J. Abramson, J. Pitman, N. Ross, and G. Bravo, Convex minorants of random walks and Lévy processes, Electron. Commun. Probab, vol.16, issue.38, pp.423-434, 2011.

L. Addario-berry and . Reed, Ballot theorems, old and new, Horizons of combinatorics, vol.17, pp.9-35, 2008.

N. Agmon, Residence times in diffusion processes, The Journal of Chemical Physics, vol.81, issue.8, pp.3644-3647, 1984.

B. Alberts, A. Johnson, and J. Lewis, Molecular biology of the cell, Chap. 3, 2002.

E. K. Andersson and B. Malmberg, Contextual effects on educational attainment in individualised, scalable neighbourhoods: Differences across gender and social class, Urban Studies, vol.52, issue.12, pp.2117-2133, 2015.

. André, ;. M. Désiré, and . Bertrand, CR Acad. Sci. Paris, vol.105, issue.436, p.7, 1887.

D. Applebaum, Lévy processes and stochastic calculus, 2009.

E. Arcaute, E. Hatna, P. Ferguson, H. Youn, A. Johansson et al., Constructing cities, deconstructing scaling laws, Journal of The Royal Society Interface, vol.12, issue.102, 2015.

B. Ardestani, . Mahdavi, O. David, P. Sullivan, and . Davis, A multi-scaled agent-based model of residential segregation applied to a real metropolitan area, Computers, Environment and Urban Systems, vol.69, pp.1-16, 2018.

. Arribas-bel, P. Daniel, H. Nijkamp, and . Scholten, Multidimensional urban sprawl in Europe: A selforganizing map approach, Computers, Environment and Urban Systems, vol.35, issue.4, pp.263-275, 2011.

A. Badel-chagnon, J. Nessi, L. Buffat, and S. Hazout, Iso-depth contour map of a molecular surface, Journal of Molecular Graphics, vol.12, issue.3, pp.162-168, 1994.

D. F. Bailey, Counting arrangements of 1's and -1's, Mathematics Magazine, vol.69, issue.2, pp.128-131, 1996.

A. Baldassarri, J. P. Bouchaud, I. Dornic, and C. Godrèche, Statistics of persistent events: An exactly soluble model, Physical Review E, vol.59, pp.20-23, 1999.

A. Baldassarri, F. Colaiori, and C. Castellano, Average shape of a fluctuation: Universality in excursions of stochastic processes, Physical Review Letters, vol.90, p.60601, 2003.

M. Barber, Phase transitions and critical phenomena, vol.8, p.145, 1983.

É. Barbier, Généralisation du problème résolu par M. Bertrand, vol.105, p.407, 1887.

O. Barndorff-nielsen and G. Baxter, Combinatorial lemmas in higher dimensions, Transactions of the American Mathematical Society, vol.108, issue.2, pp.313-325, 1963.

D. E. Barton and C. L. Mallows, Some aspects of the random sequence, The Annals of Mathematical Statistics, pp.236-260, 1965.

M. Batty, Entropy in spatial aggregation, Geographical Analysis, vol.8, issue.1, pp.1-21, 1976.

G. Baxter, A combinatorial lemma for complex numbers, Ann. Math. Stat, vol.32, issue.3, p.901, 1961.

E. Ben-naim and P. Krapivsky, Persistence of random walk records, Journal of Physics A: Mathematical and Theoretical, vol.47, issue.25, p.255002, 2014.

E. Ben-naim and P. L. Krapivsky, Slow kinetics of Brownian maxima, Physical Review Letters, vol.113, p.30604, 2014.

E. Ben-naim, P. L. Krapivsky, and J. Randon-furling, Maxima of two random walks: universal statistics of lead changes, Journal of Physics A: Mathematical and Theoretical, vol.49, issue.20, p.205003, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01254346

I. Benenson, I. Omer, and E. Hatna, Entity-based modeling of urban residential dynamics: the case of Yaffo, Environment and Planning B, vol.29, pp.491-512, 2002.

O. Bénichou, . Chevalier, . Klafter, R. Meyer, and . Voituriez, Geometry-controlled kinetics, Nature Chemistry, vol.2, issue.6, pp.472-477, 2010.

O. Bénichou, M. Coppey, M. Moreau, P. Suet, and R. Voituriez, Optimal search strategies for hidden targets, Physical Review Letters, vol.94, 2005.

O. Bénichou and R. Voituriez, From first-passage times of random walks in confinement to geometry-controlled kinetics, Physics Reports, vol.539, issue.4, pp.225-284, 2014.

O. Bénichou and J. Desbois, Exit and occupation times for Brownian motion on graphs with general drift and diffusion constant, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.1, p.15004, 2008.

J. Bertoin, Décomposition du mouvement brownien avec dérive en un minimum local par juxtaposition de ses excursions positives et negatives, Séminaire de Probabilités de Strasbourg, vol.25, pp.330-344, 1991.

J. Bertoin, Splitting at the infimum and excursions in half-lines for random walks and Lévy processes, Stochastic Processes and their Applications, vol.47, pp.17-35, 1993.

J. Bertoin, L. Chaumont, and J. Pitman, Path transformations of first passage bridges, Electronic Communications in Probability, vol.8, pp.155-166, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00104803

J. Bertoin and J. Pitman, Path transformations connecting Brownian bridge, excursion and meander, Bulletin des sciences mathématiques, vol.118, issue.2, pp.147-166, 1994.

J. Bertoin, Lévy processes, vol.121, 1998.

J. Bertrand, Solution d'un problème, CR Acad. Sci, vol.105, p.369, 1887.

U. Bhat, O. Redner, and . Bénichou, Starvation dynamics of a greedy forager, Journal of Statistical Mechanics: Theory and Experiment, vol.2017, issue.7, p.73213, 2017.

P. Biane, Relations entre pont et excursion du mouvement brownien réel, Ann. Inst. Henri Poincaré, vol.22, issue.1, pp.1-7, 1986.

P. Biane and G. Letac, The mean perimeter of some random plane convex sets generated by a Brownian motion, J. Theor. Prob, vol.24, issue.2, pp.330-341, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00666863

K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys, vol.50, pp.783-859, 1987.
URL : https://hal.archives-ouvertes.fr/jpa-00219924

N. H. Bingham and R. A. Doney, On higher-dimensional analogues of the arc-sine law, Journal of Applied Probability, vol.25, issue.1, pp.120-131, 1988.

A. E. Biondo, A. Pluchino, A. Rapisarda, and D. Helbing, Are random strategies more successful than technical ones, 2013.

A. E. Biondo, A. Rapisarda, and C. Garofalo, Efficient promotion strategies in hierarchical organizations, Physica A: Statistical Mechanics and its Applications, vol.390, issue.20, pp.3496-3511, 2011.

M. Blume, V. J. Emery, and R. B. Griffiths, Ising model for the ? transition and phase separation in He 3 -He 4 mixtures, Physical Review A, vol.4, pp.1071-1077, 1971.

. De-bodt, M. Eric, M. Cottrell, and . Verleysen, Statistical tools to assess the reliability of self-organizing maps, Neural Networks, vol.15, pp.967-978, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00122768

J. Boelaert, L. Bendhaiba, M. Olteanu, and N. Villa-vialaneix, SOMbrero: An R Package for Numeric and Non-numeric Self-Organizing Maps, Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of the 10th International Workshop, WSOM 2014, pp.219-228, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01018732

N. Bourgeois, M. Cottrell, B. Déruelle, S. Lamassé, and P. Letrémy, How to improve robustness in kohonen maps and display additional information in factorial analysis: application to text mining, Neurocomputing, vol.147, pp.120-135, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168120

N. Bourgeois, M. Cottrell, S. Lamassé, and M. Olteanu, Search for meaning through the study of co-occurrences in texts, International Work-Conference on Artificial Neural Networks, pp.578-591, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01519217

A. J. Bray, N. Satya, G. Majumdar, and . Schehr, Persistence and first-passage properties in nonequilibrium systems, Advances in Physics, vol.62, issue.3, pp.225-361, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843539

L. A. Brown and S. Chung, Spatial segregation, segregation indices and the geographical perspective, Population, Space and Place, vol.12, issue.2, pp.125-143, 2006.

E. E. Bruch and R. D. Mare, Neighborhood choice and neighborhood change, Amer. Jour. Sociol, vol.112, issue.3, pp.667-709, 2006.

F. Busetti, Quantile aggregation of density forecasts, Oxford Bulletin of Economics and Statistics, vol.79, issue.4, pp.495-512, 2017.

I. Caridi, J. P. Pinasco, N. Saintier, and P. Schiaffino, Characterizing segregation in the Schelling Voter model, Physica A: Statistical Mechanics and its Applications, vol.487, pp.125-142, 2017.

S. Chandrasekhar, Brownian motion, dynamical friction, and stellar dynamics, Reviews of Modern Physics, vol.21, issue.3, p.383, 1949.

P. Chassaing and S. Janson, A Vervaat-like path transformation for the reflected Brownian bridge conditioned on its local time at 0, The Annals of Probability, vol.29, issue.4, pp.1755-1779, 2001.

L. Chaumont, Conditionings and path decompositions for Lévy processes, Stochastic processes and their applications, vol.64, pp.39-54, 1996.

L. Chaumont, An extension of Vervaat's transformation and its consequences, Journal of Theoretical Probability, vol.13, issue.1, pp.259-277, 2000.

L. Chaumont, D. G. Holson, and M. Yor, Some consequences of the cyclic exchangeability property for exponential functionals of Lévy processes, Séminaire de Probabilités XXXV, vol.1755, pp.334-347, 2001.

L. Chaumont, Processus de Lévy et conditionnement, 1994.

L. Chaumont and R. Doney, On lévy processes conditioned to stay positive, Electronic Journal of Probability, vol.10, pp.948-961, 2005.

L. Chaumont and G. Bravo, Shifting processes with cyclically exchangeable increments at random, XI Symposium on Probability and Stochastic Processes, pp.101-117, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01023079

A. V. Chechkin, R. Metzler, Y. Vsevolod, J. Gonchar, L. V. Klafter et al., First passage and arrival time densities for Lévy flights and the failure of the method of images, Journal of Physics A: Mathematical and General, vol.36, issue.41, p.537, 2003.

K. Chung, Excursions in Brownian motion, Ark. Math, vol.14, pp.155-177, 1976.

M. Chupeau, O. Bénichou, and S. N. Majumdar, Convex hull of a Brownian motion in confinement, Physical Review E, vol.91, issue.5, p.50104, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168837

M. Chupeau, O. Bénichou, and S. N. Majumdar, Mean perimeter of the convex hull of a random walk in a semi-infinite medium, Physical Review E, vol.92, issue.2, p.22145, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204554

V. Chvátal, The tail of the hypergeometric distribution, Discrete Mathematics, vol.25, issue.3, pp.285-287, 1979.

W. Clark and M. Fossett, Understanding the social context of the Schelling segregation model, PNAS, vol.105, issue.11, pp.4109-4114, 2008.

W. Clark, M. Olteanu, and J. Randon-furling,

W. A. Clark, E. Andersson, J. , and B. Malmberg, A multiscalar analysis of neighborhood composition in Los Angeles, 2000-2010: A location-based approach to segregation and diversity, Annals of the Association of American Geographers, vol.105, issue.6, pp.1260-1284, 2015.

. Claussen, A. K. Gunnar, S. N. Hartmann, and . Majumdar, Convex hulls of random walks: Largedeviation properties, Physical Review E, vol.91, p.52104, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168844

F. Colaiori, A. Baldassarri, and C. Castellano, Average trajectory of returning walks, Physical Review E, vol.69, issue.4, p.41105, 2004.

R. G. Coleman and K. A. Sharp, Travel depth, a new shape descriptor for macromolecules: Application to ligand binding, Journal of Molecular Biology, vol.362, issue.3, pp.441-458, 2006.

S. Condamin, O. Tejedor, and . Bénichou, Occupation times of random walks in confined geometries: From random trap model to diffusion-limited reactions, Physical Review E, vol.76, issue.5, p.50102, 2007.

P. R. Cook and D. Marenduzzo, Entropic organization of interphase chromosomes, J. Cell. Biol, vol.188, issue.6, pp.825-834, 2009.

D. Cornforth, D. G. Green, and D. Newth, Ordered asynchronous processes in multi-agent systems, Physica D, vol.204, pp.70-82, 2005.

C. F. Cortese, F. Falk, and J. K. Cohen, Further considerations on the methodological analysis of segregation indices, American Sociological Review, pp.630-637, 1976.

M. Cottrell, M. Olteanu, J. Randon-furling, and A. Hazan, Multidimensional urban segregation: an exploratory case study, 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization, pp.1-7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519723

D. O. Cowgill and M. S. Cowgill, An index of segregation based on block statistics, American Sociological Review, vol.16, issue.6, pp.825-831, 1951.

M. Cranston, P. Hsu, and P. March, Smoothness of the convex hull of planar Brownian motion, Annals Prob, vol.17, issue.1, p.144, 1989.

H. E. Daniels, Sequential tests constructed from images, The Annals of Statistics, pp.394-400, 1982.

Y. Davydov, On convex hull of d-dimensional fractional Brownian motion, Statistics and Probability Letters, vol.82, issue.1, pp.37-39, 2012.

D. Gennes and P. , Dynamics of Entangled Polymer Solutions. I. The Rouse Model, Macromolecules, vol.9, issue.4, pp.587-593, 1976.

G. Deffuant, F. Amblard, G. Weisbuch, and T. Faure, How can extremism prevail? a study based on the relative agreement interaction mode, J. Artif. Soc. Social. Simul, vol.5, issue.4, p.1, 2002.

B. Derrida, V. Hakim, and R. Zeitak, Persistent spins in the linear diffusion approximation of phase ordering and zeros of stationary gaussian processes, Physical Review Letters, vol.77, pp.2871-2874, 1996.

J. Desbois, Occupation times for planar and higher dimensional Brownian motion, Journal of Physics A: Mathematical and Theoretical, vol.40, issue.10, p.2251, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00134524

M. Doi and S. F. Edwards, The theory of polymer dynamics, International Series of Monographs on Physics, 1988.

J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, The Annals of Mathematical Statistics, vol.20, issue.3, pp.393-403, 1949.

O. Duncan, B. Dudley, and . Duncan, A methodological analysis of segregation indexes, American Sociological Review, vol.20, issue.2, pp.210-217, 1955.

R. Durrett and D. L. Iglehart, Functionals of Brownian meander and Brownian excursion, The Annals of Probability, vol.5, issue.1, pp.130-135, 1977.

B. Dybiec, E. Gudowska-nowak, and P. Hänggi, Lévy-Brownian motion on finite intervals: Mean first passage time analysis, Physical Review E, vol.73, p.46104, 2006.

S. Edwards, The statistical mechanics of polymers with excluded volume, Proc. Phys. Soc, vol.85, issue.4, p.613, 1965.

A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik, vol.322, issue.8, pp.549-560, 1905.

E. Bachir, L'enveloppe convexe du mouvement brownien, 1983.

R. Eldan, Volumetric properties of the convex hull of an n-dimensional Brownian motion, Electron. J. Probab, vol.19, issue.45, pp.1-34, 2014.

S. Evans, On the Hausdorff dimension of Brownian cone points, Math. Proc. Camb. Philos. Soc, vol.98, pp.343-353, 1985.

R. Farley and K. E. Taeuber, Population trends and residential segregation since 1960, Science, vol.159, issue.3818, pp.953-956, 1968.

F. F. Feitosa, G. Camara, A. Monteiro, T. Koschitzki, and M. Silva, Global and local spatial indices of urban segregation, International Journal of Geographical Information Science, vol.21, issue.3, pp.299-323, 2007.

F. F. Feitosa, B. Quang, . Le, L. G. Paul, A. Vlek et al., Countering urban segregation in brazilian cities: policy-oriented explorations using agent-based simulation, Environment and Planning B: Planning and Design, vol.39, issue.6, pp.1131-1150, 2012.

W. Feller, An introduction to probability theory and its applications, Wiley Series in Probability and Mathematical Statistics, 1971.

M. Ferraro and L. Zaninetti, Number of times a site is visited in two-dimensional random walks, Physical Review E, vol.64, issue.5, p.56107, 2001.

M. Ferraro and L. Zaninetti, Statistics of visits to sites in random walks, Physica A: Statistical Mechanics and its Applications, vol.338, issue.3-4, pp.307-318, 2004.

M. Ferraro and L. Zaninetti, Mean number of visits to sites in levy flights, Physical Review E, vol.73, issue.5, p.57102, 2006.

C. Filet, An attempt to estimate the impact of the spread of economic flows on Latenian urbanization, Frontiers in Digital Humanities, vol.3, p.10, 2017.

R. Fisher and . Aylmer, Statistical Methods for Research Workers, 1925.

R. Fisher and . Aylmer, A new test for 2×2 tables, Nature, vol.156, issue.3961, p.388, 1945.

P. J. Fitzsimmons and R. K. Getoor, Occupation time distributions for Lévy bridges and excursions, Stochastic Processes and their Applications, vol.58, pp.73-89, 1995.

M. Fossett, Ethnic preferences, social distance dynamics, and residential segregation: Theoretical explorations using simulation analysis, J. Math. Sociol, vol.30, pp.185-274, 2006.

M. Fossett, New methods for measuring and analyzing segregation, vol.42, 2017.

A. Fotheringham, D. Stewart, and . Wong, The modifiable areal unit problem in multivariate statistical analysis, Environment and Planning A, vol.23, issue.7, pp.1025-1044, 1991.

F. Fougre and J. Desbois, Moments of inertia and the shapes of Brownian paths, J. Phys. A: Math. Gen, vol.26, pp.7253-7262, 1993.

J. Galambos, The asymptotic theory of extreme order statistics, 1987.

L. Gauvin, Modélisation de systèmes socio-économiques l'aide des outils de physique statistique, 2010.

L. Gauvin, J. Vannimenus, and J. Nadal, Phase diagram of a Schelling segregation model, The European Physical Journal B, vol.70, pp.293-304, 2009.

C. Genest, Vincentization revisited, The Annals of Statistics, pp.1137-1142, 1992.

C. Genest and J. V. Zidek, Combining probability distributions: A critique and an annotated bibliography, Statistical Science, pp.114-135, 1986.

E. L. Glaeser, J. Kolko, and A. Saiz, Consumer city, Journal of Economic Geography, vol.1, issue.1, pp.27-50, 2001.

N. S. Goel and N. Richter-dyn, Stochastic Models in Biology, 2004.

S. Grauwin, F. Goffette-nagot, and P. Jensen, Dynamic models of residential segregation: an analytical solution, J. Publ. Econ, vol.96, pp.124-141, 2012.
URL : https://hal.archives-ouvertes.fr/halshs-00502758

C. Haber, S. A. Ruiz, and D. Wirtz, Shape anisotropy of a single random-walk polymer, Proceedings of the National Academy of Sciences, vol.97, issue.20, pp.10792-10795, 2000.

R. Harris and D. Owen, Implementing a multilevel index of dissimilarity in R with a case study of the changing scales of residential ethnic segregation in England and Wales, Environment and Planning B: Urban Analytics and City Science, 2017.

E. Hatna and I. Benenson, The Schelling model of ethnic residential dynamics: beyond the integrated-segregated dichotomy of patterns, J. Artif. Soc. Social. Simul, vol.15, issue.1, p.6, 2012.

S. Havlin, S. V. Buldyrev, H. E. Stanley, and G. H. Weiss, Probability distribution of the interface width in surface roughening: analogy with a Lévy flight, Journal of Physics A: Mathematical and General, vol.24, issue.16, p.925, 1991.

M. Henkel, H. Hinrichsen, M. Pleimling, and S. Lübeck, Ageing and Dynamical Scaling Far from Equilibrium, Theoretical and Mathematical Physics, vol.2, 2011.

L. Holm and C. Sander, Protein structure comparison by alignment of distance matrices, Journal of Molecular Biology, vol.233, issue.1, pp.123-138, 1993.

. Hong, . Seong-yun, O. David, Y. Sullivan, and . Sadahiro, Implementing spatial segregation measures in R, PloS one, vol.9, issue.11, p.113767, 2014.

J. Iceland, The multigroup entropy index, US Census Bureau, vol.31, 2004.

D. Iglehart, Conditioned limit theorems for random walks, Advances in Applied Probability, vol.7, issue.2, p.237237, 1975.

, IRIS -Definition, INSEE, pp.2017-2028, 2017.

D. R. James and K. E. Taeuber, Measures of segregation, Sociological Methodology, vol.15, pp.1-32, 1985.

D. Janakiraman and K. L. Sebastian, Unusual eigenvalue spectrum and relaxation in the Lévy-Ornstein-Uhlenbeck process, Physical Review E, vol.90, p.40101, 2014.

D. E. Jelinski and J. Wu, The modifiable areal unit problem and implications for landscape ecology, Landscape Ecology, vol.11, issue.3, pp.129-140, 1996.

F. Jones, Simulation models of group segregation, Aust. New. Zealand J. Sociol, vol.21, issue.3, pp.431-444, 1985.

K. Jones, R. Johnston, D. Manley, D. Owen, and C. Charlton, Ethnic residential segregation: A multilevel, multigroup, multiscale approach exemplified by London in 2011, Demography, vol.52, issue.6, pp.1995-2019, 2015.

Z. Kabluchko, V. Vysotsky, and D. Zaporozhets, Convex hulls of random walks: Expected number of faces and face probabilities, Advances in Mathematics, vol.320, pp.595-629, 2017.

Z. Kabluchko, V. Vysotskiy, and D. Zaporozhets, A multidimensional analogue of the arcsine law for the number of positive terms in a random walk, Bernoulli, 2018.

M. Kac, Toeplitz matrices, translation kernels and a related problem in probability theory, Duke Mathematical Journal, vol.21, issue.3, pp.501-509, 1954.

O. Kallenberg, Ballot theorems and sojourn laws for stationary processes, Annals Prob, vol.27, issue.4, pp.2011-2019, 1999.

J. Kampf, G. Last, and I. Molchanov, On the convex hull of symmetric stable processes, Proc. Amer. Math. Soc, vol.140, pp.2527-2535, 2012.

J. R. Kinney, Convex hull of Brownian motion in d-dimensions, Isr. J. Math, vol.4, issue.2, pp.139-143, 1966.

F. Knight, Random walks and a sojourn density process of brownian motion, Transactions of the American Mathematical Society, vol.109, issue.1, pp.56-86, 1963.

F. Knight, The uniform law for exchangeable and Lévy process bridges, Astérisque, vol.236, pp.171-188, 1996.

G. Koehler and J. Skvoretz, Residential segregation in university housing: The mathematics of preferences, Social Science Research, vol.39, pp.14-24, 2010.

T. Kohonen, Self-Organizing Maps, Springer Series in Information Sciences, 2012.

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.43, issue.1, pp.59-69, 1982.

T. Koren, A. V. Chechkin, and J. Klafter, On the first passage time and leapover properties of lvy motions, Physica A: Statistical Mechanics and its Applications, vol.379, issue.1, pp.10-22, 2007.

T. Koren, M. Lomholt, A. Chechkin, J. Klafter, and R. Metzler, Leapover lengths and first passage time statistics for Lévy flights, Physical Review Letters, vol.99, p.160602, 2007.

. Koscielny-bunde, A. Eva, S. Bunde, H. Havlin, Y. Roman et al., Indication of a universal persistence law governing atmospheric variability, Physical Review Letters, vol.81, pp.729-732, 1998.

P. Krapivsky, S. Redner, and E. Ben-naim, A kinetic view of statistical physics, 2010.

G. Leckie and H. Goldstein, A multilevel modelling approach to measuring changing patterns of ethnic composition and segregation among London secondary schools, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.178, issue.2, pp.405-424, 2001.

G. Leckie, R. Pillinger, K. Jones, and H. Goldstein, Multilevel modeling of social segregation, Journal of Educational and Behavioral Statistics, vol.37, issue.1, pp.3-30, 2012.

. Lee, S. Kyu-hwan, and . Oh, Catalan triangle numbers and binomial coefficients, 2016.

M. Lee, P. Lloyd, X. Zhang, J. M. Schallhorn, K. Sugimoto et al., Shapes of antibody binding sites: qualitative and quantitative analyses based on a geomorphic classification scheme, The Journal of Organic Chemistry, vol.71, issue.14, pp.5082-5092, 2006.

P. Lévy, Sur certains processus stochastiques homogènes, Compositio Mathematica, vol.7, pp.283-339, 1939.

P. Lévy, Processus stochastiques et mouvement brownien, 1948.

R. Louf and M. Barthelemy, Patterns of residential segregation, PLOS One, vol.11, issue.6, p.157476, 2016.

A. Lucquiaud, J. Randon-furling, and M. Olteanu,

M. Lukovi?, T. Geisel, and S. Eule, Area and perimeter covered by anomalous diffusion processes, New Jour. Phys, vol.15, issue.6, p.63034, 2013.

T. Lupu, J. Pitman, and W. Tang, The Vervaat transform of Brownian bridges and Brownian motion, Electronic Journal of Probability, vol.20, 2015.

S. Majumdar and A. Comtet, Exact maximal height distribution of fluctuating interfaces, Physical Review Letters, vol.92, p.225501, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00002293

S. Majumdar, A. Comtet, and J. Randon-furling, Random Convex Hulls and Extreme-Value Statistics, J. Stat. Phys, vol.138, issue.6, pp.955-1009, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00472574

. Majumdar, A. Satya, A. Rosso, and . Zoia, Hitting probability for anomalous diffusion processes, Physical Review Letters, vol.104, p.20602, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00450033

. Majumdar, C. Satya, A. Sire, S. Bray, and . Cornell, Nontrivial exponent for simple diffusion, Physical Review Letters, vol.77, pp.2867-2870, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00004855

S. Majumdar and R. Ziff, Universal record statistics of random walks and lévy flights, Physical Review Letters, vol.101, p.50601, 2008.

. Majumdar and N. Satya, Persistence in nonequilibrium systems, Current Science, vol.77, issue.3, p.370, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00843539

. Majumdar, N. Satya, and J. Bouchaud, Optimal time to sell a stock in the BlackScholes model: comment on Thou shalt buy and hold, Quantitative Finance, vol.8, issue.8, pp.753-760, 2008.

D. Manley, R. Johnston, K. Jones, and D. Owen, Macro-, meso-and microscale segregation: Modeling changing ethnic residential patterns in Auckland, Annals of the Association of American Geographers, vol.105, issue.5, pp.951-967, 2001.

D. S. Massey and N. A. Denton, The dimensions of residential segregation, Social forces, vol.67, issue.2, pp.281-315, 1988.

L. C. Maximon, The dilogarithm function for complex argument, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.459, pp.2807-2819, 2003.

R. Meier, F. Ackermann, G. Herrmann, S. Posch, and G. Sagerer, Segmentation of molecular surfaces based on their convex hull, Proceedings, International Conference on Image Processing, vol.3, pp.552-555, 1995.

J. Merikoski, J. Maunuksela, M. Myllys, J. Timonen, and M. Alava, Temporal and spatial persistence of combustion fronts in paper, Physical Review Letters, vol.90, p.24501, 2003.

H. Meyer-ortmanns, Immigration, integration and ghetto formation, Int. J. Mod Phys. C, vol.14, p.311, 2003.

B. J. Mills, Social Network Analysis in Archaeology, Annual Review of Anthropology, vol.46, issue.1, 2017.

I. Molchanov and F. Wespi, Convex hulls of Lévy processes, Electron. Commun. Probab, vol.21, p.69, 2016.

E. W. Montroll and G. Weiss, Random walks on lattices, Journal of Mathematical Physics, vol.II, issue.2, pp.167-181, 1965.

P. Mörters and Y. Peres, Brownian motion, vol.30, 2010.

. De-mulatier, A. Clélia, G. Rosso, and . Schehr, Asymmetric Lévy flights in the presence of absorbing boundaries, Journal of Statistical Mechanics: Theory and Experiment, vol.2013, issue.10, p.10006, 2013.

K. Müller, C. Schulze, and D. Stauffer, Inhomogeneous and self-organised temperature in Schelling-Ising model, Int. J. Mod. Phys. C, vol.19, p.385, 2008.

K. Oerding, S. Cornell, and A. Bray, Non-Markovian persistence and nonequilibrium critical dynamics, Physical Review E, vol.56, pp.25-28, 1997.

S. Openshaw, The modifiable areal unit problem, 1984.

S. Openshaw and P. Taylor, A million or so correlation coefficients: three experiments on the modifiable areal unit problem, vol.21, pp.127-144, 1979.

J. Östh, A. William, B. Clark, and . Malmberg, Measuring the scale of segregation using k-nearest neighbor aggregates, Geographical Analysis, vol.47, issue.1, pp.34-49, 2015.

R. Parashar, O. Daniel, J. Malley, and . Cushman, Mean first-passage time for superdiffusion in a slit pore with sticky boundaries, Physical Review E, vol.78, p.52101, 2008.

R. Paul and G. Schehr, Non-Markovian persistence in the diluted Ising model at criticality, Europhysics Letters), vol.72, issue.5, p.719, 2005.

C. Penland and B. D. Ewald, On modelling physical systems with stochastic models: diffusion versus Lévy processes, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.366, pp.2455-2474, 1875.

P. Perlekar, S. Ray, D. Mitra, and R. Pandit, Persistence problem in two-dimensional fluid turbulence, Physical Review Letters, vol.106, p.54501, 2011.

A. Pluchino, C. Garofalo, A. Rapisarda, S. Spagano, and M. Caserta, Accidental politicians: How randomly selected legislators can improve parliament efficiency, Physica A: Statistical Mechanics and its Applications, vol.390, pp.3944-3954, 2011.

A. Pluchino, A. Rapisarda, and C. Garofalo, The Peter principle revisited: A computational study, Physica A: Statistical Mechanics and its Applications, vol.389, issue.3, pp.467-472, 2010.

O. Project, Intégration des stations du réseau ferré RATP, 2012.

. Randon-furling, Statistiques d'extrêmes du mouvement brownien et applications, J, 2009.

. Randon-furling, Convex hull of n planar Brownian paths: an exact formula for the average number of edges, J. Phys. A: Math. Theor, vol.46, p.15004, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00733589

. Randon-furling, Universality and time-scale invariance for the shape of planar Lévy processes, Physical Review E, vol.89, issue.5, p.52112, 2014.

. Randon-furling, From Markovian to non-Markovian persistence exponents, Europhysics Letters), vol.109, issue.4, p.40015, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201543

J. Randon-furling, S. N. Majumdar, and A. Comtet, Convex hull of n planar Brownian motions: Exact results and an application to ecology, Physical Review Letters, vol.103, p.140602, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00423361

J. Randon-furling and S. Redner, Residence time near an absorbing set, Journal of Statistical Mechanics: Theory and Experiment, issue.10, p.103205, 2018.

J. Randon-furling and F. Wespi, Facets on the convex hull of d-dimensional Brownian and Lévy motion, Physical Review E, vol.95, issue.3, p.32129, 2017.

D. Ray, Sojourn times of diffusion processes, Illinois Journal of mathematics, vol.7, issue.4, pp.615-630, 1963.

S. F. Reardon and G. Firebaugh, Measures of Multigroup Segregation, Sociological Methodology, vol.32, issue.1, pp.33-67, 2002.

S. F. Reardon and D. Osullivan, Measures of spatial segregation, Sociological methodology, vol.34, issue.1, pp.121-162, 2004.

S. Redner, A Guide to First-Passage Processes, 2001.

A. Reymbaut, N. Satya, A. Majumdar, and . Rosso, The convex hull for a random acceleration process in two dimensions, J. Phys. A: Math. Theor, vol.44, issue.41, p.415001, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00627674

S. Risau-gusman, S. Ibáñez, and S. Bouzat, Directed transport induced by ?-stable Lévy noises in weakly asymmetric periodic potentials, Physical Review E, vol.87, p.22105, 2013.

T. Rogers and A. Mckane, Jamming and pattern formation in models of segregation, Physical Review E, vol.85, p.41136, 2012.

T. Rogers and A. J. Mckane, A unified framework for Schelling's model of segregation, Journal of Statistical Mechanics: Theory and Experiment, vol.7, p.6, 2011.

J. Rudnick and G. Gaspari, The shapes of random walks, Science, vol.237, issue.4813, pp.384-389, 1987.

J. M. Sakoda, The checkerboard model of social interaction, Journal of Mathematical Sociology, vol.1, issue.1, pp.119-132, 1971.

T. Schelling, Dynamic model of segregation, J. Math. Sociol, vol.1, pp.143-186, 1971.

T. Schelling, Micromotives and Macrobehavior, 1978.

J. Schwartz and C. Winship, The welfare approach to measuring inequality, Sociological methodology, vol.11, pp.1-36, 1980.

R. Simes and . John, An improved Bonferroni procedure for multiple tests of significance, Biometrika, vol.73, issue.3, pp.751-754, 1986.

C. Sire, Probability distribution of the maximum of a smooth temporal signal, Physical Review Letters, vol.98, p.20601, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00079084

N. J. Sloane, The on-line encyclopedia of integer sequences, vol.12, 2018.

S. Andersen and E. , On sums of symmetrically dependent random variables, Scandinavian Actuarial Journal, vol.1953, issue.sup1, pp.123-138, 1953.

S. Andersen and E. , On the fluctuations of sums of random variables, Mathematica Scandinavica, pp.263-285, 1954.

S. Andersen and E. , On the fluctuations of sums of random variables II, Mathematica Scandinavica, pp.195-223, 1955.

F. Spitzer, A combinatorial lemma and its application to probability theory, Transactions of the American Mathematical Society, vol.82, issue.2, pp.323-339, 1956.

F. Spitzer and H. Widom, The circumference of a convex polygon, Proceedings of the American Mathematical Society, vol.12, issue.3, pp.506-509, 1961.

F. Spitzer, Principles of random walk, 1964.

R. P. Stanley, Catalan numbers, 2015.

R. P. Stanley and S. Fomin, Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics, vol.2, 1999.

D. Stauffer and S. Solomon, Ising, Schelling and self-organising segregation, The European Physical Journal B, vol.57, 2007.

T. M. Stoker, Completeness, distribution restrictions, and the form of aggregate functions, Econometrica: Journal of the Econometric Society, pp.887-907, 1984.

M. Stout, J. Bacardit, J. D. Hirst, and N. Krasnogor, Prediction of recursive convex hull class assignments for protein residues, Bioinformatics, vol.24, issue.7, p.916, 2008.

M. Sumour, A. H. El-astal, M. A. Radwan, and M. M. Shabat, Urban segregation with cheap and expensive residences, Int. J. Mod Phys. C, vol.19, issue.4, pp.637-645, 2008.

L. Takács, Expected perimeter length, Am. Math. Monthly, vol.87, p.142, 1980.

L. Takács, Ballot problems, Probability Theory and Related Fields, vol.1, issue.2, pp.154-158, 1962.

L. Takács, On the ballot theorems, Advances in combinatorial methods and applications to probability and statistics, pp.97-114, 1997.

H. Theil and A. J. Finizza, A note on the measurement of racial integration of schools by means of informational concepts, 1971.

, Geographic areas reference manual, US Census Bureau, 1994.

N. Van-kampen and . Godfried, Stochastic processes in physics and chemistry, 1992.

W. Vervaat, A relation between Brownian bridge and Brownian excursion, The Annals of Probability, pp.143-149, 1979.

D. Vinkovi? and A. Kirman, A physical analogue of the Schelling model, PNAS, vol.103, issue.51, pp.19261-19265, 2006.

G. M. Viswanathan, M. G. Da-luz, E. P. Raposo, and H. E. Stanley, The Physics of Foraging: An Introduction to Random Searches and Biological Encounters, 2011.

Y. Wang, L. Wu, X. Zhang, and L. Chen, Automatic classification of protein structures based on convex hull representation by integrated neural network, Theory and Applications of Models of Computation: Third International Conference, pp.505-514, 2006.

C. Wei, P. Cabrera-barona, and T. Blaschke, Local geographic variation of public services inequality: does the neighborhood scale matter?, International journal of environmental research and public health, vol.13, issue.10, p.981, 2016.

M. J. Westwater, On Edwards' model for long polymer chains, Comm. Math. Phys, vol.72, issue.2, pp.103-205, 1980.

M. J. White, The measurement of spatial segregation, American Journal of Sociology, vol.88, issue.5, pp.1008-1018, 1983.

W. Whitworth and . Allen, Arrangements of m things of one sort and n things of another sort, under certain conditions of priority, Messenger of Math, vol.8, pp.105-114, 1878.

W. Whitworth and . Allen, Choice and Chance, 1886.

J. Wilson, A. Anthony, T. Bender, P. A. Kaya, and . Clemons, Alpha shapes applied to molecular shape characterization exhibit novel properties compared to established shape descriptors, Journal of Chemical Information and Modeling, vol.49, issue.10, pp.2231-2241, 2009.

B. J. Worton, A review of models of home range for animal movement, Ecological Modelling, vol.38, issue.34, pp.277-298, 1987.

D. Zagier, The dilogarithm function, Frontiers in number theory, physics, and geometry II, pp.3-65, 2007.

L. Zeng and B. Xu, Effects of asymmetric Lvy noise in parameter-induced aperiodic stochastic resonance, Physica A: Statistical Mechanics and its Applications, vol.389, issue.22, pp.5128-5136, 2010.

G. Zumofen and J. Klafter, Absorbing boundary in one-dimensional anomalous transport, Physical Review E, vol.51, pp.2805-2814, 1995.