oYQ oYY oYp
opQ opY opp

     (2.16) 

 
Nevertheless, for liquid samples due to orientational averaging over the time, the chemical 

shift value δ is an average of different nucleus orientations. In the case when shielding is 

anisotropic, depending on the molecule reorientation over the time (therefore, impact to the 

relaxation), the spin resonance frequency ωs will be affected by the local magnetic fields. Here 

we are talking about chemical shift anisotropy (CSA). 

 
h = 1 − o         7 = −

B

@A
;(1 − o)=> or Dq = ;(1 − o)=>    (2.17) 

 
Usually, CSA is defined from the chemical shift tensor, and in the principal axis system with 

axial symmetry appears as: 

 
∆h = !h∥ − hs     (2.18) 

 
where δ� - tensor element parallel to the symmetry axis δ� = δzz, δ� - two equivalent 

perpendicular tensors δ� = (δxx + δyy)/2. 

 

2.2.2.!Scalar and dipolar couplings 
Besides chemical shift, structural information can be extracted from scalar and dipolar 

couplings between nuclear spins. 

 

In the case of two or more covalently-bound spins, nuclear spins can experience scalar 

couplings. On the spectrum, the presence of the coupling constant gives rise to the appearance 
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of multiplets (Figure 2.6A). J-coupling is independent on the external static field and is 

measured in Hz. The mechanism of the coupling is based on spin polarization. One nuclear 

magnetic moment of spin I polarizes the spins of another neighbouring atom electrons and 

influences the energy of the neighbouring nucleus S. The value of the J-coupling can be positive 

or negative, on Figure 2.6B the most important scalar coupling constants for biomolecular 

NMR analysis are shown. 

 

 
Figure 2.6. The J couplings between two spins I and S can be calculated from the peak 

splitting (multiplet) (A). Schematic representation of average one- and two-bond J-couplings 

in a polypeptide chain (B). The plot of the relationship of 3JHN-Hα-coupling and φ torsion angle, 

grey bars indicate J and φ values for different protein secondary structures such as β-sheet (β) 

and α-helices (α and αL as left-handed helix) (C). Adapted from [Rule and Hitchens, 2006]. 

 

Multiple bond J-couplings can be affected by the conformation of interacting spins. For 

example, for the bond H−N−Cα−Hα the range of 3J-coupling constant is from 2 to 10 Hz, which 

has been shown to follow the Karplus relationship: 

 
t = u cos@ v += cos v + w    (2.19) 
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where A, B, C are empirical constants, φ is the angle between planes defined by C−N−Cα and 

N−Cα−C (torsional angle) (Figure 2.6C). 

 

Scalar couplings are used for determination of small molecule structure, dihedral angles for 

secondary structure of folded and disordered (creation of structural ensembles) proteins and 

for transfer of magnetization from one to another coupled nucleus, which will be discussed 

further. 

 

In contrast to scalar couplings, the dipolar coupling constant (D) is much larger and is observed 

in solids and very viscous liquids (anisotropic systems). In isotropically reorienting liquids D 

is efficiently averaged to zero. Dipolar coupling is based on the direct interaction between the 

spins I and S close to each other in space. Nuclear spin precession generates a magnetic field 

that disturbs the magnetic field of other spins. Consequently, Beff of the spin I will be affected 

depending on the relative position of both magnetic dipoles. The dipolar coupling interaction 

can provide information about the distance between the spins r and orientation of the inter-

atomic vector relative to the B0 field (through θ angle): 

 
xy. = −

KzK{

|A`Ez{
} 3 cos@ ~ X − 1    (2.20) 

 
2.2.3.!Relaxation rates 
Relaxation is the process of the return of the magnetization to equilibrium after its 

perturbation. It involves the transitions between the energy levels that are caused by 

fluctuating magnetic fields. The rate of the energy transition will depend on interactions of 

spins with each other and the static magnetic field, molecular rotational motions and external 

fluctuations. In greater detail, after excitation, two types of relaxation can be considered: 

 

•! T1 relaxation time is responsible for the magnetization recovery along the direction 

of B0 field (equilibrium value) by regenerating the population of energy levels α and 

β according to the Boltzmann distribution. It is often called longitudinal or spin-

lattice relaxation as the energy transfer occurs from the excited state to the 

surroundings. The rate of relaxation can be characterized by R1 = 1/T1 (Figure 2.7A); 
•! T2 or transverse or spin-spin relaxation appears when there is loss of spin 

coherence, more precisely, dephasing with the contribution from energy transition, 

which doesn’t change the population of the excited states. It gives the FID decay 

and the peak line-broadening. The rate of this relaxation is described as R2 = 1/T2 

(Figure 2.7B). 
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Several mechanisms have a direct contribution to the relaxation rates R1 and R2, such as the 

dipolar interaction D (applied to both rates), chemical shift anisotropy CSA (often applicable 

to heteronuclei 13C and 15N), chemical exchange ex (influencing R2). In general: 

 
aB =

B

_�
= aB

Ä + aB
Å.Ç      (2.21) 

 
a@ =

B

_̀
= a@

Ä + a@
Å.Ç + a@

LQ     (2.22) 
 

 
Figure 2.7. After applying RF pulse the system relaxes back to equilibrium through T1 and T2 

relaxation processes that can be represented with the vector model. T1 is a recovery of 

longitudinal relaxation of magnetization Mz along z-axis meaning there is the energy transfer 

from the nucleus to the lattice or solvent (A). T2 is a loss (dephasing) of transverse 

magnetization Mxy on xy-plane with no energy change, only the energy exchange occurs 

between the excited nucleus and low energy state nucleus (B). 

Correlation function and spectral density 

It appears clear that both nuclear spin relaxations T1 and T2 processes – restore of thermal 

equilibrium and loss in the coherence transfer magnetisation – are caused by energy 

transitions between excited and ground states. The transition can occur by two different 

mechanisms: spontaneous and stimulated emission. The frequency of spontaneous emission 

is much higher than the NMR detectable absorption range: consequently, its rate is very small, 

making frequencies of oscillating electromagnetic fields from stimulated emission a major 
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source of NMR relaxation. These fields are created by random rotational motion of the 

molecule or by internal motions within the molecule by generating time dependent 

fluctuations in the magnetic field upon anisotropic electron shielding (CSA) and dipolar 

interaction (D). If field fluctuations contain frequencies that match the Larmor frequency ω0 

that cause the transitions, efficient relaxation can occur. The intensity of the changes in 

magnetic field as a function of the frequency ω is represented by the spectral density function 

J(ω). In order to understand, how to quantify the effect of J(ω) on relaxation, the correlation 

function needs to be used. 

 

The correlation function G(τ) refers to the memory of the system on the specific spin 

arrangement, in other words, it describes the random molecular motion as a function of time 

τ. For times τ that are much shorter than the time needed for the system to rearrange itself, 

G(τ) is at its most elevated (Figure 2.8A), and conversely, upon evolution of τ, the memory 

function diminishes, G(τ) exponentially falls and decays to zero over the long times τ: 

 
É Ñ = É 0 exp −

Ö

ÖÜ
     (2.23) 

 

 
Figure 2.8. Correlation time τc can be determined from the sum of exponential plots of 

correlation functions (A). G(τ) can be Fourier transformed to the spectral density function 

having Lorenzian curve (B). Different types of molecular motion can be extracted from J(ω) 

function: from slow (dotted line) which corresponds to the higher τc to fast (red line) which is 

characteristic for lower τc (small molecules and IDPs). 

 

From equation 2.23, it is clear that the exponential slope will be dependent on the value of τc 

(correlation time). τc is an average time that takes for the molecule to rotate one radian (a rigid 

spin attached to a rigid rotor). The value of τc is affected by the size of the molecule, more 
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precisely, by its radius r, and viscosity η. According to Stokes-Einstein equation correlation 

time is equal to: 

 
 Ñá = !

dAàE}

âäã_
     (2.24) 

 
where kB – Bolzmann constant 1,38×10-23 J×K-1 and T – temperature. Small molecules and 

IDPs have a correlation time in the range from ps to ns. As an estimate, folded proteins at 25°C 

have τc as half of their molecular weight expressed in kD, for example, for the protein of 50 kDa 

τc is approximately equal to 25 ns. 

 

As the correlation function is time dependent, we can apply the Fourier transformation on it, 

resulting in the spectral density function: 

 
É Ñ

b_

!t D =
@

å

ÖÜ

Bgç`Ö`
    (2.25) 

 
Plotting J(ω) against ω gives rise to the Lorenzian curve (Figure 2.8B) and presents the density 

of the field fluctuations at different frequencies. The maximum contribution of spectral density 

will be found when τc = 1/ω0 (T1 minimum). It can be seen that for molecules with short 

correlation times (τc << 1/ω0) being in fast motion, spectral density is almost identical at ω = 

0 and at higher frequencies. In contrast, for slow motion with τc >> 1/ω0 we observe a high 

spectral density at ω = 0 that decreases with higher frequencies. Therefore, there is an effect 

of molecular weight on rotational motion and spectral density. 

 

In case of complex molecules, such as proteins, the local field fluctuations are affected by the 

internal molecular motions. According to “model-free” approach [Lipari et Szabo, 1982; Clore 

et al., 1990], in addition to the overall correlation time τc, there is a time constant for internal 

motion τi and order parameter S2 to be introduced to the spectral density function (equation 

2.26). S2 can be 1 meaning no internal motion present and 0 for random motions of very large 

amplitude. 

 
t D = 1 − Z@

Öéèê

Bgç`Öéèê
`
+ Z@

ÖÜ

Bgç`Ö`
!!!!!!!!!!!!!ÑëíQ =

ÖèÖÜ

ÖègÖÜ
   (2.26) 

15N relaxation 

In proteins, protons are involved in numerous dipolar interactions, therefore, it is complicated 

to interpret their relaxation in terms of protein dynamics. For this reason, 15N relaxation is 

mostly used to characterise the intramolecular dynamics and overall molecular diffusion of 

folded proteins and IDPs. Especially, T2 is important to describe protein backbone dynamics 

(ps to ns time scale) as well as conformational exchange processes that occur on the µs to ms 



! 60!

time scale and significantly influence R2. However, the influence of molecular size and 

magnetic field on T1 and T2 is not negligible. 

 

To summarize, 15N R1 and R2 relaxation rates depend on a linear combination of the spectral 

density functions J(ω) describing local fluctuation fields at the proton and nitrogen frequencies 

for each protein residue with dipolar d, CSA c and exchange Rex contribution to the final 

relaxation equation: 

 
aB =

ì`

@>
t Dî − Dï + 3t Dï + 6t Dî + Dï +!

á`

Bå
t Dï   (2.27) 

 

a@ =
ñ@

20
4t 0 + t Dî − Dï + 3t Dï + 3t Dî + 6t Dî + Dï +!

ó@

15
t 0 + 3t Dï + aLQ 

 
 ñ = òôKöKõℏ

dAEõö
}
!!!!ó = Dï∆oï  (2.28) 

 

The effect of τc on nitrogen T1 and T2 relaxation can be described as shown in Figure 2.9. From 

the spectral density function, it can be derived that T1 is minimal when the molecular tumbling 

rate is equal to the Larmor frequency. Fast motion gives the low intensity of spectral density 

function at ω, and long T1. After passing T1 minimum, the longer τc gives longer spin-lattice 

relaxation for large molecules. Since J(ω) decreases with increasing ω, the rise in magnetic 

field strength will make T1 value higher. 

 

 
Figure 2.9. Effect of the molecular weight on nitrogen T1 and T2 relaxation. The grey bars 

indicate correlation time range for small molecules/IDPs and the folded proteins that can be 

studied by NMR. Adapted from [Rule and Hitchens, 2006]. 
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Unlike T1 parabolic dependence of τc, spin-spin relaxation becomes higher over the decrease in 

the rotational molecular motion (Figure 2.9). This is due to the contribution of J(0) (spectral 

density at ω = 0) to the R2 relaxation rate. Hence, T2 is inversely proportional to the molecular 

size. For larger molecules it is difficult to transfer magnetization between the spins which leads 

to greater R2 values and therefore, to peaks broadening.  Ideally, the value of the magnetic field 

does not affect much spin-spin relaxation. However, in order to have an idea about the 

exchange contribution to the final R2, it is recommended to record transverse relaxation rate 

at two distinct magnetic fields. 

 

2.2.4.!  Chemical exchange 
Intra- (isomerisation, protein side chain motions and unfolding) and intermolecular (small 

molecules binding to macromolecules, isotope exchange processes, 

protonation/deprotonation) conformational changes play an important role in protein 

dynamics. Conformational changes are often related to chemical exchange which means that 

the chemical environment for one nucleus is exchanging with another. Chemical exchange is 

also the important contribution factor to protein transverse relaxation. 

 

 
Figure 2.10. Spectra of spins undergoing chemical exchange at different rates between the 

states A and B as a function of kex when population of states A and B is equal (pA = 0,5 and pB 

= 0,5) (A) and widely different with A as major state (pB = 0,95 and pB = 0,05) (B). Chemical 

shift is defined by ωA and ωB and difference between them is Δω. 

 

The conformational exchange can be defined as an equilibrium driven with first order forward 

kAB and reverse kBA rate constants: 
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u! ⇋ =     Δ7 = 7Ç − 7ù   or    ΔD = DÇ − Dù     ûLQ = ûÇù + ûùÇ  (2.29) 
 

    üù =
ä†ã

ä†ãgäã†
      üÇ+!üù =!1     (2.30) 

 
with Δν or Δω used for the chemical shift difference between states A and B, kex as the exchange 

constant at which system returns to equilibrium and pA and pB fractional population of states 

A and B. 

 

According to the Bloch-McConnell equations (not shown), the chemical exchange regime can 

be defined from the value of kex as compared to Δω: 

 

•! when Δω << kex, the system is in fast exchange, we observe one peak, as the 

molecule is interconverting between two states and the magnetization is evolving 

with the weighted average chemical shift depending on the populations of A and B; 
•! for slow exchange Δω >> kex, two peaks appear, corresponding to states A and B. 

Sometimes due to the low population on the second state, the peak can be too low 

in intensity, and therefore, absent in the NMR spectrum; 
•! Δω � kex gives rise to intermediate exchange and the peak is broadened and can be 

almost non-observable (Figure 2.10). 
 

The chemical exchange can be characterised by the study of the spectral line width which is 

linked to the protein dynamics and has a non-negligible contribution to the transverse 

relaxation. In the case of fast exchange, the influence of exchange Rex to the T2 relaxation 

depends (among already mentioned Δω, kex, pA and pB) on the field strength used for NMR 

acquisition, as Δω � B0. For slow exchange rate the major peak line width will depend only on 

kex and pB. In addition, a temperature increase can shift the system to the fast exchange. By 

summarising in the limits of slow and fast exchange respectively: 

 
 aLQ = !üùûLQ   when    ämê

eç
→ 0    (2.31) 

 
aLQ =

eç`¢†¢ã

ämê
    when    ämê

eç
→ ∞   (2.32) 

 

Depending on the time scale and nature of the chemical exchange, it can be followed firstly, by 

the R2 measurements at different magnetic fields and secondly, by specific experiments such 

as Carr-Purcell-Meiboom-Gill sequence (CPMG) [Carr & Purcell, 1954] and T1ρ (relaxation in 

the rotating frame) [Blackledge et al., 1993] for the fast exchange (from ms to µs), Chemical 

Exchange Saturation Transfer (CEST) [Vallurupalli et al., 2012] and ZZ exchange [Montelione 
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& Wagner, 1989] for slow exchange [Hansen et al., 2008; Loria et al., 1999; Tjandra et al., 1996; 

Palmer et al., 2001].  

 

2.3.! NMR measurements and applications 

2.3.1.! NMR time range and limitations 
The study of NMR spectra can provide a lot of useful information about physical and chemical 

processes which take place in the sample. All previously described NMR parameters (chemical 

shift, scalar and dipolar couplings, peak intensity, T1 and T2 relaxation etc) are sensitive to a 

wide range of time scales (Figure 2.11) from picoseconds to days. 

 

However, the use of NMR spectroscopy is limited by low sensitivity compared to other 

analytical methods and by the size of studied molecule. The sensitivity of NMR experiment can 

be described by the signal-to-noise ratio S/N: 

 

Z/• ∝
ß

®
;LQá ;ìLG

â=>
â
(•Z)    (2.33) 

 
where n – net Bolzmann distribution of observed spins (number of spins), V - sample volume, 

γexc and γdet gyromagnetic ratio of spins being excited and observed respectively, NS – number 

of times the pulse sequence is repeated (number of scans). From equation 2.33 it is obvious 

that utilisation of higher magnetic fields, higher number of scans which leads to longer 

acquisition time, nucleus with higher gyromagnetic ratio and bigger amount of working 

material will increase the S/N. 

 

 
Figure 2.11. Accessible time range for NMR spectroscopy. Protein motional behaviour 

(dynamics) can be described by different NMR parameters. 
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Another important feature for sensitivity is the NMR probe which arranges the sample in the 

homogeneous field and is responsible for RF excitation and signal detection. Over the last 

years, the use of cryogenic probes (NMR magnets are operating at cryogenic temperatures) 

allows decreasing the sample volume and reducing the thermal noise. 

 

When it comes to the molecular size, a folded protein has, higher τc and shorter T2. Larger 

molecules show slower response to the small solvent molecules encountering under Brownian 

motion, and, therefore, reorient themselves slowly. Depending on the studied system, folding 

properties and conditions, it is difficult to specify the limit of molecular weight for globular 

proteins to be studied by NMR. In general, very big proteins and oligomers result in a loss of 

resolution due to the spectral line width enlargement. However, recent progress in biochemical 

methods such as segmental, residue-specific labelling and deuteration can help to work even 

with very large oligomeric structures [Ohki & Kainosho, 2008]. Some NMR methods were 

developed in order to minimize the effect of transverse relaxation and the increase polarization 

transfer. TROSY (transverse relaxation-optimized spectroscopy) technique is one of the widely 

used [Pervushin et al., 1998]. 

 

In the case of the objects of this project, IDPs, there is almost no limits in the amino acid 

number to be analysed by NMR. Due to the absence of the non-covalent inter-residual 

interactions (hydrophobic, hydrogen bonds) and the high flexibility (fast interconversion 

between conformational states), it is difficult to define the rotational correlation time of IDPs. 

Instead of an overall molecular τc, residue-specific correlation times can be introduced, and 

they correspond to those of small molecules. Consequently, for large molecules, fast molecular 

motion and longer relaxation rate R2 gives rise to broad NMR signals. At the same time, the 

contribution of the similar chemical environment to the chemical shift values of different 

residues of IDPs leads to low signal dispersion and overlapping which can be overcome by high 

order dimensional NMR experiments. 

 

2.3.2.!Two-dimensional NMR 
Due to the complexity of biomolecular one-dimensional 1H spectra (Figure 2.12A) caused by 

overlapping signals, the addition of a second dimension simplifies the spectrum by resolving 

the overlapped peaks. In other words, if the 1D spectrum is a plot of the intensity of the signal 

as a function of the frequency, for the 2D experiment the intensity (contour levels) is plotted 

over two frequency axes f1 and f2 of two same (homonuclear) or different (heteronuclear 

spectrum) nuclei (Figure 2.12B). 
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Concerning Fourier transformation of two-dimensional spectrum, since the FID signal 

depends on two times, t1 and t2, the resulting spectrum is obtained as a function of two 

frequency variables resulting from two Fourier transforms. The basic 2D experiment pulse 

sequence (Figure 2.12C) consists of 4 periods: 

 

•! preparation is started by spin excitation usually by one or several 90° pulses; 
•! during evolution the magnetization precesses over certain time t1; 
•! following mixing period uses further pulses for the magnetization transfer (scalar 

or dipolar coupling mechanisms, for example); 
•! the NMR signal is acquired during detection over time t2. 

 

 

 
Figure 2.12. Protein one-dimensional spectrum (A) does not provide enough resolution and 

structural information due to the signals merging. Typical two-dimensional heteronuclear 

spectrum gives one correlation peak from two different nuclei corresponding to two frequency 

axes (B). The pulse sequence for simplest homonuclear 2D experiment (COSY) as an example 

of 4 periods (C). 
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In more details, after setting t1 to 0 and performing the pulse sequence, the signal is recorded. 

Following that, spins are allowed to return to the equilibrium and t1 is set to Δ1 (t1 sampling 

interval). The pulse sequence is executed for the second time, but the recorded FID during t2 

time is stored separately. The same procedure is repeated for increasing values 2Δ1, 3Δ1 and so 

on, until there are enough of t1 increments to achieve the required resolution in the indirect 

dimension(s). 

 

Depending on the requested information, a variety of homo- (COSY, NOESY, TOCSY) and 

heteronuclear (HSQC, HMBC, TROSY) 2D experiments have been developed. In this project 

we will mostly focus on HSQC (heteronuclear single quantum coherence transfer) and other 

multidimensional NMR spectra based on it [Cavanagh et al., 2006; Chary & Govil, 2008]. 

HSQC spectrum 

The 1H-15N HSQC spectrum is one of the most commonly used NMR experiment for proteins. 

It can be set up under nitrogen natural abundance but due to the low natural abundance of 15N, 

uniform 15N protein labelling is normally required. The spectrum is based on magnetization 

transfer from 1H to 15N via J-couplings. After chemical shift evolution on nitrogen, 

magnetization is transferred back to proton for detection. 

 

As 1H-15N HSQC displays correlations between proton and nitrogen separated by one bond: a 

single cross-peak appears from 1H-15N of the amide bond, corresponding to one protein residue 

(except proline). Moreover, in the spectrum there are peaks from the side chains of 

tryptophane, arginine and doublets of asparagine and glutamine (Figure 2.13A). 

 

Together with the 1D spectrum, the HSQC can be used to identify whether a protein is folded 

or unfolded. Peaks that cluster in the middle of the spectrum usually from about 7,8 to 8,8 ppm 

in the 1H dimension indicate that the protein is in random coil conformation, which is an 

average of ensemble of structures, while structured proteins have well-dispersed peaks in the 

hydrogen dimension (Figure 2.13B). 

 

The HSQC spectrum constitutes the protein “fingerprint”, which means that protein folding, 

screening of optimal buffer conditions (pH and ionic strength), ligand binding (small molecule, 

protein, nucleic acid), post-translational modifications (phosphorylation, O-glycosylation) and 

actual protein state (absence of degradation) and temperature can be monitored. The spectrum 

is the starting point for backbone assignment and can answer the question about the relevance 

of more expensive 13C labelling. In addition, before performing relaxation experiments useful 

information can be extracted from the peak intensities. 
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In IDPs, the amide protons are freely exposed to the solvent, making hydrogen exchange with 

water possible, which can lead to extensive line broadening sometimes with complete 

disappearance of corresponding NMR signals. Hydrogen exchange is highly dependent on the 

sample pH and temperature. Under physiological conditions (pH 7 and 37°C) several amino 

acids cross-peaks (for example, serines and threonines due to their exchangeable with water 

hydroxyl group) are often not visible at 2D 1H-15N HSQC. All measurements in this project were 

carried out at pH 6 and 25°C. 

 

 
Figure 2.13. 2D HSQC spectra of unfolded (A) (225 residues of MuV PNTD) and folded (B) 

proteins (58 residues of MeV XD). Each peak corresponds to one amino acid of the polypeptide 

backbone chain. Amide side chain peaks are marked with arrows and circles. Glutamine and 

asparagine doublet peaks are connected with lines. 

 

All the liquid-state NMR measurements from this project were performed on Bruker 600, 700, 

850, 950 MHz spectrometers with cryo- and room temperature probes and an Agilent 600 

MHz spectrometer. The samples contained of 10% D2O to lock the spectrometer frequency. 

The resulting spectra were transformed with the help of NMRPipe program [Delaglio et al., 

1995], visualized and analyzed by the Sparky software [Goddard and Kneller, University of 

California]. 

 

2.3.3.!Protein backbone assignment 
From abovementioned HSQC spectrum, it is clear that each cross-peak corresponds to one 

protein residue. In order to determine, which peak corresponds to which amino acid pair N-H 

in the protein sequence, sequence specific resonance assignment needs to be performed. All 
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the amino acids are chemically distinct, and, therefore, they have different chemical shift 

values for 1H, 13C and 15N nuclei. The large chemical shift dispersion for carbon and nitrogen is 

the key for successful IDP assignment 

 

Several three-dimensional BEST (band-selective excitation short-transient) experiments were 

recorded [Lescop et al., 2007]. 3D spectra with 1HN detection and correlation through one- and 

two-bonds intra- and inter-residual scalar couplings allow to achieve sequential assignment 

walk from one residue i to another (i - 1): 

 

•! HNCO is the most sensitive experiment, it correlates 1HN and 15N chemical shifts of 

residue i to 13C′ chemical shifts of the residue (i - 1). iHN(CA)CO spectrum 

completes these data with intra-residual chemical shifts for HN, N and C′ for the 

residue i; 
•! in the same manner, HN(CO)CA shows inter-residual correlations for 13Cα for 

amino acid (i - 1), iHNCA is an intra-residual experiment; 
•! finally, the inter- and intra-residual 13Cβ chemical shifts are extracted from 

HN(CO)CACB and iHNCACB spectra (Figure 2.14). 
 

 
Figure 2.14. Summary of 3D experiments used for C′, Cα, Cβ by sequential inter- (in red) and 

intraresidual (in grey) assignments. 

 

Experiments iHN(CA)CO, iHNCA and iHNCACB can be set up for both transfers to occur from 

HN and N to carbons of i and i-1 residues, resulting in two peaks with different intensities which 

depend on the the coupling constant between connected N and C atoms. This allows sequential 
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assignment, residue by residue, by following coherence transfers from one slice of 3D intra-

residue spectrum to another slice of inter-residue experiment and so on (Figure 2.15). 

 

Automated backbone protein assignments were performed with the help of MARS software 

[Jung and Zweckstetter, 2004]. The required input for this program consists of the chemical   

shifts table extracted from peaks (HN, N, C′, Cα, Cβ for (i – 1) and i residues), protein sequence 

and secondary structure prediction file from PSIPRED server [Buchan et al, 2013]. The 

assignment by MARS needs to be followed by manual verification and validated. 

 

2.3.4.!  15N R1ρ and R1 measurements 

R1 and R1ρ experiments are based on HSQC spectra. They are recorded at different relaxation 

times t. The peak intensities I are then plotted as a function of t, and Ri and extracted via a fit 

to a single exponential decay: 

 
< = <> ©

kGcè      (2.34) 
 
Rotating frame relaxation R1ρ and R1 were used to derive R2. Technically, the measurement of 

R1ρ is based on spin-locking the magnetization byapplication of an RF field at certain carrier 

frequency ωRF (spin-lock field). ωRF becomes equal to ω1, notably, fixed on the x-axis 

[Guenneugues et al., 1999]. R2 can be calculated back after R1 has been measured: 
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where Ω - offset frequency. 

 
 

2.1.1.! Heteronuclear NOE 
Two nuclei undergoing dipole-dipole interaction, do not relax independently, since their 

dipolar coupling is responsible for the cross-correlated relaxation called Nuclear Overhauser 

Effect (NOE). NOE can be observed between two heteronuclei, N and HN, and then, called 

heteronuclear NOE (hetNOE). The size of NOE η depends on the gyromagnetic ratios of the 

interacting nuclei, correlation time and static field strength (R1 contribution): 
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For 15N{1H} pair of spins, it is rather 1H that is being saturated due to the higher γ. In practice, 

two experiments are recorded, one as a reference and another as a saturation, after their 

intensities are then compared.
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Figure 2.15. The example of sequential assignment for the peptide SerAspHisVal coming from MuV PNTD. Peaks from inter- and intra-residual 

spectra are coloured in red and grey respectively, showing the chemical shifts for carbons C′ (A), Cα (B), Cβ (C). Correlations inside the residue i 

show additional peaks from i – 1 amino acid by making possible to follow the protein sequence (black line). 
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Having negative value γ for 15N, measured at 600 MHz field negative NOEs come from flexible 

protein regions and positive from structured and rigid regions. Polarization transfer from 

amide H to N can be an additional tool to describe the motion of individual bond vectors. 

 

2.3.5.!Real-time NMR 
Real-time NMR can be used for monitoring of protein folding, post-translational modifications 

(phosphorylation), assembly of proteins and can be followed with the help of fast-pulsing 

SOFAST-HMQC spectra [Schanda et al., 2005]. The experiment is based on recording of the 

set of individual high-speed and optimal-sensitivity HSQCs (about 5 min of SOFAST-HMQC 

against tens of minutes for a standard HSQC) over the time. Peak intensities are monitored as 

a function of time by allowing to extract, for example, kinetic constants for each protein residue 

that was affected in the interaction. 

 

2.3.6.!Paramagnetic relaxation enhancement 
Probing long-range contacts between protein residues spaced by about 15-20 Å requires the 

chemical modification of the protein by covalently attaching a paramagnetic (spin) label to the 

thiol group of a cysteine. Unpaired electrons from the spin label generate fields ωe that can 

interact with the nuclei of interest. As the gyromagnetic ratio of electron γe (1,76×1011 rad×s-

1×T-1) is much higher than, that of proton, according to equation 2.28, the dipolar interaction 

between the proton and the electron becomes a source of T2 relaxation: 
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Figure 2.16. Procedure of protein TEMPO labelling via cysteine and mild reduction with 

ascorbate. The red sphere indicates the protein molecule. 

 

According to equation 2.37, the dipole-dipole interaction contribution to the relaxation rate is 

dependent on the distance between the spin and the electron. Here we can talk about 

paramagnetic relaxation enhancement (PRE). The choice of the paramagnetic label is crucial, 

it is important to control whether the protein secondary structure is impacted by the labeling, 

and to ensure stability of both protein conformational behaviour and labelling. In the case of 

this project, we have used TEMPO-maleimide (Figure 2.16) labelling via cysteine, followed by 

chemical reduction with the help of sodium ascorbate. 

Na-ascorbate
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2.3.7.!Residual dipolar couplings 
Another experiment can be performed for additional protein structural and dynamic 

information. When the protein is dissolved in an anisotropic « alignment » medium, it 

becomes partially ordered with respect to the applied magnetic field. Therefore, the restricted 

overall averaging causes non-zero residual dipolar couplings (RDCs). In practice, they are 

measured as the difference between couplings in isotropic (JNH) and anisotropic (JNH + DNH) 

media (Figure 2.17). 

 

 
Figure 2.17. The extraction of RDC from 1JNH of MuV PCTD. 15N slices of two 3D spectra are 

compared, in absence (A) and presence (B) of anisotropic medium with further calculation of 

dipolar coupling constant for particular protein residue (B). 

 

The easiest way to align the protein molecules is to place it directly in an anisotropic medium. 

Only a very small fraction is actually aligned due to the electrostatic or steric interactions with 

the medium molecules which have a large anisotropic dipole. Among different anisotropic 

conditions, one can mention filamentous bacteriophages and liquid crystals [Clore et al., 1998; 
Rückert & Otting, 2000], which will be both used in this manuscript, as well as lipid bicelles, 

polyacrylamide gels etc [Prosser et al., 1998; Ishii et al., 2001]. However, phage medium 

implicates the presence of protein electrostatic interactions with the negative surface of 

phages. In all cases, the degree of the alignment is usually checked by measuring the deuterium 

quadrupolar residual coupling of HDO molecule. 
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Practically, the experiment is based on the recording of two blocks of spectra without and with 

orienting medium and further extraction of RDCs from the sum of overall coupling that is a 

contribution of scalar J and dipolar D interactions. If the HSQC spectrum on its own doesn’t 

give enough spectral resolution, one can also run 3D HNCO and HN(CO)CA based experiments 

with coupling evolution (intra-residual N–HN, C′–Cα and double bond C′–N–HN, inter-

residual Cα–Hα) in the carbon dimension (Figure 2.17). 

 

2.4.! Structural ensemble calculation 

Because of the flexibility, it is not appropriate to describe the structure of IDPs using a single 

structure. In the case of IDPs that have random coil conformation and only transiently 

populated secondary structures, only an ensemble (set) of structures can be used to describe 

their dynamic behaviour. In general, NMR parameters are needed to build up the descriptors 

for ensemble molecular models. 

 

The protein structure can be represented by a distribution of dihedral angles φ and ψ 

connecting each peptide bond plane in the long polymer chain. in silico statistical coil 

generators, as for example, Flexible Meccano [Bernado et al., 2005, Ozenne et al., 2012], are 

based on this approach. The algorithm uses amino acid specific dihedral angles extracted from 

loop regions of known PDB protein structures, and adds residue per residue, avoiding steric 

clashes. From the generated pool of structures NMR parameters are calculated, they can be 

compared to the experimental ones. 

 

The second step is to determine a subset of conformers that together describe the experimental 

data (chemical shifts, RDCs, PREs, Rg radius of gyration from SAXS experiments); this can be 

done with the genetic algorithm ASTEROIDS [Nodet et al., 2009]. It takes the experimental 

input as restraints to select a subset of conformers that on average agrees with the 

experimental data. Usually, a few repeated iterations (regeneration of pool and following 

selection) are required until the back-calculated data fits the experimental one and no further 

improvement in the fitting is observed. 
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3.! OTHER TECHNIQUES 

__________________________________________________________ 
 
Due to the low sensitivity and the molecular size limitations, NMR spectroscopy needs 

additional techniques that instead of the atomic description, can provide information about 

the exact molecular size, shape, oligomerisation state. Techniques such as SAXS, EM and 

MALLS do not require large amounts of sample and usually, are rapid and robust. In addition, 

biochemical methods as definition of protein constructs, clone generation, recombinant 

protein expression and purification are described in this chapter. 
__________________________________________________________ 
 
3.1.! SAXS 

Small-angle X-ray scattering (SAXS) is currently a widely used method for the determination 

of biomolecular shape, oligomerisation state and mass. The technique relies on elastic 

scattering (without changing of the wavelength) of X-rays and due to the inhomogeneity of the 

molecule in the nanometer scale, the distribution of the scattering signal is measured at very 

small angles (0.1 – 10°). Despite its low resolution range (1-25 nm), SAXS can be 

complementary for structure determination using for example, NMR. 

 

 
Figure 3.1. Physical basis of SAXS experiment. The sample in quartz capillary is illuminated 

by monochromatic X-ray beam, after intensity of scattered radiation is recorded by the 

detector as a function of 2θ angle. 
 

A standard SAXS experiment is based on the irradiation of the sample in solution by X-rays 

and the measurement of the beam scattering azimuthal pattern on the detector (Figure 3.1). In 

more details, the signal Δρ is derived from the difference between the average electron density 

of the biomolecule ρr and the solvent ρs in which it was dissolved: 

 
∆A = A2 − AB      (3.1) 
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In the scattering curve (Figure 3.2A, B), the intensity of the scattered light I(q) is recorded as 

a function of the scattering vector q which can be defined from the scattering angle  2θ  and the 

irradiating wavelength λ of X-ray beam: 

 
D = 01BEFG

H       (3.2) 
 

 
Figure 3.2. Typical SAXS curves from sample and buffer (A) and the one with the subtracted 

buffer (B), ideally, it is recommended to record several protein concentrations. Guinier plots 

can be used to distinguish non-aggregated protein (C) from aggregated sample (D) and to 

determine the Rg. Red line indicates the Guinier fit. Adapted from [Puthnam et al., 2007]. 

 
Ideally, several protein concentrations are measured, to account for any protein aggregation, 

inhomogeneity, polydispersity and long-range contacts. The size parameter Rg, radius of 

gyration, can be easily identified from the Guinier approximation. By plotting ln[I(q)] against 

q2 and by extrapolating the straight line to the zero angle q = 0, I(0) can be extracted (Figure 

3.2B). 

 

I D = I 0 J KLMNOM

P     (3.3) 
 
The Guinier plot can be used for qRg < 1,3 Å-1 (globular proteins). In the case of non-linearity, 

the sample can be considered as aggregated or elongated, therefore, either the sample quality 
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needs to be improved, or other methods for Rg estimation need to be incorporated (Figure 

3.2C, D). 
 

I(0) depends on the square of the number of electrons, and consequently SAXS is useful for 

the identification of the protein molecular weight and oligomerisation state. 
 

RS = T U +M

VW (KXYXZ
M     (3.4) 

 
where MW – molecular weight, NA – Avogadro’s number, µ - average mass per number of 

electrons. 

 

 
Figure 3.3. The Kratky plot is a method to identify unfolded and folded proteins (A). 

Depending on the shape of the pair distribution function P(r), elongated and globular proteins 

can be distinguished (B). Adapted from [Puthnam et al., 2007]. 

 

The whole range of q can be monitored through the pair distribution function P(r). Several 

indirect Fourier methods were developed to transform the scattering curve: 

 
[ \ = 2

%1M I D D]^_ D\ `Da
U     (3.5) 

 
Hereby, the I(0) and Rg can be identified from P(r) by introducing the Dmax parameter, the 

maximum linear dimension of the scattering particle, when P(r) = 0. Moreover, the pair 

distribution function can be used to recognise extended or unfolded proteins. 
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In addition, IDPs can easily be detected from the Kratky plot (Figure 3.3) which is also one of 

the most suitable ways to identify the shape of the molecule. According to the Porod law, the 

volume of the molecule can be calculated from the Porod invariant Q: 

 
j = %1MT U

k      (3.8) 
 

l = D%I D `Da
U     (3.9) 

 
Globular proteins follow the Porod law and show parabola-like curves, the intensity of the 

scattering decreases with increasing q. In contrast, an extended protein curve appears as the 

plateau over the higher q values (Figure 3.3B). This subchapter was based on the review of 

Puthnam et al., 2007. 
 

For this project, the coupled SAXS and size-exclusion chromatography (SEC) experiment was 

used, the acquired data were measured at ESRF BM29 beam line and further analysed by 

ATSAS software [Franke et al., 2017]. 

 

3.2.! Electron microscopy 

Visualisation of big oligomeric structures (> 0,8 MDa) was performed by electron microscopy 

(EM). Transmission electron microscopy (TEM) is based on the physical phenomenon that the 

electron beam crosses the thin specimen and after is registered by appropriate detectors. The 

source of free electrons can be either thermionic or field emission. The imaging occurs when 

electrons interact with the sample, by generating contrast which depends on the number of 

atoms: the more the sample is condensed in atoms (and therefore, in electrons), the more the 

electron scattering will result. As proteins are composed mostly of low electron number atoms 

(carbon, hydrogen, nitrogen), they need to be stained by heavy metals [Egerton, 2005]. 

 

 
Figure 3.4. The technique of negative stain used in this work. A few micro-litters of the 

sample are injected between carbon and mica, then the plate is put to a solution of heavy 

metals. After the copper grid grabs the carbon and gets collected by the piece of paper. 

 



 81#

As the microscope is operating under vacuum conditions, the samples also need to be 

specifically prepared and dehydrated. The technique of negative stain-mica-carbon flotation 

was used for sample preparation (Figure 3.4). Samples were absorbed to the clean side of a 

carbon film on mica, stained and transferred to a 400-mesh copper grid. For the staining, I 

have used Sodium Silico Tungstate (SST) Na4O4SiW12 at 2% in distilled water (pH 7-7,5). The 

images were taken under low dose conditions (<10 e-/Å2) with defocus values between 1.2 and 

2.5 µm on a Tecnai 12 LaB6 electron microscope at 120 kV accelerating voltage using CCD 

Camera Gatan Orius 1000. 

 

Cryogenic electron microscopy (cryo-EM) allows more detailed structural analysis in the native 

biological environment and further 3D structural reconstruction. In negative staining  samples 

can be dehydrated which can generate artefacts from removed water, while aqueous samples 

prepared in cryogenic conditions do not form ice crystals and have stable vapour pressure of 

water, and, therefore, proteins keep their hydrated native state. In addition, unlike negative 

staining which is based on the stain penetration to the molecule, cryo-EM permits to obtain 

full electronic density distribution, which in combination with 3D reconstruction 

computational methods, is an ideal tool to solve protein structure at near-atomic resolution 

[Dokland, 2009]. 

 

The protocol of sample preparation is as follows. 4 µL of sample (about 1mg/ml) were frozen 

with a Vitrobot Mark IV (FEI) at 100% humidity and 2 s of blotting time. Quantifoil holey 

carbon grids were used and glow discharged for 45 s and 25 mA. A Tecnai Polara (FEI) electron 

microscope working at 300 kV was used to collect movies with a K2-summit direct electron 

detector (Gatan Inc) with a magnification of 31500x in counting mode. The pixel size at the 

detector level was 1.21 Å. Automatic data collection have been carried out using Latitude S 

software (Gatan Inc). 1500 movies of 40 frames (0.15 s each) have been collected. Selection of 

particles have been done using helix boxer manually and classification carried out using the 

standard Relion protocol [Scheres, 2012]. Different helical parameters 

(http://rico.ibs.fr/helixplorer/) have been tested and helicoidal reconstruction performed 

using Relion. Resolution was limited to about 15-20 Å because of the flexibility of the NC 

helices and because of the low number of segments. 

 

3.3.! MALLS 

The multiangle laser light scattering (MALLS) technique coupled with SEC allows the 

determination of the protein concentration and its average size, and as a result, to determine 

the molar mass and oligomerisation state of the molecule. The physical background is based 
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on the detection of light scattering of biomolecules in solution at different angles. The detection 

is achieved using several detectors (Figure 3.5). 

 

The scattered rate R(θ) can be identified for each detector depending on the angle θ relative to 

the emitted light beam (Rayleigh ratio): 

 
$ m = T G 2M

T,no
      (3.10) 

 
where initial I0 and scattered I(θ) light intensity, ΔV – scattering volume, r – distance from the 

point of scattering to the detector. 

 

When the light interacts with matter, it induces oscillating polarization. The number of 

oscillating charges is directly proportional to the proton number, and therefore, to the molar 

mass, that can be calculated from the Zimm equation. 

 

 
Figure 3.5. The principle of the MALLS experiment. Usually, MALLS is coupled with SEC to 

allow continuous flow for more accurate reference baseline. Interaction of the laser beam with 

the sample molecule leads to the scattering off the axis of light beam which is recorded 

simultaneously by detectors placed at different angles. In addition, the system can contain a 

refractive index detector for precise concentration determination. 

 
p∗r

N G g G = (
st

+ 2u%v     (3.11) 
 
where c – protein concentration, A – second virial coefficient describing the interaction 

straight between the molecule and the solvent, P(θ) – shape factor, K* - optical constant which 

can be expressed by: 
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w∗ =
01M xy

xz
M
F,M

VWH,{
     (3.12) 

 
where λ0 – vacuum wavelength of the light, dn/dc – variation of the scattered light with the 

respect to sin2θ/2, n0 – refractive index of the solvent [Wyatt, 1993]. 

 

In this thesis, I recorded MALLS measurements at sample concentrations of the proteins of 

interest in a range from 2 to 10 mg/mL. The choice of the SEC column depended on the 

previous purification conditions. The experiments were recorded at the biophysical platform 

(www.isbg.fr) on Wyatt/Hitachi equipment, visualised and analysed by ASTRA software. 

 

3.4.! Biochemical materials and methods 

3.4.1.! Molecular biology 

Constructs 

Clones encoding for different N and P constructs of Jeryl Lynn mumps virus strain were 

subcloned to the expression vector from the full-length synthetic gene optimised for 

Escherichia coli (E. coli) provided by GenScript company. The fragments of N, P and all N0P 

fusion complexes were generated: 

 

•! NFL (residues 1-549) and N1-445 

•! Ntail (373-549 and 398-549) 

•! Ncore (N261-374, N45-374 with GST protein and N1-261, N1-374, N1-398) 

•! PFL (1-391) 

•! PNTD (1-215) 

•! PCTD (272-391) 

•! PXD (343-391) 

•! N0Ps (P1-141, P1-215, P1-90, P1-150, P90-150, P90-215, P1-65 all with NFL and P1-65 N32-549) 

•! V 

Vector 

The expression vector used for all clones was the DNA plasmid pET-41 c(+). It has the size of 

5933 nucleotide base pairs (bp), T7 polymerase promoter/terminator and multiple cloning 

sites for incorporation of the gene of interest, Kanamycin bacterial resistance gene and 

solubility GST-tag. All the constructs were cloned into NdeI/SpeI and NcoI/XhoI sites. The 

resulting protein ends with a non-cleavable 8-His tag (Figure 3.6). Only V protein was ordered 
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from GenScript to subclone to the same vector, it had TEV-cleaved His-tag on its N-terminus 

and stop codon before XhoI site. 

Subcloning procedure 

First, the inserts were generated and amplified by polymerase chain reaction (PCR) from the 

gene-template and DNA primers. Then, the protocol for the PCR reaction was applied as 

follows: mix the template of about 50 ng, forward and reverse primers of about 0,1 µM (from 

IDT company), 1x of Phusion Master Mix (Thermo Scientific) and incubate in the thermocycler 

with the following program (Table 3.1). 

 

 
Figure 3.6. Schematic representation of the vector pET-41 c(+) with restriction sites and stop 

codon (in black rectangles) and their relative position in bp. 

 

Afterwards the generated PCR products were treated with DpnI enzyme (all enzymes from 

Thermo Scientific company) during 1 hour at 37°C in order to remove the template. DpnI has 

the cleavage recognition sequence GATC when A is methylated, which is present in most 

plasmids transformed to E. coli strains. The resulting insert was purified by Nucleospin Gel 

and PCR Clean Up kit distributed by Macherey Nagel company. 

 

Insert and vector were digested with NdeI and XhoI restriction enzymes at 37°C during 1 hour.  

For the constructs that needed the GST tag, the cleavage occurred between SpeI and XhoI 

restriction sites. The pET-41 c(+) digestion leads to the generation of two fragments of 5019 

and 920 bp for NdeI/XhoI, 5094 and 839 bp for NdeI/NcoI and 5263 and 670 bp for 

SpeI/XhoI that were separated by the agarose gel migration and purified from gel with the kit.  
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Table 3.1. Thermocyclic program for the inserts generation. 

Step Temperature, °C Time Cycle 

Initial Denaturation 98 30 s 1 

Denaturation 98 7 s  

30 

 
Annealing Tm* + 3 30 s 

Elongation 72 30 s/1kb 

Final Elongation 72 10 min 1 

 
*  Tm is the melting temperature for DNA primer 

 

The ligation reaction by T4 ligase occurred at room temperature (RT) over night with the 

specific ratio between the insert and vector which can be determined by: 

 
^_]J\| = }~/z�ÄZ

}ÅyÇ/Z�
× ÑJv|Ö\     (3.13) 

 
where [] - concentration of the insert/vector (in ng/µl), S - size of the insert/vector (in bp). The 

resulting ligation product was transformed to E. coli XL-1 Blue strain, incubated at 37°C over-

night on Lysogeny Broth (LB) and agar Petri plate with the addition of 30 mg/l of Kanamycin. 

Bacterial colonies were picked and grown in LB during one night, and then the plasmids were 

purified with the help of NucleoSpin Plasmid kit from Macherey Nagel. To verify the successful 

subcloning, DNA sequencing was performed by the company Genewiz (www.genewiz.com). 
 

The N0Ps were generated first by introduction of the P peptide into the vector between 

NdeI/NcoI sites, and then the N fragment with a TEV protease cleavage site on its N-terminus 

by NcoI/XhoI.  

 

3.4.2.!Protein expression 
Three types of protein labelling were used for NMR experiments: natural abundance 14N/15N 

and 12C/13C (unlabelled), single isotope labelling by 15N and double labelling by 15N and 13C.  

 

Expression vectors were transformed into the E. coli strain BL21 (DE3). Depending of the 

labelling, the protein expression occurred in unlabelled LB medium or in 15N/15N-13C labelled 

M9 media. 

 

For unlabelled protein expression, the over-night bacterial preculture of 25 mL was diluted in 

1L of LB with the addition of the antibiotic (Kanamycin 30mg/l). After 4-5 hours of bacterial 

growth at 37°C and reaching the optical density about 0.7-0.8 at 600nm (Thermo Scientific 
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absorbance spectrometer), the culture was induced by 1mM IPTG (isopropyl-D-1-

thiogalactopyranoside) and incubated for over-night expression at 20°C for about 15-18 hours. 

The resulting bacterial pellet after cell harvesting was frozen at -80°C. 
 

M9 minimal medium, used for labelled protein expression, is composed of 22 mM KH2PO4, 48 

mM Na2HPO4, 8,5 mM NaCl, 18 mM 15N-labeled NH4Cl, 1x MEM Vitamins solution (Gibco), 2 

mM MgSO4, 100 µM CaCl2, Kanamycin 30 mg/l, 2g/l of unlabelled or 13C-labeled glucose. 
 

A specific protocol was used for isotope protein labelling. Initially, the cells were separated 

from over-night maxi-preculture of 100 mL and resuspended in 1L of M9. To reach bacterial 

optical density at 600 nm of about 0,6-0,8, usually the bacterial growth in M9 takes over 8 

hours. The conditions of the IPTG induction and expression were the same as for LB medium. 

 

3.4.3.!Protein purification 
The bacterial pellet was resuspended in 50 ml of 20 mM Tris-HCl 150 mM/500mM NaCl 0,2 

mM TCEP (tris(2-carboxyethyl)phosphine) pH 8 buffer supplemented with EDTA-free 

(ethylenediaminetetraacetic acid) complete anti-protease (50x) from Roche. Cells were lysed 

using a sonicator Sonics, then centrifuged at 18000 rpm at Thermo Scientific Sorvall Lynx 

4000/6000 centrifuge. The supernatant was filtered with 0,2 µm pore filter and introduced to 

the Ni-NTA column equilibrated with the lysis buffer. After the washing step, the protein 

bound to the resin was eluted with 20 mM Tris-HCl 150 mM/500 mM NaCl 400 mM imidazole 

0,2 mM TCEP pH 8.  
 

The imidazole was eliminated by dialysis against lysis buffer over night at 4°C or few hours at 

RT. After the sample was concentrated with the help of Amicon filters, and injected to the size-

exclusion chromatography (SEC) column equilibrated with NMR buffer: 50mM 

Na2HPO4/NaH2PO4, 150 mM/500 mM NaCl, 2mM DTT pH 6. 
 

The fractions containing the protein were pooled together and concentrated until 200 µM or 

more and stored at -80°C. The purity of each purification step was verified by SDS-PAGE. 

Purification of NFL ring-like structures and nucleocapsids 

All the purification steps occurred with the addition of 500 mM NaCl. Having high molecular 

mass (62.8 kDa of the single unit x 13 + RNA 78-mer = about 855 kDa), the N-rings after Ni-

affinity step were purified with Superose Increase 6 10/300 GL column that is able to separate 

the oligomers from 5kDa to 5MDa. Protein concentration was measured with the help of the 

Pierce BCA kit (Thermo Scientific). 
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In order to form nucleocapsids, the N-rings were treated by addition of trypsin (for every 200 

mg of the protein 1 mg of trypsin) at 37°C during 1 hour. According to the literature [Severin et 

al., 2016], the digestion occurs between Ncore and Ntail. 

Purification of Ntail 

The lysis, Ni-affinity and gel-filtration was performed under low salt (150 mM NaCl). This 

condition was chosen to get better resolution on NMR measurements. For SEC purification, 

the Superdex S75 colum was used. 

Purification of other N constructs 

Constructs N1-445 and N1-374 were purified with the same purification protocol as NFL. Ni-affinity 

purification of N1-261, N45-374, N261-374 was completed with high salt buffers (500 mM NaCl). N1-

261 was further purified with the help of Superdex S200 column. 

Purification of P constructs 

All P fragments (PFL, PNTD, PCTD and PXD) were purified under 500 mM NaCl, to increase the 

stability of the proteins, as under low NaCl concentration they undergo the fast precipitation. 

Superose Increase 6 was again used for tetrameric PFL purification. PNTD was purified using 

Superdex S200, PCTD and PXD using Superdex S75. 

Purification of N0P 

Several N0P constructs were produced in order to purify stable monomeric complexes. The 

PNTD truncations were coexpressed with full-length N. All purification buffers were 

supplemented with 500 mM NaCl to improve the purification profile and protein stability. The 

dialysis against lysis buffer was preceded with a TEV cleavage reaction at RT in order to 

covalently separate P sequence from N. The gel-filtration purification was carried out on a 

Superdex S200 column. 

Purification of V protein 

The specific protocol of denaturating conditions was used for V protein purification based on 

the work of Salladini et al., 2017. First, the bacterial pellet was resuspended in 20 mM Tris-

HCl, 500 mM NaCl, 6M guanidine-HCl pH 8. Elution of Ni-affinity tagged protein was carried 

out with 20 mM Tris-HCl, 500 mM NaCl, 3M guanidine-HCl pH8 supplemented with 250 mM 

imidazole. Several steps of over-night dialysis to the native conditions were performed at 4°C 

to buffers containing 20 mM Tris-HCl, 500 mM NaCl, 1µM ZnSO4, 1 mM BME (β-

mercaptoethanol) 1,5 mM urea, 2 mM cysteine, 0,2 mM cysteine, 10% glycerol pH 8 and then 
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next day to 20 mM Tris-HCl, 500 mM NaCl, 1µM ZnSO4, 1 mM BME (β-mercaptoethanol) pH 

8. As V protein had a removable His-tag, it was further cleaved with TEV at RT and purified 

with the help of Superdex S200 column to the high salt NMR buffer with 1 µM ZnSO4. 

 

3.4.4.!Protein assays 

NC assembly from N0P 

For NMR experiments, to the sample containing about 100-150 µM N0P, necessary amount of 

1 mM RNA was added to reach 1:1 molar ratio. For EM imaging, 20 µM of N0P was incubated 

over-night at 25°C with 50 µM of RNA. Two RNA sequences were used in NC assembly (both 

purchased from IDT): poly-adenosine-6 or PolyA6 (rArArArArArA), as most of 

Paramyxoviridae 5&-ends are A-rich, and 5&-end of MuV genome (rArCrCrArArG). 

N and P phosphorylation 

After recording reference NMR experiment of 150 µM protein supplemented with 50mM 

MgCl2 and 5 mM ATP (adenosine triphosphate), the necessary amount of kinase (about 6 µl 

for 130 µl total sample volume) was added to the sample and mixed. Ntail phosphorylation 

experiments were carried out with CKII kinase (1 µl, from Thermo Scientific) and PCTD with 

PLK1 (Merck). Preliminarily, kinase susceptibility was predicted using on-line 

phosphorylation prediction software GPS and NetPhos Server [Xue et al., 2011; Blom et al. 

2004]. 

TEMPO-labelling of P 

First PCTD was diluted to about 50 µM in 1 mL, DTT was added to reach about 10 mM final 

concentration. Sample was then dialysed to the non-reductant containing buffer 50 mM Na-

phosphate, 500mM NaCl, pH 7. Buffer was changed until DTT reached less than 1 µM 

concentration. Sample was concentrated up to 400 µl. TEMPO-maleimide ((2,2,6,6-

tetramethylpiperidin-1-yl)oxyl) was prepared from aliquots (1 mmol) under nitrogen 

atmosphere with addition of about 20 µl of DMSO (dimethyl sulfoxide). In continuous Vortex 

mixing mode TEMPO-label was added to the protein, the mixture was left for 2 hours and 

further purified by SEC and transferred back to pH6 buffer with no DTT to get 130 µl final 

volume. Reduction of the label occurred under the addition of 1,75 µl of Na-ascorbate (from 

stock of 1M). 
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Alignment for RDCs 

Two types of alignment were used in this work: phages and liquid crystals. Phages (Pf1 from 

ASLA Biotech company) were added gradually to reach about 10 mg/ml. Liquid crystals were 

prepared from 112,5 µl of protein, 6,5 µl of polyethylene glycol (PEG) and gradual addition of 

0,3 µl of hexanol in order to pass through phase separation and get a homogeneous transparent 

solution with significant viscosity which was further tested by NMR in order to determine the 

alignment level. 
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4.! RESULTS. NUCLEOPROTEIN 

__________________________________________________________ 
Mumps virus nucleoprotein plays an important role in successful viral infection by 

encapsidating and protecting the RNA genome, a process specifically performed by its 

structured part (Ncore). However, the function of its long predicted to be disordered region 

(Ntail) remains unknown. No atomic resolution structures or ensembles of Ncore and Ntail are 

available for the moment (December 2018). In this chapter, I will try to investigate the 

structure of isolated Ntail, Ncore and full-length nucleoprotein. 

 

4.1.!  Structural regions of nucleoprotein 

Mumps virus nucleoprotein (MuN) is composed of 549 amino acids. According to the IUPred 

disorder prediction (Figure 1.24) and to the literature, structured Ncore is defined between 

residues 1 to 373, and residues 373 to 549 are believed to be intrinsically disordered (Ntail) 

with unknown function. Other protein structure predictors such as PSIPRED [Buchan et al., 

2013], reveal in detail the helical propensity in Ntail (Figure 4.1). Despite the fact that Ntail 

does not bind to phosphoprotein XD [Kingston et al., 2014], it might still have transient regions 

with helical propensity which could be responsible for the potential interaction with other viral 

proteins, and therefore, reveal Ntail function. 

 

However, alignment of MuN sequence with PIV5 N, which has 50,6% sequence identity, 

showed evidence of the Ncore ending in the position about 398. This means that the region 

from 373 to 398 likely corresponds to the C-arm by analogy to PDB PIV5 nucleoprotein 

oligomeric structure. Both Ntail truncations 373-549 and 398-549 were expressed, purified 

and examined by NMR. In the following results Ntail was studied in the isolated form and in 

the context of oligomeric structures: ring-like structures and nucleocapsids. 

 

4.2.! Ncore 

MuV Ncore itself has about 65% sequence identity with PIV5 Ncore which can therefore be a 

good model for further structural analysis, while Ntail has different length and less similarity. 

Expression of Ncore alone (1-374 and 1-398) lead to the formation of big unstable oligomeric 

structures (observed in EM) that were difficult to purify. Nevertheless, in the literature there 

are several cases describing the expression of soluble Ncore truncations [Milles et al., 2018; 

Pereira et al., 2017]. Several truncations of Ncore were cloned into an expression vector: N-

lobe (residues from 1 to 261), C-lobe with GST (261-374), N- and C-lobes without N- and C-

arms with GST (45-374).  
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Only N-lobe was expressed in a soluble fraction and purified. Unlabelled N1-261 was tested for 

interaction with 15N-labelled phosphoprotein N-terminal part but no signs of binding were 

observed. In addition, peak distribution on 1H-15N HSQC spectrum of N-lobe was more 

characteristic of a disordered protein (data not shown). This indicates a possible protein 

misfolding that probably lost its functional activity. 

 

 
Figure 4.1. PSIPRED structure prediction for MuN (shown only for Ntail 373-549) (A). Blue 

bars indicate the level of confidence of prediction, magenta cylinders and letter H – predicted 

α-helices, lines and letters C – random coil, AA is for the amino acid protein composition. 

Helices were predicted in the regions 377-383 and 388-402 (C-arm), 477-481 and 508-515 can 

be considered as the potential MoRE. (B) The amino acid composition of Ntail, rich in 

glutamines (Q in red) and prolines (P in green). 

 

4.3.! Intrinsically disordered Ntail 

4.3.1.! Ntail NMR spectral characterisation 
As mentioned before, two Ntail fragments were studied in parallel. Both had HSQC spectra 

characteristic of IDPs. It was decided to focus on the longer form (373-549) to which Iwill refer 

to as Ntail. After the addition of 2 residues from the cloning restriction site (residues M on N-

terminal, L and E on C-terminal) and 8 residues Histidine-tag in C-terminal end, the Ntail 

protein counts 185 amino acids.  
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The purified construct was assigned using standard triple-resonance assignment experiments 

as described earlier (Figure 4.2). The first NMR spectra were acquired in physiological 

conditions (buffer with 150 mM NaCl). However, for practical reasons (PCTD is not stable at low 

salt) interactions with potential partners, Ntail was further dialysed to high salt buffer 

containing increased NaCl concentration (500 mM) and assigned. The assignment of N-rings 

was also performed in 500 mM buffer. 

 
Figure 4.2. Spectral assignment of 1H-15N HSQC of Ntail (373-549) at 25°C and 600 MHz in 

50 mM Na-phosphates, 500 mM NaCl, 2 mM DTT at pH 6. DDT was added to all samples with 

or without cysteins in order to use them for interaction essays. Peaks from glutamine, 

asparagine, arginine and tryptophan side chains are not shown. 

 

Secondary structure propensities (SSP) were calculated from Cα and Cβ chemical shifts. The 

region with elevated SSPs between residues 373 and 405 revealed a helical conformation 

(Figure 4.3A) which can be explained theoretically by the close proximity of these amino acids 

to the Ncore and probable formation of C-arm. The last 7 residues were found having higher 

than 0,2 SSPs that can be explained by the presence of histidine-rich tag or the formation of 

transient binding site for a partner such as the matrix protein. Other regions had negligible 

SSPs. The presence of the helix in the N-terminal part of Ntail was visualised on the ensemble 

calculation with ASTEROIDS (Figure 4.3B). Only the CS from Cα are shown, as Cβ, C&, N and HN 
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were less informative. Ramachandran space that indicates the distribution of protein dihedral 

torsion angles φ/ψ can be derived from conformational sampling of the selected ensemble. The 

population of each possible secondary structure can be ploted as a function of residue (Figure 

4.3C):  β-strand (βS), left-handed polyproline II helix (βP), α-helix (αR) and left-handed helix 

(αL). It is possible to highlight the highly αR populated regions discussed before: on N- and C-

terminal part of Ntail, less populated α-helix were found for residues in the potential concerved 

MoRE domain (440-530), supposedly located in the middle of Ntail sequence. 

 

 
Figure 4.3. Ntail SSPs (A) and Cα secondary chemical shifts (SCS) calculated from 

ASTEROIDS ensemble (B) based on chemical shifts as an input (the initial pool contained 

10000 structures, the selected ensembles 200 conformers). Population plot ρ (C) 

corresponding to α-helix (αR) derived from the ASTEROIDS ensemble and selected from 

statistical coil library (database of dihedral angles used during protein statistical coil 

generation). Grey rectangles indicate protein regions with potential secondary structure 

conformation. 
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Measuring R1ρ did not show the presence of “strong” secondary structure conformations. 

However, there are slightly higher relaxation rates on residues from 385 to 408, from 450 to 

464, from 474 to 482, from 505 to 518 and few residues on Ntail C-terminal end. This 

complements the previous experimental and computational data about C-arm and potential 

MoRE domains. In addition, similar values measured at higher magnetic field (at 850 MHz) 

didn’t show any evidence of exchange contributions. In contrast, R1 relaxation rates are similar 

throughout the sequence (Figure 4.4). 

 

 
Figure 4.4. Dynamics of Ntail. R1ρ, R1 and hetNOE profiles were measured at two different 

magnetic fields, they describe the conformational behaviour in the ps to ns time scale. Grey 

rectangles indicate the position of potential transiently/partly structured regions. 

 

Positive hetNOE values (at 600 MHz) indicates a decrease in flexibility in pico to nano seconds 

timescale in regions 385-405, 475-500, 500-518, 545-557 (Figure 4.4) which is caused by the 

presence of helical propensity. Other protein sequence regions display low hetNOE which is 

usually observed for high flexibility of random coil conformation. 
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Additional information was extracted from RDCs after Ntail alignment (Figure 4.5). Three 

types of RDCs were measured. Surprisingly, high 1DNH values were observed for residues 468-

498 with sufficiently high dipolar waves in the N-terminal part of Ntail (C-arm) (373-406) and 

relatively small on the other region I suggested to be a potential MoRE (residues 500-512). 

Dipolar waves (variations in the dipolar constant indicating the different from parallel 

orientation of the helix vectors in the direction of the magnetic field [Mesleh et al., 2002]), 

were also observed on 1DCαHα for C-arm and residues 468-498, only positive values were present 

at the region with 500-512 amino acids (Figure 4.5). This finding is very promising in Ntail 

structural investigation to detect strong helical propensity of potential MoRE domains. The 

“invisibility” of those regions can be explained by the presence of prolines (P) and glutamines 

(Q) in Ntail protein sequence (Figure 4.1). The last RDC experiment 1DCαC was less informative 

because of signal to noise (not shown). The Ntail C-terminal end was not affected much in the 

alignment. 

 

 
Figure 4.5. 1DNH and 1DCαHα of Ntail after alignment in PEG-hexanol liquid crystals at 25°C. 2H 

quadrupolar splitting of water was 25 Hz. Grey rectangles indicate protein regions with 

potential secondary structure conformation: C-arm and MoRE domains. 

 

Finally, several studies probing Ntail interaction with different truncations of P were 

performed. No affinity was found for Ntail to bind phosphoprotein. 
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4.3.2.!Ntail phosphorylation in vitro 
According to Zengel et al., MuN is phosphorylated in MuV-infected cells. This was shown by 

mass spectrometry and radioactive labelling, and further by in silico studies. The major 

phosphorylation site was identified to be located at serine 439. However, the kinase(s) 

responsible for the modification was not known. 

 

 
Figure 4.6. Phosphorylation profile of Ntail. Overlay of 1H-15N HSQC spectra before (in red) 

and after (in blue) phosphorylation (A). Zoom on spectra with phosphorylated site S439 (B). 

R1ρ profile of Ntail before (in red) and after (in grey) phosphorylation, asterisk indicates the 

position of the phosphorylated residue (C). 

 

With the knowledge of potential phosphorylation sites obtained from predictors, CKII was 

used for in vitro phosphorylation of the recombinant protein. The residue S439 was 

phosphorylated as expected (Figure 4.6A, B). The phosphorylated amino acid changed the 

chemical environment of the close residues which was observed on the HSQC spectra before 

and after modification. From the R1ρ relaxation profile, the peptide chain in the region close to 

S439 has slightly higher relaxation rate values (Figure 4.6C) without dramatic change in 

overall protein conformation and dynamics. As in the publication of to Zengel et al. it was 

suggested about the creation of the new binding site after Ntail phosphorylation, I performed 
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tests of phosphorylated Ntail with PCTD interaction but it did not show any evidence to support 

this hypothesis. 

 

4.4.! Ntail in the context of RLP and NC 

4.4.1.! Purification of RLPs 
The full-length MuN (NFL) was expressed in the form of oligomeric 13N-units ring-like 

structures (N-rings) with the incorporated random RNA (Figure 4.7A, B). N-rings appear to 

form nucleocapsids by stacking onto each other and forming helical structures (Figure 4.7A). 

 
Figure 4.7. Electron micrographs of NFL after bacterial lysis (A), last step of purification (B), 

treatment with trypsin (C) and RNAse I (D). 

 

Usually, this happens during long storage at 4°C, or much faster at RT. The protein degrades 

and aggregates by releasing Ntail, as was described in the literature [Severin et al., 2016] and 

followed under SDS-PAGE analysis (data not shown). The same effect was observed after N-

rings proteolysis with trypsin (Figure 4.7C). For this reason, I always used the NFL from frozen 

aliquots at -80°C. High salt conditions prevent the rings from aggregating with each other. 

Consequently, all the purification steps were performed with the addition of 500 mM NaCl 

which allowed the collection of N-rings in a separate fraction (Figure 4.8). NFL after RNAse I 

treatment did not change the morphology of ring-like oligomeric structure (Figure 4.7D). 



 101#

 
Figure 4.8. Superose Increase 6 10/300 GL column size-exclusion chromatography profiles 

of RLPs purification in buffer containing 150 mM (in red) and 500 mM NaCl (in black). 

Fractions from 9 to 11 mL were collected for the N-rings analysis. 

 

 
Figure 4.9. 30 classes showing the variability of sizes and shapes of the truncated NFL NC-

like structures collected from cryo-EM. Each class is an image of 153*153 pixels and each pixel 

represents 2.42 Å, 370.26 Å in total. To make each class, about 250 particles were averaged. 

 

N-rings alone and capsids formed from NFL proteolysis were also visualised by cryo-EM. 

Unfortunately, RLPs images did not have a high enough resolution to be able to draw any 

significant conclusions from this study. I tried to improve the resolution by decreasing the salt 

conditions (up to 50 mM NaCl), but the resolution was still very poor. Better resolution was 
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obtained with trypsinated rings that then formed NC-like structures. However, after analysis, 

about 30 classes of different helical orientations were found (Figure 4.9). This variation 

decreased the chance of obtaining a high-resolution structure with this protocol of capsid 

preparation. 

 

Scattering of large N-rings particles and the presence of RNA prevented determination of the 

exact concentration by UV absorbance. Therefore, I have measured the concentration with the 

help of BCA assay. The cratio between the concentration inferred from the absorbance and tht 

inferred from BCA measurements was constant and equal to 3,8. 

 

4.4.2.!N-rings NMR characterisation 
Despite the size of N-rings, they still give rise to NMR signal due to the flexibility of the attached 

Ntail domain, as previously shown for MeV nucleocapsids [Jensen et al., 2011; Milles et al., 

2016]. 

 

 
Figure 4.10. Superposition of the 1H-15N HSQC spectrum of isolated Ntail (in red) and N-

rings (in blue), both spectra were recorded at 600 MHz at 25°C. 
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Figure 4.10 represents the overlay of two HSQC spectra from Ntail and NFL allowing me to 

assign the superposing N-rings signals. The intensity was extracted from visible peaks 

(residues 430-470 and 495-549) and plotted it against the Ntail sequence (Figure 4.11). Signals 

from residues close to the Ncore (373-430) and potential MoRE (470-495 and 500-510) have 

either very small intensities or are absent on the HSQC spectrum. 

 

 
Figure 4.11. Peak intensity profile extracted from HSQC spectrum of NFL, calculated as a ratio 

between the peak intensities from NFL and Ntail. 

 

 
 Figure 4.12. Relaxation profile (R1ρ and R1) of NFL compared to the isolated Ntail recorded at 

the same magnetic field and temperature. Grey rectangles indicate the position of potential 

structural regions. Second rectangle is the domain of Ntail in close proximity to the big 

oligomeric Ncore that, due to the slow molecular tumblinsg, is not visible for NMR. 
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I have measured NFL R1ρ and R1 relaxation in order to probe RLPs conformational dynamics 

and compare it to the isolated Ntail (Figure 4.12). In the similar way to peak intensities, regions 

supposedly corresponding to C-arm and MoRE are identifiable by the peaks being too broad 

and hence non-detectable. 

 

4.4.3.!Interaction of RLPs with Ntail 
To extend the hypothesis of the Ntail MoREs interaction with the surface of N-rings, a mixture 

containing 10 µM of 15N labelled Ntail and 100 µM of unlabelled N-rings was measured by 

NMR. Intensities extracted from peaks in the HSQC spectrum (Figure 4.13A) showed the 

region of 470-495 disappearing apparently because of a contact with NFL (Figure 4.14). 

 

 
Figure 4.13. Superposition of the 1H-15N HSQC spectrum of isolated Ntail alone (in blue) and 

the mixture of labelled Ntail and unlabelled N-rings (in red) (A), of labelled N-rings alone (in 

blue) and with Ntail (in red) (B). 

 

The mirror experiment was acquired by probing the interaction of 15N labelled NFL and 

unlabelled Ntail with a molar ratio of 1:10. According to the appearance of the new peaks on 

NFL HSQC spectrum (Figure 4.13B) and their intensities (Figure 4.14), in the presence of an 

excess of isolated Ntail, Ntail from RLPs gets liberated, confirming a direct interaction of the 

first MoRE region (470-495) with Ncore. In addition, the region close to Ncore of N-rings Ntail 
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from 373 to 430 also was affected in the interaction. This could be explained by the 

involvement of C-arm of free Ntail (its N-terminus) in the assembly of N-rings. 

 

In this focus, the intact and trypsin-truncated NFL was incubated with a large fraction (at least 

10 times higher) of Ntail. A tendency of uncoiling capsids was observed on EM images (Figure 

4.15A, B). In parallel, a new construct N1-445 was generated without MoRE region. The protein 

was unstable and precipitated very quickly, so the purification procedure was stopped with Ni-

affinity, indicating the rapid formation of aggregating NCs (Figure 4.15C). 

 

4.4.4.!Interaction of RLPs with phosphoprotein and kinase 
In the literature, the Ncore region of MuV NCs and N-rings were suggested to bind both N- 

and C-terminal domains of the phosphoprotein. Some NMR titrations were performed here, 

but as the NFL HSQC spectrum was not informative for this kind of study due to the absence of 

Ncore cross-peaks, detailed description about these interactions in the context of P will be 

provided in the next chapter. 

 

 
Figure 4.14. Intensity profiles of Ntail and NFL from HSQC spectra from Figure 4.13. They 

were calculated as the ratio of peak intensities between Ntail and Ntail with unlabelled NFL and 

between NFL and NFL with unlabelled Ntail. 

 

At the same time, NFL interaction with P was visualised in EM. The binding to P N-terminal 

or/and C-terminal domains did not show significant changes on N-rings structure. However, 

adding to the mixture of NFL, PNTD and PCTD RNAse I completely broke RLP structure (Figure 

4.15D), while incubation of NFL with RNAse I alone does not influence the N-ring morphology. 
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Figure 4.15. Electron micrographs of NFL treated with excess of Ntail (A), with trypsin and 

Ntail (B) and N1-445 alone (C). NFL after incubation with PNTD, PCTD and RNAse I (D). Uncoiled 

capsids are indicated by white arrows. 

 

In a similar way as Ntail, NFL was also tested for phosphorylation with CKII. The same residue 

S439 was modified, however, no other changes in the HSQC spectrum after phosphorylation 

were observed, showing that the dynamic behaviour and environment of Ntail was not 

impacted by phosphorylation. 

 

4.4.5.!SAXS of RLPs 
The principle of coupled SAXS-SEC experiment is the direct visualisation of the protein elution 

profile in terms of X-ray scattering. The coupled device had a long tube connecting the injection 

valve and the column, for this reason, the resolution decreased and did not allow separation of 

the elution peak of N-rings from the void volume in the SAXS profile. Instead both peaks on 

SEC-chromatography profile were merged, as was observed for NFL purification under low salt 

conditions (Figure 4.8). In view of the overall quality of the data no further analysis was 

performed. 
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5.! RESULTS. PHOSPHOPROTEIN 

__________________________________________________________ 
Although known crystal structures are available for OD and XD domains of mumps virus P, 

nothing is known about disordered regions and their function. This chapter will be dedicated 

to the study of these unknown regions of phosphoprotein structure, in particular isolated N- 

and C-terminal domains of P, and their interaction with N. In addition, for the first time I will 

introduce findings from mumps virus V protein purification and its NMR characterisation. 

__________________________________________________________ 
 

5.1.! Phosphoprotein functional domains 

Mumps virus phosphoprotein (MuP) consists of 391 amino acids, and functionally is divided 

into three parts: the N-terminal domain (PNTD, residues 1-215), the oligomerization domain 

(OD, residues 215-272) and the C-terminal domain (PCTD, residues 272-391) that includes XD 

(residues 343-391). According to the structure prediction from IUPred (Figure 1.24A) and 

PSIPRED (Figure 5.1), PNTD is predicted to adopt a disordered conformation with some 

transiently structured regions. A disordered linker was identified between folded OD and XD 

(residues 272-343). The structures of OD and XD were previously solved by X-ray 

crystallography [Cox et al., 2013; Kingston et al., 2008]. 

 

 
Figure 5.1. PSIPRED profile for PFL indicating regions with potential secondary structure. 

Blue bars indicate the level of prediction confidence, magenta cylinders and letter H – 
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predicted α-helices, yellow arrows and letter E - β-sheets, lines and letters C – random coil, AA 

is for the amino acid protein composition. Without taking into the account the coiled coil OD 

and three-helix bundle of XD, the rest of the protein chain seems to adopt random coil 

conformation with α-helical (residues 7-16, 18-25, 125-129, 286-292) and β-sheet (residues 

396-300, 315-318) structural propensities. 

 

With the aim of discovering the structural and functional role of the folded and unfolded parts 

of MuP, different phosphoprotein fragments were expressed: P1-215 (NTD), P1-272 (NTD+OD), 

P215-391 (OD+CTD), P272-391 (CTD), P1-391 (full-length) and P341-391 (XD). All the constructs with 

OD aggregated during purification and had two bands on SDS-PAGE. P1-272 and PFL were 

analysed by Western blot using anti-hisantibodies (data not shown). The presence of the same 

two bands for each P construct excludes the protein degradation that occurs from the C-

terminal end where His-tag is attached. Further analysis by mass-spectrometry did not explain 

the reason of proteins aggregation and the major protein bands on the gel after purification. 

For this reason, only PNTD and PCTD were further studied in detail. 

 

5.2.! Phosphoprotein N-terminal domain (PNTD) 

5.2.1.! NMR assignments and dynamics of PNTD 

PNTD contained 225 amino acids including 2 residues from the restriction site and the 8-

histidine tag. Due to precipitation at low salt conditions (150 mM NaCl), PNTD was kept and 

purified in high salt buffer containing 500 mM NaCl in addition to 50 mM Na-phosphates and 

2 mM DTT. The 1H-15N HSQC spectrum (Figure 5.2) is characteristic of a disordered protein. 

The protein residue assignment was performed in a similar way as for Ntail. 

 

As in the case of Ntail, structural propensities and relaxation data of PNTD do not reveal regions 

of high helical probability. PNTD shows lower SSPs (Figure 5.3A) extracted from Cα and Cβ 

chemical shifts compared to Ntail. The SSPs revealed regions that are transiently structured in 

the N-terminal part (10-37) named α1, residues 114-137 in the middle of PNTD peptide chain are 

defined as α2, and finally in the C-terminal end comprising residues 169-195 named α3. 

ASTEROIDS ensemble calculation did not provide a lot of necessary information about 

secondary structure description of PNTD. However, relatively high positive CS of α2 were 

revealed at the Cα SCS (Figure 5.3B). Not much information was collected from αR population. 

However, it was enough to confirm the presence of three regions with residual helical structure. 

 

Similar to Ntail, R1ρ and R1 relaxation profile did not show evidence of the higher relaxation 

rates at these regions (Figure 5.4). However, from 1H-15N hetNOE profile, SSPs and 
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ASTEROIDS the potential structured regions can be identified and validated (Figure 5.3, 5.4). 

First of all, positive NOE values were observed for the residues from 110 to 139 which is in 

agreement with their slightly higher R1ρ that is higher than 2 s-1 in average. 

 

 
Figure 5.2.  Residue specific assignment of PNTD displayed on 1H-15N HSQC spectrum at 25°C 

and 850 MHz in 50 mM Na-phosphates, 500 mM NaCl, 2 mM DTT pH6. Peaks from 

glutamines, arginines and asparagines side chains are not shown. 

 

In order to extend the search for secondary structures, I tried to align PNTD in anisotropic 

medium (phages and liquid crystals), but it led to immediate protein precipitation. Concerning 

phosphorylation, PNTD was tested with PLK1 and CKII, but it did not lead to any effect on 

protein structure. 
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Figure 5.3. SSPs, ASTEROIDS ensemble and αR population data describing propensities in 

secondary structure of PNTD, derived from chemical shifts. Grey rectangles indicate probable 

regions with residual structure. 

 
Figure 5.4. Dynamics of PNTD. R1ρ, R1 and hetNOE profiles were measured at two different 

magnetic fields. Coloured rectangles indicate the regions with residual structure. 
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5.2.2.!PNTD interaction with RLPs 
The interesting feature of PNTD is its ability to bind RLPs and intact capsids with relatively low 

affinity compared to PCTD [Cox et al., 2013]. In this respect, 15N labelled PNTD was tested for 

binding to unlabelled N-rings by NMR spectroscopy. A sample was prepared for a qualitative 

analysis of the interaction with a molar ratio of 1:0.5 (PNTD:NFL). Adding a higher concentration 

of NFL led to sample precipitation. In addition, NFL tends to precipitate upon the long storage 

at RT during NMR acquisitions. Furthermore, NFL is difficult to purify in small volume 

analytical SEC column. 

 

 

 
Figure 5.5. 1H-15N HSQC spectra superposition of PNTD before (in blue) and after (in red) 

addition of N-rings (A). The intensity ratio between the peaks from of PNTD in the presence of 

NFL and PNTD alone (B) indicates the three regions (in grey) of PNTD being affected in weak 

interaction. The same profile was observed for increased relaxation rates for above mentioned 

parts of PNTD protein (C). Another region between α1 and α2 (residues from 57 to 85) was also 

highlighted in grey as having less significative intensity decrease and relaxation rates increase. 

 

Coming back to the interaction, there were no significant chemical shifts variations in the PNTD 

spectrum (Figure 5.5A). Nevertheless, comparison of peak intensities before and after 

interaction with N-rings indicate regions with decreasing intensities (Figure 5.5B). They 

correspond to those regions identified to have transient secondary structure: helices α1, α2 
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and α3. The same trend was observed in R1ρ relaxation measurements: the same regions show 

a decrease in flexibility due to contacts with N-rings (Figure 5.5C). Peak intensity decrease 

could be the sign of intermediate exchange. It is important to note that residues between α1 

and α2 also had slightly decreased peak intensities and increased R1ρ relaxation rates. 

 

5.3.! Phosphoprotein C-terminal domain (PCTD) 

5.3.1.! XD 
Before investigating PCTD, the short XD was expressed and purified under high salt conditions. 

Its 1H-15N HSQC spectrum contained a lot of broad peaks that were impossible to analyse 

(Figure 5.6). This could be explained by the instability of the three-helix bundle. Adding TMAO 

with increased concentration which is supposed to stabilise the conformation according to 

Kingston et al., 2008, did not lead to any spectral improvement under the variation of 

temperature and concentration. Also XD was tested for interaction with Ntail, but no evidence 

of binding was observed. 

 

 
Figure 5.6. 2D 1H-15N HSQC spectrum of XD in 50 mM Na-phosphates, 500 mM NaCl, 2 mM 

DTT pH 6 at 25°C. 
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5.3.2.!NMR structural characterisation of PCTD 
Following the hypothesis that the linker between the tetramerization domain and XD might be 

required for stabilizing the XD three-helix bundle, the PCTD was expressed and purified under 

the same conditions as XD alone. However, several steps of the purification were optimised 

due to the formation of oligomers. In particular, upon SEC purification, one peak made of two 

unresolved peaks corresponded to the formation of trimeric structure which was identified by 

MALLS (data not shown). In order to separate the two peaks, I have injected PCTD onto the SEC 

column at a rather low concentration after dialysing the sample against lysis buffer to remove 

the imidazole. I was then able to successfully collect the peak corresponding to the monomeric 

fraction of PCTD which was further analysed by NMR. 

 

 
Figure 5.7. Protein residue spectral assignments of PCTD recorded at 25°C and 700 MHz in 50 

mM Na-phosphates, 500 mM NaCl, 2 mM DTT pH 6. The cross-peak distribution in terms of 
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proton CS distribution is characteristic of a protein having a mixture of folded (in grey) and 

unfolded (in light grey) conformation. 

 

The 1H-15N HSQC spectrum of PCTD showed a peak distribution in the 1H dimension, which was 

characteristic for a protein that consists of unfolded and folded parts (Figure 5.7). A visible 

difference in peak intensities can be distinguished between the folded and the unfolded regions 

of the protein, as expected from the different correlation times of the two regions. The amino 

acid sequential assignment was performed. Furthermore, in the spectrum, there are several 

very low intensity peaks that were assigned as secondary peaks from residues close to cis- or 

trans-orientation of prolines. 

 

 
Figure 5.8. Dynamics profile of PCTD. R1ρ, R1 and hetNOE were recorded at two different 

magnetic fields. Red and grey rectangles indicate two regions with transient secondary 

structure, green rectangle specifies the XD domain with three helix bundle. 

 

SSPs and relaxation measurements, in particular, R1ρ and hetNOE were sensitive to the folded 

XD in its C-terminus with the three helical bundle being clearly distinguishable (Figure 5.8). 
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The R1 relaxation profile was quite flat for the rates measured at lower magnetic field. However, 

for 950 MHz, it is possible to see the clear decrease by 0,5 s-1 for the folded part. As concerns 

the region of the unfolded linker (272-342), it has two potential structured sites with transient 

secondary structure (residues 286-301 and 315-324) with relatively high increase in relaxation 

rate R1ρ and in SSP values (Figure 5.8). 

 

 
Figure 5.9. ASTEROIDS ensemble calculation (A) and αR population (B) for the flexible 

linker (272-342) confirms the existence of two secondary transient structures in the regions of 

281-293 and 315-321 (in pink and green respectively). 

 

ASTEROIDS ensemble calculation from Cα and C& chemical shift was performed only for the 

flexible part of PCTD (Figure 5.9A). Two regions with population of α-helix (Figure 5.9B), they 

contained the signature of two transient helical elements located in regions with residues 283-

298 and 316-324. 

 

To further probe PCTD conformational dynamics, RDCs were measured on the protein aligned 

in phages. The XD domain appeared in positive 1DHN and dipolar waves on 1DCC. In addition, 

small dipolar waves were also observed for the two mentioned before regions with transient 

helical propensity 286-301 and 315-324 (Figure 5.10). 
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Figure 5.10. 1DHN and 1DCC RDCs extracted from PCTD aligned in phages. 2H quadrupolar 

splitting was 25 Hz. 

 

 
Figure 5.11. PRE from the PCTD labelled with TEMPO at position C356 is expressed as the 

intensity ratio between the reference (reduced by Na-ascorbate) and labelled (oxidised) PCTD 

protein. 

 

Another question raised by this analysis was whether there were long-range transient contacts 

between the long linker and the folded domain, as XD alone was not observed to adopt a stable 

tertiary structure. The wild-type protein sequence PCTD has a cysteine at position of 356, located 

in the first helix of XD. This allowed me to chemically modify the amino acid by adding a 

TEMPO-maleimide tag. Two spectra were recorded (labelled, or oxidized, and reduced 

protein) and the peak intensities were extracted and compared to each other. Being in close 

contact with the paramagnetic label, all three helices disappeared from the spectrum (Figure 

5.11). In addition, peak intensities from the flexible linker decreased all-over the sequence, 

particularly, around residues 300 to 320. This finding does not allow to conclude the specific 

and direct interaction of the folded XD and transient helical domains of PCTD but confirms their 

potential weak long-range contacts. 
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5.3.3.!PCTD interaction with RLPs 
According to the literature, PCTD was found to interact with RLPs with higher affinity than PNTD 

[Cox et al., 2013], KD of 4,26·10-7 M against 4,95·10-6 M. However, the exchange regime and the 

exact position of the interaction site had never been identified. 

 
Figure 5.12. PCTD interaction with NFL. Intensity ratio between the mixture of PCTD and N-

rings and PCTD alone at different molar ratios (A), each titration step was recorded as individual 

experiment. Overlay of 2D 1H-15N HSQC spectra of PCTD alone (in red) and complex of PCTD and 

RLPs (in blue) (1:0,8), peaks of XD disappeared completely (B). R1ρ relaxation measurements 

of the complex (1:0,3) at different magnetic fields (C). 
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In the case of this work, I have tried different molar ratios of PCTD and NFL (1:0,03; 1:0,3; 1:0,4; 

1:0,8) in order to identify PCTD interaction site with NFL in case of fast exchange (Figure 5.12A). 

Due to the fast RLPs degradation, each titration step was prepared from the same stock and 

measured individually. Upon step-wise addition of NFL to phosphoprotein, XD peaks 

disappear, indicating complex formation of PCTD with big oligomeric N-rings (Figure 5.12B). 

Relaxation measurements were also performed (Figure 5.12C) of the complex 1:0,3 at different 

magnetic fields (700 and 950 MHz). Low stability of RLPs, however, was a major constraint to 

study in details PCTD and NFL interaction. 

 

5.3.4.!PCTD phosphorylation 

PLK1 kinase was found to modify MuP C-terminal domain by binding to PNTD [Pickar et al., 

2016], which perfectly agrees with the structure of OD and the anti-parallel oligomeric 

structure of P, when PNTD and PCTD can be in close proximity. The phosphorylated residues were 

identified to be S292/S294.  

 

In vitro phosphorylation of PCTD was performed by addition of PLK1. The residue S307 was 

modified first. After its full phosphorylation, S292 was phosphorylated. Probably, due to the 

absence of the PNTD for the kinase fixation, to fully phosphorylate two residues of the protein, 

it took about 3 days at RT. Therefore, the kinetics was not followed by SOFAST experiments, 

only 2D HSQC were recorded in between assignment spectra acquisition. Both modifications 

led to significant changes on 1H-15N HSQC spectrum (Figure 5.13A). For this reason, the 

sequential assignment experiments were carried out. Further R1ρ measurements were also 

recorded. The relaxation experiment (Figure 5.13B) shows that phosphorylation does not 

change the overall chain flexibility from the linker (272-342). However, SSP analysis (Figure 

5.13C) showed decreasing of the helical propensity on the region from 285 to 291 and from 301 

to 311. 

 

Phosphorylated PCTD was also tested for interaction with NFL in order to find another 

interaction site described earlier [Pickar et al., 2016], supposedly appearing after modification 

and binding to Ntail but only the expected changes on XD peaks were observed (data not 

shown). 
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Figure 5.13. Phosphorylation profile of PCTD by PLK1. The zoom of 2D 1H-15N HSQC spectrum 

before (in red) and after (in blue) phosphorylation (A). T1ρ relaxation (B) and SSP (C) of PCTD 

before and after phosphorylation. 

 

5.4.! Full-length phosphoprotein 

Despite PFL being unstable and degraded protein, the 1H-15N HSQC spectrum of PFL was 

measured (Figure 5.14A). By overlaying it with PNTD and PCTD, the disordered regions could be 

assigned (Figure 5.14B). The absolute intensities of the identified residues are shown on Figure 

5.14C. Increased peak intensities in the position of residues from 149 to 190 could give some 

ideas about the localisation of the cleavage site and the reason of the presence of two bands on 
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SDS-PAGE gel (data not shown). Nevertheless, the sample could not be used for further 

analysis due to its instability and poor purification profile. 

 

 
Figure 5.14. 2D 1H-15N HSQC spectrum of PFL (A). Overlay of HSQCs of PFL (in red), PNTD (in 

black) and PCTD (in blue) (B). Absolute intensities extracted from PFL HSQC (C) with functional 

regions (PNTD, OD, PCTD with XD) in grey and light grey. 

 

5.5.! V protein 

For V protein, I was particularly interested in studying the structural and functional differences 

with respect to the phosphoprotein. In particular PNTD is identical to V up to residue 156 (Figure 

1.18), and it has the potential ability to form N0V in a similar manner to N0P as it was observed 

for PIV5 V [Randall & Bermingham, 1996]. According to the PSIPRED structure(Figure 5.15), 

MuV V protein has residues 170-224 on its  C-terminus that contain a β-sheet conformation. 

Of course, there is some evidence of the presence of structured regions affecting the same 

residues as PNTD. 

 

A new plasmid construct was generated for mumps virus V protein that had a TEV-cleavable 

His-tag at its N-terminal region in order to prevent Zn2+ ions to interact with histidine residues. 

Different expression, purification conditions and bacterial strains were used to get V in the 
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lysis soluble fraction. As V consists of 2 zinc-fingers, made of 1 histidine and 7 cysteines, there 

is a high probability for V to aggregate or misfold during purification, which can be worsen by 

the presence of the IDR that tends to aggregate in the presence of the nucleation site as 

hydrophobic residues in IPDs are solvent exposed, and therefore, not protected from sticking 

to other hydrophobic surfaces. 

 

 
Figure 5.15. PSIPRED structure prediction for mumps virus V protein, indicates the presence 

of folded and unfolded regions. Blue bars indicate the level of prediction confidence, magenta 

cylinders and letter H – predicted α-helices, yellow arrows and letter E - β-sheets, lines and 

letters C – random coil, AA is for the amino acid protein composition. 

 

Finally, I have tried denaturing conditions with mild dialysis into physiological buffer 

containing Zn-cations as described in the work of Saladini et al., for HeV and NiV Vs. A 1H-15N 

HSQC was measured on this sample showing the characteristic for intrinsic disorder, no sign 

of the zinc-finger was present (Figure 5.16A). This spectrum was compared to PNTD allowing 

identification of the common residues. The extracted absolute intensities gradually decrease 

after residue 60 (Figure 5.16A) indicating them to be close to the probably misfolded and 
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aggregated ZFD. Two out of three tryptophan residues are visible at around 1H 10,1-10,2 ppm 

(Figure 5.16B) that come from the first loop of the zinc-finger (Figure 1.18B). 

 
Figure 5.16. 2D 1H-15N HSQC spectrum of V protein (A) appears as an intrinsically disordered 

protein with minor and major intensity peaks, the arrow indicates two tryptophan residues 

located in the first loop of the Zn-finger. Comparison of V and PNTD spectra allowed to assign 

overlaid residues and extract peak intensities (B). 
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6.! RESULTS. N0P COMPLEX. 

__________________________________________________________ 
The N°P complex has never been studied for MuV, and this constitutes one of the aims of my 

work. The generation of a soluble N0P complex is therefore an important part of this project, 

as it allows N to be studied in a monomeric form and with this, its potential interaction sites 

with P. In addition, the incubation of N0P with short RNA has led to assembly into long NCs 

for the related measles virus [Milles et al., 2016]. I therefore expect that an N0P construct from 

MuV proteins would allow me to study the assembly into oligomeric filamentous nucleocapsids 

upon addition of RNA also for this virus. 

 

6.1.! Generation of different N0P constructs 

As the exact region of PNTD which is responsible for the interaction with N (in order to keep it 

monomeric) was not defined yet, two constructs differing in the length of P both fused with 

NFL and separated by a TEV cleavage site were prepared: P1-215 (PNTD) and P1-141 (further P141). 

The first one did not express in the soluble fraction. However, the second one was successful, 

but a lot of the protein formed aggregates manifested by a large peak corresponding to the void 

volume of SEC column (data not shown), which decreased the overall purification yield. 

P141N549 was further analysed by MALLS, EM and NMR. For analysis, the void volume peak 

was excluded and I continued working with the heterodimeric fraction. 

 

 
Figure 6.1. MALLS profile (in red) from P141N549 showing the presence of RLPs and N0P under 

SEC purification (in grey) (A). Electron micrographs of the same sample after SEC purification 

confirmed the formation of N-rings with attached P peptide (B). 
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Figure 6.2. Spectrum of P141N549 alone (in black) and overlaid with PNTD (in red) and Ntail (in 

green) (A). Intensity ratio calculated from PNTD or Ntail over P141N549 and R1ρ profile of N0P 

compared to Ntail and PNTD measured at the same temperature and magnetic field (B, C). 
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This purified, concentrated heterodimeric N0P complex was then analysed by MALLS. 

Surprisingly, the MALLS profile showed again a peak corresponding to the void volume 

(fraction of about 26% of total injected volume) with a molecular weight corresponding to 

about 13 N0P units (Figure 6.1A). The second peak, corresponding to the same elution volume 

as the one previously collected in the purification, corresponded to the N0P dimer. This 

suggests that, over time, soluble heterodimeric N0P complexes made of NFL and P1-141 associated 

into large molecular weight assemblies. 

 

P141N549 was also visualised by electron microscopy showing the presence of N-rings in the 

same sample (Figure 6.1B). This is in agreement with the conclusion drawn from the MALLS 

experiment. After purification, N0P seems to slowly transform into RLPs by keeping P bound 

to N. This hypothesis was expected to be confirmed by NMR measurements.  

 

A 2D 1H-15N HSQC spectrum of P141N549 that appeared with the signature of disordered protein, 

was overlaid with spectra of Ntail and PNTD to assign the common residues (Figure 6.2A). Peak 

intensity ratio indicated a decreased peak intensity and disappearance of P141 C-terminal peaks, 

however, residues of NcoI restriction site and the left-over from TEV cleavage site were not 

assigned. The relaxation measurements also showed the increase in R1ρ of the residues from 92 

to 141. Unsuccessful TEV cleavage was excluded by appearance of lower N bands on SDS-PAGE 

gel (data not shown). Residues 1 to 92 of P have slightly higher relaxation rates compared to 

free PNTD which can be explained by the attachment of P to the surface of N-rings (Figure 6.2B). 

Ntail within P141N549 has almost the same intensity and relaxation profile as RLPs described in 

Chapter 4.4.2: residues close to the Ncore and MoRE were not present in the spectrum (Figure 

6.2C). In addition, the first residues of following the MoRE were also absent. 

 

In conclusion, while searching for the interaction site responsible for the stable N0P complex 

(about first 70 residues of PNTD), another interaction site in PNTD was identified. This site is 

located between the residues 92 and 141 and seems to be identical to the transient binding site 

of PNTD with N-rings (Figure 6.2B). In addition, other constructs were cloned with full-length 

N and different P truncations: 1-90, 1-150, 150-215, 90-215. The first construct purified from 

small volume test-expression showed that the P peptide remained bound to N after successful 

TEV-cleavage (this was verified with SDS-PAGE). Therefore, in addition to the interaction site 

around residues 91-141, P must have another binding site further at its N-terminus that 

interacts with N. This is in agreement with N0P binding modes of other Paramyxoviridae 

[Milles et al., 2018]. 
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6.2.! Characterisation of P90N549 

Compared to P141N549, P90N549 showed higher protein yield and less aggregates. At the same 

time, EM revealed similar instability of the complex and gradual formation of N-rings over 

time (Figure 6.3A). The comparison of 1H-15N HSQC spectra of P90N549 and PNTD showed that 

all 90 peaks of P peptide were present in the N0P spectrum. For Ntail, the same residues as for 

N-rings were absent (Figure 6.4A). An interesting feature was observed in the R1ρ relaxation 

profile of P90N549: the rates for the regions 13-30 and 39-51 within P were increased as 

compared to PNTD alone (Figure 6.4B,C). I have also performed coupled SAXS-SEC analysis (in 

analogy to N-rings) with P90N549. Unfortunately, in the same manner as NFL, the collected 

single peak was relatively heterogeneous that did not allow further data treatment. 

 

 
Figure 6.3. Electron micrographs of P90N549 alone (A), P90N549 without TEV-cleavage (B) and 

incubated O/N with TEV (C), P90N398 alone (D). 

 

In order to obtain a monomeric form of N0P that does not assemble into rings over time, the 

TEV-cleavage step was omitted to force P into proximity with N and therefore stabilize the 

complex. The peak corresponding to the complex was observed in the SEC profile and was 

collected. A 1H-15N HSQC was recorded without further concentrating the sample. This 

spectrum appeared to have less peaks corresponding to the P peptide (Figure 6.5A), however, 
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Figure 6.4. 2D 1H-15N HSQC spectrum of P90N549 (A), R1ρ profile of N0P (in red) compared to 

PNTD (in green) and Ntail (in blue) measured at the same temperature and magnetic field (B 

and C respectively). 

 
Figure 6.5. 2D 1H-15N HSQC spectrum of uncleaved P90N549 overlaid with cleaved one (A). 

Peak intensity ratio from P and Ntail extracted after purification (B) and after over-night 

acquisition at RT (C). 
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for Ntail the C-arm and a few peaks of the MoRE were not present. Peak intensity ratios 

illustrate this very clearly (Figure 6.5B). The sample was left for over-night NMR acquisition, 

but the next morning all P peptide peaks appeared again and Ntail peaks from structured 

regions decreased in intensity (Figure 6.5C). Electron micrographs from this sample showed 

the presence of N-rings (Figure 6.3B). The over-night cleavage was tested after, it enhanced 

the formation of RLPs (Figure 6.3C). Therefore, I needed to find another way to stabilise N0P 

to investigate NC assembly and further structural studies. 

 

6.3.! Further assays on N0P stabilisation 

Several strategies were pursued in order to obtain a stable N0P complex. My first strategy was 

to test whether the presence of Ntail can also influence the stability of N0P. For this reason, I 

generated two constructs P90N374 and P90N398. Upon purification, TEV cleavage did not work. 

Probably, it was complicated by the limited access of protease to the TEV recognition site which 

could be blocked by the formation of RLPs. Further SEC purification did not lead to separation 

of the monomeric complex as a huge fraction was transformed into N-rings that were eluted at 

the column void volume. EM confirmed that RLPs were present in the sample (Figure 6.3C). 

 

In addition, as observed for P141N549, the longer P peptide was found to decrease the protein 

yield and stability. Therefore, increased relaxation rates in P region from residues 75 to 90 

could be linked to the exchange regime of the complex between P and N. I generated a shorter 

P peptide from 1 to 65 that was believed to be sufficient for the interaction. The resulting NMR 

measurements did not show any evidence of better complex stabilisation (Figure 6.6A). 

Relaxation rates were also very similar to those measured for P90N549 (Figure 6.6B, C). 

 

My next strategy was to try to improve complex stability by changing the pH to 7, as the 

theoretically calculated pI of the fusion protein was very close to 6 

(http://protcalc.sourceforge.net). However, P peaks responsible of the potential interaction 

with N on HSQC spectrum of P65N549 appeared with the same relative intensity profile as it was 

observed before for P65N549 at pH 6 (data not shown). In addition, due to the exchange 

processes, several residues disappeared from the spectrum (data not shown). 

 

The final strategy was to generate an N0P complex without N-arm to prevent assembly. This 

method has been used for several Paramyxoviridae N0Ps to facilitate crystallisation 

[Yabukarski et al., 2014; Aggarwal et al., 2017], but this complex theoretically could not be used 

for assembly assays for which the N-arm is essential. The construct P1-65N32-549 was cloned, 

expressed, purified and measured by NMR. According to the 2D 1H-15N HSQC spectrum and 

the corresponding plots of absolute peak intensities (Figure 6.7A, B), the very N-terminal 
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region of P (residues from 1 to 31) disappeared completely. Residues from 32 to 65, which are 

also implicated in the interaction as concluded from increased R1ρ rates in P90N549, however, 

also seemed broadened, in particular in the region that showed the highest R1ρ in P90N549 

(about residue 45). EM of this NMR sample did not show formation of N-rings, rather smaller 

oligomers that could be artefacts of the highly concentrated protein and its interaction with the 

stain (Figure 6.8A). 

 

 
Figure 6.6. NMR measurements on P65N549. 2D 1H-15N HSQC spectrum of N0P (A). R1ρ profile 

of N0P (in black) compared to PNTD (B) and Ntail alone both in red (C). 

 

During analysis of P90N549 and P65N549 complexes, I noticed that, after initial polymerization 

into rings, a fraction of monomeric N0P remained stable during a long period of time (sample 
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was kept several days at RT for NMR measurements, was frozen and unfrozen several times), 

as relaxation profile and peak intensities remained intact. This fact made me think about the 

possible stabilisation of the rest of N0P by free P that was liberated after the transformation of 

N0P to N-rings.  

 

 

Figure 6.7. 2D 1H-15N HSQC spectrum of P65N32-549 (A). Extracted absolute intensities of P 

and N peaks from N0P (B). 

 

To test the hypothesis that an excess of P could stabilize N0P, a fresh 15N-labelled P65N549 freshly 

eluted from the SEC column purification in the single peak was immediately mixed with PNTD 

in a molar ratio of about 1:3, further concentrated and visualised by EM. In this case, more 

PNTD surrounds N0P, more N0P is present and more stable the latter is. Due to the complex 

stability dependence on the sample concentration the electron micrographs have a lot of 

protein background as the sample dilution can lead to the formation of RLPs (Figure 6.8B). As 

expected, PNTD prevented N0P from oligomerisation and no N-rings were observed. 2D 1H-15N 

HSQC spectra of this sample did not show any spectral changes except few peaks that appeared 

or increased their intensity and remain unidentified (Figure 6.9A). However, relaxation profile 

showed the complete liberation of P1-65 peptide which was in competition with PNTD to bind N 

(Figure 6.9B).  
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Figure 6.8. Electron micrograms of P1--65N32-549 from NMR sample (A) and P65N549 stabilised 

with PNTD at high concentration and issued from NMR measurements (B). 

 

 
Figure. 6.9. Overlay of 2D 1H-15N HSQC spectra of P65N549 alone (in red) and stabilised by 

PNTD (in blue) (A). Arrows indicate the same peaks as those that appeared after the addition of 

PNTD to N0P. The R1ρ profile of N0P P and N before (in black) and after (in green) addition of 

PNTD compared to P and N alone (in red) measured at the same magnetic field (B). 

 

6.4.! Assembly of NC from N0P 

All along the process of N0P stabilisation, NC assembly was tested for almost every construct. 

Adding PolyA6 RNA (OH-AAAAAA-OH) to P141N549 did not show any spectral changes 
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(including peak intensities) after over-night incubation at RT. This result was expected as the 

sample contained a very low concentration of monomeric N0P, as it was transformed to RLPs 

after recording of relaxation experiment. This means that RLPs are pre-formed and do not 

incorporate RNA. 

 

 
Figure 6.10. 2D 1H-15N HSQC spectrum of P90N549 before (in red) and after (in blue) assembly 

with PolyA6 RNA, arrows indicate peaks that also appeared during the addition of PNTD to 

P65N549 (A). Numbers indicate the disappeared (2, 3, 4) and appeared (1) residues. The R1ρ 

profile of N0P P (B) and N (C) before (in red) and after (in black) addition of RNA compared to 

PNTD (in green) and N alone (in blue) measured at the same magnetic field. 

 

However, interesting results were obtained from assembly of P90N549 with the same RNA 

sequence. 2D HSQC spectra before and after had several differences in the intensities: these 

are increasing for P1-90 and decreasing for Ntail (Figure 6.10A). The assembly rates (k) were 

extracted from fitting. For P and N they were almost the same (1,37 and 1,03 s-1), indicating a 

simultaneous P liberation and N assembly (Figure 6.11A, B). In the spectrum after assembly 

there were some peaks that appeared and disappeared (Figure 6.10A), three of them were the 

same found upon the addition of PNTD to P65N549 (Figure 6.9A). They were not assigned and due 

to their relatively low intensity and resolution available from the 2D SOFAST experiment, the 

peak intensity variation was difficult to extract accurately and to fit to a kinetic profile. 

However, from several of them, it was possible to extract intensities and fit to the single 

exponential curve (Figure 6.11 C).  The rate for unassigned residues was at least 2 times higher 

8.8

8.8

8.6

8.6

8.4

8.4

8.2

8.2

8.0

8.0

7.8

7.8

ω2 - 1H  (ppm)

125 125

120 120

115 115

110 110

ω
1 

- 15
N

  (
pp

m
)

R
1ρ

, s
-1

R
1ρ

, s
-1

Phosphoprotein sequence

Nucleoprotein sequence

A

B

C

700 MHz 298K

700 MHz 298K

P90N549 
before and

after assembly

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 10  20  30  40  50  60  70  80  90

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 380  400  420  440  460  480  500  520  540

4

1

2

3



 137#

and equal to 2,62 for peaks with increasing (peak 1) and 2,04 s-1 for decreasing (peak 2, 3, 4) 

in intensity (Figure 6.11C). 

 

 
Figure 6.11. Kinetic profiles of each residue of phosphoprotein (A), nucleoprotein (B) and 

unassigned residues (C) of P90N549 changing in peak intensity after addition of RNA. The 

intensity of the last residues of P (from 66 to 89) were stable all over the experiment. 
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The profile of 15N relaxation for P after assembly was quite different as compared to that 

measured before (Figure 6.10B), indicating the partial liberation of P1-90 from the rest of the 

N0P, as the R1ρ rates still were increased in comparison with the rates from isolated PNTD 

measured at the same temperature and magnetic field. The Ntail relaxation profile, however 

did not change significantly (Figure 6.10C). However, only the region between C-arm and 

MoRE was affected and relaxation rates increased. This provides clear evidence of successful 

assembly and formation of oligomers. After assembly, the sample stayed for about one more 

extra night at RT for further relaxation recording and had some precipitation. This sample was 

homogenised and sent for EM analysis (Figure 6.12A). The mixture of RLPs and nucleocapsids 

with clean helical turns were observed also with cryo-EM (Figure 6.12B). However, NCs 

disappeared and probably were formed back to RLPs after storage for several days at 4°C, only 

N-rings were observed. 

 

After this experiment, I tried to reproduce the experiments with freshly cleaved and uncleaved 

P90N549 (albeit at a different concentration). After eluting from the SEC column (concentration 

of about 10-20 µM), N0P was directly mixed with two types of 6-mer RNA: PolyA6 and mumps 

virus genome sequence MuV RNA and left for over-night incubation at RT. Unfortunately, this 

assay led only to the formation of N-rings instead of capsids (Figure 6.12C, D, E), even after 

keeping the sample for several days (assembly observed by NMR was carried out at a 

concentration of N0P at least 10 times higher and needed several days to form). 

 

High sample concentrations were also tested with P65N549 and MuV RNA. Over-night 

incubation only led to the formation of RLPs (Figure 6.12F). The same sample with the addition 

of PNTD, however, with poor appearance of N-rings, led to the formation of capsids after mixing 

with PolyA6 (Figure 6.12G). Unexpectedly, as the absence of N-arm would not favorise the 

formation of N oligomers, I observed N-rings that were formed with P65N32-549 and PolyA6 

(Figure 6.12H). P65N32-549 supplemented with MuV RNA and 1 molar part of Ntail resulted the 

formation of disrupted N-rings (Figure 6.12I). No morphological differences were observed 

between the use of two different RNA sequences. 

 

Figure 6.12 (next page). Electron micrographs of P90N549 (NMR sample) incubated with 

PolyA6 RNA (A), the same sample visualised with cryo-EM (B). EM images of uncleaved 

P90N549 incubated with PolyA6 RNA (C) and MuV RNA (D), P90N549 with MuV RNA and TEV 

(E), P65N549 with PolyA6 (F) and supplemented with PNTD (G), P1-65N32-549 incubated with 

PolyA6 (H) and under addition of Ntail (I). 
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7.! DISCUSSION 
7.1.! Structure and functional role of unfolded Ntail 

The study of Ntail structure and function was one of the main priorities during the realisation 

of this project. In the beginning, it was quite frustrating and challenging that MuV Ntail does 

not interact with phosphoprotein, so several experiments were performed in order to identify 

Ntail’s molecular behaviour or interaction with potential viral and host partners. 

Conformational dynamics were probed using different approaches: chemical shifts, R1ρ, R1, 

hetNOE, ASTEROIDS, RDCs, taking into the account the existence of conserved for 

Paramyxoviridae transient helical MoRE in Ntail. 

 

Going deeper into the details, Ntail T1ρ relaxation rates measurements were informative enough 

to detect the regions with slightly higher rates: residues from 373 to 405, from 472 to 497, from 

500 to 512 and 6 last residues before the His-tag on C-terminal end. However, MuV Ntail R1ρ 

in the mentioned regions were relatively low compared to partially structured regions in other 

Paramyxoviridae Ntails, that usually have at least 2 times higher transverse relaxation rates 

than those from random coil all over the protein sequence [Jensen et al., 2009; Abyzov et al., 

2016]. In the mentioned regions, heteronuclear NOEs were also slightly increased and positive 

at 600 MHz magnetic field, designating the presence of the secondary structures. Chemical 

shift analysis and ASTEROIDS calculation showed these regions to be considered as having 

some rigidity and therefore, potential helical structure. Further RDC measurements indicated 

strong dipolar couplings at 373-405 and 472-497, confirming the suggestion that these regions 

are surely not a pure random coil. At the same time, amino acids from 500 to 512 were not 

affected in the alignment but showed higher relaxation rates. 

 

In addition, experiment with displacement of Ntail from N-rings by an excess of isolated Ntail 

revealed the disappearance of the region of 472-497 of free Ntail, providing evidence for the 

interaction between this helical region of Ntail and the surface of RLPs. This experiment has 

never been done before and actually, shows another important property of Ntail. However, 

during this interaction when NFL was studied by NMR, Ntail was able to displace the whole 

Ntail from NFL including residues 373-405. This experiment was repeated using EM and 

showed that free Ntail uncoiled the capsids formed from RLPs with and without the 

trypsination. 

 

Starting from the protein sequence alignment studies between MuV and PIV5 nucleoproteins 

and having the crystal structure of PIV5 N oligomer, it was already possible to define the 

mumps virus residues from 373 to 405 as those corresponding to the Ncore C-arm (Figure 
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7.1A). Ntail interaction with N-rings with evidence of free Ntail binding to the Ncore surface of 

RLPs, increased R1ρ relaxation rates extracted from NFL relaxation profile and missing residues 

from N0P constructs (uncleaved P90N549 and P65N32-549 believed to be in the monomeric state) 

showed another important domain to consider 472-497, that could be called MoRE by analogy 

with other known Paramyxoviridae Ntail functional domain. The region after was called post-

MoRE (Figure 7.2). 

 

Both mentioned secondary structures MoRE and post-MoRE have high number of Qs and Ps 

in the sequence (Figure 4.1B) which are known to increase the flexibility of the protein. In 

addition, these two closely situated helical structures can be in exchange from one to another, 

or to be both in fast exchange, and, therefore, undetectable for adapted relaxation experiments, 

as for example R1ρ can quench the exchange contribution. 

 

Concerning other interactions, the phosphorylation with CKII kinase was successful but why 

the protein needs to be modified and by which specific kinase still remained unclear. Except 

Ncore and kinase, it was not possible to find any other partner to interact with Ntail. 

 

 
Figure 7.1. Nucleoprotein sequence alignment of MuV and PIV5 (A) was performed using the 

EMBOSS Needle server (https://www.ebi.ac.uk/Tools/psa/emboss_needle/). The PIV5 

N sequence coloured in red corresponds to N-arm, orange to NTD, blue to CTD, light blue to 

MuV N              1 MSSVLKAFERFTIEQELQDRGEEGSIPPETLKSAVKVFVINTPNPTTRYQ     50
              |||||||:||||:.|||||:.|||:|||.|||..::||::.:.||..|.:

PIV5 N             1 MSSVLKAYERFTLTQELQDQSEEGTIPPTTLKPVIRVFILTSNNPELRSR     50

MuV N             51 MLNFCLRIICSQNARASHRVGALITLFSLPSAGMQNHIRLADRSPEAQIE    100
              :|.|||||:.|..||.|||.|||:|:||||||.|.||::|||:||||.||

PIV5 N            51 LLLFCLRIVLSNGARDSHRFGALLTMFSLPSATMLNHVKLADQSPEADIE    100

MuV N            101 RCEIDGFEPGTYRLIPNARANLTANEIAAYALLADDLPPTINNGTPYVHA    150
              |.||||||.|::|||||||:.::..||.|||.||:|||.|:|:.||:|.:

PIV5 N           101 RVEIDGFEEGSFRLIPNARSGMSRGEINAYAALAEDLPDTLNHATPFVDS    150

MuV N            151 DVEGQPCDEIEQFLDRCYSVLIQAWVMVCKCMTAYDQPAGSADRRFAKYQ    200
              :|||...||||.|||.|||||:|||::.||||||.||||.|.::|..||:

PIV5 N           151 EVEGTAWDEIETFLDMCYSVLMQAWIVTCKCMTAPDQPAASIEKRLQKYR    200

MuV N            201 QQGRLEARYMLQPEAQRLIQTAIRKSLVVRQYLTFELQLARRQGLLSNRY    250
              ||||:..||:|||||:|:||..|||.:|||.:|||||||||.|.|:||||

PIV5 N           201 QQGRINPRYLLQPEARRIIQNVIRKGMVVRHFLTFELQLARAQSLVSNRY    250

MuV N            251 YAMVGDIGKYIENSGLTAFFLTLKYALGTKWSPLSLAAFTGELTKLRSLM    300
              ||||||:||||||.|:..|||||||||||:|..|:||||:||||||:|||

PIV5 N           251 YAMVGDVGKYIENCGMGGFFLTLKYALGTRWPTLALAAFSGELTKLKSLM    300

MuV N            301 MLYRGLGEQARYLALLEAPQIMDFAPGGYPLIFSYAMGVGTVLDVQMRNY    350
              .||:.||||||||||||:|.:||||...|||::|||||:|.||||.||||

PIV5 N           301 ALYQTLGEQARYLALLESPHLMDFAAANYPLLYSYAMGIGYVLDVNMRNY    350

MuV N            351 TYARPFLNGYYFQIGVETARRQQGTVDNRVADDLGLTPEQRTEVTQLVDR    400
              .::|.::|..|||:|:||||:|||.||.|:|:|||||..:|||:...:.:

PIV5 N           351 AFSRSYMNKTYFQLGMETARKQQGAVDMRMAEDLGLTQAERTEMANTLAK    400

MuV N            401 L-ARGRGAGIPGGPVNPF--------VPPV----------------QQQQ    425
              | ...|||...|| ||||        ||..                |:..

PIV5 N           401 LTTANRGADTRGG-VNPFSSVTGTTQVPAAATGDTLESYMAADRLRQRYA    449

MuV N            426 PAAVYED-IPALEESDDDGDEDGGAGFQNGVQLPAVRQGGQTDFRAQPLQ    474
              .|..::| :|.|||.::|   |..||.:.|..|..|....|......|:.

PIV5 N           450 DAGTHDDEMPPLEEEEED---DTSAGPRTGPTLEQVALDIQNAAVGAPIH    496

MuV N            475 -DPIQAQL-FMPLYPQVSNMPNNQNHQINRIGGLEHQDLLRYNENGDSQQ    522
               |.:.|.| .:.:                                     

PIV5 N           497 TDDLNAALGDLDI-------------------------------------    509

MuV N            523 DARGEHVNTFPNNPNQNAQLQVGDWDE    549                       
                                                

PIV5 N           510 ---------------------------    509                       

A

B
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C-arm, green to Ntail. The crystal structure of PIV5 N-unit (in red) with residues coloured in 

cyan being identical to MuN (B). 
 

 
Figure 7.2. Schematic representation of Ntail structure according to the conformational 

behaviour of the protein. 

 

7.2.! Mumps virus N-rings as models to study N in the oligomeric state 

N-rings are the major product of MuN expression in bacterial cells. It is clear that RLPs do not 

exist during mumps virus infection, they are artefacts formed due to the encapsidation of short 

random bacterial RNAs by nucleoprotein units. However, as I did not manage to produce 

separate Ncore truncations, N-rings can be a good model for further structural and functional 

analysis of N in the oligomeric state. 

 

In this project, for the first time, N-rings were purified in a separate fraction on a SEC column. 

They tend to form capsids when kept at room temperature for long periods of time. The RLPs 

sticking between each other leasd to the formation of NCs and to the release of Ntail is 

supposed to that sterically protect the N-rings from interaction [Severin et al., 2016]. The 

expression of Ncore alone showing aggregates confirms this Ntail function. High salt 

conditions favour the stabilization of N-rings as well. The NC formation can be enhanced by 

Ntail proteolysis with trypsin, which was employed for getting capsids for further structure 

calculation using cryo-EM. Unfortunately, this method was not effective as formed NCs had 

different morphology and the helix pitch described by different interaction of N-rings between 

each other: several of them just stick to each other, other sticks and change the conformation 

of the part of the N-units to allow the formation of the helical turns by interacting of N molecule 

from one ring with N of another one and by forming capsids close structurally to those formed 

in the infected cells (Figure 4.9). This fact makes the NC structure calculation complicated and 

does not allow obtention of a high resolution structure. 

 

Rings are composed of 13 N units which was shown before in the literature [Cox et al., 2009] 

and, in contrary to previous reports [Cox et al., 2009; Severin et al., 2016],  N-rings could be 

1                                                                 401                               549
Ncore Ntail

N-arm
C-arm

374-401

MoRE
472-497
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obtained without any coexpression with P. Comparing the morphology of MuV N-rings to those 

of the evolutionarily closest PIV5, they appear to be quite similar which is expected from 

alignment of Ncore sequences (Figure 7.1). Conversely, PIV5 rings were obtained by 

proteolysing Ntail and were successfully crystallised with further structure determination by 

X-ray and did not form capsids [Alayyoubi et al., 2015]. This means that the release of PIV5 

Ntail do not lead to the rings sticking and formation of NCs probably due to different 

functionality of their Ntails as protein sequence in the unfolded region do not align with each 

other (Figure 7.1A). 

 

RLPs formation was also observed under the expression of N0P complexes. Excluding the 

bacterial RNA contamination, the formation of N-rings is probably triggered by high affinity 

between N-units which is the main reason of N0P instability and rapid P-peptide liberation 

over time. Generally, rings with and without RNA are energetically favourable. However, it was 

found that the excess of free P, more precisely, its first 65 residues were able to stabilise N in 

the monomeric state by out-completing interaction between N units. This particular feature 

will be discussed later. 

 

Due to the size of N-rings, 2D HSQC NMR experiments of N-rings are limited by the partial 

visualisation only of Ntail peaks corresponding to the flexible regions alternating with those 

that are close to the Ncore (C-arm) and transiently structured MoRE and post-MoRE domains. 

These data are in agreement with the findings of MeV NCs [Jensen et al., PNAS 2011], NMR 

spectra of which also lacks the above-mentioned regions. For measles virus NCs, it was 

suggested that Ntail binds to Ncore in the fast regime which was also observed for MuV through 

interaction studies of 15N-labelled N-rings with an excess of free unlabelled Ntail. Peaks 

corresponding to both regions that were not visible, increased in the intensity in this 

experiment. This observation can be explained by replacement of the Ntail of NFL by free Ntail 

that interacts by its C-arm and MoRE with the surface of Ncore of RLPs. 

 

2D HSQC of RLPs was not informative to get insight into interactions with PNTD and PCTD and 

EM images did not show any visible structural changes neither in the presence of P. However, 

when N-rings were treated with RNAse in order to get rid of encapsidated RNA, the mixture of 

PNTD and PCTD was able to break the RLPs. This observation suggests the dual role of the two P 

extremities to interact with Ncore in order to open the gate for RNA. This hypothesis needs 

more experiments to be carried out for further conclusions. 
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7.3.! Disordered phosphoprotein N-terminal region interacts with monomeric 
and oligomeric N 

Like Ntail, PNTD also appeared highly disordered with no high propensities for secondary 

structure. However, summarizing all the dynamics measurements, simulations and also 

interactions with N, it was possible to identify three important regions that potentially can be 

considered as transient helices essential for interactions with oligomeric and monomeric N 

and host factors: α1 and α1& (residues 13-60), α2 (117-142) and α3 (189-204) (Figure 7.3). Upon 

interaction of PNTD with oligomeric N, these regions had increased relaxation rates. This 

binding could be considered as weak in agreement with findings from the literature [Cox et al., 

2013]. 
 

 
Figure 7.3. Schematic representation of the structural units of MuV PNTD. 

 

During the generation of N0P constructs, three interaction sites for PNTD with monomeric and 

oligomeric N were found. The first interaction site was located from residues about 117 to 141 

(corresponds to α2) and could be involved in the formation of N0P. This binding site could be 

comparable to the weak interaction site located in the middle of MeV PNTD with anamino acid 

sequence HELL [Milles at al., 2018]. From MuP alignment with MeV P (not shown), this region 

is 125VELA128 and perfectly fits with the helical propensity from the experimental data (Figure 

5.3, 5.4). 

 

In view of assessing the conservation of the VELA interaction site among Rubulavirus 

members, I have analysed the structure of the PIV5 V protein that has the same disordered N-

terminal part as PIV5 P (Figure 7.4B). After alignment with MuP (Figure 7.4A), it seems that 

PIV5 V has a similar amino acid stretch VKLA which, in the crystal structure of the V protein 

in complex with the host protein DDB1 [Li et al., 2006], adopts an α-helix (Figure 7.4B). Two 

β-strands occurring before and after VKLA having almost identical residues as mumps virus 

P/V, also could be considered as precursors for the most significant secondary motif. In order 

to show the approximate localisation of the conserved PVELA binding site within Ncore, I will 

1                                                                                      215
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take into the consideration the PIV5 crystal structure of N-rings and findings from MeV P 

about the position on Ncore where this weak binding occurs. 

 

 
Figure 7.4. Sequence alignment of MuP NTD and PIV5 V N-terminal domains with coloured 

folded domains that appeared upon binding and are distinguishable from crystal structure. 

VELA region is in bold italic, PIV5 P peptide (from crystal structure of PIV5 N0P) responsible 

for N0P chaperoning is underlined (A). Crystal structure of PIV V protein [PDB 2HYE] without 

the visualisation of ZFD of V, DDB1, Cullin-4A and RING-box protein 1. Structural domains of 

V are coloured in the same way as in the sequence alignment (B). 

 

From MALLS profile and NMR measurements, MuV RLPs were found to be bound to P1-141 

which agrees with the fact that the VELA interaction site is not affected by N oligomerisation 

from P141N549 and is probably located on the external side of N-rings. Alignment of the 

nucleoprotein sequences of MeV, MuV and PIV5 (Figure 7.5A) of residues from 90 to 125 

showed the conserved amino acids that were actually identified as those participating in MeV 

PHELL interaction with N-lobe of Ncore. These residues were mapped on the structure of PIV5 

MuV P              1 MDQF---IKQDETGDLIETGMNVANHFLSTPIQGTNSLSKASILPGVAPV     47
                     ||..   ...||...|||||:|...:|.|..:.||:||.|.:|.|||..:
PIV5 V             1 MDPTDLSFSPDEINKLIETGLNTVEYFTSQQVTGTSSLGKNTIPPGVTGL     50

MuV P             48 LIGNPEQKNIQHPTASHQGSK---TKGRGSGVRSIIVSPSEAGNGGTQIP     94
                     |....|.| ||..|...:||.   .|.:....:..||...:....|..||
PIV5 V            51 LTNAAEAK-IQESTNHQKGSVGGGAKPKKPRPKIAIVPADDKTVPGKPIP     99

MuV P             95 EPLFAQTGQGGIVTTVYQDPTIQPTGSYRSVELAKIGKERMINRFVEKPR    144
                     .||..........|.:.......|:|||:.|:|||.|||.::.||:|:||
PIV5 V           100 NPLLGLDSTPSTQTVLDLSGKTLPSGSYKGVKLAKFGKENLMTRFIEEPR    149

MuV P            145 -----TSTPVTEFKRG    155
                          ||:|: :||||
PIV5 V           150 ENPIATSSPI-DFKRG    164

A

B
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N-rings which confirms the position of the interaction suggested from MeV (Figure 7.5B). 

However, the function of this binding for MuV life cycle could not be interpreted for the 

moment. 

 

Other binding sites were revealed from increased R1ρ relaxation rates from the shorter P peptide 

(1-90) from interaction with monomeric N in N0P complex: α1 (13-32), α1& (35-60) and the 

region comprising residues 77-85 without adefined structure type. The first two are potentially 

responsible for chaperoning N in the monomeric RNA-free conformation, as the generation of 

N0P with shorter P (1-65) did not change the binding with N as estimated from the overall P 

relaxation profile. 

 

 
Figure 7.5. Sequence alignment of N-lobe region (residues from 90 to 125) of MeV, MuV and 

PIV5 (A). Approximate localisation of potential MUV PVELA interaction site (in red) for one N-

unit (in yellow), RNA is in black (B). Crystal structure of PIV5 N-RNA complex was used as a 

model [PDB 4XJN]. 

 

The N0P crystal structure of other Mononegavirales members showed P peptide composed of 

two helices (Figure 1.13A). However, for PIV5 it is possible to see only the first P α-helix (Figure 

1.13B, 7.6), which starts from residue Leu16 corresponding to MuP Leu13 in agreement with 

the relaxation measurements (Figure 7.4A). When N-arm was removed for MuV N0P complex 

(P65N32-549) to prevent oligomerisation, by analogy to PIV5,  it led to the disappearance of α1 

while peaks of α1& only decreased in intensity. This could be the direct evidence of a role of α1 

in the interaction with monomeric N, while P α1& and residues 77-85 are secondary interaction 

MuV N             90 ADRSPEAQIERCEIDGFEPGTYRLIPNARANLTAN     125
                     ||:||||.|||.||||||.|::|||||||:.::..
PIV5 N            90 ADQSPEADIERVEIDGFEEGSFRLIPNARSGMSRG     125
                     ....|:..|..:|:...::....|...:|......
MeV N             90 ITDDPDVSIRLLEVVQSDQSQSGLTFASRGTNMED     125

A

B

C-lobe

N-lobe

RNA
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sites with Ncore (Figure 7.3). Concerning the position of the P13-32 binding site, it could be 

suggested that it is located in the same place of Ncore as it was observed for PIV5 N0P (Figure 

7.6) by partially occupying the RNA pocket and by perturbing the access of the separate N-unit 

to the N-arm and C-lobe of Ncore. We can also imagine the number of transient helices that 

can have contacts with the surface of Ncore, as well as the VELA-interaction site (Figure 7.6). 

However, to get more evidence for this model, more additional binding experiments need to 

be performed. 

 

 
Figure 7.6. Model based on the crystal structure of PIV5 N0P [PDB 5WKN], representing the 

approximate localisation of MuV PNTD (in violet) and Ncore (in cyan) interaction sites. α-

helices are shown as cylinders. Potential VELA interaction site within the N-lobe is coloured 

in red. 

 

7.4.! The C-terminal domain of phosphoprotein has a flexible region with 
transient secondary structures 

It has been known that MuV PXD expressed alone is not stable, as even its crystallization 

required the addition of stabilising agents [Kingston et al., 2008]. However, adding the flexible 

linker (residues 272-342) between OD and XD to the expression vector apparently helps XD to 

remain in a stable conformation. This could be probably explained by the presence of two 

secondary structures that have elevated R1ρ and long-range weak interactions with the three-

helix bundle that assessedthrough PRE studies. In addition, the contacts with these regions 

were also observed under the titration of PCTD with NFL that led to a decrease in peak intensities 
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and increase in relaxation rates in two regions of P named α4 (286-301) and α5 (316-323) 

(Figure 7.7). It was also interesting to discover that the phosphorylation by PLK1 occurred at 

positions of S307 and S292 which led to the change in the peptide chain structure. 

Consequently, these modifications could be necessary for the decrease of the affinity to 

oligomeric N which for the moment could not be confirmed. 

 

 
Figure 7.7. Structural organisation of MuV PCTD, it comprises from two transient helices on 

the disordered linker and three-helix bundle on the C-terminal region. 

 

7.5.! Interaction of XD of PCTD with RLPs 

Apart from sequence differences, one of the MuV unique properties distinguishing it from 

other Paramyxoviridae family is its three helix bundle of P C-terminal that interacts with 

Ncore and not with Ntail. The binding affinity was much higher than that identified for PNTD 

with N [Cox et al., 2013]. 

 

During the titration of PCTD with NFL, under the gradual increase of N-rings concentration, 

HSQC peaks corresponding to XD started to disappear. However, RLPs are challenging to 

study, as they tend to aggregate over time, especially, in high concentrations (up to 100 µM 

which was used for relaxation measurements), so further long experiments could not provide 

clear conclusions about the exchange regime describing the binding between XD and Ncore. 

Also the position of the binding site and its morphology could not be identified. 

 

7.6.! Mumps virus N0P complex is stabilised by an excess of PNTD 

As mentioned before, the generation of a stable N0P complex was very challenging due to its 

gradual transformation to N-rings. However, this fact added certain clarification to the 

functionality of MuV N0P. Previously discussed interactions sites were identified, as well as the 

important factor leading to the N0P stabilisation. 

 

Th generation of a monomeric PIV5 N0P construct was difficult too as it tended to form RLPs. 

Generally, N0P expressed without N-arm could not be used for the assembly experiments. 
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However, they are essential to study the interactions between P and monomeric N. For this 

reason, I was trying to find the reasons of N0P instability without losing its important 

functionality to assemble in NCs. Possible traces of RNA that could trigger the formation of N-

rings were not identified, so it could be suggested that the main problem of MuV N0P stability 

is a very high affinity between N units which is certainly induced by the presence of N- and C-

arms. 

 

In search of a stable complex, an interesting feature was observed. In the presence of an excess 

of free P peptide there is a stable fraction of N0P present (Figure 7.8) which is certainly 

connected to the concentration dependence. This suggests that in the host cellular conditions, 

MuV can organise its RNA replication inside inclusion bodies formed with help of disordered 

extremities of P or V/I proteins which potentially have unstructured regions. The physico-

chemical conditions inside these bodies can be modulated, including protein concentration. In 

addition, it was found that the excess of PNTD can enhance viral gene expression [Cox et al., 

2014], which correlates with the fact that more N0P will be protected with PNTD, more replicated 

viral RNA will be further successfully encapsidated with the help of new incoming N0Ps. 

 

 
Figure 7.8. Schematic representation of the formation of the stable fraction of MuV N0P by 

liberating P peptide from formed N-rings. 

 
7.7.! Assembly of N0P in NCs is possible under high sample concentrations 

P90N549 was described to interact with PolyA6 RNA which led to the formation of NCs. These 

capsids can be formed either from RLPs that were generated firstly from instable N0P or from 

an assembly process. As following P liberation and N engagement in oligomeric structures 

could actually lead to the formation of either N-rings or NCs. At the same time, this NMR 

experiment was done with high concentration of N0P which certainly favoured to have a stable 

monomeric N and the direct NC assembly (Figure 7.9). When I tried to repeat the same 

experiment with lower concentration, only N-rings were observed by EM. This can explain the 

fact that the high concentration of N0P and therefore, the higher number of P peptides is able 

to protect N0P from transformation to RLPs, is crucial for NC assembly. 
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On the contrary, the assembly needs to be improved in order to obtain pure capsids without a 

major fraction of N-rings in order to avoid the secondary formation of capsids from them. This 

may be possible if longer RNA sequences were used, that could disturb the preorganisation of 

N in rings and lead to the “natural” assembly. In addition, formed from assembly NCs were not 

stable upon storage at 4°C and degraded before I wanted to perform the cryo-EM 

measurements. The presence of free P peptide could potentially also influence the assembly by 

uncoiling formed NCs and having the competition with the N-arm. 

 

On the same time, it was discovered that the N-arm cleaved N0P (P65N32-549) eventually formed 

N-rings under the incubation with RNA which could suggest that the assembly process for MuV 

is regulated first, by affinity between N-units, and second, by the interaction with RNA, 

however, the order of these two processes is unknown. 

 

 
Figure 7.9. Schematic representation of the expected for NC assembly process for MuV. 
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8.! CONCLUSIONS AND PERSPECTIVES 

Mumps virus is not the deadliest virus in the world, and there is an available vaccine for its 

prevention. However, it has been found that with time vaccines become inefficient, and, 

therefore, mumps outbreaks still occur. This process could be difficult to control in the near 

future. Furthermore, mumps disease could bring serious health consequences. 

Epidemiological studies would provide a clear vision of the current situation with mumps in 

the world but now the research, which is dedicated to drug discovery, needs to be argumented. 

Specific and highly effective medicines are the best solution for treatment of infectious 

diseases, as they can target important steps of viral life cycle, this includes viral genome 

transcription and replication. Mumps virus remains underexplored and poorly studied due to 

the fact that humans are only natural hosts for mumps, so other biological models could not 

be used to understand at least the spread and the circulation of the viral infection in the human 

body. 

 

Taking together all the facts, the study of the mumps virus machineries at the molecular level 

is essential to prevent and treat the mumps disease. Thus multifunctional mumps proteins, 

nucleoprotein and phosphoprotein, mediating gene synthesis inside the host cell are the main 

object of this work. Belonging to the family of Paramyxoviridae, mumps virus has some shared 

features as well as differences making its genome transcription and replication, unique among 

known Paramyxoviridae.  

 

In this project, NMR spectroscopy was an ultimate method that allowed to investigate 

disordered regions in mumps N and P proteins. In addition, this technique is able to detect 

ultra-weak interactions between disordered and folded proteins. Electron microscopy was 

used to visualise oligomeric structures, their morphology and some interactions between 

oligomeric and monomeric N with P and RNA. Additional methods such as SAXS and MALLS 

both coupled with SEC were less useful. However, they could be critical for routine MuV 

protein analysis during the further development of the mumps virus project. 

 

Concerning N, despite the low sensitivity of standard NMR methods, it was possible to observe 

the localisation of MoRE along Ntail sequence. The Ntail partner responsible for the functional 

interaction was not identified. However, interesting feature was discovered for the MoRE that 

binds to the surface of N-rings. In addition, another transient helix was detected coming after 

MoRE and called post-MoRE, which is suggested to somehow destabilise the MoRE formation 

that could explain its relatively low population in secondary structure. Nevertheless, as a 

perspective, more detailed study of Ntail alone and connected to the Ncore needs to be 

performed. Adding RDCs data as an input for ASTEROIDS ensemble generation is essential to 
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better describe the conformational behaviour of Ntail. The role of Ntail post-translational 

modification needs to be determined as well by some biological methods, possibly in 

collaboration with research groups from University of Alabama at Birmingham, USA. 

 

For the first time MuV N-rings were purified and characterized by NMR. This helped to 

confirm the existence of MoRE region and its role in RLP stabilisation, as the N-rings without 

Ntail tend to stick to each other. Unfortunately, due to the sample degradation and 

transformation to stacked N-rings, or NCs, it was quite difficult to get the high resolution 

structure of capsids and rings. On the contrary, the problem of the unassigned Ncore could be 

solved using solid state NMR assuming that well structured NCs could be reproducibly 

produced. As a bonus, this method could help to find the localisation of PCTD binding site within 

the Ncore. 

 

MuV phosphoprotein structure can be described by different transient secondary structures 

that alternate with structured parts that have already been resolved by X-ray crystallography. 

Unfortunately, it was not possible to study the full-length phosphoprotein, so N- and C-

terminal parts without oligomerisation domain were studied separately. However, the 

optimisation of stable PFL purification is necessary in order to understand the simultaneous 

action of both extremities PNTD and PCTD being together in both sides of the PFL molecule. 

 

PNTD shows signs of random coil conformation which can adopt helical propensities. They were 

found to interact with oligomeric and monomeric N. At least three regions with low helical 

population bind to the surface of N-rings and do not show any expected visible distortion of 

RLP structure. Furthermore, PNTD interacts with N in order to keep it monomeric (N0P 

complex) by its first 30 residues (helix α1) by analogy to the crystal structure of PIV5 N0P. 

Other regions, such as helix α1 and residues 77-85, are also binding sites but the role of these 

interactions is unclear. Another binding site α2 with N was identified in the middle of PNTD 

sequence and is believed to have the same binding feature as MeV P by having the similar to 

HELL amino acid scretch VELA. The confirmation of evidence of the exact localisation of 

interaction site on Ncore requires more experiments to be performed such as the generation 

of stable monomeric N either by the optimisation of protocols for Ncore and separate lobes 

expression or by the stabilisation of N0P. The third region of potential helical region is located 

in the C-terminal part of PNTD. With the exception increased relaxation rates under interaction 

with NFL, it was poorly studied. Therefore, more NMR experiments needs to be done in order 

to reveal the dynamic and functional properties of all PNTD structural elements. 
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Besides the already known unstable three helix bundle of XD, PCTD contains a disordered linker 

connecting folded OD and XD. It has also two regions exhibiting transient secondary structure 

and long-range weak contacts with XD. It also comprises a recognition site for PLK1 kinase 

that was able to phosphorylate two serine residues. This modification could be suggested to 

decrease the affinity of XD and Ncore. However, more binding experiments need to be carried 

out. 

 

One of the most challenging parts of this work was the generation of N0P. After expression and 

study of a lot of different fusion complexes, it was concluded that mumps N0P exists in stable 

conformation only in the presence of an excess of isolated free PNTD which was known from the 

literature to enhance viral RNA synthesis. This finding could suggest a crucial role of 

membraneless organelles (viral factories) stabilised by disordered viral protein regions, in the 

processes of viral genome transcription and replication, and therefore, able to maintain high 

IDP concentrations. In the same time, more attention needs to be put to other methods of N0P 

stabilisation which could allow to study N in the monomeric form without the addition of the 

excess of P. For example, the promising N0P construct without N-arm can be further studied 

to identify the affinities between P and N. 

 

N0P was also tested in the assembly in NCs and showed significant dependence on sample 

concentration. Under the addition of short RNA, I was able to observe the liberation of P from 

N0P and engagement of N in NCs. Nevertheless, it remains unclear, what was formed first RLPs 

or capsids. Consequently, this experiment needs to be optimised in order to mimic natural 

conditions where NCs are formed without the preformation of N-rings which are essentially, 

artefacts of N oligomerisation. 

 

My initial experiments on V protein unfortunately did not lead to the formation of the 

monomeric protein due to the cysteine-rich C-terminal that is difficult to fold in Zn-finger 

conformation. Follow-up studies need to be performed using other E. coli strains that allow 

cysteines to keep in the reduced form and avoid intermolecular interactions. In the same time, 

other parameters of denaturant conditions could be optimised in order to get the proper ZFD 

folding. V protein was shown for PIV5 to have a stable complex with N. This ability could be 

used in assays to replace P peptide in N0P complex by V. It would be also good to start the 

research on I protein that is also believed to be functional all over the viral gene synthesis 

process. 

 

To conclude, mumps virus has several points that are common with other Paramyxoviridae 

members such as the existence of helical structure MoRE in Ntail, conserved transient 
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structural domains in PNTD and their function, morphology of helical bundle of XD, and 

different from Paramyxoviridae features like the function of XD and Ntail, stability of N0P 

complex and the way it assembles in oligomeric structures. In the perspective, a promising 

approach will be to include to the study other subfamily Rubulavirus members such as PIV5, 

PIV2 and PIV4.  
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9.! RÉSUMÉ EN FRANÇAIS 

Ce manuscrit de thèse se compose de quatre parties et huit chapitres : l’introduction, deux 

chapitres des matériels et méthodes, quatre chapitres dédiés à la présentation des résultats et 

leur discussion et le dernier chapitre commentant les conclusions et perspectives du travail 

effectué. 
 

9.1.! Introduction 
9.1.1.! Les vaccins contre le virus des oreillons 

Les oreillons sont une maladie infectieuse décrite pour la première fois par le père de la 

médecine, Hippocrate, dans son œuvre Epidémie en 5ème siècle avant JC quand la maladie a 

touché les habitants de l’île Thasos. Le mot « oreillons » provient de la douleur au niveau des 

oreilles pour la personne infectée par le virus ourlien. 

 

Dans un premier temps, le virus affecte les glandes parotides (parotidite) provoquant des 

céphalées et de la fièvre. Après 2-10 jours les symptômes disparaissent mais dans la moitié des 

cas, une méningite aseptique ou/et une encéphalite peuvent se développer. Le taux de 

mortalité reste faible mais parmi les complications, des troubles du système nerveux et 

reproductif sont observés. L’homme étant l’unique hôte pour le virus, sa transmission n’existe 

qu’entre les humains. Les oreillons sont une maladie infantile, touchant les enfants de 5-9 ans. 

Toutefois, les adolescents et les adultes peuvent aussi être infectés. 

 

Il n’existe pas de thérapie contre la maladie. Son traitement est symptomatique. L’unique 

solution pour contrôler la propagation du virus est l’utilisation des vaccins. Le premier vaccin  

mis au point en 1946 aux Etats-Unis, contenait un virus inactivé. Cependant, il n’induisait pas 

une protection immunologique efficace. En 1967, il a été remplacé par le vaccin Jeryl Lynn 

possédant une efficacité d’immunisation de 80-100%. Par la suite, il a été commercialisé sous 

la forme d’un vaccin trivalent, le ROR, permettant une protection contre les virus de la 

rougeole, des oreillons et de la rubéole (ROR). D’autres pays dans le monde ont eux aussi 

développé différentes variétés de vaccins qui diffèrent par les cellules substrats pour leur 

préparation et les procédés de fabrication : Leningrad (ex-USSR), Leningrad-Zagreb (Croatie), 

Urabe Am9, Torii, Hoshino (Japon), S-12 (Iran). 

 

Après l’introduction du vaccin, le nombre de cas dela maladie a fortement diminué dans les 

pays développés. Néanmoins, le début des années 2000 a été caractérisé par plusieurs 

épidémies aux Etats-Unis, en Belgique, au Royaume-Uni, aux Pays-Bas, au Canada, en 

République Tchèque. 
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Par comparaison avec la situation épidémiologique de la rougeole qui présente une fréquence 

plus importante, les oreillons ne sont pas considérés comme une maladie grave, se reflétant 

sur les investissements scientifiques. Cependant, les épidémies apparues au sein des 

populations vaccinées et saines devraient attirer l’attention internationale sur l’apparition des 

maladies infectieuses qui seront difficile à prévenir et contrôler dans un avenir très proche. 

 

Les facteurs influençant l’apparition des épidémies récentes s’expliquent par: 

-! une couverture vaccinale faible et incomplète liée au mouvement anti-vaccination et 

aux défauts de la législation d’obligation de vaccination ; 

-! la variation antigénique et l’évasion immunitaire associées aux vaccins issus d’un 

génotype viral pouvant être inefficace contre le virus d’un autre génotype circulant 

pendant l’épidémie ; 

-! l’échec du vaccin et la baisse de l'immunité expliquant la propagation de la maladie 

parmi des populations vaccinées à l’âge adulte. 

 

Des solutions peuvent être apportées par des recherches statistiques, épidémiologiques et 

biochimiques plus profondes qui pourraient conduire à la conception d’un nouveau 

médicament efficace. 

 

9.1.2.! La structure du virus ourlien 

Le virus des oreillons appartient à la famille Paramyxoviridae, genre Rubulavirus, ordre 

Mononegavirales, ordre regroupant tous les virus enveloppés possédant un génome d’acide 

ribonucléique (ARN) non-segmenté, de polarité négative. 

 

Les particules virales (virions) sont principallement sphériques. Pourtant elles peuvent différer 

en taille et en forme. Les virions sont composés d’une bicouche lipidique dérivée de la 

membrane de la cellule hôte. Les glycoprotéines (HN et F) sont insérées dans la membrane et 

sont essentielles pour l’attachement du virion sur les récepteurs cellulaires. A l’intérieur de la 

particule virale, l’ARN est enveloppé par de multiples copies de nucléoprotéine (N) lui donnant 

une structure filamenteuse appelée nucléocapside (NC). La taille de l’ARN codant pour toutes 

les protéines est entre 15000 et 19000 bases, avec une molécule de N pour 6 bases d’ARN. Les 

NCs avec la phosphoprotéine (P, le cofacteur de l’ARN polymérase) et la protéine large (L, 

l’ARN polymérase ARN-dépendante) forment le complexe de transcription-réplication. Les 

NCs servent de matrice pour la synthèse de l’antigénome (l’ARN à simple brin à polarité 

positive). La protéine de matrice (M) connecte les parties externe et interne du virion en 

interagissant avec la N et les deux glycoprotéines. 
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La N est composée de deux parties : une partie repliée N-terminale (Ncore) et une partie C-

terminale prédite désordonnée (Ntail). Ncore est également divisé en deux lobes (N- et C-) 

possédant chacun des extrémités, appelées N- et C-arms (bras). Ncore est responsable de 

l’interaction avec l’ARN. Ntail de certains Paramyxoviridae et du virus de la rougeole (MeV) 

en particulier, présente un motif de reconnaissance moléculaire (MoRE), impliqué dans 

l’interaction avec la phosphoprotéine. Le Ntail du virus des oreillons (MuV) ne possède pas 

cette caractéristique. 

 

Dans les cellules infectées, N existe sous deux formes, oligomerique en NCs et monomerique 

en complexe N0P. L’expression recombinante en bactérie de la nucléoprotéine seule conduit à 

la formation de NCs et/ou des particules annulaires (RLPs) par incorporation aléatoire 

d’ARNs. Les NCs de Paramyxoviridae ont une symétrie hélicoïdale gauche, avec un diamètre 

d’environ 20 nm et une longueur de 1 µm et avec 13 unités de N par tour. Pour le moment, une 

seule structure à résolution atomique est connue, celle de la NC du virus de la rougeole. La 

formation de RLPs a été observée pour MuV, mais pas lors de l’infection virale. 

 

La seconde forme fonctionnelle de la N est le complexe N0P, où le peptide N-terminal de 

phosphoprotéine chaperonne la N dans un état monomerique, sans ARN. Pendant la 

réplication virale, ce complexe est nécessaire afin de prévenir l’assemblage de nouvelles 

molécules de N qui serviront à l’encapsidation de l’ARN naissant. Plusieurs structures 

cristallines de N0P ont été résolues, nottament pour les virus de la rougeole, parainfluenza 5 

(PIV5), Nipah (NiV) etc. La superposition des structures de N monomerique et oligomerique 

suppose l’existence de deux conformations « switch », ouverte et fermée respectivement. 

 

La Phosphoprotéine du virus des oreillons se compose de trois régions fonctionnelles: le 

domaine N-terminal (PNTD) avec une conformation prédite dépliée, le domaine 

d’oligomerisation (POD) auto-associé (quatre molécules de P, 2 parallèles, 2 antiparallèles, 

conformation unique parmi les Paramyxoviridae) et le domaine C-terminal (PCTD) comportant 

un faisceau de trois hélices-α (région XD). Les structures de POD et XD ont été résolues par 

diffraction des rayons X. 

 

Trois protéines différentes peuvent être transcrites à partir du gène de P: P, V et I. Ce 

phénomène provenant de l’édition de l’ARN messager (ARNm), est basé sur l’insertion d’une 

ou deux guanosines (G) lorsque l’ARN polymérase virale glisse en arrière sur la séquence de 

l’ARNm. Pour MuV, V provient de la séquence non éditée, alorsque I et P se forment après 

l’insertion de Gs dans le codon codant pour l’acide aminé 156 de P. Les trois protéines 

partagent donc la même partie N-terminale. 
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Comme mentionné précédemment, les 60 premiers résidus de PNTD participent à la formation 

du complexe N0P. Récemment, un autre motif au milieu de la séquence de PNTD de MeV avec 

une affinité relativement faible pour le Ncore a été identifié. Concernant MuV, PNTD interagit 

avec les surfaces des RLPs. En comparaison avec les autres Paramyxoviridae, où XD se lie 

avec Ntail, les trois hélices de PCTD de virus des oreillons s’associent avec le Ncore, pouvant 

expliquer la morphologie unique de l’oligomère P possédant les extrémités de N- et C-terminal 

sur les deux côtés. 

  

La protéine V possède deux doigts de zinc dans sa region C-terminale qui joueraient un rôle 

important dans la suppression de la réaction immunitaire cellulaire. Pour PIV5, V forme un 

complexe N0V plus stable que N0P, grâce aux mêmes NTDs. La structure et le rôle de la protéine 

I sont peu documentés pour le moment. 

 

La nucléoprotéine et la phosphoprotéine, notamment dans les séquences désordonnées riches 

en sérines et thréonines, peuvent présenter des modifications post-traductionnelles (MPT), 

notamment via leur phosphorylation par les kinases cellulaires. Ces modifications sont censées 

contrôler la transition de la transcription vers la réplication, par perturbation des interactions 

entre N, P, L et l’ARN viral. 

 

9.1.3.! Les protéines intrinsèquement désordonnées 

Les protéines intrinsèquement désordonnées (PIDs) n’ont pas de structure tridimensionnelle 

stable, dans des conditions physiologiques et en absence de partenaires potentiels. Elles 

peuvent adopter un ensemble de conformations. La composition en acides aminés détermine 

leur incapacité à se replier. Toutefois elles modulent les interactions avec les autres molécules. 

Les PIDs jouent un rôle crucial dans les processus cellulaires de régulation et de transmission 

des signaux et sont liées au développement de maladies neurodégénératives, de plusieurs 

cancers et du diabète de type II. L’absence de structure stable peut être considérée comme un 

avantage. La capacité de s’associer avec plusieurs partenaires ouvre l’opportunité de 

multifonctionnalité permettant d’avoir plusieurs sites d’interaction le long de la chaîne 

polypeptidique. 

 

Il est également courant que les PIDs contiennent des sites de reconnaissance moléculaire et 

subissent une transition désordre-ordre lors de l’interaction. Les PIDs forment souvent des 

« complexes flous » en restant désordonnées dans l’état lié. De plus, les protéines dépliées 

peuvent s’auto-associer, parfois en présence d’acides nucléiques, en formant des gouttelettes 

de protéines. Ces propriétés sont largement utilisées dans les machineries-organelles de 

transcription-réplication virales (les corps de Negri). Les PIDs sont accessibles aux enzymes 
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de MPT pouvant induire des changements structuraux des protéines, leurs stabilisation et 

déstabilisation. 

 

9.1.4.!Objectifs de cette thèse 
Certainement, il existe une corrélation entre le désordre conformationnel des protéines des 

Paramyxoviridae et leur pathogénicité extrême. L’évolution a sélectionné des protéines 

multifonctionnelles et adaptables, indispensables à l’amplification efficace du matériel 

génétique viral. Malgré la complexité structurale et la caractérisation difficile, les PIDs virales 

constituent un bon système pour l'étude des mécanismes fonctionnels des protéines 

désordonnées. 

 

Au cours de ce travail, j’ai réalisé les premières études sur les régions désordonnées et 

structurées des P et N du virus des oreillons et je discuterai leur pertinence fonctionnelle au 

cours du cycle de vie du virus. J’ai tenté de répondre aux questions suivantes qui peuvent être 

définies comme objectifs de ce projet : 

-! Quel est le rôle du désordre conformationnel des N et P ? En particulier, quel est le rôle 

du Ntail ? et avec quels partenaires potentiels interagit-il ? Ce domaine interagit-il avec 

P ? Comme c'est le cas pour les autres Paramyxoviridae, et si oui, comment ? 

-! Quelles sont les propriétés dynamiques du PNTD ? Quel est le rôle fonctionnel de ce 

domaine et comment interagit-il avec d'autres protéines virales au cours de la 

réplication ? 

-! Comment la phosphorylation de N et P influence-t-elle la structure de la protéine, sa 

dynamique, les interactions entre domaines, ainsi que les interactions entre N et P ? 

-! Quel est le rôle du linker désordonné entre OD et XD de la phosphoprotéine ? 

L’interaction entre PXD et Ncore peut-elle être décrite à la résolution atomique ? 

-! Est-il possible d'étudier les NCs du virus des oreillons avec de l'ARN issu de l'expression 

de cellules bactériennes ? Est-il possible de développer des protocoles de purification 

des RLPs ? 

-! Le peptide issu de PNTD peut-il stabiliser la N monomerique dans le complexe N0P ? Si 

oui, quelles sont les conditions pour obtenir l'assemblage des NCs à partir de N0P in 

vitro ? Peut-on caractériser la structure N0P du MuV ? 

 

9.2.! Matériels et méthodes 
9.2.1.! La résonance magnétique nucléaire 

La résonance magnétique nucléaire (RMN) est une des techniques les plus utilisées dans ce 

projet. La RMN ne permet pas que d’avoir la résolution atomique de la structure mais elle est 

aussi cruciale pour les études de la dynamique moléculaire et la flexibilité en échelle du temps 
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de la picoseconde (ps) à la seconde (s). Ce manuscrit est plutôt focalisé sur les PIDs, l’utilisation 

de la RMN qui offre une résolution à l’échelle par résidu, est bien adapté pour décrire le 

comportement conformationnel des ces protéines et tenter de comprendre leur fonction. 

 

L’expérience de RMN la plus simple consiste à placer un spin nucléaire actif de RMN dans un 

champ magnétique statique, générant ainsi une polarisation de spin, ainsi que sa perturbation 

ultérieure par l’application d’impulsions électromagnétiques à radiofréquence. Parmi les 

paramètres de RMN les plus importants, il est possible de distinguer : 

-! le déplacement chimique (DC) apparaît sous l’action des champs magnétiques locaux 

(induits par le courant des moments électroniques) sur le noyau atomique. Donc 

chaque noyau actif en RMN (1H, 15N, 13C) peut avoir son DC unique s’il a un 

environnement chimique, distinct des autres noyaux avec les champs locaux. En 

comparant les DCs mesurés pour les différentes structures protéiques (hélice α et 

feuillet β) avec ceux d’une pelote aléatoire, on peut extraire des déplacements 

chimiques secondaires décrivant la probabilité de la présence de la structure 

secondaire ; 

-! les couplages scalaires (pour liquides) et dipolaires (milieu anisotropique et solide) 

entre les noyaux par les liaisons chimiques et l’espace respectivement ; 

-! la vitesse de relaxation, ou le retour à l’équilibre de magnétisation du noyau après la 

perturbation : T1 (temps de relaxation longitudinal) et T2 (temps de relaxation 

transversale). 

 

Les expériences de RMN utilisées dans ce travail sont bi- et tridimensionnelles : la HSQC 

(corrélation entre 1H et 15N amide de chaque acide aminé) permet d’avoir « le plan de la 

molécule » ; les mesures de la dynamique moléculaires R1, R1ρ et ENO (NOE) hétéronucléaire ; 

spectres de l’augmentation de la relaxation paramagnétique (PRE) avec l’attachement d’une 

sonde paramagnétique ; mesures de couplages dipolaires résiduels (RDC) en utilisant des 

milieux d’alignement, spectres 3D nécessaires pour l’attribution de la chaine principale 

protéique, y compris l’analyse de propension de structure secondaire (SSP) calculée à partir 

des DCs. 

 

9.2.2.!Autres techniques 
En raison de limitations de la RMN comme sa sensibilité faible et la taille moléculaire des 

objets biologiques étudiés, j’ai utilisé aussi d’autres techniques qui peuvent fournir des 

informations sur la taille exacte des molécules, leur forme, leur état oligomérique comme la 

diffusion des rayons X aux petits angles (SAXS), la diffusion de la lumière laser multi-angle 

(MALLS), la spectroscopie électronique (EM). De plus, les méthodes biochimiques (définition 
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des constructions des protéines, génération des clones, expression et purification des protéines 

recombinantes) ont également été décrites dans ce chapitre. 

 

9.3.! Résultats et discussion 
Les domaines structuraux Ncore et Ntail ont été étudiées séparément, mais également en 

présence de la séquence non-tronqué NFL (549 acides aminés). Malheureusement, je n’ai pas 

réussi à obtenir les constructions du Ncore tronquées stables. Certaines n’ont pu être obtenues 

dans la fraction soluble, d’autres étaient mal repliées ou agrégées au cours de la purification. 

Donc dans ce travail, je me suis focalisée sur la structure et la fonction du Ntail et du NFL. 

 

Le Ntail (résidus 373-549) a été étudié par la RMN. Le spectre 2D 1H-15N HSQC est 

caractéristique d’une protéine intrinsèquement désordonnée. Après avoir attribué les signaux 

pour chaque acide aminé, j’ai effectué les analyses SSP et ASTEROIDS avec le calcul du taux 

de population en hélice-α (logiciel permettant de créer l’ensemble des structures décrivant le 

comportement dynamique de la protéine). Ces expériences ont montré la présence de 

structures secondaires au niveau de la partie N-terminale (373-405), qui à la suite de 

comparaison de la séquence N de MuV avec celle de PIV5 (membre du même genre 

Rubulavirus et dont la structure de N oligomerique a été résolue), s’est révélée faire partie du 

Ncore plus particulièrement du C-arm. Après mesure de relaxation, en particulier R1ρ, j’ai 

découvert des taux de relaxation élevés en plus du C-arm mentionné précédemment dans les 

régions 474-500 et 505-518 qui ont été appelées comme le More et post-MoRE. Les RDC 

constituent la méthode la plus sensible pour détecter la propension α-hélicale du MoRE en 

étant aligné avec le milieu des cristaux liquides. Plusieurs tests d’affinité n’ont pas montré des 

interactions avec PNTD et PCTD. La phosphorylation in vitro a été effectuée avec l’aide de la 

kinase CKII qui modifie le résidu S439 sans impact sur la dynamique totale de la protéine. Le 

rôle de cette modification reste donc flou. 

 

L’expression de la N non-tronquée conduit à la formation de RLPs avec l’ARN bactérien. Bien 

évidement, ces structures ne sont pas naturelles pour le virus mais peuvent constituer un bon 

modèle pour étudier la nucléoprotéine oligomerique. Grâce à sa taille (diamètre environ 20 

nm) les anneaux sont facilement visualisés par l’EM. La trypsination (la protéolyse entrainant 

la coupure de Ntail) conduit à la formation de NCs. En raison de la morphologie variée de ces 

nucléocapsides, la structure cryo-EM à haute résolution n’a pu être obtenue. Plus 

d’informations extraites des spectres RMN, y compris la relaxation, qui montrent que les 

régions proches du C-arm et le MoRE ne sont pas detectables. Ce phénomène peut être 

expliqué par la proximité de ces domaines aux parties structurales plus grosses et donc plus 

« lentes » en fonction du temps de corrélation pour être visible par RMN. La validation de cette 
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hypothèse a été effectuée par le traitement de RLPs avec un excès de Ntail conduisant à 

l’apparition de domaines non visibles précédemment. Le rajout en excès de N-anneaux au Ntail 

a eu l’effet inverse, à savoir la disparition du MoRE à la suite de l’interaction de Ntail avec la 

surface de NFL. Par conséquent, cette expérience a montré que le MoRE s’associe avec le Ncore 

mais la fonction de cette interaction demeure inconnue. 

 

Après l’échec de la purification la phosphoprotéine non-tronquée PFL, et aussi des PNTD+OD et 

POD+CTD, il a été décidé d’étudier les deux domaines PNTD et PCTD séparément. De la même 

manière que le Ntail, les spectres HSQC de PNTD ont un profil caractéristique de PID. Les 

analyses des DCs et les mesures de la dynamique ont mis en évidence la présence de trois 

régions avec une propension hélicoïdale, localisées entre les résidus 13-60 (α1), 117-141 (α2) et 

189-204 (α3). Ces structures sont particulièrement affectées lors de l’interaction avec les RLPs. 

J’ai notamment observé des taux de relaxation élevés, ce qui est en accord avec les recherches 

précédentes. Plus d’informations ont été extraites en générant le complexe de fusion N0P. J’ai 

trouvé que les régions structurales α1 et α2 interagissent avec la nucléoprotéine monomérique. 

Dans le cas de α1, j’ai observé deux hélices 13-32 et 35-60, par analogie avec le N0P du PIV5, la 

première chaperonnant la N monomérique. L’hélice α2 possède un motif conservé chez les 

Paramyxoviridae, de la séquence VELA chez MuV. D’ailleurs, la phosphoprotéine du MeV a 

aussi cette région nommée HELL qui s’associe faiblement avec le N-lobe du Ncore. Il est 

possible de localiser ce site sur la structure cristalline du PIV5, très proche en composition 

(50,6% d’identité de séquence). 

 

Le domaine XD de PCTD a été également étudié en RMN. Des signaux larges, résultant 

probablement de l’instabilité du faisceau d’hélices-α, ont rendu l’analyse du spectre 

impossible. Par contre, l’expression de PCTD comportant les acides aminés entre OD et XD, a 

été plus efficace en terme de qualité du spectre HSQC. Les expériences de relaxation et RDCs 

avec l’alignement des bacteriophages et des analyses des SSPs, ASTEROIDS avec l’estimation 

de population des structures secondaires, ont confirmé la présence de trois hélices-α dans XD 

ainsi que deux structures transitoires du linker désordonné entre les OD et XD (résidus 286-

301 α4 et 316-323 α5) qui présentent des contacts à grande distance avec le XD. De plus, j’ai 

effectué les titrations RMN pour étudier l’interaction entre PCTD et NFL. Sous l’effet de l’addition 

d’un excès de RLPs, j’ai observé la disparition graduelle des signaux correspondant aux acides 

aminés du XD. Ensuite j’ai effectué la phosphorylation avec la Polo-Kinase I, kinase spécifique 

pour le PIV5. L’enzyme a modifié deux résidus serines (292 et 307) situés dans la partie dépliée 

de PCTD. La phosphorylation de ces deux régions entraîne une faible diminution de la 

propension structurale de deux régions structurées de manière transitoire mentionnées 

précédemment. Le rôle de ce changement n’est pas compris à ce jour. 
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Le défi le plus important de ce projet était de générer un complexe N0P stable. Plusieurs 

constructions PNTD-TEV-NFL ont donné des N en anneaux, suite à la libération du peptide P. 

En faisant plusieurs spectres RMN, j’ai trouvé que la présence de ce peptide libre peut stabiliser 

le complexe contre l’agrégation. Donc le rajout en excès de PNTD dans des préparations de N0P 

fraichement purifiées peut augmenter la chance d’obtenir le complexe monomerique. L’autre 

axe de recherche sur le complexe N0P était l’étude de l’assemblage en NCs en présence d’un 

ARN court de 6 nucléotides. J’ai observé la formation de RLPs et de capsides mais leurs 

cinétiques d’apparition restent malcomprises. J’ai mis aussi en évidence une influence de la 

concentration initiale du N0P sur la formation des NCs. 

 

9.4.! Conclusions et perspectives 
Dans ce projet, certains questions et problématiques définies au début ont été validées, 

d’autres sont restées sans réponse : 

-! Le Ntail possède des propriétés de protéine désordonnée avec formation de structures 

secondaires transitoires : les C-arm, MoRE et post-MoRE. Par contre il serait 

intéressant maintenant de comprendre la nature dynamique des hélices-α. 

-! La nouvelle fonction du MoRE est découvert : l’interaction avec le Ncore. 

-! Les structures de N-anneaux et NCs à haute résolution n’ont pas été menées car le 

protocole de leur génération nécessite une optimisation pour générer les structures 

homogènes. 

-! Comme le Ntail, le PNTD est aussi une région dépliée mais elle nécessite une étude de la 

dynamique plus profonde, par exemple, par mesure des RDCs avec alignement en 

milieu anisotrope. 

-! Trois régions de PNTD présentant des propensions hélice-α ont été trouvées. La fonction 

pour la première a été dévoilé : chaperonner N en N0P. Par conséquent, il est nécessaire 

de trouver le(s) rôle(s) des deux autres. 

-! J’ai identifié des structures secondaires transitoires le long de la séquence non-

structurée de PCTD. Il serait donc important d’étudier leur(s) fonction(s). 

-! L’interaction entre PCTD et NFL n’a pas été étudiée suffisamment à cause de la forte 

dégradation des anneaux de N. Les protocoles biochimiques favorisant la stabilité des 

RLPs doivent être améliorés. 

-! Le protocole de stabilisation de N0P a été mis au point. Il reste cependant difficile 

d’étudier les affinités de N0P en présence d’un excès de PNTD. 

-! L’assemblage de NCs a été réussi mais il faut étudier les mécanismes de formation des 

anneaux et capsides, mais aussi les facteurs influençant leur apparition. 
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Le virus des oreillons est peu étudié mais son appartenance à la famille des Paramyxoviridae 

permet de comprendre les mécanismes des interactions des protéines impliquées dans le 

processus de transcriptionet réplication viral. Dans le même temps, la faible conservation de 

séquence dans les régions désordonnées de ces protéines justifie d’étudier de manière plus 

approfondie d’autres membres du genre Rubulavirus, tels que PIV5, PIV2 et HPIV4. 
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Résumé  

Les   oreillons   sont   une   maladie   très   contagieuse   causée   par   le   virus  
ourlien.  La  méthode  préventive  (le  vaccin)  contre  ce  virus  a  été  déjà  mise  
au  point.  Par  contre,  les  épidémies  récentes  restent  incontrôlables.  Il  est  
donc   très   important   de   comprendre   le   mécanisme   moléculaire   de   son  
cycle   de   vie   afin   d’élaborer   le   traitement   effectif   et   spécifique.  Ce   virus  
appartient   à   la   famille   des   Paramyxoviridae.   Son   génome,   l’ARN   non  
segmenté   monocaténaire   de   polarité   négative,   est   protégé   par   la  
nucléoprotéine  (N)   en   formant   des   structures   filamenteuses  
nucléocapsides.   N   joue   un   rôle   essentiel   dans   la   synthèse   du   génome  
viral.   En   effet,   cette   protéine   avec   la   polymérase   et   son   cofacteur  
phosphoprotéine   (P)   constitue   la   machinerie   de   transcription-­réplication  
du   virus.   La  N   et   la   P   sont   composées   des   régions   pliées   et   dépliées.  
Malgré   que   la   morphologie   du   virus   ourlien   est   conservée   parmi   les  
autres   membres   de   la   famille,   il   existe   quelques   différences.   Il   a   été  
démontré  que  la  P  est  un  oligomère  antiparallel  avec  les  deux  extrémités  
d’un  côté  qui  interagissent  avec  la  partie  structurale  de  N  (Ncore).  Tandis  
que   la   fonction   de   la   région   désordonnée   (Ntail)   est   compliquée   à  
identifier  pour   le  moment.  En  comparant  avec   les  autres  paramyxovirus  
connus,  Ntail  n’interagit  pas  avec  le  domaine  C-­terminal  de  la  P.  Le  rôle  
des  régions  déstructurées  de  P  n’a  pas  été  défini.  Dans  ce  projet,  nous  
dévoilons  les  mécanismes  des  interactions  entre  diverses  régions  de  N  et  
P   et   nous   expliquons   comment   les   domaines   intrinsèquement  
désordonnés  de  N  et  P  sont   impliqués  dans  la  régulation  de  la  machine  
complexe   de   réplication   virale.   Nous   avons   utilisé   la   résonance  
magnétique   nucléaire   qui   est   la   méthode   la   plus   puissante   afin   de  
déterminer  la  structure,  la  dynamique  et  les  partenaires  d’interaction  dont  
la  fonction  des  protéines  dépliées  virales.  
  
  
Abstract  
  
Mumps   is  a  highly  contagious  disease  caused  by   the  mumps  virus.  The  
prevention   treatment   (vaccine)   against   it   is   already   in   the   routine   use.  
However,   recent   outbreaks   still   remain   uncontrollable.   Therefore,  it   is  
important  to  understand  the  molecular  mechanism  of  the  mumps  virus  life  
cycle.   This   virus   belongs   to   the   family   of  Paramyxoviridae.   Its   genome,  
negative   strand   non-­segmented   RNA   is   protected   by   the   nucleoprotein  
(N)   by   forming   filamentous   structures   called   nucleocapsids.   N   plays   an  
important   role   in   viral   genome   synthesis.   Together  with   the   polymerase  
and   its   cofactor   phosphoprotein   (P)   they   constitute   the   transcription-­
replication  machinery.  Both  N  and  P  contain  folded  and  unfolded  regions.  
Despite   mumps   virus   common   morphology   with   other   paramyxovirus,  
there  are  some  differences.  It  has  been  proposed  that  P  is  an  antiparallel  
oligomer  with  two  extremities  on  the  one  side  being  in  interaction  with  the  
structural  part  of  N  (Ncore).  The  function  of  the  disordered  domain  (Ntail)  
remains  unclear,  as  it  does  not  seem  to  bind  to  the  C-­terminal  part  of  P,  
as   is   the   case   for   other   paramyxoviruses.   The   role   of   the   disordered  
domains  of  P  is  also  not  known.  In  this  project  we  revealed  mechanisms  
of   interaction  between  different   regions  of  N  and  P  and  we  explain  how  
disordered   regions   of   N   and   P   are   implicated   in   the   regulation   of   the  
complex   machinery   of   viral   replication.   We   used   the   nuclear   magnetic  
resonance   which   is   the   most   powerful   method   to   determine   structure,  
dynamics   and   potential   interaction   partners,   and   therefore,   function   of  
disordered  viral  proteins.  

  
  




