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Abstract
This thesis explores two territories of computer science: complexity and compression.
More precisely, in a �rst part, we investigate the power of non-commutative arithmetic
circuits, which compute multivariate non-commutative polynomials. For that, we in-
troduce various models of computation that are restricted in the way they are allowed
to compute monomials. These models generalize previous ones that have been widely
studied, such as algebraic branching programs. The results are of three di�erent types.
First, we give strong lower bounds on the number of arithmetic operations needed to
compute some polynomials such as the determinant or the permanent. Second, we design
some deterministic polynomial-time algorithm to solve the white-box polynomial identity
testing problem. Third, we exhibit a link between automata theory and non-commutative
arithmetic circuits that allows us to derive some old and new tight lower bounds for some
classes of non-commutative circuits, using a measure based on the rank of a so-called
Hankel matrix. A second part is concerned with the analysis of the data compression
algorithm called Lempel-Ziv. Although this algorithm is widely used in practice, we know
little about its stability. Our main result is to show that an in�nite word compressible
by LZ’78 can become incompressible by adding a single bit in front of it, thus closing a
question proposed by Jack Lutz in the late 90s under the name “one-bit catastrophe”. We
also give tight bounds on the maximal possible variation between the compression ratio
of a �nite word and its perturbation—when one bit is added in front of it.

Keywords: algebraic complexity, lower bounds, polynomial identity testing, arithmetic
circuits, Lempel-Ziv, compression.
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Résumé
Cette thèse explore deux territoires distincts de l’informatique fondamentale : la com-
plexité et la compression. Plus précisément, dans une première partie, nous étudions
la puissance des circuits arithmétiques non commutatifs, qui calculent des polynômes
non commutatifs en plusieurs indéterminées. Pour cela, nous introduisons plusieurs
modèles de calcul, restreints dans leur manière de calculer les monômes. Ces modèles
en généralisent d’autres, plus anciens et largement étudiés, comme les programmes à
branchements. Les résultats sont de trois sortes. Premièrement, nous donnons des bornes
inférieures sur le nombre d’opérations arithmétiques nécessaires au calcul de certains
polynômes tels que le déterminant ou encore le permanent. Deuxièment, nous concevons
des algorithmes déterministes fonctionnant en temps polynomial pour résoudre le prob-
lème du test d’identité polynomiale. En�n, nous construisons un pont entre la théorie des
automates et les circuits arithmétiques non commutatifs, ce qui nous permet de dériver
de nouvelles bornes inférieures en utilisant une mesure reposant sur le rang de la matrice
dite de Hankel, provenant de la théorie des automates. Une deuxième partie concerne
l’analyse de l’algorithme de compression sans perte Lempel-Ziv. Pourtant très utilisé, sa
stabilité est encore mal établie. Vers la �n des années 90s, Jack Lutz popularise la question
suivante, connue sous le nom de « one-bit catastrophe » : « étant donné un mot compress-
ible, est-il possible de le rendre incompressible en ne changeant qu’un seul bit ? ». Nous
montrons qu’une telle catastrophe est en e�et possible. Plus précisément, en donnant
des bornes optimales sur la variation de la taille de la compression, nous montrons qu’un
mot « très compressible » restera toujours compressible après modi�cation d’un bit, mais
que certains mots « peu compressibles » deviennent en e�et incompressibles.

Mot-clés : complexité algébrique, bornes inférieures, test d’identité polynomiale, circuits
arithmétiques, Lempel-Ziv, compression.
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Prelude

« Par ma foi ! il y a plus de quarante
ans que je dis de la prose sans que
j’en susse rien, et je vous suis le plus
obligé du monde de m’avoir appris
cela. »

Molière. Le Bourgeois gentilhomme.

Just as Monsieur Jourdain was surprised and delighted to learn that he had
been using prose for years without knowing it, most of us are not conscious that
we are instinctively practising computer science on a daily basis. Whenever you
wonder if that very hard climbing route could even be physically feasible by a
mere human being, you are trying to solve what is called a computability problem.
You—a model of computation—try to solve a given task—climbing the route. After
a proof that it is indeed the case—you, or a more experienced friend, �nally
climbed it!—, you might wonder if the huge number of moves you made were
really necessary and try to decrease this number to be as close to the minimum
theoretically attainable as possible, in order to save your energy next time. At
that point, you changed the point of view from computability to algorithmics and
complexity. Ultimately, you get an e�cient way of climbing this route, and it is
now the right time to explain your solution to someone else. If the sequence of
moves you did was the following2:

• move right hand, move left foot, move left hand, move right foot, move right
hand, move left foot, move left hand, move right foot, move right hand, move
left foot, move left hand, move right foot, move right hand, move left foot,
move left hand, move right foot, move right hand, move left foot, move left
hand, move right foot, move right hand, move left foot, move left hand, move
right foot, move right hand, move left foot, move left hand, move right foot,
move right hand, move left foot, move left hand, move right foot, move right
hand, move left foot, move left hand, move right foot,

2Don’t ask me what kind of crazy route it can be.
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then you would probably say “it consists of a sequence of “move right hand, move
left foot, move left hand, move right foot” repeated 9 times”, without enumerating—
or so I hope, for your friend—the whole sequence move by move. Congratulation,
this time, you just made what is called a compression: you described your action
with a clever and compact method.

This short and rather informal story introduced the two main territories
studied in this thesis: complexity and compression.

In the �rst part of this manuscript, we focus on complexity questions in a
domain called arithmetic complexity, while in the second part we concentrate
on compression questions with the study of a particular and well-used data
compression method called Lempel-Ziv.

Part one: Non-commutative Arithmetic Circuits

The aim of complexity theory is to understand what are the problems we can solve
with a limited amount of resources. These ressources are quite often time and
space, as they are the most natural ones when dealing with computers. But these
notions are not immutable and can be exempli�ed in various ways depending on
the model of computation and the measure that is suitable for what is wanted.
Two examples among others: by “time”, we can denote the number of steps of a
Turing machine, but we can also denote the depth of a boolean circuit.

Arithmetic complexity is the algebraic analogue of boolean complexity with
an algebraic �avor. Boolean functions are replaced by multivariate polynomials,
which are the core objects of the theory. The way we compute them is through
a model called arithmetic circuits, the de�nition of which is similar to that of
boolean circuits and is stated later in this manuscript. The motivation for this
is twofold: �rst, the study of polynomial computations arises in many places in
computer science and naturally leads to such questions, and second, by moving
to a more structured world than boolean functions, it might be possible to use
tools from mathematics like linear algebra, algebraic geometry, etc., to tackle the
problem of �nding good lower bounds, a problem known to be hard.

The contribution of this thesis to arithmetic complexity lies in the non-commutative
setting, a world where variables do not commute. In this setting, we explore
circuits that are restricted in the way they are allowed to compute monomials (a
more precise de�nition will be stated later in the manuscript, with the notion of
parse trees). The results are of three di�erent types:

• We give lower bounds for various models of non-commutative computations,
that is, we show that some polynomials require a large number of arithmetic
operations to be computed:

– for circuits with a unique parse tree (“UPT circuits”) through a measure
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that characterises exactly their complexity. This extends a work by
Nisan [38] for algebraic branching programs.

– for circuits that allow up to an exponential number of parse trees (“rot-
PT circuits” and “k-PT circuits”). The aim of this is to get lower bounds
for models of computation that are closer to general non-commutative
circuits.

– for homogeneous formulas that allow slightly less parse trees than the
maximum possible (that is, that allow up to 2o(d) parse trees, where
d corresponds to the degree of the polynomial) computing IMMn,d—
a polynomial that corresponds to matrix multiplication and that is
complete for the important model of computation called arithmetic
branching programs. This makes some progress towards a separa-
tion between non-commutative formulas and algebraic branching
programs, a famous open problem in the non-commutative setting.

• We provide deterministic polynomial time algorithms to solve the important
white-box polynomial identity testing problem for some classes of circuits;
that is, we design algorithms to decide e�ciently whether a circuit within
a given class computes the formal zero polynomial:

– for UPT circuits, through two adapations and extensions of previ-
ous algorithms for algebraic branching programs, due to Raz and
Shpilka [42] and Arvind, Joglekar and Srinivasan [4].

– for constant sum of UPT circuits. This generalises a similar result
that was obtained for sum of read once algebraic branching programs
(ROABPs) by Gurjar, Korwar, Saxena and Thierauf [15].

• We construct a bridge between automata theory and arithmetic circuits.
More precisely, we show that non-commutative algebraic branching pro-
grams are equivalent to acyclic weighted automata over words, and that non-
commutative unique parse tree circuits are equivalent to layered weighted
automata over trees. Subsequently, this correspondence—together with the
use of fundamental theorems from automata theory—allow us to derive
some old and new tight lower bounds for some classes of non-commutative
arithmetic circuits.

Figures 1 and 2 (roughly) represent what was known before and what is known
now in the restricted context of this thesis.
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Part two: Lempel-Ziv, a “One-bit catastrophe” but not a tragedy

Data compression is the art of �nding a concise bit description of the information
in order to save storage resources or to reduce the use of the network band-
width for example. All the methods are not equivalent, some are without loss of
information—lossless—, as for the text, others slightly deteriorate the quality—
lossy— as for musics or videos for example, in exchange for a better compression
ratio.

Lempel-Ziv algorithms are among the most popular compression algorithms.
They refer to a series of lossless techniques—all based on a notion of dictionary
which is constructed during the compression process—that can work on any �le
format. Introduced by Abraham Lempel and Jacob Ziv in 1977 and 1978, starting
with two methods called LZ’77 and LZ’78, they are widely used in practice as
key ingredients in various places such as de�ate, gif, gzip, etc, but were also the
starting point of a long line of theoretical research—some references of which can
be found in Chapter 7. Yet, their behavior and robustness are still not well under-
stood. While it is reasonable to expect a certain stability from a data compression
algorithm against small perturbation on the input, Jack Lutz, in the late ’90s, asked
the following: “When using LZ’78, is it possible to change the compression ratio
of an in�nite word by adding a single bit in front of it?”. This question, known as
“one-bit catastrophe” question was still unanswered.

The main contribution of this thesis to compression is to give a positive answer
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to this question. But before proving that, we investigate the behavior of LZ’78 on
�nite words and get the following:

• We give an upper bound on the maximal variation possible between the
compression ratio of a �nite word and its variant—when one bit is added in
front of it.

• We give constructions that show that the previous upper bound is tight up
to a multiplicative constant.

A catastrophe for in�nite word—that is, a compressible word that becomes in-
compressible after we add one bit in front of it—is then derived from the results
on �nite words.
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Part I

Non-commutative Arithmetic
Circuits

1





Overview

This part is dedicated to lower bounds for non-commutative arithmetic circuits.

• In Chapter 1, we introduce the standard de�nitions related to arithmetic
circuits that will be used throughout the entire part.

• Chapter 2 is a complete study of circuits with a unique parse tree (“UPT
circuits”).

• Chapter 3 shows lower bounds for circuits with up to an exponential number
of parse trees (“rot-PT circuits” and “k-PT circuits”).

• Chapter 4 makes progress towards a separation between formulas and alge-
braic branching programs in the non-commutative setting. More precisely,
using similar ideas to that of Chapter 3, we show some lower bounds for
formulas—with a restricted number of parse trees—computing the iterated
matrix multiplication polynomial.

• Chapter 5 is devoted to deterministic and polynomial time algorithms for
PIT—for UPT circuits, as well as for constant sum of UPT circuits—a decision
problem closely related to lower bounds.

• Chapter 6 makes a bridge between some non-commutative classes of circuits
and weighted automata. This bridge gives a way to derive or improve
already known results in non-commutative lower bounds as consequences
of theorems from automata theory based on Hankel matrices.

3
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Chapter 1

Preliminaries

« O tôt matin du commencement !
O sou�e du vent, qui vient
Des rives nouvelles ! »

Bertolt Brecht. La vie de Galilée.

1.1 Arithmetic complexity
Arithmetic circuits

The most natural strategy to compute a target polynomial is to use the operations
from the algebra F[X], that is + and ×, together with the use of the constants
from the �eld F. This strategy is exactly captured by arithmetic circuits. More
formally:

De�nition 1.1: Arithmetic circuit

An arithmetic circuit is an acyclic directed graph where gates of in-degree
greater than zero are labeled by + or × and gates of in-degree zero, called
the inputs of the circuit, are labeled by either a variable or a constant coming
from F. Each gate Φ represents in the natural way a formal polynomial that
is denoted by PΦ. The unique gate of out-degree zero is called the output of
the circuit and we say that the polynomial computed (or represented) by the
circuit is the polynomial computed at this gate; for a particular circuit C ,
this polynomial is denoted by PC .

The size of an arithmetic circuits is de�ned as the number of wires. Sometimes,
it will be more convenient to consider instead the number of nodes; in this case,

5
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Figure 1.1: Example of an arithmetic circuit of depth 5. The blue gates are the
inputs. The red gate is the output. The number of nodes is 12. The number of
edges is 17.

we will explicitly mention that the measure we take is the number of nodes.
Observe that the two measures are equivalent up to a constant factor as long as
the gates are of bounded fan-in. The depth of a circuit is the size of the longest
path from the output to an input: this can be seen as a measure of how well you
can parallelize the computation of the polynomial represented by your circuit.

What are we looking for?

The questions are mainly of two kinds:

• Polynomials’ point of view “Given a polynomial f , is there a circuit
that computes f with some properties on the circuit?” In particular, the
lower bound question falls in this category: �nd explicit1 polynomials
that require large circuits to be computed (i.e., the number of arithmetic
operations needed to compute this polynomial is large). Large meaning
most often superpolynomial in the number of variables and the degree of
the polynomial. This is the quest of looking for intractable polynomials.

• Circuits’ point of view Circuits can be used as a compact representation
for polynomials since an arithmetic circuit C can compute a polynomial
that has an exponential number of non-zero monomials in the size of
C . See Figure 1.2 for an example. A natural question is: how to handle

1explicit meaning in general that coe�cients are computable by a reasonable algorithm (in P
for example)
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them e�ciently; in others words: “Given a circuit C , does the polynomial
computed by C satisfy a particular property?” Eg: Is the degree of the
polynomial greater than 42? Is the polynomial divisible by x7 − y, or
by another polynomial also given by an arithmetic circuit? Of course,
to answer this kind of questions, you can always develop explicitly the
polynomial computed by the circuit but this would not yield an e�cient
algorithm since polynomial-sized circuits can represent polynomials with
an exponential number of non-zero monomials, as the previous example
shows. The most representative question that falls within this category is
the famous polynomial identity testing problem (PIT): given a circuit
C , decide if the polynomial computed by C is formally zero. PIT will be
considered in more detail in Chapter 5

x1 1 x2 1 · · · xn 1

+ + +

×

Figure 1.2: Arithmetic circuit of size 3n that computes
∏n

i=1(xi + 1), which is a
polynomial with 2n non-zero monomials.

But reality is cruel. Although the ultimate goal for the �rst kind of questions
is to �nd explicit polynomials for which we can prove superpolynomial lower
bounds against general circuits, the best up to now is the following theorem:

Theorem 1.2: Baur and Strassen, 1983

For all n, d ∈ N,
∑n

i=1 x
d
i requires circuits of size Ω(n log d) to be computed.

The situation is not better for PIT, for which there is a polynomial time
randomized algorithm that follows from the Schwartz-Zippel lemma but no
subexponential time deterministic algorithm is known for general circuits.

In fact, these two questions (lower bounds and PIT) are strongly related; solv-
ing PIT is similar to killing two birds with one stone. Indeed, in 2003, Kabanets
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and Impagliazzo [19] proved a beautiful result showing—more or less—that “De-
randomizing polynomial identity tests means proving circuit lower bounds”. More
precisely, a deterministic polynomial-time algorithm to solve PIT implies either a
superpolynomial lower bound on the size of arithmetic circuits computing the
permanenent or NEXP 6⊂ P/poly. A pessimistic way to interpret this theorem is
that this is also a hint that partially explains why PIT seems very hard to solve in
P and out of reach so far: “because lower bounds are”.

Restrictions

Although lower bounds for general circuits seem out of reach so far, by making
some natural restrictions on the circuits, we sometimes obtain stronger lower
bounds—even exponential ones. These restrictions are useful to better understand
the computation of polynomials by capturing some models of computation that
are more suitable for a particular situation. For example, in [18], it is proved
that every monotone circuits (that is, arithmetic circuits that use only positive
elements from an ordered �eld, such as R) computing the permanent of an n× n
matrix has size 2Ω(n).

The more the circuits are constrained, the easier it is to provide lower bounds
and design good algorithms for PIT. We give below some of the restrictions that
will be used in this manuscript, but notice that there are quite a lot of others such
as multilinear circuits, syntactically multilinear circuits, monotone circuits, . . .

• Formulas Circuits where the underlying graph is a tree. Equivalently, a
formula is a circuit where the fan-out of each gate is at most 1. Intuitively,
this corresponds to polynomial computations where a computation step
can be used at most one.

• Skew circuits Circuits where the × gates have at most one non input
child.

• ΣΠΣ circuits Circuits of depth three, starting with a layer of + gates, then
a layer of × gates, and a �nal + gate.

• Constant depth circuits Circuits where the length of any path from the
output to an input is bounded by a constant.

Interesting polynomials

Some polynomials receive more attention than others; a �rst reason that explains
this phenomenon is the fact that a polynomial can capture completely the “com-
plexity” of an arithmetic class of polynomials/circuits; a second one is due to
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the important consequences that would follow from a large enough lower bound
proof for them. Below is the presentation of three famous polynomials; we will
see some others later in the manuscript.

• Determinant and Permanent

For X = {x1,1, x1,2, . . . , x1,n, . . . , xn,1, . . . , xn,n} a set of n2 variables, we
de�ne the determinant and the permanent as

DETn(X) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

xi,σ(i)

and

PERMn(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i)

where the sums are over all permutations σ of the set {1, 2, . . . , n} and
sgn(σ) stands for the signature of the permutation σ. Although the two
de�nitions are very close, the permanent has much fewer properties than
the determinant. The determinant has a beautiful geometric interpretation
in terms of volumes, but the permnanent seems to have only a combinato-
rial �avor. It is believed that the permanent is not computable by circuits
of polynomial size, whereas it is well known that the determinant is com-
putable by small circuits, for example by using the Gaussian elimination
algorithm and deleting the divisions that appear in the process.
In fact, proving the two polynomials are of distinct complexity can roughly
be seen as an algebraic variant of the famous P = NP? question, namely
VP = VNP?2

• Iterated Matrix Multiplication

Assume thatN = n2 ·d for positive n, d ∈ N and let IMMn,d(X) denote the
following polynomial (called the Iterated Matrix Multiplication polynomial
of parameters n and d) in N variables. Assume X is partitioned into d
sets of variables X1, . . . , Xd of size n2 each and let M1, . . . ,Md be n × n
matrices such that the entries of Mi (i ∈ [d]) are distinct variables in Xi.
Let M = M1 ·M2 · · ·Md be the multiplication of the d matrices; each entry
of M is a homogeneous polynomial of degree d from F[X]. We de�ne the
polynomial IMMn,d to be the sum of the diagonal entries of M 3.

2In fact, the VP versus VNP question is closer to the LOGCFL versus #P question.
3This is not exactly the standard de�nition of IMMn,d which is in general, de�ned as the

polynomial in the �rst row and column of the matrix M1 ·M2 · · ·Md. However, taking the trace
of the matrix gives a more symetric de�nition and help in writing cleaner statements.
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As we shall see later, this important polynomial is completely captured by
the model of computation called Algebraic Branching Programs (ABPs in
short).

Example 1.3

For n = 2, d = 3 and sets Xi = {xi1,1, . . . , xi2,2}

IMM2,3(X1, X2, X3) = Tr

([
x1

1,1 x1
1,2

x1
2,1 x1

2,2

]
×
[
x2

1,1 x2
1,2

x2
2,1 x2

2,2

]
×
[
x3

1,1 x3
1,2

x3
2,1 x3

2,2

])

= Tr




2∑
i1=1

2∑
i2=1

x1
1,i1
x2
i1,i2

x3
i2,1

?

?
2∑

i1=1

2∑
i2=1

x1
2,i1
x2
i1,i2

x3
i2,2




=
2∑

i1=1

2∑
i2=1

x1
1,i1
x2
i1,i2

x3
i2,1

+
2∑

i1=1

2∑
i2=1

x1
2,i1
x2
i1,i2

x3
i2,2

1.2 Non-commutative setting

From now on, we work over the non-commutative setting, in which x1x2 and
x2x1 are two distinct monomials. The motivation for this is twofold: �rst, the
study of polynomial computations over non-commutative algebras (e.g. when
the polynomials are evaluated over the algebra of k × k matrices over F; or
over any non-commutative �eld such as the quaternions) naturally leads to such
questions [10, 9], and second, computing any polynomial non-commutatively is
at least as hard as computing it in the commutative setting and thus, the lower
bound question should be easier to tackle in this setting.

1.2.1 Non-commutative polynomials

We use X = {x1, . . . , xn} to denote the set of variables. Unless explicitly stated,
we work over the algebra of non-commutative polynomials (also known as free
algebra), written (F〈X〉,+,×, .) – or just F〈X〉 in short.

• F is a commutative �eld.
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• (F〈X〉,+, .) is the vector space of formal and �nite linear combinations
of strings (called monomials) over the alphabet X . Observe that x1x2 and
x2x1 are two distinct monomials.

• × is a bilinear product de�ned for two monomials m1 and m2 as their con-
catenation m1m2. It is then extended bilinearly to any pairs of polynomials
from F〈X〉.

The set of monomials over the alphabet X is writtenM(X). Given a polynomial
f and m a monomial, we say that m is a non-zero monomial if the coe�cent
associated to m in f is non-zero. Most often, αm will denote the coe�cient
associated to the monomial m.

Degree and related de�nitions

The degree of a monomial m, written deg(m), is the length of the corresponding
string. By extension, the degree of a polynomial f ∈ F〈X〉, written deg(f), is the
maximal degree of a non-zero monomial of f . For d ∈ N,Md(X) will denote the
set of monomials of degree exactly d.

A polynomial is said to be homogeneous if all the non-zero monomials are of
same degree. The homogeneous component of degree i of a polynomial f , written
f [i], is the sum of all monomials of degree i appearing in f .

Example 1.4

M({x}) = {xi,∀i ∈ N}
M3({x, y}) = {x3, x2y, xy2, y3, y2x, yx2, xyx, yxy}
f = x1x2x

3
3 + x2

1 + x4
1 + x2x3 is a non homogeneous polynomial of degree

5 with four non-zero monomials. Its homogeneous component of degree 2
is f [2] = x2

1 + x2x3.
g = x1x2x3 + x3

1 is a homogeneous polynomial of degree 3.

j-product

The following notion will be useful to decompose and factor polynomials.

De�nition 1.5: j-product of two polynomials

Given homogeneous polynomials g, h ∈ F〈X〉 of degrees dg and dh respec-
tively and an integer j ∈ [0, dh], we de�ne the j-product of g and h— denoted
g ×j h — as follows:
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h1 g h2

j dg dh − j

Figure 1.3: j-product of two monomials g and h.

• If g and h are two monomials, then h is uniquely factorised as a product
of two monomials h1 · h2, with deg(h1) = j and deg(h2) = dh − j. In
this case we de�ne g ×j h to be h1 · g · h2.

• The map is extended bilinearly to general homogeneous polynomials
g, h. Formally, let g, h be general homogeneous polynomials, where
g =

∑
` g`, h =

∑
i hi and g`, hi are monomials of g, h respectively.

For j ∈ [0, dh], each hi can be factored uniquely into h1
i , h

2
i such that

deg(h1
i ) = j and deg(h2

i ) = dh − j. And g ×j h is de�ned to be∑
i

∑
` h

1
i g`h

2
i =

∑
i h

1
i gh

2
i .

Observe that g ×0 h = g · h and g ×dh h = h · g.

Example 1.6

If g = x1x
2
2 and h = x3x1x2, then:

g ×2 h = x3x
2
1x

3
2

If g = x1x2x3 + x2
2x1 and h = x3x2 + x2

2, then:

g ×1 h = x1x2x3 ×1 x3x2 + x1x2x3 ×1 x
2
2 + x2

2x1 ×1 x3x2 + x2
2x1 ×1 x

2
2

= x3x1x2x3x2 + x2x1x2x3x2 + x3x
2
2x1x2 + x3

2x1x2

1.2.2 Non-commutative circuits
In order to capture non-commutativity, we need to slightly change our model
of computation. A non-commutative arithmetic circuit is an arithmetic circuit
where the children of any multiplication gate have been ordered. In this way, a
non-commutative arithmetic circuit represents a non-commutative polynomial:
the polynomial computed by a× gate is the product of the polynomials computed
by its children, where the product is taken in the given order.

Further, unless mentioned otherwise, we allow both + and × gates to have
unbounded fan-in and + gates to compute arbitrary linear combinations of their
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inputs (the input wires to the + gate are labelled by the coe�cients of the linear
combination). The size of a circuit will be the number of edges. We always assume
that the output gate is a + gate and that the input gates feed into + gates. We
also assume that + and × gates alternate on any path from the output gate to an
input gate. The reason for this is that any circuit can be converted to one of this
form with at most a constant-factor blow-up in size and depth; however, it will
be more convenient to work with circuits of this form.

Homogeneity

Most often, our circuits and formulas will be homogeneous in the following sense.
De�ne the formal degree of a gate in the circuit as follows: the formal degree of
an input gate is 1, the formal degree of a + gate is the maximum of the formal
degrees of its children, and the formal degree of a × gate is the sum of the
formal degrees of its children. We say that a circuit is homogeneous if each
gate computes a homogeneous polynomial and any gate computing a non-zero
polynomial computes one of degree equal to the formal degree of the gate. Note,
in particular, that every input node is labelled by a variable only (and not by
constants from F).

Homogeneity is not a strong assumption on the circuit thanks to the following
well known lemma (stated here for multiplication fan-in 2, but any circuit can be
converted to have this additional property with a small blow-up in size and by
possibly increasing logarithmically the depth).

Lemma 1.7: Homogenization

Any homogeneous polynomial of degree d computed by a non-commutative
circuitC of size swith× fan-in 2 can be computed by a homogeneous circuit
of size O(s.d2).

Proof. We construct a homogeneous circuit C ′ for f as follows.

• The gates of C ′ are denoted by pairs of the form (Φ, i). For each gate
Φ ∈ C and for each i ∈ [0, d], we add a gate (Φ, i) to the circuit C ′. We
then add edges and additional gates in such a way that P(Φ,i) will be the
homogeneous component of degree i of the polynomial computed by Φ in
the circuit C , namely P [i]

Φ . If Γ is the output gate of C , then (Γ, d) is the
output gate of C ′.

• Edges:
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– If Φ ∈ C is an addition gate with children Ψ1, . . . ,Ψt, then for each i,
(Φ, i) is an addition gate with children (Ψ1, i), . . . , (Ψt, i).

– If Φ ∈ C is a multiplication gate with children Ψ1,Ψ2 (in this order),
then P [i]

Φ =
∑

j≤i P(Ψ,j) × P(Ψ,i−j). Therefore, we set (Φ, i) to be an
addition gate. We then add i + 1 multiplication gates to the circuit,
each corresponding to one of the i+ 1 products P(Ψ,j) × P(Ψ,i−j), and
we add these gates as children of (Φ, i).

By induction, it is easy to see that C ′ computes f and is of size O(s.d2).

1.3 Parse trees restriction
If we pretend the multiplication to be non associative, a non-commutative mono-
mial can be computed in di�erent ways that depend on how the parentheses are
set. For example, if we restrict the fan-in to be 2, the monomial x1x2x3x4 can be
basically computed by �ve di�erent non-commutative circuits, one for each of
the following possible setting of the parentheses:

• (x1 · x2) · (x3 · x4)

• (x1 · (x2 · x3)) · x4

• x1 · ((x2 · x3) · x4)

• ((x1 · x2) · x3) · x4

• x1 · (x2 · (x3 · x4))

see Figure 1.4. Often, the circuits we consider will be restricted in the ways
they are allowed to compute monomials. The reason for this is a decomposition
lemma of the polynomials according to monomials computation, see Lemma 1.8;
although quite trivial, this decomposition is at the core of many others, more
complex ones, that will arise in this thesis.

To make this precise we need the notion of a “parse tree” of a circuit, which
has been considered in many previous works [18, 2, 36].

Parse trees

Fix a homogeneous non-commutative circuit C . A parse formula of C is a non-
commutative formula C ′ obtained from C as follows:
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x1 x2 x3 x4

× ×

×

x1 x2 x3 x4

×

×

×

x1 x2 x3 x4

×

×

×

x1 x2 x3 x4

×

×

×

x1 x2 x3 x4

×

×

×

Figure 1.4: Five essential ways to compute x1x2x3x4 by non-commutative arith-
metic circuit with only × gates of fan-in 2.

• Corresponding to the output + gate of C , we add an output + gate to C ′,

• For every + gate Φ′ added to C ′ corresponding to a + gate Φ in C , we
choose exactly one child Ψ of Φ in C and add a copy Ψ′ to C ′ as a child of
Φ′. The constant along the wire from Ψ′ to Φ′ remains the same as in C .

• For every × gate Φ′ added to C ′ corresponding to a × gate Φ in C and
every wire from a child Ψ to Φ in C , we add a copy of Ψ′ to C ′ and make it
a child of Φ. The order of the various gates Ψ′ added to C ′ is the same as
the order of the corresponding wires in C .

Any such parse formula C ′ computes a monomial (with a suitable coe�cient)
that is denoted by val(C ′). As the following lemma shows—whose a proof can
be foundd in [35] for example—the polynomial computed by C is the sum of all
monomials computed by parse formulas C ′ of C .

Lemma 1.8: Monomials decomposition

Let f ∈ F〈X〉 be a polynomial computed by a non-commutative arithmetic
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circuit C . Then
f(X) =

∑
C′

val(C ′),

where C ′ runs over all parse formulas of the circuit C .

A parse tree of C is a rooted, ordered tree obtained by taking a parse formula
C ′ ofC , “short circuiting” the + gates (i.e., we remove the + gates and connect the
gates that were connected to it directly), and deleting all labels of the gates and the
edges of the tree. See Figure 1.5 for an example. Note that in a homogeneous circuit
C , each such tree has exactly d leaves, where d is the degree of the polynomial
computed by C . We say that the tree T is the shape of the parse formula C ′.

x1 x2 x3 x4

+

x1 × x4

× ×

+

3 2

7

x2 x4

+ +

x1 × x4

×

+

7

×

+

+ +

×

+ +

×

x1 x2 x3 x4

3 2

Figure 1.5: First row: from left to right, a non-commutative arithmetic circuit and
two parse formulas in the circuit. Second row: the corresponding parse trees. To
simplify the picture, the constant 1 has not been depicted along some edges. Also
we have not introduced + gates between the two layers of × gates; the reader
should assume that the edges between the two layers carry + gates of fan-in 1.

The process that converts the parse formula C ′ into T associates to each
internal node of T a multiplication and an addition gate of C ′ and to each leaf of
T an input and an addition gate of C ′. See Figure 1.6.

Let T be a parse tree of a homogeneous circuit C with d leaves. Recall that a
pre-order traversal of a tree visits �rst the root, and then recursively traverses
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x1 x2

x3

+ +

×

++

×

+

Figure 1.6: Association between gates in a parse formula and nodes in the shape.
Gates and nodes of same color are associated. Left: a parse formula. Right: the
corresponding shape

each child. Given a node v ∈ V (T ), we de�ne

deg(v) := the number of leaves in the subtree rooted at v

and

pos(v) := (1 + the number of leaves preceding v in a pre-order traversal of T )

The type of v is de�ned to be type(v) := (deg(v), pos(v)). (The reason for this
de�nition is that in any parse formula C ′ of shape T , the monomial computed
by the addition gate, multiplication gate or input gate corresponding to v in C ′
computes a monomial of degree deg(v) which sits at position pos(v) w.r.t. the
monomial computed by C ′. See Figure 1.7). We also use I(T ) to denote the set of
internal nodes of T and L(T ) to denote the set of leaves of T .

The set of parse trees that can be obtained from parse formulas ofC is denoted
T (C). We say that a homogeneous non-commutative arithmetic circuit is a
Unique Parse Tree circuit (or UPT circuit) if |T (C)| = 1 (this is equivalent to the
de�nition of unambiguous circuits we have introduced in [25]). More generally
if |T (C)| ≤ k, we say that C is a k-PT circuit. Finally, if T (C) ⊆ T for some
family T of trees, we say that C is T -PT. Similarly, we also de�ne UPT formulas,
k-PT formulas and T -PT formulas. If C is a UPT circuit with T (C) = {T}, we
say that T is the shape of the circuit C .
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deg. i

+

Φ

×

×

+

+

+

deg. p
+

+

(a) A parse formula and a gate Φ which
is associated to a gate v ∈ T of type
(i, p).

p i d− p− i

(b) Repartition of the variables in the
monomial computed by the parse for-
mula.

Figure 1.7: Type of a gate in a parse formula.

Remark 1.9

We can interpret some classes using this new framework. For example:

• Algebraic Branching Programs can be proved to be equivalent to UPT
circuits for which the shape is a comba.

• Skew circuits are equivalent to circuits for which the shapes can be all
possible rotations of a comb.

• General circuits are circuits for which the shapes are unrestricted.

aA comb is a tree of this form .

Figure 1.8 gives a parse trees’ point of view of some classes that we will de�ne
later.
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general circuits

exp(d) un-
restricted

shapes.

ABPs

1 shape: a comb

skew

exp(d) shapes: rotations of

rot-UPT

exp(d)
shapes:

rotations
of any tree

UPT

1 unre-
stricted
shape

k-PT circuits

k unre-
stricted
shapes

Figure 1.8: Parse trees’ point of view.

1.4 Lower bound techniques

1.4.1 High level idea

The main known lower bounds in arithmetic complexity are quite often a conse-
quence of the following (high level) steps:

1. De�ne a measure on polynomials µ : F〈X〉 → R. This measure is extended
to circuits: µ(C) := µ(PC).

2. Prove that the polynomials computed by a class of circuits C are of low
measure (typically, polynomial in the size of the circuits). In symbol:

∀C ∈ C, µ(C) = |C|O(1).

3. Give a polynomial p of high measure.

Then, use the observation that a circuit C ∈ C computing p satis�es µ(C) = µ(p),
therefore |C|O(1) ≥ µ(p). If the measure of p is large enough, this process provides
an interesting lower bound on the size of any circuit of the class C computing p.
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Choice of the measure

Ideally, µ should be a good approximation of the “true” complexity of our poly-
nomials, against general circuits. Such requirements seem out of reach so far.
Instead, the measures used in practice are somehow weaker but more manipulable.
Most often, given a class of circuits C, a decomposition lemma for polynomials
computed by circuits in the class is given: ∀C ∈ C, PC =

∑k
i=1 fi, where fi are

simpler polynomials and k a parameter related to the size of C . This decomposi-
tion paves the way to de�ning a well �tted measure. Indeed, a natural strategy is
to de�ne µ such that:

• µ(f) is small for all simple polynomials f coming from the decomposition.

• µ is subadditive. That is, ∀f, g ∈ F〈X〉, µ(f + g) ≤ µ(f) + µ(g).

• The polynomials for which we want lower bounds are of µ-measure rea-
sonnably high.

Subadditivity gives the point 2. that was stated in the high level strategy. Indeed,
for a polynomial p, we then have:

µ(p) = µ(C) ≤
k∑
i=1

µ(fi)

From this, one can usualy deduce a lower bound on k; but k being related to
the size of C , we get lower bound on the size of any C ∈ C computing p.

1.4.2 Partial derivative matrix

Go back to Nisan

In an in�uential result, Nisan [38] made progress on the problem of proving lower
bounds for non-commutative circuits by proving exponential lower bounds on
the size of non-commutative formulas, and more generally non-commutative
algebraic branching brograms (ABPs), computing the determinant and permanent
(and also other explicit polynomials).4 The method used by Nisan to prove this
lower bound can also be seen as a precursor to the method of partial derivatives in
arithmetic circuit complexity (introduced by Nisan and Wigderson [39]), variants
of which have been used to prove a large body of lower bound results in the area
[39, 44, 14, 21, 22].

4In contrast, we do not yet have superpolynomial lower bounds for depth-3 formulas in the
commutative setting for computing any explicit polynomial.
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Given a homogeneous polynomial f of degree d over a set X of n variables,
Nisan considers the matrix M [f ] of size nd/2× nd/2 whose rows and columns are
indexed by monomials of degree d/2 each, where the (m1,m2)th entry of M [f ]
is the coe�cient of the monomial m1m2 in f . The measure of a polynomial is
then the rank of this matrix.

Nisan then proved that any polynomial computed by a formula (or an ABP)
must be of relatively small rank, that is polynomial in the size of the formula (or
the ABP). But it is pretty easy to see that interesting polynomials such as the
determinant or the permanent are of high rank.

Here, we follow the extension of Nisan’s measure that was introduced in [30],
where the more general family of matrices MY [f ] where Y ⊂ [d] is of size d/2
and (m1,m2)th entry of MY [f ] is the coe�cient of the unique monomial m such
that the projection of m to the locations in Y gives m1, and the locations outside
gives m2. The formal and precise de�nition is stated below. This time, the hard
part will be to �nd good subsets Y which make the rank of the polynomials
computed by an arithmetic class of circuits small. Such subsets Y can therefore
be seen as weaknesses for the considered class of circuits.

Generalisation

Here we recall some de�nitions from [38] and [30]. Let Π denote a partition of [d]
given by an ordered pair (Y, Z), where Y ⊆ [d] and Z = [d] \ Y . In what follows
we only use ordered partitions of sets into two parts. We say that such a Π is
balanced if |Y | = |Z| = d/2.

Given a monomial m of degree d and a set W ⊆ [d], we use mW to denote the
monomial of degree |W | obtained by keeping only the variables in the locations
indexed by W and dropping the others. For example, if W = {1, 3} ⊆ [4] and
m = xyzt, then mW = xz.

De�nition 1.10: Partial Derivative matrix

Let f ∈ F〈X〉 be a homogeneous polynomial of degree d over n = |X|
variables. Given a partition Π = (Y, Z) of [d], we de�ne an n|Y |×n|Z| matrix
M [f,Π] with entries from F as follows: the rows of M [f,Π] are labelled
by monomials from M|Y |(X) and the columns by elements of M|Z|(X).
Let m′ ∈ M|Y |(X) and m′′ ∈ M|Z|(X); the (m′,m′′)th entry of M [f,Π]
is the coe�cient in the polynomial f of the unique monomial m such that
mY = m′ and mZ = m′′.
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Example 1.11

Consider X = {x1, x2} and f = 3x1x
3
2 + x1x2x

2
1 + 7x2x

2
1x2 a homoge-

neous polynomial of degree 4. Let us consider also the two partitions
Π1 = ({2, 4}, {1, 3}) and Π2 = ({2, 3, 4}, {1}). Then we have:

M [f,Π1] =

x2
1 x1x2 x2x1 x2

2


0 0 0 0 x2
1

0 0 7 0 x1x2

1 0 0 0 x2x1

0 3 0 0 x2
2

and

M [f,Π2] =

x1 x2



0 0 x3
1

0 7 x2
1x2

0 0 x1x
2
2

3 0 x3
2

0 0 x2
2x1

1 0 x2x
2
1

0 0 x1x2x1

0 0 x2x1x2

We will use the rank of the matrix M [f,Π]—denoted rank(f,Π)—as a measure of
the complexity of f . Note that since the rank of the matrix is at most the number
of rows, we have for any f ∈ F〈X〉 rank(f,Π) ≤ n|Y |.

De�nition 1.12: Relative Rank

Let f ∈ F〈X〉 be a homogeneous polynomial of degree d over n = |X|
variables. For any Y ⊆ [d], we de�ne the relative rank of f w.r.t. Π = (Y, Z)—
denoted rel-rank(f,Π)— to be

rel-rank(f,Π) :=
rank(M [f,Π])

n|Y |
.

Fix a partition Π = (Y, Z) of [d] and two homogeneous polynomials g, h
of degrees dg and dh respectively. Let f = g ×j h for some j ∈ [0, dh]. This
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induces naturally de�ned partitions Πg of [dg] and Πh of [dh] respectively in the
following way. Let Ig = [j + 1, j + dg] and Ih = [d] \ Ig. We de�ne Πg =
(Yg, Zg) such that Yg corresponds to the indices of the elements of Y in Ig, that
is, Yg = {k ∈ [dg] | Y contains the kth smallest element of Ig}; Πh = (Yh, Zh) is
de�ned similarly with respect to Ih. Denote |Yg|, |Zg|, |Yh|, |Zh| by d′g, d′′g , d′h, d′′h
respectively.

In the above setting, we have a simple description of the matrix M [f,Π]
in terms of M [g,Πg] and M [h,Πh]. We use the observation that monomials of
degree |Y | = d′g + d′h are in one-to-one correspondence with pairs (m′g,m

′
h)

of monomials of degree d′g and d′h respectively (and similarly for monomials of
degree |Z|). The following appears in [30].

Lemma 1.13: Tensor Lemma

Let f = g ×j h be as above. Then, M [f,Π] = M [g,Πg]⊗M [h,Πh], where
⊗ stands for the tensor product.

Corollary 1.14

Let f = g×j h be as above. We have rank(f,Π) = rank(g,Πg) ·rank(h,Πh).
In the special case where one of Yg or Zg is empty and one of Yh or Zh is
empty, the tensor product is an outer product of two vectors and hence
rank(f,Π) ≤ 1.

Sometimes, we will associate to any partition Π = (Y, Z) the string in
{−1, 1}d that contains −1 in exactly the locations indexed by Y . Given par-
titions Π1,Π2 ∈ {−1, 1}d, we now de�ne ∆(Π1,Π2) to be the Hamming distance
between the two strings, or equivalently as |Y1∆Y2| where Π1 = (Y1, Z1) and
Π2 = (Y2, Z2).

Proposition 1.15

Let f ∈ F〈X〉 be homogeneous of degree d and Π ∈ {−1, 1}d. Then,
rank(f,Π) = rank(f,−Π), where −Π(i) = −1× Π(i) for all i ∈ [d].

Proof. It follows from the fact that M [f,−Π] is the transpose of M [f,Π].
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Lemma 1.16: Distance lemma

Let f ∈ F〈X〉 be homogeneous of degree d and Π1,Π2 ∈ {−1, 1}d. Then,
rank(f,Π2) ≤ rank(f,Π1) · n∆(Π1,Π2).

Proof. We prove this by induction on ∆(Π1,Π2). The base case of the induction
is the case that ∆(Π1,Π2) = 0, i.e., Π1 = Π2. In this case, the statement is trivial.

Now consider when ∆(Π1,Π2) = ∆ ≥ 1. Take any partition Π such that
∆(Π1,Π) = ∆−1 and ∆(Π,Π2) = 1. By the induction hypothesis, we know that
rank(f,Π) ≤ rank(f,Π1) · n∆−1 and so it su�ces to show that rank(f,Π2) ≤
rank(f,Π) · n.

Assume that Π = (Y, Z) and Π2 = (Y2, Z2). We know that ∆(Π,Π2) =
|Y∆Y2| = 1. W.l.o.g. assume that Y = Y2 \ {i} for some i ∈ [d] (the other case,
when Y = Y2 ∪ {i} is similar). Note that Z = Z2 ∪ {i}.

Consider the matrix M2 := M [f,Π2]. We divide M2 into n blocks as follows.
For each x ∈ X , let Mx

2 be the submatrix where we only keep the rows corre-
sponding to monomials of degree |Y2| that contain the variable x in the location
“corresponding” to i ∈ [d] (i.e., in the jth position where j is the index of i in Y2).
Clearly, we have rank(M2) ≤

∑
x∈X rank(Mx

2 ).
On the other hand, we also see that each Mx

2 is a submatrix of M := M [f,Π]:
namely, the submatrix obtained by only keeping the columns corresponding to
those monomials that contain the variable x in the location corresponding to i
(as above but w.r.t. Z). Hence, rank(Mx

2 ) ≤ rank(M) for each x.
Hence, we see that rank(M2) ≤

∑
x∈X rank(Mx

2 ) ≤ n · rank(M) and this
completes the induction.

A polynomial that is full rank w.r.t. all partitions

Remember the high level steps given by Remark 1.4.1 in order to provide lower
bounds. For us, we will have:

1. This is what we did in the previous subsection. Indeed, our measure µ will
be the rank of the matrices M [?,Π] for well chosen partition Π depending
on the class of circuits that is considered.

2. This point will be the core of all the next chapters. Most often, a chapter
will consist of �nding a good decomposition of the polynomials computed
by a class of circuits. This decomposition will lead us to �nd partitions Π
that make the rank of the computed polynomials small.

3. This point is already done by the following theorem, which was shown
in [30].
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Theorem 1.17

For any even d and any positive N ∈ N, there is an integer q0(N, d)
such that the following holds over any �eld F of size at least q0(N, d).
There is an explicit homogeneous polynomial FN,d ∈ F〈X〉 of degree
d over N = |X| variables such that for any balanced partition Π =
(Y, Z) of [d], rank(FN,d,Π) = Nd/2 (equivalently, rel-rank(FN,d,Π) =
1). Further, FN,d can be computed by an explicit homogeneous non-
commutative arithmetic circuit of size poly(N, d).

Sketch of the proof. Fix d an even integer and let N = |X| be the number
of variables. Consider the complete graph where vertices are the elements
of [d]; i.e., consider the graph G = ([d],

(
[d]
2

)
). Create also a new variable λe

for every edge e in G. Then, consider the following polynomial:

g(X,λ) =
∑

Mperfect matching of G

(
∏
e∈M

λe).gM(X),

where
gM(X) =

∑
w∈[n]d:wi=wj∀{i,j}∈M

xw1xw2 . . . xwd .

Then one can prove that:

• This polynomial is computable by a small arithmetic circuit (recursive
construction).

• For any balanced partition Π, there is (at least) one perfect matching
MΠ for which M [gMΠ

,Π] is a permutation matrix, and hence is full-
rank for this partition.

• As long as the underlying �eld F is of size large enough, one can
instantiate the variables λ to α ∈ Fd(d−1)/2 such that for any balanced
partition Π, rank(g(X,α),Π) = rank(gMΠ

(X),Π) = Nd/2.
• A little argument then shows that if a polynomial is full-rank with

respect to any balanced partition, then this polynomial is also full-rank
with respect to any partition.

Therefore, to get lower bounds, we just need to take care of 2., as we can
always take the polynomial given by Theorem 1.17 for a polynomial of high
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measure. However, sometimes, we will want a lower bound for a particular
polynomial (such as IMMn,d in Chapter 4), in this case we will need to do a
proof of 3. again.

Remark 1.18

Since Theorem 1.17 provides a polynomial which is full rank with
respect to any partition, it means that the rank method alone is not
enough to prove superpolynomial lower bounds against general cir-
cuits.

1.5 Table of separations
The following table presents the separations between classes of non-commutative
circuits that are proved in this manuscript. Each row corresponds to a separation
together with the polynomial that is used to show it.

Separation Polynomial
ABP ( Skew palindrome (already known)
ABP ( UPT palindrome (simple observation)
UPT 6⊂ Skew square of the palindrome 2.4.1

Skew ( rot-UPT square of the palindrome 2.4.1
Skew 6⊂ UPT moving palindrome 2.4.1

UPT ( rot-UPT moving palindrome 2.4.1
UPT ( k-UPT moving palindrome 2.4.1

k-PT ( general circuits full rank polynomial w.r.t all partitions 3.1
rot-PT ( general circuits full rank polynomial w.r.t all partitions 3.2

k-PT 6⊂ rot-PT sum of palindrome and square of the palindrome 3.10
UPT formula ( ABP iterated matrix multiplication 4.2
k-PT formula ( ABP iterated matrix multiplication 4.3
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Chapter 2

UPT Circuits

UPT

general circuits

UPT formulas

k-pt formulas

formulas ABPs

skew

weighted automata

rot-UPT

UPT

weighted tree automata

k-pt circuits

=? open
(

=? open

(

(

(
(

(
(6= 6⊂

∼

∼

(

Figure 2.1: You are here.

Overview

This chapter focuses on UPT circuits, which are circuits with only one kind of
parse tree, called the shape of the circuit. These circuits will be the core bricks
of almost all decompositions in the next chapters. One reason for this is that we
understand them almost completely, as this chapter shows.

A parse formula corresponds to a monomial computation, therefore the class
of UPT circuits can be seen as circuits for which each monomial is computed
in the same way, given by the underlying shape. The results contained in this
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chapter can be seen as direct extensions of Nisan’s work for ABPs [38]—in which
he provides an exact characterisation of the complexity of ABPs, and uses it to
derive lower bounds for them. Indeed, one can easily observe that the class of
polynomials computed by ABPs are exactly the ones computed by UPT circuits
for which the underlying shape is a comb (recall that the de�nition of a comb
is given in Remark 1.9). Following Nisan, we show an exact characterisation of
the complexity of UPT circuits and use it to give lower bounds for interesting
polynomials such as the determinant or the permanent.
This chapter is based on the following publication:

• Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative
computations: lower bounds and polynomial identity testing. Electronic
Colloquium on Computational Complexity (ECCC), 23:94, 2016

However, some notation and proofs have been modi�ed with the intention of
unifying and simplifying parts of the initial paper.

Multiplication fan-in restriction

First, we observe that any UPT formula or circuit can be converted to another (of
possibly di�erent shape) where each multiplication gate has fan-in at most 2.

Lemma 2.1

Let C be a UPT circuit (resp. formula) of size s (recall that the size is the
number of edges) and shape T . Then there is a tree T ′ and a UPT circuit
(resp. formula) C ′ of size ≤ 3s and shape T ′ such that C ′ computes the
same polynomial as C and every multiplication gate in C ′ has fan-in at most
2. (This implies that every internal node of T ′ also has fan-in at most 2.)
Further, there is a deterministic polynomial-time algorithm which, when
given C , computes C ′ as above.

Proof. We give the proof only for UPT circuits, since the transformation is the
same in both cases. LetC a UPT circuit as in the statement. For any×-gate Φ with
k > 2 children Ψ0, . . . ,Ψk−1, we replace Φ by the following gadget of 2(k−1)−1
gates Φ0, . . . ,Φ2(k−2). For any i ∈ [0, k − 3], Φ2i is a multiplication gate with
inputs Ψi and Φ2i+1, and Φ2i+1 is an addition gate with input Φ2(i+1). Finally,
Φ2(k−2) is a multiplication gate with inputs Ψk−2 and Ψk−1. The new circuit is still
in alternating layer form, and is clearly UPT because we apply the same process
to any multiplication gate of fan-in strictly greater than 2. For any such gate, the
number of edges in the corresponding gadget is 3k− 4. Therefore, the number of
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edges in the �nal circuit increases by at most three times the number of edges in
the original circuit, so that the size of the circuit obtained by this process is ≤ 3s.

The shape T ′ of the new formula is simply the modi�ed version of the shape
T obtained by replacing the internal nodes of fan-in k > 2 by right combs with k
leaves.

This completes the construction of C ′ from C . The construction is easily seen
to be implementable by a deterministic polynomial-time algorithm.

Remark 2.2

Without loss of generality, for the rest of this chapter and in order to simplify
the proofs, we consider only UPT circuits with multiplication fan-in at most
2. Lemma 2.1 tells us this is not a strong assumption since we can e�ciently
transform our circuits in order to get this additional property, with a small
blow-up in size that does not matter.

2.1 Normal form

Let C be a UPT circuit of shape T . We say that C is in normal form if there
is a function v : C → T that associates to each gate Φ of the circuit a node
v(Φ) ∈ T such that the following holds: if Φ is an input gate, then v(Φ) is a
leaf; if Φ is a × gate with children Ψ1, . . . ,Ψt (in that order), then the nodes
v(Ψ1), . . . , v(Ψt) are the children of v(Φ) (in that order); and �nally, if Φ is
a + gate with children Ψ1, . . . ,Ψt (which are all × or input gates since we
assume that + and × gates are alternating along each input to output path),
then v(Φ) = v(Ψ1) = · · · = v(Ψt). Intuitively, what this means is that in any
unravelling of a parse formula containing a (multiplication or input) gate Φ to get
the parse tree T , the gate Φ always takes the position of node v(Φ). See Figure 2.2
for an example.

Let C be either a UPT formula or a UPT circuit of shape T in normal form.
We say that a + gate Φ in C is a (u,+) gate if v(Φ) = u ∈ T . Similarly, we refer
to a × gate Φ in C as a (u,×) gate if v(Φ) = u. For simplicity of notation, we
also refer to an input gate Φ as a (u,×) gate if v(Φ) = u. Note that the output
gate is a (u0,+) gate where u0 is the root of T .

We state and prove below some simple structural facts about UPT circuits.
The following proposition shows that it is always possible to transform a UPT

circuit into a UPT circuit in normal form. It is for these circuits that we will be
able to give an exact characterisation of the complexity.
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Figure 2.2: A UPT circuit that is not in normal form.

Proposition 2.3

1. Let C be a UPT formula. Then C is in normal form.

2. For any UPT circuit C of size s and shape T , there is another UPT
circuit C ′ of size O(s2) and shape T in normal form computing the
same polynomial as C . Further, given C and T , such a C ′ can be
constructed in polynomial time.

Proof. • Proof of 1.

LetC be a UPT formula with shape T . We want to prove thatC is in normal
form; this is equivalent to proving that for any multiplication gate Φ ∈ C
and for any parse formula containing the gate Φ, the gate always takes the
same position in T . Let D,D′ be any two parse formulas containing Φ. D
(resp. D′) is a formula, therefore there is a unique path p (resp. p′) from the
root to Φ in D (resp. D′). The crucial point is the following: as C is also
a formula with D and D′ as subformulas, these two paths must be equal.
By de�nition, the position of Φ in T with respect to D is characterized
by (deg(Φ), pos(Φ)); we recall that deg(Φ) is the degree of the monomial
computed at the gate Φ in D and pos(Φ) equals 1 + the sum of the degrees
of the monomials computed at the children of the multiplication gates along
the path p which are on the left side of the path. As the formula is UPT,
the monomials computed at a gate are all of same degree for any parse
formulas containing the gate; moreover p = p′ so in both cases we consider
the same gates in the de�nition of (deg(Φ), pos(Φ)) in D or D′ so that the
positions of Φ in T according to D or D′ are equal.
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• Proof of 2.

The proof of this point relies on a careful inspection of the proof of [36,
Lemma 2]. A circuit is called multiplicatively disjoint if each ×-gate has dis-
joint subcircuits as inputs. The result [36, Lemma 2] states that every circuit
C of degree d can be turned e�ciently into an equivalent multiplicatively
disjoint circuit of size (|C|+ d)O(1).
The normal form is obtained by applying the algorithm to transform a
general circuit into a multiplicatively disjoint circuit from [36, Lemma 2].
The resulting circuit has size ≤ 2d|C|.
Observe that it is not only the fact that the circuit is multiplicatively disjoint
that makes the circuit in normal form, since Figure 2.2 shows a multiplica-
tively disjoint circuit not in normal form; the transformation itself is crucial.
For the sake of completeness, we recall the construction here (modi�ed a
little bit for the needs of non-commutativity).
For each gate Φ ∈ C of formal degree e, the new circuit D contains distinct
gates Φ1,Φ2, . . . ,Φd+1−e. Φk is called a clone of index k of Φ. In C , if Φ is
a ×-gate of formal degree e with left input Ψ of formal degree e1 and right
input Γ of formal degree e2, then in D, Φk has left input Ψk and right input
Γk+e1 . In C , if Φ is a +-gate of formal degree e with inputs Ψ1,Ψ2, . . . ,Ψj

with coe�cients c1, c2, . . . , cj , then, in D, Φk has inputs Ψ1
k,Ψ

2
k, . . . ,Ψ

j
k

with coe�cients c1, . . . , cj .
The proof that D is multiplicatively disjoint and computes the same poly-
nomial as C is given in [36, Lemma 2]. There it is also proved that, in
D, all gates in the subcircuit de�ned by a gate Φk of formal degree e are
clones whose index lie between k and k + e− 1: we will call that the index
property.
We prove by contradiction that D respects the fact that in any unravelling
of a parse formula containing a gate to get the parse tree, the gate always
takes the same position in the (unique) parse tree. Let Φj be an addition
gate in D and D1 and D2 two parse formulas which contain Φj but at two
di�erent positions in the shape. Let l1, l2, . . . , la (resp. g1, g2, . . . , gb) be the
unique path inD1 (resp.D2) from the output gate to Φk (thus la = gb = Φk).
Because Φk does not share the same position in the shape, it means that
there is a minimal c such that lc and gc are +-gates with di�erent positions. It
means that lc−1 and gc−1 are two×-gates (because the circuit is constituted
of alternating layers) and that lc and gc are inputs of lc−1 and gc−1, one as
left input, one as right input (let us say in that order). As the circuit is UPT,
lc and gc must be of same degree e. gc−1 and lc−1 are clones of same index
because the path from the output gate to these gates are identical. Let us say
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they are of index k. Thus lc is a clone of index k and gc is a clone of index
k + e (because of the construction and the fact that one is a left input, the
other a right input of the multiplication gate). Thanks to the index property,
this means that the subcircuits de�ned by lc and gc are clones whose index
lies between k and k + e− 1 for lc and between k + e and k + 2e− 1 for
gc. These two sub-circuits are thus disjoints, but this in contradiction with
the fact that Φj belongs to both of them.

2.2 Decomposition lemma
In this section, we show that polynomials computed by UPT circuits in normal
form can be decomposed in a way that will prove useful later to get a characteri-
sation of the complexity. Recall that the de�nition of the j-product (×j) is given
in De�nition 1.5 and that of type in Section 1.3.

Proposition 2.4: Decomposition for UPT circuits in normal form

If a polynomial f ∈ F〈X〉 of degree d is computed by a UPT circuit in normal
form with shape T , then for any v ∈ T of type (i, p), f can be written as
f =

∑kv
j=1 gj ×p hj , where:

1. kv is the number of (v,+) gates and g1, . . . , gv are the polynomials
computed by these gates;

2. ∀j, deg(gj) = i and deg(hj) = d− i.

Proof. Let C be a UPT circuit in normal form computing the polynomial f . By
Lemma 1.8, we have: f =

∑
C′∈S val(C

′), where S is the set of all parse formulas
ofC . Let Φ1, . . . ,Φkv be the (v,+) gates, computing respectively the polynomials
g1, g2, . . . , gkv . By de�nition of the type of the node v, the gj are of degree i. For
1 ≤ j ≤ kv , let Sj be the set of parse formulas containing the gate Φj . Because a
parse formula contains at most one (v,+) gate, we have Sj ∩ Sk = ∅ for j 6= k.
Moreover, every parse formula must contain at least one (v,+) gate. Thus the
Sj are a partition of S: S = S1 t S2 t · · · t Skv , where t denotes the disjoint
union. We can then rewrite the previous equality as f =

∑
C′∈S val(C

′) =∑kv
j=1

∑
C′∈Sj val(C

′).
Fix j ∈ [1, ki,p]. Consider the circuit Cj(y) obtained by changing Φj into

an input gate labeled with a new variable y and deleting unused gates. Note
that Cj(gj) = C (abusing notation and using the name of the circuit for the
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computed polynomial). Let Fj be the set of parse formulas of Cj containing the
input gate Φj . The value of any parse formula C ′ ∈ Fj is of the form y ×p hC′
where hC′ is a monomial of degree (d− i). Then, by bilinearity of the j-product,
Vj(y) :=

∑
C′∈Fj val(C

′) = y ×p hj , where hj is a polynomial of degree (d− i).
Note that

∑
C′∈Sj val(C

′) = Vj(gj) and therefore
∑

C′∈Sj val(C
′) = gj×phj .

2.3 Exact characterisation of the complexity
We will use the number of +-gates of a UPT circuit in normal form as an estimate
of its size. The following lemma shows that this is a good measure of overall size.

Lemma 2.5

LetC be a UPT circuit in normal form with s+-gates. Then we can transform
C into a new UPT circuit in normal form, without changing the shape, with
s +-gates and at most s2 ×-gates.

Proof. Recall that the circuits are of × fan-in at most two. Denote by si the
number of +-gates on the i-th layer of C . If C has strictly more than s2 ×-gates,
then one layer i contains strictly more than s2

i ×-gates. It means that two di�erent
×-gates on the same layer perform the same computation; therefore one of them
can be deleted and its output replaced by the output of the other one.

We will use this notion of size to get an exact expression of the complexity of
computing a given polynomial with a UPT circuit in normal form. To do this, we
create a complexity measure which is an extension for UPT circuits in normal
form of the one given by Nisan [38] for algebraic branching programs. For a given
homogeneous polynomial f of degree d and each integer i ≤ d, Nisan de�ned the
partial derivative matrix M (i)(P ), which is a nd−i × ni matrix whose rows are
indexed by monomials onX of degree (d−i) and columns by monomials of degree
i. The entry (m1,m2) of the matrix is de�ned to be the coe�cient of the monomial
m1m2 in P . We can rephrase this with our notation by saying that the matrix
M i(P ) is exactly the matrix M [f,Πi], where Πi = ([1, i], [i+ 1, d]). Intuitively,
the rank of the matrix M (i)(f) is a measure of how “correlated” the pre�x of
length i of a monomial appearing in P is to the rest of the monomial. Small
ABPs have “information bottlenecks” at each degree i, and hence the amount of
correlation in the computed polynomial must be low. In our case the correlation
will be between the pre�x of degree p and the su�x of degree (d− p− i) on the
one hand, and the middle part of degree i on the other hand.

33



To make this more precise, we need to de�ne a partition corresponding to a
node in the shape of a UPT circuit computing a polynomial of degree d.

De�nition 2.6

Given any integer d and any pairs (i, p) with i + p ≤ d, we de�ne the
partition Π(i,p) of [d] so that Π(i,p) = (Y(i,p), Z(i,p)) where:

• Y(i,p) = [p+ 1, p+ i]

• Z(i,p) = [d] \ Y(i,p) = [1, p] ∪ [p+ i+ 1, d]

For notational convenience, if T is a tree with d leaves, then for any v ∈ T ,
we de�ne Πv to be Πtype(v).

We can now express exactly the number of additions needed to compute a
given polynomial by a UPT circuit in normal form (recall that the rank of a matrix
M [f,Π] is written rank(f,Π)).

Theorem 2.7

Let f be a homogeneous polynomial of degree d over the set X of variables
and T a shape with d leaves. Then the minimal number of addition gates
needed to compute f by a UPT circuit in normal form with shape T is exactly
equal to

∑
v∈T

rank(f,Πv).

Proof. Fix a UPT circuit C in normal form with shape T which computes f . Fix
also v ∈ T a node of type (i, p) and let Φ1, . . . ,Φkv be all the (v,+)-gates in C .
Let f =

∑kv
j=1 gj×phj be the decomposition given by Proposition 2.4. To simplify

notation, set also k = kv.

First step: decomposition of the matrix M [f,Πv] as LvRv. We show that
M [f,Πv] is the product of two “small” matrices Lv and Rv:

• Rv is a matrix of size k × ni. Rows are indexed by all gates Φ1, . . . ,Φk.
Columns are indexed by monomials m ∈Mi(X). Rv

t,m is the coe�cient of
the monomial m in the polynomial gt computed by the gate Φt.

• Lv is a matrix of size nd−i × k. Rows are indexed by all pairs (m1,m2) ∈
Mp(X) × Md−p−i(X). Columns are indexed by all gates Φ1, . . . ,Φk.
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Lv(m1,m2),t is the coe�cient of the monomial m1m2 in the polynomial com-
puted by the circuit where Φt is replaced by an input gate with value 1. That
is: Lv(m1,m2),t is the coe�cient of the monomial m1m2 in the polynomial ht.

One can easily verify that M [f,Πv] = LvRv.
Second step: lower bound. Since rank(f,Πv) ≤ rank (Lv) ≤ k, the number k
of (v,+) gates must be at least rank(f,Πv). Therefore, considering all nodes in T ,
we have just proved that the number of addition gates is at least

∑
v∈T rank(f,Πv).

Third step: upper bound. We prove that if rank(f,Πv) < k, we can delete
one (v,+)-addition gate in the circuit. We will possibly be increasing at the
same time the number of ×-gates but, thanks to Lemma 2.5, this is innocuous.
If rank (Lv) = rank (Rv) = k, then, by a linear algebra argument, rank(f,Πv)
should also be k. Thus, either Lv or Rv is of rank strictly less than k.

If rank (Rv) < k, then one row (let us say, w.l.o.g., the �rst row) of Rv is a
linear combination of the other rows. Going back to the meaning of the matrix, it
means that the polynomial g1 computed by the gate Φ1 is a linear combination
of the polynomials g2, . . . , gk computed by the gates Φ2, . . . ,Φk. Let us say g1 =∑k

i=2 cigi for ci ∈ F. We construct a new circuit where Φ1 is deleted. We denote by
Ψ1, . . . ,Ψm the ×-gates which receive as input Φ1. In the new circuit, we create
(k− 1) copies of Ψ1, . . . ,Ψm — namely Ψ2

1, . . . ,Ψ
2
m,Ψ

3
1, . . .Ψ

3
m, . . . ,Ψ

k
1, . . . ,Ψ

k
m.

Ψi
j does exactly the same computation as Ψj , but instead of taking Φ1 as input, it

takes Φi. Finally, an addition gate in the old circuit which took as input a Ψj now
takes

∑k
i=2 ciΨ

i
j as input.

If rank (Lv) < k, then one column (let us say, w.l.o.g., the �rst column) of Lv
is a linear combination of the other columns. This means that there are constants
c2, . . . , ck such that h1 =

∑k
j=2 cjhj . Let Γ1, . . . ,Γm be all the coe�cients on

the input edges of Φ1 coming respectively from multiplication gates Ψ1, . . . ,Ψm.
In the new circuit, we delete Φ1 and we add for all 1 ≤ l ≤ m, 2 ≤ j ≤ k an
edge between Ψl and Φj with the coe�cient cjΓl. The new circuit computes the
polynomial

∑k
j=2(gj + cjg1)×p hj . By bilinearity of the j-product, this is equal

to
k∑
j=2

gj ×p hj +
k∑
j=2

(cjg1)×p hj

=
k∑
j=2

gj ×p hj + g1 ×p

(
k∑
j=2

(cjhj)

)

=
k∑
j=2

gj ×p hj + g1 ×p h1

= f.
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Remark 2.8

When the shape is a comb (thus corresponding to an ABP), then p = 0 in the
proof above, and M [f,Πv] is the usual matrix M (i) of Nisan [38]. Since the
number of additions gates in the circuit corresponds exactly to the number
of vertices in the ABP, our result is a direct extension of Nisan’s.

2.4 Comparison with other classes

2.4.1 UPT vs. Skew-circuits

In this section we show that the classes of polynomials computed by polynomial-
size UPT circuits on the one hand, and by polynomial-size skew circuits on the
other hand, are incomparable.

De�nition 2.9: Palindrome polynomial

Assume d is even. The palindrome of degree d over the set X of variables is:

Pald(X) :=
∑

m∈Md/2(X)

m.m̄,

where m̄ is the mirror of m (e.g m̄ = x3x2x1 if m = x1x2x3).

Remark 2.10

Observe that we can also de�ne a palindrome polynomial when the integer
d is odd, but this is not needed in this manuscript.

UPT 6⊂ Skew

It is easy to construct a small UPT skew circuit for Pald(X) by using the following
inductive formula:

Pald(X) =
n∑
i=1

xiPal
d−2(X)xi
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We can then use the construction for Pald(X) to compute the square of the palin-
drome (Pald(X))2 = Pald(X)× Pald(X) with a UPT circuit as well. But note
that [29] shows that the square of the palindrome polynomial needs exponential-
size skew circuits: therefore, UPT is not included in Skew. Observe that this also
shows that Skew is strictly included in rot-PT since UPT is included in rot-PT.

Skew 6⊂ UPT

In the remainder of this section we construct a polynomial computable by a
skew circuit of polynomial size but not by UPT circuits of polynomial size. The
idea is the following: given a UPT circuit in normal form of degree d with any
shape T , there is always a node v ∈ T for which type(v) = (i, p) where i ∈
[d
3
, 2d

3
], p ∈ [0, d − i] (see Lemma 2.11 below). We then consider a polynomial

such that the associated matrices M [f,Π(i,p)] have an exponential rank for all
i ∈ [d

3
, 2d

3
], p ∈ [0, d − i]. According to the previous section, this means that

computing the polynomial by UPT circuits requires at least an exponential number
of gates.

Lemma 2.11

Given a UPT circuit in normal form computing a polynomial of degree dwith
shape T , there is always a node v ∈ T for which type(v) = (i, p) satis�es
i ∈ [d

3
, 2d

3
], p ∈ [0, d− i].

Proof. It is su�cient to prove that there is a +-gate of degree i ∈ [d
3
, 2d

3
]: the

condition on p follows immediately from the de�nition of the type. Let Φ be a
×-gate of degree > 2

3
d as close as possible to the leaves. Let Ψ1,Ψ2 be the inputs

of Φ and i, j their respective degree. We have i+ j > 2d
3
, 1 ≤ i ≤ 2d

3
, 1 ≤ j ≤ 2d

3
.

These conditions force i or j to be in [d
3
, 2d

3
].

De�nition 2.12: Moving palindrome

The moving palindrome of degree n over the set X ∪ {w} of n+ 1 variables
is:

Palnmov(X,w) :=
∑

l∈[0, 2n
3

]

wlPal
n
3 (X)w

2n
3
−l,

where w is a fresh variable (distinct from the X).
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The �rst proposition below is easy and is given without proof. The second is an
application of our size characterization for UPT circuits in normal form.

Proposition 2.13

Palnmov(X,w) is computable by a skew circuit of size polynomial in n.

Sketch of the proof. The palindrome is computable by a small skew circuit. There-
fore, by de�nition, the moving palindrome is computable by a small sum of small
skew circuits, hence a small skew circuit.

Proposition 2.14

Computing Palnmov(X,w) with a UPT circuit in normal form requires at
least nn/6 gates.

Proof. Consider a UPT circuit in normal form C computing Palnmov. Thanks to
Lemma 2.11, we know that there is always a node v in the shape for which the
type (i, p) satis�es i ∈ [n

3
, 2n

3
], p ∈ [0, n− i]. To apply Theorem 2.7, it is enough

to show that for all such (i, p), rank(Palnmov,Π(i,p)) ≥ nn/6. This will be possible
since for each such type, there is a polynomial in the sum that de�nes Palnmov
which has a large rank and the other polynomials will not interfere.

Let us �x a particular (i, p), i ∈ [n
3
, 2n

3
], p ∈ [0, n− i]. Because i ≤ 2n

3
we have

p+ (n− p− i) ≥ n
3
. Then one of the two following cases occurs.

Case p ≥ n
6
. In this case we show �rst that

rank(Palnmov,Π(i,p)) ≥ rank(wp−
n
6Pal

n
3 (X)wn−p−

n
6 ,Π(i,p)).

Indeed by de�nition,

M [Palnmov,Π(i,p)] =
∑

l∈[0, 2n
3

]

M [wlPal
n
3 (X)w

2n
3
−l,Π(i,p)];

And note then that, if (a, b) is a coordinate of a non-zero coe�cient of

M [wp−
n
6Pal

n
3 (X)wn−p−

n
6 ,Π(i,p)]

and (a′, b′) is a coordinate of a non-zero coe�cient of

M [wlPal
n
3 (X)w

2n
3
−l,Π(i,p)],
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with l 6= p− n
6

, then a 6= a′ and b 6= b′. Finally, observe that in this case, every row
and column of M [wp−

n
6Pal

n
3 (X)wn−p−

n
6 ,Π(i,p)] contains at most one non-zero

coe�cient and there are exactly nn/6 non-zero coe�cients. Thus:

rank(Palnmov,Π(i,p)) ≥ rank(wp−
n
6Pal

n
3 (X)wn−p−

n
6 ,Π(i,p)) ≥ nn/6.

Case n− p− i ≥ n
6
. With similar arguments, we have this time

rank(Palnmov,Π(i,p)) ≥ rank(wp+i−
n
6Pal

n
3 (X)w

5n
6
−p−i,Π(i,p)) ≥ nn/6.

Remark 2.15

Observe that this implies that UPT is strictly included in rot-PT since Skew
is included in rot-PT. Moreover, as the moving palindrome is computable
by a small sum of small skew circuits, it is also computable by a small k-PT
circuit. Hence UPT is strictly included in k-PT.

2.4.2 UPT vs. Determinant and Permanent
In this small section, we sketch the proof of lower bounds for the determinant
and the permanent that follow from the characterisation of the complexity given
in Section 2.3. First, recall the de�nitions of the two polynomials:

PERMn =
∑
s∈Sn

n∏
i=1

x1,s(1) · · ·xn,s(n) and DETn =
∑
s∈Sn

sgn(s)
n∏
i=1

x1,s(1) · · · xn,s(n).

To get lower bounds we need to estimate the ranks of certain matricesM [?,Π(i,p)].
The following lemma is proved exactly in the same way as Lemma 2 in [38].

Lemma 2.16

For all i ≤ n, p ≤ n− i, rank(PERMn,Π(i,p)) = rank(DETn,Π(i,p)) =
(
n
i

)
.

We can now obtain the following lower bounds.

Theorem 2.17

Computing PERMn or DETn with a UPT circuit requires at least
(
n
n/3

)
gates.
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Proof. By Lemma 2.11, there is a gate v in the shape for which type(v) = (i, p)
and i ∈ [n

3
, 2n

3
]. By Lemma 2.7 and Lemma 2.16, the number of gates needed is at

least rank(DETn,Πv) =
(
n
i

)
≥
(
n
n/3

)
.

40



Chapter 3
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Figure 3.1: You are here.

Overview

Chapter 2 gives a pretty complete understanding of UPT circuits. But remember
that the ultimate aim is to prove lower bounds for general circuits, and these ones
can have an exponential number of distinct parse trees. Here, we try to get closer
to this goal by increasing the number of parse trees that are allowed to appear in
a circuit. We do this in two di�erent ways: in Section 3.1, we give lower bounds
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for circuits with at most 2d
1/4 unrestricted shapes (“2d1/4-PT circuits”). Then, in

Section 3.2, we extend previous work on skew circuits to give lower bounds for
circuits with an exponential number of shapes; however, this time, the shapes
are constrained from the fact they all come from a �xed tree and all its rotations
(“rotUPT circuits”).
This chapter is based on the following publication:

• Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower bounds
and PIT for non-commutative arithmetic circuits with restricted parse trees.
In 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 41:1–41:14,
2017

• Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower bounds
and PIT for non-commutative arithmetic circuits with restricted parse trees
(extended version). To appear in Computational Complexity

3.1 Lower bounds for k-PT circuits
In this section, we show that any k-PT circuit computing a polynomial of degree
d where k is subexponential in d cannot compute the polynomial FN,d from Theo-
rem 1.17. We will show that if both k and the size of the circuit are subexponential
in d, then there is a Π such that rel-rank(f,Π) < 1. For large enough �elds F,
Theorem 1.17 gives us a polynomial that is full rank w.r.t. all partitions and we
thus get a lower bound for computing this polynomial by k-PT circuits.

Proof outline. We �rst show that any k-PT circuit C of size s can be written
as a sum of k UPT circuits C1, . . . , Ck whose shapes are the di�erent shapes that
appear in C and whose sizes are at most s2. At this point, for each Ci, Lemma 3.2
allows us to �nd many partitions Πi,1, . . . ,Πi,t such that rel-rank(Ci,Πi,j) is
small for each i ∈ [k] and j ∈ [t]. However, we would like to �nd a common
partition Π so that rel-rank(Ci,Π) is small for each i ∈ [t].

To do this, we use Proposition 1.15 and Lemma 1.16, which together imply
that if a partition Π is somewhat close in Hamming distance to either Πi,j or
−Πi,j for any j ∈ [t], then rel-rank(f,Π) is small as well. In fact, a close look at
the parameters tells us that to obtain a superpolynomial lower bound, it su�ces
for the quantity min{∆(Π,Πi,j),∆(Π,−Πi,j)} to be somewhat smaller than the
worst case, which is d/2. Our aim, therefore, is to choose a Π such that for each
i ∈ [k], there exists a j ∈ [t] so that the above occurs.

A natural choice for such a Π is to choose a uniformly random Π = (Y, Z)
of [d]. Analyzing the probability that min{∆(Π,Πi,j),∆(Π,−Πi,j)} is close to
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d/2 for each j ∈ [t] is a simple probabilistic problem that we solve below. As this
probability is low, we obtain a lower bound.

We start with a decomposition lemma for k-PT circuits. The lemma is stated
in slightly greater generality since it is used in later sections as well.

Lemma 3.1: Decomposition for k-PT circuits

Let C be a k-PT circuit (resp. formula) of size s with T (C) = {T1, . . . , Tk}
computing f ∈ F〈X〉. Then there exist normal form UPT circuits (resp.
formulas) C1, . . . , Ck of size at most s2 each such that T (Ci) = {Ti} and
f =

∑k
i=1 fi, where fi is the polynomial computed by Ci.

Proof. Let C be as in the statement. We show how to construct k UPT circuits
(resp. formulas) C1, . . . , Ck of size at most s2, of shapes T1, . . . , Tk respectively,
computing f1, . . . , fk respectively such that each fi is equal to the sum of the
monomials computed by all the parse formulas of C of shape Ti. Given this, the
polynomial f , which is equal to the sum of all monomials computed by all parse
formulas of C , will be equal to

∑k
i=1 fi and the lemma will be proved.

Construction of Ci.

• The gates of Ci are denoted by pairs of the form (Φ, v). For each gate
Φ ∈ C and for each node v ∈ V (Ti) such that deg(v) = deg(Φ), we
initially add a gate (Φ, v) to the circuit Ci.

• Edges:

– If Φ ∈ C is an addition gate with children Ψ1, . . . ,Ψt, then (Φ, v) is
an addition gate in Ci with children (Ψ1, v), . . . , (Ψt, v).

– If Φ ∈ C is a multiplication gate with children Ψ1, . . . ,Ψt (in this or-
der), then (Φ, v) is a multiplication gate with children (Ψ1, v1), . . . , (Ψt, vt),
as long as the children of v in Ti are exactly v1, . . . , vt (in this order)
with deg(vj) = deg(Ψj) for each j. Otherwise, we label (Ψ, v) with
0.

– If Φ is an input gate labelled by x ∈ X and v a leaf node, then the gate
(Φ, v) is also an input gate with the same label.

Notice that the size ofCi is upper bounded by s2. Further, any parse formula
that does not contain any of the nodes labelled 0 has shape Ti.
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We prove by induction (on any toplogical orderings of Ti and C) that for any
v ∈ V (T ) and Φ in C such that deg(Φ) = deg(v), the gate (Φ, v) in Ci computes
the sum of all parse formulas C ′ of C starting at Φ with the shape Ti[v], where
Ti[v] is the subtree of i rooted at v. This will prove that the output gate of Ci
computes the sum of the monomials computed by all the parse formulas of C of
shape Ti. This is clearly true for the leaves.

Take now any (Φ, v) in Ci. We assume it is a multiplication gate (the other
case is similar). Assume that the children of Φ ∈ C are Ψ1, . . . ,Ψt and that
the children of v ∈ Ti are v1, . . . , vr. If either r 6= t or there is an a ∈ [t] such
that deg(va) 6= deg(Ψa), then there are no parse formulas starting at Φ of shape
Ti[v] and hence the gate (Φ, v) which is labelled with 0 computes the correct
polynomial. So we now assume that r = t and deg(va) 6= deg(Ψa) for each
a ∈ [t].

Let us denote by S ′ the set of parse formulas C ′ of C starting at Φ with a
shape Ti[v], and S ′1 (respectively S ′2, . . . , S ′t) the set of parse formulas starting at
the gates Ψ1 (resp. Ψ2, . . . ,Ψt) with a shape Ti[v1] (resp. Ti[v2], . . . , Ti[vt]).

The set S ′ is obtained by taking all possible combinations of parse formulas
coming from S ′1, . . . , S

′
t. In symbols

∑
C′∈S′

val(C ′) =
t∏

j=1

∑
C′′∈S′j

val(C ′′)

If we denote by P (Ψj, vj) each polynomial computed by a gate (Ψj, vj) in Ci, we
get by induction hypothesis that

∑
C′∈S′

val(S) =
t∏

j=1

P (Ψj, vj)

and hence ∑
C′∈S′

val(S) = P (Φ, v)

as wanted.
Finally, note that some of the leaves of the circuit are labelled by the constant

0. To eliminate this, we can repeatedly apply the following procedure. If Φ is
labelled with 0 and feeds into a × gate Ψ, then remove Φ and all wires feeding
into Ψ, and relabel Ψ with 0. If Φ is labelled with 0 and feeds into a + gate Ψ,
then simply remove Φ and if Φ has no inputs left, then relabel it with 0. This
process produces a UPT circuit with shape Ti and size at most s2. Further, since
each gate is already associated with a node of T in a natural way, the circuit Ci is
already in normal form.
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We now analyze the probability that rank(C,Π) is close to full for a random
partition Π of [d].

Lemma 3.2

Let C be a UPT circuit in normal form over F〈X〉 of size s = N c, where
N = |X|, and f the homogeneous polynomial of degree d computed by C .
Let Π be a uniformly random partition of the variables of [d] into two sets.
Then for any parameter b ∈ N,

Pr
Π

[
rank(f,Π) ≥ Nd/2−b] ≤ exp(−Ω(d/(b+ c)2)).

Postponing the proof of the above lemma to Section 3.1.1, we show that it
implies the following lower bound for homogeneous non-commutative circuits
with few parse trees. Note that when the �eld F is large enough, this proves a
lower bound for FN,d from Theorem 1.17.

Theorem 3.3

Assume that N, d ≥ 2 are growing integer parameters with d being even.
Let F ∈ F〈X〉 be any polynomial such that for each balanced partition
Π, rank(F,Π) = Nd/2. Then, for any constant ε ∈ (0, 1), any circuit that
computes F and satis�es |T (C)| = k ≤ 2d

1
3−ε must have size at least or

more than Nd
1
3−

ε
2 .

Proof. Let C be any circuit of size s ≤ N c for c = d1/3−ε/2 with |T (C)| = k ≤
2d

1/3−ε and computing f ∈ F〈X〉. We show that there is a balanced partition Π
such that rank(f,Π) < Nd/2. This will prove the theorem.

To show this, we proceed as follows. Using Lemma 3.1, we can write f =∑
i∈[k] fi where each fi ∈ F〈X〉 is computed by a normal form UPT circuit Ci of

size at most s2 ≤ N2c.
Fix any i ∈ [k]. By Lemma 3.2, the number of partitions Π for which

rank(fi,Π) ≥ N
d
2
−c is at most 2d · exp(−Ω(d/c2)). In particular, since the num-

ber of balanced partitions is
(
d
d/2

)
= Θ( 2d√

d
), we see that for a random balanced

partition Π,

Pr
Π balanced

[
rank(fi,Π) ≥ Nd/2−c] ≤ O(

√
d) · exp(−Ω(d/c2)) ≤ exp(−d1/3).

Say fi is bad for Π if rank(fi,Π) ≥ Nd/2−c. By the above, we have

Pr
Π balanced

[∃i ∈ [k] s.t. fi bad for Π] ≤ k · exp(−d1/3) ≤ 2d
1/3−ε · exp(−d1/3) < 1.
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In particular, there is a balanced Π such that no fi is bad for Π. Fix such a balanced
partition Π. By the subadditivity of rank, we have

rank(f,Π) ≤
∑
i∈[k]

rank(fi,Π) ≤ k ·Nd/2−c ≤ 2d
1/3−ε ·Nd/2−c

= Nd/2 · exp(O(d1/3−ε)− Ω(d1/3−ε/2)) < Nd/2.

This proves the theorem.

3.1.1 Proof of Lemma 3.2
Notation. Recall from Chapter 1 that we identify each partition Π with an
element of {−1, 1}d. Given partitions Π1,Π2 ∈ {−1, 1}d we use 〈Π1,Π2〉 to
denote their inner product: i.e., 〈Π1,Π2〉 :=

∑
i∈[d] Π1(i)Π2(i). Note that the

Hamming distance ∆(Π1,Π2) is

∆(Π1,Π2) =
d

2
− 1

2
〈Π1,Π2〉. (3.1)

Let T (C) = {T}. Recall that |L(T )| = d and by Lemma 2.1, we can assume
that the fan-in of each internal node of T is bounded by 2. For any u ∈ I(T )
(recall that I(T ) is the set of internal nodes of T ), let L(u) denote the set of leaves
of the subtree rooted at u. We identify each leaf ` ∈ T with pos(`) ∈ [d]. For
each u ∈ I(T ), we de�ne the partition Πu by Πu(`) = −1 i� ` ∈ L(u).

For γ > 0, de�ne a partition Π to be γ-correlated to T if for each u ∈ I(T ),
we have

∣∣∣∑`∈L(u) Π(`)
∣∣∣ ≤ γ.

For the rest of this section, let f,N, b, c, d as in the statement of Lemma 3.2.
Lemma 3.2 immediately follows from Claims 3.4 and 3.5, stated below.

Claim 3.4

Let Π be any partition of [d] such that rank(f,Π) ≥ Nd/2−b. Then Π is
O(b+ c)-correlated to T .

Proof. We know from Theorem 2.7 and Proposition 1.15 that for each u ∈ I(T ),
rank(f,Πu), rank(f,−Πu) ≤ N c. If Π is a partition such that either ∆(Π,Πu)
or ∆(Π,−Πu) is strictly smaller than d

2
− (b + c) for some u ∈ I(T ), then by

Lemma 1.16 we would have rank(f,Π) < Nd/2−b.
Thus, if rank(f,Π) ≥ Nd/2−b, we must have min{∆(Π,Πu),∆(Π,−Πu)} ≥

d
2
− (b + c) for each u ∈ I(T ). By (3.1), this means that for each u ∈ I(T ),
|〈Π,Πu〉| ≤ γ for some γ = O(b+ c).
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Let v be the root of T . Note that Πv ∈ {−1, 1}d is the vector with all its
entries being −1. Hence, we have for any u ∈ I(T ),∣∣∣∣∣∣

∑
`∈L(u)

Π(`)

∣∣∣∣∣∣ =

∣∣∣∣〈Π, −(Πu + Πv)

2
〉
∣∣∣∣ ≤ 1

2
(|〈Π,Πu〉|+ |〈Π,Πv〉|) ≤ O(γ).

This proves the claim.

Claim 3.5

Say Π ∈ {−1, 1}d is chosen uniformly at random and γ ≤
√
d. Then

Pr
Π

[Π is γ-correlated to T ] ≤ exp(−Ω(
d

γ2
)).

The following subclaim is useful for proving Claim 3.5.

Subclaim 3.6

Assume that r, t ∈ N such that rt ≤ d/4. Then we can �nd a sequence
u1, . . . , ur ∈ I(T ) such that for each i ∈ [r] we have |L(ui)\

⋃i−1
j=1 L(uj)| ≥

t.

Proof. Consider the following ‘greedy’ procedure for choosing the ui. Order the
nodes of I(T ) in topological order (recall that the edges of T are directed toward
the root). We choose u1 to be the least node in this order so that |L(u1)| ≥ t
(such a node must exist since there are d ≥ t leaves in T ). Further, having chosen
u1, . . . , ui we choose ui+1 to be the least node greater than or equal to u1, . . . , ui
in the topological order such that |L(ui+1) \

⋃i
j=1 L(uj)| ≥ t.

To argue that this process produces a sequence of size at least r, note that for
each i ≥ 0, |L(ui+1)\

⋃i
j=1 L(uj)| ≤ 2t.This is because the fan-in of ui+1 inT is at

most 2 and by assumption, for each childu′ ofui+1, we have |L(u′)\
⋃i
j=1 L(uj)| <

t. Thus for each i ≥ 0, we have |
⋃i+1
j=1 L(uj)| ≤ 2t(i+ 1).

In particular, if i + 1 < r, we have |
⋃i+1
j=1 L(uj)| < 2tr ≤ d/2. Thus, for v

being the root of the tree, we have |L(v) \
⋃i+1
j=1 L(uj)| > d/2 ≥ t. In particular,

there is at least one node u of the tree such that |L(u) \
⋃i+1
j=1 L(uj)| ≥ t. This

allows us to extend the sequence further.

47



Proof of Claim 3.5. We apply Subclaim 3.6 with t = Θ(γ2) and r = Θ(d/γ2) to
get a sequence u1, . . . , ur ∈ I(T ) such that for each i ∈ [r], we have |L(ui) \⋃i−1
j=1 L(uj)| ≥ t.

By the de�nition of γ-correlation, we have

Pr
Π

[Π γ-correlated to T ] ≤ Pr
Π

∀i ∈ [r],

∣∣∣∣∣∣
∑

`∈L(ui)

Π(`)

∣∣∣∣∣∣ ≤ γ


≤
∏
i∈[r]

Pr
Π

∣∣∣∣∣∣
∑

`∈L(ui)

Π(`)

∣∣∣∣∣∣ ≤ γ

∣∣∣∣∣ {Π(`) | ` ∈
⋃
j<i

L(uj)}


(3.2)

Fix any i ∈ [r] and Π(`) for each ` ∈ L<i :=
⋃
j<i L(uj). Note that the event

|
∑

`∈L(ui)
Π(`)| ≤ γ is equivalent to

∑
`∈L(ui)\L<i Π(`) ∈ I for some interval I of

length 2γ = O(
√
t). This is the probability that the sum of at least t independent

uniformly chosen {−1, 1}-valued random variables lies in an interval of length
O(
√
t). By the Central Limit theorem, this can be bounded by 1− Ω(1).

By (3.2), we get

Pr
Π

[Π γ-correlated to T ] ≤ exp{−Ω(r)}

which gives the statement of the claim.

3.2 Lower bounds for circuits with rotations of
one parse tree

Given two parse trees T1 and T2 with the same number of leaves, we say that T1

is a rotation of T2, denoted T1 ∼ T2, if T1 can be obtained from T2 by repeatedly
reordering the children of various nodes in T2. Clearly, ∼ is an equivalence
relation. We use [[T ]] to denote the equivalence class of tree T. We say that a
homogeneous circuit C is rotation UPT or rotUPT if there is a tree T such that
T (C) ⊆ [[T ]]. The tree T is said to be a template for C.

Our main result in this section is the following.

Theorem 3.7

Let C be a rotUPT circuit of size s computing a polynomial f ∈ F〈X〉 of
degree d over N variables, then there exists a partition Π = ΠC such that
rel-rank(f,Π) is at most poly(s) ·N−Ω(d).
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In particular, we get the following corollary.

Corollary 3.8

Let N, d ∈ N be parameters with d even. Let |F| > q0(N, d) where q0(N, d)
is as in Theorem 1.17. Then, any rotUPT circuit for FN,d over F has size
NΩ(d).

Proof outline. Our starting point is a decomposition lemma of Hrubeš et
al. [17] and its subsequent strengthening in [30]. As noted in [17], any homo-
geneous polynomial f of degree d computed by a non-commutative circuit of
small size can be written as a small sum of polynomials of the form g ×j h,
where g, h are homogeneous polynomials of degrees in the range [d/3, 2d/3].
It was observed in [30] that for certain special kinds of circuits, this statement
can be strengthened to yield a decomposition where each term g ×j h satis�es
deg(g) = d′ for some �xed d′ ∈ [d]. This was used, with d′ = 3d/4, to prove a
lower bound for non-commutative skew circuits in [30].

Here, we use a similar idea to show that whenever the template T has a node
of degree d′ ∈ [(3/4)d, (11/12)d], then the corresponding rotUPT circuit C is low
rank w.r.t. the partition Π2 = (Y2, Z2) where Y2 = [d/4 + 1, 3d/4].

It remains to handle the case when T has no such “large degree” node. To
see what happens in this case, consider the extreme case when the root v of T
has two children u1 and u2 of degree d/2 each. In this case, it is easily seen that
every parse formula computes two monomials of degree d/2 which are multiplied
together to compute the output monomial. From here, it is not hard to show
that the polynomial computed by the circuit C can be written as a small sum of
polynomials of the form g ·hwhere g and h have degree d/2 each. As observed by
Nisan [38], this implies that C is now low-rank w.r.t. the partition Π1 = (Y1, Z1)
where Y1 = [d/2]. The more general case is an abstraction of this argument to
allow for a few “low-degree” nodes near the root and also for a single large degree
node v to have many small degree children (as opposed to just two in the above
example).

We now begin with the proof. First, we will need a decomposition lemma for
non-commutative circuits. The following is a variant of lemmas proved in [17, 30]
and Chapter 2.

Lemma 3.9: A decomposition lemma for homogeneous circuits

Let C be any homogeneous arithmetic circuit of size s computing f ∈ F〈X〉
of degree d. Assume that there is some d′ ∈ [d/2 + 1, d] such that every
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parse formula C ′ of C contains a gate computing a (homogeneous) polyno-
mial of degree d′. Let Φ1, . . . ,Φr (r ≤ s) be the set of × gates computing
polynomials of degree d′ in C and let g1, . . . , gr be the polynomials they
compute (respectively). Then, there exist homogeneous polynomials hi,j
(i ∈ [r], j ∈ [0, d− d′]) of degree d− d′ such that

f =
r∑
i=1

d−d′∑
j=0

gi ×j hi,j.

Proof. We will �rst simplify the circuit C so that each gate Φ appears in some
parse formula of C . If Φ appears in no parse formula of C , then we can remove it
from the circuit without changing the polynomial computed by the circuit.

We consider a topological ordering of the gates of the circuit C so that if the
gate Φ computes a polynomial of degree at most the degree of the gate Ψ, then Φ
appears before Ψ in the ordering. This can be done since C is a homogeneous
circuit.

Let Ψ1, . . . ,Ψp (p ≤ s) be this topological ordering of the gates and let fk
be the polynomial computed at Ψk (k ∈ [p]). Let dk = deg(fk). We prove by
induction on k ∈ [p] that if dk ≥ d′, then

fk =
r∑
i=1

d−d′∑
j=0

gi ×j h(k)
i,j . (3.3)

for some homogeneous polynomials h(k)
i,j of degree d− d′ each. Note that this is

vacuously true for k such that deg(fk) < d′.
If the gate Ψk is a × gate of degree dk ≥ d′, then we have the following

possibilities:

• dk = d′: In this case fk = gi for some i ∈ [r] and hence we can take h(k)
i,0 = 1

and h(k)
i′,j′ = 0 for all other i′, j′ pairs.

• dk > d′: In this case fk = fk1 · · · fkt for some t and k1, . . . , kt < k. We
observe that one of dk1 , . . . , dkt must be at least d′.
To see this, assume that dka < d′ for each a ∈ [t] and consider any parse
formula C ′ containing Ψk (such a formula must exist since otherwise Ψk

would have been removed in the �rst simpli�cation step). By our assumption
on the circuit, C ′ must also contain some gate Ψ′ computing a polynomial
of degree exactly d′. Note that Ψ′ does not lie in the subcircuit ofC ′ induced
by the gate Ψk since all the non-output gates of this subcircuit compute
polynomials of degree < d′ and the output gate computes a polynomial
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of degree > d′. Also, as dk > d′, Ψk does not appear in the subcircuit of
C ′ induced by Ψ′. Consider the parse tree T obtained by unraveling the
circuit C ′. By the observations above, Ψk gives rise to (at least) one node u
in T of degree dk > d′ and Ψ′ gives rise to a node v in T of degree d′. Thus,
the degree of the root is at least deg(u) + deg(v) > 2d′ > d, which is a
contradiction since in a homogeneous circuit all parse trees have exactly d
leaves.
So we can assume that deg(fka) ≥ d′ for some a ∈ [t]. Applying the
induction hypothesis to fka we have

fka =
r∑
i=1

d′∑
j=0

gi ×j h(ka)
i,j .

for suitable h(ka)
i,j of degree dka − d′ each. Thus, we have

f = fk1 · · · fkt =
r∑
i=1

dka−d′∑
j=0

f1 · · · fka−1 · (gi ×j h(ka)
i,j ) · fka+1 · · · fkt

=
r∑
i=1

dka−d′∑
j=0

gi ×j+dk1
+···+dka−1

(f1 · · · fka−1h
(ka)
i,j fka+1 · · · fkt)

where for the �nal equality we have used the observation that (g ×j h)×j′
h′ = g ×j+j′ (h×j′ h′) for any homogeneous polynomials g, h, h′ and any
relevant j, j′.
For any j ∈ [0, dka − d′], we have j′ := j + dk1 + · · ·+ dka−1 ∈ [dk1 + · · ·+
dka−1 , dk − d′]. Hence, setting h(k)

i,j′ = f1 · · · fka−1h
(ka)
i,j fka+1 · · · fkt for each

j′ ∈∈ [dk1 + · · · + dka−1 , dk − d′], and 0 for all j′ < dk1 + · · · + dka−1 , the
above yields (3.3) in this case.

If the gate Ψk is a + gate of degree dk ≥ d′, then it is a linear combination of
gates Ψk1 , . . . ,Ψkt of degree dk each. By induction, for each a ∈ [t], we have

fka =
r∑
i=1

d−d′∑
j=0

gi ×j h(ka)
i,j .

Say fk =
∑

a αafka where αa ∈ F. Then using the fact that ×j is bilinear, we get

fk =
∑
a∈[t]

αafka =
r∑
i=1

d−d′∑
j=0

∑
a

αa(gi ×j h(ka)
i,j ) =

r∑
i=1

d−d′∑
j=0

gi ×j (
∑
a

αah
(ka)
i,j ))

which is of the form required in (3.3). This completes the induction.
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We now prove the main theorem of this section.

Proof of Theorem 3.7. Let C be rotUPT of size s computing a polynomial f of
degree d over N variables, and let T be a template for C . Let Πi = (Yi, Zi) for
i ∈ [2] be two partitions of [d] with Y1 = [d/2] and Y2 = [d/4 + 1, 3d/4]. We will
show that rel-rank(f,Π) ≤ poly(s) ·N−Ω(d) for at least one Π ∈ {Π1,Π2}.

We consider two cases:

Case 1: there is a node of degree d0 ∈ [3
4
d, 11

12
d] in the template T . Note

that every rotation T ′ ∈ [[T ]] also has a node of degree d0. Since every parse tree
of C is a member of [[T ]], this implies that each parse formula C ′ of C contains
a gate of degree d0. Applying Lemma 3.9 with d′ = d0, we see that there are
k ≤ s homogeneous polynomials g1, . . . , gk of degree d0 and k · (d − d0 + 1)
homogeneous polynomials hi,j (i ∈ [k], j ∈ [0, d−d0]) of degree d−d0 such that:

f =
k∑
i=1

d−d0∑
j=0

gi ×j hi,j (3.4)

We show that each term of the above decomposition has low relative rank w.r.t.
the partition Π2 de�ned above. Fix a term gi ×j hi,j from the decomposition
above. Let Π′j = (Y ′j , Z

′
j) where Y ′j = [j + 1, j + d0]. By Corollary 1.14, we see

that rank(gi ×j hi,j,Π′j) ≤ 1.
A straightforward calculation shows that ∆(Π′j,Π2) = d0 − d

2
= d

2
− Ω(d)

for all j. Hence, by Lemma 1.16, we see that rank(gi ×j hi,j,Π2) ≤ N (d/2)−Ω(d)

and hence rel-rank(gi ×j hi,j,Π2) ≤ N−Ω(d) for each i, j.
Using (3.4) and the subadditivity of rank, we see that rel-rank(f,Π2) ≤ (sd) ·

N−Ω(d) ≤ s2 ·N−Ω(d).

Case 2: there is no gate of degree d0 ∈ [3
4
d, 11

12
d] in the template T . In this

case, we show that rel-rank(f,Π1) is small, where Π1 is as de�ned above.
Let v be the node in T such that deg(v) > 11

12
d and all its children have degree

≤ 11
12
d. Note that such a v is uniquely de�ned (if there were another such node v′, it

cannot be an ancestor or descendant of v; hence, we see that the number of leaves
in T is at least deg(v) + deg(v′) > d which is a contradiction). Let d′0 = deg(v).
Let v1, . . . , vt be the children of v in T and assume that deg(vi) = d′i. Note that
d′i <

3d
4

for each i.
As in the previous case, we see that every parse formula contains a gate of

degree d′0 and hence applying the lemma with d′ = d′0 we get

f =
∑̀
i=1

d−d′0∑
j=0

g′i ×j h′i,j (3.5)
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where g′1, . . . , g′` (` ≤ s) are the polynomials of degree d′0 computed by multipli-
cation gates in C . We show that for each i, j, rel-rank(g′i ×j h′i,j,Π1) ≤ N−Ω(d).
As in the previous case, this will imply rel-rank(f,Π) ≤ s2 ·N−Ω(d).

Fix any i, j. We use g and h instead of g′i and h′i,j . We know that g is a
polynomial computed by some × gate Φ of degree d′0 in the circuit. Consider the
+ gates feeding into Φ. Since every parse tree T ′ of C is a rotation of T , it must be
the case that there are exactly t such + gates Ψ1, . . . ,Ψt computing polynomials
g̃1, . . . , g̃t such that g = g̃1 · · · g̃t. Assume that deg(g̃a) = d′′a for each a ∈ [t].
Then {d′′1, . . . , d′′t } = {d′1, . . . , d′t} as multisets, where d′a = deg(va) as de�ned
above; in particular, d′′a < 3

4
d for each a.

Thus, g×j h = (g̃1 · · · g̃t)×j h. For any a ∈ [t], we note that we can also write
g ×j h = (g̃1 · · · g̃a)×j ha where ha := (g̃a+1 · · · g̃t)×j h. Let Π′′a = (Y ′′a , Z

′′
a ) be

the partition of [d] such that Y ′′a = [j+ 1, j+d′′1 + · · ·+d′′a]. By Corollary 1.14, we
know that rank(g ×j h,Π′′a) = rank((g̃1 · · · g̃a) ×j ha,Π′′a) ≤ 1 for each a ∈ [t].
Therefore, by Lemma 1.16, to prove that rel-rank(g×j h,Π1) ≤ N−Ω(d), it su�ces
to show that ∆(Π′′a,Π1) ≤ d

2
− Ω(d) for some a ∈ [t]. We do this now.

Consider the least b ∈ [t] so that d′′1 +d′′2 +· · ·+d′′b ≥ 1
20
d. Let δ = d′′1 +· · ·+d′′b .

Since each d′′a < 3
4
d, we know that δ ∈ [ 1

20
d, d− 1

5
d]. Note that for partition Π′′b ,

we have ∆(Π′′b ,Π1) = |Y ′′b ∆Y1| where Y ′′b = [j + 1, j + δ] and Y1 = [1
2
d]. We

thus get

|Y ′′b ∆Y1| ≤ j + |d
2
− (j + δ)| = j + max{d

2
− (j + δ), j + δ − d

2
}

= max{d
2
− δ, 2j + δ − d

2
} =

d

2
−min{δ, d− (2j + δ)}.

Since δ ≥ 1
20
d and (2j + δ) ≤ 2 · 1

12
d + d − 1

5
d < d − Ω(d), we see that

∆(Π′′b ,Π1) = |Y ′′b ∆Y1| = d
2
− Ω(d). This completes the proof.
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Remark 3.10

We note that the proof of the theorem yields the stronger statement that
f is low-rank w.r.t. one of the two partitions Π1 and Π2. It is not hard
to use this to prove a lower bound for an even simpler polynomial than
the polynomial FN,d from Theorem 1.17, by taking for example g(X) =
αPald(X) + βPald/2(X)× Pald/2(X) for suitable α, β ∈ F to ensure that

rank(g,Π1) = rank(Pald(X),Π1) = Nd/2

and

rank(g,Π2) = rank(Pald/2(X)× Pald/2(X),Π2) = Nd/2.

Note also that g(X) is computable by a small 2-PT circuit, hence 2-PT 6⊂
rot-PT.
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Chapter 4

Towards a separation between
Formulas and ABPs

k-pt formulas

UPT formulas

general circuits

UPT formulas

k-pt formulas

formulas ABPs

skew

weighted automata
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weighted tree automata
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Figure 4.1: You are here.

Overview

In the previous chapters, we make some progress in proving lower bounds for
circuits closer and closer to general circuits by restricting the parse trees in the
circuits. In this chapter, we make progress on the “Formulas vs. ABPs” question,
using the same approach: we use restrictions on the parse trees that appear in
formulas. More precisely, we prove some tight lower bounds for formulas (with
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some restrictions on the parse trees) computing IMMn,d, yielding separations
from ABPs. More speci�cally, we prove in Section 4.2 a tight superpolynomial
lower bound on the size of any UPT formula that computes IMMn,d. In Section 4.3,
we prove a superpolynomial lower bound for any formula computing IMMn,d

as long as the number of distinct parse trees is signi�cantly smaller than 2d

(assuming d ≤ log n).
This chapter is based on the following publication:

• Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower bounds
and PIT for non-commutative arithmetic circuits with restricted parse trees.
In 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 41:1–41:14,
2017

• Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower bounds
and PIT for non-commutative arithmetic circuits with restricted parse trees
(extended version). To appear in Computational Complexity

4.1 Notation anddecomposition lemma for labelled
UPT formulas

In this section, we �x some notation that will be used in the rest of Chapter 4.
We also prove that any polynomial computed by a labelled UPT formula (de�ned
below) admits a speci�c decomposition, given by Lemma 4.5.

Throughout the chapter, the setX will be a set ofN = n2d variables satisfying
X =

⋃
i∈[d] Xi where each Xi has n2 variables. Let Mi be an n× n matrix whose

entries are distinct variables from Xi. Recall from Section 1.1 that IMMn,d =
Tr(M1 · · ·Md) ∈ F〈X〉.

Algebraic Branching Programs

We also consider homogeneous algebraic branching programs (ABPs), de�ned by
Nisan in the non-commutative context. We give here a slightly di�erent de�nition
that is equivalent up to polynomial factors.

A homogeneous algebraic branching program (ABP) for a homogenous poly-
nomial f ∈ F〈X〉 of degree d is a pair (n1, ρ) where n1 ∈ N and ρ is a map from
X ′ = {x′1, . . . , x′n2

1d
} to homogeneous linear functions from F〈X〉 such that f

can be obtained by substituting ρ(x′i) for each x′i in the polynomial IMMn1,d(X
′).

The parameter n1 is called the width of the ABP.
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Other notation and �rst properties

For I = {i1 < · · · < it} ⊆ [d], we de�ne the set of I-monomials to be the set of
monomials of the form x1 · · ·xt where xj ∈ Xij . Also, we de�ne PI to be the
set of those polynomials P over the variables

⋃
j∈[t] Xij that can be written as a

linear combination of I-monomials. We de�ne IMMI to be Tr(Mi1 · · ·Mit). Note
that IMMI ∈ PI .

Given I as above and f ∈ PI , we de�ne MI(f) to be a n2d t
2
e × n2b t

2
c matrix

whose rows and columns are labelled by Iodd-monomials and Ieven-monomials re-
spectively, where Iodd = {i1, i3, i5, . . .} and Ieven = {i2, i4, i6, . . .}. The (m′,m′′)th
entry of MI(f) is the coe�cient in f of the I-monomial which is equal to m′
when restricted to its odd locations and m′′ when restricted to its even locations.
Note that rank(MI(f)) ≤ n2b t

2
c. We de�ne rel-rankI(f) = rank(MI(f))/n2b t

2
c.

We will need the following simple observations.

Observation 4.1

For any I ⊆ [d] of size t and any f ∈ PI , we have rank(MI(f)) ≤ n2bt/2c.
For any I ⊆ [d] of size t, we have rank(MI(IMMI)) = n2bt/2c, and hence
rel-rankI(IMMI) = 1.

Let T be a parse tree with t leaves and I = {i1 < i2 < · · · < it}. The
I-labelling of T is the function lab : T → 2I \ {∅} de�ned as follows. For each
u ∈ L(T ) (recall that L(T ) is the set of leaves of T and I(T ) is the set of internal
nodes of T ), we de�ne lab(u) to be {ij} if u is the jth leaf in the pre-order
traversal of T . We will sometimes abuse notation and write lab(u) = ij . For each
v ∈ I(T ), we de�ne lab(v) to be the set of labels of the leaves in the subtree
rooted at v.

Let F be a UPT formula of shape T . By Proposition 2.3, we know that F is
in normal form. We say that F is I-labelled if for each input gate Φ of F that is
a (u,×)-gate with u ∈ L(T ), the variable labelling Φ lies in the set Xlab(u). The
following is an easy observation.
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Observation 4.2

IfF is an I-labelled UPT formula with shapeT , then it computes a polynomial
from PI . More generally, if Φ is a (u,+) or (u,×) gate of F with u ∈ T ,
then Φ computes a polynomial from Plab(u).

Further, for any F that is a UPT formula of size at most s computing a
polynomial f , there is an I-labelled UPT formula F ′ of shape T and size at
most s that computes the polynomial f ′ ∈ PI that is obtained from f by
zeroing out the coe�cients of all monomials that are not I-monomials.

In the lower bound proofs, we follow a strategy used by Nisan and Wigder-
son [39], and show that any small formula (with suitably restricted parse trees)
can be converted to a low-rank polynomial after setting a subset of the variables.
To make this precise, we need the notion of a restriction, which we de�ne now.

A restriction is formally just a subset I ⊆ [d], which represents a substitution
ρI of the set of variables in X =

⋃
i∈[d] Xi as follows:

ρI(x) =


x if x ∈

⋃
i∈I Xi,

0 if x is an o�diagonal entry of Mj for j 6∈ I ,
1 if x is a diagonal entry of Mj for j 6∈ I .

In other words, we substitute all the variables in
⋃
j 6∈I Xj such that each Mj

(j 6∈ I) becomes the identity matrix. All variables from the set
⋃
i∈I Xi are left as

is.
Every polynomial P ∈ F〈X〉 is transformed in the natural way by such a

substitution. We call this new polynomial a restriction of P and denote it by P |I .
Let T be a parse tree with d leaves. For any restriction I , let T |I denote the

tree obtained by removing all nodes u ∈ T such that lab(u)∩ I = ∅ (in particular
only leaves with labels from I survive in T |I ). The I-labelling of the tree T |I is
given by the labelling function labI where labI(u) = lab(u) ∩ I .

We make the following simple observations.

Observation 4.3

1. If P ∈ P[d], then P |I ∈ PI .

2. IMMn,d|I = IMMI .

We note that the above restrictions don’t increase the complexity of the
polynomial as far as UPT formulas are concerned.
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Lemma 4.4

For any [d]-labelled UPT formula F of size s and shape T computing some
f (note that f ∈ P[d] by Observation 4.2), there is a UPT formula F |I of size
at most s and shape T |I computing f |I .

Proof. Let F be as in the statement and I be any restriction. If we replace every
variable in the formula F by ρI(x), we obtain by de�nition a formula F ′ which
computes f |I . F ′ is not a UPT formula since the leaves which were labeled by a
variable from Xj (j 6∈ I) have been replaced by some constants, whereas leaves
in a UPT formula have to be variables. We now transform F ′ to a UPT formula
F |I in the following way. Let u, v be any pair of nodes in T with lab(u) ∩ I = ∅
and lab(v) ∩ I 6= ∅. Each (u,+)-gate Ψ in F ′ computes a constant (say α) and
is wired to a (v,×)-gate Φ in F ′. We delete the subformula rooted at Ψ from F ′

and multiply by α the constant labelling the output wire of Φ. By doing this for
every u, v and Ψ, the formula F ′ becomes a new formula F |I which is UPT with
shape T |I , and still computes f |I .

Decomposition lemma

We now state a decomposition lemma for UPT formulas which will help us choose
suitable restrictions that help simplify small formulas to low-rank polynomials.

Let T be a parse tree and π = (vr, . . . , v0) a path of length r in it1. We say
that u is an o�-path node of π if there is an i < r such that u is a child of vi and
u 6= vi+1. The set of o�-path nodes of π is denoted off(π).

1Recall that our trees are oriented towards the root.
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Lemma 4.5

Let F be an I-labelled UPT formula of size s with shape T computing a
polynomial f ∈ PI , and let π = (vr, . . . , v0) be a path in T . If we de�ne uj
to be the jth node of off(π)∪ {vr} that appears in the pre-order traversal of
T , then we can decompose f as:

f =
k∑
i=1

t∏
j=1

fi,j

where

• k ≤ s,

• t = |off(π) ∪ {vr}|,

• fi,j ∈ Plab(uj).

Proof. LetF be an I-labelled UPT formula as in the statement and π = (vr, . . . , v0)
be a path in T . Let (u1, . . . , ut) be the ordering of the set of nodes (off(π)∪ {vr})
given by a pre-order traversal of T . By Proposition 2.3, F is in normal form.

We say that a path in the formula F is of signature π if the +-gates along this
path are successively a (vr,+) gate, a (vr−1,+) gate, and so on until we get a
(v0,+) gate. Let k be the number of paths in F with signature π, and p1, p2, ..., pk
be these paths. As F is a formula, the number of paths from a leaf to the root is
upper bounded by s. Therefore k ≤ s.

Each parse formula F ′ (which is a subformula of F ) of F has shape T and
further each +-gate in F ′ has fan-in 1; thus, each parse formula contains one
and only one path of signature π. The set S of parse formulas of F is therefore
naturally partitioned as S = S1 ∪ · · · ∪ Sk, where Si is the set of parse formulas
that contain the path pi. Recall that if F ′ is a parse formula of F , we denote by
val(F ′) the monomial (along with its coe�cient) computed by it. We have:

f =
∑
F ′∈S

val(F ′) =
k∑
i=1

∑
F ′∈Si

val(F ′)

From now, what remains to prove is that for each a ∈ [k],
∑

F ′∈Sa
val(F ′) is

of the form
t∏

j=1

fi,j with the additional property that each fi,j is a polynomial in

60



Plab(uj).

We �x a particular a ∈ [k]. The polynomial
∑

F ′∈Sa
val(F ′) is nothing else

than the polynomial computed by the I-labelled UPT formula G where for all
m ∈ {0, . . . , r}, each (vm,+) gate that is not present on the path pa has been
deleted (together with the entire subformula at that gate). Observe that for all m,
the (vm,+) gate in G is of in-degree and out-degree 1, except for the output gate,
which is a (v0,+) gate of in-degree 1 and is of out-degree 0.

Let pa = Φr,Ψr−1,Φr−1,Ψr−2,Φr−2, . . . ,Φ1,Ψ1,Φ0, where Φ0 is the root
and for each m, Φm is the (vm,+)-gate and Ψm is the (vm,×)-gate in pa. By con-
struction, the path pa is present in G. We prove by induction that the following
statement H(m) holds for each m ≤ r,

H(m): If we denote by (w1, . . . , wtm) the ordering of the set off((vr, . . . , vm)) ∪
{vr} given by a pre-order traversal of T , then the polynomial computed by Φm

in G is of the form
tm∏
j=1

gj where:

• tm = |off((vr, . . . , vm)) ∪ {vr}|

• gj ∈ Plab(wj)

We now prove H(m) by downward induction on m. It is clearly true when
m = r since tr = 1, as F is an I-labelled UPT formula and hence the polynomial
computed by Φr is an element of Plab(vr).

Assume the statement H(m+ 1) and let
∏

j∈[tm+1] hj be the decomposition
of the polynomial computed by the gate Φm+1 given by the induction hypothesis.
The polynomial computed by Φm (a +-gate of fan-in 1 in the formula G) is
the product of the inputs of Ψm: assume that these inputs are (in left-to-right
order) Φ′1, . . . ,Φ

′
b with each Φ′` being a (w′′` ,+)-gate for some w′′` ∈ T . Let

P` be the polynomial computed by Φ′` (` ∈ [b]). The gate Φm+1 is one among
Φ′1, . . . ,Φ

′
b: let us say it is Φ′c. The polynomial computed by Φm is equal to

b∏̀
=1

P` = (
c−1∏̀
=1

P`).(
tm+1∏
j=1

hj).(
b∏

`=c+1

P`) by the induction hypothesis. Each P` is

computed by a (w′′` ,+)-gate and is thus a polynomial inPlab(w′′` ) (Observation 4.2),
and by induction, the hj are polynomials in Plab(w′j)

, where w′1, . . . , w′tm+1
is the

ordering of off((vr, . . . , vm+1)) ∪ {vr} given by the pre-order traversal of T . But
observe that w′′1 , . . . , w′′c−1, w

′
1, . . . , w

′
tm+1

, w′′c+1, . . . , w
′′
tm is exactly the ordering

of off((vr, . . . , vm)) ∪ {vr} given by the pre-order traversal of T , so that the
induction holds, and the lemma is proved.
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Proof outline of the two lower bounds contained in this chapter. The
basic proof strategy is to choose a suitable I ⊆ [d] and apply this restriction to
the polynomial IMMn,d as well as the formula computing it. By Observation 4.3,
under any such restriction, IMMn,d becomes the polynomial IMMI which, by
Observation 4.1, has reasonably large relative rank. On the other hand, for any
given small formula (with some restriction on the parse trees), we show that there
is a suitable choice for the restriction that makes its relative rank quite small. This
will prove the lower bound.

The choice of the restriction to make a small formula low rank is dictated by
Lemma 4.5. Consider �rst the case of a UPT formula F of shape T which has
depth ∆. In this case, we show that we can �nd a path π = (vr, . . . , v0) in T with
t many o�-path nodes where t is roughly ∆d1/∆. Applying Lemma 4.5, we can
�nd a decomposition of F of the form

s∑
i=1

∏
j∈[t]

fi,j

where s is the size of the formula F ; it is crucial here that the sets of variables
among X1, . . . , Xd that fi,j depends upon is exactly the set of labels of the jth
o�-path node of π and in particular, is the same no matter which iwe choose (this
is where the formula being UPT is used). Say that Ij ⊆ [d] indexes the variable
sets that fi,j depends on. To make sure that these terms are low-rank, we use
the following observation (used also by [39]): for each j such that |Ij| is odd, the
relative rank of the term

∏
j fi,j drops by a factor of 1/n. Thus, if we restrict to a

subset I such that |I ∩ Ij| = 1 for each j, the relative rank of each term is at most
n−t and hence we obtain a lower bound of nt on the size s of the formula. This
gives a lower bound of roughly nΩ(∆d1/∆) on the size of F . With no restriction on
∆, this gives a lower bound of nΩ(log d).

Now consider the case that F is a k-PT formula for k � 2d. In this case,
we �rst write F as a sum of k UPT formulas F1, . . . , Fk (Lemma 3.1) and �nd
a restriction I such that each Fi becomes low-rank with respect to I . To do
this, we note that, by our proof in the UPT case, for some Fj to be low-rank
w.r.t. I , it su�ces to show that after applying the restriction we can �nd some
path π = (vr, . . . , v0) in the corresponding shape such that there are many o�-
path nodes in π whose labels involve an odd number of variable sets among
X1, . . . , Xd.

The way we do this is that we choose a restriction I ⊆ [d] uniformly at
random and show that for any given shape T , the probability that there is no π as
above in the restricted parse tree T |I is very small. With this technical statement
in hand, the proof of the lower bound follows as in the UPT case.

For the rest of this chapter and in order to avoid useless technical details, the
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size of a circuit will be its number of vertices.

4.2 Lower bound for UPT formulas
We de�ne the ×-depth of a formula to be the maximum number of ×-gates
that one can meet on a path from the root to a leaf. Note that if a formula has
alternating + and × gates on each path and has depth ∆′ and ×-depth ∆, then
∆ ≤ d∆′

2
e. We will state our lower bounds bounds in terms of ×-depth.

Throughout this section, we assume that all the UPT formulas we consider
don’t have any multiplication gate of fan-in 1, or equivalently, the shape of any
UPT formula we consider does not have any internal node of fan-in 1. This
assumption is w.l.o.g. as shown below.

Lemma 4.6

Given any UPT formula F of shape T and size s computing a polynomial f ,
there is another UPT formula F ′ of shape T ′ and size at most s computing
f where T ′ has no internal nodes of fan-in 1 (and consequently F ′ has no
×-gates of fan-in 1). Further, if all internal nodes of T have fan-in at most
k ∈ N with k ≥ 2, then the same holds for T ′.

Proof. The transformation process is the following: a multiplication gate of fan-in
1 does not change its input and therefore can be deleted without changing the
polynomial computed. Merging the two layers of +-gates above and below the
deleted gate ensures the formula still alternates between +-gates and ×-gates.
The shape T ′ of the new formula is simply the shape T where the internal nodes
of fan-in 1 have been removed and replaced by an edge. Clearly, the new shape
T ′ has the required property.

Before attacking the main theorem, we will need one more lemma.

Lemma 4.7

Let T be a tree with d leaves and depth ∆, such that all internal nodes are of
in-degree strictly greater than 1. Then there is a path π = (v`, . . . , v0) in T
such that |off(π) ∪ {v`}| ≥ Ω(∆d1/∆).

Proof. Let T be a tree as in the statement. We denote by wt(v) the fan-in of the
node v. We will prove the following equivalent conclusion: there is a path π =
(v`, . . . , v0) from a leaf to the root such that 1 +

∑
0≤i<`

(wt(vi)− 1) ≥ Ω(∆d1/∆).
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We consider two distinct cases:
• Case 1: ∆ > loge(d). In this case, any path p = (v∆, . . . , v0) of depth ∆

satis�es 1 +
∑

0≤i<∆

(wt(vi)− 1) ≥ ∆ + 1 = Ω(∆d1/∆).

• Case 2: ∆ ≤ loge(d). We consider the following greedy procedure to
choose the path of internal nodes: starting from the root, repeatedly choose
a child such that the number of leaves in the resulting subtree is maximized.
Let p = v0, . . . , v` be the sequence of nodes thus obtained. Note that
` ≤ ∆ ≤ loge(d).
We prove by induction on the tree T that the number of leaves of the tree
is at most the product of the fan-ins of v0, . . . , v`−1 (this fact is true for any
tree T and not just trees T of depth at most loge d). If ` = 0, the entire tree
consists of just the root: hence the number of leaves is 1 and the (empty)
product also evaluates to 1. Assume now that the root v0 has k children
corresponding to subtrees T1, T2, . . . Tk. We assume the number of leaves in
the subtree Ti is ti. Assume the greedy algorithm chooses v1 corresponding
to the subtree rooted in Ti (thus, we must have ti ≥ tj for any j ∈ [k]). By

the induction hypothesis,
∏̀
j=1

wt(vj) ≥ ti. Therefore

`−1∏
j=0

wt(vj) ≥ k · ti ≥
k∑
j=1

tj = d

which concludes the induction.
By the inequality of arithmetic and geometric means, we have∑

0≤i<l
wt(v)

`
≥
( ∏

0≤i<`

wt(v)

)1/`

≥ d1/`.

So, we have ∑
0≤i<`

(wt(v)− 1) ≥ `(d1/` − 1).

Notice that the right part of this inequality is a decreasing function of ` in
the regime ` ≤ loge(d), so that:∑

0≤i<`

(wt(v)− 1) ≥ ∆(d1/∆ − 1) = ∆d1/∆(1− 1

d1/∆
)

≥ ∆d1/∆(1− 1

e
)

= Ω(∆d1/∆).
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We now prove a lower bound for any UPT formula computing IMMn,d. The
lower bound is depth-dependent and stronger for smaller depths.

Theorem 4.8

Let F be a UPT formula of ×-depth ∆, size s, computing IMMn,d ∈ F〈X〉.
Then, s ≥ nΩ(∆d1/∆). In particular, any UPT formula for IMMn,d must have
size nΩ(log d).

By our earlier observation relating the ×-depth with depth, we get the lower
bound stated in the introduction.

Proof. Let F be a UPT formula as in the statement. Let T be the shape of F : note
that the depth of T is precisely the ×-depth of F which is ∆.

By Lemma 4.2, we can assume w.l.o.g that the formula F is [d]-labelled and
hence that the variables that label any input gate Φ of F corresponding to a
node v(Φ) ∈ T are all included in Xlab(v(Φ)) where lab is the [d]-labelling of T .
By Lemma4.7, there is a path π = (v`, . . . , v0) in the shape T of F , such that
|off(π) ∪ {v0}| ≥ Ω(∆d1/∆). Let us denote by t the size of off(π) ∪ {v0}. We
decompose IMMn,d along this path by Lemma 4.5, as:

IMMn,d(X1, X2, ..., Xd) =
k∑
i=1

t∏
j=1

fi,j

with k ≤ s. Each fi,j is aPlab(uj) where (u1, . . . , ut) is the ordering of off(π)∪{v0}
given by a pre-order traversal of T .

We now apply a restriction to this equality given by the subset I choosen in
the following way: for each j, we select one element from lab(uj) — we call it pj
— and add it to I . The set I is of size t. Under this restriction, each fi,j becomes a
homogeneous linear polynomial in the variables Xpj . We call these homogeneous
linear polynomials li,j . On the other hand, we know (Observation 4.3) that
IMMn,d|I = IMMI . We thus get

IMMI =
k∑
i=1

t∏
j=1

li,j.

It is not hard to see that for each i, rank(MI(
t∏

j=1

li,j)) ≤ 1. By Observation 4.1

and subadditivity of the rank, we get:

n2bt/2c−1 ≤ k
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Therefore, we get

s ≥ k ≥ nΩ(∆t1/∆)

as wanted.

Remark 4.9

Notice that this lower bound is tight for every×-depth ∆, since the standard
divide and conquer approach to computing IMMn,d gives in fact a UPT
formula of size nO(∆d1/∆) and ×-depth ∆, for any ∆ ≤ log d.

4.3 Separation between k-PT formulas and ABPs

In this section, we will prove a lower bound on the size of k-PT formulas com-
puting IMMn,d as long as k is signi�cantly smaller than 2d. Recall that the total
number of parse trees with d leaves is 2O(d) (see for example [11]) and hence
the results of this section may be intuitively interpreted as saying that any non-
trivial upper bound on the number of parse trees appearing in the formula gives
a separation between non-commutative formulas and ABPs.

The main theorem of this section is the following.

Theorem 4.10

Let n, d be growing parameters with d ≤ log n. Then, any k-PT formula
F computing IMMn,d has size at least n` where ` = Ω(log d − log log k).
In particular, if k = 2o(d), then size(F ) ≥ nω(1) and if k = 2d

1−Ω(1) , then
size(F ) ≥ nΩ(log d).
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Remark 4.11

We say a few words about the assumption d ≤ log n. The standard divide-
and-conquer approach computing IMMn,d yields a (UPT) formula of size
nO(log d). It would be quite surprising if this standard algorithm were not
optimal in terms of formula size (even for non-UPT formulas).

Intuitively, improving on the standard divide-and-conquer algorithm
gets harder as d gets smaller: this is because any formula of size no(log d)

for computing IMMn,d can be straightforwardly used to recursively obtain
formulas for IMMn,D of size no(logD) for any D > d. Thus, the case of
smaller d, which seems harder algorithmically, is a natural �rst candidate
for lower bounds.

Let T be a parse tree. We say that a node u ∈ T is odd if the number of leaves
in the subtree rooted at u is odd. Given a path π, let odd(π) denote the set of odd
o�-path nodes of π.

Lemma 4.12

Let F be an I-labelled UPT formula of size s with shape T computing
polynomial f . If T has a path π = (vr, . . . , v0) with |odd(π)| ≥ `, then

rel-rankI(f) ≤ s

n`−1
.

Proof. Let (u1, . . . , ut) be the ordering of the set of nodes (off(π) ∪ {v0}) given

by a pre-order traversal of T , and f =
k∑
i=1

t∏
j=1

fi,j be a decomposition given

by Lemma 4.5, where each fi,j is in Plab(uj). By Observation 4.1, we know
that rank(MI(fi,j)) ≤ n2b|lab(uj)|/2c. Hence, by the subadditivity of rank and
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Lemma 1.13, we have:

rank(MI(f)) ≤
k∑
i=1

t∏
j=1

rank(MI(fi,j))

≤
k∑
i=1

t∏
j=1

n2b
|lab(uj)|

2
c

=
k∑
i=1

n
2

t∑
j=1
b
|lab(uj)|

2
c

=
k∑
i=1

n2(b |I|
2
c−b |odd(π)|

2
c)

As k ≤ s, this implies that rel-rankI(f) ≤ s

n2b |odd(π)|
2 c

≤ s
n`−1 .

We now try to show that, given a small k-PT formula, there is a suitable
choice of the restriction that makes its relative rank quite small. To do this, we
will use Lemma 4.12, which translates the statement to a combinatorial statement
about some trees. On the other hand, IMM remains high rank under arbitrary
restrictions by Observation 4.1. This will prove Theorem 4.10.

The main technical lemma in the proof of Theorem 4.10 is the following.

Lemma 4.13

Let T be any tree with d leaves such that every internal node has fan-in ex-
actly 2. Assume we choose I ⊆ [d] by adding each i ∈ [d] to I independently
with probability 1/2. Then for any ` ∈ N

Pr
I

[T |I has no path π such that |odd(π)| ≥ `] ≤ exp(−Ω(
d

28`
)).

Postponing the proof of the above lemma to the end of this section, we can
prove Theorem 4.10 as follows.

Proof of Theorem 4.10. We assume throughout that log d− log log k is larger than
a large enough constant (to be chosen later), since otherwise the theorem is trivial.
Let ` = b 1

10
(log d− log log k)c.

Assume that F is a k-PT formula of size s computing IMMn,d. If s ≥ n`/4,
then we are done.

68



Otherwise, we argue as follows. By Lemma 3.1, there exist UPT formulas
F1, . . . , Fk of size at most s2 each such that

IMMn,d =
k∑
i=1

fi

where fi is the polynomial computed by Fi. Let Ti denote the shape of Fi. By
Lemma 2.1, we can assume that each internal node of Ti has fan-in exactly 2.

By Observation 4.2 and Lemma 4.6, for each Fi, there is a [d]-labelled UPT
formula F ′i of shape Ti and size at most s2 that computes the polynomial f ′i that
is obtained from fi by removing monomials that are not [d]-monomials. Since
IMMn,d ∈ P[d], we see that

IMMn,d =
k∑
i=1

f ′i . (4.1)

Now, choose a random restriction I by adding each j ∈ [d] to I independently
with probability 1/2. Consider the relative rank of the polynomials on both sides
of (4.1) after the restriction. For the left hand side, we know using Observation 4.1
that for any I ,

rel-rankI(IMMn,d|I) = rel-rankI(IMMI) = 1. (4.2)

We now consider the right hand side of (4.1). By Lemma 4.4, for any choice of
restriction I and i ∈ [k], the restricted polynomial f ′i |I has a UPT formula F ′i |I of
size at most s2 and shape Ti|I computing f ′i |I . For each i ∈ [k], let Ei denote the
event that Ti|I has no path π such that |odd(π)| ≥ `. By Lemma 4.13, we know
that the probability of Ei is at most exp(−Ω( d

28` )). Let E =
∨k
i=1 Ei. By a union

bound we have
Pr [E ] ≤ k · exp

(
−Ω

(
d

28`

))
< 1 (4.3)

if (log d − log log k) is larger than some �xed constant. If I is such that the
event E does not occur, then for this choice of I and any i ∈ [k], by Lemma 4.12,
rel-rankI(f

′
i |I) ≤ s2

n`−1 ≤ 1
n(`/2)−1 , where the �nal inequality follows from our

assumption that s < n`/4. Now, since rel-rankI(·) is subadditive, we have

rel-rankI(
∑
i∈[k]

f ′i) ≤
k

n(`/2)−1
≤ 2d

n(`/2)−1
≤ 1

n(`/2)−2
< 1

where the �nal two inequalities follow from the fact that d ≤ log n and the
assumption that ` is greater than some �xed constant. This contradicts (4.1) and
(4.2) and hence concludes the proof of the theorem.
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Proof of Lemma 4.13

We impose a natural partial order on the vertices in T by saying that u � v for
u, v ∈ T if v is an ancestor of u. Given a set of paths P = {π1, . . . , πr} in the tree
T , we say that P is independent if the sets off(πi) (i ∈ [r]) are pairwise disjoint
and moreover, the set off(P ) :=

⋃
i off(πi) forms an antichain w.r.t. the partial

order � (informally, no node in off(P ) is an ancestor of another).
We show the following claim.

Claim 4.14

Assume T is as in the statement of the lemma. Then for any ` ≥ 1, there is
an independent set P of paths in T of length ` such that |P | = Ω(d/22`).

Proof. Given a tree T as in Lemma 4.13, let us de�ne T ′ to be the subtree of T
which contains every node of T that has height ` or more (here the height of
a node u is the length of the longest path from a leaf from L(u) to u). Though
every internal node in T has degree two, T ′ may have internal nodes of degree
two as well as one. The leaves of T ′ are those internal nodes of T that have height
exactly `.

The main idea is as follows: Suppose T ′ has ‘many’ leaves, then it is easy to
�nd many independent paths in T . This is because each leaf v of T ′ is a node in T
with at least one path of length ` rooted at v. This gives us as many independent
paths as the number of leaves in T ′. On the other hand, if T ′ does not have many
leaves, then it also does not have many fan-in two nodes. In this case, by throwing
away all fan-in two nodes of T ′, we get many components. Each component is
a path and not all can be of length less than `. Subdividing the long paths into
paths of length ` then gives us the set of independent paths2. We now work out
the details.

As every internal node of T has degree two, the number of nodes at height h,
for any parameter h ≥ 1, is at least half of the number of nodes at height h− 1.
It follows that the number of leaves in T ′ and therefore |T ′| is ≥ d

2`
. We use s to

denote |T ′|.

Case I, the number of leaves in T ′ is ≥ s/100`: Each leaf v in T ′ has a
subtree rooted at it in T , say Tv. For each leaf v in T ′, Tv has at least one path
of length ` from v to a leaf of T . Let us call this path πv. As the leaves of T ′ are
all the nodes at height `, for two leaves of T ′, say u 6= v, and for any vertex x

2Note that we only need the o�-path nodes to form an antichain and not the nodes on the
path itself.
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in off(πv) and any vertex y in off(πu), neither x � y nor y � x. (If one of the
conditions holds then it will contradict the fact that both u, v have height `.)

The number of paths thus obtained is at Ω(s/`) = Ω(d/22`), and hence we
are done in this case.

Case II, the number of leaves in T ′ is < s/100`: It is easy to see that the
number of fan-in two nodes in any tree is upper bounded by the number of leaves
in the tree. Therefore, T ′ has at most s/100` degree two nodes. Let F ′ be the
forest obtained by deleting all fan-in two nodes of T ′. F ′ is a collection of paths.
As we deleted degree two nodes, the total number of components created in F ′ is
at most twice the number of degree two nodes, i.e., at most s/50`.

We call a component small if it has at most ` nodes and large otherwise. The
total number of nodes in small components is at most (s/50`) · ` = s/50. We
will not consider such components. Since |T ′| = s, we are left with at least
s− s/50 ≥ s/2 nodes even if we discard all the small components.

Let C be a component with r vertices, where r > `. It can be broken down
into b r

`+1
c paths, each of length `. This will give us at least bs/2(` + 1)c many

paths in total. As bs/2(` + 1)c > d/22`, if we argue that all these paths are
independent, we will be done.

It is not very hard to see why these paths are independent. Suppose two paths
π, π′ belonged to the same large component, then consider vertices x ∈ off(π)
and y ∈ off(π′). As T is a tree, neither x � y nor y � x. Therefore, any such
two paths are independent. Now say π, π′ are two paths which come from two
di�erent large components. Then for x ∈ off(π) and y ∈ off(π′), the common
ancestor of x, y is a degree two node, which we deleted. Again, we can see that
neither x � y nor y � x.

Given Claim 4.14, we proceed as follows. Applying Claim 4.14 with 4` in
place of `, we obtain a set P = {π1, . . . , πr} of independent paths in T with
r = Ω(d/28`). For each πi, let off(πi) = {ui,1, . . . , ui,4`}. Note that these o�-path
nodes all exist since each internal node of T is assumed to have fan-in 2.

We now consider the e�ect of the random restriction I , chosen as in the
lemma statement, on the tree T . For any i ∈ [r] and j ∈ [4`], let Zi,j ∈ {0, 1} be
the random variable that is 1 if ui,j is present in T |I and is an odd node, and 0
otherwise; equivalently, if lab is the [d]-labelling of T , thenZi,j = 1 i� the number
of leaves v such that lab(v) ∈ I is odd. Note that E[Zi,j] = (1/2) for each i ∈ [r]
and j ∈ [4`]. Moreover, since P is an independent set of paths, the sets of leaves
in the subtrees of ui,j (for di�erent i, j) are pairwise disjoint and consequently, the
random variables Zi,j (for various i, j) are mutually independent. In particular,
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by a Cherno� bound applied to Z :=
∑

i∈[r],j∈[4`] Zi,j , we get

Pr [Z ≤ r`] = Pr

[
Z ≤ 1

2
E[Z]

]
≤ exp(−Ω(E[Z])) ≤ exp(−Ω(r`))

≤ exp(−Ω(
d

28`
)).

Note that Z is the total number of nodes in off(P ) that end up as odd nodes in
T |I . Hence, if Z > r`, then the number of odd nodes per (surviving) path of P in
T |I is at least r`/r = `. In particular, there must be some path π in T |I such that
|odd(π)| ≥ `. This concludes the proof of Lemma 4.13.
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Chapter 5

Polynomial Identity Testing
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Figure 5.1: You are here.

Overview

Polynomial Identity Testing (PIT in short) is the important problem of deter-
mining whether a multivariate polynomial given by an arithmetic circuit equals
formally zero (that is, each coe�cient of the polynomial has to be zero). A very
e�cient and simple probabilistic algorithm is known for this problem: evaluate
the polynomial at a random point over the �eld Z/pZ for a large enough random
prime p, and answer that the polynomial is formally zero if the evaluation equals
zero. The correctness of this algorithm can be proved by using the Schwartz-
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Zippel lemma (saying essentially that a non-zero low-degree polynomial does not
have a lot of zeros) and the Prime Number Theorem. This places the algorithm
in the complexity class coRP (the class of problems which admit probabilistic
polynomial-time algorithms which never reject a good input but may accept a
wrong one with small probability (false positive)). Nevertheless, no deterministic
sub-exponential time algorithm for PIT is known. The main issue is to deran-
domize the problem, that is, to design a deterministic algorithm still working in
polynomial time (or at least in sub-exponential time).

Testing polynomial identities is of great importance in algorithm design. For
example, the best parallel algorithms for �nding perfect matchings are based on
testing whether a polynomial (in this case the determinant) equals formally zero.
Designing a good deterministic algorithm for PIT would imply a good parallel
deterministic algorithm for �nding perfect matchings.

PIT is also linked with lower bounds. Indeed, in 2003, Kabanets and Impagli-
azzo have shown that if PIT has a deterministic polynomial-time algorithm, then
eitherNEXP 6⊂ P/poly or the permanent does not have polynomial size arithmetic
circuits. For a complete proof of this result, see [40] or [3]. This result explains
partially why derandomization of PIT seems hard: it would imply lower bounds
which are known hard to prove (because of a lot of barriers–diagonalization,
algebraization, natural proofs, . . . ).

PIT is considered in mainly two ways:

• The black-box setting, in which one has access to a given polynomial f
computed by a class of circuits only through evaluations of f over a set of
points that the decider can choose.

• The white-box setting, in which the input of the problem is a circuit com-
puting f itself.

We will focus on the white-box setting.

Remark 5.1

Observe that as evaluations of a polynomial f can be done e�ciently given
a circuit for f , a black-box PIT algorithm gives a white-box PIT algorithm
working in roughly the same time as well. However, although white-box PIT
algorithms should be easier to design, there is still no big di�erence on what
we can solve in black-box model compared to the white-box model.

This chapter is based on the three following publications:
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• Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative
computations: lower bounds and polynomial identity testing. Electronic
Colloquium on Computational Complexity (ECCC), 23:94, 2016

• Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower bounds
and PIT for non-commutative arithmetic circuits with restricted parse trees.
In 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 41:1–41:14,
2017

• Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower bounds
and PIT for non-commutative arithmetic circuits with restricted parse trees
(extended version). To appear in Computational Complexity

5.1 PIT for UPT Circuits

In this section, we give two di�erents deterministic polynomial-time algorithms
for PIT for the polynomials computed by UPT circuits.

• The �rst one 5.1.1 is based on the idea of the Hadamard product, used also
by Arvind et al. [4] in the context of non-commutative ABPs. The idea is
to show that if a polynomial f has a small UPT circuit, then so does the
polynomial F each of whose coe�cients is the square of the corresponding
coe�cient of f . When the underlying �eld is R, all coe�cients of F are now
non-negative and hence F is the zero polynomial if and only if it evaluates
to a non-zero value when each of its input variables is substitured by the
scalar 1. While this method can be extended to work over C as well, it is
not clear how to use this in the context of, say, positive characteristic.

• The second approach 5.1.2 leads a deterministic PIT algorithm for UPT
circuits over general �elds by adapating an older algorithm for ABPs due
to Raz and Shpilka [42]. The idea behind this test is to compute, for each d′,
a small set of monomials of degree d′ whose “coe�cients”1 determine the
coe�cients of all other monomials in the underlying polynomial. In partic-
ular, it reduces the problem of PIT for ABPs to computing the coe�cient of
a particular monomial, which can be done e�ciently. A very similar idea
turns out to work for UPT circuits as well.

1We write the underlying polynomial f of degree d computed by the ABP as a polynomial of
degree d′ where the coe�cients are themselves polynomials of degree d− d′ and multiply the
monomials of degree d′ to the left.
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5.1.1 Via Hadamard product

We will use the following binary operation over polynomials from [4], which is
to polynomials what intersection is to formal languages.

De�nition 5.2: Hadamard product

Given two polynomials in F〈X〉, f =
∑

m∈M(X)

αmm and g =
∑

m∈M(X)

βmm,

the Hadamard product of f and g, written f � g, is:

f � g =
∑

m∈M(X)

αmβmm

In [4], a logspace algorithm is given which, on input two ABPs A and B, outputs
a new ABP C computing the Hadamard product of the polynomials computed
by A and B. Consequently, they observed that this result gives the following
derandomization for PIT.

Theorem 5.3: [4]

The problem of polynomial identity testing for non-commutative algebraic
branching programs over R is in P.

Here, we extend this result: we give a construction to perform the Hadamard
product of two UPT circuits with the same shape. In other words, we prove that
the class of UPT circuits of a given shape is stable under Hadamard product. As in
the case of ABPs, it will provide a deterministic polynomial-time algorithm for
PIT over UPT circuits over R.

Circuits will be assumed in normal form with multiplication fan-in 2, since
Lemma 2.1 and Proposition 2.3 give explicit algorithms working in polynomial
time to transform a UPT circuit with these two additional properties. The idea is
then to create a circuit computing iteratively the Hadamard product of all pairs
of addition gates of same type. The regularity of the parse tree will allow us to
spread the Hadamard product layer by layer.

First, we state without proof the following easy lemma, saying essentially
that if two polynomials admit two similar decomposition, then their Hadamard
product respects a similar decomposition as well that can be computed from the
Hadamard product of the smaller bricks.
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Lemma 5.4

Let d, d′ ∈ N and let (fi)1≤i≤n and (gi)1≤i≤m be families of polynomials in
F〈X〉 with deg(fi) = d and deg(gi) = d′. Set also (αi,j)1≤i≤n,1≤j≤m ∈ Rnm

and (βi,j)1≤i≤n,1≤j≤m ∈ Rnm. Then:∑
(i,j)

αi,jfigj

�
∑

(i,j)

βi,jfigj

 =
∑

(i,j),(k,l)

αi,jβk,l(fi � fk)(gj � gl).

Theorem 5.5: Hadamard product of two UPT circuits

Let C and D be two UPT circuits in normal form, of same shape, and of size
s and s′, that compute two polynomials f and g. Then f � g is computed by
a UPT circuit of size at most ss′; moreover, this circuit can be constructed in
polynomial time.

Proof. The new circuit computes the Hadamard product of all pairs (Φ1,Φ2) ∈
C ×D of addition gates of the same type. As the output gate in C and in D are
of the same type (because C and D have the same shape), the new circuit will in
particular compute the Hadamard product of f and g. If the degree of Φ1 and Φ2

is 1, then the Hadamard product is trivial since the gates compute variables.
Assume we have constructed the circuit up to layer i (that is, for each gate of

degree less than or equal to i). We now show how to construct the layer (i+ 1).
Let Φ1 ∈ C and Φ2 ∈ D be two addition gates of degree (i + 1) and of same
type. Because the circuits are UPT, Φ1 (resp. Φ2) computes a polynomial of the
form h1 = (

∑
(i,j) αi,jfigj) (resp. h2 = (

∑
(i,j) βi,jfigj)), where the fi are all of

identical types, and where the gj are also all of identical types. Lemma 5.4 then
shows how to compute h1� h2 from the previously computed fi� fj and gi� gj .

By induction, we thus construct the desired circuit layer by layer. Given a
type, if there were i (resp. j) addition gates of this type in C (resp. in D), we have
created exactly ij gates in the new circuit. Therefore, the total number of gates
in the new circuit is no more than ss′.

Corollary 5.6

There is a deterministic polynomial-time algorithm for PIT for polynomials
computed by non-commutative UPT circuits over R.
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Proof. Given f(x1, . . . , xn) computed by a UPT circuit, construct the circuit which
computes (f � f)(x1, . . . , xn) and evaluate it on (1, 1, . . . , 1). The output is the
sum of the squares of the coe�cients of f , therefore it is equal to 0 if and only if
f is equal to the zero polynomial.

Remark 5.7

From a UPT circuit computing a polynomial f =
∑

m∈M(X)

αmm over C,

it is not hard to deduce a UPT circuit of same shape for the conjugate
f̄ =

∑
m∈M(X)

ᾱmm. Therefore, a similar algorithm works over C, since

(f � f̄) =
∑

m∈M(X)

|αm|2m.

We also obtain another corollary that is to be compared with the results of
Section 2.4.2.

Corollary 5.8

Over R, in the non-commutative setting, computing the determinant with
an UPT circuit is as hard as computing the permanent.

Proof. Observe that DET � DET = PERM. Therefore, by Theorem 5.5, from
a circuit computing the determinant, we can build in polynomial time a circuit
computing the permanent.

5.1.2 Via Raz and Shpilka

In this section, we give another deterministic PIT algorithm for UPT circuits. Our
algorithm, which is an adaptation of the algorithm of Raz and Shpilka [42], is
�eld independent.

Theorem 5.9: Whitebox PIT for UPT circuits over all �elds

Let N, s ∈ N be parameters. There is a deterministic algorithm running
in time poly(s) which, on input a UPT circuit C of size at most s over N
variables, decides whether C computes the zero polynomial.
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Proof. Let C be the input UPT circuit. Let T be the unique parse tree of the circuit
C (it is easy to determine T from the circuit C by constructing an arbitrary parse
formula of C and obtaining the parse tree corresponding to it). By Proposition 2.3
and Lemma 2.1, we can assume without loss of generality that C is in normal
form and that T has fan-in bounded by 2.

For each node v ∈ T , let rv denote the number of (v,×)-gates and tv the
number of (v,+)-gates. We also identify the (v,×)-gates with [rv] and (v,+)-
gates with [tv] in an arbitrary way. For any v ∈ T and any monomial m ∈
Mdeg(v)(X), let ξvm ∈ Frv be de�ned so that for any i ∈ [rv], the ith entry ξvm(i)
of the vector ξvm is the coe�cient of the monomial m in the polynomial computed
at the ith (v,×) gate. Similarly, let χvm ∈ Ftv be the coe�cient vector of the
monomial m at the (v,+)-gates.

The idea of the algorithm is to compute, for each v ∈ T , a set Bv,+ ⊆
Mdeg(v)(X) of size at most tv such that the set of vectors B̃v,+ = {χvm | m ∈
Bv,+} is a linearly independent set of vectors that generates all the vectors in
C̃v,+ := {χvm |m ∈Mdeg(v)(X)} ⊆ Ftv . In particular, the polynomial computed
by the circuit C is non-zero i� for u being the root of T , there is a χ ∈ B̃u,+ such
that the entry of χ corresponding to the output gate of the circuit is non-zero.2

Thus, it su�ces to compute the sets Bv,+ and B̃v,+ for each v ∈ T . In
order to do so, it will also help to compute Bv,× ⊆ Mdeg(v)(X) and B̃v,× =

{ξvm |m ∈ Bv,×} of size at most rv each so that the set of vectors B̃v,× is a linearly
independent set of vectors that generates all the vectors in C̃v,× := {ξvm | m ∈
Mdeg(v)(X)} ⊆ Frv .

The algorithm begins by choosing the sets Bv,× for each leaf node v ∈ T .
This may be done e�ciently since deg(v) = 1 for each leaf node and hence the
number of monomials m ∈ Mdeg(v)(X) is exactly |X| = N . By computing the
coe�cient vectors for each such monomial and performing Gaussian elimination,
we can �nd a suitable set Bv,× as required in time poly(N, s) = poly(s).

To compute these bases for nodes higher up in T we proceed inductively as
follows.

Sum gates. We �rst describe how to construct Bv,+ and B̃v,+ given Bv,× and
B̃v,×. Since each (v,+)-gate computes a linear combination of the (v,×)-gates,
we see that there is a matrix Mv ∈ Ftv×rv such that χvm = Mvξ

v
m for every

m ∈ Mdeg(v)(X). In particular, given sets Bv,× and B̃v,× as above, the set
{χvm |m ∈ Bv,×} is a spanning set for the set C̃v,+. By Gaussian elimination, we
can choose a basis B̃v,+ ⊆ B̃v,× in time poly(N, tv, rv) = poly(s) and choose
Bv,+ to be the corresponding set of monomials.

2Recall that the output gate of the circuit C is always assumed to be a + gate, possibly of
fan-in 1.
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Multiplication gates. Now let v ∈ T be an internal node with children u and
w. We show how to compute Bv,× and B̃v,× given Bu,+, Bw,+, B̃u,+ and B̃w,+.

Let r = rv and let Φi be the ith (v,×)-gate in C for each i ∈ [r]. Let Φ′i and
Φ′′i be the left and right children respectively of Φi; note that Φ′i is a (u,+)-gate
and Φ′′i a (w,+)-gate. For monomials m′ ∈Mdeg(u)(X) and m′′ ∈Mdeg(w)(X),
let λum′ and λwm′′ ∈ Fr denote the coe�cient vectors of m′ and m′′ at the gates Φ′i
(i ∈ [r]) and Φ′′i (i ∈ [r]) respectively.3 For any monomial m′, each entry of the
vector λum′ is the coe�cient of the monomial m′ at some (u,+)-gate and hence an
entry of the vector χum′ . In particular, λum′ = Puχ

u
m′ for some linear projection Pu;

a similar fact is true for the λwm′′ as well. Thus, the vectors {λum′ |m′ ∈ Bu,+} span
all the vectors in {λum′ | m′ ∈ Mdeg(u)(X)} and similarly, {λwm′′ | m′′ ∈ Bw,+}
spans all the vectors in {λwm′′ |m′′ ∈Mdeg(w)(X)}.

Now, note that for any monomial m ∈ Mdeg(v)(X), there is a unique pair
of monomials m′ ∈ Mdeg(u)(X) and m′′ ∈ Mdeg(w)(X) such that m = m′m′′.
Further, the coe�cient of monomial m in the polynomial computed at Φi is
the product of the coe�cients of m′ at Φ′i and m′′ at Φ′′i . In other words, we
have λvm = λum′ · λwm′′ , the pointwise product of the vectors λum′ and λwm′′ . By
linearity, it follows that the coe�cient vectors corresponding to the monomials in
Bu,w := Bu,+ ·Bw,+ = {m′m′′ |m′ ∈ Bu,+,m

′′ ∈ Bw,+} span C̃v,×. Since |Bu,w|
has size at most s2, both Bu,w and the corresponding coe�cient vectors can be
computed in time poly(s). By Gaussian elimination, we can �nd in time poly(s)
the sets Bv,× and B̃v,× as required.

This completes the description of the algorithm and its analysis. From the
analysis above, it is clear that the algorithm runs in time poly(s). We have shown
Theorem 5.9.

5.2 PIT for sum of UPT circuits

In this section we will give a deterministic polynomial time algorithm for the PIT
problem for the sum of k UPT circuits. Recently a deterministic algorithm was
designed by Gurjar et al. [15] for polynomial identity testing of sum of ROABPs.
Our algorithm uses a similar idea for the PIT of sum of UPT circuits. Our PIT
algorithm is white box, i.e., it uses the structure of the underlying UPT circuits.

3Note that the gates Φ′i and Φ′j may coincide even if i 6= j. This does not matter for our
argument.
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Theorem 5.10: theorem

Let N, s, k ∈ N with N ≤ s. There is a deterministic algorithm running in
time sO(2k) which, on input k + 1 UPT circuits C0, C1, . . . , Ck (of possibly
di�ering shapes) each of size at most s over N variables, decides whether∑k

i=0 Ci computes the zero polynomial.

Proof idea

Say that circuit Ci has shape Ti for i ∈ [0, k] (it is easy to compute Ti given each
Ci as observed in Section 5.1.2). By Proposition 2.3 and Lemma 2.1, we can assume
without loss of generality that each Ci is in normal form and that Ti has fan-in
bounded by 2.

Let Pi be the polynomial computed by the UPT circuit Ci for each 0 ≤ i ≤ k.
Let P = −P0 and let Q =

∑k
i=1 Pi. Note that in this notation, checking whether∑k

i=0 Pi ≡ 0 is equivalent to checking whether P ≡ Q. We will present an
algorithm to do this in four steps.

Step 1: We show how to e�ciently build a small set of characterizing
identities for the polynomial P . We will ensure that this set of identities is
of size poly(N, s, d) = poly(s).

Step 2: We will then check whether all the identities hold for the polynomial
Q as well. This is done by a call to the PIT algorithm for the sum of k UPT
circuits. We will analyze the complexity of this step and bound it by sO(2k).

Step 3: We will then show that ifQ satis�es all the characterizing identities,
and moreover P and Q agree on a small set of coe�cents, then the two
polynomials are in fact identical.

Step 4: We will show that testing the equality of the above set of coe�cients
of P and Q can also be performed in time poly(s).

We now give a more detailed outline of the above steps with the statements of
many formal claims. For the sake of exposition, we postpone the proofs of these
intermediate claims to the end of this section.

Step 1: We now introduce some notation to formally de�ne the characterizing
identities for a polynomial de�ned by a UPT circuit. Let I = [i, j] be an interval
in [d], i.e., 1 ≤ i ≤ j ≤ d. If the interval is of size 1, i.e., I = [i, i], then we simply
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use i to denote it. Recall thatM|I|(X) stands for all monomials of degree exactly
|I|. For any r, let F〈X〉r be the set of homogeneous polynomials of degree r.

For any interval I in [d] and any monomial m ∈M|I|(X), we de�ne a map
∂I,m : F〈X〉d → F〈X〉d−|I|, which is de�ned as follows:

∂I,m(P ) =
∑

m1,m2:deg(m1)=i−1,deg(m2)=d−j

αm1,m,m2 ·m1 ·m2,

whereαm1,m,m2 is the coe�cient of the monomialm1·m·m2 inP . Informally, ∂I,m
is an operator which, when applied to a polynomial P of degree d, retains only
those monomials of P (along with their coe�cients) which have the monomial
m at exactly the positions in the interval I , while substituting the constant 1 for
all the variables in positions indexed by I .

Let T be T0, the shape of the parse tree corresponding to P . For each v ∈ T ,
we use Iv to denote the interval [pos(v), pos(v) + deg(v)− 1] where type(v) =
(pos(v), deg(v)) is as de�ned in Section 1.3.

Starting from the leaves, we start building identities corresponding to each of
the nodes in the tree T . Formally, we show the following inductive claim.

Claim 5.11

There is an algorithm that runs in time poly(s) that, for every node v in T ,
computes a set Bv ⊆Mdeg(v)(X) such that |Bv| ≤ s and also

• if v is a leaf node and Iv = i then, for each x ∈ X and for eachm ∈ Bv ,
it computes coe�cients cvx,m such that ∂i,x(P ) =

∑
m∈Bv c

v
x,m ·∂i,m(P ),

• if v is an internal node with children u,w, then for all m′ ∈ Bu,w :=
Bu · Bw and for all m ∈ Bv, it computes coe�cients cvm′,m such that
∂Iv ,m′(P ) =

∑
m∈Bv c

v
m′,m · ∂Iv ,m(P ).

The algorithm for the above is almost identical to the PIT algorithm in Section 5.1.2.
Note that the size of the output of the algorithm is poly(N, s, d) = poly(s).

We will prove this claim later.

Step 2: Let us assume that the above claim holds. Now if P = Q, then the same
set of identities must also hold for the polynomial Q. We now describe how one
can check that Q satis�es these identities (the algorithm can safely reject if some
identity is not satis�ed by Q). Suppose we have all the identities for P along with
the sets Bv for all nodes v in T and all the coe�cients

(
cvm′,m

)
m′∈Bu,w,m∈Bv

again
for every node v in T .
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In general, we need to check identities of the following form when v is an
internal node with children u,w: ∂Iv ,m̃(Q) =

∑
m∈Bv cm̃,m · ∂Iv ,m(Q) for each

m̃ ∈ Bu,w. (A similar check has to be made when v is a leaf node.)
Recall that Q =

∑k
i=1 Pi. Therefore, we can rewrite the above identity as

follows:
k∑
i=1

∂Iv ,m̃(Pi) =
∑
m∈Bv

cm̃,m ·
k∑
i=1

∂Iv ,m(Pi).

Rearranging this we get

k∑
i=1

[∑
m∈Bv

cm̃,m · ∂Iv ,m(Pi)− ∂Iv ,m̃(Pi)

]
≡ 0. (5.1)

We �rst show that each of the k terms in the above sum has a small UPT
circuit.

Claim 5.12

For each i ∈ [k],
∑

m∈Bv cm̃,m · ∂Iv ,m(Pi)− ∂Iv ,m̃(Pi) can be computed by a
UPT circuit of size at most O(s2). Further, these circuits can be constructed
in time poly(k, s).

By the above claim, Equation 5.1 reduces to an identity testing question for the sum
of at most k UPT circuits, and hence can be solved recursively. Finally, when we
get to the case that k = 1, we simply appeal to our result from Section 5.1.2. Using
Claim 5.12 (which we will prove later) and the algorithm from Section 5.1.2 for a
single UPT circuit, we see that this step can be performed in time (s2)O(2k−1) =
sO(2k).

Step 3: Now suppose all the above checks succeed. That is, we have been able
to ensure that the following statements hold:

• For every leaf node v, x ∈ X,m ∈ Bv and i such that Iv = i:

∂i,x(P ) =
∑
m∈Bv

cvx,m · ∂i,m(P ) and ∂i,x(Q) =
∑
m∈Bv

cvx,m · ∂i,m(Q). (5.2)

• For every internal node v with children u,w, for every m ∈ Bv and m′ ∈
Bu,w we have:
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∂Iv ,m′(P ) =
∑
m∈Bv

cvm′,m · ∂Iv ,m(P ) and ∂Iv ,m′(Q) =
∑
m∈Bv

cvm′,m · ∂Iv ,m(Q)

(5.3)

Claim 5.13

Equations 5.2, 5.3 imply that for any node v ∈ T and any m′ ∈ M|Iv |(X)
and m ∈ Bv, there exist cvm′,m ∈ F such that

∂Iv ,m′(P ) =
∑
m∈Bv

cvm′,m · ∂Iv ,m(P ) and ∂Iv ,m′(Q) =
∑
m∈Bv

cvm′,m · ∂Iv ,m(Q).

Note that (5.2) and (5.3) only give us a polynomially large set of common
identities satis�ed by P and Q. The content of Claim 5.13 is that we can use these
to infer an exponentially (since the size ofM|I|(X) is exponential) large set of
common identitites for P and Q.

We will present the proof of Claim 5.13 later. For now let us assume this claim.
Now, let v0 be the root of T . We check that for each m ∈ Bv0 , ∂[d],m(P ) =

∂[d],m(Q) (as described in Step 4). Note that for any m of degree d, ∂[d],m(P ) and
∂[d],m(Q) are simply coe�cients of the monomial m in P and Q respectively.
Again, if any of these coe�cients are not equal, we can safely reject. However,
if these checks succeed, using Claim 5.13, we can see that all the coe�cients of
polynomials P and Q are equal and hence they are the same polynomial. In this
case, we accept.

Step 4: As noted above, ∂[d],m(P ) and ∂[d],m(Q) are simply coe�cients of the
monomial m in the polynomials P and Q respectively. We use the following
lemma proved in [5] to compute these coe�cients.

Lemma 5.14: [5]

Given access to a non-commutative circuit C of size s which is computing
the polynomial f of degree d and given a monomial m, the coe�cient of m
in f can be computed in time polynomial in s, d.

This completes the description of the four main steps. We now prove the
claims used in these steps.
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Proof sketch of Claim 5.11. We follow exactly the procedure in the PIT algorithm
for UPT circuits in Section 5.1.2 and compute sets Bv,+, B̃v,+, Bv,×, and B̃v,×
exactly as in that algorithm. We will take our sets Bv to be the sets Bv,× for each
v ∈ T . Clearly |Bv| ≤ s for each v.

To compute the coe�cients cvm′,m ∈ F, we proceed as follows. For any leaf
node v ∈ T , y ∈ X and x ∈ Bv, we choose cvy,x such that we have ξvy =∑

x∈Bv c
v
y,xξ

v
x.

For an internal node v ∈ T with children u and w, and any m′ ∈ Bu ·
Bw, we note that by the de�nition of Bv,× in the proof of Theorem 5.9, each
m′ ∈ Bu · Bw, ξvm′ lies in Span(B̃v,×) and hence we can �nd cvm′,m such that
ξvm′ =

∑
m∈Bv c

v
m′,mξ

v
m.

This concludes the description of the algorithm. To show that this works as
intended, it su�ces to prove the following claim.

Claim 5.15

Let v ∈ T and t := deg(v). For any m′ such that deg(m′) = t and for any
set B ⊆ Mt(X), if ξvm′ =

∑
m∈B c

v
m′,m · ξvm then ∂I,m′(P ) =

∑
m∈B c

v
m′,m ·

∂I,m(P ).

Proof. Let v ∈ T be such that type(v) = (t, p), where t is deg(v) and p is pos(v).
Let Kv be the number of nodes in C0 corresponding to v. For any polynomial
computed by a UPT circuit, Chapter 2 gives the following decomposition lemma,
which we will recall and use below.

Lemma 5.16

Let P be a polynomial of degree d computed by a UPT circuit of size s with a
parse tree T . Let (t, p) be the type of a node v ∈ T and let Kv be the number
of gates in C of that type. Let f1, f2, . . . , fKv be the polynomials computed
by these gates, each of degree t. Then P can be written as

P =
Kv∑
j=1

fj ×p hj,

where ∀j, 1 ≤ j ≤ Kv deg(hj) = d− t.

Using the above lemma our claim follows. Given below is the detailed proof of
the claim.
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∂I,m′(P ) = ∂I,m′

(
Kv∑
j=1

fj ×p hj

)
(a)

= ∂I,m′

(
Kv∑
j=1

ξvm′(j) ·m′ ×p hj +
∑
m̃ 6=m′

ξvm̃(j) · m̃×p hj

)

= ∂I,m′

(
Kv∑
j=1

ξvm′(j) ·m′ ×p hj

)
+ ∂I,m′

(∑
m̃ 6=m′

ξvm̃(j) · m̃×p hj

)

=
Kv∑
j=1

ξvm′(j) · 1×p hj +

���
���

���
���

���
�:0

∂I,m′

(∑
m̃6=m′

ξvm̃(j) · m̃×p hj

)

=
Kv∑
j=1

∑
m∈B

cvm′,m · ξvm(j)×p hj (b)

=
∑
m∈B

cvm′,m

Kv∑
j=1

ξvm(j)×p hj

=
∑
m∈B

cvm′,m · ∂I,m

(
Kv∑
j=1

ξvm(j) ·m×p hj

)

=
∑
m∈B

cvm′,m ·

(
∂I,m

(
Kv∑
j=1

ξvm(j) ·m×p hj

)
+ ∂I,m

(∑
m̃ 6=m

ξvm̃(j) · m̃×p hj

))

=
∑
m∈B

cvm′,m · ∂I,m

(
Kv∑
j=1

ξvm′(j) ·m×p hj +
∑
m̃ 6=m

ξvm̃(j) · m̃×p hj

)
=
∑
m∈B

cvm′,m · ∂I,m(P )

The identity (a) holds due to Lemma 5.16. The identity (b) follows due to our
assumption in the statement of the claim. The other identities follow due to the
de�nition and/or by the linearity of ∂I,m.

Proof of Claim 5.12. We know that Pi has a UPT circuit Ci with shape Ti. Say we
�x a monomial m and an interval I = [i1, i2] such that deg(m) = |I|. Let T ′i be
the tree obtained from Ti by deleting all nodes u such that Iu ⊆ I . We claim that
∂I,m(Pi) is computed by a UPT circuit of size at most s and shape T ′i .
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Consider any leaf nodew ∈ Ti such that pos(w) = i1 +`−1 ∈ I . We consider
each (w,×) gate Φ of C (note that these are input gates) and replace the gate by
0 if the variable x labelling Φ is the `th variable in m and 0 otherwise.

This gives a non-commutative arithmetic circuit where some leaves are la-
belled by constants. However, these constants are easily eliminated inductively
as follows. For any × gate Φ′ which has a child labelled by a constant α, we can
remove the child and multiply the label of each wire leaving Φ′ by α; for any
+ gate Φ′ which has a child labelled by a constant, it must be the case that all
its children are labelled by constants (this follows from the UPT restriction) and
hence the + gate can now be labelled by a constant as well. Continuing this way,
all the gates with constant labels are eliminated.

It can be checked that the circuit thus obtained is a UPT circuit of size at most
s and shape T ′i computing ∂I,m(Pi). Returning to the statement of the claim, we
have therefore shown that each of ∂Iv ,m̃(Pi) and ∂Iv ,m(Pi) can be computed by a
UPT circuit of size s and shape T ′i .

Therefore, we can compute
∑

m∈Bv cm̃,m · ∂Iv ,m(Pi) − ∂Iv ,m̃(Pi) by a linear
combination of the O(s) UPT circuits computing ∂Iv ,m(P ) for m ∈ Bv ∪ {m̃}.
Overall, this gives a UPT circuit of sizeO(s2). Since the above proof is constructive,
we can actually �nd this circuit in time poly(s).

Proof of Claim 5.13. We will prove this claim by induction on |Iv|.

The base case is |Iv| = 1 which follows directly from Equation 5.2.

Suppose |Iv| = t > 1. Then v is an internal node in T . Let u,w be its two
children. This implies that Iv = Iu ∪ Iw. Let |Iu| = t1, |Iw| = t2. Note that
t1, t2 < t.

We wish to prove that for any m′ ∈ M|Iv |(X), ∂Iv ,m′(P ) =
∑

m∈Bv c
v
m′,m ·

∂Iv ,m(P ) and ∂Iv ,m′(Q) =
∑

m∈Bv c
v
m′,m · ∂Iv ,m(Q) for a suitable choice of cvm′,m.

Note that this already follows from (5.3) if m′ ∈ Bu · Bw. So we assume that
m′ 6∈ Bu ·Bw.

Let m′ = m′1 ·m′2, where deg(m′1) = t1 and deg(m′2) = t2. Let R be either P
or Q.
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∂Iv ,m′(R) = ∂Iu∪Iw,m′1m′2(R)

= ∂Iu,m′1 ◦ ∂Iw,m′2(R) (a)

= ∂Iu,m′1 ◦

[ ∑
m∈Bw

cwm′2,m · ∂Iw,m(R)

]
(b)

=
∑
m∈Bw

cwm′2,m · ∂Iu,m′1 ◦ ∂Iw,m(R)

=
∑
m∈Bw

cwm′2,m · ∂Iw−|Iu|,m ◦ ∂Iu,m′1(R) (a)

=
∑
m∈Bw

cwm′2,m
∑
m∈Bu

cum′1,m · ∂Iw−|Iu|,m ◦ ∂Iu,m(R) (b)

=
∑

m∈Bw,m∈Bu

cum′1,m · c
w
m′2,m

· ∂Iu∪Iw,mm(R) (a)

=
∑

m·m∈Bu,w

cum′1,m · c
w
m′2,m

· ∂Iv ,mm(R)

=
∑
m∈Bv

(∑
m,m

cum′1,m · c
w
m′2,m

· cvmm,m

)
· ∂Iv ,m(R). (c)

The equalities marked by (a) follow due to Observation 5.17 below. The equalities
marked (b) follow due to the induction hypothesis. Finally, the equality marked
(c) follows due to Equation 5.3.

The above implies the inductive claim with cvm′,m de�ned to be(∑
m∈Bu,m∈Bw c

u
m′1,m

· cwm′2,m · c
v
mm,m

)
. Since the choice of cvm′,m is the same for

both P and Q, we are done.

Observation 5.17

Let I , J be two contiguous intervals in [d] such that I precedes J , i.e., if
I = [i1, i2] and J = [j1, j2] then 1 ≤ i1, i2 + 1 = j1 and j2 ≤ d. Then
∂I∪J,m1m2 = ∂J−|I|,m2 ◦ ∂I,m1 = ∂I,m1 ◦ ∂J,m2 , where for any two intervals
I, J , J − |I| denotes the interval {j − |I| | j ∈ J} ∩ [d].
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Chapter 6

Automata, Circuits, Hankel Matrix
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Figure 6.1: You are here.

Overview

This chapter revisits Nisan’s result about ABPs and results from Chapter 2 about
UPT circuits. The conceptual contribution is an exact correspondence between
circuits and weighted automata: algebraic branching programs are captured by
weighted automata over words, and circuits with unique parse trees by weighted
automata over trees.

The key notion for understanding the minimisation question of weighted
automata is the Hankel matrix: the rank of the Hankel matrix of a word or tree
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series is exactly the size of the smallest weighted automaton recognising this
series. For automata over words, the correspondence we establish allows us to
rephrase Nisan’s celebrated tight bounds for algebraic branching programs. We
extend this result by considering automata over trees and obtain tight bounds
for all circuits with unique parse trees (whereas tight bounds were previously
obtained only for UPT circuits in some normal form, a constraint that can increase
a lot the size of the circuits.).
Correspondence with weighted automata. We build a bridge between au-
tomata theory and arithmetic complexity. The correspondence is summarised in
this table.

Arithmetic complexity Weighted automata
variable letter

monomial word
polynomial word series or tree series

algebraic branching program layered weighted automaton over words
circuit with unique parse trees layered weighted automaton over trees

In Section 6.1, we show that Nisan’s results about algebraic branching pro-
grams follow from theorems coming from automata theory. We introduce weighted
automata (WA) over words, and show the following correspondence:

• any ABP can be seen as a WA,

• under some syntactic restriction called layered, a WA can be seen as an
ABP,

• for a given word series f , the size of the minimal WA recognising f is the
rank of the Hankel matrix of f ,

• if the word series f represents a homogeneous polynomial P , then the
minimal WA recognising f is an ABP computing P .

This gives an alternative approach to state and prove Nisan’s result about minimal
ABPs.

Our main technical contribution is to extend this result from ABPs to UPT
circuits in Section 6.2. To this end we show a more subtle and involved corre-
spondence between UPT circuits and weighted automata over trees. Our main
result is tight bounds on the size of a UPT circuit computing a given polynomial.

A similar result was obtained in Chapter 2 for UPT circuits in normal form;
here we remove this assumption, leading to an exponential improvement in some
examples as explained in Section 6.3.

90



This chapter is based on the following publication:

• Nathanaël Fijalkow, Guillaume Lagarde, and Pierre Ohlmann. Tight bounds
using hankel matrix for arithmetic circuits with unique parse trees. Elec-
tronic Colloquium on Computational Complexity (ECCC), 25:38, 2018

6.1 Tight bounds for algebraic branching programs
We give here a de�nition of ABPs that slightly di�ers from Chapter 3. The two
can easily be proved to be equivalent. However, this one is more convenient in
order to state the correspondence with weighted automata.

De�nition 6.1

An algebraic branching program (ABP) is a directed acyclic graph with a
distinguished source vertex s. The vertices are partitioned into d+ 1 layers,
starting with layer 0 which contains only the vertex s, and ending in layer d.
Each edge is between two consecutive layers and is labeled by a homogeneous
linear function over the variables X and real-valued constants. Each vertex
in the last layer has a real output value. See Figure 6.2.

A path from s to a vertex in layer d induces a homogeneous polynomial
of degree d obtained by multiplying all the labels of the edges and the
output value. An algebraic branching program C computes a homogeneous
polynomial PC de�ned by summing the polynomials over all paths from s to
vertices of the layer d.

The size of an ABP is its number of vertices.

One of the motivations for studying algebraic branching programs is that they
capture matrix multiplication (cf Chapter 4). They can be proved to be equivalent
to left skew circuits (i.e., circuits for which the left argument of any multiplication
gate is an input).

Nisan’s theorem
Nisan’s theorem gives for a homogeneous polynomial P the size of the smallest
ABP computing P . Let d be the degree of P . For each i ∈ {0, . . . , d}, we de�ne a
matrix MP,i as follows. The rows are indexed by monomials of degree i, and the
columns by monomials of degree d− i (there are |X|i rows and |X|d−i columns).
Then for u a monomial of degree i and v of degree d− i, de�ne MP,i(u, v) to be
the coe�cient of uv in P . We now state Nisan’s theorem (already introduced
without any formal statement in Chapter 1)
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Figure 6.2: An example of an ABP with 4 layers and of size 8.

Theorem 6.2: Nisan’s theorem

Let P be a homogeneous polynomial of degree d, and

n =
d∑
i=0

rank(MP,i).

• Any ABP computing P has size at least n,

• There exists an ABP computing P of size exactly n.

In this section, we give an alternative proof of this theorem using a corre-
spondence with weighted automata over �nite words. The number n will appear
as the rank of a single matrix called the Hankel matrix, which will in our case
consist of d+ 1 independent blocks, hence the summation in Nisan’s theorem.

The point of this section is to serve as an introduction to our main result in
Section 6.2. Indeed, we will prove a theorem extending Nisan’s theorem to a wider
class of arithmetic circuits, namely circuits with unique parse trees, following the
same schema. In this section we deal with weighted automata over words, in the
next section we will consider weighted automata over trees.

Weighted automata over words
An element of X∗ can be seen either as a monomial over the variables X , as
in ABPs, or as a (�nite) word over the alphabet X . A word series is a function
f : X∗ → R.
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A polynomial P with variables in X can be seen as a word series X∗ → R
which we also write P , such that P (w) is the coe�cient of w in P .

De�nition 6.3

A weighted automaton over words (WA) is given by

• a �nite set of states Q,

• an initial state q0 ∈ Q,

• a transition function ∆ : Q×X ×Q→ R,

• an output function F : Q→ R.

The usual de�nition proceeds with introducing runs, explaining that along
a run the weights of the transitions are multiplied, and that the value of a
word is the sum of the values of its accepting runs. We use here a more
algebraic equivalent de�nition. Equivalently, we see the transition function
as ∆ : X → RQ×Q, i.e., ∆(x) is a matrix de�ned by ∆(x)(p, q) = ∆(p, x, q).
The initial state q0 (seen as an element of RQ) and the transition function
induce ∆∗ : X∗ → RQ de�ned by ∆∗(ε) = q0 and ∆∗(wx) = ∆∗(w) ·∆(x),
where · is matrix multiplication. Similarly, we see F as a vector in RQ.

The weighted automaton A recognises the word series fA : X∗ → R
de�ned by

fA(w) = ∆∗(w) · F,

where · is the dot product in RQ.
The size of a WA is its number of states.

Algebraic branching programs asweighted automata overwords

ABPs form a subclass of WA over words that we de�ne now.
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De�nition 6.4

A weighted automatonA = (Q, q0,∆, F ) is d-layered ifQ can be partitioned
into d+ 1 subsets Q0, . . . , Qd such that

(1) Q0 = {q0},

(2) for all x ∈ X, q, q′ ∈ Q, if ∆(q, x, q′) 6= 0 then there exists i ∈
{0, . . . , d− 1} such that q ∈ Qi and q′ ∈ Qi+1,

(3) for all q ∈ Q, if F (q) 6= 0 then q ∈ Qd.

Lemma 6.5

• For all ABP C, there exists a WA over words A of the same size such
that fA = PC .

• For all WA over words A which is layered, there exists an ABP C of
the same size such that PC = fA.

Proof. Both claims are syntactic easy transformations. We explicit the construc-
tion to help the reader’s intuition.

Let C be an ABP. We de�ne a WA over words A as follows. The set of states
is the set of vertices of C, the initial state of A is the source vertex of C, and the
output function F : Q→ R is de�ned by F (v) to be the output value of v if v is
on the last layer, and 0 otherwise.For the transition function, let ∆(v, x, v′) be
the coe�cient of x in the linear function labeling the edge (v, v′) if (v, v′) ∈ E,
and 0 otherwise. See Figure 6.3. We have fA = PC .

For the second claim, the de�nition of d-layered WA over words exactly says
that the above construction can be reversed.

Fliess’ theorem

The key notion of this chapter is the Hankel matrix of a series.
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Figure 6.3: An example of 3-layered WA on the left, and its corresponding ABP
on the right.

De�nition 6.6

Let f : X∗ → R, we de�ne the (in�nite) Hankel matrix H(f) ∈ RX∗ × RX∗ ,
whose rows and columns are indexed by words, by

H(f)(u, v) = f(u · v).

The notion of Hankel matrix and the rank of a formal non-commutative series
were introduced by Carlyle and Paz [8]. One of the main results of Fliess’ PhD
thesis was the following theorem [13].

Theorem 6.7

Let f : X∗ → R be a word series such that rank(H(f)) is �nite.

• Any WA recognising f has size at least rank(H(f)).

• There exists a WA recognising f of size exactly rank(H(f)).

This article is in French. However, one can �nd great exposition of the ideas
in the handbooks of Berstel and Reutenauer [6] and Sakarovitch [43]. The proof
of the second item gives a construction of the WA recognising f that we detail
now as we will need it to prove Theorem 6.2.

Recall that the rows of H(f) are indexed by words in X∗. For u ∈ X∗, let H(f)
u

be the row corresponding to u in H(f), which we see as H(f)
u ∈ RX∗ . Let Q ⊆ X∗
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such that
{
H

(f)
u | u ∈ Q

}
is a basis of Span

{
H

(f)
u | u ∈ X∗

}
. We furthermore

assume that ε ∈ Q, which is possible since H(f)
ε 6= 0 unless f is the constant zero

function.
We now construct the WA recognising f . The set of states is Q, the initial

state is ε, and the output function is de�ned by F (u) = f(u) for u ∈ Q. We now
de�ne the transition function. For u ∈ Q, there is a unique decomposition of
H

(f)
ux on the basis

{
H

(f)
u | u ∈ Q

}
:

H(f)
ux =

∑
v∈Q

λ(u, x, v)H(f)
v ,

we de�ne ∆(u, x, v) = λ(u, x, v).

Proof of Nisan’s theorem
Lemma 6.8

Let P be a homogeneous polynomial of degree d. The automaton constructed
above for recognising P is d-layered.

Proof. Let A = (Q, ε,∆, F ) be the automaton described in the previous subsec-
tion.

Since for u of length larger than d we have H(f)
u = 0, it implies thatQ ⊆ X≤d.

For i ∈ {0, . . . , d}, we let Qi = Q ∩ X i. The conditions (1) and (3) are clearly
satis�ed, so we focus on (2).

For i ∈ {0, . . . , d}, let Vi denote the vector space spanned by
{
H

(P )
u | u ∈ Qi

}
.

Note that for u ∈ Qi and v of length j, if i+ j 6= d then H(P )
u (v) = P (u · v) = 0,

hence the same is true for any L ∈ Vi: if v has length j such that i+ j 6= d, then
L(v) = 0.

We claim that the subspaces V0, V1, . . . , Vd are in direct sum. Indeed, assume
that

∑d
i=0 Li = 0 with Li ∈ Vi. Let j ∈ {0, . . . , d} such that Lj 6= 0, and consider

a word v ∈ Xd−j . For i 6= j we have Li(v) = 0 thanks to the remark above. It
follows that Lj(v) = 0 for all v ∈ Xd−j , implying again with the remark above
that Lj = 0, a contradiction. Thus the subspaces V0, V1, . . . , Vd are in direct sum.

Let u ∈ Q and x ∈ X . By de�nition

H(P )
ux =

∑
v∈Q

∆(u, x, v)H(P )
v =

d∑
i=0

∑
v∈Qi

∆(u, x, v)H(P )
v .
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But since H(P )
ux ∈ V|u|+1 and the vector spaces V0, . . . , Vd are in direct sum, it

follows that for v ∈ Q of length i 6= |u|+ 1 we have
∑

v∈Qi ∆(u, x, v)H
(P )
v = 0.

Since the vectors
{
H

(P )
v | v ∈ Qi

}
are linearly independent, this implies that

∆(u, x, v) = 0. Thus the property (2) is satis�ed.

We now explain how to obtain the proof of Nisan’s theorem (Theorem 6.2) from
the correspondence. Let P be a homogeneous polynomial of degree d. Thanks to
the �rst item of Theorem 6.7 any WA recognising P has size at least rank(H(P )),
and thanks to the �rst item of Lemma 6.5 this implies that any ABP computing
P has size at least rank(H(P )). Thanks to the second item of Theorem 6.7, there
exists a WA recognising P of size rank(H(P )), and thanks to Lemma 6.8, it is
d-layered. Thanks to the second item of Lemma 6.5, it induces an ABP computing
P of size rank(H(P )).

Let us have a closer look at the Hankel matrix of P for a homogeneous
polynomial P of degree d. Most of the matrix is �lled with zeros, except for d+ 1
independent blocks, which are precisely the matricesMP,i for i ∈ {0, . . . , d}. This
explains the summation in Nisan’s statement of the theorem, since rank(H(P )) =∑d

i=0 rank(MP,i).

Figure 6.4: The Hankel matrix of P consists of d+ 1 independent blocks.

As we shall see in the next section, when considering UPT circuits the blocks
will no longer be independent, allowing to share the result of partial computations.
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6.2 Tight bounds for circuits with unique parse
trees

In this section, we allow circuits to have multiple output in order to make the
correspondence with weighted automata over trees cleaner. To prevent any
confusion, we state below the de�nition that will be used in the rest of the
chapter.

De�nition 6.9

A circuit is a directed acyclic graph whose vertices, called gates, are of four
di�erent types.

• The input gates have indegree zero and are labeled with variables
x ∈ X .

• The addition gates have unbounded fan-in and perform a linear combi-
nation of their inputs, with the associated coe�cients α in R given on
the edges.

• The multiplication gates have fan-in two, their arguments are ordered
and the multiplication is interpreted according to this order (the left
argument is multiplied before the right argument).

• The output gates have outdegree zero and are labeled with a real output
value.

The size of an algebraic circuit is its number of addition gates.

While this de�nition allows multiple output gates, the circuits we construct
only have one single output.

The reason for not taking the multiplication gates into account is because
of Lemma 2.5 from Chapter 2, proving that for UPT circuits (which are the only
circuits we consider), if s is the number of addition gates, then the number of
multiplication gates can always be bounded by s2. Therefore, the number of
addition gates gives a pretty good idea on the total size of UPT circuits. Observe
also that the situation is similar in Nisan’s work for ABPs as the vertices of an ABP
correspond exactly to addition gates when this ABP is converted into circuits.

We also normalise the circuits by requiring that all paths alternate between
addition gates and multiplication gates and start and �nish with an addition gate,
which increases the size by at most a linear factor.
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Statement of the result

Shapes are binary trees without any labels, we use T, T ′, . . . for shapes. They
can be built inductively: a leaf is a shape, and given two shapes T1, T2, the shape
T1 · T2 is a root with T1 as left subtree and T2 as right subtree.

We also consider labeled trees (later refered to as trees), which are binary
trees whose leaves are labeled by variables x ∈ X . We let Tree(X) denote the
set of trees, and use t, t′, . . . for them. Trees can be built inductively similarly as
shapes, except that the basic trees are variables x ∈ X . A tree series is a function
f : Tree(X)→ R.

For t ∈ Tree(X), we let t̃ be the underlying shape of t, and for a shape T , we
let Tree(X,T ) denote the set of trees t such that t̃ = T .

We de�ne the Hankel matrix for tree series. We �rst need the notion of
contexts: a context C is an element of Tree(X ∪ {�}) with a unique leaf labeled
�. We let Context(X) denote the set of contexts, and use C,C ′, . . . for them.
A context C and a tree t can be composed into a tree C ◦ t by replacing the
placeholder � by the tree t.

De�nition 6.10

Let f : Tree(X) → R, we de�ne the (in�nite) Hankel matrix H(f) ∈
RTree(X) × RContext(X) by H(f)(t, C) = f(C ◦ t).

Our main theorem gives tight bounds on the size of UPT circuits. More
precisely, we consider a homogeneous polynomial P of degree d and a shape T ,
and �nd the size of the smallest UPT circuit with shape T computing P .

A necessary condition for the existence of such a circuit is that the number of
leaves of T is d. Under this condition a homogeneous polynomial P of degree
d and a shape T induce a function fP,T : Tree(X) → R: for t ∈ Tree(X,T ),
we see t as a monomial and de�ne fP,T (t) as the coe�cient of this monomial in
P , the function fP,T is zero outside of Tree(X,T ). We refer to Figure 6.5 for an
illustration of this de�nition.

For the sake of simplicity we use H(P,T ) instead of H(fP,T ).
Our main result is the following:
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Figure 6.5: Given the shape T displayed on the left hand side, the polynomial
P = xyx+4x2y+2y3 can be seen as the tree series P : Tree(X)→ R associating
with these three trees the values indicated below them and zero to all other trees.

Theorem 6.11

Let P be a homogeneous polynomial of degree d, and T be a shape with d
leaves.

• Any UPT circuit for P with shape T has size at least rank(H(P,T )),

• There exists a UPT circuit with shape T computing P of size exactly
rank(H(P,T )).

Weighted automata over trees

De�nition 6.12: weighted automaton over trees

A weighted automaton over trees (WA) is given by

• a �nite set of states Q,

• an initial function ι : X ×Q→ R,

• a transition function ∆ : Q×Q×Q→ R,

• an output function F : Q→ R.

Equivalently, we write the transition function as a bilinear function ∆ :
RQ × RQ → RQ de�ned by ∆(p, q)(r) = ∆(p, q, r).

The initial and transition functions induce ∆∗ : Tree(X)→ RQ de�ned
by ∆∗(x) = ι(x) ∈ RQ and ∆∗(t1 · t2) = ∆(∆∗(t1),∆∗(t2)).
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The weighted automatonA recognises the tree series fA : Tree(X)→ R
de�ned by

fA(t) = ∆∗(t) · F,

where · is the dot product in RQ.

UPT circuits as weighted automata over trees
UPT circuits form a subclass of WA over trees that we de�ne now.

Let T be a shape and v a node of T , we let Tv be the subshape of T rooted in
v. We let [T ] denote {Tv | v node of T}.

De�nition 6.13

A weighted automaton A = (Q, ι,∆, F ) is T -layered if there exists a map
m : Q→ [T ] such that

(1) for all x ∈ X , if ι(x, q) 6= 0 then m(q) is the shape reduced to a single
leaf,

(2) for all q, q1, q2 ∈ Q, if ∆(q, q1, q2) 6= 0, then m(q) = m(q1) ·m(q2),

(3) for all q ∈ Q, if F (q) 6= 0 then m(q) = T .

Lemma 6.14

• For all UPT C with shape T , there exists a T -layered WA over trees A
of the same size such that fA = PC .

• For all WA over trees A which is T -layered, there exists a UPT C with
shape T of the same size such that PC = fA.

Proof. Let C be a UPT circuit. We de�ne a WA over trees as follows. The set of
states is the set of addition gates of C. The initial function de�ned by ι(g, x) is the
label of the edge coming from an input gate with label x to g, and 0 if there is no
such edge. The output function de�ned by F (g) is the label of g if g is an output
gate, and 0 otherwise. The transition function is de�ned as follows: ∆(g1, g2, g)
is the label of (the unique) multiplication gate g′ using g1 and g2 as arguments
and g′ argument of g. Then fA = PC .

For the second claim, the de�nition of layered WA over trees exactly says that
the above construction can be reverted.
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Minimisation of weighted automata over trees
The following theorem extends Fliess’ theorem.

Theorem 6.15: [7]

Let f : Tree(X)→ R be a tree series such that rank(H(f)) is �nite.

• Any WA recognising f has size at least rank(H(f)).

• There exists a WA recognising f of size exactly rank(H(f)).

We detail the construction for the second item as we will need it to prove
Theorem 6.11.

Recall that the rows ofH(f) are indexed by trees in Tree(X). For t ∈ Tree(X),
letH(f)

t be the row corresponding to t inH(f), which we see asH(f)
t ∈ RContext(X).

LetQ ⊆ Tree(X) such that
{
H

(f)
t | t ∈ Q

}
is a basis of Span

{
H

(f)
t | t ∈ Tree(X)

}
.

We furthermore assume that Q contains at least one tree reduced to a single vari-
able x ∈ X , which is possible since H(f)

x 6= 0 for some x ∈ X unless f is the
constant zero series.

We now construct the WA recognising f . The set of states is Q. The initial
function is de�ned by ι(x, t) = 1 if t is the variable x ∈ X , and 0 otherwise. We
now de�ne the transition function. For t1, t2 ∈ Q, there is a unique decomposition
of H(f)

t1·t2 on the basis
{
H

(f)
t | t ∈ Q

}
:

H
(f)
t1·t2 =

∑
t∈Q

λ(t1, t2, t)H
(f)
t ,

we de�ne ∆(t1, t2, t) = λ(t1, t2, t). The output function is de�ned by F (t) = f(t)
for t ∈ Q.

Proof of Theorem 6.11
Lemma 6.16

Let P be a homogeneous polynomial of degree d and T a shape with d leaves.
The automaton constructed above for recognising P is T -layered.

Proof. Let A = (Q, ι,∆, F ) be the automaton described in the previous subsec-
tion.
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We de�ne m : Q→ [T ] by m(t) = t̃. To see that indeed t̃ ∈ [T ], we remark
that if t̃ /∈ [T ] then H(P,T )

t = 0, hence t cannot be in Q. The conditions (1) and (3)
are clearly satis�ed, so we focus on (2).

For T ′ ∈ [T ], let VT ′ denote the vector space spanned by
{
H

(P,T )
t | t̃ = T ′

}
.

We claim that the subspaces VT ′ for T ′ ∈ [T ] are in direct sum. It follows from
the fact that if L ∈ VT ′ , then for a context C ′ such that C ′ ◦ T ′ 6= T , we have
L(C ′) = 0.

Let t1, t2 ∈ Q. By de�nition

H
(P,T )
t1·t2 =

∑
t∈Q

∆(t1, t2, t)H
(P,T )
t =

∑
T ′∈[T ]

∑
t∈Q | t̃=T ′

∆(t1, t2, t)H
(P,T )
t︸ ︷︷ ︸

∈VT ′

.

Since H(P,T )
t1·t2 ∈ Vt̃1·t̃2 and the vector spaces VT ′ for T ′ ∈ [T ] are in direct sum, it

follows that for T ′ ∈ [T ] such that t̃1 · t̃2 6= T ′ we have∑
t∈Q | t̃=T ′

∆(t1, t2, t)H
(P,T )
t = 0.

Since the vectors
{
H

(P,T )
t | t ∈ Q

}
are linearly independent, this implies that

∆(t1, t2, t) = 0. Thus Property (2) is satis�ed.

We now prove our main result, Theorem 6.11. Let P be a homogeneous
polynomial of degree d and T a shape with d leaves. Thanks to the �rst item of
Theorem 6.15 any WA recognising P has size at least rank(H(P,T )), and thanks
to the �rst item of Lemma 6.14 this implies that any UPT circuit with shape
T computing P has size at least rank(H(P,T )). Thanks to the second item of
Theorem 6.15, there exists a WA recognising P of size rank(H(P,T )), and thanks
to Lemma 6.16, it is T -layered. Thanks to the second item of Lemma 6.5, it induces
a UPT circuit with shape T computing P of size rank(H(P,T )).

6.3 Applications

In this section, we apply our main theorem to explicit polynomials. The �rst
example illustrates the di�erence between general UPT circuits and UPT circuits
in normal form as studied in Chapter 2, witnessing an exponential gap between
the two models. Our second example is the permanent.
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An exponential gap between UPT circuits and their normal
restrictions

Consider the polynomial P (x1, x2, x3, x4) = x1x2x3x4 +x3x4x1x2 and let T be a
complete binary tree with 4 leaves. Figure 6.6 shows the smallest UPT circuit with
shape T computing P given by the construction of Theorem 6.11. It witnesses an
interesting phenomenon: both computations x1x2 and x3x4 are shared and used
twice each. This is captured in the Hankel matrix by observing that two blocks
contribute only by one to the rank since the two rows are identical. Informally
they correspond to isomorphic subshapes. This circuit is not in the normal form
studied in Chapter 2, which does not allow such shared computations.

Figure 6.6: On the left hand side, the smallest UPT circuit computing x1x2x3x4 +
x3x4x1x2. We have not depicted some addition gates to keep the �gure simple.
On the right hand side a sample of the corresponding Hankel matrix. The blue
rectangle corresponds to an interaction between two di�erent type of contexts.

We push this further to obtain an exponential gap between UPT circuits and
UPT circuits in normal form. Let n ∈ N and T be the complete binary tree with 2n

leaves. Consider the polynomial P (x) = x2n . Inspecting the Hankel matrix (see
Figure 6.8) yields rank(H(P,T )) = n. Thus thanks to Theorem 6.11 the smallest
UPT circuit with shape T computing P has exactly n addition gates, illustrated
in Figure 6.7. The characterisation obtained in Chapter 2 shows that the smallest
UPT circuit with shape T in normal form has 2n+1 − 1 addition gates, yielding
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an exponential gap. Note however that such a large gap can only be obtained for
circuits with large degrees.

Figure 6.7: An example of a UPT circuit computing x2n . The circuit is on the left
hand side and its shape on the right hand side, it is the complete binary tree of
height n.

The permanent

We look at the permanent polynomial

P =
∑
σ∈Sn

n∏
i=1

xi,σ(i)

over the n2 variables X = {xi,j | i, j ∈ [n]}. We examine the Hankel matrix
H(P,T ) for any shape T with n leaves and obtain the size of the smallest UPT
circuit of shape T which computes the permanent.

For v a node of T , let dv be the number of leaves in Tv.

Lemma 6.17

rank(H(P,T )) =
∑
v∈T

(
n

dv

)
.
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Figure 6.8: The Hankel matrix for the polynomial x2n and the shape T being the
full binary tree.
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Proof. Let T be a shape withn leaves {`1, . . . , `n} and v ∈ T be a node in T . We let
iv denote the leftmost index of a leaf in Tv , i.e., Tv has leaves `iv , `iv+1, . . . , `iv+dv−1.
Moreover, let S be a subset of {1, . . . , n} of size dv.

We argue that in the Hankel matrix there are
∑

v∈T
(
n
dv

)
independent blocks,

and that the set of these blocks is in bijection with pairs (v, S) where v is a node
of T and S a subset of size dv.

Let S = {s1, . . . , sdv} and its complement {1, . . . , n} \ S = {q1, . . . , qn−dv}.
Let US

v be the set of labelings of the leaves `iv , . . . , `iv+dv−1 of Tv by variables
xiv ,σ(s1), . . . , xiv+dv−1,σ(sdv ) in this order, ranging over permutations σ of S.

Likewise, we let C denote the unlabeled context obtained by removing Tv
from node v in T and replacing it by a placeholder �, and put BS

v to be the set of
labelings of all leaves but those in Tv of C by the variables

x1,τ(q1), . . . , xiv−1,τ(qiv−1), xiv+dv ,τ(qiv ), . . . , xn,τ(qn−dv ),

ranging over permutations τ of the complement of S.
For any σ, τ , the corresponding labeled tree tσ ∈ US

v and labeled context
cτ ∈ BS

v are such that fP (cτ [tσ]) = H(P,T )(tσ, cτ ) = 1, inducing a block of 1’s
indexed by US

v ×BS
v in H(P,T ).

Conversely, we see that any (t, c) ∈ Tree(X)×Context(X) such thatH(P,T )(t, c) =
1 is in some US

v ×BS
v , and that for any two distinct (S, v), (S ′, v′), both US

v and
US′

v′ and BS
v and BS′

v′ are disjoint, hence the blocks cover all 1’s in H(P,T ) and are
independent. This concludes.

We instantiate this result for two shapes:
• If T is a comb, this yields that the smallest ABP computing the permanent

has size
∑n

i=1

(
n
i

)
+
∑n

i=1

(
n
0

)
= 2n + n,

• If T is a full binary tree of depth k = log(n), this yields that the smallest UPT
circuit with this shape computing the permanent has size

∑k
i=0 2i

(
2k

2k−i

)
=

Θ( 2n√
n
).

Hence the latter UPT circuit is more e�cient.
However, recall that in our model circuits have unbounded fan-in on addition

gates. In this setting a natural and a more accurate estimation of the size of the
circuit (or number of operations that are performed) is to count directly the total
number of arguments of addition gates. Examining more closely the automata
and the circuits we construct, we obtain the following formula that gives the
number of such edges for a UPT circuit with shape T computing the permanent∑

v∈T

(
dv
fv

)(
n

dv

)
,
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where fv is the number of leaves in Tv′ , with v′ an argument of v (indeed, it does
not depend upon which argument is chosen). Note that our optimality result
does not apply to this new measure, but we can still consider the size of the
circuits constructed by Theorem 6.11. It yields an ABP of size n2n−1 + n, which
asymptotically matches the well known optimal ABP for the permanent that is
asymptotically as fast as Ryser formula. For the case of the full binary tree, we
obtain a UPT circuit of size Θ(2

3
2
n/ log(n)), worse than the ABP.
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Part II

Lempel-Ziv: a “One-bit
catastrophe” but not a tragedy
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Overview

This part gives a positive answer to the “one-bit catastrophe” question—introduced
by Jack Lutz in the late ’90s—that asks whether an in�nite word compressible by
LZ’78 can become incompressible by adding a single bit in front of it.

In Chapter 7 we introduce all the notions related to LZ’78 and state our main
results. Chapter 8 is devoted to the proof of the upper bound (the “not a tragedy”
part), whereas the next chapters are about lower bounds. In Chapter 9 we explicitly
give a word, based on de Bruijn sequences, whose compression ratio is optimal
but the addition of a single bit deteriorates the compression ratio as much as the
aforementioned upper bound allows to. That is a particular case of the result of
Chapter 10 but we include it anyway for three reasons: it illustrates the main
ideas without obscuring them with too many technical details; the construction
is more explicit; and the bounds are better.

In Chapter 10 we prove our main theorem on �nite words (Theorem 7.10). It
requires the existence of a family of “de Bruijn-style” words shown in Section 10.1
thanks to the probabilistic method. Finally, Chapter 11 uses the previous results to
prove the “original” one-bit catastrophe, namely on in�nite words (Theorem 7.6).
The whole part is based on the following publication:

• Guillaume Lagarde and Sylvain Perifel. Lempel-ziv: a "one-bit catastrophe"
but not a tragedy. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, Jan-
uary 7-10, 2018, pages 1478–1495, 2018
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Chapter 7

Introduction

Suppose you compressed a �le using your favorite compression algorithm, but
you realize there was a typo that makes you add a single bit to the original
�le. Compress it again and you get a much larger compressed �le, for a one-
bit di�erence only between the original �les. Most compression algorithms
fortunately do not have this strange behaviour; but if your favorite compression
algorithm is called LZ’78, one of the most famous and studied of them, then this
surprising scenario might well happen. . . In rough terms, that is what we show
in this second part of the thesis, thus closing a question advertised by Jack Lutz
under the name “one-bit catastrophe” and explicitly stated for instance in papers
of Lathrop and Strauss [27], Pierce II and Shields [41], as well as more recently
by López-Valdés [31].

Ziv-Lempel algorithms

In the paper [47] where they introduce their second compression algorithm
LZ’78, Ziv and Lempel analyse its performance in terms of �nite-state lossless
compressors and show it achieves the best possible compression ratio. Together
with its cousin algorithm LZ’77 [46], this generic lossless compressor has paved
the way to many dictionary coders, some of them still widely used in practice
today. For instance, the deflate algorithm at the heart of the open source
compression program gzip uses a combination of LZ’77 and Hu�man coding;
or the image format GIF is based on a version of LZ’78. As another example,
methods for e�cient access to large compressed data on the internet based on
Ziv-Lempel algorithms have been proposed [16].

Besides its pratical interest, the algorithm LZ’78 was the starting point of a
long line of theoretical research, triggered by the optimality result among �nite-
state compressors proved by Ziv and Lempel. In recent work, for instance, a
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comparison of pushdown �nite-state compressors and LZ’78 is made in [37]; the
article [20] studies Lempel-Ziv and Lyndon factorisations of words; or the e�cient
construction of absolutely normal numbers of [34] makes use of the Lempel-Ziv
parsing.

Some works of bioinformatics have also focussed on Ziv-Lempel algorithms,
since their compression scheme makes use of repetitions in a sequence in a way
that proves useful to study DNA sequences (see e.g. [45]), or to measure the
complexity of a discrete signal [1] for instance.

Actually, both in theory and in practice, Ziv-Lempel algorithms are undoubt-
edly among the most studied compression algorithms and we have chosen only a
very limited set of references: we do not even claim to be exhaustive in the list of
�elds where LZ’77 or LZ’78 play a role.

Robustness

Yet, the robustness of LZ’78 remained unclear: the question of whether the
compression ratio of a sequence could vary by changing a single bit appears
already in [27], where the authors also ask how LZ’78 will perform if a bit is added
in front of an optimally compressible word. Since the Hausdor� dimension of
complexity classes introduced by Lutz [33] can be de�ned in terms of compression
(see [32]), this question is linked to �nite-state and polynomial-time dimensions
as [31] shows. As a practical illustration of the issue the (lack of) robustness can
cause, let us mention that the deflate algorithm tries several starting points
for its parsing in order to improve the compression ratio.

Here, we show the existence of an in�nite sequence w which is compressible
by LZ’78, but the addition of a single bit in front of it makes it incompressible
(the compression ratio of 0w is non-zero, see Theorem 7.6), thus we settle the
“one-bit catastrophe” question. To that end, we study the question over �nite
words, which enable stating more precise results. For a word w and a letter a, we
�rst prove in Theorem 7.7 that the compression ratio ρ(aw) of aw cannot deviate
too much from the compression ratio ρ(w) of w:

ρ(aw) ≤ 3
√

2
√
ρ(w) log |w|.

In particular, aw can only become incompressible (ρ(aw) = Θ(1)) if w is already
poorly compressible, namely ρ(w) = Ω(1/ log n). This explains why the one-bit
catastrophe cannot be “a tragedy” as we point out in the title.

However, our results are tight up to a constant factor, as we show in Theo-
rem 7.10: there are constants α, β > 0 such that, for any l(n) ∈ [902 log2 n,

√
n],
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there are in�nitely many words w satisfying

ρ(w) ≤ α
log |w|
l(|w|)

whereas ρ(0w) ≥ β
log |w|√
l(|w|)

.

In particular, for l(n) = 902 log2 n, these words satisfy

ρ(w) ≤ 1

log |w|
and ρ(0w) ≥ β

90

(this is the one-bit catastrophe over �nite words). But actually the story resembles
much more a tragedy for well-compressible words. Indeed, for l(n) =

√
n we

obtain:
ρ(w) ≤ α

log |w|√
|w|

whereas ρ(0w) ≥ β
log |w|
|w|1/4

,

that is to say that the compression ratio of 0w is much worse than that of w
(which in that case is optimal). To give a concrete idea, the bounds given by
our Theorem 9.1 for words of size 1 billion (|w| = 109) yield a compression for
w of size at most d log d ≤ 960,000 (where d = 1.9

√
|w|), whereas for 0w the

compression size is at least d′ log d′ ≥ 3,800,000 (where d′ = 0.039|w|3/4).1
This “catastrophe” shows that LZ’78 is not robust with respect to the addition

or deletion of bits. Since a usual good behaviour of functions used in data repre-
sentation is a kind of “continuity”, our results show that, in this respect, LZ’78 is
not a good choice, as two words that di�er in a single bit can have images very
far apart.

Lempel-Ziv, compression and results
Before turning to the description of LZ’78 algorithm, let us recall standard notation
on words.

7.1 Basic notation
The binary alphabet is the set {0, 1}. A word w is an element of {0, 1}?, that is,
a �nite ordered sequence of letters 0 or 1, whose length is denoted by |w|. The

1Actually, throughout the manuscript we preferred readability over optimality and thus did not
try to get the best possible constants; simulations show that there is a lot of room for improvement,
since already for small words the di�erence is signi�cant (using notation introduced in Section 7
and Chapter 9, for w = Pref(x) with x ∈ DB(12), |w| ' 8.106 and w is parsed in about 4100
blocks, whereas 0w is parsed in more than 200,000 blocks).
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empty word is denoted by λ. For a word w = x0 · · ·xn−1 (note that the indices
begin at zero), where xi ∈ {0, 1}, w[i..j] will denote the substring xi · · ·xj of w
(or λ if j < i); w[i] or wi will denote the letter xi; and w≤i (respectively w<i) will
denote w[0..i] (resp. w[0..i − 1]). We say that a word m is a factor of w if m is
any substring w[i..j]. In the particular case of i = 0 (respectively j = n− 1), m
is also called a pre�x (resp. a su�x) of w. The set of factors of w is denoted by
F (w), and its set of pre�xes P(w). By extension, for a set M of words, F (M)
will denote ∪w∈MF (w) and similarly for P(M). If u and w are two words, we
denote by Occw(u) the number of occurrences of the factor u in w.

The “length-lexicographic order” on words is the lexicographic order where
lengths are compared �rst.

An in�nite word is an element of {0, 1}N. The same notation as for �nite
words apply.

All logarithms will be in base 2. The size of a �nite set A is written |A|.

7.2 LZ’78

7.2.1 Notions relative to LZ

A k-partition (or just partition) of a word w is a sequence of k non-empty words
m1, . . . ,mk such that w = m1.m2. · · · .mk. The LZ-parsing (or just parsing) of a
word w is the unique partition of w = m1 · · ·mk such that:

• m1, . . . ,mk−1 are all distinct2;

• ∀i ≤ k, P(mi) ⊆ {m1, . . . ,mi}.

The words m1, . . . ,mk are called blocks. The predecessor of a block mi is the
unique mj , j < i, such that mi = mja for a letter a. The compression algorithm
LZ’78 parses the wordw and encodes each blockmi as a pointer to its predecessor
mj together with the letter a such that mi = mja. For instance, the word
w = 00010110100001 is parsed as

Blocks 0 00 1 01 10 100 001
Block number 0 1 2 3 4 5 6

and thus encoded as

(λ, 0); (0, 0); (λ, 1); (0, 1); (2, 0); (4, 0); (1, 1).

2The last word mk might be equal to another mi.
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The dictionary of w is the set Dic(w) = {m1, . . . ,mk} (in the example,
{0, 1, 00, 01, 10, 001, 100}). Remark that, by de�nition, {λ} ∪ Dic(w) is pre�x-
closed.

The parse tree of w is the unique rooted binary tree whose (k + 1) vertices
are labeled with λ,m1, . . . ,mk, such that the root is λ and if a vertex mi has a
left child, then it is mi0, and if it has a right child, then it is mi1.3 See Figure 7.1.
Remark also that the depth of a vertex is equal to the size of the corresponding
block.

λ

0 1

00 01 10

001 100

Figure 7.1: Parse tree of 00010110100001.

By abuse of language, we say that a block b “increases” or “grows” in the
parsing of a word w when we consider one of its successors, or when we consider
a path from the root to the leaves that goes through b. Indeed, going from b to its
successor amounts to add a letter at the end of b (hence the “increase”).

7.2.2 Compression ratio

As in the example above, given a word w and its LZ-parsing m1 · · ·mk, the LZ-
compression of w is the ordered list of k pairs (pi, ai), where pi is the binary
representation of the unique integer j < i such that mj = mi[0..(|mi| − 2)], and
ai the last letter of mi (that is, the unique letter such that mi = mjai). When the
LZ-compression is given, one can easily reconstruct the word w.

3Note that, in order to recover the parsing from the parse tree, the vertices must also be labeled
by the order of apparition of each block, but we do not need that in the sequel.
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Remark 7.1

• If x is a word, we de�ne Pref(x) the concatenation of all its pre�xes
in ascending order, that is,

Pref(x) = x0.x0x1.x0x1x2. · · · .x0 · · ·xn−2xn−1.

Then the parsing of the word w = Pref(x) is exactly the pre�xes of
x, thus the size of the blocks increases each time by one: this is the
optimal compression. In that case, the number of blocks is

k = |x| =
√

2
√
|w| −O(1).

Actually, it is easy to see that this optimal compression is attained only
for the words w of the form Pref(x).
In Chapter 10 we will need the concatenation of all pre�xes of x
starting from a size p+ 1, denoted by Pref>p(x), that is,

Pref>p(x) = x0x1 · · · xp.x0x1 · · ·xp+1. · · · .x0 · · ·xn−1.

• On the other hand, if w is the concatenation, in length-lexicographic
order, of all words of size≤ n (w = 0.1.00.01.10.11.000.001 . . . ), then
it has size

|w| =
n∑
i=1

i2i = (n− 1)2n+1 + 2,

and its parsing consists of all the words up to size n, therefore that is
the worst possible case and the number of blocks is

k = 2n+1 − 2 =
|w|

log |w|
+O

(
|w|

log2 |w|

)
.

(And that is clearly not the only word achieving this worst compres-
sion.)

The number of bits needed in the LZ-compression is Θ(
∑k

i=1(|pi| + 1)) =

Θ(k log k). As the two previous extremal cases show, k log k = Ω(
√
|w| log |w|)

and k log k = O(|w|).
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De�nition 7.2

The compression ratio of a word w is

ρ(w) =
|Dic(w)| log |Dic(w)|

|w|
.

As Remark 7.1 shows,

ρ(w) = Ω

(
log |w|√
|w|

)
and ρ(w) ≤ 1 +O

(
1

log |w|

)
.

A sequence of words (wn) is said LZ-compressible if ρ(wn) tends to zero (i.e.,
kn log kn = o(|wn|)), and consistently it will be considered LZ-incompressible if
lim infn→∞ ρ(wn) > 0 (in other terms, kn log kn = Ω(|wn|)).

Actually, the (log k) factor is not essential in the analysis of the algorithm,
therefore we drop it in our de�nitions (moreover, most of the time we will focus
directly on the size of the dictionary rather than the compression ratio).

De�nition 7.3

The size of the LZ-compression of w, or compression size, is de�ned as the size
of Dic(w), that is, the number of blocks in the LZ-parsing of w.

Remark that |Dic(w)| = Ω(
√
|w|) and |Dic(w)| = O(|w|/ log(|w|)). We can now

restate the de�nition of incompressibility of a sequence of words in terms of
compression size instead of the number of bits in the LZ-compression.

De�nition 7.4

A sequence of words (wn) is said to be incompressible i�

|Dic(wn)| = Θ

(
|wn|

log(|wn|)

)
.

In those de�nitions, we have to speak of sequences of �nite words since
the asymptotic behaviour is considered. That is not needed anymore for in�nite
words, of course, but then two notions of compression ratio are de�ned, depending
on whether we take the lim inf or lim sup of the compression ratios of the pre�xes.
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De�nition 7.5: compression ratios for in�nite words

Let w ∈ {0, 1}N be an in�nite word.

ρinf(w) = lim inf
n→∞

ρ(w<n) and ρsup(w) = lim sup
n→∞

ρ(w<n).

The word w is called incompressible if ρinf(w) > 0.

7.3 One-bit catastrophe and results

The one-bit catastrophe question is originally stated only on in�nite words. It asks
whether there exists an in�nite word w whose compression ratio changes when
a single letter is added in front of it. More speci�cally, a stronger version asks
whether there exists an in�nite word w compressible (compression ratio equal to
0) for which 0w is not compressible (compression ratio > 0). In Chapter 11 we
will answer that question positively:

Theorem 7.6

There exists w ∈ {0, 1}N such that

ρsup(w) = 0 and ρinf(0w) ≥ 1

6 075
.

Remark that the lim inf is considered for the compression ratio of 0w and the
lim sup for w, which is the hardest possible combination as far as asymptotic
compression ratios are concerned.

But before proving this result, most of the work will be on �nite words (only
in Chapter 11 will we show how to turn to in�nite words). Let us therefore state
the corresponding results on �nite words. Actually, on �nite words we can have
much more precise statements and therefore the results are interesting on their
own (perhaps even more so than the in�nite version).

In Chapter 8, we show that the compression ratio of aw cannot be much worse
than that of w. In particular, all words “su�ciently” compressible (compression
size o(|w|/ log2 |w|)) cannot become incompressible when a letter is added in
front (in some sense, thus, the one-bit catastrophe cannot happen for those words,
see Remark 7.11).
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Theorem 7.7

For every word w ∈ {0, 1}? and any letter a ∈ {0, 1},

|Dic(aw)| ≤ 3
√
|w|.|Dic(w)|.

Remark 7.8

When stated in terms of compression ratio, using the fact that |Dic(w)| ≥√
|w|, this result reads as follows:

ρ(aw) ≤ 3
√

2
√
ρ(w) log |w|.

We also show in Chapter 9 that this result is tight up to a multiplicative
constant, since Theorem 9.1 implies the following result.

Theorem 7.9

For an in�nite number of words w ∈ {0, 1}?,

|Dic(0w)| ≥ 1

35

√
|w|.|Dic(w)|.

More generally, we prove in Chapter 10 our main result:

Theorem 7.10

Let l : N→ N be a function satisfying l(n) ∈ [(90 log n)2,
√
n]. Then for an

in�nite number of words w:

|Dic(w)| ≤ 3 +
√

3

2
· |w|
l(|w|)

and |Dic(0w)| ≥ 1

54
· |w|√

l(|w|)
.

This shows that the upper bound is tight (up to a multiplicative constant) for any
possible compression size. This also provides an example of compressible words
that become incompressible when a letter is added in front (see Remark 7.11),
thus showing the one-bit catastrophe for �nite words.
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Remark 7.11

In particular:

• Theorem 7.7 implies that, if an increasing sequence of words (wn)
satis�es |Dic(wn)| = o(|wn|/ log2 |wn|), then for any letter a ∈ {0, 1},
awn remains fully compressible (|Dic(awn)| = o(|wn|/ log |wn|));

• however, by Theorem 7.10, there is an increasing sequence of words
(wn) such that |Dic(wn)| = Θ(|wn|/ log2 |wn|) (compressible) but
|Dic(0wn)| = Θ(|wn|/ log |wn|) (incompressible), which is the one-
bit catastrophe on �nite words;

• the following interesting case is also true: there is an increasing se-
quence of words (wn) such that |Dic(wn)| = Θ(

√
|wn|) (optimal com-

pression) but |Dic(0wn)| = Θ(|wn|3/4). This special case is treated
extensively in Theorem 9.1. More generally, we can get |Dic(wn)| =
Θ(|wn|α) and |Dic(0wn)| = Θ(|wn|(1+α)/2) for any α ∈ [1/2, 1].

7.4 Parsings of w and aw
We will often compare the parsing of a word w and the parsing of aw for some
letter a: let us introduce some notation (see Figure 7.2).

• The blocks of w will be called the green blocks.

• The blocks of aw will be called the red blocks and are split into two cate-
gories4:

– The junction blocks, which are red blocks that overlap two or more
green blocks when we align w and aw on the right (that is, the factor
w of aw is aligned with the word w, see Figure 7.2).

– The o�set-i blocks, starting at position i in a green block and completely
included in it. If not needed, the parameter i will be omitted.

4Except the �rst block of aw, which is the word a and which is just called a red block.
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0 0 1 0 1 0 1 0 0 0 1 1

0 0 0 1 0 1 0 1 0 0 0 1 1

o�set-1 o�set-0 junction

Figure 7.2: The green blocks of w and red blocks of 0w for w = 001010100011.
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Chapter 8

Upper bound

This chapter is devoted to the proof of Theorem 7.7 giving an upper bound on
the compression ratio of aw, for any letter a, as a function of the compression
ratio of the word w. In their 1998 paper [27], Lathrop and Strauss ask the follow-
ing question: “Consider optimally compressed sequences: Will such sequences
compress reasonably well if a single bit is removed or added to the front of the
sequence?” We give a positive and quanti�ed answer: indeed, a word w com-
pressed optimally has a compression size O(

√
n), thus by Theorem 7.7, the word

aw has a compression size O(n3/4). (And we shall complete this answer with the
matching lower bound in the next chapter.)

The �rst lemma bounds the size of the partition of a word w if the partitioning
words come from a family with a limited number of words of same size. In its
application, the partition will be a subset of the LZ-parsing, and Lemma 8.3 below
will give the required bound on the number of factors of a given size.

Lemma 8.1

Let F be a family of distinct words such that for each i, the number of
words of size i in F is bounded by a constant N . Suppose that a word w is
partitioned into di�erent words of F . Then the number of words used in the
partition is at most 2

√
N |w|.

Proof. Let m(i) be the number of words of size i occurring in the partition of w,
and k the size of the largest words used. We want to prove that

k∑
i=1

m(i) ≤ 2
√
N |w|.
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We have:

|w| =
k∑
i=1

im(i) ≥
∑

i≥
√
|w|
N

im(i) ≥
√
|w|
N

∑
i≥

√
|w|
N

m(i)

hence ∑
i≥

√
|w|
N

m(i) ≤
√
N |w|.

On the other hand, since m(i) ≤ N :∑
i<

√
|w|
N

m(i) < N

√
|w|
N

=
√
N |w|.

Remark 8.2

Note that if, for all i ≥ 1, F contains exactly min(2i, N) words of size i, the
concatenation of all the words of F up to size s gives a word w of size

|w| =
logN∑
i=1

i2i +
s∑

i>logN

iN ≤ 2N logN + (s− logN)(s+ logN + 1)N/2

partitioned into m blocks, where

m =

logN∑
i=1

2i +
s∑

i>logN

N ≥ (s− logN)N.

Thusm ≥
√

2
√
N |w| if s >> logN . This shows the optimality of Lemma 8.1

up to a factor
√

2.

We now come to the lemma bounding the number of factors of a given size in
a word w as a function of its LZ-parsing.

Lemma 8.3

Let T be the parse tree of a word w. Then the number of di�erent factors of
size i in the blocks of w is at most |T | − i (that is, |F (Dic(w)) ∩ {0, 1}i| ≤
|T | − i).
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Proof. A factor of size i in a block b corresponds to a subpath of size i in the path
from the root to b in the parse tree. The number of such subpaths is bounded by
the number of vertices at depth at least i.

Actually, below we will use Lemma 8.3 sub-optimally since we will ignore the
parameter i and use the looser bound (|T | − 1).

Let us turn to the proof of Theorem 7.7, the main result of the present chapter.

Proof of Theorem 7.7. Let T be the parse tree of w and D = Dic(aw) be the set
of red blocks. We partition D into D1 and D2, where D1 is the set of junction
blocks together with the �rst red block (consisting only of the letter a), and D2 is
the set of o�set blocks.

• Bound for D1: The number of junction blocks is less than the number
of green blocks, therefore |D1| ≤ |Dic(w)| ≤

√
|Dic(w)|.|w| (recall that

|Dic(w)| ≤ |w|).

• Bound for D2: Consider w̃ the word w where all the junction blocks have
been replaced by the empty word λ. We know that w̃ is partitioned into
di�erent words by D2. But D2 ⊂ F , where F = F (Dic(w)) (the set of
factors contained in the green blocks). By Lemma 8.3, the number of words
of size i in F is bounded by |T | − i, which is at most |Dic(w)|. Finally,
Lemma 8.1 tells us that the number of words in any partition of w̃ by words
of F is bounded by 2

√
|Dic(w)|.|w̃| ≤ 2

√
|Dic(w)|.|w|.

In the end, |D| = |D1|+ |D2| ≤ 3
√
|w|.|Dic(w)|.

Remark 8.4

Instead of a single letter, we can add a whole word z in front of w. With the
same proof, it is easy to see that

|Dic(zw)| ≤ |Dic(z)|+ 3
√
|w|.|Dic(w)|.

Alternately, if we remove the �rst letter of w = aw′ (or any pre�x) we
get the same upper bound:

|Dic(w′)| ≤ 3
√
|aw′|.|Dic(aw′)|.
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Chapter 9

“Weak catastrophe” for the
optimal compression ratio

Before the proof of Theorem 7.10, we �rst present a “weak catastrophe”, namely
the third item of Remark 7.11 in which the compression size of a sequence changes
from O(

√
n) (optimal compression) to Ω(n3/4) when a letter is added in front,

thus matching the upper bound of Theorem 7.7.

Theorem 9.1

For an in�nite number of words w:

|Dic(w)| ≤ 1.9
√
|w| and |Dic(0w)| ≥ 0.039|w|3/4.

Remark 9.2

The “true” values of the constants that we will get below are as follows:

|Dic(w)| ≤ 3

√
2

5

√
|w| and |Dic(0w)| ≥ 1

36

(
8

5

)3/4

|w|3/4 − o(|w|3/4).

Observe that this weak catastrophe is a special case of Theorem 7.10 (with
better constants, though). The aim of this chapter is twofold: �rst, it will be a
constructive proof, whereas the main theorem will use the probabilistic method;
second, this chapter will set up the main ideas and should help understand the
general proof.

A main ingredient in the construction is de Bruijn sequences, that we introduce
shortly before giving the overview of the proof.
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9.1 De Bruijn sequences
A de Bruijn sequence of order k (or DB(k) in short, notation that will also designate
the set of all de Bruijn sequences of order k) is a word x of size 2k + k − 1 in
which every word of size k occurs exactly once as a substring. For instance,
0001011100 is an example of a DB(3). Such words exist for any order k
as they are, for instance, Eulerian circuits in the regular directed graph whose
vertices are words of size (k − 1) and where there is an arc labeled with letter a
from u to v i� v = u[1..k − 2]a.

Given any x ∈ DB(k), the following well-known (and straightforward) prop-
erty holds:

(?) Any word u of size at most k occurs exactly 2k−|u| times in x.
(In symbols, Occx(u) = 2k−|u|.) Thus, a factor of size l ≤ k in x will identify
exactly 2k−l positions in x (the i-th position is the begining of the i-th occurence
of the word).

The use of de Bruijn sequences is something common in the study of this
kind of algorithms: Lempel and Ziv themselves use it in [28], as well as later [27]
and [41] for example.

9.2 Overview of the proof
Recall that a word w is optimally compressed i� it is of the form w = Pref(x)
for some word x (Remark 7.1). Thus we are looking for an x such that 0Pref(x)
has the worst possible compression ratio. In Chapter 8 the upper bound on the
dictionary size came from the limitation on the number of possible factors of a
given size: it is therefore natural to consider words x where the number of factors
is maximal, that is, de Bruijn sequences.

Although we conjecture that the result should hold forw = Pref(x) whenever
x is a de Bruijn sequence beginning with 0, we were not able to show it directly.
Instead, we need to (possibly) add small words, that we will call “gadgets”, between
the pre�xes of x.

For some arbitrary k, we �x x ∈ DB(k) and start with the word w = Pref(x)
of size n. The goal is to show that there are Ω(n3/4) red blocks (i.e., that the size
of the dictionnary for 0w is Ω(n3/4)): this will be achieved by showing that a
signi�cant (constant) portion of the word 0w is covered by “small” red blocks (of
size O(n1/4)). Let s = |x|, so that n = Θ(s2). More precisely, we show that, in
all the pre�xes y of x of size ≥ 2s/3, at least the last third of y is covered by red
blocks of size O(

√
s) = O(n1/4).

This is done by distinguishing between red blocks starting near the beginning
of a green block (o�set-i for i ≤ γk) and red blocks starting at position i > γk:

130



• For the �rst, what could happen is that by coincidence the parsing creates
most of the time an o�set-i red block (called i-violation in the sequel), which
therefore would increase until it covers almost all the word w. To avoid
this, we introduce gadgets: we make sure that this happens at most half
of the time (and thus cannot cover more than half of w). More precisely,
Lemma 9.5 shows that at most half of the pre�xes of x can contain o�set-i
blocks for any �xed i ≤ γk. This is due to the insertion of gadgets that “kill”
some starting positions i if necessary, by “resynchronizing” the parsing at
a di�erent position.

• On the other hand, red blocks starting at position i > γk are shown to be
of small size by Proposition 9.7. This is implied by Lemma 9.6 claiming that,
due to the structure of the DB(k) (few repetitions of factors), few junction
red blocks can go up to position (i− 1) and precede an o�set-i block.

Since all large enough pre�xes of x have a constant portion containing only red
blocks of size O(n1/4), the compression size is Ω(n3/4) (Theorem 9.1).

Gadgets must satisfy two conditions:

• they must not disturb the parsing of w;

• the gadget gi must “absorb” the end of the red block ending at position
(i−1), and ensures that the parsing restarts at a controlled position di�erent
from i.

The insertion of gadgets in w is not trivial because we need to “kill” positions
without creating too many other bad positions, that is why gadgets are only
inserted in the second half of w. Moreover, gadget insertion depends on the
parsing of 0w and must therefore be adaptive, which is the reason why we give
an algorithm to describe the word w.

Let us summarize the organisation of the lemmas of this chapter:

• Lemma 9.3 is necessary for the algorithm: it shows that, in 0Pref(x), there
can be at most one position i such that the number of i-violations is too
high.

• Lemma 9.4 shows that the parsing of w is not disturbed by gadgets and
therefore the compression size of w is O(

√
n).

• Lemma 9.5 shows that gadgets indeed remove i-violations as required, for
i ≤ γk.

• Lemma 9.6 uses the property of the DB(k) to prove that junction blocks
cannot create too many i-violations if i > γk.
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• Finally, Proposition 9.7 uses Lemma 9.6 to show that the o�set-i red blocks
are small if i is large.

9.3 Construction and �rst properties
Let γ be any constant greater than or equal to 3. Let x be a DB(k) beginning by
01. We denote its size by s = 2k+k−1. Suppose for convenience that k is odd, so
that s is even.1 For i ∈ [0, s− 1], let wi = x≤i, so that Pref(x) = w0.w1 . . . ws−1.

The word w that we will construct is best described by an algorithm. It will
merely be Pref(x) in which we possibly add “gadgets” (words) between some of
the wj in order to control the parsings of w and 0w. The letter in front that will
provoke the “catastrophe” is the �rst letter of w, that is, 0.

The gadgets gji (for i ∈ [0, γk] and j ≥ 0) are de�ned as follows (where x̄i
denotes the complement of xi):

• gj0 = 10j ;

• and for i > 0, gji = x<i.x̄i.1
j .

Recall that the green blocks are those of the parsing of w, whereas the red
ones are those of the parsing of 0w. We call “regular” the green blocks that are
not gadgets (they are of the form wj for some j). For i ∈ [0, s− 1], we say that a
regular green block in w is i-violated if there is an o�set-i (red) block in it. Note
that gadgets do not count in the de�nition of a violation.

Lemma 9.3

For i ∈ [0, s − 1], let li be the number of i-violated blocks in Pref(x) =
w0.w1 . . . ws−1. Then for all i 6= i′, li + li′ ≤ s.

In particular, there can be at most one i such that the number of i-violated
blocks is > s/2.

Proof. Let i and i′ be such that 0 ≤ i < i′ < s.
Consider the red blocks starting at position i and i′ in any green block.
No green block in w0 . . . wi′−1 is i′-violated since they are too small to contain

position i′. Let a be the number of i-violated blocks inw0 . . . wi′−1. Inwi′ . . . ws−1,
let b be the number of green blocks that are both i-violated and i′-violated, and
let c (respectively d) be the number of i-violated (resp. i′-violated) blocks that are
not i′-violated (resp. i-violated) blocks.

1This is to avoid dealing with the fractional part of s/2, but the construction also works in the
case where k is even.
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The number of i-violations is li = a+ b+ c and the number of i′-violations
is li′ = b + d. But b + c + d ≤ s − i′ and b ≤ i′ − i − a (since a red block
starting at position i can only be increased (i′ − i) times before it overlaps
position i′, and it has already increased a times in the �rst i′ green blocks), so
that li + li′ = (b+ c+ d) + (a+ b) ≤ (s− i′) + (i′ − i) ≤ s. Therefore, li or li′
has to be ≤ s/2.

The algorithm constructing w, illustrated in Figure 9.1, is as follows.

1. If the number of i-violations in w0.w1 . . . ws−1 is ≤ s/2 for all i ∈ [0, γk],
then output w = w0.w1 . . . ws−1.

2. Otherwise, let i be the (unique by Lemma 9.3) integer in [0, γk] for which
the number of i-violations is > s/2. Let c = 0 (counter for the number of
inserted gadgets) and d = s/2 + 1 (counter for the place of the gadget to
be inserted).

3. For all j ∈ [0, s− 1], let zj = wj .

4. While the number of i-violations in z0.z1 . . . zs−1 is ≥ d, do:

(a) let j be such that wj is the d-th i-violated green block;
(b) zj ← gciwj (we add the gadget gci before the block wj);
(c) c← c+ 1;
(d) if wj is still i-violated, then d← d+ 1.

5. Return w = z0.z1 . . . zs−1.

zj−1 wj

zj−1 wj
gadget = zj

Figure 9.1: Illustration of Step 4(b) of the algorithm.

Some parts of the algorithm might seem obscure, in particular the role of the
counter d. The proof of the following properties should help understand this
construction, but let us �rst explain the intuition behind the algorithm. Below
(Proposition 9.7) we will have a generic argument (i.e., true without gadgets)
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Figure 9.2: Left: Form of the word w. The blocks in green are the regular blocks,
the blocks in blue are the gadgets. The arcs represent the relation of paternity.
Right: The shape of the parse tree of w.

to deal with the i-violations for i > γk, therefore for now we only care about
i-violations for i ≤ γk. They are not problematic if there are at most (roughly)
s/2 of them. Thanks to Lemma 9.3, there is therefore at most one i0 which can
be problematic. To guarantee the upper bound of (roughly) s/2 for the number
of i0-violations, every time it is necessary we insert between two regular green
blocks one gadget to kill the (s/2 + 1)-th, (s/2 + 2)-th, etc., i0-violations. But
gadgets are guaranteed to work as expected only if at least 1 + (γ + 1)k of them
have already been inserted (see Lemma 9.5), hence the counter d is useful to avoid
inserting two gadgets in front of the same regular block.

From now on, we call w the word output by the algorithm. We �rst evaluate
the size of w. Its minimal size is obtained when no gadgets are added during the
algorithm:

|w| ≥ s(s+ 1)

2
.

On the other hand, if s/2 gadgets gcγk of size γk + 1 + c are added, we obtain an
upper bound on |w|:

|w| ≤ s(s+ 1)

2
+

s/2−1∑
c=0

(γk + 1 + c) =
5s2

8
+ o(s2).

Let us show that the word w is nearly optimally compressible (upper bound).
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Lemma 9.4

The compression size of w is at most

3

√
2

5

√
|w|.

Proof. If the algorithm stops at step 1, then w = Pref(x) and it is compressed
optimally (see Remark 7.1): the compression size is

√
2
√
|w|+O(1).

Otherwise, we add at most one gadget for each wj , and only for j > s/2.
Therefore, there are at most s/2 gadgets. Remark that, for the i �xed in the
algorithm, the gadgets (gji )j are pre�xes one of each other, and none of them
are pre�xes of x. Thus the parse tree of w consists of one main path of size s
(corresponding to w0, w1, . . . , ws−1), together with another path of size ≤ s/2
(corresponding to the gadgets (gji )j) starting from a vertex of the main path. See
Figure 9.2.

The worst case for the compression size is when the second path is of size s/2
and starts at the root. Then the size of w is

|w| ≥ s(s+ 1)

2
+

(s/2)(1 + s/2)

2
≥ 5s2

8

and the size of the dictionary is 3s/2, yielding the compression size stated in the
lemma.

Let us now turn to the lower bound on the compression size of 0w. The next
lemma shows that, for i ≤ γk, there are not too many i-violations thanks to the
gadgets.

Lemma 9.5

For all i ∈ [0, γk], the number of i-violations in w is at most

s/2 + (1 + γ)k + 1.

Proof. If no gadgets have been added during the algorithm, then for all i ∈ [0, γk],
the number of i-violations in w is ≤ s/2.

Otherwise, �rst remark that Lemma 9.3 remains valid even when the gadgets
are added. We need to distinguish on the type (i = 0 or i > 0) of the most
frequent violations in w.
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• Case 1: the most frequent violations are 0-violations. In that case, we claim
that whenever a gadget is inserted before a block wi, the 0-violation in wi
disappears. It is enough to prove that whenever a gadget gj0 is added, it was
already in the dictionary of 0w, so that the next word in the dictionary will
begin by gj00 and the parsing will overlap position 0 of the next green block.
We proceed by induction: for j = 0, g0

0 = 1, and this word is the third
block in the parsing of 0w, because x starts with 01. For j > 0: when gj−1

0

was parsed, by induction it was already in the dictionary, so that the block
added in the dictionary of 0w starts with gj−1

0 0 = gj0.
After at most s/2 iterations of the while loop, there is no more (s/2 + 1)-
th 0-violation: the number of 0-violations is exactly s/2. Observe that
violations for i > 0 have been created, but by Lemma 9.3, for each i > 0,
the number of i-violations remains ≤ s/2.

• Case 2: the most frequent violations are i-violations for some i > 0. In
that case, the �rst few times when a gadget is inserted, it may fail to kill
the corresponding i-violation. But we claim that the number of such fails
cannot be larger than (γ + 1)k + 1 (equivalently, in the algorithm the
counter d remains ≤ s/2 + (γ + 1)k + 2).
Indeed, since we add a gadget only before an i-violation, the parsing splits
the gadget gji = x<ix̄i.1

j between x<i and x̄i.1j . Furthermore, by induction,
x̄i.1

j is not split by the parsing. But for the gadget gk+1
i , x̄i.1k+1 is parsed

in exactly one block because this factor does not appear anywhere in w
before gk+1

i . From that moment on, each i-violation creates through the
gadget a 0-violation. The number of blocks that are both 0-violated and
i-violated is at most i (due to the growth of the block at position 0). Thus, at
most i more gadgets may fail to kill position i. The total number of “failing”
gadgets is ≤ k + 1 + i ≤ (γ + 1)k + 1.

9.4 The weak catastrophe
This chapter is devoted to the proof of the lower bound: the compression size
of 0w is Ω(|w|3/4). Thanks to Property (?) from page 130, Lemma 9.6 below
bounds the number of junction blocks ending at a �xed position (i − 1) by a
decreasing function of i. The proof is quite technical and requires to distinguish
three categories among (red) junction blocks:

• Type 1: junctions over consecutive factors wa and wa+1 (no gadget between
two regular green blocks);
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• Type 2: junctions starting in a gadget gj
′

j and ending in the following regular
green block;

• Type 3: junctions starting in a regular green block and ending in the fol-
lowing gadget gj

′

j .

Lemma 9.6

Let i ≥ 2k + 3. Let uu′ be a junction block of type 1 over wawa+1 ending
at position i− 1 in wa+1, with u being the su�x of wa and u′ the pre�x of
wa+1. Then |u| ≤ k − log(i− 2k − 1).

In particular, the number of such blocks is upper bounded by the number
of words of size ≤ k − log(i− 2k − 1), that is, 2k+1

i−2k−1
.

Proof. Let v be the pre�x of size 2k of u′ (which is also the pre�x of x). All the
pre�xes of uu′ of size≥ |uv| have to be in the dictionary of 0w: we call M the set
of these pre�xes (|M | = i− 2k). We claim that these blocks are junction blocks
of type 1 or 3 only (except possibly for one of type 2), with only u on the left side
of the junction. Indeed, let us review all the possibilities:

1. uv cannot be completely included in a regular block, otherwise v[0..k −
1] would appear both at positions 0 and p > 0 in x, which contradicts
Property (?) (page 130);

2. uv cannot be completely included in a gadget:

• if the gadget is gj0 = 10j , impossible because v cannot have more than
k zeroes since it is a factor of x,

• if the gadget is gjb = x<b.x̄b.1
j , by the red parsing of gadgets, either

uv is in x<b (impossible because v would appear at a position ≥ |u| in
x), or uv is in x̄b.1j (impossible because v cannot contain more than k
ones);

3. if uv is a type 1 junction but not split between u and v, it is impossible
because the three possible cases lead to a contradiction:

• if u goes on the right, then v would appear at another position p > 0
in x,

• if v goes on the left by at least k, then v[0..k − 1] would again appear
at two di�erent positions in x,
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• if v goes on the left by less than k, then it goes on the right by more
than k and v[k..2k − 1] would again appear at two di�erent positions
in x;

4. if uv is a type 2 junction but not split between u and v, it is again impossible:

• if u goes on the right, then v would appear at another position p > 0
in x,

• if v goes on the left by at least 2, then v[0..1] would be either 00 or 11
(depending on the gadget), but we know it is x0x1 = 01,

• otherwise, v goes on the right by 2k − 1, and v[1..k] would appear at
positions 0 and 1 in x;

5. if uv is a type 3 junction, �rst remark that the gadget is of the form gjb
for b > 0 (because, for gadgets of the form gj0, the red parsing starts at
position 0 of the gadget). If uv is not split between u and v, it is once again
impossible:

• if u goes on the right, the red parsing of the gadget stops after x<b
and v would appear in x at a non-zero position,

• similarly, if v goes on the left by less than k, then v[k..2k − 1] would
again appear at two di�erent positions in x,

• if v goes on the left by at least k, then v[0..k − 1] would again appear
at two di�erent positions in x.

Remark �nally that all parsings of type 2 junctions have di�erent sizes on the left.
Therefore, at most one can contain u on the left. The claim is proved.

Thus, at least |M | − 1 regular green blocks have u as su�x. Remark that,
since |M | ≥ 3, there are at least two such green blocks, therefore |u| ≤ k. Hence
by Property (?) (page 130) we have:

|M | − 1 ≤ 2k−|u|

i− 2k − 1 ≤ 2k−|u|

|u| ≤ k − log(i− 2k − 1).

As a consequence, in the next proposition we can bound the size of o�set-i
blocks. Along with the role of gadgets, this will be a key argument in the proof of
Theorem 9.1. The idea is the following: for a red block u starting at a su�ciently
large position i, roughly |u| other red blocks have to end at position (i− 1), and
in the red parsing Ω(|u|2) pre�xes of these blocks must appear in di�erent green
blocks (and in the dictionary), giving the bound s = Ω(|u|2).
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Proposition 9.7

For any i > γk, the size of an o�set-i block included in a regular green block
is at most

2
√
s+ 5k +

2k+1

i− 2k − 1
.

Proof. Let u be an o�set-i block of size ≥ 2k.
We claim that the red blocks predecessors of u of size at least 2k + 1 have to

start at position i in regular green blocks. Indeed, let v be a pre�x of size≥ 2k+ 1
of u; let us analyse as before the di�erent cases:

• If v is included in a regular green block, then it has to start at position i by
Property (?) (page 130);

• v cannot be included in a gadget since it would lead to a contradiction:

– in gadgets of type gj0, v would contain 02k,
– in gadgets of type gja = x<ax̄a1

j (for a ∈]0, γk]), either v goes into
x<a by at least k and v[0..k − 1] would appear at two positions in x,
or v goes into x̄a1j by at least k + 2 and v would contain 1k+1;

• If v is included in a junction block of type 1, then v starts at position i in the
left regular block, otherwise either v[0..k − 1] would be in the left regular
block at a position di�erent from i, or v[k + 1..2k] would be in the right
regular block at a position ≤ γk < i;

• v cannot be included in a junction block of type 2: indeed, by the red
parsing, the left part of the junction (included in a gadget) is either 10j or
a1j for some letter a ∈ {0, 1}, thus v cannot go on the left by ≥ k + 2 and
hence has to go on the right by at least k leading to a contradiction with
Property (?);

• If v is included in a junction block of type 3, then v starts at position i in the
left regular block, otherwise either v[0..k − 1] would be in the left (regular)
block at a position di�erent from i, or, by the red parsing, the gadget is of
type gja (for a > 0) and v[k + 1..2k] would be included in x<a at a position
≤ γk < i.

Thus, at least |u| − 2k red blocks end at position i− 1.
By Lemma 9.6, at most 2k+1

i−2k−1
of them are junctions of type 1. Note further-

more that, as shown during the proof of Lemma 9.5, if a ≥ k+1, the a-th junction
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of type 2 stops at position 0 or 1, hence at most k of the blocks ending at position
i− 1 are junctions of type 2. Finally, there is, by de�nition, no junction of type 3.
Therefore, there are at least |u|−3k− 2k+1

i−2k−1
o�set blocks ending at position i−1.

We call M the set of such blocks. See Figure 9.3. Remark that |u| − 3k − 2k+1

i−2k−1

is a lower bound on the number of o�set blocks ending at position i− 1. But the
number of such blocks is at most i. Therefore

|u| − 3k − 2k+1

i− 2k − 1
≤ i

We distinguish two cases in the proof:
First case: i ∈ [γk + 1, 2

√
s]. Then

|u| − 3k − 2k+1

i− 2k − 1
≤ i ≤ 2

√
s

so that

|u| ≤ 2
√
s+ 3k +

2k+1

i− 2k − 1
≤ 2
√
s+ 5k +

2k+1

i− 2k − 1
.

Second case: i > 2
√
s.

All the words in M are in the dictionary and are of di�erent size, since two
o�set blocks ending at the same position and of same size would be identical,
which is not possible in the LZ-parsing. The words of P(M) (the set of pre�xes
of the words in M ) are also in the dictionary. Let

A =
|u| − 5k − 2k+1

i−2k−1

2
.

Observe that i − A − 2k ≥ i
2
− k as |u| − 3k − 2k+1

i−2k−1
≤ i. Therefore

i− A− 2k ≥
√
s− k, which is large against γk. Consider the words of P(M)

containing x[i− A− 2k..i− A]: they must start at a position ≤ i− A− 2k and
end at a position ∈ [i−A, i−1]. The number of such words is at least the product
of the number of blocks inM starting at position≤ i−A−2k and of the number
of possible ending points, that is, at least((

|u| − 3k − 2k+1

i− 2k − 1

)
−
(
A+ 2k

))
A.

Remark that these words contain a part of a regular green block of size at least
2k + 1 starting at position i−A− 2k > γk. Hence, by the same case analysis as
before, for these words, the part corresponding to the factor x[i− A− 2k..i−
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A− k− 1] must appear included in a regular green block, so that two such words
cannot appear in the same regular green block by Property (?) (page 130). But
there are at most s distinct regular green blocks, thus:(

|u| − 5k − 2k+1

i− 2k − 1
− A

)
A ≤ s.

The value of A gives:(
|u| − 5k − 2k+1

i−2k−1

2

)2

≤ s

|u| ≤ 2
√
s+ 5k +

2k+1

i− 2k − 1
.

i

u

#o�set blocks ≥ |u| − 3k − 2k+1

i−2k−1

#Junctions type 1 ≤ 2k+1

i−2k−1

#Junctions type 2 ≤ k

Figure 9.3: Blocks ending at position i− 1 for the proof of Proposition 9.7.

We are ready for the proof of the main theorem of this chapter.

Proof of Theorem 9.1. The intuition is the following: by Proposition 9.7, the red
blocks starting at position j, for j = Ω(

√
s), are of size Θ(

√
s) = Θ(|w|1/4), so

if we prove that a portion of size Θ(|w|) of the word 0w is covered by o�set-j
blocks for j large enough, then the compression size will be Ω(|w|3/4). To that
purpose, we prove that for large enough regular green blocks, there is an interval
of positions [2s/3− l, 2s/3] (with l = 2

√
s+ 5k + 3), such that there is at least

one o�set-i block for i ∈ [2s/3− l, 2s/3].
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In every regular green block of size larger than 2s/3, let us show that there is
an o�set-i red block, for i ∈ [2s/3− l, 2s/3]. Indeed, for every i < 2s/3− l, the
maximal size f(i) of a red block starting at position i satis�es i + f(i) ≤ 2s/3:
in the case where i > γk we use the bound given by Proposition 9.7, and in the
case where i ≤ γk, the (t− γk) predecessors of size ≥ γk + 1 of a red block of
size t starting at position i start at position i as well (since x≤γk is not a factor
of a gadget, it cannot be seen anywhere by a red block except at position i in a
regular green block), hence the size of an o�set-i block in that case is at most γk
plus the number of i-violations. Therefore by Lemma 9.5 red blocks starting at
position i have their size upper bounded by γk + s/2 + 1 + (1 + γ)k.

Therefore, since a red block starting at position i ≥ 2s/3 − l is of size at
most B = 2

√
s + 5k + 2k+1

2s/3−l−2k−1
by Proposition 9.7, each green block of size

h ≥ 2s/3 is covered by at least

h− 2s/3

B
≥ h− 2s/3

2
√
s+O(k)

red blocks. Thus, the total number of red blocks is at least

1

2
√
s+O(k)

s∑
h=2s/3

(h− 2s/3) =
1

36
s3/2 + o(s3/2).

With the gadgets, the size of w is at most (5/8)s2 + o(s2), therefore the total
number of red blocks is at least:

1

36

(
8

5

)3/4

|w|3/4 − o(|w|3/4) ≥ 0.039|w|3/4.

Remark 9.8

Despite the fact that 1Pref(x) compresses optimally, this is not at all the
case with the gadgets, since Theorem 9.1 remains valid with the new word
w output by the algorithm even when we put 1 instead of 0 in front of w.
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Chapter 10

General case

In this chapter we prove Theorem 7.10. The proof �rst goes through the existence
of a family F of “independent” de Bruijn-style words which will play a role
similar to the de Bruijn word x in the proof of Theorem 9.1. The existence of
this family is shown using the probabilistic method in Section 10.1: with high
probability, a family of random words satis�es a relaxed version (P1) of the “local”
Property (?), together with a global property (P2) that forbids repetitions of large
factors throughout the whole family.

The word w that we will consider is the concatenation of “chains” roughly
equal to Pref(x) for all words x ∈ F , with gadgets inserted if necessary as in
Chapter 9. (The construction is actually slightly more complicated because in
each chain we must avoid the �rst few pre�xes of x in order to synchronise the
parsing of w; and the gadgets are also more complex.) Properties (P1) and (P2)
guarantee that each of the chains of w are “independent”, so that the same kind
of argument as in Chapter 9 will apply individually. By choosing appropriately
the number of chains and their length, we can obtain any compression size for w
up to Θ(n/ log2 n) and the matching bound for 0w (see Theorem 7.10).

The organisation of the chapter is as follows: Section 10.1 is devoted to the
proof of existence of the required family of words. Section 10.2 de�nes the gadgets,
describes the construction of w via an algorithm, and gives the upper bound on
the compression size of w. Finally, Section 10.3 shows the lower bound on the
compression size of 0w via a series of results in the spirit of Section 9.4.

Throughout the present chapter, we use parameters with some relations
between them that are worth being stated once and for all in Figure 10.1 for
reference.

In particular, note that we have the following relations:

0 ≤ p ≤
√
l and γ log n

3
≤ m ≤

√
l

9
.
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n su�ciently large (the size of w)

γ ≥ 10 (an absolute constant)

l ∈ [(9γ)2 log2 n,
√
n] (size of the xj)

p = log n
l2

(2p is the number of chains)

k = log l
2

(parameter in (P1))

m = max(γp, γ log l) (parameter in (P2)).

Figure 10.1: Parameters used throughout Chapter 10.

10.1 Family of de Bruijn-type words
We need two properties for a family F of 2p words x1, . . . , x2p of size l (the
parameters n, l, p, k, γ and m are those given in Figure 10.1): the �rst is a relaxed
version of Property (?) on “true” de Bruijn words; the second guarantees that the
words of F are “independent”.

• (P1) For all x ∈ F , for all words u of size ≤ k,

Occx(u) ≤ kl

2|u|
.

• (P2) Any factor u of size m appears in at most one word of the family F ,
and within that word at only one position.

Note that in Chapter 9, we did not need (P2) since only one word was concerned,
but still (P2) was true for the same value k as in (?), instead of m here.

The following lemmas show that (P1) and (P2) hold with high probability for
a random family F . We �rst recall the well-known Cherno� bound.

Theorem 10.1: Cherno� bound

Let X1, . . . , Xn be independent random variables over {0, 1}, and X =∑
Xi. Denote by µ the expectation of X . Let δ > 1. Then:

Pr(X > δµ) < 2−
(δ−1)µ log δ

2 .

For (P1), we need to consider positions separated by a distance k in order to
obtain the independence required for the Cherno� bound; then a union bound
will complete the argument for the other positions.
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Lemma 10.2: (P1) holds whp

Let p and l be positive integers such that p ≤
√
l. Let F be a family of 2p

words x1, . . . , x2p of size l chosen uniformly and independently at random.
Then F satis�es Property (P1) with probability 2−Ω(

√
l log log l).

Proof. Fix a word u of size ≤ k and take x of size l at random. For i ∈ [0, k − 1]
and j ∈ [0, l/k − 1], let

X i
j =

{
1 if u occurs at position i+ jk in x
0 otherwise.

For a �xed i, the X i
j are independent. Let µi = E(

∑
j X

i
j). We have:

µi =
l

k2|u|
.

By the Cherno� bound (Theorem 10.1):

Pr

(∑
j

X i
j > kµi

)
< 2−

(k−1)(log k)µi
2 ,

that is,
log Pr

(∑
j

X i
j >

l

2|u|

)
< −(k − 1)(log k)

l

k2k+1
.

By union bound over all the words u of size at most k, all the words of F and all
the moduli i ∈ [0, k − 1], we have:

log Pr

(∑
i,j

X i
j >

kl

2|u|

)
< (k + 1) + p+ log k − (k − 1)(log k)

l

k2k+1

= −Ω
(√

l log log l
)
.

The analysis for (P2) does not use Cherno� bounds, but instead it uses a slight
“independence” on the occurrences of a factor u obtained by showing that u can
be supposed “self-avoiding” (the precise meaning of these ideas will be clear in
the proof).
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Lemma 10.3: (P2) holds whp

Let p and l be positive. Recall that m = max(γp, γ log l) in (P2). Let F be a
family of 2p words x1, . . . , x2p of size l chosen uniformly and independently
at random. Then F satis�es Property (P2) with probability a least 1− 2/l.

Proof. Let us �rst show that we can assume with high probability that factors of
wi are not overlapping too much. We say that a word u of size m is “bad” if it
overlaps itself at least by half, that is:

∃i ∈ [|u|/2, |u| − 1] : u[0..i− 1] = u[|u| − i..|u| − 1] (we say that u is i-bad).

(Remark that a word u can be both i-bad and j-bad for i 6= j.) Let us �rst bound the
number of bad words. If u is i-bad, then for each j < i, uj+|u|−i = uj . Therefore,
specifying the |u| − i �rst bits speci�es the whole word u, meaning that there are
at most 2|u|−i i-bad words. In total, there are at most

|u|−1∑
i=|u|/2

2|u|−i = 21+|u|/2 − 2

bad words, that is, a fraction < 2−m/2+1 of all words of size m.
Now, we say that a word xj of size l is “good” if it contains no bad factor. Let

us show that, with high probability, all the words xj ∈ F are good (Property (G)).
Fix j ∈ [1, 2p]. If xj is not good, then there is at least one position where a bad
factor u occurs:

Pr(xj is not good) ≤ |xj|Pr|u|=m(u is bad) ≤ l2−m/2+1.

We use the union bound over all 2p words xj ∈ F to obtain:

Pr(G) ≥ 1− l2p−m/2+1.

Since property G has very high probability, we will only show that (P2) holds
with high probability when G is satis�ed. Let x = x1 . . . x2p (the size of x is
therefore l2p). Let u be a word of size m, which is not bad. Let Xu be the number
of occurences of u in x. In order to get at least two occurrences of u, we have
to choose two positions, the |u| bits of the �rst occurrence, and the bits of the
second occurrence that are not contained in the �rst; but u can’t overlap itself by
more than m/2 bits, thus:

Pr(Xu ≥ 2) ≤ |w|
2m
|w|

2m/2
≤ l222p− 3

2
m.
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Using the union bound over all good words u of size m, of which there are at
most 2m, we get:

Pr(∀ good u,Xu ≤ 1) ≥ 1− 2ml222p− 3
2
m = 1− l222p−m/2.

Now, the probability that F respects Property (P2) can be lower bounded by
the probability that F contains no bad words, and that the number of occurences
of good words is at most 1, which gives:

Pr(F satis�es (P2)) ≥ Pr(G ∧ ∀ good u,Xu ≤ 1)

≥ 1− l222p−m/2 − l2p−m/2+1

> 1− 2

l
since γ ≥ 10

(for the last line, consider the two following cases: p ≥ log l where m = γp and
l ≤ n1/3; and p ≤ log l where m = γ log l and l ≥ n1/3).

Corollary 10.4

For all su�ciently large l and p ≤
√
l, there exists a family F of 2p words

x1, . . . , x2p of size l satisfying Properties (P1) and (P2), and where the �rst
bit of x1 is 1.

10.2 Construction
(Recall the choice of parameters n, l, p, k, γ and m de�ned in Figure 10.1.)

For n su�ciently large and l ∈ [(9γ)2 log2 n,
√
n], we will construct a word w

of size n whose compression size is Θ(n/l) whereas the compression size of 0w is
Θ(n/

√
l) (thus matching the upper bound of Theorem 7.7). Let F be a family as

in Corollary 10.4. For some integers qj (de�ned below), the word w will merely be
the concatenation of Pref>qj(x

j) (see Remark 7.1 for the de�nition of Pref>q(x))
for all the 2p words xj of the family F , with possibly some gadgets added between
the pre�xes of xj (each Pref>qj(x

j) together with the possible gadgets will be
denoted zj and called a “chain”), and a trailing set of zeroes so as to “pad” the
length to exactly n. The integer qj will be chosen so that the �rst occurrence of
xj[0..qj] is parsed in exactly one green block.

Each chain zj (with gadgets) is of size Θ(l2) and is fully compressible in w
(compressed size Θ(l)) since it is made of pre�xes (plus gadgets that won’t impede
much the compression ratio). Thus the total compression size of w is Θ(l2p),
compared to |w| = n = Θ(l22p) for a compression size of Θ(n/l).
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On the other hand, due to the properties of F and similarly to Theorem 9.1,
in 0w each chain will compress only to a size Θ(l3/2), thus the total compression
size of 0w is Θ(l3/22p), for a compression size of Θ(n/

√
l).

Remark 10.5

• If we take the smallest possible l, that is, l = (9γ)2 log2 n, then we ob-
tain compression sizes of Θ(n/ log2 n) and Θ(n/ log n), thus showing
the one-bit catastrophe.

• On the other hand, if we take the largest possible l, that is, l =
√
n,

then we obtain Θ(
√
n) and Θ(n3/4) as in Theorem 9.1.

Let us now start the formal description of the word w. As previously, we
will call green the blocks in the parsing of w and red those in the parsing of 0w.
The green blocks in each chain zj that are not gadgets will be called “regular
blocks” (they are of the form xj[0..q] for some q). Recall that the chain zj will be
of the form Pref>qj(x

j) with possibly some gadgets between the pre�xes. We
can already de�ne the integers qj :

qj = min{i ≥ 0 : xj[0..i] is not a pre�x of x1, . . . , xj−1}.

In that way, we guarantee that the �rst green block in each zj is exactly xj[0..qj].
Remark that, by Property (P2), qj ∈ [0,m]. For all j we will denote by sj =
|xj| − qj = l − qj the number of regular green blocks in zj .

Fix n and l = l(n) ∈ [(9γ)2 log2 n,
√
n], and let k = (log l)/2 and p =

log(n/l2). As in Property (P2), call m = max(γp, γ log l). Here are the new
gadgets that will (possibly) be inserted in the chain zj (j ∈ [1, 2p]), for i ∈
[0, 2k

√
l]:

• for c ≥ 0: gc0(j) = uac, where a = xj[0] is the �rst letter of xj , and u is the
smallest word in

Dic(0z1 . . . zj−1Pref>qj(x
j[0..|xj|/2]))

but not in
Dic(z1 . . . zj−1Pref>qj(x

j)) :

this is a word which is in the parsing of 0w up to the insertion of g0
0(j) but

not in the corresponding parsing of w (Lemma 10.7 below guarantees the
existence of such a word and proves it is of size ≤ m);
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• for i > 0 and c ≥ 0, let m′ = max(i,m) and v = xj[0..m− 1]1l. Then:

gci (j) = xj[0..m′ − 1]x̄jm′v[0..c− 1]

where x̄jm′ denotes the complement of xj[m′].
We de�ne i-violations in each chain zj as previously, that is, a regular green

block is i-violated if it contains an o�set-i red block. The following lemma is
proved in the exact same way as Lemma 9.3.

Lemma 10.6

For j ∈ [1, 2p] and i ∈ [0, sj − 1], let lji be the number of i-violated blocks in
zj . Then for all j and all i 6= i′, lji + lji′ ≤ sj .

In particular, for each zj there can be at most one i such that the number
of i-violated blocks is > sj/2.

The formal construction of the word w is once again best described by an
algorithm taking as parameters n and l:

1. For all j ∈ [1, 2p] and i ∈ [qj + 1, l], zji ← xj[qj..i − 1]. Throughout the
algorithm, zj will denote zjqj+1 . . . z

j
l (and thus will vary if one of the zji

varies).

2. For j = 1 to 2p do:

(a) if there is i ∈ [0, 2k
√
l] (unique by Lemma 10.6) such that the number

of i-violations in the chain zj is > sj/2, then:
i. let c = 0 (counter for the number of inserted gadgets in zj) and
d = sj/2 + 1 (counter for the place of the gadget to be inserted),

ii. while the number of i-violations in the chain zj is ≥ d, do:
A. let r be such that zjr is the d-th i-violated green block in zj ,
B. zjr ← gci (j)z

j
r (we add the gadget gci (j) before the block

xj[0..r − 1]),
C. c← c+ 1,
D. if zjr is still i-violated, then d← d+ 1.

3. Let w′ = z1.z2 . . . z2p . Return w = w′0n−|w
′| (padding to obtain |w| = n).

Remark that we have the following bounds on the size ofw′. Its size is minimal
if no gadgets are added:

|w′| ≥ 2p
( l∑
i=m

i

)
=
n

l2
· (l −m+ 1)(l +m)

2
≥ n

2
− o(n)
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and its size is maximal if each chain contains l/2 gadgets gci (whose size is at most
2k
√
l + 1 + c):

|w′| ≤ 2p
( l∑
i=1

i+

l/2−1∑
c=0

(2k
√
l + 1 + c)

)
≤ n

l2

(
5l2

8
+ 2kl3/2

)
≤ n.

Therefore at the end of the algorithm it is legitimate to pad w′ with at most
n/2 + o(n) zeroes to obtain the word w of size precisely n.

The following lemma justi�es the existence of the gadgets gc0(j).

Lemma 10.7

There is a constant C > 0 such that, for all n, for all l ∈ [(9γ)2 log2 n,
√
n]

with l > C , for all j ∈ [1, 2p] (where p = log(n/l2)) there exists a word u of
size ≤ m in

Dic(0z1 . . . zj−1Pref>qj(x
j[0..|xj|/2]))

but not in Dic(z1 . . . zj−1Pref>qj(x
j)).

This implies that we can insert the gadgets gc0(j) in a chain zj whenever
we need to.

Proof. For j = 1: the �rst red block in z1 is 0, but all the regular green blocks in
z1 begin with 1 (cf. Corollary 10.4). Therefore there exists a word u of size 1 in

Dic(0Pref>q1(x1[0..|x1|/2]))

not in Dic(Pref>q1(x1)).
For j > 1: as we shall see in the proof of Theorem 7.10 below1, in zj−1 there

is an interval of A = 3
√
l positions that contains the starting position of a red

block in at least l/3 regular green blocks. One of the positions of the interval is
the starting point of a branch of at least

l

3A
=

√
l

9
≥ m

red blocks. Thus there is a red block of size m which appears nowhere in
z1, . . . , zj−1 by (P2) and is not a pre�x of zj , thus it is a word of Dic(0z1 . . . zj−1)
not in Dic(z1 . . . zj−1Pref>qj(x

j)).
1That is not a circular argument because we only need the result up to zj−1 to claim the

existence of gadgets for zj .
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We can now show that w has compression size O(|w|/l) by giving an upper
bound on the size of the dictionary of w.

Lemma 10.8

The compression size |Dic(w)| of w is at most

3 +
√

3

2
· |w|
l
.

Proof. The de�nition of the integers qj guarantees that the parsing resynchronizes
at each beginning of a new chain zj .

In a chain zj , the de�nition of g0
0(j) guarantees that this gadget, if present,

will be parsed in exactly one green block, and after that the subsequent gadgets
gc0(j) also.

Similarly, (P2) together with the fact that gadgets are only inserted in the
second half of a chain (thus, after more than m green blocks) imply that the
possible gadgets gci (j) for i > 0 are also parsed in exactly one green block.

For each chain zj , the parse tree consists in a main path of size l (regular
green blocks) together with another path of size ≤ l/2 corresponding to the
gadgets gci (j). The compression size cannot be worse than in the (hypothetical)
case where these two paths begins at depth 0, for all j. In that case, there are
≤ (3/2)l green blocks for each chain, and a size

|zj| ≥ l(l + 1)

2
+

l
2
(1 + l

2
)

2
≥ 5

8
l2.

Since the number of chains is 2p = n/l2, in that (hypothetical) worst case the
number of green blocks in w′ is at most 3n/2l and |w′| ≥ 5n/8. The ≤ 3n/8
trailing zeroes of w are parsed in at most

√
3n/2 ≤ (

√
3/2)n/l green blocks.

Hence the compression size of w is at most (3/2 +
√

3/2)(n/l).

10.3 Proof of the main theorem
(Recall the choice of parameters n, l, p, k, γ and m de�ned in Figure 10.1.)

We now prove the lower bound of Theorem 7.10. Recall that zj denote the
j-th chain of w. We will write wji the i-th regular block of the chain zj . As in
the previous chapter, we will distinguish junctions over two consecutive regular
blocks (type 1); junctions starting in a gadget and ending in a regular block
(type 2); and junctions starting in a regular block and ending in a gadget (type 3).

The next proposition is the core of the argument, and Theorem 7.10 will follow
easily. The proposition is a corollary of lemmas that we will show afterwards.
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Proposition 10.9

Let f(i) be the maximal size of an o�set-i (red) block included in a regular
green block.

• If i ≤ 2k
√
l then f(i) ≤ l

2
+ 4k

√
l + 2m+ 1.

• Otherwise, f(i) ≤ 2
√
l + 3k + 7m+ 2kl

i−4m−2
.

Proof. The �rst point is a consequence of Lemmas 10.10 and 10.11. The second
point is exactly Lemma 10.13.

With Proposition 10.9 in hand, let us prove the main theorem.

Proof of Theorem 7.10. We will show that each chain zj in 0w is parsed in at least
1
54
l3/2 blocks, thus

|Dic(0w)| ≥ 2p
1

54
l3/2 =

1

54
· |w|√

l
.

Fix an index j. In order to prove that the chain zj is parsed in at least 1
54
l3/2

red blocks, we �rst prove that in every regular green block of size larger than 2l/3
in the chain zj , there is an interval of positions [2l/3− A, 2l/3] (with A = 3

√
l),

such that there is at least one o�set-i (red) block for i ∈ [2l/3− A, 2l/3]. Indeed,
by Proposition 10.9, for any i < 2l/3− A, the maximal size f(i) of a red block
starting at position i satis�es i+ f(i) ≤ 2l/3.

Therefore, since the red blocks starting at position i ≥ 2l/3−A are of size at
most f(2l/3− A) ≤ 3

√
l, a regular green block of zj of size h is covered by at

least (h− 2l/3)/(3
√
l) red blocks. Thus the number of red blocks in the parsing

of zj is at least
l∑

h=2l/3

h− 2l/3

3
√
l
≥ 1

54
l3/2.

Now we prove Proposition 10.9 thanks to the next four lemmas. The �rst two
show that the gadgets do their job: indeed, for small i (the indices i covered by
the gadgets), the o�set-i blocks are not too large. For that, we �rst bound the
number of violations.
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Lemma 10.10

For any i ∈ [0, 2k
√
l] and j ∈ [1, 2p], the number of i-violations in the chain

zj is at most l
2

+ 2m+ 1 + 2k
√
l.

Proof. We �x j and focus on the number of i-violations in the chain zj . Recall
that sj denotes the number of regular blocks in the chain zj (sj ≤ l).

If no gadgets have been added during the execution of the algorithm, then for
all i ∈ [0, 2k

√
l], the number of i-violations is ≤ sj/2 ≤ l/2.

Otherwise, we distinguish on the type of the most frequent violation (i = 0
or i > 0).

• Case 1: the most frequent violations are 0-violations. In that case, a proof
similar to the case 1 of Lemma 9.5 (with 0 replaced by a = xj[0] the �rst
letter of xj) shows that the number of i-violations for any i ∈ [0, 2k

√
l] is

≤ sj/2 ≤ l/2.

• Case 2: the most frequent violations are i-violations for some i > 0. Let
us see how the parsing of 0w splits the gadgets. As in the de�nition of the
gadgets, let m′ = max(i,m) and v = xj[0..m− 1]1l. When the �rst gadget
g0
i (j) = xj[0..m′ − 1]x̄jm′ is added, the red parsing splits the gadget g0

i (j)
between xj<i and xj[i..m′ − 1]x̄jm′ , because the gadget is added before a
regular block with an i-violation. Furthermore, xj[i..m′ − 1]x̄jm′ is not split
by the parsing, because at that moment in the algorithm, the number of
i-violations in the previous regular green blocks is sj/2 ≥ m′ − i, so that,
as the position i has been seen ≥ m′ − i times, the word xj[i..m′ − 1] is
already in the dictionary of 0w. Similarly, the gadget gci (j) = xj[0..m′ −
1]x̄jm′v[0..c − 1] is split by the red parsing between xj<i and xj[i..m′ −
1]x̄jm′v[0..c− 1], with the additional property that this second part is not
split by the parsing.
But for the gadget g2m+1

i (j), the second part xj[i..m′ − 1]x̄jm′x
j[0..m −

1]1m+1 is parsed in exactly one block because this factor does not appear
anywhere in a regular block because of 1m+1 (cf. (P2)) nor in a gadget of a
preceding chain because of xj[0..m− 1] (cf. (P2) again). From that moment
on, each i-violation creates a 0-violation. The number of green blocks that
are both 0-violated and i-violated is at most i ≤ 2k

√
l. Thus, at most 2k

√
l

more gadgets fail to kill the corresponding i-violation. The total number of
“failing” gadgets in the chain zj is at most 2m+ 1 + 2k

√
l.
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If the number of i-violations is not too large, then the same is true for the size
of o�set-i blocks, as the following easy result states.

Lemma 10.11

If the number of i-violations in the chain zj is b, then any o�set-i block u in
a regular block of zj is of size at most b+ 2k

√
l.

Proof. The |u| − 2k
√
l predecessors of u of size at least 2k

√
l + 1 cannot appear

in gadgets, hence by Property (P2) they must appear at position i in the regular
green blocks of the chain zj . Therefore, each such predecessor contributes to an
i-violation in zj , so that |u| − 2k

√
l ≤ b.

Now, the next two results show that, for large i, the size of o�set-i blocks is
small. First, we need to bound the number of junction blocks ending at position
i− 1.

Lemma 10.12

Let j be �xed and i > 2k
√
l. Let uu′ be a junction block of type 1 between

two regular green blocks wja and wja+1, ending at position i− 1 in wja+1 (thus
|u′| = i). Then |u| ≤ log(kl)− log(i− 4m− 2).

In particular, the number of such blocks is upper bounded by 2kl
i−4m−2

.

Proof. Let v be the pre�x of size 4m + 1 of u′ (which is also the pre�x of xj).
We claim that all the pre�xes of uu′ of size ≥ |uv| are junction blocks of type 1
or 3 only (except possibly for one of type 2), with only u on the left side of the
junction. Indeed, recalling the red parsing of gadgets explained in the proof of
Lemma 10.10 and Property (P2), we distinguish the following cases:

1. uv cannot be completely included in a regular block, otherwise v[0..m− 1]
would appear both at positions 0 and p > 0 in xj , which contradicts
Property (P2);

2. uv cannot be completely included in a gadget:

• if the gadget is gc0(j), then v would contain am+1 for some a ∈ {0, 1},
• if the gadget is gcb(j) for b > 0, let m′ = max(b,m): the red parsing

splits this gadget between xj[0..b− 1] and xj[b..m′ − 1]x̄jm′x
j[0..m−

1]1d. Then uv is not contained in the �rst part by (P2), nor in the
second part since it cannot contain 1m+1;
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3. if uv is a type 1 junction but not split between u and v, it is impossible
because the three possible cases lead to a contradiction:

• if u goes on the right, then v would appear at another position p > 0
in xj ,

• if v goes on the left by at leastm, then v[0..m−1] would again appear
at two di�erent positions in xj ,

• if v goes on the left by less than m, then it goes on the right by
more than m and v[3m+ 1..4m] would again appear at two di�erent
positions in xj ;

4. if uv is a type 2 junction but not split between u and v, it is again impossible:

• if u goes on the right, then v would appear at another position p > 0
in xj ,

• if v goes on the left by at least 3m+ 1, in case of gc0(j) then v would
contain a2m+1 and in case of gcb(j) then v would contain 1m+1 (recall
where the red parsing splits this gadget),

• otherwise, v goes on the right by at least m+ 1, and v[3m+ 1..4m]
would appear at two di�erent positions xj ;

5. if uv is a type 3 junction, �rst remark that the gadget is of the form gcb(j)
for b > 0 (because, for gadgets of the form gc0(j), the red parsing starts at
position 0 of the gadget). If uv is not split between u and v, it is once again
impossible:

• if u goes on the right, the red parsing of the gadget stops after xj<b
and v would appear in xj at a non-zero position,

• similarly, if v goes on the left by less thanm, then v[m..2m−1] would
again appear at two di�erent positions in xj ,

• if v goes on the left by at leastm, then v[0..m−1] would again appear
at two di�erent positions in xj .

Remark �nally that all parsings of type 2 junctions have di�erent sizes on the
left. Therefore, at most one can contain u on the left. The claim is proved. Thus u
appears at least i− 4m− 2 times as a su�x of a regular green block.

Remark that Property (P1) implies that factors of size more than k appear at
most k

√
l times in xj . Thus, since i − 4m − 2 > k

√
l, we have |u| ≤ k. Hence

by Property (P1), the number of occurrences of u is upper bounded by kl/2|u|.
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Therefore

i− 4m− 2 ≤ kl

2|u|

|u| ≤ log(kl)− log(i− 4m− 2),

which proves the �rst part of the lemma.
The number of such blocks is then upper bounded by the number of words of

size ≤ log(kl)− log(i− 4m− 2), that is, 2kl
i−4m−2

.

The last lemma completes the preceding one: if an o�set-i block is large, then
a lot of blocks have to end at position i− 1 and too many of their pre�xes would
have to be in di�erent green blocks.

Lemma 10.13

For any j ∈ [1, 2p] and any i > 2k
√
l, the size of an o�set-i block included

in a regular green block of the chain zj is at most

2
√
l + 3k + 7m+

2kl

i− 4m− 2
.

Proof. We argue as in Proposition 9.7. Let u be an o�set-i block included in
a regular green block of the chain zj . We show as before that the |u| − 3m
predecessors of u of size ≥ 3m have to start at position i in regular green blocks.
Indeed, let v be a pre�x of size ≥ 3m of u; let us analyse the di�erent cases:

• If v is included in a regular green block, then it has to start at position i by
Property (P2);

• v cannot be included in a gadget since it would lead to a contradiction:

– in gadgets of type gc0(j), v would contain am+1 for some letter a ∈
{0, 1},

– in gadgets of type gcb(j) (for b ∈]0, 2k
√
l]), either v would contain

1m+1 or a factor of xj of size m and at a position di�erent from i;

• If v is included in a junction block of type 1, then v starts at position i in the
left regular block, otherwise either v[0..m− 1] would be in the left regular
block at a position di�erent from i, or v[m − 1..2m − 2] would be in the
right regular block at a position ≤ 3m < i;
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• v cannot be included in a junction block of type 2. Indeed, it cannot go by
≥ m on the right (by (P2)), thus it goes on the left by at least 2m+ 1: for
gc0(j) it would contain am+1 (for some a ∈ {0, 1}), and for gcb(j) (b > 0), it
would either contain 1m+1, or a factor of xj of sizem at a position< m′ ≤ i;

• If v is included in a junction block of type 3, then v starts at position i in the
left regular block, otherwise either v[0..m− 1] would be in the left (regular)
block at a position di�erent from i, or, by the red parsing, the gadget is of
type gcb(j) (for b > 0) and v[m− 1..2m− 2] would be included in xj at a
position ≤ 3m < i.

Thus, at least |u| − 3m red blocks end at position i− 1 in the regular blocks of zj .
Among them:

• By Lemma 10.12, at most 2kl
i−4m−2

of them are junctions of type 1.

• At most 2m of them are junctions of type 2, since from the (2m + 1)-th
gadget on, the type 2 junctions end at position 0 (in case of gadgets gcb(j)
for b > 0, see the proof of Lemma 10.10) or ≤ m + 1 ≤ i − 1 (in case of
gadgets gc0(j)).

• There is no junction of type 3 by de�nition.

Overall, at least |u|−5m− 2kl
i−4m−1

of them are o�set blocks, ending at position
i− 1. We call the set of such blocks M . Let

A =
|u| − 7m− 2kl

i−4m−2

2

and
S = {u ∈P(M) containing xj[i− A− 2m..i− A− 1]}.

We say that a red block w is problematic if w ∈ S but the part of w corresponding
to the factor xj[i − A − 2m..i − A − m − 1] is not completely included in a
regular green block. We show that the number of problematic blocks is at most
2k
√
l + 2m+ 1.

1. The number of problematic blocks that overlap a gadget gc0(j) = uac in the
red parsing is at most m+ 1. Indeed, uac is never split by the red parsing,
therefore for c ≥ m + 1, a red block that overlaps gc0(j) would contain
am+1, which is not a factor of xj .

2. For b > 0 (recall that b ≤ 2k
√
l), note that the red parsing splits the gadget

gcb(j) after xj[0..b− 1].
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• Observe �rst that the number of problematic blocks that overlap the
second part of the gadget (gcb(j)≥b) is at mostm. Indeed, this part is not
split by the red parsing, therefore for c ≥ m a red block that overlaps
this part would contain x̄jm′xj[0..m− 1], which is not possible since
the position of the word xj[0..m− 1] should be 0 by Property (P2)

• The number of problematic blocks that appear completely included
in the �rst part of a gadget (gcb(j)<b) is at most b. Otherwise, the red
parsing creates at least one red block completely included in the �rst
part xj[0..b− 1] of the gadget, and we claim that this can happen at
most b times. Indeed, each time the parsing falls in this case, the last
red block included in the �rst part of the gadget has to end at position
b− 1, but the size of this block has to be di�erent each time, so that
this second case can occur at most b times. Finally, each time a gadget
is parsed, at most one of the red blocks included in the �rst part of the
gadget can be a word of S by Property (P2).

3. There is no problematic blocks that are junction blocks of type 1 or 3. Indeed,
if it were the case, the right part of the junction would be of size ≤ m− 1
since otherwise the problematic block would contain axj[0..m−1] for some
letter a, which is not possible. Therefore, within the problematic block, the
factor xj[i−A−2m..i−A−m−1] appears on the left side of the junction
and is thus included in a regular block.

4. The number of problematic blocks that are junction blocks of type 2 has
already been considered when considering the gadgets.

All the red blocks corresponding to words of S and that are not problematic have
to appear in distinct regular green blocks by Property (P2). As before, a word of S
is obtained by choosing its beginning before the interval and its end after, so that

|S| ≥
(
|u| − 5m− 2kl

i− 4m− 2
− (A+ 2m)

)
· A.

Therefore:
|S| − (2k

√
l + 2m+ 1) ≤ l(

|u| − 7m− 2kl
i−4m−2

2

)2

− (2k
√
l + 2m+ 1) ≤ l,

so that

|u| ≤ 2

√
l + 2k

√
l + 2m+ 1 + 7m+

2kl

i− 4m− 2

≤ 2
√
l + 3k + 7m+

2kl

i− 4m− 2
.
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Chapter 11

In�nite words

The techniques on �nite words developed in the preceding chapters can almost
be used as a black box to prove the one-bit catastrophe for in�nite words (The-
orem 7.6). Our aim is to design an in�nite word w ∈ {0, 1}N for which the
compression ratios of the pre�xes tend to zero, whereas the compression ratios
of the pre�xes of 0w tend to ε > 0. In Chapter 10, we concatenated the bricks
obtained in Chapter 9; now, we concatenate an in�nite number of bricks of Chap-
ter 10 of increasing size (with the parameters that gave the one-bit catastrophe
on �nite words). As before, each chain of size l will be parsed in Θ(l) green
blocks and Θ(l3/2) red blocks. To guarantee that the compression ratio always
remains close to zero in w and never goes close to zero in 0w, the size of the
bricks mentioned above will be adjusted to grow neither too fast nor too slow, so
that the compression size will be locally the same everywhere.

We will need an in�nite sequence of families (Fi)i≥0 of words similar to that
of Chapter 10: thus we will need in�nite sequences of parameters to specify them.

• For i ≥ 0, the size of words in Fi will be li = l0.2
i, for l0 su�ciently large.

• Let pi =
√
li/(9γ) − 2 log li, where γ ≥ 10 is a constant. For i > 0, the

number of words in Fi will be |Fi| = 2pi − 2pi−1 (and |F0| = 2p0). Remark
that

∑i
j=0 |Fj| = 2pi and |Fi+1| ∼ |Fi|

√
2.

• The parameter ki = (log li)/2 will be the maximal size of words in Prop-
erty P1(i) below.

• The parameter mi = γpi will be the size of words in Property P2(i) below.

We shall later show that there exists an in�nite sequence F = (Fi)i≥0 match-
ing these parameters and satisfying some desired properties (generalized versions
of Properties (P1) and (P2), see below). But from an arbitrary sequence (Fi)i≥0,
let us �rst de�ne the “base” word from which w will be constructed.
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De�nition 11.1

Given a sequenceF = (Fi)i≥0 where each Fi is a family of words, we denote
by wF the word

wF =
∞∏
i=0

∏
x∈Fi

Pref>qix(x)

where qix = max{a : x<a is a pre�x of a word in ∪j<i Fj}.

For a particular sequence F = (Fi), the word w will be equal to wF with some
gadgets inserted between the pre�xes as in the previous chapters. The sequenceF
that we shall consider will be a sequence of families of random words which will
satisfy the following properties (Lemma 11.2 below shows that these properties
are true with high probability).
P1(i): For all x ∈ Fi, for all words u of size at most ki, Occx(u) ≤ kili/2

|u|.

(P1’): For all i ≥ 0, P1(i).

P2(i): Any factor u of size mi appears in at most one word of ∪j≤iFj , and within
that word at only one position.

(P2’): For all i ≥ 0, P2(i).
Again, (P2’) guarantees a kind of “independence” of the families F0, F1, . . . ,
whereas (P1’) is a de Bruijn-style “local” property on each word of each family Fi.

Our �rst lemma shows that there exists a sequence F = (Fi)i≥0 satisfying
(P1’) and (P2’).

Lemma 11.2

For every i ≥ 0, let Fi be a set of 2pi − 2pi−1 words of size li (and 2p0 words
of size l0 for F0) taken uniformly and independently at random. Then the
probability that F satis�es Properties (P1’) and (P2’) is non-zero.

Proof. Let us show that the probability thatF satis�es (P1’) is> 1/2, and similarly
for (P2’). We only show it for (P2’), as an analogous (and easier) proof gives the
result for (P1’) as well.

By Lemma 10.3, the probability that F does not satisfy P2(i) is less than
2/li = 21−i/l0. Thus, by union bound, the probability that all P2(i) are satis�ed
is larger than

1−
∞∑
i=0

21−i

l0
= 1− 4

l0
.
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From now on, we consider a sequence of families F = (Fi)i≥0, with parame-
ters (li) and (pi), that has both Properties (P1’) and (P2’) for the parameters (mi)
and (ki) de�ned above. Remark that the integers qix de�ned in De�nition 11.1
satisfy qix ≤ mi thanks to Property P2(i).

The word w that we consider is the word wF (De�nition 11.1) where gadgets
have possibly been added between the regular green blocks exactly as in the
algorithm of Chapter 10. Since F satis�es (P1’) and (P2’), and the parameters li,
pi fall within the range of Theorem 7.10, it can be shown as in Chapter 10 that a
chain of w coming from Fi will be parsed in ≥ l

3/2
i /54 red blocks in 0w but in

only ≤ 3li/2 green blocks. The following two lemmas show Theorem 7.6, i.e.,
that w satis�es the one-bit catastrophe. We begin with the upper bound on the
compression ratio of w, before proving the lower bound for 0w in Lemma 11.4.

Lemma 11.3

ρsup(w) = 0.

Proof. By de�nition (De�nition 7.5),

ρsup(w) = lim sup
n→∞

ρ(w<n),

therefore we need to show that ρ(w<n) = G(logG)/n tends to zero, where
G = |Dic(w<n)| is the number of green blocks in the parsing of w<n. Let us
evaluate this quantity for a �xed n.

Let j and q be the integers such that the n-th bit of w belongs to the q-th chain
of the j-th family, or in other terms, that w<n is the concatenation of the chains
coming from ∪i<jFi and of the �rst q − 1 chains of Fj , together with a piece of
the q-th chain of Fj .

We �rst give a lower bound on n as a function of the di�erent parameters. A
chain coming from Family Fi is of the form Pref>qix(x) together with possible
gadgets, where qix ≤ mi ≤

√
li. Therefore, the size of such a chain is at least

li∑
j=mi

j ≥ l2i −m2
i

2
=
l2i
2
− o(l2i ).

Thus, using lj = 2lj−1, we get:

n+ o(n) ≥
j−1∑
i=0

|Fi|
l2i
2

+ (q − 1)
l2j
2
≥
l2j−1

2
(|Fj−1|+ q)
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as soon as 2(q − 1) ≥ q/2, that is, q ≥ 2. (We shall take care of the case q = 1
below.)

On the other hand, when all possible gadgets are added, each chain has a size
at most 5l2i /8 + o(l2i ) (see Section 10.2). Using the fact that |Fi+1| ∼ |Fi|

√
2 (i.e.,

the growth of the sequence (|Fi|)i≥0 is more than exponential), we obtain the
following upper bound:

n− o(n) ≤ 5

8

( j−1∑
i=0

|Fi|l2i + ql2j

)
≤ 5

8
(2|Fj−1|l2j−1 + ql2j ) =

5

4
(|Fj−1|+ 2q)l2j−1.

In particular,
logG ≤ log n ≤ 2 log |Fj−1|.

Let us now bound the number of green blocks. A chain coming from Fi, with
gadgets, is parsed in at most 3li/2 blocks. Hence

G ≤ 3

2

( j−1∑
i=0

|Fi|li + qlj

)
≤ 3

2
(2|Fj−1|lj−1 + 2qlj−1) = 3lj−1(|Fj−1|+ q).

We can now bound the compression ratio of w<n:

ρ(w<n) =
G logG

n
≤ 6

lj−1

· 2 log |Fj−1| −−−→
n→∞

0.

Finally, for the case q = 1, looking back at the inequalities above we have:
n+ o(n) ≥ |Fj−1|l2j−1/2 and G ≤ 3lj−1(|Fj−1|+ 1), thus ρ(w<n) again tends to
zero.

Finally we turn to the lower bound on the compression ratio of 0w.

Lemma 11.4

ρinf(0w) ≥ 2/(1215γ).

Proof. De�ne j and q as in the proof of Lemma 11.3: we want to give a lower
bound on (R logR)/n, where R = |Dic(0w<n)| is the number of red blocks in
the parsing of 0w<n. The upper bound for n given there still hold:

n− o(n) ≤ 5

4
(|Fj−1|+ 2q)l2j−1.

Let us now give a lower bound on R. Suppose for now that q ≥ 4, so that
2
√

2(q−1) ≥ 2q. The proof of Theorem 7.10 in Chapter 10 shows that each chain
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coming from a family Fi is parsed in at least εl3/2i red blocks, where ε = 1/54.
Hence:

R ≥
j−1∑
i=0

ε|Fi|l3/2i + ε(q − 1)l
3/2
j

≥ ε(|Fj−1|l3/2j−1 + 2
√

2(q − 1)l
3/2
j−1)

≥ ε(|Fj−1|+ 2q)l
3/2
j−1.

Therefore,
R logR

n
≥ 4ε

5
· log |Fj−1|√

lj−1

∼ 4ε

5× 9γ
.

In the case q ≤ 3, we have q << |Fj−1| and the same bound holds.
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Conclusion and perspectives

« Le monde a commencé sans
l’homme et il s’achèvera sans lui.
Les institutions, les mœurs et les
coutumes, que j’aurai passé ma vie
à inventorier et à comprendre, sont
une e�orescence passagère d’une
création par rapport à laquelle elles
ne possèdent aucun sens, sinon
peut-être de permettre à l’humanité
d’y jouer son rôle. »

Claude Lévi-Strauss. Tristes
Tropiques.

We conclude this thesis by giving some perspectives and open questions
for future works, that are linked to what has been presented throughout the
manuscript.

Part one: non commutative arithmetic circuits

• Lower bounds. We have shown some lower bounds using the partition
method—that is, by considering rank[f,Π] for some polynomial f and par-
tition Π. This method alone is not su�cient to prove any superpolynomial
bound for general non commutative circuits, as there is a polynomial com-
putable by small circuit that is full rank with respect to any partition (see
Theorem 1.17). However, the Hankel method—that is, based on the rank of
Hankel matrices—does not su�er from such a barrier yet. One can—by using
similar ideas to the ones in Chapter 6—show that the rank of the Hankel
matrix captures exactly the complexity of general non associative circuits
computing a non associative polynomial. Therefore, proving a lower bound
on the rank of the Hankel matrix on any non associative polynomial P̃
that is equal to a �xed non commutative polynomial P when viewed in the
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associative world, yields a lower bound on P . This is the same as giving
a lower bound on the rank of a parametrized Hankel matrix; it might be
a way of tackling the problem of �nding lower bounds for general non
commutative circuits.

• Polynomial Identity testing. To the best of our knowledge, all known
polynomial time algorithms for PIT are designed for classes of circuits
that have at most a constant number of distinct parse trees. While it is
intuitive1 to understand why such a parse trees restriction is a convenient
assumption to design good algorithms, we believe that in this phenomenon
lies a technical barrier that has to be studied deeper in order to bypass the
problem and to design new kinds of algorithms that could work for more
general classes of circuits.

Part two: Lempel-Ziv, a “One-bit catastrophe” but not a tragedy

We have privileged “clarity” over optimality, hence constants can undoubtedly
be improved rather easily. In that direction, a (seemingly harder) question is
to obtain ρsup(w) = 0 and ρinf(0w) = 1 in Theorem 7.6. But even if such a
catastrophe is not possible, it means there is a maximal constant α ∈]0, 1[ for
which it is possible to get ρsup(w) = 0 and ρinf(0w) = α for some word w; what
is this threshold α?

The main challenge though, to our mind, is to remove the gadgets in our
constructions. Remark that the construction of Chapter 9 can also be performed
with high probability with a random word instead of a de Bruijn sequence (that
is what we do in Chapter 10 in a more general way). Thus, if we manage to get
rid of the gadgets using the same techniques as presented here, this would mean
that the “weak catastrophe” is the typical case for optimally compressible words.
Simulations seem to con�rm that conclusion.

Another possible direction is to understand the typical expected variation for
a �xed compression ratio. For this question, even getting some estimations by
simulations seems hard, as sampling uniformly at random from the words of a
�xed LZ’78 compression ratio is a challenging task.

1Indeed, such a restriction allows to compare “submonomials”—which is an easier task—in
order to say something on the “full monomials”.
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Index

ABP, see algebraic branching
program

algebraic branching program, 56, 91
arithmetic circuit, 5

k-PT circuit, 17
k-PT formula, 17
formal degree, 13
formula, 8
homogeneous, 13
non-commutative, 12
parse formula, 14
parse tree, 16
rotPT circuit, 48
skew circuit, 8
unique parse tree circuit, 17

comb, 18

de Bruijn sequence, 130
determinant, 9

formula, 8

Hadamard product, 76
Hankel matrix over trees, 99
Hankel matrix over words, 95

IMM, see iterated matrix
multiplication

iterated matrix multiplication, 9

k-PT circuit, 17
k-PT formula, 17

LZ’78, 116
block, 116
compression ratio, 119
dictionary, 117
junction block, 122
LZ-compressible, 119
o�set block, 122
parse tree, 117
parsing, 116
predecessor, 116

one-bit catastrophe question, 113,
120

partial derivative matrix, 21
permanent, 9
PIT, see polynomial identity testing
polynomial, 10

degree, 11
homogeneous, 11
homogeneous component, 11
j-product, 11
non-commutative, 10

polynomial identity testing, 73
black-box, 74
white-box, 74

rotPT circuit, 48

shape, 17
skew circuit, 8

unique parse tree circuit, 17
shape, 17
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UPT circuit, see unique parse tree
circuit17

weighted automaton over trees, 100
weighted automaton over words, 93

word, 115
factor, 116
pre�x, 116
substring, 116
su�x, 116
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