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Chapter 1

Résumé

Soit F' un corps fini IF; de caractéristique p ou bien un corps local non archimédien
dont le corps résiduel est fini et de caractéristique p. Notons G le groupe des
points F-rationnels d’'un groupe algébrique réductif connexe défini sur F'. Soit k
un corps algébriquement clos de caractéristique ¢ (avec ¢ # p). La theése porte sur
les représentation modulaires (i.e., £ # 0) de G. Tous les représentations considérées
dans la these pour F' non archimédien sont lisses.

La théorie des représentations modulaires a des grandes similitudes avec la
théorie complexe mais aussi des différences importantes. Par exemple, la condi-
tion ¢ # p assure 'existence d’une mesure de Haar sur G a valeurs dans k, mais
le fait que /¢ soit non nul implique que la mesure d’un sous-groupe ouvert compact
de G peut étre nulle. D’autre part, les représentations modulaires d’un sous-groupe
ouvert compact ne sont pas semi-simples en général et les notions de représentation
cuspidale et supercuspidale ne sont pas équivalentes, car il existe des représentation
cuspidales qui ne sont pas supercuspidales. Pour ces raisons les méthodes utilisées
dans le cas complexe ne sont pas entierement utilisables dans le cas modulaire.

Dans I’étude de la catégorie des représentations du groupe G, une étape impor-
tante est la décomposition de Bernstein, qui affirme que la catégorie Rep,(G) des
k-représentations lisses de G se décompose en un produit infini de sous-catégories
pleines et indécomposables. Toute k-représentation de G se decompose de facon
unique en somme directe de sous-représentations, chacune appartenant a un bloc, et
tout morphisme entre représentations est alors un produit de morphismes, chacun
appartenant a bloc. En conséquence, pour la compréhension de la catégorie, il suffit
d’étudier chaque bloc séparément.

La décomposition de Bernstein admet un analogue du “coté galoisien” via la
correspondance de Langlands. Fixons un nombre premier r différent de p . Lorsque
£ > 0, nous prendrons r = £. Notons W le groupe de Weil de F'. Pour G = GL,, la
correspondance de Langlands a été prouvée pour F' de caractéristique p par Laumon,
Rapoport et Stuhler [LRS], et pour F' de caractéristique 0, indépendamment par Har-
ris et Taylor [HT], par Henniart [Hen], et par Scholze [Sch]. Elle fournit une bijection
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8 CHAPTER 1. RESUME

canonique de ’ensemble des classes d’isomorphisme de représentations irréductibles
r-adiques de GL,,(F') vers celui des classes d’isomorphisme de représentations de
Deligne Wg-semisimple r-adiques de dimension n, qui généralise ’application de
réciprocité d’Artin de la théorie du corps de classes. Via la correspondance de Lang-
lands, deux k-représentations irréductibles 7 et 7’ appartiennent au méme bloc si
et seulement si leurs parametres de Langlands ont des restrictions au sous-groupe
d’inertie Ir de Wg isomorphes. Pour G un groupe réductif connexe quelconque
défini sur F', un analogue de la décomposition de Bernstein pour les parametres de
Langlands enrichis a été construit dans [AMS].

On souhaiterait décomposer aussi la catégorie Rep(G) en somme directe de sous-
catégories, appelées blocs de Bernstein, lorsque £ est non nul. Dans le cas £ = 0,
la décomposition de Bernstein repose notamment sur la propriété d’unicité du sup-
port supercuspidal, qui affirme que le support supercuspidal d’une k-représentation
lisse irréductible m de G est une classe de G-conjugaison d’une paire (M, o), ou M
est un sous-groupe de Levi de G et o est une k-représentation lisse irréductible su-
percuspidale de M. En particulier, la définition des blocs repose sur la notion de
support supercuspidal. Autrement dit, I'unicité du support supercuspidal des k-
représentations irréductibles de G impliquerait une décomposition de ’ensemble des
classes d’équivalence Irri(G) de représentations lisses irréductibles de G, et cette
décomposition impliquerait la décomposition de Bernstein restreinte a 1’ensemble
des classes d’équivalence Irrg(G). Quand ¢ = 0, une k-représentation cuspidale est
supercuspidale donc 'unicité de support supercuspidal est impliquée par 'unicité de
support cuspidal, qui est simple a vérifier. Mais dans le cas £ # 0, comme on ’a ex-
pliqué dans le second paragraphe, la notion de support cuspidal n’est pas suffisante
pour résoudre ce probleme. Malheuresement, 'unicité de support supercuspidal
n’est pas toujours vraie. Un contre-exemple a été exhibé par Jean-Francgois Dat pour
G = Spg(F') ou F est non archimédien. Ce contre-exemple est obtenu par relevement
d’un contre-exemple similaire construit par Olivier Dudas pour G = Spg(F,), ou
qg=p",m € Z. Mais pour G = GL,(F), 'unicité de support supercuspidal est un
théoreme, démontré par Vignéras dans [V2].

Nous supposons désormais ¢ # 0. Soient W (k) anneau des vecteurs de Witt
de k et K = Frac(W(k)) le corps des fractions de W(k) . Une preuve de la
décomposition de Bernstein pour la catégorie des W (k)[GLy, (F')]-modules lisses a été
donnée par David Helm dans [Helm|. Vincent Sécherre et Shawn Stevens ont donné
une preuve de la décomposition de Bernstein des catégories des k-représentations
lisses de GL,,(F') et de ses formes intérieures dans [SeSt]. Ces preuves reposent de
maniere cruciale sur 'unicité du support supercuspidal des k-représentations lisses
irréductibles de GL,(F). La décomposition de Bernstein de Rep,(G) n’est pas con-
nue pour un groupe réductif G défini sur F' arbitraire.

De plus, dans le cas G = GL,(F'), Vignéras a construit dans [V4] une bijec-
tion entre I’ensemble des classes d’isomorphisme de représentations irréductibles /-
modulaires de GL,,(F') et 'ensemble des classes d’isomorphisme de représentations



de Deligne Wg-semi-simples ¢-modulaires de dimension n et d’opérateur de Deligne
nilpotent. Il s’ensuit que deux Fy-représentations irréductibles 7 et 7’ de G sont dans
le méme bloc si et seulement si leurs parametres de Langlands ont des restrictions
al fp (le noyau de I'application canonique Ir — Z;) qui sont isomorphes, ainsi que
'a observé Dat dans [Dall] §1.2.1.

Dans cette these, nous étudions la catégorie des représentations lisses du groupe
spécial linéaire SL,,(F') a coefficients dans un corps k algébriquement clos de car-
actéristique £ avec £ différent de p. Le résultat principal de la these est la preuve de

I'unicité du support supercuspidal pour toutes les k-représentations irréductibles de
SLy,(F'), dans le cas ou F est soit fini (Théoréme [4.1.11)), soit local non archimédien

(Théoreme [6.1.10).

Theorem 1.0.1. Soient M’ un sous-groupe de Levi de SL,,(F), et p une k-repré-
sentation irréductible de M'. Le support supercuspidal de p est la classe de M'-
conjugaison d’une paire (L', 7"), ot L' est un sous-groupe de Levi de M’ et 7/ est une
k-représentation irréductible supercuspidale de 1.

Désormais, nous utilisons G pour désigner GL,,(F) et G’ pour SL,,(F), sauf men-
tion contraire. Cette theése est constituée de deux parties : la section 4 est consacrée
a I’étude des k-représentations des groupes finis, et la section 5 est consacrée au cas
ou F' est non-archimédien. L’unicité du support cuspidal est connue pour toutes
les k-représentations irréductibles cuspidales de M’, ot M’ désigne un sous-groupe
Levi de G’. Cela nous permet de réduire le probléeme & celui de I'unicité du sup-
port supercuspidal pour un sous-groupe de Levi M’ de G’. Dans tous les cas, pour
toute k-representation cuspidale irréductible 7’ de M/, il existe une k-représentation
irréductible cuspidale m de M (un sous groupe de Levi de G, et MNG' = M’) telle que
7’ intervienne dans la k-representation resM,w, qui est semi-simple de longueur finie
(voir [Ta] quand ¢ = 0, et Proposition quand ¢ est positif). Notre stratégie
consiste a étudier 7’ via I’étude de 7.

Dans la premiere partie nous posons I = F,. En s’inspirant de travaux de
Gerhard Hiss, nous décrivons le support supercuspidal d’une k-représentation irré-
ductible cuspidale 7’ d’un sous-groupe de Levi M’ de G en fonction de son enveloppe
projective. En utilisant la théorie de Deligne-Lusztig, on construit ’enveloppe pro-

jective P de .

Ensuite, pour 7 une k-représentation irréductible de M comme
ci-dessus, nous remarquons que P, est une composante indécomposable de la restric-
tion de ’enveloppe projective P, de w. En considérant les restrictions paraboliques
P, de n’ aux sous-groupes de Levi de M/, lesquelles ont des propriétés similaires
aux restrictions paraboliques P, aux sous-groupes de Levi de M, nous déduisons
I'unicité du support supercuspidal de 7’ de celle du support supercuspidal de .

Le reste de cette thése étudie les k-représentations du groupe SL,,(F'), ou F est
local non-archimédien, au moyen de la théorie des types. La construction de Bushnell
et Kutzko a été généralisée du cas complexe au cas modulaire avec £ # p par Marie-

France Vignéras pour GL,(F'). Pour le groupe SL,(F), cette théorie n’avait été
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établie que dans le cas complexe (pour les représentations supercuspidales par Colin
Bushnell et Philip Kutzko, pour les non-supercuspidales par David Goldberg et Alan
Roche).

Nous construisons un k-type simple maximal cuspidal pour toute k-représentation
cuspidale 7’ d’un sous-groupe de Levi M’ du groupe G’ = SL,(F), i.e., un cou-
ple (N (pep), T ), formé d’un sous-groupe ouvert Ny (py,) de M’, compact mod-
ulo le centre, et d'une k-représentation irréductible my de Ny (py), telle que
I'induite compacte de 7y & M’ soit isomorphe & /. Comme dans le cas complexe,
(N (pyyg, Tvr)) s’obtient & partir d'un k-type simple maximal cuspidal (Jyi, Am)
(construit précédemment par Vignéras) de M, ou M est un sous-groupe de Levi de
G = GL,(F) tel que M NG’ = M'. Nous considérons d’abord le normalisateur
projectif Jy de (JM, Am) et linduite compacte irréductible A de Ay & Jy, qui
est une notion introduite dans le cas complexe par Bushnell et Kutzko dans leur
construction des types simples maximaux dans SLy,(F'). Soient y},; une composante
irréductible de la restriction de S\M a jMﬁG/ , et Ty une k-représentation irréductible
du normalisateur Ny (py) de iy dans M’ telle que 7yy| 7 ~q contient py,. Nous
démontrons que les couples de la forme (Nyy (1y), Tvr) sont les k-types simples ma-
ximaux cuspidaux de M’. L’un des points délicats est la preuve de I'irréductibilité
de I'induite compacte de my» & M. Alors que dans le cas complexe, il suffit de mon-
trer que le groupe d’entrelacement de la représentations myy coincide avec Ny (py)s
lorsque £ # 0, il est nécessaire de prouver qu'une condition technique supplémentaire,
qualifiée de seconde condition pour lirréductibilité dans cette these, est satisfaite.

Une fois ce résultat obtenu, nous montrons que si [L, o] est le support super-
cuspidal de 7 (7,7’ comme ci-dessus), avec L un sous-groupe Levi de M et o une
k-représentation irréductible supercuspidale de L, et ¢’ est un facteur direct de la
restriction de o sur L' = LN G’ de o, alors le support supercuspidal de 7’ est con-
tenu dans la classe de M-conjugaison de (L', o’). 1l existe une autre méthode pour
montrer cette propriété, qui n’utilise pas la théorie des types, consistant a appli-
quer la méthode de Tadi¢. Mais notre construction des k-types simples maximaux
cuspidaux est intéressante en elle-méme: lors de sa démonstration dans [Helm| de
la décomposition de Bernstein de Repyy () (GLy(F)), Helm construit au moyen des
k-types simples maximaux cuspidaux une famille d’objets projectifs, qui sont au
coeur de la démonstration.

Les autres ingrédients de la preuve de 'unicité de support supercuspidal de 7’
sont I’étude du modele de Whittaker de o (section 5.2), et la généralisation aux
k-représentations de M’ d’une formule sur les dérivations obtenue par Bernstein
et Zelevinsky dans le cas complexe pour GL,(F) (section 6 et appendice). Plus
précisement, notons T le sous-groupe formé des matrices diagonales et U celui des
matrices strictements triangulaires supérieures. Nous montrons ’existence d’un ca-
racteére 6 non-dégénéré de U N M’ tel que la plus haute dérivée associée a 0|ym de
7 est non-triviale. Soit (L', o’) contenu dans le support supercuspidal de 7’. Nous
déduisons de la généralisation de la formule de Bernstein et Zelevinsky que la plus
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haute dérivée associée a 6|ynr, est non-triviale. Nous établissons aussi I'existence
d’un unique facteur direct de la restriction de o sur L’ tel que la plus haute dérivée
associée a 0|ynrs est non-triviale.
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Chapter 2

Introduction

2.1 Introduction

Let F' be a finite field of characteristic p, or a non-archimedean locally compact
field whose residue field is of characteristic p, and G a reductive connected algebraic
group defined over F. We denote by G the group G(F) of the F-points of G, and
endow it with the locally pro-finite topology through F. Let k be an algebraically
closed field of characteristic ¢ (# p), and W (k) its ring of Witt vectors. We use
K = Frac(W (k)) to denote the fraction field of W (k). We denote by Rep,(G) the
category of smooth k-representations of G, where a k-representation (m, V') (here V'
is the k-space of representation 7) of G is smooth if any element v € V' is stabilised
by an open subgroup of G. In the thesis, when we say a k-representation, we always
assume it is smooth.

When ¢ = 0 and F is a non-archimedean locally compact field, the existence
of Bernstein decomposition of the category Rep,(G) has been proved by Bernstein:
The category Rep,(G) is equivalent to the direct product of some full-subcategories,
which are indecomposable and called blocks. This means that each k-representation
is isomorphic to a direct sum of sub representations belonging to different blocks,
and each morphism of k-representations is isomorphic to a product of morphisms
belonging to different blocks. We say that a full-subcategory of Rep,(G) is inde-
composable (or a block) if it is not equivalent to a product of any two non-trivial
full-subcategories.

This decomposition has a counterpart in the “Galois side” through local Lang-
lands correspondence. Let r be a prime number such that » # p. When ¢ > 0,
we will take » = ¢. Let “G denote the L-group of G and Wy the Weil group of
F'. In the case when G equals GL,, the local Langlands correspondence (LLC) was
proved when F' has characteristic p by Laumon, Rapoport and Sthuler [LRS], and,
when F' has characteristic 0, independently by Harris and Taylor [HT], by Hen-
niart [Hen|, and by Scholze [Schl. It provides a canonical bijection between the set
of isomorphism classes of r-adic irreducible representations of GL,,(F') and the set

13



14 CHAPTER 2. INTRODUCTION

of isomorphism classes of r-adic n-dimensional Wr -semisimple Deligne represen-
tations, generalizing the Artin reciprocity map of local class field theory. A nice
property of LLC is that the Rankin-Selberg local factors of a pair of irreducible Q,.-
representations of GL, (F') and GL,,(F'), and the Artin-Deligne local factors of the
corresponding tensor product of representations of Wr are equal, and moreover this
condition characterizes LLC completely. Under the local Langlands correspondence,
two irreducible k-representations m and 7’ belong to the same block if and only if
their Langlands parameters are isomorphic when restricting to the inertial subgroup
Ir of Wg. For G an arbitrary connected reductive group defined over F', an analog
of the Bernstein decomposition for (enhanced) Langlands parameters is constructed
in [AMS].

When ¢ is positive and F' is a non-archimedean locally compact field. Helm gives
W@)(G) in [Helm|, where W (Fy) de-
notes the ring of Witt vectors of Fy, and this deduces the Bernstein decomposition

a proof of the Bernstein decomposition of Rep

of Repy,(G). Sécherre and Stevens gave a proof of the Bernstein decomposition of
the category of smooth k-representations of GL,(F) and its inner forms in [SeSt].
The Bernstein decomposition of Repy(G) is unknown for general reductive groups
G defined over F. In the case where G equal GL,,, Vignéras constructed in [V4] a
bijection between the set of isomorphism classes of /-modular irreducible represen-
tations of GL,(F) and the set of isomorphism classes of /-modular n-dimensional
W - semisimple Deligne representations with nilpotent Deligne operator. Combining
with the Bernstein decomposition, it implies that two irreducible F,-representations
m, 7 of G belong to the same block if and only if their Langlands parameters are
isomorphic when restricting to f,, which is the kernel of the canonical map Ir — Zy,
as observed by Dat in [Dall] §1.2.1.

The theory of Rankin-Selberg local factors of Jacquet, Shalika and Piatetski-
Shapiro has a natural extension at least to generic k-representations of GL,,(F').
However, via the f-modular local Langlands correspondence these factors do not
agree with the factors of Artin-Deligne. In [KuMa], Kurinczuk and Matringe clas-
sified the indecomposable ¢-modular Wg-semisimple Deligne representations, ex-
tended the definitions of Artin-Deligne factors to this setting, and define an /-
modular local Langlands correspondence where in the generic case, the Rankin-
Selberg factors of representations on one side equal the Artin-Deligne factors of the
corresponding representations on the other.

In this thesis, we study the category Rep;(SL,(F')). The proofs of Helm, Sé
cherre and Stevens in [Helm| and [SeSt] of the Bernstein decompositions are based
on the fact that the supercuspidal support (Definition of any irreducible k-
representation of GL,,(F') is unique, which has been proved by Vignéras in [V2]. As
the main results of this thesis, we prove the uniqueness of supercuspidal support for
SLy,(F') in both cases that F' is finite (Theorem and F' is non-archimedean

(Theorem [6.1.10)):
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Theorem 2.1.1. Let M’ be a Levi subgroup of SL,(F), and p an irreducible k-
representation of M'. The supercuspidal support of p is a M'-conjugacy class of a
pair (L', 7"), where L' is a Levi subgroup of M, and 7 is an irreducible supercuspidal
k-representation of L.

However, the uniqueness of supercuspidal support of irreducible k-representations
is not always true for general reductive groups when £ is positive. A counter-example
has been found in [Dal] by Dat and Dudas for Spg(F).

From now on, we use G to denote GL,(F), and G’ to denote SL,(F) un-
less otherwise specified. This manuscript has two parts: in section 2, we study
the k-representations of finite groups; next we consider the case that F' is non-
archimedean locally compact from section 3. There is a fact that for any irreducible
k-representation 7’ of M/, a Levi subgroup of G’, its cuspidal support (see
for the definition) is unique. Hence we could reduce our problem to the unique-
ness of supercuspidal support for irreducible cuspidal k-representations of M’, where
M’ denote any Levi subgroup of G’. In both parts, for any irreducible cuspidal
k-representation 7w’ of M/, there exists an irreducible cuspidal k-representation 7 of
M such that 7’ is a component of the semisimple k-representation resM,w which has
finite length (see [Ta] when ¢ = 0, and Proposition when ¢ is positive). Our
strategy is to study 7’ by considering 7, in other words, to reduce the problem of 7’/
to the one of .

In the first part, we describe the supercuspidal support of an irreducible cuspidal
k-representation 7’ of M’ in terms of its projective cover (see the paragraph after
Theorem , which has been considered by Hiss [Hiss]. Using Deligne-Lusztig
theory, we construct the projective cover P, of 7/, which is one of the indecom-
posable components of the restriction of the projective cover P, of m to M’. The
construction is based on the Gelfand-Graev lattice. We deduce the uniqueness of
supercuspidal support of 7’ by considering the parabolic restrictions of P,/ to any
Levi subgroup of M.

The projective covers P, constructed in this part are interesting in their own
right. Let K denote an algebraic closure of K. In the article [Helm|, Helm gave the
relation between Bernstein decompositions of Repg (GLy,(F")) and of Rep;, (GL,(F)).
One of the key objects of his article is a family of projective objects associated to
irreducible cuspidal k-representations. These projective objects are constructed by
projective covers of irreducible cuspidal k-representations of finite groups of GL,,
type, where m divides n.

In the second part, G and G’ are defined over a non-archimedean local field.
We prove the uniqueness of the supercuspidal support (Theorem in two
steps. From section 5 to section 7, we construct maximal simple cuspidal k-types
of M’ (Theorem , where M’ denote any Levi subgroup of G’. This gives a first
description of the supercuspidal support for any irreducible cuspidal k-representation
7w’ of M’. In section 6, we describe precisely the supercuspidal support of 7’ by
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considering the derivatives of the elements in the supercuspidal support, and deduce
that it is unique.

Definition 2.1.2. An mazimal simple cuspidal k-type of M for an irreducible cus-
pidal k-representation " of M is a pair (K', 7\y) consisting of an open and compact
modulo center subgroup K' of M/, and an irreducible k-representation Ty of K/, such
that:

: M’ ~ /!

indg mvy = . (2.1)

Inspired by [BuKul|, [BuKull|, [GoRo|] and [Ta], we construct the maximal sim-
ple cuspidal k-types of M’ from those of M, where M is a Levi subgroup of G such
that M N G’ = M’. More precisely, let m be an irreducible cuspidal k-representation
of M, such that 7’ is an component of reSM,ﬂ. Let (Jum, Am) be a maximal simple cus-
pidal k-type of M of 7 (we inherit the notations from those of [BuKu]), which means
the compact induction ind%AM is isomorphic to 7, where K is an open subgroup
of M compact modulo center, which contains Jy; as the unique maximal compact
subgroup, and Ay is an extension of Ay to K. In the equation , the group
K’ is also compact modulo centre. Furthermore, the group K’ contains Jy N M’
as the unique maximal open compact subgroup, and K’ is a normal subgroup of
(K N M')(Jy N M) with finite index, where Jy; is an open compact subgroup of M
containing Jy;. The irreducible k-representation myy of K’ contains some irreducible
component of the semisimple representation res?‘ M 1nd:% Av. When M/ = G/, the

group K’ equals Jav MM, and this simple case is considered in section 3, based on
which the case for proper Levi is dealt.

In the construction, the technical difficulty is to prove that the compact induction
ind%/TM/ >~ 7/ is irreducible. When char(k) is 0, it is sufficient to prove that the
intertwining group of 7y equals to K'. In our case, besides of this condition about
intertwining group, we need to verify the second condition explained in section
3.5, which is given by Vignéras in [V3]|. After this construction, we give the first
description of thesupercuspidal support of any irreducible cuspidal k-representation

7’ in Proposition [5.3.18

Proposition 2.1.3. Let 7’ be an irreducible cuspidal k-representation of M, and m
an irreducible cuspidal k-representation of M such that w contains «'. Let [L, 7| be
the supercuspidal support of w, where L is a Levi subgroup of M and 7 an irreducible
supercuspidal k-representation of L. Let 7/ be a direct component of reslﬁ,T. The
supercuspidal support of @ is contained in the M-conjugacy class of (L', 7).

We finish the proof of the uniquess of the supercuspidal support of 7’ by proving
that there is only one irreducible component 7, of resk, 7, such that (L, 7)) belongs
to the supercuspidal support of 7’. The idea is to study the Whittaker model of 7/
and apply the derivative formula given by Bernstein and Zelevinsky in [BeZe]. For
this, we need to generalise their formula to the case of k-representations of M’. In
fact, let T be a fixed maximal split torus of M defined over I’ and Tyy = TyyNM'.



2.1. INTRODUCTION 17

Fix By = TmUnm a Borel subgroup of M, and By = Ty Uy a Borel subgroup of
M’. There is a non-degenerate character  of Uy such that the highest derivative
of 7' according to 6 is non-zero. On the other hand, assume that L is a standard
Levi subgroup of M, and 6 denotes Q\UL, which is also a non-degenerate character
of Uy,. There is only one irreducible component 7, of res]ﬂ,T, such that the highest
derivative of 7} according to 6 is non-zero. If 7’ is a subquotient of i%lT’ for some
irreducible component 7/ of I‘GS%/T, then the highest derivative of Z'MIT’ according to
6 is also non-zero (Proposition . Applying the generalised formula of derivative
in Corollary (4), we obtain that the highest derivative of i%,T, according to 6

is isomorphic to the highest derivative of 7/ according to §. Hence 7/ = 7). This
ends this thesis.
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Chapter 3

Background

3.1 Modulo / representations of p-adic groups with p # ¢

Let H be a locally profinite group, and k be an algebraically closed field. Then
Repy(H) denotes the category of smooth k-representations of H. In this thesis, a
k-representation of H always means a smooth k-representation of H.

3.1.1 Restrictions and compact inductions

Let G denote the group of F-points of a reductive connected algebraic group defined
over I, where F' is a non-archimedean locally compact field whose residue field is
of characteristic p. Let res, ind, Ind denote the functors of restriction, compact
induction and induction, respectively.

Proposition 3.1.1 (Mackey’s decomposition formulae). Let H, K be two closed
subgroups of G, such that the double cosets HgK,g € G are open and closed. For
any k-representation o € Repi(H), the restriction on double cosets induces the

isomorphisms:
resInd$ (o) = H I gm)9(o),
HgK
res%ind$ (o) = @ ir,g(m)9(0),
HgK
where

g(H)

H . .
K g(H) (o), 1K’g(H)g(a) zlndgmg(H)resng(H)g(a).

I gmy9(0) = Indeg(H)reSng(H)g

Remark 3.1.2. e The functions in res%ind%(a) are supported on finitely many
double cosets HgK for g € G, while the functions in res}}(Ind%(a) can be
supported on infinitely many double cosets HgK for g € G.

e The double cosets HgK,g € G are open and closed when H is open or K is
open. In fact, the group G can be written as a disjoint union of HgK for a

19
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family of g € G, and HgK are open, since HgK is a union of left cosets of H
as well as a union of right cosets of K, which are open by our hypothesis.

Proposition 3.1.3 (Frobenius reciprocity). Let H and K be closed subgroups of G.
1. The restriction functor res$; : Repy(H) — Repy,(G) has a right adjoint Ind$,.

2. If K is open, the restriction functor resg}( has also a left adjoint ind%.

Proof. A proof is given in §5.7 [V1]. O

We take the notations as in Proposition [3.1.3] We have four natural transforma-
tions deduced from the Frobenius reciprocity above:

o v— f(v): V — Ind§resGV is injective;

o f— f(1):resGIndGW — W is surjective;

o w—iy:W— res%ind?(W is injective, and the image of W is a direct factor;

o [ — ZKg g f(g): ind%reS%V — V is surjective.

To prove the injectivity or surjectivity for these four morphisms, we check directly
the definition of these morphisms as in the proof of Proposition [3.1.3] For the third

morphism, the fact that the image of W is a direct factor is deduced by applying
Proposition the Mackey’s decomposition formulae.

3.1.2 Schur’s lemma and Mackey’s criterions of irreducibility

Let G denote the group of F-points of some reductive connected algebraic group
defined over F', and F' be as in Section [3.1.1] Each irreducible k-representation
(m, V) of G is admissible (§II,2.8 in [V1]), hence there exists an open compact
subgroup K, such that dim(exV) = dim(VX) < oo, where e is an idempotent
contained in the Heck algebra Hy(G) of G.

Proposition 3.1.4 (Schur’s lemma). Let A be an algebra defined over an alge-
braically closed field R, and M a simple A-module. Then EndoaM = R if condition
(1) or (2) hold:

1. dimpM < ‘R|,

2. there exists an idempotent e of A, such that eM # 0, and dimg(eM) < |R|,
where |R| indicates the cardinality of field R.

Definition 3.1.5. The global Hecke algebra H(G) of G over k is the algebra formed
by k-algebra k2°G, the set of isomorphism classes of locally constant k-functions on
G with compact support, endowed with convolution product after fizing a normalised
Haar measure.

Since the category Rep,(G) is equivalent to the category of modules over the
Hecke algebra Hy(G), irreducible k-representations of G always verify the condition

(2) of Proposition |3.1.26
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3.1.3 Intertwining and weakly intertwining

In this section, we suppose that G is a locally pro-finite group, and Z is the centre
of G. We identify a compact open subgroup K of G/Z to a open subgroup of G
containing Z. For any x € G, we always denote z(K) to be zKz~!. For any field
R and R-representation p of K, we always denote z(p) as an R-representation of
z(K), such that z(p)(g) = p(z~'gx), for g € z(K).

Definition 3.1.6. Let G be a locally profinite group, and R be an algebraically closed
field. Let K; be an open compact subgroup of G fori = 1,2, and p; a R-representation
of K;. Define ig, g,x(p2) to be the induced R-representation

1K z(K>2)
lndKiﬂx(Kg)resKl QQx(Kg)x(pQ)’

where z(p2) is the conjugation of pa by x.

o We say an element x € G weakly intertwines p1 with pa, if p1 is an irreducible
subquotient of ik, k,x(p2). And p1 is weakly intertwined with py in G, if
p1 is isomorphic to a subquotient of ind?@pg. We denote I (p1, p2) the set
of elements in G, which weakly intertwines p1 with py. When p1 = pa, we
abbreviate I (p1, p2) as L& (p1).

o We say the element x € G intertwines py with po, if the Hom set

Homyx, (p1, ik, k2 %(p2)) 7 0.
Representation py is intertwined with ps in G, if the Hom set
Homkg(ind?ﬁpl, indg’(sz) # 0.

We denote 1g(p1,p2) the set of elements in G, which intertwine p; with pa.
When p1 = p2, we abbreviate 1g(p1, p2) as Ig(p1).

When py is irreducible, we deduce directly from Mackey’s decomposition formulae
that p1 is (weakly) intertwined with ps in G if and only if there exists an element
x € G, such that x (weakly) intertwines p1 with pa.

Proposition 3.1.7 (Mackey’s criterions of irreducibility (§I,8.3 in [V1])). Let K, K’
be two compact open subgroups of G/Z, where Z denotes the centre of G, and o and
o’ are irreducible k-representations of K and K' respectively. We have

1. Endk[g](ind?{a) = k is equivalent to Ig(o0) = K, where Ig(o) denotes the
intertwining set of o in G.

2. If ind%a is reducible, then o is a subquotient of ix 4x)g(o) for at least one
g¢ K.
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3. Homg(ind% o, ind%a’) £ 0 if and only if there exists g € G, such that o is a
sub-representation of ix gk g(c’).

4. If the two k-representations ind?}a and ind%a’ are isomorphic, there exists
g € G, such that o is a direct factor of iK,g(K/)g(a’). The converse is true, if
the two k-representations ind%a and ind?(a’ are irreducible.

Remark 3.1.8. When k is of characteristic 0. Mackey’s criterions of irreducibility
above have a brief version: the induced k-representation ind?}a 1s irreducible, if and

only if the intertwining set 1g(c) = K. This is the criterion of justifying that the
. . GLn(F)
induced k-representation ind "

GL,(F) in [BuKu).

A@z is irreducible, in the theory of Q,-types of

3.1.4 Parabolic inductions and restrictions

Let G be a locally pro-finite group and H be a closed subgroup of G. We de-
note Indg} and indg} the functors of induction and compact induction respectively,
from Repy,(H) to Rep,(G). Denote res% the functor of restriction from Repy(G) to
Rep,(H). Let dg denote the character of module of G.

Let P = MU be a parabolic subgroup of G, where M denotes the Levi subgroup
of P and U denotes the unipotent radical of P. We define il\G/I,rﬁ the normalised
parabolic induction and restriction:

1
e Let 7 € Repy(M). Define i{;7 as ind§ (7 ® 62), where we view 7 as a repre-
sentation of P by acting U trivially on 7.

_1
o Let m € Repy(G). Define 77 as res§ (7(U) ® dp ?), where 7(U) denotes the
U-coinvariants of .

Proposition 3.1.9. The quotient group G/P is compact. The unipotent radical U
of P has a increasing filtration of countably many pro-p open compact subgroups.
The first property above indicates that the two inductions ind$ and Ind$ from
Rep,(P) to Rep(G) coincide. The second property is applied in Proposition
Proposition 3.1.10. e The two functors 2'1(\3/[,7"1\(/}[ are transitive. Let M;p be a
Levi subgroup of G and Mo be a Levi subgroup of My, we have:

-G My _ -G G My .G
ZMl OZM2 = ZM27TM1 o ZM2 = TMQ'

e The functor 7’1\(/;[ is a left adjoint of zl\G/[
o The two functors il\G/I,rl\(f[ are ezxact, and respect finite length.

Lemma 3.1.11. The two functors iﬁ,?ﬁ respect direct limits.

Proof. The functor rﬁ respects direct limits since it has a right adjoint. For the
functor ig}/{, this property is proved in Proposition m ]
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3.1.5 (Super)cuspidal support

Let F' be a finite field of characteristic p or a non-archimedean locally compact
field whose residue field is of characteristic p, and k an algebraically closed field of
characteristic £ where ¢ # p. Let G be a reductive connected algebraic group defined
over F', G be the group of F-points G(F) of G, and Rep,(G) the category of smooth
k-representations of G.

Let M be a Levi subgroup of G.

e i{} denotes the normalised parabolic induction from the category Rep; (M) to
the category Rep(G);

° rf’/[ denotes the normalised parabolic restriction from the category Rep.(G) to
the category Repy(M).

Definition 3.1.12. Let w be an irreducible k-representation of G.

o We say that 7 is cuspidal, if for any proper Levi subgroup M of G and any
irreducible k-representation p of M, m does not appear as a subrepresentation

or a quotient representation of i%}/[p;

o We say that 7 is supercuspidal, if for any proper Levi subgroup M of G and
any irreducible k-representation p of M, m does not appear as a subquotient
representation of if'/[p.

Definition 3.1.13. Let w be an irreducible k-representation of G.

o Let (M, p) be a cuspidal pair of G, which means M is a Levi subgroup of G,
and p is an irreducible cuspidal k-representation of M. We say that (M, p)
belongs to the cuspidal support of w, if m is a subrepresentation or a quotient

representation of il\G/[p;

o Let (M, p) be a supercuspidal pair of G, which means M is a Levi subgroup of
G, and p is an irreducible supercuspidal k-representation of M. We say that
(M, p) belongs to the supercuspidal support of w, if ™ is a subquotient of zﬁp.

Proposition 3.1.14 (Uniqueness of cuspidal support). Let m be an irreducible k-
representation of G, its cuspidal support is unique up to G-conjugation.

Proof. See [V1, 2.20]. O

When ¢ = 0, the cuspidal support of an irreducible k-representation m of G coin-
cide with the supercuspidal support of 7. Hence, in this case, Proposition [3.1.14] is
equivalent to say that the supercuspidal support of 7 is unique up to G-conjugation.
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3.1.6 Reduction modulo ¢

In this section, we suppose that k = F, an algebraically closed field of characteristic
0 < [ # p, and Z, the ring of integers of Q,. We introduce the Z-integral structure
for an Qg-representation of G = GL,,(F).

First we consider the representations with abstract coefficients, that is, let R be
a field with valuation and A be its ring of integers. Let (7, V') be an R-representation
of G. We define A[G]-lattice of V' as following:

Definition 3.1.15. We say that an R-representation (w,V') is admissible, if for
any open compact subgroup K of G, the K -invariant subspace VX of V has finite
dimension.

Definition 3.1.16. Let (m, V) be an admissible R-representation of G, an A[G]-
lattice of V is a sub-A-module L of V, who verifies the two equivalent conditions
below:

e For any open compact subgroup K of G, the K -invariant sub-module L¥ is an
A-lattice of VX.

o L contains an R-basis of V', such that for any open compact subgroup K, L
is contained in a finite type A-module.

We say that V' is A-integral if it contains an A|G]|-lattice.

Remark 3.1.17. When A is a principal ring. Let (w,V) be an R-representation
of G. A free sub-A-module of V', which generates V' and stable under the action
of G, has the property: for any open compact subgroup K, the A-module L¥ is a
free sub-A-module of VX which generates VE. Hence when (m,V) is admissible,
any free sub-A-module of V', which generates V' and stable under the action of G,
verifies the conditions in Deﬁnition and is an A|Gl-lattice of V in the sense

of Definition|3.1.160]
Now we come back to Q,-representations of G:

Definition 3.1.18. A Q-representation (m,V) of G is said to be (-integral if it
contains a free sub-Zyp-module L of V and L generates V, with L stable under the
action of G.

We will justify that when (7, V) is irreducible (hence admissible, see §II,2.8 in
[V1]), being f-integral as in Definition|3.1.18|is also being Z-integral as in Definition
3.1.16] According to §1.9.3(vii),111.4.13,4.14 in [V1], we conclude:

Proposition 3.1.19. Let (m,V) be an irreducible Q,-representation of G, and (-
integral as in Definition . Then there exits a Zg-lattice L, which is free over
Zy, stable under G and finite type as Zg|G]-module. In addition, the lattice L is
defined over Og, where £/Qy is a finite field extension, and Og¢ is the ring of integers
of €. This is to say, there exists an Og[Gl-lattice Lg of V, which is free over Og
and finite type as Og[G]-module, such that L = Lg ®0, Zy.
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Let (7, V), L a Zy-lattice as in Proposition and (g, Ve) be a E-representation
of G, such that Vg & Lg¢ ® Q. The ring of integers Og¢ of £ is principal. Hence
by Remark the lattice Lg is actually an Og[G]-lattice of Vg as in Definition
Furthermore, the subspace LX = eg L for any open compact subgroup K in
G, where ex denotes the idempotent in the Hecke algebra H@Z(G) according to K
(81,3.2 in [V1]), which also belongs to the Hecke algebra H¢(G). Hence

LK = exle @7y = L? ® Zy,
and by the same reason, we have
VK = VSK ® @K)

which means that we can deduce from the fact that L‘{f is an Og-lattice of VEK that
L¥ is a Zy-lattice of VX, Hence L is a Z,[G]-lattice as defined in Definition [3.1.18

Proposition 3.1.20 (Principe of Brauer-Nesbitt). Let (w, V') be an £-integral irre-
ducible Qq-representation of G, and L be a Zy[G]-lattice of V which is free over Z;
and finite type as Zy[G]-module, defined over a finite field extension of Q. Then
the quotient L/CL has finite length and its semi-simplification is independent of the
choice of L, where {Zy is the mazximal ideal of the ring of integers Z;.

Definition 3.1.21 (Reduction modulo ¢ and lift to Q). o Let (m, V), L be as
in Proposition|3.1.20. The reduction modulo ¢ of (7, V') is the semi-simplification
of the k-representation L @ F,.

o Let (1,W) be a k-representation of G, we say it can be lift to a Qg-representation
of G, if there is an (-integral Q,-representation of G, whose reduction modulo
¢ is equivalent with (7, W).

3.1.7 Derivatives of k-representations of GL, (F)

In this section, let k& be an algebraically closed field of characteristic I # p. Let
Gy, be the group of F-points of reductive groups GL,, defined over F', where F' is a
non-archimedean locally compact field whose residue field is of characteristic p. Let
P,, denote the mirabolic subgroup of G,,, which is the group consisting of matrices
whose last row is (0,...,0,1) when n > 1, and is the trivial group when n = 1.
When n > 1, the unipotent radical V,,_; of P, is the group consisting of matrices
upper-triangular by blocks, where the first block on the diagonal is the identity
matrix of size n — 1 x n — 1, and the second bloc on the diagonal is the identity
matrix of size 1 x 1. The group V,,_ is isomorphic to the additive group F™~ 1.
We fix ¢ a k-quasicharacter of F. When F’ is finite of characteristic p, we assume
that 1) is non-trivial. When F' is non-archimedean locally compact, we assume that
1) is trivial on the normalizer w7 of F' but is non-trivial on the integer ring O of F.
Let U, be the strictly upper-triangular subgroup of G,,. Any k-character 6 of U,
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can be written as (u;;) = ’([J(Z?;ll aiuii+1), where (u;j);; € Uy and (a;); € F™*7L.
Wa say 1 is non-degenerate, if a; # 0 for any ¢ € {1,...,n—1}. The non-degenerate
characters of U, are P,-conjugate.

Let 6 be a non-degenerate k-character of U,. For any k-character ¢ of U and
any k-representation (7w, V') of G, where V is the k-space of representation, we use
V (U, ) to denote the subrepresentation generated by g(v) — ¢ (g)v for any v € V,
and 7y to denote the quotient-representation on Vi = V/V(U,4), named as
(U, 4)-coinvariants of .

Let G, denote GL,,(F'). Define functors:

o U™ : Rep,(P,) — Rep(Gp_1). Let (m,V) € Repy(P,), then ¥~ maps (7, V)
to (an—hl? an—hl)‘

o Ut : Rep(Gpn_1) — Repg(Pyn). Let (m,V) € Repi(Gy_1), then U extends
(m, V) trivially to V,,_1;

e &~ : Rep,(P,) — Repy(Pn—1). Let (m,V) € Py, then &~ maps (7, V) to
(V1,60 VWo1.0)-

e & : Repy(Pu—1) — Repi(P,). We extend (m,V) to the unipotent radical
V-1 of P, as g(v) = 0(g)v for any g € V,,_1,v € V, and denote this extended
k-representation of P,_1V,_1 as mp, then &7 = indzﬁﬁ,lvn,m-

The definition of functors ®*,®~ is independent of the choice of , since any
two non-degenerate k-characters of U are G,,-conjugate. This is not true for general
reductive groups. For G’ = SL,,(F'), non-degenerate k-characters of U are not always
G’-conjugate, for which we indicate the non-degenerate k-character 6 we choose when
defining @, ®* as in Section

Proposition 3.1.22. o UT U~ & & are exact.
o U™ is the left adjoint of O, and ®~ is the left adjoint of ®T.

Definition 3.1.23. Let 7 be a k-representation of G,. For any k € {1,...,n}, the
k-th derivative 7%) is defined as the k-representation U~ (®)*Dx of G,y

When k = n, the n-th derivative is a k-representation of the trivial group, hence
can be seen as a k-vector space. Let (m,V) € Rep(Gy), we denote the k-vector
space of representation (™ as V(" then V(™) =~ Vue-

3.1.8 Whittaker models of irreducible k-representations of GL, (F)

Let G, U, and k be as in Section [3.1.7, and 6 be a non-degenerate k-character of
U,.
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Definition 3.1.24. Let 7 denote indgze, and m be an irreducible k-representation
of Gp,. We say that ™ has a Whittaker model if Homyg, (7,7) # 0. Hence m has a
Whittaker model if its n-th derivative 7™ # 0. Furthermore, we say that ™ has a
unique Whittaker model if the k-dimension of ©™ equals 1.

Theorem 3.1.25 (§111,5.10 [V1]). Every irreducible cuspidal k-representation m of
Gy, has a unique Whittaker model.

Proposition 3.1.26. Let 7 be an {-integral irreducible cuspidal Q,-representation
of Gn. Then it is l-irreducible, which means its reduction modulo £ is irreducible

Proof. A proof is given in §II1,1.9 of [V1]. O

3.2 Maximal cuspidal simple Q,-types of GL, (F)

In this section, F' denotes a non-archimedean local field, and G denotes the group
GL,,(F'). We introduce basic notations and properties of maximal cuspidal distin-
guished Q,-types ([BuKu]) and maximal cuspidal distinguished k-types of GL,(F)
(BAD).

3.2.1 Hereditary orders

Let oF denote the ring of integers of F', and pr denote the maximal ideal of 0. Let
X be a finite-dimensional F-vector space. An op-lattice in X is a finitely generated
op-module which contains a basis of X. If X is also an F-algebra which is associative
with 1, then an op-order in X is an op-lattice which is also a subring with the same
1 of X. Let V denote a n-dimensional F-vector space, and A denote Endp(V), or
equivalently M,,(F') the F-algebra of F-matrices of size n x n, and 2 an op-order of
A. We say 2 is hereditary, if 2 is an op-order of A and any 2-lattice in any finitely
generated A-module is 2A-projective.

As in §1.1 [BuKul, we can express hereditary op-orders in A in terms of op-
lattice chains in F™. An op-lattice chain in an F-vector space V is a non-empty set
L ={L;:i€Z} of op-lattices in V such that:

1. L; 2 L for all i € Z;
2. there exists an integer e € Z, such that prpL; = L;4, for any i € Z.

We could define
Endy} (L) ={r € A:2L; C Liym,i € Z}

for each m € Z. In particular EndgF is an hereditary og-order in A, denoted as
2A(L). Conversely, any hereditary op-order is of this form, for some lattice chain L.
In additional, if (L; : Lit1) = (L : Lj41), for all 4,j € Z, the hereditary op-order
20(L) is called principal.
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Let 2 be a hereditary op-order in A, and £ a lattice chain associated, which
means 2 = EndgF (£). We denote the Jacobson radical of 2 by

P = rad(2) = End, (L)
The ideal 8 is a fractional ideal and invertible. And we have
P" =End,,.(£),n € Z.

We have
;'BnL’L == Li+n7
pFQ’( = ‘Be>

and we set
U%(2) = U(A) =A%,

Uum@) =1+8",m>1.
Since G C A, we use K(2l) to denote the G-normaliser of £ as
KA)={xeG:zL; € L,i €L}
We define a “valuation” according to a fixed hereditary order 2A: Foranyz € A,z # 0
vy (r) = max{n € Z: x € P"},

and vy (0) = oo.

From now on we fix a continuous Q,-character ¥ r of the additive group F which
is null on the maximal ideal pr but non-null on the integer ring or of F. Let m,r
be integers such that 0 < [%] <7 < m. There is an isomorphism

(U (@) /Um @) = = /B,
where “A” denotes the Pontrjagin dual, and the isomorphism is defined by
b+ P "= ap =1, beP™, where

Up(1+ @) = Ypotry plbe), zeP T

We suppose that E/F is a field extension contained in A = Endp(V'), where V
is a n-dimensional F-vector space, then V can be viewed as an F-vector space, via

the inclusion £ — A. Now we consider hereditary orders relative to such subfield £
in A.

Proposition 3.2.1. Let A be a hereditary order in A, with A = EndgF(ﬁ), for
some op-lattice chain L ={L;} in V. Let E/F be some subfield of A. The following
conditions are equivalent:

o EX C R() (i.e. EX normalises 21);
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e cach L; is an og-lattice and there is an integer €' such that ppL; = Liie for
all i (i.e. L is an og-lattice chain in the E-vector space V).

We suppose that the equivalent conditions of Proposition hold. Define

B = Endg(V) = the A-centraliser of E,

B=2ANDB, Q=PNB.

We could write E as F[f] for some element § € A, and some times we also denote
B as Bg.

Definition 3.2.2. Let E/F be a field extension of F, and A a hereditary order
contained in A. Assume that E* C RK(A). Let f € A such that E = F[f], and
k € Z. Define

M = N(B,A) = {z € A: (B — 28) € P*}
The subset M (8,2) is a lattice in A, and
Me(B,2) C B+,

for all sufficiently large k as proved in §(1.4.4) [BuKu]. While k < vy (53), we always
have 20 = N (8,2A).

Definition 3.2.3. Suppose that E # F'. Define
ko = ]{Io(ﬁ,m) = max{k‘ e Z Ny ¢ B —{—‘B}
While E = F, we define ko(3,d) = —oo. Furthermore, we always have the inequality

vu(B) < ko(B,20),

and we say [ is minimal over F if vy (B) = ko(5,2).

3.2.2 Simple stratum and simple Q,-characters

Definition 3.2.4. Let 2 be a hereditary order, and n,r € Z, b, 3 € A.
o The 4-tuple [A,n,r,b] is called a stratum in A, if r <n and —n < vy(b).
o Let [A,n,r,b] be a stratum in A. It is simple if

1. the algebra E = F[f] is a field,
2. E* C R(Q),

3. w(B) = —n,

4. 1< —ko(B,2).
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Definition 3.2.5. Let [2(;,n;,r;,b;] be strata in A, i = 1,2, and P; = rad(2;), we
say they are equivalent if

b1 —l—m;rl =by +m5r2,
denoted as

[Qllanlarla bl] ~ [2[2,77,2, T2, 62]

We now fix a simple stratum [, n, 0, 5], and set r = —ko(5,2). We will introduce
simple characters, and first we need to define a pair of op-orders (not hereditary)
such that

H(B,A) C J(B,2A) C A

Definition 3.2.6. 1. Suppose that B is minimal over F', which means r = n or
o0. Put

H(B) = H(8,A) = B + Pl

2. Suppose that r < n, and let [A,n,r,v] be a simple stratum equivalent to
[, n,r, G]. Put

H(8,2) = H(B) = B + Hy) NP
Definition 3.2.7. 1. Suppose that B is minimal over F. Put

3(B) = Bs+ P!

n+1]
2 .

2. Suppose that 5 is not minimal over F, and let [A,n,r,7] be a simple stratum
equivalent to [A,n,r, 5]. Put

3(8) = Bs +3(y) npl =,

The case 2 of the two definitions above are well defined. Under the assumption
of case 2, the stratum [, n, r, 5] is pure but not simple, and we will define $(/3) and
J(B) by iteration relative to the defining sequence for [, n,r, 5] as below:

Lemma 3.2.8. For a given pure stratum [A,n,r, §]. There is a family [A,n,r;,v;],0 <
1 < s, of simple strata, such that

L4 [Qla TL,T’O,’Y()] ~ [Q[,TL,T, /8]7

e r=rg<r;<..<rs<n;

o riv1 = —ko(vi, ), and [A,n, 741, Viv1] @s equivalent to [A,n,1i11,7it1],0 <
1<s—1;
o ko(vs,2) = —n or —oo;

Let B; be the A-centraliser of v; and s; be a tame corestriction on A relative
to F[v]/F. The derived stratum [B;,ri,ri — 1, 8;(vi—1 — V)] is equivalent ot a
simple stratum for 1 <i <s.
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We call such family the defining sequence for [, n,r, 5].

In the last condition of Lemma [3.2.8], a tame corestriction on A relative to the
field extension (F[5] =)E/F, is a (Bg, Bg)-bimodule homomorphism s : A — Bg
such that s(A) = 2AN Bg for any hereditary op-order 2 in A which is normalised by
B,

Definition 3.2.9. We now define two families of open compact subgroups in G

according to H(B,A) and J(B,2A) by

{Hmw,ao = H(8.2A) N U™(A)
J™(B,2) = J(B,2A) N U™(A)

for m > 0. In particular, we always use H(B,2) and J(3,2) instead of H°(S,2A)
and JO(3,2).

Let [, n,0, 3] be a simple stratum, and r = —ko(5, ). We now define the set
of simple characters C(2(, m, 3) for m > 0.

Definition 3.2.10. Suppose that 8 is minimal over F. For 0 < m < n —1, let
(g, (2A,m, B) denote the set of Qy-characters § of H™1(B) such that

1. 9|Hm+1(5)ﬂU[%H1(Q() = 1%;

2. 9|Hm+1(ﬂ)mB; factors through detp, : BE — F[p]*.
Definition 3.2.11. Suppose that r = —ko(B,20),7 < n. We take a simple stratum
[, n, 7] equivalent to [A,n,r, (] (as in .

o For0<m<r—1, let C@e (2, m, B) be the set of Qp-characters 6 of H™ ()
such that
1. 9|Hm+1(ﬂ)mB; factors through detp, Bg — F[B])*;
2. 0 is normalised by R(Bg);
3. if m" = max{m, 5]}, the restriction Ol i 1(g) is of the form Byipe, for
some Oy € C@Z(Ql, m’,7y), where ¢ = — .

e Form >r, we define C@e (A,m,B) = C’@Z (A, m, 7).

In (3) of Definition we have the identity of two groups H™*1(5) =
H™+1(~) as in the last paragraph of §3.1.9 [BuKul. As defined in Definition
the element ¢ = 5 — v belongs to P" and 1. is a character of U[%]H/UTH, hence is
trivial on H"+1(B). It therefore defines a character of H™ *1(8)/H™1(3).
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3.2.3 Simple Q,-types of GL,(F)

Now we introduce simple Q,-types. Let [2, 7,0, 3] be a simple stratum of A, E the
field F[8], B the A-centraliser of E, H'(3,2) and J!(3,2l) as defined in Definition
9.2.9)

Proposition 3.2.12. Let [, n,0, 5] be a simple stratum in A, and 6 € C(2,0,[).
There exists a unique irreducible Q,-representation 1n(60) of the group J*(3,2) such
that n(0)|H(3,2) contains 6 up to isomorphism. Moreover, n(0)|H(3,2) is a
multiple of 0, and

dim(n(60)) = (J1(8,20) : H'(8,2))2.

The G-intertwining of n(0) is J*(3,A)B*J1(3,2).

Definition 3.2.13. A (-extension of n (as defined in Proposition is a Q-
representation r of J(B,2) such that

1. K|y =n, and
2. k is intertwined by the whole of B*,

where B denotes the A-centraliser of [3.

Definition 3.2.14. A simple Q,-type in G is one of the following (1) or (2):
1. An irreducible Qp-representation A = k ® o of J = J(B,A) where:

(a) A is a principal op-order in A and [A,n,0, 5] is a simple stratum;

(b) for some 6 € Cc(2,0,8), k is a B-estension of the unique irreducible Q-
representation 1 of J1(B,2) which contains 6 as in Proposition|3.2.1%;

(c) if we write E = F[3],8 = AN B, where B =Endg (V). So that
J(8,20/71(8, %) = U(B)/ U (B) = GLy (kp)",

for certain integers e, f, and o is the inflation of a Q,-representation
00 ® ... ® 0 of the group J(B,A)/JY(B,2), where oy is an irreducible
cuspidal Qp-representation of GL¢(kg).

2. an irreducible Qy-representation o of U(A), where

(a) A is a principal op-order in A;

(b) if we write UR)/U*(A) = GLy(kg)e, for certain integers e, f, then o
is the inflation of a @g—representation of 00 ® ... ® g, where oy is an
irreducible cuspidal Qy-representation of GLf(kp).
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3.2.4 Intertwining and extension by a central character

Definition 3.2.15. Let K; be open compact subgroups of G, and m; be irreducible
Qy-representations of K;, fori = 1,2, we say that g € G intertwines m with mo, if
Homg 1, (1, (15 9(72)) is non-trivial.

Theorem 3.2.16. Let (Ji, A1), (J2, A2) be simple Q,-types in G, attached to prin-
cipal op-orders Ay, A, respectively. Suppose that Ay =2 As as op-orders, and that
the Qy-representations A1, A intertwine in G. Then there exists x € G such that
Jo = a7 iz and g is equivalent to the xz-conjugation (A1) of \1.

Fixing a simple type (J,)), we have J N F* = o and the restriction )\|0; is a
multiple of a Q-quasicharacter wy of 0. Since F = oy X Z, we can always extend
wy as a Qg-quasicharacter of FX. Let w be some Q-quasicharacter of F* such that
w\O; = wy. We can extend \ to a Q-representation A, of F*.J by

Mo(2)) =w(2)A(j),j € J,z € F*.

This is well defined since F'* is the center of G. We now show properties of extension
of A to E*J.

Proposition 3.2.17. Let A be an irreducible Q,-representation of E*.J such that
A|j contains A. Then

1. there is a unique Qy-quasicharacter w of F* such that w\oé =wy and A|px ;=

A
2. given A, as above, there exists e(E|F') distinct extensions A of A\, to E*J;

3. given w' € AW(%) (see Definition 5.5.9 in [BuKu/) and an extension A of A,
to E*J, there is a unique extension N of A\, such that w' intertwines A with
A

In particular, if B is a mazximal order in B, distinct extensions of A, to E*J do
not intertwine in G.

Proposition 3.2.18. Let (J,\) be a simple Q,-type in G, and A be an extension of
A to E*.J as in Proposition |3.2.17. Assume that the og-order B attached to (J, \)
is mazimal. Then the intertwining set Ig(A) = E*J.

3.2.5 Maximal simple cuspidal Q,-types of GL,(F)

Theorem 3.2.19. Let (J, \) be a simple type in G, and suppose that there exists an
irreducible supercuspidal Q,-representation 7 of G such that ©|; contains X\. Then
the og-order B attached to (J,\) is maximal.
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Theorem 3.2.20. Suppose that the og-order B attached to (J, \) is maximal. Then
any irreducible Q,-representation ™ of G containing \ is supercuspidal. Moreover,

for any such Qg-representation m, there is a uniquely determined Q,-representation
A of EXJ such that A|; = X and

~ : G
T 1ndEXJA.

The two theorems above and Theorem [3.2.16| imply that there is a bijection
between the set of irreducible cuspidal Q,-representations of G and the set of G-
conjugacy class of simple types (J, A), such that the og-order B attached is maximal.
Hence we define maximal cuspidal simple Q,-types of G as below.

Definition 3.2.21. Let (J, \) be a simple Q,-type of G, we call it mazimal cuspidal
simple, if the og-order B attached to (J, \) is mazimal.

3.3 Maximal simple cuspidal k-types of GL,(F)

In this section, we assume that G denotes GL,,(F'). Let k be an algebraically closed
field of characteristic [ # p. In §III,4 of [V1], Vignéras gave a construction of
maximal simple cuspidal k-types of G,, and a relation between maximal simple
cuspidal k-types and maximal simple cuspidal k-types of G through the method of
reduction modulo ¢ (Definition [3.1.21)).

3.3.1 Simple k-types of GL,(F)

As in §IIL,4 of [V1], the construction of hereditary orders (§3.2.1)), simple strata,

simple Q,-characters ED and simple Q-types ( can be kept and gen-
eralised to the case where the coefficient field is k. In particular, when we fix a
simple stratum [2,n, 0, 5], the op-orders H(5,2), J(5,2) are independent with the
coefficient fields k or Q,. And let Cy(A, m, 3) be the set of simple k-characters on
H™1(3,2) for each m > 0.

Definition 3.3.1. A simple k-type in G is one of the following two cases 1 or 2:
1. An irreducible k-representation A = k @ o of J = J(5,) where:

(a) A is a principal op-order in A and [, n,0, 3] is a simple stratum;

(b) for some 0 € Cy(A,0,5), k is a [-extension of the unique irreducible
k-representation n of J*(B, ) which contains 6 as in Proposition|3.2.1%;

(c) if we write E = F[3],8 = AN B, where B = Endg (V). So that
J(8,24)/J1(8,2) = U(B)/ U'(B) = GL; (kp)*,

for certain integers e, f, and o is the inflation of a k-representation oo ®
...® 0o, where oq is an irreducible cuspidal k-representation of GLy(kg).
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2. an irreducible k-representation o of U(2A), where

(a) A is a principal op-order in A;

(b) if we write URA)/ U (A) = GLs(kp), for certain integers e, f, then o is
the inflation of a k-representation of 09®...Q0q, where og is an irreducible
cuspidal k-representation of GL¢(kp).

When k = Fy, we consider the operator of reduction modulo ¢ from simple Q-
types to simple k-types of G. Otherwise, let W (k) denote the ring of Witt vectors, K
denote the fractional field Frac(W (k)), and K an algebraic closure of K. We consider
the operator of reduction modulo ¢ from simple K types to k-simple types of G.

Proposition 3.3.2 (§III,4.25 in [V1]). The reduction modulo ¢ of an {-integral
simple Q,-type (J, )\@2) of G is a simple k-type (J, \¢) of G; conversely, each simple
k-type (J, A¢) of G can be lifted to a simple Q,-type (J, )\@) of G, which means that
(J, )\@2) is L-integral, and its reduction modulo ¢ is equivalent with (J, \g).

Let (J, A¢) be a simple k-type of G, and [, n, 0, 3] be a simple stratum, F = F[f]
be the field extension contained in A attached to (J, A¢). The representation \; can
always be extended to the group E*.J as explained in §I1I,4.27.1 of [V1]. Let Ay be
one of such extension.

Proposition 3.3.3 (§111,4.29 in [V1]). Let (J, )‘@4) be a simple Q,-type of G, and
A@(Z be an extension of )\@é to E*J, then its reduction modulo £ is an extension of a
simple k-type (J, \¢) of G. Conversely, let (J, \y) be a simple k-type of G, and Ay be
an extension of \¢ to EXJ, then Ay can be lift to an extension of a simple Q,-type

of G.

3.3.2 Maximal simple cuspidal k-types of GL,(F)

In this section, let G denote GL,(F), and k = F,. We will give a construction of
irreducible cuspidal k-representations of G through maximal simple cuspidal k-types,
and give a relation between irreducible cuspidal k-representations and irreducible
cuspidal Q-representations.

Definition 3.3.4. Let (J, \y) be a simple k-type of G, we say it is maximal simple
cuspidal if the og-order B attached to (J, \¢) is mazimal.

Theorem 3.3.5 (§II1,1.1d),5.2,5.3,5.8 in [V1]). Let (J,\¢) be a mazimal simple
cuspidal k-type of G and Ay be an extension of A to E*J. The induction

ind%X FoY)

1s irreducible and cuspidal.

Conversely, let  be an irreducible cuspidal k-representation of G. There exists
a mazimal simple cuspidal k-type (J, A\¢) and an extension Ay of Ay to E*J, such
that m = ind%XJAg.
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Furthermore, for each irreducible cuspidal k-representation , in which the maz-
imal simple cuspidal k-types contained are unique up to G-conjugation.

Applying Proposition [3.1.26] [3.3.2] and [3.3.3] we conclude that:

Theorem 3.3.6. Fach irreducible cuspidal k-representation can be lifted to an ir-
reducible cuspidal Q,-representation of G.

3.4 Supercuspidal support of irreducible k-representations
of GL,(F)

Let G, denote GL,(F'), where F is a finite field of characteristic p # [ or a non-
archimedean locally compact field whose residue field is of characteristic p # .
Let k£ be an algebraically closed field of characteristic [. Vignéras gave a proof of
uniqueness of supercuspidal support of irreducible k-representations of G in §V4 in

V2]

Theorem 3.4.1 (Uniqueness of supercuspidal support). Let p1, ..., pr, Py, ..., p; be
irreducible supercuspidal k-representations of Gp,, ..., Gn,, Gmys...Gm,, where n =
ny+ ... +n, =mq + ... + my. Then the Jordan-Holder seuquences of

~Gn1+-~-+nr

UGy XX Gy, P1 Q- pr

and

Gm +otm / /
1 t
UGy XX Gy P1 O 7 D Py

are equal, if and only if r = t,m; = n;, and the multisets {p1,...pr} and {p},...,pl}
are equal. Otherwise, they are disjoint.

In [V2], Vignéras also defined the supercuspidal support of k-simple types of Gy,
and give a proof of uniqueness of supercuspidal support of simple k-types of G in
§IV, 2.3 of [V2].

3.5 Bernstein center

Let k denote an algebraically closed field of strictly positive characteristic I # p,
and W (k) be its ring of Witt vectors. Let K be the fractional field of W (k), and K
denote an algebraic closure of K.

3.5.1 Bernstein decomposition of Rep,(GL,(F)) and Repg(GL,(F))

Let G denote GL,,(F'), and M denote a Levi subgroup of G. Let 7 be an irreducible
cuspidal k-representation of G, and (J,\ = k ® o) be the maximal simple cuspidal
k-type associated. Then k can be lift to a W (k)[G]-module, noted as 5. Let P,
denote the projective W (k)-cover of o in the category of RepW(k)(J/Jl). Define
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Py as ind(}(/% ® Py). Let § = 61 ® ...0,, be an irreducible cuspidal k-representation
of M, and (J;, ;) the maximal simple cuspidal k-types of J;. Then define Py s
as i Py A ® ... ® Py a,- Let 8 be the dual of §, define Iy as Piusvy- Now
we fix a supercuspidal k-pair (M, 7) in G. For any simple W (k)[G]-module, whose
mod ¢ supercuspidal support is defined by (M, ), its mod ¢ cuspidal support falls
into finitely many possible inertially equivalence classes (Definition defined by
cuspidal pairs (M, ;) of G. We define Iy A as @51y

5575)"

Definition 3.5.1. Let M{,Ms be two Levi subgroups of G, and mi,mo be two k-
representations of My,My respectively. We say that (M1, m1) and (Mg, ) belong to
one inertially equivalence class if and only if there exists an unramified k-character
x of M1 such that My is G conjugate to Mo, and m ® x is G conjugate to ma.

Theorem 3.5.2 (Theorem 11.8 in [Helml|). Let [M, 7] be an inertially equivalence
class of a supercuspidal pair (M, ) (see Definition . The full subcategory
Repyw 1) (G)m,x) of Repy iy (G) consisting of smooth W (k)|G]-modules IT such that
every simple subquotient of I has mod ¢ inertial supercuspidal support given by
(M, 7) is a block of Repyy 1) (G). Moreover, every element of Repy 1y (G)pm,x) has a
resolution by direct sums of copies of Iy -

3.5.2 Bernstein center of Rep,(GL,(F)) and Repg(GL,(F))

In [Helm|, Helm gave a relation between the Bernstein centre of Repyy () (GLn(F))
and the Bernstein centre of Repe(GLy,(F)).

Definition 3.5.3. Let A be an abelian category. The centre of A is the endomor-
phisms of the identity functor Id : A — A.

Now we come back to the category Repyy ;) (G), which is equivalent to the di-
rect product of full subcategories Repyy () (G)pr,z), Where [M, 7] runs through the
inertially equivalence classes of supercuspidal k-pairs of G, as in Theorem [3.5.2}

Proposition 3.5.4 (Proposition 12.1 in [Helm|). Let Ay, 5 be the centre of the
category RepW(k)(G)[LJr]. There is a natural isomorphism:

Afm © K= AJ\Z/,frv
(M, 7)
where (M,ﬁ') runs over inertial equivalence classes of pairs in which M is a Levi
subgroup of G and 7 is a cuspidal representation of M over K whose mod ¢ inertial
supercuspidal support equals (L, 7). This isomorphism is uniquely characterised by

the property that for any I in Repg(G), and any x in AlLx); the action of x on 11
coincides with that of its image in H(M 7) Ay ~-

In the proposition above, Ay - denotes the centre of the subcategory

Repz(GLn (F)) M, 7
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of Repg(GLy(F)), defined by the inertially equivalence class of the cuspidal K-pair
(M, 7).



Chapter 4

k-representations of finite
groups SL,(F)

4.1 Representation theory of finite groups

Let G’ and G be the connected reductive group defined over F, with type SL,, and
type GL,, respectively, where ¢ is a power of a prime number p. Note G’ = G/(Fy)
and G = G(F,). We have two main purposes in this section:

- Prove Theorem [4.1.111

- For any irreducible cuspidal k-representation of G/, construct its W (k)-projective
cover.

Notice that the center of G’ is disconnected but the center of G is connected, so
we want to follow the method of [DeLu] (page 132), which is also applied in [Bon|:
consider the regular inclusion i : G’ — G, then we want to use functor Resg/ to
induce properties from G-representations to G’-representations.

4.1.1 Preliminary

Regular inclusion ¢

We summarize the context we will need in section 2 of [Bon]:

The canonical inclusion ¢ commutes with F' and maps F-stable maximal torus
to F-stable maximal torus. If we fix one F-stable maximal torus T of G and note
T’ = i~1(T), then i induces a bijection between the root systems of G and G’ relative
to T and T’. Furthermore, i gives a bijection between standard F-stable parabolic
subgroups of G and G’ with inverse _ N G’, which respects subsets of simple roots
contained by parabolic subgroups. Besides, restrict ¢ to any F-stable Levi subgroup
L of any F-stable parabolic subgroup of G, it is the canonical inclusion from L’ to
L.

39
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From now on, we fix a F-stable maximal torus Ty of G, whence fix one of G’
as well, noted as T{. For any F-stable standard Levi subgroup L, we always use L/
to denote the F-stable Levi subgroup of G’ under i, and use L and L’ to denote the
corresponding split Levi subgroups L and L'F respectively.

Now we consider the dual groups. Let (G*, T§, F'*) and (G™, T”*, F*) be triples
dual to (G, Ty, F) and (G, T/, F) respectively. We can induce from i a surjective
morphism i* : G* — G, which commutes with F* and maps T} to T;)*. For any
F-stable standard parabolic subgroup P and its F-stable Levi soubgroup L, let us
use P’ and L’ to denote the F-stable standard parabolic subgroups P NG’ and Levi
subgroups L N G’, then we have:

Z*(L*) — L/*,
whence, if we note L+ =1 and L¥ = L*, then:
i*(L*) = L™

Lusztig series and /¢-blocks

From now on, if we consider a semisimple element § € L* for any split Levi subgroup
L* of G*, we always use s to denote i*(5) and [5] (resp. [s]) to denote its L*(resp.
L*)-conjugacy class. Notice that the order of § is divisible by the order of s, whence
s is f-regular when § is f-regular, where ¢ denotes a prime number different from p.

Let G(F,) be any finite group of Lie type, where G is a connected reductive
group defined over F,. For any irreducible representation x of G(F,), let e, denote
the central idempotent of K(G(F,)) associated to x (see definition in the beginning
of section 2 of [BrMi]). Fixing some semisimple element s € G*(F,), where G*
denotes the dual group of G, then £(G(Fy), (s)) denotes the Lusztig serie of G(Fy)
corresponding to the G*(F,)-conjugacy class [s] of s. If s is l-regular (i.e. its order
is prime to p), define

E(GF),s)= |  EGE), (ts)).

te(Cax(s))e

Here (Cg+(s)f")¢ denotes the group consisting with all f-elements of Cg=(s)", so

ts is still semisimple. Now define:
bs = Z e
XGSZ(G(FQ)%S)

which obviously belongs to K(G(Fy)).

Theorem 4.1.1 (Broué, Michel). Let s € G*(F,) be any semisimple {-reqular ele-
ment, and L' be the set of prime numbers without £. Define Zy = Z[1/7) ez, where
Z denotes the ring of algebraic integers, then bs € Zo( G(F,)).
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Remark 4.1.2. The theorem above tells us that £( G(Fy), s) is an union of ¢-blocks.

Let K be a finite field extension of I which is sufficiently large for G, with
valuation ring O, which contains W (k) as a subring. We have K is complete, implying
K is complete. Notice that K is also sufficiently large for any split Levi subgroup
L of G, which means all the irreducible K-representations of L is defined over K,
whence there is a natural bijection:

Irrg (L) +— Irrg (L),

so we define Lusztig series for Irrg (L) through this bijection. Since K is also suffi-
ciently large for any split Levi L’ of G’, we have the same bijection for Irrx (L) and

bs € O[L].

Proposition 4.1.3. For any split Levi subgroup L (resp. 1') and any semisimple
C-reqular element § € L* (resp. s € L'*), we have: bs € O[L] (resp. bs € O[L/]).

Proof. We deduce from the analysis above and the definition that e, € K(L). Com-
bining this with theorem we conclude that b; € O[L]. The same for by’s. [

Gelfand-Graev lattices and its projective direct summands

For any split Levi subgroup L” of G/, fix one rational maximal torus T’ and let B,
be a standard split Borel subgroup with unipotent radical Uj,, then Oy(L’) denotes
the set of non-degenerated characters of Up,. Consider any p € Oy(L'), of which the
representation space is 1-dimensional, so it obviously has an O[U},]-lattice , noted as
Oy. Define Yy, , = IndY, ,O#, the Gelfand-Graev lattice associated to u. In fact,
we have that Yy, , is deﬁned up to the T'-conjugacy class of u. Take any f-regular
semisimple element s € L™, define:

Y s = bs - Y1y

Meanwhile, from definition we have directly that Z[ bs = 1, where the sum runs

5]
over all the (-regular semisimple L*-conjugacy class [s]. So:

Y = @YL/7M78'
[s]

Since O, is projective (free and rank 1) and induction respect projectivity, we see
that Yy, , is a projective O[L/]-module. Proposition implies that Yy, , s are
O[L/]-modules and direct components of projective O[L’]-module Yy, ,, so we con-
clude that Yy, , s are projective O[L’]-modules.

Let G be the group of F, points of an algebraic group defined over F,, and
(K, 0, k) be a splitting £-modular system. We define

En(G) = U £(G, 2)

z semi-simple, {—regular
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Definition 4.1.4 (Gruber, Hiss). Let G be the group of Fy points of an algebraic
group defined over Fq, and (KC,0, k) be a splitting {-modular system. LetY be an
O[G]-lattice with ordinary character . Write 1) = p+1y, such that all constituents
of Y and non of 1y belong to Ex(G). Then there exists a unique pure sublattice
V <Y, such that Y/V is an O[G]-lattice whose character is equal to vy. The
quotient YV is called the {-reqular quotient of Y and noted by my(Y').

Corollary 4.1.5. Let L' be a split Levi subgroup of G', and s be an (-regqular
semisimple element in L'*. For any pu € Oy(L'), the module Y1/ s 18 indecom-
posable.

Proof. Since Y1, s is a projective O[L/]-module, the section §4.1 of [GrHi] or Lemma
5.11(Hiss) in [Geck] tells us that it is indecomposable if and only if its f-regular
quotient 7y (Y1 ,,s) (see §3.3 in [GrHil) is indecomposable. Inspired by section 5.13.
of [Geck], we consider K ® mp (Y1, ), which is the irreducible sub-representation
of K® Yy, , lying in Lusztig serie £(L, (s)). The module 7y (Y1, ) is torsion-free,
so we deduce that mp (Y1, , ) is indecomposable. d

Proposition 4.1.6. Let 1" be split Levi subgroup of G', and p € Oy(L'). All the
projective indecomposable direct summands Y1, ,, s of Gelfand-Graev lattice Yy, ,, are
defined over W (k), which means there exist projective W (k)[L']-modules Y1, . such
that Vi s @ O = Yy 5. In particular, Vi, s are indecomposable.

Proof. Notice that U}, are p-groups, whence p is defined over K, and there is a
W (k)[Uf,]-module O, such that O, = Ou®w(k)[U/L,]O. Define a projective W (k)[L/]-
module Vi, = IndL/,L/ (O,). Since k is algebraically closed, then Y’Lg u» the reduction
modulo ¢ of Yy, ,, coincides with )y, ,,, the reduction modulo £ of )i, ,,. Proposition
42 (b) and Lemma 21 (b) in [Ser] imply that the decomposition of Yy, , gives an
decomposition:
YL/# = ZYL/#’S'
[s]

By the same reason, this gives an decomposition by indecomposable projective mod-

ules:

yL/,,u = yL’,,u,s
such that the reduction modulo ¢ of )i/ , s equals to YL/’H’ s- In particular, we can
check directly through Proposition 42 (b) of [Ser| that Vi, s ® O = Y/ . O

Remark 4.1.7. Since U}, is also the unipotent radical of By, where By, is the
inverse image of the reqular inclusion i of By,. We can repeat the proof for Y1, 5 and
see that they are also defined over W (k) in the same manner.

For split Levi subgroup L of G, we know from [DiMi] that if we fix one rational
maximal torus and define Oy(L), this set of non-degenerate characters consists with
only one orbit under conjugation of the fixed torus. So the Gelfand-Graev lattice
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is unique, and we note it as Yy,. All the analysis above still work for Yy, and take
some (-regular semisimple element 5 € L*. In particular, we use Y1, 5 to denote the
indecomposable projective direct summand bz - Y1,.

Corollary 4.1.8. Let 5 € L* be a semisimple £-regular element, then:
Resl (bs - Y1) < bs - Resl/ Y1,
Proof. We know directly from definition that, for any semisimple ¢-regular s’ € G’™*:
by - Resk, (bs - Y1) < by - ResF, Y1,

Meanwhile by -Rest, (bs-Y1,) is a projective O[G/]-module, so it is free when considered
as O-module. And Proposition 11.7 in [Bon] told us that by - Resl (bs - Y1) @ K = 0
if [s'] # [s] with s = i*(5), which means by - Rest, (bs - Y1) = 0. Combine this with

@ bsl . Reslﬁ,(bg : YL) = ResIﬂ,(bg . YL),
[s']

we obtain the result. O

Proposition 4.1.9. For any split Levi subgroup L of G, let L’ denote the split Levi
subgroup LN G’ of G/, and Z(L), Z(L') denote the center of L and L respectively,
then we have the equation:

Resp Yy = |Z(L) : Z(L))| &  Yup
[u]€0y (1)

where [p] denote the T'-orbit of p.

Proof. Let B be a split Borel subgroup of L and B’ = BN L’ the corresponding split
Borel of I/, and U’ denotes the unipotent radical of B’, observing that U’ is also the
unipotent radical of B. Fixing one non-degenerate character p of U’, let O, be its
O[U’J-lattice. By the transitivity of induction, we have:

Yy, = Ind} o Ind¥,0,, = Ind¥, Yy, ..
Since [T : T'] = [L : L], by using Mackey formula we have:

Resl Yy, = @ ad(oi) (Y1)
o; €[T:T)

Furthermore, ad(ai)(lnd{j//OM) = IndL//(ad(ai)(O“)). Notice that after fixing one
character of U’, all its O[U’]-lattices are equivalent, so ad(;)(Yv/u) = Y1/ ad(as)(u)-
Whence, let [p] denote the T'-orbit of 1 in Oy(L'), we have

Stabr([u]) C Stabr(Yrs ) C Stabr(Yr , ® K).
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On the other hand, the proof of lemma 2.3 a) in [DiF]] tells that
Stabr (Y1, ® K) C Stabr([u]).

So the inclusion above is in fact a bijection. Combine this with the statement of
lemma 2.3 a) in [DiFl], we finish our proof. O

Lemma 4.1.10. Fiz a semisimple {-reqular s € G™, define Sy to be the set of

semisimple (-regular G*-conjugacy classes [3] C G* such that i*[3] = [s]. Then
P Rest,Yis=1Z@L): Z(L) B Yuius
BENS n€O0y (L)

Proof. By definition, Y1, 5 = bz - Y. Multiplying b, on both sides of the equa-
tion in Proposition and considering Corollary we conclude that for any
{-regular semisimple G’*-conjugacy class [s], 69[5]6 S ResIﬂ/YL,§ is a projective di-
rect summand of |Z(L) : Z(L')[ D ,cop @) Yi/ s Meanwhile, let S = {Sig[ s €
G *, s semisimlpe ¢-regular}, then Proposition can be written as:

D D Reskvis=120):20L)ED D Yiu

S [3l€Syy [s] neOy(L)

So they equal to each other. O

4.1.2 Uniqueness of supercuspidal support

In this part, we will proof the main theorem [£.1.11] for this section. First we recall
the notions of cuspidal, supercuspidal and supercuspidal support.

We always use ¢ and 7 to denote the functors of parabolic induction and parabolic
restriction. Let m be an irreducible k-representation of a finite group of Lie type or
a p-adic group G. We say 7 is cuspidal, if for any proper Levi subgroup L of G,
the representation rf 7w is 0. Let 7 be any irreducible k-representation of L, if 7 is
not isomorphic to any irreducible subquotient of iET for any pair (L, 7), we say 7
is supercuspidal. It is clear that a supercuspidal representation is cuspidal. We say
(L, 7) is a (super)cuspidal pair, if 7 is a (super)cuspidal k-representation of L

The cuspidal (resp. supercuspidal) support of 7 consists of the cuspidal (resp.
supercuspidal) pairs (L, 7), such that 7 is an irreducible subrepresentation (resp.
subquotient) of itr.

Theorem 4.1.11. Let L be any standard split Levi subgroup of G’ and v be any
cuspidal k-representation of L. Then the supercuspidal support of v is unique up to
L/-conjugation.

Let P, denote the O[L/]-projective cover of v. To prove the theorem above, we
will follow the strategy below:
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1. For any standard Levi subgroup M’ of L/, prove that TII;/II,P,, is either equal to
0 or indecomposable.

2. Prove that there is only one unique standard split Levi subgroup M’ of L/,
such that rlI\J/I/,Pl, is cuspidal.

Let (M’,0) be a supercuspidal k-pair of L'. From the proof of Proposition 3.2 of
[Hiss], we know that (M’,6) belongs to the supercuspidal support of (L, v), if and
only if Hom(rk,P,,0) # 0. Combining this fact with (1), we find that L, P, is
the projective cover of #. Proposition 2.3 of [Hiss|] states that an irreducible k-
representation of M’ is supercuspidal if and only if its projective cover is cuspidal,
whence Theorem is equivalent to (2).

Remark 4.1.12. - If we consider standard Levi subgroups L of G, the analysis above
is true as well.

- Proposition 3.2 of [Hiss] concerns k[L']-projective cover, but from Proposition
42 of [Serl] we know that there is a surjective morphism of k[L'|-modules from the
W (k)[L/]-projective cover to the k[L']-projective cover, and hence obtain the same
result for W (k)[L']-projective cover.

Proposition 4.1.13. Let v be an irreducible cuspidal k-representation of L'. There
exists a simple kL-module U, and a surjective morphism Res%ﬂ — v. Furthermore,
let Y1, 5 be the projective cover of v, where 5 € G* is an {-reqular semisimple element,
then there exists p € Oy (L') such that the composed morphism:

Yi/ps = ResIﬂ,Yng —» Resﬁlﬁ —» v (4.1)
is surjective, which means Y1, , s is the O[L']-projective cover of v.

Proof. By the property of Mackey formula, we can find such v.

For the second part of this proposition, since Res respect projectivity, we know
the fact that Reslﬂ,YL’ 5 is a projective direct summand of Reslﬂ,YL, and contained in
|Z(L) : Z(1L")] ®MEOU/(L’) Y1/ s as lemma proved, whence all the projective
indecomposable direct summands belong to {YL’,u,s}OU/(L’)- Then there must exists
p € O (L') such that the composed morphism: Yy, , s — v is non trivial hence a
surjection. O

Remark 4.1.14. We induce from Proposition that Vi s is the W (k)[L']-
projective cover of v, noted as P,,.

Let M’ be any standard split Levi subgroup of L. It is clear that u |y belongs
to Oy (M’). Now consider the intersection [s] N M'*. As in the paragraph above
Proposition 5.10 of [Helm], [s] N M* consists of one M*-conjugacy class or is empty,

so does [s] N M’*. For the first case, notation Yy jvr+ is well defined, and for

nu'\LM/ 7[5
the second case, we define it to be 0. From now on, we will always use Yy , s to

simplify Ynr iy, [sjovrs- We use the same manner to define Yy .



46 CHAPTER 4. K-REPRESENTATIONS OF FINITE GROUPS SLy(F)

Proposition 4.1.15. Let v be an irreducible cuspidal kL -representation, and v,
Y1/ s, YL be as in Proposition 4.1.13| Then Th'YL’,u,s is equal to O or indecom-
posable and isomorphic to Yy s as O[M']-module.

Proof. In the proof of lemma we know that Y, is a direct summand
of Reslﬂ, (Yrs). Observing that the unipotent radical of M’ is also the unipo-
tent radical of M, we deduce directly from the definition that ri;, (Rest (Y 5)) =
Resyy (rk (Y 5)), and Proposition 5.10 in [Helm] states that ri;(YLs) = Y.
The statements above, combining with the fact that parabolic restriction is exact
and respects projectivity, derive that rlI\J/[/,YL/%S is a projective direct summand of
Res), Y s As what we have mentioned, [§] N M* is empty or consists of one M*-
conjugacy class, so does [s] NM"*. In the first case Yy 5 = 0, whence r]%A/YL’,u,s =0,
so the result.
Now considering the second case: let §& € M* and [§'] denote the M*-conjugacy
Ul
U,
denote the unipotent radical of L” and M’ respectively, which is non-degenerate by

class equals to [§| "M*. Let p/ denote the character Res;)" 1, where Uy, and of U},

definition. Corollary 15.15 in [Bon]| gives an equation:
TII\J/I/’YLCM,S QK= YM/#/’S/ ® K.

which means the f-regular quotient of TII\“/II,YL/,M,S is indecomposable, and by using
the criterion of |Geckl lemma 5.11 | we conclude that rII\“/[I,YL/%s is indecomposable.
Note that Corollary 15.11 in [Bon] tells that the sub-representation of Res)}, Yy : ©K
corresponding to [s'] is without multiplicity, and the equation above says that the
irreducible sub-representations corresponding to [s'] of TII\J/E,YLC 1, s®K and Yo, +QK
coincide, whence these two projective direct summands of ResM,YMg coincide each
other.

O

We have finished the first step to prove Theorem[4.1.11] Remark[4.1.12|tells that
the statement of step 2 is true for L, whence there only left the proposition below
to finish our proof:

Proposition 4.1.16. Let Y1/, s, Y5, V be as in Proposition then for any
standard split Levi M' of L', we have rﬁ/YL/,“,s = Y s 95 cuspidal if and only if
T%th = Ywm,5 @s cuspidal.

Proof. Since I — L is a bijection preserving partial order between standard Levi
subgroups of G and G/, the statement in the proposition is equivalent to say that
for any split Levi M’ of L/,

T‘II\'/[’/YL/7M7S =0 <— TI%/IYL,§ =0.
The proof of Proposition |4.1.15| tells us

Ly ResM,Y
™M L'7M75<_> esn Y M, 5,
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whence ”=" is clear.

Now consider the other direction. Notice that TII\“/[I,YL/,M,S is an O[M']-lattice, and
definition 5.9 in [Geck] tells us that rII\“/II,YL/, us = 0if and only if its /-regular quotient
my (TII\J/[/,YL/’#,S) = 0. By definition (7 (TII\J/II,YLQMS)) ®K is the sum of all simple K[M']-
submodules of rﬁ, (Y ps ® K) which lie in the Lusztig series corresponding to /-
regular semisimple M"*-conjugacy classes. [Bonl, Corollary 15.15] states that, in fact
K[M']-module (7 (rky Y1 ,..s)) @K is the sum of all irreducible K[M’]-submodules of
Gelfand-Graev representation Ind%{:,[/'u lying in the Lusztig series corresponding to

s]NM’*, where [s] denotes the L*-conjugacy class. We have now (7 (1Y, Y1, ,4)) @
M 7/‘1/7

K = 0 implies [s] N M* = 0, which means [§] N M* = 0, whence Yy 5 = 0.
O
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Chapter 5

Maximal simple cuspidal k-types

5.1 Construction of cuspidal k-representations of G’

From this section until the end of this manuscript, we assume that the field F' is
non-archimedean locally compact, whose residue field is of characteristic p(# ).
Let G’ denote SL,(F) and G denote GL,,(F). Let Rep,(G’) denote the category of
smooth k-representations of G'.

In this section, we want to prove that for any k-irreducible cuspidal represen-
tation 7’ of G/, there exists an open compact subgroup J’ of G’ and an irreducible
representation \ of J' such that 7’ is isomorphic to ind j// N (15.1.30|7 |5.1.34| and |5.2.7|).

5.1.1 Types (J,A® x o det)

Let (J,\) be a maximal simple cuspidal k-type of G, and we need to check that the
type (J, A\® xodet) is also a maximal simple cuspidal k-type of G, which will be used
in the proof of Proposition This has been proved in appendix of [BuKull| in
the case of characteristic 0, and by using the following two lemmas, we observe the
same results for the case of characteristic £ by reduction modulo 4.

Definition 5.1.1. Let [, n,0, 8] be a simple stratum, and 0 be a simple k-character
or a simple Q, character of H, and n the unique irreducible k-representation of J*
which contains 0, and K an B-extension of n to J. Let (J,\) be a simple k-type or a
simple Qp-type of G. And also all the notations used: $H(5,2A), J(B,2) are defined
in Section [3.4 and Section as in [BuKul.

Proposition 5.1.2 (Vignéras, IV.1.5 in [V2]). The reduction modulo ¢ of any max-
imal simple cuspidal Qp-type of G is a maximal simple cuspidal k-type. And con-
versely, any maximal simple cuspidal k-type is the reduction modulo ¢ of a mazximal
simple cuspidal Qq-type of G.

Lemma 5.1.3. Let K be a compact subgroup of a p-adic reductive group. Any Q,-
character of K is £-integral, and reduction modulo £ gives a surjection from the set
of Qy-characters of K to the set of Fy-characters of K

49
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Proof. Fix an isomorphism from C to Qy of fields and until the end of this proof, we
identify the two fields through this isomorphism. Let xc be any C-character of K.
The smoothness implies that there exists a finite field extension E/Qy such that ¢ is
defined over E and we can find an Og[K]-lattice of x. Hence we can define reduction
modulo / for ¢ and denote is as Yc. On the other hand, let y, be any F,-character
of K. Tt is clear that x is defined over a finite field extension E/F,. Notice that the
quotient group K /Ker(x/) is a finite abelian group with order prime to £. Lemma 10
of section 14.4 in [Ser] implies that y, is projective as E[K/Ker(x,)]-module. Then
Proposition 42 of [Ser| states that x; can be lift to Og, where the fractional field
frac(Og) is a finite field extension of Q and its residual field is isomorphic to E.
Hence we finish the proof. O

Corollary 5.1.4. Let x be any k*-character of F*, then it can be always lifted to
a Qy-character x of F*.

Proof. We could write F* = Z x O and Y is uniquely defined by x|z and )‘(|O;.
The part >2|lem can be lift to a Q-character by lemma It is left to consider
the restriction x|z, of which the image is a finite group of order prime to ¢. Thus
we could find a finite field extension K of (Q, such that there is an embedding from
X(Z) to the quotient ring O /px, where pg is the uniformizer of Og. O

Recall the equivalence
(Ul a0 /U ) e g (e,
where (Ul2"+1(21) /U1 (A))" denote the Pontrjagin dual. Let 8 € = /B~ 2+,

we use 13 to denote the character on U[%”]H(Ql) /U™ (1) induced through the
equivalence above (or consult Section [3.2.1). Recall that in Section we fixed
an additive character ¥p from F to C* let w_g to denote the reduction modulo ¢ of

g according to the choice of ¢p.

Lemma 5.1.5. Let (J,\) be a mazimal simple cuspidal k-type of G, if (J,\) is of
level zero or B € F, then (J,\® x odet) is also a mazximal simple cuspidal k-type of
G, where x is any k-quasicharacter of F*. In particular, while x is not trivial on
UL (). Let ng > 1 is the least integer such that x o det is trivial on U™TH(2L), and
c € P such that x o det coincides with 1, on U[%”O}“(Ql). Then

HB+c,A)=H(8,A) =J(B+c,A) =J(B,A) =2

Proof. While (J, \) is of level zero, we only need to prove yodet is a simple character
on U'(A). While 3 € F, we only need to prove the character 6 = w_ﬁ ® x odet is a
simple character on U'(2(). This is directly induced by the results in the appendix
in [BuKull] for the complex case, because the definition of simple stratum in the
case of characteristic £ is the same as the case of characteristic 0. And the definition
2.2.2 of [MS] implies that simple k-characters are reduction modulo ¢ of simple
C-characters. O
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Lemma 5.1.6. Let [2(,n,0,5] be a simple stratum in A with B ¢ F, n > 1. Let
c€F, and ng = —va(c), n1 = —va(B +¢),

1. The stratum [, n,0, 5+c| is a simple stratum in A, and we have H(B+c,A) =
H(B,2A) and J(B + ¢,2A) = J(B,2A).

2. Let xc be a C-quasicharacter of F* such that xc o det agrees with . on

1

U[WO]H(Ql). Then we have an equivalence of simple C-characters:

C(C(Q[7O)B + C) = CC(Qla 0, 6) ® Xxc © det.

3. Let x¢ be any k-quasicharacter of F* such that x; o det agrees with . on

1
U[%]H(Ql). Then we have an equivalence of simple k-characters:

CZ(QL705 B + C) = CE(QL,O, 5) ® Xxe© det.

Proof. The first two assertions are the lemma in appendix of [BuKull], so we only
need to proof the last assertion. Recall that we fixed an additive character ¢p
from F' to C* in Section Lemma implies that every simple C-character
in Cc(2A,0,8 + ¢) is f-integral and has a reduction modulo ¢. According to the
definition 2.2.2 of [MS], the reduction modulo ¢ gives a bijection between simple C-
characters Cc (2,0, 5 4 ¢) to Cp(2, 0,8+ ¢). Notice that this bijection is dependent
with the choice of ¥ p. Apparently,

Cy(A,0,8+ ¢) = Cc(2,0,5) ® xc o det,

where ¢ denote the reduction modulo ¢ of x¢, and C¢ (2,0, 3) denote the set of k-
characters, which are reduction modulo ¢ of characters in C(2(, 0, 3). By definition
Cc(2,0,8) = C1(2,0, 8), and hence

Ce(mvoaﬂ + C) = C@(mvoaﬂ) ® Xc © det.

Applying Corollary to ¢, there exists a Qg-quasicharacter 7¢ of F'*, such that
Xx¢ © det is isomorphic to the reduction modulo ¢ of 7¢ o det. Notice that simple
characters in C¢ (21,0, 3+ c) are defined on H! = $(3,2) N UY(A), which is a pro-p-
subgroup of G. The reduction modulo ¢ of 7¢ o det is isomorphic to . on H'(8) N
U[%"O]H(Ql), which implies that 7c o det is isomorphic to ¥, on H!(8)N U[%"O]H(Ql).
The assertion (1) and (2) tell that

Ce(2,0,8 4 ¢) = Cc(A,0,8 +¢) @ xg' @ 7c o det.
We deduce directly that
Cl(glv 07 B + C) = C(C(Qla OaB + C) = Cl(gla Oa 6 + C) & Xxe© det7

as required. ]
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Corollary 5.1.7. Let (J,\) be a maximal simple cuspidal k-type of G, and x a
k-quasicharacter of F*. Then the k-type (J, A ® x o det) is also a mazimal simple
cuspidal k-type.

Proof. Let (J,Ac) be an f-integral maximal simple cuspidal C-type of G, whose
reduction modulo ¢ is isomorphic to (J,\). Let xc be a C-quasicharacter of F'*
whose reduction modulo ¢ is isomorphic to x (by . Then by the appendix of
[BuKull], the ¢-integral type (J, A\c ® xcodet) is also maximal cuspidal simple. Thus
its reduction modulo ¢ is maximal simple cuspidal k-type by Proposition [5.1.2] Let
¢ € F be the element corresponding to a C-lifting of x, and S corresponding to a
simple character @ (this is well-defined, because H!(§3) is pro-p) contained in (J, Ac)
(as in lemma or , then the two lemmas above imply that the reduction
modulo £ of fc ® x o det is a simple character contained in (J, A ® x o det). And
HY(B 4 ¢) = H'(B), where H! = $(8 + ¢, ) N UL(A). O

Remark 5.1.8. Let (Jy, Am) be a mazimal simple cuspidal k-type of M, where M
is a Levi subgroup of G. Then Ay = A\ ® - ® A, for some r € N*, where (J;, \;)
are mazimal simple cuspidal k-types of GLy,(F'). Hence for any k-quasicharacter x
of F*, then new k-type (Jy, Am ® x o det) is also mazimal simple cuspidal of M.

5.1.2 Intertwining and weakly intertwining

In this section, for any closed subgroup H of G, we always use H' to denote its
intersection with G’. Let M denote any Levi subgroup of G.

Proposition 5.1.9. Let K be a compact subgroup of M, and p be an irreducible
k-representation of K. The restriction resg,p s semisimple.

Proof. Let O denote the kernel of p, which is a normal subgroup of K. The subgroup
O - K’ is also a compact open normal subgroup of K, hence with finite index in K.
We deduce that the restriction resg P is semisimple by Clifford theory, furthermore
the restriction resg, p is semisimple. O

Proposition 5.1.10. Let K be a compact open subgroup of M, p an irreducible
smooth representation of K, and p' an irreducible component of the restriction
resg,p. Let p be an irreducible representation of K such that resg,ﬁ also contains
p'. Then there exists a k-quasicharacter x of F* such that p = p ® x o det.

Proof. Let U be any pro-p normal subgroup of K contained in the kernel of p, hence
with finite index. Let’s consider Indg,(l), which is semisimple, thus by lemma of
Schur it is a direct sum of characters in the form of x o det|yy. Since x can be
extended to a quasicharacter of F'*, and we note the extended quasicharacter as y
as well, then we write x o det|y as (y o det)|y. The fact that resk p contains the
trivial character induces the same property for res{f, p. By Frobenius reciprocity, we
know that res{]( p contains a character in the form of (xodet)|y, and the irreducibility
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implies that it is in fact a multiple of this character. We can hence assume that p is
trivial on U.

By the Clifford theory, the restriction of p (resp. p) to K'U is semisimple. Hence
Hompg iy (p, p) # 0. Applying Frobenius reciprocity, we see that p is a subrepresen-
tation of ind?Uresﬁ,Uﬁ, which is equivalent to p ® indg,U(l) by 5.2 d, chapitre I,
[VI]. In fact, the Jordan-Hélder factors are p ® x o det: Any irreducible factor 7 of
ind%, (1) can be view an irreducible k-representation of the quotient group K/K'U,
which is isomorphic to a subgroup of the finite abelian group O /detU, where Op
indicates the ring of integers of F. Hence 7 must be a k-character of K/K'U and
can be extended to F*, since we can first extend 7 to O /detU (hence to O) and
F* = OF x Z. We denote this extension by 7. It is clear that 7 = 7 o det|x.

O

Group M is the group of F-points of a reductive group defined over F'. Let K;
be open compact subgroups of M for ¢ = 1,2, and p; a representation of K;. Recall
that ix, k,2(p2) to be the induced representation indﬁ e Kz)resi((f?z)( KQ):L'(/)Q) (see
Definition [3.1.6), where z(ps) is the conjugation of ps by @. For any element = € M,

we say x intertwines (weakly intertwines) p; with ps as defined in Definition

Proposition 5.1.11. Fori = 1,2, let K; be a compact open subgroup of M, and p;
an irreducible representation of K; and p} be an irreducible component of resﬁﬁpi.
Let x € M that weakly intertwines p| with pl,. Then there exists a k-quasichaméter
X of F* such that x weakly intertwines p1 with ps ® x o det.

Proof. By Mackey’s decomposition formula, i, Kéx(pé) is a subrepresentation of
iK, KoT(p2). Since ik, k,x(p2) has finite length, the uniqueness of Jordan-Holder
factors implies that there exists an irreducible subquotient of ik, k,z(p2), whose
restriction to K contains p} as a direct components. By this irreducible
subquotient is isomorphic to p; ® x o det, where x is a quasicharacter. By definition,
this means p; is weakly intertwined with ps ® x~! o det by =. O

Now we begin to consider the maximal simple cuspidal k-types of G = GL,(F).

Proposition 5.1.12. Let (J,\) be a mazimal simple cuspidal k-type of G, and x
a k-quasicharacter of F*. If (J,\ ® x o det) is weakly intertwined with (J,\), then
they are intertwined. And there exists an element x € U(2l) such that z(J) = J and
z(A) = A ® x o det.

Proof. There is a surjection from resl‘]ﬂ)\ to 61. By Frobenius reciprocity, there is an
injection from A to indip 01, and exactness of the functors ensure that there exists an
injection: resglindg)\ — resglindgl 01. Whence, by hypothesis, res}’{l)\ ® x o det is
a subquotient of resglindgl 01. After Corollary the groups H!(B+c) = H'(B).
Hence resgl()\ ® x o det) is a multiple of 6o, from which we deduce that 6, is a
subquotient of 1res1({}1 indgl 0.
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Notice that H! is a prop-p group, and any smooth representation of H! is semisim-
ple. It follows that 6, is a sub-representation of msﬁ1 indgl 01, which is equivalent to
say that 65 is intertwined with 6; in G. Let ¢ = 1,2 and 6;. be C-simple characters
whose reduction modulo ¢ is isomorphic to ¢;, then 6;. is intertwined with 5. in
G cause H! is pro-p. It follows that the nonsplit fundamental strata [, n,n — 1, ]
and the nonsplit fundamental strata [, m, m — 1, + ¢| are intertwined. We deduce
that n = m by 2.3.4 and 2.6.3 of [BuKu]. Then we apply Theorem 3.5.11 of [BuKul:
there exists # € U(2) such that z(H!) = H!, C(2,0,8) = C(A,0,2(8 + ¢)) and
x(b2.) = b1, hence x(62) = 61. In particular, z(J) is a subset of Zyg)(61). Mean-
while, the 2.3.3 of [MS] and 3.1.15 of [BuKu] implies that Zg(61) N U(A) = J, then
x(J) = J. Proposition 2.2 of [MS| shows the uniqueness of 7, hence z(n2) = ;.
From [V3| Corollary 8.4] we know that the n;-isotypic part of resGind§(\) can be
viewed as a representation of J, which is a direct factor of res?ind? (M) and is multiple
of A when (J, \) is maximal simple. Since x(A® x odet) could only be a subquotient
of the ny-isotypic part of res§ind§ (\) and ind§ A = ind§z()), we deduce from above
that Homy;(A ® x o det, resGind§ ) # 0. O

Corollary 5.1.13. For any g € G, if g weakly intertwines (J,A® xodet) and (J, \),
then g intertwines (J, A ® x o det) and (J, \).

Proof. By Mackey’s decomposition formula i ; 4 5)g(A) is a direct factor of resf,;ind(}()\).
On the other hand, we notice that the ind?)\ is isomorphic to :U(ind?)\) as G-
representation, so they are equivalent after restricting to J. Hence the z(n;)-isotypic
part (res§ind§\)?(m) is isomorphic to x(res§indGA\)*(™) as J representation. The
later one is isomorphic to z((res$ind§A)™), which is a multiple of z(\). In the
proof of [5.1.12] there exists € U(A) such that z(m) = 72, 2(A) = A ® x o det.
By hypothesis A ® y o det® ) is a subquotient of 4 Jg(19(A), hence a subquotient
of (z'ig(‘])g()\))“c(”). And (iJ,g(J)g()\))m(") is a sub-representation of (resGind§ )=
whence a multiple of () as well. So A ® x o det®™) is a sub-representation of
(Z'ng((])g()\))x(”). We finish the proof. O

5.1.3 Decomposition of res?ind?)\

In this subsection, we need to do some computation to obtain the decomposition in
which plays a key role in the proof of Proposition [5.1.25] And this consists
half of the proof of Theorem [5.1.30]

Theorem 5.1.14. Let (J,\) be a mazimal simple cuspidal k-type of G. There exists
an integer m and a decomposition:

resfind§ A = (&%) z;(A(N))) @ W

where x; € URA), and x1 = 1. The representation A(\) is semisimple, and a multiple
of A. For each x;, the representation x;(A(N)) is the z;-conjugation of A(X). The
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elements x;’s satisfy that x;(n) 2 x;(n) if i # j (see Definition for n), and let
N be any irreducible sub-representation of resf,)\, then X' is not equivalent to any

wrreducible subquotient of resj;,W.

Remark 5.1.15. From now on, let (J,\) be any mazimal simple cuspidal k-type
of G. We always use Ay to denote @' x;(A(X)), where A(\) has been defined in
Theorem and we could write the decomposition in Theorem as:

resGindG\ = Ay @ W.
To prove Theorem we need the following lemmas:

Lemma 5.1.16. Let K1, K5 be two compact open subgroups of G such that K1 C Ks.
Then the compact induction indllgf respect infinite direct sum.

Proof. Let I be an index set, and (V;, ;) be k-representations of Kj. Define m =
@icrm;. By definition of compact induction, the representation space of ind%w are
the smooth vectors of the k-vector space consisting with function f : Ko — V such
that f(hg) = w(h)f(g), where h € K;, g € K», and K» acts as right transition.
Notice first that every function satisfied the condition above is smooth. In fact, the
quotient group K;/Kj is finite, of which let aq,...,a, be a set of representatives
in Ko. Then there is an bijection from the vector space, consisting of the functions
on K verified the condition above, to V™, which is sending f to f(a1),..., f(am).
Now let f be any such function on Ks. For any j € {1,...,m}, there exists an open
subgroup H; C K; which stabilizes v;. Let g € K», the value (aj_l(g)(f))(aj) =
f(a;). Hence the open compact subgroup H = ﬁ’leaj_l(Hj) stablizes f, so f is
smooth. Notice that @Tzl(@ieﬂ/}) = @ie](@gnzl‘/;) as vector spaces, which the
result follows. O

Lemma 5.1.17. Let K be a compact open subgroup of M, where M is a Levi subgroup
of G, and K' = K NG'. Let m be a k-representation of K. If 7’ is an irreducible
subquotient of the restricted representation resg,ﬂ, then there exists an irreducible
subquotient T of m, such that 7’ is an irreducible direct component of res%,r

Proof. Let H be a pro-p open compact subgroup of K. The representation resgw

is semisimple, which can be written as @;c;m;, where I is an index set. There is
an injection from 7 to indgresgﬂ, and the lemma implies that indgresgﬂ =
PBic Iindgﬂi. Notice that for each ¢ € I, the representation indgm has finite length.
Let W', V' be two sub-representations of n/ = resgm, such that 7/ = W'/V".
When 7/ is non-trivial, there exists 2 € W’ such that 2 ¢ V’. Since indfres®n is
isomorphic to a direct sum of ind5;, there exists a finite index set {iy,...,4m} C I,

where m € N*, such that xz € @il,...,imindgm. We have:

0# (W Ny, i, indSm)/ (V' N@;,. i indim) — WV,
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Since W' /V" is irreducible, the injection above is an isomorphism, and we conclude
that

(W’ N @il,,‘,,imindgm)/(v’ N @ih.“,imindg'ﬂi) = W//V/ >~

Since the restricted representation res? Dir,e.im indgm has finite dimension hence
finite length, by the uniqueness of Jordan-Hoélder factors, there exists an irreducible
subquotient of @ih._,,imindgm, whose restriction to K’ is semisimple (by Proposition
and containing 7’ as a subrepresentation. O

Now we look back Theorem [5.1.141

Proof. of

By [V3| Corollary 8.4], we can decompose res?ind?)\ = A(N\) @ W1, where any
irreducible subquotient of W7 is not isomorphic to A. Let X be an irreducible
subrepresentation of the semisimple k-representation resf,)\. If ) is an irreducible
subquotient of resj,Wl, by Lemma and Propositon there exists a k-
quasicharacter y of F'* such that A ® x o det is an irreducible subquotient of W/7.
This follows that A ® x o det is weakly intertwined with A. By Proposition [5.1.12
they are intertwined and there exists € U(2() such that A ® x o det = z(\). The
fact that A ® x o det is a subquotient of W; implies that z(n) 2 1. As in the proof

of Corollary we have:
(AN)*™ @ Wlx(n) =~ (resGind§ A = z((resGindGA)"),

and the later one is isomorphic to z(A(\)), which is a direct sum of xz(\). Since
x(n) 2 1, we have (A(\))*™ = 0. As for Wy, thus we can decompose W; as
wy ™) & W,. Hence Wy ) ~ z(A(X)). Now we obtain an isomorphism:

res$ind§ A = A(\) @ z(A(N)) @ Wa,

where W; ™ — 0 and W, = 0. This implies any irreducible subquotient of Ws
is not isomorphic to A neither z(\). If ) is an irreducible subquotient of Ws, we
can repeat the steps above, then find a k-quasicharacter x2, an element xo € U(2),
and decompose Wy as x3(A(N)) @ W3, where any Wy 20— 0. Furthermore, any
irreducible representation of .J, whose restriction to J’ contains A’ as a subrepresen-
tation, is U(2A)-conjugate to A. The quotient group U(2A)/J is finite, hence the set
of irreducible representations {x(A)},cu) is finite, which means after repeat the
steps above for finite times, we could obtain the decomposition as required. O

5.1.4 Projective normalizer J and its subgroups

Now we will recall one definition and some propositions given by Bushnell and
Kutzko in [BuKull] when they consider the Q,-representations of G’.
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Definition 5.1.18 (Bushnell, Kutzko). We define the projective normalizer J =
J(X\) of (J,\). Let A be the principal order attached to (J,\). Then define J to be
the group of all x € U(A) such that:

o zJr ' =J, and
e there exists a k-quasicharacter x of F* such that x(\) = A ® x o det.

Proposition 5.1.19. Let (J,\) be a simple type in G as in definition and
X be a k-quasicharacter of F*. The following are equivalent:

1. A= A ® xodet,
2. x odet| s is trivial and o @ x o det|y(s) = 0,
3. x odet|n is trivial, and A\, A ® x o det are intertwined in G.

Proof. The proof in Proposition 2.3 [BuKull] still works in our case, and we write
it here to ensure it in the modulo ¢ case. We prove this proposition in the order of
(2) = (1) = (3) — (2).

Since J/J' = U(B/UL(B)), the implication (2) — (1) is trivial. Now let us
assume \ is equivalent to A ® x o det. Restricting to H', we see that the simple
character § = 6 ® x o det|y1, which implies x o det|y1 is trivial. Now assume (3)
holds. Proposition [5.1.12 gives an element x € U(2() such that x(J) = J and
z(\) = A ® x o det. We have x o det is trivial on J'. Combining this fact with the
uniqueness of 7 corresponding to any fixed simple character of H' (see Proposition
2.2 of [?]), we have z(n) = . In particular, x € Zg(0) = J'B*J!, by IV.1.1 in [V2,
hence x € JIB*J' NU(A) = J. Whence A = x()\) 2 A ® y o det. We therefore have
k®o = KkR®o® xodet, where k is a S-extension of 1 to J.

As indicate in the proof of Bushnell and Kutzko, from now on, we use the
technique in Proposition 5.3.2 of [BuKu]: Let X denote the representation space of
k and Y the representation space of o, which can be identified with the representation
space of 0 ® yodet. Let ¢ be the isomorphism between k® o and Kk ® o0 ® yodet. We
may write ¢ as ), S; ®T; where Sj € Endy(X) and T; € Endg(Y'), and where {7}
are linearly independent. Let g € J!, we have k ®0(g) o ¢ = ¢po (k® o ® y odet)(g).
Since J' C ker(o) = ker(o ® x o det), this relation reads:

() ®1) e SjaTy= ()8 @T) o (n(g) ®1),
j j

which is equivalent to say that:
> (n(g) 0 Sj = Sjon(g) @ T; =0.
J
The linearly independence of T implies that S; € Endyji1(n) = k*, by the lemma
of Schur. Hence ¢ =1® Zj S;-T;. Now note T' = Zj S; - T; and take g € J, the
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morphism relation reads:
(k(g) ®@o(g)) o (1@ T) =k(g) ® (0(9) o T) = r(g) ® (T 00 @ x o det(g))

=([1®T)o(klg) @0 @ xodet(g)),
which says T' € Homy j(0,0 ® x o det) # 0. We finish the proof. O

Corollary 5.1.20 (Bushnell,Kutzko). Let x € J(\), and let x be a quasicharacter
of F* such that x(\) =2 A ® x odet. Then:

1. the map x — yodet| ;1 is an injective homomorphism J/J — (det(JY))". The
later one denotes the dual group of the subgroup det(J') of F*;

2. j/J s a finite abelian p-group, where p is the residual characteristic of F.

Proof. For (1). Let z € J. Suppose there exist two k-quasicharacter i, x2 of F*,
such that £(\) 2 A ® x1 odet and A ® x1 o det = A ® x2 o det. This is equivalent to
say that

A= A® (x1 odet) ® (x5 odet) ZA® (x1 ® x5 ") o det.

The equivalence between (1) and (2) of Proposition implies that (y; ® x5 ') o
det| s1 is trivial. Hence xj o det|;1 = x2 o det| 1. So the map is well defined, and
is clearly a morphism between groups. Now suppose that z € J and x is a k-
quasicharacter of F* which is trivial on det(J'), such that z(\) & A ® y o det. As
in the Proposition the equivalence of conditions means that A = A ® x o det.
Thus x intertwined A to itself. Whence the element = belongs to JB*JNU(A) = J.

For (2). Since J! is a pro-p group, this is induced directly from (1). O

5.1.5 Two conditions for irreducibility

In this section, let (J, A) be any maximal simple cuspidal k-type of G. We will con-
struct a compact subgroup M) of G’ and a family of irreducible representations )\’MA
of M), such that the induced representation ind%A )\/]\4)\ is irreducible and cuspidal
(Theorem . And in the next section, we will see that any irreducible cuspidal
k-representation 7’ of G’ can be constructed in this manner.

To check the irreducibility of this induced representation, we only need to cal-
culate its intertwining set in G/, when considering representations in characteristic
0, but this is not sufficient in the case of modulo £. As noted in lemma 4.2 in article
[V3], Vignéras presents a criterium of irreducibility in modulo ¢ cases:

Lemma 5.1.21 (criterium of irreducibility by Vignéras). Let K be an open com-
pact subgroup of G', and 7' be a k-irreducible representation of K. The induced

- . / . . .
representation ind% 7’ is irreducible, when

1. Ende/(ind%ﬂ") = k,
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2. for any k-irreducible representation v of G', if @' is contained in res%ly then
there is a surjection which maps res?(/u to 7.
As in 8.3 chapter I of [V1], the first criterion of irreducibility is equivalent to say
that the intertwining set I/ (7') = K.

Corollary 5.1.22. Let (J, \) be a mazimal simple cuspidal k-type in G. The induced
k-representation indJ\ is irreducible.

Proof. Lemma can be applied in this case after changing G’ to any locally
pro-finite group. First, we calculate End, j(ind:}/\), which equals to k since the
intertwining group I1;(\) = J. Now we consider the second condition. Let v be an
irreducible k-representation of J , such that

A < resA.

By Frobenius reciprocity and the exactness of functors ind and res, we have a sur-
jection:

res$ind§\ — resfu.
The (J!, k)-isotypic part v~ of resgl/ is a direct component as J representation, and
V® is a quotient of the (J!, k)-isotypic part A\* of A as J representation. The later
one is a multiple of A by Corollary 8.4 of [V3]. Hence the surjection required in the
second condition of Lemma [5.1.27] exists. O

Theorem 5.1.23. Let X\ be a subrepresentation of resj,)\. Then X' wverifies the
second condition of irreducibility. This is to say that for any irreducible represen-

tation ' of G', if there is an injection: N < res§ 7', then there is a surjection:

!
resg}, a N

Proof. Since J is open, every double coset G’g.J is open and closed, hence we could
apply Mackey’s decomposition formula:

. ~ . / a(J
resc,ind G\ 22 @aej\(;/gz1ndg,mau)resG(,m)a(J)a()\).

We take a = 1, then indg;,/resf,)\ is a direct factor of res§,ind§\. The hypothesis

! . . . . . / . . . .
N o— res?, 7' implies a surjection from md?, X to 7' by Frobenius reciprocity. Since

resfl)\ is semisimple with finite length by Proposition and the functor ind?f
respects finite direct sum, we have an surjection:

indg’,/resj,/\ —
hence we obtain a surjection:

resGind§ A — 7.
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Now consider the surjection:

v resGindGA — res?/w'.
Meanwhile, by Theorem [5.1.14] we could decompose res(}inds})\ =AW, We
have Ay @ W/kert = res§ ', If the image of the injection N < Ay & W/ker(s) is
contained in W + ker(¢) /ker(¢), then A is an irreducible subquotient of W, which is
contradicted with Theorem [5.1.14] Hence the image of the composed morphism:

N Ay @ W/ker(r) = Ay & W/ (W +ker(r)) = Ay/(Ax N (W + ker(1)))

is non-trivial. Since Ay/(AxN (W +ker(:))) is a quotient of Ay, and the functor res?,
maps any irreducible representation of J to a semisimple representation with finite
length of J’, the representation resj,AA is semisimple with finite length of J’. So
does the quotient Ay/(Ay + ker(r)), of which X is an irreducible direct component.
This implies a surjection: res?,/ﬂ’ — . O

In the theorem above, we proved that )\ verifies the second condition of irre-
ducible criterium of irreducibility in lemma Unfortunately, (J', \') does not
satisfies the first condition. This is also false for representations of characteristic 0.
A natural idea is to construct a open compact subgroup of G’, which is bigger than
J'. In the case of characteristic 0, Bushnell and Kutzko calculated in [BuKull]. This
group is J& = Jc N G, the intersection of projective normalizer of a Q,-maximal
cuspidal simple type and G’. We will see in Proposition and definition
that this group is J' = J NG’ in the case of modulo .

Proposition 5.1.24. Let L be any subgroup of J' = J NG’ such that J' C L C J',
and X' an irreducible subrepresentation of M| j. Then the induced representation
ind% N is semisimple.

Proof. By Mackey’s decomposition formula, the induced representation indgi)\’ is
a subrepresentation of res%,indj)\. Applying Mackey’s decomposition formula, we
have ) )
JiaJy J
res’,indy\ & @geJ\jresJ/g()\),

since J normalises J and J’. Hence res?,indﬁ)\ is semisimple by Proposition [5.1.9

and the fact that indj)\ is irreducible. Since L is a normal open subgroup of J',
the index of L in J' is finite. Hence the restricted representation resi'ind‘]:)\' is
semisimple by Clifford theory, of which indg//\’ is a subrepresentation. Now we
obtain the result. O

Proposition 5.1.25. Let X be an irreducible subrepresentation of resf,)\, and N}
an irreducible subrepresentation of indg,)\’. Then N} verifies the second condition of
irreducibility. This is to say that for any irreducible representation ' of G, if there
is an injection N — res%,lﬂ’, then there exists a surjection res%,/ﬂ/ — N, where
L'=LnG.
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Proof. We have proved in Proposition [5.1.24] that ind% X is semisimple. Hence the

o« . . / . o e . . ’
injection from \} to resg’ 7" induces a non-trivial homomorphism 1nd§, N = resg’ 7.

By Frobenius reciprocity, we obtain an injection from \ to TGSS;//F/ . Thus there exists

a non-trivial homomorphism resj,)\ — res(}, 7/, After applying Frobenius reciprocity
/ . . .
and the exactness of the functor resS;, , We obtain a surjection:
/. ’ ’
resG ind§ rest, A — resG 7.
. . . . / . .

By Mackey’s decomposition formula, the k-representation md?, resj,/\ is a direct
component of resG,ind J/\ and combining this fact with the exactness of functor
resG J,, the k-representation resS 7 'ind§ 7 res J,)\ is a direct component of res J,md J)\
Hence the surjection above implies a non-trivial homomorphism:

. /
resGind§ A — resG 7',

By Proposition the left hand side isomorphic to resg,AA @res{,,W, where any
irreducible subquotient of resf,W is not isomorphic to any irreducible subrepresenta-
tion of res7,\. Now we obtain an equivalence of res§ n’ with (res’, Ay ©res?, W)/ K,
where K (a k-representation of J’) is the kernel of the surjection above.

We have:

Ny = res%/ﬂ’ — indg,ress;,lw’ ,
and the last factor is isomorphic to ind%, ((res], Ay @ res?,W)/K). We note this
composed homomorphism from X, to ind%, ((res], Ay ® res],W)/K) as .

Since the functor ind} is exact, the right side is isomorphic to (ind J,resj,A P
ind% res’, W) /ind% K. And we consider the representation ind%, (res’, W+K) /ind%, K
which is isomorphic to ind% ((res?,W + K)/K). We assume the image 7(\}) in
ind% ((res?, Ay @ res’,W)/K) is contained in ind% ((res?,W + K)/K). Then T is a
non-trivial morphism from N, to ind%, ((res’ J/W + K)/K). By Frobenius reciprocity,
we deduce a non-trivial morphism from resl, N} to (res,W + K)/K. Notice that

rest N} < res?,ind )\ = @aej\j/J,resj,a()\),

and by definition of J, the representation a(\) = A®yodet, for some k-quasicharacter
x of F*. Hence

J ~ J
@aej\j/J/reSJ/a()\) = @J\j/J,I'eSJ/)\.
Thus there exists an irreducible direct component \” of resj,/\ from which there is
an injective morphism to (res],W + K)/K 2 res},W/(res?,W N K). Hence X" is
isomorphic to a subquotient of res J,W. This is contradicted to Theorem [5.1.14] So

the image 7(\}) is not contained in ind%, ((res?, W + K)/K). We deduce that the
composed map:

N s res§ ' — ind% (res”, (Ay @ W) /K) /ind% ((res W + K)/K),
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is non-trivial. The right hand side factor:
ind%, (res?, (A ® W)/K)/ind%, ((res?, W + K)/K)

>~ ind%, (res?, (Ay @ W) /(ves), W + K)).

Notice that resj (Aew)/ (resﬁ,W#—K ) is a quotient, hence isomorphic to a subrep-
resentation of resj,A »- The representation resj,A » is semisimple, with irreducible di-
rect components in the form of 2(\’), where z € U(2). Furthermore, since ind%z(\)
is a direct component of res{lindffa:()\), as in the proof of Proposition it is
semisimple. After lemma we deduce that indg,resf/AA is semisimple, and
so is the subrepresentation ind%, (res?, (Ay & W)/((res], W) + K)), of which )} is a
direct factor. Hence we finish the proof. O

Definition 5.1.26. Let (J,\) be a maximal simple cuspidal k-type of G, and X
be any irreducible subrepresentation of resj,)\. Define M)y to be the subgroup of J'
consisting with all the elements x € J', such that z(\N') = X

Remark 5.1.27. Since My normalizes J and the intersection My - J NG’ equals to
My, we deduce that J normalizes M. Notice that irreducible subrepresentations of

resg,)\ are J-conjugate. Hence the group M) depends only on \.

We will prove at the end of this section, that the couple (M}, XMA) verifies the two
criterium of irreducibility. The first criterion has been checked in Proposition [5.1.25
And we will calculate its intertwining group in G’ in two steps. First is to prove
Ie(ind},

/(Ql)/)\’) C U(A)" (Proposition [5.1.28), and then prove that Iygy Ny, = My

(Theorem [5.1.30)).

Proposition 5.1.28. Let X' be an irreducible subrepresentation of resf,)\, then the

intertwining set IGI(indE,(m),A’ ) is contained in U(A)'.

)

Proof. Let 7 denote the irreducible representation indg(QI A. The induced represen-

tation indg,(%) X is a subrepresentation of resgggﬂ', thus is semisimple with finite

direct components. We write indg,(m),/\’ as @®;er7,, where 7/ are irreducible direct
components and [ is a finite index set. Let g € G, we have an equality:

U’ .

J/( ) )\/) = U Hom(Tz',?ZU(Q{)’,g(U(Q{)’)TJI’)'

il jel

I,(ind

Hence we have:

IG’ (lndlj,@[)l}\/) = U IG’ (Ti/7 T]/)
icl,jel

Now we assume that g € G’ intertwines 7; with /. Since 7; and 7; are direct

components of resgg;n’, by Proposition |5.1.11] there exists a k-quasicharacter y

of F* such that g weakly intertwines 7 with 7 ® x o det. This implies that 7 is a
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subquotient of iy g g(u)) T ® x 0 det, hence the restriction reslj(m)T is a subquotient
of resg(m)iU(m)’g(U(m))T ® x o det. Since A is a subrepresentation of res[j(m) T, it is

U(2)

hence a subquotient of res; iy gu) T @ X © det. We have

U@ .
resJ( )zU(m),g(U(g))T ® x o det
— eI JU(A) (U(0)) -0 19(U ()
= e, iy g 02 TS U g UG gy 9(A) @ X0 det
Applying Mackey’s decomposition formula two times to the later factor, we
obtain that reSIj(Q‘)Z’U(m%g(U(m))(T ® x o det) is isomorphic to a finite direct sum,

() y(A ® x o det), where

whose direct components are in the form of indjmy( J)reszmy( 7

y € URA)gU(A). More precisely,

reSIJJ(m)iU(m),g(U(m)) (T ® x odet)

= @ @ indjmy(‘])resggi((tgjl)))my(J)y(A) & Xdet
BeU@)Nag(J\U(A)/J acg(J)\g(U(A))/U(2)Ng(U(A))

where y = fag.

After the uniqueness of Jordan-Holder factors, the representation A is weakly
intertwined with A ® x o det by some y € U()gU(2). Hence y intertwines A with
A®xodet by Corollary [5.1.13] and there exists z € U(2) such that z(A® yodet) = A
by Proposition The element yz~! intertwines X to itself, and hence lies in
E*J. Therefore g € U)E*JU(A)NG'. Furthermore, we have U()E* JU(A)NG =
U(A)’, because E* normalises U() and for any e € E*, det(e) € oy if and only
e € 0y, where op,05 denote the ring of integers of F,E respectively. Hence for any
a € UA), det(ea) = 1 if and only if ea € U(2A) N G’. From which, we deduce that
Te (ind ™ Ny = U1, O

Lemma 5.1.29. Let X' be an irreducible component of res’,\, and let x € U(A)
intertwines N'. Then z € J'.

Proof. 1f x € U(21)" intertwines X', then by Proposition the element x weakly
intertwines A with A ® x o det for some quasicharacter y of F*. Then Corollary
5.1.13| implies that x intertwines A with A ® x o det, and Proposition [5.1.12] implies
that there exists an element y € U(2() such that y(J) = J and y(\) = A® xodet. By
definition of .J, this element y is clearly contained in J. The element zy~! therefore
intertwines A, §IV.1.1 in [V2] says that z € EXJyNU(2)". However, EXJNU(A) = J
and y € U(2). We deduce that z € JyNU&AL) c J'. O

Theorem 5.1.30. Let )\MA be an irreducible subrepresentation of ind%*)\’. Then

the induced representation indjc\;/[/A )\GMA 1s irreducible and cuspidal.

Proof. We only need to verify that (M), )\’%) satisfies the two conditions of irre-
ducibility. We have proved in Proposition |5.1.25| that (M}, /\MA) verifies the second
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condition. It is left only to prove the intertwining set of A}, in G’ equals to M),
Le. Ig/(Ny,) = My In Lemma we have proved that Iygy A C J'. Since J'
normalizes J', then z € Iy verifying Hom (X', 2())") # 0, which is equivalent
to say that z(\') = . Hence Iygy\" C My. By the Proposition 3 in 8.10, chapter
I of [V1], let g € G' and X a finite set of G’ such that MygM) = UyexJ'zJ’, then
there is an k-isomorphism:

L1 (ind P N) = @jexig-1)(X). (5.1)

Furthermore, we have:
Ty (ind ) N) = My, (5.2)

Hence Ty (N, ) = M) follows by the inclusion:

Ty (Mg, ) € Tugy (ind 52 N).
Whence, there left to prove that
Iar(Ny,) C URL)"

Notice that indﬂfl),)\’MA is a subrepresentation of resg(mgm, where 7 = indg(m))\ (as

(A
in the proof of Proposition [5.1.28). We have:

I(;/(indI]\J/f(fl) W) C Loy (resgg;ﬂ'),

since resggim is semisimple. We obtain then

I (ind)y U Ny ) € U() (5.3)

by Proposition [5.1.28, Now use one more time Proposition 3 in 8.10, chapter I of
[VI] as equation (5.1)) and equation (5.2): Let h € G’ and Y a finite set of G’ such
that U(A)hU(A) = Uyey MayM), then there is an k-isomorphism:

. )/ ~
I,r1(1nd%k ) ) = DsevIps—1y (N, )

Hence we have:
. U’
IG’(AIJ\/[A) C I (lnd]\/[& ) 2\/[)\)

Combining with the equation [5.3] we deduce the result. O

5.1.6 Cuspidal k-representations of G’

Let M denote a Levi subgroup of G, and M’ = M N G’. In this section, we consider
the restriction functor res)l,, which has been studied by Tadi¢ in [Ta] for represen-
tations with characteristic 0. In his article, he proved that any irreducible complex
representation of M’ is contained in an irreducible complex representation of M, and
they are cuspidal simultaneously. His method can be adapted for the case of modulo
L.
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Proposition 5.1.31. Let K be a locally pro-finite group, and K' C K is a closed
normal subgroup of K with finite index. Let (7, V') be an irreducible k-representation
of K, then the restricted representation resfmr 18 semisimple with finite length.

Proof. The proof is the same as §6.12,IT in [V1]. We repeat it again is to check that
we can drop the condition that [K : K] is inversible in k.

The restricted representation resﬁﬂr is finitely generated, hence has an irre-
ducible quotient. Let Vjy be the sub-representation such that V/Vj is irreducible.
Let {k1,...,km},m € N be a family of representatives of the quotient K/K’. Now
we consider the kernel of the non-trivial projection from res®,m to @&, V/k;(Vp),
which is K-stable, hence equals to 0 since 7 is irreducible. We deduce that resﬁﬂr
is a sub-representation of &, V/k;(Vj) hence is semisimple. O

Proposition 5.1.32. Let m be any irreducible k-representation of M, then the re-
striction reSMﬂr 1s semisimple with finite length, and the direct components are M-
conjugate. Conversely, let ™ be any irreducible k-representation of M/, then there
exists an irreducible representation ™ of M, such that ©' is a direct component of

I'GS%/ .

Proof. For the first part of this proposition. The method of Silberger in [Si] when
£ = 0 can be generalised to our case that ¢ is positive. We first assume that 7 is
cuspidal. Let Z denote the center of M, and the quotient M/ZM’ is compact. Since
for any vector v in the representation space of 7 the stabiliser Staby(v) is open,
the image of Staby(v) has finite index in the quotient group M/ZM’. Combining
with Schur’s lemma, the restricted k-representation res%m is finitely generated. By
§2.7,IT in [V1] the restricted representation is Z’ = Z N M’-compact.

Let (vi,...,vm),m € N be a family of generators of the representation space of
resM,ﬂ. For any compact open subgroup K of M/, we want to prove the space V¥ is
finitely dimensional. We could always assume that K stabilises v;,7 = 1,...,m, and
consider the map

Qg —eggui,t=1,..m,

where e is the idempotent associated K in the Heck algebra of M’. Apparently, the
space VX is generated by £ = {exgvi,g € M',i = 1,...,m}. If the dimension of V¥ is
infinite, we can choose a infinite subset £’ of £ which forms a basis of V¥, especially
there exists 49 € {1,...,m} such that M = {g € M, exgv;, € L} is an infinite set.
In particular, cosets gK, g € M;o are disjoint since K stabilizes v;,. Furthermore,
since the center Z' of M’ acts as a character on res%,w, which means Z’ stabilises
each v;, the images of cosets gK,g € M;O are disjoint in the quotient M'/Z’. Let
v;, be an k-linear form of V& which equals to 1 on the set £'. The above analysis
implies that the image of the support of coefficient (v} ex,guiy) = (v}, exguiy)
in M'/Z" contains infinite disjoint cosets gK,g € M; , which contradicts with the
assumption that res%w is Z'-compact. We conclude that IGSM/TF is finitely generated
and admissible, hence has finite length.
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Now we come back to the general case:w is irreducible representation of M. We
first prove that resM,w has finite length, then we prove it is semisimple. For the first
part, it is sufficient to prove the restricted representation res%,w is finitely generated
and admissible. Let (L, o) be a cuspidal pair in M such that 7 is a sub-representation
of ilﬁ/la. Applying Theorem we have res%,i%ﬂa = ilﬁ/y:mM,resIﬂ,a. We have
proved that reslﬂ,a is admissible and finitely generated. Since normalised parabolic
induction i}\ﬁ/ respect admissibility and finite generality, the k-representation reslﬂ,a
is also admissible and finitely generated, and hence has finite length. So does its
sub-representation resM,w. For the semi-simplicity, let W be an irreducible sub-
representation of res%,ﬁ, of which gW is also an irreducible sub-representation for
g€ M. Let W/ =>" geM/ g(W), which is a semisimple (by the equivalence condition
in §A.VIL of [Re]) sub-representation of res),w. Obviously, M stabilises W', hence
W' = resM,m by the irreducibility of .

Now we consider the second part of this proposition, and apply the proof of
Proposition §2.2 in [Ta] in our case. Let 7’ be any irreducible k-representation of
M’, and S the subgroup of Z generated by the scalar matrix wp, where wp is the
uniformizer of the ring of integers of 0. It is clear that the intersection SNM’ = {1}.
Hence we could let 7 denote the extension of m to SM’, where S acts as identity.
The quotient group M/SM’ is compact, hence the induced representation indg/[M,fr
is admissible (see the formula in §1,5.6 of [V1]). For any M-subrepresentation 7 of
indg/[M,fr, there is a surjective morphism from resg/IM,T to 7, defined as f +— f(1).
This induced a surjective morphism from FGSM,T to 7.

Now let 1 be a finitely generated subrepresentation of indg[M/fr. Since 71 is finite
type and admissible, it has finite length containing an irreducible subrepresentation
noted as m. And there is a surjective morphism from res%,w to 7. Combining this
with the first part above, the representation 7 is the one we want. ]

Corollary 5.1.33. Let w be an irreducible k-representation of M. If the restricted
representation TGSM,T( contains an irreducible cuspidal k-representation of M/, then
7 45 cuspidal. This is to say that any cuspidal k-representation of M’ is a subrepre-
sentation of TGSM/W for some cuspidal k-representation w of M.

Proof. For the first part above, we know that the direct components of resM,w are
M-conjugate by Proposition Let P’ = L/-U be any proper parabolic subgroup
of M and P = L - U the proper parabolic subgroup of M such that PN M’ = P’ and
LNM =L'. Let ) be any direct component of res\}, 7 2 ®;¢ 7!, where I is a finite
index set and 7} are irreducible representations of M, and for each i € I let a; € M
such that 7} = a;(n’). In particular, we could assume that {a;};cr is a subset of L.
We have:

/
reslﬂ,r%\f{w = @ie[?“% .
Meanwhile, since the unipotent radical U is normal in L, we deduce that:

!/ /
rM ol e g, (rd w') 2 0.
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Hence 7 is cuspidal as required. O

Corollary 5.1.34. For any irreducible cuspidal k-representation w' of G’, there
exists a mazimal simple cuspidal k-type (J, X) of G, and M)y as in definition|5.1.26,
There exists a direct component )\’MA of indy*resj,)\ such that " is isomorphic to

the induced representation ind?/}A >‘3\/[A'

Proof. Applying Corollary let m be an irreducible cuspidal k-representation
of G’ which contains 7’ as a sub-G'-representation. Let (Jy, Ag) be the maximal
simple cuspidal k-type of G corresponding to 7, and (M ’\0’)\/]\/[/\0) as in Theorem

5.1.30l We know that « is isomorphic to ind%X JOAO, where Ag is an extension of A
to E*Jy, and the intersection E* JyNG’ = J|. Then after applying Mackey’s decom-
position formula to resgﬂr, we obatin that of which the representation inds}é’resj{) Ao

. . . / . . . .
is a subrepresentation. Hence, 1nd](\;/[A )\’MA is isomorphic to some direct compo-
0 0

nent of resg,ﬂ, which is isomorphic to g(7’) for some g € G by Proposition |5.1.32
This implies that 7’ contains gil()\’MAo). Notice that ¢g='(My,) = My-1(),) and
M, _
g_l()\’MA ) is a direct component of indg,g1 (35;0) g 1(\), so we could write is as
0
)\/
My=1(x0) ,
>~ ind§; TNy ). And (97(Jo), g 1()\)) is the required maximal sim-
97 (Xo) 97 1(2o)

ple cuspidal k-type. ]

Hence by Frobenius reciprocity and Theorem [5.1.30} this implies that

,n_l

5.2 Whittaker models and maximal simple cuspidal k-
types of G’

5.2.1 Uniqueness of Whittaker models

In this section, we will see that the subgroup My of J' = J(A\) NG’ in the definition
actually coincides with .J'. In other words, we will prove that for any element
x € U(A), if x normalises J and z(\) = A ® x o det for some k-quasicharacter x of
F* then x(\') 2 X, for any irreducible direct component A of A| .

Let U = U,(F) be the group consisting with those strictly upper triangular
matrices in G. A non-degenerate character ¢ of U is a k-quasicharacter defined on
U. Let P, = P,,(F) be the mirabolic subgroup of GL,,(F), and P, = P, N SL,(F).
We denote the unipotent radical of P,, as V,,_1, which is an abelian group isomorphic
to the additive group F™~!. The unipotent radical of P/ is also Vj,_1.

Definition 5.2.1. 1. g == rq,_,,p, the functor of V,,_1-coinvariants of repre-
sentations of Pp, riq = TGl P, the functor of Vy,_1-coinvariants of represen-
tations of P,.

2. 1y =Ty p,_,,pP, the functor of (V,_1,v)-coinvariants of representations of P,
Tip =Ty.p | Pl the functor of (V—1,%)-coinvariants of representations of P..
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Definition 5.2.2. Let 1 < k < n and * € ModyP,, ©’ € Mod,P,. We define the

K

k-th derivative of T to be the representation ridrfzflﬂ, and the k-th derivative

of ™ relative to ¥ to be the representation 7'k = ri’drif_lﬂ’.

Remark 5.2.3. The unipotent radical of P, and P coincide and U C G, so

G
resG, k 7T(k)

is equivalent to (resS?w)(k), where m € Mod,,G,.

Proposition 5.2.4. Let w be a cuspidal k-representation of G, then the restriction
1“658/7'( is multiplicity free.

Proof. We have proved in Proposition that the restriction I‘GSSZTF is semisim-
ple with finite direct components. Hence we could write it as ®*,m;, where m €
N and 7;’s are irreducible k-cuspidal representations of G]. Let ¢ be any non-
degenerate character of U. As in 1.7 chapter ITT of [V1], we obtain that dimz (™) = 1.
We apply Remark above, then

dim(resgy m) ") = @7, dim(m;) ) = 1.

()
io
non-trivial. And we deduce the result. O

So there exists one unique components m;,, where 1 < ig < m, such that = is

Corollary 5.2.5. Let @’ be an irreducible cuspidal k-representation of G'. Then
there exists a non-degenerate character v of U, such that dimz/(9(®¥)m) = 1.

Proof. This is deduced from Corollary In fact the direct components of
resg,w is Corollary are conjugated to each other by diagonal matrices, and
the conjugation of non-degenerate characters of U by any diagonal matrix is also a
non-degenerate character of U. O

5.2.2 Distinguished cuspidal k-types of G’

Proposition 5.2.6. Let (J,\) be a mazimal simple cuspidal k-type of G, and J the
projective normalizer of A. Then the subgroup M) in definition of J' coincides
with J'.

Proof. Let A be an extension of A to E*J. Then ind%X ;A\ is an irreducible cuspidal
representation of G, we denote it as w. The restricted representation resgﬂr is
semisimple and its direct components are cuspidal. By Theorem [5.1.30} there exists
a direct component 7’ of res&, 7, such that «’ is isomorphic to ind](\i;A Ay, » for some
M\A' In the proof of Theoreng 5.1.30, we have showed that the intertwining subg,roup
I/ (N, ) equals to My. If J' # M), and let = be an element belonging to J but
not to My. Then x(\};, ) is not isomorphic to A}, . However z(n') = 7/, so resﬁA 7’
contains x(Ayyz, ), from which we deduce that

ind§y, (X, ) = ind§y Ny, = ', (5.4)
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Meanwhile, by Mackey’s decomposition formula
J s ad Ty~ B s aMy o J
resyy, indyres A = @y ji gy, ind i resy A,

hence x(X\), ) is another direct component of indf}/,hresf,)\. Since we could change
order of the functor ind?/[/A and finite direct sum, and ind?fresg,)\ is a subrepresen-
tation of resG,m, the two representations indjc\;/[;x()\’]\/[ ) and indjc\;/[/A Ny, = 7' are two
different direct components of resg,ﬂ. By Proposition they are not isomorphic,
which is contradicted to the equivalence Hence J' = M,. ]

Definition 5.2.7. Let (J,\) be a mazimal simple cuspidal k-type of G and J =
J NG as in definition and N any direct component of indjiresj,A. We

define the couples (j’, 5\’) to be mazimal simple cuspidal k-types of G'. By Corollary
and Proposition for any irreducible cuspidal k-representation of G/,
there exists a mazximal simple cuspidal k-type (j’, 5\’) of G’ such that 7’ is isomorphic
to indg’,IS\’.

5.3 Maximal simple cuspidal k-types for Levi subgroups
of G/

5.3.1 Intertwining and weakly intertwining

In this section, let M denote any Levi subgroup of G and for any closed subgroup
H of G, we always use H' to denote its intersection with G’. We will consider the
maximal simple cuspidal k-types of M. Recall that Proposition Proposition
Definition [3.1.6] and Proposition [5.1.11] will be used in this section.

Proposition 5.3.1. Let (Jy, Am) be a maximal simple cuspidal k-type of M, and x
a k-quasicharacter of F*. If (Jy, \m ® x odet) is weakly intertwined with (Jyi, Am),
then they are intertwined. There exists an element x € U(Ay) = U(>A1) X -+ %
U(,) such that z(Jy) = Jv and x(Av) = Av ® x o det, where U; is a hereditary
order associated to (J;, A\;) (i = 1,...,7). Furthermore, for any g € G, if g weakly
intertwines (Jy, Am ® x o det) and (Jy, Am), then g intertwines (Jy, Am ® X o det)
and (Ja, Am)-

Proof. By definition, write M as a product GLy,, x---xGL,,, then Jyy = Jy x-- - X J,
and Ay = A1 X -+ X A, where (J;, \;) are k-maximal cuspidal simple type of GLy,,
for i € {1,...,7}. The group U(2An) = U(A;) x -+ x U(,). Hence the two results
are directly deduced by [5.1.12] and [5.1.13]

O]

Definition 5.3.2. Let (Jy, Am) be a k-mazimal cuspidal simple type of M. We
define the group of projective normalizer Jy a subgroup of Jyi. An element x €
U(Anp), where Apyp = Ay x -+ - x Ay, belongs to I, if z(Jm) = Jum, and there exists
a k-quasicharacter x of F* such that x(Ay) = Av ® x o det.
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The induced k-representation Ay = ind% Aum is irreducible by Corollary [5.1.22

and according to|5.1.9} the restriction resjf,“ Au is semisimple. Let unt denote one of
M

its irreducible component.

Lemma 5.3.3. Let (Jy, Am) be a k-mazimal cuspidal simple type ofM, and vy and

un be two irreducible components of the restricted representation res‘{l,“S\M. Then :
M

Iy (g, p) = {m € M’ = m(vm) = p}

whence I§, (var, pavr) = Inv (Var, par) . In particular, Iny (un) is the normalizer group
of py in M. Moreover, this group is independent of the choice of p.

Proof. Let m € M’ weakly intertwines uy; with vy, Then by [5.1.11) the element m
weakly intertwines Ay with Ay ® x o det for some k-quasicharacter x of F*. By
definition

Ml = ey i TAM) = D77 A @ & o det.

Since the induced representation indﬁ AM ® & o det 2 Ay ® &, o det, by Frobenius
reciprocity, we have M ® & odet = Ay for every x € N /Jum. It follows that for
some g € Jy, the element gm weakly intertwines Ay with Ay ® &, - x o det for some
x € Jy/Ju. Applying[5.3.1, the element gm intertwines Ay with Ay ® &, - x o det,
and there exists an element y € Jy such that y(Ay) = Ay ® &, - x o det. Inducing
this isomorphism to jM, we see tha 5\M = S\M ® x o det, whence m intertwines S\M

Furthermore, the intertwining set Iny(Av) = Nam(Aw), the latter group is the
normalizer of Ay, which also normalizes U(2lyr), hence normalizes Jn. We deduce
that IM(S\M) = jMNM()\M). Then each element of I{;(xm, ¥Mm) normalizes A and
the group jl’v[ This gives the first two assertions.

To prove the third assertion, observe that the irreducible components of S\M| Jr
form a single Jy-conjugacy class. We have to show therefore that Jy normalizes
Ny (k)

The quotient group NM(:\M) / Ju is abelian. In fact, as we have proved above,
it is a subgroup of Nyi(Am)/Jm. The latter group is abelian, since Nyi(An) can be
written as EJJy X --- X EXJ,., where Ey, ..., E, are field extensions of F. Now let
z € Jy and y € Ny (pun), we have z~lyxz = y - m for some m € j{v[ Therefore:

a yx(pn) = y(pm) = o,

as required. O

Remark 5.3.4. To be more detailed, we proved that the intertwining group Iny (1)

is the stabilizer group Nyp(pa), which is a subgroup of EJJy x -+ x EXJ, N M/,
hence a compact group modulo center.
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5.3.2 Maximal simple cuspidal k-types of M’

In this section, we construct maximal simple cuspidal k-types of M’ (5.3.10). This

means that for any irreducible cuspidal k-representation 7/, there exists an ir-

reducible component puy; of resjf,“/\M, and an irreducible k-representation 7y of
M

Ny (par) containing gy, such that 7 & ind%l:I

as in the case of G’, which is to calculate the intertwining group and verify the
second condition of irreducibility ([5.1.21]).

Lemma 5.3.5. As in the case when M = G, we have a decomposition:

() T - We follow the same method

res) ind)l Av = Ay, & W,

where Ay, is semisimple, of which each irreducible component is isomorphic to Ay ®
x odet for some k-quasicharacter x of F*. Non of irreducible subquotient of Wy is
contained in Ay, .

Proof. This is directly deduced from the decomposition in O

Proposition 5.3.6. Let py be an irreducible k-subrepresentation of res?,\/[indﬁi)\M.
M

Then pn verifies the second condition of irreducibility (5.1.21]). This means that for

any irreducible representation © of M/, if there is an injection uy — resgff 7, then
M

h . . . M/ /

there exists a surjection from res ~1,\47r to M-

Proof. A same proof can be given as in the case while M’ = G’ (5.1.25)).
[

Proposition 5.3.7. Let n\y be an irreducible representation of Ny (pm) containing
um- Then Ty verifies the second condition of irreducibility.

Proof. Let Ny denote Nyp(un), then we have:
M. M’ ~ . Ny (l(N /)
TSNy lndNM/TM/ - 69NM/\M//NM/lnd‘Nll\v/i/r‘m(NM/)reSNI\/III\éIWa(NM/)a(TM')'
Notice that Npp has a unique maximal open compact subgroup jl’v[, hence j{v[ N
ba(Ny) = J{;Nba(Jyy), for any b,a € M. Hence we have the following equivalence:

NM’ . NIVI’ (Z(NM/)
resj{v[ lndNM/ Na(Ny) " Ny Na(Nyr) a(m)

~ . Jy ba(Nyy)

= Bve Ny (M) \Nagr /4 M7 (i) Sj{wﬂba(NM/)ba(TM/)
o~ ; jllw ba(jfv[)

- @bENM’ﬁa(NM/)\NM’/J{\/[lndj{\/lﬂba(j{vl) jI/\/[mba(j{\A)(@MM)?

where Guy denotes a finite multiple of .
Let a ¢ Ny, then ba is an element of Ny - a, and Ny - a N Ny = (. By
5.3.3 this means ba ¢ Iy, (un). This implies that non of irreducible subquotient
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ba(N /)
of 1nd T res. M
J{ba(Nyyr ) Jynba(Nyy

first equlvalence in this proof above, we obtain a decomposition:

)ba(TM/) is isomorphic to uy. Now combining with the

resh]\/} ind! Nl\ 7w = @ Wy,

non of irreducible subquotient of Wy, is isomorphic to 7y .
Now we verify the second condition of ;. Let 7’ be any irreducible k-representation
of M’. If there is an injection Ty < res%;/[,w’ , then res%;/yw’ is isomorphic to a
quotient representation (FGS%;,IHdNM,TM') /Wo. And the image of the composed
morphism below:
™ < res%;/[, = (res%M,md NM,TM/) /Wo

is not contained in (Wy,, + Wy)/Wo by the analysis above. Then we have a non
trivial morphism:

res%;d,w' = (v ©@ W, )/ (Wi, +Wo) = np.

Hence we finish the proof.
O

Lemma 5.3.8. Let G be a locally pro-finite group, and K1, Ko two open subgroups
of G, where Ki is the unique maximal open compact subgroup in Ko. Let w be
an irreducible k-representation of Ks, and T an irreducible k-representation of K.
Assume that 7|k, is a multiple of 7. If x € G (weakly) intertwines m, then there
exists an element y € Ko such that yx (weakly) intertwines 7.

Proof. Since 7 is isomorphic to a subquotient of ind%; Ko m( K2)res K(;;z)( Ko ¥ x(m), the re-

striction resg 7 is isomorphic to a subquotient of resk: K, 2ind & K (ko) TES K(QI;;( k)% x(m).
Applying Mackey’s decomposition formula, we have

K ax(Ka2)
@ dKilﬁlax(Kg)reSKlﬁaQ.r(KQ)am(ﬂ-)‘
aGKzﬂx(Kg)/KQ\K1

K z(K2)
dK;rﬁz(Kz)reSK2021(K2)x(7T)

1

resK in

Since K Nax(K3) is open compact in ax(Ks2), by the uniqueness of open compact
subgroup in ax(K3), the intersection K Nax(K2) C ax(K1), hence K1 Nax(Ks2) =
KiNax(Ky). Write res%ﬂ = P, 7, where I is an index set. We have an equivalence

az(K1) @ res?Z (K1) ax(T)

reSKlﬂaI Kl Klﬂaz K1

Since functors ind, res can change order with infinite direct sum, we reform the first
equivalence in this proof

dK2 x(K2)

resK ind 2 m:E(KQ)1resl;(2rm(K2)m(77)
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o~ - K ar(K1)
- @ EB lndKiﬂax(Kl)resKlﬂalx(Kl)a$ (7)-
I aEKzﬂx(Kz)/Kg\Kl

As in the proof of Lemma this implies that there exists at least one y € K>

K yx (K1) (7). 0

such that 7 is an subquotient of ind KNy (K1) YOS Iy nya (1) Y2

res

Theorem 5.3.9. The induced k-representation indlz\v/ll:/l/( v 48 cuspidal and irre-

p)
ducible. Conwversely, any irreducible cuspidal representation ' of M’ contains an
irreducible k-representation Ty of Ny (um), and 7 = ind%{w(%{)ﬁ\/{/, where T\

and Ny (un) are defined as in Proposition of some mazimal simple cuspidal
k-type (Jm, Am) of M.

Proof. For the first assertion, we only need to verify the two condition of irreducibil-
ity. The second condition has been checked in [5.3.7] By [5.3.8| and [5.3.3], we obtain
that the induced k-representation ind%}iﬂ/( pnt) ™™ is irreducible. Let 7’ be the induced
k-representation, and 7 the k-irreducible representation as in[5.1.32} We deduce from
and the fact that 7’ contains (J{;, A\;), that 7 contains (Jy, Am ® x o det).
Hence 7 is cuspidal and this implies that 7’ is cuspidal. Conversely, let 7’ be
an irreducible cuspidal k-representation of M/, and 7 be the irreducible cuspidal k-

representation of M which contains 7/. Then there exists a maximal simple cuspidal
k-type (Ju, Am ), and an extension Ay of Ayt to Nyi(Anr) such that 7 ind%M(AM)AM.

Let u = indiﬁ)\M, and Ny(p) be the normalizer of p in M. By the transitivity of
induction:

o ind%ll\v/i () Anr.

~ i 1M
T mdNM( Ow)

)
(

Denote ind%ﬁ (f\?w)AM as T\, which is an irreducible representation containing p.

Till the end of this proof, we denote uy as a direct component of y| Ji. N as
Nu(p), N as NN M, and Ny as Ny (um). Let K be an open compact subgroup
of Jy contained in the kernel of ™, and Z be the center of M. Since the quotient
(Z - N')/N is compact and the image of K in this quotient is open, we deduce
that Z - N’ - K is a normal subgroup with finite index of N. Hence the restriction
resg N7 TM is semisimple with finite length as in the first part of proof of
from which we deduce that the restriction res%/TM is semisimple with finite length as
well. After conjugate by an element m in M, the cuspidal representation 7’ contains
a direct component of this restricted representation. We can assume that m is
identity, and denote this direct component as 7'. Applying Frobenius reciprocity,
the representation 1resf}7{V 1 ind]}i M is semisimple, consisting of res:?,vI i, hence 7 contains
a py. Notice that Ny is a normal subgroup with finite inde)hg in N’. In fact, the
group Ny contains Z j{\/{ And as we have discussed after the proof of we could
write N’ as a subgroup of E;Jy x---x EXJ,NM' = (B} x---x EXNM’)(J;). Hence
res%I/WT’ is semisimple with finite length, and there must be one direct component
vy containing pyg. Since ' contains 7y, we have:

I~

!/
T 1nd%M/ ™ -
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This ends the proof. O

Definition 5.3.10. Let (Ju, Am) be a mazimal simple cuspidal k-type of M, and
pnm be an irreducible component of resj},‘“;\M, where Jyi and A are defined as in
M

. Let Ny (un) be the normalizer group of py in M/, and myp an irreducible
k-representation of Nyy(pum) containing puni.  We define the couples in forms of
(Na (), Tvr) are the maximal simple cuspidal k-types of M.

5.3.3 The k-representations m

In this section 7’ is an irreducible cuspidal k-representation of M’. We study the
irreducible cuspidal k-representations m of M, which contains 7’ as a common com-
ponent, and we prove that any two of them are different by a k-character of M factor
through determinant (Lproposition 9). This is the key to give the first description
of supercuspidal support of 7’ in the next section.

Lemma 5.3.11. Let (Jn, AM) be a mazimal simple cuspidal k-type of M, and p =
indﬁ)\M. Let 7 be any irreducible k-representation of N = Ny(u) containing p,
then res%/T is semisimple with finite length.

Proof. By the definition of N, we know the center Z of M is contained in IN. Since
F*/detZ is compact, the quotient group detN/detZ is compact as well. Notice
that 7|5 is a multiple of y, then any open subgroup contained in the kernel of 4
is also contained in the kernel ker(7) of 7, which implies ker(7) is open. Hence
Z - N' - ker(7) is a normal subgroup with finite index in N. Applying Proposition
the restricted k-representation resg_ AT is semisimple with finite length, and
by Schur’s lemma we deduce that res%/r is semisimple with finite length. O

Lemma 5.3.12. If ¢y, co two characters of Z and they coincide on Z M, where Z

1

denotes the center of M. Then c1 o cy” can be extended to a character on M which

factor through det.

Proof. First, we extend c; o 02_1 to Z-M': For any a € Z,b € M/, define ¢y(ab) =
c10cy ' (a). This is well defines, since for any a’, b’ such that a’b/ = ab, then a~'a’ €
Z N M. Hence ¢; o ¢y *(a~ta’) = 1, which implies co(ab) = co(a’t’). Now consider
Ind} \ co, which has finite length. There is a surjection from resy,,Ind} \vco to
co, then of which there exists an irreducible k-subquotient ¢ containing ¢y, by the
uniqueness of Jordan-Holder factors. According to the fact that M’ is normal in
M and ¢ is trivial on M/, the k-representation resyy,Ind} ; co is a trivial. Hence ¢
is trivial on M’ as well, and hence factor throught F* = M/M’. Then by Schur’s
lemma, c is a character factor through det. O

Lemma 5.3.13. Let 11,72 be two irreducible k-representations of N (notion as in
5.8.11). Assume that res%/ﬁ and res%n’g have one direct component in common,
then there exists a k-quasicharacter of F* such that 71 = 15 ® x o det.
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Proof. The group N is compact modulo center, and Jy is the unique maximal
open compact subgroup of N. Hence every irreducible k-representation of N is
finite dimensional, of which the kernel is always open. Let U be an open compact
subgroup contained in Kerm; N Kerm N jM Let ¢1,co be the central characters of
71 and 7o respectively. According to there exists a k-quasicharacter y of F'*
such that ¢; = ¢o ® x o det. After tensoring y o det, we could assume that ¢; = cs.
Hence:

Homyz.nr.y(resy. yr 71, resy. .y T2) # 0.

Then:
Hompy (71, ind% v resy yo ) # 0.

Since |N : Z - N’ - U] is finite, the later factor above has finite length and
indg,N/,UreSg,N/,UTg = T ® lndgNUl

Notice that any Jordan-Holder factor of indg Nl is a character factor through
det|y, and |[F* : det(N)| is finite. By the same reason as in the proof of [5.3.12]
we could extend each of them as a character of M factor through det. Hence there
exists a k-quasicharacter y of F'*, such that 71 & 7 ® x o det. ]

Proposition 5.3.14. Let © be an irreducible cuspidal k-representation of M'. If
1, o two irreducible cuspidal k-representations of M, such that ' appears as a direct
component of res%m and TQSM/WQ i common, then there exists a k-quasicharacter
of F* werifying that m = w9 ® x o det.

Remark 5.3.15. We will apply the proposition in the proof of the proposition
which is the first part of the uniqueness of supercuspidal support of SL,(F).
We will state two proofs of the proposition as below. The first proof is given
through type theory while the second proof does not concern about type theory, which
induce two parallel proofs of uniqueness of supercuspidal support of SL,,(F'), with and
without type theory respectively. The second proof is similar to that of the proposition
in §V1.3.2. in [Re], and also the proposition 2.4 in [Td].

proof version 1. Let (JM, Am) be a maximal simple cuspidal k-type of M contained
in 7, and g = ind M)\M Then there is an extension 7 of © to N = Ny(u) such that
7 2 indN7. Let N ’ denote NNM. Asin the proof of |5.3.9) - there exists a direct

component uy of res ,u such that 7/ 2 ind}! N/T where 7/ is a direct component of

I'GS%,T and 7/ = ind¥ N (it )TM Here 7 is an irreducible k-representation containing
un- By m mo contains (Jyr, A ® xo o det) for some k-quasicharacter yo of F'*.
Hence there is an extension Ay of Ay on Nyp(Av) such that mo = ~ ind! Nat Ot )AM ®
xoodet. Let 75 denote ind Naa AM)AM ® xo o det, which is an extension of u® yoodet.
After tensor 16 det, we could assume that 75 is an extension of . Now we want

to study the relation between 7 and 7».
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First consider res%m:

reshindNry = @N\M/Nind%m(]v)res%év(z(N)a(Tg).
Since [N : N N a(N)] is finite, the representation above is a direct sum of k-
representations with finite length, and of which 7/ is a sub-representation. Hence
there exists an irreducible sub-quotient 7 of resh]\/}ﬂg such that 7/ is a direct com-
ponent of res]NV,Tl. By lemma there is a k-quasicharacter y of F'* such that
71 2 7 ® x odet.

We will prove that 7 = 79. Assume that 74 and 7 are not isomorphic, then there
exists a ¢ N such that 7y is an irreducible subquotient of ind?, o N)res%éva)( N)a(Tg),
which means a weakly intertwines 7, with 7o. Hence there exists b € N such that ba
weakly intertwines u® y odet with p and ¢ € Jyr, d € cba(Jyr) such that deba weakly
intertwines Ay ® x odet with A\y. Hence there is g € Jyp such that g(Ay ® x odet) =
Am. This implies that y ® x o det = p. Then the element ba weakly intertwines p
to itself. Then Ay, as a subrepresentation of res%,u, is a subquotient of:

lndeﬂb(l(jM) jMﬂba(jM) ba(JM)

~ _ ~ ~ cba(Jy)
= Bpa (a0 \ba(ar) [ Iuinba(Toar) DD cba(ng PEAM)-

Hence there is ¢g € Jy, such tha bacy € IYi(Am) = I (Am) € N, which is contra-

dicted to our assumption that a ¢ N. Hence 7 = 1. We conclude that:

To 2 indN 7 2 (ind¥7) ® x o det = 1y @ x o det.

O

proof version 2. The assumption implies that the set Homyy (res%m,res%mg) is
non-trivial. The group M acts on this Hom set by

g-f:=mi(g) o fom(g)™t, f € Homyy (resyy;my, resyyima), g € M.

This action factors through M’, hence induces an action of the abelian quotient
group M\M’ on this Hom set, which is a finitely dimensional k-vector space, since
resM,m and res%,wz are semisimple with finite length. Then the elements of M\M’
forms a family of commutative linear operators on a finitely dimensional k-vector
space, hence they have one common eigenvector. This is to say that there is an
k-quasicharacter xo of M\M’ such that g - f = xo(g)f for each element g € M,
hence o can be written as x o det for some k-quasicharacter x of F'*. Notice
f € Homyp (m @ x*
coincides with mo. ]

odet, o), by irreducibility, the k-representation m ® x ! odet
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5.3.4 First description of supercuspidal support

Let m and 7' be as in The supercuspidal support of 7 is unique up to
M-conjugate ([V2]). We prove in this section, that the supercuspidal support of
7’ is also unique up to M-conjugation , which is the first description of
supercuspidal support. Eventually, we will prove that the supercuspidal support of
7’ is unique up to M’-conjugation in the next chapter.

Lemma 5.3.16. Let w be an irreducible k-representation. If m ® x o det is super-
cuspidal for some k-quasicharacter x of F'*, then m is supercuspidal.

Proof. If m® x odet is supercuspidal, then it contains a maximal simple cuspidal k-
type (Ja, Am). Hence 7 contains (Jy, AM®x ' odet), which is also a maximal simple
cuspidal k-type. Hence m is cuspidal. Now assume that there is a supercuspidal
representation 7 of some proper Levi L of M such that 7 is an irreducible subquotient
of ’i%/IT. Then ™ ® x o det is a subquotient of 2'%/[7‘ ® x o det. In fact, we have

iMr @ x odet 2 (iM7) x x o det.

To obtain the equivalence above, we could apply [§1,5.2,d)][V1], by noticing that for
any parabolic subgroup containing L, its unipotent radical is a subset of the kernel
of det. ]

Lemma 5.3.17. Let 7’ be an irreducible cuspidal k-representation of M, and m an
irreducible k-representation of M containing n’. Then w' is supercuspidal if and only

if T is supercuspidal.
A similar result has been proved when 7’ is cuspidal in Corollary |5.1.33

Proof. Applying there exists a maximal simple cuspidal k-type (Jy, Am) and
a direct component A\y; of An|mr, such that 7’ contains \y;. Hence by the
irreducible representation 7 contains Ay ® x odet for some k-quasicharacter x of F'*.
Then by §IV1.2,1.3 in [V2] and this implies that 7 is an irreducible cuspidal
k-representation.

We assume that 7 is non-supercuspidal, which means there exists a supercup-
idal representation 7 of a proper Levi subgroup L of M, the representation 7 is a
subquotient of the parabolic induction 7. Now by §5.2 [BeZe], we obtain:

. . /
res%zlﬁ/[T = zll\ﬁ res%n’.
There must be a direct component 7/ of res%,T, and 7’ be an irreducible subquotient

N . .
of it} 7. Hence 7’ is not supercuspidal.
O

Proposition 5.3.18. Let 7’ be an irreducible cuspidal k-representation of M/, and
7 an irreducible cuspidal k-representation of M such that  contains ©'. Let [L, 7] be
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the supercuspidal support of w, where L is a Levi subgroup of M and T an irreducible
supercuspidal k-representation of L. Let 7" be a direct component of resIIj,T. Any
element in the supercuspidal support of 7 is contained in the M-conjugacy class of
(L', 7).

Proof. Let L{y be a Levi subgroup of M’ and 7 an irreducible supercuspidal k-
representation of L{. Let 79 be an irreducible k-representation of Ly containing 7,
hence 7 is supercuspidal as in Lemma

If 7/ is an irreducible subquotient of iﬁ/gTé. By the same reason as in the proof

of Lemma we know that there must be an irreducible subquotient of i%m,
noted as g, such that 7’ is a direct component of TGSM/ﬂ'o. From there exists
a k-quasicharacter x of F* such that myp & 7 ® x o det. On the other hand, the
supercuspidal support of ™ ® x o det is the M-conjugacy class of (L,7 ® x o det).
We assume that Ly = L and 70 = 7 ® x o det. Then 7{, is a direct component of

reslﬂ,r ® x odet = res]ﬁ,r. O



Chapter 6

Supercuspidal support

6.1 Uniqueness of supercuspidal support

6.1.1 The n-th derivative and parabolic induction

Let ni,...,ny, be a family of integers, and M, . n,, denote the product GL,, X
- X GLy,,, which can be canonically embedded into GLy,4...4n,,. Let M; -

denote My, .. n,, N SLy, +...4n,,, and P, the mirabolic subgroup of GLy,.

Definition 6.1.1. Letnq,...,n,, be a family of positive integers, and s € {1,...,m}.
We define:

e the mirabolic subgroup at place s of Mu,  n,, a8 Piny . nm)s = GLny X -+- %
GLn371 X Pns X GLnS+1 X X GLnnL y

e the mirabolic subgroup at place s of My, as P/

- ? (n1yeesm),
GL,, , X P,, x GL X -+ X GLy,, "M/,

¢ = GLy, X --o %

Ns+1 yeesm, *

For any i € {1,...,m}, let U,, be the subset of GL,,, consisted with upper-
triangular matrix with 1 on the diagonal. We fix 6; a non-degenerate character
of Up,. It is clear that Uy, _ n, = Uy x -+ X Up,, is a subgroup of Py, .
and P/

(nlv---vnm)75
vector space with dimension ns — 1, which can be embedded canonically as a normal

,S

for any s € {1,...,m}. Let V,,_1 denote the additive group of k-

subgroup in Uy, X -+ X Uy, . The subgroup V,,—1 is normal both in P,

7“"nm)}s
/ f— .
and P(m’_”’nm),s, furthermore, we have P,  n.)s = Mny, n.—1,..nm * Va,—1 and

/ _ /
P(nl,.‘.,nm),s - M'ﬂl,-n,ns—lwwnm ) Vns*l'

Note v be any character of Uy, x .-+ x U, . For any k-representation (E,p) €

/

Repk (P(nl ----- n77l)1

of p(g)a — v(h)a, where g € V,,,_1,a € E. We define the coinvariants of (£, p) ac-

.), let E,, denote the subspace of E generated by elements in form

cording to 6§ as E/Ej ., and note it as E(v, s), and view E(v, s) as a k-representation
of M/

N1yeeesNs— 1Ny *

Definition 6.1.2. Fiz a non-degenerate character 60 of Uy, x --- x Uy, .

79
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e Let (E,p) € Repy(P/

(11, m) )
U Repk(P('m,m’nm)’S) — Repy (M3, 21 )
which maps E to E(1,s);
o Let (E,p) € Reppy(M7,, 1 0 )
U Repy(M), 1) = Repp(P, ).
=M

Write P(’n1 m)is trtiato i Vna—1. Define WH(E, p) = (E,¥*"*(p))
by U5 (p)(mg)(a) = p(m)(a), for any m € My, .y . .9 € Vo1 and
a €l

o Let (E,p) € Repk(P(’

nlv"'anm%S)’

Q;S : Repk(P(,nlv"'vnWL)78) % Repk(P(/n17"'7n5_17"'7nm)7s)’

which maps E to E(,s);

o Let (E,p) € Repy(F,,,

nsfl,...,nm),s)’

q)g,s : Repk(P(/nl,...,ns—l,...,nm),s) — Repk(P(/nl,...,nm),s)v
P/
by ®, (p) = lndPE’ e ””’1 | VagrPOr where po(pg)(a) = 0(g)p(p)(a), for
M yeens ng—1,..., nm),s S
any p € P(/m,...,ns—l,...,nm),s’g € V-1 anda € E.

Remark 6.1.3. By the reason that for any m € Z the group Vo, is a limite of pro-p
open compact subgroups, the four functors defined above are exact. In the definition
as a subgroup of P(’

o ew P :
Of 0,s’ we view P(nlr n17“~7nm)75

cs—1,nm),8

The notion of derivatives is well defined for k-representations of G, now we
consider the parallel operator of derivatives for Levi subgroups of G’.

Definition 6.1.4. We fiz a non-degenerate character 0 of U,, x --- x U, . Let
(E,p) € Repy(P/ ), for any interger s € {1,...,m} and 1 < d < nij+...+ng,

(nl,.“,nm,s)

we define the derivative p(gds) :
o when 1 <d < ng, p(gdz =T, o (P, ) p;

o whenns+1<d=ng+...+ns_;+n', where 0 <1 <s—1landl <n' <ng;_q,

d - _ _ N
then Pé,g =0, 1 0(Pps1-1)" o (Pgst) o0 (@) 'p

)

Definition 6.1.5. To simplify our notations, we need to introduce ind™ ! : Rep, (G) —

Repy(Ga) according to different cases:

o When Gy =M, ., and Go =M, . .. weembed Gy into G as in
the figure case 1, and ind™ ™! is defined as iu,1, and the later one is defined as

in §1.8 of [BeZe|;
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Figure 6.1: Case I

Figure 6.2: Case II

o When G, = P/ and Gy = P! we embed Gy into

(N1y.esnm),m (n1y-eesnm—1+nm),m—17
Gy as in the figure case 11, and ind™ ™1 is defined as s

o When Gy = P/ we embed Gy into

(n1yeeynim),m—1 and G2 = P(,nl,...,nm_l—l—nm),m—l’
Gy as in the figure case III, and ind” ' is defined as iy,10€. Heree is a char-
acter of P(Im,...,nm),m—l' Write g € P(,nl,...,nm),m—l CMy, o, a5 (915, 9m)s
define e(g) = |det(gm)|, the absolute value of det(gy,). This k-character is well

defined since p # 1.

Proposition 6.1.6. Assume that p1 € Repy(M;,, ., ),p2 € Rep,(F/, ,..,,nm),m)’
and p3 € Repk(P(’n1 ) m_1)- The functor ind™ ! is defined as in|6.1.5 according

to different cases.

1. In Repk(P(Inl,...,nm_l—i-nm),m—l)’ there exists an exact sequence:

0= indyt ™ (p1lp, ) = (indy ™ p0)lpr | = indp~Heilpy, ) = 0,

/ _ / /
Pm_lvm_l - P(nlvuanmfl"'nm):m_l’ and Pm7m

/ _ /
where Py, 1 = P

, (n1y..esnm),m—17

(N1yeeyim),m”
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Figure 6.3: Case 111

2. When 2 < m, let § be a non-degenerate character of Up, X -+ x Uy, , X
Un, i 4nm» Such that 0|y, x..xu,, =60. We have equivalences:

o ind” oW, pp =W oind” !po;

m—1
o ind o ®, o= oind; ! po.

3. We have an equivalence:
— s Agm—1 s Agm—1 —
Vo _oind " p3 Zind;, oW p3,
and an exact sequence:

oind” tp3 — ind™ (T, p3)|pr) — 0,

. am—1 — _
0—indy " 0®y, 1p3— <I>6.7m_1

where P = P!

(n1yeesim—1—1,1m),m "

Proof. As proved in the Appendix, Theorem 5.2 in [BeZe] holds for k-representations
of M. Andlet n =n; + ... +nm

For (1): Let M' = Mj,, , ~ be embedded into G’ = M;, . asin defi-
nition [6.1.5] figure I. Define functor F as F(p1) = p1|p(/ eyt where the
MY yenes Nm—1+nm),m—

functor F is defined as in 5.1 [BeZe| in the following situation:
U=U,, d=LN=P, . . V={e}

To compute F, we apply theorem 5.2 [BeZe]. Condition (1),(2) and () from 5.1
[BeZe] hold trivially. Let T be the group of diagonal matrix, the Q-orbits on X =
P\G is actually the T - N-orbits, and the group T - N is a parabolic subgroup. By
Bruhat decomposition T - N has two orbits: the closed orbit Z of point P -e € X
and the open orbit Y of the point P -w™' € X, where w is the matrix of the cyclic

permutation sgn(o)l,,, - o, where

Nm

c=(Ni+ - +nm1—=n—-n—1—-=n + - 4nm1),
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and sgn(o)1y,,, denote an element in M;, , which equals to identity on the first

yeens Tl

m—1 blocs, and sgn(o) times identity on the last bloc, and sgn(c) denote the signal
of 0. Now we consider condition (4) from 5.1 [BeZe]:

e Since V' = {e}, it is clear that w(P),w(M) and w(U) are decomposable with
respect to (N, V);

e Let us consider w™1(Q) = w™}(N).

To study the intersection w='(N) N (M - U), first we consider the Levi subgroup

M/ ot 1 4nm—1,1 and the corresponding standard parabolic subgroup

Y
P = Mnl,..A,nm,lJrnmfl,l ’ Vnm—1+nm—17

where V,, 4. —1 denotes the unipotent radical of P’. We have N C P’, hence
w I (N) € w™H(P’). As in 6.1 of [BeZel, after fix a system Q of roots, and denote
Q7T the set of positive roots. Then by Proposition in 6.2 [BeZe], we could write
w™HP") = G(S) and P = G(P),U = U(M) in the manner as in 6.1[BeZe], where
S, P and M are convex subset of Q. So by Proposition in 6.1 [BeZe|, we have:

w(P)NP =G(SNP);

w I (PHYNU =USNP\M);
wPHYNM = G(SNM).
Hence
wPHYNP = (w ' (P)NM) - (w I (P)NT).
Notice that w1 (P) N U = w™}(N) N U, we deduce that:

wlIN)NP = (W I(N) M) - (W HN) N V).

In the formula of ® in 5.2 [BeZe], since UNw™!(N) = U, the characters e; = g9 = 1.
Hence we obtain the exact sequence desired.

For (2). In this part, the functor ind™ ! is always defined as the case II in
First we consider the case ¥ . Define functor F as ¥, o ind”~!. We write F as
in §5.1 [BeZe| in the situation:

G=PF M=P

(P10 m—14+nm),m—1> (n1y0eym),m?

_ / _
N = Mn1 nm,ﬁ—nm—lav - Vnm—1+nm*17

-----

and U are defined in the case II. Condition (1) and (2) of §5.1 [BeZe is clear.
Since Q = G, and there is only one Q-orbit on X = P\G, conditions (3), (4) hold
trivially. Thus we obtain the equivalence:

s gm—1 — ~ o am—1
ind,, " oW, pp =V __, oind,,  po.
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For the case @gm_l: define functor F as <I)9T 0 ind™~!. We write F as in §5.1

[BeZe] in the situation:
G=P

(N1, sm—1+nm),m—17

—_ p/ —
N = P(nl, Mm—1+nm—1), m—l?v - Vnm—1+nm_17

and M, U are defined as the case II of [6.1.5] Conditions (1), (2) of §5.1 [BeZe] hold,
and

P\G/Q =DM, S\M,

/
N1yeeesMm—1,m ”11-~~,nm—1+nm—1/P(n1,...,nmfl—‘rnm—l),m—l'

Hence as proved in (1), the group Q has two orbits on X = P\G: the closed orbit
of P - e and the open orbit P - wo_l, where wy is the matrix sgn(og)1l,,,—1 - 00. The
matrix og corresponding to the cyclic permutation:

i+ 4npma—=n—-n—1—=--—=n+ - +npy_1).
Now we check the condition (4) of §5.1 [BeZe|. Since

P=M

N1, Mm—1+Nm

.\/'7

and wo(V) = V, hence wy(P) and wy(M) are decomposable with respect to (N, V).
We deduce that wy(U) is decomposable with respect to (N, V) by noticing that
wo(U) = (wo(U)NN) - (wo(U) N'V). Now consider wy(Q), wy (N) and wy (V). Since
wy (V) = V, which is decomposable with respect to (M, U) clearly. Notice that
wo (V)NP =wy (V), and wy (N) is decomposable with respect to (M, U) by (1). We
deduce that w; (Q) is decomposable with respect to (M, U). And the condition ()
does not hold for the orbit P - o¢. Then by §5.2 [BeZe|, we obtain the equivalence

s qm—1 -~ FH o am—1
ind;, " o ®, = (I)é,m—l oind,, ",

for every py € Repk(P(’nh_’nm),m).
For part (3). In the case of F = ¥~ | oind™ !, we have (in the manner of §5.1
[BeZel):
G=PF

N1yeeeym ),M?
/
N = Mnl’ nm—l’V:Vnmfl’

and M, U as in case II. There is only one Q-orbit on P\G, and condition
(1) — (4) and (x ) in §5 1 [BeZe| hold. Notice that eo W, ;=W . (e is defined in
6.1.5). After applying theorem 5.2 of [BeZe], we obtain the equivalence:

U oind? oy =2ind? oW ps.

For the case F = @ o indm_l. We have (in the manner of §5.1 [BeZe]):

;m—1

G=P

nl"“)nm)7m7
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_ p/ _
N = P(nl,...,nm,1+nm—1),m—17 V= Vnm—ﬁrnm*lv

and M, U are defined as the case 11 of As in the proof of part (2), the group Q
has two orbits on P\G: the closed one P-e and the open one P~!-wy. The condition
(4) can be justified as part (2), and condition (x) is clear since wo(U) NV = 1.
Now we apply theorem 5.2 [BeZe]. The functor corresponds to the orbit P - e is
ind%‘1 ) @;’mfl by noticing € o @;mil = Py ,,—1 0. Now we consider the functor
corresponds to the orbit P-wy . Following the notation as §5.1 [BeZe], the character

f = 7t —1 is trivial. The character e; is trivial, and €5 = ¢~!. Hence
0 Mnwg = (V)
the functor corresponded to the fixed orbit is
ind" ! oresp, T 0 U
from which we deduce the exact sequence desired. ]

Corollary 6.1.7. 1. Letp € Repk(P(’ ). Assume that 1 < i < ny,, then

N1y, Nim ), M
(ind%—lp)(l) 1ndm 1p( i)

f,m—1 9m7
2. Let p € Repy(P/ (1, nm)mil). Assume that 1 < i < N1 + N, then

(ind"™ 1p)() s filtrated by ind%il((pgmj))gzn 1), where i —npy, < j <)

8. Let p € Rep,(M},, . ). Assume that i > 0, then (ind%‘lp)gzn_l is filtrated

by indm_l((pém ))( 9 1), where i —n,, <j <i;

0,m—

4. Let p € Repy(My, . ), there is an equivalence:

(ind% o0 indm:% o ind™" 1p)(n1+ Fnm) o (- ((pg;;ln))(nm—l)) . )gfll)

0,1 0,m—1
Proof. Part ( ) follows from the exactness of P ;1 and (6 ) from (1)
and [6.1.6] (3 ) from (1), (2) and [6.1.6] (1 Part ) follows from ( ) by noticing
that
ind} o---0ind™”% 0 ind™ ! p S[L"”;"mp
In fact, this is the transitivity of parabolic induction. O

6.1.2 TUniqueness of supercuspidal support

Proposition 6.1.8. Let 7 € Repy (M, ), and 0 a non-degenerate character of
. Then Te(nﬁ— Fnm) % 0 is equivalent to say that Homyy, o 1(7,0) # 0.
In particular, this is equivalent to say that (Up, . p,.,0)-coinvariants of T is non-
trivial.

Proof. In this proof, we use U to denote U, . For the first equivalence, notice

77777

that @, (7) # 0 is equivalent to say that (Vnm_l, f)-coinvariants of 7 is non-trivial.
For 1 < s < n,;, — 1, let V5 denote the subgroup of U consisting with the matrices
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with non-zero coefficients only on the (s+1)-th line and the diagonal. Let W denote
the representation space of 7. The space of 7'9( 1) o isomorphic to the quotient
of W by the subspace Wy generated by gs(w) — 6(gs)w, for every s and g5 € Vs,
w € W. Meanwhile, since the subgroups V;’s generate U, and 6 is determined by
0]y, while considering every s, the subspace Wy of W is isomorphic to the subspace
generated by g(w) —0(g)w, where g € U. Hence Te(n1+ Fnm) # 0 is equivalent to say
that (Up,,..n,.,0)-coinvariants of 7 is non-trivial. The second equivalence is clear,
since the (U, #)-coinvariants of 7 is the largest quotient of 7 such that U acts as a

multiple of 6. O

Proposition 6.1.9. Let 7 € Rep, (M7, and p be a subquotient of T. Let

(nl +-- +nm)

,nm)z
0 be a non-degenerate character of Uy, . n,. ., and Po.m is non-trivial, then

(n1+ +nm)

To.m 15 non-trivial.

Proof. We consider the (n; + ... + n,,)-th derivative functor corresponding to the
non-degenerate character ¢, from the category Repy(Mj, . ) to the category of

k-vector spaces, which maps 7 to 7'9(7”Jr Fnm), By Definition[6.1.4/and Remark|(6.1.3

this functor is a composition of functors ¥~ and ®, , hence is exact. Let py be a
sub-representation of 7 such that p is a quotient representation of pg. The exactness
of derivative functor implies first that p01Jr m L0, and apply again the exactness

we conclude that pmJr Hmo L),

O

Theorem 6.1.10. Let M’ be a Levi subgroup of G', and p an irreducible k-representation
of M. The supercuspidal support of p is a M'-conjugacy class of one unique super-
cuspidal pair.

Proof. Since the cuspidal support of irreducible k-representation is unique, to prove
the uniqueness of supercuspidal support, it is sufficient to assume that p is cus-
pidal. Let 7 be an irreducible cuspidal k-representation of M, such that p is a
sub-representation of resM,ﬂ. Let (L,7) be a supercuspidal pair of M, and [L, 7]
consists the supercuspidal support of 7. By we have resf,T > @17, where
I is a finite index set. According to the supercuspidal support of (M, ') is
contained in the union of M’-conjugacy class of (L', ;), for every i € I. To finish the
proof of our theorem, it remains to prove that there exists one unique ig € I such
that (L', 7;,) is contained in the supercuspidal support of (M, p).

After conjugation by G’, we could assume that M’ = M/, and L' = M;

1s-+-5Mm
for a familly of integers m, l, n1, ..., nm, k1, . . . , ki € N*. There exists a non-degenerate
character 0 of U = Uy, .., such that p(n1+ Fnm) # 0. In fact, let 8 be any non-

degenerate character of U and we write IGSM/T( X Pyegms, where S is a finite index

set. We have:

i) o ()it o g g (my) k),
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where 7("1++F7m) indicates the (ng + ...+ 7y, )-th derivative of w. As in Section [§II1,
5.10, 3)] of [V1], dim(x("++7m)) = 1, hence there exists one element sy € S such
that (Wso)ét?j“'Jrnm) # 0. Notice that 7 are isomorphic to some 75, hence there exists
a diagonal element ¢ € M, such that the ¢-conjugation ¢(7s,) = 7. The character

t(0) is also non-degenerate of U, and we have (t(wSO))izlel)tﬁ“”L"m) = (7r30)§n71n+”'+nm) as
k-vector spaces. We conclude that dimrt((zl)tr;*nm) = 1. To simplify the notations,

we assume ¢ = 1.
If p is a subquotient of i%/n for some i € I. By (4) of [6.1.7 and 6.1.9] the
derivative Ti(gklﬁerkl) # 0. Note UNL’ as Up. By section [§III, 5.10, 3)] of [V1I,

the derivative Te(liﬁmﬂﬂ) = 1, which means the dimension of (Uy,,#)-coinvariants

of 7 is 1 (by [6.1.8). Notice that the (Uy/,6)-coinvariants of 7 is the direct sum of
(Uys, 6)-coinvariants of 7; for every ¢ € I. This implies that there exists one unique
i9 € I whose (U, #)-coinvariants is non-zero with dimension 1. By and
this is equivalent to say that there exists one unique ¢g € I, such that the derivative
LRtk £0. O

9,1
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Appendix A

Theorem 5.2 of Bernstein and
Zelevinsky

We need the results of Theorem 5.2 of [BeZe| in the case of k-representations. In
fact, the proof in [BeZe] is in the language of ¢-sheaves, which can be translated to a
representation theoretical proof and be applied to our case. In the reason for being
self-contained, I rewrite the proof following the method in [BeZel.

Let G be a locally compact totally disconnected group, P, M, U, Q, N, V are
closed subgroups of G, and 6, ¥ be k-characters of U and V respectively. Suppose
that they verify conditions (1) — (4) in §5.1 of [BeZe], and denote X = P\G. The
numbering we choose in condition (3) is Zi,...,Z; of Q-orbits on X, and for any
orbit Z C X, we choose @ € G and w as in condition (3) of [BeZe].

We introduce condition (*):

(*) The characters w(f) and v coincide when restricted to the subgroups w(U)NV.

We define ®7 equals 0 if (x) does not hold, and define ®7 as in §5.1 [BeZe] if (%)
holds.

Definition A.0.1. Let M, U be closed subgroups of G, and M NU = {e}, and the
subgroup P = MU is closed in G. Let 6 be a k-character of U normalized by M.

e Define functor iy gRepy (M) — Rep,(G). Let p € Rep, (M), then iy g(p) equals
ind§ pu g, where pu g € Repy,(P), such that

puo(mu) = 0(u)modg,(m)p(m)

e Define functor rygRep,(G) — Rep,(M). Let m € Rep,(G), then ryg(m)
1

equals mody; 2 (resS )/ (resSm) (U, 0), where (resim)(U,0) C res§n, generated
by elements m(u)w — O(u)w, for any w € W, where W is the space of k-
representation .

89
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Remark A.0.2. By replacing ind to Ind, we could define Iy 9. Notice that ryg is
left adjoint to Iy .

Proposition A.0.3. The functors iy g and ryg commute with inductive limits.

Proof. The functor ryy commutes with inductive limits since it has a right adjoint
as in [AL0.2

For iyg. Let (ma,a € C) be a inductive system, where C is a directed pre-
ordered set. We want to prove that iy g (ligﬂa) o li_H;(iUﬂﬂa). The inductive limit
hﬂ’ﬂa is defined as ®yeema/ ~, where ~ denotes an equivalent relation: When
a < pxe Wyy e Ws, o~ yif ¢pop(r) =y, where W, denotes the space of
k-representation m,, and ¢, g denotes the morphism from 7, to mg defined in the
inductive system.

First, we prove that iy g commutes with direct sum. By definition, ®aecciv oma
is a subrepresentation of iy g @aec Ta, and the natural embedding is a morphism
of k-representations of G. We will prove that the natural embedding is actually
surjective. For any f € m := iy g @acc Ta, there exists an open compact subgroup
K of G such that f is constant on each right K coset of MU\G. Furthermore, the
function f is non-trivial on finitely many right K cosets. Hence there exists a finite
index subset J C C, such that f(g) € ®;csW;, which means f € iy g ®jes 7;. Since
iy,p commutes with finite direct sum, we finish this case.

The functor iy g is exact, we have:

Z.U,G(liﬂﬂ'a) = iU,G(@aecwa)/iUﬂ <"Li - y>z~y-

Notice that héﬂingﬂ'a = @iy gma/ ~, where ~ denotes the equivalent relation: When
a < B, fa € Vu, fg € V, where V,, is the space of k-representation iy gm,, then
fa ~ f3if iv,0(Pa,p)(fa) = fa, which is equivalent to say that ¢n g(fa(9)) = fs(9)
for any g € G. In left to prove that the natural isomorphism from @®qcc(ivg7q) to
iU,6(PaccTa), induces an isomorphism from (fo — f3) f,~fs t0 iU6(T — Y)z~y. This
can be checked directly through definition as in the case of direct sum above. O

Theorem A.0.4 (Bernstein, Zelevinsky). Under the conditions above, the functor
F =ryyoiug : Repy (M) — Rep,(N) is glued from the functor Z runs through all Q-
orbits on X. More precisely, if orbits are numerated so that all sets Y; = Z1U...UZ;
(1 =1,...,k) are open in X, then there exists a filtration 0 =Fy C F1 C ... CFx =F
such that F;/F;_1 = &z, .

The quotient space X = P\G is locally compact totally disconnected. Let Y
be a Q-invariant open subset of X. We define the subfunctor Fy C F. Let p
be a k-representation of M, and W be its representation space. We denote (W)
the representation k-space of iy g(p). Let iy (W) C i(W) the subspace consisting of
functions which are equal to 0 outside the set PY, and 7, 7v be the k-representations
of Q on ¢(W) and iy (W). Put Fy(p) = rv 4 (7y), which is a k-representation of N.
The functor Fy is a subfunctor of F due to the exactness of 7y y.
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Proposition A.0.5. Let Y, Y’ be two Q-invariant open subset in X, we have:
Fynyy =FyNFy, Fyuy =Fy+Fy, Fyp=0, Fx=F.

Proof. Since ry 4 is exact, it is sufficient to prove similar formulae for 7y. The only
non-trivial one is the equality vy = Fy + Fy/. As in §1.3 [?], set K a compact
open subgroup of Y UY’, there exists ¢ and ¢’, which are idempotent k-function on
Y and Y’, such that (¢ + ¢')|x = 1. We deduce the result from this fact. O

Let Z be any Q-invariant locally closed set in X, we define the functor

®z : Repy,(M) — Repy(N)

to be the functor Fyyz/Fy, where Y can be any Q-invariant open set in X such that
YUZisopenand YNZ = (. Let Zy,...,Z; be the numeration of Q-orbits on X as
in and let F; = Fy, (i =1,..., k), which is a filtration of the functor F be the
definition. To prove Theorem it is sufficient to prove that Fy, = ®yz,.

By replace P to w(P), we could assume that w = 1. Now we consider the diagram
in figure BZ.

This is the same diagram as in §5.7 [BeZe], in which a group a point H means

H
Repy(H), an arrow * means the functor ip g, an arrow \, means the functor ig ,
H

and an arrow ~» means the functor ¢ (consult §5.1 [BeZe] for the definition of ¢).
Notice that G --+ Q does not mean any functor, but the functor P - G --» Q is
well-defined as explained above The composition functors along the highest
path is of this diagram is F, and if the condition (x) holds, the composition functors
along the lowest path is ®7. We prove Theorem by showing that this diagram
is commutative if condition (*) holds, and F7 equals 0 otherwise. Notice that parts
LIL III, IV are four cases of and we prove the statements through verifying
them under the four cases respectively.

Let p be any k-representation of M, and W is its representation space. We use
7 to denote Fz(p), and 7 to denote ®z(p).
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Case I: P = G,V = {e}. The k-representations 7w and 7 act on the same space
W, and the quotient group M\ (P N Q) is isomorphic to (MNQ)\(PNQ). We verify
directly by definition that = = 7.

Case II: P = G = Q. The representation space of 7 is still W. We have the
equation:

v (W) 2 rvany (rvau . (W)).

If Olunv # Y|unv, then 7 = 0 since UNV =UNQNVNP and ryau,y(W) = 0.
This means that after proving the diagrams of cases I, ITI, IV are commutative, the
functor Fz equals 0 if condition () does not hold.

Now we assume that (x) holds. The k-representations 7w and 7 act on the same
space W/W (V N M, ), because the fact rvau 4 (ivaue(W)) = W and the equation
above. Notice that we have equations for k-character mod:

mody = modyny - modyny, mody = modyan - modyay,

from which we deduce that m = 7 when condition (x) holds.
Case III: U =V = {e}. Let i(W) be the representation space of i§p, then 7
acts on a quotient space W of i(W). Let:

E = {f €i(W)|f(PQ\PQ) = 0},

E'={f €i(W)|f(PQ) =0},

then Wy, = E/E’. The k-representation 7 acts on i(W)’, which is the representation
space of ingp. By definition,

i(W) ={h:Q— Wlh(pq) = p(p)h(¢),p € PN Q,q € Q}.

We define a morphism ~ from W; to i(W)’, by sending f to f|q, which respects Q-
actions and is actually a bijection. For injectivity, let fi1, fo € Wi and fi|q = f2|q,
then f; — fp is trivial on PQ, hence f; — f is trivial on PQ by the definition of
E. This means f; — fo = 0 in Wj. Now we prove « is surjective. Let h € i(W),
there exists an open compact subgroup K’ of (P N Q)\Q such that h is constant
on the right K’ cosets of (P N Q)\Q, and denote S the compact support of h. Let
K be an open compact subgroup of P\G such that (P N Q)\(Q N K) C K’, and
S KN ((PQ/PQ) = 0. We define f such that f is constant on the right K cosets
of P\G, and f|pnq)\q = k- The function f is smooth with compact support on the
complement of PQ/PQ, hence belongs to F, and (f) = h as desired.

Case IV: U = {e},Q = G. We divide this case into two cases IV; and IV; as in
the diagram of figure CaselV.

Case IVy: U = {e},Q = G,V € M = P. The k-representation 7 acts on
(W)t =4(W)/i(W)(V,), where

W)y = (of =¢@)f,¥f €i(W),veV).
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Figure A.2: Case IV

The k-representations 7 acts on i(WW ™), which is the smooth functions with compact
support on (M N N)\N defined as below:

{h:N = W/W(V,y)|f(mn) = p(m)f(n),Ym € MNN,n € N}.

There is a surjective projection from (W) to (W), which projects f(n) in W+t =
W/Wy , for any f € i(W). In fact, let h € i(W™), there exists an open compact
subgroup K of P\G = (MNN)\N, such that f = >, h;, m € N, where h; € i(W™)
is nontrivial on one right K coset a;K of P\G. We have h; = w; on a;K, where
w; € W and w; € WT. Define f = 2211 fi, where f; = w; on a; K, and equals 0
otherwise. The function f € i(W), and the projection image is h.

It is clear that this projection induces a morphism from i(W)* to i(W™), and we
prove this morphism is injective. Let f, f' € i(W)T, and f = f"in i(W™). As in the
proof above, there exists an open compact subgroup Ky of P\G, and f; € (W)™
such that f; is non-trivial on one right Ky coset of P\G and f — f' = Z;:l fi-
Furthermore, the supports of f;’s are two-two disjoint. Hence the image of f; on its
support is contained in W, since f; is constant on its support, it equals 0 in i(W)™,
whence f — f’ equals 0 in i(W)*. We conclude that this morphism is bijection, and
the diagram case IV is commutative.

Case IVy: U = {e},G =Q,N C M. In this case:

X = NV\NV 2 V'V,

where V' = VN M. We choose one Haar measures p of X (the existence see §I,
2.8, [V1]). Let W™ denote the quotient W/W (V' 1) and p the canonical projection
p:W — W, Let i(W) be the space of k—representation 7 = i 1(p).

Define A a morphism of k-vector spaces from i(W) to W by:

Af = »~H(w)p(f(v)dp(v).
VAV

This is well defined since the function ¢~ f is locally constant with compact support
of V//V, and the integral is in fact a finite sum. Since p is stable by right translation,
we have for any v € V:
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WY [i(WY (V, ) —A yyr+

1 -

i(W) Ji(W)(V, ) A g+
Figure A.3: IVy

Hence A induces a morphism of k-vector spaces:
Ai(W) Ji(W) (V) — W,

Now we justify that A € Homyx (7, 7), where k-representations 7 = ry 4 (7) equals
F(p), and 7 = €2 - 7yr 4 (p) equals ®(p). For any n € N:

A(m(n)f) = mod#(ﬂ)/ Y (©)p(f (vn))du(v) (A.1)

V!V
— mody(Wa(mmodg, (mey - [T p(fn o) du(r.2)
VvV

1

By replacing v' = n~'vn, the equation above equals to:

o(n) / S W)p(F () du(v) = o () A(F).
VvV

Therefore A belongs to Homy (7, 7), and hence a morphism from functor F to ®.
Now we prove that A is an isomorphism.

Let p’ be the trivial representations of {e} on W, then i(W)" the space of k-
representation indy,p’ is isomorphic to i(W) the space of k-representation i{e},1P-
And the diagram [A] IV is commutative, where A indicates the morphism of k-
vector spaces associated to the functor A. Hence it is sufficient to suppose that
N = {e},M = V. Replacing p by 1~!p, we can suppose that ¢ = 1.

First of all, we consider p = i1 = ind;/lll the regular k-representation on
S(V’), which is the space of locally constant functions with compact support on V'.
Then 7 = gy 1p is the regular k-representation of V on S(V) by the transitivity
of induction functor. Any k-linear form on ry1(S(V’)) gives a Haar measure on
V', and conversely any Haar measure gives a k-linear form on S(V'), whose kernel
is S(V')(V',1), hence the two spaces is isomorphic, and the uniqueness of Haar
measures implies that the dimension of rv+ 1(S(V’)) equals one. We obtain the same
result to ry 1(S(V’)). Since in this case the morphism A is non-trivial, then it is
an isomorphism. The functors if) 1,7v g, v’y commute with direct sum (as in
, and the morphism A between k-vector spaces also commutes with direct
sum, hence A : m — 7 is an isomorphism when p is free, which means p is a direct
sum of regular k-representations of V'. Notice that any p can be viewed as a module
over Heck algebra, then p is a quotient of some free k-representation. Hence p has
a free resolution. The exactness of F and ® implies that A : F(p) — ®(p) is an
isomorphism for any p.
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