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Abstract/Résumé

Deep polar ice cores contain records of both past climate and trapped air that reflects past

atmospheric compositions, notably of greenhouse gases. This record allows us to investi-

gate the role of greenhouse gases in climate variations over eight glacial-interglacial cycles.

The ice core record, like all paleoclimate records, contains uncertainties associated both

with the relationships between proxies and climate variables, and with the chronologies

of the records contained in the ice and trapped air bubbles. In this thesis, we develop a

framework, based on Bayesian inverse modeling and the evaluation of complex probability

densities, to accurately treat uncertainty in the ice core paleoclimate record. Using this

framework, we develop two studies, the first about Antarctic Temperature and CO2 during

the last deglaciation, and the second developing a Bayesian synchronization method for ice

cores. In the first study, we use inverse modeling to identify the probabilities of piecewise

linear fits to CO2 and a stack of Antarctic Temperature records from five ice cores, along

with the individual temperature records from each core, over the last deglacial warming,

known as Termination 1. Using the nodes, or change points in the piecewise linear fits

accepted during the stochastic sampling of the posterior probability density, we discuss

the timings of millenial-scale changes in trend in the series, and calculate the phasings

between coherent changes. We find that the phasing between Antarctic Temperature and

CO2 likely varied, though the response times remain within a range of 500 years from

synchrony, both between events during the deglaciation and accross the individual ice core

records. This result indicates both regional-scale complexity and modulations or varia-

tions in the mechanisms linking Antarctic temperature and CO2 accross the deglaciation.

In the second study, we develop a Bayesian method to synchronize ice cores using corre-

sponding time series in the IceChrono inverse chronological model. Tests show that this

method is able to accurately synchronize CH4 series, and is capable of including external

chronological observations and prior information about the glaciological characteristics at

the coring site. The method is continuous and objective, bringing a new degree of accuracy

and precision to the use of synchronization in ice core chronologies.
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Les forages polaires profonds contiennent des enregistrements des conditions clima-

tiques du passé et de l’air piégé qui témoignent des compositions atmosphériques du passé,

notamment des gaz à effet de serre. Cette archive nous permet de décrypter le rôle des gaz

à effet de serre dans les variations climatiques pendant huit cycles glaciaire-interglaciaires,

soit l’équivalent de plus de 800 000 ans. Les carottes de glace, comme toute archive

paléoclimatique, sont caractérisées par des incertitudes liées aux processus qui traduisent

les variables climatiques en proxy, ainsi que par des incertitudes dues aux chronologies de

la glace et des bulles d’air piégées. Nous développons un cadre méthodologique, basé sur

la modélisation inverse dite Bayesienne et l’évaluation de fonctions complexes de densité

de probabilité, pour traiter les incertitudes liées aux enregistrements paléoclimatiques des

carottes de glace de manière précise. Nous proposons deux études dans ce cadre. Pour

la première étude, nous identifions les probabilités de localisation des points de change-

ment de pente de l’enregistrement du CO2 dans la carotte de WAIS Divide et d’un stack

d’enregistrements de paléotempérature a partir de cinq carottes Antarctiques avec des fonc-

tions linéaires par morceaux. Nous identifions aussi les probabilités pour chaque enreg-

istrement individuel de température. Cela nous permet d’examiner les changements de

pente à l’échelle millénaire dans chacune des séries, et de calculer les déphasages entre les

changements cohérents. Nous trouvons que le déphasage entre la température en Antarc-

tique et le CO2 à probablement varié (en restant inferieur, generalement, à 500 ans) lors de

la déglaciation. L’âge des changements de temperature varie probablement entre les sites

de carottage aussi. Ce résultat indique que les mécanismes qui reliaient la température

en Antarctique et le CO2 lors de la déglaciation pouvaient être differents temporellement

et spatialement. Dans la deuxième étude nous développons une méthode Bayesienne pour

la synchronisation des carottes de glace dans le modèle inverse chronologique IceChrono.

Nos simulations indiquent que cette méthode est capable de synchroniser des séries de CH4

avec précision, tout en prenant en compte des observations chronologiques externes et de

l’information à priori sur les caractéristiques glaciologiques aux sites de forage. La méthode

est continue et objective, apportant de la précision à la synchronisation des carottes de

glace.
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Foreword

Rapid, anthropogenic climate change is set to mark the coming century, with dispropor-

tionate impacts on developing societies and vulnerable populations. Observations and

modeling have rapidly advanced our understanding of the climate system, but as we pre-

pare to combat and adapt to climate change, many important scientific questions remain

to be assessed. One of these: how do the mechanisms of the earth’s climate operate on the

long time scales of thousands to hundreds of thousands of years? In the coming centuries

and millennia, what might we expect?

Records of paleoclimate allow us to begin to investigate these questions, which are

difficult to answer using contemporary measurements and modeling studies. Unique among

these archives, ice cores record past atmospheric composition and proxies of past climate,

allowing us to investigate the greenhouse gas-climate relationship that is key to current

climate change on much longer timescales.

Paleoclimate records are, of course, imperfect observations. Measurements of chemical

species are only accurate within a range of uncertainty. The transfer functions relating

proxies to climate variables are by nature approximate. Finally, the age-depth relation-

ships that we use to date paleoclimate records are based on uncertain and limited observa-

tions. Thus, paleoclimate records contain two dimensions of uncertainty – age uncertainty,

and uncertainty with respect to the climate variables themselves.

This thesis focuses on accurately characterizing these two sources of uncertainty. In

order to do so, we apply Bayesian inversion – the use of observations and their uncertainties

to determine the range of uncertainty within which we can understand unknown quantities.

Bayesian inversion is a fitting framework for paleoclimatology – the science of determining

the unknown climate of the past from the observable properties of the earth’s layered

surface in the present.

The first chapter of this thesis introduces ice core chronology. In this chapter, we

discuss each of the sources of chronological information available in ice cores, and their

respective limitations and uncertainties.
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The second chapter focuses on Bayesian inversion. This chapter begins with an intro-

duction to Bayesian statistics. We then introduce the IceChrono model, which develops

ice core chronologies in a Bayesian framework. Finally, we introduce a few stochastic

solution methods, adapted to solving complex Bayesian inverse problems, that we use in

the later chapters of this thesis. This chapter is more mathematical than the first, as it

introduces in considerable detail the methods used in the two next chapters, which are

articles describing original research.

In the third chapter, an article published in Climate of the Past and co-led with Léa

Gest, we apply an inverse framework to determine the timings of millennial-scale changes

in CO2 and Antarctic (regional and continental) temperature over the course of the last

deglaciation, from roughly 20,000 to 10,000 years ago. This problem is perhaps less simple

than it seems – we need to model the structure of the changes, in this case, using piecewise

linear change; and then determine the probabilities of when they occur, using an inverse

framework. All the while, we take into account measurement and chronological uncertainty

with respect to the time series. We arrive at a probabilistic, accurate assessment of the

timings of changes and phase lags between the two series. This estimate gives us a more

accurate observation of how these two key variables of the carbon-climate cycle operated

on the millennial timescales of the glacial termination.

In the fourth chapter, an article in preparation for submission to Geoscientific Model

Development, we develop a method to automate the synchronization of paleoclimate

records. Many time series measured on ice cores are known to be similar, and match-

ing them is a powerful tool for building detailed chronologies. This is usually done by

eye, meaning that the match is discrete, and uncertainties are difficult to estimate. Our

method is continuous and Bayesian, making the estimation of uncertainties inherent to

the calculation.

The similarities in the last two studies are numerous. In both studies, we use residuals

between a model and observations to define a cost function – though in the first study, the

model is much simpler. In both studies, this cost function is used to develop a posterior

probability density function, in the Bayesian sense. We do not assume, in either study,

that the posterior will take a particular shape, but rather apply stochastic methods that

allow us to characterize complex, multimodal probability density functions.

In the final chapter, we bring the two studies together in the context of this bayesian

framework. We outline the similarities and differences between the method design for the

two studies and the limitations of the methodologies, before proposing some concluding
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remarks about the broader significance of the two works.

We begin, as such, to propose an approach for tackling complex state-of-knowledge

problems in paleoclimate. This approach will surely see further development, as more

powerful stochastic sampling algorithms allow us to better characterize probability density

functions, as computational resources increase, and, most importantly, as more paleocli-

mate archives are collected in the field and measured. We hope that further scientific

investigation will continue to improve upon the limitations detailed in our studies, and

that these developments are only a beginning.
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Chapter 1

The state of the art in ice core

chronology
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The state of the art in ice core chronology∗

Jai Chowdhry Beeman Frédéric Parrenin Volodya Lipenkov

Dominique Raynaud Amaelle Landais Emmanuel Witrant

Introduction

Deep polar ice cores contain a continuous record of atmospheric composition and proxy

representations of Earth’s climate currently reaching 800,000 years into the past. To

access this valuable archive of the climate system, we must precisely date the air and

ice contained in the ice cores. The methods developed in order to do so integrate the

disciplines of chemistry, physics, mathematics and geology to extract as much information

as possible from chronological clues in the air and ice.

An ice core begins as snow on the surface of an ice sheet, ice cap, or glacier. As

more snow accumulates, the underlying layers begin to densify into firn. When these

layers become sufficiently dense and firn becomes ice, the air that circulates through the

overlying layers is locked in to air bubbles, which are integrated into the ice matrix as

clathrates deeper in the core. As a result, the air at a given depth in a core is younger

than the surrounding ice. The ice layers themselves become thinner as we move deeper in

the core, as a function of ice flow conditions at the site where the core is drilled. Together,

these processes—accumulation, snow densification, air lock-in and ice flow—are referred

to as sedimentation. Models of the sedimentation process are an important component in

dating ice cores.

The snow accumulated each year on a glacial surface is referred to as an annual layer.

Where snow accumulation is high enough so that annual layers are not broken down by

wind, they can be identified and counted using seasonal cycles recorded in dust, water

isotopes, soluble compounds, and visual stratigraphy. Layer counting is the most conse-

quential method for the dating of Greenland ice cores, where annual layers tend to be

∗A version of this chapter was written for a monograph in preparation by Volodya Lipenkov, and will

be translated into Russian. The chapter is inspired by Parrenin [2014], which provides a comprehensive

introduction to ice core dating in French.

10



very well preserved, and has also been applied to cores close to the Antarctic coast, where

accumulation is stronger than in the Antarctic interior.

In low-accumulation ice cores, which record longer time periods, annual layers become

very thin or even unrecognizable at depth. As such, other methods have been developed

to date ice cores on these longer time scales. The isotopic ratio between 18O and 16O in

air; the fractionation ratio between O2 and N2, and Total Air Content (TAC) have been

tuned to the periodicities of Earth’s orbit to produce age models. Since Earth’s orbital

parameters can be calculated well into the distant past, this method can be used on the full

depth of even the deepest ice cores; however, the physical relationships between insolation

and its proxies are not perfectly known, resulting in uncertainty on the scale of a few

thousand years.

Significant events in Earth’s history often leave indicators or markers in ice core layers,

which we also refer to as dated horizons. These are another important tool in dating ice

cores. Volcanic events can be identified and linked to known eruptions by their chemi-

cal and dielectric properties. Rapid variations in temperature during the last glaciation,

known as Dansgaard-Oeschger events, are well-dated by annual layer counting in Green-

land ice cores and by Uranium-Thorium dating in speleothems, and can be identified and

linked to these archives in Antarctic cores. Concentrations of Beryllium-10, which is in-

fluenced by the Earth’s magnetic field and by solar wind, can be measured in ice cores,

allowing us to identify links between cores and with other dated archives. This is par-

ticularly useful during major reversals in the Earth’s magnetic field, which can be dated

radiometrically in other paleoclimate archives. Carbon-14 spectrometry can be applied

to air trapped in Antarctic ice cores, but consumes a large amount of CO2, limiting its

application to cases where large amounts of ice are available (see Petrenko et al. [2009,

2016] for example).

Finally, ice cores can be linked to each other and to other paleoclimate archives in

both the ice and gas phases. Methane concentrations, which are assumed to be globally

consistent, are commonly used to synchronize ice cores in the air phase, and have even

been used to synchronize ice cores to speleothem isotopic records; the ratio of δ18O of

atmospheric O2 can be used to synchronize ice cores in the air phase as well. Volcanic

events, even when not dated absolutely, provide a powerful tool for relative dating between

ice cores in the ice phase, and can be used to link ice cores to speleothems as well.

The methods used to date ice cores each contain sources of uncertainty. Annual layer

counting, for example, is very precise in terms of resolution, but counting errors tend to
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accumulate as we move away from a layer whose age is known, and annual layers become

unresolvable in older and lower-accumulation ice cores. Tuning to orbital parameters is

accurate on very long time scales, but significant uncertainty is introduced since the phys-

ical relationships between proxies of orbital parameters and the parameters themselves are

not well known. Models of the sedimentation process, on the other hand, are based on

well-known principles of flow, but require knowledge of external parameters like accumu-

lation and basal melt rate. The identification of volcanic events and changes in Earth’s

magnetic field and solar activity allow us to date individual layers, but the ages of the ice

and gas in between these layers are left unknown.

We can mitigate some of this uncertainty by combining multiple sources of chronolog-

ical information. The methods developed to do so are federative: that is, they combine

dating information from multiple dating methods and often multiple ice cores. They are

often formulated as inverse problems, and involve estimating the probabilities of the vari-

ables that create an age model using the chronological information available about the age

of the core. Any of the dating methods mentioned in this introduction can be included as

a source of information in a federative dating experiment.

Each of the dating methods described in this introduction will be treated in its own

section in this chapter. In the sections, we make an attempt to include well-known studies

as examples to guide the reader through the method, describing how it has been used in

dating ice cores, how the associated uncertainties are evaluated, and the scientific advances

that the method has allowed. We leave the reader with an introduction to federative dating

methods, which are arguably the state of the art in ice core dating, and with perspectives

of what is to come in dating ice cores.

A note to the reader: the convention of counting time in years or kiloyears before 1950

or before present, with the present referring to 1950 AD (ka B1950, ka BP, or simply ka), is

commonly used in ice core and paleoclimate studies. We will as a rule use this convention

in this chapter, though alternatives, such as years before 2000 AD, are also common.

The sedimentation process

Polar ice cores record the past in two forms: ice and air. The ice begins as fresh snow, which

is deposited on the surface of an ice sheet. We quantify this deposition as accumulation,

or a. As the snow densifies under its own weight into firn and then ice, the air that moves

through the porous snow becomes trapped in bubbles in the denser ice matrix.
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Figure 1: Schematic (not to scale) of the firn column at WAIS Divide. A darker background

color indicates a denser ice matrix. Pores are indicated in white. From Battle et al. [2011].
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Sowers et al. [1992] identify four distinct zones that characterize the transition from

snow to firn and then ice. The first of these, in the top layer of snow and firn, is the

convective zone. This zone is porous enough for air to be transported via convection:

that is, the movement of molecules induced by the difference in temperature between the

surface and the bottom of the layer. Convection consists of two components: advection,

the transfer of mass via fluid currents, and diffusion, the motion of individual molecules.

Firn becomes less porous in the next layer, the diffusive zone. Here, advection (and

therefore convection) no longer occurs, and molecules are transported by diffusion alone.

Below the diffusive zone, in the non-diffusive or lock-in zone, pores in the firn are almost

closed, such that even diffusion is negligible. The depth in the firn at which this occurs is

known as the lock-in depth, or LID. The lock-in depth varies in time and is site-dependent:

at the site of the NEEM core in Greenland, it varies on the order of 50 meters, while at

interior Antarctic sites like Vostok, this depth can be on the order of 100 meters, and

the surrounding firn can be many decades to several thousand years older than the air it

traps. At the close-off depth, located even deeper than the lock-in depth, all pores become

definitely closed. However, little additional air is trapped in pores between the lock-in

depth and the close-off depth, so we tend to use the lock-in depth to calculate the age

of the air in a pore. We quantify the chronological difference between the ice and air in

an ice core in two ways. ∆age refers to the difference in age between ice and air at an

equivalent depth. Analogously, ∆depth refers to the difference in depth between ice and

air with equivalent ages. Both of these variables are related to the LID.

Finally, as ice is weighted with newly accumulated snow, it flows. The layers of ice

that began as surface snow are transported deeper into the ice sheet, and begin to move

horizontally along flow lines as well. Consequently, the layers representing a given period

in an ice core become thinner at depth. Along the vertical line of an ice core, we can

quantify the thinning of layers with a thinning function τ . If we have estimates of the

accumulation, the thinning function, and the lock-in depth along the depth of an ice core,

we can construct a chronology based on sedimentation modeling. When creating an ice

core chronology, modeling and proxies are used to effectively gain information about these

three variables.

Lock-in depth is perhaps the most difficult of the three variables to estimate, as it

involves both the gas transport processes and the densification mechanisms that occur in

the firn column. Models based on the principles of mechanics are used to calculate the

evolution of the profile of density in the firn—a classical formulation is that of Herron
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and Langway [1980]. In these models, lock-in depth is parameterized in one of two ways:

the depth where the density of the firn column becomes sufficiently high; or the depth at

which the ratio of closed to total porosity becomes sufficiently high [Goujon et al., 2003].

These parameterizations are based on modern-day observations of the properties of

firn at lock-in depth. Firn modeling is treated in much greater depth by Salamatin et al.

[2009], for example.

In addition to firn densification modeling, isotopes of Nitrogen (15N and 14N) and

Argon (40Ar and 36Ar) can be used as indicators of lock-in depth. [Sowers et al., 1992,

Severinghaus et al., 2003] Nitrogen and Argon concentrations in the atmosphere have not

undergone significant changes on the timescales relevant to dating ice cores. However,

their isotopic ratios as recorded in ice cores are not constant. These variations result from

fractionation processes—processes that separate different isotopes—that occur in the firn.

The processes that separate Nitrogen and Argon isotopes can indeed be related to the

lock-in depth at the time of pore closure.

The first and most important of these fractionation processes, gravitational fraction-

ation, occurs due to the mass difference between isotopes. Heavier isotopes fall to the

bottom of the diffusive zone and become trapped as pores in the firn begin to close. The

greater the height of the diffusive column, the more these heavier isotopes are preferred

deeper in the core. We can describe the gravitational fractionation ratio, δg, as

δg =
[
e

∆mgz
RT − 1

]
· 1000 (1)

where ∆m is the mass difference (in atomic mass units, or g mol-1) between the two

isotopes, g is the gravitational acceleration (in m s−2), z is the height of the diffusive

column (in m), T is temperature (in K), and R is the ideal gas constant (expressed in kg

m2 s−2 K−1 mol−1). Note that gravitational fraction is stronger for greater differences in

isotopic mass: e.g. it is stronger for Argon than for Nitrogen isotopes.

Gravitational fractionation is dependent on the height of the diffusive column, rather

than the height of the firn column from the lock-in depth to the surface. This means that

in order to estimate the full LID using isotopic ratios, we must also make an assumption

about the height of the convective zone. The observed present-day height of the convective

zone is variable by site, from near-zero at EDC to more than 10m at Vostok [Landais et al.,

2006]. We do not, however, know the height of the past convective zone, introducing a

source of uncertainty in the LID estimation that is difficult to quantify.

The second type of fractionation process, thermal fractionation, is related to the tem-
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perature gradient in the firn column. It can be written as:

δt =

[(
T

T0

)c

− 1

]
· 1000 (2)

where T and T0 are the temperatures at the bottom of the diffusive column and at the

surface, respectively, and c, the thermal diffusion coefficient, is related to temperature as

well.

These relationships can be used in addition to temperature proxies, like Deuterium

isotopes, to deduce the lock-in depth associated with a given air depth in the ice core.

However, the lock-in depth estimated by these relationships is not always in agreement

with the lock-in depth calculated by firn densification modeling, particularly in the case of

low-accumulation interior Antarctica in the glacial period [Landais et al., 2006]. Several ex-

planations have been proposed, including corrections of accumulation rates [Landais et al.,

2006] and continued dispersive mixing in the lock-in zone driven by pressure variations

[Buizert and Severinghaus, 2016]; a modeling correction for low-accumulation Antarctic

sites, including a relationship between activation energy and temperature, and a param-

eterization of the influence of impurities on densification, has been proposed by Bréant

et al. [2017].

In addition to gravitational and thermal fractionation, Kawamura et al. [2013] describe

a kinetic fractionation mechanism in the convective zone, where fractionation was previ-

ously thought negligible. Very heavy gases are slower to diffuse than lighter gases, and are

thus partially depleted lower in the firn. The authors propose krypton and xenon, which

are slow enough to diffuse to be significantly impacted by kinetic fractionation, as proxy

tracers of this effect.

Estimating lock-in depth is the first step to modeling the age of the air in an ice

core. In order to date the air and the surrounding ice using a model of the sedimentation

process, we need to additionally estimate the accumulation, which is time-dependent, and

the thinning function.

Fortunately, there are a few ways to do this. Accumulation is most often initially es-

timated using relationships with water isotope records, like δD or δ18O, which are known

as paleothermometers because of their strong relationships with temperature. The sat-

uration vapor pressure, which is an exponential function of temperature, is assumed to

control precipitation. However, the relationships between water isotopes and temperature

are imperfect, and this contributes to the complexity of the relationships between iso-

topic proxies and accumulation. The uncertainty in calculating past accumulation in turn
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motivates some of the methods described in later sections, in particular inverse modeling.

Estimating the thinning function is simple for ice cores which preserve annual layers,

in which case it suffices to measure the thickness of a given layer and derive the thinning

function at that layer using an accumulation estimate. Since the ice is already dated by the

annual layer count, the only methodological uncertainties associated with sedimentation

modeling are in the estimate of the air age. Many Greenland ice cores, and some Antarctic

cores, are at least partially dated by annual layer counting, as we will see in the next

section.

Where annual layers are not retained in the ice, we can model the flow of ice at the

location of the core using dynamic ice flow models. These models vary in complexity, and

often the characteristics of the site at which an ice core is drilled allow us to use a simpler

model. At the site of a geographic dome, such as Dome C or Dome Fuji, we can simplify

the calculation of horizontal ice flux. As such, one-dimensional, vertical flow models with

approximations of flux and basal conditions have been applied (see Parrenin et al. [2007b]

for example).

Cores situated downslope of geographic domes require more detailed modeling of hori-

zontal ice flow. In the case of the Vostok ice core, a 2.5 dimensional ice flow model, which

supposes that ice flows in the direction of the greatest slope, has been applied [Parrenin

et al., 2004]. 3-dimensional models, while costly in terms of computation, can be used to

tune or verify simplified models. [Ritz et al., 2001], for example, simulated the Antarctic

ice sheet using a 3-dimensional model over the last 420,000 years, and the results of this

experiment were used to constrain the Vostok simulation performed by [Parrenin et al.,

2004]. Note that ice flow modeling is described in much greater detail in chapters 4 and

5.

Once the accumulation α, the lock-in depth LID, and the thinning function τ have

been constructed, we can make age models for the air and ice in a core. At depth z, the

age of the ice X can be written:

X(z) =

∫ Z

0

D (z′)
α (z′) τ (z′)

dz′ (3)

Then, the age of the air contained at a given depth, ψ, is given by:

ψ (z) = X (z − ∆d (z)) (4)

where ∆d is ∆depth (the difference in depth between synchronous air and ice lay-

ers). Finally, we can calculate ∆d from lock-in depth LID by integrating the following
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relationship:

∫ z

z−∆D(z)

D(z′)
τ(z′)

=

∫ LID(z)Dfirn(z)

0

1

τ(z′ie)
dz′ie (5)

where Dfirn, which we assume we know from densification modeling, is the average

relative density of firn when the air at depth z was at the lock-in depth. We call zie the

ice equivalent depth, defined as:

zie =

∫ z

0
D(z′)dz′ (6)

These four equations allow us to construct a chronology from the information we have

about the sedimentation processes in an ice core. Additionally, they form the forward

model for many inverse simulations: that is, they allow us to deduce the most probable

scenarios for the three input variables α, LID, and τ when we have some additional

information about the age of the ice or air. In the following sections, we explore the

methods that provide us with this additional chronological information. We return to

inverse dating methods, which allow us to combine this information, in the final section.

It should be noted that further improvements can certainly be made to models of the

sedimentation process. Glacier flow modeling is a geoscientific discipline in its own right.

The relationships between accumulation and isotopic ratios should be further refined.

Finally, continued investigation of the processes of firn-layer transport will surely improve

both model-based and proxy-based estimation of lock-in depth.

Annual Layer Counting

When sufficient snow falls on the surface of an ice sheet, and this snow is left relatively

undisturbed over the course of a year, distinct annual layers form as the snow densifies

into firn and then ice. The identification of these annual layers in the ice has allowed high

accumulation ice cores in Greenland and near the Antarctic coast to be dated at very high

resolution.

Layer counting is made possible by the presence of tracers in the ice that are seasonally

cyclical. Early on, the presence of annual-resolution visual stratigraphy—comparable to

varves in lake sediment cores or annual tree rings, was recognized in ice cores [Benson,

1962], as the largest of these layers are evident to the naked eye. The visual stratigraphy

present in ice cores is related to annual cycles in the content of impurities in the ice, which

determine its color. Though visual stratigraphy is a methodologically simple, powerful
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dating tool, it was difficult to apply in practice until the advent of digital photography.

Seasonal cycles in isotopic composition were also used to date ice cores early on (see,

for example, Hammer et al. [1978]). The water isotope ratios δ18O and δD contain seasonal

cycles that are, in large part, related to seasonal differences in isotopic fractionation during

moisture transport. Air masses moving from the tropics toward the poles tend to be cooled

more in winter than in summer, and more precipitation occurs along the transport pathway

as a result. This rainout leads to a depletion in heavier isotopes and, generally, lower values

of the isotopic ratios in winter than in summer [Epstein and Sharp, 1959].

Since water vapor can diffuse through the firn column, annual layer counting using

water isotopes is limited. This effect is less important for ions trapped in the ice matrix,

notably Na+ , Ca2+ , H2O2 , NH4+ , NO−3 and SO2−
4 , which can also vary in concentration

on a sub-annual timescale, tracking seasonal components of the biogeochemical system.

The concentrations of Na+, Ca2+, and SO2−
4 , for example, are affected by the influx of sea

salt aerosols to the site of an ice core. SO2−
4 can also contain a biogenic signal [Curran et al.,

1998]. Insoluble dust concentrations in ice cores show a significant seasonal component as

well, which is dominated by seasonal precipitation patterns at the land source [Hammer

et al., 1978].

It is important to note that the atmospheric transport mechanisms hypothesized to

produce the annual cycles observed in water isotopes and impurities, and the timing of the

annual peaks and lows in these tracers, can vary from one paleoclimate period to another

[Andersen et al., 2006], and indeed from one site to another as well. Thus, even when we

still observe annual cycles, identifying individual seasons can prove ambiguous.

The recognition of annual layers has become considerably more accurate as new meth-

ods to measure visual stratigraphy, water isotopes, and impurities have been developed.

Hammer [1980] identified Electrical Conductivity Measurement (ECM) as an integrative

source of information about the ions contained in an ice core; ECM is still commonly

applied as a component of annual layer counting studies. Using digital photographic pro-

cessing techniques, very high-resolution line scans of ice cores can be taken on site [Nielsen,

2005] and processed to make depth series of grey-tone intensity [Winstrup et al., 2012]

which show identifiable annual cycles. This method makes the simple concept of visual

stratigraphic counting easier to apply.

Measurements of water isotopes and impurities in ice cores were transformed, in terms

of resolution, by the advent of Continuous Flow Analysis (CFA). By continuously melting

a core, measurements in the liquid phase and of many components in the gas phase can be
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made at increasingly high resolution (e.g. Bigler et al. [2011]), limited by the quantities of

water or air required by the experimental setup, rather than by the work hours required

to cut individual ice core samples. Of particular interest to annual layer counting studies,

CFA setups have been developed for both water-soluble ions [Röthlisberger et al., 2000]

and water isotopes [Gkinis et al., 2011]. These very high resolution measurements make

the identification of an annual cycle considerably easier.

Compared to low-accumulation Antarctic ice cores like those from Dome C, Dome Fuji

and Vostok, Greenland ice cores are generally higher-accumulation records, with more

easily identifiable annual layers reaching considerable depths. The Greenland Ice Core

Chronology 2005 (GICC05; Svensson et al. [2008]), the most up-to-date chronology of

Greenland ice cores, reaches 60ka at annual resolution using layer counting (and 123 ka

using glaciological modeling), with uncertainty estimated at under 1% in the Holocene

and under 5% during the last glaciation. Antarctic cores, on the other hand, cannot be

left out: the West Antarctic Ice Sheet Divide Core (WAIS Divide core; WD) chronology

(WD2014) is based on annual layer counting up to 31ka [Sigl et al., 2016] and significant

methodological advances were produced during the dating of the WAIS Divide core as

well.

Several integrative dating scenarios for multiple Greenland ice cores have been devel-

oped that take multiple sources of layer-counting information into account. The GISP2

scenario of Meese et al. [1997] was used by many paleoclimate studies; the most cur-

rent chronology for Greenland ice cores is GICC05, which uses high-resolution data series

from three Greenland ice cores—DYE-3, GRIP, and NorthGRIP—to perform a multi-

parameter, continuous count of annual layers over the last 60 ka. The multi-core, multi-

parameter approach holds two significant advantages over a single-core, single-parameter

dating scenario. First, the seasonal tracers: water isotopes, soluble ions, ECM measure-

ments, and visual stratigraphy, can complement each other. The use of multiple tracers

is of particular value when the seasonal cycle in a single tracer is not evident for a given

paleoclimate period. Second, the measurements made in the core with the highest resolu-

tion can be used to limit uncertainty at a given point, using stratigraphic links (volcanic

events, for example) to match the other cores to the least uncertain time scale.

An example of layer counting from GICC05, within Greenland Interstadial 14 (begin-

ning at 54 220±1150 yr BP, ending at 49 280±1015 yr BP) is shown in Figure 2. During

this period, layer counting was performed using visual stratigraphy grey scale, ECM, Con-

ductivity, and Na+ measurements.
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A few aspects of the practical implementation annual layer counting are evident in

the figure that may not be obvious when the subject is treated in a purely theoretical

way. Annual cycles themselves can sometimes be ambiguous: some series show peaks on

a sub-annual time scale, while others seem to be missing some annual peaks and troughs.

While layer counting is by far the highest-resolution method used to date ice cores, the

ambiguity of annual layers introduces some uncertainty into the dating scenario. A less-

apparent layer might be left uncounted, or an extra layer may be counted when in fact

the ice stratum was simply abnormally thick.

These counting errors accumulate as we move further from ice strata with known ages.

In the GICC05 dating scenario, to address the cumulative nature of counting error, layers

thought to be present but deemed to be uncertain were counted as 1
2 ± 1

2 years (shown as

dashed lines), with the uncertainty term summing between absolutely dated points.

In addition, the ambiguity in identifying annual layers can add a degree of subjectivity

to the method: two scientists counting annual layers in the same core may, and likely will,

identify a different amount of layers, and this difference will increase deeper in the core.

The GICC05 time scale made an effort to reduce human error by combining the layer

counting results of multiple authors for the final age scenario.

Several recent studies have made significant strides toward introducing automation in

the counting of annual layers, and replacing subjectivity with reproducibility [Rasmussen

et al., 2002, Smith et al., 2009, McGwire et al., 2011]. The study of Winstrup et al. [2012]

made the largest advances in counting annual layers automatically, and this method,

detailed in Chapter 2, has been used in several major ice core chronologies.

While automated methods reduce the subjectivity of layer counting, human input

is still essential to verify the results. Indeed, in practical applications, some strongly

ambiguous layer counting scenarios still arise. In these cases, manual counting is often the

best-performing method.

Annual layer counting is highly precise in dating the duration of periods at depth,

but because of the cumulative nature of errors (more layers are missed in total as the

count progresses) it can be uncertain in terms of absolute dating at depth. Additional

dating information, like the inclusion of dated horizons, is thus often used (as is the case

in GICC05, for example) to constrain the absolute dating uncertainty when annual layer

counting is the primary method used to date a core.

In Antarctica, the chronology of the high-accumulation WAIS Divide ice core (WD2014;

Sigl et al. [2016]; Buizert et al. [2015]) is based on annual layer counting from 0 to 31 kyr
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Figure 2: Example of annual layer counting from GICC05, within Greenland Interstadial

14 ( 54-49 kyr BP). The records are visual stratigraphy grey scale, ECM, conductivity,

and Na+ concentration. (Uncertain) Annual layers are indicated by (dashed) grey vertical

bars. Units of the grey scale and the ECM profiles are arbitrary but comparable to those in

Fig. 2. The counting of this section is mostly based on the conductivity and Na+ profiles

because the other records are known to have multiple peaks within an annual layer during

milder climatic periods. Figure from Svensson et al. [2008].
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BP. For the WD2014 chronology, the multi-parameter approach is used as well, with

CFA and discrete measurements of water isotopes and major ions used along ECM and

di-electric profiling measurements to count layers.

In contrast to the GICC05 chronology, which was developed using purely manual

layer counting, in the layer-counted portion of the WD2014 chronology, the algorithms of

Winstrup et al. [2012] or McGwire et al. [2011] were applied whenever possible. In some

sections where annual layers became particularly difficult to identify, notably in a zone of

brittle ice at 577–1300 m depth, manual counting was used extensively. Uncertainty was

evaluated by comparison between methods and with other records.

The WD2014 chronology is a major stepping stone to the future of Antarctic ice core

dating. It is by far the most precise chronology of a deep Antarctic ice core up to 31kyr

BP, thanks to the application of layer counting. The data from the WAIS divide core itself,

and the synchronization of other cores to WD2014, will allow for unprecedented detail in

studies of Antarctic and global paleoclimate, particularly during the last deglaciation.

Orbital Tuning

Annual layer counting, as seen in the previous section, is largely based on the idea that

certain indicators in ice cores respond to seasonal cycles in the climate system. Orbital

tuning is based on a similar principle, but on much longer time scales: that proxies in ice

cores can track the Earth’s orbital shape, and that the dating scenarios for these cores can

be improved by matching the proxies to their respective orbital parameter targets. Where

annual layer counting allows relatively new ice to be dated with great precision, orbital

tuning allows ice to be dated deep into the past.

The shape of Earth’s orbit and rotation is altered as the gravitational pull from nearby

planetary bodies itself changes in time. Milankovitch [1941] theorized that the major

periodicities of these changes in shape, which cause insolation on the planetary surface to

vary in time, could explain long-term variations in Earth’s climate. This theory has been

confirmed by innumerable paleoclimate records, and the orbital and rotational frequency

variations in Earth’s climate are now widely known as Milankovitch cycles.

Earth’s orbit can be calculated well into the past and future using fundamental phys-

ical principles. The insolation solution of Laskar et al. [2004], for example, numerically

integrates a model of the solar system with nine major planetary bodies and the moon,

and is precise enough to be used for calibrations of geologic records on the scale of 50 Ma

(million of years); that is, nearly two orders of magnitude greater than the oldest ice core
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record. We often speak of an “orbital clock”—that is, the variations in orbit and rotation

provide us with a time reference with which to compare paleoclimatic and geologic records.

However, as is the case for annual layer counting, we do not directly observe these orbital

parameters in ice cores, but rather use proxy records which contain sources of uncertainty.

The isotopic ratio between 18O and 16O concentrations of foraminifera was first com-

pared to orbital parameters in the context of dating deep marine sediment cores (see, for

example, Hays et al. [1976], Imbrie et al. [1984]). In ice cores, the ratio between these

isotopes in trapped gas, δ18Oatm (or atmospheric δ18O, not to be confused with water/ice

δ18O), is well-correlated with precession. Several early studies made note of this relation-

ship, with the earliest dating scenarios tuning ice core δ18Oatm to sea water δ18O measured

in ocean cores [Sowers et al., 1992, Bender et al., 1994]. [Waelbroeck et al., 1995] com-

pared the Vostok δD record, which is closely related to δ18Oatm, to insolation filtered at

the major periodicities of obliquity(41kyr) and precession (23kyr)1.

Theoretically, δ18Oatm is related to insolation via processes in the climate cycle. Since

these processes affect the gas concentration when air is trapped, δ18Oatm tuning is used

to date the air contained in a core.

The chronological application of δ18Oatm was first proposed for the deepened Vostok

ice core by Jouzel et al. [2002], who found strong correlations between δ18Oatm in the

Vostok core and both 65◦N maximum insolation and its filtered precessional component,

when the core was placed on a previously developed chronology based on glaciological

flow modeling. Similarly, Petit et al. [1999] took a strong correlation between δ18Oatm and

precession as a confirmation of their glaciological chronology. Neither of these studies,

though, applied orbital tuning to create a dating scenario. The use of this method to

uncover chronological clues was left to later studies.

Shackleton [2000] continued where these studies left off, developing a true orbital

chronology using δ18Oatm for Vostok by comparing its precession and obliquity compo-

nents to the same components of a tuning target. Dating using orbital tuning was soon

integrated with other methods as well: Parrenin et al. [2001] refined this chronology by

using visual tie points between δ18Oatm and insolation as control points for a glaciological

1In addition to local insolation, a few of the parameters of Earth’s orbit and rotation have periodicities

that make them of interest to studies of the climate of the Quaternary period. Eccentricity, which describes

the degree to which Earth’s orbit is elliptical, is strongly periodic at 412 kyr, and weakly periodic at several

small peaks between 95 and 131 kyr. Obliquity, the inclination of Earth’s rotational axis, shows a strong

periodicity at 41kyr, and weaker periodicities at 39.6 and 53.7 kyr. Axial and apsidal precession, the

changes in orientation of earth’s rotational axis and its orbital plane, show strong periodicities at 19 and

23 kyr.
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model; Dreyfus et al. [2007] and Parrenin et al. [2007b] similarly used δ18Oatm tie points,

along with additional dated horizons, in the EDC3 chronology.

The relationship between δ18Oatm and precession, while useful for dating the oldest ice

contained in ice cores, is limited in precision by several sources of uncertainty. δ18Oatm

does not respond directly to insolation, but rather tracks responses to the insolation cycle

within the climate cycle. Monsoon precipitation systems in the subtropics, which can lag

insolation forcing by thousands of years, can impact δ18Oatm. A component of δ18Oatm

related to the 100-kyr cycles in ice sheet volume that occurred over the last million years,

which do not agree in amplitude with any orbital parameter, is also well-known. The bio-

sphere also influences δ18Oatm by way of photosynthesis and respiration, a phenomenon

known as the Dole Effect. The lag between δ18Oatm and insolation cycles should vary with

these mechanisms, but since the exact mechanisms are difficult to model, each of the four

studies mentioned in the previous paragraph estimated a lag of 6 kyr between the preces-

sion component of insolation and δ18Oatm. Indeed, the lag itself between insolation and

δ18Oatm is known to vary [Jouzel et al., 2002], adding an important source of uncertainty

to the method.

Using a δ18Oatm-tuned chronology for the Vostok ice core, Bender [2002] observed that

the ratio between O2 and N2 trapped in the air contained in the core (δO2/ N2 ) seemed

to be related with the on-site (78 ◦ S) summer insolation. More importantly, unlike the

relationship between δ18Oatm and precession, this relationship did not seem to show a lag.

Measurements of δO2/ N2 taken at Dome Fuji and EDC indeed showed the same phase

agreement with local summer insolation. This localized relationship would minimize the

influence of global climate on the signal, thus significantly reducing the uncertainty present

in δ18Oatm tuning.

A third orbital tuning method would be developed soon after: Kawamura et al. [2004]

and Raynaud et al. [2007] observed that the Total Air Content (TAC) in the Dome Fuji

and EDC ice cores also varied in phase with local summer insolation. Interestingly, differ-

ent frequencies were observed to dominate the spectra of the two proxies: the strongest

component in δO2/ N2 is at the frequency of precession (23kyr); the strongest component

in the TAC signal is at the frequency of obliquity (41kyr).

δO2/ N2 and TAC record insolation via local, small-scale mechanisms, in clear contrast

to δ18Oatm. Both the amount of air trapped in bubbles in the core (which determines TAC)

and the size of the molecules trapped in the bubbles (which determines the O2/ N2 ratio)

are controlled by the process of pore close-off. The total amount of air trapped in a bubble
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in an ice core depends on the porosity of the ice, with a weaker dependence on temperature

and pressure at the time of close-off via the ideal gas law [Raynaud et al., 2007]. In the case

of δO2/ N2, smaller O2 molecules continue to effuse near the lock-in depth, while larger N2

molecules become trapped, depleting the δO2/ N2 ratio [Severinghaus and Battle, 2006].

The physical properties of snow are hypothesized to determine the lock-in depth; these

properties can be significantly affected by the snow surface energy balance, which can be

largely driven by insolation [Libois et al., 2014]. Since δO2/ N2 and TAC are related to

snow processes, both tuning methods are used to date the ice phase of a core.

Orbital tuning using these localized proxies has lead to advances in our understanding

of Antarctic paleoclimate. When [Kawamura et al., 2007] adjusted the Dome Fuji, Vostok

and EDC time scales by tuning δO2/ N2 to local insolation, the better dating resolution

deep in the cores allowed them to investigate relationships between Northern Hemisphere

and Antarctic climate with unprecedented accuracy. In particular, carbon dioxide concen-

trations in the cores and Antarctic temperature as recorded in δ18Oice were found to lag

Northern Hemisphere insolation by a few millenia during the last four deglaciations.

While the results of dating scenarios using δO2/ N2 and TAC are promising, the

hypotheses used to support matching these series to orbital parameters require additional

confirmation. Since they are hypothesized to vary via similar mechanisms, they should

produce dating scenarios that are in good agreement. Indeed, Lipenkov et al. [2011] showed

that this was the case, within a range of about 1kyr, for the Vostok ice core. Of course,

this result only confirms the methods with respect to each other, and that sources of error

common to the two methods could additionally exist.

δO2/ N2 and TAC series are also affected by several processes not related to insolation.

A few examples are the impact of the accumulation rate via pressure differences and the

change in depth of the non-diffusive zone (Hutterli et al. [2009]; Witrant et al. [2012]);

microstructural changes in the firn that can occur well below the surface [Hörhold et al.,

2009] and dust content [Freitag et al., 2013]. Bazin et al. [2016], in an extensive test of the

phasing between orbital forcing, δ18Oatm and δO2/ N2, using new, high-resolution mea-

surements made on the EDC ice core in addition to measurements from Vostok, indicated

the presence of a 100kyr spectral peak in the δO2/ N2 records that is not present in the

summer insolation series. Together, these studies considerably complicate the hypothesis

that δO2/ N2 and TAC are purely local signals. Additionally, corrections for gas loss,

which is exacerbated if cores are not stored at low enough temperature, are necessary for

δO2/ N2 records.
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Models of the processes that link these three proxies to insolation will help clarify

exactly how orbital tuning should be performed for the best possible accuracy. Fujita

et al. [2009] have performed an extensive initial modeling study to this effect. It is also

possible to automate the tuning process itself, in order to reduce the subjectivity inherent

in visually picking tie points. Both Raynaud et al. [2007] and Lipenkov et al. [2011] used a

method based on Continuous Wavelet Transform analysis to calculate time delays between

the tuning proxy and the insolation target. Figure 3 shows the result of this method when

applied to δO2/ N2 and TAC data from the Vostok ice core, and two respective Integrated

Summer Insolation (ISI) targets. The result is an estimate of time delay from the two

series, which can then be subtracted from the base chronology to give a new, tuned

chronology

Future developments in orbital tuning will likely include further advances in process-

based modeling of pore closure and the automation of the tuning process; indeed, we will

likely soon see combinations of the two. Thanks to new measurements of δO2/ N2 and

δ18Oatm made on the EDC core [Bazin et al., 2016], we can investigate and apply all three

orbital tuning methods well into the past.

Dated Horizons

Although the ice and air contained in ice cores are not easily dated using radiometric

methods, some layers can be dated by relating them to strata in other, previously dated

paleoclimate archives, like speleothems. Volcanic materials, the rapid changes in northern

hemisphere climate during the last deglaciation known as Dansgaard-Oeschger events,

and variations in solar activity and of earth’s magnetic field can all be used to provide

individual age points for a core.

Ice cores can often be synchronized with radiometrically dated paleoclimate archives

using volcanic events2. Major volcanic eruptions eject large amounts of volcanic material

2Radiometric dating methods are standard in the broader field of geochronology. These methods rely

on the decay of radioactive isotopes with lifetimes long enough to cover the timescale of the record for

which an age is desired. Using exponential relationships known as decay equations, we can model the

ratios of radioactive parent isotopes to their decayed counterparts, known as daughter isotopes. The

values of the constants in the decay equations, however, are not known. To estimate the values of these

constants, reference materials must be chosen in well-constrained sedimentary sequences: that is, we

require measurements of parent and daughter isotopes in a material whose age is already well-known. The

standard reference material for 40Ar/ 39 Ar dating, for example, is the Fish Canyon sanidine, whose age is

constrained by matching stratigraphic succession in Morocco to oceanic sediments, which are then dated

27



Figure 3: An example of automated orbital tuning, based on the wavelet transformation,

from the Vostok ice core: Time series of TAC (V in the figure), δO2/ N2, and their

Integrated Summer Insolation (ISI) targets; calculated time delays. The mean time delay

is shown by the thick curve. All time series are filtered in the 15-46 ka band. Figure from

Lipenkov et al. [2011].
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into the high troposphere and even the stratosphere. This volcanic material includes glass,

minerals and aerosols, and is deposited onto the surface as tephras, which are visible in

many paleoclimate records including ice cores [Gao et al., 2006]. Near the source volcano,

the material embedded in the tuffs, sedimented igneous rocks made of deposits of volcanic

ash, associated with the tephra is often abundant enough to be dated radiometrically. The

use of tephras and the corresponding tuff layers to date paleoclimate records is known as

tephrostratigraphy. The major and trace element composition of the same tephra horizon

observed in two different paleoclimate records should be coherent, allowing us to relate

records to each other.

The sulfate aerosols produced during the eruption process are rapidly oxidized in the

atmosphere to form sulfuric acid, which is in turn deposited with precipitation on the

surface of ice sheets close enough to the volcano [Gao et al., 2006]. The characteristic

acidity of this sulfuric acid-rich snow is retained as the snow densifies into firn, and finally

into the ice which composes a core. These acid peaks can be detected in ECM and

Di-electric profiling (DEP) records, preserving the ice for additional use (in addition to

the possibility of directly measuring sulfate). Some acid peaks, in the age range of the

historical record or of massive, well-known eruptions, can be traced to known volcanic

events using the geochemical signature of the tephra [Narcisi et al., 2006]. In addition to

serving as dated horizons, tephras can also be used for the synchronization of ice cores: the

GICC05 dating scenario, for example, uses five tephras corresponding to volcanic events

around the North Atlantic to align Greenland ice cores to a single layer counted chronology

[Svensson et al., 2008].

The eruption of the Toba supervolcano in Sumatra around 74,000 years ago is perhaps

the most powerful known volcanic event of the Quaternary period, and deposited volcanic

material in both hemispheres. This eruption is dated within a small range of uncertainty

using astronomically calibrated 40Ar/39Ar [Storey et al., 2012]. Zielinski et al. [1996]

(1994) first proposed a tephra layer corresponding to the Toba eruption in the GISP2

Greenland ice core, though at the time it had been dated to 74 ka BP. Svensson et al.

[2013], taking the updated radiometric dating information into account, identify a series of

by orbital tuning. The age assigned to this layer is 28.201 ± 0.046 Ma [Kuiper et al., 2008]. The parallel

between the orbital methods used for these older geologic records and the methods used to date ice cores

is too apparent to leave unmentioned. Note, for example, that the error in the age assigned to the Fish

Canyon sanidine is on the same order of magnitude as the uncertainties when dating ice cores using δ18

O! However, since decay relationships are exponential, we can estimate the age of materials younger than

the reference material with much greater precision.
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nine peaks corresponding to this eruption in the layer-counted NGRIP core in Greenland

and the EDML core in Antarctica. The Toba eruption can thus serve as a valuable

interhemispheric reference point for dating the ice phase.

Narcisi et al. [2006] identify another major tephra layer in the EDC and Dome Fuji ice

cores, at 1265 and 1362 m depths, respectively, corresponding to an eruption of the Mt.

Berlin Volcano in West Antarctica. This eruption has since been dated to 92.1 ka, with a

± 0.9 ka range of uncertainty, making it a useful, precise constraint for chronologies built

on orbital tuning or ice flow modeling.

The rapid variations in Greenland climate during the last deglaciation known as

Dansgaard-Oeschger events can also be used to assign ages to ice core layers. These

events, though first identified, in the Greenland isotope record, are also well-recorded in

the global methane record (supporting the bipolar seesaw hypothesis). They are resolved

in other paleoclimate archives as well, notably in the speleothem isotopic record. The

δ18O record from the Chinese Hulu cave speleothem, which is dated using U-Th radiome-

try, clearly resolves the sequence of Dansgaard-Oeschger events from the last deglaciation.

These events can thus be assigned ages as well.

Recently, Buizert et al. [2015] synchronized the Antarctic WAIS divide core to the

Hulu cave chronology using the methane record, expanding on the observation that the

Hulu cave δ18O and WAIS divide methane series both recorded the Dansgaard-Oeschger

events to hypothesize that they recorded the same climatic signals in general. As we will

see in more detail in the next section, this introduces some uncertainty into the WAIS

divide gas chronology, but perhaps more importantly allows for an estimation of ∆depth

entirely independent of firn modeling, and hence free of the associated uncertainties.

Ice core strata can also be assigned absolute ages using Beryllium-10 (10Be), which

is among the class of isotopes created by interactions with cosmic radiation in the upper

atmosphere. These isotopes are collectively known as cosmogenic isotopes or cosmogenic

nuclides. The variations of Beryllium-10 in particular are affected almost exclusively by

nucleosynthesis in the upper atmosphere, which is modulated by variations in solar activity

and of the earth’s magnetic field. These variations are also present in cosmogenic isotopes

affected by other processes, such as carbon-14 (14C), whose atmospheric concentration is

additionally linked to the terrestrial carbon cycle. 10Be can be precisely measured in ice

cores, and contributes several sources of dating information. Cores can be synchronized

using 10Be; dated magnetic and solar anomalies can be identified as 10Be peaks; and major

variations in 10Be can even be linked to variations in 14C in tree ring archives.
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The Laschamp magnetic event, for example, is a marked, very brief reversal in the

Earth’s magnetic field dated radiometrically to 40,650 ± 950 yr BP [Singer et al., 2009].

During the reversal, the earth’s magnetic field weakened considerably, allowing for greater

interactions with cosmic radiation in the upper atmosphere. This event can thus be

identified as a 10Be peak in the Vostok ice core [Yiou et al., 1997]; in Greenland [Yiou

et al., 1997]; and in the EDC core [Raisbeck et al., 2006].

Raisbeck et al. [2006] identify a series of sharp 10Be peaks is found between 3,160 m

and 3,170m depth in the EDC core to correspond with the Matuyama-Brunhes magnetic

reversal, the latest total reversal of Earth’s magnetic field.3 This provides an important

age marker for the oldest part of the core, confirming that the oldest ice drilled at EDC

was indeed more than 800 ka old.

In general, improvements in dating external geochronologic markers will help better

constrain ice core chronologies as well. In turn, the precise dating of ice cores can also

verify the radiometrically calculated ages of the dated horizons identified within. When

dealing with geochronologic markers, of course, we must be cautious to not apply circular

reasoning: that is, we cannot use ice cores to constrain the ages of dated horizons which

are used to date the ice core in the first place!

Synchronization of Ice Cores

The information available to date individual ice cores, as we have seen in the previous

sections, can be sparse. This is most true for the low-accumulation cores taken in the

Antarctic interior, like the Vostok and EDC cores, which are also the oldest available

records. To alleviate some of the uncertainty in dating these records, they can be synchro-

nized with other ice cores, for which higher-resolution age information, like annual layer

3At the time of Raisbeck et al. [2006]’s study, the Matuyama-Brunhes reversal was placed at 776 ± 12

ka BP by radiometric dating, with an orbitally tuned estimate of 778 ± 2 ka BP. The latest estimate of the

Matuyama-Brunhes boundary age, from [Mark et al., 2017], uses 40Ar dating of volcanic tuffs, including

material from a much older eruption of the same Toba volcano whose 74 ka eruption has been identified

in both Greenland and Antarctic ice cores —in combination with oceanic sediment records where these

tuffs lie on either side of the reversal, to constrain this age to 783.4 ± 0.6 ka BP. This new, extremely

well-constrained age will undoubtedly be used in future chronologies for the EDC core, and for older ice

cores if and when they are drilled. The 10Be peaks identified by Raisbeck et al. [2006] should also be

reconsidered in future chronologies. The presence of a 10Be flux peak approximately 20 ka BP before

the Matuyama-Brunhes boundary in the EDC record is not coherent with measurements made on ocean

cores [Simon et al., 2016]. As such, an additional correction for environmental sources of 10 Be should be

considered for future chronologies.
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counts, are available. Cores can also be synchronized to other paleoclimate records, like

speleothems or deep ocean sediment cores, which can add valuable dating information as

well.

The records used to synchronize two cores should have a few key characteristics. These

records should be global in nature or at least reasonably common to the two sites. In prac-

tice, we look for records for which the influence of on-site conditions like local temperature

and precipitation or ice densification on the records should be as minimal as possible. In

the case of gas-phase synchronization, the gases should be globally well-mixed: that is,

not presenting large spatial variations in the atmosphere, which relies on them having an

atmospheric lifetime longer than the timescale of global transport. On the other hand, if

this atmospheric lifetime is too long, the absence of rapid variations makes synchronization

less precise.

In the ice phase, the records that best fit these characteristics are volcanic events,

which are marked in ice cores by peaks in acidity, and dust content. In the gas phase,

methane in particular fits the profile of a gas that is well-mixed but varies on short enough

timescales to allow for precise synchronization [Blunier et al., 2007].

Volcanic tephras which can be identified and traced to a volcanic eruption can be as-

signed absolute ages, as discussed in the previous section. Many tephras present in ice

cores, however, cannot be traced to a volcano, and thus cannot be dated absolutely. These

layers, if they can be identified in multiple cores, can be used to minimize disagreements

in age models. The peaks in ECM, DEP, or sulfate measurements that come from vol-

canic eruptions are often orders of magnitude stronger than background noise, and tephra

deposits usually only last for one or two years. This allows the cores to be synchronized

with relative certainty. Cores can similarly be synchronized using 10Be measurements,

even when the peaks themselves cannot be identified (see, for example, Raisbeck et al.

[2006]). On the other hand, a degree of uncertainty is introduced because of the possibility

of matching two unrelated tephra layers. This is complicated by the fact that the same

volcanic event in two ice cores does not necessarily produce time series of peaks of the

same magnitude, because of differences in transport and sedimentation processes.

Figure 4 shows an example of volcanic synchronization between the EDC and Vostok

ice cores. Tie points, shown as red diamonds, are selected at major peaks in the ECM, DEP

and sulfate records. The synchronization is confirmed by the match in Deuterium records

shown in the last panel. Note, though, that these peaks occur with varying frequency,

and that matching smaller peaks in these records would be considerably more difficult. In
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Figure 4: Figure 4. An example of volcanic synchronization, between the EDC and Vostok

Ice cores, during the period 65–80 kyr BP, centered on the likely age of the Toba eruptive

event. All records have been placed on the EDC3 age scale. (Top) Black: ECM record

from the VK-5G ice core. Blue: ECM record from the EDC99 ice core. Purple: DEP

record from the EDC99 ice core. Green: sulfate records from the EDC99 ice core. Red

diamonds: volcanic tie points. For simplicity, the y-axes are not plotted. (Bottom) Blue:

Deuterium record from the EDC ice core. Green: Deuterium record from the Vostok ice

core. For simplicity, the y-axes are not plotted. Figure from Parrenin et al. [2012].
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addition, the smaller peaks in acidity may represent non-volcanic, local sources.

Another limitation in volcanic synchronization comes from atmospheric circulation.

Aerosols are blocked by the circulation barrier at the equator, so that only the strongest

volcanic eruptions are present in cores from both hemispheres [Gao et al., 2006]. As such,

volcanic peak matching is most commonly used to synchronize cores from the same ice

sheet.

Volcanic synchronization has been applied to most of the major ice cores: important

examples include the synchronization of the Epica Dronning Maud Land (EDML) core

[Severi et al., 2007] and the Talos Dome ice core (TALDICE) to the EDC3 timescale

[Severi et al., 2012]; the synchronization of the EDC and Vostok cores [Parrenin et al.,

2012]; and the synchronization of the Dome Fuji and Dome C cores [Fujita et al., 2015].

Volcanic synchronization will likely be the principal method used to synchronize Antarctic

ice cores with the layer-counted portion of the WD2014 time scale.

Just as volcanic synchronization can be used to align ice core age scales in the solid

phase, CH4 synchronization can be used to align air age scales. The lifetime of methane in

the atmosphere is on the order of ten years. Methane concentrations can thus accurately

track changes in terrestrial sources or sinks, which themselves respond to rapid climate

change, without presenting major variations related to pole-to-pole atmospheric transport,

whose timescale is on the order of a year [Blunier et al., 2007]. A gradient between methane

concentrations exists between northern hemisphere and southern hemisphere ice cores, as

a result of the differences in sources and sinks between the two hemispheres. This gradient

can vary between climate intervals, and is largest during warm periods due to stronger

northern hemisphere sources [Dällenbach et al., 2000]. However, this gradient is small

when compared to the concentrations themselves. The application by Blunier et al. [2007]

of CH4 synchronization of the EDML record to a composite Greenland record on the

GICC05 timescale is a good example of the utility of this tool for interhemispheric core

synchronization.

A few sources of uncertainty exist for methane synchronization (and synchronization

in general in the gas phase). The first source comes from the method itself: outside of very

major changes, the match between the two series can be ambiguous. The second source is

due to the process by which air is trapped in the ice core. Because air continues to diffuse

into pores during the close-off process, the age of the air at a given depth in an ice core

is not unique, but rather a distribution of ages. Since the close-off processes depend on

local snow characteristics, these air age distributions are different between cores [Köhler,
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2010]. This means that matching gas concentrations is limited in terms of precision to the

time-scale of the close-off process, which can be on the order of decades to centuries.

Methane synchronization is also an important component of the WD2014 time scale

[Buizert et al., 2015]. WD2014, however, is not synchronized to methane from other ice

cores, making the example a variation of the classic method of Blunier et al. [2007]. For the

section of the core older than 31ka, where annual layers become difficult to count, the air

in the WAIS divide core is dated by synchronizing methane measurements to δ18Oice mea-

surements from the NGRIP core in Greenland, [NGRIP Community Members, 2004] which

is on the layer-counted GICC05 timescale, and additionally to the Hulu Cave speleothem

δ18O record (Wang et al. [2001] among many others). The synchronization of CH4 in the

WAIS divide core to both NGRIP and Hulu Cave δ18O poses advantages as well in terms

of minimizing dating uncertainty. First, NGRIP δ18Oice is dated directly by layer count-

ing, without adding the uncertainty involved in estimating ∆age for the NGRIP methane

record. Second, including the Hulu Cave record, which is dated radiometrically (and thus

is dated precisely in terms of absolute age), helps to compensate for the cumulative error

inherent in layer counting.

However, this synchronization makes the assumption that the rapid changes in δ18O

recorded in the Hulu Cave speleothem and in the NGRIP core are associated with the

same climatic events as the rapid changes in methane recorded by the WAIS divide

core. This introduces some uncertainty due to the different sources of information in the

records—indeed, δ18O can record regional-scale variations. It should be emphasized that

speleothem isotopic records themselves often differ, and synchronization to two different

speleothems may give different results (e.g. Fleitmann et al. [2009]).

δ18Oatm has been used to synchronize records in the gas phase as well, particularly

in earlier studies [Blunier, 2001]. Its lifetime in the atmosphere is considerably longer

than that of methane, often making quick transitions more difficult to identify and match.

However, it shows less of an atmospheric gradient (i.e. its interhemispheric mixing time

is much shorter), and can be useful to clarify synchronization when the match between

methane time series is ambiguous [Capron et al., 2010]. This is often the case when

millenial-scale variability is not visible, as is the case for full glacial periods like Marine

Isotopic Stage (MIS) 2 and late MIS 6.

Extier et al. [2018] develop an improved approach to synchronize ice cores with speleo-

thems by matching δ18Oatm in ice cores to speleothem calcite δ18O. These two isotopic

records present shared orbital-scale and millenial-scale features, which may be related
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to the position of the Intertropical Convergence Zone (ICTZ). Speleothems can often be

absolutely dated, and the age uncertainty of the match between speleothem calcite δ18O

and δ18Oatm is assessed to be much lower than that between δ18Oatm and the insolation

targets used for orbital tuning.

A few research challenges could make significant improvements to the synchronization

of ice cores. One of these is the mathematical automation the synchronization of records,

which is treated in this thesis. In the method we develop, we focus on providing an

objective assessment of the methodological uncertainty of the match. In the gas phase,

this uncertainty can be difficult to accurately quantify because of the age uncertainty

related with the air lock-in process, and modeling studies focused on this process will

certainly improve the quantification of the uncertainty involved in synchronizing cores in

the gas phase.

Bayesian dating models: a federative approach

To most comprehensively date an ice core, the dating methods described in this chapter

should be used in conjunction with each other. For the earliest ice core chronologies,

this was often done implicitly: a dated horizon was used to check the result of an ice

flow modeling simulation, for example. Afterwards, if the simulation did not match the

dated layer, the parameters of the ice flow model would be adjusted until an agreement

was obtained. This result could then be checked against an orbital tuning chronology,

or links with another core, and so on. However, as we consider more cores and dating

methods, the manual adjustment and verification of chronologies becomes more and more

time-consuming. This motivates a formalized, mathematical approach.

Including multiple sources of information in an ice core chronology falls under the

mathematical domain of inverse problems. In the first section of this chapter, we used a

few equations to describe the evolution of an ice core over time. We can call this set of

equations the forward model. Starting with some inputs, we can use the model to arrive

at a state in the future: that is, we run the model in the forward direction in time. In

practice, starting from accumulation, lock-in depth, and the thinning function, we can

follow ice horizons as they are embedded deeper in the core.

Though we have some prior knowledge of the accumulation, lock-in depth, and thinning

function at a given site, we certainly do not know them exactly. We also know the ages of

the ice and gas at certain depths. The age of the ice might be identified by layer counting,

or at a peak in acidity corresponding to a known volcanic eruption. The age of an interval
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in the gas phase might be well-known during a Dansgaard-Oeschger event. We may know

that two layers in two ice cores are synchronous, without knowing their absolute age. But

these pieces of information, which tell us where a layer of ice or air with a given age has

arrived at depth, are not inputs to the forward model. They are, in fact, better described

by the outputs!

To improve our chronology, we want to effectively run our model in the inverse direction

in time: starting from the dated layers in the ice core, we want to arrive at the most

probable scenarios of accumulation, lock-in depth, and the thinning function, in order to

construct a chronology for the full core. Unlike the forward model, the inverse problem by

nature does not have a unique solution. Thus, we work with probabilities. Rather than

a single, absolute chronology, we would like to have an idea of the probability, given the

available information, of any given chronology.

Bayesian inference allows us to infer the probability of a dating scenario from the

information that we have available: the chronological information for the ice cores we

would like to date, and our prior knowledge of the forward model parameters. We provide

an more mathematical description of the Bayesian formulation of inverse problems in the

specific context of ice core dating in Chapter 2. For a more in-depth treatment of inverse

modeling in general, we refer the reader to Tarantola [2005].

Let us group all the forward model parameters—accumulation, lock-in depth, and the

thinning function, for example—together, as a forward model vector m in the model space

M . We have some prior knowledge about these parameters. Let us say, for example, that

we have an idea of accumulation throughout the core from the δD isotopic record, that we

have estimated lock-in depth using Nitrogen isotopes, and that model simulations have

been run that give us an idea of the thinning function at the site. We can formally describe

this prior knowledge as a probability distribution ρM , which specifies how likely a given

model vector is based on our prior ideas of the individual parameters.

Let us also group all the chronological information together as an observation vector

d. Then, we can also identify a probability distribution ρD, which tells us how likely a

given model vector is based on the chronological information.

Using Bayes’ theorem, we can calculate the posterior probability distribution of the

model vector, σM , as follows [Tarantola, 2005]:

σM = kρD(m) · ρM (M) (7)

σM, in practice, gives us the probability of any model vector, and the associated ice
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core chronology, given all the prior and observational information that we have.

This framework allows us to set up the inverse problem. First, we must define the

variables included in the model vector and the associated prior distributions. Second, we

must specify the observational data used to define the probability distribution of the data.

Third, we must develop a mathematical method to solve the inverse problem. In the last

decade, each three of these aspects have seen significant development with respect to the

inverse problem of dating ice cores.

The first probabilistic ice core dating experiments using a formal inverse modeling

framework were made by Parrenin et al. [2004] for the Vostok core, Parrenin et al. [2007b]

and Parrenin et al. [2007a] for the EDC and Dome Fuji cores. These experiments did not

use the three parameters we describe as the base of a chronology above, but rather inverted

the control parameters of a flow model, an accumulation model, and a firn densification

model. This approach greatly reduces the number of individual number of parameters to

be inverted, as we do not have to find the values of accumulation or thinning at each point

in the core for the resolution we want to invert, but rather a few constants from which we

solve for these values.

In the setup of an inverse problem, the “goodness of fit” of a proposed set of model

parameters to the available data and prior parameter information must be quantified. This

quantification is referred to as a cost function. The cost function is often formulated as

the sum of residuals, that is, of the errors in age, related to the data and the prior when a

certain set of model parameters is proposed. It should additionally take the autocorrelation

of these residuals, and the uncertainty associated with modeling and measurements, into

account. Essentially, the cost function measures how far a model is from the information

available.

In the studies above, the Metropolis-Hastings algorithm, a stochastic search requiring

thousands of proposed scenarios for each parameter to be evaluated, was used to minimize

the cost function. A benefit of stochastic searches is that they are global in nature:

that is, any set of parameters can potentially be proposed. Additionally, the Metropolis-

Hastings algorithm characterizes the posterior probability distribution of the parameters

evaluated, making it a Bayesian inversion method. If the parameter set is small, the

Metropolis-Hastings algorithm can be applied without requiring a prohibitive amount of

computational resources.

However, reducing the parameters of an ice core dating scenario to a few control

parameters related to accumulation, flow, and firn densification has a few drawbacks. The
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flow, accumulation, and firn densification models make assumptions that are not perfect.

The uncertainties contributed to the dating scenario by these assumptions can be hard to

quantify.

Lemieux-Dudon et al. [2010] developed an approach to bypass this uncertainty in the

Datice ice core dating model. Rather than calculating the accumulation, thinning function

and lock-in depth, these variables, which are the base of any chronology (as discussed in

the first section) could be inverted directly. Information gained from modeling each of the

variables could still be used: rather placing these models within the inversion, they were

applied to develop the prior probability distribution of each variable.

The drawback of this method is that the number of parameters to be inverted grows

substantially, depending on the resolution at which we date the ice core. As such, a

Metropolis-Hastings stochastic search was no longer computationally feasible for Lemieux-

Dudon et al. [2010]. Rather, the authors proposed an analytical gradient of the cost

function which defines the posterior probability distribution, greatly reducing computation

time. However, the computation of posterior uncertainty required some assumptions to

be made about the shape of the probability distribution, which are not necessary when

using a stochastic search.

The Datice model was used by Veres et al. [2013] and Bazin et al. [2013] to create the

Antarctic Ice Core Chronology 2012 (AICC2012), one of the most current chronologies for

deep Antarctic ice cores. The AICC2012 experiment was a major milestone in Bayesian

dating. In addition, it is a federative dating experiment: that is, it dates and uses infor-

mation from and links between four Antarctic ice cores: European Project for Ice Coring

in Antarctica (EPICA) Dome C (EDC), Vostok, Talos Dome (TALDICE), and EPICA

Dronning Maud Land (EDML), and the North Greenland Ice Core Project (NGRIP) core

from Greenland. AICC2012 synthesized several, if not all, of the sources of dating infor-

mation presented in this chapter. At the time of writing, AICC2012 is still a reference

chronology for the four Antarctic cores involved.

A technical advance in the field of Bayesian and federative dating was made by Parrenin

et al. [2015], who developed the IceChrono model. Based on similar principles as Datice,

IceChrono is built to be more concise (reducing the number of code lines by a factor

of ten), and is coded to be modular: that is, it is flexible in terms of the optimization

method used to solve the inverse problem, rather than being constrained to gradient-based

optimization. This opens up several possibilities in terms of considering new information.

With federative dating models like IceChrono, we can provide not only an optimal

39



Figure 5: (a) Water stable isotope records and (b) Methane records of the cores dated in

the AICC2012 dating experiment on the AICC2012 age scale. Stratigraphic links and age

marker positions are displayed under each core. From Bazin et al. (2013).
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Figure 6: The sources of chronological information included in the IceChrono 1.0 dating

model [Parrenin et al., 2015].

chronology for a set of ice cores, but a formalized statistical estimate of the uncertainty

associated with that chronology as well. Federative models make improvements both in

reproducibility and in work-hours over manual integrative dating.

In this thesis, we tackle several challenges in federative dating. We attempt to improve

uncertainty estimates by using stochastic optimization methods, like Metropolis-Hastings

simulations, to relax the assumption of a Gaussian posterior distribution. Further advances

will follow developments in applied mathematics and computation, which will reduce the

computational intensity of stochastic optimization.

Perspectives and Motivation

The problem of dating ice cores is far from being fully solved. Multiple useful sources of

information have been uncovered, which bear clues about the age of the ice and air in

a core. However, many uncertainties still remain, and identifying and accurately repre-

senting the sources of these uncertainties is perhaps the most salient challenge in ice core

dating.

As we strive to accurately represent and minimize uncertainty, dating ice cores be-

comes an even more distinctly interdisciplinary problem. Improving firn modeling, for

example, and better understanding the mechanisms that link earth’s orbital parameters

to their tracers in ice cores, are problems strongly rooted in physics. The state of the

art in annual layer counting has been reached thanks to both gas and isotope chemistry

and probabilistic mathematics. The identification of dated horizons like the Matuyama-

Brunhes boundary will be made more accurate by advances in geochronology; indeed, the
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development of absolute dating methods for ice cores themselves is underway (e.g. Buizert

et al. [2014]). The automation of manually-performed dating methods like layer counting,

synchronization and orbital tuning will allow us to quantify the uncertainties inherent to

the dating methods themselves; and indeed will allow these methods to be incorporated

formally into the federative dating inverse problem.

This last point is addressed in this thesis. Over three years of research, I have worked

with a team of three advisors and numerous colleagues to develop an automated method for

synchronization, potentially applicable to layer counting and orbital tuning as well, that

is incorporated in the federative dating inverse problem. This method is incorporated into

a new version of IceChrono, now called PaleoChrono, as it is capable of treating records

other than ice cores as well. The method, its application to methane synchronization,

volcanic synchronization and orbital tuning are all treated in the following chapters. I

present, as well, an example of a study that uses Bayesian principles to accurately represent

chronological uncertainty about the timings of changes in CO2 and Antarctic Temperature

during the last deglaciation.

Of course, some uncertainty in dating will always remain. We cannot observe the

passage of time directly in an ice core, but must rely on the often imperfect tracers it

leaves behind. But as we learn to use these tracers more and more effectively, we approach

a more temporally accurate understanding of what is perhaps our best record of climatic

mechanisms in the past.
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P. Köhler. Rapid changes in ice core gas records – part 1: On the accuracy of methane

synchronisation of ice cores. Climate of the Past Discussions, 6(4):1453–1471, aug 2010.

doi: 10.5194/cpd-6-1453-2010.

Amaelle Landais, Jean-Marc Barnola, Kenji Kawamura, Nicolas Caillon, M Delmotte,

T Van Ommen, G Dreyfus, Jean Jouzel, Valérie Masson-Delmotte, B Minster, et al.

Firn-air δ15N in modern polar sites and glacial–interglacial ice: a model-data mismatch

during glacial periods in Antarctica? Quaternary science reviews, 25(1-2):49–62, 2006.

46



Jacques Laskar, Philippe Robutel, Frédéric Joutel, Mickael Gastineau, ACM Correia, and

Benjamin Levrard. A long-term numerical solution for the insolation quantities of the

earth. Astronomy & Astrophysics, 428(1):261–285, 2004.

Bénédicte Lemieux-Dudon, Eric Blayo, Jean-Robert Petit, Claire Waelbroeck, Anders

Svensson, Catherine Ritz, Jean-Marc Barnola, Bianca Maria Narcisi, and Frédéric Par-

renin. Consistent dating for Antarctic and Greenland ice cores. Quaternary Science

Reviews, 29(1-2):8–20, 2010.

Quentin Libois, Ghislain Picard, Laurent Arnaud, Samuel Morin, and Eric Brun. Mod-

eling the impact of snow drift on the decameter-scale variability of snow properties on

the Antarctic plateau. Journal of Geophysical Research: Atmospheres, 119(20):11–662,

2014.

V Ya Lipenkov, D Raynaud, MF Loutre, and P Duval. On the potential of coupling air

content and O2/N2 from trapped air for establishing an ice core chronology tuned on

local insolation. Quaternary Science Reviews, 30(23-24):3280–3289, 2011.

Darren F Mark, Paul R Renne, Ross C Dymock, Victoria C Smith, Justin I Simon,

Leah E Morgan, Richard A Staff, Ben S Ellis, and Nicholas JG Pearce. High-precision

40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-

Brunhes boundary. Quaternary Geochronology, 39:1–23, 2017.

Kenneth C McGwire, Kendrick C Taylor, John R Banta, and Joseph R McConnell. Iden-

tifying annual peaks in dielectric profiles with a selection curve. Journal of Glaciology,

57(204):763–769, 2011.

DA Meese, AJ Gow, RB Alley, GA Zielinski, PM Grootes, M Ram, KC Taylor, Paul An-

drew Mayewski, and JF Bolzan. The Greenland ice sheet project 2 depth-age scale:

methods and results. Journal of Geophysical Research: Oceans, 102(C12):26411–26423,

1997.

Milutin Milankovitch. Kanon der Erdebestrahlung und seine Anwendung auf das Eiszeit-

enproblem. Königlich Serbische Akademie, 1941.

Biancamaria Narcisi, Jean Robert Petit, and Massimo Tiepolo. A volcanic marker (92

ka) for dating deep East Antarctic ice cores. Quaternary Science Reviews, 25(21-22):

2682–2687, 2006.

47



NGRIP Community Members. High-resolution record of northern hemisphere climate

extending into the last interglacial period. Nature, 431(7005):147–151, sep 2004. doi:

10.1038/nature02805.

S.W. Nielsen. Registrering af visuel stratigrafi i ngrip iskernen: Konstruktion, dataopsam-

ling og analyse. Technical report, Master’s Thesis, University of Copenhagen, 2005.

F Parrenin, G Dreyfus, G Durand, S Fujita, O Gagliardini, F Gillet, Jean Jouzel, K Kawa-

mura, N Lhomme, Valérie Masson-Delmotte, et al. Ice flow modelling at EPICA Dome

C and Dome Fuji, East Antarctica. Climate of the Past Discussions, 3(1):19–61, 2007a.

F. Parrenin, J.-R. Petit, V. Masson-Delmotte, E. Wolff, I. Basile-Doelsch, J. Jouzel,

V. Lipenkov, S. O. Rasmussen, J. Schwander, M. Severi, R. Udisti, D. Veres, and

B. M. Vinther. Volcanic synchronisation between the EPICA dome c and Vostok ice

cores (Antarctica) 0-145 kyr BP. Climate of the Past, 8(3):1031–1045, jun 2012. doi:

10.5194/cp-8-1031-2012.

Frédéric Parrenin. La datation des archives glaciaires. In Jean-Claude Duplessy and Gilles
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An introduction to stochastic Bayesian methods: Markov

Chain Monte Carlo and dating paleoclimate archives

Institut des Géosciences de l’Environnement

Jai Chowdhry Beeman

Dating a paleoclimate archive is the first, and arguably most essential step in under-

standing the information that it contains. Paleoclimate chronologies are never exact, and

the chronological information for a given record is always limited and uncertain to some

degree. Constructing a chronology for a paleoclimate record can be thought of as an exer-

cise in assessing our state of knowledge about the timing of the record–an ideal chronology

should accurately convey what we know about the timing of given record, and honestly

assess how certain we are about this knowledge.

As briefly mentioned in the introduction, Bayes’ theorem provides a mathematical

framework precisely designed for assessing states of knowledge [Tarantola, 2005]. This

chapter, designed to provide readers with some background information about inverse

methods, presents Bayes’ theorem and a small selection of methods for solving Bayesian

inverse problems. The description of methods, far from complete, is intended to provide

the reader with greater depth with respect to the algorithms we use to treat the inverse

problems developed in later chapters. For a pedagogic, in-depth text about inverse prob-

lems, we refer the reader to Tarantola [2005], which inspires much of the content of this

chapter. Finally, we introduce the IceChrono/PaleoChrono [Parrenin et al., 2015] dating

model, which is central to the bulk of this thesis.

The inverse problem and Bayes’ theorem

Inverse problems can be thought of as a framework for understanding a physical system

that can be described numerically. In the broadest sense, the physical system we study

when dating a paleoclimate archive is the Earth. For example, an ice core’s physical

properties are determined most importantly by the climate system and the carbon cycle;

the dynamics and mass balance of ice sheets; the properties and position of the underlying
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crust; and volcanic activity. We can use ice cores to better understand any of these

attributes of the Earth system. In order to do so, we measure the physical and chemical

properties of the core, obtaining observations that we hope to link to periods in the Earth’s

past.

With this information, we can advance and test our state of knowledge about the Earth

system in the past. One way to do so is to develop numerical models. Tarantola [2005]

separates modeling into three steps:

• Parameterization: Defining a set of model parameters whose values describe the

physical behavior of the system.

• Forward modeling: Proposing a set of physical laws allowing us to estimate the

values of observational parameters from the model parameters.

• Inverse modeling: Using real observations to estimate the values of the model

parameters, which are not observable.

In practice, these steps often occur simultaneously. It is worth it to bear in mind that

inverse modeling is often done without a formalized mathematical framework: that is,

appropriate values of the model parameters can often be efficiently deduced with some

knowledge of the behavior of the forward model at hand, the physically possible values for

the parameters, and some observations.

On the other hand, the exercise of determining model parameters quickly becomes

more difficult as the dimension (i.e. the number of parameters) of the model becomes

larger. And often, we require greater accuracy in the calculation of the model parameter

values: ideally, we would like to obtain a distribution of all sets of acceptable values and

their respective probabilities, rather than just one set of acceptable values. Bayes’ theorem

permits calculating such a probability distribution.

The state of knowledge with respect to a system under study consists of two parts:

the observations (the measurements from the paleoclimate record, in our example), and

the model of how these records are physically expressed (in our example, this would be

a sedimentation or growth model for the record). In most cases, we cannot make exact

measurements of the observations, but rather express them with some uncertainty. This

uncertainty is best expressed as a probability distribution of the observed parameters,

which we call ρdata. Similarly, we know that the model parameters should fall within

a physically (and sometimes computationally) acceptable range. We can thus use this

range to define a probability distribution that expresses what we know about the model
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parameters; which in Bayesian statistics is referred to as a prior or model prior distribution

(here ρmodel or ρprior).

If our model can be expressed as a relationship G(X), where X is a set of model

parameters, we can then write Bayes’ theorem as:

πmodel|data = k
ρmodel(X) ρdata(G(X))

µ(X)
(1)

The term on the left side of equation 1 denotes the probability of a model given the

observations πmodel|data. This term, referred to in Bayesian terminology as the posterior

probability, is equal to the conjunction of two additional probability densities. The first

is the prior probability of the set of model parameters X, ρmodel(X). The second is the

probability of the observations given the model G(X), ρdata(G(X)).1 k is a normalizing

constant, which in theory ensures that the values of πmodel|data integrate to 1. Finally, µ is

a probability density expressing the homogeneous state of information. In this thesis, we

generally take the homogeneous state of information to be a uniform distribution across

the model-data space (though this is not necessarily always the case), and so the expression

simplifies to:

πmodel|data = k ρmodel(X) ρdata(G(X)) (3)

It is difficult to know ρdata exactly, since we would need to integrate over all possible

model parameter sets to correctly scale the distribution. However, we can define a likeli-

hood function L for the data: that is, a measure how good a model is at predicting the

observed data. This likelihood function is by definition proportional to ρdata. Reassigning

the scaling to the constant k, we can rewrite equation 3 as:

πmodel|data = k ρmodel(X) Ldata(G(X)) (4)

In the particular case of the IceChrono/PaleoChrono model, we assume the model

prior and probability distribution of the observations to be Gaussian2 in shape. Thus, we

1Note the parallel to a much more common way to write Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(2)

where P denotes a probability density, and B and A are probabilistic events.
2What is Gaussian? By Gaussian, we refer to probabilities that follow a normal distribution, or

f(x|µ, σ2) =
1√

2πσ2
exp− (x− µ)2

2σ2
(5)

This distribution for variable or variable vector x is centered on its mean µ, and its width is defined by its

standard deviation σ (or equivalently its variance σ2). Because of the abundance of natural observations
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can define a joint likelihood function for the prior and observations, and simply write:

πmodel|data = k L(G(X)) (6)

It is worth bearing in mind that the simplifications in Equations 4 and 6 are dependent

on the characteristics of the problem at hand, and are not general expressions of Bayes’

theorem.

IceChrono 1 [Parrenin et al., 2015]

Up until now, we have discussed Bayes’ theorem mostly theoretically, with the prior and

posterior probability distributions, for example, remaining rather abstract concepts. Now

that these concepts have been defined, we can investigate what they look like in practice,

in the development of a real inverse problem.

Several chapters of this thesis are based on the development of the PaleoChrono dating

model. In its first iteration, PaleoChrono was known as IceChrono 1 [Parrenin et al., 2015],

as it was first developed for use on ice cores, and subsequently adapted to be generally

applicable to paleoclimate archives.3 Here, we provide a brief description of the original

IceChrono model. The adaptations made for paleoclimate archives other than ice cores

are rather simple : for example, we treat accumulation or sedimentation, but not thinning

or air lock-in depth, which are unique to the ice core archive (though lock-in depth could

be applied to the magnetic properties of sediment cores).

IceChrono treats the forward model of ice core dating much as it is discussed in the

introduction. Three variables are used in the forward model–the accumulation or sedi-

mentation rate α, the air lock-in depth LID and the thinning function τ . The composite

vector of these three variables, X, corresponds to the X in the previous sections that

denoted a model parameter vector.

Accumulation, or a, is expressed in m·yr−1 ice equivalent; Lock-in Depth (LID), or

LID, is expressed in m; and the ice thinning function, or τ , is unitless.

These three glaciological variables allow us to build an ice core chronology for each

following the normal distribution, describing a random variable by its mean and standard deviation has be-

come basic scientific practice. However, not all observable phenomena follow normal or even approximately

normal distributions.
3Two additional Bayesian dating models, though not used in this thesis, are highly relevant to the topics

discussed here. These are the Straticounter annual layer counting model Winstrup et al. [2012] developed

for ice cores, and the HMM-Match synchronization model Lin et al. [2014], developed for oceanic sediment

cores.
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core k at depth z. First, we calculate the ice age χk, by integrating the total accumulated

and thinned ice layers above depth z:

χk(zk) =

∫ zk

0

Dk(z
′
k)

ak(z
′
k)τk(z

′
k)
dz′k (7)

where Dk is the relative density with respect to pure ice at a given depth in the core.

Then, we calculate the air age:

Ψk(zk) = χk(zk −∆d(zk)), (8)

where ∆d(zk), or ∆depth, is the depth difference between the air trapped at a given

depth and the ice with the same age, which is located shallower in the core.

∆d(zk) is derived from Lock-in Depth LID using the following relationships:

∫ zk

zk−∆dk(zk)

D(z′k)
τ(z′k)

≈
∫ LIDk(zk)Dfirn

k (zk)

0

1

τk(z
′ie
k )

dz′iek , (9)

ziek =

∫ zk

0
Dk(z

′
k)dz

′
k (10)

where Dfirn
k (zk) is the firn density when the ice at depth zk was at lock-in depth, and

ziek is the ice equivalent depth, i.e. the depth if the firn density was adjusted to the density

of ice.

These integrals can be imagined in the following way: after lock-in, the firn above the

air trapped at Lock-In Depth densifies into ice. The new depth difference between ice and

air of equivalent age is the Lock-In Depth in Ice Equivalent, or LIDIE. The ice matrix is

then thinned (described by the thinning function), to arrive at ∆depth. ∆depth can then

be used, along with the ice age scale, to find the ice depth with equivalent age to a given

air depth. The age difference between air and the ice at the same depth is referred to as

∆age.

The set of three equations described above corresponds to the model G in the Bayesian

formulation. It is intuitive that when we proceed to approximate the posterior, at each

step we will propose values for X, and then evaluate G(X)–what we will often call the

proposed chronology.

In the IceChrono 1 model, Gaussian (or normal) prior probability density functions

are defined for each of the three glaciological variables, corresponding to ρmodel. The first

component of each of these prior probability density functions is a mean scenario, calcu-

lated according to the best available glaciological knowledge at the site. Accumulation,
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for example, can be estimated from isotopic proxies for a given depth. Standard devia-

tions are given for each depth, and a covariance matrix is defined, completing the prior

distributions.

Because the original IceChrono model was intended to be solved via a gradient-based

least-squares optimization, the prior variables are transformed from Jeffreys variables to

Cartesian variables (centered on zero) by treating any changes with a correction function.

This is done by working with logarithmic correction functions. For accumulation, the

correction function is expressed as :

cak = ln(ak/a
b
k) (11)

Where ak is the proposed accumulation scenario, and abk is the mean scenario of the

prior. The correction functions for LID and τ are expressed, similarly, as

cLIDk = ln(LIDk/LID
b
k) (12)

and

cτk = ln(τk/τ
b
k). (13)

IceChrono 1 allows for eight types of observations, which complement the prior prob-

ability distributions to constrain chronologies. These are :

• Ice dated horizons : for example, points dated using matches to external archives,

magnetic reversals, or known volcanic events.

• Ice dated intervals : for example, intervals for which layers are counted, or climatic

events for which the duration is explicitly known.

• Ice-ice stratigraphic links : Tie points obtained from synchronization in the ice

matrix (volcanic synchronization, for example)

• Air dated horizons : points dated, again, using matches to external archives (i.e.

orbital tuning)

• Air dated intervals : events in the air matrix for which the duration is explicitly

known.

• Air-air stratigraphic links : Tie points obtained from synchronization in the air

matrix (CH4 synchronization, for example)
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• Air-ice / Ice-air stratigraphic links: these might be obtained by synchronizing

rapid changes in climate proxies, for example.

• ∆depth observations: Obtained, for example, using δ15N

In IceChrono 1, it is assumed that each of these discrete observations is independent,

and that the uncertainties with respect to each observation are Gaussian. We can then

write residual terms with respect to each of the glaciological parameters and each class

of observations. These residuals, eventually, construct the probability of the observations

ρdata. In order to do so, the sum of the observation residual terms for core k, Jk, is written

as:

Jk = RTP−1R (14)

R =
mi − oi
σi

(15)

Where mi are the model approximations of the observations, oi are the observations,

and σi are their standard deviations. Note that the residual vector R is transformed by a

correlation matrix P . Because the variables and observations are normalized in IceChrono

1, correlation matrices are generally used instead of covariance matrices.

The summed residuals for each of the prior terms are written as:

Jak = (Rak)
T (P ak )−1(Rak)

T (16)

JLIDk = (RLIDk )T (PLIDk )−1(RLIDk )T (17)

Jτk = (Rτk)T (P τk )−1(Rτk)T (18)

where Rτk, RLIDk , and Rak are the residual vectors, and P ak , PLIDk and P τk are the

correlation matrices of the three prior variables. The residual vectors are written as:

RLIDk =
cLIDk

σLIDk

(19)

Rak =
cak
σak

(20)

Rτk =
cτk
στk

(21)
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where σLIDk , σak and στk are the standard deviations assigned to each of the glaciological

variables.

Then, we can write a cost function J

J =
∑

Jk +
∑

Jk,m (22)

which is composed of each of the summed residual terms Jk related to each individual

core k included in a dating scenario:

Jk = Jak + JLIDk + Jτk + J ihk + Jahk + J iik + Jaik + J∆d
k (23)

where Jak , JLIDk , and Jτk are the residual terms related to each of the (prior) glaciological

variables; and J ihk , Jahk , J iik , Jaik and J∆d
k are the residual terms related to ice horizons,

air horizons, ice intervals with known duration, air intervals with known duration, and

∆depth observations, respectively. Similarly, for each pair of cores k and m, a summed

residual term Jk,m is defined:

Jk,m = J iik,m + Jaak,m + J iak,m + Jaik,m (24)

where J iik,m, Jaak,m, J iak,m, and Jaik,m are ice-ice, air-air, ice-air and air-ice stratigraphic

links, respectively.

Each of the individual PDF’s used to define the residual terms is expressed as an

independent multivariate gaussian, meaning that we can express the posterior likelihood

can finally be written as

L = exp(−1

2
J) (25)

In IceChrono 1, the structure of the model is such that the shape of the posterior

probability distribution defined by this likelihood function is also near-Gaussian. Thus,

the Levenberg-Marquardt algorithm [Levenberg, 1944, Marquardt, 1963] can be used to

converge toward the minimum of the cost function. This is done using the Jacobian

of the residual vector. The model Jacobian is also used to estimate the approximate

error covariance matrix of the model, thus providing a Gaussian estimate of the posterior

probability distribution as well.

This last attribute changes with the development of IceChrono/PaleoChrono discussed

in this thesis. When a continuous synchronization is introduced, the associated cost func-

tion term can have multiple local minima, which are often surrounded by high cost function
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values thus making the posterior probability density multimodal and jagged–i.e. highly

non-Gaussian. Thus, the optimization framework of IceChrono/PaleoChrono is revised

for the continuous synchronization applications.

Solving inverse problems: evaluating the posterior distribu-

tion

Once the inverse problem is set up (in the case of IceChrono, once the likelihood function is

defined) we can proceed to the solution step: evaluating the posterior distribution. Several

methods exist to evaluate posterior distributions. No method is a black box – instead, the

choice of the method will depend on the shape, size and characteristics of the distribution

at hand. In some special cases, the posterior distribution can be calculated analytically

(an example in the field of dating ice cores is the Datice model [Lemieux-Dudon et al.,

2010]). When the posterior distribution is less well-defined, but we can be sure that it

contains a well-defined probability maximum, and that probability generally decreases

as we move away from the maximum, gradient-based methods can be applied. In these

methods, the gradient of the posterior probability density is usually estimated for a small

number of sets of parameters different by a small amount. Then, a step is made in the

direction of the largest gradient, and the gradient is recalculated. This continues until

the gradient is estimated to be close enough to zero that we can be confident that we

have found a probability maximum. An example of a gradient-based algorithm applied to

dating paleoclimate archives is the non-linear least squares algorithm used in the original

IceChrono model [Parrenin et al., 2015].

It is not always possible to generally characterize posterior probability distributions

to the degree necessary to apply an analytical or gradient-based solution method. Any of

the three components of Bayes’ theorem: the model prior, the probability distributions of

the observations, or even the model itself, can introduce complexity into the posterior, in

the form of multiple modes of high probability, for example.

Gradient-based methods often have difficulty exploring multiple modes, because the

gradient of the probability density is zero at a local maximum. Similarly, analytical solu-

tions often require assumptions about the shape of the posterior probability distribution

that are not generally applicable. Stochastic methods, on the other hand, are capable in

theory of better exploring probability densities without necessarily relying on assumptions

about the shape of the density.
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Figure 1: A schematic illustrating the oversimplification of a multimodal probability den-

sity using a Gaussian (normal) approximation. The true probability density function

has two modes of high probability, each relatively narrow. The Gaussian approximation

places the mean in between the two modes of the true probability density, in an anti-

mode of the true probability distribution, and the scale parameter, or standard deviation,

overestimates the width of the probability distribution because the two modes of the true

distribution are separate.

Monte Carlo and Metropolis-Hastings Algorithms

The class of stochastic algorithms known as Monte Carlo methods [Metropolis and Ulam,

1949] is useful for solving Bayesian inverse problems, particularly when the posterior dis-

tribution associated with the inverse problem is complex and difficult to approximate using

analytical or gradient-based methods.

At the most basic level, Monte Carlo methods use stochastic generation to approximate

some numerical quantity. A commonly used example (see Tarantola [2005], among many

others) is that of estimating the area of a complex shape. Suppose that we have drawn a

square, and can calculate its surface area by measuring one of the sides. Inside this square

lies another shape, with irregular boundaries, whose surface area is difficult to calculate

analytically. We would like to estimate the surface area of the irregular shape. To do

so using a stochastic, Monte Carlo-like method, we could throw a large number of darts,

at random, onto the two shapes. At the end, the ratio of the number of darts in the

irregular shape to the total number of darts in the square should approximate the ratio of

the unknown area of the shape to the known area of the square. This allows us to estimate

the area of the shape.

Another key principle of stochastic algorithms can be inferred from this simple example:
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the law of large numbers. When we have thrown just one dart at our shape, the ratio of

the areas of the two shapes can be either zero or one, clearly a very poor approximation.

When ten darts have been thrown, some will land inside the shape, and some will land

outside. The ratio of darts will become a better approximation of the ratio of surface

areas. By the time we have thrown a reasonably large amount of darts, the two ratios

should be practically indistinguishable. We might then say that the stochastic simulation

has converged.

Probability distributions, including Bayesian posteriors, can be sampled from using

essentially the same principle. However, this strategy would run into two problems. The

space of acceptable model parameters is often much, much smaller than the space of

possible values for each parameter. This problem of scale increases with each added

parameter dimension–it might be possible to estimate the probability distribution of one

unknown parameter using a purely random Monte Carlo simulation, but it quickly becomes

more difficult to sample the distribution for larger-scale inverse problems, scaling with

the dimensionality, or number of parameters, of the problem. In dating an ice core,

for example, we typically deal with parameter spaces with hundreds of dimensions. Thus,

using a purely randomized search would likely be exceedingly difficult and computationally

expensive. In addition, we do not know the shape of the posterior, and it is difficult to

evaluate whether samples fall inside or do not. We could do so by iteratively estimating

the constant by numerically integrating the likelihood of the samples up to each step, but

this would be computationally very costly as well.

A set of algorithms exists that are designed to solve precisely this problem, while

retaining a stochastic character that allows them to explore complex probability distribu-

tions and not rely on gradients or analytical mathematics. These are known as Markov

Chain Monte Carlo algorithms. Markov chains are stochastic sequences in which the state

attained by each element depends only on the state attained by the previous element. In

a Monte Carlo simulation, allowing the exploration of parameters to operate as a Markov

Chain translates to allowing each model proposal to depend on the last model in the

simulation. In practice, this implies that MCMC algorithms can be oriented to explore

a desired region, rather than the “grope-in-the-dark” strategy of simple Monte Carlo.

Markov Chain Monte Carlo algorithms are (and should be) designed to ensure conver-

gence to the probability distribution we wish to explore. In general, this means that as

the simulation converges, the number of samples we select in any region is proportional

to the probability mass of this region.
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Developed by Nicholas Metropolis and W.K. Hastings, the Metropolis-Hastings algo-

rithm [Metropolis et al., 1953, Hastings, 1970] and its variants are perhaps the most widely

used Markov Chain Monte Carlo algorithms; we indeed make use of a parallelized variant

of the Metropolis-Hastings algorithm in this thesis. For some background, we provide a

cursory explanation of the algorithm; for a more rigorous treatment the reader is referred

to Tarantola [2005], among many others.

The Metropolis-Hastings algorithm [Metropolis et al., 1953, Hastings, 1970] stochasti-

cally generates models, here X n, from a proposal distribution q(X n|X n−1). Importantly,

this proposal distribution need not be related to the prior or posterior distribution in the

Bayesian inversion.

The proposed models are accepted or rejected with probability:

PXn→Xn+1 = min

(
L(X n)q(X n|X n−1)

L(X n−1)q(X n−1|X n)
, 1

)
(26)

L(X n) = ρdata(X
n)ρmodel(X

n) (27)

where ρdata is the prior probability distribution of the data. If a gaussian prior prob-

ability distribution is taken, for example, we can rewrite:

L(X n) = k exp(−Jn) (28)

where k is a normalizing constant which cancels out in the computation of PXn→Xn+1.

Furthermore, when proposal distribution q is symmetric, equation 26 simplifies to:

PXn→Xn+1 = min

(
L(X n)

L(X n−1)
, 1

)
(29)

This acceptance probability is the classic Metropolis algorithm from [Metropolis et al.,

1953] – the Metropolis-Hastings algorithm is a more general version. The samples produced

via the Metropolis-Hastings selection criteria can be shown to converge to the posterior

probability distribution

πmodel(X
n) = kL(X n) (30)

where k is a normalizing constant.

Note that we do not need to know the distribution πmodel(X
n) to sample from it – in

the kinds of inverse problems that Metropolis-Hastings algorithms are used for, we never

do! We only need to be able to construct L(X n), a much easier task.
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Why does the Metropolis-Hastings algorithm work?

Introducing a few mathematical concepts can help us understand the workings of the

Metropolis-Hastings algorithm. These concepts generally have parallels for more advanced

stochastic algorithms as well.

In the darts example, recall that we required a large number of dart throws to truly

approximate the area of the shape. We could do so because we threw the darts uniformly

across the square, allowing us to access all areas of the square. Our throws were effectively

generated using a uniform distribution.

We could have calculated the area of the shape using another known distribution, as

long as we accounted for the probability of each given throw when integrating the area of

the shape. But if, for example, we always aimed at the position of the last dart, it would

be less intuitive to guarantee that we had calculated the correct area of the shape, because

it would be difficult to assess whether we could eventually explore the whole scale.

In statistical terms, our throws were independent and identically distributed (IID).

The throws were independent of each other, because no throw depended on the location of

any other dart, and identically distributed, because each dart had an identical probability

of landing at a given location on the square. Monte Carlo algorithms with IID proposals

can, eventually, access the entire space of the probability distribution they are attempting

to sample.

Markov Chains, on the other hand, break this rule. Each step of a Markov Chain

is allowed to depend on the last step, meaning that these steps are not independent of

each other (nor are they necessarily identically distributed). So we need to be sure that a

Markov Chain will eventually reach the entire probability space, in spite of not being IID.

Formally, we can do so by showing that a Markov Chain is ergodic, meaning that for a

given space, the chain can, given an infinite time to evolve, reach any point in the space.

The ergodic theorem for Markov Chains

Here, we present a simple ergodic theorem, for Markov Chains operating in discrete time

and discrete space. For a Markov chain looking to approximate a function f with target

distribution π, this theorem can be written:

Theorem 1. Ergodic Theorem for discrete time Markov Chains

1. If [X0,X1,...,Xi,...,Xn] is an irreducible (time-homogeneous), discrete space Markov

Chain with stationary distribution π, then
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1

n

n∑

i=1

f(xi) −−−→
n→∞

Ef(x) where x ∼ π

for any bounded fn f : X→ R.

2. If, further, [X0,X1,...,Xi,...,Xn] is aperiodic, then

P (Xn = x|X0 = x0)→ π(x)

The ergodic theorem outlines the conditions that can guarantee that a Markov Chain

Monte Carlo algorithm can converge to a given distribution. Part 1 of the theorem de-

scribes the conditions that need to be fulfilled so that the mean value of a function f (any

bounded function with state space X in the set R of all real numbers) of the samples xi

converges to the expected value of the function, with x following a distribution π (this

distribution can indeed be the posterior, in a Bayesian application). In the second part,

conditions are referenced so that the probability distribution of the samples of the chain

P should converge to the probability distribution π.

Three conditions are referenced:

1. The distribution π which we wish to explore is the stationary distribution of the

chain we implement.

2. The chain is irreducible (time-homogeneous).

3. The chain is aperiodic.

A Markov Chain Xi is called time-homogeneous if the probability of the chain

transitioning from position a to position b, P (Xi+1 = b|Xi = a) = Tab for all i and all

a, b ∈ X for some matrix T which does not depend on time.

The matrix T is often referred to as the transition matrix of a Markov Chain. This is

a stochastic matrix, whose entries are non-negative and whose rows, representing all the

probabilities of transition from a given state, sum to 1. In the case of continuous-time or

continuous-space Markov Chains, we refer to a stochastic transition kernel (or function)

rather than a matrix.

Simply, we require that all transitions from one state to another are allowed to occur

with the same probability, regardless of the timestep at which they occur. We know that

this is the case for the classic Metropolis-Hastings algorithm: the Metropolis-Hastings
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Figure 2: https://xkcd.com/1724/. MCMC algorithms may seem to operate like dark

magic to the uninitiated, but they can often be shown to converge using relatively intuitive

principles.

ratio 26, which determines the probability of a transition from one state to another, has

no time dependency.

A probability mass function π on X is a stationary or invariant distribution with

respect to transition matrix T if πT = π. This can be written as:

∑

a∈X
πaTab = πb∀b ∈ X (31)

We will soon see that a probability mass function π is is a stationary distribution of

chain Xi if π satisfies a condition called detailed balance with respect to the transition

matrix Tab of the chain.

A Markov Chain is irreducible if for all a, b ∈ X there exists t ≥ 0 such that P (Xt =

b|X0 = a) > 0. That is, for any states a and b in the state space X, if we start at state a,

it is possible to reach state b.

Finally, a Markov Chain is aperiodic if for all a ∈ X the greatest common denominator

of the times t for which P (Xt = a|X0 = a) > 0 is 1. That is, the chain should not, by

design, revisit the same state with any periodicity.

The proof of this theorem is beyond the scope of this chapter, but is accessible in math-

ematics texts (i.e. Norris [1998], statslab.cam.ac.uk/∼james/Markov/s110.pdf). However,

we can discuss the intuition behind these three conditions for convergence. The condition

of stationarity essentially states that we wish to sample from probability distribution π.

The condition of irreducibility expresses that we should, eventually, be able to visit any

state in the state space of this distribution. Finally, the condition of aperiodicity expresses

that we should not revisit the same states repeatedly. Together, we should then be able

to sample the distribution π correctly, exhaustively and without periodic bias–the law
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of large numbers indicating that we should eventually be able to create an acceptable

approximation of π.

Ergodicity and the Metropolis-Hastings Algorithm

A Markov Chain produced by the Metropolis-Hastings Algorithm is designed in order

to approximate a target probability distribution. The chain, in other words, should be

ergodic with the target distribution as the stationary distribution of the Markov Chain.

In order to show that this is indeed the case, it is useful to introduce the concept of

detailed balance, or reversibility.

A probability mass function π on state space X is said to satisfy detailed balance

with respect to transition matrix T if πaTab = πbTba for all a, b ∈ X.

Remember that for a probability distribution π to be stationary with respect to tran-

sition matrix T , it should hold that
∑

a∈X πaTab = πb. Showing that π satisfies detailed

balance with respect to T is equivalent to showing that π is stationary with respect to T .

This is because with detailed balance, we have

∑

a

πaTab =
∑

a

πbTba. (32)

Since πb does not depend on a, we can write

∑

a

πaTab = πb
∑

a

Tba; (33)

since we know that the entries of T sum to 1, this is equivalent to

∑

a

πaTab = πb. (34)

as above. In practice, Markov Chains with detailed balance are reversible: that is, if

a Markov Chain satisfies detailed balance with respect to T , so does the chain with the

same elements in reversed order.

We might think of detailed balance as an equation of conservation of probability mass:

we should tend to conserve the correct proportions of probability at states a and b with

transition matrix T .

We can easily show that the Metropolis algorithm (using a symmetric proposal distri-

bution, as for equation 29), satisfies the conditions outlined in the ergodic theorem for its

target distribution (the same is true for the general Metropolis-Hastings algorithm with

some adaptations to the equations below).

68



Recall that in the Metropolis algorithm, we do not know the target distribution but

rather some function proportional to the target distribution, which we denote as π̃ (in

this thesis, this is generally the Likelihood function). We have also picked a symmetric

proposal distribution q (which has an equivalent transition matrix Q). Equation 29 gives us

the probability with which we accept proposals, that is PXn=a→Xn+1=b = min
(
L(a)
L(b) , 1

)
.

We check first if this algorithm satisfies the first condition, that π is the stationary

distribution of the chain X. We can do so by checking if π satisfies detailed balance with

respect to the theoretical transition matrix T ; i.e. πaTab = πbTba.

In the Metropolis algorithm, two cases are possible. We might reject a transition,

in which case a = b. Then, πaTab = πaTaa = πbTab, so the algorithm satisfies detailed

balance.

In the second case, we accept the transition, that is a 6= b. In this case, the probability

of the transition from b to a is equivalent to the conjunction of the probability of the

proposal q(a, b) and the probability with which the proposal was accepted, min
(
π̃(a)
π̃(b) , 1

)
.

πaTab = π(a)q(a, b) ·min
(
π̃(a)

π̃(b)
, 1

)
. (35)

Since the constant of proportionality between π̃ and pi cancels, this is equivalent to

πaTab = π(a)q(a, b) ·min
(
π(a)

π(b)
, 1

)
. (36)

We can multiply π(a) inside the min function to give

πaTab = q(a, b)min(π(a), π(b)) (37)

Note that, replacing πaTab with πbTba, the right hand side of 37 does not change.

Thus, detailed balance holds, and the chain has stationary distribution π. Note that for

the same can hold with a non-symmetric proposal if we accept or reject proposals with

the probability as outlined in equation 26.

Irreducibility and aperiodicity are not difficult to show. We can usually assume that

π(x) > 0 for all x in the state space X. Then, because transition probabilities depend only

on π and q, for any irreducible Q, T is irreducible, and for any aperiodic Q, T is aperiodic.

Thus, we know that the Markov Chain resulting from the Metropolis-Hastings algorithm

should converge to its stationary distribution, and that this stationary distribution is

indeed π.

Numerous stochastic algorithms have been designed to more efficiently explore prob-

ability distributions that are challenging because of shape or size. Indeed, we use some
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of these algorithms in this thesis. These algorithms are often built using the same prin-

ciples as those of the Metropolis-Hastings algorithm. It can often be shown that they

should converge, in theory, to their target distribution using the principle of detailed bal-

ance, with equations not too different from those introduced in this section (although

adaptive algorithms in particular violate the properties of Markov Chains to a greater de-

gree, making the proof of convergence more involved). In any case, understanding why the

Metropolis-Hastings algorithm can be shown to converge is a useful base for understanding

the convergence properties of this large class of more developed stochastic algorithms.

Sampling from challenging target distributions: adaptive and

parallelized MCMC algorithms

In theory, the Metropolis-Hastings algorithm and successive stochastic algorithms are ca-

pable of converging to any probability distribution, given a sufficient (infinite) amounts of

time and samples. Of course, when running these algorithms, we work with finite amounts

of time and samples. Necessarily, the estimates we obtain of the target distributions are

approximate. The accuracy of the approximation depends on the number of samples, and

on how efficient the algorithm is at exploring the probability distribution at hand.

Probability distributions can become much more difficult to explore if they are mul-

timodal, and the proposal distribution (denoted q(X n|X n−1) above) is not well-adapted.

To reach independently prominent peaks of high probability in a multimodal distribution,

a Markov Chain must cross valleys of low probability. Since the probability of entering

a valley from a peak is low with equation 26, it can take a very long time to cross to

a secondary peak, considerably increasing the amount of simulations required to have a

good estimate of the probability distribution.

This problem occurs generally when the proposal distribution is not well-adapted to

the target distribution. Even in the case of a relatively simple, unimodal distribution, if

the proposal distribution is biased toward sampling in a given direction, and the target

distribution is oriented along another direction, convergence will be considerably slowed.

Dealing with large parameter spaces can also complicate using MCMC algorithms.

Generally, the number of iterations required for a Metropolis-Hastings simulation to con-

verge to the posterior distribution scales with N2 for N parameters.

In this thesis, we deal with both large parameter spaces and multimodal, jagged dis-

tributions; in addition, we have little to no information beyond the prior about the scale
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or orientation of these distributions.

In the exploratory phases of both the inverse problems we address, we tested both

gradient-based and stochastic algorithms; the gradient-based algorithms converged to lo-

calized minima and the standard MH simulations tended to be slow to converge. In both

cases, we ultimately attempted to pick MCMC algorithms that balance a good adapta-

tion to the complexity of the posterior distribution and an efficient use of computational

resources via parallelization. The algorithms that we applied to the two studies are in-

troduced in the next section; for a broader overview Sharma [2017] reviews parallelized

MCMC algorithms developed for astronomy. The selection of MCMC algorithms for chal-

lenging probability distributions is problem-dependent, and none of the algorithms we

tested showed black-box applicability to our synchronization problem, for example. How-

ever, the development of advanced MCMC algorithms is a dynamic field, and algorithms

will surely continue to be developed that will allow us to solve the inverse problems out-

lined here with greater efficiency and less implementation time.

Two selected parallelized MCMC algorithms

The Affine Invariant Ensemble Sampler [Goodman and Weare, 2010]

In chapter 3, we pose the detection of changes in trend in CO2 and Antarctic Temperature

during the last deglaciation as an inverse problem. The parameter space of this problem is

not unusually large, requiring between 6 and 12 parameters. However, we solve the prob-

lem multiple times, with respect to several time series. To tackle the large computation

time required for traditional MH sampling, we apply the ensemble sampler developed by

Goodman and Weare [Goodman and Weare, 2010] (GW) as implemented in the python

emcee library [Foreman-Mackey et al., 2013].

The GW sampler adapts the MH algorithm so that multiple model walkers can explore

the probability distribution at once, making the algorithm parallelizable. Each of these

walkers is a Markov Chain, but the proposal for each walker at a given step depends on the

complementary ensemble of all of the other walkers. This gives the algorithm advantage

of being affine invariant: that is, steps are adapted to the scale and directionality of the

posterior distribution, as roughly approximated by the ensemble of walkers at any given

step.

To propose updates to the walkers, we apply what GW refer to as a “stretch move”.

Consider an ensemble of walkers X and an individual walker X j
k in the ensemble at
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Figure 3: The GW stretch move. Light dots are walkers in the complimentary ensemble.

The update to Xj is proposed by stretching along the straight line between Xj and Xk.

Figure and caption (adapted) from Goodman and Weare [2010].

proposal step j. Another walker X j
h is selected from the complementary ensemble Xj

[k],

composed of all of the other walkers. Then, a proposal is made to update X k to W :

X j
k →W = X j

h + Z
(
X j

k −X j
h

)
(38)

GW suggest the following probability distribution to generate stochastic variable Z, which

we apply:

g (Z) ∝
{

1

Z
if Z ∈

[
1

a
, a

]
; 0 otherwise (39)

where a is a user-defined constant. Given this probability distribution, proposals are

accepted or rejected with acceptance probability:

P
X j

k→X j+1
k =W

= min

{
1, Zj−1 L(W )

L(Xj
k)

}
. (40)

Note that the term Zj−1 is included so that detailed balance is still respected.

The Differential Evolution Markov Chain with snooker updater [ter Braak

and Vrugt, 2008]

Though developed separately, Differential Evolution Markov Chain (DEMC, ter Braak

and Vrugt [2008]) and [Goodman and Weare, 2010] share a structural commonality–in

both algorithms, an ensemble of Markov Chains evolves together, making both algorithms

easily parallelizable. In both algorithms, the proposal at each step is determined using

the positions of the remaining N - 1 chains.
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Figure 4: The parallel direction update in DE-MC, with each chain represented by a point.

a) To update chain i in state xi, the proposed state x∗ is generated by adding the weighted

difference of the two other chains γ(xR1 − xR2) to xi, plus a random vector e. b) The

reverse jump, to show detailed balance. Figure and caption (adapted) from ter Braak and

Vrugt [2008].

Figure 5: a) The parallel direction update in DE-MC, with each chain represented by a

point, in this case with γ = 1. b) The case of an outlier chain. In these figures e is not

shown as it is small compared to the jumps. Figure and caption (adapted) from ter Braak

and Vrugt [2008].

Figure 6: The DE-MC snooker move, which generates a proposal along the line through xi

and the state z of another chain. The proposal point x∗ is generated by randomly selecting

two other chains (zR1 and zR2), projecting them orthogonally onto the line between xi

and z, and adding a multiple of the difference between the projection points zP1 and zP2

to xi. Figure and caption text from ter Braak and Vrugt [2008].
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ter Braak and Vrugt [2008] outline two proposal steps, described here. It is worth

noting that several algorithms have been developed based on the steps proposed by ter

Braak and Vrugt [2008]–see Laloy and Vrugt [2012] and Nelson et al. [2013], for example.

Differential Evolution Move

For an ensemble Xj of N parallel Markov chains with current positions xj at timestep j,

we seek to update walker xi. In order to do so, we randomly select two additional walkers,

with current positions xR1 and xR2 from the complimentary set Xj
6=i. The proposal,

denoted x∗ is calculated as:

x∗ = xj
i + γ(xR1 − xR2) + e (41)

where γ is a scalar (user-defined), and e is a random vector. In order to respect detailed

balance, this vector should be drawn from a symmetric distribution; to make sure that

our proposals do not veer too far from the core DE move the width of this symmetric

distribution is ideally small compared to the width of the posterior.

We accept or reject each jump according to the Metropolis-Hastings ratio:

P
xj
i→xj+1

i =x∗ = min

{
1,
L(x∗)

L(xj
i)

}
(42)

This move occurs on a line approximately parallel to xR1 and xR2–making the assump-

tion that the current positions of the ensemble of walkers at any iteration approximately

reflects the orientation and scale of the posterior distribution. This assumption, of course,

becomes more and more true as the simulation converges. Figure 4 illustrates this move.

ter Braak and Vrugt [2008] suggest two possible values of the parameter γ. Choosing

γ = 2.38 /
√

2d, where d is the number of model parameters, provides an approximate

acceptance probability of around 0.23 for Gaussian and Student distributions distributions.

An acceptance probability of 0.23 is commonly taken as an optimal value for MCMC,

though it is worth noting that the posterior distributions we approximate in this thesis

are quite far from being appropriately represented by Gaussian or Student functions.

ter Braak and Vrugt [2008] also suggest using γ ≈ 1 for a certain proportion of the

proposals. This value is taken with multimodality in mind – making the assumption that

the distance between any two modes is approximately characteristic of the distribution

as a whole (we postulate that this assumption should be more or less true for our CH4

synchronization problem, given the recurrent nature of the climate cycles reflected in

methane time series). Figure 5 illustrates this move.
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Snooker Move

The last move developed by ter Braak and Vrugt [2008] is the DEMC snooker update,

illustrated in figure 6. To update walker xi using this algorithm, three other chains,

with current states z, zR1 and zR2 are selected. The vectors zR1 and zR2 are projected

orthogonally onto the difference vector xi−z. Using the two orthogonally projected vectors

zP1 and zP2, the snooker proposal is given as:

x∗ = xj
i + γ(zP1 − zP2) (43)

Maintaining detailed balance with this move requires a modification to the basic

Metropolis-Hastings acceptance ratio. In the case of the snooker move, the q terms do not

cancel, since the lines x∗ − z and xi − z are different in magnitude. Since this is the only

difference between the proposal distributions, the acceptance ratio is written as follows:

P
xj
i→xj+1

i =x∗ = min

{
1,
L(x∗)||x∗ − z||d−1

L(xj
i)||x

j
i − z||d−1

}
(44)

where d is the dimensionality of the model vector.

The orthogonal projection effectively projects the covariance between model param-

eters onto the proposal. In a way, we can think of this step as reducing the effective

model dimensionality in the MCMC simulation: rather than waiting for each parameter

to reach acceptable values proposed independently, we use the positions of other walkers

to approximate their covariance and update them together.

ter Braak and Vrugt [2008] propose that the number of walkers can be significantly

reduced by sampling not only from the current position of the chains, but from their past

positions as well. This algorithm, referred to as DE-MCZ is adaptive–i.e. the proposal dis-

tribution is time-dependent, violating time-homogeneity. This class of algorithms requires

a different approach to the proof of convergence. In the case of many adaptive algorithms,

this can be done by showing that the adaptation itself diminishes with time [Roberts and

Rosenthal, 2007, 2009].

We do not, however, apply DE-MCZ , as storing all past iterations leads to huge memory

use with the large parameter dimensionality in IceChrono, where for the non-adaptive

method we can periodically move the previous iterations to a file, and clear them from

active memory. We find that the tradeoff with computational time is minimal, since

keeping large amounts of data in memory can significantly worsen the performance of

Python code.
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On the movie strategy and probabilistic chronologies

Stochastic methods also differ from gradient-based and analytical methods for solving

Bayesian inverse problems in the form of the result. Gradient-based or analytical solutions

are often Gaussian in shape, and can be expressed as a mean and standard deviation, in

the case of a unidimensional distribution, or a mean and covariance matrix in the case

of a multidimensional distribution. Gaussian statistics have a considerable advantage in

usability–it is easy to make calculations using a Gaussian distribution.

There is no analog that is generally applicable to all probability distributions. The

stochastic solution to an inverse problem is thus the ensemble of accepted fits, which itself

forms the posterior probability distribution.

For problems with only a few parameter dimensions, this ensemble can easily be ex-

pressed as a histogram. This is the case for the chapter in this thesis treating CO2 and

Antarctic Temperature. In the article, we provide maxima and 68% and 98% probability

intervals, which roughly correspond to the mean, one standard deviation, and two stan-

dard deviations for a Gaussian distributions. However, this is only a rough approximation

of the true solution to the inverse problem that we treat in the article–the timings of

major, approximately linear changes in the records of CO2 and Antarctic Temperature

from the last deglaciation. The “true” solution to the inverse problem is in fact the full

output of the MCMC procedure applied, represented as the histogram of the timings.

Representing the stochastic result of an inverse problem becomes more complicated

in higher dimensions. A histogram made for a 1000-dimensional parameter space, on the

order of what we might use when dating an ensemble of ice cores, would be unwieldy and

mostly useless.

Tarantola [2005] proposes what he refers to as the “movie strategy” to display and

understand the results of high-dimensional inverse problems. For a parameter vector like

the age of ice in an ice core, rather than showing hundreds of histograms for each element

in the vector, we can show an animation of the entire vector over the set of proposed

chronologies accepted in a stochastic simulation. In effect, we display a movie of Ice Age

to represent the best estimate of the probability density of the Ice Age parameter vector.

To provide a chronology to the paleoclimate community in “Movie Strategy” form, we

can provide an ensemble of chronologies that is representative of the posterior distribution.

In practice, this would be a file containing a large set of chronologies accepted in the

stochastic simulation. This set could be reduced from the full simulation by removing

some initial runs to eliminate any initialization bias, and selecting one out of every n
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Figure 7: A corner plot, with univariate histograms on the diagonal and bivariate his-

tograms in the other squares of the matrix, is an efficient way to represent low-dimensional

multivariate probability densities.

accepted proposals, where n is on the order of the autocorrelation time of the proposals

accepted by the simulation.

However, this is not to say that the Gaussian form of presenting chronologies should

be discarded, even when the solution method to the chronological inverse problem is

necessarily stochastic. It is certainly worth addressing, when a stochastic simulation is

finished, if the density of the accepted scenarios is even approximately Gaussian. Then,

an approximate mean scenario and covariance matrix could be provided to users, making

calculations considerably easier.

There is use as well in providing the most basic form of a chronology, in terms of a

mean vector and a standard deviation (σ) vector. Multidimensional distributions are not

accurately represented when expressed by a mean and sigma for each age-depth match,

since the covariances between uncertainties in the age model are not given to the user,

who is forced to treat parameters that covary as effectively independent. However, simple

calculations can be performed using the mean chronology, with the standard deviations

used to assess the chronological uncertainty of conclusions made for an individual, discrete

point. When the probability densities that result from a stochastic simulation are far from

Gaussian, we can give the maximum and central 68% and 95% confidence intervals, which

are roughly analogous in terms of probability to the mean, one standard deviation, and

two standard deviations of a Gaussian distribution. These intervals can then be used to
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assess punctual chronological uncertainty.

For the studies presented in this thesis, we follow an overall strategy that aims to

make the presented result both accurate and usable. We first analyze, and provide to

the user, the entire result of the stochastic simulation. In the case of the study on CO2

treated in Chapter 3, the result is presented in the form of composite histograms, and in

the case of the study on synchronization presented in chapter 4, we present animations.

Then, we also treat simplifications of the probability densities (i.e. the maximum and

central 68% and 95% confidence intervals in chapter 3), and provide these to the user as

well, specifying their limitations and how well they represent the true probabilities. Thus,

a paleoclimatologist wishing to use the statistically most-correct version of a chronology

can access the ensemble version, whereas a paleoclimatologist looking to make a quicker

calculation can use the simplification, keeping its limitations in mind.
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Chapter 3

The Last Deglaciation : Antarctic

Temperature and CO2

This article has been published in Climate of the Past.
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Abstract. The last deglaciation, which occurred from 18 000
to 11 000 years ago, is the most recent large natural climatic
variation of global extent. With accurately dated paleocli-
mate records, we can investigate the timings of related vari-
ables in the climate system during this major transition. Here,
we use an accurate relative chronology to compare tempera-
ture proxy data and global atmospheric CO2 as recorded in
Antarctic ice cores. In addition to five regional records, we
compare a δ18O stack, representing Antarctic climate vari-
ations with the high-resolution robustly dated WAIS Divide
CO2 record (West Antarctic Ice Sheet). We assess the CO2
and Antarctic temperature phase relationship using a stochas-
tic method to accurately identify the probable timings of
changes in their trends. Four coherent changes are identi-
fied for the two series, and synchrony between CO2 and tem-
perature is within the 95 % uncertainty range for all of the
changes except the end of glacial termination 1 (T1). During
the onset of the last deglaciation at 18 ka and the deglacia-
tion end at 11.5 ka, Antarctic temperature most likely led
CO2 by several centuries (by 570 years, within a range of
127 to 751 years, 68 % probability, at the T1 onset; and by
532 years, within a range of 337 to 629 years, 68 % proba-
bility, at the deglaciation end). At 14.4 ka, the onset of the
Antarctic Cold Reversal (ACR) period, our results do not
show a clear lead or lag (Antarctic temperature leads by 50
years, within a range of −137 to 376 years, 68 % probabil-
ity). The same is true at the end of the ACR (CO2 leads by
65 years, within a range of 211 to 117 years, 68 % probabil-
ity). However, the timings of changes in trends for the indi-
vidual proxy records show variations from the stack, indicat-

ing regional differences in the pattern of temperature change,
particularly in the WAIS Divide record at the onset of the
deglaciation; the Dome Fuji record at the deglaciation end;
and the EDML record after 16 ka (EPICA Dronning Maud
Land, where EPICA is the European Project for Ice Cor-
ing in Antarctica). In addition, two changes – one at 16 ka
in the CO2 record and one after the ACR onset in three of the
isotopic temperature records – do not have high-probability
counterparts in the other record. The likely-variable phasing
we identify testify to the complex nature of the mechanisms
driving the carbon cycle and Antarctic temperature during
the deglaciation.

1 Introduction

Glacial–interglacial transitions, or deglaciations, mark the
paleorecord approximately every 100 000 years over the past
million years or so (Williams et al., 1997; Lisiecki and
Raymo, 2005; Jouzel et al., 2007). The last deglaciation, of-
ten referred to as glacial termination 1 (T1), offers a case
study for a large global climatic change, very likely in the
3–8 ◦C range on the regional scale (Masson-Delmotte et al.,
2013), and thought to be initiated by an orbitally driven in-
solation forcing (Hays et al., 1976; Berger, 1978; Kawamura
et al., 2007). The canonical interpretation of this apparent
puzzle is that insolation acts as a pacemaker of climatic cy-
cles and the amplitude of glacial–interglacial transitions is
mainly driven by two strong climatic feedbacks: atmospheric
CO2 and continental-ice-surface–albedo changes. However,

Published by Copernicus Publications on behalf of the European Geosciences Union.
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the mechanisms that control the CO2 rise are still a matter
of debate. Accordingly, reconstructing the phase relationship
(leads and lags) between climate variables and CO2 during
the last termination has become important, and has a sub-
stantial history in ice core research (Barnola et al., 1991;
Raynaud and Siegenthaler, 1993; Caillon et al., 2003; Pedro
et al., 2012; Parrenin et al., 2013).

Global temperature has been shown to lag CO2 on aver-
age during T1 (Shakun et al., 2012), supporting the impor-
tance of CO2 as an amplifier of orbitally driven global-scale
warming. But Antarctic temperature and CO2 concentrations
changed much more coherently as T1 progressed. Indeed,
midway through the glacial–interglacial transition, Antarctic
warming and CO2 increase slowed and even reversed during
a period of about 2000 years, coinciding with a warm period
in the north called the Bølling–Allerød (B/A). The respective
period of cooling in Antarctica is called the Antarctic Cold
Reversal (ACR). A period of cooling in the Northern Hemi-
sphere known as the Younger Dryas (YD), followed the B/A,
coinciding with a period of warming in the Southern Hemi-
sphere (SH).

High-latitude Southern Hemisphere paleotemperature se-
ries – including Southern Ocean temperature – varied simi-
larly to Antarctic temperature during T1 (Shakun et al., 2012;
Pedro et al., 2016). Upwelling from the Southern Ocean is
thought to have played an important role in the deglacial
CO2 increases (Anderson et al., 2009; Burke and Robinson,
2012; Schmitt et al., 2012; Rae et al., 2018). The Atlantic
Meridional Overturning Circulation, or AMOC, a major con-
duit of heat between the Northern Hemisphere and Southern
Hemisphere and component of the bipolar seesaw – the um-
brella term encompassing the mechanisms thought to con-
trol the seemingly alternating variations in Northern Hemi-
sphere and Southern Hemisphere temperature (Stocker and
Johnsen, 2003; Pedro et al., 2018) – is thought to have in-
fluenced Southern Ocean upwelling during the deglaciation
(Anderson et al., 2009; Skinner et al., 2010). A weakening
of the oceanic biological carbon pump appears to have dom-
inated the deglacial CO2 increase until 15.5 ka (kiloannum
before 1950 CE), when rising ocean temperature likely be-
gan to play a role as well (Bauska et al., 2016).

Ice sheets are exceptional archives of past climates and
atmospheric composition. Local temperature is recorded in
the isotopic composition of snow/ice (NorthGRIP Project
Members, 2004; Jouzel et al., 2007) due to the temperature-
dependent fractionation of water isotopes (Lorius and Mer-
livat, 1975; Johnsen et al., 1989). The concentration of con-
tinental dust in ice sheets is a proxy of continental aridity,
atmospheric transport intensity and precipitation. Finally, air
bubbles enclosed in ice sheets are near-direct samples of
the past atmosphere. However, the age of the air bubbles
is younger than the age of the surrounding ice, since air is
locked-in at the base of the firn (on the order of 70 m below
the surface on the West Antarctic Ice Sheet (WAIS) Divide)
at the lock-in depth (LID) (Buizert and Severinghaus, 2016).

The firn, from top to bottom, is composed of a convective
zone (CZ), where the air is mixed vigorously, and a diffusive
zone (DZ), where molecular diffusion dominates transport.
Firn densification models can be used to estimate the LID
and the corresponding age difference (Sowers et al., 1992).

Atmospheric CO2 concentrations, recorded in the air bub-
bles enclosed in ice sheets, are better preserved in Antarctic
ice than in Greenland ice because the latter has much higher
concentrations of organic material and carbonate dust (Ray-
naud et al., 1993; Anklin et al., 1995). Measured on the Vos-
tok and EPICA Dome C ice cores (EPICA is the European
Project for Ice Coring in Antarctica), the long-term history
of CO2 (Lüthi et al., 2008) covers the last 800 kyr.

Early studies suggested that at the initiation of the ter-
mination around 18 ka, just after the Last Glacial Maxi-
mum (LGM), Antarctic temperature started to warm 800±
600 years before CO2 began to increase (Monnin et al.,
2001), a result that was sometimes misinterpreted to mean
that CO2 was not an important amplification factor of the
deglacial temperature increase. This study used measure-
ments from the EPICA Dome C (EDC) ice core (Jouzel
et al., 2007) and a firn densification model to determine
the air chronology. However, this firn densification model
was later shown to be in error by several centuries for
low-accumulation sites such as EDC during glacial periods
(Loulergue et al., 2007; Parrenin et al., 2012).

Two more recent works (Pedro et al., 2012; Parrenin et al.,
2013) used stacked temperature records and improved es-
timates of the age difference between ice and air records
to more accurately estimate the relative timing of changes
in Antarctic temperature and atmospheric CO2 concentra-
tion. In the first of these studies, measurements from the
higher accumulation ice cores at Siple Dome and Byrd Sta-
tion were used to decrease the uncertainty in the ice–air
age shift, and indicated that CO2 lagged Antarctic temper-
ature by 0–400 years on average during the last deglacia-
tion (Pedro et al., 2012). The second study (Parrenin et al.,
2013) used measurements from the low accumulation EDC
ice core but circumvented the use of firn densification mod-
els by using the nitrogen isotope ratio δ15N of N2 as a
proxy of the DZ height, assuming that the height of the CZ
was negligible during the study period. CO2 and Antarc-
tic temperature were found to be in phase at the beginning
of TI (−10± 160 years) and at the end of the ACR period
(−60± 120 years), but CO2 was found to lag Antarctic tem-
perature by several centuries at the beginning of the Antarc-
tic Cold Reversal (260± 130 years) and at the end of the
deglacial warming in Antarctica (500±90 years). The end of
the deglacial warming in Antarctica occurred roughly 2 cen-
turies after the onset of the Holocene period dated at 11.7 ka
according to the International Commission on Stratigraphy.
However, the assumption that δ15N reflects DZ height is im-
perfect as it may underestimate the DZ height for sites with
strong barometric pumping and layering (Buizert and Sever-
inghaus, 2016).
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Figure 1. Drilling locations of the ice cores where the CO2 and
isotopic paleotemperature records included in this study were mea-
sured.

A new CO2 record of unprecedented high resolution (Mar-
cott et al., 2014) from the WAIS Divide (WD) ice core
merits the reopening of this investigation. The air chronol-
ogy of WAIS Divide is well constrained thanks to a rela-
tively high accumulation rate and to accurate nitrogen-15
measurements (Buizert et al., 2015). The WAIS record ev-
idences centennial-scale changes in the global carbon cycle
during the last deglaciation superimposed on more gradual,
millennial-scale trends that bear a resemblance to Antarctic
temperature (Marcott et al., 2014).

The deglacial temperature rise seen at WD is structurally
similar to that at other Antarctic sites. However, the rise in
West Antarctic temperature shows an early warming start-
ing around 21 ka, following local insolation (Cuffey et al.,
2016). This early warming trend is much more gradual in
records from East Antarctic ice cores. The difference be-
tween the two records may be related to sea ice conditions
around East Antarctica and West Antarctica, and perhaps
to elevation changes (WAIS Divide Project Members, 2013;
Cuffey et al., 2016). The temperature record at WAIS Di-
vide shows an acceleration in warming around 18 ka which is
also present in East Antarctic records (WAIS Divide Project
Members, 2013).

On the much shorter timescales of the satellite era, Jones
et al. (2016) note differing temperature trends at the drilling
sites of the five cores used in this study. On the other hand,
the interpretation of individual isotopic records can prove to
be complicated, as local effects – including those of ice sheet
elevation change and sea ice extent – are difficult to correct.

Figure 2. Relative chronological uncertainty between ATS3 and the
WD CO2 record (red line) calculated as the quadratic sum of the
synchronization error from Buizert et al. (2018) (black line) and the
1age uncertainty from WD2014 (dashed blue line).

In the present work we refine our knowledge of leads
and lags between Antarctic temperature and CO2. We use
a stack of accurately synchronized Antarctic temperature
records (Buizert et al., 2018) to reduce local signals, placed
using volcanic matching on the WAIS Divide chronology
(WD2014). We then compare the temperature stack to the
high-resolution WAIS Divide CO2 record by determining the
probable timings of changes in trends, and calculate probable
change point timings for the five individual isotope-derived
records used in the stack as well.

2 Methods and data

2.1 Temperature stack and ice chronology

We use the δ18O stack developed by Buizert et al. (2018) (re-
ferred to hereafter as Antarctic temperature Stack 3, or ATS3)
to represent Antarctic temperature. The use of the stack al-
lows us to remove local influences and noise in the individual
records to the greatest extent possible. The stack contains five
records: EDC, Dome Fuji (DF), Talos Dome (TD), EPICA
Dronning Maud Land (EDML) and WAIS Divide (WD). The
drilling site locations are shown in Fig. 1. Volcanic ties be-
tween WD and EDC, WD and TD, and WD and EDML are
developed in Buizert et al. (2018); previously published vol-
canic ties were used between EDC and DF (Fujita et al.,
2015), placing all of the records on the WD2014 chronology
(Buizert et al., 2015). Notably, the Vostok record, included
in the stack used by Parrenin et al. (2013), is excluded from
the Buizert et al. (2018) stack: it contains additional chrono-
logical uncertainty as it is derived using records from two
drilling sites. We take the quadratic sum of the synchroniza-
tion error from Buizert et al. (2018) and the1age uncertainty
from WD2014 to calculate the relative chronological error
between ATS3 and the WD CO2 record (Fig. 2).
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2.2 CO2 and air chronology

We use atmospheric CO2 data from the WD ice core (Mar-
cott et al., 2014) which consist of 1030 measurements at
320 depths that correspond to ages between 23 000 and
9000 years BP with a median resolution of 25 years. At WD,
the age offset between the ice and air (trapped much later)
at a given depth, 1age, is calculated using a firn densifica-
tion model, which is constrained using nitrogen-15 data, a
proxy for firn column thickness (Buizert et al., 2015). 1age
ranges from 500± 100 years at the last glacial maximum,
to 200± 30 years during the Holocene. 1age uncertainty is
added to cumulative layer counting uncertainty to determine
the total uncertainty in the air chronology.

2.3 Identifying changes in trends

We identify likely change points using piecewise linear func-
tions. Residuals are calculated between the raw data and
linear functions with a fixed number of stochastically pro-
posed change points, which are free to explore the entire
temporal range of the time series (similarly to Parrenin et al.,
2013). These residuals are summed to form a cost function,
which allows us to perform a Bayesian analysis of the prob-
able timing of change points. At the base of our method is
a parallelized Metropolis–Hastings (MH) procedure (Good-
man and Weare, 2010; Foreman-Mackey et al., 2013). There-
fore, we do not present a single “best fit” but rather ana-
lyze the ensemble of fits accepted by the routine. We plot
two histograms: an upward-oriented histogram for concave-
up change points and a downward-oriented histogram for
concave-down change points. We use these histograms as
probabilistic locators of changes in slope (Fig. 3).

The change point representations of the ATS3 and CO2
time series are composed of a set of n specified change points
Xi = (xi,yi)|i = 1, . . .,n. We denote the vector ofm time se-
ries observations o at time t O l = (tl,ol)|l = 1, . . .,m, and
the scalar residual term J between observations and the lin-
ear interpolation between change points fy :

J (Xi)=RTC−1R;r l =
(
fy(tl)− ol

)
l
, (1)

where R is the vector of residuals at each data point with
components r l , and C is the covariance matrix of the residu-
als. The ATS3 series contains 1412 data points and the WD
CO2 series contains 320, each of which is considered in the
residuals.

We fix x0 = t0 and xn = tl , i.e., the x values of the first and
last change points are fixed to the first and last x values of the
observation vector, with the y values allowed to vary. The re-
maining points are allowed to vary freely in both dimensions.

2.3.1 Estimating the covariance matrix C: treating
uncertainty and noise

Our method fits time series with piecewise linear functions,
and the residual vector thus accounts for any variability that
cannot be represented by these fits. Paleoclimate time series,
like the CO2 and ATS3 series used here, typically contain au-
tocorrelated noise (see Mudelsee (2002), for example) which
cannot be accurately represented by a piecewise linear func-
tion. Weighting the residuals of a cost-function-based formu-
lation by a properly estimated inverse covariance matrix en-
sures that this autocorrelated noise is not overfitted, and can
improve the balance of precision and accuracy of the fits.

Our time series contain two potential sources of uncer-
tainty: measurement or observational uncertainty, related
with the creation of the data series, and modeling uncertainty,
related to the formulation of the fitting function. We formu-
late a separate covariance matrix to account for each source
of uncertainty. These matrices are then summed to form C.
We assume the measurement uncertainty to be uncorrelated
in time (i.e., a white noise process). Thus, the associated co-
variance matrix Cmeas is diagonal and the diagonal elements
Cjj are each equal to the variance of observation oj and σ 2

j ,
as estimated during the measurement process.

The covariance matrix of the modeling uncertainty, which
we denote as Cmod, is more complicated since the residual
vector contains any autocorrelated noise in the time series
that is not accounted for by the piecewise linear fits. Addi-
tionally, the time series contain outliers with respect to these
linear fits and these can impact any nonrobust estimate of co-
variance. Finally, an initial idea of the model must be used to
calculate residuals, and thus estimate their covariance. These
challenges can be circumvented when data resolution is low
enough to assume that residuals are uncorrelated, as in Par-
renin et al. (2013); however, including the covariance matrix
allows us to make use of noisy high-resolution data.

We arrive at an initial model by running a MH simulation
in which C is assumed equal to the identity matrix, and select
the best fit of this run. Note that Cmeas is not taken into ac-
count at this point since we require an independent estimate
of Cmod. At this point, covariance could be estimated directly
but tests indicated that this method was not robust, making
the covariance matrix estimate sensitive to outliers and to the
initial model fit. Our CO2 data are unevenly spaced in time
and developing a covariance matrix using the traditional co-
variance estimator would require some form of interpolation,
which can introduce substantial error.

The residuals with respect to the initial model are in-
stead used to fit an AR(1) model (Robinson, 1977; Mudelsee,
2002) which treats the autocorrelation between a pair of
residuals ri and ri−1 as a function of the separation between
the two data points in time, ti − ti−1. The Robinson (1977)
and Mudelsee (2002) model is expressed as follows:

ri = ri−1 · a
ti−ti−1 , (2)
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where the constant a determines the correlation between two
residuals separated by ti− ti−1 units of time, and minimizing
the loss function:

S(a)=
n∑

i=1
{ri − ri−1 · a

ti−ti−1} (3)

allows us to estimate a. We do so using a nonlinear least-
squares estimate with L1-norm regularization to provide a ro-
bust estimate (Chang and Politis, 2016). We test the validity
of the AR(1) hypothesis by comparing ri with ri−1 · a

ti−ti−1

(the Supplement). Given that the AR(1) hypothesis cannot be
rejected, we can use a to calculate the theoretical correlation
between two residuals, and construct a correlation matrix K
and the model covariance matrix Cmod as follows:

Cmod = σ
2
mod K;Kij = a

tj−ti , (4)

where σ 2
mod is the variance in the modeling error, assumed

constant and estimated using a robust estimator based on
the interquartile range (IQR), calculated as (IQR(R)/1.349)2

(Ghosh, 2018; Silverman, 1986). Finally, the covariance ma-
trix of the residuals C is calculated as

C= Cmod+Cmeas. (5)

Rather than inverting the covariance matrix, we use Cholesky
and lower–upper (LU) decompositions to solve for the cost
function value J , as in Parrenin et al. (2015).

2.4 Estimating the posterior probability density

In general, the probability density of the change points can-
not be assumed to follow any particular distribution, as short-
timescale variations of the time series may lead to multiple
modes or heavy tails, for example. Thus, stochastic methods,
which are best adapted to exploring general probability dis-
tributions (for example, Tarantola, 2005), are suited to our
problem.

To tackle the large computation time required for tradi-
tional MH sampling, we apply the ensemble sampler devel-
oped by Goodman and Weare (2010) (GW) as implemented
in the Python emcee library (Foreman-Mackey et al., 2013).
This sampler adapts the MH algorithm so that multiple model
walkers can explore the probability distribution at once, mak-
ing the algorithm parallelizable. It has the advantage of being
affine invariant: that is, steps are adapted to the scale of the
posterior distribution in a given direction.

The final task in our piecewise linear analysis is to identify
the number of change points to best represent the two series
we wish to analyze. The choice should reflect our goal of
accurately investigating millennial-scale variability. Further,
we aim for parsimony in the representation. To best balance
these two goals, we apply the Bayesian information criterion
(BIC; Schwarz, 1978) to the number of points we allow to fit
the two series.

We apply a joint BIC – normalizing the cost function for
each series by its lowest value – and arrive at the conclu-
sion that the two series are best compared by fitting eight
points. The histograms created for fits of seven, eight and
nine points of the two series are remarkably similar, and we
assess that our choice of eight points does not add significant
uncertainty to the timing of change points, with the exception
of the change point at the ACR onset. We include histograms
of fits between five and nine points in the Supplement. We
also include change point timings and lead-lag estimates cal-
culated using seven-point fits in the Supplement.

The most probable timings are identified by probability
peaks, or modes, for a fit of n points; we analyze the n
time periods with greatest contiguous cumulative probabil-
ity. Thus, we analyze a coherent number of change points,
and avoid setting artificial probability thresholds. We avoid
comparing incoherent modes by separating changes by the
sign of the change in slope of the fits. If the slope decreases
at a change point, the change in slope is negative or concave-
down. These changes are indicated by the downward-facing
part of the histogram graphs. Note that while this part of the
histogram appears “negative”, probabilities cannot be neg-
ative; and this simply indicates that the probability is for
a concave-down change point. If the slope increases at a
change point, the change in slope is positive or concave-
up. The probabilities of these changes are indicated by the
upward-facing or “positive” part of the histogram. When we
calculate leads and lags, we only do so for either a region in
which there is a probability peak for a concave-down change
point in both series, or for a concave-up change point in
both series, but we do not treat concave-up probability and
concave-down probability together.

2.5 Phasing

We estimate ρATS3
lead , the probability that ATS3 leads CO2 over

a given interval as

ρATS3
lead = (ρATS3

x ◦ ρCO2
x ) ? ρchron, (6)

where ρATS3
x is the probability of a change point at time x

for ATS3; ρCO2
x is the probability of a change point at time x

for CO2; ◦ is the cross-correlation operator, which is used to
calculate the probability of the difference between two vari-
ables; and ? is the convolution operator, which is used to cal-
culate the probability of the sum of two variables. ρchron is
the probability distribution of the chronological uncertainty
between the two records, which we take to be Gaussian cen-
tered on 0, with standard deviation σ = σchron (shown in
Fig. 3). The intervals associated with each change point are
given in Fig. 6.
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3 Results and discussion

3.1 Change point timings

The change point histograms for the ATS3 and CO2 time se-
ries in Fig. 3 confirm that the millennial-scale changes in the
two series were largely coherent. We focus on four major
changes in trends which are common to both series: the on-
set of the deglaciation from 18.2 to 17.2 ka, the onset of the
Antarctic Cold Reversal (ACR) at around 14.5 ka, the ACR
end between 12.9 and 12.65 and the end of the deglaciation
at approximately 11.5 ka. For each of these four changes, we
calculate the probability of a lead or lag over the time inter-
val that encompasses the continuous peaks in the two his-
tograms. Two CO2 change points, one centered at approxi-
mately 16 ka, and one just before the ACR onset at 14.4 ka,
do not have high-probability counterparts in the ATS3 series.
A low-probability change point for the temperature series af-
ter the ACR onset, centered at 14 ka, does not have a coun-
terpart in the CO2 series.

The deglaciation onset begins with a large, positive change
point mode for Antarctic temperature, centered around
18.1 ka. The corresponding change point for the CO2 series
is centered around 17.6 ka.

The CO2 rise peaks at around 16 ka, identified by a
downward-oriented probability peak, which has no counter-
part in the temperature histogram. This peak is followed by a
brief plateau in CO2 concentrations, before a gradual, accel-
erating resumption of the increase.

At the onset of the Antarctic Cold Reversal, an upward-
facing CO2 change point at 14.4 ka is followed by a broad,
downward-facing CO2 change point which peaks at around
14.25 ka. The first peak appears to reflect a centennial-
scale change (identified by Marcott et al., 2014) and the
broadness of the second peak reflects further methodologi-
cal uncertainty with respect to the timing of the millennial-
scale change in CO2. An unambiguous negative tempera-
ture change also occurs at around 14.3 ka, roughly concurrent
with the downward CO2 change point. Antarctic temperature
began to descend after the ACR onset, and it is worth men-
tioning the low-probability concave-up change point mode
centered on 13.9 ka, particularly because this point is much
more probable for some of the individual isotopic records.
No corresponding change point is detected for CO2.

The ACR termination is represented by large probabil-
ity peaks in both series. An increase in CO2 began at the
peak occurring around 12.85 ka, while the ATS3 increase is
centered at approximately 12.78 ka reaching its maximum
around 12.7 ka.

The end of the deglacial warming in Antarctica is well-
defined in the ATS3 series, with a large mode reaching its
maximum at 11.7 ka. The corresponding CO2 mode reaches
its maximum at around 11.15 ka. Visually, we might question
why the CO2 change point is deemed to most probably occur
at 11.15 ka, when a kink in the series appears to occur closer

to 11.5 ka. It is important to note that two minor spikes in
probability appear to fit the rapid rise that occurs close to
11.5 ka, and that the downward spike at the end of this rise
indeed indicates that a small number of accepted iterations
do indeed fit a change point here.

Since the resolution of the WAIS Divide dataset decreases
considerably after the Holocene onset, and only three points
account for the majority of the rapid rise that occurs before
the Holocene onset, most of the weight is given to the ob-
vious line beginning at the ACR end. Adding an additional
point should allow us to fit this slightly better; the CO2 series
is slightly better fit with nine points according to the indi-
vidual BIC values, and there is more probability around the
rapid rise in the nine-point fit, though the peak at 11.15 ka is
still dominant. In any case, some methodological uncertainty
exists regarding the location of this point, and the probability
estimate is possibly biased by the quick change in resolution.
Better resolution around this point will help identify the true
location of the change.

As a second test of the timings of millennial-scale events,
we use our method to fit filtered versions of the ATS3 and
WAIS Divide CO2 data. A Savitzky–Golay filter, designed
to have an approximate cutoff periodicity of 500 years, is
applied to the two records. Fitting change points to these
two series allows us to verify that our leads and lags are not
overly influenced by submillennial scale noise in the original
records.

Figure 4 shows the Savitzky–Golay filtered CO2 and ATS2
time series, and the corresponding change point histograms.
The four major changes identified in both series, at the T1
onset, the ACR onset, the ACR end and T1 end, are similar
in shape and center to the change points identified for the raw
data. However, there are two notable differences between the
two fits. First, the histograms are smoother and have broader
peaks. This is not surprising, given that the Savitzky–Golay
filters are designed to remove all variability with periodicities
less than 500 years, whereas the covariance matrix applied to
the fits of the raw data only treats an approximation of AR(1)-
correlated noise. Second, the pre-ACR change in CO2 is re-
moved from the filtered series, which is again reasonable as
it appears to mark a centennial-scale event. Savitzky–Golay
filtering has its own drawbacks – data reinterpolation is re-
quired, for example, and propagating measurement uncer-
tainty becomes difficult. However, the similarity of the two
results supports our fits of the raw data.

3.2 Change point timings for individual temperature
records

Histograms calculated for each of the regional δ18O records
are shown in Fig. 5. These histograms should still be in-
terpreted cautiously, as additional information included in
the isotopic records here assumed to represent temperature
– the signal of ice sheet elevation change, for example – are
not corrected for. The comparison of these histograms pro-
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Figure 3. (a) Atmospheric CO2 (black) and ATS3 (red) placed on a common timescale with the normalized histograms of probable change
points (eight-point simulations, allowed to fit six points and two endpoints per series). Histograms are plotted downward-oriented when the
rate of change decreases and upward-oriented when it increases (same colors, y axis not shown). Probabilities are normalized so that the
integrated probability for a given histogram sums to 1. In four distinct time intervals, both series show concurrent probable change points.
We also plot WD Acidity (army green) and WD CH4 (violet) series. CH4 tracks changes in Northern Hemisphere climate. CO2 modes
correspond with rapid changes in CH4 at the ACR end, ACR onset, 16 ka rise and the rapid rise preceding the T1 end. (b) Chronological
uncertainty, taken as the sum of the 1age uncertainties and the uncertainty estimate for our volcanic synchronization.

vides an initial, exploratory picture of potential regional dif-
ferences in climate change during the last termination.

Of the four changes identified as coherent between the
temperature stack and CO2, those at the deglaciation onset,
the ACR end and the T1 end are expressed as probability
peaks in all five records. Some ambiguity appears to exist
about the timing of the ACR onset in the EDML record. It is
expressed by a rather broad, low-probability mode extending

between 16 and 14 ka, though a large spike at 14 ka marks the
downturn seen in the other records. The ACR onset is well-
defined in all of the five other records. Three of the records –
TD, EDC and WD – show a marked stabilization in temper-
ature after the ACR onset, near 13.8 ka, which appears as a
region of much lower probability in the ATS3 stack.

The WAIS Divide record is, notably, the only isotopic
record in the stack from the West Antarctic Ice Sheet. We

www.clim-past.net/15/913/2019/ Clim. Past, 15, 913–926, 2019

87



920 J. Chowdhry Beeman et al.: Antarctic temperature and CO2 during T1

Figure 4. (a) Savitzky–Golay filtered atmospheric CO2 (black) and ATS3 (red) placed on a common timescale with the normalized his-
tograms of probable change points (eight-point simulations, allowed to fit six points per series). Histograms are plotted downward-oriented
when the rate of change decreases and upward-oriented when it increases (same colors, y axis not shown, probabilities range from 0 (center)
to 0.0024 (top and bottom)). (b) Chronological uncertainty, taken as the sum of the 1age uncertainties and the uncertainty estimate for our
volcanic synchronization.

could thus reasonably expect it to show considerably differ-
ent trends from the other records. Indeed, changes in the WD
temperature record occur at 22 and 20 ka. This earlier change
in the isotopic record was identified and confirmed to indeed
be a temperature signal by Cuffey et al. (2016) using a bore-
hole temperature record, though their study places the change
at 21 ka. We confirm that the onset of the deglacial temper-
ature rise in West Antarctica likely began as much as 4 kyr
before the onset of temperature rise in East Antarctica. In-
terestingly, the WD record also shows a temperature change
point around 17.8 ka, expressed slightly later than in the other
records and more synchronous with CO2. This apparent ac-
celeration of the temperature rise is followed by a downward-
facing change point not seen in any of the other records. A
difference appears to exist in timing at the T1 end as well,
with temperature change at WD appearing to precede the
East Antarctic records and the DF temperature change, cen-
tered at 11.2 ka, occurring more synchronously with CO2.

3.3 Leads and lags

The probability densities of leads and lags at the coherent
change points between ATS3 and CO2 are shown in Fig. 6.
We report the central 68 % and 95 % probability intervals for
each histogram. These values are grouped in Table 1.

ATS3 led CO2 by 570 years, (within a 68 % interval of
128 to 751 years) at the T1 onset. Given the large range of
uncertainty, though, we cannot exclude the possibility of syn-
chrony at the 95 % level, which, interestingly, appears to be
the case for the Dome Fuji record. At the ACR onset, we are
not able to identify a clear lead or lag. At this point, phasing
is sensitive to the number of points used to make the calcula-
tion: with 7 points, we calculate a 240 year lead of ATS3, and
with 8 points, we calculate a 50 year lead. In neither of these
cases can we exclude synchrony within 95 % probability, and
with 8 points, it is well within 68 %. At the ACR end, CO2
led ATS3, by 65± years within a 68 % range of 211 years to
−117 years (a temperature lead) and so again, the possibility
of synchrony cannot be excluded within 68 % probability.

At the T1 end, a CO2 lag is certain. Calculating the phas-
ing between 12.0 and 11.0 ka, we obtain an ATS3 lead of
532 years, with a 68 % probability range of 337 to 629 years.
This estimate is complicated, though, if we consider the
small possibility that the true CO2 change point occurs closer
to 11.5 ka, at the end of the rapid rise. In this case, the phas-
ing is reduced to 174 years (68 % central probability range
of 65 to 280 years) and synchrony is within the 95 % central
probability interval (−71 to 411 years).
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Figure 5. Atmospheric CO2 (black) and individual δ18O records placed on a common timescale, with the normalized histograms of probable
change points (eight points) for each ice core used in the ATS3 stack; the locations of the drill sites are shown in the top right corner. Details
of the histogram plots are as in Fig. 3. Maximum probability estimates and 68 % and 95 % probability intervals for timings of the individual
records are provided in the Supplement. The δ18O records are given in per mill anomalies with respect to the last 200 years, as is the ATS3
stack.

Table 1. Maximum probabilities and central probability intervals for leads and lags at each of the selected change point intervals. Negative
x-axis values indicate a CO2 lead.

95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper) Parrenin et al. (2013) σ

T1 onset −338 127 570 751 1045 −10 160
ACR onsetb −357 −137 50 376 708 260 130
ACR end −410 −211 −65 117 375 −60 120
T1 enda 45 337 532 629 773 500 90

a Note the small, but distinct, probability that the CO2 change point occurs closer to 11.5 ka would indicate a lag of 174 years, with a 68 % central probability
range of 65 to 280 years. b The phasing at the ACR onset is sensitive to whether seven or eight points are used. Timings with seven- and eight-point fits, and for
the individual isotopic records, are made available in the Supplement.

3.4 Discussion

Our results refine and complicate the timings, leads and lags
identified by the most recent comparable studies (Pedro et al.,
2012; Parrenin et al., 2013). We identify a CO2 change point
not treated in these studies at 16 ka and one before the ACR
onset, associated with the centennial-scale rapid rises iden-

tified by Marcott et al. (2014). We also treat regional iso-
topic records and identify a change point occurring at 13.9 ka
in three of the records. None of these change points have a
marked counterpart in the other series.

During the major multi-millennial-scale changes which
occur at T1 onset and T1 end, Antarctic temperature likely
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Figure 6. Probability density ρ (y axis, normalized) of an ATS lead (x-axes, in years) at each of the selected change point intervals (noted
on subfigures). Negative x-axis values indicate a CO2 lead. The maximum probability lead/lag and 68 %/95 % central probability intervals
are indicated by the orange dot and lines on each histogram.

led CO2 by several centuries. However, during the complex
centennial-scale change at the ACR onset, we cannot calcu-
late a clear lead of either ATS or CO2; and at the end of
the ACR, CO2 leads temperature. Further, we neither iden-
tify a temperature analog for the CO2 change at 16 ka nor an
analog in CO2 of the temperature stabilization in ATS3 after
the ACR onset, itself not present in all of the regional δ18O
records, indicating at least some degree of decoupling dur-
ing these changes. Additionally, the CO2 changes at the ACR
onset and T1 end are overlaid with centennial-scale substruc-
tures. Finally, synchrony is within the 2σ uncertainty range
for each phasing, with the exception of the T1 end.

The changes in CO2 occurring at the ACR onset, ACR
end and the T1 end have been identified to correspond with
changes in CH4 (Marcott et al., 2014), which are thought to
originate in tropical wetland sources (Chappellaz et al., 1997;
Fischer et al., 2008; Petrenko et al., 2009) and are indica-
tive of Northern Hemisphere and low-latitude temperature
changes during the deglaciation (Shakun et al., 2012). In-
deed, the CO2 modes appear to demarcate the rapid changes
in the WD CH4 record, shown in Fig. 3.

The beginning of a gradual rise in CH4 at around 18 ka
appears to be near-synchronous with the T1 onset rise in
Antarctic temperature. This rise is not seen in Greenland pa-
leotemperature records, where it may have been masked by
AMOC-driven wintertime cooling (Buizert et al., 2017) but

it also appears in proxy temperature stacks spanning both the
Northern Hemisphere and Southern Hemisphere 0 to 30◦ lat-
itude bands (Shakun et al., 2012).

Tephras from Mt. Takahe, a stratovolcano located in West
Antarctica, have been detected in Antarctic ice cores dur-
ing a 192-year interval around 17.7 ka. It has been postu-
lated that this eruption may have provoked changes to large-
scale SH circulation via ozone depletion, possibly triggering
the transition between the gradual SH temperature rise be-
ginning well before 18 ka and the more rapid rise marking
the deglaciation (McConnell et al., 2017). The CO2 mode
we find at the deglaciation is coeval with this event within
the range of dating uncertainty (Fig. 3), and CH4 visually
appears to accelerate concurrently. However, the cumulative
probability of the ATS3 change point is much greater be-
fore 17.7 ka than after (approximately 80 % of the probability
density occurs before, see Fig. 3); hence, our results do not
support the proposed volcanic forcing by McConnell et al.
(2017) of the temperature change.

Though the T1 onset and the ACR end are both thought to
originate in AMOC reductions (Marcott et al., 2014), our re-
sults allow for the CO2–ATS3 phasing to be different during
the two events, with the maximum probabilities reversed in
directionality (i.e. with temperature leading at T1 and CO2
leading at the ACR end, though zero phasing is within 95 %
error). Though CH4 appears to change alongside CO2 dur-

Clim. Past, 15, 913–926, 2019 www.clim-past.net/15/913/2019/

90



J. Chowdhry Beeman et al.: Antarctic temperature and CO2 during T1 923

ing both intervals, the phasing between CO2 and ATS3 are
opposite in direction and different in slope. This hints at a
complex coupling, depending on conditions defined by mul-
tiple variables and mechanisms between CO2 and Antarctic
temperature. Bauska et al. (2016), for example, hypothesize
that an earlier rise of CO2 at 12.9 ka, driven by land carbon
loss or SH westerly winds, might have been superimposed on
the millennial-scale trend.

The apparent decoupling between CO2 and ATS3 at 16 ka
also merits further discussion. We do not detect a change
point for any of the isotopic records at 16 ka but the EDML
record contains extremely broad uncertainty associated with
the ACR onset peak, stretching to 16 ka, which indicates that
this portion of the EDML time series is indeed notably dif-
ferent in shape from the other records, even if a clear signal
is not identified at 16 ka by our method. EDML indeed ap-
pears to record changes in AMOC differently than the other
isotopic records (Buizert et al., 2018; Landais et al., 2018).
CO2 and ATS3 are similarly apparently decoupled at the tem-
perature change point centered at 14 ka and this point could
be indicative of variability specific to the Pacific and east-
ern Indian Ocean sectors, as it is present only in the TALOS
Dome and EDC records, and slightly later, around 13.7 ka, in
the WAIS Divide record, indicating a cooling trend after the
ACR onset which is not clear in the DF or EDML series.

Within the range of uncertainty, the mean of our lead–lag
estimates is consistent with the boundaries proposed by Pe-
dro et al. (2012). Our results are consistent with those of Par-
renin et al. (2013) for three out of the four change points
addressed, but differ considerably at the T1 onset.

The considerable difference at T1 between our result and
that of Parrenin et al. (2013) is most likely due to the much
higher resolution of the WD CO2 time series. It is also pos-
sible that the result of Parrenin et al. (2013) was limited to a
local probability maximum of this change point in the CO2
series. The addition of the WD paleotemperature record and
removal of the Vostok record from ATS3, the updated atmo-
spheric CO2 dataset, and our more generalized methodology
are all, in part, responsible for the differences in computed
time delays (the Supplement). This testifies to the importance
of data resolution, methodological development, and chrono-
logical accuracy in the determination of leads and lags.

4 Conclusions

Our study is a follow-up of the studies by Pedro et al. (2012)
and Parrenin et al. (2013) on the leads and lags between
atmospheric CO2 and Antarctic temperature during the last
deglacial warming. We refine the results of these studies
by using the high-resolution CO2 record from WD; using
1age computed on WD; using a new Antarctic temperature
stack composed of 5 volcanically synchronized ice core iso-
tope records, developed by Buizert et al. (2018); and using
a more precise and complete probabilistic estimate to de-

termine change points. Our methodology detects four major
common break points in both time series. The phasing be-
tween CO2 and Antarctic climate is small but variable, with
phasing ranging from a centennial-scale CO2 lead, to syn-
chrony, to a multicentennial-scale lead of Antarctic climate.
This variability in phasing indicates that the mechanisms of
coupling are complex. We propose three possibilities: (i) the
mechanisms by which CO2 and Antarctic temperature were
coupled were consistent through the deglaciation, but can
be modulated by external forcings or background conditions
that impact heat transfer and oceanic circulation (and hence
CO2 release); (ii) these mechanisms can be modulated by in-
ternal feedbacks that change the response timings of the two
series; and/or (iii) multiple, distinct mechanisms might have
provoked similar responses in both series, but with accord-
ingly different lags.

We also explore the hypothesis of regional differences in
temperature change in Antarctica. Though the use of individ-
ual isotopic temperature records is complicated by influences
other than regional temperature, including localized varia-
tions in source temperature and ice sheet elevation change
we confirm that the deglacial temperature rise did not occur
homogeneously across the Antarctic continent, with signifi-
cant differences existing between the WAIS Divide and East
Antarctic records at the onset of the termination and smaller
potential differences occurring between the East Antarctic
records, including a considerably later end of the deglacial
warming in the Dome Fuji record.

Hypotheses of relationships between these events should
now be reinvestigated with modeling studies. The relation-
ship between CO2 and Antarctic temperature on longer
timescales and during other periods of rapid climate change
is also of interest. Additional high-resolution West Antarc-
tic paleotemperature records would allow for a robust in-
vestigation of regional differences between West Antarc-
tica and East Antarctica and our analysis at the T1 end
could be improved with continued high-resolution CO2 mea-
surements through the beginning of the Holocene. Finally,
the continued measurement of high-resolution ice core CO2
records is essential to understand the relationship between
CO2 and global and regional temperature during the last
800 000 years.

Code and data availability. The code and data series used
in this article are available at https://doi.org/10.5281/zenodo.
1221165 (Chowdhry Beeman, 2019). The CO2, ATS3 and individ-
ual isotopic series, as well as the chronological uncertainty, are in-
cluded as .txt files. The original CO2 data from Marcott et al. (2014)
are available at https://www.ncdc.noaa.gov/paleo/study/18636. The
synchronization tie points and original ATS3 stack are available
in the Supplementary Data spreadsheet of Buizert et al. (2018) at
https://doi-org.insu.bib.cnrs.fr/10.1038/s41586-018-0727-5.
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Abstract. Accurate chronologies allow us to access the wealth of paleoclimate information in ice cores. Synchronization using

time series measurements–to other ice cores, to paleoclimate records such as speleothems or marine sediment cores, or to

orbital targets–is a powerful tool for improving ice core chronologies. Here, as part of the IceChrono dating model (Parrenin

et al., 2015), we propose an automated method for synchronization. The method minimizes residuals between time series,

taking chronological observations and prior information into account, and a newly included parallelized Markov Chain Monte5

Carlo method evaluates the posterior probability of chronologies, including the synchronization term. We make two tests of

our method using CH4 time series. For the first test, we synchronize the TALOS Dome and EPICA Dome C ice cores in the

air phase, including both cores in the dating experiment. For the second test, we synchronize the Fletcher Promontory and

WAIS Divide ice cores in the air phase, treating WAIS Divide, which is well dated, as an external record. The method is able to

accurately synchronize the gas records in the two tests and provides an objective, continuous estimate of the synchronization10

uncertainty.

1 Introduction

Deep polar ice cores record past atmospheric concentrations in air bubbles trapped in the ice, alongside climate proxies in both

the ice and air phases. The relationships between these two archives are most accurately understood when they are dated with

realistic estimates of uncertainty. Synchronization, with other ice cores, other paleoclimate records, or astronomical targets,15

is a valuable source of information in the construction of ice core chronologies. In the ice phase of ice cores, volcanic events

recorded as acidity peaks are often used to align ice cores located within the range of atmospheric transport of volcanic material

(Vinther et al., 2006; Severi et al., 2007; Rasmussen et al., 2008; Severi et al., 2012; Parrenin et al., 2012; Svensson et al., 2013;

Fujita et al., 2015; Buizert et al., 2018). Ice cores have also been synchronized in the ice phase using Beryllium 10 (Raisbeck

et al., 2006). To synchronize the air trapped in ice cores, well-mixed trace gases like CO2 and CH4 are commonly used (Monnin20

et al., 2004; Blunier et al., 2007; Buiron et al., 2011; Schüpbach et al., 2011), with CH4 now preferred because of the rapid

transitions present in CH4 series, which are relatively easy to match by eye; atmospheric δ18O, though less well-mixed than
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Figure 1. Drilling site locations of the Fletcher Promontory (-82.605◦, -77.901667◦), WAIS Divide (-112.085◦, -79.467◦), EPICA Dome C

(123.332◦,-75.010◦) and Talos Dome (159.183◦, -72.817◦) ice cores on the Antarctic Continent.

CH4 or CO2, has also been used as it records rapid transitions accurately (Capron et al., 2010). Orbital tuning – matching

proxy series to the earth’s astronomical parameters, which are well-known far into the past – has been used to date many deep

ice cores, and is indeed a form of external synchronization. These parameters are recorded in ice cores by proxies such as the

O2/N2 ratio (Bender, 2002; Suwa and Bender, 2008; Lipenkov et al., 2011; Landais et al., 2012), Total Air Content (Raynaud

et al., 2007; Lipenkov et al., 2011) and/or δ18Oatm (Petit et al., 1999; Dreyfus et al., 2007). Ice cores can also be synchronized5

to well-dated external paleoclimate archives, such as speleothems (i.e. Buizert et al. (2015); Extier et al. (2018)).

Synchronization between paleoclimate records is usually done manually. Two strategies are common: matching peaks in

the time series, and matching slope midpoints during fast transitions. Each of these methods attempts, visually, to minimize

the distance between the two records. Often, an effort is made to change the individual ice core chronologies as minimally as

possible. However, visually synchronized chronologies can be method-subjective and difficult to reproduce (Martinson et al.,10

1987), as is the case for approximate visual dating methods more generally (Winstrup et al., 2012).

Several previous studies have developed and tested automatic or semi-automatic methods for the synchronization of pale-

oclimate records (Lisiecki and Lisiecki, 2002; Raynaud et al., 2007; Blunier et al., 2007). The Match algorithm of Lisiecki

and Lisiecki (2002) is widely used in the field of paleoceanography, and the HMM-Match algorithm developed by Lin et al.

(2014) is of particular relevance to this study, as it also calculates the probability of synchronization scenarios, between marine15

sediment cores, allowing for the definition of a sedimentation prior.
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In IceChrono 2.0, we build upon the ice core dating model IceChrono 1.0 (Parrenin et al., 2015) to develop a method

adapted to the synchronization of ice cores, and to the synchronization of paleoclimate archives in general. Like its predecessors

IceChrono 1.0 and Datice (Lemieux-Dudon et al., 2010), IceChrono 2.0 is built on the Bayesian inversion of three glaciological

variables, and allows for the inclusion of discrete chronological information. It is developed to be adaptible to a variety of

optimization methods, and thus adaptible to a variety of formulations of the chronological inverse problem. Importantly, within5

the framework of calculating a probabilistic chronology, we can synchronize a core to an external target, or two (or more) cores

with each other.

As a test, we apply our method to the gas phase synchronization of two deep Antarctic ice cores: the European Project for Ice

Coring in Antarctica Dome C (EPICA Dome C, or EDC) ice core, (EPICA Community Members, 2004) and the Talos Dome

Ice Core (TALDICE, http://www.taldice.org) (Figure 1). In the gas phase, the atmospheric lifetime of methane (CH4), on the10

order of a decade, makes it an ideal candidate for synchronization. The lifetime of methane is short enough for concentrations

to respond to and record rapid changes in global climate, but long enough so that atmospheric pole-to-pole transport times,

on the order of a year, do not add large geographic variability to the records (Blunier et al., 2007). Loulergue et al. (2008),

Buiron et al. (2011) and Schüpbach et al. (2011) performed manual synchronizations using methane measurements as part

of the TALDICE 1 chronology, and methane measurements of appropriate resolution are available for both ice cores up to ∼15

45 ka BP (Before Present, defined as years before 1950). These two cores have also been dated as part of the Antarctic Ice

Core Chronology 2012 (AICC2012; Bazin et al. (2013); Veres et al. (2013)). AICC2012 was calculated using the DATICE

model (Lemieux-Dudon et al., 2010), following a similar Bayesian framework to IceChrono (though coded differently, and

using an analytical gradient). In DATICE, as in IceChrono 1.0, synchronization is treated by defining discrete stratigraphic

links between the two records.20

Gas records in ice cores are smoothed by the air trapping process in the firn column, which is controlled largely by the

accumulation rate at the drilling site. While the accumulation at the TALDICE site was most likely about three times as high as

the accumulation at EDC during the Holocene, this difference is relatively small when compared to much higher accumulation

cores like WAIS Divide, where accumulation is as much as an order of magnitude higher than at EDC (Buizert et al., 2015;

Sigl et al., 2016). The correct treatment of gas trapping is out of the scope of this paper, but we consider it more prudent to25

compare two cores with closer accumulation rates.

2 IceChrono: making an ice core age model

The IceChrono dating model (Parrenin et al., 2015) constructs ice and gas ages for ice cores by inverting three glaciological

variables, which we refer to as the forward model. The formation of a polar ice sheet, ice cap or glacier begins when snow

accumulates on its surface – in IceChrono, this process is represented by the accumulation vector, denoted as a, expressed in30

m·yr−1 ice equivalent. As the snow densifies into firn and then ice, air that circulates through the firn is trapped in bubbles in

the ice at the Lock-in Depth (LID), denoted as l, expressed in m. Finally, as ice flows at the site of a drilling, it effectively thins

vertically – this is represented in IceChrono by an ice thinning function, denoted as τ , which is unitless.
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These three glaciological variables allow us to build an ice core chronology for each core k at depth z. First, we calculate

the ice age χk, by integrating the number of accumulated and thinned ice layers above depth z:

χk(zk) =

zk∫

0

Dk(z′k)

ak(z′k)τk(z′k)
dz′k (1)

where Dk is the relative density with respect to pure ice at a given depth in the core. Then, we calculate the air age Ψ:

Ψk(zk) = χk(zk −∆d(zk)), (2)5

where ∆d(zk), or ∆depth, is the depth difference between the air trapped at a given depth and the ice with the same age, which

is located shallower in the core. ∆d(zk) is derived from the Lock-in Depth l using the following relationships:

zk∫

zk−∆dk(zk)

D(z′k)

τ(z′k)
dz′k ≈

lk(zk)Dfirn
k (zk)∫

0

1

τk(z′iek )
dz′iek , (3)

ziek =

zk∫

0

Dk(z′k)dz′k (4)

where Dfirn
k (zk) is the firn density when the ice at depth zk was at lock-in depth, and ziek is the ice equivalent depth.10

We define a general relationship age(z) for the chronology as a whole. age(zice) takes the value of χ(z) in the ice matrix,

and age(zair) the value of Ψ(z) for air bubbles. Similarly, age(zk) indicates the chronology for core k, and age(zj) indicates

the chronology for core j. This notation allows us to express the synchronization residuals simply, without separate equations

for ice or air ages. The correct age for the synchronization is determined by the species used (i.e. air age for CH4).

3 Defining a cost function15

In the chronological inverse problem, we estimate the posterior probability distributions of the three glaciological variables,

which we refer to as forward model variables, using the available chronological information. We therefore formulate the

problem in a Bayesian inverse framework.

Before we perform the inversion, we compile the available chronological observations, to which we associate the probability

density ρD. We also specify a prior probability density for the three glaciological variables (denoted together as X), based20

roughly on our overall knowledge from previous modeling and experimental studies, which we denote ρM . Then, Bayes’
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theorem allows us to calculate the overall state of information about a set of model parameters: the posterior probability

density σM .

σM (X) = κ ρM (X) ρD(f(X)) (5)

where κ is a normalizing constant and f is the forward relationship between the model parameters and the data. In our case,

we may have data in units of age, or the concentration of a particular chemical species measured at a given depth in the core,5

for example. For data in units of age, f is equivalent to age(z); for data in concentrations (for synchronization in particular),

we must additionally associate a concentration with each value of age(z). Assuming that the uncertainties associated with the

observation values and the model prior are Gaussian (importantly, we have made no such assumptions about f itself), we can

rewrite equation 5 as:

σM (X) = κ
1

2
exp(−J(X)), (6)10

where J is a cost function that sums residual terms with respect to the model priors and chronological information.

The cost function we develop for IceChrono 2.0 includes residual terms for each core k and core pair k,m that represent

each source of available chronological information. We can group this information into three classes:

– residuals Jprior with respect to the forward variable priors

– residuals Jobs for discrete chronological observations, e.g. dated horizons15

– and finally, residuals Jsync for time series synchronization (new to IceChrono 2.0).

3.1 Forward variable residuals

To calculate Jprior, we first define a correction function for each glaciological variable. In the case of accumulation, we write

this function as

acorr = ln

(
a

aprior

)
; (7)20

the correction functions for τ and l are written similarly. These correction functions allow us to transform these three vari-

ables from Jeffreys variables, which are uniformly positive and described by log-normal probability distributions, to Cartesian

variables, which can be described by Gaussian probability distributions (Tarantola, 2005). This allows us to define a Gaussian

uncertainty (i.e. standard deviation) for the prior value of each of the three variables at a given depth.

The cost function and residual terms for accumulation for each core k are written as25

Jak = (Rak)
T
C−1
a Rak (8)
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Rak =
acorr
σak

. (9)

σak is the uncertainty with respect to accumulation, and Ca is a matrix that accounts for the autocovariance of the accumulation

residuals, if any is expected. The residuals for τ and l take the same form (all three are treated in greater detail in the description

paper for IceChrono 1.0, Parrenin et al. (2015)). Finally, the sum of the residuals Jak , Jτk and J lk gives us the first residual class5

for ice core k, Jpriork . Note that residuals with respect to the priors are defined only for individual cores, and not for core pairs.

3.2 Discrete chronological observation residuals

The second class of residuals, discrete observations or Jobs, is defined both for individual cores and for core pairs. These

discrete observations can be dated ice or air horizons, dated ice or air intervals, stratigraphic links between two cores (in the ice

or gas phases), or any combination of these. These residuals are defined individually in the appendix of Parrenin et al. (2015),10

and generally take the following form, for individual ice core k:

Jobsk =
(
Robsk

)T
C−1
obsR

obs
k (10)

Robsk =
age(zobsk )− ageobsk

σobsk
. (11)

As above, Cobs is the residual autocorrelation matrix, ageobsk is the observed age, chron(zobsk ) is the modeled age at the depth

of the observation, and ageobsk is the age uncertainty with respect to the observations for k. For stratigraphic links between ice15

cores k and m, we similarly write:

Jobsk,m =
(
Robsk,m

)T
C−1
obsR

obs
k,m (12)

Robsk,m =
age(zobsk )− age(zobsm )

σobsk,m
(13)

3.3 Synchronization residuals

The third class of residuals is used to synchronize ice cores using measurement series. This class of residuals is new to20

IceChrono 2.0; the residual classes described above were included in IceChrono 1 as well. Within IceChrono 2.0, two types of

synchronization can be performed. The first is alignment to an external target, whose chronology does not change. The second

is synchronization with another core also included in the chronological inverse problem, in which case the chronologies of both

cores are allowed to vary.
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3.3.1 Synchronization to an external target

For alignment to an external target, a target function is defined before the inversion. This function should take ages as an

argument, and produce an output with the same units as the time series we wish to use to synchronize. This could mean using

the same type of measurement (synchronizing methane series, for example), or different measurements, transformed to best

match the synchronization series.5

We denote the series of observations of each synchronization proxy p as obsp. The depths corresponding to these observations

are denoted zobs
i . For proxy p, we denote the target function as tarp(age). At each optimization step, we evaluate the residuals

between the observations at depths zobs
i and the target. At each step, the proposed chronology age(z) allows us to evaluate the

value of the target function at the ages assigned to the depths zobs
i :

Rsync
p,i =

(
obsp,i− tarp,i(age(zobs

p,i,k))

σsync
p,i

)
(14)10

Here, σsync
p,i accounts for measurement and method uncertainty. To transform the residual vector into a residual scalar, we

take its product with itself, transformed by Csync
p , the residual autocorrelation matrix defined for proxy p.

J sync
p = (Rsync

p )T (Csync
p )−1Rsyncp ; (15)

3.3.2 Synchronization between two cores

In the case of synchronization between two cores i and j that are both included in the chronological inverse problem, we can15

no longer define a fixed target. Instead, the target for each series is the equivalent series on the other core, adjusted for the

proposed chronology at each optimization step. This means that for core i, the target function tarp,i(age) changes at each step

according to core j, and vice versa. This functionality is tested in the synchronization between Talos Dome and EDC.

3.4 The cost function

We sum the prior and discrete observation residual terms for each core k, the discrete observation residual terms for each core20

pair k,m, and the synchronization residuals for each method p to arrive at the total cost function:

J =
∑

k

(Jobsk + Jak + Jτk + J lk) +
∑

k,m

Jobsk,m +
∑

p

J sync
p

With the cost function defined, we can now evaluate the likelihood

L= exp(−J(X)), (16)
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which is proportional to the posterior probability density as given in equation 6. Constructing a likelihood function is sufficient

to apply many Bayesian solution algorithms.

4 Exploring the posterior probability

Many of the time series used to synchronize paleoclimate records, like Methane or Sulfate time series, tend to be jagged in

character. Additionally, the pairs of peaks that should be matched are not always unique–sometimes, a match can be ambigu-5

ous, with a peak or abrupt change in one series potentially matching two peaks in the other series. In practice, this means that

the target functions f tar used for synchronization is often highly nonlinear, and the posterior probability density will most

likely be non-Gaussian and potentially multi-modal. The synchronization term in the cost function, J sync, may have many

local minima, where the values of the two series are locally close, and shifting one of the series by a small amount worsens the

alignment (though the alignment could eventually be improved by a large shift). As such, convex, gradient-based optimization10

methods, like the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) used in IceChrono 1.0, are not nec-

essarily applicable to methane synchronization, as they use information about the local gradient of the cost function to reach

a minimum. In some cases, these methods may be useful to find local minima. To explore the posterior probability density,

though, a stochastic (Monte-Carlo) sampling method that searches beyond local minima is necessary.

Even when using a stochastic sampling method, we cannot entirely escape the challenge of multimodality. Many Markov15

Chain Monte Carlo (MCMC) sampling methods like the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,

1970) can become stuck in local minima (Sharma, 2017), greatly increasing the number of iterations necessary to produce

independent samples of the posterior.

We face a second challenge as well–that of dimensionality. Because stochastic algorithms require repeated model realizations

and cost function evaluations, the required computational time generally increases with both the number of parameters and20

number of observation. Thus, we not only need a sampling method capable of dealing with multimodality of the posterior, but

also with high-dimensional parameter spaces.

We design a solution algorithm for this application based on the Python emcee package (Foreman-Mackey et al., 2013).

Emcee was originally written as a Python implementation of the affine-invariant ensemble Metropolis-Hastings algorithm

developed by Goodman and Weare (2010). This algorithm is parallelizable, making it useful for the application of stochas-25

tic optimization to large-scale problems. However, the proposal steps in the Goodman and Weare (2010) algorithm are not

well-suited to multimodal posterior distributions (Sharma, 2017). Thus, we implement Differential Evolution Markov Chain

(DEMC) proposals, as in ter Braak (2006) and ter Braak and Vrugt (2008), leaving out the adaptive component, that are in-

cluded in the Foreman-Mackey et al. (2013) package. We tune the proposals in order to adapt to the multimodality of our

problem. The algorithm is parallelized using the Schwimmbad module (Price-Whelan and Foreman-Mackey, 2017).30

In DEMC, N chains evolve together, allowing us to maintain a parallel structure. For a given chain, the proposal at each step

is determined using the positions of the remainingN - 1 chains. These proposals are accepted or rejected using the Metropolis-

Hastings criterion, and each chain thus becomes a Markov chain whose target distribution is the posterior. In ter Braak and
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Vrugt (2008), two proposal steps are proposed: a standard DE-MC move, and a snooker move. These moves are described

below; for further detail with respect to the algorithm we refer the reader to ter Braak and Vrugt (2008). Similar combinations

of proposals are used in many studies using algorithms based on ter Braak and Vrugt (2008)–see Laloy and Vrugt (2012) and

Nelson et al. (2013), for example.

4.1 Differential Evolution Move5

Consider a population of N parallel markov chains with current positions xj at timestep j, forming a set Xj. To update a given

walker xi, randomly select the current positions of two additional walkers xR1 and xR2 from the complimentary set Xj
6=i

which includes all members of Xj except xj
i. The proposal x∗ is generated using:

x∗ = xj
i + γ(xR1−xR2) + e (17)

where γ is a scalar, and e is a stochastic component drawn from a symmetric distribution with small variance with respect to10

the posterior. Using this proposal distribution, each chain respects detailed balance with respect to the posterior distribution if

we accept or reject each jump according to the Metropolis-Hastings ratio:

Pxj
i→xj+1

i =x∗ = min

{
1,
L(x∗)

L(xj
i)

}
(18)

This move is nearly parallel to the line between xR1 and xR2. As the move uses walkers from the current generation, it

adapts to the scale and the orientation of the posterior distribution as the walkers converge toward the posterior.15

For our synchronization test, we use two variants of the classical Differential Evolution move. For the first, we take the value

of γ to be 2.38 /
√

2d, where d is the number of model parameters, as suggested by ter Braak and Vrugt (2008) to provide an

approximate acceptance probability of around 0.23, a heuristic reference for problems with large parameter dimensionality. In

the emcee framework, multiple moves are randomly selected with user-specified probability, which we assign by testing for

optimal acceptance probability. We assign this move a selection probability of 0.5 – that is, it should be applied for about half20

of all proposals.

For the second variant of the classical Differential Evolution move, we take γ to be 0.98. This value reflects the probable

multimodality of the synchronization posterior – ter Braak and Vrugt (2008) suggest that a value close to 1 allows a walker

in one mode to easily transit to another. Kupiainen-Määttä (2016) uses a value of 0.98, which we find to slightly improve

acceptance probability in our tests. We assign this move a selection probability of 0.1 – that is, it should be applied for about25

10 % of proposals. This probability could be adjusted according to the degree of multimodality of the synchronization at hand.

4.2 Snooker Move

For the remaining ∼ 40 % of proposals, we use the DEMC snooker update proposed by ter Braak and Vrugt (2008). To update

walker xi using this algorithm, three other chains, with current states z, zR1 and zR2 are selected. Then, we orthogonally
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project the vectors zR1 and zR2 onto the vector xi− z, giving two projected vectors zP1 and zP2. Then, the proposal is

calculated as:

x∗ = xj
i + γ(zP1− zP2) (19)

To maintain detailed balance, the Metropolis-Hastings ratio when this move is applied is modified to:

Pxj
i→xj+1

i =x∗ = min

{
1,
L(x∗)||x∗− z||d−1

L(xj
i)||x

j
i − z||d−1

}
(20)5

where d is the dimensionality of the model vector.

The orthogonal projection is designed to account for the covariance between model parameters, allowing them to be updated

coherently, and effectively reducing the model dimensionality. Thus, ter Braak and Vrugt (2008) propose γ = 2.38/
√

2 for this

move, considering the dimensionality to be effectively 1. In our tests, however, we found that γ = 2.38/
√

2d led to acceptance

rates much closer to the reference value, and lower autocorrelation times for the model variables. This may be due to the jagged,10

multimodal nature of our posterior probability distribution. The local covariance of model parameters, within individual modes,

is possibly stronger and structurally different than the covariance accross modes. Thus, this step is likely more appropriate for

smaller, local moves, in our particular case. However, we retain the orthogonal projection, as it should still allow us to explore

local modes efficiently.

4.3 Alternative methods for exploring the posterior15

The parameters of the MCMC steps given above, the MCMC steps selected, and even the nature of the solution method used

are problem-dependent. In the case of a synchronization problem thought to be close to unimodal – if we have a considerable

amount of discrete dated points and intervals, for example, a simpler MCMC step might be preferable. Without the synchro-

nization module, convex optimization is still ideal, given that it takes considerably less computational effort.

IceChrono is written in a modular, object-oriented Python framework. In practice, this means that it is not difficult to imple-20

ment various solution methods. The Levenberg-Marquardt gradient-based optimization method is carried over from IceChrono

1.0. The basinhopping method of Wales and Doye (1997), which combines stochastic sampling and gradient-based optimiza-

tion, is implemented. The additional moves included in the emcee package are also easily available, including the classic

Metropolis-Hastings algorithm and the original Goodman and Weare (2010) move. The python Kombine package, an algo-

rithm based on a kernel-density estimate (Farr and Farr, 2015) is included, as is a version of Parallel Tempering in the ptemcee25

package (Vousden et al., 2015). The latter two are likely useful as well for multimodal distributions. Thorough tests of these al-

gorithms are outside the scope of this paper, given the time and computational resources necessary to apply a single algorithm,

but we implement these solution methods to make IceChrono more broadly applicable for future studies.
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Figure 2. Prior, age (yr BP) vs. CH4 (ppmv) CH4 series on the AICC2012 prior scenarios for the EDC (black) and Talos Dome (blue) ice

core records. The cumulative tuning uncertainty is shown using the brown shading on the EDC series.

4.4 Representing the posterior probability

This probability density is best represented as the ensemble of all model vectors accepted in the MCMC simulation. In

IceChrono 2.0, we save the age-depth relationships that correspond to these vectors in the HDF5 format (Folk et al., 2011)

as implemented in the Python h5py package by Collette (2013) and the emcee package by Foreman-Mackey et al. (2013). The

most accurate chronology produced by our method is indeed this ensemble of model vectors, rather than a mean chronology5

with covariances, as would be the case for IceChrono 1.0. The ensemble chronology can be represented as an animation, as

indicated by Tarantola (2005). Alternatively, we can make histograms of individual variables or multiple-line plots of the series

of glaciological variables or age-depth relationships.

5 Test case: synchronization of EDC and Talos Dome ice cores using CH4

5.1 Setting up the synchronization inverse problem10

We test our method using CH4 series to synchronize the EDC and Talos Dome ice cores in the gas phase over the last ∼45 ky.

The current standard chronology for both the Talos Dome and EDC ice cores is AICC2012 (Bazin et al., 2013; Veres et al.,

2013). In AICC2012, the manual tie points derived by Loulergue et al. (2008) and Buiron et al. (2011) were not included, as

both cores were independently synchronized to the NGRIP methane record (Capron et al., 2010) up to 50 ka BP. However, we

can still use the manual tie points developed by Loulergue et al. (2008) (the tie points derived by Buiron et al. (2011) are older15

than our test period) to cross-verify our code with the results of a manual synchronization.
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We develop our synchronization based on the AICC2012 scenario, using the correlation matrices and priors as defined

for the AICC2012 experiment in Parrenin et al. (2015), with updated uncertainties for the priors. We limit the chronologies

to the first 1000 m of the EDC core, and the first 1100 m of the EDML core. Age grids for the LID and Accumulation

correction functions are defined from 0 to 50,000 yr BP. We operate the dating experiment at very low resolution to minimize

the necessary computation time (8 nodes per core for the thinning correction function, and an age interval of 2500 yrs for the5

LID and accumulation correction functions).

We then remove any chronological information that could interfere with or "help" the synchronization module. Apart from

the CH4 series for both cores, we retain only three ice dated points for EDC so that the absolute ages stay reasonable.

The CH4 series used for EDC was measured by Loulergue et al. (2008), and the TALDICE series measured by Buiron et al.

(2011). In addition to the CH4 measurement uncertainty, an uncertainty of 10 ppbv is taken into account for the synchronization.10

This uncertainty is representative of the maximum offset for individual CH4 peaks due to differences in the gas trapping

processes between the two records (see, for example, the Dansgaard-Oeschger events in figures 2 and 3).

To correctly balance the terms of the cost function in the AICC2012 scenario, the priors were assigned uncertainties that

prove to be too large for our scenario. Preliminary testing showed that leaving the original uncertainties from AICC2012 in

place causes our problem to be ill-posed, with inappropriately low cost function values assigned to chronologies in which the15

methane series were well-synchronized but the glaciological scenarios physically unrealistic (thinning function values far from

1 near the ice surface, for example, or large changes in accumulation anticorrelated with trends in the isotopic series used to

determine the priors).

We considerably reduce the uncertainties for all three variables: by a factor of 10 for the thinning function and EDC lock-in

depth, and by a factor of 5 for the accumulation and TALDICE lock-in depth priors (note that these uncertainties are relative20

uncertainties of the raw variables, so these correspond to smaller changes for the log-transformed correction functions). We

should note that these uncertainties are still very large, allowing for, in some cases, negative values of accumulation (which

is generally impossible at the EDC and TALDICE sites). We also set the uncertainty with respect to the thinning function at

the surface to 0 (impossible in the DATICE code), as the most recently accumulated snow is entirely unthinned. Tests with the

original AICC2012 priors showed similar results for the CH4 synchronization, but allowed LID to vary too far from the prior25

for both cores. Interestingly, in spite of the large changes in LID, the Depth-Ice Age and Depth-Air Age results are similar

regardless of the prior. The correlation matrices for the three glaciological variables are left unchanged.

The Talos Dome and EDC CH4 series on these two prior scenarios are shown in Figure 2. Visually, the two series are

relatively well-matched in the shallowest parts of the core (from the onset of the Holocene period around ∼ 11.5 ka BP

onward). However, as we continue to older ages in the cores, the match between the two CH4 series worsens. None of the30

Dansgaard-Oeschger events, between 40 ka BP and 20 ka BP, are particularly well-matched, with several false matches (i.e.

around 30 ka) between different events. These false matches create local minima in the synchronization term of the cost

function, and the ability to escape them is an important test of the true usability of our algorithm.
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5.2 Convergence diagnostics

While MCMC simulations, in theory, are designed to converge to their target distribution (in our case, the posterior probability

distribution), it is difficult in practice to guarantee that convergence has occurred, since the information we have about the

posterior beyond the simulation itself is limited. For parallelized, multi-chain MCMC methods, Goodman and Weare (2010)

recommend the integrated autocorrelation time of the variables as a diagnostic of the convergence of a simulation. We use5

this metric, as estimated in Foreman-Mackey et al. (2013) to evaluate the sampling error associated with each variables in the

simulation. The sampling error, σ2, is expressed as:

σ2 =
actf
N

V ar(f(θ)), (21)

where actf is the autocorrelation time, N is the number of samples, and f(θ) the chain in question. Thus, we seek a small

value of actf
N to minimize sampling error. Complicating this diagnostic, the estimate used by Foreman-Mackey et al. (2013)10

for actf is biased for small values of actf
N , asymptotically reaching correct values; once N ∼ 50actf the estimate is usually

robust. Of course, given unlimited computational resources, it is best to let the simulations run for much longer. The estimator

should still be treated with care, as it is sensitive as well to parameters used in its own calculation.

In our test simulations, we found four potential ways to improve convergence:

1. Changing the MCMC steps. Including the variants of the Differential Evolution and snooker steps, particularly the mix15

of γ = 1 and γ = 2.38
√

2d greatly improved autocorrelation times by preventing the walkers from becoming stuck in

local modes. MCMC steps well adapted to the shape of the posterior solution are a powerful tool to avoid astronomical

autocorrelation times.

2. Increasing the number of iterations. This is the easiest solution, particularly when the simulation has nearly converged.

3. Adjusting the number of walkers. More walkers help the simulation start out in a larger sub-region of the posterior, but20

more walkers also require more iterations to converge appropriately.

4. Lowering the resolution of the dating experiment. If it is not imperative to optimize the chronologies at high resolution,

it is much easier to converge to a 100-dimensional probability distribution than to a 1000-dimensional distribution.

5.3 Results: standard case

We run 128 model walkers for 1,000,000 iterations of the Markov Chain Monte Carlo algorithm as described above, and save25

one out of every 1,000 iterations to reduce memory usage. After 1,000,000 iterations, the two methane series are visually

well-synchronized, as visible in figure 3 and the supplementary interactive figures. Indeed, our tests show that appropriate syn-

chronizations can be reached by some walkers with as few as 1,000 iterations. Using the autocorrelation estimate as described

above, the variables have all been sampled for more than 50 autocorrelation times – though we should keep in mind that the

estimator of autocorrelation times is itself not necessarily reliable.30
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Figure 3. Methane series for TALDICE and EDC, on the maximum prior probability (left) and maximum posterior probability (right) scenar-

ios. The cumulative tuning uncertainty is shown using the brown shading on the EDC series. Note that in each figure, only one synchronization

is shown – see the supplementary interactive figures for the full ensemble, which is representative of the posterior distribution.

Line plots of the accepted scenarios are shown in figures 4 and 5. Each accepted scenario is plotted as a thin, semi-transparent

line, so that in the regions where more scenarios are accepted, these plots show greater color density. It is important to note

that the dependencies between variables are not shown in these plots (unlike in a multivariate histogram, for example). These

plots, instead, show the MCMC estimate of the marginal distribution of each variable. The interdependencies/covariances

between glaciological variables are better reflected in the ice ages and air ages as shown in figure 5, as these variables are5

integrative; and they are best understood using the composite animations in the digital supplement, which show the ensemble

of all variables and calculated ice/air ages for each scenario. The composite animations can be downloaded at https://github.

com/Jai-Chowdhry/IceChrono_new/tree/master/Interactive.

The accumulation and thinning functions do not deviate considerably from the prior for either scenario, which is in part by

design–the synchronization, which is the largest component of the cost function, takes place in the air phase, and the age of10

the air phase can in theory be adjusted by changing only the LID. In practice, the thinning function and accumulation will be

affected by the synchronization as well, in order to balance the prior terms in the cost function.

Both accumulation records remain relatively close to the prior, and do not present unrealistic values. Accumulation should

be mostly constrained by the age of the ice matrix, which ultimately depends on the three dated points for EDC, and the three

EDC dated points plus the synchronization for TALDICE. It is thus limited to realistic values by the model, which would15

produce incoherent results and high cost function values for negative accumulation values, for example, even though the range

of the prior distribution contains unrealistic values.

Neither LID record has changed dramatically, with the TALDICE record appearing to have changed the most at around

35,000 yrs BP with respect to its prior. During this period, the prior scenarios were particularly badly synchronized.

Finally, the thinning function τ remains relatively similar to its prior for both cores.20
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Figure 4. From top to bottom: Accumulation, Lock-In Depth and Thinning Function τ for TALDICE (left) and EDC (right). In the figures,

we show the a sampling, reduced by a factor of 1000, of the 44,800,000 models accepted in the MCMC simulation, of 350,000 iterations for

128 walkers (44,800 models are shown in these figures). The models are plotted semi-transparently, so that an area with higher probability

density appears denser in color.
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Figure 5. From top to bottom: ice age vs. depth and air age vs. depth for TALDICE (left, brown) and EDC (right, blue). In the figures, we

show the a sampling, reduced by a factor of 1000, of the 44,800,000 models accepted in the MCMC simulation, of 350,000 iterations for

128 walkers (44,800 models are shown in these figures). The models are plotted transparently, so that an area with higher probability density

appears denser in color.
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Figure 6. Comparison of the manual tie points between TALDICE and EDC derived by Loulergue et al. (2008) (red) and the same points

recreated from the synchronization in this study (blue). The uncertainties estimated by eye (Loulergue et al., 2008) and by calculating the

standard deviation of the ensemble of fits (this study) are shown as error bars.

In spite of the broad range of uncertainty for the priors, the ranges of air age and ice age for both TALDICE and EDC remain

well constrained, as shown in figure 5. These variables integrate the three glaciological parameters, and we can expect that

if the inverse problem is not too badly posed (i.e. the cost function terms are more or less appropriately balanced), the three

glaciological parameters will covary so that a change in one is compensated by a change in the other, leading to an acceptable

age scenario as per the discrete chronological information, as shown in the EDC Ice Age plot.5

The methane series for each core for all accepted scenarios are shown in the supplementary interactive figures. This represen-

tation is useful to check whether our synchronization module works as expected. Indeed, the entire deglaciation is well-matched

for the vast majority of accepted scenarios, as are each of the Dansgaard-Oeschger (D-O) events. Some events smaller than the

D-O events are also well-synchronized–for example, the dip after the beginning of the Holocene period, around 8 ka BP. We

confirm that our residual formulation works as expected.10

We further compare our synchronization scenario to the manual tie points derived by Loulergue et al. (2008). Manual tie

points are, in general, specified by identifying corresponding depths along the two cores, with uncertainty given either in terms

of depth or age. In order to be able to compare our synchronization with the manual tie points, we take the EDC depths for

each tie point, and identify the TALDICE depth with the same age for each scenario in the ensemble. We then simplify this

information by calculating the mean and standard deviation of the corresponding TALDICE depths. The tie points derived15

from our synchronization and those derived by Loulergue et al. (2008) are shown in figure 6 and table 1. It is important to note

that the Loulergue et al. (2008) tie points are derived at the midpoints in rapid transitions. Since this technique, unlike our cost

function term, does not rely on concentration values, the results of the two synchronizations could be expected to differ.

The tie points derived from our synchronization correspond with those of Loulergue et al. (2008). The error bars derived

by our synchronization tend to be smaller than those of Loulergue et al. (2008) in spite of having assigned a large additional20
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EDC Depth (m) TALDICE Depth (m) Loulergue et al., 2008 1σ TALDICE Depth (m) Automated 1σ

418.50 695.40 4.29 695.28 0.23

443.50 736.80 4.00 737.18 0.22

476.10 785.50 4.06 784.90 0.26

639.10 941.00 3.72 941.93 0.19

651.90 953.00 3.81 953.97 0.19

688.10 990.00 3.55 990.14 0.56

702.10 1004.00 3.53 1004.00 0.72

719.70 1025.00 3.29 1025.00 0.97

751.30 1059.20 3.43 1059.04 1.44

776.00 1085.00 3.57 1085.83 0.77

791.00 1098.60 3.63 1099.40 1.21
Table 1. Tie points as derived by Loulergue et al. (2008) between EDC and TALDICE, and the same points recreated from the synchronization

in this study. The tie points are expressed for EDC depths (in m depth); the corresponding TALDICE depths and uncertainty estimates are

given in m depth as well.

uncertainty to the synchronization (20 ppbv) to very roughly account for gas trapping differences and offsets between the

two records. This is likely due to the continuous nature of our synchronization–we do not rely exclusively on midpoints, but

rather match the entire series, leaving less room for ambiguity for the largest events. The last four matches, corresponding with

smaller, more ambiguous events, have the largest uncertainties.

Three important points should be brought up regarding the estimated sigmas for this test. The first, and most important,5

is that the uncertainty related to smoothing and the gas trapping process is not taken into account here. This means that the

uncertainties given by the automatic method still contain a major source of error, which should be corrected in future studies.

Second, the uncertainties presented here are calculated after the dating experiment, while the uncertainties for manual syn-

chronization are estimated beforehand.

The third point is related to the shape of the posterior probability density. In presenting the automatic tie points using a mean10

and standard deviation, we assume the shape of their distribution should be approximately Gaussian, which is likely untrue; we

also cannot express the covariance between tie points. As mentioned throughout the paper, the ensemble of accepted scenarios

should always be preferred to any statistical summary of the synchronization.

5.4 Results: test of sensitivity to resolution

We run a test of the sensitivity of the synchronization solution to the resolution of the correction functions for the three15

glaciological variables. In this experiment, we reduce the resolution of the correction functions for LID and accumulation

to 5,000 years, and use eight nodes for the thinning correction function. Since the resolution of this experiment is lower, it

takes less iterations to converge, and we run the experiment for 400,000 iterations, after which all but one of the variables
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Figure 7. Methane series for TALDICE and EDC, on the maximum prior probability (left) and maximum posterior probability (right) scenar-

ios. The cumulative tuning uncertainty is shown using the brown shading on the EDC series. Note that in each figure, only one synchronization

is shown – see the supplementary interactive figures for the full ensemble, which is representative of the posterior distribution.

have crossed the threshold of 50 autocorrelation times. The synchronization of the two cores on the accepted scenario with

the lowest cost function value in the run is shown in figure 8. The best synchronization for the low-resolution experiment is

visually indistinguishable from the standard experiment.

Because of the considerable change in resolution, corrections to the prior chronology are made more coarsely, and the

posterior densities for the three glaciological variables themselves may be different. This is confirmed by figure S1, where5

the posterior density of LID for EDC appears to deviate slightly from those sampled for the standard experiment; the poste-

rior densities of the thinning function vary significantly as well. We seek to identify how these changes affect the proposed

chronologies and synchronization scenarios.

Figure S2 shows a sampling of the ensemble of chronologies accepted during the low-resolution experiment. The ensembles

are not markedly different from the standard experiment, though we should note that the air age at EDC between 40 ka BP and10

20 ka BP has not explored as large of a region as in the standard experiment.

Tie points generated by the low-resolution experiment are compared to those calculated by Loulergue et al. (2008) in table

S1 and figure S3. The automated tie points correspond well to those estimated by Loulergue et al. (2008) and the standard

experiment. However, we note a significant difference in the estimation of the associated uncertainty. The low-resolution

experiment tends to underestimate the uncertainty of the matches, particularly for the six deepest tie points, with respect to15

the higher-resolution experiment. This is likely because the very low resolution – 5,000 years – means that each node of the

LID correction function changes the chronology on scales larger than the individual Dansgaard-Oeschger events. While we

are still able to match the two series, the events themselves are not allowed to change in shape, thus leading to an error in

the uncertainty estimation. We can infer that, for an appropriate estimation of error, the resolution of the dating experiment

should be greater than the typical frequency of the events we wish to match. It may be possible to conduct very low-resolution20
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synchronization experiments by including an error term accounting for the potential bias induced by the resolution, but this

would require further study.

6 External Synchronization test case: Fletcher Promontory to WAIS Divide

As a test of the capability of our method to synchronize an ice core dated within IceChrono to an external record, we use

a high-resolution CH4 series from the Fletcher Promontory (FP) ice core, measured at IGE, to synchronize FP to the WAIS5

Divide 2014 (WD2014) chronology (WAIS Divide Project Members, 2015). We use the WAIS Divide methane record as a

target record: that is, we do not allow the WD2014 dating scenario to change (though were it to be allowed to change, the very

low chronological uncertainty of WD2014 would not allow for much modification in any case).

6.1 Prior glaciological scenario for Fletcher Promontory

The glaciological priors are chosen to be roughly correct within the extent of our knowledge of the ice properties at the FP10

drilling site, using simple semi-physical descriptions. We later confirm that our choice of priors is very roughly appropriate by

plotting the Fletcher Promontory CH4 record on the prior age scenario, and checking whether the oldest and youngest ages for

the series correspond approximately. For details on the definitions of the priors and their uncertainties, we refer the reader to

the supplementary materials.

6.2 Discrete observations15

We include five discrete ice age observations in the optimization to correctly date the ice phase. Sensitivity tests showed that

excluding these points did not have a significant effect on the air chronology.

A small measurement offset exists between the WAIS divide and Fletcher Promontory cores. We make use of an iterative

procedure to correct this offset: we allow the synchronization of the two cores to run for 10,000 iterations, and then correct the

Fletcher Promontory series by the mean percentage offset from the WAIS divide core using the maximum probability scenario.20

After two iterations, the mean percentage offset is an order of magnitude smaller than its standard deviation, so we use this

correction for our synchronization.

6.3 Result

We ran the FP-WAIS experiment with 256 walkers at 500-year resolution for 2.5 million iterations. Like the two-core experi-

ments, we retained one out of every 1,000 iterations. Out of 218 variables, 10 had autocorrelation times estimated longer than25

50,000 iterations, though the mean autocorrelation time registered lower, at 17,900 iterations. In any case, the result of this

experiment should be treated with care, given the larger potential estimation error.

In this experiment, the prior scenario is highly mismatched from the WD chronology, in spite of our efforts to improve the

prior glaciological variables. The MC simulation takes more iterations to leave the region of the prior (in sensitivity tests, the

walkers all finally reach the WD-chronology region of probability after about 1 million iterations). Because of this, we run an30
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Figure 8. Methane series for FP and WAIS Divide, on the maximum prior probability (left) and maximum posterior probability (right) scenar-

ios. The predefined tuning uncertainty is shown using the blue shading on the WD series. Note that in each figure, only one synchronization

is shown – see the supplementary interactive figures for the full ensemble, which is representative of the posterior distribution.

"initialization" period of 25,000 iterations, after which the walkers are re-initialized by sampling from a small gaussian-shaped

region close to the position of the lowest cost-function walker (details included in the supplement) and allowed to run for 2.5

million iterations. In an ideal scenario, the priors would be improved to be much closer to the appropriate synchronization,

though this is not always practically possible.

The interactive figures in the supplement show good agreement between the CH4 series, showing that our method is capable5

of external synchronization between the relatively high-resolution series that result from continuous flow analysis, and even

with very approximate (incorrect) priors. We can identify a few "outlier" scenarios for the glaciological variables and ages, but

their number, and the associated probability density, is minimal. Better informed and constrained priors, like those used in the

EDC-TALDICE experiments, would likely eliminate these scenarios.

7 Assumptions and Limitations10

We emphasize that this is strictly a test of the synchronization module, and does not provide a new chronology for the Fletcher

Promontory, Talos Dome or EDC records. In order to make sure that the synchronization of the series was indeed produced

by the synchronization term in the cost function, and not simply matched by good supporting chronological information, we

removed all additional chronological information in the EDC-TALDICE experiments, with the exception of three ice dated

points for EDC, which anchor the EDC-TALDICE chronologies in a generally acceptable region, and should not greatly affect15

the synchronization, which is in the gas phase.

It should be noted that the EDC-TALDICE chronologies produced here are thus not necessarily correct (note, for example,

that the Bolling-Allerod period occurs too early). In order to produce correct chronologies, we should include all of the addi-
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tional information for the pair of cores we wish to match; this is outside the scope (and indeed contradictory to the verification

purposes) of this study. Otherwise, a well-dated external record, like the WD series used in the external experiment, can be

used to create a "correct" chronology.

Nor do we test the validity of the principles of methane synchronization – we simply cross-verify our result against a manual

synchronization to confirm that our code can appropriately match two series. This does not mean that CH4 synchronization is5

itself perfect – the treatment of gas trapping distributions in the cores, for example, would be a significant improvement.

A few assumptions inherent to our model should be highlighted:

– We assume that the two series used for synchronization can be assumed to be similar in shape and timing. The degree

of truth of this assumption depends on the two series used. Methane series, for example, should come from ice cores

that have similar gas trapping characteristics (or the additional uncertainty should be accounted for). It is, of course,10

possible to introduce two highly dissimilar series, but with the risk of introducing a high degree of complexity into the

posterior, making the problem ill-posed and the solution vague. In the case that we know two series should correspond

at certain points, but these series are dissimilar, we can either transform these series to be more similar (and account for

the uncertainty added by the transformation) or simply use discrete tie points, which would likely be more reliable.

– We assume that the uncertainties associated with the prior and the observations can be represented by a Gaussian distri-15

bution.

We identify a few limitations, as well:

– Our method remains limited by computation time. Performing a federative dating experiment like AICC2012 at high

resolution with appropriate convergence diagnostics would require significant computational resources. IceChrono is

uploaded on the Dahu platform of the CIMENT computational cluster (https://ciment.ujf-grenoble.fr), and the compu-20

tations performed here required between 7 and 24 hours on 48 cores. A much larger experiment would likely require

further innovation for the MCMC procedure.

– Our method is not an independent synchronization method – that is, we do not derive tie points without creating chronolo-

gies. This has its advantages and disadvantages–the multiple sources of information in a chronology are all considered

together, diminishing the potential for error and maximizing the reproducibility of chronologies, but we need consider-25

able additional information. If the end goal is to simply derive tie points, the Dynamic Time Warping-based methods of

Lisiecki and Lisiecki (2002) and Lin et al. (2014) are likely more applicable.

– Defining appropriate parameters for the priors and solution algorithm is delicate; the definition of the prior will always

be prone to some subjectivity. In order to improve the priors, further glaciological study at the drilling sites is required.
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8 Conclusions

Our method can synchronize two ice cores (or other paleoclimate archives) by adjusting accumulation, lock-in depth, and the

thinning function. In the case of CH4 synchronization, we were able to further constrain the chronology with respect to a

manual synchronization because our method is continuous – we synchronize the entire series, rather than a few selected tie

points. This can add significant detail to chronologies. The method is capable of synchronizing an ice core to an external record5

as well.

Importantly, though, this is a dating method which includes a synchronization term, and not exclusively a synchronization

method. Thus, we can also, and indeed must also include complimentary information to create a complete chronology. The

glaciological priors must be defined carefully to avoid subjectivity, and require significant prior study. However, including the

priors and discrete age markers allows us to create robust chronologies that are consistent with all sources of chronological10

information.

Our method has potential for broad application, and we can envisage many perspectives. The model should be tested for the

synchronization of volcanic peaks. We could also envisage a test of orbital tuning using isotopic ratios or Total Air Content.

It might possible also to use the algorithm to tune to seasonal cycles, that is use it as an automated annual layer counting

algorithm. Finally, it will be important to investigate how to better account for the effects of diffusion and the gas trapping15

process when synchronizing in the gas phase.

Several further developments of IceChrono can be envisaged for the near future. For large dating experiments with multiple

ice cores, we hope to implement a more efficient MCMC sampler for high-dimensional, multimodal densities. One way to

do so may be to decrease the computational time per iteration. This could be done by modifying our code to allow for GPU

computing, and/or by training neural networks to replace the computationally intensive proposal step, as in Habib and Barber20

(2018). Additional possible developments for IceChrono include coupling with automated layer counting as in Winstrup et al.

(2012); the development of on-line accumulation models; and modifications to better include paleoclimate archives beyond

ice cores; this last development is in progress, and a manuscript describing the new model that can include many different

paleoclimate archives, now called Paleochrono, is in preparation. Our synchonization module will eventually be included in

the new Paleochrono model as well.25

9 Code availability

The code used in this study is available at https://github.com/Jai-Chowdhry/IceChrono_new.

10 Result availability

The full ensemble of accepted iterations from the MCMC simulation is available from the authors upon request, due to large

file size.30
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11 Interactive figures

Interactive figures are available at http://pp.ige-grenoble.fr/pageperso/beeman/Synchronization/. These figures are made with

the Python Bokeh library, and are saved in .html format.
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Conclusions and Perspectives
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At the base of this thesis lies a Bayesian framework, developed for two case studies

in ice core paleoclimatology. This framework relies on the construction of a posterior

probability density function, which, as stated by Tarantola [2005] represents a state of

knowledge with respect to the physical system under study. Here, to conclude, we outline

the implementation of the framework in both studies, the limitations of performing these

studies using this framework, and finally some conclusions about the larger significance to

the paleoclimate community.

In our first study, we estimate the timings of millenial-scale changes in CO2 and Antarc-

tic temperature during the last deglaciation and the phasings between the two series. The

construction of the posterior is simple in this study – the probability of the observations

is defined by the CO2 and temperature series themselves and their uncertainties. We do

not explicitly include a prior probability density, which implicitly means that we have

picked a uniform prior probability distribution across the space of the potential change

points and piecewise linear representations. In theory, we might in fact have some prior

knowledge about where the changes occurred. However, this knowledge is largely visual –

that is, we can identify the change points by eye – or depends on other models, and thus

the inclusion of a non-uniform prior would have introduced a large degree of subjectiv-

ity. The data used in this case are the CO2 series and individual and stacked Antarctic

temperature time series. Probability distributions are specified with respect to these data

according to measurement uncertainty, and in the case of the stack, uncertainty resulting

from the stacking procedure. We model the series using piecewise linear functions, which

can approximately represent the millenial-scale changes during the deglaciation.

The question addressed by this work has now been answered several times – perhaps

because of its relevance to the carbon cycle and contemporary anthropogenic climate

change. Notably, the studies of Monnin et al. [2001], Pedro et al. [2012] and Parrenin

et al. [2013] each addressed the question of phasing between Antarctic temperature and

CO2 using the latest available data. Like our study, each of these studies developed a

method to model the time series and calculate timings and phasings; and each study, ours

included, relies upon the assumptions inherent to these models. In our case, for example,

the changes in CO2 and Antarctic temperature, while approximately linear in shape,

were surely not exactly linear in reality. We also faced challenges of data resolution and

uncertainty as well, though perhaps to a lesser extent than previous work. The treatment

of climatic red noise in this work, for example, remains inexact, and could certainly be

improved upon.
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The studies of Monnin et al. [2001], Pedro et al. [2012] and Parrenin et al. [2013]

show an incremental evolution of the estimates of timings and phasings between CO2

and Antarctic temperature during T1, and our study again adjusts these estimates. We

calculate that temperature most likely led CO2 by ∼ 0.5 kyr at the onset and end of

Termination 1, and that the onset and end of the Antarctic Cold Reversal were nearly

synchronous, with CO2 showing a slight lead at the end. With these results, we can

improve our understanding about the carbon cycle mechanisms at play, linking Antarctic

Temperature and CO2. The series seem to show two, if not three distinct lag timescales,

indicating modulations or modifications of the mechanisms linking them.

The closest of the previous studies in terms of methodology to ours was that of Parrenin

et al. [2013]. This study used piecewise linear fits to represent the time series as well,

and the respective posteriors for the series at hand were sampled using simple Metropolis-

Hastings simulations with 1000 iterations each. Though a Metropolis-Hastings simulation

should in theory converge (eventually) to its target distribution, we know in practice that

MCMC methods that are not adapted to multimodality can easily become stuck in local

modes. In this study, initial change points were specified by hand before running the

Metropolis-Hastings algorithm. Thus, the estimated change points of the study were likely

correct, or at least within an appropriate range, since manual identification of changes in

a time series with marked linear trends should generally be accurate. On the other hand,

modes of probability beyond the local mode corresponding to the initial fit may not have

been explored. Finally, Parrenin et al. [2013] presented the timings and phasings of the

changes in Gaussian form.

In our study, we implement a more powerful MCMC method, allowing us to appro-

priately sample a complex posterior and avoid specifying an initial guess position (we do

so stochastically). We make an effort to largely avoid approximations to the probability

densities of the change point locations. Given the assumption that the changes themselves

are well-represented by piecewise linear fits, we are able to treat their potential timings

using histograms of the ensemble of fits accepted by the MCMC simulation; the calcula-

tion of the phasing is also done using the ensemble of fits. Though we give 68 % and 95 %

central probability intervals for the phasings, if we wanted to make a further calculation

using the lead-lag results, we could easily use the saved ensemble of fits to directly apply

the stochastic selection.

A major limitation of both Parrenin et al. [2013] and our study is the assumption of

linearity of the changes. Indeed, as we comment in the article, this assumption may bias
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the calculation of the CO2 change point at the end of the deglaciation, for example – it

is difficult to confirm the location of this point visually, and a secondary probability peak

seems to indicate that the true change might have occurred earlier. But our method could

easily be adapted to accept a non-linear model of the changes – our only requirement is to

be able to take residuals between the model and the data series. The resulting probability

density functions may be complex and multimodal, but we have shown, particularly in

the second study, that we can begin to explore such probability density functions using

specialized Markov Chain Monte Carlo methods. Such a study is within close reach, and

we would simply need to propose the non-linear model of the changes. This could perhaps

be done by relying on the physical characteristics of CO2 changes – since we know, for

example, that the carbon cycle is characterized by feedbacks, we could model the changes

using exponential functions, pieced together with linear functions for longer trends. The

residual framework could even be applied directly to the output of simple carbon cycle

models designed to calculate series of CO2 and global or Antarctic temperature – a sort

of very simple reanalysis. This could be an effective way to investigate the probabilities

of the mechanisms included in the models to represent the changes that occurred.

In the CH4 synchronization study, we construct a much more complicated posterior

probability density function. We work with a glaciological model, defining prior scenarios

for the three glaciological variables that describe a chronology. Since rigorous scientific

study has been performed concerning each of these variables, the construction of the priors,

though it still contains a degree of subjectivity, has a clear initial direction. The sources

of information are also much more numerous – indeed, the idea behind IceChrono is that

we should be able to include as many sources of chronological information as possible,

to provide the most comprehensive chronologies possible. In the synchronization study,

we develop a robust method to add a significant source of information that was included

very roughly in previous chronologies. Only the work of Lisiecki and Lisiecki [2002], Lin

et al. [2014] and Ahn et al. [2017] had achieved continuous synchronization in the context

of paleoclimate records, and the combination of continuous synchronization with many

additional sources of chronological information and a glaciological model had seemed to be

a difficult problem, requiring the exploration of a complex, possibly multimodal probability

density function.

Yet, with our framework, this seemingly tough problem is possible to explore. We give

a first working solution – and a template by which other complex, continuous sources of

chronological information might be included in formalized chronologies. The next imme-
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diate advances will be the application of this method to volcanic synchronization. The

volcanic synchronization problem is slightly more difficult for two reasons: the first, the

jagged nature of the ice core record of volcanic events; and the second, that these events

are recorded at the same times in ice cores, but the concentrations at which they are

recorded depend on the distance to the event source. The first problem may require mod-

ifications to the MCMC algorithm, or even the use of a more powerful algorithm. An

improved solution algorithm would be of great use, even beyond our field, but would be

a significant mathematical study (on the scale of a doctoral thesis or beyond). However,

applied mathematicians in many fields beyond paleoclimate work on similar problems as

well, and we can surely expect the choice of powerful MCMC algorithms to expand in the

coming years.

The second problem will likely be mitigated by the use of glaciological variables and

external chronological information in IceChrono. Unlike a pure matching algorithm, the

variable priors and supplementary observations allow us to constrain the synchronization

in a way that is physically correct. Thus, we reduce the number of physically possible

false matches. In some cases, the use of external information can lead to the identification

of one correct match, as in Svensson et al. [2013], even for a match between Antarctic and

Greenland cores. Given that a large amount of constraining information is available, it

could certainly be included in an IceChrono synchronization.

We can also certainly envisage the application of our method to orbital tuning, itself a

form of external synchronization. For orbital tuning, the largest challenge is that we begin

to deal with truly inexact proxies – that is, the chemical species that we can measure in

ice cores, commonly δ18O, Total Air Content and δ O2/N2, are far from being exactly

representative of the astronomical parameters that they are thought to track. Rather,

they are linked to these parameters by physical processes that vary, and that may contain

uncertain lags on the order of thousands of years [Bazin et al., 2016]. Here, the largest

challenge is not the synchronization itself, but rather the construction of appropriate target

functions / relationships between the proxies measurable in ice cores and the astronomical

parameters themselves.

It may also be possible to apply our synchronization method to annual layer counting,

though annual layer counting is not truly a form of synchronization. For each record

used in layer counting, we would develop a “template” of the annual cycles of the record,

extend this template well beyond the expected age of the ice core, and synchronize the

record externally to the template series, which would remain fixed in age. In the use
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of a template, this would not be dissimilar to the automated method of Winstrup et al.

[2012]. However, the definition of a template poses a challenge in itself, and the increase in

resolution necessary to synchronize on the annual scale would demand significantly more

computational resources, or more efficient solution methods.

In general, for the broader application of automated synchronization for ice cores, we

come upon two research problems that remain to be tackled:

1. Computation: The problem of computation can be addressed from two angles:

improvements to efficiency of the computational method, or the addition of compu-

tational resources. In our case, either type of improvement would allow our method

to become more generally applicable. At the time of writing, the synchronization

method, used on the medium-scale computational resources of the CIMENT Froggy

computational platform (making computations with up to 128 computational nodes,

over times as long as 48 hours) can synchronize a small number of ice cores at low res-

olution. This is not yet sufficient for a dating experiment on the scale of AICC2012,

where we would require several ice cores to be dated at high resolution. In order to

do so, we would need either to implement a significantly more adapted method to

sample from the posterior, or to call upon more substantial computational resources.

For large-scale chronologies, an intermediate solution may be to determine tie points

using a low-resolution implementation of our method, and then include these tie

points as discrete sources of information in a high-resolution experiment. We would

thus include a Gaussian approximation the synchronization, which would inherently

mean losing some of the accuracy and precision associated with our method. On

the other hand, it would allow for the use of much more efficient gradient-based

methods, but still retain some of the objectivity of automated synchronization.

2. Definition of targets: To perform synchronizations using series beyond those

assumed to perfectly match requires some work on the target series. This work,

essentially, would be composed of studying the physical processes linking series to

their targets. The work of Extier et al. [2018], for example, links atmospheric δ18O

in ice cores to its equivalent in speleothems, providing a new potential source for

synchronization.

In chapter two, we mentioned what Tarantola [2005] refer to as the “movie strategy”

to understand the stochastic results of high-dimensional inverse problems. This strategy

informs how we treat the results of both of the studies presented in this thesis. We might
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also refer the “ensemble” treatment of stochastic results. Briefly, this means that we

treat the results of a stochastic sampling of the posterior probability density functions

associated with a problem as the final result themselves, avoiding the loss of information

via summary statistics (or treating summary statistics with care, and acknowledging their

shortcomings, if they are required).

In the CO2 - Antarctic Temperature study, the most accurate representation of the

timings and phasings is not the set of maximum probability timings with 68 % and 95 %

central probability intervals, but rather the set of histograms of the timings and phasings

themselves. Even better than the histograms are the sets of accepted MCMC iterations,

as the timings and phasings of the individual change points as determined by the piecewise

linear fits for a given series may be correlated model (a point that we did not treat in the

paper, but should surely treat in future studies).

In the synchronization study, the “true” chronology, similarly, is presented in the

HDF5 file containing all of the accepted MCMC iterations. This HDF5 file can be used by

studies wishing to use the full stochastic chronology to perform calculations with each of

the accepted scenarios (or a thinned subset of these accepted scenarios), thus accurately

propagating chronological uncertainty.

In this study, we also develop interactive figures to best reflect the “movie” strat-

egy. Like the original animations created by Tarantola [2005], in these interactive figures,

the user can click on the time series representing a given variable, and visualize the cor-

responding time series for the other variables as well. This visualization permits us to

show complex covariances in a very high-dimensional space not conducive to multivariate

histograms, for example. In this study, we take gaussian approximations of the synchro-

nization result in order to be able to compare with the result of a manual synchronization,

but this is of course only a simplification of the true result.

As the computational resources and methods necessary to tackling problems, like auto-

mated synchronization for ice cores, become available and commonly used, the treatment

of ensemble results as acceptable, final results themselves will become common practice in

the paleoclimate community. We hope that we have provided the community with some

ideas of how to treat and present these results.

The method developed for the CO2 - Antarctic Temperature study is likely of use to

the broader paleoclimate community as well. It can fit approximately piecewise-linear time

series with any number of change points, which could be of use in determining phasings

between different paleoclimate proxies (speleothem records, ocean sediments etc.) accross
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many periods of climate change. Glacial terminations, in particular, often present changes

in many paleoclimate variables that are piecewise-linear in character (see Landais et al.

[2013], for example). The calculations we use to approximate the leads and lags between

probability density functions could be of use, for example, in comparing the timings of

dated glacial moraine stages, which often have age distributions that are not exactly

Gaussian, to paleoclimate proxies to determine the response times of glaciers to climate

events.

The study of CO2 and Antarctic temperature has some significance beyond the field

of paleoclimate as well. It seems likely from our results that variable timescales exist in

the interaction between CO2 and temperature in Antarctica, and that these timescales

can vary from region to region in Antarctica as well. In addition, we identify lags (if

small) in both directions. In the context of modern climate change, this result seems to

confirm that we can expect longer-timescale feedbacks in the carbon cycle to respond to

warming temperatures – it could be reasonable, for example, to expect an oceanic release

of CO2 on the timescale of several hundred years after the initial climate perturbation, as

was the case at the onset of the deglaciation. Of course, the results are complex enough

that it is difficult to point to one particular response or response mechanism that should

be expected – the main point being that, indeed, we can probably expect several major

feedback responses to take place.

The development of our synchronization method does not, itself, have large implica-

tions for the study of climate. However, it is of use precisely to studies like the first,

allowing us to reduce and more accurately characterize the relative chronological uncer-

tainties between paleoclimate records. To understand the complex workings of the climate

system in the past, we will need, precisely, to be able to compare paleoclimate records

from across the globe with low relative uncertainty between them. Our synchronization

method is a significant step in this direction.
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Eric Monnin, Andreas Indermühle, André Dällenbach, Jacqueline Flückiger, Bernhard

Stauffer, Thomas F Stocker, Dominique Raynaud, and Jean-Marc Barnola. Atmospheric

CO2 concentrations over the last glacial termination. Science, 291(5501):112–114, 2001.

Frédéric Parrenin, Valérie Masson-Delmotte, Peter Köhler, Dominique Raynaud, Didier
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Details of the stochastic simulation

A schematic of how residuals between the change point representation and the time series are calculated is included in Figure

1.

In order to eliminate the need to specify an initial fit to estimate the autocorrelation matrix, we perform two subsequent

optimizations. During the initialization, we use very rough estimates of the autocorrelation matrix of the residuals and the5

modeling uncertainty: identity and the standard deviation of the observations, respectively. An automated first guess is pro-

posed by randomly generating the n xi values and interpolating the yi values from the observations. This quickly orients the

optimization toward the correct region. The optimization is then allowed to run for an initialization period of 25,000 iterations,

with 50 individual walkers.

The best fit encountered in the initialization is used to start the true optimization (250,000 iterations with 50 walkers):10

modeling uncertainty is re-estimated as the mean of the absolute residuals on the best fit; and the autocorrelation matrix is

reestimated by taking the autocorrelation of the residuals of the best fit. A histogram of the proposals accepted by the second

optimization is taken as the final result.

To conserve computational time, the individual temperature series are run with 10,000 initialization iterations and 100,000

optimization iterations, and the Savitsky-Golay filtered series with 1000 initialization iterations and 50,000 optimization itera-15

tions. Tests show that runs with 10,000 optimization iterations achieve reasonable convergence.

Parallel MCMC methodology

To propose updates to the walkers, we apply what Goodman and Weare (2010) refer to as a "stretch move". Consider the

ensemble of walkers, in this case representing potential piecewise linear fits X and an individual walker Xj
k in the ensemble at

proposal step j. We select another walker Xj
h from the complementary ensemble Xj

[k], composed of all of the other walkers.20

Then, a proposal is made to update Xk to W :

Xj
k→W = Xj

h +Z
(

Xj
k −Xj

h

)
(1)

GW define the following probability distribution to generate stochastic variable Z:

g (Z)∝
{

1

Z
if Z ∈

[
1

AZ
,AZ

]
; 0 otherwise (2)
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Figure 1. Schematic of the calculation of residuals between a data series and its change point representation. Here, the data series is shown

as black points, with 1σ error bars. Change points are shown in pink, and the interpolations between them as black lines. The differences

between the data points and the interpolations are shown as red arrows; the residual vector is composed of this distance divided by the

uncertainty σ at each point.

where AZ is a user-defined constant. In this study, the constant AZ is set to 2, following Foreman-Mackey et al. (2013).5

Proposals are accepted or rejected with acceptance probability

PXj
k→Xj+1

k =W =min

{
1, Zj−1 exp(−J(W )))

exp(−J(Xj
k)))

}
. (3)

BIC and change point sensitivity tests

We calculate the BIC for both series individually, and an additive, normalized BIC to pick the number of change points used.

The additive BIC gives 7 as the best number of points to coherently fit both series. Using the individual criteria, 6 points would10

have been chosen for temperature, and 9 for CO2, but comparing different numbers of points makes it less clear if the changes

represented are actually coherent in timescale. These are shown in Figure 2.

We run tests to test the sensitivity of our results to the use of 5-9 change points rather than 8 (Figure 3). It is clear from

these figures that 5-point fits cannot accurately represent either series; at 6 points, the temperature series begins to be well-

represented, and at 9 points the CO2 series is appropriately represented. The 7, 8 and 9 point fits do not show significant15

differences, except at the ACR onset.

2
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Figure 2. Individual (left, CO2 in black and ATS3 in red) and cumulative BIC (right) for 5,6,7,8,9 and 10 point (x-axis) runs.

Figure 3. Atmospheric CO2 (black) and ATS3 histograms of probable change points from the 5,6,7, 8 and 9 (from top left to bottom right)

runs of LinearFit.

3
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Figure 4. Plot of residuals ri (x axis) against the predictions made using our AR(1) model ri = ri−1 · ati−ti−1 (y axis) shown as blue dots,

for the CO2 series after the initialization MCMC procedure. The orange line represents a perfect model fit.

Test of AR(1) residuals

We test our AR(1) model by plotting adjacent residuals of the CO2 series against their predictions, using the robust AR1 model

adapted to unevenly spaced time series described in the methods section. The results are shown in figure 4.

A note on Gaussian Estimates20

We avoid providing estimates of change point timings in Gaussian form, i.e. as a mean ± a standard deviation. This is because

the change point histograms we calculate are often skewed, and sometimes even multimodal, with multiple, separate probability

peaks in a given time period where change is likely. These peaks can be due to sub-millenial scale variations at these points in

the two series.

A test with known lags and covariance5

.

We use artificially generated series to test the capacity of our method to fit change points in series with four known change

points (plus two end points). For each series, a covariance matrix is used to generate noise with a red component, with a

correlation coefficient of 0.8 at 50 years and 0.64 at 100 years away from the central point, and a uniform white component.

The noise is scaled to 10% of the standard deviation of the change point values. The results of this test, along with the original10

change points, are shown in Figure 5.

In Figure 5, note that all of the change points are correctly identified in the histograms, with uncertainties on the order of

100 years. However, a small, but incorrect probability peak is generated around 13 ka. We conclude that gradual changes, such

4
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Figure 5. Artificially generated series and generated change point distributions.

as that around 12 ka, are slightly more difficult to extract from correlated noise even when this noise is modeled, adding some

methodological uncertainty which is reflected in the histograms.15

5
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1 Fletcher Promontory continuous CH4 data

The Fletcher Promontory, in the southwest corner of the Weddell Sea, is a small ice cap 650m thick. The Fletcher Promontory

(FP) ice core was drilled in January 2012, reaching the bedrock at 654.3 m depth from the surface, as part of a UK-French

collaborative project. The FP ice core sections (73 meters, from a 512-585 m depth range) were analyzed at high resolution

for methane concentration at IGE in 2016 over a 9-day period and using a continuous ice core melting system with online gas5

measurements (CFA, continuous-flow analysis). Detailed descriptions of this method have been reported before (Stowasser

et al., 2012; Chappellaz et al., 2013; Rhodes et al., 2013) and the IGE CFA setup has been specifically described by Fourteau

et al. (2017).

Briefly, ice core sticks of 34 by 34mm were melted at IGE at a mean rate of 3.8 cm min −1, and the water and gas bubble

mixture was pumped toward a low-volume T-shaped glass debubbler. All the gas bubbles and approximately 15 % of the water10

flow were transferred from the debubbler to a gas extraction unit maintained at 30◦ C. The gas was extracted by applying a

pressure gradient across a gas-permeable membrane (optimized IDEX in-line degasser; internal volume 1 mL). The gas pres-

sure recorded downstream of the IDEX degasser was typically 500–600mbar. A homemade Nafion dryer with a 30 mL min−1

purge flow of ultrapure nitrogen (Air Liquide; 99.9995 % purity) dried the humid gas sample before entry into the laser spec-

trometer. Online gas measurements of methane were conducted with a SARA laser spectrometer based on optical-feedback15

cavity-enhanced absorption spectroscopy (OF-CEAS; Morville et al. (2005); Romanini et al. (2006)). The SARA spectrometer

was calibrated onto the NOAA2004 scale (Dlugokencky et al., 2005) before the CFA analyses using three synthetic air stan-

dards with known methane concentrations (Scott-Marrin, Inc.). CH4 concentrations measured during the calibration agreed

with NOAA measurements within 0.1 % over a 360–1790 ppbv range.

Allan variance tests (Allan, 1966; Rhodes et al., 2013) were conducted using mixtures of degassed deionized water and20

synthetic air standard to evaluate both the stability and the precision of the measurements. The best Allan variance was obtained

1
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with an integration time larger than 1000 s, illustrating the very good stability of the CFA system. In this study, we used an

integration time of 110 s (data resolution decreased to 7 cm) for which a precision of 0.5 ppbv (1 σ) was observed.

The mixing of gases and meltwater during the sample transfer from the melt head to the laser spectrometer induces a CFA

experimental smoothing of the signal. The extent of the CFA-based damping was determined by performing a step test, i.e., a

switch between two synthetic mixtures of degassed DI water and synthetic air standards of different methane concentrations,5

following the method of Stowasser et al. (2012). It shows that the CFA system can resolve signals down to the centimeter scale

(Fourteau et al., 2017).

Breaks along the core regularly let ambient air enter the system, resulting in strong positive spikes in methane concentration.

In order to remove these contamination artifacts, exact times corresponding to a break running through the melt head were

recorded during the measurements and later used to identify and clean the data from contamination.10

In the measurement line, once the ice core is melted, the liberated gases dissolve in the melt water. However, methane has a

higher solubility than oxygen or nitrogen, and it follows that CH4 dissolves preferentially, leading to reduced methane mixing

ratios in the extracted air reaching the SARA spectrometer. The solubility correction was evaluated by comparing the FP signal

with WAIS Divide ice core data: a CFA record already corrected for solubility effects (Rhodes et al., 2015). We make use of an

iterative procedure to correct this offset: we perform a synchronization (1000 iterations) of the two cores, and then correct the15

Fletcher Promontory series by the mean percentage offset from the WAIS divide core on the minimum cost function scenario.

After two iterations, the mean percentage offset is an order of magnitude smaller than its standard deviation, so we use this

correction for our synchronization, taking the standard deviation of the (non-percentage) offset as the modeling error, which is

included alongside measurement error (by summing squares) in σsync
p,i . The resulting solubility correction coefficient of 1.12

was applied to the whole FP dataset.20

2 Priors for the Fletcher Promontory/WD Experiment

Since the glaciological priors influence the posterior via Bayes’ theorem (that is, they are included in the cost function as a

regularization for the optimization problem), we choose them to be roughly correct within the extent of our knowledge of the

ice properties at the FP drilling site.

The prior accumulation scenario is calculated, as in Parrenin et al. (2015) from the ice deuterium record, with the relationship:25

ab = a0 exp(8β∆D) . (1)

We take a0 = 0.5 and β = 0.025. The prior LID scenario is set constant at 78 m. The prior thinning function τ is defined

again as in Parrenin et al. (2015), making use of ice flow modeling concepts from Lliboutry (1979), Parrenin et al. (2006) and

Parrenin and Hindmarsh (2007):30

τ b = (1−µ)ω+µ. (2)

2
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We set µ, the ratio between accumulation and melting, to .021. The flux shape function ω is defined as

ω = 1− p+ 2

p+ 1
(1− ζ) +

1

p+ 1
(1− ζ)

p+2 (3)

Where ζ is a vertical coordinate normalized by subtracting basal height and dividing by ice thickness. We set parameter p to

1.7.

We later confirm that our choice of priors is not totally inappropriate by regarding the Fletcher Promontory CH4 record5

on the prior age scenario. As shown in the main text, this is only a first-order check that the ages of the methane record are

correct to within a few thousands of years, and the ages themselves are still quite far from the correct scenario. The relative

uncertainties (and covariance matrices) on the priors are set as in Parrenin et al. (2015), with diagonal variance set to 20 %

for accumulation and lock-in depth, and across-diagonal linear decrease duration of 4000 yrs as in Bazin et al. (2013). The

covariance matrix of the thinning function, as in Parrenin et al. (2015), is assumed linearly related to the ratio of ice-equivalent10

depth and ice-equivalent layer thickness by constant k = 0.1, and across-diagonal linear decrease duration is set to 70 m.

It is important to note, as mentioned in the main text, that these priors are still quite poor in terms of synchronization to

WAIS Divide. We use a re-initialization procedure to quickly orient the walkers to regions of high probability and accelerate

convergence. The walkers are first initialized according to the prior and allowed to evolve for 25,000 iterations.

3 Digital supplement15

The digital supplement, including interactive figures and an animation of the synchronizations and glaciological variables for

the TALDICE-EDC experiments, can be found at http://pp.ige-grenoble.fr/pageperso/beeman/Synchronization/.

4 Test: Sensitivity of EDC-TALDICE experiment to resolution

The supplementary figures and table for the sensitivity test are given here.

3
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Figure 1. From top to bottom: Accumulation, Lock-In Depth and Thinning Function τ for TALDICE (left) and EDC (right). In the figures,

we show the a sampling, reduced by a factor of 1000, of the 44,800,000 models accepted in the MCMC simulation, of 2,500,000 iterations

for 128 walkers (44,800 models are shown in these figures). The models are plotted semi-transparently, so that an area with higher probability

density appears denser in color.

4
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Figure 2. From top to bottom: Ice Age vs. Depth and Air Age vs. depth for TALDICE (left, brown) and EDC (right, blue). In the figures, we

show the a sampling, reduced by a factor of 1000, of the 44,800,000 models accepted in the MCMC simulation, of 2,500,000 iterations for

128 walkers (44,800 models are shown in these figures). The models are plotted transparently, so that an area with higher probability density

appears denser in color.
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EDC Depth (m) TALDICE Depth (m) Loulergue et al., 2008 1σ TALDICE Depth (m) Low-Res Auto 1σ

418.50 695.40 4.29 695.39 0.13

443.50 736.80 4.00 737.08 0.15

476.10 785.50 4.06 784.53 0.25

639.10 941.00 3.72 942.90 0.33

651.90 953.00 3.81 954.25 0.30

688.10 990.00 3.55 989.17 0.12

702.10 1004.00 3.53 1004.46 0.16

719.70 1025.00 3.29 1024.14 0.07

751.30 1059.20 3.43 1059.39 0.14

776.00 1085.00 3.57 1087.05 0.64

791.00 1098.60 3.63 1099.75 0.93
Table 1. Tie points as derived by Loulergue et al. (2008) between EDC and TALDICE, and the same points recreated from the low-resolution

synchronization experiment in this study. The tie points are expressed for EDC depths (in m depth); the corresponding TALDICE depths and

uncertainty estimates are given in m depth as well.

Figure 3. Comparison of the manual tie points between TALDICE and EDC derived by Loulergue et al. (2008) (red) and the same points

recreated from the low-resolution synchronization in this study (blue). The uncertainties estimated by eye (Loulergue et al., 2008) and by

calculating the standard deviation of the ensemble of fits (this study) are shown as error bars.
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Timing and phasing tables

The following tables were originally presented in a spreadsheet file in the supplement to the

Antarctic Temperature-CO2 study. They show the results of sensitivity tests of the timings

and phasings to different numbers of change points. Phasings are shown first, followed by

timings. The calculated maximum and central probability intervals are approximations of

the results of MCMC simulations, which are shown in the histograms in the paper.
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ATS3 8 pts 95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper)

T1 Onset -338 127 570 751 1045

ACR Onset -357 -137 50 376 708

ACR End -410 -211 -65 117 375

Holocene 45 337 532 629 773

Table A.1: Phasing, calculated using fits with 8 change points, between ATS3 and CO2.

Phasing is given in years. The columns represent central intervals of probability.

Only rapid rise, 8 pts. 95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper)

Holocene -71 65 174 280 411

Table A.2: Phasing, at the Holocene between ATS3 and CO2, if only the end of the rapid

rise at the onset of the Holocene is taken to be the true CO2 change point. Phasing is

given in years. The columns represent central intervals of probability.

ATS3 7 pts 95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper)

T1 Onset -226 247 609 802 1073

ACR Onset -269 3 240 502 781

ACR End -456 -230 -56 137 363

Holocene 85 345 520 623 763

Table A.3: Phasing, calculated using fits with 7 change points, between ATS3 and CO2.

Phasing is given in years. The columns represent central intervals of probability.

WD d18O 8 pts 95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper)

T1 Onset -439 -36 210 387 636

ACR Onset -378 -213 -150 231 502

ACR End -277 -89 35 206 545

Holocene 79 585 805 854 949

Table A.4: Phasing, calculated using fits with 8 change points, between WD δ18O and

CO2. Phasing is given in years. The columns represent central intervals of probability.
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DF d18O 8 pts 95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper)

T1 Onset -513 -2 480 729 1054

ACR Onset -573 -246 48 345 706

ACR End -464 -251 -108 209 490

Holocene -293 -25 96 408 617

Table A.5: Phasing, calculated using fits with 8 change points, between DF δ18O and

CO2. Phasing is given in years. The columns represent central intervals of probability.

EDC d18O 8 pts 95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper)

T1 Onset -308 136 460 665 953

ACR Onset -384 -129 -20 344 643

ACR End -483 -299 -175 -4 360

Holocene 71 331 492 575 697

Table A.6: Phasing, calculated using fits with 8 change points, between EDC δ18O and

CO2. Phasing is given in years. The columns represent central intervals of probability.

TD d18O 8 pts 95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper)

T1 Onset -321 196 598 800 1087

ACR Onset -336 -159 10 338 658

ACR End -496 -307 -174 23 403

Holocene 70 332 560 630 762

Table A.7: Phasing, calculated using fits with 8 change points, between TD δ18O and

CO2. Phasing is given in years. The columns represent central intervals of probability.

EDML d18O 8 pts 95 % (lower) 68 % (lower) Maximum 68 % (upper) 95 % (upper)

T1 Onset -393 53 330 590 917

ACR Onset/ 16 ka ?? -1565 -866 -518 1068 1885

ACR End -410 -204 -48 143 390

Holocene -27 338 552 679 844

Table A.8: Phasing, calculated using fits with 8 change points, between EDML δ18O and

CO2. Phasing is given in years. The columns represent central intervals of probability.
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8 pts ATS -95 -68 Max 68 95

T1 onset 17467 17706 18093 18218 18426

ACR onset 14068 14215 14239 14522 14699

ACR end 12583 12691 12783 12904 13118

T1 end 11384 11568 11695 11760 11877

Table A.9: Timing, calculated using fits with 8 change points, of major changes in ATS.

The columns represent central intervals of probability.

8 pts WD -95 -68 Max 68 95

T1 onset 17525 17604 17690 17809 17971

ACR onset 14113 14204 14241 14305 14387

ACR end 12739 12838 12879 12959 13436

T1 end 11691 11817 11999 11986 11998

Table A.10: Timing, calculated using fits with 8 change points, of major changes in WD

δ18O. The columns represent central intervals of probability.

8 pts DF -95 -68 Max 68 95

T1 onset 17141 17609 17598 18223 18448

ACR onset 13789 14046 14354 14531 14751

ACR end 12522 12627 12690 13025 13242

T1 end 11028 11169 11226 11553 11748

Table A.11: Timing, calculated using fits with 8 change points, of major changes in DF

δ18O. The columns represent central intervals of probability.

8 pts EDC -95 -68 Max 68 95

T1 onset 17493 17770 17945 18118 18327

ACR onset 14044 14245 14384 14450 14587

ACR end 12535 12620 12668 12764 13265

T1 end 11485 11563 11586 11698 11783

Table A.12: Timing, calculated using fits with 8 change points, of major changes in EDC

δ18O. The columns represent central intervals of probability.
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8 pts TD -95 -68 Max 68 95

T1 onset 17388 17824 18076 18279 18451

ACR onset 14142 14204 14229 14482 14628

ACR end 12518 12594 12664 12811 13255

T1 end 11395 11561 11723 11751 11872

Table A.13: Timing, calculated using fits with 8 change points, of major changes in TD

δ18O. The columns represent central intervals of probability.

8 pts EDML -95 -68 Max 68 95

T1 onset 17461 17678 17871 18052 18303

ACR onset/16 ka event ??? 14281 14900 16013 15791 16387

ACR end 12572 12695 12757 12943 13125

T1 end 11176 11576 11675 11821 11954

Table A.14: Timing, calculated using fits with 8 change points, of major changes in EDML

δ18O. The columns represent central intervals of probability.

8 pts CO2 -95 -68 Max 68 95

T1 onset 17168 17359 17582 17689 18098

ACR onset 13756 14019 14564 14447 14561

ACR end 12559 12728 12828 12962 13127

T1 end 11011 11072 11148 11266 11534

Table A.15: Timing, calculated using fits with 8 change points, of major changes in WD

CO2. The columns represent central intervals of probability.

7 pts ATS -95 -68 Max 68 95

T1 onset 17578 17898 18137 18259 18436

ACR onset 14112 14228 14233 14531 14704

ACR end 12592 12698 12789 12902 13058

T1 end 11445 11570 11673 11753 11861

Table A.16: Timing, calculated using fits with 7 change points, of major changes in ATS3.

The columns represent central intervals of probability.
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7 pts CO2 -95 -68 Max 68 95

T1 onset 17185 17359 17575 17696 18200

ACR onset 13727 13892 14216 14320 14544

ACR end 12535 12690 12901 12995 13196

T1 end 11009 11070 11150 11267 11534

Table A.17: Timing, calculated using fits with 7 change points, of major changes in CO2.

The columns represent central intervals of probability.

7 pts WD -95 -68 Max 68 95

T1 onset 17523 17617 17676 17875 18075

ACR onset 14103 14203 14305 14333 14386

ACR end 12770 12848 12884 12965 13437

T1 end 11757 11812 11999 11980 11997

Table A.18: Timing, calculated using fits with 7 change points, of major changes in WD

δ18O. The columns represent central intervals of probability.

7 pts DF -95 -68 Max 68 95

T1 onset 17452 17710 17620 18231 18436

ACR onset 13947 14152 14352 14525 14743

ACR end 12524 12619 12692 12953 13183

T1 end 11043 11176 11225 11526 11651

Table A.19: Timing, calculated using fits with 7 change points, of major changes in DF

δ18O. The columns represent central intervals of probability.

7 pts EDC -95 -68 Max 68 95

T1 onset 17546 17798 17943 18094 18267

ACR onset 14205 14339 14438 14496 14603

ACR end 12539 12631 12688 12786 13019

T1 end 11458 11558 11606 11700 11790

Table A.20: Timing, calculated using fits with 7 change points, of major changes in EDC

δ18O. The columns represent central intervals of probability.
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7 pts TD -95 -68 Max 68 95

T1 onset 17561 17860 18112 18247 18439

ACR onset 14140 14196 14233 14406 14553

ACR end 12516 12584 12664 12770 12995

T1 end 11523 11632 11716 11762 11857

Table A.21: Timing, calculated using fits with 7 change points, of major changes in TD

δ18O. The columns represent central intervals of probability.

7 pts EDML -95 -68 Max 68 95

T1 onset 17577 17714 17838 17956 18145

ACR onset/16 ka event ??? 14885 14959 15394 15623 16009

ACR end 12622 12729 12855 12914 13040

T1 end 11299 11602 11670 11806 11934

Table A.22: Timing, calculated using fits with 7 change points, of major changes in EDML

δ18O. The columns represent central intervals of probability.
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Appendix B

CO2 during MIS 6

This study, lead by Jinhwa Shin, provides the first look at millenial-scale variations of CO2

during the penultimate glacial period. As co-author, I worked on the improved chronology

for MIS 6 and the statistical analysis used in the study. The resulting article has been

submitted to Climate of the Past.
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Abstract. Understanding natural carbon cycle / climate feedbacks on various time scales is highly relevant to reliably predict 

future climate changes. During the last two glacial periods, climate variations on millennial time scales were observed but the 15 

background conditions and duration of climate variations are different. Here we make use of contrasting climatic boundary 

conditions during the last two glacial periods to gain insight into the co-occurring carbon cycle changes. We reconstruct a new 

high-resolution record of atmospheric CO2 from the EPICA Dome C (EDC) ice core during Marine Isotope Stage (MIS) 6 

(190 to 135 kyr BP). During long stadials in the North Atlantic (NA) region, atmospheric CO2 appears to be associated with 

the coeval Antarctic temperature changes at millennial time scale connected to the bipolar seesaw process. However, during 20 

one short stadial in the NA, atmospheric CO2 variation is negligible and the relationship between temperature variation in EDC 

and atmospheric CO2 is unclear. We suggest that the amplitude of CO2 variation may be affected by the duration of 

perturbations of the Atlantic Meridional Overturning Circulation (AMOC). In addition, similar to the last glacial period, in the 

earliest MIS 6 (MIS 6e and 6d, corresponding to 189 to 169 kyr BP), Carbon Dioxide Maxima (CDM) show different lags 

with respect to the corresponding abrupt CH4 jumps, the latter reflecting rapid warming in the Northern Hemisphere (NH). 25 

During MIS 6e at around 181.5±0.3 kyr BP, CDM 6e.2 lags abrupt warming in the NH by only 200±360 yrs. During MIS 6d 

which corresponds to CDM 6d.1 (171.1±0.2 kyr BP) and CDM 6d.2 (175.4±0.4 kyr BP), the lag is much longer, i.e., 1,400±375 

yrs on average. The timing of CO2 variations with respect to abrupt warming in the NH may be affected by a major change in 

the organization of the AMOC from MIS 6e to MIS 6d.  
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1 Introduction 

Ice core studies allow us to considerably extend our knowledge about natural climate-carbon cycle feedbacks by directly 

reconstructing atmospheric CO2 from gas preserved in Antarctic ice sheets (Lüthi et al., 2008; Petit et al., 1999). Comparing 

atmospheric CO2 records from Antarctic ice cores with proxies of paleoclimate helps us to understand how atmospheric CO2 

was controlled by carbon exchange with the ocean and land reservoirs on orbital to centennial time scales (Ahn and Brook, 5 

2008, 2014; Bereiter et al., 2012; Higgins et al., 2015; Lüthi et al., 2008; Marcott et al., 2014; Petit et al., 1999).  

Previous works on polar ice core records revealed that temperature variations in Greenland and Antarctica on millennial time 

scales appear to be a pervasive feature during the last glacial period. While Antarctic temperature varied gradually, Greenland 

temperature changes occurred abruptly. A phase difference can be observed between millennial-scale variations of temperature 

in the NH and SH (Northern and Southern hemisphere, respectively), which is referred to as the bipolar seesaw phenomenon 10 

(Broecker, 1998; Stocker and Johnsen, 2003). Potential triggers for this climatic variability on the millennial scale are fresh 

water inputs into the North Atlantic (NA) or alterations of sea ice extent, surface temperature and salinity in NA (Bond et al., 

1992; Broecker et al., 1992; Heinrich, 1988; McManus et al., 1998), which may reduce the strength of the Atlantic Meridional 

Overturning Circulation (AMOC). This would cause a reduction in heat transport from the SH to the NH, which leads to an 

abrupt cooling in the NH and a gradual warming in the SH (Stocker and Johnsen, 2003) and the oppoiste behaviour when 15 

AMOC is strengthened.  

In response to the millennial temperature perturbations, existing CO2 records show the presence of millennial-scale oscillations 

on the order of 20 ppm over the last glacial period (Ahn and Brook, 2008, 2014; Bereiter et al., 2012), which generally co-

vary with the major water isotope (δD) variations in Antarctic ice cores reflecting Antarctic temperature variations (Ahn and 

Brook, 2008; Bereiter et al., 2012) (Figure 1). During cold periods in the NA, referred to as NA stadials, atmospheric CO2 20 

increased continuously and in parallel to Antarctic temperature increase. Again, at the onset of warming in Greenland, 

atmospheric CO2 started to decrease (Ahn and Brook, 2008; Bereiter et al., 2012), generally in line with a co-occurring, slow 

Antarctic cooling. However, the CO2 decrease did not always start at exactly the same time as the onset of the DO warming, 

and the lag itself varied. For example, during Marine Isotope Stage (MIS) 3, atmospheric CO2 maxima lagged behind abrupt 

temperature change in Greenland by 870±90 yrs. During MIS 5, the lag of atmospheric CO2 maxima with respect to abrupt 25 

temperature warming in the NH was only about 250±190 yrs (Bereiter et al., 2012). Atmospheric CO2 variations on millennial 

scales are thought to be related to the role of the Southern Ocean in carbon uptake and deep ocean ventilation on millennial 

timescales (Fischer et al., 2010; Marcott et al., 2014; Sigman and Boyle, 2000; Toggweiler et al., 2006). In addition, 

atmospheric CO2 can be affected by changes in the AMOC, which affects the ventilation of carbon from the deep ocean 

(Denton et al., 2010; Sigman et al., 2007). However, the mechanisms responsible for these oscillations are still under debate, 30 

and therefore require further studies.  

Comparing CO2 changes on millennial time scales during the past two glacial periods, MIS 3 (MIS 3, 60–27 kyr BP) and early 

MIS 6 (early MIS 6, 185–160 kyr BP) can provide us with a better understanding of the carbon mechanisms at work, due to 
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the similarities but also differences of the climate changes during the last two glacial periods (see Figure S1 in SI (Supplement 

Information)). The bipolar see-saw mechanism has been observed to be active also during the early MIS 6 period (Cheng et 

al., 2016; Jouzel et al., 2007; Margari et al., 2010), however, climate boundary conditions during MIS 6 were slightly different 

from those during MIS 3. For example, events of iceberg discharge into the NA, which impact oceanic circulation, appear to 

be much more frequent during MIS 3 than during MIS 6 (Margari et al., 2010; Margari et al., 2014). During the time period 5 

around 175 kyr BP, iceberg discharge was muted; the intertropical convergence zone (ITCZ) is thought to have shifted 

northward, intensifying monsoon systems in low latitude regions, such as in Asia, the Appenine Peninsula and the Levant  

(Ayalon et al., 2002; Bard et al., 2002; Cheng et al., 2016), and leading to a generally weaker AMOC (Margari et al., 2010). 

The duration of NA stadials during the early MIS 6 is longer than that during MIS 3. In addition, the AMOC cell during MIS 

6 might have been shallower than that during MIS 3 (Margari et al., 2010), which may have been caused by intensified 10 

hydrological cycles in low latitude regions (Ayalon et al., 2002; Bard et al., 2002; Cheng et al., 2016).  

In order to investigate whether the different boundary conditions between MIS 6 and MIS 3 could have impacted the 

relationship between atmospheric CO2 and climate, we reconstructed atmospheric CO2 concentrations from the EPICA Dome 

C (EDC) ice core (75°06'S, 123°24'E) with 150 new data points spanning MIS 6 (190 to 135 kyr BP), significantly improving 

existing records previously obtained from the Vostok ice core (Petit et al., 1999). With our new reconstruction, the average 15 

temporal resolution during MIS 6 reaches 360 yr as compared to 1,000 yr in the Vostok record. Over the early time period of 

MIS 6, when millennial-scale variability is observed in the Antarctic climate record (185–160 kyr BP), a total of 100 new CO2 

measurements provide a temporal resolution of ~280 yr. We also improved the relative age uncertainties between ice and gas 

in the EDC core using δ15N-based estimates of firn column thickness to better constrain leads and lags between δD composition 

in EDC and atmospheric CO2 concentrations during the early MIS 6, and we established our new chronology using new δ15N 20 

data during the early MIS 6 in this study and published data from Landais et al. (2013). Finally, we improved the temporal 

resolution of existing CH4 data from EDC (Loulergue et al., 2008) from ~600 yr to ~350 yr to calculate the shift of Carbon 

Dioxide Maxima (CDM) relative to the rapid climate change in the NH. To avoid the age uncertainties between proxy data 

and atmospheric CO2 data, CH4 measurements were used as a time marker of rapid warming in the NH. Over the last glacial 

period, CH4 and Greenland temperature were found to be essentially synchronous with a mean lag of CH4 of not more than 25 

about 50 years (Baumgartner et al., 2014; Rosen et al., 2014).  

2 Methods 

2.1 CO2 measurements  

Atmospheric CO2 was reconstructed using the Ball Mill dry-extraction system coupled to a gas chromatograph at the Institut 

des Géosciences de l’Environnement (IGE), France (Schaefer et al., 2011). Each data point presented in this study corresponds 30 

to a single 40 g ice sample which was measured five times by gas chromatography (five consecutive injections of the same 
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extracted gas). Approximately 5 mm of ice were trimmed from the ice core surfaces before extraction in order to remove the 

external part that could be potentially contaminated with drilling fluid or might have been subject to gas loss during storage in 

the freezer (Bereiter et al., 2009). The CO2 measurements were referenced to a secondary gas standard (synthetic air from Air 

Liquide (Alphagaz 28416000)) containing 233.7±0.4 ppm of CO2 in dry air, which was referenced to two primary standards 

(238.34±0.04 from NOAA (CB09707) and 260.26±0.2 from CSIRO (CSIRO1677)).  5 

Blank tests using 40 g of artificial bubble-free ice were conducted every 10 measurements to quantify the precision of the 

system and to correct for the CO2 contamination  caused by the crushing process. Blank tests are conducted in two steps: First, 

to validate the baseline of the system, a gas standard with 233.7±0.4 ppm is injected over the bubble-free ice in the cell. The 

gas is then left equilibrating in the cell for 10 minutes. Then the gas is analysed twice by successive injections into the extraction 

line and sample loop. Afterwards, the bubble-free ice is crushed and the gas is analysed 5 more times. The difference between 10 

the results before and after crushing was considered as the contamination effect caused by the crushing process. These values 

were used to estimate the precision of the system. Measured CO2 should be corrected for contamination caused by the analytical 

procedure by comparing measured CO2 in blank tests with the standard gas value. However, it is not feasible to correct CO2 

concentrations directly. The CO2 mixing ratio is calculated as the ratio between partial pressure of CO2 and total pressure in 

the measurement line, which is a relative value. Thus, CO2 concentration, and the concentration of CO2 contamination, are 15 

dependent on the total pressure. To avoid this dependence, we correct the absolute value (partial pressure) of CO2 in the air by 

the expected partial pressure of CO2 contamination, as estimated from blank tests.   

For this study, we used 4 different chambers to hold the ice core samples during crushing and measurement. Each chamber 

showed different contamination levels. Therefore, blank tests are conducted on each chamber. The data was corrected by the 

average of each chamber. For these measurements, a precision of the system of at ~1 ppm on average was obtained. On average, 20 

the blank correction corresponds to a reduction of the measured CO2 concentration by 1.7±1.0 ppm (1). In addition, the CO2 

record was corrected for gravitational fractionation, using the δ15N isotope ratio (Craig et al., 1988). To this end, 88 new data 

points together with existing 15N measurements (Landais et al., 2013) covering the late MIS 6 (156.4–139.2 kyr) were used. 

δ15N data were linearly interpolated in age to each corresponding CO2 data point. On average, the correction corresponds to 

removing 1.2±0.1 ppm from the measured CO2 concentration. Thus, in total, an average correction of 2.9±1.0 ppm was applied 25 

to the raw CO2 data. 150 individual ice samples were measured for CO2 in the depth range from 2036.7 to 1787.5 m along the 

EDC ice core, corresponding to the time period from 189.4 to 135.4 kyr BP on the AICC2012 chronology (Bazin et al., 2013), 

thus leading to a mean temporal resolution of 360 yr (280 yr over the time period 185–160 kyr BP).   

2.2 CH4 measurements 

We measured the atmospheric CH4 content of 63 ice core samples, using the wet extraction method at IGE described in detail 30 

in Spahni et al. (2005). This allowed us to improve the temporal resolution of existing CH4 data (Loulergue et al., 2008) from 

~600 yrs to 360 yrs on the AICC2012 chronology (see Figure S2 in SI).  
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The previous CH4 dataset (Loulergue et al., 2008) from EDC was produced at both IGE and Climate and Environmental 

Physics (CEP), Physics Institute, University of Bern, Switzerland. A systematic offset of 6 ppb between IGE and CEP was 

observed (Loulergue et al., 2008). A new data correction was applied to data measured at IGE in this study, and the systematic 

offset between the existing (corrected) data points and their nearest neighbours in the new data set is 3.0±4.6 ppb (n=11). In 

addition, the mean difference between the new data and the existing data points (Loulergue et al., 2008) is 1.7±2.4 ppb (n=63, 5 

the standard error of the mean) during MIS 6, which is within data error. Thus, in this study, we did not take this systematic 

offset between the CH4 records into account or revise the Bern/IGE offset correction of the previous data. 

2.3 Nitrogen isotopes 

Isotopes of molecular nitrogen in air bubbles were measured by a melting technique at the Laboratoire des Sciences du Climat 

et de l’Environnement (LSCE), France. The gas was extracted from the ice by a wet extraction technique and the released air 10 

was analysed by a dual-inlet mass spectrometer (Delta V Plus; Thermo Scientific). The analytical method and data correction 

are described in detail in Bréant et al. (2019). In total, 151 samples from 88 depth intervals (63 duplicates) between the depths 

of 2124.7 and 1875.0 m below the surface were measured, corresponding to 205 to 154 kyr BP (Figure S3 in SI). The average 

resolution on the AICC2012 chronology is ~580 yrs. 

2.4 Ice age revision by estimating Δdepth from δ15N in air of ice core 15 

The water isotopic signature (D), is, unlike CO2, measured on the ice matrix. Air enclosed in an ice core moves through the 

porous firn layers at the top of the ice sheet by molecular diffusion, and becomes trapped in the ice at the so-called Lock-In 

Depth (LID, around 100 m below the surface in the case of the EDC ice core). An age difference thus exists between the ice 

and the air at a given depth. For the conditions of the EDC ice core, the age difference can reach 5 kyr and is associated with 

a large uncertainty (several hundred years (Loulergue et al., 2007)). δ15N of molecular nitrogen in air bubbles can be used to 20 

determine the LID and to calculate the depth difference between synchronous events in the ice matrix and air bubbles, called 

delta depth (Δdepth), thus creating a more precise relative chronology of the gas- with respect to the ice-phase (Parrenin et al., 

2013). We use the Δdepth calculation to adjust the gas chronology of EDC, while the ice chronology from AICC2012 remained 

unchanged. 

We calculate the height of the firn column, h, from δ15N of N2 measurements (Craig et al., 1988; Dreyfus et al., 2010; Sowers 25 

et al., 1989), by using the following Eq.: 

h = h conv + (δ15N – Ω (T) ∆Tdiff) (
∆𝑚⋅𝑔⋅1000

𝑅𝑇
)-1,         (1) 

In this equation, ∆Tdiff is the temperature difference between the top and the bottom of the diffusive zone as estimated by the 

Goujon/Arnaud model, where surface temperature and accumulation are estimated from the stable water isotope record 

(Loulergue et al., 2007). Ω (T) is the thermal diffusion sensitivity, which has been estimated from laboratory measurements 30 

by Grachev and Severinghaus (2003). Δm is the mass difference between 14N and 15N (kg mol−1), g is the gravitational 
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acceleration (9.825 m s−2 for Antarctica) (Parrenin et al., 2013), and  R is the universal gas constant (8.314 J mol−1K−1).  Finally, 

h conv is the height of the convective zone at the top of the firn column, which is considered negligible at EDC according to 

current observations (Landais et al., 2006). The variation of the convective height is related to changes in wind stress. 

According to Krinner et al. (2000), wind on the East Antarctic plateau varied little during the LGM (last glacial maximum), 

which is analogous to late MIS 6, and the convective zone was confirmed to be very thin during the last deglaciation by 5 

Parrenin et al. (2012). Thus, we assume that h conv is negligible during MIS 6. Δdepth is calculated from the height of the air 

column using a constant firn average density and a modelled vertical thinning function suggested by Parrenin et al. (2013). 

Raw δ15N data cannot be used directly to calculate Δdepth, because bubbles are not trapped at exactly the same time for a 

given depth in the ice sheet, leading to cm-scale age scale inversions (Fourteau et al., 2017). Although the layer inversions 

should not strongly affect our record as its resolution is larger than the scale of inversion events (Fourteau et al., 2017), the 10 

change in Δdepth between two different depths (z) in the ice core, denoted ∂Δdepth/∂z, deduced from the raw δ15N data, shows 

values higher than 1, that could correspond to stratigraphic inversions in the gas phase (Figure 2). Therefore, a 3-point moving 

average weighted by the time difference between a point and its two neighbours was applied to the δ15N dataset. The weights 

for the three points are equal if the time difference is less than or equal to 500 years, which is close to the average sampling 

resolution of the 15N dataset. Otherwise, the neighbouring data points are weighted by 500/T, where T is the time 15 

difference. This avoids assigning too much weight to neighbouring points where the resolution in the record is lower, which 

would lead to local over-smoothing. 

Δdepth as estimated using the 3-point moving average weighted by the time difference is shown in Figure 2. The difference of 

the Lock-In Depth in Ice Equivalent (LIDIE) calculated in AICC2012 (Bazin et al., 2013) and deduced from δ15N in this study 

is 0.5±3.0 m, or 0.7±5.6 % on average (see Figure S4 in SI). The AICC2012 LIDIE was calculated using a background scenario 20 

derived from δD, using a linear relationship between δD and δ15N. Our results show this relationship to be relatively unbiased 

but not entirely exact (Figure 2). The Δdepth values are used to update the EDC gas chronology from the original AICC2012 

one, while the ice chronology remains unchanged. For MIS 6, this method significantly reduces the relative age uncertainty 

between air and ice to 900 yrs on average with respect to the original AICC2012 chronology (see Figure S5 in SI). 

2.5 Age scale of the MD01–2444 marine sediment record 25 

The MD01–2444 Marine sediment core from the Iberian margin (Margari et al., 2010) is an important proxy for the 

interpretation of our CO2 record, as it is well–resolved during MIS 6, and it provides high-resolution benthic and planktonic 

foraminiferal records. In order to make optimal use of the record, its relative chronology with respect to EDC requires 

additional tuning. The original MD01–2444 age scale was built by matching the benthic δ18O record (Shackleton et al., 2000) 

to the δD record from EDC on the EDC03 ice age scale (Parrenin et al., 2007) and using 11 tie points selected by Margari et 30 

al. (2010) as shown in Table 1. The age of the sediment record was linearly interpolated between the tie points, and the age of 

the tie points recalculated using the AICC2012 chronology.  
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2.6 Definition of NA stadial duration 

Due to the absence of a Greenland temperature record for MIS 6, the durations of the six NA stadials identified during the MIS 

6 period were previously defined by Margari et al. (2010) using the interval between the stadial transitions. Between the 

maximum and the preceding minimum of δD in the EDC record is defined as the stadial transitions. However, this approach 

relies on the assumption that the bipolar seesaw was present during MIS 6. Here we instead use another approach which was 5 

also proposed by Margari et al. (2010).  

The durations of the six NA stadials were defined using δ18O of planktonic foraminifera and tree pollen in MD01–2444, which 

reflect temperature variability in the NH (Margari et al., 2010). The interval between the maximum and the preceding minimum 

of both δ18O of planktonic foraminifera and tree pollen in MD01–2444 were defined as the inflection points. The time interval 

between two inflection points were defined as the NA stadial duration. In this approach, small variations of the two records 10 

may bias the calculation of the duration of short stadials in the NH. However, the average age difference between the durations 

identified using the two methods is only 205 years, which is less than the sampling resolution of MD01–2444 during MIS 6. 

The stadials identified for MIS 6 are shown in Figure 3 and Table 2. The uncertainty of the duration of each stadial was 

estimated as half of the temporal difference between maxima and minima of δ18O of planktonic foraminifera. 

3 Results  15 

3.1 The new high-resolution and high precision CO2 record during MIS 6 

Figure 4 shows the new atmospheric CO2 record from EDC during MIS 6, compared to the existing CO2 data from Vostok 

(Petit et al., 1999). Both were measured using the ball mill extraction system at IGE, and both are reported on the AICC2012 

air age scale (Bazin et al., 2013). The error bars indicate the standard deviation of five consecutive injections of the gas 

extracted from each sample into the gas chromatography added to the precision of the measurement estimated by the 20 

reproducibility of the blank tests (~0.8 ppm) using a quadratic sum. The average standard deviation is ~1.1 ppm for EDC (this 

study) and ~3 ppm for the Vostok dataset (Petit et al., 1999).  

The lowest atmospheric CO2 concentration observed in our new MIS 6 dataset is 179.5±0.9 ppm at approximately 156.3 ±0.3 

kyr BP, and the highest concentration is 211.7±0.3 ppm at 181.3±0.2 kyr BP (Figure 4). Atmospheric CO2 variability in the 

EDC ice core shows similar general patterns as the one retrieved from the Vostok ice core, although new features appear thanks 25 

to the improved temporal resolution. However, CO2 concentrations from Vostok appear systematically higher than those from 

EDC by 4.0 ± 5.6 ppm on average and the difference grows to more than 10 ppm at the beginning of Termination 2 at around 

135 kyr BP. Two main arguments may explain this offset: contamination due to the extraction system was assumed as being 

negligible at the time of the Vostok sample measurements at IGE (Petit et al., 1999), while from the measurements conducted 

during this study it possibly amounts on average to an additional reduction of ~1.7 ppm. Some of the differences in the two 30 

records might also be related to age scale uncertainties (Figure 4), due to the limited number of stratigraphic tie points between 
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the two cores (Bazin et al., 2013). Lastly, the atmospheric CO2 measurements from the Vostok ice core are affected by a larger 

analytical uncertainty than the EDC ones. Here we constrain our interpretation to millennial changes in our new CO2 record, 

and our conlcusions are largely independent of the absolute CO2 level.  

3.2 Relationship between EDC δD and atmospheric CO2 

Margari et al. (2010) suggested that MIS 6 can be divided into three sections depending on the degree of climatic variability  5 

observed in δD (indicative of Antarctic climate variability) and CH4 (which may reflect NA climate variability) in EDC : early 

(185.2─157.7 kyr BP), transition (157.7─151 kyr BP) and late MIS 6 (151─135 kyr BP) (Figure 5 and Figure 6). Climatic 

oscillations on millennial time scales are pervasive during the early MIS 6 period (185─160 kyr BP) (Barker et al., 2011; 

Cheng et al., 2016; Jouzel et al., 2007; Margari et al., 2010; Margari et al., 2014), which is similar to MIS 3 (Figure 1, 5 and 

Figure S11 in SI). However, during the late MIS 6 period / penultimate glacial maximum (PGM), millennial variability is 10 

subdued, and resembles climate variability on millennial time scales during MIS 2 (Figure 1 and Figure 6). During the 

transitional period from 157-151 kyr BP, δD in EDC slowly increased (Jouzel et al., 2007). Like δD in EDC, CO2 variations 

on millennial time scales are pervasive during the early MIS 6 period (185─157.7 kyr BP). During the transitional period from 

157–151 kyr BP, atmospheric CO2 increased slowly, while, during the late MIS 6 period, CO2 variation is subdued. 

Between these two periods, we can identify one low-amplitude CO2 peak at around 150 kyr BP, which can be another potential 15 

CDM. This atmospheric CO2 variation is of triangular shape, which follows the δD pattern. The change of direction is also 

associated with a CH4 peak. This variation is similar to MIS 4 and MIS 10 (Barker et al., 2011; Nehrbass-Ahles et al., in 

review).  

For the full MIS 6 interval, the new EDC CO2 record and δD in EDC are synchronous within age uncertainty (160±900 yrs 

using a maximum lag correlation coefficient estimate, and taking into account the relative age uncertainty between ice and 20 

air).  

3.3 Atmospheric CO2 variability on millennial time scale 

While there was indication of millennial CO2 variability in the Vostok record, we now present clear evidence of millennial 

variability of CO2 concentrations during MIS 6 that are associated with AIM events, thanks to the improved time resolution 

and precision of the obtained CO2 data (Figure 5). To better discuss millennial variability in MIS 6, a Savitsky Golay filter 25 

with a 500 yr cut–off period was selected to filter out centennial–scale variability and noise (see Figure 5, Figure S10 and 

Table S1 in SI). Five prominent and one subdued CO2 variations were detected in atmospheric CO2 during early MIS 6 (Figure 

5). The five prominent peaks are observed at 160.6±0.3 (CDM 6c.1), 164.2±0.3 (CDM 6c.2), 169.6±0.2 (CDM 6d.1), 

174.1±0.2 (CDM 6d.2) and 181.3±0.2 (CDM 6e.2) kyr BP (the errors given here reflect the uncertainty with respect to the 

position of each maximum, and do not include the age uncertainty of the ice core, in each case around 3.0 kyr, 1 sigma). Each 30 

CDM is associated with an Antarctic Isotope Maximum (AIM) event. The short AIM 6e.1 event corresponds to CDM 6e.1 at 

around 178 kyr BP (with an age uncertainty of 3.0 kyr, 1 sigma), whose amplitude was estimated by a single data point of 
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atmospheric CO2 maximum because CO2 variations becomes even less pronounced after filtering. CDM 6e.1 has an amplitude 

of only ~4 ppm. If this point is excluded, atmospheric CO2 and δD composition in EDC appear completely decoupled, though 

it is likely that the amplitude of the CDM would have been reduced by smoothing during the gas trapping process (Fourteau 

et al., 2017). This conclusion seems confirmed when considering the relationship between atmospheric CO2 change and the 

duration of NA stadials calculated using tree pollen and the δ18O composition of planktic foraminifera in a Iberian margin core 5 

(Margari et al., 2010) for MIS 6 (Figure 3 and Table 2), and using isotopic records from Greenland ice cores (Rasmussen et 

al., 2014) for MIS 3 (further details can be found in the SI), as shown in Figure 7. The magnitude of atmospheric CO2 change 

is generally correlated with the NA stadial duration (r=0.7, n=6) during the early MIS 6 period.  

We note a similar correlation between the NA stadial duration and atmospheric CO2 change during MIS 3 (r=0.85, n=14). 

When the NA stadial duration was shorter than 1,500 yrs, atmospheric CO2 varied less than 5 ppm (Ahn and Brook, 2014; 10 

Bereiter et al., 2012) as is the case for CDM 6e.1. Margari et al. (2010) note one exception, AIM 14 during which ice discharge 

may have led to a stronger perturbation to AMOC.  

Both Bereiter et al. (2012) and Ahn and Brook (2014) observe that during short NA stadials which last less than 1,500 yrs, the 

CO2 maxima do not appear to have a consistent phase relationship with AIMs and CO2 and δD anomalies are not correlated 

(Ahn and Brook, 2014). On the other hand, in both MIS 3 and 6 periods, CO2 is highly correlated with δDice anomalies during 15 

the long stadials (r = 0.84 on average) with a stronger increase in CO2 (Ahn and Brook, 2014; Bereiter et al., 2012).  

We observe that during the last two glacial periods, the amplitude of CO2 is highly determined by the NA stadial duration 

(r=0.83, n=20). This observation implies that despite the different climate boundary conditions during the last two glacials, the 

behavior of atmospheric CO2 was similar (see Figure S11 in SI).  

3.4 Leads and lags between CO2 and the abrupt warming in NH 20 

To better understand the link between the bipolar see–saw mechanism and atmospheric CO2 variability on millennial time 

scales, we calculated the varying time lag for each CDM following abrupt warming events in the NH (see Figure S6─S9 in 

SI) (Bereiter et al., 2012). Due to the lack of a direct temperature proxy record in Greenland covering MIS 6, and due to the 

fact that the δ18O composition of planktic foraminifera in NA sediment cores, which could be used in principle as an indicator 

for abrupt warming in the NH (Shackleton et al., 2000), cannot be placed with sufficient precision on a common chronology 25 

with the EDC ice core, in this work CH4 measurements performed on the EDC ice core were used as a time marker of rapid 

warming in the NH (Baumgartner et al., 2014; Brook et al., 1996; Huber et al., 2006). Because CH4 and CO2 signals are both 

imprinted in the air bubbles, there is no chronological uncertainty when comparing the timing of changes of those two signals. 

The only remaining uncertainty is related to analytical uncertainties and to the temporal resolution of the two records. We pick 

intervals when CH4 increases rapidly by at least 50 ppb over a time period of less than 1 kyr that correspond to Antarctic 30 

isotope maxima (Buizert et al., 2015; Loulergue et al., 2008). The timing of abrupt CH4 increases was defined as the midpoint 

between the beginning of the increase of CH4 and its maximum. The age uncertainty of the midpoint is defined by the time 

difference between the midpoint and either of the two endpoints. 
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Figure 8 shows the shifts of CDM with respect to the onset of the abrupt warming in the NH. During the MIS 6 period, three 

abrupt NH warmings (as inferred from the CH4 signal) at 181.5±0.3, 175.4±0.40 and 171.1±0.2 kyr BP (2σ) were found. These 

events correspond to CDM 6e.2, CDM 6d.2 and CDM 6d.1, respectively. CDM 6c.1, CDM 6c.2 and CDM 6e.1 do not have 

corresponding rapid changes in the methane record; this may be due to slow gas trapping as compared to interglacial periods, 

which could completely smooth out smaller changes. A synthetic Greenland temperature record (Barker et al., 2011) shows 5 

abrupt temperature jumps at CDM 6c.1, CDM 6c.2 and CDM 6e.1 as well. However, this record is calculated using EDC δDice, 

and the large chronological uncertainty (~900 yrs on average) between ice and gas phases does not allow us to make any 

conclusions about leads and lags using this record, since these tend to be on the order of 1 kyr. We therefore exclude these 

events.  

From MIS 6e to MIS 6d, the lag of CO2 with respect to abrupt warmings in the NH, which were identified from this 10 

chronological comparison between EDC CH4 and CO2, becomes larger. During the earliest MIS 6, atmospheric CO2 increases 

rapidly (by ~4.2 ppm in 200±360 yrs) following the abrupt CH4 increase at 181.5±0.3 kyr BP. The peak of CDM 6e.2 is nearly 

synchronous with the onset of the NH abrupt warming (non- significant lag of 200±360 yrs, Figure 8). During MIS 6d which 

corresponds to CDM 6d.1 and 6d.2, CO2 concentrations show a much slower increase over a duration of ~3.3 kyr. Here, CO2 

lags behind the onset of the NH abrupt warming by 1,500±280 yrs and 1,300±450 yrs, respectively (1,400± 375 yrs on average, 15 

with the error calculated by propagation of the uncertainties inthe individual events). Interestingly, these two CDM events 

occurred during MIS 6d, when iceberg discharge was muted and the intertropical convergence zone (ITCZ) is thought to have 

shifted northward, intensifying monsoon systems in low latitude regions, such as in Asia, the Appenine Peninsula and the 

Levant (Ayalon et al., 2002; Bard et al., 2002; Cheng et al., 2016), and leading to a generally weaker AMOC (Margari et al., 

2010). Therefore, the two apparent CO2 lag timescales with respect to abrupt warming in NH during MIS 6 might be explained 20 

by this difference in background climate conditions.  

Indeed, these features during MIS 6 appear fully compatible with those observed during the last glacial period. To compare 

CO2 variations with respect to abrupt warming in NH during the last two glacial periods, in this study we also re-estimated the 

abrupt CH4 jump during the last glacial period with the same tool. Figure 8 shows the CO2 evolution during the onset of abrupt 

warming in the NH during MIS 3, and MIS 5. This figure shows the whole sequence of rapid events of the last glacial period 25 

(Ahn and Brook, 2014; Bereiter et al., 2012). Atmospheric CO2 during MIS 3, as shown in Figure 8, was reconstructed from 

the Talos Dome ice core (TALDICE). For MIS 5 it was obtained from Byrd and the EPICA Dronning Maud Land (EDML) 

ice core (Ahn and Brook, 2008; Bereiter et al., 2012). In Bereiter et al. (2012), both TALDICE and EDML records were used 

during MIS 3 and compared to the onset of abrupt warming in the NH. However here, we only use data from TALDICE which 

are more accurate due to the narrower age distribution of the gas trapped in the LID (Bereiter et al., 2012). Using the same 30 

method, the average value of CDM lag with respect to the abrupt warming in NH was calculated. The average CDM lags with 

respect to the abrupt warming in the NH for the MIS 3 and 5 periods are 770±180 and 280±240 yr (Bereiter et al., 2012). Thus, 

over the course of the last glaciation, the lag of CO2 maxima with respect to the abrupt NH warming events significantly 

increased. We observe the same trend through the millennial events depicted during MIS 6, albeit with different absolute lags. 
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While the earlier CO2 maximum corresponding to CDM 6e.2 during MIS 6 shows no significant lag (thus close to the small 

lag of 190±110 yr observed during MIS 5), the lag between the abrupt warming in NH and CDM 6d.1 and 6d.2 is longer than 

the lags of CDMs during MIS 3. 

4 Discussion 

4.1 Atmospheric CO2 variability on millennial time scale 5 

We found that the amplitude of atmospheric CO2 variations is well related to the NA stadial duration during MIS 6, which 

implies that the amplitude of CO2 variations might be affected by the duration of AMOC disruption during the early MIS 6 

period (Margari et al., 2010). This hypothesis is also supported by a recent study using oceanic sediment cores from the 

Southern Ocean (Gottschalk et al., 2019b). The authors report that respired carbon levels in the deep South Atlantic decrease 

when AMOC is weakened during both glacial periods, and the amount of carbon loss in the deep South Atlantic is highly 10 

correlated with the duration of NA stadials.  

The hypothesis that perturbations of the AMOC might ultimately lead to changes in atmospheric CO2 concentrations during 

MIS 6 is supported by numerical simulations (Menviel et al., 2014; Schmittner and Galbraith, 2008).  Menviel et al. (2014) 

report that when large amounts of low-density fresh water are released into the NA, the AMOC is shut down, which strongly 

reduces heat transport from the south to the north, and moisture transport from the Atlantic to the Pacific is reduced (Leduc et 15 

al., 2007; Peterson et al., 2000; Richter and Xie, 2010). In response, sea ice retreats in the Southern Ocean. On the other hand, 

the NA is cooled, and the ITCZ is shifted to the south and Summer Monsoon intensity in East Asia is reduced (Wang et al., 

2008). Changes in precipitation connected to ITCZ shifts (mainly in tropical Africa and northern South America) may cause 

variations in terrestrial carbon stocks (Bozbiyik et al., 2011; Köhler et al., 2005; Menviel et al., 2008; Obata, 2007). Due to the 

reduction of Summer Monsoon intensity in East Asia, salinity at the surface of the Pacific Ocean is increased. Thus, AABW 20 

and North Pacific Deep Water (NPDW) transport is enhanced (Menviel et al., 2014). Enhanced NPDW transport ventilates 

deep Pacific carbon via the Southern Ocean which may lead to atmospheric CO2 increases. 

As mentioned above, atmospheric CO2 on millennial timescales can be controlled by CO2 exchange between the ocean and 

the atmosphere, as well as changes of terrestrial carbon stocks. Coupled climate carbon cycle models reported that the 

variations of atmospheric CO2 concentration on millennial timescales are mainly dominated by deep ocean inventory, requiring 25 

a few millennia to react to climate change (Schmittner and Galbraith, 2008). These variations of CO2 concentration might be 

compensated by fast changes in the terrestrial biosphere (Bouttes et al., 2012; Menviel et al., 2014; Schmittner and Galbraith, 

2008). The initial response of the terrestrial biosphere and deep ocean to AMOC perturbations are opposite in the CLIMBER-

2 model (Bouttes et al., 2012).  

Based on the comprehensive review of Gottschalk et al. (2019a), some models show a CO2 increase during stadial conditions 30 

and others show a decrease, with a preference for those showing an increase. During short stadials, a change in the carbon 

stock of the terrestrial biosphere can compensate the slow response of the deep Ocean (Gottschalk et al., 2019a; Menviel et 
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al., 2014; Schmittner and Galbraith, 2008). This might explain our observation that atmospheric CO2 variation is rather muted 

during short stadials, even though other SH climate proxies like dust flux and δD composition in EDC show significant 

variations (Figure 1). However, during long stadials, modelling studies indicate that the deep ocean inventory continues to 

respond to climate changes on timescales much longer than the response time of the terrestrial biosphere (on the order of a few 

centuries), and atmospheric CO2 varies significantly (Gottschalk et al., 2019a).  5 

Another possible reason for the difference between CO2 changes during short and long stadials may be related to a stronger 

reduction of the NADW during long stadials (Henry et al., 2016; Margari et al., 2010), which would cause a stronger upwelling 

of deep water in the Southern Ocean (Menviel et al., 2008; Schmittner et al., 2007). When large amounts of low-density fresh 

water are released into the NA, NADW formation can be slowed down. These events may reduce stratification in the Southern 

Ocean due to an increase in salinity of the surface waters and a relative freshening of the deep water (Schmittner et al., 2007). 10 

As a result, atmospheric CO2 can be increased due to upwelling and outgassing of CO2 in the Southern Ocean (Schmittner et 

al., 2007). The co-occurring upwelling in the SO during AIMs for the last termination has been examined (Anderson et al., 

2009) but, due to the lack of proxy data with precise age scale for upwelling in the Southern Ocean, this hypothesis cannot be 

confirmed during MIS 6. During the short stadial in MIS 6 (AIM 6e.1) and the short stadials in MIS 3, the duration and strength 

of AMOC disruption are similar. This is supported by the marine proxy data for upwelling in the Southern Ocean which do 15 

not show strong variations during short stadials for both MIS periods (Anderson et al., 2009).  

According to the model results of Margari et al. (2010), the six AIM events of MIS 6 were likely affected by AMOC 

perturbations of similar strength. During these events, there is no clear evidence for freshwater perturbation in the NA (Figure 

S12 in SI), and the strength of the associated AMOC perturbations is estimated to be similar to that during non–Heinrich (no 

ice discharge) or non-classic Heinrich (different source signature for IRD, occurring at transitions in ice volume) AIM events 20 

of MIS 3. The durations of NA stadials during early MIS 6 (except for AIM 6e.1) appear to be longer than those during non–

Heinrich AIM events of MIS 3, which might be caused by the different boundary conditions during MIS 3 and the increase of 

hydrological cycle during MIS 6.e. A longer duration of the AMOC disruption may require more time to recover AMOC 

strength, which may impact the amplitude of CO2 variations (Bouttes et al., 2012; Menviel et al., 2008). Considering that the 

timescale of the AMOC recovery may be affected by climate background conditions (Bouttes et al., 2012; Menviel et al., 25 

2008), this observation suggests how different climate background conditions may impact atmospheric CO2.  

The strength of AMOC perturbations appears to also be an important factor in determining the amplitude of CO2 variations. 

For example, the duration of the Heinrich events in MIS 3 (AIM 8, 12 and 14) is shorter than any of the MIS 6 events except 

for 6e.1, but atmospheric CO2 varied significantly in all three.  

The relationship between the amplitude of atmospheric CO2 variations and the NA stadial duration is explained by the duration 30 

of AMOC disruption during the early MIS 6 period. However, the temporal resolution of δ18O composition of planktonic 

foraminifera in MD01–2444 and the precision of the age scale were too low to precisely define the duration of stadials during 

MIS 6. Additional proxy data providing information about climate change in the NH are needed to confirm the relationship 

between atmospheric CO2 variations and the NA stadial duration (Figure 3). 
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The limited available proxy data permit only an exploratory discussion of the mechanisms responsible for CO2 variability 

during MIS 6. To compare the behaviour of the bipolar see saw with atmospheric CO2 variations, additional investigations 

about AMOC disturbances and their associated climate responses are needed.  

4.2 Why did CO2 lag the abrupt warming in the NH during MIS 6d? 

Two different lags of CO2 variations with respect to NH warming are present in the MIS 6 period (Figure 8). CDM 6e.2 is 5 

nearly synchronous with the abrupt warming in the NH (no significant lag of 200±360 yrs), while the lags for CDM 6d.2 

(1,300±450 yrs) and CDM 6d.1 (1,500±280 yrs) are much longer. Two modes of CO2 variations are also observed during the 

last glacial period. As the last glaciation progressed from MIS 5 to MIS 3 (Figure 8), the lag of CO2 maxima with respect to 

NH millennial-scale warming significantly increased. This observation may be explained by the different AMOC settings in 

MIS 5 and MIS 3 (Bereiter et al., 2012). As observed during the last glacial period, a mode change of oceanic circulation 10 

between MIS 6e to MIS 6d might be also the cause of the change in the time lags between NH abrupt warming events and CO2 

variations during the early MIS 6.  

During MIS 3, the oceanic circulation in the Atlantic was in a “glacial” state, with shallower NADW and carbon–rich AABW 

extended to the north, while during MIS 5 circulation was similar to the present, in what can be referred to as a “modern–like” 

state. At the onset of Dansgaard–Oeschger (DO) events, AMOC is thought to accelerate rapidly, delivering heat to the north 15 

and resuming the formation of NADW. When the NADW cell expands, AABW is withdrawn and the upwelling of carbon–

rich deep water in the Southern Ocean is enhanced. Essentially, over the time scale of ocean overturn, part of the previously 

expanded carbon-rich southern sourced water is converted to carbon-poor northern sourced water. 

Therefore, due to the northward expansion of AABW before the onset of DO events in the MIS 3 period, additional carbon 

may have been added to the atmosphere by deep water exchange from carbon enriched AABW to the NADW. Thus, CO2 20 

continues to be released into the atmosphere for another 500 to 1,000 years while NADW formation continues (Bereiter et al., 

2012). However, during MIS 5 where AABW was not expanded in the NA, less CO2 is thought to be released from the ocean 

to the atmosphere. 

The temporal resolution of proxy data related to oceanic circulation during MIS 3 and 5 is unfortunately not sufficient to 

validate from the marine realm itself whether the two different modes of CO2 variations reflect the hypothesized mechanism 25 

described above. Modelling studies of the carbon stock in AABW and NADW during MIS 5 and 3 have been attempted. 

However, dependent on the chosen model, the modes of atmospheric CO2 variation are different (Gottschalk et al., 2019a). 

Some studies, for example, Menviel et al. (2008) generate an atmospheric CO2 decrease when the AMOC is reduced. Others, 

for example Bouttes et al. (2012) confirm an atmospheric CO2 release from the ocean when the AMOC resumed.  

It is possible that a similar change in the AMOC may explain the presence of two different lags in MIS 6. The density of the 30 

NA surface water was low during 180–168 kyr BP due to the higher intensity of the low latitude hydrological cycle (Ayalon 

et al., 2002; Bard et al., 2002; Cheng et al., 2016; Mélières et al., 1997). From MIS 6e to MIS 6d, NADW became shallower 

and the lag of CO2 maxima with respect to NH millennial-scale warming significantly increased. Moreover, the AMOC cell 
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appears to have been generally shallower during the early MIS 6 (180–168 kyr BP) relative to MIS 3 (Margari et al., 2010), 

and so Bereiter et al. (2012)’s hypothesis would indicate an extended CO2 release from an expanded AABW reservoir, 

potentially explaining the millennial–scale delays with respect to abrupt NH warming events. Wilson et al. (2015) show that 

circulation conditions in the Atlantic Ocean during the earliest MIS 6 period were similar to those during MIS 5, with deeper 

NADW and AMOC than during MIS 6d. This may explain the shorter lag between abrupt NH warming and CDM 6e.2. 5 

However, in order to explain the much longer lags of CDM 6d.1 and 6d.2, NADW should be even shallower than in MIS 3. 

During MIS 6d, the lag between the abrupt warming in NH and CDMs (1,400±375 yrs on average) is longer than the lags of 

CDMs (770±180 years on average) during MIS 3, which may be related to the observation that the NADW during MIS 6.d 

might have been shallower than that during MIS 3 (Margari et al., 2010). However, our study has lower temporal resolution 

compared to CO2 data set during MIS 3. To confirm the larger lag of CO2 with respect to abrupt warming in NH, additional 10 

CO2 reconstructions during MIS 6.d are needed.   

To further investigate the applicability of the shallow–AMOC glacial hypothesis to the CO2 variations observed in this study, 

higher resolution proxy data to estimate variations in the strength of the AMOC during the MIS 6 period are needed. However, 

as is the case for proxy data during the last glacial period as well, the temporal resolution is unfortunately not sufficient to 

quantify the lag between AMOC resumption and temperature increase at the surface during DO warmings (Henry et al., 2016). 15 

In addition, because of the low accumulation at EDC, the estimation of the exact timing of CDM from the EDC ice core might 

be less accurate compared to that from the TALDICE ice core, for example, due to the narrower gas age distribution of 

TALDICE (Bereiter et al., 2012). To further investigate the exact relationship between CDM and abrupt warming in the NH, 

additional CO2 measurements from a higher accumulation site could be helpful. 

5 Conclusion  20 

We measured 150 samples of the EDC ice core to reconstruct atmospheric CO2 during the MIS 6 period (189–135 kyr BP), 

with an unprecedented time resolution and analytical precision. Five millennial-scale atmospheric CO2 changes are revealed 

during the early part of MIS 6 (189–160 kyr BP), with amplitudes ranging between 15 to 25 ppm, mimicking similar trends in 

Antarctic δD variations. During the shortest stadials in the NA, atmospheric CO2 variations are negligible and decoupled with 

δD in EDC, probably because the duration of upwelling in the Southern Ocean was not sufficient to impact atmospheric CO2, 25 

in line with Ahn and Brook (2014). In the earliest MIS 6 (MIS 6e and 6d, corresponding to 189 to 169 kyr BP), a change of 

CO2 lags with respect to NH warming – as deduced from atmospheric CH4 changes – is revealed. During MIS 6e, CDM 6e.2 

(at ~182 kyr BP) is nearly synchronous with the abrupt warming in the NH (non-significant lag of 200±360 yr), while the lags 

during MIS 6d corresponding to CDM 6d.1 and 6d.2 (at ~171 and ~175 kyr BP, respectively) are much longer, 1,400±375 yrs 

on average. The change in lag time might be related to a change in the organization of the AMOC from MIS 6e to MIS 6d. 30 

Similar observations are drawn for the time period covered by our study in comparison with previous studies on MIS 3 and 

MIS 5 periods, although the lag of CO2 with respect to NH warming reaches larger values during MIS 6d. However, the limited 
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available proxy data from the marine realm only permits an exploratory discussion of the mechanisms responsible for CO2 

variability during MIS 6. Because the boundary conditions of the last glacial period cannot be applied to MIS 6, additional 

proxy data and multiple modelling studies conducted during MIS 6 period are needed. 
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Table 1: Ages of the tie points of MD01–2444 record (Margari et al., 2010) on the EDC03 (Parrenin et al., 2007) and 

AICC2012 ice age scales (Bazin et al., 2013). 

MD01–2444  

(m) 

Previous age tie points by 

Margari et al. (2010)   

(EDC03 age scale, kyr BP) 

New age tie points  

(AICC2012, kyr BP) 

22.02 136.100 135.761 

22.50 141.686 141.677 

23.70 149.586 150.287 

24.48 159.105 160.327 

24.72 162.476 163.878 

25.32 168.273 170.349 

25.71 172.009 174.649 

25.95 175.461 178.423 

26.01 177.065 180.033 

27.03 188.009 190.229 

27.30 192.231 194.186 
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Table 2: The minima and maxima defining the duration of each NA stadial using the AICC2012 chronology.   

 MIS 6c.1  MIS 6c.2 MIS 6d.1 MIS 6d.2 MIS 6e.1 MIS 6e.2 

 Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

Age                  

(kyr BP) 
160.1 161.9 163.2 166.0 170.2 173.5 174.2 176. 8 177.2 178.3 179.9 182.2 

Uncertainty       

(kyr) 
0.2   

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 
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Figure 1: Proxy data during 250 kyr BP. A: δ18Ocalcite from Sanbao cave, corresponding with the strength of the East Asian 

monsoon (Cheng et al., 2016). B: 21 June insolation for 65°N (Berger, 1978). C: Dust flux in EDC (Lambert et al., 2012). D: 

Atmospheric CH4 in EDC (green dots) (Loulergue et al., 2008) and Atmospheric CH4 in EDC in this study (light yellow dots). 

E: Atmospheric CO2 from EDC in this study (light blue dots) and composite CO2 from Antarctic ice cores (dark blue dots) 5 

(Bereiter et al., 2015). F: δD composition in EDC, Antarctica (Jouzel et al., 2007). Vertical grey bars indicate the timing of 

Heinrich events.    
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Figure 2: A: ∂Δdepth/∂z as a function of depth. Red dots from the raw δ15N measurements. Blue dots from a 3-point running 

mean weighted by 500/dT. Vertical dashed line indicates when ∂Δdepth/∂z function is 1. B: ∆depth (bold line) for EDC from 

1787.5 to 1870.2 m below the surface, deduced from δ15N and the thinning function calculated in this depth range. The two 

dash lines correspond to the analytical uncertainties. 5 
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Figure 3: Six variations on millennial time scales of tree pollen percentage (top) and δ18O of planktonic foraminifera (bottom) 

in the MD01-2444 selected by Margari et al. (2010). 

  

https://doi.org/10.5194/cp-2019-142
Preprint. Discussion started: 13 December 2019
c© Author(s) 2019. CC BY 4.0 License.

179



24 

 

 

Figure 4: Atmospheric CO2 from EDC and Vostok ice cores, compared to the δD of water at EDC (temperature proxy) during 

190─135 kyr BP. Blue dots: Atmospheric CO2 from EDC (this study). Yellow dots: Atmospheric CO2 from EDC (Lourantou 

et al., 2010). Grey dots: Atmospheric CO2 from the Vostok ice core (Petit et al., 1999). Grey line: δD of water at EDC (Jouzel 

et al., 2007). 5 
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Figure 5: Atmospheric CO2 from EDC (this study) and EDC water isotopic record (Jouzel et al., 2007). Red line indicates 

Savitsky Golay filtering curve made with a 500 yr cut-off period (red dotted line). Vertical blue dotted lines indicate the six 

CDM events that we identify during the early MIS 6.  

 5 
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Figure 6: A comparison of climate with atmospheric CO2 during MIS 6 period. A: 21 June insolation at 65°N (Berger, 1978). 

B: Ice-rafted debris (IRD) input in the Iberian margin core MD95–2040 (de Abreu et al., 2003). C: Atmospheric CH4 in EDC 

(Loulergue et al., 2008; this study). D: δ18O of planktonic foraminifera in the Iberian margin marine Core MD01–2444 

(Margari et al., 2010). E: δ18O of Benthic foraminifera in the Iberian margin marine Core MD01–2444 (Margari et al., 2010). 5 

F: Temperature  in Antarctica from δD composition of the EDC ice core (Jouzel et al., 2007). G: Atmospheric CO2 in EDC 

during MIS 6 period (in this study). The numbers of CDM events are written at the bottom.   

  

https://doi.org/10.5194/cp-2019-142
Preprint. Discussion started: 13 December 2019
c© Author(s) 2019. CC BY 4.0 License.

182



27 

 

 

Figure 7: The relationship between NA Stadial duration and magnitude of CO2 increase during the early MIS 6 period. Green 

dots indicate non Heinrich CDM events during MIS 3, green dots with a white dot in the middle indicate classic Heinrich 

CDM events during MIS 3, and green dots with a red cross in the middle indicate non classic Heinrich CDM events during the 

MIS 3 period. Blue dots indicate CDM events during MIS 6 respectively.  5 
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Figure 8: CDM lags relative to abrupt temperature increase in NH. Grey dotted lines indicate when climate changes abruptly 

in NH. A: Atmospheric CO2 was recorded from TALDICE (MIS 3), B: Atmospheric CO2 was recorded from Byrd (MIS 5), 

C: Atmospheric CO2 was recorded from EDML (MIS 5), D: Atmospheric CO2 was recorded from EDC (MIS 6). For MIS 6, 

we selected the 3 CDMs that correspond to an abrupt methane increase; the other CDMs do not correspond to an abrupt change. 5 

The scale of the y-axis is not the same for the four panels 
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Supplement Information of 

Millennial-scale atmospheric CO2 variations during the Marine 

Isotope Stage 6 period (190-135 kyr BP) 

Jinhwa Shin et al.,  

Correspondence to: Jérôme Chappellaz (jerome.chappellaz@univ-grenoble-alpes.fr)  5 

   

Figure S1: Comparison of climate related signals during MIS 3 (left) and 6 (right) period. A: 21 June insolation at 65°N 

(Berger, 1978). B: Ice-rafted debris (IRD) input in the Iberian margin core MD95–2040 (de Abreu et al., 2003). C: δ18O of 

planktonic foraminifera in the Iberian margin marine Core MD01–2444 (Margari et al., 2010). D: δ18O of Benthic foraminifera 

in the Iberian margin marine Core MD01–2444 (Margari et al., 2010). E: Temperature  in Antarctica from δD composition of 

the EDC ice core (Jouzel et al., 2007).  
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Figure S2: Atmospheric CH4 concentrations from EDC ice core during MIS 6. Both the dark green squares (Loulergue et al., 

2008) and the light green dots (this study) were measured at IGE. 
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Figure S3: δD and δ15N from EDC ice core plotted as a function of depth. For δ15N, 88 new data points are added to the 

previous measurements (Landais et al., 2013). The error bar indicates the standard deviation of replicate measurements. 
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Figure S4: The Lock-In Depth in Ice Equivalent (LIDIE) calculated in AICC2012 (Bazin et al., 2013) and the LIDIE deduced 

from δ15N in this study.  
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Figure S5: Blue dots: Atmospheric CO2 from EDC on the revised AICC 2012 age scale. Green dots: Atmospheric CO2 from 

EDC on the AICC 2012 age scale. Grey line: δD of water from EDC (temperature proxy) (Jouzel et al., 2007). 
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Definition of the onset of abrupt climate change in the NH 

Over the last glacial period, rapid CH4 jumps were always synchronous with abrupt temperature increases in Greenland within 

±50 ppb (Huber et al., 2006). We pick intervals when CH4 increases rapidly by at least 50 ppb over a time period of less than 

1 kyr that correspond with Antarctic isotope maxima (Loulergue et al., 2008). The timing of abrupt CH4 increases was defined 

as the midpoint between the beginning of the increase of CH4 and its maximum. The age uncertainty of the midpoint is defined 5 

by the time difference between the midpoint and either of the two endpoints.  

We found three abrupt CH4 increases during MIS 6 period at 171.1±0.2, 175.4±0.4 and 181.5±0.3 kyr BP (Figure S6). Due to 

the low accumulation rate and low temperature at the site during glacial periods, abrupt changes of CH4 concentration might 

be smoothed, and identifying abrupt changes of CH4 is more difficult than for interglacial periods. The climate change at 175.4 

kyr BP does not seem to occur as abruptly as the other two, since CH4 varied slowly over ~800 years. However, we include 10 

this event because corresponding data of δ18O composition of planktonic foraminifera (Shackleton et al., 2000) indicate a rapid 

warming, and therefore an abrupt climate change in NH. Rapid increases during the last glacial period (MIS 3 and 5) are also 

calculated using this method to identify the onset of abrupt warming in NH. In total, eight changes are selected during this 

period (Figure S7–S9). 

  15 

 

Figure S6: Atmospheric CH4 records from EDC during MIS 6 period. Three boxes show CH4 jumps at 171.1±0.2, 175.4±0.4 

and 181.5±0.3 kyr BP. 
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Figure S7: Atmospheric CH4 records from EDML during the MIS 5 period. Two boxes show CH4 jumps at 72.3±0.1, 

76.0±0.1, 84.1±0.2, 100.8±0.5 and 106.0±0.2 kyr BP. 
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Figure S9: Atmospheric CH4 records from TALDICE during MIS 3 period. Three boxes show CH4 jumps at 46.7±0.2, 

54.2±0.1 and 59.7±0.1 kyr BP. 

Figure S8: Atmospheric CH4 records from the Byrd ice core during MIS 5 period. Three boxes show CH4 jumps at 72.2±0.1, 

76.0±0.2 and 84.1±0.04 kyr BP. 
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Definition of minima and maxima of atmospheric CO2  

A two-steps procedure was used in order to select the maxima and minima of CO2 concentrations during the penultimate glacial 

periods, and calculate the associated age uncertainty (Figure S10 and Table S1). First, inflection points were selected by finding 

zero values in the second Savitsky–Golay filtered derivative of the data. The parameters of the Savitsky–Golay filters were 

chosen in order to remove sub–millennial scale variations. We use the same parameters for MIS 3, MIS 5 and 6. Second, a 5 

Monte Carlo simulation was conducted, in which the original data were resampled within their uncertainty, and the absolute 

minima and maxima between pairs of inflection points were selected. This allows us to assign an approximate uncertainty to 

the timing of each minimum/maximum. The square of the age uncertainty associated with sampling (taken to be the mean 

sampling resolution) was added to the squared uncertainty calculated in the Monte Carlo procedure to calculate a total 

uncertainty value.  10 

Table S1: The minima and maxima locations of atmospheric CO2 during the MIS 6. 

 CDM 6c.1 CDM 6c.2 CDM 6d.1 CDM 6d.2 CDM 6e.2 

  Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min 

Age                  

(kyr 

BP) 

156.3 160.6 162.6 162.6 164.2 167.2 167.2 169.6 172.7 172.7 174.1 177.2 177.2 181.3 184.9 

2δ      

(kyr 

BP) 

0.3 0.3 0.2 0.2 0.3 0.5 0.5 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.8 

Figure S10: The red and yellow points are the minimum/maximum measured points of atmospheric CO2 during MIS 6 

respectively. Blue dots indicate atmospheric CO2. The bars indicate the timing and CO2 uncertainty for each 

minimum/maximum. 
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Figure S11: Comparison of climate with atmospheric CO2 during MIS 3 (left) and 6 (right) period. A: 21 June insolation at 

65°N (Berger, 1978). B: Ice-rafted debris (IRD) input in the Iberian margin core MD95–2040 (de Abreu et al., 2003). C: 

Atmospheric CH4 in EDC during MIS 3 (Loulergue et al., 2008) and composite data of atmospheric CH4 in EDC during MIS 

6 (Loulergue et al., 2008; this study). D: δ18O of planktonic foraminifera in the Iberian margin marine Core MD01–2444 

(Margari et al., 2010). E: δ18O of Benthic foraminifera in the Iberian margin marine Core MD01–2444 (Margari et al., 2010). 

F: Temperature  in Antarctica from δD composition of the EDC ice core (Jouzel et al., 2007). G: Composite data of atmospheric 

CO2 in Antarctic ice cores during MIS 3 (Bereiter et al., 2015) and atmospheric CO2 in EDC during MIS 6 (this study). Dashed 

lines indicates the timing of AIM events. The numbers of AIM events are written at the bottom of the dashed lines.   
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