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Titre en Français 
 

Évaluation et pertinence d’une putative hélicase ADN / ARN Schlafen-11 dans le 
cancer de l'ovaire et du sein. 
 

Résumé en Français 
 

Schlafen 11 (SLFN11) est une putative hélicase ADN / ARN, décrite pour la première fois pour son rôle 

dans le développement et la différenciation des thymocytes dans des modèles murins. La protéine SLFN11 

fait partie d'une famille de protéines présentant divers degrés d'homologie selon les espèces, mais 

constamment présente chez les vertébrés et en particulier chez les mammifères. Récemment, le rôle de cette 

putative hélicase ADN / ARN, SLFN11, a été causalement associe à la sensibilité aux agents endommageant 

l'ADN, tels que les sels de platine, les inhibiteurs de la topoisomérase I et II et d'autres alkylateurs testes dans 

le panel de lignées de cellules cancéreuses NCI-60. 

Dans notre première étude, nous avons validé un anticorps anti-SLFN11 dans des échantillons de carcinome 

séreux de l'ovaire de haut grade (HGSOC) inclus dans du formol (FFPE), en développant un protocole 

d'immunohistochimie (IHC) afin de déterminer l'expression de SLFN11 dans notre série de HGSOC. 

En effet, nous avons testé et validé, en IHC, dans un bloc de cellules en culture (CCB) du carcinome de 

l'ovaire et dans une série indépendante de HGSOC en tissue micro-array, un fiable anticorps (Ab) anti-

SLFN11 choisissant entre deux anticorps anti-SLFN11 utilisés normalement pour Western Blot (WB).  

Pour chaque cas, nous avons évalué le score d'intensité (IS) et le score de distribution (DS) évaluant au 

moins 300 cellules. Un score histologique (HS) a été obtenu comme suit: HS = IS x DS. 

Nous avons successivement appliqué notre protocole à une nouvelle et plus large série d'échantillons 

HGSOC afin de confirmer nos résultats préliminaires. 

Nous avons trouvé un anticorps fiable dans les séries CCB et TMA, permettant de déterminer clairement 

l’expression de SLFN11 en IHC. Ces résultats ont été confirmés dans notre suivante et plus large série 

d'échantillons de FFPE HGSOC. 



En résumé, en ce qui concerne les séries indépendantes TMA, nous avons constaté que la HS pour 

l'expression de SLFN11 présente une distribution normale bien qu’ une expression intermédiaire est 

prévalente (≈ 60%). En manière spéculaire, SLFN11 n'a pas été exprimée dans pratiquement 40% des cas, ce 

qui correspond cliniquement aux patients résistants au platine dans environ 60% des cas (16/27). 

Nous pensons donc que la faible expression IHC de SLFN 11 pourrait être corrélée à la réponse à la 

chimiothérapie à base de platine. 

Nous estimons que nos travaux soutiennent qu’un protocole en IHC clair et spécifique permettant de 

déterminer l’expression de SLFN11 dans FFPE HGSOC par un anti-SLFN11 modifié, car normalement 

utilise en WB, a été mis en place. 

Dans notre deuxième étude, nous avons étudié le panorama transcriptionnel de la protéine SLFN11 dans le 

cancer du sein en réalisant une méta-analyse par micro-array de l'expression génique de plus de 7 000 cas 

dérivant de 35 données publiquement disponibles. 

Par l’analyse de corrélation, nous avons identifié 537 transcrits qui présentaient le 95e centile de coefficients 

de Pearson avec SLFN11 et qui identifiant la « réponse immunitaire», «l’activation des lymphocytes» et 

«l’activation des lymphocytes T» parmi les principaux processus defini par Gene Ontology. En outre, nous 

avons signalé une très forte association de la SLFN11 avec les signatures immunitaires dans le cancer du 

sein voie un penalized maximum like-lihood lasso regression.  

Enfin, grâce à multiple corresponde analysis, nous avons découvert un sous-groupe de patients, défini 

comme “SLF11-hot cluster”, caractérisé par des taux élevés de SLFN11, une négativité des récepteurs des 

œstrogènes (RE), basal-like phenotype, une CD3D élevée, une signature STAT1 et un jeune âge, mais, en 

utilisant a Cox proportional hazard regression, nous avons individué les niveaux élevés de SLFN 11,  l’indice 

de prolifération élevé et la négativité RE en tant que paramètres indépendants pour un intervalle plus long 

sans maladie chez les patients soumise a’ chimiothérapie. 

Nous estimons que nos travaux soutiennent la validation des suivants hypotheses : i) un rôle clair et 

spécifique du gène SLFN11 dans le cancer du sein, en relation probable avec la modulation du système 



immunitaire dans cette maladie, ii) une forte corrélation entre un SFLN élevé et un sous-type moléculaire 

spécifique de cancer du sein (négativité RE, Basal-like phénotype). 

D'autres études précliniques et cliniques doivent être menées pour confirmer notre hypothèse dans le cancer 

de l'ovaire et du sein. 

 

Title in English: 

 

 Assessment and relevance of the putative DNA/RNA helicase Schlafen-11 in 
ovarian and breast cancer 

 
Abstract in English  
Schlafen 11 (SLFN11) is a putative DNA/RNA helicase, first described for its role in thymocyte 

development and differentiation in mouse models [1]. SLFN11 is part of a family of proteins with various 

degree of homology across species, but intriguingly being consistently present only in vertebrates and 

especially in mammals. Recently the role of this putative DNA/RNA helicase, SLFN11, was causal 

association with sensitivity to DNA damaging agents, such as platinum salts, topoisomerase I and II 

inhibitors, and other alkylators in the NCI-60 panel of cancer cell lines.13 

In the first study, we validate an anti-SLFN11 antibody in formalin-fixed paraffin-embedded (FFPE) high-

grade serous ovarian carcinoma (HGSOC) samples, developing a immunohistochemistry (IHC) protocol in 

order to determinate the expression of  SLFN11 in our series of HGSOC. 

Indeed, we tested and validated a reliable SLFN 11 antibody (Ab) in IHC choosing between two anti-

SLFN11 Ab used normally for Western Blot (WB) in culture cell block (CCB) of ovarian carcinoma and in 

an independent series of HGSOCs tissue micro-array (TMA). 

For each case, we evaluated both the Intensity Score (IS) and the Distribution Score (DS) evaluating at least 

300 cells. A Histological Score (HS) was obtained as follow:  HS=IS x DS.  

Successively, we applied our protocol to a large case series of HGSOC samples to confirm our preliminary 

results. 



We found one antibody to be reliable in CCB and TMA series allowing to determinate clearly IHC 

expression of SLFN11. These results were confirmed in our large case series of FFPE HGSOC samples. 

Briefly, as for TMA independent series, we found that the HS for SLFN11 expression presents a normal 

distribution with a prevalent (≈ 60%) intermediate expression. Parallel SLFN11 was not expressed in 

practically 40% of cases that clinically corresponded to the platinum resistant patients in about 60% of cases 

(16/27).  

So, we believe that low IHC expression of SLFN 11 should be correlated to response to the platinum based 

chemotherapy. 

In the second study, we investigate the transcriptional landscape of SLFN11 in breast cancer  performing a 

gene expression microarray meta-analysis of more than 7000 cases from 35 publicly available data sets. 

By correlation analysis, we identified 537 transcripts in the top 95th percentile of Pearson’s coef- ficients 

with SLFN11 identifying “immune response”, “lymphocyte activation”and “T cell activation” as top Gene 

Ontology enriched processes. Furthermore, we reported very strong association of SLFN11 with immune 

signatures in breast cancer through penalized maximum like-lihood lasso regression  

 Finally, through multiple corresponde analysis we discovered a subgroup of patients, defined “SLF11-hot 

cluster”, characterized by high SLFN11 levels, estrogen receptor negativity, basal-like phenotype, elevated 

CD3D, STAT1 signature, and young age and using Cox proportional hazard regression, we characterized 

SLFN11 high levels, high proliferation index, and ER negativity as independent parameters for longer 

disease-free interval in patients undergoing chemotherapy.  

We believe that our work supports proof of concept that: i) A clear and specific role for SLFN11 in breast 

cancer, in likely connection with the immune system modulation in such disease entity,  ii) a strong 

correlation between high SFLN 11 and specific molecular subtype of breast cancer (estrogen receptor 

negativity, basal-like phenotype).  
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1) INTRODUCTION 

 i) Schlafen Gene Family 

Schlafen 11 is a putative DNA/RNA helicase belongs to the Schlafen gene family. These genes are 

highly conserved in murine and human species and they first identified in 1998 by a research group 

from the University of California led by Stephen Hedrick. These genes were named 

“Schlafen"(SLFN) from German, which means "to sleep", and it refers to the capacity to cause 

G0/G1 cell cycle arrest and to induce grown inhibition. 1 Currently, mouse SLFN genes consist of 

10 members, SLFN1, SLFN1L, SLFN2, SLFN3, SLFN4, SLFN5, SLFN8, SLFN9, SLFN10, and 

SLFN142 and their genomic cluster maps on chromosome 11, while human SLFN genes, including 

SLFN5, SLFN11, SLFN12, SLFN12L, SLFN13, SLFN14, maps on chromosome 17. 3,4 Depending 

on their molecular weight and domain arrangement, SLFN proteins can be divided into three 

groups. (Figure N.1)  

 

Figure N.1 Linear structural model of Schlafen family proteins.  

The members of Schlafen family can be divided into three groups: group I ( ) includes m-slfn1, m-slfn1L, and m-slfn2; group II ( ) includes m-
slfn3, m-slfn4, and h-slfn12; group III ( ) includes m-slfn5, m-slfn8, m-slfn9, m-slfn10, m-slfn14, h-slfn5, h-slfn11, h-slfn13, and h-slfn14. AAA 
structure and slfn box are common to all SLFN genes. SWADL belongs to groups II and III. Only group III contains helicase structure of C-terminal. 
Others ( ): h-slfn12 did not belong to the three groups.  

 

Particular, Group I includes SLFN “short” proteins whose molecular weight range between 37 kDa 

and 42 kDa and it consists of SLFN1, SLFN1L, SLFN2. Group II includes SLFN “intermediate” 

proteins with molecular mass ranging from 58 kDa to 68 kDa and it comprises SLFN3 and SLFN4. 



While in the Group III are found most of the SLFN “long” proteins, sizing between 100 kDa and 

104 kDa. The members of this group are the only SLFN proteins characterized by a C-terminal 

domain homologous to the DNA/RNA helicases of superfamily I. 5-7 In addition, the C-terminal 

domain contains a nuclear localization motif RKRRR, suggesting a nuclear function for these 

proteins. 8 All the SLFN proteins share an N-terminal AAA domain, with presumable ATP/GTPase 

function 2and a specific domain called “Slfn-box”, adjacent to that mentioned above, whose 

function is unclear. 9,10 The intermediate and long SLFN proteins also share a highly conserved 

SWADL motif, consisting of a unique five-amino-acid sequence Ser-Trp-Ala-Asp-Leu. Unlike the 

murine SLFN proteins, that are distributed through the three groups, the human SLFN proteins 

belong to the Group III, with the exception of SLFN12 and SLFN12L included in the Group II. 9,10 

SLFN proteins play an important role in immune processes, cell growth and differentiation indeed 

they are preferentially expressed in lymphoid tissue and SLFN genes are involved in T cells 

maturation and differentiation 1. Moreover, SLNF genes are inducible by type I interferons 11,12, 

Toll-Like Receptor ligands 13 and it has been demonstrated to hamper viral replication. 12 Finally, a 

recent review summarizes the different functions of SLFN family in five different aspects: 1) 

Regulating cell proliferation, 2) Modulating the differentiation of T cells and macrophages, 3) 

Inhibition of invasion of cancer cells and sensitization cancers to chemotherapy (CT), 4) Inhibition 

of viral replication, 5) Participating in inflammatory response induced by Type I Interferon signal 

and mediated mitogen-activated protein kinase (MAPK)-integrating kinase (Mnk) and MAPK 

pathway.  

Furthermore, the localization of each SLFN protein possesses functional specificity 9. In mouse, the 

cytosolic proteins (SLFN1, SLFN2, SLFN3, and SLFN4) modulate growth arrest and the nuclear 

proteins active the RNA polymerase II8. However, in humans, the relative functions and the specific 

location of SLFN proteins must be clearly defined. Anyway, SLFN5 has been localized in the 

nucleus 11, while SLFN12 and SLFN11 seem be localized in the cytosol. 12,14 Although SLFN 



proteins involvement in cell growth process is not yet fully understood, it was reported that 

SLFN11 exerts growth inhibitory effects by blocking cyclin D1 promoter activity.15  

To date, most of the research has been carried out on murine SLFNs. Among human SLFNs 

members, SLFN11 has been studied more extensively and it is getting more and more significant, 

mainly in the oncological field. Interestingly, lack of expression SLFN 11 has causally been 

associated with resistance to several types of DNA damaging agents (DDA), including 

topoisomerase (TOP) I (topotecan and irinotecan) and II (doxorubicin, mitoxantrone, etoposide) 

inhibitors, alkylating agents (chlorambucil, cisplatin), DNA synthesis inhibitors (gemcitabine and 

fludarabine) and poly(ADP-ribose) polymerase(PARP) inhibitors. 16-22 

 

ii) DNA-TARGETING ANTICANCER DRUGS 

  To date, DNA-damaging chemotherapeutic agents constitute the backbone of 

treatment for most solid and hematological tumors but no individual biomarker has been shown to 

be superior to tumor clinical stage and pathological features in predicting treatment response. 

 

 a) Platinum-Compounds 

Cisplatin and its analogs (carboplatin and oxaliplatin) have been defined the milestone for treatment 

numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. 

They are effective against various types of cancers, including carcinomas, germ cell tumors, 

lymphomas, and sarcomas. Their mode of action have been linked to their ability to crosslink with 

the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and 

subsequently inducing apoptosis in cancer cells. 23 

  



1) Cisplatin 

Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. The 

discovery of cisplatin, cis-[Pt(II)(NH(3))(2)Cl(2)] ([PtCl2(NH3)2] or CDDP), was a cornerstone 

which triggered the interest in platinum and other metal-containing compounds as potential 

anticancer drugs. Cisplatin covalently binds to DNA and disrupts DNA function. After cisplatin 

enters the cells, the chloride ligands are replaced by water molecules. This reaction results in the 

formation of positively charged platinum complexes that react with the nucleophilic sites on DNA. 

These platinum complexes covalently bind to DNA bases using intra-strand and inter-strand cross-

links creating cisplatin-DNA adducts thus preventing DNA, RNA and protein synthesis. This action 

is cell cycle phase-nonspecific. 23 

2) Carboplatin 

Carboplatin or Cis diammine (1,1-cyclobutanecarboxylato) platinum is a chemotherapeutic drug 

used for cancers of ovaries, lung, head, and neck. In terms of its structure, carboplatin differs from 

cisplatin in that it has a bidentate dicarboxylate (CBDCA) ligand in place of the two chloride 

ligands, which are the leaving groups in cisplatin (Figures 1 and 2). It exhibits lower reactivity and 

slower DNA binding kinetics, although it forms the same reaction products in vitro at equivalent 

doses with cisplatin. The lower excretion rate of carboplatin means that more is retained in the 

body, and hence its effects are longer lasting (a retention half-life of 30 hours for carboplatin, 

compared to 1.5-3.6 hours in the case of cisplatin). Relative to cisplatin, the greatest benefit of 

carboplatin is its reduced side effects, particularly the elimination of nephrotoxic effects. The main 

drawback of carboplatin is its myelosuppressive effect which causes the blood cell and platelet 

output of bone marrow in the body to decrease quite dramatically, sometimes as low as 10% of its 

usual production levels. Carboplatin is less potent than cisplatin; depending on the type of cancer, 

carboplatin may only be 1/8 to 1/45 as effective. The clinical standard of dosage of carboplatin is 



usually a 4:1 ratio compared to cisplatin; that is, for a dose that usually requires a particular dose of 

cisplatin, four times more carboplatin is needed to achieve the same effectiveness. 

 b) Topoisomerase Inhibitors 

TOP inhibitors are agents designed to interfere with the action of topoisomerase enzymes (TOPI 

and II), which are enzymes that control the changes in DNA structure by catalyzing the breaking 

and rejoining of the phosphodiester backbone of DNA strands during the normal cell cycle. DNA 

topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological 

problems accompanying key nuclear processes such as DNA replication, transcription, repair, and 

chromatin assembly by introducing temporary single or double strand breaks in the DNA. TOP 

inhibitors include catalytic inhibitors of the enzyme and topoisomerase poisons. TOP poisons exert 

their cytotoxic effects by stabilizing the covalent complexes between enzyme and DNA (cleavable 

complex). These compounds interfere in the religation step of the enzyme catalysis, thereby, 

leaving the DNA strand breaks unligated. The protein-DNA strand breaks thus created are not 

efficiently repaired and induce apoptosis. On the other hand, the catalytic inhibitors inhibit the 

enzyme catalysis activity by not allowing the enzyme to function itself and therefore do not allow 

topoisomerases to create strand break. Several compounds, membrone, suramin, 

bisdioxopiperazines (ICRF), are known catalytic inhibitors of topoisomerase, while 

epipodophyllotoxins like etoposide (topo-II inhibitor) and camptothecin (topo-I inhibitor) are well-

known topoisomerase poisons. 

TOPI inhibitors include irinotecan, topotecan, and camptothecin, and TOP II inhibitors include 

etoposide, doxorubicin, and epirubicin. 24 

1) Type I topoisomerase inhibitors 

The TOPI inhibitors topotecan and irinotecan are commonly used alone or combination with 

platinum therapy during the first or second line of treatment in several cancers. The Top I enzyme 

class is responsible for creating single strand breaks in DNA to relieve torsional strain created by 



twisting and supercoiling. Binding of topotecan or irinotecan to the Top I-DNA complex prevents 

repair of these single-strand nicks and, ultimately, to unrepaired double-strand breaks and 

apoptosis.24 

2)  Type II topoisomerase inhibitors 

Etoposide is also widely used in combination with platinum-chemotherapy during the first or 

second line of treatment in several cancers. Etoposide targets Top II, an enzyme class that plays a 

critical role during DNA replication. Specifically, Top II cleaves double-stranded DNA to permit 

passage of intact helical DNA before ligating the cleavage site. Etoposide prevents this ligation 

event by stabilizing the complex formed by Top II and the 5' cleaved ends of the DNA, resulting in 

stable, protein-linked double-strand breaks in DNA and subsequent apoptosis. 24 

c) Parp Inhibitors 

Poly (ADP-ribose) polymerase (PARP) inhibitors are nuclear enzymes, whose main role is to 

detect and mark single-strand DNA breaks (SSB) by signaling the enzymatic machinery involved in 

the SSB repair. They block PARP enzyme activity, which catalyzes the attachment of adenosine 

diphosphate (ADP)-ribose to itself or its target proteins to form a poly ADP-ribose chain with 

nicotinamide adenine dinucleotide (NAD) serving as a donor. Poly ADP-ribosylation (PARylation) 

is one of the major protein modifications that occur in response to DNA damage. The binding of 

PARP1 to damaged DNA recruits DNA-repair-related proteins, such as XPA, XRCC-1, polymerase 

ε, MSH6 and DNA ligase III, to the DNA-damage sites through interaction with PARylated PARP1 

to activate DNA repair. 25,26 Figure N.2  



 

Figure N.2 Schematic of PARP1 in response to DNA damage. 

 

There are at least two distinct mechanisms of action of PARP inhibitors: enzymatic inhibition 

and PARP trapping.27  



 

Figure N. 3 DNA repair by PARP1 and the effects of PARP inhibitors.  

Upon the generation of an SSB, PARP1 binds to the break (A) and uses NAD+ (B) to generate PAR polymers on itself (auto-PARylation), as well as 
on histones and chromatin-associated proteins. This serves the purpose of relaxing chromatin and recruiting repair proteins. Cumulative auto-
PARylation causes the dissociation of PARP1 from DNA (C), allowing access to other repair factors scaffolded by XRCC1 (D). PARylation is 

removed by PARG (E), a glycohydrolase, which allows PARP1 reactivation. PARP inhibitors block NAD+ binding and PARylation for as long as the 

inhibitor is bound to the NAD+ site (B), thereby preventing PARP dissociation from the SSB, resulting in both accumulation of unrepaired SSBs (F) 
and PARP trapping (G). Repairing the ensuing DSB and PARP trapping will require BRCA1, BRCA2, and other HRR factors, as well as ATM, 
Fanconi, and replication bypass pathways for cell survival (H). PARP1 is also involved in the repair of “collapsed forks” with DSEs (I), in the 
retraction and restart of stalled replication forks (J), and in the repair of DSBs (M). PARP inhibitors trap PARP at DSEs (K and L) and DSBs (N).  

 

Inhibition of PARP enzymatic activity was initially thought to explain the synthetic lethality 

observed with PARP inhibitors in breast and ovarian cancers with BRCA1, DNA repair associated 

(BRCA1) and BRCA2, DNA repair associated (BRCA2) mutations. These mutations lead to 

deficiencies in Homologous Recombination (HR), leaving these cancers highly dependent on 

PARP-mediated repair. 28,29 

The PARP inhibitor olaparib was recently approved for treatment of germline BRCA1/2 mutant 

ovarian cancer patients based on the results of a randomized phase II study. 30  

PARP trapping is a distinct mechanism of action of PARP inhibitors, whereby the 

inhibitor/PARP complex becomes fixed on the DNA at sites of SSBs, leading to a failure to repair, 

and, with replication, induction of multiple double-strand breaks. PARP trapping may be 



responsible for synergy between PARP inhibitors and DDA that increase the prevalence of SSBs. 

(28) Further, this mechanism may be operant in cancers without defined HR deficiencies.  27The 

various PARP inhibitors in clinical development and clinical use vary in relative potency for both 

enzymatic inhibition and PARP trapping effects. Olaparib and talazoparib have comparable levels 

of catalytic inhibition, while talazoparib is 100-fold more potent than olaparib at trapping PARP–

DNA complexes. Rucaparib appears to have activity similar to olaparib, while veliparib is less 

potent both in enzymatic inhibition and in trapping activity. 27,31 

Beyond inactivating mutations in known mediators of HR such as BRCA1/2, other mechanisms 

may result in HR deficiency in sporadic tumors, including epigenetic silencing of BRCA1 and HR 

pathway disruptions in other known and unknown mediators of this pathway. 32,33 

 This has led to substantial interest in strategies for defining "BRCAness," or HR deficiency 

(HRD), including using characteristic patterns of mutation and loss from whole-exome sequencing 

data to generate HRD scores. 34-36 

Today, BRCA mutations are currently the only biomarkers of response to PARP inhibitors used 

in the clinic setting but several studies are investigating to discover new potential biomarker 

because the response to PARP inhibitors did not always correlate with the BRCA status. 37,38 

Indeed, in pre-clinical studies, HR repair proteins (p53, ATM and 53BP1) have been shown to 

predict PARP inhibitor response in breast, lung and gastric cancers and the loss of SLFN 11, which 

encodes a putative DNA/RNA helicase, was shown to confer resistance to talazoparib in Ewing’s 

sarcoma and small-cell lung cancer. 21,39-41 

 

 

 

 



2) SCHLAFEN-11 

 i)  General description, discovery, and development 

In the year 2012, two authors, working in the domain of oncologic research, discovered 

independently a new protein, Schlafen11(SLFN11), that showed a putative DNA/RNA helicase 

function, whose expression was correlated to the sensitivity of response to DDA. 16,17 The gene of 

SLFN 11 is located on chromosome 17q12. 3,4  

Precisely, Barretina et al., in order to individuate predictive markers of response to several 

chemotherapies agents, developed the Cancer Cell Line Encyclopedia (CCLE) that correlates a 

large-scale genomic dataset from 947 human cancer cell lines with pharmacological profiles of 24 

anticancer drugs. It represents much of the diversity of human cancers including data from both 

common and rare cancer types. Furthermore, each cell line was genetically characterized through a 

series of high-throughput analyses, including whole genome, whole exome, and RNA sequencing. 

Interestingly, CCLE presents a strong positive correlation in chromosomal copy number, gene 

expression and mutation frequencies with primary tumor derived from Tumorscape, Mile, exp0 and 

Cosmic allowing to create representative genetic proxies for the primary tumor in many cancer 

types. Finally, by analyzing the CCLE, they identified that SLFN 11 expression represented the top 

predictor of response to topoisomerase I agents (irinotecan and topotecan) and then, they validated 

these finding from the NCI-60 collection16  that  encompasses 60 human cancer cell lines from nine 

different tissues of origin: breast, colon, skin, blood, central nervous system, lung, prostate, ovary, 

and kidney.  It has been tested since the 1980s for more than 400,000 compounds of natural and 

synthetic origin. 42-44 Moreover, the NCI-60 panel has also been extensively characterized for gene 

expression using six different microarray platforms 45-47and copy-number variation by array-based 

comparative genomic hybridization (aCGH) 43,48 and has recently been sequenced for the entire 

exome at the National Cancer Institute (National Institutes of Health). Fig N.4   



 

Figure N.4 SLFN11 expression across 4103 primary tumors.  

Box-and-whisker plots show the distribution of mRNA expression for each subtype, ordered by the median SLFN11 expression level (line), the inter-
quartile range (box) and up to 1.5x the inter-quartile range (bars). Sample numbers (n) are indicated in parentheses.  

 

At the same time, these data were independently confirmed by Zoppoli et al. that, correlating the 

transcriptome of the NCI-60 Panel cancer cell lines with the cytotoxicity profiles of four Top1 

inhibitors, identified one gene, SLFN11, which was highly correlated with their in vitro 

antiproliferative activity.  Then, they amplified our analysis to 1,444 compounds in the NCI-60 and 

they observed significant positive correlations of SLFN11 expression with the cytotoxicity profiles 

of several FDA-approved DDA, including Top1 inhibitors (topotecan and irinotecan), Top2 

inhibitors (doxorubicin, mitoxantrone, etoposide), DNA alkylating agents (chlorambucil, 

melphalan, cisplatin), and DNA synthesis inhibitors (gemcitabine and fludarabine), but not with 

drugs targeting other components of the cancer cell, such as protein kinases (erlotinib, sorafenib, 

dasatinib), tubulin (docetaxel, paclitaxel, vincristine), protein synthesis (L-asparaginase), or the 

proteasome (bortezomib).In summary, they showed that SLFN11 exerted a broader role in 

determining sensitivity to several DDA. 17  

In addition to its role in sensitizing malignant cells to TOP inhibitors, as well as alkylating agents 

and other DDA, SLFN 11 has been shown to have also important antiviral properties.  In fact, in 

2012, Li et al. discovered that SLFN 11 was interferon (IFN)- induced antiviral protein which acted 

as an inhibitor of retrovirus protein synthesis. It seems specifically abrogate the production of a 

retrovirus such as human immunodeficiency virus 1(HIV-1) by inhibiting, at the late stage, the 



expression of viral proteins in a codon-usage-dependent manner12. The inhibitory activity resided in 

the 579-residue N-terminal half of SLFN11, which includes the AAA domain. SLFN11 does not 

inhibit reverse transcription, integration or production and nuclear export of viral RNA, nor block in 

budding or release of viral particles but it binds transfer RNA or counteracts changes in the tRNA 

poll elicited by the presence of HIV-1. In summary, the exact inhibition mechanism of SLFN 11 in 

HIV-1 is unclear. It may either sequester tRNAs, prevent their maturation via post-transcriptional 

processing or may accelerate their diacylation. Finally, SLFN11 remains potent and IFN-inducible 

restriction factor against retroviruses that mediates its antiviral effects on the basis of codon usage 

discrimination. 12 

Thus, in 2012, SLFN 11 turned out as an interesting topic in the research world and, in particular, in 

the oncological domain, without that his function had not yet been understood. 

Thus, in the following years, different studies have been performed in order to understand the real 

value of SLFN 11 as a predictive marker of chemo-response and his functional mechanism in 

oncology. 

 

ii)  In Vitro Studies 

The value of SLFN 11 as predictor to response to the DDA has been recently assessed in various 

preclinical studies that are described below. 

Barretina et al., in their CCLE, described as Ewing’s sarcoma cell lines had very high SLFN11 

mRNA expression and, that a tight correlation existed between SLFN 11 transcript expression and 

TOP 1 inhibitor toxicity in cancer cells. 16 Zoppoli et al. determined as the expression of a single 

gene, SLFN11, showed an extremely significant positive correlation with the response DDA. Figure 

N. 5B In the same paper, they measured, by Western Blot (WB), SLFN11 expression in several 

NCI-60 cell lines assessing the relationship between SLFN11 transcript and SLFN11 protein levels 



and confirming that the cell lines overexpressing SLFN11 transcript, such as DU-145 (prostatic 

cancer) and HOP-62 (non-small cell lung cancer) presented also high SLFN11 protein levels. Then, 

they measured SLFN 11 expression in lung, colon, breast, and prostate cancer lines (HOP-62, HCT-

116, MDA-MB-231, and DU-145 respectively), thereby demonstrating the causal relationship 

between SLFN11 intracellular levels and sensitivity to DDA. 17 Figure N. 5A 

 

A    B 

Figure N.5   SLFN11 expression is highly correlated with the in vitro antiproliferative activity of 
DDA.  

A) Scatterplot showing the correlation between SLFN11 expression (y axis, Log2 intensity) and CPT antiproliferative activity (x axis, negative Log10 
growth inhibitory molar concentration 50%, GI50) in the NCI-60; B) Correlation is between the in vitro activities of commonly used FDA-approved 
anticancer drugs and SLFN11 transcript across the NCI- 60. n.s., not significant. 

 

Precisely, in order to confirm their hypothesis concerning the predictive value of chemo-response of 

SLFN 11, they tested the efficacy of several CT on cancer cell lines that normally show high 

expression levels of SLFN11, such as DU-145 and HOP-62. The same drugs were then tested on 

the same cancer cell lines (DU-145 and HOP-62) after SLFN11 siRNA-mediated silencing. These 

silenced cells showed at least a fivefold reduction in sensitivity to etoposide and cisplatin but not 

for tubulin poison paclitaxel or the broad-spectrum protein kinase inhibitor and apoptosis inducer 

staurosporine confirming the correlation between SLFN 11 and sensitivity to DDA. 17 FIGURA N.6 



 

Figure N.6 Silencing SLFN11 significantly reduces sensitivity to different classes of DNA-
damaging agents in cells expressing high endogenous SLFN11 levels.  

A) Cytotoxicity curves of the prostate cancer cell line DU-145 (high SLFN11 expresser) transfected with nontargeting (ctrl) or SLFN11-targeting 
siRNAs and treated for 72 h with CPT, etoposide, cisplatin, taxol, or staurosporine (STS). Mean values ± SD are shown (one representative 
experiment performed in triplicate). (Lower Right) Western blot showing SLFN11 knockdown 3 and 6 d after transfection with SLFN11-targeting 
siRNAs. B) (Left) Representative image of a clonogenic assay (100 nM CPT for 1 d). (Right) The number of colonies formed after 24 h treatment 
with CPT followed by a 15- d release (average of three independent experiments).   

 

Wang et al., through their PC-Meta, a statistical framework based on the meta-analysis of 

expression profiles used to identify pan-cancer markers and mechanisms of drug response, showed 

that SLFN11 gene expression was increased in cell lines sensitive to both Topotecan and Irinotecan 

defining this last one as top marker of chemo-response to TOP I. 49  

Others in vitro studies confirmed the association between SLFN11 and DDA trying to understand 

its mechanism of action. 

Tian et al. described the correlation between SLFN11expression and SN-38, a metabolite active of 

irinotecan, in colorectal cancer (CRC) cell lines. They detected SLFN11 mRNA and protein levels 

in eight human CRC cell lines. Precisely, SLFN11 mRNA and protein levels varied markedly 

between the several CRC cell lines (high expression of SLFN11 in LS174T and SW480 cells, 

whereas a lower SLFN11 expression level in the HCT-8 and HCT-116). Finally, they showed as 



high expression of SLFN 11 was correlated to sensitivity to TOP I inhibitors because silencing two 

highSLFN11 expression cell lines (LS174T and SW480) they showed reduced sensitivity to SN-38 

compared with control cells (down-regulation). In the other side, upregulation of SLFN11 

expression in low SLFN 11 expression cells (HCT-8 and HCT-116) showed an increased sensitivity 

to SN-38 treatment. Furthermore, SLFN 11 seems to play a key role in cell cycle arrest and/or 

induction of apoptosis in response to exogenous SN-38-induced DDA because overexpression of 

SLFN11 in the two low-SLFN11expressing cell lines, HCT-8, and HCT-116, caused G0/G1 arrest 

in response to SN-38. 50 

Sousa et al., using the elastic net regression method, which reconstructs drug activity patterns 

through linear regression and integration of genomic features, found hundreds of potential 

interactions between genomic features of DNA genes and drug activity; the vast majority of these 

interactions involved DDA. A remarkable result was the strong association of SLFN11 expression 

and the activity of 147 out of 242 DDA (76 TopI inhibitors, 29 alkylating agents, 20 TOP II 

inhibitors, 17 DNA synthesis inhibitors, and 5 other DDA) whereas none of the 402 non-DDA 

showed significant association with SLFN11. 18 

This result continues to demonstrate the importance of SLFN11 for response to DDA as a probable 

predictive biomarker in different types of tumor and, in the last years, several researchers are 

performing interesting translational studies to clear the function of SLFN11 and in which types of 

tumor it could be used as a predictive biomarker. 

 

iii) Translational Studies 

 1) Ewing’s Sarcoma 

 After the above-mentioned paper of Barretina et al., several authors described the 

relationship between the sensitivity of irinotecan and SLFN11 expression in Ewing's 



sarcoma (EWS) cell lines and tumor samples.   

Tang et al. showed that SLFN11 expression is transcriptionally activated by following 

ETS transcription factors: EWS-FLI1 and ETS1. Precisely, the chimeric transcription 

factor EWS-FLI1 preferentially binds at the transcription start site of SLFN11, activates 

the SLFN11 promoter and regulates the expression of SLFN11 mRNA and their 

corresponding protein. Indeed, they showed that the EWS-FLI1–overexpressing HT1080 

cells had selectively enhanced in the induction of SLFN11 promoter activity producing an 

increased expression of SLFN 11 mRNA and relative protein compared to control 

HT1080cells. They measured SLFN 11 mRNA and protein expression by quantitative real-

time PCR (qRT-PCR) and by WB, respectively.  In order to confirm this hypothesis, the 

authors showed a decrease of EWS-FLI1 and SLFN11 expression when EWS-FLI1–

overexpressing HT1080 cells were silenced by sh-targeting EWS-FLI1.  Furthermore, 

EWS patients presenting the higher SLFN11 expression, exhibited better prognosis than 

those with the lower SLFN11 expression inducing to consider SLFN11 as a probable 

prognostic marker of tumor-free survival in the EWS patients. Upregulation of SLFN11 

expression by EWS-FLI1 enhances the sensitivity of EWS cells to camptothecin 

(transfection of A673 cells with SLFN11 siRNA increased resistance to camptothecin) and 

plays a role in the synergistic effects of PARP inhibitors with temozolomide (ASP14 cells 

with EWS-FLI1 knockdown and A673 cells with SLFN11 knockdown exhibited resistance 

to the combination of niraparib plus temozolomide). 41 

Kang et al. showed that, in a panel of cell lines and in primary tumors from Affymetrix Human 

Exon microarrays, SLFN11 mRNA expression, measured by qRT-PCR, was significantly higher for 

EWS relative to neuroblastoma or rhabdomyosarcomas. Furthermore, in 20 EWS cell lines, they 

observed a strong correlation between SLFN11 expression and SN-38 sensitivity. They confirmed 

their data in vivo study because they showed an improved response to nal-IRI (nanoliposomal 



formulation of irinotecan, also known as MM-398 or PEP02) in EWS tumor xenograft presenting 

high SLFN 11 expression. 51 

Goss et al. showed that EWS cells, presenting a high expression of SLFN11, had increased the 

sensitivity to ribonucleotide reductase (RNR) inhibitors. This hypothesis is confirmed because the 

action of RNR is decreased in knockdown SLFN11 EWS cell lines. 52 

 2) Ovarian Cancer 

 Platinum-based CT plays an important role in the treatment of ovarian cancer(OC). Predictive 

marker of chemo-response, that should allow stratifying the patients improving the management 

care, not yet available. So, SLFN 11 expression should be correlated with platinum sensitivity and 

different studies has been performed in order to demonstrate this association.   

First, Zoppoli et al. described a probable correlation between SLFN 11 and response to platinum-

based CT. They evaluated a publicly available well-annotated microarray dataset of 110 OC 

patients treated with a cisplatin-containing regimen after primary surgery (18). In univariate 

analysis, high SLFN11expressers patients had a median over-survival of 80 months compared to 49 

months in low SFLN11 expressers patients. 17 Figure N. 7B 

Then, Nogales et al., in DNA methylation analysis of NCI 60 cell line panel, identified that 

SLFN11 CpG promoter island hypermethylation was associated with an inactivation of SLFN11 

gene expression in cancer cells inducing a decreased sensitivity to platinum (cis/carbo-platinum) 

based chemotherapy. In vitro, they determinate the following results:  

1) SLFN11 presents a CpG island located around its transcription start site what makes it a 

candidate gene for hypermethylation-associated inactivation in human cancer; 2) The treatment of 

HCT15 cancer cell lines, that are hypermethylated at the SLFN11 CpG island and that had minimal 

expression of the SLFN11 RNA transcript, with a DNA-demethylating agent-induced an increase of 

SLFN11 mRNA and protein expression.  3) Downregulation of mRNA and protein SFLN11 

expression in SK-OV3 cell lines, that normally had high SLFN 11 expression, induces a decrease 



platinum sensitivity. Finally, these in vitro analyses were transferred into clinical samples 

demonstrating that, in a cohort of 41 cases of papillary serous OC, SLFN11 hypermethylation were 

significantly associated with shorter OS and PFS. 19 Figure A 

 

Figure N.7 A and B SLFN11 expression may predict overall survival and progression-free 
survival in ovarian cancer patients. A) Kaplan-Meier analysis of overall survival (OS) and progression-free survival (PFS) in the 
ovarian cancer clinical cohort with respect to SLFN11 methylation status. The statistical significance of the log-rank test is shown. Results of the 
univariate Cox regression analysis are represented by the hazard ratio (HR) and 95% confidence interval (95% CI). The number of cases (n) and the 
mean time to progression/survival in years (y) is indicated for each group; B) Kaplan–Meyer curves of 110 patients affected by ovarian cancer and 
treated with a first-line cisplatin-containing regimen. Patients are stratified as having higher or lower than average SLFN11 expression levels in that 
cohort (y-axis: percentage survival; x-axis: overall survival in months from diagnosis)  

 

 3) Colorectal Cancer 

 Irinotecan (CPT-11), a TOPI inhibitor, is one of the most important drugs in the treatment of 

advanced and/or metastatic CRC [2]. CRC presents a poor clinical response to conventional drugs 

and only 20–30% of patients show an objective response to CPT-11 [3]. Several studies showed 

that SLFN11 plays an important role in CRC cells because the sensitivity to TOP inhibitors is 

correlated with SLFN11 expression which should used as predictive biomarker of chemo-response 

in CRC patients. (53,54) 

Indeed, He et al., in vitro, showed that SFN11 expression is strongly correlated with the sensitivity 

of CRC cells to cisplatin CT. The IC50 values of cisplatin vary in according to SLFN 11 expression 

and it was significantly increased after knockdown of SLFN11 in DKO cell line. Furthermore, the 

authors showed that, in vitro, SLFN11 suppressed CRC growth and proliferation because the 

amount of apoptosis induced by cisplatin treatment significantly increased after re-expression of 

SLFN11 and significantly decreased after knockdown of SLFN 11 in DKO cells. These data were 



also confirmed in vivo in DLD1 cell xenograft mouse models where the volume and the height of 

the tumor decreased in SLFN 11 re-expressed respect to unexpressed control group. 53 Figure N.8 

 

Figure N. 8 Inhibits tumor growth in colorectal cancer cell xenograft mice. (A) 

Results of SLFN11 re-expressed and unexpressed DLD1 cell xenografts in mice – top: SLFN11 re-expressed colorectal cells group; Bottom: control 
group. (B) Tumor growth curves and average weights of SLFN11 re-expressed and unexpressed DLD1 cell xenografts. 
**p < 0.01.  

 

Finally, they demonstrated, as Nogales e al., that the expression of SLFN11 is regulated by 

promoter region methylation that, if methylated, induced low SFLN11 expression. Furthermore, 

they showed that low SLFN11 expression was significantly associated with poor 5-year OS and 5-

year RFS in CRC patients. So, SLFN11 methylation should be an independent prognostic factor for 

OS and RFS in CRC. 

Interestingly, Deng et al. developed first immunohistochemistry (IHC) score to determinate SLFN 

11 expression in CRC. The final score was calculated by intensity (scored as 0, none; 1, weak; 2: 

moderate; 3, strong) plus the proportion of positive tumor cells (<25 % positive= 0, 25–50 % 

positive=1, 50–75 % positive=2, 75–100 % positive=3). They studied SLFN11 expression in 271 

stage II–III CRCs treated with oxaliplatin-based adjuvant CT (FOLFOX). Finally, they determined 

a cut-off point in a ROC curve in order to stratify their cohort of CRCs in Low vs High SLFN 11 



expression CRC patients. Then, they found that high SLFN 11 expression was correlated with 

well/moderate CRC, Stage II CRC patients and tended to have better OS than those with low SLFN 

11 expression. Interestingly, in a small cohort of stage II and III CRC patients presenting KRAS 

wild type, high SLFN11 expression have also better OS than those with low SLFN 11 expression 

considering, so, SLFN 11 as a possible predictive and prognostic marker of response to FOLFOX in 

this group of selected patients. 54 

 4) Lung Cancer 

 Small cell lung cancer (SCLC) patients are initially highly responsive to cisplatin and etoposide but 

quickly develop a refractory disease. So, understanding the nature of CT resistance becomes 

necessary to develop new treatment and to discover new biomarkers.   

First, Lok et al. investigated response predictors to PARP inhibitors and found that SLFN11 

expression correlated with response. Indeed, by analyzing expression of 12,631 genes in 414 cell 

lines they identified that SLFN11 was among the top genes most significantly correlated with 

PARP inhibitors sensitivity and that SCLC cell lines with high levels of SLFN11 transcript were 

more sensitive to PARP inhibitors and to conventional cytotoxic therapy. Furthermore, loss of 

SLFN11, by silencing shRNA sequences targeting SLFN11, confered resistance to PARP inhibition 

in SCLC cell lines supporting a direct role for SLFN11 in drug sensitivity. Then, they demonstrated 

that, in multiple patient-derived xenograft (PDX) models, SLFN11 expression assessed by IHC is 

associated with tumor response to talazoparib. Indeed, they generated an IHC SLFN11 score which 

ranges from 0 to 300 and integrates three intensities of IHC nuclear staining and their frequency (H-

score). This IHC score proved to be a stronger predictor of PARP inhibitors (in particular, 

talazoparib) efficacy across these PDX lines than either SLFN11 gene expression, or protein 

expression by WB. Moreover, they showed that temozolomide(TMZ)—recently added to the 

NCCN guidelines for SCLC second-line therapy—is strongly synergistic with PARP inhibitors in 

vitro demonstrating also combinatorial efficacy in vivo. These data demonstrated that the role of 



SLFN11-dependent drug sensitivity extends beyond conventional DDA to a targeted agent, 

becoming a relevant predictive biomarker of sensitivity to PARP inhibitors in SCLC. 21 

At the same time, Murai et al. (2016) reported the similar conclusion of Lok et al. concerning the 

potential role of SLFN11 expression as a dominant biomarker to predict response to PARP 

inhibitors as single agent acting by trapping PARP and damaging DNA (talazoparib, olaparib, and 

probably niraparib and rucaparib), as well as for combination regimens of broad PARP inhibitors 

with TMZ. Indeed, they showed that SCLC cell lines presenting high SLFN11 expression had more 

sensitivity to PARP inhibitors and SLFN11 transcript levels were significantly correlated to the 

IC50 of talazoparib. Furthermore, SLFN11 protein levels in the SCLC cell lines were measured by 

WB and, then they were matched with SLFN11 transcripts demonstrating the close relationship 

between the expression of mRNA and protein. 20 

Gardner et al. (2017) described that SFLN11 suppression is associated with acquired 

chemoresistance across independent SCLC models (mouse xenografts) and in primary human tumor 

samples. They demonstrated that overexpression of SLFN11 in chemo-resistant human cell lines 

restore sensitivity to topoisomerase poisons, indicating that SLFN11 expression directly contributes 

to chemosensitivity. Furthermore, SCLC cell lines generated from treated patients had lower levels 

of SLFN11 expression relative to lines generated from untreated patients. The authors assessed, on 

clinically annotated tumor microarrays from untreated (Vanderbilt Medical Center) and previously 

treated (Case Western Reserve University) SCLC patients, SLFN11 expression by IHC score (H-

Score) and they found that was higher in tumors from patients who responded to therapy versus 

those who did not.  Moreover, the same authors investigated whether EZH2, which is often highly 

expressed in SCLC, plays a role in regulating SLFN11 because its binding sites are upstream of 

SLFN11. They showed that EZH2 is induced by cytotoxic CT, resulting in deposition of repressive 

chromatin marks in the SLFN11 gene body, decreasing SLFN 11 expression and promoting chemo-

resistance in SCLC. Finally, SLFN11 gene expression can be restored by pharmacological 



inhibition of EZH2, even in the presence of DDA. So, they showed that SLFN11 is both necessary 

and sufficient for sensitivity to DDA in SCLC and they recognized that EZH2 inhibition increased 

expression of SLFN11 improving the response to CT. 55 

Stewart et al. characterized SCLC-specific biomarkers of therapeutic vulnerability, performing a 

high-throughput, integrated proteomic, transcriptomic, and genomic analysis using SCLC PDX 

models, cell lines, and archival tumor specimens. They found that the levels of SLFN11 expression 

determined response to both PARP inhibitors and several classes of CT in preclinical models. 

Indeed, in SCLC PDX models they found by reverse-phase protein array (RPPA) and RNA 

sequencing (RNAseq) that high protein expression of SLFN11 predicts the response to talazoparib. 

Furthermore, in a panel of untreated 51 SCLC cell lines, SLFN11 protein expression was the 

strongest marker of sensitivity with several CT (alkylating agents, cisplatin, TOP1 inhibitors, 

TOP2A/B inhibitors, and DNA synthesis inhibitors) and PARP inhibitors (talazoparib, P<0.0001; 

olaparib, P=0.02). Furthermore, treatment with cisplatin and both PARP inhibitors reduced SLFN11 

levels (measured by WB) in cell lines having high endogenous expression of SLFN11. So, SFLN11 

should also be used as a poor predictive biomarker of response to second or third line therapies.  As 

with the cell lines, they also observed a bimodal distribution (high vs low expression) of SLFN11 in 

publicly available mRNA data from 70 early-stage, treatment-naïve SCLC patient tumors and in 

order to better understand the functional role of SLFN11 they performed Ingenuity Pathway 

Analysis comparing genes associated with high vs. low SLFN11 levels. Interestingly, these analyses 

revealed an enrichment of immune regulatory pathways, primarily interferon (IFN) signaling 

(P=6.6*10-6), in SLFN11-high tumors.  Furthermore, they screened a curated gene list enriched for 

immune targets and found that high SLFN11 expression was positively correlated with PDL1 

(CD274; rho=0.248, P=0.025), CCL2 (rho=0.271, P=0.014), CTLA4 (rho=0.221, P=0.046), and 

IL6 (rho=0.226, P=0.041) suggesting also a role of SLFN 11 in immune system. Finally, their 

findings support that expression of SLFN 11 as a biomarker to response to PARP inhibitors and CT 

is dynamically regulated by drugs used in frontline therapy. In addition, their results also show that 



the dependence of SLFN11 levels on PARP1 may represent a novel mechanism of acquired 

resistance to PARP inhibitors. 22 

Pietanza et al., first showed that, in their randomized, double-blind clinical trial, SFLN11 

expression was a predictive biomarker of chemo-response and progression-free survival (PFS) and 

overall survival (OS). Indeed, they showed that, in a pre-specified subgroup of their analysis, the 

patients included in the TMZ plus veliparib arm with SLFN11-positive tumours, as defined using 

IHC, had improved PFS (5.7 months versus 3.6 months; P = 0.009) and OS (12.2 months versus 7.5 

months; P = 0.014) relative to patients with SLFN11-negative tumours. So, high SLFN11 

expression could represent a predictive biomarker of response to PARP inhibitors in select SLCL 

patients. 56 

 

iv) Assessment of SFLN11 

In the literature, the assessment of SFLN11 has been performed on three different levels: gene 

expression, mRNA expression, and protein expression. 

Different studies confirmed the linear relationship among mRNA measured by qRT-PCR and 

protein expression (WB and IHC) derived by activation of SLFN 11 gene. 20,56 

In IHC and WB, several antibodies and different scores (Table N.1) have been used to evaluate 

SLFN 11 protein expression but nobody has been clearly validated. 17,21,54  
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Table N. 1: Anti-Schlafen 11Antibodies  
*: Studies in infectious disease (HIV-virus) 
**: Immunoprecipitation (IP) and IP coupled to Mass Spectrometry: Anti-Schlafen11 antibody SC- 374339 (E-4)  
Ab: Abcam, Dl: dilution, IHC: immunohistochemistry, IMF: Immunofluorescence, Mono: Monoclonal, NB: Novus biological, N.S: not specified, Poly: 
Polyclonal, SA: Sigma-Aldrich, SC: Santa Cruz, WB: western Blot,  
$: Intensity was scored as 0, none; 1, weak; 2: moderate; 3, strong. The proportion of positive tumor cells was assigned to 0 (<25 % positive), 1 (25–50 % 
positive), 2 (50–75 % positive), 3 (75–100 % positive). The final score was calculated by intensity plus proportion (0–6). 
&: In this paper the authors don’t clearly describe how and when they used two different antibodies 
I: Three intensities of IHC nuclear staining and their frequency. A final expression (H-score) from 0 to 300  
II: The same score of Lok et al. (2017) 
III: Nuclear expression of SLFN11 were quantified using a 4-value intensity score (0, none; 1, weak; 2, moderate; and 3, strong) and the percentage (0%–100%) 
of the extent of reactivity. A final expression score (H-score) was obtained by multiplying the intensity and reactivity extension values (range, 0–300) as 
described previously [3, 4]. 
IV: Sections were scored for intensity (0-3+) and extent (0- 100%) of staining by light microscopy. By multiplying intensity and extent of staining, each tumor 
was assigned an H-score (range 0-300). For SLFN11, an immunohistochemistry (IHC) score of 1 or greater was considered positive.  

 

The following link https://www.proteinatlas.org/ENSG00000172716-SLFN11describes: 

1) SLFN 11 expression in the normal and pathologic tissue. 

2) Localization of SLFN 11 in the cell 

3) Information about a gene, mRNA/protein expression and state of validation of antibodies 



Today, a reliable and validate protocol to assess IHC SLFN 11 expression in vitro, in vivo and in-

patient tumors has not been clearly defined not allowing to translate these finding to a clinical 

setting. Indeed, in the literature, different type of antibodies, several dilutions of antibody and 

different IHC scores had been described and a common protocol should be created by different 

laboratory groups.  

 

v) Function of SLFN11 

The precise mechanism by which SLFN11 sensitizes cancer cells to DNA-targeted agents is not 

fully established.  

 a) Action of SLFN11 as executioner of replication stress  

 SLFN11 was discovered by bioinformatics analyses of cancer cell databases as a dominant 

determinant of response to widely used anticancer drugs (Top 1 and 2, Alkylating agents and DNA 

synthesis inhibitors) and, moreover, a link between high SLFN11 expression and hypersensitivity to 

PARP inhibitors has recently been established. Interestingly, a common mechanism of action 

among these drugs is DNA damage leading to replication fork stalling with cell cycle checkpoint 

activation, also referred to as replication stress that should be, therefore, considered the common 

mechanism(s) engaging SLFN11 to kill cancer cells.  

Several and recent studies have investigated the molecular functions of SLFN11. 17,20,57,58  

The first molecular connection between SLFN11 and replication stress was the co- 

immunoprecipitation of SLFN11 with replication protein A (RPA)1, a replication and repair protein 

binding to ssDNA generated by replication stress and DNA excision prior to homologous 

recombination and nucleotide excision repair. Mu et al. confirmed that SLFN11 interacts directly 

with RPA1 and revealed that SLFN11 is recruited to end-resected DNA lesions via RPA1 after 

DDA. 58 They proposed that SLFN11 inhibits checkpoint maintenance and homologous 



recombination repair by promoting the destabilization of the RPA-ssDNA complex, thereby sensing 

cancer cell lines with high SLFN11 to DDA. 58  

First Zoppoli et al. (2012) and, then, Murai et al. (2016 and 2018) showed that SLFN11 induces 

lethal replication block in response to a broad type of DNA-targeting agents. Moreover, Murai et al 

showed that SLFN11 induces lethal replication block in response to PARP inhibitors independently 

of ATR and proposed that SLFN11 acts in parallel with the ATR-mediated S-phase checkpoint. So, 

SLFN11-mediated cell cycle arrest is permanent and lethal while the ATR-CHEK1-mediated S-

phase checkpoint is transient and enables cell survival. 20 Murai et al. recently elucidated some key 

molecular mechanisms by which SLFN11 irreversibly blocks replication. 57  Figure N. 9  

1)Under normal conditions, replication forks only form short ssDNA segments coated with RPA, 

and SLFN11 does not gain access and does not block replication progression, explaining why 

SLFN11 does not interfere with normal replication.  

2) Upon replication damage and stress, RPA filaments are generated on single-stranded DNA both 

at resected DNA ends and at stressed replication forks. DNA breaks activate ATR and slow down 

replication, leading to the uncoupling of the MCM helicase complex and DNA polymerases at 

stressed replicons (Figure N.9, pathway 1). Activated ATR and CHK1 halt replication initiation by 

inhibiting the loading of CDC45 (Figure N.9, pathway 2). SLFN11 binds both resected DNA ends 

and stressed replication forks via RPA1, where it interacts with MCM3, opens chromatin, and 

blocks replication (Figure N.9, pathway 1). As SLFN11 does not inhibit replication initiation, 

stressed replication forks with RPA filaments are generated, recruiting SLFN11, which blocks fork 

progression (Figure N.9). Moreover, they demonstrate that the ATPase activity of SLFN11 is not 

required for the recruitment of SLFN11 to chromatin but is required to block fork progression and 

to open chromatin. Although the mechanisms of replication block by the ATPase activity of 

SLFN11 are not fully understood, a plausible scenario is that once SLFN11 binds stressed 



replication forks, chromatin becomes open in a SLFN11-dependent process ahead of the MCM 

helicase, which blocks the MCM complex and fork progression.  

 

 

Figure N.9 Molecular Model of SLFN11- Induced Replication Fork Block in Response to 
Replication-Stress 
A) Replication without replicative stress. B) Replication stress induced by CPT in SLFN11- positive cells. C) Unscheduled origin firing induced by 
CPT+ATR inhibitor or by CHK1 inhibitor in SLFN11-positive (top) and SLFN11-negative (bottom) cells  
 

 b) Regulation of SLFN11 expression  

 Interestingly, SLFN11 is inactivated at the transcription level in approximately half of the 

cell lines across the available cancer cell line databases, including the NCI-6019 the CCLE16, and the 

Genomics of Drug Sensitivity in Cancer project (GDSC) (Yang et al., 2013) defining its expression 

bimodal, i.e. cells either express or do not express SLFN11. 16 Moreover, a high correlation 

between protein expression and gene expression is showed in several studies. 17,20,56Because whole 

exome sequencing and copy number analyses of the NCI-60 showed that, the SLFN11 non-

expressing cells had no detectable copy loss or deleterious mutation (Varma S PLOS 2014), the 

expression of SLFN11 should be regulated in three different ways: 1) epigenetically (promoter 



methylation); 2) transcriptionally (ETS transcription factor binding); and 3) in response to viral 

infections (IFN signaling). 

1) Today, several epigenetic mechanisms seem to control SLFN11 expression: 

hyper/methylation of CpG promoter island19,59, chromatin condensation by EZH2, 

acetylation by histone deacetylase (HDAC) inhibitors60 and chromatin methylation by the 

polycomb repressor complex (PRC). 22 Concerning the methylation of SLFN11, it is among 

the genes with the highest correlation (at the top 94th percentile) between methylation and 

expression across over 1000 cancer cell lines including the NCI-60 and the Sanger-Mass 

General cancer cell lines. Moreover, among the cells lacking SLFN11 expression, promoter 

hypermethylation occurs in approximately half of the cases and his methylation is 

significantly correlated with resistance to different DDA. 19,61  He et al. showed that SLFN11 

is methylated in 56% of primary CRC samples and that the methylation of the SLFN11 gene 

should be used as a marker of poor prognosis and platinum resistance in CRC. 53 SLFN11 

hypermethylation was an independent prognostic factor in patients with non-SCLC and OC 

who received platinum-based chemotherapy. In both tumors, SLFN11 hypermethylation was 

significantly associated with shorter progression-free survival. 17  Resistance to cisplatin or 

PARP inhibitors in SCLC is associated with silencing of SLFN11 caused by EZH2, a 

histone methyltransferase targeting H3K27me3 inducing deposition of repressive chromatin 

marks in the SLFN11 gene body, and by the catalytic component of PRC2. 22 Indeed, EZH2 

inhibition prevents the acquisition of chemo-resistance and improves CT efficacy in 

SCLC.55  

2) EWS, which is characterized by translocations generating the chimeric transcription factor 

EWS-FLI1, presented the highest SLFN11 expression among 4103 primary tumor samples 

in CCLE. 16  One of mechanisms of transcriptional activation in EWS is the binding of 

EWS-FLI1 at ETS consensus sites in the SLFN11 promoter. The correlated expression 



between SLFN11 and FLI1 extends to other tumors as leukemia, pediatric, colon, breast, and 

prostate cancers. 41  

3) SLFN11 is induced by IFN-b, poly-inosine-cytosine or poly dAdT (Li, et al., 2012). 

SLFN11 expression is also significantly correlated with 16 Type I IFN signaling pathway 

genes and targetable immune markers PDL1 and CTLA4 in treatment-naïve early-stage 

SCLC patient tumors. 22 Thus, SLFN11 is likely to contribute to anti-viral and native 

immune functions. The mechanisms proposed for the antiviral activity of SLFN11 is its 

binding to tRNA, which specifically abrogates the production of retroviruses such HIV-1 by 

selectively inhibiting, at late stage, the expression of viral proteins in a codon usage-

dependent manner. 12 

 

vi) SLFN11, Immune Response and Immunotherapy 

 Immunotherapy is the treatment of a disease by inducing, enhancing or suppressing 

an immune response.  

In the oncological field, immunotherapy can be active or passive. Active 

immunotherapy directs the immune system to attack tumor cells by targeting tumor-

associated antigens. In the other side, passive immunotherapy enhances existing anti-

tumor responses and include the use of monoclonal antibodies, lymphocyte, and 

cytokines, including IFN. 

IFNs play an essential role in innate immunity and in immune surveillance against 

cancers. 62 Extensive work over the years has shown that Type I IFNs bind to specific 

cell surface receptors and activate receptor-associated Jak kinases that engage the Stat 

pathways. 63 



Recent works have established that mouse and human several SLFN genes and 

corresponding proteins are induced in response to engagement of the human Type I IFN 

receptor3,10,11   and are thus classified as Interferon-Stimulated Genes that possess anti-

viral ability, growth inhibitory and antineoplastic effects.7,12 Treatment of mouse cells 

with IFNa strongly induced mRNA expression for several SLFN proteins, including 

Slfn1, Slfn2, Slfn5, and Slfn8. It was shown that Stat1 was required for induction of all 

IFN-inducible mouse Slfn genes, the p38 MAPK was also required. 7 Similarly, there is 

evidence that human SLFNs are induced in response to engagement of the human Type I 

IFN receptor. Remarkably, mRNA expression for all human SLFNs studied, including 

SLFN5, SLFN11, SLFN12, and SLFN13, was induced in normal melanocytes, while only 

SLFN5 was inducible in melanoma cell lines. 11  There is accumulating evidence that 

mouse and human SLFNs have important roles in the generation of IFN-inducible 

response. 

Moreover, the expression of most SLFN genes is abundant in immune cells and alters 

during the development of immune cells participating in the modulation of the immune 

system. Precisely, SLFN1, SLFN2, SLFN8, SLFN12, and SLFN12L are the members that 

have been reported to modulate T cell activation, macrophage differentiation, and 

monocyte maturation. 9 

The members of human SLFN are regulated differently during the process of 

differentiation from monocytes to dendritic cells (DCs). SLFN11 is expressed highly in 

the unstimulated monocytes and DCs, suggesting that it may play an important role in 

regulating the function of monocytes and DC cells. When monocytes are induced into 

DCs, the expressions of SLFN12L and SLFN13 increase substantially, which suggest 

that they might be an influencing factor in cell differentiation. In contrast, the level of 

SLFN12 is downregulated, which suggests that it may play a negative role in the process 



of DC differentiation. To the contrary, SLFN12 is upregulated during the activation of T 

cells.10  

In our unpublished data, we found in high grade serous OC(HGSOC) and BC positive 

correlation between SLFN11 and immune system. Precisely SLFN11 is strongly 

correlated with a subgroup of BC patients characterized by activation of immune 

markers and features partially overlapping with triple negative BC, such as low 

expression of hormone receptors and absence of HER2 overexpression. In HGSOC, 

SLFN11 expression showed significantly correlation with CD8+ intratumoral 

lymphocytes. Finally, SLFN11 could be expressed by immune cells during the anti-

tumoral response, potentially behaving as a marker of T-cell (CD3+ and CD8+).   

Stewart et al. found a correlation of SLFN11 with several immune-related targets as 

16 Type I IFN signaling pathway genes and targetable immune markers PDL1 and 

CTLA4 in early-stage SCLC. 22  Li et al. showed that SLFN11 is expressed by T-cells 

and monocytes and it is an IFN- stimulated gene in peripheral blood mononuclear cells.12 

Finally, SLFN11 could also be a potential surrogate marker of T-cell or macrophage 

infiltration and a biomarker for response to immunotherapy drugs targeting PDL1 and 

CTLA4, but this requires further testing in a clinic setting. 
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Abstract: SLFN11 is a recently discovered protein with a putative DNA/RNA helicase function. 

First identified in association with the maturation of thymocytes, SLFN11 was later causally 

associated, by two independent groups, with the resistance to DNA damaging agents such as 

topoisomerase I and II inhibitors, platinum compounds, and other alkylators, making it an attractive 

molecule for biomarker development. Later, SLFN11 was linked to antiviral response in human 

cells and interferon production, establishing a potential bond between immunity and chemotherapy. 

Recently, we demonstrated the potential role of SLN11 as a biomarker to predict sensitivity to the 

carboplatin/taxol combination in ovarian cancer. The present manuscript reports on the first 

international monothematic workshop on SLFN11. Several researchers from around the world, 

directly and actively involved in the discovery, functional characterization, and study of SLFN11 

for its biomarker and medicinal properties gathered to share their views on the current knowledge 

advances concerning SLFN11. The aim of the manuscript is to summarize the authors’ 

interventions and the main take-home messages resulting from the workshop. 
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Main text 

 

Introduction: SLFN11 potential as a predictive biomarker to assess response to DNA damage 

inhibitors. 

Presented by Gabriele Zoppoli 

SLFN11 is a putative DNA/RNA helicase, first described for its role in thymocyte development and 

differentiation in mouse models [1]. SLFN11 is part of a family of proteins with various degree of 

homology across species, but intriguingly being consistently present only in vertebrates and 

especially in mammals (Fig. 1). The helicase domain is present only in the “long” SLFN proteins 

such as SLFN11, whereas the “short” SLFN proteins share only a domain of unknown function (the 

SLFN domain); finally, the intermediate SLFN proteins also possess a highly conserved SWADL 

motif, but lack the helicase domain [2]. Recently, while correlating the in vitro activity of 

topoisomerase I (TOP1) inhibitors with the transcriptional profiles of more than 20,000 genes in the 

NCI-60 cancer cell line model, we discovered by serendipity an unusually strict association 

between the levels of SLFN11 and the sensitivity to such DNA damaging agents (DDA). 

Subsequently, we observed that such high correlation was maintained with TOP2 inhibitors, as well 

as alkylating agents such as cisplatin. We then corroborated our discovery by modulation of 

SLFN11 expression in lung, colon, breast, and prostate cancer cell lines (HOP-62, HCT-116, MDA-

MB-231, and DU-145 respectively), thereby demonstrating the causal relationship between 

SLFN11 intracellular levels and sensitivity to DDA [3]. Independently, Barretina and co-authors 

reported that Ewing’s sarcoma cell lines had very high SLFN11. In line with our findings, those 

authors also described the tight correlation between SLFN11 transcript expression and TOP1 

inhibitor toxicity in cancer cells [4]. In parallel with the findings concerning SLFN11 in cancer, its 

role and relation with the immune system, as well as the property of behaving as an early 

interferon-response gene were described [5]. Taken together, the published data points toward a 

possible connection between SLFN11, immunity and cancer. Indeed, it was not long since scientific 



reports appeared, describing SLFN11 as a biomarker of response to DDA in human cancer. 

Moreover, since no evident mutations or copy number variations of SLFN11 could be find in cell 

models or in patients’ cohorts such as the cancer genome atlas (TCGA), researchers have focused 

their attention on SLFN11 regulation by methylation. Indeed, SLFN11 hypermethylation is 

associated with worse prognosis in ovarian cancer and with a poor response to platinum derived 

compounds in lung cancer [6]; consistently we have observed that SLFN11 overexpression purports 

a platinum-sensitive phenotype in patients affected by such neoplasm. More recently, SLFN11 has 

been associated with sensitivity to PARP inhibitors and other DDA in both cancer models and in 

clinical case sets. In conclusion, SLFN11 appears as a promising molecule both for its causative 

implication in sensitivity to DDA, as a biomarker of response to such agents, and for its potential as 

a link between immunity, cancer, and response to chemotherapy.  

 

Cell cycle inhibitory function of SLFN11 in the DNA damage response (DDR). 

Presented by Elisabetta Leo  

SLFN11 was recently identified as a novel DNA damage response (DDR) gene in cancer cell 

genomic analyses of the NCI60 [3] and the cancer cell line encyclopedia (CCLE) [4] cancer cell 

models. In 2012 we reported the causative effect of SLFN11 as a determinant of cancer cell 

sensitivity to multiple DNA damaging agents in different human cell lines: upon downregulation of 

SLFN11 by siRNA, cells showed a dramatic increase in viability after short and long-term 

treatments with camptothecin (CPT) and other DNA damaging agents (DDA) when compared to 

SLFN11-proficient cell lines [3]. After these initial observations, we worked to elucidate the 

mechanisms by which SLFN11 impinges on the DDR.  

We found that, in SLFN11 proficient cells, SLFN11 protein levels are constant in all the phases of 

the cell cycle (after FACS-sorting as well as upon pharmacological synchronization) G1, S, G2 and 

mitosis. Subcellular fractionation studies revealed that SLFN11 is preferentially localized in the 

nuclear compartment, and binds tighter to the chromatin upon accumulation of DNA damage. 



SLFN11 in the nucleus forms foci that are in close proximity ahead of the replication foci. SLFN11 

is preferentially present in the euchromatic regions (open chromatin, identified by H3K9Ac) and is 

clearly excluded from heterochromatin (H3K9Me3). We also examined cell cycle progression and 

DNA replication after CPT treatment in SLFN11-proficient versus SLFN11-down- regulated cells. 

In non-treated cells there is no apparent phenotypic difference; however, during treatment with low 

doses of CPT, dramatic differences in cell cycle and in DDR are observed between SLFN11-

proficient and -deficient cells; these differences are visible as early as 4 h after DDA-treatments [7]. 

If cells are SLFN11 proficient, they undergo an enforced G1/S arrest, with tight cell cycle and 

replication block, which leads to cell death [8, 9]. On the contrary, if SLFN11 is absent, cells are 

capable to re-enter the cell cycle, slowly progress through S-phase and are less prone to die. This 

slow progression is associated to an hyper-activation of the DNA replication and damage 

checkpoint: indeed, very high and persistent phosphorylation of ATM, ATR, Chk1, an Chk2 are 

observed. When SLFN11-depleted cells are co-treated with CPT and either ATM, ATR or Chk1/2 

inhibitors, they progress much faster through S-phase and they are ultimately re-sensitized to the 

damage.  

We suggest that SLFN11 works as an additional cell cycle checkpoint, that possibly acts upstream 

of the classical replication and damage checkpoint, preventing the cells to progress and to survive 

when they accumulate DNA damage and replication stress [7]. Based on these observations, we can 

conclude that SLFN11 has high potential relevance in the clinics as predictive biomarker for patient 

stratification. SLFN11-proficient tumors may be more likely to respond to a DDA-based 

chemotherapy, whereas SLFN11-deficient tumors might require more aggressive combination 

treatments, for example with ATM or ATR inhibitors, or different anticancer strategies.  

 

 

 

 



SLFN11 induces lethal S phase arrest in response to DNA damage—a novel mechanism of how 

cancer cells are killed by DNA damaging agents. 

Presented by Yves Pommier and Junko Murai  

In two works previously published in 2012 and 2014, our group reported the founding of a novel 

mechanism of action for PARP inhibitors named PARP-trapping, which explains why PARP 

inhibitors act as DNA damaging agents [10, 11]. PARP inhibitors trap PARP1 and PARP2 at DNA 

single strand break lesions, which are common and highly cytotoxic because of inducing replication 

stress. The potency of PARP trapping is widely different among clinical PARP inhibitors, and 

talazoparib is the most potent PARP trapping inhibitor so far. We reported that sensitivity profile of 

talazoparib in NCI-60 is highly correlated with the expression profile of SLFN11. The correlation 

was shown to be causal using four isogenic cell lines (parental cells with high SLFN11 expression 

vs their SLFN11-knockout cells) and extended to other PARP inhibitors including olaparib, and the 

combination of talazoparib and temozolomide. Although deficiency of homologous recombination 

is a dominant determinant of hypersensitivity to PARP inhibitors, SLFN11 sensitized cells in a 

parallel pathway with homologous recombination deficiency. SLFN11 induced irreversible and 

lethal S-phase arrest under continuous talazoparib treatment for 48 h, while cells without SLFN11 

slowly reached G2-phase and viable at that time under the regulation of S-phase checkpoint by 

ATR activation. The abrogation of S-phase checkpoint by the addition of ATR inhibitor (ATRi) 

with PARP inhibitors, which enforces unscheduled origin firing, synergized cells drastically. 

Hence, we propose two distinct strategies to kill cancer cells (Fig. 2) using PARP inhibitors; one is 

to induce SLFN11- dependent replication arrest by PARP inhibitor alone or the combination with 

temozolomide, the other is to use PARP inhibitors with ATR inhibitors to induce lethal 

unscheduled origin firing in SLFN11-deficient cells [12].  

 

 

 



Predictive markers in ovarian cancer  

Presented by Domenico Ferraioli  

Ovarian cancer is the seventh most common cancer worldwide and the eighth cause of cancer death 

in women [13]. Early stages are hard to detect, and several patients are diagnosed when the disease 

is already in an advanced stage [14]. Standard recommendations for patients with advanced ovarian 

cancer (AOC) include primary debulking surgery (PDS) followed by platinum-based adjuvant 

chemotherapy [15] but, in some cases, the PDS is not feasible or is associated with unacceptable 

morbidity; therefore, neoadjuvant chemotherapy (NACT) followed by debulking surgery should be 

performed [16]. Patient response to chemotherapy for ovarian cancer is extremely heterogeneous 

and approximately 60% of patients with AOC will relapse after first-line chemo- therapy [17]. 

Nowadays, tools predicting the sensitivity or the resistance to chemotherapy and allowing treatment 

stratification are not available; nevertheless, different biomarker assays are in active development. 

These approaches include functional assays, identification of resistance gene markers, and micro 

RNA analysis. A systematic review of 42 studies concerning the prediction of chemotherapy 

response in AOC using gene expression was performed in 2015 by Lloyd et al. [18]. The authors 

concluded that a clinically applicable gene signature can- not be identified, highlighting the 

presence of a severe heterogeneity concerning the histological type, the tis- sue preservation 

techniques applied, and the manners of obtaining the gene signature among the different studies. 

Chemoresponse tests, or other biomarker assays, are thus not recommended to choose a 

chemotherapy regimen. The majority of the available studies failed to demonstrate a survival 

benefit of chemotherapy regimens selected on chemoresponse assays compared to chemotherapy 

regimens selected using traditional clinical factors [15]. To conclude, a validated predictive 

biomarker does not currently exist, and the international guidelines only suggest the use of CA 125 

to monitor response to chemotherapy as part of a clinical trial [19]. Well-designed randomized 

controlled trials are needed to develop a predictive model of response to chemotherapy.  

 



SLFN11 assessment in ovarian cancer: phenotypic and histological distribution and association 

with TIL infiltration  

Presented by Valerio Gaetano Vellone. 

Epithelial carcinoma of the ovary has always been clinically considered as one disease, but there is 

now a much greater realization that the various subtypes have a different natural behavior and 

prognosis [20]. At present, adjuvant therapy is mainly dependent upon tumor stage and grade rather 

than type [15]. However, it is of common observation how tumors with similar stage and histologic 

type can behave in radical different ways and finding potential molecular markers represents one of 

the challenges of modern surgical pathology. To date, DNA-damaging chemotherapeutic agents 

constitute the backbone of treatment for most solid and hematological tumors. High expression 

levels of SLFN11 seems to correlate with the sensitivity of human cancer cells to DNA- damaging 

agents [3]. In this setting, it appears clear how immunohistochemistry (IHC) testing for SLFN11 

may represent a powerful tool to predict the response and modulate the chemotherapy for high-

grade serous ovarian carcinoma (HGSC). To date no commercial kit for SLFN11 IHC testing is 

available, so we adapted two kits originally commercialized for Western Blot (WB), and we tested a 

population of 75 cases of HGSC. As positive control, we used a commercial culture of ovarian 

carcinoma (SKOV-3) processed with agarose-embedded cell block technique (CCB); SKOV-3 cell 

culture is known to have high level of expression for SLFN11.  

In some cells we observed a crescent-shaped thickening of the coloration in the perinuclear area 

consistent with Golgi complex (Fig. 3A). No staining was observed in the nuclei. This observation 

is in apparent contrast with what was reported by Zoppoli et al. [3] and by Dr E. Leo in their work. 

However, nuclear antigens may translocate into cytoplasm or dispersed by nuclear wall disruption 

upon either apoptonecrotic processes intervening during tissue exeresis or due to the fixation 

processes. Hence, we cannot currently conclude that SLFN11 staining in formalin fixed, paraffin-

embedded cells reflects SLFN11 location in living tissues. It has to be noted that, although Dr Leo’s 

subcellular fractionation showed a preferential nuclear localization, a proportion of SLFN11 was 



also present in the cytoplasm. Furthermore, at least two publications have pointed out that SLFN11 

may be found also in cytoplasm, so currently we can only speculate that this protein may translocate 

following active processes in living/dying cells as well [1, 21].  

Immunohistochemistry appeared clean and specific, no aspecific bonds were observed in tumor and 

residual ovarian stroma (Fig. 3B), and a relevant positive internal control was represented by a 

subpopulation of tumor infiltrating lymphocytes (TIL), which stained intensively for SLFN11 (Fig. 

3C). SLFN11 expression resulted extremely variable among cases, and even in different fields of 

the same tumor. However, a dominant pattern of intensity seems to exist in the same neoplasia. For 

each case we assessed both the intensity score (IS) and the distribution score (DS) evaluating at 

least 300 cells. Intensity score (IS) evaluates the main pattern of intensity of stain in positive cancer 

cells as follow: 0: no stain (Fig. 3C); 1 ±: weak stain (visible at high magnification) (Fig. 3D); 2 +: 

moderate stain (visible at scan magnification) (Fig. 3E); 3 +: intense stain (Fig. 3F). Distribution 

score (DS) evaluates the percentage of stained cancer cells as follow: 0: no stained cells; 1 +: < 10% 

of stained cells; 2 +: 10–40% of stained cells; 3 +: > 40% of stained cells. These scores were 

combined to obtain a final histological score (HS) as follow: HS = IS × DS. Study cases were 

grouped on the base of HS in the following categories: cases with HS = 0 were considered SFLN11 

negative, cases with HS 1 and 2 were considered SFLN11 low, cases with HS 3 and 4 were 

considered SFLN11 intermediate, while cases with HS 6 and 9 were considered SFLN11 high. At 

the end of the evaluation, the SLFN11 expression in the studied case set was distributed with an 

elegant Gaussian-like fashion: 27 cases (39.13%) resulted SLFN11 negative, 11 cases (15.94%) 

resulted SLFN11 low, 23 cases (33.33%) resulted SLFN11 intermediate and 8 cases (11.59%) 

resulted SLFN11 high. Globally, SLFN11 appears to be poorly expressed in HGSC, with the larger 

subpopulation com- posed by cases with no sign of stain (SLFN11 negative). We hypothesize that, 

if SLFN11 negative cases mirror the large population of chemotherapy-resistant patients, SLFN11-

high cases may identify a subpopulation of chemotherapy-responsive patients with a better 

prognosis. Of interest, only a subpopulation of TIL appears to express SLFN11. Their nature and 



biological role remain to be studied. In the future the presented IHC data will be matched with RNA 

expression data and clinical data such as overall survival and disease-free interval, to better estimate 

the role of SLFN11 as a potential novel, pivotal prognostic marker in HGSC.  

 

Molecular determinants of immune responsiveness in breast cancer and putative role of 

SLFN11. 

Presented by Davide Bedognetti 

 

By exploiting the integrative data available from the cancer genome atlas, we assessed the 

determinants of immune response in breast cancer (BC) [22]. In that work, we identified that a T 

helper cell phenotype upregulation is associated with a better prognosis, validating such observation 

in an independent data set [23]. SLFN11 was discovered in association with thymocyte maturation 

[1], and appears as an interferon (IFN) regulated gene [5]. To investigate the transcriptional land- 

scape of SLFN11 in BC, we performed a gene expression microarray meta-analysis of more than 

7000 cases from 35 publicly available data sets [24]. By pan-transcriptional SLFN11 correlative 

analysis, we identified 537 transcripts in the top 95th percentile of Pearson’s coefficients with 

SLFN11. The terms “lymphocyte activation”, “immune response”, and “T cell activation” resulted 

as top gene ontology enriched processes [25]. We lever- aged the method of multiple corresponding 

analysis, a multivariate statistical process aimed at inferring mutual associations among categorical 

variables [26]. Thus, we identified a patient cluster defined by elevated SLFN11 expression, ER 

lack of staining, basal-like PAM50 phenotype, increased CD3D, STAT1 signature [25], and 

younger age at diagnosis. By penalized maximum likelihood lasso regression [27], we observed a 

very strong association of SLFN11 with the previously described stroma 1 and stroma 2 signatures 

[28, 29]. These signatures usually appear upregulated in basal-like BC and in ER- tumors 

responding to chemotherapy. Finally, using Cox proportional hazard regression, we characterized 

SLFN11 high levels, high proliferation index, and ER negativity as independent parameters for 



longer disease- free interval in patients undergoing chemotherapy. Alto- gether, our data point 

toward a role for SLFN11 in BC, in likely connection with the immune system modulation in such 

disease entity.  

 

SLFN11 and sensitivity to irinotecan in colon cancer. 

Presented by Sana Intidhar Labidi Galy 

 

SLFN11 has recently been identified as the protein with the highest correlation with sensitivity to 

topoisomerase I inhibitors such as irinotecan in the NCI60 cancer cell lines [3] and in the cancer 

cell line encyclopedia [4]. We investigated the correlation between the expression of SLFN11 and 

survival in colon cancer patients treated in the PETACC3 study, a randomized phase III trial that 

included 3278 patients in the adjuvant setting and compared two regimens of chemotherapy: half of 

the patients received LV5-FU2 regimen (5-FU based chemo- therapy) while the other half received 

FOLFIRI regimen (LV5-FU2 and irinotecan). No significant improvement in disease-free survival 

(DFS) or overall survival (OS) was detected by adding irinotecan to LV5-FU2 as adju- vant therapy 

[30]. Patients’ tumor samples were collected and gene expression profile analysis was performed on 

553 tumors [31]. In the FOLFIRI regimen group (285 patients), we surprisingly observed that 

patients with SLFN11-high tumors manifested a worse outcome than those having SLFN11-low 

tumors (7 years-OS 70.6% vs 79.3%, HR = 1.53, 95% CI 1.012–2.503, Log-Rank p = 0.044), while 

in the LV5-FU2 group (268 patients who received only LV5-FU2 regimen) SLFN11 levels did not 

have any impact on survival (7 years-OS 71.6% vs 73.0%, HR = 1.034, 95% CI 0.667–1.603, p = 

0.88). We then investigated the interaction between SLFN11 levels and microsatellite instability 

(MSI) status [32], observing a trend toward increased levels of SLFN11 in MSI-high tumors (40/64 

= 62.5%) compared to micro- satellite stable (MSS) tumors (244/489 = 49.89%, Fisher test p = 

0.06). We divided the patients into four groups: group 1 (MSI-high and SLFN11-high), group 2 

(MSI- high and SLFN11-low), group 3 (MSS and SLFN11-high) and group 4 (MSS and SLFN11-



low). In the LV5-FU2 group, there was absolutely no difference whether tumors were SLFN11-

high/low, MSI or MSS tumors (Fig. 4a); in the FOLFIRI group, we observed that among tumors 

with MSI-high—having a very high rates of mutation [33]—the patients with SLFN11-high tumors 

showed a better outcome compared to those having MSI-High but SLFN11-low tumors (7 years-OS 

95% vs 66.7%, HR = 0.129, 95% CI 0.014–1.156, p = 0.067). Inversely, in patients with MSS 

tumors, we observed a worse outcome in patient SLFN11-high than in SLFN11-low (7 years- OS 

64.6% vs 82.1%, HR = 2.348, 95% CI 1.412–3.904, p = 0.001) (Fig. 4b). Analyzing these data in a 

multivariable model, we demonstrated that the interaction between MSI status and SLFN11 was 

significant (p = 0.011). One study addressed the prognostic significance of SLFN11 overexpression 

in colorectal (CRC) cancers. The cohort included 261 patients with stage II or III CRC cancers 

treated with oxaliplatin-based adjuvant chemotherapy. SLFN11 was assessed by 

immunohistochemistry [34].  

Overall, CRC with high SLFN11 levels did not show prolonged survival. A substantial benefit from 

SLFN11 overexpression was observed only in the sub-group of patients with KRAS wild-type 

tumors. SLFN11 overexpression did not have impact on the outcome of patients harboring somatic 

KRAS mutation (exon 2). There is an overlap between MSI and KRAS status, with 90% of CRC 

MSI-high being KRAS wild-type (p < 0.001) [35]. Together, these observations suggest that a 

subgroup of CRC tumors MSI-high, KRAS wild-type, overexpressing SLFN11, is very likely to 

benefit from DDA-based adjuvant chemotherapy. In the future, it would be interesting to better 

identify this sub-group of tumors and investigate at the molecular level the mechanisms underlying 

such benefit.  

 

 

 

 

 



Consensus conclusions  

Shared by all the co authors  

1. SLFN11 is a protein with a causal association with response to DDA in cancer cells.  

2. SLFN11 is induced by IFN, but the current relation- ship between TILs and SLFN11 

expression in cancer tissues is not known.  

3. SLFN11 can be assessed in human cancer tissues by IHC, with wide range of expression.  

4. Several preclinical and clinical models point toward SLFN11 as a predictive marker of 

response to DDA and PARP inhibitors.  

5. SLFN11 expression may be related to mutational burden and MSI in colon cancer.  

6. At present, the predictive role of SLFN11 expression in human tumors is unclear and needs 

further investigation.  

7. At present, there is no consensus on the exact function of SLFN11 in health and disease, but 

all available evidence points toward its relevance in cancer.  
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Figure titles and Legends 

 

Figure 1: Conservation tree of SLFN11 across species. Constructed using the Ensembl! GeneTree 

tool, queried with the term “SLFN11” (last accessed 2017, June 19). 

 

Figure 2: Summary scheme proposing the role of SLFN11 in parallel to ATR and homologous 

recombination [12]. 

Figure 3: Immunohistochemistry staining for SLFN11: A (IHC; 400×) Positive external control 

constituted by SKOV 3 cell block culture. B (IHC; 400×) Negative external control constituded by 

normal menopausal ovary: no stain in both overian surface cells and stromal cells. C (IHC, 400×) 

SLFN negative HGSC: cancer cells show no stain, TILs show an intense stain representing a useful 

internal control. D (IHC, 400×) SLFN low HGSC (HS 2) with a faint (IS 1 +) inconstant (DS 2 +) 

pattern of stain. E (IHC, 400×) SLFN intermediate HGSC (HS4) with a moderate (IS 2 +) 

inconstant (DS 2 +) pattern of stain. F (IHC, 400×) SLFN high HGSC (HS 6) with an intense (IS 3 

+) but inconstant (DS 2 +) pattern of stain  

 

Figure 4: Overall survival in patients of the PETACC3 study according to SLFN11 levels and MSI 

status. A) Overall survival in the 268 patients treated with LV5-FU2 regimen. B) Overall survival in 

the 285 patients treated with FOLFIRI regimen. 
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ABSTRACT:  

The aim of our study was to develop a reliable protocol for immunohistochemistry (IHC) in order to 

determine Schlafen-11 (SFLN11) expression in formalin-fixed paraffin-embedded (FFPE) high-

grade serous ovarian carcinoma (HGSOCs) samples.  

Firstly, we validated a reliable SLFN 11 antibody (Ab) in IHC choosing between two antiSLFN11-

Abs previously tested for Western blot (WB) through the development of a SFLN11-IHC protocol 

in culture cell block (CCB) of ovarian carcinoma (OC) and in an HGSOCs tissue micro-array 

(TMA) series. Successively, we applied our protocol to a case series of HGSOC samples to confirm 

our preliminary results. For each case, we evaluated both the Intensity Score (IS) and the 

Distribution Score (DS). A final Histological Score (HS) was obtained as follow:  HS=IS x DS  

We found that in CCB and TMA series, Ab #1 at 1:100 dilution was more reliable and we decided 

to use this last one in our case series to confirm our IHC protocol.  

DS showed the following results: 27 cases were not stained, 11 cases showed staining for SFLN11 

in <10% of tumour cells, 16 cases showed staining in 10-40% of cells and the remaining 15 cases 

showed stain in >40% of cells. 

IS showed the following results: 25 cases were not stained, 19 cases had a mostly weak stain, 14 

cases a moderate stain, and 11 cases showed a strong stain.  

HS for SLFN11 expression presents a normal distribution with a prevalent (≈ 60%) intermediate 

expression.  

In summary, we developed a reproducible and standardized IHC protocol to determine SFLN11 

protein expression in FFPE HGSOC samples using a modified WB anti SLFN11 Ab.  
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Introduction:   

Ovarian cancer (OC) is the seventh most common cancer and the eighth cause of death from cancer 

in women.1 The incidence of OC increases with age and is most prevalent in the sixth and seventh 

decades of life.2 OC is a highly heterogeneous group of diseases, including different histological 

subtypes with distinct clinico-pathological and molecular features, and are generally classified as 

Type I and Type II tumours.3 Among them, high-grade serous ovarian carcinoma (HGSOC) is the 

most common histologic subtype of ovarian cancer, accounting for three quarters of ovarian 

carcinoma.4-7 

Nearly 70-80% of HGSOC are diagnosed in advanced stage, when peritoneal carcinomatosis or 

distant metastases are established (International Federation of Gynecology and Obstetrics, FIGO 

stages III-IV).8 

Primary debulking surgery (PDS) followed by systemic platinum-based chemotherapy (CT) is the 

standard of care.9 

It has been observed that although 40%-60% of patients achieve complete clinical response to first-

line CT treatment10, around 50% of these patients relapse within 5 years11, and only 10%-15% of 

patients presenting with advanced stage disease achieve long-term remission.11 It is thought that the 

high relapse rate is at least in part due to resistance to chemotherapy, which may be inherent or 

acquired by altered gene expression.12 

Nowadays, no tools are available to predict chemotherapy response sensitivity in OC.  

We recently discovered the role of a putative DNA/RNA helicase, Schlafen 11 (SLFN11), for its 

causal association with sensitivity to DNA damaging agents, such as platinum salts, topoisomerase I 

and II inhibitors, and other alkylators in the NCI-60 panel of cancer cell lines.13 

SLFN11 belongs to the Schlafen protein family, which has been implicated in the regulation of 

important mammalian biological functions, such as control of cell proliferation14, induction of 

immune responses15, and regulation of viral replication.16 

It is now thought that SLFN11 blocks replication by changing chromatin structure across replication 



sites upon DNA damage.17 

Recently, the importance of SLFN11 for drug sensitivity has recently been extended to Ewing’s 

sarcomas, in ovarian, colorectal (CRC) and non-small cell lung cancers.13,18-20  

SLFN11 was used as a predictive biomarker for nal-irinotecan sensitivity21, furthermore, it inhibits 

checkpoint maintenance and homologous recombination by removing Replication Protein A from 

single stranded DNA.22  

SLFN11 expression by immunohistochemistry (IHC) staining was correlated directly with survival 

and other clinico-pathological factors in CRC, and could be considered as both a prognostic and a 

predictive factor in CRC KRAS wild-type subgroup. 23  

IHC is a powerful tool in surgical pathology. Amongst its several advantages, IHC is relatively 

cheap, it is available in most histopathology facilities worldwide, it allows for direct morphological-

molecular correlations, and can be performed on archived paraffin-embedded sections.  There is an 

increasingly focused attention on IHC for its capability in identifying potential factors of 

susceptibility to chemotherapy.  

The purpose of this study was to develop a reliable protocol for SFLN11 IHC testing in formalin-

fixed paraffin-embedded (FFPE) samples and to describe SLFN11 staining features in a large series 

of HGSOC cases.   

 

Materials and Methods 

Patients cohort  

A multicentric retrospective study was realized between January 2014 and January 2017.  A 

database of 199 HGSOC patients was analysed. The clinical characteristics, the histo-pathological 

features and types of treatment were recorded.  

Eligibility criteria were as follows: a) Diagnosis of HGSOC, b) Stage III-IV according to FIGO 

classification at diagnosis, c) Performance status 0-1 at diagnosis, d) Surgical biopsy before medical 

treatment, e) Menopausal status, f) Written informed consent to the use of cancer specimens for 



cancer research, in agreement with the Local Ethical Committee of Cancer Center Léon Bérard, 

University of Geneva, and Ospedale Policlinico San Martino. All researches were conducted 

according to the principles of the Helsinki Declaration. 

 

Histo-pathological Analysis  

We developed our work over two phases: 1) In the first one, we tested and validated a reliable 

SLFN 11 antibody (Ab) for IHC developing a SFLN11-IHC staining protocol; 2) subsequently, we 

applied our protocol to HGSOC samples meeting our eligibility criteria in order to confirm our 

preliminary results. 

 

Cell Cultures Block (CCB) 

As a positive control and to test which of the two Anti-SLFN11 antibodies was the most reliable for 

IHC testing, we used a cancer cell line of ovarian carcinoma, SKOV-3, that has endogenous high 

levels of expression for SFLN1113 (gift of Dr. Anne Monks, National Institutes of Health, Bethesda 

MD). In brief, SKOV-3 cultured cells were trypsinized, washed with Tris Buffered Saline (TBS), 

fixed with 10% formalin and pre-embedded in 3% agarose to CCBs as described previously.2 

Tissue Micro-Arrays (TMA)  

In order to choose the most reliable anti-SFLN11 Ab and test the feasibility of our SLFN11-IHC 

protocol, a senior pathologist (VGV) with long-standing experience in HGSOC evaluation 

performed a centralized analysis on 12 independent HGSOC specimens from ovarian masses, not 

included in the case series. A total of five 4-mm wide tissue cores were obtained from these 12 

cases of HGSOC, coming from three different FFPE blocks and representative of the whole 

carcinoma. Necrotic or poorly fixed areas were excluded from evaluation. Additionally, four 

specimens of normal ovarian tissue from healthy donors were used as negative control. For 

recipient blocks, we used two 6x5 Matrices of Tissue-tek® Quick-Ray (Manufacturer: Sakura 

Finetek USA, Inc) following the Manufacturer’s specifications.  



An FFPE block, representative of the entire tumour, was chosen for SLFN11 IHC testing, and to 

prepare TMA paraffin blocks from each of these specimens.  

 

Tissue Processing 

All the ovarian HGSOC specimens were fixed in buffered formalin for 12-18h, routinely processed, 

embedded in paraffin to obtain 3-µm thick histological slides and mounted on positively charged 

Superfrost Plus® Slides. 

 

Antibodies  

We chose two SLFN11 antibodies for Western blot (WB) commercial kits for IHC testing, since at 

the beginning of our study no IHC-optimized anti-SLFN 11 antibodies were commercially available 

for use in FFPE material (see Figure N.I). 

The first one was a Slfn11 (D-12) affinity-purified goat polyclonal Ab raised against a peptide 

mapping within an internal region of Slfn11 of human origin marketed by Santa Cruz [Slfn11 (D-

12): sc-136890; Santa Cruz Biotechnology, Inc.; Dallas, TX, USA].  Slfn11 (D-12) was 

recommended for detection of Slfn11 of human origin by WB, immunofluorescence, and solid 

phase ELISA. The D-12 Ab was marketed as non cross-reactive with other SLFN family members.  

(SC-136890, Santa Cruz Biotechnology, https://www.scbt.com/scbt/fr/product/slfn11-antibody-d-

12) 

The second one was a SLFN11 purified mouse monoclonal Ab in phosphate buffer saline with 

0.05% sodium azide, marketed by Merck-Millipore [Anti-SLFN11, clone 4G9; Cat # MABF248; 

Lot # Q2430677; EMD Millipore Corporation, Temecula, USA]. Anti-SLFN11 Ab, clone 4G9 is an 

Ab against SLFN11 for use in WB and immunoprecipitation. 

(http://www.merckmillipore.com/FR/fr/product/Anti-SLFN11-Antibody-clone-4G9,MM_NF-

MABF248) 

Since no pre-existing dilution indication was known for the used SLFN11 Ab for IHC, we had to 



test several dilutions to determine which was the optimal one. Both anti-SLFN11 Abs were 

therefore tested at 1:25; 1:50 and 1:100 dilutions. 

Successively, we evaluated both staining patterns and differences in intensity for different cellular 

and tissue components.   

 

IHC Testing 

For IHC testing we used an automatic immunostainer Benchmark XT (Ventana Medical Systems 

SA, Strasbourg, France). CB and TMA slides were tested with D12 and 4G9 anti-SFLN11 

antibodies at 1:25; 1:50, and 1:100 dilutions. Antigen retrieval was obtained with citrate buffer (pH 

6) at 90°C for 30 minutes. Then, samples were incubated with primary Abs for 1 hour at 37°C, 

followed by the addition of the polymeric detection system Ventana Medical System Ultraview 

Universal DAB Detection Kit, counterstained with modified Gill’s hematoxylin and mounted in 

Eukitt. All TMA slides were processed during the same session.  Slides form our multicentric case 

series were tested in a total three sessions in different days.  Each staining session included an 

external positive control (SKOV-3 CCB) and an external negative control (no primary Ab in four 

cases of healthy ovarian tissue) (see Figure N. II A and B). 

 

IHC Evaluation  

Complete IHC testing was evaluated by the same senior pathologist (VGV). D-12 and 4G9 anti-

SFLN11 antibodies were tested and compared to determinate which one was more reliable to use in 

the case series. 

For each case, both the Intensity Score (IS) and the Distribution Score (DS) were evaluated in at 

least 300 cells. 

Intensity Score (IS) assesses the main pattern of staining intensity in positive cancer cells as 

follows: 

0: no stain 



1+: weak stain (visible at high magnification) 

2+: moderate stain (visible at scan magnification) 

3+: intense stain (Tumor Infiltrating Lymphocytes –TIL)  

 

Distribution Score (DS) evaluates the percentage of stained cancer cells as follow: 

0: no stained cells 

1+: <10% of stained cells 

2+: 10-40% of stained cells 

3+: >40% of stained cells 

The scores were combined to obtain a final Histological Score (HS) as follow:  HS=IS x DS. 

Study cases were grouped based on HS within the following categories:  cases with HS=0 were 

considered SFLN11 Negative, cases with 0<HS≤2 were considered SFLN11 Low, cases with 

2<HS<6 were considered SFLN11 Intermediate, while cases with HS≥6 were considered SFLN11 

High. 

Concerning TMAs IS, DS, and HS were separately evaluated for each tissue core. Then, for each 

case a final mean IS, DS and HS was calculated. Based on the final mean HS, each case was 

assigned to the proper SFLN11 category:  SFLN11 Absent, SFLN11 Low, SFLN11 Intermediate, 

and SFLN11 High. 

 

Results 

Cell Culture Block (CCB), Figure N. IIB 

CCB stained with Ab #1 (D-12) showed intense and diffuse cytoplasmic stain. well discernible up 

to 1:100 dilution.  In some cells, a crescent-shaped thickening of the coloration in the perinuclear 

area consistent with Golgi complex was also observed.  No staining was observed in the nuclei 

(Figure N.II and N.III). Ab #2 (4G9) showed a paler and diffuse stain and even the nuclei appeared 

weakly stained.  



 

TMAs 

Being clearly visible with the lowest concentration, TMAs were tested in independent specimens 

with Ab#1 at 1:100 concentration to avoid any possible non-specific bond.  SFLN11 IHC with Ab 

#1 appeared clean and specific, and no non-specific staining could be appreciated in the tumour 

stroma (Figure N. IIA). A relevant positive internal control was represented by a subpopulation of 

tumor infiltrating lymphocytes (TIL) with intensive stain (3+) for SFLN11, in agreement with the 

literature25 (Figure N. III-Right,F). No staining was observed on ovarian coelomic epithelium nor in 

ovarian inclusion cysts and albicans bodies (Figure N. IIA). 

IHC staining for SFLN11 with Ab #1 was extremely variable between cases (inter-tumor staining 

heterogeneity), and even within the same cases (intra-tumor staining heterogeneity); (Figure N.IV). 

Staining distribution was highly heterogeneous even in the same case, varying from few scattered 

stained cells (DS=1) (Figure N. III-Right,H) to a diffuse, homogeneous staining (DS=3); (Figure N. 

III-Right,F). Likewise, staining intensity per se, even in homogeneous samples, exhibited a wide 

range, from a faint stain visible at high magnification (IS=1) (Figure N. III-Right,F) to an intense 

staining similar to that previously observed in control CB (IS=3); (Figure N.III-Right,H).However, 

a predominant intensity pattern seems to characterize individual cases.   

Combining IS and DS to obtain HS, 3 cases resulted SFLN11 Negative, 5 cases were SLFLN11 

Low, 3 cases were SFLN11 Intermediate and one case SFLN11 High (see Figure N. IV). 

Ab #2 was judged unreliable, as it repeatedly failed to reveal the striking differences between and 

within cases observed with Ab #1. Moreover, all the tested dilutions (1:25; 1:50 and 1:100) showed 

a diffuse, faint stain on cancer cells, which became stronger only using high antibody concentration 

at the likely cost of a lower binding specificity. At the same concentration, all the independent 

series showed the same diffuse pattern of staining with minimal or no differences in intensity.  

For these reasons, we decided to perform IHC of our case series with Ab #1 (Santa Cruz D-12) at 

1:100 dilution. 



Case Series 

70 HGSOC samples were eligible for this study. One case was excluded due to insufficient cancer 

cell fraction. The remaining 69 cases underwent IHC testing for SFLN11 using Ab #1 at 1:100 

dilution.  Four cases of healthy ovarian tissue were used as a negative control (see Figure N.IIA). 

This large case series confirmed our preliminary observations performed on TMAs. 

Distribution Score (DS) showed the following results:  27 cases (39.1%) showed no stain (0+), 11 

cases (15.9%) showed staining for SFLN-11 in <10% of tumour cells (1+), 16 cases (23.2%) 

showed staining in 10-40% of cells (2+) and the remaining 15 cases (21.7%) showed stain in >40% 

of cells (3+).   

Intensity Score (IS) showed the following results:  in 25 cases (36.2%) we observed no stain (0+), 

in 19 cases (27.5%) a dominant weak stain (1+), in 14 cases (23.2%) a moderate stain (2+), and in 

11 cases (15.9) a strong stain.  

 DS and IS were combined to obtain HS and divide the study population in the proposed categories. 

As observed in Figure N.V, when SLFN11 was expressed (~ 60% of cases), it showed a normal 

distribution with more prevalent intermediate expression (H3 and H4). In contrast, SLFN11 was not 

expressed (H0) in 40% of cases. This lack of expression was related with both negative DS and IS. 

 

Discussion 

There are scarce literature examples concerning the use of anti-SLFN11 Abs for IHC in cancer 

specimens. Deng et al. studied the correlation between IHC expression of SLFN 11 in CRC and 

overall survival. They used a rabbit polyclonal anti SLFN11-Ab produced by Abcam Company at a 

dilution of 1:5026 that is normally used for WB, immunocytochemistry and immunofluorescence. 

Lok et al. evaluated IHC expression of SLFN11 on PDX model using a non-conjugated polyclonal 

rabbit Anti-SLFN11 Ab produced by Sigma-Aldrich but they did not specify if they tested our Ab 

in FFPE samples. 27 

In none of these works a systematic, analytically designed procedure for FFPE staining of SLFN11 



by IHC was reported. In our study, we aimed to develop and validate a SLFN11 Ab for use in a 

reproducible and standardized IHC procedure to determinate the SFLN11 expression in FFPE 

samples.  

In the first phase of our endeavour, we tested by IHC two different, promising SFLN11-Abs 

previously used for other SLFN11 detection purposes. We did so by: a) staining a positive control, 

the SKOV-3 cell culture, that presents naturally high SLFN11 levels, and b) testing our two 

candidate Ab in 12 independent HGSOC specimens.  

The preparation of CCB and TMAs reproduces the normal procedure that we use during the process 

of fixation of a biopsy from any tissue for FFPE embedding. For antigen retrieval, we chose to 

exploit the most commonly used protocol in daily practice, automating the procedure with a widely 

available commercial autostainer.  

Already by IHC staining of CBs, Ab #1 (Santa Cruz clone D-12) showed greater reliability than Ab 

#2 (Merck-Millipore clone G49). These results were confirmed in the independent HGSOC sample 

series. Indeed, by using the same antibody concentrations used in clinical practice, Ab #1 produced 

meaningful, clear results. Not only it allowed us to observe an intra-tumoral heterogeneity for 

SLFN11 staining, but it successfully stratified or case series into 4 clearly subdivided subgroups 

ranging from faint to intense staining. Furthermore, SFLN11 IHC staining performed with Ab # 1 

appeared to be reliable and significant for the presence of a unique internal control represented by 

TIL and for the absence of non-specific staining of peri-tumoral stromal elements. Ab #2 failed at 

showing SLFN11 staining of TIL, which are known to express this protein25, and presented with 

aspecific staining of external non-cellular elements. 

Finally, Ab #2 failed to reproduce intra-tumor heterogeneity for SLFN11, and to stratify between 

different cases, resulting in a practical impossibility to differentiate between cases. Indeed, a same 

diffuse pattern of staining with minimal or no difference in intensity was seen in CB and in our 

independent series at all the concentrations tested.  

SFLN11 appears to be variably expressed in HGSOC, with 27 out of 69 cases (39.1%) showing no 



staining at all (SFLN11 Negative). In the remaining specimens, we observed an extremely wide 

range for SLFN11 expression, allowing us to differentiate samples into four different 

subpopulations that, in clinical practice, may purport a different response to chemotherapy.  

Of extreme interest, 16 (59.3%) of the 27 SLFN11 Negative subpopulation were platinum-resistant 

according to recent literature data that highlighed the role of SLFN11 in response to DNA 

damaging agents (DDA). Indeed, low expression of SLFN11 may confer a resistance to DDA or 

PARP inhibitors, both widely used in HGSOC.13,20,26-29  

We are aware of the limitations in our study. First, the used case set represents a multicentric, 

retrospective collection of samples, which is not the optimal starting point for the evaluation of a 

novel biomarker. On the other hand, cases were rigorously selected and underwent centralized 

reassessment by an experienced pathologist, ensuring that a correct diagnosis and proper sample 

conditions would be guaranteed. A second weak point in our analysis is the lack of clinical follow-

up data. We are currently collecting information concerning our dataset as well as a prospective, 

larger series which should answer to the question of a correlation between SLFN11 IHC levels and 

prediction/prognosis in HGSOC. Finally, although in vivo analyses have shown that SLFN11 is 

mainly located in nuclei, the Ab we chose actually tended to stain the cytoplasmic reticulum and not 

the nuclear region. This however is not an indication of aspecific binding, since we showed that in 

SLFN11 expresser cancer cells, Ab #2 was able to exactly pinpoint the expression of that protein. 

Moreover, during ischemia and fixation processes several proteins could be extruded from nuclei 

and could be found, when assessed in FFPE material by IHC, in cellular cytoplasm. As a further 

proof-of-principle that SLFN11 staining was specific in our experience, we observed that TIL, 

known to express SLFN11 constitutes an internal positive control.     

In conclusion, we were able to optimize a reproducible, valid, and standardized IHC procedure to 

determine SFLN11 expression in FFPE samples. Biological observations from our report, such as 

intra- and inter-tumor SLFN11 expression heterogeneity and TIL staining are intriguing and elicit 

several questions for future clinical and preclinical studies. We believe that our methodological 



work can now pave the way for the use of SLFN11 IHC staining in human cancer samples to assess 

the role of this protein as a prognostic and predictive biomarker. 
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Figures and Figure Legends: 

 

 

 

 

Figure N. I: Characteristics of two antibodies used to perform IHC 

 

 

 

 

 

Figure N. II: A, (IHC; 200X):  Healthy ovarian tissue (negative control), both ovarian surface and 

stroma are not stained by SFLN-11; B, (IHC; 400X):  CCB (SKOV-3, positive control) stained 

with antibody #1 at 1:110 dilution, diffuse and intense staining (3+).  

 



 



Figure N. III: Density Score (Left, A-D) and Intensity Score (Right, E-H) of SLFN 11 in IHC 

TMA series to validate the Ab 

 

Figure N. IV: Histological Score of SLFN 11 in IHC TMA series; Blue Bar:  TMAs Case Mean 

HS, Green Line:  TMAs HS±1SD  

 



 

Figure N. V: Histological Score of SLFN 11 in IHC Case series (High); Correlation between 

Histological Score and IHC expression of SLFN 11(Low) 
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ABSTRACT 

PURPOSE: Breast cancer (BC) is a heterogeneous disorder, with variable response to systemic 

chemotherapy. Likewise, BC shows highly complex immune activation patterns, only in part 

reflecting classical histopathological subtyping. Schlafen-11 (SLFN11) is a nuclear protein we 

independently described as causal factor of sensitivity to DNA damaging agents (DDA) in cancer 

cell line models. SLFN11 has been reported as a predictive biomarker for DDA and PARP 

inhibitors in human neoplasms. SLFN11 has been implicated in several immune processes such as 

thymocyte maturation and antiviral response through the activation of interferon signaling pathway, 

suggesting its potential relevance as a link between immunity and cancer. In the present work, we 

investigated the transcriptional landscape of SLFN11, its potential prognostic value, and the clinico-

pathological associations with its variability in BC. 

METHODS: We assessed SLFN11 determinants in a gene expression meta-set of 5,061 breast 

cancer patients annotated with clinical data and multigene signatures.  

RESULTS: We found that 537 transcripts are highly correlated with SLFN11, identifying “immune 

response”, “lymphocyte activation”, and “T cell activation” as top Gene Ontology processes. We 

established a strong association of SLFN11 with stromal signatures of basal-like phenotype and 

response to chemotherapy in estrogen receptor negative (ER-) BC. We identified a distinct 

subgroup of patients, characterized by high SLFN11 levels, ER- status, basal-like phenotype, 

immune activation, and younger age. Finally, we observed an independent positive predictive role 

for SLFN11 in BC.  

CONCLUSIONS: 

Our findings are suggestive of a relevant role for SLFN11 in BC and its immune and molecular 

variability. 

Keywords: Schlafen-11, Immune Signatures, Basal-like phenotype, Breast Cancer, Biomarker 
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INTRODUCTION 

Breast cancer (BC) is the second most common cancer in the world and, by far, the most frequent 

neoplasm among women(1). 

BC is a clinically and molecularly heterogeneous disease and genomic microarray analyses have 

corroborated the presence of at least four distinct intrinsic molecular subtypes: luminal A, luminal 

B, basal-like, and HER2 enriched subsets(2,3). These subtypes display varying degrees of 

sensitivity to treatment and highlight the molecular heterogeneity of BC(4). 

We and an independent group(5) recently discovered the role of a putative DNA/RNA helicase, 

Schlafen-11 (SLFN11), for its causal association with sensitivity to DNA damaging agents (DDA), 

such as platinum salts, topoisomerase I and II inhibitors, and other alkylators in the NCI-60 panel of 

cancer cell lines(6).  

SLFN11 belongs to the Schlafen protein family, which has been implicated in the regulation of 

important mammalian biological functions, such as control of cell proliferation(7), induction of 

immune responses(8), and regulation of viral replication(9).  

Schlafen genes were originally identified during screening for growth regulatory genes, and they 

are differentially expressed during lymphocyte development(10-13). Later, SLFN11 was described 

as an early interferon response gene, in association with HIV infection(9).  Furthermore, Murai et 

al. described molecular mechanisms detailing how SLFN11 is a dominant determinant of sensitivity 

to DNA-targeted therapies(14). In particular, SLFN11 inhibits checkpoint maintenance and 

homologous recombination by removing Replication Protein A from single-stranded DNA(15). 

Tang et al. demonstrated that the use of histone deacetylase inhibitors can be used to sensitize 

SLFN11-inactivated cancers to DDA(16). Recently, the importance of SLFN11 as a predictor of 

sensitivity to DDA  has been proven in Ewing’s sarcomas, ovarian cancer and colorectal cancer(17-

21). SLFN11 has also been confirmed as a predictive biomarker of PARP inhibitor sensitivity in 



small-cell lung cancer(22).  

 The aims of our study were to investigate the transcriptional landscape of SLFN11 expression in 

invasive BC and to identify clinical and pathological parameters that could help explain SLFN11 

modulation in BC. In addition, we set up to determine whether SLFN11 expression could be 

associated with prognosis or response to treatment in this neoplasm.  

 

MATERIALS AND METHODS 

Datasets retrieval, pre-processing and data normalization 

Thirty-five gene expression datasets of expression profiles from 7 737 tumors were retrieved from 

public databases or authors' websites [32 sets previously described in (23) and another three: PNC, 

METABRIC and TCGA(24-26). Immune phenotypes for TCGA BC cases and leucocyte infiltration 

were obtained as described in Hendrickx W et al.(27). 

To ensure comparability of expression values across multiple data sets and microarray platforms 

(Agilent, Affymetrix or Illumina), we performed 0.95 quantile normalization (using the 

R/Bioconductor package genefu(28)). 

SLFN 11 expression analysis and gene signature enrichment 

Whole transcriptome correlation of SLFN11 was performed using Spearman’s rank correlation. We 

selected the top 5th percentile of transcripts that better correlated with SLFN11 expression. 

Functional annotation of correlators was further performed using DAVID (Database for Annotation, 

Visualization and Integrated Discovery) v6.7(29) in order to identify significantly enriched 

pathways (false discovery rate (FDR) < 0.05), particularly Gene Ontology (GO) terms (The Gene 

Ontology Consortium). DAVID identifies GO categories to which genes belong, determining the 

statistical significance of non-random representation. To provide an independent assessment of 

enrichment analysis, we classified patients in molecular subtypes, extracting relative genomic 



signatures from the genefu package(28). Patients labeled as “normal” PAM50 phenotype were 

removed, upon concerns of low cancer cellularity and possible ensuing contamination by normal 

breast tissue(30). The most significant gene signatures were extracted using a feature selection 

machine learning approach, called LASSO regression (glmnet package) 

Multiple correspondence analysis 

We investigated the modulation of SLNF11 in breast cancer through the study of the mutual 

distribution of clinical and pathological categorical data. First, we removed T1a samples, due to 

their small relative number and size, Tx and Nx tumor patients and all those patients with unknown 

age information, estrogen receptor or HER2 status. For this analysis, SLFN11 expression was 

subdivided in tertiles of expression (low, intermediate, and high). Exploratory assessment and inter-

dependencies relations of data, combined with the extracted gene signatures, were accomplished by 

multiple correspondence analysis with the FactoMineR package.  

Survival Analysis and time dependency correlation 

Survival analyses were performed in order to determine the association of SLFN11 with prognosis 

in BC. We defined, by univariable statistical analysis, the association between disease-free survival 

(DFS) and SLFN11 expression (“low” if in the lower two tertiles and “high” if in the top tertile). 

The DFS curves were generated using Kaplan-Meier estimators (survcomp package) and p-values 

were obtained with the log-rank test. For what concerns the analysis of more than one covariates, 

we employed a stepwise backward-forward Cox proportional hazards regression model. The Akaike 

Information Criterion allowed the estimation of the best set of clinical and pathological variables 

described above (MASS package).  

To explore time-dependency of SLFN11 modulation, we tested the proportional hazards assumption 

for a Cox regression model as described previously(31).  We tested a two-sided hypothesis, 

rejecting the null ones with a p-value < 0.05 and applied multiple corrections of resulting p-values 



using the Benjamini-Hochberg method. 

RESULTS 

SLFN11 expression correlates with BC-immune related transcripts  

To investigate the transcriptional landscape of SLFN11 in BC, we conducted a gene expression 

microarray meta-analysis of 7 737 cases from 35 publicly available datasets. 

Of 7 737 cases, we assessed 5 061 patients with SLFN11 expression values. Then, we performed a 

whole-transcriptome correlation analysis with SLFN11 and identified 537 genes in the top 5th 

percentile of correlation. The list of these 537 transcripts was analyzed for gene ontology (GO) 

enrichment. Strikingly, immune function processes represented most of the GO terms resulting 

from such analysis. The overrepresented terms in our sample set are listed in Table 1.  

In agreement with such finding, we observed a strong positive association between well-established 

markers of tumor lymphocytic infiltration with SLFN11 expression such as CD3 and CD8 

(Spearman’s ρ = 0.527 – FDR < 0.0001 with the expression of CD3, and ρ = 0.514 with the 

expression of CD8 – FDR < 0.0001, see Figure 1).  

Overall, this data purports an association of SLFN11 with immune modulation in BC. 

 

 

Term Count Percent Fold-en. FDR 

Immune response 117 23.2 5.62 5.94E-53 

Positive regulation of immune system 

process 

55 10.9 7.66 3.36 E-29 

Cell activation 56 11.1 6.47 8.42 E-26 



Leukocyte activation 52 10.3 7.12 8.74 E-26 

Regulation of cell activation 44 8.7 8.34 3.08 E-24 

Regulation of lymphocyte activation 41 8.1 9.19 4.14 E-24 

Lymphocyte activation 45 8.9 7.50 8.28 E-23 

Regulation of leukocyte activation 41 8.1 8.19 4.94 E-22 

Regulation of T cell activation 35 6.9 9.92 2.69 E-21 

Positive regulation of cell activation 34 6.7 10.16 5.84 E-21 

Table 1: Top Gene Ontology (GO) terms associated with SLFN11 expression in BC 

Fold-en = fold enrichment; FDR = false discovery rate 

FIGURE 1 

SLFN11 expression correlates with BC-immune gene signatures 

Next, to validate our observations from an independent perspective, we inferred gene expression 

signatures from 4 740 patients after removing the “normal-like” intrinsic phenotype cases (in light 

of their low cellularity) and exploited LASSO penalized regression to extract the most relevant 

signatures associated with SLFN11 expression. In harmony with our previous observations, we 

observed an independent, strict association with immune-related signatures, in particular with two 

publicly described signatures ‘Immune2’ (32) (ρ = 0.508, FDR < 0.0001) and ‘Stroma1’ (32) (ρ = 

0.377, FDR < 0.0001, see Figure 2).   

 

FIGURE 2 

High expression of SLNF11 is linked with aggressive BC 



To better understand the role of SLFN11 in BC modulation, we performed multiple correspondence 

analysis (MCA) including clinical and pathological parameters, as well as SLFN11 levels ranked by 

tertiles of expression. 

2 581 patients from 7 datasets, presenting with all clinical and pathological features including ER 

and progesterone receptor immunohistochemistry, HER2 status, grade, T, N, intrinsic subtype, and 

STAT1 signature as a proxy for immune activation(33) were considered for such analysis. 

MCA highlighted two clearly separated patient clusters. The “SLFN11-hot” cluster is defined by 

high SLFN11 expression, ER-negative status, high histological grade, basal-like phenotype, 

immune activation, and younger age at diagnosis (<50 years old).  

The “SLFN11-cold” cluster is characterized by low/intermediate SLFN11 expression, ER-positive 

status, lack of HER2 amplification, older age at diagnosis (>50 years old), and low/intermediate 

STAT1 expression (see Figure 3).  

In summary, high SLFN11 expression correlates with aggressive tumors with signs of immune 

activation (basal-like phenotype, higher histological grade, younger age), whereas lower SLFN11 

expression can be observed in luminal, less aggressive neoplasms characterized by low immune 

activation.  

 

FIGURE 3 

SLFN11 overexpression is independently associated with better prognosis 

To evaluate whether SLFN11 expression could be associated with prognosis or response to 

treatment in BC, we evaluated 2 093 patients from 3 different datasets with complete information 

concerning DFS and type of treatment.  



By univariable analysis, SLFN11 was not associated with prognosis (HR = 1.09 for SLFN11-high 

vs. low expression, 95% CI = 0.88-1.36, p-value = 0.37 )  

On the other hand, when taking into account clinical and pathological parameters as well as type of 

treatment and intrinsic subtypes, SLFN11 high expression was independently associated with better 

prognosis (HR = 0.61, 95% CI = 0.41-0.91, p-value = 0.0153). Moreover, we could define an 

interaction between SLFN11 expression and hormone treatment (HT), with high-SLFN11 patients 

undergoing HT being characterized by worse outcome (HR: 1.81, 95% CI = 1.11-2.96, p-value for 

interaction = 0.0175, Figure 4, panel A). 

To better understand this not obvious observation, we investigated SLFN11 expression and HT in 

relation with possible time dependencies violating the Cox proportional hazards assumption. 

Indeed, in our analysis high SLFN11 levels subtended a worse prognosis in the first two years after 

diagnosis only in patients undergoing HT (Figure 4, panel B).  

FIGURE 4 

 

SLFN11 is independent from BC immune activation status in prognosis prediction  

Finally, we derived leucocyte infiltration and immune phenotypes in the most extensively analyzed 

set available to us, TCGA, as previously described(27). We could indeed confirm that SLFN11 

expression is associated with leucocyte infiltration (Spearman’s ρ = 0.61, p-value < 0.0001, see 

Supplementary Figure S1). However, in a survival model taking into account the interaction of 

SLFN11 and the recently described BC “low” and “high” immunological constant of rejection 

(ICR) phenotypes (N = 318)(27), we could not find a significant interaction in determining 

prognosis between the two variables. Surprisingly, however, our model suggested that high 

SLFN11/high ICR cases may have a short-term worse prognosis than other cases (adjusted HR = 

2.68, 95%CI = 0.28-25.56, p-value = 0.1483, with a p-value for violating the proportional hazards 



assumption = 0.1114). 

 

DISCUSSION 

In the present article, we investigated for the first time how SLFN11 is modulated in BC, analyzing 

more of 7 000 BC cases available from 35 public datasets. Our findings demonstrated a strong 

correlation of SLNF11 expression with immune system transcriptomic markers, in particular with 

transcripts involved in immune system processes such as “prolymphocyte activation”, “immune 

response” and “T cell activation”. Our findings document the relationship between SLFN11 and 

immunity in BC, initially suggested by previous works in other settings(9,34,35). In analogy with 

our findings, Stewart et al. recently published that SLFN11 high expression in small cell lung 

cancer is positively correlated with immune regulatory pathways, particularly with Type 1 

interferon pathway genes(34). Therefore, SLFN11 appears to have a significant role not only in 

innate immunity processes such as defense response to virus(9) or DNA damage repair(18), but also 

in adaptive immune response to cancer. 

SLFN11, in addition to its known expression by cancer cells(18) could indeed be expressed by 

immune cells during anti-tumoral response, potentially behaving as a marker of T-cell infiltration in 

BC as well as in other tumor types. The consistent association of SLNF11 with immunity is 

exemplified by its strong correlation with tumor infiltrating lymphocyte markers(CD3 and CD8 in 

our analyses). 

Of note, we identified a strong independent correlation of SLFN11 with two immune gene 

signatures, namely stroma1 and immune2. In the last few years, several prognostic and/or predictive 

gene expression signatures have been published in BC(36-38). Desmedt et al., in their 

comprehensive meta-analysis, showed as several prognostic gene signatures differ in prognostic 

abilities according to the BC subtype and as only immune response modules seem to predict 



prognosis in ER-negative/HER2 negative BC patients(33). On the other hand, we previously 

pointed out the prognostic and predictive value of immune gene signatures in primary TNBC 

underlining the activation of Th1/effector immune response(36).  Our findings show both high 

expression of SFLN11 in a subgroup of patients with TNBC-like features and a strong correlation 

with immune signatures, in particular immune2, supporting an involvement of SLFN11 during the 

effector immune response in BC. In parallel, stroma signatures have also been developed in BC in 

order to predict clinical outcome and treatment response(39-41). Particularly, Finak et al. developed 

a 26 gene stroma-derived prognostic predictor in which a good-outcome cluster overexpresses a 

distinct set of immune-related genes, including T cell and NK cell markers indicative of a Th1–type 

immune response (GZMA, CD52, CD247, CD8A)(42). Winslow et al. showed that a specific 

immune gene signature (C1Q), represented by genes such as DZMH, GZMA, GZMK, CD3D, 

CD3G, CD247, CD8A, coding for proteins involved in cytotoxic immune response in TNBC, is 

associated with low risk of recurrence. Finally, their results support that the molecular profile of a 

Th-1/immune response (CD4+ T cells) is an important prognostic marker in BC(40) as also 

hypothesized by Gu-Trantien et al. in her work(43). In good agreement with such independent 

observations, in our study SFLN11 is highly associated with stromal signatures, in particular 

stroma1, and expression of T-cell markers, supporting the idea of a role of SLFN11 in Th-1/effector 

immune response in BC. 

Through our unbiased analysis of SLFN11 expression in relation with clinico-pathological BC 

variables, we discovered two distinct BC patient subgroups. In the “SLFN11-hot” cluster, we 

observed a high expression of the signature of STAT1, a key mediator of type I and type II 

interferon response. Among its many functions, STAT1 promotes Th1 immune response and 

TCD8+ cell recruitment(44). This type of immune activation is predominant in TNBC, a subgroup 

of BC that is considered highly immunogenic. TNBC typically presents a worse prognosis than 

other BC subtypes, with – however – a very heterogeneous response to current systemic 



chemotherapies and absence of actionable molecular targets. To overcome this issue, current 

clinical trials testing a combination of immunotherapy and chemotherapy in TNBC are 

ongoing(45).  

In our analysis, we demonstrated that SLFN11 expression is strictly related to BC-immunity, in 

particular in TNBC. The “SLFN11-hot” cluster encompasses a distinct BC subgroup with TNBC-

like features, strong immune activation, better prognosis and better response to systemic treatments 

compared to other BC subtypes. On the other hand, the “SLFN11-cold” cluster might represent a 

different subgroup of scarcely immunogenic BC with minor response to systemic treatment. 

Therefore, SLFN11 as immune-related biomarker is an intriguing venue for further translational 

research. 

In our time dependency analysis, we identified a subgroup of high-SLFN11 BC patients treated 

with HT presenting with worse outcome in the first two years of follow-up. This behavior shows 

similarities with TNBC and suggests that the phenomenon that we observed might be actually due 

to a subset of hormone receptor-poor patients with a biological behavior analogous to that of 

TNBC. This is, however, just a hypothesis since we did not have the availability of ER expression 

level by immunohistochemistry in the evaluated dataset for a precise quantitation of ER by standard 

methods. Our observation is in agreement with recent literature, since several papers confirmed the 

analogies between TNBC and Luminal-B BC concerning survival rates(46), response to 

neoadjuvant chemotherapy(47), high mutational burden, and immunogenic profile characterized by 

higher expression of TIL(48). Finally, Luminal-B BC are poorly responsive to HT(49), and could 

be stratified by immune profile analysis into different prognostic groups(50), so that in future 

studies on BC, we believe SLFN11 expression should be assessed together with other established 

parameters for prognostic and predictive purposes.  

Our lack of identifying a clear association between SLFN11 levels and immune activation in BC in 

determining prognosis is somehow puzzling. We may speculate that SLFN11 levels in cancer cells 



play an independent role in response to DDAs when considered together with immune status in BC. 

As a consequence, we strongly advocate for future studies to morphologically deconvolute SLFN11 

expression in cancer cells and in immune infiltrate in selected BC cohorts to reach a causal 

understanding of the role of this protein. On the other hand, our inconclusive results in assessing the 

relation of SLFN11 and immune activation in BC may be due to both the relatively low number of 

events (N = 42) and the insufficient length of the follow-up time (median 2.5 years) of publicly 

available BC TCGA data. Moreover, the suggestion of a worse short-term prognosis again favors 

the idea of high SLFN11 being a characteristic of BC cancer with such behavior, as TNBC is. The 

negative prognostic effect of SLFN11 in the high ICR BC cases is puzzling, and we should be 

careful in overinterpreting substantially indecisive results. Our analyses have several limitations. 

Amongst them the heterogeneity concerning the origin of data, chip design, and clinical annotation 

are unavoidable. Moreover, we did not perform preclinical experiments for our findings, which are 

of associative nature so far - albeit suggestive -, and SLFN11 location in BC is yet to be 

determined, since the contribution from infiltrating lymphocytes may be determinant in this regard. 

 

CONCLUSION 

In summary, a consistent and evident pattern emerges, highlighting the strong correlation of 

SLFN11 with the immune system in BC, as well as its meaningful associations with clearly distinct 

clinico-pathological BC phenotypes and clinical outcome. Further studies will have to focus on 

biological, well-annotated and homogeneous specimens from clinical BC cohorts to further unravel 

SLFN11 role in BC. 
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Figure and Figure legends 

 

Figure 1. Panel A: Correlation between SLFN11 (y-axis, z-score gene expression values) and CD3 

(x-axis, z-score gene expression values). Panel B: Correlation between SLFN11 (y-axis, z-score 

gene expression values) and CD8 (x-axis, z-score gene expression values). 

 



Figure 2. Panel A: bar plot shows the LASSO regression coefficient weights related to the gene 

signatures of interest: the highest weighted signatures are highlighted in a red contoured box. Panel 

B: The upper and lower scatterplots show the correlation between SLNF11 and the most relevant 

gene signatures resulting from previous variable selection analysis. 

 

Figure 3. MCA showing the relationship patterns between clinico-pathological variables and 

SLFN11 expression in breast cancer.   

x- and y-axes represent the first and second dimension (Dim.1 and Dim.2) of the MCA analysis 

performed on clinical and pathological data, as well as SLFN11 expression, divided in tertiles, from 

2,581 BC patients. Patients are represented by small grey dots and categorical variables are colored. 

In particular, patients with high-grade tumors also show high SLFN11 expression levels 

(highlighted by the red dashed circle), whereas the cluster of patients with SLFN11 low and 



intermediate expression tumors is also characterized by low and intermediate (Low/Intm) STAT1 

expression, HER2-, ER+ cancers (steel-blue dashed circle). 

 

Figure 4. Panel A: Forest plot of Cox regression model for DFS in 2,093 BC patients with 

complete anatomopathological and clinical follow-up data. Panel B: Plot of scaled Schoenfeld 

residuals. Red dashed and blue dotted lines represent, respectively, the null effect (null log hazard 

ratio) and a ± 2-standard-error band around the fit.  On the x-axis, time is expressed in years.  

 

 

 

 

 

 

 

 



6) Annex:  

i. Supplementary Paper: 

 







 



 



 



 



 



 

 

 

 

 



 

ii. Abstract and Poster Session ESGO 2015:  

Slfn11 expression is strongly associated with platinum sensitivity in patients affected by high 

grade serous ovarian carcinoma and correlates with intratumoral cd8 + infiltrating 

lymphocytes. 

 

 

This abstract will soon become a manuscript to submit an immunology journal. 
We are waiting for the IHC from Astra Zeneca, Cambridge UK 
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1) Schlafen 11: General description, discovery and development 

In the field of cancer therapeutics, the concept of precision medicine is based on the premise that 

treatment choices tailored to individual patients using personalized cancer genomic data may 

markedly improve outcomes.1 

However, few anticancer drugs are currently prescribed based upon predictive markers. Precision in 

the clinical application of DNA- targeting drugs remains a substantially unmet need. Over the last 

few years, the expression of Schlafen 11 (SFLN11), a putative DNA/RNA helicase belonging to the 

Schlafen gene family has emerged as a promising predictive biomarker of sensitivity to DNA-

targeting agents. Schlafen genes are highly conserved in mouse and humans, and they first 

identified in 1998 by a research group from the University of California led by Stephen Hedrick. 

These genes were named “Schlafen" from the German word meaning, "to sleep", in relation to the 

capacity of Schlafen to cause G0/G1 cell cycle arrest and to induce grown inhibition.2 



SLFN11 has been implicated in the control of cell proliferation in response to DNA damaging 

agents (DDA)3, 4 and PARP Inhibitors5, induction of immune response6, 7 and regulation of viral 

replication.8-10 

In 2012, two independent research groups described an unusually tight correlation between the 

levels of SLFN11 expression and the sensitivity of response to DDA such as Topoisomerase 

inhibitors 1 and 2, Alkylating agents (Cisplatin) in the NCI-60 cell line panel3 and in Ewing’s 

sarcoma (EWS) cell lines from the Cancer Cell Line Encyclopaedia (CCLE)4, respectively. In 

addition, subsequent in vitro and in vivo studies confirmed this causal relationship between 

SLFN11 intracellular levels and sensitivity to DDA in ovarian cancer (OC)6 and EWS11, 12 as well 

as colorectal cancer13, 14 and lung cancer.15  

At the same time, SLFN11 expression was being correlated with response to PARP inhibitors in 

lung cancer cells15, 16. Recently, this latest finding was also confirmed in a phase II double-blind 

randomized study that showed an improved progression free-survival (5.7 months vs 3.6 months) 

and overall survival (12.2 months vs 7.5months) in the SLFN11-positive small cell lung cancer 

patients compared with the SLFN11-negative tumors.5 

Taken together, all the published data point toward the role of SLFN11 as a bona fide predictive 

biomarker of response to DDA including platinum salts, topoisomerase inhibitors, alkylating agents 

and PARP inhibitors. However, in spite of the extensive literature accumulated thus far, no reliable 

immunohistochemistry (IHC) protocols to evaluate SLFN11 expression in formalin-fixed paraffin-

embedded (FFPE) material have been established, with the ensuing risk of declaring the medical 

utility of SLFN11 staining in cancer without a previous phase of rigorous analytical validation.  

2) Assessment of SFLN11 

To date, several studies had evaluated gene expression, mRNA expression, and protein expression 

of SFLN11 in different cancer cell lines and tumor samples showing a good correlation between 



SLFN11 transcript expression, measured by quantitative real time polymerase chain reaction (qRT-

PCR), and SLFN11 protein levels, evaluated by Western Blot (WB) or IHC. (3,5,6) 

In none of these works a systematic, analytically designed procedure for FFPE staining of SLFN11 

by IHC was reported. 

Actually, widely different antibody sources, clones, product codes and concentrations were utilized 

in IHC and WB experiments to assess SLFN11 expression in cancer cell lines and tumor samples as 

showed in the Table N.1. Furthermore, the descriptions of SLFN11 assessment in supplementary 

data of different studies are often not exhaustive, and in at least two occasions, different antibodies 

were employed in the same paper.17  

Finally, different IHC scores5,15,16,18 have been arbitrarily applied, but a standardized score for 

SLFN11 evaluation in human tissues has neither been validated nor approved by a consensus of 

researchers. 

Interestingly, IHC scores were created in different manners.14,17,16 Even, in a recent publication the 

Authors applied an ad hoc modified IHC score5,16 (see Table N.1) that presented an improved 

correlation of SLFN11 with clinical data. 

All the data published concerning the heterogeneity of SLFN11 assessment with the commercially 

available antibodies, their dilutions and proposed uses have been summarized in Table N.1. 

Unfortunately, the absence of unanimously validated antibodies, of a reliable IHC staining protocol 

and the subsequent differences in construction and use of staining scores converge in a lack of 

uniformity in SLFN11 evaluation. Due to the increasingly evident relevance of SLFN11 as a 

potential predictive biomarker for DDA activity, there is an urgent need to standardize its 

assessment in order to avoid a new “Ki-67 situation”. The proliferation marker Ki-67, in different 

studies19-22, is universally used as a prognostic, clinically useful prognostic biomarker in breast 

cancer. Ki-67 however has been the subject of never ending debates due to considerable 



interlaboratory assessment differences, the use of different antibodies over the years for IHC 

staining, an inter and intra-observer variation in the definition of Ki-67 score (some pathologists 

estimate the percentage of nuclei staining; others count several hundred nuclei in different areas of 

tumours to give an overall average index; elsewhere automated readers are used). Finally, an 

optimal cut-off for defining Ki-67 as “high” has lacked for several years, and even now the debate 

has not completely subsided.23,24  

To avoid a delay in the clinical validation of SLFN 11 as predictive biomarker, we advocate that the 

following steps be rigorously performed in sequence: 1) Analytical (technical) validation of an IHC 

staining method; 2) Clinical (biological) validation in selected retrospective-prospective cohorts 

such as biobank from large, well-conducted phase III trials and 3) Clinical utility demonstration 

through prospective companion studies in clinical trials. The two latest steps can only have value if 

following international recommendations20,25, and after the generation of a reliable, agreed upon 

IHC staining protocol as well as an optimal IHC scoring system.26  

 

References 

 

1. Yu K-H, Snyder M: Omics Profiling in Precision Oncology. Molecular & Cellular Proteomics 
15:2525–2536, 2016 

2. Schwarz DA, Katayama CD, Hedrick SM: Schlafen, a new family of growth regulatory genes 
that affect thymocyte development. Immunity 9:657–668, 1998 

3. Zoppoli G, Regairaz M, Leo E, et al: Putative DNA/RNA helicase Schlafen-11 (SLFN11) 
sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci USA 109:15030–15035, 2012 

4. Barretina J, Caponigro G, Stransky N, et al: The Cancer Cell Line Encyclopedia enables 
predictive modelling of anticancer drug sensitivity. Nature 483:603–607, 2012 

5. Pietanza MC, Waqar SN, Krug LM, et al: Randomized, Double-Blind, Phase II Study of 
Temozolomide in Combination With Either Veliparib or Placebo in Patients With Relapsed-
Sensitive or Refractory Small-Cell Lung Cancer. J Clin Oncol JCO2018777672, 2018 

6. Nogales V, Reinhold WC, Varma S, et al: Epigenetic inactivation of the putative DNA/RNA 
helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget 7:3084–3097, 
2016 



7. Zoppoli G, Brohee S, Desmedt C, et al: Clinico-pathological and transcriptomic determinants of 
SLFN11 expression in invasive breast carcinoma. Journal for ImmunoTherapy of Cancer 3:O3–2, 
2015 

8. Li M, Kao E, Gao X, et al: Codon-usage-based inhibition of HIV protein synthesis by human 
schlafen 11. Nature 491:125–128, 2012 

9. Valdez F, Salvador J, Palermo PM, et al: Schlafen 11 Restricts Flavivirus Replication, 2018 

10. Razzak M: Schlafen 11 naturally blocks HIV. Nature Reviews Urology 9:605–605, 2012 

11. Tang S-W, Bilke S, Cao L, et al: SLFN11 Is a Transcriptional Target of EWS-FLI1 and a 
Determinant of Drug Response in Ewing Sarcoma. Clinical Cancer Research 21:4184–4193, 2015 

12. Kang MH, Wang J, Makena MR, et al: Activity of MM-398, Nanoliposomal Irinotecan (nal-
IRI), in Ewing's Family Tumor Xenografts Is Associated with High Exposure of Tumor to Drug and 
High SLFN11 Expression. Clinical Cancer Research 21:1139–1150, 2015 

13. Tian L, Song S, Liu X, et al: Schlafen-11 sensitizes colorectal carcinoma cells to irinotecan. 
Anti-Cancer Drugs 25:1175–1181, 2014 

14. He T, Zhang M, Zheng R, et al: Methylation of SLFN11is a marker of poor prognosis and 
cisplatin resistance in colorectal cancer. Epigenomics 9:849–862, 2017 

15. Stewart CJ: Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and 
SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer1–13, 2017 

16. Lok BH, Gardner EE, Schneeberger VE, et al: PARP Inhibitor Activity Correlates with SLFN11 
Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clinical 
Cancer Research 23:523–535, 2017 

17. Murai J, Tang S-W, Leo E, et al: SLFN11 Blocks Stressed Replication Forks Independently of 
ATR. Mol Cell 69:371–384.e6, 2018 

18. Gardner EE, Lok BH, Schneeberger VE, et al: Chemosensitive Relapse in Small Cell Lung 
Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell 31:286–299, 2017 

19. Yerushalmi R, Woods R, Ravdin PM, et al: Ki67 in breast cancer: prognostic and predictive 
potential. Lancet Oncology 11:174–183, 2010 

20. Denkert C, Loibl S, Müller BM, et al: Ki67 levels as predictive and prognostic parameters in 
pretherapeutic breast cancer core biopsies: a translational investigation in the neoadjuvant 
GeparTrio trial. Ann Oncol 24:2786–2793, 2013 

21. Petrelli F, Viale G, Cabiddu M, et al: Prognostic value of different cut-off levels of Ki-67 in 
breast cancer: a systematic review and meta-analysis of 64,196 patients. Breast Cancer Research 
and Treatment 153:477–491, 2015 



22. Focke CM, van Diest PJ, Decker T: St Gallen 2015 subtyping of luminal breast cancers: impact 
of different Ki67-based proliferation assessment methods. Breast Cancer Research and Treatment 
159:257–263, 2016 

23. Dowsett M, Nielsen TO, A'Hern R, et al: Assessment of Ki67 in breast cancer: 
recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 
103:1656–1664, 2011 

24. Ragab HM, Samy N, Afify M, et al: Assessment of Ki-67 as a potential biomarker in patients 
with breast cancer. Journal of Genetic Engineering and Biotechnology 16:479–484, 2018 

25. O'Hurley G, Sjöstedt E, Rahman A, et al: Garbage in, garbage out: A critical evaluation of 
strategies used for validation of immunohistochemical biomarkers. Molecular Oncology 8:783–798, 
2014 

26. Duffy MJ, Sturgeon CM, Sölétormos G, et al: Validation of New Cancer Biomarkers: A 
Position Statement from the European Group on Tumor Markers. Clinical Chemistry 61:809–820, 
2015 

 

Table 

Provider and 
product 
name 

Source Studies WB, Dl IHC, Dl IHC score IMF 

NBP1-92368 
NB 

Rabbit 
Poly 

2) Li M et al. 
2012* 

2) Yes,  
N.S 

2) No  2) No 

HPA- 
023030 SA 

Rabbit 
Poly 

6) Barretina J et 
al. 2012 
 

7) Lok BH et al. 
2017# 
 

8) Gardner EE et 
al. 2017 

 

9) Stewart CJR el 
al. 2017 

 

10) Pietanza MC et 
al. 2018 

 

6) Yes, 
1:500 
 

7) No 
 

 

8) No 
 

 

9) No 
 

 

10) No 

6) No 
 
 

7) Yes, 
n.s. 
 

 

8) Yes, 
N.S 
 

9) Yes, 
1:50 
 

 

10) Yes     
N.S 
 

6) No 
 

 

7) YesI 
 

 

8) YesII 
 

 

9) YesIII 
 

 

10) YesIV 
 

 

7) No 
 

 

8) No 
 

 

9) No 
 

 

10) No 
 

 

11) No 



SC-136891 
(K-13) 

Goat 
Poly 

3) Zoppoli G et al. 
2012 

 
4) Tian et al.  

2014 

3) Yes, 
1:500 
 

4) Yes,  
N.S 

3) No 
 
 

4) No 
 

 3) Yes 
 
 

4) No 

SC-374339 
(E-4) 

Mouse 
Mono 

12) Abdel-Mohsen 
M et al. 2013 
 

13) Tang SW et al. 
2015 
 

14) Kang MH et al. 
2015 
 

15) Goss Kl et al. 
2016 
 

16) Murai J et al. 
2016 
 

17) Nogales V et 
al. 2016 
 

 

18) He T et al.  
2017 

 
19) Lok BH et al. 

2017 

 

20) Gardner EE et 
al. 2017 

 

21) Tang SW et al. 
2018& 

 

22) Valdez F et al. 
2018* 

12) Yes, 
1:500 
 

13) Yes, 
N.S. 
 

14) Yes,  
N.S 
 

15) Yes, 
1:500 

 
16) Yes,  

N.S 
 

17) Yes,  
N.S 
 
 

18) Yes, 
1:200 
 

19) Yes, 
1:250 
 

20) Yes, 
1:250 
 

21) Yes 
 
 

22) Yes, 
1:500 

12) No 
 
 

13) No 
 
 

14) No 
 
 

15) No 
 
 

16) No 
 
 

17) No 
 

 
 

18) No 
 
 

19) No 
 
 

20) No 
 
 

21) No 
 
 

22) No 

 12) No 
 
 

13) No 
 

 
14) No 

 
 

15) No 
 
 

16) No 
 
 

17) Yes 
 
 
 

18) No 
 
 

19) No 
 
 

20) No 
 
 

21) No 
 
 

22) Yes, 
1:200 

 

Ab-121731 

 

Rabbit 

Poly 

2) Deng Y et al. 
2017 

2) No 2) Yes Yes $ 6) No 

SC- 515071 
(D-2) 

Mouse 

Mono 

4) Tang SW et al. 
2018 

5) Murai J et al. 
2018** 

6) Valdez F et al. 
2018 

 

4) Yes& 
 

5) Yes, 
1:1000
0 
 

6) Yes, 

2) No  4) No 
 

5) Yes,1
:1000 
 

6) Yes, 
1:200 



1:500 
 

SC-136890 Goat 

Poly 

1) Ferraioli et al. 
2018 

1) No 1) Yes, 
1:100 

1) YesΣ 1) No 

Table N. 1: Anti-Schlafen 11Antibodies  
Ab: Abcam, Dl: dilution, IHC: immunohistochemistry, I: Intensity, IMF: Immunofluorescence, Mono: Monoclonal, NB: Novus biological, N.S: not specified, 
P: Positive, Poly: Polyclonal, SA: Sigma-Aldrich, SC: Santa Cruz, WB: Western Blot. 
 
*: Studies in infectious disease (HIV-virus) 
**: Immunoprecipitation (IP) and IP coupled to Mass Spectrometry: Anti-Schlafen11 antibody SC- 374339 (E-4)  
#: Modified H-score, Dichotomized H-Score 
$: Intensity was scored as 0, none; 1, weak; 2: moderate; 3, strong. The proportion of positive tumor cells was assigned to 0 (<25 % positive), 1 (25–50 % 
positive), 2 (50–75 % positive), 3 (75–100 % positive). The final score was calculated by intensity plus proportion (0–6). 
&: In this paper the authors don’t clearly describe how and when they used two different antibodies 
I: Three intensities of IHC nuclear staining and their frequency. A final expression (H-score) from 0 to 300 , 
II: The same score of Lok et al. (2017): Three intensities of IHC nuclear staining and their frequency. A final expression (H-score) from 0 to 300 
III: Nuclear expression of SLFN11 were quantified using a 4-value intensity score (0, none; 1, weak; 2, moderate; and 3, strong) and the percentage (0%–100%)    
of the extent of reactivity. A final expression score (H-score) was obtained by multiplying the intensity and reactivity extension values (range, 0–300)  
IV: Sections were scored for intensity (0-3+) and extent (0- 100%) of staining by light microscopy. By multiplying intensity and extent of staining, each tumor 
was assigned an H-score (range 0-300). For SLFN11, an immunohistochemistry (IHC) score of 1 or greater was considered positive.  
ΣΣ: Intensity Score (IS):0: no stain,1+: weak stain (visible at high magnification), 2+: moderate stain (visible at scan magnification), 3+: intense stain (Tumor 
Infiltrating Lymphocytes –TIL); Distribution Score (DS):0: no stained cells,1+: <10% of stained cells,2+: 10-40% of stained cells,3+: >40% of stained cells. 
Histological Score (HS)was obtained: HS=IS x DS. HS=0 SFLN11 Negative, 0<HS≤2 SFLN11 Low, 2<HS<6 SFLN11 Intermediate, HS≥6 SFLN11 High 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7)     Conclusion 

• SLFN11 is a new putative helicase DNA/RNA protein discovered by Zoppoli and Barretina in 

the year 2012.  

• SLFN11 expression is causally associated with response to DDA in cancer cells.  

• SLFN11 is induced by IFN, but the current relationship between TILs and SLFN11 expression 

in cancer tissues is not known.  

• Hypermethylation of CpG promoter island, that are located around its transcription start site, 

inhibits SLFN11 expression. 

• In IHC and WB, several antibodies and different scores have been used to evaluate SLFN 11 

protein expression but nobody has been clearly validated.  

• A linear relationship between mRNA measured by qRT-PCR and protein expression (WB and 

IHC) derived by activation of SLFN 11 gene has been confirmed.  

• Several preclinical and clinical models point toward SLFN11 as a predictive marker of response 

to DDA and PARP inhibitors.  

• At present, the predictive role of SLFN11 expression in human tumors is unclear and needs 

further investigation but it seems that SLFN11 induces lethal replication block in response to a 

broad type of DNA-targeting agents and PARP inhibitors. 

 

Further studies will be performed to confirm our hypothesis in order to: 1) better understand the 

function of SLFN 11 in cancer cell, 2) validate an easy, reliable and standardized IHC protocol to 

assess SLFN11 expression, 3) use SFLN11 expression as a predictive biomarker of response to 

DDA and PARP inhibitors and 4) determinate the relationship with immune system.  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


