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Abstract 

Rice is the primary staple food of more than half of world’s population and plays an 

especially important role in global economy, food security, water use and climate change. 

The objective of this thesis was to develop methods for rice monitoring based on Sentinel-1 

data and to effectively use the mapping products in various applications concerning food 

security and global environment. 

Specifically, the study aims at providing tools for observation of the rice cultivation 

systems, by generating products such as map of rice planted area, map of rice start-of-season 

and phenological stages, and map of rice crop intensity, together with rice crop parameters 

such as category of rice varieties (long or short cycle), and plant height. The information to 

be provided is necessary for the estimation of crop production, and for the management of 

rice ecosystems at the regional scale. We also investigated on how the products derived from 

EO Sentinel-1 data can be integrated in process-based models for rice production estimation 

and methane emission estimation. 

The test region is one of the world’s major rice regions: the Mekong River Delta, in 

Vietnam. This region presents a diversity in rice cultivation practices, in cropping density, 

from single to triple crop a year, and in crop calendar.  

The first step was to understand the temporal variation of the backscatter Sentinel-1 

backscatter of rice fields, at VH and VV polarizations. For this purpose, in-situ data have 

been collected on 60 fields during 2 years, for the 5 rice seasons. It was found that backscatter 

time series of rice fields show very specific temporal behavior, with respect to other land use 

land cover types. The temporal and polarization variations of the rice backscatter have been 

interpreted with respect to physical interaction mechanisms to relate the backscatter 

dynamics to the key phenological stages, when the plants change its morphology and 

biomass. Because the same trend of temporal curves was observed over 5 rice seasons, it 

was possible to derive a mean curve to be used in the methodology developed for detecting 

rice phenology, and deriving information such as the date of sowing, the rice varieties of 

long and short duration cycle, or plant height, at each SAR acquisition date.  

The methods have been developed and applied to the Mekong delta. Products 

validation provides a good agreement with the reference data sets: 98% in rice/non-rice 

accuracy, the sowing dates RMSE of about 4 days, plant height RMSE of 7.8 cm, the 
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long/short variety map has 91.7% accuracy and for phenology, only one season has been 

processed with good detection rate of 59/60.  

Finally, the use of the rice monitoring products as inputs in two process-based models 

was assessed. The models are ORYZA2000 for rice production estimation and DNDC for 

methane emission and water demand estimation. Sentinel-1 data retrieved information 

(sowing date, phenology, long/short variety, plant height) were used as model inputs, giving 

good agreement with the results making use of ground survey only. Based on the two process 

models with inputs from Sentinel-1 data, it was possible to have an integrated result on rice 

yield, water use, and methane emissions. The preliminary results show a good potential for 

the optimization of water management in rice fields in order to reduce water use and GHG 

emission, without reducing the yield. 

To achieve the objective which is the effective use of Sentinel-1 data for rice 

monitoring for food security and global environment, more works need to be done 

concerning the consolidation of the rice monitoring method development and the integration 

of Sentinel-1 derived information in models aiming at estimating and predicting rice 

production, methane emission and water use.  
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Résumé 

Le riz est la principale denrée de plus de la moitié de la population mondiale et joue 

un rôle particulièrement important dans l’économie mondiale, la sécurité alimentaire, la 

consommation d’eau, et le changement climatique. L’objectif de cette thèse consistait à 

développer des méthodes pour le suivi du riz basées sur des données Sentinel-1 ainsi qu’a 

utiliser les produits de cartographie obtenus dans diverses applications portant sur la sécurité 

alimentaire et l’environnement mondial. 

Plus spécifiquement, l’étude a pour but de fournir des outils pour observer la culture 

du riz, en produisant la cartographie des surfaces cultivées, celle des stades phénologiques 

de la plante comprenant le début de la saison, celle des deux principales catégories de 

variétés de riz à cycle court et cycle long, la hauteur de la plante, et la carte annuelle du 

nombre de récoltes de riz par an. Ces informations sont nécessaires à l’estimation de la 

production du riz, et à la gestion des cultures à l’échelle régionale. Nous étudions aussi 

l’intégration des produits ainsi développés dans un modèle de processus destinés à estimer 

le rendement du riz, et un modèle permettant la dérivation de l’émission du méthane et le 

volume d’eau nécessaire à la culture.  

La région test est l’une des régions rizicoles majeures à l’échelle mondiale, qui est le 

Delta du Mékong, au Vietnam. Cette région est caractérisée par une grande diversité de 

pratiques agricoles, du nombre de cultures du riz par an, et dans les calendriers des récoltes.  

La première phase du travail est la compréhension de la variation temporelle des 

valeurs de rétrodiffusion radar de Sentinel-1, en polarisation VH et VV. Pour cela, des 

données de terrain ont été collectées sur 60 champs, sur 5 saisons de riz pendant 2 ans. Les 

variations temporelles des mesures radar ont été interprétées en fonction de la croissance des 

plantes le long des stades phénologiques. Les mêmes courbes caractéristiques observées lors 

des 5 saisons ont suggéré l’utilisation d’une courbe ‘type’ dans le développement des 

méthodes pour fournir les produits requis. 

Les résultats obtenus sur le Delta du Mékong ont été validés à l’aide des données 

terrain de référence, et sont très satisfaisants :  98% de précision pour la carte riz/non riz, 

une RMSE de 4 jours pour la date de semis, une RMSE de 0.78 cm pour la hauteur de plante, 

91,7% de précision pour la distinction entre deux types de riz (cycle court et cycle long), et 

98% de précision sur l’estimation du stade phénologique.  
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Enfin, nous avons évalué l’utilisation de ces produits issus de données Sentinel-1 

dans le modèle ORYZA2000 destiné à estimer le rendement du riz, et dans le modèle DNDC 

destiné à estimer le volume d’eau nécessaire à la culture, ainsi que l’émission de méthane 

par les rizières. Les résultats, préliminaires, montrent le bon potentiel de l’approche pour 

fournir le rendement, le bilan d’eau, et les taux d’émission de méthane sur les champs de riz 

considérés. Cette approche permettrait de faire des analyses de sensibilité, par exemple pour 

optimiser la gestion d’irrigation afin de réduire la consommation d’eau et l’émission de 

méthane, tout en préservant le rendement du riz. 

Ces travaux, qui démontrent le potentiel des données Sentinel-1 pour le suivi du riz 

à large échelle, seront à compléter afin de réaliser des applications effectives opérationnelles. 

Il s’agira de renforcer les méthodes et de les tester sur différents systèmes rizicoles, et de 

poursuive l’étude sur l’intégration de ces produits de télédétection dans les modèles 

permettant d’évaluer la productivité, les besoins en eau et les émissions des gaz à effet de 

serre des rizières.   
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1.1. Importance of rice 

Rice is the primary staple food of more than half of world’s population and plays an 

especially important role in global economy, food security, water use and climate change. In 

2016, 754.6 million tons of world rice production were estimated over 166 million ha of 

world rice production area (FAO, 2017), making it the second most-produced cereal after 

maize (825 million tons of maize), the second after wheat in cultivated areas (215 million ha 

of wheat) (Prospects and Situation, 2018). Worldwide, more than 3.5/7.6 billion people 

depend on rice for more than 20% of their daily calorie intake. Moreover, rice cultivation is 

the principal activity and source of income for more than 144 million farm households in the 

world, a majority of those in low-income and developing countries (IRRI, 2010). Figure 1 

shows that rice is the main crop for most countries in Asia where over 90% of the world’s 

rice crop is produced and consumed. 
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Figure 1. Main crop with the maximum harvested area in every country in the world (Source: 

FAOSTAT, 2004). 

At the global scale, rice consumption was found to increase steadily as shown in 

Figure 2, because increases in population have kept overall demand on the rise, despite the 

tendency for per capita rice consumption to decline. Figure 2 also shows that the rice 

production exceeded consumption up to 2014-2015, and since then, production and 

consumption are of the same order. It is noted that the inter-annual variation of the 

production can be significant.  

 

Figure 2. 2007-2018 variation of world rice production, rice utilization, and stocks (in 

Million tons) (source: FAO, 2018). 
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Eventually, with the extremely rapid growth of population, rice production will face 

a challenge of attaining rice self-sufficiency and food security. By 2035, world human 

population is expected to reach around 9 billion, whereas recent estimates indicate that to 

meet the projected demand, global rice production will have to increase by 78% from its 

2010 levels, as illustrated in Figure 3.  

 

Figure 3. Projection of the additional rice needed by 2035, as compared to the 2010 level 

(Seck et al., 2012). 

Milled rice: rice with the husk and the bran layers removed to produce white rice for consumption. 
For most varieties, around 70% of milled rice is produced from rough rice.  

On the other hand, rice agriculture is strongly linked to environmental issues from 

water management to climate change. Firstly, rice is a very sensitive cereal crop which is 

seriously affected by the adverse impacts of climate change. In the last decade, rice has 

become increasingly threatened by the effects of drought. Drought stress greatly influences 

the growth duration, but also leads to damages during reproductive stages of the rice crop, 

especially during flowering. Moreover, in the humid regions of Southeast Asia, there are 

many hectares that are technically appropriate for rice production but are left uncultivated 

or are grown with very low yields because of salt intrusion which affect the soils. Low water 

levels in Viet Nam’s Mekong River Delta, the country’s rice bowl, have resulted in an inward 

flow of salt water, increasing the salinity in the river water and endangering rice paddies 

(Redfern et al., 2015). In addition, the increase in the number of floods and some of the most 

devastating cyclones are also directly affected to rice production. Reversely, rice fields are 

a major generator of methane and nitrous oxide, responsible for 25% of the total budget of 

global methane emissions from agriculture (Saunois et al., 2016).  
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In summary, it is evident that rice agriculture is globally significant in terms of food 

security, water resources, and climate change. 

 In this context, comprehensive, reliable and timely information on rice crop are 

highly needed for national food security, in terms of risk occurrence and annual production 

projections, with potential impact on political stability. With respect to global environment, 

accurate information is needed on the spatial distribution of rice fields, on water resource 

management and greenhouse gas emissions, to assess the role of rice agriculture in the global 

carbon and water cycle. 

1.2. State of the art in the use of remote sensing for rice monitoring  

The use of remote sensing imagery for rice mapping and monitoring has been 

demonstrated in several studies using different sensors of various spectral characteristics and 

spatial resolutions. Both optical and microwave remote sensing systems offer practical 

means for rice mapping and monitoring in different parts of the world.  

Optical satellite sensors provide multi-temporal and multi-spectral reflectance data 

over croplands that can be used for deriving time-series of vegetation indices (VIs) in the 

spectral range 0.4 to 2.5 µm. The reflectance spectrum of a rice crop canopy is the result of 

a complex relationship between its biophysical and biochemical attributes. The most 

commonly applied optical sensors include Landsat, SPOT-VGT, MODIS, etc. to explore the 

ability of optical remote sensing instruments to identify rice areas (Xiao et al., 2005, Nguyen 

et al., 2012, Son et al.,2013, Clauss et al., 2018, Singha et al., 2017). However, cloud cover 

exceeding 70% of the time in most rice growing region in the tropics tropical regions limits 

the use of high resolution optical data (of the order of 10-30 m). On the other hand, coarse 

spatial resolution data (i.e., in the range 500 m to 1 km) with higher temporal resolution are 

less adapted to rice cropland monitoring at local scale where fields are not uniform and 

whose size is of the order of 1 ha or smaller (Bellon et al., 2017). 

Microwave remote sensing techniques have the advantage of their all-weather 

capability, and Synthetic Aperture Radars (SAR) can provide high resolution data. Studies 

on rice fields monitoring using SAR systems have been carried out since late 80s. These 

studies have been conducted to assess the potential of SAR systems operating at different 

frequency bands for rice cropland monitoring, including L-band (Wang et al., 2005), C-band 

(Le Toan et al., 1997, Bouvet et al., 2009, Lam-Dao et al., 2009, Bouvet et al.,2011, Nguyen 

et al., 2015, Nguyen et al., 2016), and X-band (Lopez-Sanchez et al., 2011, Fan et al., 2011, 
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Inoue and Sakaiya 2014a). In a comprehensive study conducted using ground based 

experimental data by Inoue at al. (2002), the relations of radar backscatter at various 

frequencies (Ka-, Ku-, X-, C-, L-) polarization and incidence angles with rice biophysical 

parameters have been analysed. 

However, those demonstration studies have not yet resulted in effective applications. 

One of the major obstacles is the lack of systematic, high resolution and cost effective SAR 

data. According to the studies, monitoring of rice from remote sensing requires cost effective 

SAR data at high resolution (10-30 m) and temporal resolution of the order of 10 days. With 

the launch of Copernicus Sentinel-1 satellite in 2014 (Sentinel 1A) and 2016 (Sentinel 1B), 

the required data, which are systematically and globally acquired every 12 (or 6) days, 

widely accessible at no cost, are now available.    

Mapping the rice areas extent using SAR data has been widely demonstrated. In 

many studies, rice fields were identified by their low backscatter at the start of season where 

the fields are flooded (Shao et al., 2001, Nelson et al., 2014, Nguyen et al.,2016, Torbick et 

al., 2017). This is no longer adapted to rice fields with new planting practices of direct 

sowing on wet soil. Le Toan et al., (1997) found that the identification of rice fields cannot 

be conducted properly by employing standard classification methods based on the similarity 

in the image intensity of rice fields. Temporal change measurement methods were developed 

for the mapping of rice fields based on the temporal variation of the SAR signal in order to 

cope with inter-field differences (Le Toan et al., 1997, Chen et al., 2007, Liew et al., 1998, 

Ribbes et al., 1999, Bouvet et al., 2011) using ERS-2, RADARSAT-1, and 

ENVISAT/ASAR. The polarization behavior of rice fields resulting from the vertical 

structure of rice plants during the vegetative stage has been exploited in the use of 

polarization ratio (e.g. HH and VV of ENVISAT/ASAR) (Wang et al., 2005, Bouvet et al., 

2009, Lam Dao et al., 2009, Lopez-Sanchez et al., 2010). Other use of both temporal and 

polarization variation of rice fields has been demonstrated, for example using a Wishart 

distribution-based multi-temporal classifier of ENVISAT-ASAR APS or  a combined 

entropy decomposition and support vector machine (EDSVM) method using RADARSAT-

1 data (Tan et al., 2011) (as described in the review of Kuenzer et al., 2013 and Mosleh et 

al., 2015).  

A number of research efforts have been directed towards the detection of rice growth 

stage. The works have been realized with multi-temporal C-band SAR using ERS, 

RADARSAT-1 or ASAR (Inoue et al., 2014, Chakraborty et al., 1997, Inoue et al., 2002). 

To detect  the start of the season (SoS), which corresponds to the sowing or transplanting 
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date, has been estimated in several studies, either as a mere step in the rice mapping process 

(Inoue et al., 2014a) or as a self-standing product (Liew et al., 1998). Other studies use the 

polarimetric SAR data to detect phenology stages, these studies rely on the fact that the rice 

plant changes its structure at each phonological stage. This leads to the change in 

‘polarimetric signature’ of rice fields. The studies were conducted by Lopez-Sanchez et al., 

(2012) in X- and C-band, and by Inoue et al., (2014) using the X- and C-band data from 

COSMO-Skymed and RADARSAT-2, respectively. Later on, the methods suggested by 

Vicente-Guijalba et al., (2014), De Bernardis et al., (2015), Nr et al., (2017), and Kucuk et 

al., (2016) improved the growth stage estimation algorithms using advanced methods such 

as Kalman filters, particle filters, and Support Vector Machines.  

 For rice production estimation, in most studies, yield data obtained by post harvest 

ground survey are combined with rice planted area detected by remote sensing to provide 

rice production (Shao et al., 2001, Ferencz et al., 2004). Other approaches are based on 

empirical relationships between backscatter temporal data and the final yield to extend the 

yield estimates over larger area (Prasad et al., 2006, Bolton et al., 2013, Koide et al., 2013, 

Maki et al., 2017). Despite the encouraging results (94% prediction accuracy), these 

approaches are difficult to generalize, and they have no prediction capability. Agro-

meteorological yield prediction models are important tools to understand the impacts of 

weather, soil, plant characteristics, and cultural practices on the final yield. Regarding rice 

yield models, the most important model is ORYZA2000 (Bouman et al., 2001) and later on, 

different versions are proposed in literature (Li et al., 2017). The models consider the factors 

impacting the growth rate which are solar radiation, temperature, and cultivar characteristics 

governing the phenological and morphological development of the plants. Until recently, the 

use of remote sensing in the model has been addressed through the Leaf Area Index, derived 

mainly from MODIS data (Doraiswamy et al., 2005). The SAR data have been used for 

localization of rice pixels, and in a recent paper (Setiyono et al., 2018), for deriving the Start 

of Season as an input to the ORYZA model.   

For methane emission estimation from rice fields, during the past two decades, 

many empirical and physical models have been developed to predict GHG emissions from 

rice fields. In a number of empirical models, the regression relationships between CH4 

emission rate and rice biomass or yield were used to estimate CH4 production (Sinha et al., 

1995, Kern et al., 1997, Anastasi et al., 1992, Zhang et al., 2011). Although these empirical 

approaches were easy to use, the accuracy and precision of estimated results could not be 

ensured, and the variation in emissions at regional scale also could not be explained 



7 
 

reasonably. The major models that are able to simulate CH4 production include MEM (Cao 

et al., 1995a), MERES (Matthews et al., 2000), InfoCrop (Aggarwal et al., 2004), and DNDC 

(Li et al., 1992a). Among the candidate models, DNDC has been tested for the rice paddies 

in China and other Asian countries (Fumoto et al., 2008, 2010; Kai et al., 2010; Zhang et al., 

2011; Katayanagi et al., 2017). As a process-based biogeochemical model, DNDC is able to 

track carbon (C) and nitrogen (N) cycles in agro-ecosystems driven by both the 

environmental factors and management practices. Model simulations have been conducted 

at experimental fields and compared with in situ measurements of methane emissions (Salas 

et al., 2010; Torbick, Salas, et al., 2017). Extension to emissions at regional scale has been 

done by assigning the same emissions to rice fields identified at the region using remote 

sensing.   

For rice production estimation and prediction, and for methane emissions 

estimations, research still needs to be conducted on the effective use of remote sensing data 

as inputs or validation data in rice yield prediction and methane emission models.  

1.3. Research objectives and thesis structure 

The objective of this PhD thesis is to exploit the time series of Sentinel-1 SAR data 

for rice mapping and monitoring. This thesis also aims to further apply the results of rice 

mapping and monitoring using SAR data, as inputs for models of rice production and 

methane emission estimations. The core of this work is to develop and test methods based 

on the knowledge of the temporal development of the rice plants and rice fields under 

different conditions, and on the understanding of the related temporal variation of the radar 

backscatter. The purpose here is not to derive the best possible rice map at each site through 

intensive calibration or large-scale fieldwork, but to introduce a simple approach that is 

robust, repeatable and suitable for rapid rice mapping over large extents with cost-effective 

field work. The overarching goal is to demonstrate that SAR-based operational mapping of 

rice crops across a diverse range of environments is possible based on the increasing 

availability of multi-temporal SAR data. The thesis is a timely contribution to remote-

sensing applications for food security, since it presents a method to derive sufficiently 

accurate rice area maps under different conditions that are typical of the diversity of rice 

environments in Asia. The thesis is structured in 8 chapters, including introduction and 

conclusion.  
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The importance of rice in food security, methane emission and water consumption 

were presented in this chapter in order to determine the information requirements for rice 

monitoring with respect to rice productions and methane emissions. The state of the art 

concerning the rice mapping and monitoring using remote sensing and applications is also 

presented in this chapter.  

Next, chapter 2 gives an overview of the rice in the world including socio 

economical aspect, rice ecosystems and its growing cycle, rice productivity and methane 

emissions from rice cultivation.  

Then, chapter 3 describes our study area and the data sets used through this thesis. 

The first part presents the general characteristics of the study site and experimental studies. 

In the second part, the remote sensing data set characteristics and data available for this 

research as well as data pre‐processing chain are presented.  

Chapter 4 consists in SAR data analysis as a function of ground data, and then 

physical interpretation of the temporal and polarization behavior of the radar backscatter 

response on rice canopy. This chapter is concluded by derivation of indicators for rice 

mapping and monitoring. Based on the analysis and interpretation results, chapter 5 

describes the methodologies developed for the mapping of rice area, rice varieties, rice 

cropping intensity and rice parameters retrieval (sowing date, phenological stage and plant 

height).  

Products derivation is presented in chapter 6 together with products validation and 

accuracy assessment. At last, the applications of the rice monitoring products are described 

in the chapter 7. For that, two process-based models are used in this thesis for rice yield 

estimation and methane emission using the mapping products developed in this research as 

direct input parameters. To conclude the chapter, some discussion and conclusion-way 

forward are presented in order to improve the performances of the models.  

Finally, Chapter 8 concludes this thesis by summarizing and discussing the main 

finding in this thesis and dedicates the perspectives for future researches in relation to this 

thesis. 
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1.1. L’importance du riz 

Le riz est la principale denrée de plus de la moitié de la population mondiale et joue 

un rôle particulièrement important dans l’économie mondiale, la sécurité alimentaire, la 

consommation d’eau, et le changement climatique. En 2016, la production mondiale de riz 

a été estimée à 754,6 millions de tonnes sur 166 millions d’hectares de surface cultivée (Up, 

2017), ce qui en fait la deuxième céréale la plus produite après le maïs (825 millions de 

tonnes), et la deuxième en termes de surface cultivée après le blé (215 millions d’hectares) 

(Prospects and Situation, 2018).  Plus de 3,5 sur 7,6 milliards d’individus à travers le monde 

dépendent du riz pour plus de 20% de leur apport calorique journalier. De plus, la culture du 

riz est l’activité principale et la première source de revenus pour plus de 144 millions de 

foyers dans le monde, la plupart dans des pays en développement et à faibles revenus (IRRI, 

2010). La Figure 1 montre que le riz est la culture principale pour la plupart des pays d’Asie, 

où plus de 90% de la production de riz est réalisée et consommée. 
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Figure 1. Culture avec la plus grande surface cultivée par pays (Source : FAOSTAT, 2004). 

Comme le montre la figure 2, il a été observé au niveau mondial que la consommation 

de riz est en augmentation constante, ce qui est dû au fait que la croissance de la population 

a provoqué une hausse de la demande globale, malgré la tendance décroissante de la 

consommation de riz par personne. La figure 2 montre également que la production de riz 

était plus importante que la consommation jusqu’à 2014-2015, et que les deux quantités sont 

depuis du même ordre de grandeur. Il est également observé que la variation interannuelle 

de production peut être considérable. 

 
Figure 2. Evolution de la production de riz, de l’utilisation du riz produit, et des réserves de 

riz (en millions de tonnes) de 2007 à 2018 (Source : FAO, 2018). 
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À terme, étant donné la croissance importante de la population mondiale, la 

production de riz risque de ne plus être suffisante pour assurer les besoins alimentaires 

mondiaux. D’ici 2035, il est attendu que la population mondiale atteigne environ 9 milliards 

d’individus, et des estimations récentes indiquent que la production mondiale de riz devra 

augmenter de 78% par rapport à son niveau de 2010 pour satisfaire la demande prévue, 

comme indiqué sur la figure 3. 

 

Figure 3. Prévision de la quantité de riz additionnelle nécessaire jusqu’en 2035, par rapport 

au niveau de 2010 (Seck et al., 2016). 

Milled rice : riz dont l’enveloppe et le son ont été retirés pour produire du riz blanc propre à la 
consommation. Pour la plupart des variétés, environ 70% de milled rice sont produits à partir du riz 
brut. 

L’agriculture du riz est également fortement liée à des défis environnementaux de la 

gestion de l’eau au changement climatique. Tout d’abord, le riz est la culture céréalière la 

plus sensible aux effets néfastes du changement climatique. Dans la dernière décennie, le riz 

s’est vu de plus en plus menacé par les effets de sécheresse. Le stress hydrique provoqué par 

la sécheresse non seulement influence grandement la durée de croissance du riz, mais 

provoque également des dommages pendant le stade reproductif de la culture de riz, 

particulièrement pendant la floraison. De plus, dans les régions humides du Sud-Est de 

l’Asie, il existe de nombreux hectares de terrain en théorie appropriés à la production de riz, 

mais non cultivés ou alors avec des rendements très faibles à cause de la salinité des sols. 

Les basses altitudes de la région du Delta du Mekong vietnamien, le ‘bol de riz’ du pays, ont 

eu pour conséquence un afflux d’eau salée vers l’intérieur des terres, augmentant ainsi la 

salinité de l’eau de rivière et mettant en péril les rizières (Redfern et al., 2015). En outre, 

l’augmentation du nombre d’inondations et de typhons particulièrement violents affecte 
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directement la production de riz. Ensuite, les champs de riz sont des sources majeures de 

méthane et d’oxyde nitreux, responsables de 25% du bilan d’émission de méthane de 

l’agriculture mondiale (Saunois et al., 2016). 

En résumé, il est évident que la culture du riz est mondialement très significative en 

termes de sécurité alimentaire, ressources en eau, et changement climatique. 

Dans ce contexte, des informations complètes, sûres, et fréquentes sur les cultures de 

riz et leur évolution sont grandement nécessaires pour la sécurité alimentaire nationale, en 

termes de survenance de risque et de prévisions annuelles de production, qui éventuellement 

pour la stabilité politique du pays. Par rapport à l’environnement mondial, des informations 

précises sur la distribution spatiale des champs de riz, sur la gestion des ressources en eau, 

et sur les émissions de gaz à effet de serre, sont nécessaires pour estimer le rôle de la culture 

du riz dans le cycle mondial d’eau et de carbone. 

1.2. Etat de l’art de l’utilisation de la télédétection pour le suivi du riz 

L’utilité de l’imagerie satellite dans le suivi et la cartographie de riz a été démontrée 

dans plusieurs études à l’aide de différents capteurs de caractéristiques spectrales et 

résolutions spatiales variées. Les systèmes de télédétection aussi bien dans le domaine de 

l’optique que dans celui des micro-ondes offrent des moyens pratiques pour la cartographie 

et le suivi temporel des cultures de riz dans des zones variées du globe. 

Les capteurs optiques procurent des données de réflectance multi-temporelles et 

multi-spectrales sur les cultures, qui peuvent être utilisées pour produire des séries 

temporelles d’indices de végétation dans le domaine spectral compris entre 0,4 et 2,5 μm. 

Le spectre de réflectance d’un couvert de riz est la résultante d’une relation complexe entre 

ses attributs biophysiques et biochimiques. Les capteurs les plus utilisés pour estimer la 

capacité des instruments de télédétection optique à détecter le riz comprennent Landsat, 

SPOT-VGT, MODIS, etc. (Xiao et al., 2005, Nguyen et al., 2012, Son et al.,2013, Clauss et 

al., 2018, Singha et al., 2017). Cependant, la couverture nuageuse est présente plus de 70% 

du temps dans la plupart des zones de culture de riz des régions tropicales (Nelson et al., 

2014), et limite l’utilisation de données optiques à haute résolution spatiale (i.e. de l’ordre 

de 10-30m). Par ailleurs, les données de résolution spatiale plus grossière (i.e. de l’ordre de 

500-1000m) mais de résolution temporelle plus élevée sont moins adaptées au suivi de 

cultures de riz à l’échelle locale pour laquelle les champs ne sont pas uniformes et ont 

habituellement une taille de l’ordre de 1 hectare ou moins (Bellon et al., 2017). 
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Les technologies de télédétection micro-onde ont l’avantage de fonctionner quelles 

que soient les conditions météorologiques, et les Radars à Synthèse d’Ouverture (RSO, ou 

Synthetic Aperture Radars – SARs) peuvent fournir des données à haute résolution spatiale. 

Des études sur le suivi des champs de riz utilisant ces systèmes RSO ont été réalisées depuis 

la fin des années 80. Ces études ont été menées dans le but d’estimer le potentiel des systèmes 

RSO opérant à différentes bandes de fréquence dans le suivi des cultures de riz, dont la bande 

L (Wang et al., 2009), la bande C (Le Toan et al., 1997, Bouvet et al., 2009, Lam-Dao et al., 

2009, Bouvet et al., 2011, Fan et al., 2011, Nguyen et al., 2015, Nguyen et al., 2016), et la 

bande X (Lopez-Sanchez et al., 2011, Fan et al., 2011, Inoue and Sakaiya 2014a). Dans une 

étude exhaustive menée par Inoue et al. (2002) utilisant des données expérimentales de 

terrain, les relations entre les paramètres biophysiques du riz et la rétrodiffusion radar à 

différentes fréquences (Ka-, Ku-, X-, C-, L-), polarisations et angles d’incidence, ont été 

analysées.  

Cependant, ces études de démonstration n’ont pas encore mené à des applications 

concrètes. L’un des principaux obstacles à cet objectif est le manque de données RSO 

acquises de manière systématique, à haute résolution spatiale, et bon marché. Selon les 

différentes études réalisées, le suivi des cultures de riz par télédétection requiert des données 

possédant une résolution spatiale de l’ordre de 10 à 30m, et une résolution temporelle de 

l’ordre de 10 jours. Avec le lancement des satellites Copernicus Sentinel-1 en 2014 

(Sentinel-1A) et 2016 (Sentinel-1B), ces données nécessaires, acquises systématiquement et 

sur l’ensemble du globe tous les 12 (ou 6) jours, accessibles gratuitement par tous, sont 

aujourd’hui une réalité. 

La cartographie de l’étendue des zones de riz via l’utilisation de données SAR a 

été largement démontrée. Dans de nombreuses études, des champs de riz ont été identifiés 

par leur faible rétrodiffusion en début de saison quand les champs sont inondés (Shao et al., 

2001, Nelson et al., 2014, Nguyen et al.,2016; Torbick et al., 2017). Cette méthode n’est plus 

adaptée aux champs de riz utilisant de nouvelles pratiques de plantation consistant à semer 

directement sur du sol mouillé. Le Toan et al. (1997) a observé que l’identification de 

champs de riz ne peut pas être réalisée correctement en utilisant les méthodes de 

classification classiques basées sur une supposée similarité de la rétrodiffusion des champs 

de riz. Des méthodes basées sur la mesure du changement temporel ont été développées pour 

la cartographie des rizières ; elles utilisent la variation temporelle (plutôt que la valeur 

absolue à une date donnée) du signal SAR afin de s'affranchir de l'effet des différences de 

rétrodiffusion d'un champ à l'autre, à partir d'images issues de ERS-2, RADARSAT-1, et 
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ENVISAT/ASAR (Le Toan et al., 1997, Chen et al., 2006, Liew et al., 1998, Ribbes et al., 

1999, Bouvet et al., 2011). Les caractéristiques de polarization des champs de riz, dues aux 

structures verticale des plants de riz pendant le stade végétatif, ont été exploitées via 

l'utilisation de rapports de polarization (par exemple HH et VV avec ENVISAT/ASAR) 

(Wang et al., 2005, Bouvet et al., 2009, Lam Dao et al., 2009, Lopez-Sanchez et al., 2010). 

D'autres exemples d'utilisation de variation temporelle et polarimétrique des champs de riz 

ont été proposés, utilisant par exemple un classificateur multi-temporel basé sur la 

distribution de Wishart appliqué à des données ENVISAT-ASAR APS, ou une utilisation 

combinée de décomposition d'entropie et de machine à vecteurs de support (EDSVM) à 

partir de données RADARSAT-1 (Tan et al., 2011) (comme décrit dans les revues de 

Kuenzer et al., 2013 et Mosleh et al., 2015).  

Des efforts de recherche ont été dirigés vers la détection des stades de croissance 

du riz. Ces travaux ont utilisé des données RSO multi-temporelles en bande C des 

instruments ERS, RADARSAT-1 ou ASAR (Inoue et al., 2014, Chakraborty et al., 1997, 

Inoue et al., 2002, Boschetti et al., 2009). La détection du début de saison (DdS), qui 

correspond à la date de semis ou de repiquage, a été présentée dans plusieurs études, soit 

comme une simple étape du processus de cartographie des rizières (Inoue, Sakaiya and 

Wang, 2014a), soit comme un produit à part entière (Liew et al., 1998). D'autres études 

utilisent le RSO polarimétrique pour détecter les stades phénologiques. Ces études reposent 

sur le fait que la structure de la plante de riz change à chaque stade phénologique, ce qui 

cause des changements dans la "signature polarimétrique" des champs de riz. Ces études ont 

été conduites par Lopez-Sanchez et al., (2012) et par Inoue et al., (2014) en bande X et bande 

C à partir de COSMO-Skymed et RADARSAT-2 respectivement. Par la suite, les méthodes 

proposées par Vicente-Guijalba et al., (2014), De Bernardis et al., (2015), Nr et al., (2017), 

and Kucuk et al., (2016) ont amélioré les algorithmes d'estimation des stades phénologiques 

à l'aide de méthodes avancées telles que les filtres de Kalman, les filtres à particule, et les 

machines à vecteurs de support.  

 En ce qui concerne l'estimation de la production de riz, dans la plupart des cas, 

des données de rendement obtenues lors d'enquêtes de terrain après la récolte sont combinées 

avec les surfaces plantées en riz détectées par la télédétection pour fournir la production de 

riz (Shao et al., 2001, Ferencz et al., 2004). D'autres approches sont basées sur des relations 

empiriques entre des données temporelles de rétrodiffusion et le rendement final pour 

étendre l'estimation de rendement sur de grandes régions (Prasad et al., 2006, Bolton et al., 

2013, Koide et al., 2013, Maki et al., 2017). Malgré des résultats encourageants (94% de 
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précision dans la prédiction), ces approches sont difficilement généralisables et n'ont pas de 

capacités prédictives. Les modèles agro-météorologiques de prédiction de rendement sont 

des outils importants pour comprendre l'impact du climat, du soil, des caractéristiques des 

plantes, et des pratiques culturales sur le rendement final. Parmi ces modèles de rendement 

de riz, le plus important est ORYZA2000 (Bouman et al., 2001), différentes versions ayant 

été proposées ensuite dans la littérature (Li et al., 2017). Le modèle considère les facteurs 

qui impactent le taux de croissance, comme le rayons solaire, la température, et les 

caractéristiques du cultivar qui pilotent le développement phénologique et morphologique 

des plantes. Jusqu'à récemment, l'utilisation de la télédétection dans le modèle a été effectué 

au travers de la surface foliaire (Leaf Area Index), dérivé principalement de données MODIS 

(Doraiswamy et al., 2005). Les données SAR ont été utilisées pour la localisation des pixels 

de riz, et dans un article récent (Setiyono et al., 2018), pour estimer la date de Début de 

Saison utilisée comme entrée du modèle ORYZA.  

Concernant l'estimation des émissions de méthane des rizières, dans les deux 

dernières décennies, de nombreux modèles empiriques et physiques ont été développés pour 

prédire les émissions de gaz à effet de serre par les rizières. Dans certains modèles 

empiriques, les relations de régression entre le taux d'émission de CH4 et la biomasse, ou le 

rendement du riz, ont été utilisés pour estimer la production de CH4 (Sinha et al., 1995; Kern 

et al., 1997; Anastasi et al., 1992). Bien que ces relations empiriques soient faciles à utiliser, 

l'exactitude et la précision des estimations ne peuvent être assurés, et la variation des 

émissions à l'échelle régionale n'a pas pu être expliquée de manière raisonnable. Les 

principaux modèles capables de simuler la production de CH4 incluent MEM (Cao et al., 

1995a), MERES (Matthews et al., 2000), InfoCrop (Aggarwal et al., 2004), et DNDC (Li et 

al., 1992a). Parmi les modèles candidats, DNDC a été testé sur les rizières en Chine et dans 

d'autres pays d'Asie (Fumoto et al., 2008, 2010; Kai et al., 2010; Zhang et al., 2011; 

Katayanagi et al., 2017). En tant que modèle bio-géochimique basé sur des processus, DNDC 

est capable de simuler les cycles du carbone (C) et de l'azote (N) dans les agro-écosysèmes 

déterminés par les facteurs environnementaux et les pratiques de gestion. Des simulations 

ont été conduites sur des champs expérimentaux et les résultats ont été comparés à des 

mesures in situ d'émissions de méthane (Salas et al., 2010; Torbick, Salas, et al., 2017). 

L'extension à des émissions à l'échelle régionale a été faite en assignat les mêmes taux 

d'émissions aux champs de riz identifiés dans la région à partir de la télédétection.   

L'estimation et la prédiction de la production de riz et l'estimation des émissions de méthane 

nécessitent de continuer la recherche sur l'utilisation effective des données de télédétection 
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comme entrées ou données de validation dans les modèles de prédiction de rendement de riz 

et d'émissions de méthane. 

1.3. Objectifs de recherche et structure du manuscrit 

Ce travail de thèse a pour objectif l’utilisation de séries temporelles RSO de Sentinel-

1 pour la cartographie et le suivi de rizières. De plus, cette thèse vise à évaluer l’apport des 

résultats de cartographie et de suivi de la culture du riz à partir des données RSO comme 

données d’entrée pour la calibration de modèles de rendement et d’émission de méthane. 

Les travaux menés ont principalement consisté à développer et tester des méthodes 

d’identification des rizières et de suivi du développement du riz dans différents contextes 

ainsi qu’à la compréhension de la variabilité temporelle de la rétrodiffusion radar en lien 

avec ces questions. Plutôt qu’une approche de calibration ardue ou de collecte de données 

sur des terrains très étendus, qui permettraient de générer des cartes complètement 

exhaustives de rizières mais à un coût très élevé, ces travaux visent la recherche 

d’alternatives simples, robustes, reproductibles et applicables sur de larges étendues à 

moindre coût et moyennant des relevés de terrain limités. L’objectif sous-jacent consiste 

donc à évaluer l’apport de données RSO pour des applications opérationnelles de 

cartographie des rizières pour une large diversité de contextes, apport que l’on suppose déjà 

très pertinent étant donnée notamment la disponibilité croissante de données RSO multi-

temporelles. La thèse présentée dans ce manuscrit constitue une contribution très attendue 

en télédétection appliquée au maintien de la sécurité alimentaire. Elle présente en effet une 

méthode robuste et précise pour la cartographie des rizières dans différents contextes de 

production représentatifs de la diversité des systèmes de production rizicoles d’Asie.  

Le manuscrit est organisé en huit chapitres, qui incluent une introduction et une 

conclusion générale. L’importance et les enjeux relatifs à la culture du riz en termes de 

sécurité alimentaire, d’émissions de méthane et d’utilisation des ressources en eau ont été 

présentés dans ce chapitre, afin d’identifier les attentes relatives à l’observation des surfaces 

de production du riz et de leurs émissions de méthane. Il présente aussi un état de l’art 

concernant les méthodes de télédétection permettant la cartographie et le suivi des rizières 

ainsi que leurs applications. 

Ensuite le chapitre 2 établit une vue d’ensemble des connaissances et questions 

relatives à la culture du riz dans le monde. Il couvre notamment ses aspects socio-

économiques, agronomiques et environnementaux, avec une attention particulière portée à 
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la question des émissions de méthane, et rappelle les différents stades du cycle de croissance 

du riz.  

Le chapitre 3 présente alors le site d’étude qui a été sélectionné et le jeu de données 

qui a été utilisé au cours de cette thèse. Dans une première sous-partie, les caractéristiques 

générales du site d’étude et de l’approche expérimentale sont données. Dans une seconde 

sous-partie, le jeu de données de télédétection disponible et utilisé dans la suite des travaux 

est décrit ainsi que la chaine de pré-traitement qui a été implémentée. 

Le chapitre 4 rapporte tout d’abord une analyse de données RSO comme proxy de 

l’état de la surface puis une interprétation physique de la variabilité temporelle ainsi que de 

polarisation du signal rétrodiffusé par les rizières. Dans une dernière partie, ce chapitre 

présente une méthode pour le calcul de différents paramètres destinés à la cartographie et le 

suivi des parcelles en riz. Sur la base de ces résultats, le chapitre 5 décrit les méthodes 

développées permettant la cartographie des surfaces en riz, des variétés de riz, de la densité 

du couvert, ainsi que l’extraction de certains paramètres (dates de semis, stades 

phénologiques, hauteur du couvert). 

L’obtention de ces produits est présentée par le chapitre 6 ainsi que leur validation 

et l’estimation de leur précision. Puis le chapitre 7 décrit les différentes applications à partir 

des produits de suivi du riz. Deux modèles agronomiques de croissance du riz ont notamment 

été utilisés au cours de la thèse pour estimer les rendements en riz et les émissions de 

méthane. Dans ce but, les produits cartographiques générés par télédétection ont été utilisés 

directement comme paramètres d’entrée de ces modèles. Ce chapitre s’achève par une 

discussion et conclusion concernant les futurs développements qui permettront d’améliorer 

les performances de modélisation. 

Enfin, le chapitre 8 de conclusion générale résume et discute les principaux résultats 

de la thèse et propose des perspectives de recherche qui mériteront d’être poursuivies. 
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This chapter gives an overview of the rice in the world including rice cultural 

practices, rice ecosystems and its growing cycle, rice productivity and methane emissions 

from rice cultivation. The information of rice growing system in the world is important to 

determine the needs and requirements for rice mapping and monitoring using Earth observation 

data. 

2.1. Introduction 

As described in the first chapter, rice is the world’s most important food crop. It is 

harvested from over 166 million ha in more than 100 countries (Laborte et al., 2017). Rice 

is grown in diverse cropping systems and various environmental conditions. These can go 

from single crop systems with both rainfed and irrigated in temperate and tropical climates, 

to multiple crop systems (2 or 3 crops annually) in tropical irrigated areas where rice is 

intensely cultivated.  

Statistics exist and can be used to derive information on the rice area and production 

by region and country globally (e.g., FAOSTAT, USDA). However, for some countries, the 
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information on rice production distribution is only available at the national level, and if the 

data is available at a finer scale, the statistics are mostly given by year. Hence, deriving rice 

area and production information within the year is a more complicated issue. Yet, this 

information is very valuable for several reasons. Firstly, when linked to a crop calendar it 

can contribute to the analysis of the variations in rice production, both spatially and 

temporally. This can add insight to food security, for example by coupling this data with 

information on climatic events and available rice stocks, in order to estimate the variations 

of the rice supply and stimulate the continuous availability of rice during the year. 

Additionally, the information of the rice cultivation areas and its calendar is important to 

estimate the potential biotic and abiotic stresses than can happen during the growing of rice, 

as well as the impact of climate change and new technologies on rice yield and production. 

The reasons cited above highlight the value of good rice production and area estimations, 

coupled to a precise and comprehensive rice crop calendar. 

Global rice crop calendar exists (Sacks et al., 2010, FAO, 2006, Portmann et al., 

2010), such as MIRCA 2000, which is monthly, gridded, and covers both irrigated and 

rainfed rice, but they are not adequate for rice areas that are cultivated several times during 

the year. Indeed, some regions with two seasons of rice annually have data for only one in 

those calendars. Additionally, they allow a maximum of only two seasons, when some of 

the most important rice growing regions of the world (e.g. Bangladesh, South-Vietnam, 

some parts of China and India) have three distinct cropping seasons. 

2.2. Cultural practices 

Although rice can be found all over the world, rice needs high solar radiation levels, 

relatively favorable temperatures and water and is therefore grown mainly in the tropics and 

subtropics (temperature criterion), and in humid and sub-humid areas. According to the 

International Rice Research Institute (IRRI), the three main growth environments defined by 

the hydrological practices as followed: 

 (1) Irrigated rice implies complete water control by irrigation and drainage systems.  

Traditionally, a water layer of about 2 to 20 cm is maintained for most of the season to avoid 

the use of chemical weed killers. This type of rice cultivation is the dominant system, 

although it is only a little more than half of the cultivated area, it contributes 75% of world 

production in rice. Depending on when and how much water is available, irrigation may be 
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applied as a supplement in the rainy season and/or during the dry season. With adequate 

irrigation water, two or even three crops of rice can be produced in a year.  

In addition, farmers are willing to apply more purchased inputs like fertilizers 

typically resulting in higher yields. These and other factors help make the irrigated rice 

ecosystem the most productive.   

Table 1. Three main growth environments 

Rice Ecosystem Total production 
area 

(%) 

Total rice 
production 

(%) 
Irrigated lowland 55-60        ≈75 

Rainfed lowland ≈30 ≈20 

Rainfed upland ≈10 <5 

 

(2) Rainfed lowland rice: Rainfed lowland rice areas lack water supply and/or water 

control for irrigation. As a result, they are more subject to flooding and drought than irrigated 

production areas. Salinity can be a problem in coastal areas where sea water submerges the 

rice production area but irrigation water is unavailable for salt removal. Different varieties 

and management systems are used compared to the irrigated ecosystem to help manage some 

of these risks. Drought and/or floods often limit yield levels in this cultural system. With 

31% of cultivated areas, rainfed lowland growing rice represents 21% of world production, 

mostly in Thailand (72.2% of the rice area), Nepal (60.6%), Myanmar (52.8%) and 

Bangladesh (43.1%).  

(3) Upland rice is produced without irrigation.  It can be found in a range of 

environments from low-lying valley bottoms to steep sloping lands with high runoff. This 

type of culture, in which the fields are not flooded, represents only a very small proportion 

of world production (around 4%), for an area of 9%.  

(4) Deep water or floating rice, where the water is supplied by river floods or by the 

tides that touch the mouths of the great deltas. Yields, dependent on the weather, remain low. 

With 8% of cultivated areas, this type of rice provides only 3% of world production, and is 

gradually being replaced by irrigated rice when hydraulic developments are realized.  

In summary, the majority of rice in the world is irrigated rice (52% in area) and 

lowland rainfed rice (31%). In both cases, the rice fields are covered with a layer of water 
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during most of their growth cycle in traditional cultural practices. However, more recently, 

alternate wetting and drying (AWD), a new management practice in irrigated lowland rice 

that saves water and reduces greenhouse gas (GHG) emissions while maintaining yields has 

been recommended by IRRI. The AWD water regime starts two weeks after transplanting/ 

seeding. The rice field is left to dry, then the field is re-flooded once a certain water level 

(e.g. 15 cm below the soil surface) is reached. This cycle is done repeatedly except during 

flowering stage of crop growth.  

 

Figure 4. Map of the main rice production ecosystems. Source: IRRI. 

Apart from the hydrological practices, the rice cultural practices in the world are 

characterized by: 

• Method of planting: direct sowing or transplanting. In the case of direct sowing, rice 

seeds, which are often germinated, are sown on fields which are wet but not flooded. 

In the case of transplanting, the rice seeds are sown densely in a nursery, where they 

will grow for 15 to 30 days before being transplanted into fields covered with a thin 

(few cm) layer of water. Transplanting can be manual, in areas where labor is 

abundant, or mechanical, and therefore with a very regular alignment, in the areas 

where machines are available. In many countries, and particularly in Vietnam, 

manual transplanting, which is the traditional planting method is gradually being 

replaced by direct sowing in because of the increase in the labor cost.  

• The number of rice cropping seasons per year depends on several factors, including 

climatic conditions (temperature, solar radiation, and precipitation), hydraulic 

development, hydrological practices, manpower, and the possibility to use new 
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hybrid rice cultivar with short growth cycle. Figure 5 shows an example of the global 

map of rice cropping density based on statistics and EO (MODIS) data.  

 

Figure 5. Map of cropping density or number of rice seasons per year (Laborte et al., 2017).  

2.3. Rice growth cycle 

Rice (Oryza sativa), native to India and China, traditionally comes in two main 

cultivars, indica and japonica. Indica rice has long, narrow grains and is cultivated in the 

humid tropics and sub-tropics. The japonica rice, with oval or round grains, grows in the 

tropics or temperate regions. From the mid-sixties, cultivar hybrids were created. They have 

higher yields and a shorter growth cycle, which allows obtaining several rice harvests a year, 

up to 3 in irrigated areas in the tropics.  

Depending on the varieties used and climatic conditions, the crop cycle rice can range 

from 90 to over 150 days. After sowing or transplanting, the rice plants go through three 

phases:  

(1) The vegetative phase extends from germination to floral initiation. It is 

characterized by a significant emission of tillers (secondary stems arising at the base of the 

main stem), an increase in the height of the plant, and the development of leaves at regular 

intervals. The duration of this phase depends on the variety adapted to the climatic 

conditions. About 20 days after transplanting, the clumps completely cover the spaces 

between plants. Throughout this period, the structure of the plant remains erectophile: tillers 

are almost vertical and the leaves have a low insertion angle (5 to 20°), as illustrated in the 

Figure 6. 
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Figure 6. Illustration of the vertical structure of rice plant at vegetative phase (Source: 

Ricepedia.org). 

(2) The reproductive phase includes the heading / flowering stages: decrease in the 

number of tillers, development of panicle leaf, formation and flowering of panicles. It lasts 

25 to 35 days. The height of the plants stabilizes and the angle of insertion of the leaves 

increases to 30-40°, causing the plant to lose its vertical appearance (as illustrated in the 

Figure 7). However, in modern varieties, leaves emerge from the panicles layer.  

 

Figure 7. Illustration of the plant structure of rice at reproductive phase (Source: 

Ricepedia.org). 

(3) The ripening phase results in the ripening of the grains and the drying up of the 

plant, and lasts from 25 to 40 days. 

The evolution of the rice plant structure along its growth cycle will affect the 

backscatter characteristics of the rice fields. 
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2.4. Rice productivity 

In the world, rice production is more than 754 million tons annually (470 million 

tons of milled rice) in 2016 (IRRI, AfricaRice and CIAT). About 90% of the rice in the world 

is grown in Asia (nearly 640 million tons), with China and India as the largest rice producers. 

Although its area harvested is lower than India’s, China’s rice production is greater due to 

higher yields because nearly all of China’s rice is irrigated, whereas less than half of India’s 

rice is irrigated. In 2016, the largest three exporting countries in 2016 are Thailand (26% of 

world exports), Vietnam (15%), and the United States (11%), while the largest three 

importers are Indonesia (14%), Bangladesh (4%), and Brazil (3%). Elsewhere, the most 

important production centers are in the United States (California and the southern states near 

the Mississippi River), which produced 9.0 million tons of paddy on average in 2006-2008. 

The leading European producers are Italy, Spain, and Russia. Australia used to be an 

important producer, but its output has declined substantially in recent years because of 

recurring drought (Rice Almanac, 2010).  

 

Figure 8. Import, export, production and consumption of rice in 2017 (milled rice equivalent 

–‘000 tons) (Data from FAO, 2018). 

Figure 8 shows the latest statistics from FAO on rice import, export, and production 

of rice in 2017. 

http://ricepedia.org/united-states
http://ricepedia.org/rice-around-the-world/europe
http://ricepedia.org/italy
http://ricepedia.org/spain
http://ricepedia.org/russian-federation
http://ricepedia.org/australia
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 Rice yields  

 Yields range from less than 1 ton/ha under very poor rainfed conditions to more than 

10 tons/ha in intensive temperate irrigated systems. The highest rice yields have traditionally 

been obtained from planting in high-latitude areas that have long day length and where 

intensive farming techniques are practiced, or in low-latitude desert areas that have very high 

solar energy (with available water for irrigation). Southwestern Australia, Hokkaido in 

Japan, Spain, Italy, northern California, and the Nile Delta provide the best examples. The 

productivity of upland rice is the lowest, only reaching 2,4 -3,0 tons/ha per planting season 

(Rice Almanac, 2010). 

As stated previously, more than 90% of the world’s rice is produced and consumed 

in Asia (IRRI, 2013). At the economic level, world rice trade is volatile due the uncertainty 

in the Asian demand, particularly in countries like Indonesia, the Philippines or Japan, where 

national production can vary as much as 20% from year to year. Accordingly, prices can 

fluctuate considerably.  

Within this context, it is important to have a tool for early estimation of rice 

production. For this purpose, a large research community has been working on the rice 

growth models aiming at predicting the final yield well before harvest. These rice growth 

models were developed to simulate the potential production in optimum conditions of light 

and temperature and water. These conditions together with given varietal characteristics for 

phenological, morphological, and physiological processes determine the growth of the crop.  

The new generation versions of these models, such as ORYZA2000 which will be 

used in this study, allow an explicit simulation of crop management options, such as 

irrigation and nitrogen fertilizer management. It can also be used in application-oriented 

research such as the analysis of the effects of climate change on crop growth. 

2.5 Global emissions from rice fields 

The importance of lowland rice fields as a source of atmospheric CH4 was realized 

in the 1980s (Holzapfel-Pschorn and Seiler, 1985). Anaerobic decomposition of organic 

material in flooded rice fields produces methane (CH4), which escapes to the atmosphere 

primarily by diffusive transport through the rice plants during the growing season. In 

inundated rice fields, CH4 is produced by methanogens through anaerobic decomposition of 

organic matter, and part of the CH4 is oxidized by methanotrophic bacteria in aerobic regions 

of the soil (i.e. the surface soil layer and the rice rhizosphere). Methane stored in soil can be 
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emitted to the atmosphere via three pathways: diffusion through flood water, ebullition, and 

transport through rice plants. Of these pathways, transport through rice plants is the most 

important: several studies have estimated that about 90% of CH4 emission during the rice 

growing season occurred through rice plants (Schutz et al., 1991; Butterbach-Bahl et al., 

1997). The Intergovernmental Panel on Climate Change (IPCC, 1996) estimated the global 

emission rate from paddy fields at 60 Tg/yr, with a range of 20 to 100 Tg/yr. This is about 

5-20 per cent of the total emission from all anthropogenic sources. This figure is mainly 

based on field measurements of CH4 fluxes from paddy fields in the United States, Spain, 

Italy, China, India, Australia, Japan and Thailand. 

The measurements at various locations of the world show that there are large 

temporal variations of CH4 fluxes and that the flux differs markedly with soil type and 

texture, application of organic matter and mineral fertiliser (Neue and Sass, 1994). The wide 

variations in CH4 fluxes also indicate that the flux is critically dependent upon several 

factors including climate, characteristics of soils and paddy, and agricultural practices, 

particularly water regime. The parameters that affect methane emissions vary widely both 

spatially and temporally. Changing management of water resources also has likely 

contributed to reduced emissions from rice agriculture. Field studies indicate that mid-season 

drainage reduces CH4 emissions by 15–80% (Wassmann et al., 2000). Combining this 

information with regional statistics on management practices, Li et al., (2002) estimated that 

the practice of midseason paddy drainage in China could have lowered CH4 fluxes by about 

5 TgCH4yr-1 from 1980 to 2000. 
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2.6. Summary on Earth Observation requirements for rice monitoring 

Because of the complexity of rice ecosystems, and the diversity of cropping density, 

cultural practices, and the need of inputs for rice production models and methane emissions 

from rice fields, the requirement on Earth observation system can be summarized as follows: 

o Monitoring of rice from remote sensing requires cost effective SAR data at high 

resolution (10-30 m) and temporal resolution of the order of 10 days. 

o Mapping of rice extent requires multi-temporal SAR data and robust methods to be 

developed to deal with a diversity of multi-cropping, crop calendar and cultural 

practices in a region. 

o Monitoring of rice phenology requires multi-temporal data, and the development of 

methods dealing with a diversity of rice varieties and cultural practices. 

o For rice production estimation and prediction, and for methane emissions 

estimations, research needs to be conducted on the effective use of remote sensing 

data as inputs or validation means for rice yield prediction and methane emission 

models. 

 

In particular, the information about crop calendar and rice planted and harvested 

areas and early production estimates are required in global initiative such as GEOGLAM 

(Group on Earth Observations Global Agricultural Monitoring) in which the Asian Rice 

Crop Estimation and Monitoring initiative (Asia-RiCE) is a component dealing with rice 

crop in Asia. 
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Chapter 3 

Study region and material 
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This chapter aims to present our study region and the data sets used through this 

thesis. The first section will present the general characteristics of the study sites. Then, in 

the second section, the ground data collection will be described. Finally, in the third section, 

the remote sensing data set and the images pre‐processing chain for the data used through 

this thesis will be presented.  

3.1. Study region 

The test region selected for this study is the Vietnam Mekong Delta, in which an 

important diversity of rice crop cultivation is represented. In this region can be found single, 

double, and triple crop systems (i.e. number of crops per year), planted with short or long 

cycle rice, with shifted crop calendar between provinces and intra-provinces. Cultivation 
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practices include the traditional method with transplantation and continuous flooding (CF) 

and the modern method with direct seeding and Alternate Wetting Drying (AWD). 

3.1.1. The Mekong Delta 

 

 

Figure 9. The Study region and map of 13 provinces in the Mekong Delta, Vietnam 

The Mekong Delta, popularly known as the "Rice Bowl" of Vietnam, covers an area 

of about 40,000 km² between 8.5°−11.5°N and 104.5°−106.8°E in the southern part of 

Vietnam. A total of 12 provinces and 1 municipality constitute the Mekong Delta inhabited 

by about 17.4 million people, accounting for 20% of the population in the country. 

Geographically, the Mekong Delta is the last part of the Mekong River before it flows to the 

sea through a network of nine main distributaries. The topography of the region is extremely 

flat, with most areas lying just above sea level (0.7-1.2m in height). The climate of the 

Mekong Delta is monsoon tropical semi-equatorial with two well distinguishable seasons: 

the rainy season (June-November) and the dry season (December-May). Seasonal floods 

occur in a large part of the area, starting in August in the upper Delta, and then spreading to 

the lower Delta, peaking in September-October and lasting until the beginning of December. 

The floods bring large amounts of silt that contribute to the fertilization of the soil. The land 

is dedicated mostly to agriculture (63%), aquaculture (17.7%) and forestry (8.9%) (General 
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Statitics Office of Vietnam) with the agricultural land comprising predominantly rice 

paddies (66% in area of annual crop), sugarcane, fruit tree plantation (particularly mango). 

The Mekong Delta is the main national rice producer. At the national level, the 

Mekong Delta accounts for only 11% (4.06 M ha) of Vietnam’s area but contributes up to 

54% of national rice production (General Statistics Office of Vietnam, 2017). The Mekong 

Delta has mostly irrigated rice ecosystems with three major cropping seasons: Winter-

Spring, Summer-Autumn and Autumn-Winter cropping season.  

(1) Winter-Spring season has the highest productivity (20.5% higher than the average yield 

of the region). Rice is planted at the end of the rainy season (Nov-Dec) and the 

increased solar radiation and irrigation in the later cropping season from February-

April provide good conditions in rice reproductive and ripening phases ensuring high 

productivity.  

(2) Summer-Autumn cropping season has the largest rice cultivation area, accounting for 

54% of the total rice cultivation area of the region. Rice is planted in April-May. 

However, it rains during the second part of the season and the rice is harvested in July-

August before being devastated by floodwaters. Because of the lack of solar radiation, 

during the rainy period, the productivity is lower than for Winter Spring rice.  

(3) Autumn-Winter crop during rainy season has the lowest productivity. Rice is planted 

in July-August, and harvested in December-January. Rice area is the lowest in this 

rainy season, as almost 50% of the total area of the delta (4 million ha) is flooded, in 

particular in the northern part of the delta due to the overflowing of the Mekong River 

in the upper reaches. However, dyke systems were built starting in the early 90’s in 

order to protect the fields from flood water and allow the third crop in certain parts of 

the Delta.  

(4) In parts of the Delta not prone to floods, and without irrigation infrastructure during 

dry season, traditional rainfed rice still subsists. Rice is transplanted in July-August 

and harvested in November-December. 

At a given site, the number of crops per year, from one to three, depends on the water 

management, including irrigation during the dry season and levee and dyke construction to 

stop flood waters during the rainy season. The crop calendar can vary every year, depending 

on the onset of the rainy season, and the calendar can be specific to each of the 13 provinces, 

depending on the geographical conditions and on provincial regulations. 

Table 2 shows the main rice seasons and their typical calendar in the Mekong Delta. 

There is a recuperation period of approximately one to two weeks between cropping seasons, 
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with the exception of the 1 to 2-month seasonal flooding period. Rice seeds are directly sown 

on wet soil by drilling (precision equipment) or broadcasting (hand), or transplanted 

(manually or with transplanting machine). The sowing methods depend also on the rice 

varieties and farm strategies.  

Table 2. Main rice seasons in the Mekong Delta 

 

The water management is different between regions. A system of canals and dikes to 

bring irrigation water and control floodwater has been built in the recent decades to 

complement the existing canal system that operated mainly as an irrigation source. In the 

rice fields surrounded by irrigation canals and dykes system, irrigation is performed using 

sluices and pumping apparatuses attached within the dykes of the paddies, as can be seen for 

example in the An Giang and Dong Thap provinces. Moreover, besides the traditional 

continuous flooding method, modern water management has been developed in the last 

years, consisting in intermittent drainage between two irrigation operations (AWD) as 

described in section 2.2. In both cases of water management, the rice fields are flooded from 

1–2 weeks until 3-4 days before the date of sowing in order to prevent self-propagating 

vegetation and pests. At the end of the season, the fields are drained two weeks before rice 

harvest.  

With regard to fertilisers, no base fertiliser is applied, but top-dressing fertilisers are 

applied after sowing with 3-6 applications during a season, and rice fields are flooded when 

the fertilisers are applied. To avoid yield loss, insects, snails, diseases and weeds are 

controlled with approved pesticides. After the harvest, the straw is used in several ways: 

incorporated into the soil, utilised as compost for vegetable or flower cultivation, utilised as 

mushroom beds by rice farmers, burned, or utilised as feedstuff for livestock. 

It is important to note that the Mekong Delta is often affected by climate change-

related events. For example, since the end of 2015, El Niño has strongly affected South East 

Asia, leading to severe drought, in particular in Vietnam’s Mekong Delta. River water levels 

were at the lowest recorded in 90 years in many places, causing more severe and earlier salt 

water intrusion than in the previous years.  

http://www.esa.int/Our_Activities/Observing_the_Earth/Space_for_our_climate/El_Nino
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3.1.2. Extension to national scale 

In this thesis, the methods developed in the Mekong Delta are also extended to 

national scale in two countries, Vietnam and Cambodia. 

 Vietnam 

Vietnam is the world’s 5th rice producer and the 3nd largest (after India and Thailand) 

exporter worldwide (USDA, 2018). Vietnam is located in the southeast of Indochinese 

Peninsula and covers an area of more than 330,000 square kilometers. The topography in 

Vietnam is very diverse with mountains, hills, plains, coasts and continental shelf. Vietnam’s 

climate is suitable for paddy production. The cultivated land of paddy covers 4.2 million ha 

(43% of total agricultural land area) within 9.3 million households planting of paddy (65% 

of rural households). The rice area harvested changed from 6.8 million ha in 1995 to 7.8 

million ha in 2014 and has an average productivity of 5.6 ton per ha in 2016 (General 

Statistics Office of Vietnam, 2017). 

Rice growing season and cultivation practices change from South to North with the 

most important and densely distributed paddy areas being in the low-lying deltas of the 

Mekong River in the South and Red River in the North. Besides the Mekong Delta described 

in section 3.1.1, the Red River Delta (RD) is the second rice producer in Vietnam, accounting 

for 17% of Vietnamese rice production. The RD is more densely populated, has smaller 

landholdings and has double-crop, with a small part of single crop rice cultivation. At the 

national scale, two to three major cropping seasons are distinguished more generally into 

spring, summer and autumn seasonal periods, for the three regions North, Center and South 

as shown in Table 3. 

Table 3. Crop calendar in three main regions (North, Center and South) in Vietnam. For 

each season, the planting, mid-season and harvest stage correspond to the lighter-darker 

colors. 

 
 

 

https://en.wikipedia.org/wiki/Thailand
https://en.wikipedia.org/wiki/Mekong_River
https://en.wikipedia.org/wiki/Red_River_%28Asia%29
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 Cambodia 

 

The second test at national scale in this study, Cambodia is located in Southern Asia, 

bordering the Gulf of Thailand, between Thailand, Vietnam and Laos. Cambodia can be 

divided into four geographical regions; the Mekong Plain Delta, Tonlé Sap Plain Delta, 

North and North-Eastern mountainous region and the coastal region. Cambodia’s climate is 

dominated by monsoons and the rainy season is from May to October.  

Rice is the main crop in Cambodia and rice production (GDP 13%) occupies 91% of 

the cropped area. In 2013/2014, the total rice-cultivated areas were about 3 million ha and 

9.32 million tons were harvested. Cambodia became a rice-exporting country in the late 

1990s and increased the export volume from 0.75 million tons in 2009/2010 to 1 million tons 

in 2013/2014. The sharp increase of rice productivity is closely related to the expansion of 

irrigation facilities, technology improvement and the rice price increase at the global market.  

Rice in Cambodia is grown in four different ecosystems: rainfed lowland, rainfed 

upland, deepwater, and irrigated, with two main rice seasons: wet-season (short wet, medium 

wet and long wet season) and dry-season (Table 4). 

Table 4. Crop calendar in Cambodia 
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3.2. Ground data 

In line with the objectives of the thesis, the ground data collection was designed for:  

(1) Analyzing radar satellite imagery to understand the temporal variation of the 

radar backscatter from the rice fields, 

 (2) Developing methodologies for mapping rice grown area, distinguishing long-

cycle and short-cycle rice varieties, estimating and mapping rice phenological stage, sowing 

date, plant height and cropping intensity, 

(3) Validation and accuracy assessment of the products developed in (2),  

(4) Providing inputs and validation for rice growth simulation model ORYZA2000 

for rice production estimation, and DNDC for Methane emission modelling.  

For the three first objectives, the data collection was designed by CESBIO and 

Vietnam National Space Center (VNSC), in the frame of the GeoRice project (Le Toan et 

al., 2017). In line with labor availability, rice fields of different conditions within the An 

Giang province have been selected and data collection has been performed in collaboration 

with the team from the University of An Giang, Vietnam.  

An Giang is one of the major rice producing provinces of Vietnam with 237,500 ha 

rice paddy over 278,800 ha (85%) of total agricultural land of the province (Figure 9). 

Similarly to the crop distribution in the Mekong Delta, rice crop is the dominant crop, the 

other crops which are sugarcane, maize, and vegetables (Phan et al., 2018). The rice field 

samples have been chosen to be representative of rice-growing conditions in terms of 

cropping density, cultural practices (rice varieties, irrigation) and also accessibility of the 

area and availability of agricultural information (field map, irrigation schedule, rice variety, 

rice yield). In addition, the sampling strategy accounted for the different factors influencing 

the SAR backscatter when using Sentinel-1 (which will be described in Section 3.3). 

The data has been collected over 60 sampling fields regularly during two periods: 

from April 2016 until April 2017, and from August 2017 to April 2018. Note that due to 

logistic reasons, most sampling fields have been changed during the second period, only 8 

fields were surveyed during both periods. These fields have been chosen to cover a range of 

rice planting practices, rice varieties and crop calendar. 

The data have been provided in GIS format for field delineation. The size of most 

fields varies from 40-60m in width and 100-120 m in length. 6/60 sampled rice fields are 

smaller (40 x 40m). For 60 rice fields, ground data were collected at the dates of Sentinel-1 

overpasses, every 12 days and 6-9 times per seasons as shown in Figure 10. 
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Figure 10. The time table of the study data sets: collected ground data and Sentinel-1 data, 

along with the rice crop calendar in the An Giang province, Mekong Delta, Vietnam.  

The general information, i.e. gathered once for each sample field and each season, 

includes rice variety, planting method, seeding density, rice calendar, rice yield at harvest. 

An example of general information collected over sampled rice fields under study is given 

in Table 5. 

Table 5. Example of general collection information of rice fields under study. 

Sample 
ID 

Variety 
Planting 
method 

Seeding 
density 
(kg/ha) 

Sowing date Harvest date 
Yield 

(ton/ha) 

1 50404 Direct sowing 20 14/8/2016 10/11/16 720 

2 50404 Direct sowing 22 14/8/2016 10/11/16 700 

3 50404 Direct sowing 20 14/8/2016 08/11/16 600 

4 50404 Direct sowing 20 15/8/2016 08/11/16 650 

5 50404 Direct sowing 25 15/8/2016 09/11/16 500 

6 50404 Direct sowing 24 15/8/2016 09/11/16 800 

7 50404 Line sowing 20 15/8/2016 11/11/16 650 

8 50404 Line sowing 20 15/8/2016 15/11/16 500 

9 Jasmine Transplanting 8 14/8/2016 05/11/16 800 

 

The detailed information, i.e. gathered at each visit in the field, comprise water layer 

thickness (cm), soil condition (1 for dry, 2 for wet, and 3 for water and mud) rice phenology, 

uniformity in plant height (1: yes; 2: no), plant height from the water or soil surface (cm). In 

all samples, photographs have been taken during the observation dates. An example of 

detailed rice plant parameters measured over sampled rice fields under study is given in 

Table 6.  
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Table 6. Example of rice plant parameters measured at some sample rice fields under study. 

Sample 
ID 

Water 
layer (cm) 

Plant 
height (cm) 

Uniformity 
Soil 

condition 
Phenological 
stage (1-12) 

1 5 22 1 2 5 

2 5.5 24 1 2 5 

3 2.5 25 1 2 5 

4 4 23 1 2 5 

5 2 24 1 3 4 

6 4 20 1 2 4 

7 6 20 1 2 5 

8 3 26 1 2 5 

9 3 20 1 2 5 

 

For the phenological stage, 12 growth stages scale have been observed during the 

rice growth cycle as follows: 

1: seedling, emergence  

2: 2/3 leaves  

3: tillering start  

4: tillering max  

5: stem elongation  

6: booting  

7. heading  

8. flowering  

9. milky stage  

10. milky-hard stage  

11. maturing  

12. maturity  

This scale was used by local experts and the Vietnam agriculture services for field 

survey to record the phenological stage. However, the phenological stage could be expressed 

following the principal growth stages of the BBCH scale (Forestry, 2001). Depending on the 

required precision of the products and the temporal resolution of the EO data used to generate 

the product, the above stages can be simplified to a more reduce number of stages, for 

example 6 main stages instead of 12. 

For validation of rice mapping results in the whole Mekong Delta, GPS check points 

were collected. The required information was: point coordinates, type of surface, current rice 

growing fields (labelled rice), rice field before or after the current rice season (before sowing 

and after harvest, labelled non-rice), other crop or other land use land cover classes (non-

rice) and photographs. In total, five campaigns have been realized by the team from Vietnam 

National Space Center from July 2016 to April 2017: (1) from 3 to 8/7/2016, (2) from 2 to 

4/9/2016, (3) from 15 to 18/11/2016, (4) from 18 to 19/2/2017 and (5) from 8 to 9/4/2017. 

For each of the campaigns, 100 rice fields corresponding to currently grown rice and 30 

other types for each of the 3 main regions in the whole Mekong Delta have been collected, 

as shown in Figure 11.  
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Figure 11. Example of check points for rice map product validation recorded during the 3-

8 July 2016 campaign. Around 100 rice and 30 non-rice points for each of the 3 main rice 

regions. 

It is noted that 3 main regions were chosen over 9 provinces in Mekong Delta to be 

accessible and the most favorable for the field trip. 

o Region 1: An Giang; Kiên Giang; Cần Thơ 

o Region 2: Đồng Tháp; Long An; Tiền Giang 

o Region 3: Sóc Trăng; Trà Vinh, Vĩnh Long 

Figure 11 presents an example of the location of the check points recorded during 

the first campaign (3-8 July 2016), during the Summer-Autumn (April-August) rice season 

2016. Figure 12 gives some photographs taken during the field trip of rice and non-rice 

samples in the Mekong Delta. 

In addition, for rice production model and methane emission models (objectives 4 

and 5), the study benefits from a collaboration with a team from the University of Tokyo and 

can make use of an existing database collected by this team. This dataset will be presented 

in Chapter 7.  
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Figure 12. Example of the rice and non-rice sample photographs taken during the field trip 

in the Mekong Delta, Vietnam. 

3.3. SAR data 

This section aims to provide the basic knowledge on synthetic aperture radars (SAR) 

as well as the data used in this study. The first subsection provides an introduction of the 

SAR principle and theory, followed by an overview of the statistical properties of SAR 



40 
 

images. The rest of this section describes the data used in this thesis, from the Sentinel-1 

data to the data preprocessing process. 

3.3.1. SAR remote sensing introduction 

3.3.1.1. Radar equation 

RADAR (RAdio Detection And Ranging) is an active microwave observing system. 

A radar system consists fundamentally of a transmitter, a receiver, an antenna, and an 

electronics system to process and record the data. The electromagnetic energy propagates 

outward at light velocity, toward a target (object, surface). The radar measures the energy in 

the radar pulse which is reflected back towards the radar and is expressed as the radar 

backscatter (σ0). The objects can be detected by measuring the time delay between the 

transmission of a pulse and the reception of the backscattered "echo" from different targets, 

which provides the information on magnitude, phase, time interval between pulse emission 

and return from the object, polarization and Doppler frequency.  

The radar backscatter measurement is expressed by the radar equation. This equation 

describes the relationship between the received power (𝑃𝑟) from the incident electromagnetic 

wave �⃗� 𝑟 and the transmitted power (𝑃𝑡) for a single target in the form of the scattered 

wave �⃗� 𝑡, and can be written as: 

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝜆²

4𝜋𝑅𝑡
2 𝜎

Αr

4𝜋𝑅𝑟
2                                                         (1) 

Where 𝑃𝑟  is the power detected at the receiving system, 𝑃𝑡is the transmitted power, 

𝐺𝑡 is the antenna gain, 𝑅𝑡 is the distance between sensor and target, 𝜆 is the exploited 

wavelength. The term 𝑃𝑡𝐺𝑡

4πRt
2 is determined by the incident field �⃗� 𝑡  and it consists of its power 

density expressed in terms of the properties of the transmitting system. On the contrary, the 

term Αr

4𝜋𝑅𝑟
2 contains the parameters concerning the receiving system: the effective aperture of 

the receiving antenna Αr and the distance between the target and the receiving system 𝑅𝑟. 

The last term in (1), σ, is the radar cross-section of the target which determines the effects 

of the target on the balance of powers established by the radar equation, and is given by: 

σ = 4𝜋𝑅²
|�⃗� 𝑡|

2
 

|�⃗� 𝑟|
2 = 4𝜋|𝑆|2                                                (2) 

where |�⃗� |
2
represents the intensity of the electromagnetic field and |𝑆| is the complex 

scattering amplitude of the object. The complex scattering matrix describes the 
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transformation of the two-dimensional transmitted (e.g., incident) plane wave vector �⃗� 𝑡 into 

the received (e.g., scattered) wave vector �⃗� 𝑟 (two-dimensional in the far field of the 

scatterer) performed by the scatterer [15], [35], [36]: 

�⃗� 𝑟 =
exp (−𝑖𝑘𝑟) 

𝑟
|𝑆|�⃗� 𝑡                                                   (3) 

[
𝐸𝐻

𝑟

𝐸𝑉
𝑟]  =

exp (−𝑖𝑘𝑟) 

𝑟
. [

𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
] [

𝐸𝐻
𝑡

𝐸𝑉
𝑡 ]                                             (4) 

The elements of [S] in (3) are corresponding to the four complex scattering 

amplitudes [
𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
] in (4) where the subscripts horizontal (H) or vertical (V) indicate 

associated received and transmitted polarization. A radar system using H and V linear 

polarizations can thus have the following channels: HH for horizontal transmit and 

horizontal receive, VV for vertical transmit and vertical receive, HV for horizontal transmit 

and vertical receive, and VH for vertical transmit and horizontal receive. HH and VV 

polarizations are referred to as like-polarized or co-polarized, because the transmit and 

receive polarizations are the same. HV and VH polarizations are referred to as cross-

polarized because the transmit and receive polarizations are orthogonal to one another. 

Different levels of polarization complexity can therefore be established: single polarized 

(HH or VV or HV or VH); dual polarized (HH and HV, VV and VH, or HH and VV); four 

(Quad) polarizations (HH, VV, HV, and VH). 

For extended target, the average value of the individual sub-targets cross-sections in (2) (or 

received energy by the sensor σi) per unit area is defined as differential scattering 

coefficient 𝜎0 (sigma zero): 

σ0 = 〈
σi

ΔΑi
〉 = 4𝜋𝑅𝑟

2

Α0

〈|�⃗� 𝑡|
2
〉 

|�⃗� 𝑟|
2                                                                 (5) 

The backscatter cross-section is usually expressed in dB, which is given by: 

𝜎0(𝑑𝐵) = 10𝑙𝑜𝑔𝜎0(𝑚2𝑚−2)                                             (6) 

The resulting coefficient 𝜎0, reflect backscatter properties of the surface, which are 

determined by the geometrical (e.g., surface roughness, geometric structure, and orientation) 

and dielectrical (e.g., dielectric constant, moisture content, and conductivity) characteristics 

of the surface, and the radar observation parameters (i.e., frequency, polarization, and 

incidence angle of the electromagnetic waves emitted) (Ulaby et al., 1982). Such signal 

characteristics can be used to obtain a number of important geophysical and biophysical 

parameters.  

 



42 
 

3.3.1.2. SAR images characteristics 

Synthetic aperture radar (SAR) satellites collect swaths of side-looking echoes at 

range resolution and along-track sampling rate to form an image. Range resolution depends 

on the bandwidth or pulse duration of transmitted signal and is determined by the pulse 

length (or 1/bandwidth) and the incidence angle: 

𝛿𝑟 =
𝐶0τ𝑟

2
=

𝐶0

2𝐵𝑟
                                                         (7) 

Where τ is the pulse length and equal 1

𝐵𝑟
 (𝐵𝑟: bandwidth of the radar), 𝐶0 is the speed 

of light. The factor of 2 accounts for the 2-way travel time of the pulse. Ground range 

resolution is geometrically related to the slant range resolution by 𝛿𝑔 =
𝐶0τ𝑒

2𝑠𝑖𝑛θ
 with θ is the 

look angle. 

Azimuth resolution describes the ability of an imaging radar to separate two closely 

spaced scatterers in the direction parallel to the motion vector of the sensor.  

 
Real Aperture Radar (RARs) has an azimuth resolution determined by the antenna 

beamwidth, so that it is proportional to the distance between the radar and the target (slant-

range). For RAR, azimuth resolution can be improved only by longer antenna or shorter 

wavelength. The use of shorter wavelength generally leads to a higher cloud and atmospheric 

attenuation, reducing the all-weather capability of imaging radars. Synthetic Aperture 

Radars (SAR) was developed as a means of overcoming the limitations of (RAR). SAR 

images have several characteristics that make it unique: 

• It provides high-resolution two-dimensional images independent from daylight, 

cloud coverage and weather conditions.  

• It is predestined to monitor dynamic processes on the Earth surface in a reliable, 

continuous and global way with no effects of atmospheric constituents (multi-

temporal analysis). 

• The amplitude and phase of the backscattered signals are sensitive to dielectric 

properties (water content, biomass, ice), to surface roughness (ocean wind speed), to 

target structure and subsurface penetration. 

• It provides accurate measurements of distance (e.g. for interferometry). 

(8) 
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In space-based remote sensing, the capability to penetrate through precipitation or 

into a surface layer is increased with longer wavelengths. The shortest wavelengths (Ka, Ku) 

are strongly attenuated in the lower layers of neutral atmosphere (troposphere). Long 

wavelengths (P) in turn are subject to strong scattering while passing through the ionosphere 

(layer F). The intermediate bands (X, C, S, and L) are therefore the most widely used.  

3.3.1.3. Statistical properties of SAR images 

A particular effect to be observed in SAR images is the so-called speckle, which is 

caused by the presence of elementary scatterers with a random distribution within a 

resolution cell (for example, in a resolution cell of forest land, the scatterers are the leaves, 

stems, the trunks, objects on the ground etc.). The coherent sum of their amplitudes and 

phases results in strong fluctuations of the backscattering from resolution cell to resolution 

cell. Consequently, the intensity and the phase in the final image are no longer deterministic, 

but follow instead an exponential and uniform distribution, respectively (C. Oliver & S. 

Quegan, 2004). The total complex reflectivity for each resolution cell is given by: 

𝜙 = ∑ √𝜎𝑖 exp(𝑖𝜑𝑖
𝑠𝑐𝑎𝑡𝑡)𝑖 . exp (−𝑖

4𝜋

𝜆
𝑟0,𝑖)                                     (9) 

where i is the number of elementary scatterers within the resolution cell.  

Although it is commonly referred to as noise, speckle cannot be reduced by 

increasing the transmit signal power, since it has a multiplicative character, i.e., its variance 

increases with its intensity. To mitigate speckle a technique known as multi-look is utilized, 

which is basically a non-coherent averaging of the intensity image (John C. Curlander, 1991, 

C. Oliver & S. Quegan, 2004). The exponential distribution of a single look intensity image 

is given by: 

𝑝(𝐼) =
1

2𝜎²
𝑒

−𝐼

2𝜎²                                                         (10) 

With L is the number of look, the multi-look intensity is given by: 

𝐼𝑀 =
1

𝐿
∑ 𝐼𝑖

𝐿
𝑖=1                                                          (11) 

The mean value 𝐼�̅� = 𝐼 ,̅ and the variance 𝑣𝑎𝑟(𝐼𝑀) =
∑ ∑ 𝜌𝑖𝑖𝑣𝑎𝑟𝐼𝐿

𝑖=1
𝐿
𝑖=1

𝐿²
 

In SAR intensity data, the speckle variance is proportional to the mean intensity squared. 

The Equivalent Number of Looks is: 

ENL =
𝐿²

∑ ∑ 𝜌𝑖𝑖
𝐿
𝑖=1

𝐿
𝑖=1

  =   (𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)²

𝜎
                                                    (12) 

If the ENL is large, the spread of values due to speckle is small. Although multi-look can 

cause a degradation in the image resolution, it greatly improves the interpretability of the 
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SAR image. Additionally, the effect of speckle tends to weaken for very high-resolution 

systems, since the number of elemental scatterers within a resolution cell decreases. 

Since the multi-look processing deteriorates the spatial resolution of SAR images, 

many filtering methods aimed at reducing the effect of speckle to increase the radiometric 

resolution have been developed (Lee et al., 1980, Frost et al.,1982, Kuan et al.,1985). The 

goal of these filters are to process the whole image pixel by pixel using a sliding window, 

on which the signal is supposed to be stationary and which constitutes a neighborhood to 

estimate locally a certain number of statistical quantities (average, variance, correlation). 

Most wisely used filters are Frost, Lee and Kuan linear filters which are applied to only one 

image at a time, so-called mono-channel filters. The simplest of them is the spatial averaging 

filter, which attributes to each pixel the average of the intensity of the pixels located in the 

window centered on it. This filter, used most often without structure detection, is effective 

on homogeneous zones but does not preserve the details of the image. Another approach 

combining several images from the same scene in order to provide optimal reduction of 

speckle has been developed which is multi-channel filters (multi-temporal and/or multi-

polarization and/or multi-frequency) (Bruniquel and Lopes, 1997; Quegan and Le Toan, 

1998; Quegan and Yu, 2001). These filters minimize speckle while preserving the 

radiometry and spatial resolution of the individual channels (polarization, image). They 

consist in performing pixel-to-pixel linear combinations of M intensity images , in order 

to obtain M images , such that the intensity information is preserved while minimizing the 

speckle. For uncorrelated images with the same number of looks L, the optimal linear 

combination is: 

                           

with radar intensity of output image k at pixel (x,y) 

radar intensity of input image i at pixel (x,y) 

 local mean intensity of input image i at pixel (x,y) 
 

The theoretical value of the ENL of the output filtered images is given by:  

𝐸𝑁𝐿 =
M×N×L

M+N−1
                                                (14)  

iI

kJ

),( yxJ k

),( yxI i

),( yxI i

(13) 
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where L is the initial number of looks, M is the number of images (or polarisation) 

using a fixed window size of N pixels (N is 49 if the window size is 7×7 pixels). The size of 

the spatial window can therefore be chosen to meet a required ENL value.  

3.3.2. Sentinel-1 Data 

In this study, the Sentinel-1 C-band (5.405 GHz) SAR data is used. The first Sentinel-

1 satellite (Sentinel-1A), was launched on a SOYUZ rocket from Europe's Spaceport in 

French Guiana on 3 April 2014 and was followed by the second (Sentinel-1B) the 25 May 

2016. These two satellites are the first series of earth observation satellites of the Copernicus 

Initiative. Each Sentinel-1 satellite is expected to acquire Earth observation data for at least 

7 years and have fuel on-board for 12 years. The Sentinel-1 mission is the European Radar 

Observatory for the joint initiative on environment and security between the European 

Commission and ESA, in sea-ice monitoring and maritime surveillance, land monitoring of 

forest, water, soils and agriculture, monitoring of land surface motions, and mapping to 

support environment, crisis and natural disaster management. 

  
 

 

Figure 13. Sentinel-1 satellite and acquisition mode (Source https://sentinel.esa.int/). 

Sentinel-1 is a sun-synchronous, near-polar circular orbit at a height of 693 km and 

an inclination angle of 98.18°, follows polar orbits with ascending and descending flight 

directions with respect to North (right looking geometry). It provides continuous all-weather, 

day-and-night imagery at C-band (5.405 GHz) with the incidence angle roughly between 31° 

and 45°. With Sentinel-1A and Sentinel-1B operating, Sentinel-1 offers a 6-day repeat cycle 

at the equator (depending of the data type and the region in the world). Sentinel-1 provides 
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dual polarisation capability (HH, VV, HH+VV, VV+VH), with different resolution (down 

to 5 m) and coverage (up to 400 km). 

Sentinel-1 operates in four exclusive acquisition modes: Stripmap (SM), Extra-Wide 

swath (EW), Interferometric Wide swath (IW), and Wave mode (WV) (Figure 13). Each 

mode can produce products at SAR Level-0, Level-1 single look complex (SLC), Level-1 

ground range detected (GRD) and Level-2 Ocean (OCN). Level-1 data are the generally 

available products intended for most data users for basic land cover classification (forest, 

agricultural crops, urban areas, etc.). Level-1 SLC products have been focused and geo-

referenced using satellite altitude and orbit data, and are provided in zero-Doppler slant 

range geometry. Level-1 GRD products are detected, multi-looked and projected to ground 

range using an Earth ellipsoid model, and phase information is lost. GRD products can be in 

one of three resolutions: Full Resolution (FR), High Resolution (HR) and Medium 

Resolution (MR). The resolution and swath of SAR images is a critical parameter for SAR 

users as it defines how well different surfaces can be classified and how large it can cover 

for mapping applications.  

Table 7. Sentinel-1 operative modes. 

Mode Swath (km) Resolution (m×m) Polarization 

Stripmap  80 5×5 Dual 

Extra WS 20 5×5 Dual 

Interferometric WS 250 5×20 Dual 

Wave 400 20×40 Single 

 

Table 7 presents the Sentinel-1 operative modes together with their swath, resolution 

and polarization parameters. The IW mode allows combining a large swath width (250 km) 

with a moderate geometric resolution (5 m x 20 m) while Extra-Wide swath mode provides 

a large swath width of more than 400 km but with low resolution (20m x 40m). Stripmap 

(SM) mode acquires data with an 80 km swath at 5 m x 5 m spatial resolution. Finally, the 

Wave mode is composed of single stripmap operations (5 m x 5 m) in 20 km by 20 km 

vignettes at 100 km intervals. To conclude, IW mode satisfies most of user requirements in 

terms of resolution, swath width and polarization.   
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Figure 14. An example of the archived observation scenario maps of the Sentinel-1 mission 

(05/2017). This map contains information of orbit pass, revisit frequency, coverage 

frequency and polarization scheme globally. (Modified from https://sentinel.esa.int/). 

To summarize, the Sentinel-1 SAR constellation represents an unprecedented data source 

for an application such as rice mapping and monitoring, thanks to its high resolution, cost 

free and rapid product delivery at a time interval of 6 or 12 days. The dense time series of 

Sentinel-1 offer a unique opportunity to systematically monitor rice crop at a weekly repeat 

cycle. In addition, the continuity of Sentinel data is guaranteed up to 2030 and the next 

generation of Sentinel is planned beyond 2030, allowing long-term environmental 

monitoring. 

3.3.2.1 Data Available for the Study 

The data used in this study are Sentinel-1 (S1-A and S1-B) operating in 

Interferometric WideSwath Mode (IW) at level-1 Ground Range Detection (GRD). In this 

mode, images are provided at 10 m spatial resolution (single look) with a 250 km swath 

(within 3 sub-swaths) at VV and VH polarizations. Over the swath, the incidence angle 

ranges from 29.1° to 46°. The data covers the Mekong Delta every 12 days from October 

2014 with S1-A, and every 6 days from October 2016 with S1-A and S1-B, with rapid and 

free of charge data delivery on https://peps.cnes.fr or https://scihub.copernicus.eu/. 

https://sentinel.esa.int/
https://scihub.copernicus.eu/
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Figure 15 shows an example of Sentinel-1 images covering the Mekong Delta. 

 

 

 

 

Figure 15. Example of  Sentinel-1 image (descending pass) on 28/04/2015 to cover the whole 

Mekong River Delta, Vietnam (left) and Sentinel-1 image characteristics (right). The three 

incidence angle ranges are noted on the image. 

As mentioned before, the methods developed in this thesis will be tested in the 

Mekong Delta and then also applied to national scale in two countries, Vietnam and 

Cambodia.  

For the Mekong Delta, the temporal series of Sentinel-1 data from 06/10/2014 to 

23/08/2018 has been downloaded. As seen in Figure 15, 3 Sentinel-1 images per acquisition 

are required to cover the whole Mekong Delta. As a result, a total of 507 descending images 

(169 acquisitions × 3 images) and 132 ascending images (44 acquisitions × 3 images) have 

been downloaded for data preprocessing. 

For the national coverage, the Sentinel-1 data has been downloaded from October 

2015 to March 2016 for the whole Vietnam and Cambodia to test the methodology. Figure 

16 shows the Sentinel-1 data scheme over 4 strips for a full coverage of Vietnam and 

Cambodia. 4 strips data have been acquired at different dates (5 day shift) with the different 

time intervals (12 and 24) between acquisitions and incidence range (29°-46°) in descending 

orbit. Over one year, for the Sentinel-1 datasets with an average of every 12-day revisit, a 

total of approximate 720 GB data were downloaded and preprocessed, as shown in Figure 

16.  

   46°   
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Acquisition over swath 2&3: 6/12 days 

Acquisition over swath 1&4: 12/24 days 

To cover 2 countries: 

~24 GB data/acquisition 

Average of a 12-day revisit: 

30 acquisitions x 24GB = 720 GB 

 

Figure 16. Sentinel-1 data schema over 4 strips coverage Vietnam and Cambodia. 

3.3.2.2. Sentinel-1 Preprocessing 

The Sentinel-1 images downloaded from the website (Peps.cnes.fr) are at the level 

1-A (Level-1 Ground Range Detected (GRD) products consisting of focused SAR data that 

has been detected, multi-looked and projected to ground range using an Earth ellipsoid 

model such as WGS84). These data need to be preprocessed and quality assessed before the 

analysis.  

SNAP software was utilized to preprocess the Sentinel-1 images (Sentinels 

Application Platform, http://step.esa.int/main/download/). The Sentinel-1 images 

preprocessing comprises the following steps: 

• Multi-looking: to reduce the effect of speckle noise, spatial averaging is applied. 

However, multi-looking also decreases the spatial resolution of SAR images. For that 

reason, this step is only applied for the data used at the national scale in order to 

reduce the volume of the data, by averaging a window of 2x2 (20 m space pixels) 

(for the dataset in the Mekong Delta, multi-looking was ignored to keep original 

spatial resolution of 10 m). 

http://step.esa.int/main/download/
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• Calibration: conversion to the radar backscattering coefficient sigma nought (σ0) 

from the digital numbers, which follows the procedure specified by the European 

Space Agency (ESA, 2017); 

• Geo-correction: Due to the topographical variations of a scene and the tilt of satellite 

sensor, distances can be distorted in the SAR images. Terrain Correction is used to 

compensate for these distortions so that the geometric representation of the image 

will be corrected;  

• Filtering: A multi-temporal filter as described in subsection 3.3.1 was applied to 

reduce the speckle noise in SAR images and thus increase the original number of 

looks in the image to a higher ENL (equation 14), without reducing the spatial 

resolution.  

The required ENL can be assessed in order to meet a given probability of error in the 

rice/non-rice classification problem, as will be described in Section 5.3. This multi-temporal 

filter has been developed at CESBIO and implemented using Matlab software.  
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Chapter 4 

Analysis and interpretation 
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This chapter presents the analysis and interpretation of the experimental data which 

lead to the derivation of SAR indicators to be used in the rice monitoring methods. In the 

first section, which is based on the collected ground data, a detailed analysis of rice 

parameters with respect to cultural practices is carried out. In the second section, the SAR 

data time series are analysed as a function of ground data, followed by a physical 

interpretation of the temporal and polarization behavior of the radar backscatter, taking into 

account the effect of rice variety and cultural practices. Finally, based on the analysis and 

interpretation results, several indicators are derived for rice monitoring applications. 
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4.1. Ground data analysis 

A total of 300 field samples (60 x 5 crop seasons) have been analyzed in terms of 

rice crop calendar, rice variety, cycle duration, rice yield, plant height, phenological stage 

and water management. The following characteristics of rice fields under study can be 

summarized: 

 (1) Rice crop calendar: Table 8 shows the sowing period and the harvest period of 

60 rice field samples over 5 rice cropping seasons. The sowing period of each rice season 

could be expanded over 15 days (Autumn-Winter 2016), and up to 36 days (Summer-

Autumn 2016). Meanwhile, the harvest dates of each rice season can differ between the 

sampling fields by up to 45 days (Autumn-Winter 2016). Overlapping among the fields has 

been found between the sowing period and the harvest period of two consecutive rice 

growing seasons, as shown in Figure 17. 

Table 8. Ground survey of the sowing dates and harvest dates of 60 rice field samples under 

study over 5 rice cropping seasons. 

 

The calendar can be changed for the same rice season in different years, for example 

it was observed that the rice crop calendars of the rice seasons in 2017/2018 were delayed 

compared to the same rice season of in 2016/2017 (Figure 17).  

Rice season of Autumn-Winter 2016 was started from 05/08/2016 to 20/08/2016, 

and harvested from 01/11/2016 to 14/12/2016, while Autumn-Winter 2017 rice season was 

started from 16/08/2017 to 10/09/2017 and harvested from 15/11/2017 to 20/12/2017, about 

more than 10 days later than the previous year calendar. Similarly, the sowing dates of 

Winter-Spring 2018 (from 15/12/2017 to 06/01/2018) were found later than the sowing dates 

of Winter-Spring 2017 (from 29/11/2016 to 26/12/2016). 

One of the main reasons of the changes in local crop calendar is the effect of El Niño 

year in 2015/2016. Because of severe drought and saline intrusion in the region in 2016, the 

province authorities recommended to change the calendar in 2017. On the other hand, as 

mentioned in the section 3.2 on ground data collection, 52/60 sampled rice fields have been 
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replaced by 52 other rice fields for Autumn-Winter 2017 rice season, and this could also 

contribute to this difference in field specific crop calendar. 

 

Figure 17. The histogram of sowing date and harvest date of 60 rice field samples during 5 

rice cropping seasons. N represents the number of fields, DoY is the Day of the Year. 

 

Figure 18. The crop calendar (sowing dates, harvest dates and cycle duration) of 8 same 

rice field samples over 5 rice cropping seasons. 

However, Figure 18 shows a similar delay in the crop calendar of the 8 rice fields 

that did not change over 5 seasons.  
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It can be seen that the time between two consecutive rice growing seasons is spanned 

from a week up to 45 days, depending on the rice variety and the crop season. Long rice 

cycle variety (fields 7 and 8) has a much shorter recuperation period (about 7-10 days) 

compared to short cycle rice (fields 1 to 6). The recuperation period between Summer-

Autumn and Autumn-Winter is observed shorter than the one after Autumn-Winter season, 

because of the flooding season (from October to December).  

(2) Rice varieties, cycle duration and yields:  

Table 9. Summary of the number of surveyed fields by rice varieties, planting methods, 

seeding density, and rice cycle duration of the 60 sampled rice fields under study over 5 rice 

cropping seasons. 

 

Table 9 summarize the number of sampled fields per rice varieties, planting method, 

seeding density, and rice cycle duration of 60 sampled rice fields over 5 rice cropping 

seasons in the An Giang province. 

The dominant varieties in 300 rice samples were short-cycle rice varieties including 

IR 50404 (43%), OM5451 (10%), and Glutinous (20, 67%), and long-cycle rice varieties 

account for 20.6% (Jasmine and Taiwan) in line with the rough estimate of the percentage 

of the long and short cycle rice in the region. 

The short-grain rice variety such as IR 50404 or OM5451 have a short cycle duration 

from 85 to 100 days. The long–grain, long growth cycle varieties (Taiwan and Jasmine) have 

cycle durations from 100 to 120 days. As seen in Figure 18, rice fields 7 and 8 have been 

using the same long rice cycle variety (Jasmine) over the 5 rice seasons, so that the 

recuperation period is very short (7 to 10 days). 

The long and short cycle rice fields differ in planting practices: transplantation for 

long cycle rice and direct sowing for short cycle rice. In transplanting, the seedlings are 

prepared and then transplanted to the inundated fields to provide regular spacing between 

the plants, with a seeding density of 10-15 kg/ha. For the direct sowing, the seeds are thrown 
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to the wet fields by hand or machine with the variable seeding density from 20-30 kg/ha, 

resulting in intra-field and inter-fields spatial heterogeneity. It can be seen that transplanting 

crop saved more than 50% of the seeds. However, 80% of farmers were using the direct 

seeding in order to eliminate the laborious process of planting seedlings by hand and greatly 

reduce the land preparation time and the crop’s water requirements. However, the market 

price is much higher for long-cycle rice, because of the rice grain quality (FAO, 2017). As a 

consequence, the long-cycle rice, long time abandoned, is more and more used in the region 

(Phan et al., 2018). 

In terms of rice yields, the statistics of final yields of 300 rice fields show that it 

varies between rice varieties and between rice seasons. Figure 19 shows the histograms of 

final yields of the IR50404 samples (short cycle) and Jasmine and Taiwan (long cycle), and 

that of the total 60 rice fields over 3 consecutive rice cropping seasons in Summer-Autumn 

2016, Autumn-Winter 2016 and Winter-Spring 2017. 

 

Figure 19. Histogram of final yields of IR50404 (the first column), Jasmine & Taiwan (the 

second column) and of all 60 rice field samples (the third column) over 3 consecutive rice 

cropping seasons in Summer-Autumn 2016 (the first row), Autumn-Winter 2016 (the second 

row) and Winter-Spring 2017 (the third row). The vertical axis represents the number of 

fields. 

The yield ranges are quite large. However, a difference of rice yields is observed 

between two groups of short cycle rice variety (IR 50404) and long cycle rice variety 

(Jasmine & Taiwan). Long cycle rice variety had higher yield compared to short cycle rice 
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variety. The yield for 99 sampled fields of IR50404 was 4–8.5 ton/ha (average 6.5 ton/ha). 

47 sampled fields of Jasmine and Taiwan had yield ranging from 6-8.5 ton/ha (average 7.6 

ton/ha).  

Figure 20 shows the histogram of final yields of 60 rice fields collected over 2 rice 

cropping seasons in Autumn-Winter 2017 and Winter-Spring 2018. The yield range showed 

a difference between the two rice seasons. It is clearly seen that Winter-Spring 2018 (7–9 

ton/ha) had higher rice yields than that in Autumn-Winter 2017 (4.5-6 ton/ha). This is in line 

with the knowledge that Winter-Spring season has the highest productivity and Autumn-

Winter has the lowest productivity as mentioned in section 3.1. 

However, there is no distinction among rice variety groups. At the same rice season, 

long-cycle rice variety (Jasmine) had the same rice yield range than short-cycle rice variety 

(IR50404 & OM5451) and Glutinous.  

 

Figure 20. Histogram of final yields of IR50404 & OM5451 (the first column), Glutinous 

(the second column), Jasmine (the third column) and of all 60 rice field samples (the fourth 

column) over 2 consecutive rice cropping seasons in Autumn-Winter 2017(the first row) and 

Winter-Spring 2018 (the second row). 

For the same rice seasons over two years (AW 2016 and AW 2017, WS 2017 and 

WS 2018), although the rice samples are not the same, it can be seen that the yields differ 

between two years. AW 2016 had much higher rice yields than AW 2017 in both long-cycle 

and short-cycle rice variety. Moreover, Jasmine rice had the lowest yield in AW 2017 (lower 

than 6 ton/ha) compared to 4 other rice seasons (higher than 6 ton/ha). In the contrary, WS 

2017 had lower rice yields than WS 2018. This could be a result of the differences in cultural 
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practices, water management and also due to the effect of environmental conditions 

(flooding year, drought year). 

For consistency, the ground data of the two last seasons (Autumn-Winter 2017 

Winter-Spring 2018) will be used to analyze the detailed parameters including plant height 

and phenological stage, because the sampled rice fields were different in the previous rice 

seasons.  

(3) Plant height:  

Figure 21 shows the temporal variation of the plant height of one group of short cycle 

rice and one group of long cycle rice. The analysis is applied separately to long cycle rice 

(15 samples of Jasmine) and short-cycle rice (51 samples of IR50404, OM5451).  

 

Figure 21. Temporal variation of plant height (versus days after sowing): 15 sampling fields 

for long-cycle rice plants (blue points and black polynomial regression); 51 sampling fields 

for short-cycle rice plants (red points and pink polynomial regression) of 2 consecutive rice 

cropping seasons in Autumn-Winter 2017 and Winter-Spring 2018. 

The same increasing trend is observed until 80 days at 80–90 cm for both groups. 

This trend has been observed in previous studies monitoring paddy rice fields (Phan et al., 

2018, Ndikumana et al., 2018).  

From 60 days after sowing (beginning of reproductive phase for short cycle rice), the 

short cycle rice variety shows a smaller increase rate until 95 days, while long cycle rice 

variety continues until 110 days. Two empirical polynomial regression curves of plant height 

have been derived and used. A coefficient of determination R² = 0.93 and a RMSE of 6.72 
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cm was obtained for long cycle variety group and R² = 0.95 and a RMSE of 4.91 cm for 

short cycle variety group.  

 (4) Phenological stage and water management: 

Figure 22 shows the phenological stage, from 1 to 12, as a function of the days after 

sowing. The distribution of sampled data at each stage is represented by a box plot based on 

five representative quantities: minimum, first quartile, median, third quartile, and maximum. 

Outliers are also singled out. This analysis also makes use of two groups of short cycle rice 

(51 samples) and long cycle rice (15 samples). 

 

Figure 22. Box plot of phenological stage (from 1 to 12, corresponding to the stage name 

on the left part of the figure) of 51 short-cycle rice sampling of Autumn-Winter 2017 and 

Winter-Spring 2018 rice seasons. 

Figure 22 shows the box plot of 12 phenological stages of 51 short-cycle rice 

sampling of Autumn-Winter 2017 and Winter-Spring 2018 rice seasons. Two periods can be 

distinguished:  from 1 (emergence) to 7 (heading), rice grows reaching the following stage 

every 10 days; and from 7 (heading) to maturity (12), rice grows reaching the following 

stage every 3 – 5 days.  

Similarly, Figure 23 shows the box plot of 12 phenological stages as a function of 

plant age of 15 long-cycle rice samples of Autumn-Winter 2017 and Winter-Spring 2018 

rice seasons (days after sowing of long cycle rice means days after transplanting). 
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Figure 23. Box plot of phenological stage of 15 long-cycle rice sampling of Autumn-Winter 

2017 and Winter-Spring 2018 rice seasons.  

Figure 24 shows the histogram at each phenological stage of all the rice fields over 

two rice seasons.  

 

Figure 24. Histogram at each phenological stage of 120 rice samplings (60 sampling of 

Autumn-Winter 2017 and 60 sampling of Winter-Spring 2018 rice seasons). 

A large inter-fields variability is observed as a result of the difference on rice 

varieties, planting practices and field and water management. From stage 1 to stage 7, the 
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inter-field variability (about 20 days) is smaller than that from stage 8 to stage 12 (from 30 

to 40 days). The growth stages of short and long-cycle rice follow the same trend until stage 

7 (heading of short cycle rice). From stage 8 onwards, short cycle rice grows reaching the 

following stage every 3 – 5 days while long cycle rice continues to grow reaching the next 

stage every 7-10 days (Figure 22 and Figure 23). 

Based on the analysis of collected ground data and on the farmer survey, the 

phenological stage of rice development as well as the associated water management in the 

region under study can be summarized as follows: 

- For short cycle rice: 

➢ 1-2 weeks before the sowing, the fields were flooded in order to prevent self-propagating 

vegetation and pests. The fields were drained 1-2 days before sowing. Rice seeds were 

directly sown on wet soil by drilling (precision equipment) or broadcasting (hand). 3-4 

days after sowing, the fields were irrigated (2-3 cm) just for 1 day then drained to ensure 

sufficient moisture on the field surface to facilitate seed germination.  

➢ 10 to 15 days after sowing (stage 2, plant height at about 15-20 cm, 2-3 leaves). The 

fields were inundated during this period for the roots to grow smoothly.  

➢ 15 to 25 days after sowing (stage 3, plant height at about 20-35 cm, beginning of 

tillering). During the tillering period, the rice grows rapidly and strongly in roots and 

leaves. This period is the key in the development of leaf area and number of effective 

tillers, number of leaves (and number of future panicles). The duration of the tillering 

depends on the variety, cultivation methods and environmental conditions. In favorable 

solar radiation and nutritional conditions, this period lasts about 20-25 days. The fields 

were irrigated 2-3 times for about 5-10 cm and water kept for 2-3 days each time. It is 

important to note that about 20 days after sowing, the rice plant loses its vertical 

structure. 

➢ 25 to 35 days after sowing (stage 4, the plant height is at about 35-45 cm, and the plant 

reaches the end of tillering). Farmers keep only 3-5 effective tillers per plant and 

eliminate the others to optimize the nutrition consumption as well as avoiding pest 

infestation. The fields were irrigated during fertilizing for a couple of days then drained 

to kill pest.  

Alternate wet/dry irrigation (AWD) was applied from this stage to save water irrigation, 

the intermittent drying of the rice fields instead of keeping them continuously flooded 

as described in section 2.2. 
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➢ 35 to 48 days after sowing (stage 5, plant height is at about 45-58 cm, and the plant 

reach stem elongation). Plant is growing straight up and denser.  

➢ 48 to 58 days after sowing (stage 6, the plant height is at about 58-70 cm, the plant is at 

booting stage). The first step is the process of differentiation and formation of 

reproductive organs, and this process directly affects the rice yield. In this period, rice 

has significant changes in morphology, leaf color, physiology, and resistance to external 

circumstances.  

The initial panicle has been formed and prepared for heading. From the panicle initiation 

stage, three more leaves have been formed.  

Until this stage, the rice plants finish the vegetative phase (tillering, elongation, and 

booting) which is characterized by an increase of the plant height, an increase of the 

number of tillers, and a development of leaves.  

➢ 58 to 65 days after sowing (stage 7, heading). When the booting period is finished, the 

heading starts the reproductive phase. The entire panicles are heading from the leaf 

sheath. The process is finished within 4-6 days.  

➢ 65 to 75 days after sowing (stage 8, plant height at about 70 – 80 cm, flowering). It takes 

about a week for the flowers on the same panicle to blossom. After 10 days, all the 

flowers are fertilized and begin to develop into seeds.  

During the reproductive phase (heading, flowering) the plant is characterized by a 

decrease of the number of tillers, the development of panicle leaf, the panicles formation 

and development. After heading, the growth (height, biomass) stops and the leaves 

change their orientation, to be no more erectophile. 

➢ 75 to 85 days after sowing (stages 9, 10, milky stage). The biomass of grains strongly 

increases during this period, reaching 70-80 % of the final grain biomass. The heavy 

panicle curls down. 

➢ 85 to 100 days after sowing (stage 11, 12): maturity stage. 

During the ripening phase (grain filling, milk, and maturity), a decrease of leaf and stem 

moisture content and a decrease of the number of leaves are observed. The irrigation is 

stopped during the latter part of this period until harvest. 

- For long cycle rice, the vegetative phase development was similar to the short rice cycle 

until stage 6. From stage 7, rice develops with a 3-4 days longer at each stage compared to 

short rice cycle to end its cycle duration of 110-120 days. 
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To summarize, the analysis of the ground data shows that the crop calendars are not uniform 

within the region, leading to difficulties in obtaining information on the timing of the crop 

growth stages, in particular sowing and harvest dates. 

The analysis shows that during the rice cycle development, the plant structure changes at 

key phenological stages. This can be used to understand and interpret the temporal and 

polarization behavior of the radar backscatter. In particular, the changes at the beginning of 

tillering, and the booting-heading (about 20 days and 60 days after sowing), independently 

to the rice variety, can lead to the development of backscatter indicators for rice phenological 

stages. 

4.2. Radar backscatter analysis & physical interpretation 

4.2.1. Radar scattering mechanisms of rice fields 

The SAR data have proven ability to distinguish rice from other land cover types 

because of the specific response of the radar backscattering of vegetation with vertical 

structure over inundated or wet soil. The interaction between a radar electromagnetic wave 

and vegetation involves mainly three mechanisms: the scattering from the ground attenuated 

by the vegetation canopy (surface scattering), the volume scattering, and the multiple 

scattering between the volume and the ground (volume-surface scattering).  

 

Figure 25. The backscattering mechanisms involved in rice fields at the flooding stage in  

traditional cultural practices, before transplanting (left), early vegetative stage (center), and 

late vegetative stage (right). 

The volume-surface scattering term usually brings a negligible contribution 

compared to the two others in the usual case of vegetation growing over non-flooded soils. 

However, in the case of flooded fields or fields with wet soil such as rice paddies, this term 
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becomes dominant when the plants develop because of the double-bounce between the water 

surface and the plant stems, which are the dominant scatterers in the volume. The different 

backscattering mechanisms are illustrated in Figure 25. 

As described in Chapter 2, for traditional cultural practices, the rice fields are covered 

with a blade of water during most of their growth cycle. For modern alternate wetting and 

drying (AWD) practices, the fields are inundated only during certain periods, and the soil is 

wet for the rest of the season. For transplanted rice, radar backscatters from inundated fields 

before transplanting are low due to specular reflectance from the water surface. However, 

with the direct sowing, seeds are sown on wet soil and the backscatter at sowing dates has 

no more low characteristic values. During the growing period from the vegetative stage, to 

reproductive stage, radar backscatter increases rapidly which is the consequence of a rapid 

increase in rice plants height and biomass. The following reproductive phase includes the 

panicle initiation, heading, and flowering processes. During this phase, the plants stop 

increasing in height, biomass, and the leaves start to wither and die. Ripening is the final 

stage with its milk, dough, and mature grain processes.  

Electromagnetic models have been used to explain the temporal variation of rice 

backscatter at X band (Le Toan et al., 1989), C band (Le Toan et al., 1997) and L band 

(Wang et al., 2005). Most studies simulated the backscatter at HH and VV polarization, and 

the simulation results indicate that 1) the double bounce backscatter is dominant during a 

large part of the rice cycle, in particular at C and L-band, 2) the strong increasing temporal 

variation of rice backscatter during the vegetative phase, 3) the large attenuation in VV 

polarization due to the vertical structure of rice plant, leading to high HH/VV ratio. Those 

studies have led to the selection of the backscatter temporal change and the polarization ratio 

as indicators for detection of rice grown area (Bouvet et al., 2009) (Bouvet and Le Toan, 

2011). 

However, the previous studies had provided simulations for VV, and HH (e.g. to 

interpret ERS and ENVISAT ASAR C-band data). Sentinel-1 offers a cross-polarised 

intensity together with a co-polarised intensity in its dual-polarisation products. Theoretical 

modelling studies are required for a better understanding of the backscatter in HV or VH 

polarization. In this study, MIPERS (Multistatic Interferometric Polarimetric 

Electromagnetic model for Remote Sensing) has been used to simulate the HV backscatter. 

MIPERS developments have been initiated at ONERA (Villard, 2009) during a PhD work 

and are being pursued at CESBIO. The data used for detailed description of rice plants until 

heading stage were from Ribbes et al., (1998), and Le Toan et al., (1997) (for logistical 
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reason, it was difficult to conduct detailed measurements of rice plants at different growth 

stages in the study region). 

  The model distinguishes the four scattering mechanisms illustrated in Figure 25:  

(1) Volume contribution: simple reflection onto volume scatterers (belonging to the 

vegetation layer). 

(2) Double bounce contributions: considering wave-plant-ground or wave-ground-

plant interactions. Specular reflections onto the ground surface are accounted for 

using the modified Fresnel coefficients.  

(3) Triple bounce contribution: coupling terms with the ground surface are accounted 

twice, so that two specular reflections are considered on the ground surface. 

(4) Ground direct contribution: simple reflection onto ground scatterers. 

The model simulations were used to interpret the VH backscatter of rice fields in the 

An Giang province measured over a rice field which follows traditional cultivation (long 

cycle rice, transplanting and continuous flooding). 

  

Figure 26. Simulation results from MIPERS (left), compared with Sentinel-1 backscatter 

profiles (right), for the VH backscatter of a rice field following traditional cultivation 

(transplanting, continuous flooding,long cycle rice). 

The simulation showed that at a shallow incidence (40°, which corresponds roughly 

to the incidence at the center of the Sentinel-1 IW data), the cross-polarised backscatter is 

also dominated by the double-bounce interaction between the scatterers and the ground, 

similarly to the co-polarised backscatter, as shown in Figure 26. This result brought a new 

insight to the earlier knowledge, which often assigned cross-polarisation backscatter to 

volume scattering. The result also revealed that the double bounce backscatter shows a lower 

rate in its increase at 55 days after sowing, resulting in a small decrease in VH backscatter 
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at that stage, and this was interpreted as due to higher attenuation at the booting-heading 

stage. The experimental data show similar trends to the simulations, despite that the input 

data describing the plant growth were not derived from the description of the plants observed 

in the experiment. The work needs to be completed with a dedicated campaign measuring 

geometric and dielectric properties of the components of the rice canopy under study at 

different dates during the rice season, in order to interpret in details the scattering 

mechanisms that occur at different growth stage. 

4.2.2. Sentinel-1 times series analysis  

4.2.2.1. Times series analysis at different polarizations 

The time series of 126 Sentinel-1 images from 06/10/2014 to 31/03/2018, with a 12-

day revisit until 25/09/2016, then a 6-day revisit period afterwards, have been used to analyse 

the temporal behavior of radar backscatter over rice fields. The images were preprocessed 

as described in the previous section before being used to extract the radar backscatter 

coefficients (σ°) of the 60 sampling rice fields.  

Figure 27 shows the VH and VV and VH/VV ratio of backscatter coefficients 

extracted from the 60 sampled fields. For comparison with optical data, instead of Sentinel-

2 data which are often affected by cloud cover, the Proba-V NDVI (Normalized Difference 

Vegetation Index) product has been used. All the NDVI images employed in this work were 

downloaded from http://www.vito-eodata.be/. Figure 27 contains the NDVI time series from 

January 2016 to December 2017. The NDVI values are averaged for the rice fields under 

study from pixels of 100 m × 100 m of Proba-V NDVI (1-2 pixels per sample).   

 The data time series from 6/10/2014 to 19/11/2017 clearly show characteristic 

temporal behavior of the backscatter at VV, VH, and VH/VV for each rice season, with a 

clear similarity between seasons. 

From the start to the end of a rice season (indicated by vertical bars in Figure 27), 

neither VH nor VV exhibit a ‘bell curve’, as often suggested in past studies. Instead, VH/VV 

follows well the bell curves, but the curves have their minima not at the start and the end of 

season but shifted about 20 days after the start of season. This large increase in VH/VV can 

be interpreted as caused by the differential contribution of the double bounce scattering, and 

the differential attenuation in VH and VV. As a consequence, the ground contribution is 

minimised in the ratio, and it is expected that the backscatter ratio has higher correlation 

http://www.vito-eodata.be/


66 
 

with the plants parameters such as biomass or LAI, as reported by (Mattia et al., 2001, 

Bernardis et al., 2016, Veloso et al., 2017, Begue et al., 2018). This behavior is to be 

compared with the NDVI curve, with minima ±6 days after at the sowing date and ±6 days 

before the end of season.  

 

Figure 27. VH and VV backscatter coefficients and their ratio VH/VV extracted for the 60 

sampled fields from Sentinel-1 images from 06/10/2014 to 19/11/2017. It is noted that the 

revisit time of the Sentinel-1(A+B) from 26/09/2016 is every 6 days. The black curves are 

the averaged quantities for all 60 fields. The green curves is the NDVI time series of the rice 

fields under study from January 2016 to December 2017. 

Figure 27 also shows the difference in the curves with 12 days or 6 days (after 

10/2016) acquisition intervals. In the second case, inter-season variation is better captured 

(in VV and VH), and the minimum backscatter values for each season are lower. Figure 27 

shows that the maximum temporal variation (difference between maximum and minimum 

backscatter) is high: for the mean curve (averaged over 60 fields) the maximum temporal 

change is about 5-6 dB for VH, 4-5 dB for VV, and 6-7 dB for VH/VV. The characteristic 
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temporal behaviour of the backscatter is expected to reflect the changes in plant morphology 

(and/or in water management), along the different phenological stages of the plants.  

For a given date, the inter-field variation of the backscattering coefficient of the 60 

fields can be very large, up to 20 dB, notably at the beginning of the season when the fields 

have a diversity of status, from bare fields, flooded or not, to rice plants at early and late 

growth stages. Moreover, the planting calendar was different among the 60 rice fields, with 

different rice varieties, planting practices and management. Figure 28 shows an example of 

RGB combinations of three dates from Sentinel 1 images over rice fields in the An Giang 

Province using the VH polarization. In this region entirely constituted by rice fields (98%), 

a mere combination of 3 dates provides a distinction of a high number of ‘rice classes’, which 

makes it not adapted to the use of traditional classification methods to map rice fields. In this 

context, physical based methods are required to deal with the diversity of rice field 

conditions. 

 

Figure 28. Example of RGB combinations of different dates (R:26/10/2016, G:01/11/2016, 

B: 07/11/2016) from Sentinel-1 images, VH polarization over rice fields in the An Giang 

province. 

4.2.2.2. Times series analysis at different incidence angles 

The data used in this study are Interferometric Wide-Swath (IW) mode to cover the 

whole Mekong Delta region with a 250 km swath.  Because IW mode captures 3 sub-swaths 

of different incidence angle ranges from 29.1° to 46° (Table 10), it is necessary to assess the 

variability of the rice backscatter temporal profiles across the incidence range.  
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Table 10. The incidence angle (in degrees) of the IWS data corresponding to the 3 different 

sub-swaths of different incidence angle ranges from 29.1° to 46°. 

 
 

To analyse the effect of incidence angle on the radar backscatter, the training rice 

samples have been selected over the Mekong Delta, with 7 samples at each 2 degrees from 

31° to 46° (a total of 56 samples).  

Figure 29. Example of the temporal variation of VH, VV and ratio VH/VV backscatters 
over rice fields in 44° (An Giang) and 31° (Ben Tre) in the Mekong Delta. 

Figure 29 shows a comparison of the temporal variation of the backscatter VH, VV, 

and VH/VV from rice fields located at 44° incidence angle (in the An Giang province) and 

from rice fields located at 31° (in Ben Tre province). The first difference between the 

backscatter at 44° (left column) and at 31° (right column) is the lower dynamic range 

(difference between maximum and minimum) in the lower incidence angle curves. The 
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reduced dynamic range appears to be caused by higher minimum backscatter values (of 3-4 

dB) at 31°, and a slightly lower maximum backscatter values (1 dB or less).  

However, the analysis needs also to further take into account of the differences in 

cultural practices at different places in the Mekong Delta, from East to West. 

The maximum temporal increase of VH has been analysed as a function of the 

incidence angle range from 31° to 46°. Figure 30 shows that the maximum temporal change 

for one rice season increases with the incidence, from about 6 – 8.5 dB in nearest range to 

about 9 - 12 dB beyond 38°. 

It can be understood that the incidence angle in the range from 30° to 45° has 

different effects on the volume, double bounce and surface scattering. The surface scattering 

which corresponds to the minimum backscatter changes significantly from 30° to 45°. At 

45° the specular scattering over smooth water surface is expected to produce much lower 

backscatter than at 30°, where the radar scattering pattern gives rise to higher backscatter. 

The reduced backscatter maximum temporal change from 45° to 30° can be assigned mainly 

to this decrease in surface scattering backscatter. Regarding the maximum backscatter, 

which occurs at 65-70 days after sowing, passing from 45° to 30° decreases the double 

bounce term, and the volume scattering should have only a slight increase (if the variation 

follows cos (), the difference between 30° and 45° corresponds to a decrease of 0.8 dB).  

 

Figure 30. Maximum temporal change of VH backscatters over rice fields versus incident 

angle of Sentinel-1 data in the Mekong Delta. 

The resulting overall maximum temporal change varies from 6-8 dB to 9-12 dB as 

shown experimentally in Figure 30.  



70 
 

The effect of the incidence angle on the backscatter is also tested over small water 

bodies. Figure 31 shows that the VH and VV backscatter coefficients are both decreased of 

3-4 dB with increasing incidence angle from 30° to 45°.  

 

Figure 31. Temporal change of VH and VV backscatters over water bodies versus incident 

angle of Sentinel-1 data in the Mekong Delta. 

However, in Figure 30 and Figure 31, it can be noticed that the angular behavior 

could have discontinuities which correspond to the three sub swaths, 30°-35°, 35°-40° and 

40°-45°. In this case, additional variations should be due to the processing to compensate for 

the incidence angle effect.  

4.2.2.3. Times series analysis at ascending and descending orbits 

Sentinel-1 SAR system has both ascending and descending orbits. This gives an 

expectation to combine ascending and descending data in order to reduce the time interval 

between acquisitions over an area of interest. However, it is noted that ascending and 

descending measurements are done along different line-of-sight (LOS) thus a given field is 

observed at two different incidence angles and cannot be combined simply using averages. 

An analysis of Sentinel-1 time series makes use of 32 ascending images and 32 descending 

images in the Mekong Delta. This time series was from 13/03/2017 to 01/04/2018, a 12-day 

revisit time within 1 day difference in Europe time in the acquisitions between two orbits. 

However, the descending orbit passes around 23 pm (i.e. 6 am the next day over the Mekong 

Delta) while the ascending orbit acquires around 11 am (i.e. 6 pm the same day over the 

Mekong Delta), resulting at the same date in the acquisitions for both orbits for the region 

under study. Figure 32 shows the temporal variation of VH, VV backscattering coefficient, 
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and polarization ratio VH/VV over a rice field sample and water sample extracted from S1-

A time series at ascending and descending orbits. 

 

Figure 32. Variation of VH, VV backscattering coefficient, and polarization ratio VH/VV 

over rice fields and water sample extracted from S1 images at ascending and descending 

orbits. 

The samples are located at incidence angle of 37° and 43° at ascending and 

descending orbits, respectively. It can be seen that the difference between ascending and 

descending orbit over the time series is more important for VV than VH, however in most 

cases less than 2 dB for rice fields and water samples. This is in agreement with the 

differences which can be observed at these two relatively close incidence angles (Figure 30 

and Figure 31). It can be noted that, the effect of the environmental condition (wind, rain) 

between the morning (descending) and the afternoon (ascending) can also contribute to the 

difference. 

This analysis needs to be completed by comparing fields at more important 

differences in incidence angle and across seasons. Nevertheless, the relatively small 

differences shown in Figure 32 indicate a potential to combine the ascending and descending 

acquisitions to increase the frequency of data acquisitions. However, the availability of both 

orbits depends on the region of interest and the Sentinel-1 acquisition scenario (Figure 14). 

For example, in, the Mekong Delta, the descending orbit has been acquired at every 12 days 

from October 2014 and every 6 days from October 2016, while the ascending orbit has been 

acquired from March 2017 at every 12 days.  
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4.2.3. Seasonal variation with regard to the phenological stages 

To understand the seasonal variation of the backscatter with regard to the 

phenological stages of rice plant and field condition, the backscatter time series are analysed 

as a function of plant age (days after sowing). 

Figure 33 shows the VH, VV and VH/VV backscatter of 30 rice sampled fields in 

the Autumn-Winter 2016 rice season in An Giang province. These 30 samples have been 

chosen to have close sowing dates, the same planting practices, same rice variety, in order 

to avoid the effect of cultural practices in the trend analysis. 

At the early stage (stage 1), rice is directly sown on wet soil. Low radar backscatter 

values at VH and VV polarizations are observed, with large inter-field variation due to the 

different field conditions (wet bare soil with variable roughness, smooth surface with clods, 

mud or water pockets, etc. (Zribi et al., 2006, Baghdadi et al., 2016). At 10 days after sowing, 

the fields are flooded and the water layer remains during the period of 10-15 days. VH and 

VV remains low, with VV starting to increase with the vegetation growth. 

From 10 days to 20 days, at the beginning of tillering, (stage 2 to stage 3), VV 

increases steadily of 5-6 dB, whereas VH shows a small increase (less than 2 dB) due to the 

increase of the volume and double bounce backscatter and reaches the maximum value at 

around 20 days.  

From 20 to 30 days (stage 3 to 4, maximum of tillering) VV having reached its 

maximum, starts to decrease, whereas VH still increase. 

From stage 4 to 6 -7 (end of stage 6, booting, beginning of stage 7, heading), the 

plant is characterized by an increase of the plant height, an increase of the number of tillers, 

and the full development of leave, and by a clear vertical plant structure. The rice canopy 

becomes denser, leading to an increasing attenuation in double bounce and in volume 

backscatter, enhanced by the vertical structure of the plant in VV. VV shows a very strong 

decrease, i.e. from -8 dB to -16 dB, in about 1 month, whereas VH shows also a decrease, 

but much smaller (2 dB). During this period, the attenuation by the plant increases, reducing 

the VV and also the VH backscatter, as observed in the model simulation (Figure 26).  
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Figure 33. Variation of VH, VV backscattering coefficient, and polarization ratio VH/VV of 

the 30 sampled fields extracted from S1 images versus the days after sowing. On the 

horizontal axis, phenological stages from 1 to 12 are indicated. 

During the reproductive stage from 55 days to 70 days (heading, stage 7 and 

flowering, stage 8), the plant is characterized by a decrease of the number of tillers, the 

development of panicle leaf, the panicles formation, and the increases in biomass, 

contributing to an increase of the volume scattering. The radar backscatter therefore 

increases at both VH and VV polarizations, with a stronger increase in VV (6-7 dB vs 2-3 

dB).  

From 70 days to maturing stage (stage 8 to 11), the leaves and stem biomass 

decreases and the grain biomass increases to reach 70-80 % of the final values. A small 

decrease of VV is observed whereas VH remains stable. 

At the end of the cycle, stage 11 to 12 (maturity stage before harvest) when the grains 

reach the maximum of biomass and the leaves and stems biomass continue to decrease, a 

small increase (of 2 dB) is observed for both VV and VH.  
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Figure 34. Illustration at some phenological stages in the rice field under study.  

The ratio VH/VV, resulting from the behavior of VH and VV, exhibits the following 

specular trend:  

- From stage 1 to stage 3, a decrease to reach the minimum value at stage 3 at 20 

days. This corresponds to the strong increase of VV as compared to that of VH.  

- From stage 3 to stage 7, the ratio increases following two rates: from stage 3 to 

stage 4, during the tillering stage, the increasing rate is more important, about 4 

dB in 10 days; as compared to 3-4 dB in 30 days, from stage 4 to stage 7. 

- From stage 7 to stage 8, from heading to flowering, the ratio decreases slightly 

(about 2 dB), before remaining stable until stage 12.   

4.2.4. Effect of short/long cycle duration, effect of water management 

In the previous section, the temporal behavior of VH, VV and their ratio has been 

analysed for short cycle rice, in relation with the rice phenological stages. In this section, the 

long cycle and short cycle rice are compared at different rice seasons and different years. To 

do that, the 8 sampled rice fields that did not change over two years of ground data collection 

(as discussed in section 4.1) were used.  
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Figure 35. Temporal evolutions and standard deviation of VH (the first row), VV (the second 
row), and VH/VV (the third row) of short rice cycle (the first column) and  long rice cycle 
(the second column) over 4 rice cropping seasons Autumn-Winter 2016 (AW-16), Winter-
Spring 2017 (WS-17), Autumn-Winter 2017 (AW-17) and Winter-Spring 2018 (WS-18). 

Figure 35 shows mean VH, VV and the ratio VH/VV along with their standard 

deviation of long/short cycle rice fields in Autumn-Winter and Winter-Spring rice season 

over two years 2016/2017 and 2017/2018.   

The main differences of the temporal evolution of VH, VV and the ratio VH/VV of 

short cycle rice (100 days duration, direct seeding) and long cycle rice (118 days duration, 

transplanting) can be noticed as follows:  

- For the period before the start of season, VV and VH differ notably due to field 

preparation. For direct seeding, fields are usually inundated for a few days to eliminate 

weeds, before drainage occurs, and direct seeding is done on wet soil. For long cycle 

rice, fields are inundated just before transplantation. Moreover, as discussed in the 

previous section, the sampled rice fields of long cycle rice had very short recuperation 

periods (7-10 days) between two consecutive rice growing seasons. The maturity stage 

of rice of the previous rice season was explained for the high backscatter values of long 

cycle rice in the period of -20 days to -10 days before the sowing date compared to short 

cycle rice where the rice fields were already harvested. 
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- About 60 days after sowing, a difference between long and short cycle rice at VH and 

VV backscatter can be observed. For short cycle rice, VH and VV start increasing after 

60 days while for long cycle rice, they continue to decrease until 75 days then start 

increasing again. 

- About 100 days after sowing, VV and VH backscatter of short cycle rice decreases 

drastically, whereas the backscatter of long cycle rice continues its course. 

- For VV/VH, the two rice types show quite similar temporal variations. 

This effect of long and short cycle rice on radar backscattering is found consistent 

with the analysis of ground data in section 4.1 with regard to phenological stages. 

The possibility to detect rice field inundation state is important to assess the water 

used in irrigated rice, and to estimate the GHG emissions. Moreover, it is expected that the 

detection could be done with Sentinel-1 based on the more important double bounce 

scattering mechanism when the fields are inundated.   

Figure 36 shows the backscatter temporal variation at VH, for 2 fields: the first is planted 

with long cycle rice (transplanted, continuous flooding), the second with short cycle rice 

(direct seeding, AWD). 

 

Figure 36. VH backscatter as a function of plant age (days after sowing) of two rice fields 

under study: long cycle rice (transplanting, continuous flooding) on the left and short cycle 

rice (direct seeding, AWD) on the right. 

In the direct seeding method associated to short cycle rice, the wet soil was prepared 

before broadcasting. After 10-20 days, the fields were filled with water for few days. When 

the rice fields are at the reproductive phase the fields should be irrigated again using drip 

irrigation or overhead sprinkler. As noted before the crop is not continuously flooded, the 

farmer uses the AWD technique with fewer pumping operations. 

However, the differences between the backscatter curves of the two fields in Figure 

36 are difficult to identify either due to inundated status or to rice varieties. For AWD, the 
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duration of field inundation periods during the rice season is relatively short: 4-5 days at the 

beginning of the season, and before flowering. For the first flooding period, when the plants 

are small, the minimum backscatter is detected, as in Figure 36 (right), but for the second 

period, when the plants are fully grown, the difference in backscatter with or without 

inundation is small (1-2 dB) and difficult to interpret.  Moreover, with a repeat cycle of 6 

day, it is not clear if Sentinel-1 can capture the field inundation states. For the long cycle 

rice (Figure 36 left) which is continuously flooded, at the start of the season, the plants are 

already at 10-15 cm at transplantation, the minimum backscatter should be observed before 

the date of planting. It is noted that the increase of the backscatter has been interpret as that 

of the double bounce scattering, and the small decrease at 50 days was interpreted as due to 

attenuation at booting-heading stage (Figure 26 in Section 4.2.1) 

In this study, the water management is derived from the identification of long and 

short cycle rice, based on the cultural practices in the Mekong Delta. However, more work 

should be conducted for the detection of inundation status.          

4.2.5. Inter-season and inter-annual variations 

Time series analysis of Sentinel-1 images has been carried out over 3 years from 

October 2014 to November 2017 to study the inter-season and inter-annual variations of rice 

fields in the Mekong Delta. Figure 37 (a, b, c) shows temporal variations of different rice 

cropping system in the Mekong Delta, from 1 crop per year to 3 crops per year.  

Three rice crops per year were observed in the An Giang, Dong Thap province, where 

the dykes system was built, as shown in Figure 37(a).  

Figure 37(b) shows 2 rice crops per year with rotation of rice-rice-vegetable, mostly 

in the provinces near the coast.  

More recently, farmers near the coast have diversified their rice systems by also 

growing shrimp, either concurrently or in rotation with the rice, as shown in Figure 37 (c). 

The temporal variations of VH, VV and VH/VV backscatters of the rice crop are similar to 

the trends analysed in the previous section.  
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Figure 37. Temporal evolutions of VH, VV, and VH/VV backscatters of Sentinel-1 time series 

over rice fields, of triple crop (panel a), double crop (b), single crop (c), 3 rice crops a year 

followed by aquaculture (d), forest/tree (e), urban (f) and water body (g), from October 2014 

to November 2017.  

To distinguish rice from other land use land cover type, it is important to understand 

the backscatter and its temporal variations for the other cover types. Figure 37 (e, f, g) shows 

the backscatter of the main other land use classes present in the Mekong Delta, here, forest, 

water, and urban areas, which have much more temporal stability, and which have very 

different VH backscatter levels.  
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4.3. Derivation of Indicators for rice mapping and rice monitoring 

From the analysis results, we can derive several indicators for rice mapping, mapping 

of short-cycle and-long cycle rice, determination the sowing date and the phenological stage 

and plant height estimation: 

(a) Rice mapping: to discriminate rice fields from other LULC the temporal change 

of the VH and HH/VV ratio can be used. However, if the data acquisitions are not frequent, 

the data at the beginning or the end of a given rice season can be missed. In this case, 

polarization ratio VH/VV is a better indicator than VH for rice field mapping. In addition, 

indicators derived from the VH polarization (e.g., the maximum and minimum backscatter 

values in the VH time series) can be used to map other land use land cover classes (water, 

forest, and built up area). 

(b) Determination of sowing date: Figure 33 shows the radar backscatter behavior of 

VH, VV and the ratio VH/VV as a function of sowing date. This trend has been confirmed 

by several rice seasons over several years (Figure 35) and then can be used as a reference 

curve (derived statistically from the experimental data) to estimate the sowing date. For VH 

and VV temporal variations, the confidence range of the reference curves is from 1 to 60 

days after sowing where the radar backscatter behavior is the most stable. Meanwhile, the 

ratio VH/VV reference curve over the whole rice cycle appears repeatable from one rice 

season to the other, over the years of data analysis. The VH/VV time series are therefore 

used for sowing date estimation. 

(c) Mapping of short/long cycle rice: in Figure 35, the backscatter of VH polarization 

of the short cycle at around 65 - 75 days after sowing has lower values (i.e lower than -16.5 

dB) as compared to the long cycle rice. The indicator to be used is therefore the values of 

VH polarization during flowering stage (65 to 75 days after sowing). 

(d) Phenological stage mapping: Once the sowing date of the rice field is estimated, 

the phenological stage can be derived. However, at each growth stage, VH, VV and VH/VV 

value should be used as indicators to confirm the rice growth development (as shown in 

Figure 33).  

(e) Plant height: Two empirical polynomial regression curves of plant height derived 

in the section 4.1 (Figure 21) will be used for plant height estimation. 
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Based on the observed specific temporal behavior of the backscatter of rice fields over 

different rice seasons and different years, and considering the effects of rice varieties, radar 

incidence angles and ascending and descending modes, Sentinel-1 backscatter indicators 

have been developed for rice mapping, mapping of long and short cycle rice, determining 

sowing date, phenological stages, and plant height.  
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This chapter describes the methods developed for rice mapping and monitoring using 

Sentinel-1 SAR data. The aim of this work is to derive methods based on the knowledge of 

the temporal development of the rice plants and rice fields under different conditions, and 

on the understanding of the related temporal variation of the radar backscatter in order to 

introduce a simple approach that is robust, repeatable and suitable for rapid rice mapping 

over large extents with cost-effective field work.  

Methodologies have been developed based on the indicators described in the 

previous chapter for mapping of rice area, rice varieties, rice cropping intensity and for 

retrieval of rice parameters (sowing date, phenological stage and plant height). 
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An overview of the rice mapping and monitoring workflow is given in Figure 38. 

 

Figure 38. Workflow of rice monitoring method using Sentinel-1 data.  

• As a first step, a time series of preprocessed Sentinel-1 data is used to calculate the 

classification features at the pixel level. By using the rice/non rice classification 

feature which is the maximum temporal change, all non-rice pixels will be classified 

as other land covers (water, urban, forest, tree or other crops). The remaining pixels 

will be considered as potential rice pixels and used to make rice mapping products. 

• Then, an algorithm will be applied to automatically select the time period covering a 

given rice season for the production of the rice seasonal map.  

• Following this time period selection, the rice seasonal map and sowing date map will 

be produced, which are subsequently used to derive other mapping products 

(long/short cycle map, phenological map, etc.). It is noted that for a given Sentinel-

1 date, rice field before sowing and after harvest will be labeled as non-rice, so that 

the rice map corresponding to each Sentinel-1 date will refer to the fields with the 

presence of rice plants. Whereas the rice seasonal map will include all the fields 

observed from the sowing date to the end of the season (the last phenological stage). 

The rice mapping and monitoring method are described in detail in the following 

sections together with the limitations of each approach.  
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5.1. Calculation of classification features 

The rice/non-rice mapping algorithms in this research rely on a limited number of 

classification features which are statistical features computed from the Sentinel-1 time 

series. The main purpose of the first step is to mask out non-rice pixels and then create the 

LULC map (water, urban, forest/tree and other crop), the rest will be considered as potential 

rice pixels. For this purpose, a time series of all available Sentinel-1 images are used, 

preferably to cover a cropping season (from before sowing to after harvest). The maximum 

value, minimum value, mean value and maximum change in time series of Sentinel-1 at VH 

and VV polarizations are used to generate the rice/non-rice (LULC) maps. 

Maximum value in time-series: VH_max, VV_max and VH/VV_max: The 

classification features VH_max and VV_max correspond, for each pixel, to the maximum 

value of the intensity at VH and VV polarizations within the time-series of this pixel for the 

period that covers the area of interest (AOI). VH/VV_max is the maximum value of VH 

(dB) – VV (dB) for each pixel in time series. 

Minimum value in time-series: VH_min, VV_min and VH/VV_min: Likewise, 

the classification features VH_min and VV_min correspond, for each pixel, to the minimum 

value of the intensity at VH and VV polarizations within the time-series of this pixel for the 

period that covers the AOI. VH/VV_min is the minimum value of VH (dB) – VV (dB) for 

each pixel in time series. 

 

Figure 39. Example of maximum increasing of VH backscatter temporal change during rice 

growth cycle. 

Maximum change in time-series: VH_max_inc and VV_max_inc: The 

classification features VH_max_inc and VV_max_inc correspond, for each pixel, to the 

maximum positive intensity change at VH and VV polarizations over the time-series of this 

pixel for the period that covers the AOI. In this study, VH_max_inc is used only. 
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In practice, it is calculated by identifying the minimum intensity in the time-series 

(which corresponds to the early stage of the rice field during its cycle) and the maximum 

intensity in the dates that follow the occurrence of this minimum intensity as illustrated in 

Figure 39.  

5.2. Seasonal date selection 

The time series of Sentinel-1 images are selected based on the knowledge of rice 

seasons in the region. In order to map a specific rice season, the time series needs to contain 

a date around the start or the end of the season, and a date approximately during the peak 

season (highest backscatter). However, for a large region, the crop calendar varies 

considerably with environmental conditions as well as farming practices. The overlapping 

between the sowing period and the harvest period of different rice growing seasons (as 

mentioned in the previous chapter) can affect the rice mapping products. This weakness has 

been discussed in (Nguyen et al., 2015).  

Table 11. Calendar of the Summer-Autumn rice season in 2016 in the 13 rice growing 

provinces of the Mekong Delta. Note that for Hau Giang and Tra Vinh, the calendar for 

2015 and 2016 are shown to point out the change in crop calendar decided by farmers and 

local authorities motivated by the impacts of El Nino in 2015. 

 

Table 11 shows an example of the calendar of the Summer – Autumn rice season 

2016 in the 13 provinces in the Mekong Delta. To cover this rice season for the whole 

Mekong Delta, the Sentinel-1 acquisitions could be selected from 16/1 to 25/9. By this 

method, it can detect the previous rice season in some provinces such as Ben Tre, Ca Mau 

and Bac Lieu (Table 11). To remove such error source, a careful date selection needs to be 
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adopted for each season in order to define the rice crop calendar before deriving other 

parameters. 

In several studies, NDVI time series has been used to determine start of season (SoS) 

and end of season (EoS) (Boschetti et al., 2009; Son et al., 2013). In this study, the 

relationship between the seasonal curves of NDVI and Sentinel-1 backscatter (especially the 

VH/VV ratio) in rice fields is also shown and analysed in subsection 4.2.2 (Figure 27). 

However, in the effort of developing rice monitoring algorithms operational at the field scale 

(or the pixel scale), low resolution optical data is not suitable, not to mention the limitation 

due to cloud cover in the tropical regions. Hence, the goal of the seasonal date selection is 

to specify the range of acquisition dates of Sentinel-1 images which correspond to the rice 

season in order to maximize the robustness of the seasonal rice mapping algorithms without 

using optical data.   

This algorithm is based on the ratio of radar backscatter at VH and VV polarizations, 

i.e. VH/VV. As shown in the previous chapter (Figure 33), the minimum of VH/VV is at 

about 20 days after sowing and the maximum of VH/VV is at about 60 days after sowing (as 

reported in chapter 4). The local maximum and the local minimum of VH/VV in the time 

series are calculated on a pixel basis. The local minimum is first determined, and then the 

local maximum following the occurrence of this local minimum is determined. Hence, a new 

time series will be created for a range from 𝑑𝑆𝑜𝑆 to 𝑑𝐸𝑜𝑆 where 𝑑𝑆𝑜𝑆 is defined by the local 

minimum – x (x is the number of acquisitions over about 20 days) and 𝑑𝐸𝑜𝑆 is defined by 

the local maximum + y (y is the number of acquisition over about 50 days). For the Sentinel-

1 of 6-day revisit, x can be 3-4 images and y can be 8-9 images). In other words, 𝑑𝑆𝑜𝑆 would 

be around the sowing date while 𝑑𝐸𝑜𝑆 would be around the harvest date of a given rice 

cropping season. The start and end of this new time series can naturally be different for each 

pixel. 

Finally, the rice mapping algorithm will be applied on a new time series [𝑑𝑆𝑜𝑆:𝑑𝐸𝑜𝑆] 

without taking into account the out-of-season acquisitions. Therefore, the errors caused by 

rice pixels from other rice seasons will be minimized in the final seasonal rice mapping 

products. 

For this algorithm, the basic knowledge of rice season in the AOI is required in order 

to predict the range of acquisition dates where the local minimum and the local maximum 

should be localised. For regions where the crop calendar is homogenous, this step can be 

ignored or can be used to update the local crop calendar. On the other hand, the number of 

days before the local minimum (about 20 days in this study) and after the local maximum 
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(about 50 days in this study) can be defined depending on the rice cycle duration and cultural 

practices at different regions. Despite its complexity, the proposed algorithm can be 

automatized, and it is expected to apply it to a diversity of rice planting systems.  

 

5.3. The rice/non-rice mapping algorithm 

In general, the retained rice mapping algorithm is composed of the three following 

rules: 

If VH_max_inc > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖  (𝑑𝐵) then rice 

Else if VH_min > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗(𝑑𝐵) then trees/built-up areas                 (15) 

Else if VH_max < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑘 (𝑑𝐵) then water. 

The first rule describes the typical backscatter increase of rice fields in each rice 

season, from the early stage to the mature stage, as in analysis in section 4.2. The strong 

backscatter increase during rice growing season has been exploited in rice fields mapping 

algorithms at C band (Ribbes & Le Toan, 1999, Bouvet et al., 2009, Bouvet & Le Toan, 

2011) and at X-band (Nelson et al., 2014). In this research, the method has been improved 

taking into account the effect of incidence angle range and culture practices. This will be 

clarified in this section. 

The second rule accounts for the fact that built-up areas and trees have a consistently 

high backscatter at cross-polarization compared to the other land use types in this area, as 

shown in Figure 37 (e), (f). Built-up areas and trees/forest can be distinguished by applying 

a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗1(𝑑𝐵) of VH_min for built-up areas and then 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗2(𝑑𝐵) for trees/forest 

thanks to the fact that built-up areas has higher backscatter values than those of trees/forest. 

The third rule is based on the fact that the backscatter of water bodies, though slightly 

variable, is consistently low as shown in Figure 37 (g). 

Other rules using classification features from VV polarization can be added in order 

to limit the error from non-rice pixels in case of limited number of Sentinel-1 images. In this 

study, VH polarization alone is sufficient to generate rice/non-rice map thanks to the high 

revisit frequency of the Sentinel-1 data in the Mekong River Delta. 

The next step is to define the optimal threshold for rice/non-rice discrimination. The 

rice/non-rice discrimination is ultimately based on an intensity ratio, as the VH maximum 

increase corresponds to the ratio r=VH_max/VH_min. An approach to calculate the 

probability error in threshold methods based on a SAR intensity ratio has been developed in 
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Bouvet et al., (2010). This theoretical probability of error has been carried out in this study 

to determine the optimal threshold for this approach and also to evaluate the temporal change 

mapping method. This was done using 40 non-rice samples (class A, with average intensity 

ratio rA) and 40 rice samples (class B, with average intensity ratio rB) in which a number of 

pixels were selected.  

 

Figure 40. PDFs of the intensity VH_max_inc of (red line) class A and (blue line) class B 

with class parameters:  𝑟𝐴 = 2.95 dB and 𝑟𝐵 = 8.76 dB, 𝑟0 = 5.084 dB and Δr= 5.81 dB for 

L =4.4. 

Figure 40 shows the PDFs of r=VH_max_inc of the two class A and B. Δr =rB/ rA 

represents the distance between the mean values of two distributions, and it is, therefore, a 

measure of the class separability. This parameter is more conveniently expressed in decibels 

(Δr) dB = (rB)dB − (rA)dB. 

The class parameters (average intensity ratios) are represented by vertical lines (red 

and blue), and the chosen classification threshold r0 is represented by a vertical dash line.  

A multi-temporal filter described in section 3.3 was applied to reduce the speckle 

noise in SAR images and thus increase the original number of looks in the image to a higher 

ENL, without reducing the spatial resolution. In this study, for each rice cropping season, 

about 26 dates (26 acquisitions) were used with the original number of looks is 4.4, a 3×3 

square window (9 pixels) is chosen for the multi-temporal filtering, resulting in an ENL of 

33.2. 

Figure 41 shows the probability of error PE as a function of Δr for different values 

of L when the classification threshold is r0. Δr is the difference between the maximum of 

temporal change for the rice class and that of the non rice class. Figure 30 shows that the 
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maximum temporal change of rice can be from 6 dB to 13 dB, depending on the incidence 

angle. Among other non rice classes, forests and urban have low temporal variation, with 

maximum temporal change is about 1-2 dB. Other classes can have higher variations but 

lower than rice class (as shown in Figure 37, chapter 4).  

 

 

Figure 41. Probability of error (in %) of the ratio method as a function of the change in 

intensity ratio Δr (dB) between the two classes, for a number of looks L varying between 1 

and 128 (Bouvet et al., 2010). 

For example, for rice fields located at low incidence angle, the maximum temporal 

change is 6 dB, and assuming the maximum temporal change of non-rice classes is 3 dB, the

Δr is 3dB. For aΔr of 3dB, in order to have a probability of error of < 10%, the ENL should 

be > 32. For rice fields located at higher incidence angle, where the maximum of temporal 

change is about 13 dB, Δr is 10 dB. For PE < 5%, the ENL should be > 8. The Sentinel-1 

data in this study was applied multi-temporal filter window 3x3. For the data spatial 

resolution 10m, ENL=33.2, the error is expected to be lower than 1% at all regions.  

Moreover, the threshold should be optimized considering the number of data 

acquisitions and other constraints such as local crop calendar, land use change, etc. (Lam-

Dao et al., 2009). 

In this study, a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖   = 6 dB for rice detection (this threshold can minimize 

the effect of the incident angle for the whole Mekong River Delta, since it covers the 

minimum threshold observed at the highest incidence angle of 29°), a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗   = -20 dB 

for water detection and a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑘   = -10 dB for urban/tree detection were applied. Other 

pixels not selected by those rules will be classified as non-rice pixels which can be other 

type of crops (sugar cane, corn, and vegetable) and natural vegetation (grass, bushes). 
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5.4. Estimation of sowing date 

According to the analysis in the previous chapter, the backscatter of VH, VV and 

especially the ratio VH/VV are found to have a unique behaviour over rice seasons (Figure 

33). The theoretical curves of VH, VV and VH/VV can be used to estimate the sowing date. 

However, the inter-field variation of VH/VV temporal change is smaller than those of VH 

and VV polarizations. Therefore, in this study, a reference curve derived from experimental 

VH/VV curves of the 60 sampled rice fields is used. The mean values of the ratio VH/VV 

as a function of sowing date over these 60 fields in Summer-Autumn 2016 is created and 

then is smoothed by using a moving average function on Matlab software. The resulting 

curve as a function of sowing date from 0 to 100 days for both long and short cycle rice is 

created as shown in Figure 42. 

 

Figure 42. Experimentally derived curve of VH/VV used for sowing date retrieval. 

Then, the sowing date estimation algorithm is applied on the time series of the ratio 

VH/VV in the range of dSoS to dEoS. As mentioned in 5.2, the dates dSoS and dEoS are 

selected in such a way that dSoS is thought to correspond approximately to the sowing date. 

The sowing date is determined at each pixel by running a loop in which it is assumed that 

the sowing date occurs X days around dSoS, with X ranging between -35 and +35. The ratio 

VH/VV from the time series in the range of dSoS to dEoS is plotted as a function of the 

assumed sowing date and then is compared with the ‘reference’ curve at each iteration of the 

loop to find the assumed sowing date that provides the best fit for the two curves as shown 

in Figure 43 (left). The root mean square (RMS) error gives a quality of the comparison. In 

particular, for each assumed sowing date, a RMS error is estimated by deriving the root mean 
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square distance (RMSD) between the VH/VV curve and reference curve, using the following 

formula: 

𝑅𝑀𝑆𝐷 = √(𝑉𝐻/𝑉𝑉𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠  − 𝑉𝐻/𝑉𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 2                  (16) 

For several assumed sowing dates, a set of RMSD is derived as shown in Figure 43 (right). 

The minimum RMSD gives the value of the sowing date which best fits the theoretical curve 

with the VH/VV curve of the time series.  

  

Figure 43. Illustration of sowing date retrieval estimation method. 

The advantage of this algorithm is that it is based on the time series of Sentinel-1 

over the rice growing cycle instead of exploiting a certain development stage of rice fields. 

This can minimize the effect of other parameters (incident angle, climate condition, culture 

practice, etc.). However, for this sowing date estimation approach, the assumed sowing date 

is crucial. The error of sowing date retrieval can come from the error of crop calendar 

information. Therefore, this algorithm should be used together with the seasonal date 

selection algorithm described in section 5.2, even in homogeneous regions. 

This algorithm can also exploit the reference curves of VH or VV polarization. 

However, for VH and VV, the most accurate period of the reference curve should take from 

20 to 60 days after sowing where the radar backscatter behavior is the most stable without 

effect of long/short rice cycle rice variety and practice methods.  

5.5. Detection of long/short cycle rice variety 

The algorithm of short/long rice mapping was based on the mean value of VH and/or 

VV during 65 to 75 days after sowing. A threshold is applied for the Sentinel-1 images 

during this period to distinguish long and short duration cycle rice varieties: 
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If 𝑚𝑒𝑎𝑛_𝑉𝐻(65−75)  >= -16.5 dB then short duration cycle rice 

Else If 𝑚𝑒𝑎𝑛_𝑉𝐻(65−75) < -16.5 dB then long duration cycle rice 

This method for discrimination of long/short cycle rice requires information of 

sowing date obtained by the method developed in the previous section, and the results are 

obtained only during the reproductive phase, from flowering stage to grain maturity phase. 

For this purpose, sowing date map and SAR images at around 70 days after the sowing date 

are required. 

To apply this method to other regions with different rice varieties, rice cycle duration 

and cultural practices, the backscatter temporal behavior of the rice fields should be 

reassessed. 

5.6. Detection of rice phenological stage at S1 acquisition 

A phenological stage estimation algorithm is applied to the rice pixels after the rice 

mapping has been performed using the information of sowing date at two groups of rice 

variety: long cycle rice variety and short cycle rice variety. The algorithm is based on the 

relationship between phenological stage and the day after sowing of rice fields. 

For short cycle rice, from the sowing date of each rice field, the information of 

phenological stage is derived as following: 

Stage 1 (emergence): 0-10 Stage 5 (stem elongation): 35-45 Stage 9 (milky): 75-80 

Stage 2 (2/3 leaves): 10-15 Stage 6 (booting): 45-58 Stage 10 (milky hard): 80-85 

Stage 3 (tillering start): 15-25 Stage 7 (heading): 58-65 Stage 11 (maturing): 85-90 

Stage 4 (tillering max): 25:35 Stage 8 (flowering): 65-75 Stage 12 (maturity): 90-100 

For long cycle rice, the phenological stage is detected similarly to the short cycle rice 

until stage 6. From stage 7, it can be derived as following: 

Stage 7: 58-68 Stage 10: 90-100 

Stage 8: 68-80 Stage 11: 100-110 

Stage 9: 80-90 Stage 12: 110-120 

 

This identification needs to be confirmed by looking at the backscatter behavior at each 

stage. Especially, from stage 7 onwards, the development of rice can be confirmed by using 

a threshold on radar backscatter. The temporal change behavior of VH, VV and VH/VV can 

be used for this algorithm. In this study, the ratio VH/VV with 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎 = −7 𝑑𝐵 has 

been used to check the development of the rice fields: 

                 (17)                 

(14) 
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- If at the date X the number of days after sowing is between d1 and d2 (identified 

above), and the VH/VV ≥  thresholda (dB) then the identification of phenological stage at 

date X is confirmed, and this condition is checked at each acquisition date until stage 12 or 

the last image in the stack. 

- If at the date X the number of days after sowing is between d1 and d2, and the 

VH/VV < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎  (𝑑𝐵),  it means that the condition of radar backscatter is not satisfied, 

and that the rice has probably withered or failed. The pixel is then reclassified as non-rice. 

Similarly, a reverse countdown can be applied to assess the phenological stages of 

dates X-1, X-2, and so on. 

The algorithm developed in this research is based on the rice system in the Mekong 

Delta, Vietnam. To generalize the algorithms globally, more studies need to be carried out 

for diverse rice varieties and growth development from different region. To apply the method 

to other regions, the knowledge of the duration of the rice growing season and the 

phenological development of rice plants are required. The threshold used for this algorithm 

(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎) needs to be adapted with the range of incident angle and cultural practices as 

described in section 5.3. 

5.7. Estimation of plant height 

The analysis of plant height as a function of the day after sowing showed that the 

relationship can be expressed by polynomial regression curves presented in the section 4.1 

with a high correlation coefficient for both groups of rice varieties: long cycle rice and short 

cycle rice (as seen in Figure 21). Rice plant height of long and short cycle rice variety at the 

date M are retrieved from the equations bellow: 

 If rice=long rice  

plant height =-0.006×𝑥2+1.6× 𝑥 -1.1 

Else rice=short rice: 

plant height =-0.0078×𝑥2+1.7× 𝑥 -4.2 

where 𝑥 is the day after sowing since date M. 

Similarly to the phenological stage development, the plant height estimation should 

be confirmed by using the backscatter value of Sentinel-1 images or by observing the 

phenological stage once it is derived at date M. In particular, if at the date M, the 

phenological stage is within the range of 1 and 12, then the empirical polynomial regression 

curves can be applied. Otherwise, rice plants in the pixel are not in their growing cycle.  
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However, the main problem of plant height estimation taking into account the 

condition of the phenological stage is the propagating error source of the phenological stage 

map. Therefore, instead of using the phenological stage map, the threshold approach of VH, 

VV or VH/VV could be used to confirm the development stage of rice plant as described in 

section 5.6. 

5.8. Estimation of crop intensity 

The rice cropping intensity indicates the number of rice season(s) cultivated per year. 

For example, the rice cropping intensity of single rice, double rice, and triple rice was 1, 2, 

and 3, respectively. It can be easily estimated from the seasonal rice map (which is derived 

in the previous section) by combining the information contained in each rice pixel (i.e. the 

number of seasons for each pixel) for the different seasonal rice maps generated over a year. 

However, inaccuracies of the rice pixels from the seasonal rice map can induce errors in the 

final rice cropping intensity map. 

Another algorithm developed in this section to estimate the rice cropping intensity is 

based on the variation of the radar backscatter of the Sentinel-1 time series. A moving 

smooth function has been applied on the time series of VH/VV for each pixel (only potential 

rice pixels which were defined from section 5.1 are used). Figure 44 shows an example of 

variation backscatter of VH/VV (dB) time series of rice field from 20/08/2016 to 19/12/2017 

with an acquisition interval of 6 days (with some gaps due to missing data). The smoothing 

function returns a moving average of the elements of a time-series using a fixed window 

length (i.e. span) that is determined heuristically. The window slides down the length of the 

time-series, computing an average over the elements within each window.  

The rice cropping intensity is defined by estimating the number of peaks in the 

VH/VV time series with a minimum period of time between each peak to cover the rice cycle 

duration. The peaks must also be above -6 dB which is the characteristic of cultivated rice 

fields (as analysed in chapter 4). The smoothing of the time-series using an averaging 

window helps to determine the number of peaks efficiently. However, the span of the 

smoothing moving window must be chosen carefully, as is illustrated in Figure 44. In this 

figure we can observe the original time-series smoothed with an increasing span of 5, 10 and 

20-days (i.e. about 1 to 4 Sentinel-1 images of 6 days revisit). The VH/VV peaks are difficult 

to detect when the smoothing window is too large, as can be seen with the red curve in the 

Figure 44.  
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Figure 44. Smoothing function with VH/VV time series for rice cropping intensity estimation. 

For the studied region, a rice cycle is about 90 to 120 days depending on the rice 

variety. Therefore, for short cycle rice, the distance between peaks can be around 90 days 

and 120 for long cycle rice. 

5.9. Discussion and conclusion 

The methods for rice mapping and monitoring developed in this study are based on 

the knowledge of the temporal development of the rice plants and the related 

temporal variation of the radar backscatter of different rice varieties and cultural 

practices over large areas. The methods used thresholds applied to the temporal 

variation of the radar backscatter, which is not only a simple and easily implemented 

approach but also robust, repeatable and suitable for rapid rice mapping over large 

extents. Furthermore, the methodological developments carried out also take into 

account the local rice crop calendar, the effect of long cycle rice and short cycle rice 

and the effect of incident angle of the Sentinel-1data.  

However, to apply the algorithms to other regions under different conditions, for 

example rainfed, upland rice, etc., it is necessary to understand the backscatter 

temporal variations of the rice fields in order to refine the methods for their 

robustness across sites in other regions and countries. 
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In this chapter, the products generated using the methodology described in Chapter 

5 will be presented together with the product validation to assess their accuracy. The 

mapping products in the Mekong River Delta will be illustrated and validated in the same 

order as the methodology development in chapter 5 (rice map, sowing date map, long/short 

rice cycle map, phenological stage map, plant height map and rice crop intensity map). 

Additionally, the rice extent area mapping products at national scale will be demonstrated at 

two countries (Vietnam and Cambodia). To sum up, the discussion and conclusion of this 

chapter will be given in the last section. 
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6.1. Mapping products generation, validation and accuracy assessment 

The product validation was carried out using the validation data bases described in 

chapter 3, which are summarized in the following:  

1. Data regularly collected on the 60 surveyed fields in the province of An Giang 

over five rice seasons: One over five seasons has been used as training data for 

sowing date mapping algorithms and will not be used for product validation. As 

a consequence, 240 rice surveyed fields are used for validation and accuracy 

assessment of rice map, sowing date estimation, rice variety detection, 

phenological stage map and plant height estimation. 

2. Data collected randomly for rice/non-rice validation in many other rice provinces 

in the Mekong delta: A total of 1500 GPS points for the rice class and 450 GPS 

points for the non-rice class are used. Those GPS points are distributed over the 

three main regions of the Mekong Delta as described in chapter 3. 

3. Product validation at near real time: two campaigns in the Mekong Delta on 

08/2015 and 10/2016 for validating the rice area and phenological stage. A 

number of 270 points were collected and validated in near real time conditions 

(within 2-3 days after Sentinel-1 acquisition).  

4. The validation of rice planted area using the data from Statistics office of 13 

provinces in the Mekong Delta. 

For validation, the independent validation consists in performing a quantitative 

comparison between the EO derived products and the validation data base following the 

defined validation methods and metrics. Standard accuracy assessment measures were used 

i.e., kappa coefficient, overall accuracy, omission error, and commission error.  

In order to distinguish rice from other classes at a given satellite acquisition date, the 

rice pixel is defined as stated previously, as the location where rice is currently planted, from 

sowing/planting to harvest. Fallow fields or fields with intermediate crops between two rice 

seasons, and fields before planting and after harvest will be labeled as non-rice.   

6.1.1. Land use land cover map 

As described in the previous chapter, non-rice areas are firstly masked out, in order 

to apply the rice mapping algorithms only in areas where rice can be potentially found. In 

addition, land use land cover maps have been produced: water, tree and urban have been 

created based on the maximum and minimum VH backscatter values of the time series. 
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Figure 45. Mapping of main land use land covers including land water/aquaculture, forest/ 

trees, urban or built up area in the Mekong River Delta in 2018. 

 
Figure 46. Comparison of land cover maps of forest, river, urban and rice by Sentinel 1 with 

the Google Earth map. 

As seen in Figure 45, the province in the South of the Mekong River Delta, the main 

LULC was found including cultivated lands, aquaculture ponds, mangrove forest, natural 

water bodies and built up area. For geometric delineation of image features, the LULC map 

derived from the Sentinel-1 images are compared with good agreement to Google Earth map 

as shown in Figure 46. 
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6.1.2. Seasonal rice map 

The rice mapping has been produced for all rice seasons in the Mekong River Delta 

from October 2014 to August 2018 comprising 10 rice cropping seasons. Figure 47 shows 

the rice map of Summer-Autumn 2018 in the Mekong River Delta, with a detailed rice map 

of the An Giang province as example.  

 

Figure 47. Rice map derived from 20 images of Sentinel-1 (10m spatial resolution) in 

Summer-Autumn 2018 in the Mekong Delta (left) and An Giang province (right). 

All the seasonal rice maps in the whole Mekong Delta from October 2014 to March 

2018 are shown in the Figure 48. 
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Figure 48. Seasonal rice maps over 3 years 2015, 2016 and 2017 in the Mekong River Delta, 

Vietnam. 
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 Inter-annual variation of rice planted area 

 

Figure 49. Rice mapping in Winter-Spring 2015 is compared to Rice in Winter-Spring 2016 

in the Mekong Delta, Vietnam. Red: Rice, Blue: Water, Green: non-rice (forest, urban, etc.) 

The mapping results have been used to assess the inter-annual variations of rice 

planted area. Figure 49 shows a comparison between rice mapping results in 2015 and 2016 

in the Mekong delta. A decrease of rice areas in Winter-Spring in 2016 is detected and 

attributed to El Niño effect. The unusual decrease by the end of April 2016 in Spring season 

as compared to end of April 2015 is caused by shortage of water and saline water intrusion 

(decrease of 253000 ha or 16.7%; i.e. 1.42M ha vs 1.67M ha).    

 Rice/ Non-Rice geometric accuracy 

The GIS localization of the 60 surveyed rice fields in the province of An Giang and 

the independent GPS check points over the Mekong Delta are used to test both the rice/non 

rice performance of the method, and the geometric accuracy of the results, for correct 

delineating field boundaries.  

Figure 50 (left) shows the overlay of 60 reference fields over the S1 derived rice 

maps displayed on the rice/non-rice product. In general, the fields correspond well to the rice 

class. However, the collected fields are very close to the road which can produce an error on 

the field boundaries pixels as shown by the subset images in Figure 50 (left). 

This was also observed for the independent check points in 3 regions in the Mekong 

Delta (Figure 50 (right)). The error can be attributed to i) the mixed pixels at the field border 

(which leads to its classification as a non-rice pixel), ii) the precision of the GPS coordinates.  
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Figure 50. Example of rice map of the Summer-Autumn rice season in 2016 generated from 

Sentinel-1, overlayed by GIS file of the 60 surveyed rice fields in the An Giang province (left) 

and overlay of GPS independent check points at a different region in the Mekong Delta 

(right).  

This result indicates the need i) to have a further check of the geometric quality of 

the products by using reliable references, ii) to investigate the effects of SAR data filtering 

and the values of the SAR indicator thresholds used in the methods on the mixed pixels (rice 

pixels of different calendars, rice and road, rice and other LULC). 

At the present stage, the 10 m spatial resolution of the rice products allows to detect 

and localize most rice fields, except fields of dimensions of the order of 20 m (2 pixels) or 

less. 

Table 12 lists the validation for rice growing area mapping in the Mekong River 

Delta. For 300 rice sample fields, the percentage of good rice detection is 98.6%. Whereas 

for the independent GPS check point, the number of check points during the 3-8 July 2016 

campaign in the Mekong Delta was 1500. The overall accuracy is 95% with the omission 

error and commission error of rice class is 5.6% and 0.98%, respectively. More specifically, 

for 85 (over 1500) GPS check points of rice were detected as no-rice class and 14 (over 450) 

no-rice check points were detected as rice class, the error is mainly caused by error in GPS 

for small fields close to the road. 
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Table 12. Comparison in rice/non-rice check points from Ground Survey and the rice map 

derived from the Sentienl-1 data. 

 

The rice map product of the Summer-Autumn rice season based on S1 data from 

April to August 2016 is used to calculate the number of rice pixels, and the area of rice 

planted area in each of the 13 provinces. Table 13 shows the comparison for each of the 13 

provinces of the Mekong Delta between the estimated area and the Agency reported rice 

planted areas for the Summer-Autumn 2016 rice season. 

Table 13. Rice planted area (in ha) provided by the 13 provinces and estimated by Sentinel-

1 for the Summer-Autumn Rice season of 2016. 

 Province Estimated areas 
(ha) 

Agency data 
(ha) % 

1 Long An 218490 219345 99,6 
2 Đồng Tháp 156310 193392 80,8 
3 An Giang 241450 239279 100,9 
4 Tiền Giang 98361 107513 91,5 
5 Vĩnh Long 51668 59339 87,0 
6 Bến Tre 11788 14743 80,0 
7 Kiên Giang 313380 296389 105,7 
8 Cần Thơ 88968 77828 114,3 
9 Hậu Giang 43217 68755 62,8 
10 Trà Vinh 74307 77720 95,6 
11 Sóc Trăng 169032 174467 96,8 
12 Bạc Liêu 48727 57165 85,2 
13 Cà Mau 35664 36362 98,2 
Total             Mekong Delta 1551362 1622297 95,6 

 

Although both estimates have multiple sources of error, they provide good agreement 

in the overall comparison (95,6% for the Mekong Delta). The most important under 

estimation was found in Dong Thap and Hau Giang, that was found to be due to the shift in 

crop calendar of those provinces specifically for Summer-Autumn rice season in 2016 

(recommendation by province agency to avoid El Niño effect) compared to other provinces 

Validation data bases Ground 
survey 

Sentinel-1 
product 

Overall 
Accuracy 

Rice sample fields  300 296 98.6% 

Independent GPS points 1500 1415 
95% 

Other crops (pepper, mango, corn..) 450 436 
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(Table 11). The estimated areas using S1 product for these 11 provinces (with Dong Thap 

and Hau Giang excluded) account for 99.3% of the Agency data. 

 

Figure 51. Comparison in rice planted areas from the Sentinel-1 product and the Agency 

data for the Summer-Autumn 2016 rice season. 

The results show that the Sentinel-1 based estimate of rice planted area can contribute 

to the National Statistics of Rice planted areas. Furthermore, such remote sensing results can 

be obtained already before the end of the rice season. 
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6.1.3. Sowing date map 

Figure 52 shows the sowing date map of in Winter-Spring 2017 in the MRD (left) 

and in the An Giang province (right).  

 

Figure 52. Sowing date map derived from 20 images of Sentinel-1 (10m spatial resolution) 

in Winter-Spring 2017 in the Mekong Delta (left) and An Giang province (right). 

The sowing date maps derived from Sentinel-1 data are compared with the sowing 

dates of 60 sampled fields over 4 rice seasons showing a good agreement with a root mean 

square error of 3.7 – 4.8 days (Figure 53).  

Determining the sowing date of rice fields in this region with an average error of ±4.3 

days is an asset for water management, field treatment and harvest planning. However, for 

individual rice fields, an error of 4-5 days may not be sufficient for punctual management, 

and the contribution of the spatial distribution of sowing dates is more important at a regional 

scale, where water resources and available machinery need to be shared between communes 

and villages. 
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Figure 53. Retrieved sowing date in over 4 rice cropping seasons by Sentinel-1 vs. ground 

data collection of 60 rice fields in Chau Thanh and Thoai Son districts, An Giang province.  

The sowing dates in Figure 53 have been estimated based on the time series of the 

ratio VH/VV in the range of dSoS to dEoS (as described in section 5.4). Then by reducing the 

number of images in the time series as well as calculating the sowing date estimation error, 

we address the question of how many images in the time series are needed to obtain 

reasonable sowing date estimates. Figure 54 shows an example of the sowing date estimation 

error versus the number of days after sowing (which defines the number of images). It is 

clearly seen that already 24 days after sowing (corresponds to 4 images of 6 days revisit and 

2 images of 12 days revisit), the available time series can provide sowing date estimates with 

a standard error of about 4 days. After 24 days after sowing, the result for 6-day revisit is 
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slightly improved with an error of about 3-4 days. For the 12-day revisit, the error is variable, 

from 6 to 8 days, until about 40 days, where the error decreases to 4 days.   

 

Figure 54. The sensitivity of the sowing date estimation using time series of Sentinel-1 with 

a 6-day revisit and 12-day revisit. 

 

Figure 55. The sensitivity of the sowing date estimation using time series of Sentinel-1 with 

a 6-day revisit over 3 rice cropping seasons. 

Figure 55 shows the results for 3 rice seasons, with 6-day revisit. The error is 

consistent between seasons.  

6.1.4. Long/short rice cycle map 

Figure 56 shows the long/short rice cycle map of Winter-Spring 2017 in the MRD 

(left) and in the An Giang province (right).  
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Figure 56. Long short cycle rice in Winter-Spring 2017 in the Mekong Delta (left) and An 

Giang province (right). 

Short and long cycle rice fields are distributed in geographic clusters. Short-cycle 

rice is still dominant, despite the tendency to increase the production of long-cycle rice. The 

comparison between rice variety mapping in this study and 240 sampled fields (49 long and 

191 short) is shown in Table 14.  

Table 14. Comparison long/short cycle rice variety from Ground Survey and the Sentinel-1 

product. 

 

The good identification score is therefore of 220/240 (91.7%). 20 sample fields of 

short-cycle rice variety that were detected as the long cycle variety. This error can come 

from the 11 samples not clearly identified as long or short cycle rice variety from the ground 

survey (Table 9, chapter 4).  

More important is the derived area distribution and the proportion of long and short 

cycle rice within a region. In the study area (in Figure 56), 28.7% of the area is planted with 
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of long-cycle rice and 71.3% with short-cycle rice. Such proportion is expected to change 

annually. 

The proportion of planted area with long-cycle high market value rice in a season 

against planted area with short-cycle lower market value rice is a major component of the 

economic income in this region. Having this information about two months after the sowing 

period will be beneficial for market planning. 

6.1.5. Rice phenological stage map 

 

Figure 57. Phenological stage map (12 stages) on 12/01/2017 of Winter-Spring 2017 in the 

Mekong Delta (left) and An Giang province (right). 

Figure 57 shows the phenological stage map on 12/01/2017 of in Winter-Spring 2017 

in the MRD (left) and in the An Giang province (right).  

The correct detection of phenological stages has been assessed using the data 

recorded for the 60 surveyed fields in An Giang. The 12 scale phenological stages used by 

Agricultural experts in Vietnam have been compared with the 12 phenological stages 

detectable by Sentinel-1. Figure 57 shows the map of phenological stages at the date of 

12/01/2017 in the Mekong River Delta (left) and in the An Giang province (right).   

The validation of the phenological stage map has been carried out for the rice season 

Winter-Spring 2017. Figure 58 shows the comparison of the phenological stages for 60 
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fields. For 59 fields, there are very good agreement between the two datasets. The accuracy 

for these 60 samples is therefore of 98.3%.  

 

Figure 58. Comparison of the phenological stages detected by Sentinel-1 and recorded by 

ground survey. 

During a field survey in Can Tho province on 25 October 2016 in the frame of the 

Georice project, a phenological map of 20 October 2016 has been provided to a group of 

identified users (agriculture managers at 13 provinces in the Mekong River Delta) for in situ 

visual assessment (Figure 59). Most users reported on correct detection of the phenological 

stages.  

  

Figure 59. The fieldtrip for in situ visual assessment of phenological stages mapping using 

Sentinel-1 images in Can Tho province, Mekong Delta on 25 October 2016. 

6.1.6. Plant height map 

Figure 60 shows the plant height map on 12/01/2017 of  the Winter-Spring 2017 rice 

crop in the MRD (left) and in the An Giang province (right).  
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Figure 60. Plant height map in the Mekong River Delta on 12/01/2017 of Winter-Spring 

2017 in the Mekong Delta (left) and An Giang province (right). 

Figure 61 shows the comparison of the plant height retrieval from Sentinel-1 data 

respect to in-situ data during the Winter-Spring 2017 rice season (60 sampled rice fields by 

5 times of ground measurement). A good correlation between retrieved plant height and 

measured plant height was obtained with a RMSE of 7.88 cm.  

 

Figure 61. Plant height validation using the ground measurement of Winter-Spring 2017. 
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6.1.7. Rice cropping intensity map 

Figure 62 shows the cropping intensity in the Mekong River Delta which is from 

single cropping rice to two or three irrigated rice crops per year in 2016. Single cropped rice 

is found at very limited area in the whole Mekong Delta compared to other patterns. In the 

coastal areas which are prone to salt intrusion in the dry season the major cropping patterns 

are therefore single rice with shrimp farming or double rice. Many other rice based cropping 

systems, such as rice-rice-corn, corn-rice-corn, rice-rice-peanut and rice-rice-vegetable exist 

in the region. This concerns part or all of the coastal provinces in the Mekong Delta (Kiên 

Giang, Cà Mau, Bạc Liêu, Sóc Trăng, Trà Vinh and Bến Tre).  

 

Figure 62. Rice crop intensity map in the Mekong River Delta in 2016.  

Triple cropped rice was found in the north and center of the MRD where the rice 

fields are covered with a dense irrigation network and benefit from a fertile soil thanks to 

the sediments brought by the floods from the delta (mostly in An Giang, Đồng Tháp, Cần 

Thơ, Hậu Giang, Vĩnh Long, the western part of Tiền Giang, and Long An). However, the 

third rice crop is not encouraged by the government, because of the increase of pest damage 

deriving from year-round continuous cropping of rice.  
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6.1.8. Rice map product at national scale 

 
Figure 63. Mapping result in Vietnam and Cambodia using Sentinel-1 data from November 

2015 to March 2016. 
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A test of rice mapping at national scale has been realized, over Vietnam and 

Cambodia, as shown in Figure 63. The difficulty to take into account is that for a national 

coverage, Sentinel-1 data to be used are acquired at different dates (as described in Figure 

16), and the rice calendar differs between regions. For rice/non rice mapping, the data time 

series should cover the period corresponding to the maximum increase of the backscatter for 

the rice season, i.e. from the start of season to the peak season. The test was done on the data 

from November to March, covering the Spring rice for the Northern part and Winter-Spring 

in the South. However, in the Central part, the period may miss part of the rice fields, 

according to the general calendar of the country (Table 3). The results show consistency 

between different Sentinel-1 frame, but because of the lack of ground data for method 

refining and for products validation, the mapping results obtained could not be validated.  

For Cambodia, the period from November to March covers the entire dry season rice 

(Table 4), and misses the Medium wet season and the Long Wet Season  

The results show consistency with the National Statistics, as shown in Figure 64 

where the dry season rice area estimate in Cambodia is in line with the increasing trend in 

the rice area of the National Statistics. 

 

Figure 64. Dry season (12/2015-03/2016) 474.270k ha, compared to past AFSIS statistics 

in Cambodia. 
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Figure 65. Rice mapping in Medium wet season 2015 is compared to Rice in Dry season 

2016 in Cambodia. Red: Rice, Blue: Water, Green: non-rice (forest, urban, etc.) 

Figure 65 shows an additional comparison between Medium Wet Season in 2015 and 

Dry season rice in 2016 using Sentinel-1 with the majority of the cultivated rice was found 

in the wet season (with more than 80% of total rice area). 

6.2. Discussion and conclusion 

Rice mapping products have been illustrated and validated in this chapter. The use 

of the Sentinel-1 SAR data for a large-scale near-real-time monitoring system and high 

accuracy has been evaluated. Especially the very short revisit time (6 days at present), high 

resolution (10m) and large coverage demonstrate the advantages of Sentinel-1 data for 

operational mapping of rice fields at regional and national level. The performance of each 

mapping product is successfully assessed using reference dataset. 

The achieved maps in this study include general LULC, seasonal rice growing areas, 

sowing date map, long/short cycle rice map, phenological stage map, plant height map and 

rice crop intensity map for the whole Mekong River Delta. The rice map is extended to the 

national scale for two countries Vietnam and Cambodia in a preliminary test. 

Products validation showed a good agreement with the reference data (sample fields 

and independent check points) with the accuracy higher than 98% for rice-non rice maps. In 

addition, the rice planted area estimates for a given rice season could be useful for Statistics 

Office, for their timeliness, since they can be obtained before, or at the end of the rice season. 

The sowing date map derived from Sentinel-1 data is compared with the 

sowing dates of 240 sampled fields showing a good agreement with a root mean 

square error of about 4 days. This is a key information in several applications 
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including crop yield estimation and prediction, water demand for irrigated rice, or 

methane emission from rice fields. The comparison between long/short cycle rice variety 

mapping in this study and sampled fields has shown good identification with 91.7 %. 

Because of the difference in market values of these two types of rice, the information is 

essential for market estimation. The phenology mapping has been assessed using the 60 

surveyed fields, and also during the field trip during the User Assessment workshop. The 

detection was found in good agreement with the ground survey for 59/60 fields in the test, 

and for fields visited by the users during the user workshop. This product was found useful 

for a synoptic view of the rice growth status in a region, which is difficult to have in a timely 

manner by ground survey. The plant height estimated with the Sentinel-1 was overall in 

agreement with the ground measurements, presenting very good correlations (RMSE of 7.8 

cm) when compared with the measurements. 

Finally, the rice crop intensity has been estimated together with other rice parameters 

showing a potential of integration of EO products in crop production models. The technical 

challenges are important in the development of the methodology at national coverage at 

different dates with different time interval data in each region; different radar physical 

responses of rice canopy caused by the diversity in rice cultural practices; the very diverse 

landscape in each country, etc.  

Further works need to be carried out to bring the methodology towards operational 

rice monitoring. More details will be discussed in perspectives (Chapter 8). 

The maps can be used at local scale for planning of farm activities, for organizing 

labor at the right time. It also provides accurate information for the local government, 

planners and decision makers, to assess the rice grown area for each rice season, and to have 

early estimation of long and short cycle rice with different market values. The resulting 

information on rice cultivation is essential for planning, monitoring and food security 

applications.  
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Chapter 7  

Use of Sentinel-1 retrieved information in models 

estimating rice yield and methane emission 

Contents 

7.1     Introduction ........................................................................................................... 117 

7.2     Description of the models ...................................................................................... 119 

   7.2.1     The ORYZA2000 model ................................................................................ 119 

   7.2.2     The process-based biogeochemistry DNDC model ....................................... 121 

   7.2.3     Models testing ................................................................................................ 122 

7.3     Rice production estimation using ORYZA2000 ................................................. 125 

   7.3.1     ORYZA2000 modelling ................................................................................ 125 

   7.3.2     Results and discussions  ................................................................................. 126 

7.4     Methane emission estimation using DNDC  ........................................................ 129 

   7.4.1     DNDC modelling ........................................................................................... 129 

   7.4.2     Results and discussions  ................................................................................. 130 

   7.4.3     Simulation of water demand  ......................................................................... 131 

7.5     Discussion and conclusion-way forward  ............................................................ 133 

7.1. Introduction 

As stated in a previous chapter, more than 90% of the world’s rice is produced and 

consumed in Asia (IRRI, 2013). At the economic level, world rice trade is volatile due to the 

uncertainty in the Asian demand, particularly in countries like Indonesia, the Philippines or 

Japan, where national production can vary as much as 20% from year to year. Accordingly, 

prices can fluctuate considerably.  
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Also, to cope with the increasing rice demand due to population growth, and because 

of the limitation in the land available for agriculture, rice production will have to increase 

through cropping density and increasing yield. The latter can be achieved through cultivation 

practices and through breeding high-yield cultivars (Yu Jiang et al., 2017). Yet, increasing 

rice growth and increasing cropping density can stimulate methane (CH4) emissions, 

exacerbating global climate change, as rice cultivation is a major source of this powerful 

greenhouse gas. Furthermore, increasing irrigated rice will require more water during the 

dry season, which impacts on the water availability for people consumption.  

The challenge of maintaining food security while reducing water used and 

greenhouse gas emissions is an important tradeoff issue for scientists and policy makers. An 

evaluation of tradeoffs requires understanding of the complex interactions between rice 

growth, water and GHG processes across spatial scales and over time. In recent research 

works, experimental data have been conducted to capture key processes in crop biomass 

formation and methane emission (Katayanagi et al., 2017; Torbick, Salas, et al., 2017; Arai 

et al., 2018). Subsequently, experimental data have been used to parameterize process 

models on crop growth and development models (Le Toan et al., 1997; Bouman and Van 

Laar, 2006; Pazhanivelan et al., 2015; Tan, Cui and Luo, 2016; Li et al., 2017; Setiyono et 

al., 2018), and on  soil denitrification-decomposition (Cai et al., 2003; Awa, 2008; Fumoto 

et al., 2010; Salas, 2010; Hayano et al., 2013; Katayanagi et al., 2016, 2017, Tian et al., 

2018).  

These process-based models can simulate yield or methane emission, but also the 

water demand, by capturing biophysical growth drivers (microclimate, water, and nutrient). 

However, for regional upscaling to obtain the regional crop productivity, and the regional 

methane emission, most studies rely on the concept of ‘homogeneous’ cropping zones for 

which the same processes and the same estimates of yields, water, or methane emissions are 

assumed. 

In this study, we assess the possibility to use remote sensing for regional upscaling 

of the models. Specifically, we evaluate the use of Sentinel-1 data to provide spatial and 

temporal information related to agro-practices (e.g., crop establishment dates) and seasonal 

crop development (i.e., phenology) and vegetation status (e.g., height, biomass, etc.), in 

order to apply the models on a pixel basis for regional application. For this purpose, we will 

use the two major process-based models for rice fields, ORYZA 2000, for yield prediction, 

and the DNDC model for methane emission and water use. 
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In the first step, the models are tested against experimental data sets. Because our 

data sets for crop monitoring method development do not comprise all the relevant input 

parameters to run both models, we make use of data acquired by the University of Tokyo in 

a study on methane emission from rice fields (Arai et al., 2016). 

 In a second step, the input parameters describing the cultural practices and crop 

development in the models are replaced by the information retrieved from Sentinel-1. 

 The model outputs obtained by the two models will be used to discuss about the 

trade-off between crop productivity, methane emission and water use.    

7.2. Description of the models 

The two model versions under study are process models which were developed 

specifically for rice. Both contain the vegetation growth model and require information on 

climate and soil. ORYZA2000 focuses on crop yield estimates, whereas DNDC primary 

target was to estimate the GHG emission and water use.   

7.2.1. The ORYZA2000 model 

ORYZA2000 for modeling of lowland rice is the successor to a series of rice growth 

simulation models developed by IRRI and Wageningen University and Research Centre 

(WUR) in the early to mid-1990s. The first version was ORYZA-1 was for potential 

production, and updated versions ORYZA-W for water-limited situations, and ORYZA-N 

for nitrogen-limited production. The current version, ORYZA2000 allows a more explicit 

simulation of crop management options, such as irrigation and nitrogen fertilizer 

management. It can also be used in application-oriented research such as the analysis of the 

effects of climate change on crop growth.  

The general structure of the model is shown in Figure 66 which represents the model 

in the situation of potential production in optimum conditions (Bouman and Van Laar, 2006). 

Under these conditions, light, temperature, and varietal characteristics for phenological, 

morphological, and physiological processes determine the growth of the crop. The model 

follows the daily calculation scheme for the rates of dry matter production of the plant organs 

and the rate of phenological development. By integrating these rates over time, dry matter 

production of the crop is simulated throughout the growing season.  
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Figure 66. Schematic representation of ORYZA1 in the situation of potential production. 

Boxes are state variables, valves are rate variables, and circles are intermediate variables. 

Solid lines are flows of material and dotted lines are flows of information (Bouman and Van 

Laar, 2006). 

Total daily rate of canopy CO2 assimilation is calculated from daily incoming 

radiation, temperature, and leaf area index (LAI). Daily assimilation rate is obtained by 

integrating instantaneous rates of leaf CO2 assimilation over the day and over all leaf layers 

in the canopy (Goudriaan, 1986). Photosynthesis of single leaves depends on leaf N content 

(on area basis), radiation intensity (separated into direct and diffuse radiation), stomatal CO2 

concentration, and temperature. Maintenance respiration requirements are subtracted from 

the gross assimilation rate to obtain net daily growth expressed in kg carbohydrate per ha 

per day. Carbohydrates produced are partitioned among roots, leaves, stems and panicles, 

using experimentally derived partitioning factors as a function of development stage, which 

is tracked as a function of daily average temperature and photoperiod. Conversion of 

carbohydrates into structural dry matter is based on equations derived by Penning de Vries 

et al., (1982). From flowering onward, leaf loss rate is simulated from an experimentally 

derived loss rate factor, which is a function of development stage, times the remaining green 

leaf biomass. 

In the ORYZA model, all parameter values are listed in external data files and can 

be changed by the model user. About 10% of crop parameters are expected to be variety 

specific and need empirical derivation (Bouman and Van Laar, 2006). These parameters are 

development rates, assimilate partitioning factors, specific leaf area, relative leaf growth rate, 

leaf death rate, fraction of stem reserves, and maximum grain weight. 
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7.2.2. The process-based biogeochemistry DNDC model 

DNDC is a biogeochemistry model that simulates crop growth and soil C and 

dynamics based on input data on soil properties, climate, and farming practices (e.g. Li et 

al., 1992, 1994). The model was expanded to simulate the emission of trace gases such as 

NO, N2O, NH4, and CH4 from agricultural ecosystems and natural wetlands (Zhang et al., 

2002; Li et al., 2004). 

Four major ecological drivers, namely climate, soil physical properties, vegetation, 

and anthropogenic activities, drive the entire model as shown in Figure 67. 

DNDC consisted of 2 components: the first component consisting of the Soil climate, 

crop growth, and decomposition sub-models. The second component consisting of 

nitrification, denitrification, and fermentation sub-models. The soil climate sub-model 

calculates soil temperature, moisture, pH, redox potential (Eh) profiles by integrating air 

temperature, precipitation, soil thermal and hydraulic properties, and oxygen status. By 

integrating crop characters, climate, soil properties, and farming practices, the plant growth 

sub-model simulates plant growth and its effects on soil temperature, moisture, pH, Eh, 

dissolved organic carbon (DOC), and available N concentration. The decomposition 

submodel simulates concentrations of substrates (e.g., DOC, NH4 and NO3-) by integrating 

climate, soil properties, plant effect, and farming practices. The three sub-models interact 

with each other to finally determine soil temperature, moisture, pH, Eh, and substrate 

concentrations in the soil profiles at a daily time step and predict NH3, NO, N2O, CH4 

fluxes. 

Methane is an end product of the biological reduction of CO2 or organic carbon under 

anaerobic conditions. Methane fluxes were strongly controlled by soil available carbon (i.e., 

DOC) content, and soil temperature. The reduction of available carbon to methane is 

mediated by anaerobic microbes (e.g., methanogens) that are only active when the soil Eh is 

low enough. DNDC calculates methane production rate as a function of DOC content and 

temperature as soon as the predicted soil Eh reaches -150 mV or lower. Methane is oxidized 

by aerobic methanotrophs in the soil. A highly simplified scheme was employed in DNDC 

to model methane diffusion between soil layers based on methane concentration gradients, 

temperature, and porosity in the soil. 
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Figure 67. Structure of the DNDC model (New Hampshire, 2012). 

For methane emission on agriculture land, DNDC needs site-specific input data of 

climate, soil, vegetation, and farming practices for the simulated agricultural land. Similarly 

to ORYZA2000, when the DNDC is used for regional estimates of trace gases emissions, 

the model needs the spatially and temporally differentiated input data stored in geographical 

information system type database in advance.  

7.2.3. Model testing 

In this study, the two models are tested with a selected experimental dataset having 

a complete set of input data for both ORYZA2000 and DNDC. Because of the lack of input 

data specific to each of the 60 sampled fields under study in the previous chapter, such as 

soil data and details in water and fertilizer management, we use instead an experimental data 

set available through a collaboration with the University of Tokyo. The objective of this 

experiment was to study the methane emission of rice fields with differences in field 

management: continuous flooding, alternate wetting and drying, post harvest management 

of straw (Arai et al., 2016). However, since the data set contains input parameters for both 
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DNDC and ORYZA 2000 models, they can be used for simulating both the rice yield and 

the methane emission.  

 Description of test site and dataset 

The data sets that are used are data collected over two years, in 2015 and 2016 

including 5 cropping seasons (Winter-Spring, Summer-Autumn and Autumn-Winter) in Tan 

Loi 2 Hamlet, Thot Not District in Can Tho City, Vietnam (10°18'N, 105°54'E), located in  

central Mekong Delta (Arai et al., 2016).  

The experiment was performed on rice fields of triple-rice cropping. Available 

information includes a) rice variety: Jasmine 85 (an aromatic long-grain indica rice cultivar 

developed in Thailand) and OM4218 (a non-photoperiod-sensitive indica rice cultivar 

developed in Vietnam), b) methods of sowing (transplanting and direct wet seeding method, 

c) fertilization, d) hydro-meteorological and e) soil characteristics.  

Three of the sampled rice blocks were used for an alternate wetting and drying (AWD) and 

the other three were for a continuously inundated/saturating treatment (CF). The amount of 

irrigation water use was estimated by using a PVC-made irrigation tube, into which irrigation 

water was pumped from a canal that ran parallel and close with one of the short sides (26-m 

long) of the whole experimental field across the community dike. 

For rice yield, the weight of each rice plant sample (2 × 2 m) was estimated as having 

14% moisture content. 

For methane emission, a transparent acryl chamber (60 × 80 cm horizontal cross 

section × 100 cm height with open bottoms) that was equipped with a 20 cm Teflon tube, an 

air-stirring electric fan and a thermometer in each plot. The collection of gas samples with 

the chamber was performed at least once a week and once every 3 days for 2 weeks after 

sowing, for 10 days after heading (flowering) and every day for five days after drainage, 

irrespective of water management. The gas fluxes were calculated using an equation that 

was described by Arai et al. (2015), and the cumulative gas emission (seasonally or annually) 

was calculated (Whittaker and Robinson, 1967).  

These datasets from Arai et al., (2016) are used as inputs data for soil and crop 

management for the two process models under study.   

 Inputs in ORYZA2000 and DNDC models 

Common to ORYZA2000 and DNDC models, the input data consist of climate data, soil 

data and data on crop management.  
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(1) Climate data  

The climate data used in this study including maximum and minimum temperature, wind 

speed and solar radiation are data provided by global datasets, and precipitation data is from 

Arai et al., (2016). In particular, daily solar radiation (Mj/m²/day) and wind speed (m/s) data 

were obtained from the NASA POWER (Prediction Of Worldwide Energy Resource) 

website (http://power.larc.nasa.gov), minimum and maximum daily temperature (°C) data 

were obtained from the NCDC Global Summary of the Day (GSOD, 

http://www.ncdc.noaa.gov). These meteorological data were resampled to 15 arc minutes 

resolution. 

(2) Soil data  

The soil data are from Arai et al., 2016. The soil is silty-clay fluvisol (Clay 52%, Silt 48%, 

Sand 0.3%; Carbon (C) content of soils: 44.2 ± 2.5 – 51.8 ± 10.1 g C kg-1, Nitrogen (N) 

content of soils: 3.5 ± 0.7 – 4.5 ± 0.3 g C kg-1; pH (H2O2) of the soils at a 0-10-cm depth: 

2.94-4.77, 10 – 20-cm depth: 3.84-5.22, 20 – 30-cm depth: 3.35-4.98 . 

(3) Crop management  

o Rice variety: Jasmine and OM4218. Transplanting method is used for long cycle rice 

variety. Twelve-day-old seedlings were transplanted and rice crop duration is about 110 

to 120 days. Direct seeding method is used for short cycle rice with crop duration is about 

90 days. 

o Water management: as stated above, CF and AWD are used for 3 over 6 field blocks 

under study. Under CF, rice samples were kept flooded from 1 week after sowing till 2 

weeks before expected rice harvest. Water was supplied to a depth of 5 cm (when the 

rice seedlings are still short, to a height not to submerge them) above the soil surface 

when the standing water level decreased to approximately 1 cm above the soil surface. 

Under AWD, though water management was the same as that of CF for 2 weeks after 

sowing, after that, until 2 weeks before expected rice harvest, rice plots were irrigated to 

a depth of 5 cm only when the field water level dropped to 15 cm below the soil surface, 

except for 10 days after heading. 

o Fertilization was applied as following schedule: 

- 7-10 days after sowing: Phosphoric acid: 7kg/10a, urea 5kg/10a 

- 18-22 days after sowing: Phosphoric acid: 6kg/10a urea 7kg/10a 

- 40-55 days after sowing: potassium: 5kg/10a urea: 5kg/10a 

http://www.ncdc.noaa.gov/
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Figure 68. Variations of water level, sunshine hours and precipitation from January 2015 

to December 2016 (adapted from data by Arai et al., 2016). 

Figure 68 shows the water level (cm), the sunshine hours and precipitation obtained 

by Arai et al, 2016 during their experiment from January 2015 to December 2016 for CF and 

AWD rice fields. For AWD fields, the fields were inundated (up to 4 cm), about 3 times 

during the season (with the exception of the rainy season in 2016-AW16), and the minimum 

level can go down to -12 to -15 cm. The second panel shows the sunshine hours and 

precipitation during the 2 years. It can be observed that the number of sunshine hours is 

smaller during the rainy season in 2016 (starting June-July) than in 2017.  

7.3. Rice production estimation using ORYZA2000 model 

ORYZA-V3, the latest version since ORYZA Version 2.13 released in 2009 

(https://sites.google.com/a/irri.org/oryza2000/home), was used for rice production 

estimation. The work was conducted in collaboration with the team from IRRI (Tri 

Setoyono). For most parameters, the base values are obtained from default values (adapted 

to the Mekong delta). In particular, the partitioning factors, leaf death rates and the 

development rates are set as an average of those values calculated with data (unpublished) 

from experiments conducted in 2014/2015 in An Giang province, provided by IRRI 

(Setiyono et al., 2018).  

7.3.1. ORYZA2000 modelling 

ORYZA2000 was used to simulate rice fields over 5 rice seasons in 2015-2016: 

Summer-Autumn 2015, Autumn-Winter 2015, Winter-Spring 2016, Summer-Autumn 2016, 



126 
 

Autumn-Winter 2016. In general, 6 inputs files were created to run the model including (1) 

Climate data; (2) Soil data file; and (3) Experimental data file (crop management); (4) Crop 

data file; (5) Reruns file; and (6) Control file. Information of climate data, soil data and crop 

management (rice variety duration and its calendar, sowing method, water management, and 

fertilization was inferred for the study area) of each rice field is defined in the input files (1) 

to (3) as described previously. Crop data file contains all the parameter values that 

characterize the rice crop such as photosynthesis parameters, growth rates of each rice 

variety. In particular, the characteristics of two different rice varieties are used in this study 

for long cycle rice and short cycle rice. Most parameter values are used in a general sense 

for rice, but some are variety-specific. The parameters in those crop data files are provided 

by IRRI (unpublished experiments).  

Finally, rerun file is created to group all individual simulation in one and there is no 

limit to the number of reruns that can be made. Reruns can be done on all parameter values 

of all input files specified in the control file to control the number of reruns made for 

simulation. 

7.3.2. Results and Discussions 

(1) Simulation using Ground-based data: 

 

Figure 69. Comparison of rice yield simulated by ORYZA 2000 with in situ rice yields for 2 

rice plots (CF and AWD) in Can Tho province over 5 rice seasons (SA-15, AW-15, WS-16, 

SA-16 and AW-16).  
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Figure 69 shows the simulated result comparison with the measured yields in the Can 

Tho province. For each season, the two fields of CF and AWD which show only slight 

difference in measured yields (as shown in Figure 70) are not singled out. Despite the small 

range of yields, the simulated values are in good agreement with the measured yields 

(R²=0.519), and represent well the inter-annual variation of yields, for example on the lower 

rice yield in Summer-Autumn 2016 (SA-16) compared to Summer-Autumn 2015 (SA-15), 

because of the El Niño effect in 2016. 

 

Figure 70. Rice yield simulation of rice sample at continuously-flooding (CF) and of the 

alternate-wetting-and-drying field-water treatment (AWD) over 5 rice cropping seasons 

Summer-Autumn 2015 (SA-15), Autumn-Winter 2015 (AW-15), Winter-Spring 2016 (WS-

16), Summer-Autumn 2016 (SA-16) and Autumn-Winter 2016 (AW-16). 

Figure 70 shows that simulated yields for AWD are equivalent or slightly higher than 

CF fields, except for Winter-Spring 2016. There is a noticeable inter-annual variation of 

yields: AW16 yield is higher than AW 15, whereas SA 16 has lower yield than SA-15. Since 

the soil parameters and rice varieties are the same from the 2 years, this result may indicate 

that the yield is highly dependent on climate.  

 

(2) EO based simulation: 

 

The Sentinel-1 products developed in this research are used as inputs for the model 

including information of rice areas extent, long/short rice cycle varieties, sowing date and 

harvest date, phenological stage, plant height and rice crop intensity extracted for the fields 

under study from the Sentinel-1 products, using geographic coordinates of the monitored 

fields. 

Figure 71 shows the simulated yields as compared to the measured yields for the two 

fields in the 5 rice seasons.  
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Figure 71. Comparison of rice yield simulated by ORYZA 2000, using inputs from Sentinel-

1 products with in situ rice yields for 2 rice plots in Can Tho province over 5 rice seasons 

(SA-15, AW-15, WS-16, SA-16 and AW-16). 

The result in Figure 71 indicates that replacing the major parameters characterizing 

the spatial variation of rice fields using Sentinel-1 will provides similar comparison with the 

measured yields (R²= 0.509), in spite of the additional errors caused by the remote sensing 

retrieval. 

 

Figure 72. Comparison of rice yield simulated by ORYZA 2000, using inputs from Sentinel-

1 products and using inputs from in situ data for 2 rice plots in Can Tho province over 5 

rice seasons (SA-15, AW-15, WS-16, SA-16 and AW-16). 

Figure 72 shows the good agreement (R²= 0.904) between the yields simulated by 

ORYZA2000, when using the complete set of experimental data and when information on 
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long/short rice cycle varieties, sowing date and harvest date, and phenological stage have 

been retrieved from Sentinel-1.  

The results in Figure 71 and Figure 72 indicate that the spatial and temporal variable 

parameters inputs to the rice production models can be retrieved from Sentinel-1 products.  

7.4. Methane emissions estimation using DNDC model 

DNDC model version 9.5 (www.dndc.sr.unh.edu/) is used to simulate the methane 

emission for the rice fields in the Can Tho province. This part of the DNDC work was carried 

out in collaboration with the team from AGS (Advanced Geophysical System in USA) 

(William Salas and Nathan Torbick). The Sentinel-1 products developed in this research are 

used as inputs for the model including information of rice areas extent, sowing date and 

harvest date, phenological stage and rice crop intensity extracted for the fields under study. 

7.4.1. DNDC modelling 

As described previously, DNDC also needs site-specific input data of climate, soil, 

and crop management of the rice fields for the methane emission simulation. To allow for 

stabilization of DNDC soil organic carbon pools (e.g. residues, microbial, humads and 

passive organic carbon) for the local land use and climate, a 5-year initialization timeframe 

preceded the 2016 calendar year for a 6-year total simulation duration (Torbick, Salas, et al., 

2017). Soil characteristics (pH, soil carbon, bulk density and soil texture) before 2016 were 

extracted from the Harmonized World Soils Data- base (http://www.fao.org/soils-

portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/). 

Daily weather data (maximum and minimum temperature in °C and precipitation in cm) 

were used as climate datasets for ORYZA2000 simulation.  

For water management, DNDC has been set up for 2 scenari simulations AWD and 

CF (as described in previous section). Seasonal rice maps, crop calendar and cropping 

intensity, phenological stage map from Sentinel-1 were used to extract the information for 

crop management of the rice field under study. 

7.4.2. Results and Discussions 

Figure 73 shows the simulated result comparison with the measured methane 

emission in the Can Tho province. 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
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Figure 73. Comparison of simulated methane emission based on Sentinel-1 data using 

DNDC and measured methane emission for 2 rice plots per season (CF and AWD) in Can 

Tho province over 5 rice seasons (SA-15, AW-15, WS-16, SA-16 and AW-16). 

Figure 73 shows that the simulated CH4 emissions are in agreement with the 

measured CH4 (R²= 0.838). As expected, for the same season, continuous flooding fields 

have higher CH4 emission than AWD.  

 

Figure 74. Methane emission simulation of rice sample at continuously-flooding (CF) and 

of the alternate-wetting-and-drying field-water treatment (AWD) over 5 rice cropping 

seasons Summer-Autumn 2015 (SA-15), Autumn-Winter 2015 (AW-15), Winter-Spring 2016 

(WS-16), Summer-Autumn 2016 (SA-16) and Autumn-Winter 2016 (AW-16). 

The methane emission varies among seasons. Figure 74 shows methane emission 

simulation of rice sample at continuously-flooding (CF) and of the alternate-wetting-and-

drying field-water treatment (AWD) over 5 rice cropping seasons Summer-Autumn 2015 

(SA-15), Autumn-Winter 2015 (AW-15), Winter-Spring 2016 (WS-16), Summer-Autumn 

2016 (SA-16) and Autumn-Winter 2016 (AW-16). 
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AW-16 has the highest emissions and much higher than the emissions of the same 

season in the previous year AW-15. During the dry season SA-15 and WS-16, the emission 

is lower than during the other seasons.  

Figure 75 shows an example of model outputs for 1 simulation of rice fields for crop 

yield, and heat, water, nitrogen stresses including: 

- grain, leaf and stem, root weight (potential maximum, and actual) 

- water demand and water uptake  

- Nitrogen demand and N uptake 

- temperature demand and actual temperature 

 

Figure 75. Model outputs of DNDC simulation 

The model can be used to estimate crop yield from the grain weight ouputs. However, the 

model is optimized for methane emission, and crop yield module needs to be adapted to the 

rice variety and the specific conditions of the region of interest.  

7.4.3. Simulation of water demand 

The water requirement and uptake by rice crop under different management practices 

are also simulated.  

Figure 76 shows an example of the water balance components, including precipitation, 

irrigation, ground water supply, transpiration, soil evaporation, surface evaporation, 

leaching, run off. 
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Figure 76. Model result of water balance.  

The water received by the system includes the input fluxes from precipitation, 

irrigation and groundwater supply. The water lost from the system includes the output fluxes 

due to transpiration, soil evaporation, surface water evaporation (for flooded soil), leaching 

and runoff. 

The model was run for 2 scenari, CF and AWD, for 3 rice cropping seasons. Table 

15 shows the water demand for the 2 water management scenari: it is clear that water demand 

is higher for Continuous flooding, and in particular the high value of SA 2016 (1936 mm) 

indicates that much water is needed during the drought period of that year. 

Table 15. Water demand under two water management scenari for 2016 rice seasons (triple 

crop). 

Rice season 
 

Water demand (mm) 
CF AWD 

WS-16 1022 953 
SA-16 1936 1210 
AW-16 1407 1100 

This was confirmed by the high values of irrigation water for SA-16 at Can Tho test 

fields measured experimentally, as shown in Figure 77.  
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Figure 77. In situ data of irrigation water for each season in Can Tho experiment site for 

CF and AWD water managements (adapted from Arai et al. 2016). 

In order to have a basis for the trade off discussion, the results from ORYZA 2000 

and DNDC are put together.  

Table 16 shows the simulated results of rice yield, CH4 emission and water demand 

for the fields under CF and AWD for the 3 rice seasons in 2016. For each rice season (WS, 

SA, AW), simulated yield, CH4 and water demand are listed. The question to be addressed 

in this case is to define in which cases to have reduced water demand and CH4 emission, 

without reducing rice productivity. Table 16 indicates that AWD reduces in most cases water 

and CH4, without decreasing the yield significantly. It was also shown that SA-16 (dry 

season) have the highest water demand and the lowest yield. However, to draw conclusions, 

the number of simulations needs to be increased. Nevertheless, this preliminary work shows 

a concept that could be extended regionally, to estimate the regional production, the water 

demand and the CH4 emission.   

Table 16. The simulated results of rice yield, CH4 emission and water demand for the fields 

under CF and AWD for the 3 rice seasons in 2016 

 Yield (ton/ha) CH4 (gC/m² ) Water demand (mm ) 

 CF AWD CF AWD CF AWD 

WS-16 6.58 5.26 68.12 41.46 1022 953 
SA-16 4.85 5.49 83.38 54.65 1936 1210 
AW-16 5.91 5.86 123.97 76.68 1407 1100 

7.5. Discussion and conclusion-way forward 

The approach described in this chapter shows a potential of driving process-based 

models such as DNDC and ORYZA2000 using information derived from Sentinel-1 data 

comprising rice map area (seasonal maps and crop intensity map), sowing date and harvest 
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date, and phenological stage and plant height to estimate rice production and methane 

emission from rice fields, at the regional scale. 

However, further works still need to be done on a larger number of experimental 

fields, accounting for a large variability in rice ecosystems and cultural practices. Sensitivity 

analysis will be further done to identify for a region such as the Mekong Delta, the most 

sensitive input parameters, in order to replace the less sensitive parameters by default values 

(e.g. from literature). 

For regional application the approach still has several limitations, such as: 

(1) Limitation from meteorological data: spatial distribution of meteorological 

stations, incomplete and unavailable in a timely manner, and do not adequately represent the 

diversity over large areas; 

(ii) Soil characteristics which were often available at a large scale, so that the spatial 

heterogeneity of soil properties (e.g., texture, SOC content, pH) cannot be taken into account.  

(iii) More generally, those process-based models require too many input parameters. 

Although many the spatial and temporal varying parameters can be retrieved from remote 

sensing, knowledge of detailed water management, fertilization and culture practices still 

need to be provided. 

(iv) There is a need to exploit the potential of Sentinel-1 to provide rice biomass 

and/or Leaf Area Index (LAI) that can be used to further reset the models. Alternatively, 

Sentinel-2 data need to be assessed for the provision of LAI (in terms of number of Sentinel-

2 images available per rice season, and the accuracy of the retrieved LAI). 

However, the models can be used at present for trade-off study for optimizing the 

cultural practices, determining the best periods for rice season, investigating the impact of 

climate on rice productivity, water demand, and methane emission.   
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8.1. Conclusions 

The overall objective of this thesis was to develop methods for rice monitoring using 

radar remote sensing. With Copernicus Sentinel-1 Synthetic-Aperture Radar data available 

systematically and worldwide, the methods developed have the potential to be used 

effectively in applications.  

In this study, the specific objective is to provide tools for observation of the rice 

cultivation systems, by generating products such as map of rice planted area, map of rice 

start-of-season and phenological stages, and map of the number of rice crops per year, 

together with rice crop parameters such as category of rice varieties (long or short cycle), 

and plant height. The information to be provided is necessary to the estimation of crop 

production, and to the management of rice ecosystems at the regional scale. We also 

investigate on how the products derived from EO Sentinel-1 data can be integrated in 

process-based models for rice production estimation and methane emission estimation. 

The first part of this thesis introduces the importance of rice production and its role 

in global economy, food security, and how the rice production is linked to environment and 

climate changes. This leads to the understanding of the information requirements to be 
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fulfilled by an observing system. In general, information of rice growing areas and rice 

parameters (rice variety, sowing date, phenological stage, plant height, crop intensity, etc) 

are strongly needed as a valuable data base for spatial decision support in farm management, 

cropping optimization, farming system intensification and policy definition in food 

provision management. On the other hand, remote sensing has the potential to provide spatial 

and temporal information related to agro-practices that can be used as direct input parameters 

to the process-based models for rice production estimation, water use and methane emission 

estimation, providing a significant contribution to global environment studies.  

The test region used to develop methods based on Sentinel-1 data for rice monitoring 

is one of the major world rice regions which is the Mekong River Delta, in Vietnam. This 

region presents a diversity in rice cultivation practices, in cropping density, from single to 

triple crop a year, and in crop calendar. The methods to be developed should account for 

such diversity, and at the same time, without relying heavily on the in situ data for methods 

calibration. This requires knowledge-based methods rather than traditional statistical 

methods. 

The first step was to understand the Sentinel-1 backscatter of rice fields, and 

specifically, the temporal variation of the backscatter, at VH and VV polarizations. For this 

purpose, experiment has been set up to collect in-situ data. During 2 years, data collected for 

the 5 rice seasons over 60 sampled fields have been used to interpret the Sentinel-1 

backscatter temporal variation. It was found that backscatter time series of rice fields show 

very specific temporal behavior, as compared to other land use land cover types. In particular 

a simple indicator which is the backscatter maximum temporal increase could already be 

used to detect rice from other LULC classes. The temporal and polarization variations of the 

rice backscatter are interpreted with respect to physical interaction mechanisms to relate the 

backscatter dynamics (increasing, decreasing trends, and maximum and minimum values) 

to the key phenological stages, when the plants change its morphology and biomass. For 

example, the analysis pointed out that the beginning of tillering and the booting-heading 

stages correspond to remarkable characteristics of the backscatter temporal curves 

(respectively minimum and maximum). Because the same trend of temporal curves was 

observed for all the rice seasons in 2, 3 different years, it is possible to derive a mean curve 

to be used in the methodology developed for detecting rice phenology, for deriving 

information such as the date of sowing, the rice varieties of long and short duration cycle, or 

plant height at each SAR acquisition date.  
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The methods of rice mapping and mapping of rice phenology have been developed 

and applied to the Mekong delta. Products validation exercise based on in situ data dedicated 

to validation (1950 independent data points for rice-non rice, and for other parameters, the 

in situ data over 60 fields for one rice season are used for training, the data of 4 other rice 

seasons are used for validation. The accuracy of the rice/non rice map was found reaching 

98%, the sowing dates have a RMSE of about 4 days, the RMSE in plant height is 7.8 cm, 

the long/short variety map has 91.7% accuracy and for phenology, only one season has been 

processed with good detection rate of 59/60. The methodology for rice mapping has also 

been applied at national scale for Vietnam and Cambodia to test the application of the 

methods on the mosaic of Sentinel-1 data acquired at different dates. Despite the lack of 

validation, the results demonstrate that it is possible to use Sentinel-1 data for mapping of 

rice fields at national level, especially with it capability to have short revisit time (6 days at 

present), high resolution (10m) and large coverage (250 km).  

Finally, the uses of the rice monitoring products as inputs in two process-based 

models were assessed. The models are ORYZA2000 for rice production estimation and 

DNDC for methane emission and water demand estimation. Sentinel-1 data retrieved 

information (sowing date, phenology, long/short variety, plant height) are used as model 

inputs, giving good agreement with the results making use of ground survey only. It was 

possible to have an integrated result on rice yield, water use, and methane emissions based 

on the two process models with inputs from Sentinel-1 data. The preliminary results show 

good potential to determine the water management in rice field to reduce water use and GHG 

emission, without reducing much the yield. 

8.2. Perspectives 

To achieve the objective which is the effective use of Sentinel-1 data for rice 

monitoring for food security and global environment, more works need to be done 

concerning a) the consolidation of the rice monitoring method development, b) the 

integration of Sentinel-1 derived information in models aiming at estimating and predicting 

rice production, methane emission and water use, and also further conducting the trade-off 

studies.  

 

 

 



138 
 

❖ To consolidate the remote sensing method development 

Central to the development of the rice monitoring methods based on the Sentinel-1 

time series is the understanding of the temporal variation of the backscatter at C-band as a 

function of crop development, cultural practices, and SAR polarizations and incidence angle. 

For this purpose, experimental data have been collected in this study (60 fields over 5 rice 

cropping seasons in 2 years).  However, to interpret the rice backscatter ‘temporal signature’, 

there is a need to conduct electromagnetic modelling of the SAR signal. This will require a 

detailed description of the rice canopy by measuring geometric and dielectric properties of 

the rice plants and the rice canopy frequently, at least at each Sentinel-1 observation. 

Alternatively, a 3D rice crop growth model, if validated locally, could be used for the 

simulations, through collaboration with specialist team.  

Such models can be useful to simulate the effect of a diversity of crop characteristics 

and conditions, an essential step to the application of the methods worldwide.  

Concerning the retrieval of crop parameters, because of the scarcity of biomass and 

LAI measurements in the data sets under study, only the retrieval of plant height has been 

performed. However, since LAI and biomass are two key parameters for yield estimation 

and methane emission, there is a need to conduct an additional campaign dedicated to the 

retrieval of these parameters. 

In addition to Sentinel-1, Sentinel-2 data could be used for LAI and biomass retrieval, 

in particular during the dry season, when more cloud free Sentinel-2 data are expected to be 

available. 

❖ Integration of Sentinel-1 derived information in processed based models  

The study on integration of Sentinel-1 retrieved information in the process-based 

models for rice production estimation, methane emission and water use estimation needs to 

be pursued. The preliminary work conducted in this study has shown the potential use of 

remote sensing for trade-off  analysis of the impacts of cultural practices, rice varieties, water 

management on the rice yield, GHG emission (CH4 but also N2O, CO2..), and water 

balance. Also the model upscaling to regional scale will have to be investigated, taking into 

account the difficulty to have input data characterizing soil properties and cultural practices 

on a field basis. Alternatively, ORYZA2000 and DNDC models will be used for sensitivity 

and trade-off study, and their regional versions need to be adapted to contain only the most 

sensitive input parameters. 
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The  methods developed need to be assessed and applied to a larger region, for 

example for countries in South East Asia, in order to provide timely information on crop 

planted area, or on anomaly in crop growth, following disasters such as drought or floods 

that occur more often in the recent year.  

In this case, the challenges to be faced are the very large volume of data, the use of 

data platforms and cloud computing needs to be initiated.   
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Conclusion 
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8.1. Conclusions 

L'objectif général de cette thèse était de développer des méthodes pour le suivi du riz 

utilisant la télédétection radar. Avec les données du radar à synthèse d'ouverture Sentinel-1 

de Copernicus disponibles de manière systématique et avec une couverture globale, les 

méthodes développées ont le potentiel pour être utilisées de manière effective dans des 

applications opérationnelles. 

Dans cette étude, l'objectif spécifique est de fournir des outils pour l'observation des 

systèmes de culture du riz, en générant des produits tels que des cartes de surfaces plantées 

en riz, des cartes de la date du début de saison du riz et des stades phénologiques, et des 

cartes du nombre de cultures de riz par an, ainsi que des paramètres culturaux tels que les 

variétés de riz (à cycle long ou court) et la hauteur des plantes. Ces informations sont 

nécessaires pour l'estimation de la production et pour la gestion des écosystèmes rizicoles à 

l'échelle régionale. Nous explorons également de quelle manière les produits dérivés de 

Sentinel-1 peuvent être intégrés dans les modèles basés sur les processus pour l'estimation 

de la production du riz et des émissions de méthane dans les rizières.  

La première partie de cette thèse introduit l'importance de la production du riz et son 

rôle dans l'économie mondiale et la sécurité alimentaire, et décrit comment la production de 

riz est liée à l'environnement et aux changements climatiques. Ceci a conduit à identifier les 

besoins en informations qui devront être couverts dans le cadre d'un système d'observation. 
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D'une manière générale, des informations sur les surfaces cultivées en riz et sur les 

paramètres du riz (variété, date de semis, stade phénologique, hauteur de la plante, nombre 

de cultures par an, etc) ont un rôle capital à jouer comme outils d'aide à la décision pour la 

gestion des fermes, l'optimisation des cultures, l'intensification des systèmes agricoles et la 

définition de politiques de gestion de fourniture de nourriture. La télédétection a le potentiel 

pour fournir des informations spatiales et temporelles liées aux pratiques agricoles qui 

peuvent être utilisées comme paramètres d'entrée directs dans les modèles d'estimation de 

production du riz basés sur des processus, et dans les modèles d'estimation d'utilisation de 

l'eau et d'émissions de méthane, fournissant ainsi une contribution importante aux études 

environnementales mondiales. 

La région test utilisée pour développer les méthodes basées sur les données Sentinel-

1 pour le suivi du riz est une des principales régions rizicoles dans le monde, à savoir le 

Delta du Mékong au Vietnam. Cette région présente une diversité de pratiques culturales, de 

nombre de cultures par an (de une à trois), et de calendrier cultural. Les méthodes à 

développer doivent tenir compte de cette diversité, sans pour autant se reposer trop 

lourdement sur les données in situ pour l'étalonnage des méthodes. Ceci nécessite des 

méthodes basées sur l'expertise plutôt que des méthodes statistiques traditionnelles. 

La première étape a consisté à comprendre la rétrodiffusion des rizières telle que 

mesurée par Sentinel-1, et plus spécifiquement, la variation temporelle de cette 

rétrodiffusion, aux polarisations VH et VV. Pour cela, des campagnes de collectes de 

données in situ ont été mises en place. Pendant 2 ans, les données collectés pour 5 saisons 

de riz sur 60 champs ont été utilisées pour interpréter la variation temporelle de la 

rétrodiffusion de Sentinel-1. L'analyse de ces données a révélé que les séries temporelles de 

rétrodiffusion des champs de riz ont un comportement temporel très spécifique comparé aux 

autres classes de couverture et d'occupation du sol. En particulier, un simple indicateur tel 

que le maximum d'augmentation temporelle suffit à distinguer le riz des autres classes. Les 

variations temporelles et de polarisation de la rétrodiffusion des rizières sont interprétées en 

termes de mécanismes d'interaction physiques afin de relier la dynamique de la 

rétrodiffusion (augmentation, tendances décroissantes, et valeurs maximales et minimales) 

aux stades phénologiques clés, correspondant à des changements dans la morphologie et la 

biomasse des plantes. Par exemple, les analyses ont mis en avant le fait que le début du 

tallage et le stade de montaison/épiaison correspondent à des caractéristiques remarquables 

des courbes temporelles de rétrodiffusion (le minimum et le maximum, respectivement). 

Grâce au fait que la même tendance temporelle est observée à toutes les saisons de riz 
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observées sur 2 années différentes, il est possible d'extraire une courbe moyenne qui sera 

utilisée dans la méthodologie développée pour la détection de la phénologie du riz, afin 

d'estimer par exemple la date de semis, et pour déterminer la variété de riz (cycle de culture 

long ou court), ou la hauteur des plantes à chaque acquisition RSO. 

La méthode de cartographie du riz et de cartographie de la phénologie a été 

développée et appliquée au Delta du Mékong. Un exercice de validation des produits à partir 

de données in situ dédiées à la validation (1950 points de données indépendants pour le 

riz/non-riz, et pour les autres paramètres, les données in situ de 60 champs sur une saison 

sont dédiés à l'apprentissage et les 4 autres saisons sont utilisées pour la validation). La 

précision de la carte riz/non-riz atteint 98%, la date de semis présente une erreur quadratique 

(RMSE) d'environ 4 jours, et la hauteur de plante une RMSE de 7,8cm, la classification de 

variété (cycle long/cours) a une précision de 91,7% et pour la phénologie, une seule saison 

a été traitée, avec un taux de bonne estimation de 59/60. La méthodologie de cartographie 

du riz a également été appliquée à l'échelle nationale au Vietnam et au Cambodge pour tester 

l'application des méthodes sur des mosaïques de données Sentinel-1 acquises à des dates 

différentes. En dépit du manque de validation, les résultats démontrent qu'il est possible 

d'utiliser Sentinel-1 pour la cartographie des rizières à l'échelle nationale, particulièrement 

grâce à sa capacité à avoir une courte période de revisite (6 jours actuellement), une 

résolution fine (10m), et une large fauchée (250km). 

Enfin, l'utilisation des produits de suivi du riz comme entrées dans deux modèles 

basés sur des processus a été évaluée. Les modèles sont ORYZA2000 pour l'estimation de 

la production du riz et DNDC pour l'estimation des émissions de méthane et de la demande 

en eau. Les informations extraites des données Sentinel-1 (date de semis, phénologie, variété 

de cycle long/court, hauteur de la plante) sont utilisées comme entrées dans les modèles et 

fournissent des résultats qui concordent avec ceux issus de la seule utilisation de données de 

terrain. Des résultats intégrés ont pu être obtenus sur le rendement du riz, l'utilisation de l'eau 

et les émissions de méthane à partir de ces deux modèles et des données d'entrée issues de 

Sentinel-1. Les résultats préliminaires montrent un bon potentiel pour déterminer la gestion 

de l'eau dans les rizières afin de réduire l'utilisation d'eau et les émissions de gaz à effet de 

serre tout en préservant le rendement. 
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8.2. Perspectives 

Pour atteindre l'objectif d'utilisation effective des données Sentinel-1 dans le suivi du 

riz pour la sécurité alimentaire et l'environnement, des travaux supplémentaires doivent être 

menés, qui concernent a) la consolidation des méthodes de suivi du riz, b) l'intégration des 

informations issues de Sentinel-1 dans les modèles d'estimation et de prédiction de la 

production de riz, des émissions de méthane et de l'utilisation de l'eau. 

❖ Consolider les méthodes basées sur la télédétection 

La compréhension des variations temporelles de la rétrodiffusion en bande C en 

fonction du développement des plantes, des pratiques culturales, et des paramètres RSO 

(polarisation, angle d'incidence) est capitale pour développer des méthodes de suivi du riz 

basées sur les séries temporelles de Sentinel-1. Pour cela, des données expérimentales ont 

été collectées lors de cette étude (60 champs sur 5 saisons réparties sur 2 ans). Cependant, 

l'interprétation de la "signature temporelle" de la rétrodiffusion du riz nécessite des travaux 

de modélisation électromagnétique du signal RSO. Cela implique une description détaillée 

du couvert de riz basée sur des mesures des propriétés géométriques et diélectriques des 

plantes de riz et du couvert de riz, et ce de manière fréquente (au moins à chaque acquisition 

Sentinel-1). Sinon, un modèle tridimensionnel de croissance du riz, à condition d'être validé 

localement, pourrait être utilisé pour les simulations, via une collaboration avec une équipe 

spécialisée. 

De tels modèles sont utiles pour simuler l'effet d'un grand nombre de caractéristiques 

et de conditions culturales, une étape essentielle à la généralisation des méthodes à l'échelle 

mondiale. 

En ce qui concerne l'estimation des paramètres culturaux, le faible nombre de 

mesures de biomasse et de surface foliaire (LAI) dans les jeux de données disponibles n'ont 

permis d'obtenir des résultats que sur l'estimation de la hauteur des plantes. Cependant, le 

LAI et la biomasse étant deux paramètres clés pour l'estimation du rendement et des 

émissions de méthane, il est nécessaire de mener de nouvelles campagnes dédiées à 

l'estimation de ces paramètres. 

En plus de Sentinel-1, les données Sentinel-2 pourraient être utilisées pour 

l'estimation du LAI et de la biomasse, en particulier pendant la saison sèche, lorsque les 

données Sentinel-2 sans nuage sont plus susceptibles d'être disponibles. 
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❖ Intégration des information issues de Sentinel-1 dans les modèles basés sur des 

processus 

L'étude de l'intégration des informations issues de Sentinel-1 dans les modèles basés 

sur des processus pour l'estimation de la production de riz, des émissions de méthane et de 

l'utilisation en eau doit être poursuivie. Le travail préliminaire mené dans cette étude a 

montré l'utilisation potentielle de la télédétection pour l'analyse des compromis liés aux 

impacts des pratiques culturales, des variétés de riz et de la gestion de l'eau sur le rendement 

du riz et les émissions de gaz à effet de serre (CH4 mais aussi N20, CO2...). Le passage à 

l'échelle régionale devra être exploré, en prenant en compte la difficulté d'obtenir des 

données d'entrée caractérisant les propriétés du sol et les pratiques culturales à l'échelle du 

champ. Sinon, ORYZA2000 et DNDC pourront être utilisés pour des études de sensibilité 

et de compromis, et leurs versions régionales devront être adaptées pour contenir seulement 

les paramètres d'entrée les plus sensibles. 

Les méthodes développées doivent être évaluées et appliquées à des régions plus 

larges, par exemple sur des pays entiers d'Asie du Sud-Est, afin de fournir des informations 

sur les surfaces plantées, ou sur les anomalies de croissance des cultures suite à des 

catastrophes naturelles comme les sécheresses ou les inondations, qui deviennent de plus en 

plus fréquentes. 

Les défis à affronter seront alors le très grand volume de données et l'utilisation de 

plateformes de données et de cloud-computing. 
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