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Large-scale production of superconducting radio-frequency (SRF) cavities is an industrial challenge, not only because of the increasing number of unit for future projects but also because of requirements in term of reliability, reproducibility and performances very close to the physical limit of polycrystalline bulk Niobium. Nowadays, XFEL (DESY) and LHC (CERN) are the largest existing accelerators which are based on SRF technology. Even more challenging SRF accelerator projects like ILC (International Linear Collider) and FCC (Future Circular Collider) are being studied. For such large-scale facilities, higher performances, reduction in fabrication and operation costs are required and essential to proceed with industrialization. A pathway to reduce these costs and improve performances has been studied in this work. It consists in optimizing the cleaning process of cavity surfaces. Indeed, pollution and crystal defects on the surface created during fabrication steps of a SRF cavity have to be removed to ensure optimal superconducting performances. In order to get rid of impurities and to recover crystal structure, two polishing techniques are routinely used : the buffered chemical polishing (BCP) and electro-polishing (EP). However, these techniques involve highly concentrated acids, which lead to high operation costs and safety concerns. A way to overcome the aforementioned drawbacks and make the construction of future accelerators possible would be to replace or complement the conventional chemical polishing by alternative polishing techniques. Mechanical polishing has already been applied in SRF-community for decades by using centrifugal barrel polishing (CBP). This technique could provide a better surface roughness and

Titre : D éveloppement et optimisation d'un proc éd é de polissage m écanique pour les cavit és acc él ératrices supraconductrices

Mots cl és : cavit é acc éleratrice, supraconductivit é, radiofr équence, traitment de surface, polissage R ésum é : La production de masse de cavit és acc él ératrices supraconductrices en r égime radiofr équence (SRF) est un r éel d éfi industriel non seulement du fait du nombre croissant de cavit é pour les futurs grands projets mais également de par les besoins en terme de fiabilit é, reproductibilit é et performances demand ées tr ès proches des limites physiques du Niobium. De nos jours, XFEL (DESY) et le LHC (CERN) sont les deux acc él érateurs les plus importants utilisant la technologie supraconductrice. Des projets acc él érateurs encore plus ambitieux, tels que l'ILC (International Linear Collider) et FCC (Future Circular Collider) sont en cours d' étude. Pour de tels projets, il est encore n écessaire d'am éliorer les performances et de r éduire les co ûts de fabrication et d'op ération avant d'engager la phase d'industrialisation. Une voie d'am élioration des performances et de r éduction des co ûts a ét é étudi ée. Ceci consiste à am éliorer les proc éd és de nettoyage des surfaces. En effet, la pollution et les dommages caus és à la structure cristalline durant la fabrication d'une cavit é supraconductrice doivent être imp érativement retir és afin de garantir des performances optimales. Cette r ég én ération des surfaces est couramment r éalis ée à l'aide de deux types de polissages chimiques : par BCP (Buffered Chemical Polishing) ou par électro-polissage (EP). Cependant, ces techniques utilisent des acides tr ès concentr és qui entrainent des co ûts d'op ération tr ès cons équents du fait des probl èmes de s écurit é. Une voie d'am élioration pouvant rendre possible la construction de telles machines serait de remplacer totalement ou partiellement l'utilisation des acides par des techniques de polissage alternatives. Le polissage m écanique a ét é étudi é durant des d écennies et plus sp écifiquement les techniques par centrifugation (CBP). Cette technique permet d'atteindre des rugosit és de surface bien meilleures et est bien plus efficace pour retirer certains d éfauts de surface com-par é aux proc éd és chimiques. Cependant, cette technique n'est pas envisageable comme solution alternative à cause des fortes pollutions de surface et des dur ées de traitement tr ès longues. La premi ère partie de la th èse a consist é à reproduire l' état de l'art, comprendre les limitations r éelles de cette technique et essayer d'am éliorer le proc éd é en r éduisant la pollution de surface g én ér ée par le pi égeage des abrasifs en surface ainsi que la dur ée de traitement (r éduction du nombre d' étapes interm édiaires). Il a ét é conclu que ce proc éd é ne peut pas être consid ér é comme alternatif mais compl émentaire aux traitements chimiques. La deuxi ème partie du travail de th èse s'est concentr ée sur la m éthode de polissage m étallographique. Cette derni ère ne peut s'appliquer que sur plaques et non sur des g éom étries complexes, cependant elle retire tr ès efficacement toutes les impuret és et dommages cristallins form és durant la fabrication des t ôles de Niobium. Un proc éd é optimis é à 2 étapes, inspir é des techniques conventionnelles (typiquement 5-6 étapes) a ét é d évelopp é avec succ ès et optimis é pour les contraintes particuli ères du Niobium pour les applications SRF. Ce proc éd é permet non seulement d'obtenir une rugosit é de surface incomparable mais pr éserve également la structure cristalline. Des études compl émentaires sont encore requises afin d'am éliorer les techniques de formage des t ôles ou m ême caract ériser des solutions alternatives permettant des limiter les d ég âts en surface et de pr éserver la qualit é du mat ériau. Finalement, ce travail men é est d'une importance capitale pour le futur des cavit és acc él ératrices supraconductrices, c'est-à-dire l'utilisation de nouveaux mat ériaux supraconducteurs sous forme de couche mince. La qualit é des couches minces de ces mat ériaux alternatifs d épend tr ès fortement de l' état de surface du substrat (typiquement niobium ou cuivre poly cristallin). could be more efficient at removing some surface defects compared to EP and BCP. However, this process does not satisfy requirements for large-scale production due to strong surface pollution and an extremely long processing time. The first part of the PhD work consisted in reproducing the state of the art, understanding its limitations and optimizing the recipe by the reduction of the surface pollution (embedded abrasives) and processing time (reduction of intermediate steps). As a conclusion to this first study, CBP could only be a complementary polishing technique to chemical treatments. The second part of the work focused on metallographic flat polishing. This technique cannot be directly applied on enclosed geometries however, it can remove efficiently surface defects (impurities and crystal damages) created during the fabrication of Niobium sheet. A 2-step process, inspired from metallographic techniques (typically 5-6 steps) has been successfully developed and optimized on Niobium for SRF applications. This process provides not only an improved roughness compared to conventional chemical treatments but also preserve the crystal quality underneath the surface, over the field penetration depth. Additional studies have to be now carried out to optimize conventional forming process or characterize alternative techniques to limit surface damages and preserve material quality as much as possible. Last but not least, the work done is of first importance for the future of SRF cavities meaning the use of new superconducting materials as thin films. The quality of thin-films of alternative superconductors depends strongly on the surface state of the substrate, typically polycrystalline bulk Niobium or Copper.

2. [START_REF] Puig | First measurements of radiative B decays in LHCb[END_REF] The measured niobium surface resistance in a 9-cell superconducting cavity plotted as a function of T c /T [START_REF] Aune | Superconducting TESLA cavities[END_REF]. . . . . . . . . . . . . . 2.25 BCS surface resistance as a function of the average mean free path [START_REF] Kleindienst | Radio frequency characterization of superconductors for particle accelerators[END_REF][START_REF] Freclrick | THE SUPERCONDUCTING PROPERTIES OF HIGH PURITY NIOBIUM[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [START_REF] Longuevergne | Course on superconductivity and cryogenics for accelerators[END_REF]. . . . . . . . . . . . . .

Classification of superconducting cavities
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Crab cavity (left) and crab crossing scheme for KEKB (right) [START_REF] Hosoyama | Construction and commissioning of KEKB superconducting crab cavities[END_REF]. .
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Examples of real Q 0 -curves measured when the accelerating gradient is ramped up. Theoretically, the Q 0 should stay constant up to the thermodynamical limit of 55 MV/m [START_REF] Saito | Basic principles of SRF[END_REF]. . . . . . . . . . . . . . 2. [START_REF] Lincoln | The Large Hadron Collider: the extraordinary story of the Higgs Boson and other stuff that will blow your mind[END_REF] The quality factor versus accelerating gradient for ESS prototype (ROMEA) before/after 100K soaking and heat treatment [START_REF] Longuevergne | Vertical Test Results of Spoke Resonator at IPNO[END_REF]. . . . .

Evolution of hydrides forming on Niobium surface. Hydrides grow

during the presence of hydrogen contamination of Niobium cooling down to cryogenic temperatures due to hydrogen diffusion and connection with other hydrides [START_REF] Grassellino | Pushing bulk Niobium Limits[END_REF]. When hydride precipitation is very significant, surface dislocations (skeletons) can remain on surface leading to unreversible damages and permanent Q 0 degradation. [START_REF] Bonin | Field emission in RF cavities[END_REF]. . . . . . . . . . . .

Energy diagram of a metal-vacuum interface

3.1

Sketch of a surface layer at the interplay between air and bulk ma- 
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Metallographic preparation is divided into three families of surface processing (from left to right): grinding (red), lapping (green) and polishing (blue). Polishing process in his order of particles nature can be divided to three families: diamonds, oxides (silica, alumina, cerium, chromium, ferric) and chemical-mechanical polishing (CMP).

3.21 Schematic view of the specimen/disk interface during grinding process ("two body abrasion"). Abrasives are bonded in the disk.
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Root mean square surface roughness.

S v

Deepest valley of the height distribution.

S z

Maximum height fluctuation of the surface profile.

S al

Horizontal length of the auto-correlation function.

S dq

Root mean square slope.

S dr

Developed area ratio.

S ku

Kurtosis of the surface texture.

S pc

Mean peak curvature.

S pd

Mean peak density.

S sk

Skewness of the surface texture. In this thesis, the work consisted mainly in assessing chemical cleanliness, crystallographic quality of the surface, nanoroughness, abrasion rate, while simplifying the usual CBP and metallographic techniques so that the process is compatible with industrialization and could be used for large scale production. Hence, Chapter 5 presents all experimental results of both CBP and metallographic polishing studies.

Optical inspection, pollution characterization, and crystallographic analysis are also presented. Moreover, in order to simplify data characterization (recognition of SIMS patterns and describe statistically de-pollution), several scripts have been written

in Python language, see Appendix A.

Although CBP seemed at first sight to be the right alternative technology to allow industrialization as and it could be applied directly to closed geometry, in the case of Niobium superconducting cavities, this technique doesn't comply with large It has been shown that the damaged layer after cavity fabrication (forming) [4] is much lower than during Niobium sheet production (lamination, rolling, ...). Hence, another pathway for cavity production could be done by reversing the forming and polishing steps by applying metallographic polishing (MP) on flat Niobium sheets before forming cavity parts. 

Chapter 2

Fundamentals of Superconducting Particle Accelerators

Particle Accelerators

The most powerful particle accelerators produce bunched beams of charged particles, such as protons, ions or electrons, accelerated to a velocity as high as the speed of light (∼ c) and to extremely high energies (∼ up to 10 TeV). Nowadays nearly 30000 accelerators with different sizes (from meters to several kilometres), shapes, type of applications (physics, medicine, industry...), mode of operation (CW and pulsed) are in operation all over the world. However depending on the method used for acceleration (electrostatic, radio-frequency, laser plasma...), these all accelerators can be divided into two fundamental types: linear and circular accelerators [START_REF] Lee | Accelerator physics[END_REF].

LINear ACcelerators (LINACs), accelerate electrons, positrons, protons and ions along a straight line by electrostatic field (DC) or RF (radiofrequency) field. In DC accelerators particles are accelerated between two electrodes due to the voltage difference. Cockcroft-Walton and Van de Graaff generators are two most popular examples of electrostatic acceleration [START_REF] Hinterberger | Electrostatic accelerators[END_REF]. In Cockcroft-Walton type of accelerators the achieved maximum voltage is equal to 0.8 MV and 25.5 MV for Van de Graaff generator [START_REF] Kockum | The response to high-energy gamma rays of a NaI (Tl) scintillation spectrometer[END_REF]. In order to reach higher energies, RF acceleration is required. A series of RF accelerating structures (DTL, RFQ...) and resonators (cavities), operating at a specific oscillating resonance frequency, are installed all along the beam line to provide a continuous and optimal acceleration. Currently, typical accelerating gradients of 23.6 MV/m (in multi cell structures) have been achieved for such accel-erators (XFEL) [START_REF] Kostin | Superconducting accelerating module tests at DESY[END_REF]. To reach energies as high as TeV for future projects the length of accelerators would be of 31 km (ILC), see in Section 2.1.2 and up to 50 km (CLIC) [START_REF] Aicheler | A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report[END_REF][START_REF] Phinney | ILC reference design report volume 3-accelerator[END_REF].

RF cavities are also used for circular accelerators (synchrotron) not only in a straight portion of the ring to increase the beam energy after turn, but also in its injector (typically linear acceleration).

Depending on the beam intensity, 2 types of technologies exist for RF accelerating structures and cavities. [START_REF] Rice | 1.1 Colliding Beams at the Cornell Electron Storage Ring CESR[END_REF]. From that time onwards, SRF technology evolved a lot in terms of design, material and surface treatment preparation. Nowadays, the most used cavities are the TESLA-type made of the bulk Niobium, for particles with a high β ratio of v/c ≈ 1.

Many superconducting accelerators have been constructed and are in operation around the world like S-DALINAC (Darmstadt, Germany, 1991) [START_REF] Auerhammer | The S-DALINAC facility-Operational experience from the accelerator and the experimental installations[END_REF], ALPI (LN Legrano, Italy, 1995) [START_REF] Bisoffi | ALPI QWR and S-RFQ operating experience[END_REF], FLASH (DESY, Germany, 1997) [START_REF] Feldhaus | FLASH-the first soft x-ray free electron laser (FEL) user facility[END_REF], ISACII-TRIUMF (Vancouver, Canada, 2006) [START_REF] Baartman | Design Optimization of the proposed ISAC-2 Project at TRIUMF[END_REF], ISOLDE (CERN, Switzerland, 2015) [START_REF] Kugler | The ISOLDE facility[END_REF] and many others. Their beam power increased over the years and the most powerful LINEAR SRF accelerator nowadays is SNS (average beam power above 1 MW) [START_REF] The | Spallation neutron source (SNS)[END_REF].

Among all the superconducting accelerators in operation, LHC and XFEL are the two major international large scale facilities based on SRF technology.

LHC

The Large Hadron Collider (LHC) is the largest synchrotron with a circumference of 27 km, which allows colliding 2 proton beams in counter rotation at an energy of 14 TeV (center of mass), or heavy ions at 5 TeV, see Figure 2.2. The aim of these high energy collisions is to explode protons and ions in order to detect subatomic components and characterize different type of elementary particles (quarks, bosons...) [START_REF] Azzi | Standard Model Physics at the HL-LHC and HE-LHC[END_REF][START_REF] Acharya | Λc+ production in Pb-Pb collisions at sNN= 5.02 TeV[END_REF]. The LHC has four installed detectors (ATLAS, CMS, ALICE and LHCb) to analyse the collisions and to record tracks at beam points interactions.

The first studies for the LHC started in 1982 and project was officially approved [particles/cm 2 •s] may be achieved approximately in 2021. This upgrade is consisting in replacing dipoles (higher field, shorter length), quadrupoles (at the points of beam interaction) and inserting crab cavities (bunch flipping), see Section 2.2.3 [START_REF] Apollinari | High-luminosity large hadron collider (HL-LHC): Preliminary design report[END_REF].

LHC is composed of several types of superconducting components:

• 1624 magnets (mainly dipoles and quadrupoles made of Nb-Ti)

• 16 elliptical cavities (made of bulk Copper sputtered with Niobium).

Superconducting cavities and magnets operate at a cryogenic temperature of respectively 4.5 K (-268.7 • C) and 1.9 K (-271. The Booster is the first synchrotron (157 meters in circumference) which ramps the energy of the beam up to GeV range (1 GeV). Then the beam is extracted and injected in the Proton Synchrotron (PS) and then in the Super Proton Synchrotron (SPS) to increase the beam energy up to 450 GeV. It takes between 5.86 seconds to 17.86 seconds to reach this level of energy. The proton beam then is split into two beams and injected into the LHC. The final energy of 7 TeV for each beam is achieved. Approximately 20 minutes are required in LHC to accelerate the protons from 450 GeV to 7 TeV [START_REF] Marie | Neural network analysis in Higgs search using ttH, H bband tag database development for ATLAS[END_REF]. Typically duration of beam storage at such high energies is limited by the Touschek effect (loss energy due to scattering of particles in a storage ring) and is equal to 10 hours [START_REF] Lincoln | The Large Hadron Collider: the extraordinary story of the Higgs Boson and other stuff that will blow your mind[END_REF].

Heavy lead ions can be accelerated by a similar chain, however another linac (LINAC 3) is used.

XFEL

The European X-Ray Free-Electron Laser (XFEL) is a 3.4 km long underground facility providing the most intense and time resolved X-rays laser of the world [START_REF] Nölle | The Diagnostic System at the European XFEL; Commissioning and First User Operation[END_REF]. As shown in Figure 2.4, the facility consists of an electron injector, bunch compressor, main linac, beam distribution system, undulators and photon beamlines.

The injector accelerates the electron beam thanks to a RF gun with an exit energy of 120 MeV.

Figure 2.4: Sketch of the XFEL accelerator complex [START_REF] Altarelli | The European X-ray free-electron laser[END_REF].

The superconducting linac (a 1.6 km long) consists of 808 multi-cell cavities made of the bulk Niobium (Figure 2.5). For the XFEL, 8 cavities are inserted per cryomodule. Main characteristics of the SRF linac are presented in Table 2.2.

Figure 2.5: The XFEL nine cell elliptical cavity [START_REF] Aderhold | Study of field-limiting defects in superconducting RF cavities for electron-accelerators[END_REF].

The SRF accelerator provides a high energy beam of electrons at 17.5 GeV (upgradable up to 20 GeV) which corresponds to a wavelength of 0.1 nm (0.08 nm).

In order to produce the short and very dense electron beam, bunch compressors are located along the linac (before enter and after exit) Afterwards, the individual electron bunches are channeled towards electron beamlines by the beam distribution system. Finally, the X-Rays are produced thanks to undulators with energies ranging between 0.25-25 keV.

The production of such huge quantity of cavities (808) has been an industrial challenge and was successful. [START_REF]ILC[END_REF][START_REF]PIP-2[END_REF][START_REF]LCLS-2[END_REF][START_REF]FRIB[END_REF], but also for material science (ESS) [START_REF] Ess | [END_REF], medical (SIRIUS) [START_REF] Liu | Synchrotron radiation sources in Brazil[END_REF] and societal applications (MYRRHA).

Lots of efforts are invested to expand our knowledge of the universe, discover new forms of matter (dark matter), and observe a boson with better precision. Such ambitious goals can be achieved using the collision of electrons and positrons at extremely high energies up to 350 GeV in Future Circullar Collider (FCC) [34,[START_REF] Benedikt | Status of the future circular collider study[END_REF] and at 250 GeV in International Linear Collider (ILC) [START_REF]ILC[END_REF].

Among all SRF projects under study, FCC and ILC are the most challenging future accelerators not only by their dimension, but also by the technical requirements.

FCC

The Future Circular Collider (FCC) is an ambitious project which will significantly increase the luminosity and energy beams not only for electron-positron collisions, but also for others possible scenarios (proton-proton and proton-electron collisions) [START_REF] Calaga | SRF for future circular colliders[END_REF]. The LHC, described in Section 2.1.1, will be used as an injector for the FCC. The LHC will be connected with the FCC by using a series of superconducting magnets.

First scenario predicts the collision of opposing beams of electrons and positrons at centre energy mass energy at 350 GeV. The point-type collision will give an additional accuracy in the measurements of the bosons and will increase statistics of produced sub-atomic particles. Second scenario will collide the beams of protons/ions under energies of 100 TeV. Such high energies will verify if other sub-atomic particles not predicted by the standard model, exist. Third scenario will study the deep inelastic scattering of proton beam at the energy of 50 TeV and electron beam of 60 GeV.

To achieve such ambitious goals the FCC will show a circumference of 100 km, see Figure 2.6, requires the production of more than 1000 elliptical multi-cell cavities (Section 2.2.

3) operating at frequencies 400/800 MHz, around 300 of single cell and crab resonators operating at 400 MHz. Prototypes of SRF accelerating structures and their characteristics respectively are presented in Figure 2.7 and Table 2.3. For the FCC, 4 cavities will be installed per cryomodule. Then the accelerated electrons are injected into undulators (4) and the positrons are produced. A dedicated beam delivery system transfers the positrons beam to the second superconducting linac [START_REF] Hinterberger | Electrostatic accelerators[END_REF], where the positron beam increases his energy up to 5 GeV and similarly to electron beam enters in the damping ring [START_REF] Lee | Accelerator physics[END_REF]. Then electrons enter into the damping ring (3.2 km) in order to reduce the beam emittance which is needed to be minimum and to gain a high luminosity at the interaction point [START_REF] Kockum | The response to high-energy gamma rays of a NaI (Tl) scintillation spectrometer[END_REF]. The 2 superconducting linacs will consist of 16000 (ILC250) cavities.

The cryomodules will be composed of either nine cavities or eight cavities and one quadrupole.

After damping rings the beam of electrons and positrons are accelerated again by bunch compressor and energy increased from 5 GeV up to 15 GeV. Afterwards, in the main superconducting linac energy level may be increased up to 125 GeV at a first stage (system upgradable to 250 GeV and then to 500 GeV). 

Superconducting Radio-Frequency Cavities

Radio-frequency cavity is a key element of linear or circular accelerators where alternating intense electromagnetic fields are used for acceleration of charged particles, see Figure 2.12. RF waves are injected through a power coupler in the cavity.

This cavity, could be made of normal conductor (typically copper) or superconductor (typically bulk Nb), and respectively operated at room and cryogenics temperatures.

Superconducting RF (SRF) cavities require a cryogenic plant and dedicated auxiliary systems, however the power dissipated in the case of SRF technology is several million times lower than for normal RF cavities (at 1.5 GHz R s (Cu)= 10 mΩ and R s (Nb)=20 nΩ at 2 K).

Figure 2.12: Sketch of RF cavity.

RF cavities can operate in two different wave modes: travelling wave (TW) or standing wave (SW) [START_REF] Weiss | Introduction to RF linear accelerators[END_REF], see Figure 2.13.

Travelling wave propagates along the cavity with bunches of particles thus transferring RF energy all along the RF structure. Standing wave (SW) appears due to interaction of incident and reflected waves in the cavity. The principal difference, between these two wave modes is the filling time. TW creates an extremely short RF pulse in the range of microseconds whereas SW requires a longer RF pulse in the range of milliseconds. Travelling wave cavities can reach higher accelerating fields compare to standing wave cavities, as the length of the last is limited by field flatness degradation (typically 1 m). However SW cavities allow a higher duty cycle, low beta operation (non relativistic particles) and a lower energy spread than the travelling wave cavities. This flexibility in operation is giving them wider spectrum of applications (most of projects are based on SW model) [START_REF] Gerigk | Cavity types[END_REF].

A cavity may be used for low β and high β applications (different particle velocity and pulse length) by adapting the shape of accelerating structure [START_REF] Facco | Low and medium beta SC cavities[END_REF][START_REF] Belomestnykh | High-beta Cavity Design-A Tutorial[END_REF]. Because of boundary conditions (perfect conductor) these enclosed structures show EM modes, or resonance modes, at given frequencies. When excited at the frequency of a mode, the amplitude of RF is amplified by resonance, and a high field can be achieved.

The EM modes can be calculated by solving wave equations obtained through the Maxwell's equations presented by in the following expressions:

- → ∇ × - → E = - ∂ - → B ∂t (2.1) - → ∇ • - → E = 0 (2.2) - → ∇ × - → B = µ 0 0 ∂ - → E ∂t (2.3) - → ∇ • - → B = 0, (2.4) 
where -→ E is the vector of electric field, -→ B is the vector of magnetic field, µ 0 is the magnetic permeability and 0 is the dielectric permittivity ( 0 =1 in vacuum) [START_REF] Gerigk | Cavity types[END_REF].

In order to obtain wave equations for

- → E and - → B , the following property ∇ × (∇ × - → E ) = -∆ - → E and ∇ × (∇ × - → B ) = -∆ - →
B can be applied to equations Equation (2.1)

and Equation (2.3). We obtain:

∆ - → E -µ 0 • 0 ∂ 2 - → E ∂t 2 = 0 (2.5) ∆ - → B -µ 0 • 0 ∂ 2 - → B ∂t 2 = 0.
(2.6)

EM modes formed due to boundary conditions (cavity wall = perfect conductor), implying no tangential electrical field and no normal magnetic field, may be classified as a superposition of plane waves that could exist in several transverse modes: TE (transverse electric mode), TM (transverse magnetic mode) and TEM (transverse electromagnetic) [START_REF] Gerigk | Cavity types[END_REF]. TE modes have no electrical field and only magnetic field The simplest solution of the wave equations can be derived analytically in cylindrical coordinates (r,φ and z) for a pill-box cavity with a radius R and length l, for the mode T M 010 along the z-axis in the following way:

E r = 0 (2.7) E z = E 0 J 0 (kr)e -iwt (2.8) 
H φ = -i E 0 c J 1 (kr)e -iwt
(2.9)

w 010 = 2.405c R , (2.10) 
where k is the wave number (k = 2π λ = w c ), E 0 is the amplitude of the electric field, J 0 and J 1 are Bessel functions, w is the angular frequency (w = 2πf , where f is the resonance frequency) and c is a speed of light. The angular frequency does not depend on the cavity length as there is no variation of the fields in the longitudinal direction.

In order to compare performances of SRF cavities the following parameters are used: quality factor (Q 0 ), shunt impedance r, accelerating gradient (E acc ), ratio of peak surface electric field to accelerating field (E peak /E acc ) and ratio of peak surface magnetic field to accelerating field (B peak /E acc ).

The quality factor represents the ratio of stored energy to energy loss (RF dissipations) per cycle in the cavity structure:

Q 0 = ω • U P d = 2π • f • U P d , (2.11) 
where f is the resonance frequency, U is the stored energy and P d is the dissipated RF. The cavities operate under vacuum, thus the losses in the electrical volume (V ) are negligible, but the RF dissipations take place on the walls of the cavity. The surface currents induced by the tangential magnetic field (B) cause dissipations zones due to the surface resistance (R s ), see Section 2.2.1 (Joule effect is proportional to the R s of the material). The total dissipated RF can be obtained by integrating magnetic field over the whole cavity surface area:

P d = R s 2 • µ 0 2 S | B | 2 dS.
(2.12)

The stored energy in the SRF cavity can be calculated from the cavity volume and the magnetic field:

U = 1 2 • µ 0 V | B | 2 dV. (2.13) 
Thus from Equation (2.12) and Equation (2.13), the quality factor can be written as:

Q 0 = 2π • f • µ 0 R s V | B | 2 dV S | B | 2 dS (2.14)
or

Q 0 = G R s , (2.15) 
where G is the geometrical factor of the SRF cavity, which describes the cavity shape (does not depend on the material properties but only on geometry) and is expressed as:

G = 2π • f • µ 0 V | B | 2 dV S | B | 2 dS . (2.16)
Accelerating gradient (E acc ) of a cavity is defined as the line integral of the longitudinal electric field along length (l) of cavity and given by equation:

E acc = 1/l l 0 E(z)cos(wt)dz.
(2.17) Shunt impedance (r) is the ratio between the square of the accelerating voltage and dissipated power (P d ). So as not to depend on material, the ratio of shunt impedance and quality factor is preferred and is expressed by:

r Q = 1 2 E 2 acc • L 2 acc ω • U , (2.18) 
where L acc is the accelerating length.

Main parameters used for characterization of SRF cavities are presented in Table 2.5 for some low, medium and high beta SRF cavities. Optimization of the geometry aims at maximizing Q 0 , r/Q (in order to push the performance) and at minimizing the ratios of E peak /E acc and B peak /E acc (in order to avoid the field emission and to delay quench field). [START_REF] Meissner | A new effect concerning the onset of superconductivity[END_REF]. The first empirical model, the London theory (two fluid model) appeared in 1934 [START_REF] Farrell | Classical derivation of the London equations[END_REF] and the second, the Ginsburg-Landau Theory (GL model) was later in 1950 [START_REF] Suhl | Ginsburg-Landau theory of two antagonistic order parameters: Magnetism and superconductivity[END_REF]. Seven years later (in 1957), was built the first microscopic theory, based on quantum mechanics by Bardeen, Cooper and Schieffler (BCS theory) [START_REF] Philip W Anderson | Theory of dirty superconductors[END_REF]. In 1962 was finally discovered the so-called Josephson effect [START_REF] David | Possible new effects in superconductive tunnelling[END_REF].

Nowadays superconductivity is a key element not only for particle acceleration (magnets, cavities...), but also for human needs of transportation (Maglev trains) [START_REF] Lee | Review of maglev train technologies[END_REF]. Among the transport applications, superconductors are used for industrial (SQUID sensors, cables) and medicine (magnetic resonance imaging) applications.

Critical temperature

The critical transition temperature from the normal state to superconducting for each material is different. Any superconductor looses its properties (commonly named quench) not only when the temperature goes above T c but also when the external magnetic field is too high, see Section 2.2.1.

Meissner effect

Once the superconductor is cooled below T c and in the case of presence of an external magnetic field, magnetic flux is expelled from superconductor. This effect was observed by Meissner and Ochsenfeld (latter named as Meissner effect) and shown in the Figure 2.16. This perfect diamagnetic behaviour appears due to the fact that a superconductor develops surface currents (named later as supercurrents)

producing a magnetic counter-field which compensates the external magnetic field.

It has to be mentioned that the Meissner effect is not a consequence of a perfect conductivity (ρ=0) but is an independent second characteristic of a superconductor [START_REF] John | The rise of the superconductors[END_REF]. 

Critical field

The existence of the superconducting state does not depend only on the temperature. Indeed, even below T c (T < T c ), superconductivity could be destroyed if the external magnetic field is above a threshold called critical magnetic field (H c ), see Figure 2.17. A superconductor can be quenched (loose superconducting properties)

either by a too high temperature or/and magnetic field as this H c depends as well on temperature. The temperature dependence of H c , can be expressed by the empirical formula which is given below:

H c (T ) = H c (0K) 1 - T T c 2 .
(2.19) In this state, a part of the magnetic flux penetrates the superconductor through vortices. These vortices, named as fluxoids, passing through the material in the same direction as the applied magnetic field. These vortices are normal conducting zones surrounded by supercurrents. These induced currents prevent the propagation 

London Model (two-fluid theory)

The first successful phenomenological model for superconductors was presented by Heinz and Fritz London in 1934 [START_REF] Bennemann | Superconductivity: Volume 1: Conventional and Unconventional Superconductors Volume 2: Novel Superconductors[END_REF]. They assumed that the carriers of charge in the superconductor are divided into two subsystems. The first subsystem describes the density of normal carriers n n and the second represents the density of superconducting carriers n s . Consequently the total number of carriers (N ) is the sum of normal electrons (n n ) the superconducting (n s ), and is equal to

N = n n + n s .
The total number of electrons of the system is constant. Only the balance between n n and n s can vary depending on temperature conditions. It is necessary to define the order parameter named ψ, which gives a ratio of the density of superconducting carriers to the total number of carriers and is given by the following equation:

ψ = n s N . (2.20) 
From this two-fluid model and from an electrodynamic calculation based on Maxwell's equations (2.1-2.4), the two equations of London were derived in 1935.

Scientists assumed that the superconducting electrons are in a frictionless state below the critical temperatures.

The first London equation can be obtained from an equation of motion, which is given by the following equation:

m e ∂ v ∂t = -e - → E , (2.21) 
where m e is the mass of electrons, -→ v is the velocity of the electrons, e is the charge of electrons and -→ E is the electric field.

The supercurrent density is expressed as:

- → J s = -n s e v, (2.22) 
where n s is the density of the superconducting electrons.

The replacement of v by the supercurrent in Equation (2.21) gives the first London equation:

∂ - → J s ∂t = n s e 2 m e - → E => - → E = m e n s e 2 ∂ - → J s ∂t . (2.23) 
Then using the Equation (2.1), which connects the rotational electric field to the temporal variations of the magnetic field, in the first London equation, the second London equation is obtained:

∂ ∂t ( m e n s e 2 - → ∇ × - → J s + - → B ) = 0. (2.24)
Then, always considering a static electric field (displacement current is zero), the Maxwell-Ampere equation, Equation (2.3), can be written:

- → ∇ × - → B = µ 0 - → J s . (2.25)
Combining the Maxwell-Ampere equation and making use of the following relation:

- → ∇ × ( - → ∇ × - → B ) = - → ∇( - → ∇ • - → B ) -∆ - → B = -∆ - → B , (2.26) 
the statement above works because

- → ∇ • - → B = 0. Now we express the - → J s as -→ ∇× -→ B µ 0
(from Equation (2.25)), insert this expression in the Equation (2.24) and use the Equation (2.26), we obtain the following equation for the magnetic field in a superconductor:

∂ ∂t (∆ - → B - e 2 n s µ 0 m e - → B ) = 0. (2.27)
Finally, in the case if the magnetic flux is homogeneous in the whole superconductor the second London equation is given by the following expression:

∆ - → B - - → B λ L 2 = 0 (2.28)
with a solution :

B y (x) = B 0 • exp(-x/λ L ), (2.29) 
where λ L is the penetration depth of the magnetic field into the material, named as the London penetration depth:

λ L = m e µ 0 n s e 2 .
(2.30)

Contrary to NC, the penetration does not depend on frequency, but only on density of superconducting electrons, or in other word temperature. Indeed, in normal conductor the penetration depth (named as the skin depth δ) into the material is given by:

δ = 2 µ 0 σ n ω , (2.31) 
where σ n is the electrical conductivity of the normal conductor. For example, the skin depth of Copper at 300 K (σ n =5.8×10 7 1/Ω m) and at frequency 1.5 GHz is equal to 1.7 µm. The penetration depth into bulk Niobium at 2 K is equal to 40 nm independently of frequency.

This explains why a superconductor behaves like a diamagnetic even with a static magnetic field. Contrary to NC for which the skin depth would tend to infinity for a static field, a SC would exhibit a constant penetration depth. The London's penetration depth depends on the number of superconducting electrons, hence on the temperature. The temperature dependence of the penetration depth of the superconductor, can be expressed by the empirical formula which is given below:

λ L (T ) = λ L (T = 0) 1 -( T Tc ) 4 . (2.32)
If we consider that superconductor is subjected to a sinusoidal electric field (E = E 0 • exp iωt ), then the solution of the first London's equation will give the current carried by the superconducting electrons:

- → J s = -iσ s - → E (t), (2.33) 
where σ s is the conductance of the superconducting electrons:

σ s = n s e 2 m e ω . ( 2 

.34)

Current carried by normal electrons is given by:

---→ J n (t) = σ n --→ E(t) = n n e 2 l m e v F - → E (t), (2.35) 
where l is the average mean free path of electrons and v F is the velocity of Fermi

(v F =1.86 • 10 6 [m/s]).
According to the hypothesis of the two-fluid model (J = J s + J n ) and taking into account the Equation (2.33) and Equation (2.35), the total current can be written as:

- → J (t) = σ • - → E (t) = (σ n -iσ s ) - → E (t). (2.36)
Hence, we can write the wave equations of an electric and magnetic field for the two-fluid model in the following way:

∆E -µ 0 σ ∂E ∂t = 0, ∆B -µ 0 σ ∂B ∂t = 0, (2.37) 
or

∆E -µ 0 • σ • i • ω • E = 0, ∆B -µ 0 • σ • i • ω • B = 0. (2.38)
From Equation (2.38), we can define the factor k:

k = 1 µ 0 • i • ω • (σ n -i • σ s ) . (2.39) 
The factor k represents somehow the penetration depth of the electric field into polluted material "by non-superconducting electrons" and is defined as:

k = λ L0 ψ + i • ω • τ • (1 -ψ) , (2.40) 
where λ L0 = me N e 2 µ is the London penetration depth at T =0 K, and ψ the order parameter as defined in Equation (2.20).

Consequently we can define the real surface resistance of superconductor due to flow of current over the surface in the following way (all details of calculations are presented in this reference [START_REF] Biarrotte | Etude de cavités supraconductrices pour les accélérateurs de protons de forte puissance[END_REF]):

R s = Re( jµ 0 ωλ L0 ψ + iω l v F (1 + ψ)
).

(2.41)

If temperature of the superconductor is much below critical temperature, it is possible to consider that superconducting electrons dominate in the total population N , hence ψ ∼ 1. Under this condition the Equation (2.41) is simplified and is given by:

R s = 1 2 µ 0 2 ω 2 λ 3 L σ n . (2.42)
The surface resistance quadratically depends on the frequency of the electromagnetic wave (for normal conducting materials R s ∼ √ ω) and depends on the conductivity of the material in its normal state: a higher normal conductivity leads to an increased superconducting surface resistance (Rs).

Actually R s is the real part of the complex surface impedance (Z s ), which describes the response of a metal to EM fields:

Z s = R s + i • X s , (2.43) 
where X s is the imaginary part of the surface impedance which describes the surface reactance.

The 2 fluid model gives an explanation to the Meissner effect and the phenomenon of DC resistance disappearance. It does not explain why superconductors exhibit a field limitation (existence of a critical field). A new model is required.

Ginsburg-Landau Theory (thermodynamic model)

In 1950 V. Ginsburg and L. Landau (GL) introduced a new approach in order to explain the behaviour of the superconductor at high magnetic fields [START_REF] Vl Ginzburg | Phenomenological theory[END_REF]. This approach is based on thermodynamic considerations and more specifically on the second principle of thermodynamics. The second principle of thermodynamics defines the free energy F of a system according to its internal energy U and its entropy S:

F = U -T • S. (2.44)
The free energy of a system in its superconducting state (F s ) is necessary lower compared to its normal state F n , because the superconducting state is stable. When the superconducting system is exposed to a magnetic field, there exists a value H c for which the transition to the normal state is possible. The transition of SC state to NC state can be written in the following way:

F n -F s = µ 0 • V s • H c 2 2 , (2.45) 
where V s is the volume of the superconductor.

GL, based on this statement, conducted a more detailed study, in particular on the evolution of entropy, and they established the relation, which gives the evolution of F s as a function of T :

F s -F n = dV [α(T )• | ψ | 2 + β 2 • | ψ | 4 + h 4πm | (∇ + 2 • i • π • - → S Φ 0 ) • ψ | 2 + µ 0 • H 2 2 ], (2.46) 
where α (α = α 0 T -Tc T ), β and m are the positive phenomenological quantities, ψ is the factor which characterizes the density of the superconducting electrons, h is the

Planck constant (1.05 • 10 -34 [J • s] or 6.58 • 10 -15 [eV • s]) and Φ 0 is the fluxoide (magnetic flux of vortices) (Φ 0 = h 2•e ).
In the absence of a magnetic field and at T ∼ T c this expression is simplified:

F s -F n = dV [α(T )• | ψ | 2 + β 2 • | ψ | 4 ]. (2.47)
When T > T c , then the free energy of the superconducting state is higher than for normal conducting state. Indeed, the superconducting phase does not exist under this condition. When T < T c , then exists a value of ψ = 0 for which free energy is minimal:

ψ 0 (T ) = | α | β . (2.48)
For this case, the free energy of the transition from SC state to NC state is given by:

F s -F n V = α(T ) 2 2 • β . (2.49)
The maximum magnetic energy variation corresponds to superconducting state, there ψ is minimal (ψ 0 ): .

F s -F n V = α(T ) 2 2 • β = µ 0 • H 2 c 2 => H c (T ) = α 0 √ β • µ 0 • T c -T T c . (2.50) 
This formula, which is derived from the theory of GL, shows the existence of a critical field that is temperature dependent and above which superconductivity is lost. Moreover, around the critical temperature (T ∼ T c ) the value of critical magnetic field corresponds to an empirical Equation (2.19) previously mentioned.

Theory of GL introduces several parameters which give the possibility to explain the existence of two types of superconductors. The first parameter is equivalent to the London penetration depth mentioned in Equation (2.30). This parameter λ is the characteristic length of the magnetic field penetration into the superconductor, which depends on temperature and is given by:

λ(T ) = m e • β 2 • µ 0 • e 2 • α 0 • T c T c -T . (2.51)
The second parameter is the coherence length ξ (T), which characterizes the length of variation of the superconducting electrons population:

ξ(T ) = h 16 • π 2 • m e • α 0 • T c T c -T . (2.52)
The third parameter, named as the parameter of Ginsburg-Landau (κ), is derived as a ratio of λ(T ) to ξ(T ). This parameter does not depend on temperature anymore and is only material dependent.

κ = λ(T ) ξ(T ) = m 2 e • π 2 • β 2 • µ 0 • e 2 .
(2.53)

As it was mentioned in Section 2.2.1, two types of superconductors can be defined thanks to this parameter, see Figure 2.20.

Materials with κ ≤ 1 √ 2 are named type I superconductors. In that case, as coherence length is larger than the penetration depth, the superconducting state exists below H c . Once exceeded, superconductivity is suddenly lost. Both phases (NC and SC) can't coexist (See Figure 2.20).

Materials with κ ≥ 1 √ 2 are named type II superconductors. In that sense, 2 critical fields could be defined (H c1 and H c2 ). Thus, when the first critical magnetic field is achieved, the magnetic flux starts penetrating into the material through vortices (see Section 2.2.1). When the second critical field is reached, the density of vortices is so high that superconductivity is totally lost. These vortices have a radius of the order of ξ, due to decreased density of the superconducting electrons.

Vortices extend into the material over a distance λ and the magnetic flux that passes through fluxoides into SC material is quantized and equal to: The values of the critical magnetic fields can be expressed by the following equations:

Φ 0 = h 2 • e = 2.07 • 10 -15 [T • m -2 ]. ( 2 
H c1 ≈ Φ 0 µ 0 • π • λ 2 , H c2 ≈ Φ 0 µ 0 • π • ξ 2 .
(2.55)

Critical magnetic field for type I SC corresponds to the transition field previously described in Equation (2.50), and for type II SC it is defined as the geometric mean of H c1 and H c2 :

H c = H c1 • H c2 . (2.56)
Superheating field is a metastable state at which superconductivity can persist because the nucleation of a vortex costs energy. People have shown experimentally that the real limit of superconductivity under RF would be more likely H sh and not H c1 [START_REF] Hasan Padamsee | RF superconductivity for accelerators[END_REF], which is given as:

         H sh ≈ 0.89 √ κ • H c , κ << 1 H sh ≈ 1.2 • H c , κ ≈ 1 H sh ≈ 0.75 • H c , κ >> 1 (2.57)
The critical magnetic fields have a direct impact on the choice of material for superconducting accelerating cavities. Except for the critical fields, surface resistance is also a paramount important parameter, which characterizes the losses of superconducting material. The BCS theory gives the best explanation of surface resistance.

BCS Theory

A statement that superconductivity describes the interactions between travelling electrons and an atomic crystal lattice of superconductor was first made by a group of scientists Bardeen, Cooper and Schrieffer (BCS) in 1957 [START_REF] Bardeen | LN cooper, and JR Schrieffer[END_REF]. BCS theory predicts the existence of an energetically favorable bound state between two electrons via an attractive virtual phonon interaction between them. The two electrons which participate in this interaction are called Cooper pairs. As shown in the Figure 2.21, the first electron travels through the crystalline lattice (made of positive ions) and attracts ions along travelling path. As the result, the crystalline lattice is slightly distorted creating locally a higher positive charge density. The second electron travels along the wake field of the first electron and experiences an indirect attraction due to the creation of a phonon (vibration of the lattice triggered by the first electron). The distance between these two electrons is relatively large and is of the order of the coherence length (typically 40 nm for Niobium to be compared to the lattice parameter of several angström), which was defined previously. 

<| F -∆ |, (2.58) 
where F is the energy of Fermi and ∆ is the energy gap, which basically describes the reduction of energy due to the pairing of electrons. At the temperature T = 0, the following equations for the energy of Fermi and the energy gap could be written:

F = 2 • (3 • π 2 • N ) 2/3 2 • m e , (2.59) 
and

∆(0) = 1.76 • k b • T c , (2.60) 
where m e is the mass of electrons, N is the density of electrons, is the con-

stant of Plank ( = h 2•π ) and k b is the constant of Boltzmann (1.380649 • 10 -23 [J•K -1 ]
). The value of energy gap depends on the material and more specifically on the coupling strength between electrons and phonons.

As shown in Figure 2.22, the energy gap tends to 0 when the temperature reaches critical temperature (T c ). A good approximation of the dependence of the energy gap versus temperature is given by [START_REF] Hasan Padamsee | RF superconductivity for accelerators[END_REF]:

∆(T ) = ∆(0) • cos( π 2 (T /T c ) 2 ).
(2.61) 

AC Surface Resistance of a Superconductor

Surface resistance based on the two-fluid model has been defined in Equation (2.42).

As it was shown in Section 2.2.1, it depends on the frequency of EM fields, λ L and the σ n parameters. However, these parameters also depend on the temperature. Hence it is very difficult to estimate the real resistance from this formula. Turneaure and

Halbritter [START_REF] Jp Turneaure | The surface impedance of superconductors and normal conductors: The Mattis-Bardeen theory[END_REF] derived from BCS theory a semi-empirical approximation of surface resistance for T < Tc 2 :

R BCS = A(λ, ξ, l, v F ) • ω 2 T • exp - ∆(0) k B • T , (2.62) 
where A(λ, ξ, l, v F ) is the material parameter.

At absolute zero, we can consider that the total number of electrons belongs to a Cooper pair. When the temperature is not zero, the probability that a pair is broken can be expressed as the ratio between n n and n s densities which results from a Maxwell-Boltzmann statistic:

n n n s = 1 1 + exp( ∆(T) k B •T ) ≈ exp - ∆(T ) k B • T . (2.63)
The BCS theory gives the most successful description of the evolution of the theoretical surface resistance of a superconductor.

More specifically, the BCS resistance of bulk Niobium is given by:

R BCS = 9 • 10 -5 T • f 2 • exp -1.83 • T c T .
(2.64)

In the case of a perfect superconductor, BCS theory predicts that the surface resistance vanishes to zero when temperature tends to zero. But in reality, as it can be seen on graph 2.24, the surface resistance tends to stabilize around a non-zero value called the residual resistance. This temperature-independent component of the surface resistance is due to material pollution and imperfections causing the scattering of electrons like in normal conductors.

In that sense, the real surface resistance of a superconductor subject to a RF field can be written as:

R s = R BCS + R res .
(2.65)

In the same time, the average mean free path of electrons depends on the purity of material and has a huge influence on the BCS resistance, see Figure 2.25. In the dirty limit, the BCS surface resistance is dominated by interstitial impurity scattering.

A purification of the material decreases the BCS surface resistance. However, in the clean limit resistance does not improve, on the contrary it increases, due to improvement of normal electric conductivity (surface resistance is proportional to normal conductivity (London model)). Increased content of contamination reduces the average mean free path of normal conducting electrons, so the electrodynamic response changes from the clean limit (l >> ξ=>R s ≈ l) to the dirty limit (l

<< ξ=>R s ≈ 1 √ l ).
These changes in the characteristic lengths may be approximated as:

1 ξ = 1 ξ 0 + 1 l , (2.66) 
where ξ 0 is the coherence length at T = 0 K (ξ 0 =39 nm for Nb).

The penetration depth, defined in Equation (2.30), in the dirty limit is given by the following expression:

λ(l, T ) = λ L (T ) 1 + ξ 0 l .
(2.67)

Thus in the dirty limit, the surface resistance decreases with increasing of average mean free path.

Which Material for SRF Applications?

Today superconducting radio-frequency (SRF) cavities are made of Niobium, mostly bulk Niobium (polycrystalline) but also Niobium thin-film on copper substrate. This chemical element is the best material for SRF technology because it has a number of advantages. Firstly, mechanically, it has a highly-workable structure (metal) with good formability to form complex geometries out of sheets. Secondly, physically, its transition temperature and critical magnetic field is the highest of all pure elements. Nb becomes a superconductor at the temperature of 9.2 K and can handle a magnetic field up to typically 200 mT [START_REF] John | The rise of the superconductors[END_REF].

Nevertheless, in the case of SRF applications, and because most of superconductors are of type II, the real limitation in term of magnetic field is not the critical field H c but rather the field of first entry called H c1 , and more likely H sh , the metastable state. Indeed, above H sh , vortices start nucleating and entering into the material.

The motion of vortices, dragged back and forth due to Lorentz forces, induces nonnegligible power dissipations causing a very strong Q-slope. In this regime, the cavity operation is not possible.

As a conclusion, and at the sight of existing superconductors (see H sh in Table 2.9), Niobium is by far the best superconductor material for SRF applications.

All the mechanical properties of Nb used for SRF applications are presented in Section 3.1.2.3.

SRF Structures

As it has been shown in Section 2.2, the choice of the right cavity geometry is of paramount importance to ensure an efficient and optimal acceleration. The type of accelerating structure and thus the frequency of operation are, at first order, directly determined by the velocity of accelerated particles.

For low velocities (0.05<β<0.15), requiring narrow accelerating gaps and low frequency operation (<100 MHz), quarter-wave resonators (QWR) are preferred because of their mechanical stability and compactness, although the accelerating efficiency is not optimal as for elliptical cavities [START_REF] Ben | The quarter wave resonator as a superconducting linac element[END_REF].

For medium velocities (0.15<β<0.65), half-wave resonators (HWR) offer a better acceleration efficiency than QWR (higher gradient and lower transverse kick [START_REF] Facco | Study on beam steering in intermediate-/spl beta/superconducting quarter wave resonators[END_REF]) and can be operated at higher frequencies (between 150 MHz and 400 MHz) [START_REF] Jr Delayen | Cryogenic test of a superconducting halfwave resonator for the acceleration of heavy ions[END_REF].

For particle velocities above 65% of the speed of light, elliptical cavities are optimal. The accelerating gap is now large enough at high frequencies (>600 MHz)

for this below-type geometry to show a reasonable stiffness for stable operation [START_REF] Hasan Padamsee | RF superconductivity for accelerators[END_REF].

As can be seen in An other type of SRF structure exists and serves non-accelerating applications but beam manipulations like deflection (bunch deviation) at high energy or crabbing (bunch rotation) to increase collider luminosity. For example, crab cavities, see 

Limitations of Superconducting Cavities

The evolution of the quality factor (Q 0 ) versus the accelerating gradient (E acc ) makes possible measuring the evolution of the performances of a cavity and to identify its limits [START_REF] Bauer | A comparison of Q-slope models and data in bulk Nb SRF cavities[END_REF]. A typical Q 0 curve of an elliptical cavity is shown in Figure 2.28.

During the ramping up of the accelerating gradient, several undesirable effects or processes can occur like multipacting, Q-disease, field emission, thermal instability, Q-slope and quench.

Multipacting

Multipacting (multiple impacting) is a resonant phenomenon that implies a resonant electrons multiplication in a cavity [START_REF] Yla-Oijala | Electron multipacting in TESLA cavities and input couplers[END_REF]. This phenomenon depends on the geometry and on the ability of a surface to re-emit electrons, which is called the Secondary Electron Yield (SEY) coefficient. When accelerated a primary electron hits the surface of the cavity and it creates one or more secondary electrons, which themselves are re-accelerated by the RF field and hit the surface, creating an exponential growth of electrons.

It is particularly critical in the case of an accelerating cavity because this avalanche of electron can fully absorb the RF energy supplied to the cavity, thus it becomes impossible to increase the accelerating gradient. Multipacting occurs due to periodic motion of the electron phased with the RF field (closed trajectory) due to resonance condition and when the secondary yield coefficient is more than 1.

To overcome this limitation, the cavity geometry either may be changed or the secondary yield coefficient has to be reduced thanks to surface or thermal processes (baking, cleaning, and RF processing).

Hydrogen Q-disease

Any time there is no natural oxide passivating layer on the surface, bulk niobium can absorb the residual hydrogen at its surface. Such opportunities appear during Niobium sheet production, during cavity fabrication and surface cleaning when precautions are not taken. According to several studies, when the temperature is over 15 C • during the process of extensive chemical and electro-polishing, a significant drop in the cavity quality factor (Q 0 ) can be noticed [START_REF] Higuchi | Hydrogen Q disease and electropolishing[END_REF].

This phenomenon is called Q-disease or 100K effect, because of some historical backgrounds. The quality factor of the cavity is dropping significantly during the cooldown if it remains between 160K and 50K for several hours, see Figure 2.29.

The surface resistance is increased because of the formation of non superconducting Niobium hydride precipitates [START_REF] Knobloch | Enhanced susceptibility of Nb cavity equator welds to the hydrogen related Q-virus[END_REF]. This degradation is usually reversible and can be cured by warming up the cavity above 300K to dissolve hydrogen precipitates. As can be seen in Figure 2.30, the hydrides may first appear when the cavity is cooled down below 160K. Between 160K and 50K, different phases of hydride precipitates appear on the surface. When hydride precipitation is very significant, surface dislocations (skeletons) can remain on surface leading to unreversible damages and permanent Q 0 degradation. A 300K thermal cycle wouldn't remove such a degradation, an additional chemical etching would be required.

The Q-disease can be mitigated and even avoided by performing a hydrogen degassing heat treatment (typically 800 • C during 3h under vacuum) during the surface preparation. 

Field Emission

Field emission may occur when a surface is subject to an intense and normal electric field [START_REF] Bonin | Field emission in RF cavities[END_REF], see Figure 2.31. Tunneled electrons may be captured and accelerated by the electric field. This leads to additional RF losses and the collision of those accelerated electrons with the surface may lead to thermal breakdown.

The DC current, in the case of the field emission, is given by:

j(E) = C 1 • E 2 Φ • exp( -C 2 • Φ 3 2 E ), (2.68)
where C 1 and C 2 are material dependent constants, E is the applied electric field and Φ is the work function of the metal. Another consequence of the field emission is the production of X-rays due to the Bremsstrahlung effect. X-rays thus produced impose the installation of radiation protection device and limits the accelerating gradient due to the additional power dissipation generated in the helium bath.

To limit field emission, the sources of field emission (usually surface pollution by particulates (local field enhancement)) have to be removed from the cavity surface.

Typically to prevent the field emission high-pressure rinsing (HPR) with ultra-pure water and assembly in clean-rooms are used. However, if the sources are still present, surface could be processed either by helium processing or high peak power processing.

Thermal Instability

Thermal instability occurs due to increasing of the RF surface temperature caused by the cooling limitations of the helium bath (global thermal instability)

or by the presence of pollution or defects on the RF surface (local thermal instability).

In the case of global thermal instability, the surface resistance is increasing (exponential dependence of BCS resistance with temperature) and critical field is reduced as well (as temperature-dependent) leading to early quench.

In another case, local thermal instabilities will increase the surface resistance because of normal dissipations and could also lead to an early quench. Only a Q 0 degradation is visible as far as the thermal conductivity of Niobium can overcome the propagation of this normal hot spot. Once the thermal load is too important, the normal zone propagates macroscopically resulting in a quench. To mitigate this limitation, a possible pathway would be to improve the thermal conductivity (κ c ) of bulk Niobium by ordering highly purified Niobium (RRR > 300), proceed with high temperature heat treatment above 1000 • C with titanification [START_REF] Hasan Padamsee | RF Superconductivity: Science, Technology and Applications (v. 2)[END_REF]. The RRR is defined as a ratio of the electrical resistivity ρ at room temperature (300 K) to the electrical resistivity at the cryogenic temperature (4.2 K):

RRR = ρ 300K ρ 4.2K . (2.69)
RRR is closely linked to thermal conductivity and an empirical formula exist:

RRR ≈ 4 • κ c . (2.70)
The RRR can be calculated also through the fractional content (f i ) of interstitial impurity i and the resistivity coefficient of this impurity (r i ):

RRR = i f i r i -1
.

(2.71)

The maximum content and resistivity coefficient for different elements present in Niobium is shown in Table 2.7. 

Q-slope
Q-slope is a generic denomination characterizing the fact that the quality factor of a cavity is affected negatively or positively by the amplitude of the accelerating gradient. A Q-slope could be caused by any intrinsic processes described previously but not only. Moreover, the Q-slope can be observed only at low field (Low FIeld Q-slope = LFQS), continuously on the full range of field (Medium Field Q-slope = MFQS) or above a threshold (High Field Q-slope = HFQS).

Table below summarises which process could be at the origin of the three different type of Q-slope. The way to distinguish a thermal from a magnetic quench would be to measure the field of quench for different RF duty cycles. In the case of a thermal quench, when the average power dissipation is the limiting factor (the magnetic field is a limitation for a magnetic quench), the quench field should be proportional to the inverse of the square root of the duty cycle or in other words, duty cycle multiplied by H 2 is a constant.

To delay the field of quench, the surface would need to be reprocessed to remove large defects like embedded particles or sharp edges (to attenuate field enhancement factor) in the case of magnetic quench or perform heat treatments to attenuate thermal instabilities to delay thermal quench.

Alternative Superconducting Materials

Nowadays bulk Niobium is the main material for SRF cavities, but other superconducting materials have the potential to show higher performance, in particular, lower surface resistance and a higher critical magnetic field could be achieved.

Nevertheless, all alternative superconductors are alloys (NbTiN, Nb 3 Sn, MgB 2 , ...) or compounds (NbN) showing non-compatible mechanical properties to fabricate complex geometries like cavities. These superconductors can't be used in their bulk version but could rather be deposited as thin films (thickness of few microns) on a workable substrate like Niobium or Copper.

The surface resistance of these materials, given by BCS theory could be relatively smaller as it depends exponentially on the energy gap. It could be thus envisaged to increase the temperature of operation up to 4.2 K instead of 2 K, decreasing considerably the complexity and cost of the cryogenic infrastructure.

As said previously, the real limit in field for SRF applications is H sh . In that sense, only Nb 3 Sn (See Table 2.9) could allow to increase (even double) the accelerating gradient.

Nb 3 Sn is today the most promising alternative candidate, as thin-film, capable of improving significantly both the surface resistance and accelerating gradient. Recent experimental results [START_REF] Posen | Nb3Sn at FERMILAB: exploring performance[END_REF] have demonstrated that this technology is mature to build operational cavities with improved performances in term of quality factor. However, the reachable accelerating gradient is still way lower than predicted (22.5 MV/m instead of about 100 MV/m).

The critical temperature (T c ), normal conducting resistivity (ρ n ), the critical (H c1 , H c2 , H c ) and superheating (H sh ) magnetic fields, the London penetration depth (λ L ), the coherence length (ξ) and the energy gap (∆) are presented in Table 2.9

for main alternative superconducting materials, which may be used in the SRF acceleration. 

Chapter 3

Surface Treatment for SRF

Cavities

The fabrication of Niobium SRF cavities, during forming steps (rolling of Nb ingots, half-cell forming), causes the appearance of a damaged layer of the order of 200 µm into the inner surface of the material. This has to be removed to recover optimal superconducting properties and avoid limited performances [4]. EM field penetration inside superconducting material is given by theoretical penetration depth (λ L ), see Section 2.2.1 (and is of the order of 40 nm [START_REF] Carter | Reviews of Accelerator Science and Technology: Volume 5-Applications of Superconducting Technology to Accelerators[END_REF]).

Induced currents penetrate typically into the material and decay exponentially over several hundreds of nanometers. Thus, in order to withstand these extreme conditions, not only the chemical composition, the roughness but also the microstructure are required to meet very high specifications.

In this chapter, all requirements for SRF surface cleaning and description of polishing techniques routinely used for treatment will be presented. In addition, an overview of potential alternative polishing techniques available in industry will be done.

Properties of a Surface Layer

The surface is the interplay between air and the material [START_REF] Hobson | Exploring Surface Texture: A fundamental guide to the measurement of surface finish[END_REF], see Figure 3.1. The surface of a material is not only a two dimensional property with its topological characteristics, it is a microstructured layer (3D) between outside and inside of material [START_REF] Bhushan | Surface roughness analysis and measurement techniques[END_REF][START_REF] Bhushan | Tribology and mechanics of magnetic storage devices[END_REF]. The surface layer is strongly impacted by any chemical and mechanical processes formerly applied and thus can show very different topography and microstructure, it is characterized by a deformation layer (dislocations density, stress, strain) and also by a chemical composition with possible inclusions and/or oxidation layer. Bulk material is defined as layer extending between the surface layer and the core of the material where all chemical, physical and mechanical properties are constant, uniform or at least controlled.

Figure 3.1: Sketch of a surface layer at the interplay between air and bulk material.

Smoothness

The smoothness of the surface has two physical definitions. Firstly, smoothness is the property of material, which describes the value of friction between surfaces due to an applied sliding tangential force [START_REF] Mao | SMOOTHNESS AND ROUGH-NESS: CHARACTERISTICS OF FABRIC-TO-FABRIC SELF-FRICTION PROPERTIES[END_REF]. In tribology, the smoothness of the material is measured by the coefficient of friction (COF). COF is proportional to the friction force (F f ) and inversely proportional to the applied normal force (F N ):

µ = F f F N (3.1)
Smooth surfaces have lower coefficients of friction than rough surfaces. COF also describes the speed of material wear, as the imperfections at the surface create cracks and corrosion.

Secondly, smoothness describes the real surface topology, as shown in Figure 3.2, which consists of the superimposition of three spatial components (from lowest wavelength to highest): roughness, waviness and form [START_REF] Raja | Recent advances in separation of roughness, waviness and form[END_REF], see Figure 3.2. These 3 spatial components could be extracted by applying spatial filters (λ s , λ c , λ f ), see Figure 3.3.

The filter λ s gives lower limit of the roughness measurement, λ c is applied to separate roughness measurement from waviness and λ f separates form from waviness. mension of the piece. These non-fixed cut-off spatial frequencies make the evaluation of the surface roughness very complex and "operator" dependent (choice of cut-off spatial frequencies). In that sense, several norms have been defined to help specifying not only cut-off numbers but also the minimal distance or surface over which the roughness measurement has to be performed ( 4287:1997, ISO 25178-2:2012,...).

Form, as shown in Figure 3.2 (a), is the general shape of a surface, which is determined by the accuracy of the fabrication technique (rolling, forming, deepdrawing, spinning, machining, ...) and of the way the piece is hold or adjusted (piece is moving during the process or is tilted). This parameter describes surface relief at a macrometric scale (typically above millimeter range).

Waviness is the medium range spatial component coming from a periodic or pseudo-periodic pattern. These periodic irregularities are usually attributed to instabilities or defective adjustment of the surface process itself. Waviness could also be triggered when the material is subject to stress and strain [START_REF] Hobson | Exploring Surface Texture: A fundamental guide to the measurement of surface finish[END_REF]. Typically, waviness could vary between several tens of microns and few millimeters. Many methods exist for roughness measurement, however it is possible to define two main approaches for the measurement: contact (roughness tester, atomic force microscope) and non-contact (white light interferometer, laser confocal microscope).

Contact roughness measurement can damage the surface during the roughness identification due to the mechanical contact with the surface. To overcome this limitation non-contact solutions may be used.

The roughness of Niobium samples, during this work, has been evaluated using a laser confocal microscope. The principle of laser confocal microscope will be presented in the Section 4.2.3. Such microscopes can measure linear and surface roughness parameters. From the 2D data (linear roughness) or 3D data (surface roughness), several surface parameters could be extracted as it will be seen later.

The number of parameters depends on the standard/norm used. Several of these exist like JIS B 0601-2001 and ISO 25178-2:2012. In our studies, we used the most recent norm for surface roughness ISO 25178-2:2012.

All 24 parameters defined by this norm may be divided into four categories: height, spatial, hybrid and functional. The maximum peak height max

A Z(x, y)dxdy S v , [µm]
The minimum valley depth min

A |Z(x, y)|dxdy S z , [µm]
The maximum height of the surface

S z = S p + S v
The most common parameters to characterize deviations (Z) of the texture surface (x and y directions) are the average surface roughness (S a ) and the quadratic surface roughness S q . However depending on application, others parameters may be required, especially in the tribology field.

For example, as shown in Figure 3.4 the S a of three surfaces are the same [START_REF] Jansons | Surface roughness measure that best correlates to ease of sliding[END_REF],

but their behaviours are different. Texture A would be in tribology a surface easily eroded compared to B. In the specific field of RF cavities, Texture B would be preferable as would show better RF performances due to a lower field enhancement factor.

Hence to characterize distinguish this kind of surface, additional parameters have been defined. Some of these parameters are local, like S p , S v and S z . These characterize the highest peak, lowest valley and their sum. However these might not be meaningful for the entire scanned surface. Indeed the presence of a dust particle or a scratch incidentally present on the surface would bias these parameters.

To overcome this limitation, the surface may be defined also by more global parameters (integration over the whole surface) like skewness and kurtosis. The Table 3.2 shows the hybrid parameters (S dq , S pc , S dr , S pd ), which describe variation in the height profile and spacing of surface defects of the processed surface [START_REF] Leach | Characterisation of areal surface texture[END_REF].

S dq is the root mean square slope. This parameter may be used to characterize the surfaces with similar average roughness. A high S dq indicates a narrow surface profile.

S pc is the mean peak curvature. This parameter indicates the type of contact with another surface. When peaks are very sharp, it will provide a smaller contact of the peak with surface (thus less friction or a surface less resistive to the wear).

A smaller value of S pc corresponds to a greater contact with the surface (thus more frictions or a surface more robust to wear).

S dr is the developed area ratio. S dr is defined as the ratio between the measured area (developed area) and the planar area. This property of developed area ratio has been really useful in our study to evaluate surface pollution due to embedded particles.

S pd is the mean peak density. S pd gives the number of points in contact with the surface. This parameter may be used in applications where friction is a dominant process. The smaller the number of peaks the weaker the contact with the surface.

S pd could also be used as a tool to estimate the density of embedded particles. S tr is the texture aspect ratio parameter, which denotes the level of surface isotropy or the directionality. 

( ∂(Z(x, y)) ∂x ) 2 + ( ∂(Z(x, y)) ∂y ) 2 dxdy S pc , [mm -1 ] Mean peak curvature - 1 2N N ( ∂ 2 (Z(x, y)) ∂x 2 ) 2 + ( ∂ 2 (Z(x, y)) ∂y 2 ) S dr Developed area ratio 1 A ( A [1 + ( ∂(Z(x, y)) ∂x ) 2 + ( ∂(Z(x, y)) ∂y ) 2 ] -1)

Hardness

Hardness is the mechanical ability of a material to resist to surface processes (grinding, lapping, polishing) or alternatives like cutting, scratching, wear and penetration into the material surface [START_REF] Chandler | Hardness testing[END_REF]. This property is linked to the yield strength of material. Two methods are mainly used to measure the hardness of materials.

Firstly, hardness measurements can be carried out by penetration of special tool proposed by: Vickers, Rockwell, Brinell and Knoop [START_REF] Chandler | Hardness testing[END_REF][START_REF] Herrmann | Hardness testing: principles and applications[END_REF]. These hardness tests are based on the measurement of penetration depth of a cone, a ball or a pyramid into the material under specific applied pressure or stress (the ratio of applied force to the area) [START_REF] Barbato | Influence of the indenter shape in Rockwell hardness test[END_REF][START_REF] Hays | An analysis of Knoop microhardness[END_REF][START_REF] Hill | A theoretical study of the Brinell hardness test[END_REF].

For example, in the Vickers test, a pyramid made from diamond is pressed with a specific force (F ) against the surface. The created valley-area (d 2 ) is measured under a microscope. Vickers hardness (HV ) is defined by:

HV = 1.854 F d 2 (3.2)
Hardness is easily evaluated from the size of the residual deformation left on the surface. As shown in Figure 3.6, softer material has higher depth penetration into the material, the larger the pattern, the deeper the crater and thus the lower the hardness.

Figure 3.6: Sketch of the Vickers hardness measurement [START_REF] Mitchell | Vickers Hardness Test: What it is and how it's measured[END_REF].

Secondly, hardness can be measured by scratching method [START_REF] Williams | Analytical models of scratch hardness[END_REF] which is presented on the Mohs model. In the Mohs model, ten non-metallic abrasives are used to define the hardness of the material. Mohs hardness scales from 1 to 10. 1 corresponds to minimum hardness and 10 to the maximum hardness [START_REF] Tabor | Mohs's hardness scale-a physical interpretation[END_REF]. The abrasive will scratch the surface just in the case if the tested material has a lower hardness, otherwise scratching will not occur.

Stress

Stress (σ or τ ) is defined as ratio of the applied force (F ) by the surface area (A) and can be expressed in P a or N /m 2 ).

σ = F/A (3.3)
Stress can induce a change of mechanical property due to the applied pressure and the direction of the pressure leads to different stresses. It is possible to define two types of applied stresses: normal stress (σ) and shear stress (τ ) [START_REF] Roylance | Mechanical properties of materials[END_REF].

Normal stress appears due to the action of the normal component of the force (either tension or compression) applied to the surface. A stress can remain in the material even through the external force has been removed (material at rest). This stress is defined as the residual stress. The stress is At the moment of applying stress, the material starts to experience elastic deformation, but once the stress exceeds a certain value, it will experience plastic deformation. This point, where nonlinear deformation begins is called a yield point, which corresponds to the property of material, which named as yield stress (strength).

Strain

Strain of the material (ε) is the deformation of the material caused by a given stress (σ).

When the stress is positive (tension), the strain ε is then positive (elongation)

L > L 0 . When the stress is negative (compression) ε is negative (contraction)

L < L 0 .    σ = Eε ε = L-L 0 L 0 (3.4)
where E is the Young modulus, L 0 the initial length and L the stressed length.

Because of elastic behaviour, when the material is stretched (σ x and ε x > 0), the transverse dimension (σ y and ε y ) is reduced and when squeezed (σ x and ε y < 0), the transverse dimension is increased. Poisson defined a ratio (Poisson's coefficient)

to characterize this behaviour and it is expressed in the following way:
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Basically this coefficient (ν) represents the ratio between strain in the direction of the applied stress (ε x ) and the strain in the normal direction (ε y ).

The strain of the material under normal stress in the x-direction will be defined as:

ε x = σ x E - νσ y E = 1 E (σ x -νσ y ) (3.6)
where E is the Young's modulus, σ x and σ y are the stresses in the x (longitudinal) and y (transverse) direction respectively.

The strain in the y direction is equal:

ε y = σ y E - νσ x E = 1 E (σ y -νσ x ) (3.7) 
The strain created in z direction is defined as:

ε z = ν E (σ y + σ x ) (3.8)
In the case of shear stress, the strain is noted γ xy . The displacement due to shear stress is (δ) created along transverse direction to the length (L) under the specific angle (γ):

τ xy = Gγ xy (3.9)
where G is the shear modulus. This material property is expressed as:

G = E 2(1 + ν) (3.10)
with E the Young modulus and ν the Poisson coefficient.

Exists also the bulk modulus K, which represents the compressibility of the material. The bulk modulus defines the amount of required pressure (p) to decrease a unit of the volume:

K = - p δV /V (3.11)
The bulk modulus also expressed versus the Young's modulus and Poisson's coefficient by the following equation:

K = E 3(1 -2ν) (3.12)

Ductility

Ductility is the capacity of a material to deform plastically under applied actions (tension or compression) without breaking or cracking. Ductile materials either may be rolled to thin sheets from ingots, or bended, or even drawn into wires. Metals like niobium, copper, silver and magnesium have a high elongation and are called ductile metals. Other material on the contrary with low elongation capability are defined as brittle (ceramic, glass, cast iron...) materials.

Depending on the amount of applied stress the material may be in the elastic or plastic region. In the case of elastic deformation when applied force is removed the strain disappears. The elastic region is characterized by the Hooke's law when the force is applied:

σ = Eε (3.13)
The plastic region is reached when residual stress and strain remain in the material when the applied force is removed. The frontier between the elastic and plastic regions is defined as the yield strength (σ Y ). Above this value material is plastically deformed until the ultimate tensile strength. The ultimate strength defines the maximum stress which may be applied on the material, before necking (large strain localized disproportionally in small area). The plastic region is thus in between the yield strength and ultimate strength. Poisson ratio 0.4

Crystallite

Crystallites are the microscopic grains formed during cool down of a molten material. Crystallite may be single (monocrystalline), polycrystalline or amorphous. In the case of a polycrystalline material grains can have preferable or random orientations. Dimension of grains has a significant impact on the formability and elasticity of materials. The Hall-Petch equation [START_REF]60 years of Hall-Petch: past to present nano-scale connections[END_REF] defines the dependence between yield stress (σ Y ) and the grain size (d g ):

σ Y = σ 0 + k d g (3.14)
where k is the constant corresponding to the material and σ 0 is the bulk stress.

Hence the smaller the grains, the more resistant the material is to deformation and the wider the elastic region is.

For SRF applications, a compromise has to be found to have at the same time a Single crystal or large grain materials may be used as well for SRF applications, but it will lead to very soft structures resulting in high sensitivity to mechanical perturbation during operation (vacuum, vibrations, EM forces).

Material Defects

Any material whatever it's quality and purity will have defects. The following defects can be defined: point, dislocations, grain boundaries, inclusions and pullouts.

Point Defects

Point defect is a 0 dimensional irregularity in lattice structure, which may be caused by either a vacancy, substitutional atom, interstitial atom or Frenkel's pair, see in Figure 3.12.

Figure 3.12: Type of point defects (0D) in a crystal lattice.

A vacancy is an empty space in the crystal lattice, which is due to the absence of an atom.

A substitutional atom is a foreign atom in the crystal lattice. This impurity is close in size (larger or smaller) compared to atoms of the lattice (difference is approximately 15 %).

Interstitial atom is additional foreign atom between atoms of the lattice. This impurity is smaller than atoms of the lattice structure.

The Frenkel pair is a pair of a close-located vacancy to an interstitial. This imperfection appears due to the migration of an interstitial leaving a vacancy in the crystal lattice.

The level of substitutional and interstitial atoms defines the purity of the mate-rial.

Dislocations

Dislocations are 1D lattice defects, which can be defined as edge, screw or mixed dislocation (combination of edge and screw dislocations). Dislocations, see Fig- The Burgers vector b gives magnitude and direction of dislocations. This vector is perpendicular to the dislocation line along y for an edge dislocation and it is parallel to the dislocation line along z for a screw dislocation [START_REF] Repula | Elementary Edge and Screw Dislocations Visualized at the Lattice Periodicity Level in the Smectic Phase of Colloidal Rods[END_REF].

Grain Boundaries

Grain boundaries are 2D lattice imperfections, where two crystallites with different grain orientations are in contact. Grain boundaries are locations where impurities can be trapped and are privileged paths for diffusion of impurities (hydrogen, oxygen, carbon...) are exist. As an example, the diffusion coefficient of carbon in a grain boundary is much higher than in a crystallite [START_REF] Antoine | Nuclear Microprobe studies of impurities segregation in Niobium used for radiofrequency cavities[END_REF]. Grain boundaries could be of 2 types: twin and tilt boundaries [4]. . This boundary appears between two slightly misaligned grains.

Inclusion

Inclusions are 3D imperfections coming from the insertion of a foreign material (machining, polishing...) into the surface layer. Inclusions can be metallic or nonmetallic particles which come from the mechanical contact between 2 pieces. The stress is high enough to exceed the yield stress. The plastic deformation of the piece allows to accommodate the foreign particle into the lattice. The presence of an inclusion on a superconducting surface could be at the origin of premature quench.

Pull-out

Pull-out is another 3D imperfection of the surface layer, which has been created by an inclusion. However inclusions could be pulled-out from the surface layer (during cleaning, rinsing...) and as a result, a pit is remaining. Pull-outs are possible sources of thermal breakdown due to sharp edges (field enhancement). 

Surface Requirements for Niobium SRF Cavities

The preparation of the cavity walls has been and still be one of the major challenges for SRF accelerator technology. Even microscopic defects (inclusion, scratch, pull-out...), in such large macroscopic structures, could be a cause of local breakdown (quench) and could severely decrease the performance of the cavity. In order to avoid this negative impact on performance, the surface imperfections caused by Niobium sheet and cavity manufacturing have to be removed in order to recover a clean and damage-free surface.The damaged layer thickness varies typically from 100 to 200 µm, however, this value depends a lot from the Niobium supplier.

Niobium sheets are produced by companies capable of purifying Niobium material at a level ensuring optimal superconducting and thermal properties (typically RRR>250, See Section 2.2.4). Several steps are required to produce few-millimeterthick Niobium sheets with this degree of quality from ultra pure Niobium ingot.

These steps are :

• Several steps of forging and rolling of Niobium ingot to obtain uniform thickness;

• Annealing to recrystallize Niobium to ensure optimal superconducting and mechanical properties (yield stress, hardness, ...);

• Surface polishing and chemical etching to remove surface inclusions from previous steps.

Cavities are then built by specialized companies having the capability to form Niobium sheets or pieces by different type of techniques (deep drawing, spinning, machining) and weld formed sheets by Electron Beam Welding. This technique is the only industrial technique adapted to Niobium and capable of limiting sufficiently the diffusion of impurities into the material in the heat affected zone [START_REF] Rl Geng | Microstructures of rf surfaces in the electron-beam-weld regions of niobium[END_REF].

At the end of this fabrication process, the surface of Niobium has been significantly damaged and polluted. As explained in Chapter 1, the RF wave penetrates into the material only over few hundreds of nanometers. Optimal superconducting properties have to be ensure only over this depth. Deeper into the material, only good thermal properties are required to ensure an efficient heat transport from the RF side to the helium bath side.

It has to be mentioned that a natural oxide layer exists at the surface of Niobium of typically 5 nanometers [START_REF] Romanenko | Understanding quality factor degradation in superconducting niobium cavities at low microwave field amplitudes[END_REF]. This layer acts as a protective layer. The alteration of this passivating layer, caused by a surface treatment (chemical, mechanical or temperature above 250 • C) can induce the absorption and diffusion of impurities present at the interface (hydrogen, carbon, oxygen,...).

In that sense, the following requirements for any surface treatment process of Niobium can be listed:

• Remove the damaged layer of hundreds of microns created during Niobium sheet and cavity fabrication;

• Preserve optimal superconducting properties over hundreds of nanometers (surface crystallites free of damages, limit impurities diffusion like Oxygen, Carbon and Hydrogen);

• Preserve optimal thermal conductivity all over the thickness of material (limit impurities diffusion and crystal damages).

In the present time, several surface techniques exist, which match with such requirements and they called as buffered chemical polishing and electropolishing.

The detailed characterization of each technique will be presented in Section 3. 

State of the Art for Cavity Treatment: Chemical Treatment

During decades, chemical treatments (buffered chemical polishing and electropolishing) have been used routinely to prepare cavities to accelerate particles to high energies [START_REF] Hasan Padamsee | RF superconductivity for accelerators[END_REF]. Buffered chemical polishing (BCP) is not literally a polishing treatment but rather an etching process which etching rate depends strongly on the crystal orientation. As a consequence, for polycrystalline Niobium, the final surface roughness is usually worse than the "as received" roughness. Electropolishing produces smoother surfaces compare to BCP and removes as well the damaged layer, however, the process is more complex.

Electro-Polishing (EP)

Electro-Polishing (EP) is the first technique, which has been used to the clean the surface of SRF cavities. First procedure was developed by Siemens company in 1971 [START_REF] Diepers | A new method of electropolishing niobium[END_REF] and then adopted for different geometries by KEK, DESY and CEA/Irfu laboratories [START_REF] Eozenou | Niobium Electro-Polishing: Best EP Parameters[END_REF][START_REF] Saito | Proceedings of the 4th Workshop on RF Superconductivity[END_REF][START_REF] Steinhau-Kühl | Update On The Experiences Of Electro-polishing Of Multi-cell Resonators At DESY[END_REF]. During electropolishing the surface of niobium is treated by a solution of hydrofluoric (HF) and sulfuric acids (H 2 SO 4 ) under the flow of an electric current.

The cavity is attached to the positive pole of a power supply (anode). The negative pole (cathode) is usually made of copper or aluminium.

As a result, Niobium is anodized (oxidized) in contact with the electrolytic solu-tion (sulfuric acid) where currents are flowing toward the cathode. The oxide layer is dissolved by the hydrofluoric acid. Sulphuric acid also plays the role of buffer [START_REF] Kneisel | Surface characterization of bulk Nb: what has been done, what has been learnt?[END_REF]. Typical ratio of volume acids is 1:1. Anodization:

Nb --→ Nb 5+ + 5 e ---→ Nb 2 O 5
Dissolution of Nb oxide:

Nb 2 O 5 + 10 HF --→ 2 NbF 5 + 5 H 2 O
The reduction of roughness is obtained (polishing effect) thanks to the applied voltage or more precisely to the surface electric field. The anodization, and thus dissolution are faster where the electric field is higher, meaning on peaks and minimum in valleys. This preferential etching tends to smoothen the surface. The global etching rate is proportional to the applied voltage, the concentration of sulphuric acid and duration of process. This process has to be carefully controlled in term of current and voltage as several regimes can be observed: etching, polishing and strong oxygen evolution in the bulk [START_REF] Jean R Delayen | Alternate electrolyte composition for electropolishing of niobium surfaces[END_REF][START_REF] Song | Niobium Sample Surface Treatment by Buffered Electropolishing[END_REF][START_REF] Wu | Smooth Nb surfaces fabricated by buffered electropolishing[END_REF].

Typically achieved surface roughness after EP is bout 100 nm and the etching rate is typically of 0.5 µm/min. Nowadays, EP is is the best surface treatment to achieve very high accelerating gradient in elliptical cavities usually required for electron linac. However, because of the strong dependence of the etching rate versus the distance between electrodes, cavities with complex geometries (no symmetry of revolution) can't be efficiently and homogeneously polished. Another chemical treatment would be more appropriate like BCP.

Buffered Chemical Polishing (BCP)

Buffered Chemical Polishing (BCP), also known as chemical etching, has been investigated since 1980s in order to replace the complex EP treatment, by a simple technique which does not involve electric current [START_REF] Hasan Padamsee | RF Superconductivity: Science, Technology and Applications (v. 2)[END_REF]. In the past, a mixture of acids consists only of nitric (HNO 3 ) and hydrofluoric (HF) acids. However the high etching rate (30 µm/min) led to a significant elevation of temperature and to the degradation of superconducting properties due to the diffusion of impurities like hydrogen [START_REF] Lilje | Improved surface treatment of the superconducting TESLA cavities[END_REF]. In order to buffer the chemical reaction, phosphoric acid (H 3 PO 4 ) has been added.

The mixture of acids mentioned above: HNO 3 , HF and H 3 PO 4 , respects the following proportions and are between 1:1:1 and 1:1:2.5 depending on local safety regulations [START_REF] Ciovati | Buffered electrochemical polishing of niobium[END_REF]. The mixture of acids and the cavity are maintained below 15 • C, in order to reduce the migration of Hydrogen within the bulk material [START_REF] Lilje | Improved surface treatment of the superconducting TESLA cavities[END_REF][START_REF] Lutz Lilje | State of the art SRF cavity performances[END_REF].

The role of nitric acid is to oxidize the surface of Niobium. The chemical reaction is described by the following formula [START_REF] Cz Antoine | Alternative approaches for surface treatment of Nb superconducting cavities[END_REF]:

6 Nb + 10 HNO 3 --→ 3 Nb 2 O 5 + 10 NO + 5 H 2 O
The hydrofluoric acid plays the complexing role in chemical treatment. The dissolution of the Niobium oxide is given by the following reaction:

Nb 2 O 5 + 10 HF --→ 2 NbF 5 + 5 H 2 O
The etching rate of the BCP mixture depends on the phosphoric acid concentration. For typical mixture proportions, the etching rate ranges between 0.5 and 2 µm per minute [START_REF] Ciovati | Preliminary Results on[END_REF]. 

Studied Alternative Polishing Techniques

Requirements

Alternative techniques require to remove the polluted and damaged layer induced during Nb sheets fabrication and preserve the superconducting properties over few 100s of nm. However the specific requirements for alternative techniques are determined by the drawbacks of chemical polishing. To overcome these disadvantages, which were presented in Section 3.4.1, an alternative treatment technique has to be at least less hazardous than BCP & EP and/or duration of treatment shorter than chemical treatment. In order to make industrialisation possible, the process is required to have limited number of steps, ideally, 2-3 steps and achieved average surface roughness less than 100 nm with a minimum crystalline damages.

Mechanical Polishing

Mechanical polishing (MP) is the material removal process using abrasives as cutting tools which consists typically of agglomerated powder (media) or powder of a hard material (diamond, ceramic, ...). The sizes of these scales from centimeters (media) down to nanometers (colloidal silica) [START_REF] Goossens | Modélisation du processus de polissage: identification des effets et des phénoménologies induits par l'usinage abrasif[END_REF]. The cutting effect is obtained thanks to the combination of two forces: a tangential force and normal force. Figure 3.17 shows that an abrasive pressed on the workpiece by a normal force (in the direction perpendicular to workpiece) can remove a chip of material if a tangential force is added [START_REF] Ioan D Marinescu | Handbook of lapping and polishing[END_REF].

This interaction between abrasive and surface leads to removal of material (chip formation) and/or to the formation of localized increased hardness (also known as the increased dislocation density or shear zone) due to ploughing and sliding of abrasive [START_REF] To Mulhearn | The abrasion of metals: a model of the process[END_REF]. As shown in Figure 3.18, the attacking angle of the abrasive which used for polishing. The size, the shape, the hardness of abrasives and the applied pressure on the abrasive are the main parameters which define the created shear zone and the speed of abrasives wear [START_REF] Hokkirigawa | An experimental and theoretical investigation of ploughing, cutting and wedge formation during abrasive wear[END_REF][START_REF] Leonard | Metallographic polishing by mechanical methods[END_REF].

The use of successively finer abrasives, one after the other, enables reduce step by step, the sizes of the chips and the shear zones, leading to a gradually improved roughness. MP is a process that produces a smooth mirror surfaces with final roughness in the nanometer scale but leaves a damaged surface from the crystalline point of view [START_REF] Ioan D Marinescu | Handbook of lapping and polishing[END_REF]. MP is a well established industrial process, but in general, only the roughness aspect is monitored, and the process is not optimized from the damage point of view.

Metallographic Polishing

Metallographic Polishing is a specific mechanical polishing process where the normal and tangential forces are obtained by pressing the workpiece on a rotating disk loaded with abrasives. The typical goal of metallographic preparation is to reveal the microstructure features of material by a specific developed preparation procedure composed of several processes (grinding/lapping/polishing) for further microscopic examination [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF][START_REF] Voort | Metallography, principles and practice[END_REF]. Figure 3.20 is showing an overview of used abrasives for the 3 processes. Each process will be discussed later.

Depending on the hardness and ductility of materials, metals can be prepared by different type of processes and in many steps. The type of processes and number of steps for each process have to be adapted and optimized empirically for each investigated material. Hence, metallographic preparations have to be developed carefully in order to minimize the damage left by the polishing.

The first step of metallographic preparation, called grinding, aims at reducing the value of surface defects (inclusions, scratches, pull-outs), and at reducing the deformation layer (in particular suppressed crystal lattice, dislocations, inclusions...) and finally at improving the flatness of the surface to ensure the efficiency of the following steps. The size of abrasives ranges typically between 15 and 300 microns depending on the surface layer which has to be rectified.

As an example, the deformation layer created after rolling of Niobium sheets for the fabrication of accelerating cavities is typically of 200 microns [4]. As it will be shown later (See Chapter 5), the grinding step when required was achieved by abrasives as small as 15 microns, as surface damages and shear zone created by bigger abrasives were to significant to be recovered by the following steps.

Next surface processes, see Figure 3.19, aim at removing damages and deformations created during the first aggressive process of grinding. These processes are called lapping and polishing. Lapping is a transitional process between grinding and polishing which removes damages after grinding and produces required flatness and roughness of the sample by a mid-range abrasives (3-51 µm). However after lapping the treated surface is still degraded by the presence of scratches, inclusions, pull-outs but with a reduced damaged layer which will be removed by action of ultra-fine abrasives during the final polishing step. The polishing step, which is very comparable to lapping process, can produce, if nicely performed, scratch-free surfaces with roughness in order of magnitude of tens nm. Polishing process is less efficient in term of material removal compared to the previous steps, due to the fact that smaller abrasives down to nanometre grain size (25 µm to 0.01 µm) are used on softer disk (cloth). Hence the achieved surface roughness can be reduced and damaged layer is significantly decreased. A wide variety of abrasives with different hardness (See Table 3.4), shape (round, polycrystalline or monocrystalline) and sizes exists and are available on the market.

The choice of the most adequate abrasive is generally empirically determined because of the number of parameters and the complexity of the interaction between the workpiece and the abrasives that could could be described by three wear modes: creating of chip ( material removal, in particular surface described by scratches), sliding (rotating of particles without removing of material, presence of pull-outs)

and ploughing (displacement of material, in particular described by the presence of inclusions).

To control the temperature during these processes and to avoid overheating of the sample and the disk, lubricant has to be used. The lubricant is based on water, alcohol or oil which aims at reducing the friction and cooling down the interface between surface of sample and grinding/lapping/polishing disk.

Cleaning is an essential step before start, between and after each surface process preparation [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF]. The size of abrasives varies from 100s of µm down to nanometers during the full polishing process. In that sense, to avoid any pollution and degradation of the surface because of the presence of abrasives used during previous steps, the workpiece and sample holder have to be thoroughly cleaned and polishing disks have to be changed (a disk is dedicated to one type of abrasive). For cleaning three cleaning agent are typically used: deionized water, ethanol and acetone. As recommended in [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF], workpiece/holder firstly should be cleaned manually by a flow of deionized water with a cotton ball, secondly degreased by cotton ball dipped in ethanol and thirdly workpiece/holder has to be placed in ultrasonic bath with deionized water/alcohol or acetone.

Grinding Process

According to K. Geels [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF], grinding or "two body abrasion" is a process of material removal using abrasives which are embedded in the disk, as shown in the Figure 3.21.

Grinding process is characterized by significant abrasion rate, at the expense of high roughness and significant damaged layer, however smaller then a damaged layer of an untreated surface after forming or cutting processes.

Moreover, an essential goal of grinding process is to rectify the surface (planarize the surface and ensure perfect parallelism between the work piece and the disk) so as to optimize the efficiency of following steps using smaller abrasives. To have the same plane level is of paramount importance to achieve desirable surface quality.

The grinding abrasives have different shapes, hardness and sizes. The size of grinding abrasives scales from 269 µm (corresponds to SiC paper P60) down to 5 µm (corresponds to SiC paper P2400 1 ).

Many types of abrasives exist depending on the material processed (see Table 3.4) [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF][START_REF] James | CRC materials science and engineering handbook[END_REF]. These abrasives are embedded either in a bond (resin, metal, ceramic)

1 Grit size of paper according to European system [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF] or coated on the flexible backing paper (as SiC paper). However there exists a rule of thumb that hard abrasives should be mounted in a soft bond and soft abrasives with hard disks. Finally polishing step, aims at erasing the polluted/affected layer created during lapping step and reaching the desired roughness of typically tens of nanometers.

Polishing process can be divided into 3 categories: diamond polishing, oxide polishing and chemical-mechanical polishing (colloidal silica with pH above 10). 

Diamond polishing

Diamonds used in metallographic polishing can be polycrystalline or monocrystalline. Polycrystalline structure is more efficient, with higher removal rate, as they have more cutting angles compare to monocrystal. Commercial monocrystalline or polycrystalline diamonds are available in suspensions (based on alcohol, water, oil), sprays or pastes. The grain size varies from 45 µm down to 0.1 µm. Suspensions allow more reproducibility and is easier to handle than others solutions.

Oxide polishing

The choice of the best abrasives is empirical, but is generally linked to the hardness of the sample material (diamond for harder material, Alumina for softer). Alumina, silica, cerium oxide are most used polishing abrasives which used in metallographic preparation, in order to obtain mirror-finished surfaces. The mean diameter of such abrasives could go down to 10 nanometers.

Chemical-mechanical polishing (CMP)

Chemical-mechanical polishing (CMP) was developed mainly for electronics, particularly for wafer and optical fiber preparation [START_REF] Samuel | Method of polishing[END_REF][START_REF] Robert | Chemical mechanical polishing composition and process[END_REF][START_REF] Sundararajan | Two-Dimensional Wafer-Scale Chemical Mechanical Planarization Models Based on Lubrication Theory and Mass Transport[END_REF][START_REF] Walsh | Process for polishing semiconductor materials[END_REF]. However excellent results are obtained on metals with soft abrasives like colloidal silica (SiO 2 ).

SiO 2 may be bought in suspension of a basic solution (8.5≤ pH ≤ 11) composed of oxygen peroxide (H 2 O 2 ) and ammoniac (NH 4 OH) [START_REF] Sivanandini | Chemical mechanical polishing by colloidal silica slurry[END_REF]. In this case, material removal happens due to a combined mechanical and chemical action. The mechanical action is ensured by colloidal silica. Chemical action is double, oxygen peroxide passivates the surface and ammoniac dissolves the oxide layer. In general oxidized layer of metal is softer than bulk [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF], due to the decreased density of this layer, leading to an improved removal rate thanks to the combined actions of dissolution (ammoniac) and friction (colloidal silica).

Moreover, silica suspension tends to break into smaller parts with time, improving even more the surface quality [START_REF] Zhao | Chemical mechanical polishing: theory and experiment[END_REF]. Finally, proper cleaning after CMP process of the polishing disk and workpiece (by water rinsing) is required, as the solution crystallizes very rapidly and is then very difficult to remove [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF].

Centrifugal Barrel Polishing (CBP)

CBP is a specific mechanical polishing process where abrasives and the workpiece are contained in a barrel subject to a double rotation. In the same manner as metallographic polishing, CBP process consists of several steps, starting with very aggressive abrasion to achieve high removal rate (similar to grinding) and finishing with a polishing step.

For abrasion and intermediate steps, abrasives are bounded together to form media of different mass, compositions and geometries (cubes, balls, cones, pyramids...), as shown in Figure 3.24, [START_REF] David A Davidson | Mass finishing processes[END_REF][START_REF] Gregory | Light weight ceramic abrasive media[END_REF], in order to improve the process efficiency (centrifugal force is proportional to the mass of the abrasives [START_REF] Uhlmann | Investigation of material removal and surface topography formation in vibratory finishing[END_REF]. For the final steps, abrasives are mixed with some soft carriers (cubes of wood, nut shells, corns...).

Depending on the abrasive material, media bounding material, geometry and size of media, a very aggressive or a very soft abrasion could be performed. CBP can achieve mirror finish surfaces and has been used as a complementary technique to chemical polishing so as to repair some of the surface defects done during manufacturing [START_REF] Cooper | Cavity processing research laboratory at Fermilab: SRF cavity processing R&D[END_REF][START_REF] Cooper | Mirror smooth superconducting rf cavities by mechanical polishing with minimal acid use[END_REF]. The CBP process could be an alternative technique to the standard chemical polishing but would require 4 to 5 polishing steps as described in [START_REF] Navitski | R&D on cavity treatments at DESY towards the ILC performance goal[END_REF][START_REF] Navitski | Surface analyses and optimization of centrifugal barrel polishing of Nb cavities[END_REF][START_REF] Prudnikava | R&D Activities on centrifugal barrel polishing of 1.3 GHz niobium cavities at DESY/University of hamburg[END_REF][START_REF] Palczewski | R&D progress in SRF surface preparation with centrifugal barrel polishing (CBP) for both Nb and Cu. Tech. rep. Thomas Jefferson National Accelerator Facility[END_REF][START_REF] Palczewski | Optimizing Centrifugal barrel polishing for mirror finish SRF Cavity and RF Tests at Jefferson Lab[END_REF][START_REF] Cooper | Mirror-smooth surfaces and repair of defects in superconducting RF cavities by mechanical polishing[END_REF]. The level of pollution, the thickness of damaged layer and surface roughness decrease gradually step by step [START_REF] Cooper | Recent developments in electropolishing and tumbling\& at Fermilab[END_REF][START_REF] Cooper | Mirror smooth superconducting rf cavities by mechanical polishing with minimal acid use[END_REF].

According to the experiments [START_REF] Higuchi | Investigation on barrel polishing for superconducting niobium cavity[END_REF][START_REF] Palczewski | Optimizing Centrifugal barrel polishing for mirror finish SRF Cavity and RF Tests at Jefferson Lab[END_REF] the best conditions to optimize the abrasion rate and the surface pollution were investigated.

CBP is very efficient at removing the main damages after manufacturing but induces a strong pollution due to embedded abrasives over several tens of µm [START_REF] Cooper | Mirror-smooth surfaces and repair of defects in superconducting RF cavities by mechanical polishing[END_REF].

This contamination can be reduced in depth by using soft abrasive media and slower rotating speed. Several experiments [START_REF] Cooper | Mirror smooth superconducting rf cavities by mechanical polishing with minimal acid use[END_REF][START_REF] Cooper | Mirror-smooth surfaces and repair of defects in superconducting RF cavities by mechanical polishing[END_REF] as well as the work which results will be presented in Chapter 5, concluded that after a full cycle of mechanical polishing (96-150 hours), it is required to remove 10-20 µm of the polluted layer by electropolishing [START_REF] Cooper | Cavity processing research laboratory at Fermilab: SRF cavity processing R&D[END_REF]. BCP could also be used, however it degrades very quickly the roughness (See Chapter 5).

The decreased surface roughness achieved after CBP in combination with light electro-polishing potentially leads to higher accelerating gradient and higher achievable quality factor in superconducting cavities compare to bulk EP [START_REF] Cooper | Centrifugal barrel polishing of cavities worldwide[END_REF]. However the extremely long time of treatment (96-150 hours), the numerous polishing steps (usually 4-5) and elongation of cavities iris after whole cycle pushes investigations of alternative polishing technique for SRF cavities like metallographic polishing.

Other Polishing Techniques

Laser Polishing

Laser polishing is a surface treatment technique, which has been used for polishing of metals, glasses, fibers, quartz and etc. [START_REF] Hildebrand | Laser beam polishing of quartz glass surfaces[END_REF][START_REF] Laguarta | Optical glass polishing by controlled laser surface-heat treatment[END_REF][START_REF] Lamikiz | Laser polishing of parts built up by selective laser sintering[END_REF][START_REF] Sm Pimenov | Laser polishing of diamond plates[END_REF][START_REF] Ramos | Surface roughness enhancement of indirect-SLS metal parts by laser surface polishing[END_REF][START_REF] Mircea V Udrea | Laser polishing of optical fiber end surface[END_REF]. A lot of work has been done to adapt and optimize this method for different type of surface (different material, shape and area) [START_REF] Alrbaey | On optimization of surface roughness of selective laser melted stainless steel parts: A statistical study[END_REF][START_REF] Sl Campanelli | Taguchi optimization of the surface finish obtained by laser ablation on selective laser molten steel parts[END_REF][START_REF] Rosa | Modelling and optimization of laser polishing of additive laser manufacturing surfaces[END_REF][START_REF] Ukar | Laser polishing parameter optimization for die and moulds surface finishing[END_REF][START_REF] Ukar | Laser polishing parameter optimisation on selective laser sintered parts[END_REF][START_REF] Weingarten | Laser polishing and laser shape correction of optical glass[END_REF][START_REF] Rosa | Laser polishing of additive laser manufacturing surfaces[END_REF]. [START_REF] Temmler | Laser polishing[END_REF].

First results of Nb laser polishing were obtained by Zhao in 2013 on flat samples [START_REF] Zhao | Laser polishing of niobium for SRF applications[END_REF]. Several studies have been performed to optimize parameters of laser radiation [START_REF] Vitali Porshyn | Laser treatment of niobium surfaces for SRF applications[END_REF][START_REF] Zhao | Parameter Optimization for Laser Polishing of Niobium for SRF Applications[END_REF].

This technique shows many advantages for SRF cavities due to fact that laser polishing can be applied on complex geometries and does not induce significant deformations or stress. However the achieved roughness is higher (of the order of microns) compare to metallographic flat polishing technique due to the fact that roughness of the laser polished surface strongly depends on the initial state of the surface [START_REF] Zhao | Parameter Optimization for Laser Polishing of Niobium for SRF Applications[END_REF].

Additional work has to be carried out on complex geometries and superconducting properties of polished surface has to be verified under RF and at cryogenic temperatures down to 2K.

Plasma Polishing

Plasma etching (PE) or polishing have been first developed for fabrication of the integrated circuits [START_REF] Rg Poulsen | Plasma etching in integrated circuit manufacture-A review[END_REF] and surface preparation of the Josephson junctions [START_REF] Greiner | Josephson tunneling barriers by rf sputter etching in an oxygen plasma[END_REF][START_REF] Gurvitch | Preparation and properties of Nb Josephson junctions with thin Al layers[END_REF][START_REF] Shoji | New fabrication process for Josephson tunnel junctions with (niobium nitride, niobium) double-layered electrodes[END_REF]. The plasma, composed of reactive gas, generates high energy ions which bombard the surface. Surface atoms are sputtered out of the surface and evacuated by active pumping. This contactless technique has the advantage to generate no deformation layer as mechanical polishing techniques. Significant etching rate of the order of few micrometer per minute could be achieved [START_REF] Moshkalyov | Anisotropic Etching of Si for Micromachining Applications Using SF6/CH4/O2/Ar Plasma[END_REF][START_REF] Ozgur | High-etch rate processes for performing deep, highly anisotropic etches in silicon carbide using inductively coupled plasma etching[END_REF]. Plasma treatment is a dry process, which involves no water, electrolyte or acid. Contrary to wet processes the plasma polishing eliminates hydrogen impurities from material, but at the expense of contaminating the surface from cathode material.

Plasma polishing of Nb for SRF purposes has been investigated by Upadhyay

and Vušković [START_REF] Rašković | Plasma treatment of bulk niobium surface for SRF cavities[END_REF]. A lot of effort has been spent to adapt this technique specifically for Niobium by defining the gas composition, pressure, voltage, power density and geometrical characteristics of the cathode (due to anisotropy) in order to obtain the best characteristics of the polished surface [START_REF] Upadhyay | Plasma etching of a single-cell RF cavity-asymmetric electronegative discharge[END_REF][START_REF] Upadhyay | Plasma Treatment of Niobium SRF Cavity Surfaces[END_REF][START_REF] Rašković | Plasma treatment of bulk niobium surface for superconducting rf cavities: Optimization of the experimental conditions on flat samples[END_REF][START_REF] Upadhyay | Plasma Treatment of Single-Cell Niobium SRF Cavities[END_REF][START_REF] Upadhyay | Experiment and Results on Plasma Etching of SRF cavities[END_REF][START_REF] Upadhyay | Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma[END_REF].

The first cryogenic RF test of a plasma treated single cell cavity were presented in 2017 [START_REF] Upadhyay | Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma[END_REF]. Chemical cleaning without HF acid has been used in order to remove the impu-rities and avoid the roughening of the surface. As a result the RF performance has been recovered at the same level as BCP treatment.

This technique improves roughness compare to BCP treatment, but if initial roughness is in the tens of nanometers, plasma etching leads to increase the roughness up to hundreds of nanometers [START_REF] Peshl | The Effect of Process Parameters on the Surface Properties of Niobium During Plasma Etching[END_REF]. Upadhyay concluded that the future investigations may be done with cathode made from Nb in order to remove surface pollution and reduce the number of steps during surface processing.

Electrolytic Plasma Polishing

Electrolytic plasma polishing (EPP) was invented in 1979 [START_REF] Vn Duradzhi | Investigation of erosion of the anode under the action of an electrolytic plasma on it[END_REF]. EPP is an environment-friendly technique for surface treatment of metals. Indeed, the workpiece is immersed in a salty solution rather than in an acidic solution [START_REF] Mayorov | Plasma-electrolytic polishing of metals products[END_REF][START_REF] Nestler | Plasma Electrolytic Polishing-an Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range[END_REF].

EPP requires significantly higher applied voltage (180V-320V) compared to electrolytic polishing or electropolishing (5V-20V) [START_REF] Cornelsen | Electrolytic Plasma Polishing of Pipe Inner Surfaces[END_REF], in order to ignite the plasma 

Magnetorheological Polishing

Historically magnetorheological polishing (MRP) has been developed and optimized for glass [START_REF] Singh | Magnetorheological methods for nanofinishing-a review[END_REF]. However others materials [START_REF] Mutalib | Magnetorheological finishing on metal surface: A review[END_REF] may be polished as well. MRP involves magnetorheological suspension, which viscosity can be switch from liquid to quasi-solid when subject to magnetic field [START_REF] Vk Jain | Nano-finishing techniques: a review[END_REF]. Suspension consists of ferromagnetic particles (carbonyl iron, nickel, cobalt ...), which size varies from 10 down to 0,1 µm, of abrasives (silica carbide, aluminium oxide, cerium oxide ...) and of a lubricant (oil or water).

MRP process can be assimilated to the two body abrasion process (as grinding), as abrasives are fixed over carbon iron particles in a magnetic field region.

Thanks to the levitation of the iron particles, the polishing abrasives are pushed to the top of the slurries, applying a pressure force on the workpiece [START_REF] Du | Study on Surface Roughness of Modified Silicon Carbide Mirrors polished by Magnetorheological Finishing[END_REF]. The magnetic field arranges the abrasives along the magnetic lines. Abrasives are put into motion by making the magnetic wheel rotate.

Depending on the wheel rotation speed (tangential force), material removal could be considered either as two body (grinding) or three body abrasion (lapping, polishing) processes [START_REF] Sutowska | Contemporary applications of magnetoreological fluids for finishing process[END_REF]. Two body abrasion corresponds to the case when tangential force is higher than the resistance of the material. In this case the abrasives are fixed in the ferromagnetic particles. Otherwise, when tangential force is lower than resistance of the material, the bonding connection between carbon iron and abrasives particles lost, leading to the rotation of particles, which corresponds to three body abrasion.

Polishing efficiency of MRP is proportional to the value of the magnetic field (the penetration of abrasives in material defined by the value of the magnetic force) and composition of suspension [START_REF] Wm | Magnetorheological finishing[END_REF].

As far as we know, Niobium has not been polished by this technique due the complexity of the process and low efficiency of the material removal (MRP may be used just for final step of polishing) [START_REF] Neauport | Magnetorheological finishing for removing surface and subsurface defects of fused silica optics Magnetorheological finishing for removing surface and subsurface defects of fused silica optics[END_REF].

Chapter 4

Experimental Tools for Mechanical

Polishing and Characterization

Studied Polishing Devices

This chapter will first describe the machines used for the R&D studies on mechanical polishing (MP). Two experimental studies have been carried out during the PhD work:

• Metallographic polishing (MP) has been carefully investigated as this technique allows to reach efficiently very promising surface quality. This technique is not only offering an attractive alternative solution to the standard chemical polishing but is of first interest for all studies on alternative superconducting materials. Indeed, these alternative materials have to be applied as thin films on high quality substrates (other than sapphire) that are nowadays very difficult to obtain (Niobium).

• Centrifugal Barrel Polishing (CBP) has been studied as well to understand carefully limitations of the current state of the art of alternative polishing techniques. Moreover, this study was not only to reproduce the state of the art, but to investigate a slightly modified process which could allow the treatment of complex 3D geometries and not only 2D geometries with rotational symmetry like elliptical cavities.

The different consumables studied for each technique consisting in polishing disks and abrasives for metallographic polishing and media for CBP technique will be as well described.

Secondly, the different tools used for the quality control of each step of the process and characterization of surface quality will be described.

Metallographic Polishing Machine

Mechanical polishing has been performed on a metallographic machine MasterLAM 1.0, see in 4.2 presents all grinding disks used in this research. In the beginning of disk utilization, a layer protection (made from resin) has to be removed by grinding stone which supplier add to each disk. 

Lapping disks

Lapping disk is a disk for processing of surface, which gives possibility to achieve perfect flatness of the workpieces with a uniform abrasion rate due to the continuous supply of abrasives on rigid disk. However for soft non-ferrous materials, as for Niobium, very rigid lapping disks (iron based disks) could create a huge deformation layer. In order to obtain a relatively little damaged layer, rigid composite disk (RCD) may be used for processing. RCD is based on mixture of resin with metallic powder (Fe, Cu...) [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF]. RCD combines the benefits of lapping disks (constant and relatively high material removal rate, high reproducibility) and polishing disks (reduced damaged layer compare to grinding). These lapping disks have to be charged with abrasives, as they just play the role of carriers. The best choice for RCDs are diamonds because of their hardness.

For hard composite disk, LAM PLAN recommends to use diamonds with diameters between 6-15 µm (softer abrasives could also be used). For soft RCD, only diamonds (softer abrasives reduce the lifetime of disk), in the range 3-6 µm, are recommended.

LAM PLAN can provide a large variety of abrasives solutions (mixture of abrasive and lubricating fluid) composed of soft abrasives like cerium oxide, harder abrasives like silicon carbide and aluminium oxide up to the hardest abrasives: diamonds (See Table 3.4 in Chapter 2).

For our application, solutions of polycrystalline diamonds are preferred as said in previous chapter (See Chapter 2).

Polishing disks

Polishing disks from different materials have been tested. Actually it is possible to define many types of material used for disks preparation: non-woven, woven (synthetic, natural, satin, silk, wool), flocked and polyurethane. Polishing cloths have to be combined with polishing abrasives (diamonds, alumina, silica, cerium...).

Elasticity or compression defines the resilience of the disks, the disk may be a hard or soft [START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF]. Hard disk contrary to soft disk has a lower compression and provides a higher removal rate, however the surface is rougher. A softer disk has a lower abrasion rate, but the final roughness is better.

The choice of the best disk is done depending of the type of material, abrasives and the required balance between removal rate and final roughness (also important to control the number of polishing steps). As the distance between shaft and the barrel is fixed, rotational speed and weight of barrels (media, sample. . . ) are the only variable parameters.

The type of abrasive media, time and rotation speed have to be optimized in order to achieve the best polishing recipe.

As for metallographic polishing, the barrels have to be emptied and cleaned and samples thoroughly cleaned in between each step to limit pollution of the polishing mixture from previous step (debris).

Different types of abrasive media can be loaded in the barrels during CBP polishing [START_REF] Edward | Mass finishing[END_REF]. These media are available in different shapes (pyramid, cones, triangle...), sizes and compositions. However three main types of abrasives, based on bonding material composition exist: ceramic, plastic and organic. In the case of soft materials like Niobium, the media has to be chosen extremely carefully in order not to damage too deeply the surface that will be exposed to intense RF fields. During investigations of CBP at DESY, E. Tamachevich concluded that ceramic media creates a huge damaged layer for Nb [START_REF] Tamashevich | Diagnostics and treatment of 1.3 GHz Nb cavities[END_REF]. Hence, plastic media has been chosen as the abrasives for the first polishing step. Final polishing steps have been performed with organic media, which are composed of natural hardwood material. This media has to be used in combination with abrasive powders, which varies from #400 to #6000 in mesh size (higher number corresponds to smaller size of the abrasives).

Tools for Process and Quality Controls

This section describes the techniques used to characterize the surface after mechanical treatment: laser confocal microscope (mainly for roughness measurement, in particular material removal rate characterization and preliminary pollution study), secondary ion mass spectrometry (chemical composition and depth profiling), X-Ray diffraction in the conventional and grazing modes (strain measurements at different depths), electron backscattered diffraction (dislocation density measurement), micrometer and weight meter (material removal rate studies). A careful characterization of the material, after each step of treatment (grinding, lapping, polishing), is of paramount importance in order to achieve the best quality of the treated material in the minimum number of steps. After each polishing step, each sample was investigated by average measurement of thickness, weight, roughness and pollution.

During MP procedure temperature measurement and level of lubricant/polishing suspension was systematically performed.

Temperature Control

The increase of temperature during the grinding, lapping and polishing processes leads to additional stresses, strains, inclusions, pull-outs within the material and specifically for Niobium and superconducting properties, leads to a higher contamination and diffusion of hydrogen into the surface of the sample [START_REF] Barkov | Precipitation of hydrides in high purity niobium after different treatments[END_REF]. In particular, during long runs, debris can accumulate significantly and induce overheating. It is recommended in these case to interrupt the supply of solution while keeping rotation of disk and sample holder and to flush out abrasives and debris with water. This will help decontaminating the surface and cool down parts.

Abrasion Rate Control

The abrasion rate or material removal rate MRR characterizes the thickness of removed layer (µm) per minute and it actually determines the duration of treatment processes. This parameter is an important polishing parameters (as roughness and deformation) which aims actually at predicting the costs of processing (in general abrasion rate has to be as high as possible, but higher rate leaves bigger deformation and rougher surface).

The abrasion rate depends on preparation step/method (grinding, lapping or polishing) and varies from abrasives used, lubricant and parameters of machine (applied pressure, rotation speed, counter-rotation...). Mathematically abrasion can be described by Archad's model for grinding (abrasive wear) and by Preston's model (abrasive lose) for lapping/polishing.

Archad's model considers that grinding by fixed abrasives can be modelled by a knife sliding on/cutting the surface. The removed volume is expressed by following equation:

V = kF L H (4.1)
where k is the removal rate constant, L is the sliding distance, F is the normal force, H is the hardness of sample, V is the removed volume.

Preston's model, as it was mentioned above, describes the lapping and polishing processes due to loose abrasives rolling on the surface in the follow way:

dz dt = kP V (4.2)
where dz/dt is the abrasion rate, k is the removal rate constant, p is the applied pressure on the interface between sample and disk, V is the removed volume.

Both models give the theoretical prediction of the abrasion rate, however these tend to overestimate the real abrasion rate as the wear of abrasives (roundening of cutting edges, loss of abrasives) is not taken into account. Abrasion rate has to be experimentally characterized several times during each process as this is decreasing drastically with time depending on the type and quality of abrasives, grinding and polishing cloths, ... .

In this study, several methods were used to characterize the abrasion rate:

1. Weight difference of the sample before and after a process 2. Thickness difference of the sample before and after a process 3. Depth difference of a grove/scratch before and after a process.

Weight Measurement

The weight of the sample has been measured before and after each processing step. In order to determine the weight loss, a precision scale has been used (accuracy of measurement is 1 mg).

In order to reduce the measurement error, the averaged value over 5 measurements is calculated. The thickness of the removed layer can be estimated in the following way:

dx = m b -m a ρ N b S (4.3)
where m b and m a are the weights before and after processing respectively, ρ N b is the density of Niobium, which is equal to 8570 kg/m 3 and S is actual processed surface area.

The advantages of this method are its simplicity, the absence of contact with polished face and is an averaged estimation of the removed layer all over the sample. This technique is insensitive to potential non uniform removed layer caused by problems of sample alignment or sample flatness. However, so as to limit errors, the samples have to be removed from support holder and properly cleaned in order to remove the contamination stuck on the sample.

Direct Thickness Measurement (Micrometer)

Micrometer is a common tool to control directly and precisely (accuracy ∼ 1 micron) the thickness of a piece and is thus very convenient to estimate removal rate. However due to the contact with the polished surface, this measurement can be performed only after roughness measurement. Micrometer leaves series of scratches on the contact area.

This method allows, if the sample holder has been nicely designed, to perform 

Depth Measurement of Surface Defect with Microscope

In order to increase the precision of the thickness of the removed layer (nanometre scale), an another approach has been used. The samples were stamped and the initial depth of groove/scratch is measured by laser confocal microscope. The principle of the laser confocal microscope will be described in the next Section 4.2.3. After processing the scanning procedure is repeated. The advantage of this method is its precision (hundreds of nanometers) and allow a very local estimation. As the micrometer, problems of sample flatness or alignment can be detected. However this technique is more time consuming and requires to damage the polishing face. 

Surface Optical Control with Laser Scanning Confocal Microscope

The first principle of the confocal microscope has been introduced by Marvin Minsky in 1957 [233] and the invention of the first laser was in 1960 [START_REF] Zinth | The long journey to the laser and its rapid development after 1960[END_REF]. Finally after several decades Wilson presented the first confocal microscope based on laser emission in 1990 [START_REF] Wilson | Confocal microscopy[END_REF].

Laser light is reflected by the dichroic mirror into the objective (Figure 4.18).

The reflected light from analysed sample is transmitted through the dichroic mirror into the detector. Surface roughness parameters can be evaluated thanks to an associated software(VK analyser). This software can output either the 2D roughness, or the 3D roughness. All parameters were defined in Chapter 2.

Surface and Sub-surface Pollution Analysis with SIMS (Secondary Ion Mass Spectroscopy)

During any surface treatments, the surface may be polluted by the embedded impurities on the surface or the near-surface. Moreover, during chemical treatments or cleaning, foreign elements could diffuse into the near-surface or alter the protective oxide layer. Secondary ion mass spectrometry is a powerful and destructive technique used for characterization of the surface elemental composition at a nanometer scale [START_REF] Yu | Chemical enhancement effects in SIMS analysis[END_REF].

A primary ion beam with a typical energy between 1 and 20 keV is focused on the sample, see Depending on the type of primary ion beam, electro-positive (Argon, Oxygen) or The etching rate can be tuned by adjusting several parameters like beam current and scanned surface area and strongly depends on the type of predominant element (matrix material). The following formula gives a rough estimation of the etching rate (V sp ):

V sp = 1 10 -9 • Y • I • m a e • S • ρ = 1 10 -9 • Y • I • V m e • S • N A , (4.4)
where Y is the sputtering yield [START_REF] Behrisch | Sputtering by particle bombardment I[END_REF] (strongly dependent of the sputtered element, energy and type of primary beam), I is the current of the incident beam, e is the charge of electron, S is the sputtered surface, m a is the atomic mass of the sputtered element, ρ is the density of material, V m is the molar volume of a given material and N A is the number of Avogadro.

At IPNO, the compact SIMS workstation has been used supplied by Hiden Analytical [239], see Figure 4.22. Ar and O beams have been used at energies range from 1 to 5 keV to sputter Nb (for example at I=30 nA and S=400 µm 2 the etching rate is ranging from 0.6 up to 2.5 nm/min for Ar gas). The current on the filament was controlled between 30 nA up to 300 nA (for example at 5 keV and S=400 µm 2 the sputtering speed changes from 0.6 nm/min to 25 nm/min for Ar). 

Damaged Layer Characterization

In order to characterize the damaged layer created by mechanical preparation procedures, investigations of the polished samples have been done with three methods: multi-step BCP etching followed by optical analysis, grazing angle X-rays diffraction and electron backscattered diffraction (EBSD) on SEM microscope.

Multi-step BCP Etching

Buffered chemical polishing could reveal the damages on a processed surface.

Indeed, this chemical treatment isn't actually polishing but etching. The etching rate is strongly affected by the crystalline structure (cristal orientation, dislocation density, ...). As a result, BCP etching is revealing any crystallographic defects as these tend to be more resistant. In order to estimate the depth of the damaged layer and investigate the residual stresses after mechanical preparation (rolling, lapping, grinding, polishing), the processed surface has been observed by optical imaging 

X-Ray Diffraction

Crystal Microstructure

Crystal can be presented in the 3-D symmetry as the repetitive unit of volume (cell). As can be seen in Figure 4.24, the unit cell represents a parallelepiped with the X, Y and Z-axes and lengths respectively a, b, c, and angles between the cell edges (α, β and γ). There are 14 different lattice types (Bravais lattices), which grouped in seven lattice families: triclinic, monoclinic, tetragonal, orthorhombic, trigonal, hexagonal and cubic. 100), ( 110) and ( 111).

The crystal planes may be defined by the following expressions:

• (hkl): indicates the crystal plane,

• {hkl}: indicates the set of symmetry equivalent planes to (hkl).

X-Ray Diffraction (XRD)

In 1912 Max von Laue discovered that X-Rays due to their electromagnetic nature can be diffracted by crystalline materials. The condition at which X-Ray diffraction (XRD) occurs has been defined by Bragg.

During diffraction, see Figure 4.27, X-rays are elastically scattered by the atoms of the crystal, which consists of periodic crystal planes, thereby creating secondary waves scattered by each plane. The scattered waves from the crystal planes can have constructive or destructive interference. A constructive interference satisfies the Bragg law, which is given by the following condition:

2 • d hkl • sinθ = n • λ, (4.5) 
where d hkl is the distance between crystal planes, λ is the wavelength of X-Rays and 2θ is the angle of the diffraction.

The distance between the crystal planes can be expressed also by using the Miller indices and the length of cell. In the case of the cubic lattice, the distance is defined by the following expression:

d hkl = a h 2 + k 2 + l 2 , (4.6) 
where a is the lattice parameter, which for niobium in unstrained state is equal to

a = 3.033 [ Å].
For example, Miller indices, Bragg's angle, distance between planes and intensity of Niobium diffracted peaks are shown in Table 4.5. A monochromatic spectrum of X-rays is diffracted on the surface when a family of planes is favorably oriented according to Bragg's law. This diffractogram plots the diffracted X-ray intensity versus the angle 2θ. The diffractogram may be disturbed Not only the amplitude but also the position, and width (FWHM = Full Width

Half Maximum) contain microstructural information. Thus a change in distance between planes, due to strain or an inclusion, will be reflected by a change in the peak position and its width. The lattice size (a) of the crystal may be correlated with FWHM by the Scherrer equation:

a = K • λ F W HM • cosθ , (4.7) 
K is the Scherrer constant (in cubic lattice K varies from 0.83 to 0.91).

Strain Measurement by XRD

The measurement of strain by X-Ray diffraction is based on the variation of the interplanar distance between crystalline planes. When a material is strained, either elongated or compressed, this distance respectively increases or decreases compare to stress-free material. The normal strain to the surface can be measured with the following empirical formula:

z = d n -d 0 d 0 , (4.8) 
where z is the strain in the normal direction (z), d n is the distance between planes of the strained material and d 0 is the distance between planes of the unstrained material.

The strain of the planes at an angle ψ can be calculated using the following expression: In the case of an elastic deformation, when strain is isotropic and homogeneous, the strain at the angle φψ can be calculated using:

ψ = d φψ -d 0 d 0 ( 4 
φψ = 1 + ν E (σ 1 • cos 2 φ + σ 2 • sin 2 φ) • sin 2 ψ - ν E (σ 1 + σ 2 ), (4.10) 
where parameters ν is the Poisson's coefficient, E is the Young's coefficient, σ 1 (σ x ) and σ 2 (σ y ) are planar stresses in the X and Y direction. All parameters were defined in Section 3.1.2.2 and some of these parameters were given for Nb in Section 3.1.2.3.

Stress Measurement by XRD

As was mentioned in Section 3.1.2.2, the stress can be evaluated through the Young's modulus and strain of the material.

To calculate the stress in any chosen direction, see Figure 4.30, in the case of an elastic, isotropic and homogeneously distributed deformation, we can assume that the stress in the XY-plane is non-zero and the normal stress is equal to zero (as for strain). Thus, the residual stress can be calculated using the interplanar distances obtained from measurements made in the normal plane and plane defined by its normal vector (n) at specific angle φψ:

σ φ = E (1 + ν) • sin 2 ψ d φψ -d n d n , (4.11) 
Figure 4.30: Sketch of the angles used to calculate the surface strain and stress of planes parallel to the surface and at angle φψ. Note: σ 1 , σ 2 , σ 3 correspond to σ x , σ y , σ z respectively.

The traditional method for stress evaluation is called the sin 2 ψ ("ψ") method [START_REF] Ismail | Residual stress: measurement by diffraction and interpretation[END_REF]. In this method, the interplanar distances for the same plane are measured versus different ψ-tilts and plotted. The stress may be calculated using the gradient (m) of the plotted curve. Hence, Equation (4.11) can be written:

σ = E 1 + ν • m (4.12)
To measure the residual stress by the sin 2 ψ method, the samples can be rotated by two different techniques:

• the Omega method, shows that stress/strain is homogeneous due to elastic deformation. Center image shows that the state of stress is triaxial, which is the case of rectification, the shear brings a more particular form of the curves and splitting at different angles.

Right image shows that stress/strain is inhomogeneous due to the preferred orientations.

• the Chi method. In the Omega method, samples are rotated about the omega axis, which is in the same plane with the 2θ-axis. In the Chi method, the samples are rotated in normal direction towards incident X-Rays, see Figure 4.33.

In this PhD work, we have used both the Omega (at Phi=0 • ) and Chi methods to evaluate the stress in the material by varying Psi angle (either in positive or negative directions). The most precise measurements have been obtained by Omega method in positive range due to lower defocussing effects. The Omega method (with negative angles) and offsets for Chi method exhibit lower intensities of the diffracted peaks. 

Penetration depth of X-Rays

Residual stress could be measured by X-Rays at different depths. Penetration depth of X-Rays (z) into the metallic material depends on the physical properties of material, incidence angle (ω) and the Bragg angle (θ). To estimate the penetration depth the following expression is used:

z = -ln I I 0 • 1 µ( 1 sinω + 1 sin(2θ-ω) ) , (4.13) 
where I I 0 is the attenuation of the intensity, µ is the material property.

In the symmetric case, when the incidence angle is equal to Bragg angle, Equation (4.13) could be simplified by the following expression: The diffractometer may work in 2 modes (gonio mode = conventional XRD for bulk analysis and Grazing mode = low incident angle to probe near surface of material). Gonio mode gives information about crystal structure at depth of several tens of micrometers due to the high value of incidence angle, typically more than 10 degrees. For example for Nb this depth varies between 2 to 3 µm, depending on the Bragg angle, see Figure 4.34. For measurement of thinner layer, grazing mode can be used, typically the incident angle is between 2 and 10 degrees. In the case of Nb, the penetration depth of X-Rays at 2 degrees is approximately 600 nm. [START_REF] Nishikawa | Diffraction of cathode rays by calcite[END_REF]. However, the obtained pattern had poor quality due to a low transmission of set-up and contamination of sample (low vacuum) and required an optimization of experimental conditions. Nowadays the high quality of images is obtained due to the integration of the EBSD technique on a commercial scanning electron microscope (SEM) operated under high vacuum. First modern EBSD pattern was introduced by J. A. Venables and C. J. Harland in 1973 [START_REF] Venables | Electron back-scattering patterns-A new technique for obtaining crystallographic information in the scanning electron microscope[END_REF].

The interaction between electron beam and sample generates several types of signal like secondary electrons (SE), backscattered electrons (BSE) and X-rays, which could be detected to provide complementary informations on the morphology, structure and nature of the surface, see Figure 4.37 [START_REF] Perret | EBSD, SEM and FIB characterisation of subsurface deformation during tribocorrosion of stainless steel in sulphuric acid[END_REF].

Secondary electrons (SE) are emitted by surface atoms excited by the incident electron beam. SE, because very low in energy, can only cross a very thin layer of material of several tens of nanometers. The detection of SE electrons allows then to get a very resolved image (laterally and in depth) ideal to study the morphology and topography of the surface. Back-scattered electrons (BSE) are the portion of incident electrons bouncing back out of the material. They interact elastically Figure 4.37: Sketch shows the interaction volume of SE, BSE and X-rays [START_REF] Zhong | Electron microscopy techniques for imaging and analysis of nanoparticles[END_REF].

with surface atoms within the first micrometers. The detection of these electrons, because of the strong interaction with atoms, make this technique sensitive to the chemical composition and crystalline structure (phase) at the expense of a worse lateral and depth resolution. Excited atoms by the incident electrons emit X-rays when undergoing de-excitation. The energy spectrum of these X-rays is determined by the type of atoms. The detection of these X-rays by EDS (Energy-Dispersive X-ray Spectroscopy) allows to identify the chemical composition of the surface with a resolution of few microns. Finally, more than the chemical composition, crystalline structure, cristal orientation, phase and strain can be analyzed thanks to the EBSD technique (Electron Back Scattered Diffraction). When BSE exit the surface near to the Bragg angles, they diffract accordingly to crystal planes (Kikuchi bands).

Many cristalline information, as mentioned previously could be then extracted by the analysis of diffraction patterns (EBSP).

Outputs from EBSP

Based on the EBSP information, it possible to extract the following images: Image Quality (IQ), the Inverse Pole Figure (IPF), the Kernel Average Misorientation (KAM), the Grain Average Misorientation (GAM) and the grain orientation spread (GOS).

IQ is probably one of the paramount important images of EBSP, which represents information about orientation and local crystalline state caused by sample preparation (surface contamination, phase). IQ also reveals features that are invisible in the secondary electron images, such as grains, grain boundaries, and surface artifacts.

The IPF pattern shows the basic microstructure and reveals the crystallographic orientation of the grains with respect to the sample normal direction. These changes in orientation are displayed using an RGB color map.

Other images (KAM, GAM and GOS) may describe the dislocation density in the crystallographic material trough the calculation of a grain misorientation by different methods. The grain misorientation is the difference in orientation of crystal lattice of one grain into coincidence with another grain. KAM image may be used to measure grain misorientation locally. This pattern calculates the average dislocation angle of a given pixel concerning surrounding neighbor pixels. The local misorientation is measured assigned to the center pixel of a particular grain with respect to all points in the perimeter of the kernel. Generally, high dislocation density corresponds to higher KAM. KAM pattern gives information about local lattice distortions, localized deformation, and high dislocation density, hence it reveals information about strain, which is given in the grain.

Another output that measures grain misorientation locally is named GAM. Here the average dislocation angle is calculated over all points in a given grain. The misorientation is calculated between each neighboring pair of points within the grain.

The average misorientation value is then determined and assigned to each point within the grain. Generally GAM is high in deformed grains due to higher dislocation density.

The GOS describes the global distribution of the misorientation for all grains in the microstructure and shows the degree of this misorientation by comparing every pixel in the grain with the grain's average orientation. Similarly to KAM and GAM, GOS is higher in deformed grains due to higher dislocation density. In order to verify the plastic deformation created during processing cross-sections may be prepared by the following procedure, see Appendix C.

Chapter 5

Experimental Results

Centrifugal Barrel Polishing of Niobium Introduction

There are many different type of abrasive media available on the market which may be used for CBP. At JLab, Fermilab and DESY laboratories CBP treatment were performed on elliptical SRF cavities in 4-5 steps. As a result, after about 100h of processing time (excluding handling time of the operator to change abrasive media and to perform surface cleaning of the cavity between each step), the final surface roughness obtained is of typically 10s of nanometers [START_REF] Cooper | Centrifugal barrel polishing of cavities worldwide[END_REF]. However, because of the hammering of the surface by abrasive media, the surface pollution is such that at least 20 µm has to be removed by chemical polishing. The standard recipe is presented in Table 5.1 [START_REF] Tamashevich | Diagnostics and treatment of 1.3 GHz Nb cavities[END_REF]. The existing CBP recipes developed by Fermilab or DESY for Niobium are thus not in line to allow large scale production (too many steps, too long processing time). However, this technique appeared to be complementary to standard chemical treatments as some defects resistant to chemical process could be removed by this mechanical process. Our activities have been focused on optimizing the recipe by the reduction of surface pollution (embedded abrasives), thickness of damaged layer and processing time (in particular, the reduction of intermediate steps) on a CBP machine allowing the polishing of 3D geometries as described previously in Chapter 3.

In order to avoid the plastic deformation and limit surface pollution of Nb during polishing, the ceramic media should be excluded from the polishing procedure [START_REF] Tamashevich | Diagnostics and treatment of 1.3 GHz Nb cavities[END_REF]. Some prelimary runs done with media composed of different bonding material (ceramic, porcelain and plastic) showed that beside plastic, all other media would pollute and damage too significantly the Niobium surface to allow the reduction of the number of steps (See Figure 5.1). Hence, further investigations have been focused on the plastic media (type/shape) as this media is used for a combined step (abrasion + pre-polishing). These samples were cut from rolled niobium sheets of 4.5 mm thickness, which were provided by the company Tokyo Denkai. The initial state of the samples used to study material removal rate and surface roughness studies was as "received".

The samples used to study the damaged layer and pollution left after CBP process have been previously treated by BCP before polishing (≈200 µm) to ensure that damages/pollution are only due to the CBP process and not from previous processes during Niobium sheet fabrication. The development and optimization of procedure has been done on the samples of 40 mm by 40 mm.

In order to have a global view of the impact of input polishing parameters (rotation speed, time, shape and type of media) on the surface state, the set of output parameters (MRR, surface roughness, and pollution) was analyzed, see Figure 5.2.

To measure the MRRs, samples were characterized before and after polishing by the three different techniques, which were described in Chapter 4. To measure the resulting surface roughness and pollution, the surfaces were characterized by laser confocal microscope. Afterwards, to identify the nature of embedded particles and study the depth of pollution, destructive SIMS-analysis was done in static and dynamic modes. All these outputs gave the optimized parameters, to achieve the best surface quality for SRF standards in a minimum of steps. Finally, the finished surface obtained thanks to the optimized recipe has been characterized by XRD and multi-step BCP in order to characterize the value of damages after polishing. 

Optimization of Process Parameters

In order to choose the abrasive media for first potential step three type of the abrasive media made of plastic were tested, see Figure 5.3. The media have the shape of the pyramid and cone with different composition giving them different abrasive power (see Table 5.2). For the second and last polishing steps abrasive powder in combination with organic media (hardwood blocks) were used. Hardwoods are complementary elements during these steps of CBP, which have to be used to create the weight-impact and produce pressure to increase the polishing efficiency. We carried out the tests with abrasive powder of different nature and sizes: #400, #800, #3000 and #6000.

Table 5.3 shows the specifications of those powders.

For all runs, whatever the type of media or powder was used, the water and surfactant quantities were kept constant. The barrel was typically half-filled (some minor volume adjustment were done to balance the 2 opposite barrels). From company experience a half-filled barrel provide optimal performances. The material removal rate of each used abrasive media was verified by changing the following parameters: rotation speed of a CBP machine (rotations per minute RPM) and duration of run.

Material removal rate has been measured at 100, 125 and 150 RPM. The results are presented in Figure 5.4. The experimental data shows that higher speed leads to higher MRRs. The plastic cones Cone-TKV media looks more efficient in sense of abrasion compared to the plastic pyramids TET-TKS and TET-TKP media eventhough its abrasive power is considered as medium. Its slight bigger dimensions (12x12 mm instead of of 10x10 mm) might explain this better efficiency.

Moreover, and surprisingly at first sight, with similar dimensions, the MRR of TET-TKP media (low abrasive power) is better than for TET-TKS (high abrasive power). This lower efficiency of "aggessive" media could be caused by the very rapid wear of media. Indeed, media is not only interacting with the sample but also between them.

As a consequence, the process duration is an another parameter to investigate, as these type of media has a tendency to wear over time, which also leads to different final quality (in terms of the surface roughness and pollution) of the polished surface.

In order to verify the efficiency of abrasion over time (wear of abrasives), the duration of polishing runs have been changed between 5 and 20 hours, at fixed rotation speed -150 RPM. As can be seen in Figure 5.5, the abrasive media wears during the CBP process. As mentioned earlier, we can observe the very rapid wear of TET-TKS media between 5 and 10h. This explains why the total removed layer is only of 9 µm for TET-TKS after 20h instead of 15 µm for CONE-TKV. After 20h, the MRR is so low that the total removed layer tends to saturate. It is thus recommended to perform runs of 10h and not longer than 20h. Hence, in order to remove at least 150 µm of material as required, the first step of CBP process would require to divide it into 12 runs of 10h with CONE-TKV to optimize processing time.

As it will be discussed in the next sections about roughness study and pollution, the intermediate step, involving hardwood blocks and abrasive powder, has to not only remove embedded particles but also erase surface defects (scratches, ...) generated during previous step. Thus, this step has to remove about 20 µm, requiring a processing time of about 100 hours. Table 5.4 shows material removal rate for whole spectrum of tested abrasives.

Surface Roughness Analysis

The evaluation of the surface parameters were monitored during the three polishing steps. with plastic media measured for several run durations (5h, 10h and 20h). As can be seen, the duration of run influences not only the MRR, but also the final surface roughness.

Indeed, the surface roughness tends to slowly decrease versus time during the first 10h. The abrasive power is high. After 10, the wear of abrasives is such that the abrasive power decreases significantly allowing the reduction of surface roughness.

In that sense, so as to prepare the surface for pre-polishing, the last run of the 12 runs recommended for the first abrasion step would need to be extended in time of at least 10h. Table 5.5 is summarizing the initial and final achieved surface parameters (S a , S z , S sk and S dr ) after 20h of processing for all processing steps. It appears, for the first abrasion step, that CONE TKV is providing the best surface quality allowing to limit the duration of the following steps. Indeed, the surface roughness and S z parameters are the lowest. Moreover, The other surface parameters S sk and S dr (representative of the density of embedded particles as described in chapter 2) are showing that Cone TKV media is inducing a lower surface pollution (S dr is low and S sk is negative). The surface is optically of better quality when processed with CONE-TKV, in line with the previous conclusions on surface quality. and TET-TKS (c). Note: 20 hours run at 150 RPM.

Surface Pollution Analysis

The surface pollution is not limited to the analysis of surface parameters (S dr and S sk ).

The pollution evaluation has been performed by SIMS analysis, as described in Chapter 4, with 5 keV argon ion beam. Investigations of the chemical composition of surface have been performed in static mode and recognition of elements has been done by using script define in Appendix B. Depth profiling was carried out on a window of 400 × 400 µm. In order to estimate the depth of sputtered region so as to correlate precisely analyzed depth and sputtering time, the crater depth measurement was done using a laser confocal microscope (cf. Chapter 4). For the following polishing steps with polishing powders, no direct surface pollution has been performed. However, the surface depollution (removal of embedded particles from previous step) has been studied versus time. An optical inspection after steps of 20 hours was carried out over more than 200 hours (See Figure 5.10).

One can appreciate how surface pollution is decreasing with time. After more than 280h, some surface pollution is still visible eventhough the less polluting media was used in the first step. The fact that the depollution process fails has been also observed by other labs (FNAL, DESY). Moreover, a simplified procedure has been proposed at DESY for cavity fabrication: a single CBP step with plastic media followed with depollution by chemical etching [START_REF] Prudnikava | Toward Optimization of Centrifugal Barrel Polishing Procedure for Treatment of Niobium Cavities[END_REF]. 

Optimized CBP recipe for Polycrystalline Niobium

Thanks to all the analyzes performed, an optimized recipe could be suggested to ensure the best surface quality achievable with this technique and the optimal superconducting properties (cf. Chapter 2 requirements of alternative polishing technique). The proposed recipe takes also into account industrialization constraints by limiting as much as possible the duration of the full process as well as number of steps. However, the conclusions of this study are not very positive at first sight :

• Although optimized, the duration of the CBP process is longer than 300h

• The MRR during the first abrasion step is very low compared to chemical etching rates

• The depollution efficiencies of the second and last steps are not sufficient to remove totally the surface pollution in a reasonable time.

So as to conclude definitely on this technique and its ability to maintain good superconducting properties, a specific sample has been treated thanks to the optimized recipe. This sample, a niobium disk of 126 mm of diameter can be mounted on a resonant cavity to be tested down to 2K. The surface resistance can be evaluated thanks to the measurement of the cryogenic load generated by a radiofrequency wave at 2.8 and 5.6 GHz [START_REF] Baumier | Multilayers Activities at Saclay/Orsay[END_REF].

So as to demonstrate the quality of this treatment, the sample has been previously chemically etched to remove any surface defect. In this way, the first polishing step could have been limited to only 65 hours. The recipe is the following :

Step 1: Plastic cones (12x12 mm), de-ionized water, surfactant (Pulib 72), 150 RPM, 65 hours, 4 runs;

Step 2: Hardwood blocks, Al 

XRD Diffraction Analysis

As discussed in Chapter 4, X-ray diffraction analysis in grazing angle allows to probe different crystallographic properties like interplanar distances and evaluate useful information like residual strain (shift of peak) and inclusions (broadening of peak). In this study, we analyzed samples treated by two type of media (CONE-TKV and TET-TKS) in Gonio and grazing mode. In Gonio mode, the X-rays penetrate 2.5 µm and at a grazzing angle of 2 • only 600 nm. As can be seen in Figure 5.14b and Figure 5.14c, the 2 diffraction peaks in gonio mode and grazing angle after abrasion step (respectively Cone-TKV and TET-TKS) are plotted. In Gonio mode, the diffraction peak is exactly centered on the theoretical position. Whereas in grazing mode, the peak is clearly shifted toward a lower angle sign of compression strain. The peak is also broadened sign of the presence of non linear strain caused by inclusions. Peaks are broadened and shifted to values comparable to after a simple abrasion step. Hence, a preliminary conclusion can be done: damages after the first step couldn't be removed by a three-step procedure with this polishing technique.

The fact that no strain is apparently detected as deep as 3 µm is in contradiction with the previous multi-step BCP analysis showing a very deep propagation of damages. Unfortunately, no diffractogram of a BCPd sample could have been performed

because of the very rough surface (presence of multiple peaks). This reference would have been required to really confirm this shift as well as the broadening of the peak.

Some further investigations have to be done to understand the link between subgrain patterns, residual strain and in particular their impact on superconducting properties. 

Metallographic Preparation of Niobium

As was mentioned in Chapter 3, the standard pathway of cavity production has a specific order in which the forming of cavity from Niobium sheets is before the surface polishing step. However, metallographic polishing can not be applied directly on enclosed geometries, in that sense, an alternative path has to be created Remarks:

• A careful study will have to be carried out to upgrade forming procedures/techniques so as to maintain as much as possible the surface quality of Niobium sheets. This study is not part of this PhD study but contactless techniques like hydroforming [START_REF] Singer | Seamless/bonded niobium cavities[END_REF] or electro-hydroforming [START_REF] Cantergiani | First Results of Superconducting RF (SRF) Cavity Fabrication by Electrohydraulic Forming[END_REF] appear at first sight to be very promising candidates.

• Some metallographic polishing procedure for Niobium have already been developed and are available in the literature (See Appendix E). However, these procedures focused on achieving the best surface quality but where not taking into consideration any requirements in term of industrialization, cost or sub-surface crystal quality.

The aim of this study is to optimize the metallographic polishing procedure for Niobium so as it meets the specifications required for SRF applications and alternative polishing technique as described in Chapter 3. In particular:

• removal of 150 µm

• limitation of number of steps (2-3)

• Limitation of surface pollution and residual strains over several hundreds of nanometers.

Selection Strategy of Consumables (Disks, Abrasives) for First Abrasion Step

At first stage, the experiments were carried out with a wide spectrum of grinding/lapping/polishing disks provided by company LAM PLAN [227]. MRR and surface parameters (S a , S dr , S sk ) were measured by protocols as described in Chapter 4.

The grinding and lapping disks and associated abrasives achieving a MRR and a final surface quality away from the specific requirements were set aside. Secondly, sample treated with the most promising disks/abrasives selected were analyzed with more powerful techniques like SIMS, XRD, EDS and EBSD (cf. Chapter 4) to address the induced surface contamination and crystallographic damages.

Preliminary Results for Grinding/Lapping

The tables 5.8, 5.9, 5. A color code has been added on these tables to validate whether the value is acceptable at the sight of specifications (green) or at the limit (orange) or out of specifications (red).

For the abrasion step, so as to be competitive with standard chemical polishing, MRR should be above 1 µm/min.

As MRR of polishing step is of the order of 0.01 µm/min (cf. Table 5.11) and aims at "erasing" surface damages and pollution of abrasion step, the typical S a below 0.1 µm.

For final polishing step, the surface roughness has to be at least of the order or better than typical roughness obtained after EP, meaning below 0.1 µm. Depollution of the surface has also to be observed. This preliminary study highlighted that the following disks/abrasives are suitable for further analyzes :

• Grinding disk with 15 µm embedded abrasives or hard rigid lapping disk with 9 µm diamonds as an optional corrective step;

• Soft composite and textile (synthetic fiber) lapping disks with respectively abrasives of 3 µm and 9 µm;

• Colloidal silica with soft textile polishing disks (microporous and compressed polyurethane).

Remarks:

The influence of polishing parameters has been characterized in term of MRR but are not detailed in this manuscript and can be summarized as follow:

• The rotation speed is not impacting significantly the MRR.

• MRR is proportional to the pressure applied on samples for grinding disks (fixed abrasives) only. For lapping, the effect is way lower (12 times increased pressure is increasing MRR by approximately 65 %).

• The counter-rotation is increasing MRR by approximatively 10 %. This very qualitative technique is showing that all these solutions tend to affect the crystal down to a depth of the order of 100 µm. Nevertheless it can be emphazised that the polycrystalline structure tends to re-appear deeper when rigid disks are used. Indeed, the surface looks amorphous up to approximatively 24 µm for resin -15 µm diamonds and hard composite disk whereas for soft disks, the crystalline structure is already visible after a removal of 6 µm. So as to quantify more precisely stresses induced by these, XRD analyzes have been performed and results will be discussed in the following section. Table 5.12 shows the evaluated residual stress for Niobium samples with omega rotation method based on sin 2 ψ technique.

At the sight of Table 5.12 we can conclude that, in agreement with multi-step BCP analysis, that rigid disks like resin -15 µm diamonds (grinding) and hard composite disk (lapping) are inducing more residual stress on the sample surface than softer disks like synthetic fiber and soft composite disk. Eventhough it is difficult to know at which extent the residual stress can affect superconducting properties, the simple rule "the lower the better" can be adopted in this case [4]. It is known from some experiments done on elliptical cavities that a stressed surface would entail an increase of the surface resistance [4].

To conclude on that point, the combination of several techniques like multi-step BCP analysis, XRD analysis and RF test would be required. Indeed, in between each etching step, the measurement of surface resistance under RF and the residual stress by XRD could give a complete picture on how superconducting properties and surface stress are correlated and evolving versus depth.

EBSD Analysis

EBSD analysis on the cross-sections have been accomplished for four recipes mentioned above. A special procedure has been required to prepare the samples for measurements (see Appendix C). Figure 5.24 shows general patterns which show the level of dislocations in material. GAM and GOS patterns show that first row of grains, at edge, has higher level of dislocations compare to other grains, in the bulk.

In order to describe these dislocations more statistically misorientation of grains could be calculated locally in each pixel. Results are presented in Figure 5.25.

Samples treated with softer lapping disks and in particular with soft composite disk is showing lower KAM at higher degree of misorientation sign of a less damaged, less strained crystal. This observation is in agreement with other analyzes presented previously. 

Polishing Step Study

The second step is aiming at not only reducing the surface roughness but also at removing enough material damaged during the previous abrasion step.

Final Roughness

For this final polishing step, only 3 configurations have been tested and were sufficient to converge toward very satisfying results, see Table 5.13. As visible in The optimal roughness is achieved very rapidly after approximately 15 minutes (See Table 5.13). As it will be seen in next section, this second polishing step has to be extended to ensure a complete de-pollution of the surface. Because of the chemical action, grains re-appear inducing a degradation of the surface roughness An alternative de-pollution method has been investigated consisting in performing a BCP treatment of few minutes. Figure 5.28 depicts the evolution of the surface roughness versus the duration of BCP. The surface roughness increases very rapidly and wouldn't satisfy the requirements already after 3 µm. A similar solution has been adopted by DESY. The abrasion step carried out by CBP would be followed by a "flash" EP [START_REF] Prudnikava | Toward Optimization of Centrifugal Barrel Polishing Procedure for Treatment of Niobium Cavities[END_REF]. 

Optimized metallographic recipe

At the sight of all results presented for abrasion and polishing step, the optimal recipe that would allow to meet all requirements for SRF standards is the following:

• A suspension of polycrystalline diamonds with a grain size of 3 microns in combination with soft composite disk have been chosen for the abrasion step.

The 

On Small Sample

Working pressure has been reduced to a pressure of 30 kPa instead of 120 kPa for 3 samples (10x40 mm) in order to simulate the polishing conditions of larger surfaces (limitation of device due to increased area and limited force up to 400 N). Mirror finished surfaces have been obtained for all Nb samples by using 2 steps polishing recipe. 

Final surface parameter

Typically polishing step reduces roughness parameters, but due to the CMP action, roughness tends to reappear. After 15 min of a polishing run, the minimum surface roughness has been achieved (20 nm). However, this step could not be stopped directly and requires the prolongation of polishing run to remove all embedded particles and grain damages. Remark: The abrasion rate is divided by 2.5 in this case as the pressure was divided by 4.

XRD Analysis

The XRD analysis performed after this optimal recipe is showing that the residual stress after the first abrasion step has been significantly reduced, see Figure 5 

EBSD Analysis

An EBSD analysis has been performed directly on the polished face contrary to previous EBSD analyzes that were done on the side after slicing and polishing.

Figure 5.34 is depicting a very homogeneously crystallized surface with a deformed layer obviously very limited (IPF image). Indeed, the "information depth" of EBSD is of the order of several tens of nanometers. The KAM is highlighting a non-homogeneous polishing quality. The center of the sample is showing a higher density of surface defects than the sides. This problem of polishing homogeneity is limited in this case of small samples but will be, as presented in next section, a real limitation for larger samples. 

Recipe Transfer to Large Sample (126 mm)

In an effort to perform a final test to address the superconducting properties a Niobium surface polished by the optimal recipe, a Niobium disk of 126 mm in diameter has been prepared. This disk, similarly to the disk polished by CBP as presented previously, can be mounted on a resonant superconducting cavity to measure directly the surface resistance down to 2K [START_REF] Martinet | Development of a te011 cavity for thin-films study[END_REF]. Such a disk could be polished on the polishing device installed at IPNO but several problems have been encountered.

The polishing parameters should have been reduced as the polishing device was not powerful enough to apply the same pressure and speed parameters on such a large surface. The device was stuck due to a "suction cup" effect. The applied pressure was then reduced from 30 kPa down to 10 kPa. Moreover, the formation of "bright" and "dark" spots on the disk as been observed (See Figure 5.35b). After careful optical analysis, it appears that "bright" spots correspond to significant higher polluted regions compared to "dark" spots. Such a non-uniform surface quality is explained by a very bad distribution of the solution between the polishing cloth and the Nb disk. So as to ensure the uniformity of the polishing step, the polishing cloth (plain cloth) used on small samples was replaced by a meshed cloth (See Figure 5.36). As a result, the applied pressure on the disk could have been increased back to a normal value (30 kPa) and a very homogeneous surface quality has been achieved (See Figure 5.35c).

So as to carefully assess the depollution of such a large sample in different zones, a specific script as been written in Python, see Appendix A.1. This routine is able to localize and thus count the number of embedded particles from the optical image acquired with the confocal microscope. as presented previously and with the standard chemical polishing (BCP) used as a reference, see Figure 5.40b.

The magnetic field on the disk is 2.5 times higher than on the walls of the For the resonating cavity with a disk plate, the quality factor is given by [START_REF] Guo | Cryogenic RF material testing at SLAC[END_REF]: The surface resistance of the disk, either after BCP or CMP, may be extracted from quality factor in the case of a strong assumption that the surface resistance of the reference disk is the same as for the hemispherical cavity [START_REF] Guo | Cryogenic RF material testing at SLAC[END_REF]:

Q 0 = G total R total = G disk + G cavity α disk R disk + α cavity R cavity , ( 5 
R cavity = 1 ( 1 G cavity + 1 G disk )Q 0,BCP (5.2) 
and

R disk = G disk ( 1 Q 0,CM P - R cavity G cavity ), (5.3) 
where G disk = G total α disk = 4251 Ω and G cavity = G total α cavity = 2094 Ω.

The behaviour of extracted surface resistance versus T c /T ratio is presented in as soon as this one would be available (the disk is ready to be tested). Also both disks were not heat treated in order to remove the Hydrogen from surface, which increased the R res .

Recipe Transfer to Very Large Disks (330mm)

Final goal of this thesis is to prepare one-cell cavity based on 2-step MP recipe, but this goal is postponed due to lack of time. This thesis has been mainly focused on the development of polishing recipe, which required to investigate plenty of parameters (rotation speed, abrasives, disks...) and how they affect on Nb surface, leaving the preparation of cavity outside the scope of this manuscript. However, there are some future steps for prolongation of this study:

• extend the polishing process to larger sheets (at least 300 mm);

• apply alternative cavity forming technique, as electro-hydroforming, to polished sheets (no-direct contact with dies in order to protect the polished surface).

Concerning on the dimensions of required disks for cavity fabrication, see Fig- • Laser polishing shows many advantages for SRF cavities because laser polishing can be applied on complex geometries and does not induce significant deformations or stress. However the achieved roughness is higher compare to metallographic polishing due to the fact that roughness of the laser polished surface strongly depends on the initial state of the surface. Conclusion: this technique, could only be used as a final polishing step (material removal is not possible) to recover crystallographic damages from a previous abrasion step.

• Plasma Polishing (PP) and Electrolytic Plasma Polishing (EPP) both improve roughness compared to BCP treatment with an equivalent material removal rate. However chemical cleaning is required due to significant contamination of the surface from cathode. Conclusion: too many steps for industrialization, but could be used as complementary technique to EP. Needs optimization.

• Electrolytic plasma polishing (EPP) as plasma polishing (improves roughness, has pollution from cathode and electrolyte), basically has the same results.

Conclusion: these techniques could be used as complementary for the abrasion step as no stress is applied on the material and the material removal rate is reasonable. However the induced chemical pollution of the surface requires to perform the final polishing by another technique.

• Magnetorheological polishing shows low efficiency in term of material removal, but extremely low roughness gives a possibility to use this technique as final polishing step. Conclusion: cannot be used for large scale production.

• CBP (already applied in SRF-community) provides a better surface roughness and could be more efficient at removing some surface defects compared to EP and BCP. However, this process does not satisfy requirements for large scale production due to strong surface pollution and an extremely long processing time. Conclusion: could be used as complementary technique to EP. Needs optimization: reduce number of steps and pollution.

• Metallographic polishing provides an improved roughness and material removal rate compared to conventional chemical treatments. However, MP cannot be directly applied on enclosed geometries, but only on flat geometries.

This technique could be potentially used for abrasion and polishing steps for large scale production. However, more advanced studies have to be performed to check if any forming methods could maintain or not degrade significantly surface properties of Niobium.

Hence, the second step of thesis has been devoted to understand the state of the art of mechanical polishing by operating a CBP and MP devices.

At JLab, Fermilab and DESY laboratories CBP treatment were performed on elliptical SRF cavities in 4-5 steps. Contrary to CBP, metallographic polishing has been not performed yet for SRF cavities, but recipe for Nb already exists (5-6 steps). However, these recipes are not optimized in term of industrialization or crystallographic quality for SRF needs.

The final step of this work has been focused on the optimization of recipe for both polishing techniques.

Firstly, we tried to reproduce the state of the art of CBP with a slightly different device (oblique axis to allow polishing of 3D geometries), trying to understand limitations and to optimize the recipe by the reduction of the processing time (reduction of intermediate steps) and surface pollution.

For both techniques, abrasion capabilities have been thoroughly investigated to address not only material removal rate and final surface parameters, but also the extension of induced crystallographic damages and pollution. For both techniques, it appeared that a real trade-off has to be done between achieving a reasonable removal rate (to optimize duration of this first step) and limiting surface defects and pollution (to optimize duration of polishing step). For CBP, plastic media with a medium abrasive power is recommended. For MP, pre-polishing lapping disks with relatively small diamond abrasives (between 3-9 µm) appear to be the best compromise.

The final polishing step for both techniques has been studied also extensively in order to check residual strains and pollution. the following conclusions are drawn:

• For CBP -Ultra-smooth mirror finished surface (S a ≈ 30 nm).

-The depollution efficiencies are not sufficient to remove totally the surface pollution in a reasonable time.

-The minimum polishing processing time would be 400 hours in 3 steps recipe.

-The mechanically damaged layer produced after CBP was investigated by multi-step BCP with the following optical analysis and XRD technique in gonio and grazing modes. Exploring such a layer by so different physical techniques are shown that the results in the agreement and damages after the first step couldn't be removed by the following steps, just slightly reduced.

• For MP technique:

-After 15 min of a polishing run, the minimum surface roughness has been achieved (S a -20 nm). However, this step could not be stopped directly and has to be extended to ensure a complete de-pollution of the surface.

Because of the chemical action, grains re-appear inducing a degradation of the surface roughness but could be lower then after electro-polishing (S a ≈ 50 nm) if time of treatment is adapted (less than 225 min).

-An alternative de-pollution method has been investigated consisting in per-forming a BCP treatment of few minutes. However, the surface roughness increases very rapidly and wouldn't satisfy the requirements already after 3 µm.

-Optimized recipe on small samples has been successfully transferred to larger samples of 126 mm in diameter (disk).

-Crystallographic quality (strain, dislocation density,...) after 2 steps polishing recipe has been verified by XRD and EBSD techniques. The crystal quality has been preserved underneath the surface.

-Chemical composition of surface after 2 steps recipe has been checked by EDS technique. Pollution by abrasives has not been observed.

-Finally, RF cryogenic test has been performed at 11.4 GHz. The results were extremely encouraging, since CMP polished disk reached lightly lower quality factor than BCP polished disk. At this frequency, very strong limitations are encountered as even the reference sample is exhibiting an anomalous and very early saturation of the surface resistance versus temperature. It is thus in our case not possible to address the surface resistance degradation due to CMP. A way to mitigate these "high frequency" limitations would be to test a disk at a lower frequency (3.88

GHz), as on IPNO test bench (TE 011 , the disk diameter is 12.6 cm) as soon as this one would be available (the disk is ready to be tested). However for our samples the operations of sectioning and mounting were reversed

(1-mounting, 2-sectioning), as shown in Figure A3.1 in order to protect already polished surface interface. Investigations of the cross-section required the extremely careful procedure damaged layer created by the abrasives used for polishing.

Mounting

After metallographic polishing the samples were mounted in the epoxy by the cold method technique. This technique represents the mixing of the resin-solution with hardener, the volumes 2 to 1 respectively. During mixing it is necessary to avoid the air bubbles. Epoxy is polymerized during 10 hours under normal conditions (ambient pressure and room temperature). As during curing the temperature of the epoxy is increased, the system with cool air blow was installed.

The ceramic balls were used in order to increase the hardness of the resin and decrease their shrinkage due to reduced fallen edge effects. They are available in various colours (red, blue, yellow) to identify the mounted samples. 
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Dans le Chapitre 3

 3 sont présentées les techniques de traitement de surface alternatives et sont définies les exigences physiques et techniques de la surface finale afin d'obtenir de bonnes performances supraconductrices pour la technologie SRF. La qualité de surface du matériau supraconducteur est un enjeu clé pour obtenir les performances requises des cavités accélératrices supraconductrices. Il est primordial de se débarrasser de l'ensemble des défauts de surface crées lors de la fabrication des tôles de Niobium et des cavités (cf figure 1 ci-dessous).
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 12 Figure 1: Représentation d'une surface endommagée par les procédés de fabrication conventionnels.

Figure 3 :

 3 Figure 3: Représentation schématique de la voie conventionnelle et alternative proposée.

Figure 4 :

 4 Figure 4: Photographie d'un disque (a) et photographie obtenue par microscopie optique de la surface d'un échantillon de Niobium (b) polis à l'aide du procédé métallographique optimisé.

Figure 2 . 1 :

 21 Figure 2.1: Overview of beam parameters (mean current and energy) of existing, under construction and future Normal Conducting and Superconducting [11].

Figure 2 . 2 :

 22 Figure 2.2: CERN accelerator complex [24].

Figure 2 . 3 :

 23 Figure 2.3: The LHC single cell elliptical cavity [27].

  The project started by the construction of a test facility named Tera-Electronvolt Superconducting Linear Accelerator (TESLA) in 2000 (DESY, Hamburg, Germany), which demonstrated the generation of photon beam with a wavelength of 90 nm. It gave a strong base for the preparation of the future facilities (FLASH, XFEL). The German government accepted the project in 2003 and the construction of XFEL started in 2009. The XFEL accelerator was built at DESY in 2016 and the first beam has been provided in 2017[START_REF] Weise | Commissioning and first lasing of the European XFEL[END_REF].

Figure 2 . 6 :

 26 Figure 2.6: Sketch of the FCC accelerator [41].

Figure 2 . 7 :

 27 Figure 2.7: Prototype 1-cell and 5-cell cavity for FCC accelerator [43].

Figure 2 . 8 :

 28 Figure 2.8: Sketch of the ILC accelerator complex [45].

Figure 2 . 9 :

 29 Figure 2.9: Superconducting elliptical nine-cell cavity made of Niobium (1.3 GHz) [45].

Figure 2 . 10 :

 210 Figure 2.10: Evolution in time of the total number of SRF cavities in the world.

Figure 2 . 11 :

 211 Figure 2.11: Total number of SRF fabricated cavities all over the world (bulk Nb, Nb/Cu): a) past (green), b) in operation (orange), c) to be fabricated (blue). Total number of cavities : 20379 [46].

Figure 2 . 13 :

 213 Figure 2.13: Sketch of SRF cavities operated in travelling wave and standing wave modes.

  along the direction of wave propagation. TM modes have no magnetic field and only electrical along the direction of wave propagation. TEM mode is characterized by transverse directions of EM fields in the direction of propagation. In order to accelerate particles to high accelerating gradients along cavity length, TM or TEM mode are used. Three indices m, n and p are used to characterize TM modes in order to indicate the number of half-wave patterns.

Figure 2 . 15 :

 215 Figure 2.15: Superconductors transition temperature T c versus their year of discovery [63].

Figure 2 . 16 :

 216 Figure 2.16: Meissner effect: When cooled below the critical temperature, a superconductor expels the residual magnetic field. This Meissner state is destroyed when the external field exceeds the critical magnetic field.

Figure 2 . 17 :

 217 Figure 2.17: The phase diagram of type I superconductor.

Figure 2 . 18 :

 218 Figure 2.18: The phase diagram of type II superconductor (a) and sketch of the vortex formations for superconductors of type II (b) [65].

Figure 2 . 19 :

 219 Figure 2.19: Evolution of free energy as a function of parameter ψ for different temperatures [69].

. 54 )Figure 2 . 20 :

 54220 Figure 2.20: Evolution of magnetic induction for 2 types of superconductors as a function of the magnetic field [70].

Figure 2 . 21 :

 221 Figure 2.21: Sketch of the formation of the Cooper pair.

Figure 2 . 22 :

 222 Figure 2.22: The energy gap as a function of T c /T compared with the BCS theory [73].

Figure 2 . 23 :

 223 Figure 2.23: Sketch of the transition from superconducting to normal conducting state.

Figure 2 . 24 :

 224 Figure 2.24: The measured niobium surface resistance in a 9-cell superconducting cavity plotted as a function of T c /T [54].

Figure 2 . 25 :

 225 Figure 2.25: BCS surface resistance as a function of the average mean free path [51, 75].

Figure 2 .

 2 26, three types of SRF structures may be defined depending on the desirable parameter β (β = v c , where v is the achieved speed of the particles and c is the speed of the light): quarter-wave resonators (80-150 MHz), half-wave resonators (150-400 MHz) and elliptical cavities (700-3000 MHz).

Figure 2 . 26 :

 226 Figure 2.26: Classification of superconducting cavities [79].

Figure 2 .

 2 Figure 2.27, have been first developed at KEK, in order to rotate the beam of charged particles to increase the interaction between both colliding beams.

Figure 2 . 27 :

 227 Figure 2.27: Crab cavity (left) and crab crossing scheme for KEKB (right) [80].

Figure 2 .

 2 Figure 2.28: Examples of real Q 0 -curves measured when the accelerating gradient is ramped up. Theoretically, the Q 0 should stay constant up to the thermodynamical limit of 55 MV/m [82].

  Figure 2.29: The quality factor versus accelerating gradient for ESS prototype (ROMEA) before/after 100K soaking and heat treatment [86].

Figure 2 . 30 :

 230 Figure 2.30: Evolution of hydrides forming on Niobium surface. Hydrides grow during the presence of hydrogen contamination of Niobium cooling down to cryogenic temperatures due to hydrogen diffusion and connection with other hydrides [87]. When hydride precipitation is very significant, surface dislocations (skeletons) can remain on surface leading to unreversible damages and permanent Q 0 degradation.

Figure 2 . 31 :

 231 Figure 2.31: Energy diagram of a metal-vacuum interface [88].

Figure 3 . 2 :

 32 Figure 3.2: Sketch of a real surface, which consists of the superimposition of three spatial components: (a) form, (b) roughness and (c) waviness.

Figure 3 . 3 :

 33 Figure 3.3: Separation of roughness, waviness and form of the measured topography.

  Figure 3.2 (c) shows the extracted waviness from the a real surface.Finally, roughness (See Figure3.2 (b)), the high frequency component is determined by the irregularities of height caused by the nature of the interaction between the piece and the surface process (mechanical, chemical or thermal interaction) and by the type of material of the piece (material mechanical and chemical properties, crystallography, ...).Roughness is an important parameter which is widely used for the quality control of surface processes. Roughness could be measured along a line (linear roughness, noted R)[START_REF] Manuel | Analysis of surface roughness and models of mechanical contacts[END_REF][START_REF] Quinsat | Surface topography in ball end milling process: description of a 3D surface roughness parameter[END_REF][START_REF] Es Gadelmawla | Roughness parameters[END_REF] or over a surface (surface roughness, noted S)[START_REF] Quinsat | Surface topography in ball end milling process: description of a 3D surface roughness parameter[END_REF][START_REF] Dm Shivanna | Evaluation of 3D surface roughness parameters of EDM components using vision system[END_REF][START_REF] Blunt | Advanced techniques for assessment surface topography: development of a basis for 3D surface texture standards" surfstand[END_REF].

  parameter of skewness (S sk ) characterizes the distributions of peaks or valleys over the surface. If S sk is positive, the surface is showing more peaks than valleys or in other word, there is more material than air above the mean line. If negative, there are more valleys than peaks or said differently, there is more air than material above the mean line. Kurtosis parameter, noted S ku , gives an indication on the "sharpness" of the profile or in other words how points of the surface are distributed around the mean line. If the profile is very sharp, the surface point distribution is very narrow, S ku > 3. If the distribution is normal (gaussian), S ku =3 and if the distribution is large, S ku < 3[START_REF] Bulaha | Calculations of surface roughness 3D parameters for surfaces with irregular roughness[END_REF].

Figure 3 . 4 :

 34 Figure 3.4: Example of different surface profiles showing the same roughness (S a ) but having very different surface properties. Additional parameters like S sk and S ku allow to distinguish such surfaces.

  Figure 3.5 B shows the ACF with the maximum in the centre (red colour) and decays along the direction of propagation (green and blue colours). This decay is slower along the direction of propagation and decays rapidly in the perpendicular direction (black colour). High S al represents a long wavelength (low frequency).

Figure 3 . 5 :

 35 Figure 3.5: Height image of sample after grinding (a), autocorrelation image of the height image (b) and angular distribution of the height image(c).

Figure 3 . 5 C

 35 Figure 3.5 C shows that parameter S td , which indicates the direction of the surface after processing (grinding).

Figure 3 .

 3 [START_REF] Kockum | The response to high-energy gamma rays of a NaI (Tl) scintillation spectrometer[END_REF] shows the action of the normal stress on the surface material.

Figure 3 . 7 :

 37 Figure 3.7: Schematic of normal stress. Arrows represent the direction of stress applied on the surface. Gray colour indicates initial state of the surface, blue colour after applied stress.

Figure 3 . 8 :

 38 Figure 3.8: Schematic of shear stress. Gray colour indicates initial state of the surface, blue colour after applied stress.

Figure 3 .

 3 Figure 3.9 shows a typical stress-strain curve of a ductile material. The specific stress-strain curve for Niobium is presented in the Figure 3.10.

Figure 3 . 9 :

 39 Figure 3.9: Stress-strain curve of ductile materials [117].

Figure 3 . 10 :

 310 Figure 3.10: Stress-strain curve of Niobium at room temperature [118].

  high formability (high elongation and ultimate strength coefficients to allow forming), high elasticity (high yield strength to avoid irreversible deformations during the life cycle of the cavity) and high purity (size of crystallites big enough to decrease number of preferential impurity diffusion paths like grain boundaries). The typical size of Nb grains used for SRF cavities is about 50 µm (corresponds to grain size number equal to 6).

Figure 3 . 11 :

 311 Figure 3.11: Example of a polycrystalline Niobium used for SRF cavities (Orientation imaging from EBSD analysis).

ure 3 .

 3 [START_REF] Jo | SUPERCONDUCTING Nb TM010 MODE ELECTRON-BEAM WELDED CAVITIES[END_REF], are places in the crystal lattice where atoms are misaligned due to the termination of atoms of a plane. Dislocations tends to affect significantly and positively the mechanical properties (yield strength, ultimate), but are also a source of lattice disorder causing degradation of superconducting properties (pinning centers for magnetic vortices, diffusion channels for impurities, ...).

Figure 3 . 13 :

 313 Figure 3.13: Type of 1D defects in a crystal lattice (edge and screw dislocations).

Figure 3 .

 3 Figure 3.14a shows twin boundary which indicates the mirror-reflection of atoms across a twin plane (2D equivalent of the 1D screw dislocation). It causes a shear stress in the crystals.

Figure 3 . 14 :

 314 Figure 3.14: Type of grain boundary.

Figure 3 . 15 :

 315 Figure 3.15: Images of typical surface defects like scratches, inclusions (a) and pull out (b) on Niobium surface due to lapping process. Magnification: 50 times.

3 . 1 and

 31 Section 3.3.2. 

Figure 3 . 16 :

 316 Figure 3.16: Standard path of cavity fabrication: lamination (rolling), forming (spinning, deep-drawing...), electron beam welding, surface treatment (BCP, EP and CBP) and final surface treatment (heat treatment, flash BCP or EP).

3. 4

 4 .1 MotivationsChemical polishing (BCP, EP) is the only surface treatment routinely used to clean and polish Niobium surface for SRF applications. However both methods are very hazardous and expensive, as they involve the use of hydrofluoric acid. The operational cost of chemical facilities is high, because of acid aging and recycling.Moreover, another motivation is to replace the chemical polishing by an alternative technique which could not only reduce the cost but also improve even more current accelerating performances of Niobium cavities. The reduction of surface contamination and roughness compared to what is achieved by chemical treatment could provide higher performances and potentially higher yield.Finally, thin films deposition of alternative superconductors (Nb 3 Sn, MgB 2 ) is an another way to increase significantly the accelerating gradients. Since quality of thin-film deposition depends on the surface-state (roughness) of the substrate, the development of an alternative treatment technique to reduce substrate roughness at the nanometer level is a key point to produce high quality films and to push the performance of SRF cavities.

Figure 3 . 17 :

 317 Figure 3.17: Sketch of material removal during mechanical polishing with abrasive.

Figure 3 . 18 :

 318 Figure 3.18: Schematic image illustrating the two cutting modes depending on the attack angle of abrasive tool. The violet arrows show the direction of abrasives.

Figure 3 . 19 :

 319 Figure 3.19: Schematic view of surface and sub-surface state after subsequent metallographic polishing steps (untreated, grinding, lapping, polishing). Note: damaged regions is presented with grey bars and inclusions are red dots.

Figure 3 . 21 :

 321 Figure 3.21: Schematic view of the specimen/disk interface during grinding process ("two body abrasion"). Abrasives are bonded in the disk. Bonded material is typically resin, polymer or metal.

Figure 3 . 22 :

 322 Figure 3.22: Schematic view of the specimen/disk interface during lapping/polishing process ("three body").

The cavity, see Figure 3 . 23 ,

 323 serves as the workpiece and the container. It is partially filled with a mixture of water, abrasives and surfactant[START_REF] Higuchi | Application of centrifugal barrel polishing to a niobium superconducting cavity[END_REF][START_REF] Palczewski | Detailed surface analysis of incremental centrifugal barrel polishing (CBP) of single-crystal niobium samples[END_REF]. As explained in Chapter 3.4.3, material removal is possible only when a combination of a normal and tangential forces are applied on the surface by the abrasive. In CBP process, the tangential force is obtained by spinning the cavity around its central axis (abrasives are sliding on the surface) and the normal force by a second rotation which axis is away from cavity (abrasives are pressed on the inner surface by centrifugal force).

Figure 3 . 23 :

 323 Figure 3.23: Schematic of centrifugal barrel polishing (CBP) applied to elliptical cavities.

Figure 3 . 24 :

 324 Figure 3.24: Typical shapes of the abrasive media used for centrifugal barrel polishing.

  Laser polishing melts the surface without removing the material. Laser works either in continuous wave (CW) mode or in pulse mode. CW is used for really rough surfaces as the melted depth varies from 10 to 80 µms. And in pulsed regime the melted surface is less than 5 µm[START_REF] Temmler | Laser polishing[END_REF]. Schematics of laser polishing procedure in both mode are presented in Figure3.25.

Figure 3 . 25 :

 325 Figure 3.25: Sketch of laser polishing in CW-mode (left image), sketch of laser polishing in pulsed mode (right image) [192].

Figure 3 .

 3 Figure 3.26 shows the steps of plasma etching. First step consists in the creation of ions from reactive gas during electrical discharge. Then, the diffusion process, where reactive elements are attracted toward the sample thanks to an applied voltage. Finally, surface atoms are ejected due to etching reactions.

Figure 3 . 26 :

 326 Figure 3.26: Sketch of plasma etching process. Courtesy of M. Rašković

Figure 3 . 27 :

 327 Figure 3.27: The RF performance measurement of the plasma treated single cell cavity (made from bulk Nb) [209]. Quality factor Q 0 and field emission (FE) are plotted versus accelerating gradient E a .

Figure 3 .

 3 Figure 3.27 shows that plasma etching leads to the degradation of quality factor of almost an order of magnitude (blue triangles and green rectangles curves) to be compared to BCP (red rhombus curve), due to the pollution of the surface by the cathode material (stainless steel particles).

Figure 3 . 28 :

 328 Figure 3.28: Photographs of a Niobium sample before (left) and after (right) plasma etching. The sample has been polished mechanically before plasma etching. [210].

  discharge around the anode and start preferential dissolution of peaks of the sample as depicted in Figure A2.2.

Figure 3 . 29 :

 329 Figure 3.29: Electrolytic Plasma Polishing.

Figure 3 . 30 :

 330 Figure 3.30: Magnetorheological polishing [223].

Figure 4 .

 4 1, manufactured by a French company LAMPLAN [227] which is based in Gaillard, France. This device is an automatic machine with a rotating and oscillating sample holder and a rotating polishing disk. The rotational speed of header changes from 20-150 RPM and speed of disk varies from 20 to 650 RPM. This model has a very interesting feature compared to other devices on the market allowing to ensure an optimal homogeneity of surface quality when the treated surfaces are above several tens of centimeter square. This feature in the oscillation capability of the polishing arm. This slow oscillation with a typical period of 5 seconds helps spreading homogeneously the lubricating fluid as well as abrasives during lapping and polishing processes.

Figure 4 . 1 :

 41 Figure 4.1: Photograph of a polishing machine MASTERLAM 1.0. Grinding disk CAMEO Platinum 4 (resin -15 µm diamonds) is installed at rotating plate with distributed lubricant "Booster" on surface of the disk.

Figure 4 . 2 :

 42 Figure 4.2: Schematic structure of polishing disk(a) & 5-cell holder for specimens (b).

Figure 4 . 3 :

 43 Figure 4.3: Photograph (a) and schematic view (b) of the 5-cell holder with installed samples.

Figure 4 .

 4 Fig. 4.4. A typical grinding disk of Cameo Platinum series, Platinum 2 is shown in Figure 4.5a. For example, Platinum 2 has fixed diamonds with grain size of 59 µm which corresponds to SiC paper P240.Table 4.2 presents all grinding disks used in

Figure 4 . 4 :

 44 Figure 4.4: Schematic principle of grinding disks Cameo Platinum with meshed structure. Note: the red locations correspond to increased temperature and wear of contact area.

Figure 4 . 5 :

 45 Figure 4.5: Photograph of grinding disk Cameo Platinum 2: a) optical image, b) laser confocal image. Embedded diamonds with a grain size of 59 µm are visible.

For

  these purposes, to avoid deformation of soft materials and to have a resonable Material Removal Rate (MRR) (µm/min). LAM PLAN company, developed special RCD with patented honey-meshed structure (described in Section 4.1.1.1). The worn abrasives and debris are eliminated in the cavities of RCD disks. In Figure 4.6a is shown a hard RCD based on the mixture of resin and powder of stainless steel. For softer materials like Niobium, another solution is indicated which is based on softer powder of copper (See soft RCD on Figure 4.6b).

Figure 4 . 6 :

 46 Figure 4.6: Optical image of hard composite disk (a). Recommended to use with hard abrasives as diamonds from 6 to 15 µm. Optical image of soft composite disk (b). Recommended to use with hard abrasives as diamonds from 3 to 6 µm.

Figure 4 . 7 :

 47 Figure 4.7: Optical images of tafetta woven syntetic fiber pad(a), flocked soft long viscose fiber pad(b) and satin woven natural fiber pad(c) sold by LAM PLAN company.

Figure 4 . 8 :

 48 Figure 4.8: Optical images of microporous polyurethane pad(a) and compressed polyurethane pad(b) sold by LAM PLAN company.

Figure 4 . 9 :Figure 4 . 10 :

 49410 Figure 4.9: Photograph of CBP machine with 4 barrels (ABC SwissTech production).

Figure 4 . 11 :

 411 Figure 4.11: Abrasives motion ("8" pattern) in a CBP machine with oblique axis.

Figure 4 . 12 :

 412 Figure 4.12: Photographs of plastic media from ABC SwissTech production: a) pyramides TET-TKS, b) pyramides TET-TKP and c) cones TKV.

Figure 4 . 13 :

 413 Figure 4.13: Photographs of organic media and abrasive powders from ABC Swis-sTech production: a) hardwood blocks, b) powder Al 2 O 3 and c) powder SiC.

  Control of temperature is an essential key to avoid overheating and right dossing of lubricant. Infrared thermometer FLIR TG165 [232] has been used to measure the changes of temperature during polishing procedure. FLIR is a spot thermal camera, which can differentiate cold and hot regions by detection of infrared light emitted by elements.

Figure 4 . 14 :

 414 Figure 4.14: Infrared images of disk/cloth (a) and sample (b) under normal conditions.

Figure 4 . 15 :

 415 Figure 4.15: Infrared images of disk/cloth (a) and sample (b) under non-normal conditions. Note: overheating.

Figure 4 .Figure 4 .

 44 Figure 4.14a and Figure 4.14b show the infrared images during abrasion under normal conditions, such as a level of lubricant is proper (not too dry, not too wet) and level of debris (mixture created by used abrasives and removed material) is

a

  very quick, local and precise thickness estimation during the process without the hassle of disassembling the sample from its holder. Moreover, by sampling all over the sample area, problems of sample flatness or alignment can be detected. To reduce uncertainties, at the end of the process, an averaged thickness is estimated from 10 measurements all over the sample, see Figure 4.16.
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 416 Figure 4.16: Micrometer for the thickness measurement with the accuracy 0.001 mm.

Figure 4 .

 4 Figure 4.17a shows the initial state of the surface and Figure 4.17b presents the final state of the processed surface.

Figure 4 .

 4 Figure 4.17: 3D-profile of "mark" have been taken with laser confocal microscope.

Figure 4 . 18 :

 418 Figure 4.18: Principle of the laser confocal microscope[START_REF] Czymmek | Future Directions in Advanced Mycological Microscopy[END_REF] 

Figure 4 . 19 : 3 . 4 .Figure 4 . 20 :

 41934420 Figure 4.19: Photograph of IPNO laser confocal microscope.

Figure 4 . 21 .

 421 Surface atoms are sputtered and a small portion of them are ionized, accelerated and then analyzed thanks to a mass spectrometer. Because the sputtering yield and ionization are very different for all elements, the evaluation of elements concentration (quantitative measurement) is very complicated and would require the use of expensive calibrated samples. However, qualitative or relative measurements (comparison with a reference sample) are straightforward. SIMS analysis is a very sensitive technique (concentrations of few ppb can be detected).

Figure 4 . 21 :

 421 Figure 4.21: Principle of SIMS.

Figure 4 . 22 :

 422 Figure 4.22: Photographs of the compact SIMS workstation (left), the analysis chamber (center) and ion source and detector (right).

  Figure 4.1.9, surface damages (scratches, ...) due to rolling are clearly identified. After 10 micron BCP removal, the surface scratches disappeared but the crystalline damages caused by the stress of the process are still visible. It is only after 150 micron removal that sub-grain patterns disappeared to leave the place to a nice polycrystalline structure known as damage-free.

Figure 4 . 23 :

 423 Figure 4.23: Etching figures of Nb surface after rolling.

Figure 4 . 24 :

 424 Figure 4.24: Unit cell of a crystal.

Figure 4 . 25 :

 425 Figure 4.25: The types of cubic family (from left to right): primitive cubic, bodycentered cubic and face-centered cubic.

Figure 4 . 26 :

 426 Figure 4.26: Examples of the crystal planes in the cubic lattice for different directions (from left to right): (100), (110) and[START_REF] Hays | An analysis of Knoop microhardness[END_REF].

Figure 4 . 27 :

 427 Figure 4.27: Principle of X-ray diffraction. In specific conditions (Bragg conditions), the diffracted X-rays have a constructive interference.

  by background noise (I noise ) originating from the X-ray fluorescence emitted by the sample, by the incoherent diffusion or by the diffusion of the optical systems, the supports of the sample, the air, etc.). The real height of the intensity peak (I real ) is then based on the difference between I max and I noise , for the 2θ position, which is corresponding to I max , see Figure4.28.

Figure 4 . 28 :

 428 Figure 4.28: Representation of the diffracted intensity as a function of the angle position 2θ. Note: diffraction pattern measured for Nb 110.

. 9 )

 9 Diffracted peaks either can be broadened due to plastic deformation or shifted due to elastic deformation. The broadening of peaks might be caused by inhomogeneous distribution of strain (inclusion,...). The shift of peaks corresponds to an homogeneously distributed strain in the material. If the distance d hkl decreases then the material is compressed and increased if stretched, see Figure4.29.

Figure 4 . 29 :

 429 Figure 4.29: Sketch of the crystalline planes of the crystalline material (from left to right): non-strained crystal, homogeneously strained crystal (compressed) and non-homogeneously strained crystal (inclusion).

Figure 4 . 31 :

 431 Figure 4.31: The evolution of the inter-planar distances versus sin 2 ψ. Left image

Figure 4 .

 4 Figure 4.32 shows diffraction geometry used in residual stress analysis.

Figure 4 . 32 :

 432 Figure 4.32: Sketch shows the diffraction geometry used for residual stress measurement [240].

Figure 4 . 33 :

 433 Figure 4.33: Rotation of the sample towards incident X-rays during the Omega (left) and the Chi (right) methods for residual stress measurement [240].

Figure 4 .

 4 Figure 4.34 shows the penetration depths versus incidence angle at different Bragg angles for Nb material (µ=1187.3 1 cm ). Note: attenuation is equal to 90% (I/I 0 = 0.1).

Figure 4 .

 4 Figure 4.34: Penetration depths of X-Rays versus incidence angle at different Bragg angle for Nb material.

Diffractometer

  

Figure 4 .

 4 Figure 4.35 shows the X'Pert PRO diffractometer from PANalytical, which uses a Cu X-Ray tube operated at 45 kV and 40 mA. Copper tube produces bremsstrahlung emission and X-rays at three different wave-lengths: 1.5406 Å (K α1 emission), 1.5440 Å (K α2 emission) and 1.39 Å (K β emission). In order to have the monochromatic beam and to remove K α2 , K β and bremsstrahlung radiations, graphite monochromator behind tube has been used. Hence, finally only the K α1 emission is used for the diffraction measurements. In order to control the divergence of the beam, the slit can be inserted in the Cu-tube. Data has been collected by pixel detector made by CERN. The pixel detector collects the scans of 2θ-angle.

Figure 4 . 35 :

 435 Figure 4.35: Picture of X-Ray diffractometer from PANalytical.

Figure 4 . 36 :

 436 Figure 4.36: Interior of X-Ray diffractometer from PANalytical.

Figure 4 . 38 :

 438 Figure 4.38: Outputs of EBSD patterns: a) image quality, b) inverse pole figure, c) Kernel average misorientation, d) grain average misorientation, e) grain orientation spread.

Figure 5 . 1 :

 51 Figure 5.1: Surface state after polishing with different bonding material: a) plastic, b) ceramic and c)porcelain. In the case of ceramic and porcelain, the surface is significantly blackened.

Figure 5 . 2 :

 52 Figure 5.2: Set of input/output parameters during optimization of CBP process.

Figure 5 . 3 :

 53 Figure 5.3: The tested plastic media which could be used as first potential step for CBP polishing.

Figure 5 . 4 :

 54 Figure 5.4: The material removal rate of different plastic media (Cone-TKV, TET-TKS, TET-TKP) versus rotation speed (100, 125 and 150 RPM). Processing time 10 hours.

Figure 5 . 5 :

 55 Figure 5.5: Wear of abrasives versus time of polishing (from left to right): initial, 5 hours, 10 hours and 20 hours.

Figure 5 . 6 :

 56 Figure 5.6: Accumulated removed layer (a) and material removal rate (b) versus time of treatment. Rotation speed -150 RPM.

Figure 5 . 7 :

 57 Figure 5.7: Evolution of surface roughness versus time for the three type of media.

Figure 5 . 8 :

 58 Figure 5.8: Laser scanning microscopy (left) and height (right) images of Nb surface after the CBP process with the plastic media Cone-TKV (a), TET-TKP (b)

Figure 5 .

 5 Figure 5.9a is showing how aluminium pollution (abrasive embedded in media)is extending inside the surface over approximately 25 µm depending on the type of media used. In agreement with previous conclusions, the SIMS analysis is confirming that the pollution is more limited when CONE-TKV media is used and is independent of rotation speed contrary to TET-TKS media.

Figure 5 . 9 :

 59 Figure 5.9: Comparison of SIMS depth profiles after the polishing (20 hours) by different plastic media (Cone-TKV and TET-TKS) at different rotation speeds (100 and 150 RPM) -(a), laser confocal 3D image of 25 µm crater induced by SIMS (b).

Figure 5 . 10 :

 510 Figure 5.10: Laser scanning microscopy images after steps of 20 hours duration.

2 O 3 Step 3 :

 233 powder # 800, surfactant (Pulib 200), de-ionized water, 150 RPM, 40 hours, 2 runs; Hardwood blocks, Al 2 O 3 powder # 3000, surfactant (Pulib 200), de-ionized water, 150 RPM, 40 hours, 2 runs.The evolution of the niobium topography after sequential polishing steps is compared. The final surface roughness of CBP-polished disk is 30 nm.

Figure 5 . 11 :

 511 Figure 5.11: Photography (left) and laser confocal image (right) of mirror-finished surface after 3-step CBP. Note: residual pollution is still visible even after 145 hours of polishing.

Figure 5 . 12 :

 512 Figure 5.12: Evolution of average surface roughness of RF disk with optimized 3step CBP recipe.

  The crystal damages are determined by the presence of subgrain patterns magnified by digital interference contrast (DIC) images. Pattern analysis is qualitatively carried out by visual inspection. Results are presented in Figure 5.13. After 11 µm removal, the density of subgrain patterns is very high and visible on all grains. After 65 µm removal, very few grains show subgrain damages but still remain up to 143 µm. The hammering of the surface by media during the first step is obviously too significant causing very deep shear and compression strains.

Figure 5 . 13 :

 513 Figure 5.13: DIC images of Nb surface state after CBP polishing for different removed layer by BCP.

Figure 5 .

 5 Figure 5.14a shows typical XRD diffractogram after first step of CBP polishing with plastic media Cone-TKV. XRD analysis confirms the appearance of strain in the material. The expected diffraction peaks positions and their relative intensities are presented in green circles for non-deformed state of niobium.

Figure 5 .

 5 Figure 5.15 shows XRD diffractogram after optimized three step CBP polishing.

2 •

 2 Cone-TKV Nb reference (a) XRD pattern of Nb after the first step CBP.

  Figure 5.14: XRD patterns in Gonio and Grazing modes.

  (a) XRD pattern after the three step CBP.

  Magnified first peak of XRD pattern after the 3 step CBP.

Figure 5 .

 5 Figure 5.15: XRD pattern of Nb after 3-step CBP.

(See Figure 5 .

 5 [START_REF] Auerhammer | The S-DALINAC facility-Operational experience from the accelerator and the experimental installations[END_REF] where Niobium sheets are polished before the forming of the cavity[3]. It has been shown that the observed damaged layer after forming is significantly thinner (10 microns) than after fabrication (150 microns) of Nb sheets and would only require a "flash" (5-10 µm) BCP or EP to prepare the surface for RF[START_REF] Cz | Reducing Electropolishing Time with Chemical-Mechanical Polishing[END_REF].

Figure 5 . 16 :

 516 Figure 5.16: Alternative path of cavity fabrication: lamination (rolling), mechanical polishing (150 µm), forming, electron beam welding, final surface treatment (heat treatment, flash BCP or EP).

10 and 5 .

 5 11 summarise MRR and final surface parameters for each type of grinding/lapping and polishing disk tested. 14 different type of disk and several combination of disk/abrasives have been tested. Duration of each polishing step -5 min. Rotation speed of disk -300 RPM and rotation of header -150 RPM. Pressure applied on the set of three samples is equal to 120 kPa (40 kPa per sample).

Figure 5 . 17 :

 517 Figure 5.17: MRR versus applied pressure for grinding and lapping processes.

Figure 5 . 18 :Figure 5 .

 5185 Figure 5.18: MRR versus rotation speed for grinding and lapping processes.

Figure 5 .

 5 Figure 5.19: DIC images of Nb surface state after grinding with resin -15 µm diamonds for different removed layer by BCP.

Figure 5 .

 5 Figure 5.20: DIC images of Nb surface state after lapping with hard composite disk + diamonds (dia) 9 µm for different removed layer by BCP.

Figure 5 .

 5 Figure 5.21: DIC images of Nb surface state after lapping with synthetic fiber + diamonds (dia) 9 µm for different removed layer by BCP.

Figure 5 .

 5 Figure 5.22: DIC images of Nb surface state after lapping with soft composite disk + diamonds (dia) 3 µm for different removed layer by BCP.

Figure 5 . 23 :

 523 Figure 5.23: Inter planar distance (d) versus sin 2 ψ in the case of applying different disks on Niobium.

Figure 5 . 24 :

 524 Figure 5.24: Image Quality (IQ), Inverse Pole Figure (IPF), Kernel Average Misorientation (KAM), Grain Average Misorientation (GAM) and Grain Orientation Spread (GOS) patterns of cross-section after abrasion step.

Figure 5 .

 5 Figure 5.26, the use of regular diamond abrasives couldn't achieve a surface cleanup although the final surface roughness achieved is very good. It appears very quickly that a combined chemical-mechanical action was necessary to observe an efficient removal of embedded abrasives. Colloidal silica used in a basic solution (pH=9) has been tested with 2 different type of disk showing very similar results.

Figure 5 . 26 :

 526 Figure 5.26: Laser confocal images after polishing step.

Figure 5 . 27 :

 527 Figure 5.27: DIC images: surface de-contamination during 2 step (CMP polishing). Total thickness removed after 225 minutes is equal to 2.4 µm.

Figure 5 . 28 :

 528 Figure 5.28: Surface roughness degradation versus accumulated BCP.

•

  MRR of about 3 µm/min, constant versus time, could allow to remove 150 µm in a reasonable time (50 minutes); Polishing step has been performed by a special solution composed of 50 nm grain sized particles of colloidal silica (SiO 2 , pH = 9) diluted in deionized water (20 %), carried on microporous polyurethane cloth. The depollution of the surface is obtained after about 200 minutes. Important remark: So as to keep an efficient process, every 30 minutes during abrasion step and 15 minutes during polishing step, the supply of abrasive solutions is stopped while the polishing device running and water is flushed on the disk during several seconds to rinse out polishing residues.Mirror-like surfaces are obtained as showed in Figure5.29.

Figure 5 . 29 :

 529 Figure 5.29: Raw Nb specimens before (left) and after (right) 2 step metallographic polishing recipe.

Figure 5 .

 5 Figure 5.30 is showing how the surface roughness is changing versus time during the full process.

Figure 5 . 30 :

 530 Figure 5.30: Evolution of the average surface roughness as a function of time [252].

Figure 5 . 31 :

 531 Figure 5.31: 3D reconstruction of Nb surface state after BCP (a), first step MP (b) and second step MP (c) [252].

Figure 5 . 32 :

 532 Figure 5.32: Inter planar distance (d) versus sin 2 ψ after 2 step MP recipe.

Figure 5 . 33 :

 533 Figure 5.33: EDS results of niobium surface after different type of polishing at a voltage of 20 kV.

Figure 5 .

 5 Figure 5.34: EBSD analysis of polished face. Chemical-mechanical action of SiO 2 during 90 mintues.

Figure 5 .

 5 Figure 5.37 is showing outputs of the script of a bright zone and dark zone for several duration of runs. The depollution efficiency versus time could be then monitored in various zones. Eventhough the starting number of embedded abrasives is approximately the same as well as their distribution in term of diameter (See Figures 5.37 and 5.38), their number in bright and dark zones don't seem to reduce at the same speed. This difference could be explained by a problem of flatness, leading to a non-homogeneous distribution of the polishing fluid. Such type of effect has not been observed with meshed disk as meshed structure helps at distributing the polishing fluid uniformly all over the surface.

Figure 5 . 35 :

 535 Figure 5.35: Photographies of Nb disk before (a) and after 2 step metallographic polishing with plain (b) and meshed (c) microporous polyurethane cloths.

Figure 5 .

 5 Figure 5.38 represents sizes of embedded abrasives in "bright" and "dark" spots versus accumulated time of polishing run.

Figure 5 . 38 :

 538 Figure 5.38: Evolution of particle size in "bright" (a) and "dark" (b) spots versus time (left image -30 min, center image -45 min and right image -120 min).

Figure 5 .

 5 Figure 5.39: Left: Design of the hemispherical cavity at SLAC. The RF power is fed into the cavity from the bottom, the flat disk (purple) is held in place by clamping in the support holder. Right: Real image [254].

Figure 5 . 40 :

 540 Figure 5.40: Photographies of Nb disk after BCP (a) and after 2 step MP for RF test at SLAC.

Figure 5 . 41 :

 541 Figure 5.41: Distribution of magnetic fields on the disk. Courtesy of P. Welander.

Figure 5 . 42 .

 542 Figure 5.42. The blue curve corresponds to IPNO reference sample (BCP) and the red curve to the CMP polished sample. At critical temperature T c (9.2 K)

Figure 5 . 42 :

 542 Figure 5.42: The quality factors of the BCP (blue curve) and the CMP (red curve) polished disks as a function of temperature [252].

Figure 5 . 43 .

 543 Figure 5.43. Measured surface resistance consists of the sum of the BCS surface

Figure 5 . 43 :

 543 Figure 5.43: The surface resistance of the BCP and CMP samples versus T c /T [252].

ure 5 .

 5 44a, such disk could not be polished by metallographic polishing machine at IPNO (diameter of workpiece has to be below half the diameter of the disk), so alternative solution will be carried out at LAM PLAN company on a lapping machine (diameter of plate is 1000 mm). However, a transfer of 2 step recipe from metallographic to lapping machine requires adaptation of the first polishing step by replacing soft composite disk. A preliminary plan has been discussed with our collaborator LAM PLAN and results will be presented in the near future.

Figure 5 . 44 :

 544 Figure 5.44: Photography of disk with a diameter of 330 mm before polishing (a), after 2 steps polishing (b) and a lapping machine (b) [227]. 194
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 422043205392072 Figure A1.1: SIMS spectrum of Nb sample after mechanical polishing with identified elements.

Figure A1. 3 :Figure A2. 2 :

 32 Figure A1.3: Statistical characterization of de-pollution.

Figure A2. 3 :

 3 Figure A2.3: Chemical composition of the surface after BCP and EPP.

Figure A3. 2 :

 2 Figure A3.2: Mounted samples in the epoxy with the different ceramic balls (yellow, blue and red).

Figure A3. 4 :

 4 Figure A3.4: Laser confocal images of Nb surface produced by different cut-off wheels.

Figure A3. 5 :

 5 Figure A3.5: Prepared samples for the treatment procedure.
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	S p	Maximum peak height.
	Of course, many thanks to reviewers and editors of this manuscript. They made
	possible to bring this thesis into an academically qualitative shape. Merci beaucoup
	and grazie mille.	

Mr. Jeoffroy taught me a lot and always guided me on the right way. Je vous remercie beaucoup pour votre gentillesse et assistance. Besides Jean-Michel from LAM PLAN, I would like to thank for the great and high quality work of Guillaume Carrey on a lapping process. Also, I would like to thank Paul Welander working in the Accelerator Technology Research Department from SLAC for the RF test of our prepared samples allowing us to have RF results ready for this thesis. Nobody has been more important to me than the members of my family. I would like to thank my parents, whose support, guidance and love are with me no matter what. Also, I have to mention all those who surrounded me during this time in Chandon's house: Leonid Burmistrov, Dmytro Hohov and many other students (Ivanka, Andrii, Olya, Vladyk, Katya, Denys...). Without them, this difficult period of my life could not be complete. They have become more than just neighbours, some of them have become even more than just friends for me. Thank them for everything, I will never forget this friendly and lovely atmosphere. You are the greatest happiness during my PhD period. However except all huge amount of help and support from people whom I mentioned above, this work would not have been possible without the financial support of the European Nuclear Science and Applications Research 2 (ENSAR 2) under xxxiii grant agreement n o 654002 of the Work Package 15 (TecHIBA -Technologies for High Intensity Beams and Applications). xxxiv Acronyms and List of Symbols

  The first step of this alternative pathway and the main achievement of this work is the development of a two-steps MP recipe inspired from metallographic techniques (instead of 4-7 steps), which shows promising results not only in terms of roughness but also in abrasion rate, surface pollution, and crystallographic quality, see Section 5.2. The next steps of this study are requiring

to apply this recipe on large sheets comparable with the cavity dimensions and then applying an alternative forming technique to polished sheets, see Section 5.2.3.4.
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 2 

	.1: Parameters of the LHC (proton-proton) accelerator
	Parameters	Value	Unit
	Proton beam energy	7	TeV
	Luminosity	1 * 10 34 cm -2 s -1
	Number of cavities	16	
	Accelerating gradient	5.3	MV/m
	Radio frequency	400	MHz
	Average beam current	530	mA
	Circumference	27	km
	Beam stored energy	362	MJ
	Beam lifetime	10	h
	Average beam power	10	kW

A picture of a cavity is presented in Figure

2

.3. For the LHC, 4 cavities are grouped in one cryomodule, with 2 cryomodules (8 cavities) per particle beam.
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	2: Parameters of the SRF linac for XFEL facility
	Parameters	Value	Unit
	Beam energy	17.5(20) GeV
	Number of cavities	808	
	Accelerating gradient	23.6	MV/m
	Radio frequency	1.3	GHz
	Average beam current	5	mA
	Total length	1.6	km
	Average beam power	650	kW

Table 2 . 3 :

 23 Parameters of the FCC (electron-positron) accelerator

	Parameters	Value	Unit
	Beam energy	350	GeV
	Luminosity	5 * 10 34 cm -2 s -1
	Number of cavities	1286	
	Accelerating gradient	10-20	MV/m
	Radio frequency	400-800	MHz
	Beam current (in pulse) 6.6-1450	mA

Table 2

 2 

	.4: Parameters of the ILC accelerator
	Parameters	Value	Unit
	Beam energy	250	GeV
	Luminosity	2 * 10 34 cm -2 s -1
	Accelerating gradient	31.5	MV/m
	Number of cavities	16000	
	Radio frequency	1.3	GHz
	Average beam current (in pulse)	9	mA
	Effective acceleration length	22	km
	Average beam power	2.63	MW
	The project was initiated in 2004. However in order to approach the creation of
	ILC the R&D programs over the world aimed at improving performance of the SRF
	cavities and reduce costs of preparation (increase production yield).
	Although existing for more than 50 years SRF technology is a very new tech-
	nology still requiring significant efforts and maturation to make future projects like
	FCC and ILC possible (financially and technically).	
	Figures 2.10 and 2.11 provide information about the number of SRF cavities
	used in the past, in operation and future SRF resonators. It can be stressed that the
	construction of ILC will multiply by 8 the total number of superconducting cavities
	fabricated so far. Nowadays about 2000 SRF cavities are in operation and 16000 will
	be required for ILC. SRF technology is a flourishing business at its beginning and by
	its capabilities and successful industrialization (XFEL), most of future international
	accelerator projects will be based on it.		
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	5: Design RF parameters of pill-box , QWR (Spiral2), double spoke (ESS)
	and elliptical (TESLA) [51], [52], [53], [54].		
		Pill-box QWR (SPIRAL2) Spoke (ESS) Elliptical (XFEL)
	r/Q , Ω	196	632/520	418	1036
	E peak Eacc	1.6	5/5.54	4.28	2
	B peak Eacc , mT M V /m	4.7	8.75/10.1	6.8	4.2
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	Chapter 2. Fundamentals of Superconducting Particle Accelerators
	Niobium is the pure material showing the highest critical temperature. Several
	alloys have been then discovered showing higher critical temperature. Niobium-
	based alloys could reach a T c of 18.7 K and M gB 2 alloy 40 K. Other types of
	complex copper-based alloys (cuprates) show T c up to 93 K.

.6 shows the critical temperatures characterized by the vanishing of resistance for some superconductors in the absence of the magnetic field. Mercury (Hg) is the first discovered material, which shows its superconducting properties below 4.2 K, see Figure 2.14.

Figure 2.14: The DC resistance vanishing of mercury [62].

Table 2 . 6 :

 26 The critical transition temperature for some materials. Material Ti Al Hg Sn Pb Nb NbTi NbN NbTiN Nb 3 Sn Nb 3 Al MgB 2

	T c [K] 0.4 1.14 4.2 3.72 7.9 9.2	10	16.2	17.3	18.3	18.7	40
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 2 7: Resistivity coefficient and maximum content of the different elements in Niobium [89]. Element Resistivity coefficient r i , 10 4 µg/g Content, µg/g

	H	0.36	2
	C	0.47	10
	N	0.44	10
	O	0.58	10
	Ta	111	500

Table 2 .
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		Processes	How to mitigate/ improve
	LFQS Strong Q-disease, thermal instability	Hydrogen degassing/ surface
		due to macroscopic defects	re-processing
	MFQS	Magnetic flux trapping, weak	Nitrogen doping/ 120 • C baking
		Q-disease, thermal instability due to	for 4 K operation
		microscopic defects	
	HFQS Field emission, multipacting, vortex	120 • baking for 2K operation/
		penetration, nano hydrides, time	Nitrogen infusion
		barrier	

8: Summary of Q-slope.
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 2 9: Alternative superconducting materials for SRF[START_REF] Antoine | Materials for superconducting accelerators: beyond bulk Nb[END_REF][START_REF] Valente-Feliciano | SRF Materials other than Niobium[END_REF]. Sn Mo 3 Re MgB 2 YBCO/Cuprates In 2006, a new concept was proposed by A. Gurevich[START_REF] Gurevich | Enhancement of rf breakdown field of superconductors by multilayer coating[END_REF] consisting in stacking several very thin layers of high-T c superconductors separated by isolating layers over bulk Niobium. If the superconducting film is deposited with a thickness d <<λ, the Meissner state can be kept at a magnetic field much higher than the bulk H c1 that appears to be very low for most of superconductors. In that sense, the underlying Niobium would be efficiently shielded by these high-T c superconductors allowing to reach surface fields way higher. The BCS resistance is also strongly reduced because the superconducting materials used have higher gap ∆ (Nb 3 Sn, NbTiN . . . ) than

	Material NbTiN Nb 3 T c [K] Pb Nb NbN NbTi 7.1 9.2 16.2 10 17.3 18.3	15	40	93
	ρ n [µΩcm]		2	70		35	20	10-30 0.1-10
	µ 0 H c1 [mT ] n.a. 170	20	4-13	30	50	30	30	10
	µ 0 H c2 [mT ] n.a. 400	15000	11000		30000	3500	7000	100000
	µ 0 H c [mT ]	80 200	230	100-200		540	430	430	1400
	µ 0 H sh [mT ]		219	214	80-160		425	170	170	1050
	λ L [nm]	48	40 200-350 210-420 150-200 80-100	140	40	150
	ξ 0 [nm]		28	5	5.4	5	5		5	0.03/2
	∆ [meV ]		1.76	2.6		2.8	5	2.3/7.2	2.7

One common limitation in all these described technologies (bulk Niobium, Nb 3 Sn and multilayers) is the quality of the surface in term of roughness. Indeed, to a lesser extent for bulk Niobium, field limitations are suspected to originate from the surface morphology (local field enhancement caused by roughness). For thinfilms the quality of the substrate is a key parameter to achieve high quality films.

The roughness of polycrystalline Niobium (used as bulk or as substrate) has to be definitely improved by developing new techniques capable of surpassing current state of the art achievements. The work presented here will try to address this problematic.

Table 3

 3 

		.1: Height parameters of 3D surface roughness.	
	Parameter, [Unit]	Meaning		Formula
	S a , [µm]	The average deviation of the surface		
	S sk S ku	Skewness of surface height distribution Kurtosis of surface height distribution	A A	1 (S q ) 3 (Z(x, y)) 3 dxdy 1 (S q ) 4 (Z(x, y)) 4 dxdy
	S p , [µm]			

A |Z(x, y)|dxdy S q , [µm]

The root mean square deviation of the surface

A (Z(x, y)) 2 dxdy

Table 3 .

 3 2: Hybrid parameters of 3D surface roughness.

	Parameter, [Unit]	Meaning		Formula
	S dq	Root mean square slope	1 A	A

  Spatial parameters, contrary to hybride parameters, do not give any information about height, however they evaluate the pattern of the surface[START_REF] Leach | Characterisation of areal surface texture[END_REF]. A surface can be either isotropic or anisotropic. By definition, an isotropic surface has the same properties in all directions. Anisotropic materials could show different level of anisotropy. After different type of processing (machining, forming, rolling, polishing, ...) the same material could have different level of anisotropy. Different materials have different anisotropic behaviour for the same processing due to different mechanical properties. The three spatial parameters (S al , S tr , S td ) are used to evaluate the degree of anisotropy. S al indicates the horizontal length of the auto-correlation function (ACF) with fastest decay of this function to a specified value, which is equal s=0.2 (specified by

			dxdy
	S pd , [mm -2 ]	Mean peak density	-

ISO 25178-2:2012 standard). ACF is the correlation between two values of a signal shifted in time or space, this difference may represent the periodicity of surface directions

[START_REF] Leach | Characterisation of areal surface texture[END_REF]

.

Table 3 . 3
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	Mechanical property	Value
	Yield strength σ Y , [MPa]	66
	Ultimate tensile strength σ U , [MPa]	180
	Hardness, [HV]	56
	Grain size d g , [µm]	50 (6 in AST M )
	Strain hardening coefficient n	0.31
	Elongation A l , [%]	59
	Young's modulus E, [MPa]	105000
	Bulk modulus K, [MPa]	170000
	Shear modulus G, [MPa]	38000

: Mechanical properties of Nb used for SRF applications at room temperatures (high purity polycrystalline)

[START_REF] Antoine | Physical properties of niobium and specifications for fabrication of superconducting cavities[END_REF]

.

Table 3 .

 3 

	Abrasive type	Hardness, HV
	Diamond	8000-10000
	Cubic Boron Nitride (CBN)	4500
	Boron Carbide (B 4 C)	2800
	Silicon Carbide (SiC)	2700
	Aluminum Oxide (Al 2 O 3 )	2500
	Silica (SiO 2 )	1103-1260
	Cerium Oxide (CeO 2 )	1688

4: Hardness of commercial abrasives

[START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF][START_REF] James | CRC materials science and engineering handbook[END_REF]

. inclusions of abrasives used during grinding step (tens of microns) or scratches of several microns deep could not be removed efficiently by polishing abrasives of several tens of nanometers. An intermediate step like lapping process with abrasives of few microns has the ability to remove efficiently surface damages and to limit damaged layer (shear zone).

Table 4 .

 4 1: Technical parameters of polishing device. The SiC or Al 2 O 3 paper disk are the most used abrasives for grinding process.

	Parameters	Min value Max value
	Rotational speed of header, [RPM]	10	150
	Rotational speed of disk, [RPM]	20	650
	Applied central force, [N]	5	400
	4.1.1.1 Grinding disks		

Table 4 .

 4 

	Platinum 1	Blue	P120	125
	Platinum 2	Green	P240	59
	Platinum 3	Yellow	P600	26
	Platinum 4	Red	P1200	15

2: Classification of the CAMEO grinding disks. Grinding disk Color code Equivalent to paper SiC Grit size, µm

Table 4 .

 4 3: Used media for CBP experiments.

	Type of the	Size or Mesh size	Grain size of the	Hardness
	abrasives		cutters	
	Pyramids	12 mm	Not defined	Not defined
	TET-TKS			
	Pyramids	12 mm	Not defined	Not defined
	TET-TKP			
	Cones TKV	12 mm	Not defined	Not defined
	Hardwoods +	12 mm + #400	16.5 ± 1 µm	2700 HV
	powder SiC			
	Hardwoods +	12 mm + #800	6.3 ± 1 µm	2500 HV
	powder Al 2 O 3			
	Hardwoods +	12 mm + #3000	0.38 ± 0.1 µm	2500 HV
	powder Al 2 O 3			
	Hardwoods +	12 mm + #6000	0.06 ± 0.01 µm	2700 HV
	powder SiC			

Table 4 .

 4 4: Summarizing advantages and figure of merit of each technique. Note: color code represents the advantages (green), drawbacks (pink) and neutrals (orange) properties for each used technique.

	Technique	Tool	Type of Mea-	Sensitivity to	Investment Compatibility	Error (rela-
			surement	flat-		with Process	tive/absolute)
				ness/misalign-			
				ment			
	Weight	weighing	average over	No	minor	no damage	relative 20%
		machine	whole sample				
	Thickness micrometer average over	Yes if sample	minor	minor	absolute 5
			several mm 2	large enough		damages	microns
						(scratch)	
	Depth	confocal	local	Yes	expensive	major	absolute 100 nm
		microscope				damage	
						(groove/scratch)

Table 4 .

 4 

	Miller Indices d, [ Å] Angle 2θ Intensity, %
	110	2.336	38.492	100
	200	1.652	55.567	18
	211	1.348	69.647	28
	220	1.168	82.502	8
	310	1.045	94.974	11
	222	0.954 107.715	3
	321	0.883	121.39	13
	400	0.826 137.633	2

5: Miller Indices (hkl)

, distance between planes (d), Bragg's angle (2θ), and intensity of diffracted peaks for Niobium.

Table 5 .

 5 1: Fermilab CBP recipe[START_REF] Tamashevich | Diagnostics and treatment of 1.3 GHz Nb cavities[END_REF].

	Step	Media	Characteristic Size Duration
	1	Ceramic media -Duramedia T M	10 mm	8 hours
	2	Plastic media -V F -RG T M 22 cones	14 mm	15 hours
	3	Hardwoods + aluminium oxide #600	21 µm	30 hours
	4	Hardwoods + colloidal silica	40 nm	40 hours

Table 5 .

 5 2: Properties of abrasive media [228].

	Grade	Description	Abrasive power Dimensions
	HF	Very abrasive plastic	9	10x10 mm
	GF	Medium abrasive plastic	5	12x12 mm
	UF	Polishing plastic	0	10x10 mm

Table 5 .

 5 3: Specifiaction of the used abrasive's powders for CBP experiments. Type of the powder Size or Mesh size Grain size of the cutters Hardness

	SiC	#400	16.5 ± 1 µm	2700 HV
	Al 2 O 3	#800	6.3 ± 1 µm	2500 HV
	Al 2 O 3	#3000	0.38 ± 0.1 µm	2500 HV
	SiC	#6000	0.06 ± 0.01 µm	2700 HV
	5.1.1.1 Material Removal Rate Measurement	

Table 5 .

 5 4: Polishing rates for the studied polishing abrasives and estimated run duration. Rotation speed -150 RPM.

	Step	Type of	Size or	MRR,	Initial S z	Estimated run
		the	Mesh	[µm/hour]		duration
		abrasive	size			
	Abrasion	plastic	12 mm	1.3 ±0.12	9.23 ±1.41	12 steps of 10
	step	cones				hours
		CONE-				
		TKV				
	Pre-	Hardwoods	#400	0.19 ± 0.04	7.28 ± 1.35	5 steps of 20
	polishing	+ SiC				hours
	step					
	Pre-	Hardwoods	#800	0.13 ± 0.02	4.94 ± 1.37	8 steps of 20
	polishing	+ Al 2 O 3				hours
	step					
	Polishing	Hardwoods	#3000 0.013 ± 0.003	3.48 ± 0.21	6 runs of 20
	step	+ Al 2 O 3				hours

Table 5 .

 5 5: Surface roughness parameters before and after the three polishing steps. Note: rotation speed -150 RPM, time of polishing

	run -20 hours.								
				3D Surface Roughness			
	Parameters As received	BCP	Cone-TKV TET-TKS TET-TKP SiC#400	Al 2 O 3 #800 Al 2 O 3 #3000
	S a , µm	0.57 ± 0.10	1.8 ± 0.7	0.48 ±	0.69 ±	1.4 ± 0.3	0.69 ±	0.13 ±	0.071 ± 0.003
				0.08	0.09		0.20	0.05	
	S z , µm	5.65 ± 1.81	15.65 ±	9.23 ±	10.32 ±	14.52 ±	7.28 ±	4.94 ±	3.48 ± 0.20
			2.58	1.41	1.55	1.33	1.35 ±	1.37	
	S sk	-0.38 ± 0.14	0.06 ±	-0.64 ±	-0.60 ±	-0.51 ±	-1.05 ±	-1.41 ±	-1.78 ± 0.45
			0.02	0.17	0.35	0.15	0.09	0.19	
	S dr	0.10 ± 0.03	0.02 ±	1.30± 0.16 1.72 ±	2.60 ±	0.49 ±	0.10 ±	0.02 ± 0.03
			0.01		0.15	0.27	0.04	0.04	

Table 5 . 6 :

 56 Surface roughness parameters of RF disk after 3-step CBP.

	Step	S a , µm	S z , µm	S sk	S dr
	3-step	0.035 ± 0.005	2.5 ± 0.3	-2.9 ± 0.4	0.014 ± 0.004
	CBP				

Table 5 .

 5 7: Peak position and width of peak after first and three step CBP.

	Step	Type of the	Mode of XRD	Deviation from	Peak position,	Width of peak,
		abrasive		theoretical	degree	degree
				position, degree		
	Abrasion step	TET-TKS	grazing 2 degree	-0.102	38.390	0.792
	Abrasion step	TET-TKS	gonio	-0.107	38.385	0.208
	Abrasion step	CONE-TKV	grazing 2 degree	-0.214	38.278	1.152
	Abrasion step	CONE-TKV	gonio	-0.015	38.477	0.338
	3 step CBP	CONE-	grazing 2 degree	-0.187	38.305	0.944
		TKV/Al 2 O 3				
	3 step CBP	CONE-	gonio	-0.043	38.449	0.328
		TKV/Al 2 O 3				

Table 5 .

 5 8: MRR and final surface parameters for each type of grinding disk tested for abrasion step. Disk rotation speed: 300 RPM, header rotation speed: 150 RPM. Pressure: 40 kPa. Direction of disk/header rotation: counter-rotation.

	Material, Type	MRR,	S a , µm	S z , µm	S sk	S dr	Observations
	and Size of	µm/min					
	Abrasive						
	Resin -diamonds	145.83 ± 3.88	1.65 ± 0.33	19.32 ± 2.63	-0.74 ± 0.06	1.20 ± 0.13	Rapid wear (with
	125 µm						Niobium -10 min)
	Resin -diamonds	52.66 ± 1.55	0.37 ± 0.03	8.83 ± 0.96	-2.10 ± 0.03	0.40 ± 0.04	Rapid wear (with
	59 µm						Niobium -15 min)
	Resin -diamonds	23.33 ± 0.88	0.17± 0.04	8.43 ± 1.72	-3.74 ±1.36	0.23 ± 0.09	Rapid wear (with
	26 µm						Niobium -20 min)
	Resin -diamonds	20.66 ± 0.55	0.15± 0.02	5.09 ± 1.39	-1.59 ± 1.08	0.23 ± 0.05	Rapid wear (with
	15 µm						Niobium -25 min)

Table 5 .

 5 9: MRR and final surface parameters for rigid lapping disk tested for abrasion step. Disk rotation speed: 300 RPM, header rotation speed: 150 RPM. Pressure: 40 kPa. Direction of disk/header rotation: counter-rotation.

	Material, Type	MRR,	S a , µm	S z , µm	S sk	S dr	Observations
	and Size of	µm/min					
	Abrasive						
	Hard composite	18.46 ± 3.02	0.14 ± 0.05	5.29 ± 1.20	-0.41 ± 0.09	0.29 ± 0.06	Extremely slow wear
	disk + diamonds 9						(more than 10 hours)
	µm						
	Hard composite	4.70 ± 0.51	0.22 ± 0.04	6.88 ± 0.65	-0.07 ± 1.15	0.65 ± 0.06	Extremely slow wear
	disk + Al 2 O 3 3 µm						(more than 10 hours)

Table 5 .

 5 10: MRR and final surface parameters for soft lapping disk tested for abrasion step. Disk rotation speed: 300 RPM, header rotation speed: 150 RPM. Pressure: 40 kPa. Direction of disk/header rotation: counter-rotation.

	Material, Type and	MRR,	S a , µm	S z , µm	S sk	S dr	Observations
	Size of Abrasive	µm/min					
	Soft composite disk +	3.3 ± 0.66	0.05 ± 0.01	3.61± 0.3	-0.78 ± 0.4	0.04 ± 0.02	Slow wear (5-6 hours)
	diamonds 3 µm						
	Soft composite disk +	0.51 ± 0.04	0.07 ± 0.01	3.4 ± 0.75	-1.39 ± 0.24	0.03± 0.01	Slow wear (more than
	diamonds 1 µm						5 hours)
	Soft composite disk +	9.72 ± 1.41	0.11 ± 0.01	4.72 ± 0.41	-0.46 ± 0.07	0.27 ± 0.03	Very rapid wear of
	Al 2 O 3 3 µm						disk
	Synthetic fiber cloth	2.2 ± 0.45	0.1 ± 0.04	4.15 ± 0.13	-0.89 ± 0.24	0.21 ± 0.14	Slow wear (several
	+ diamonds 9 µm						hours)
	Synthetic fiber cloth	0.95 ± 0.25	0.09 ± 0.02	3.55 ± 0.13	-1.05 ± 0.24	0.11 ± 0.04	Slow wear (several
	+ diamonds 3 µm						hours)

Table 5 .

 5 [START_REF] Biarrotte | High power proton/deuteron accelerators[END_REF]: MRR and final surface parameters for each type of polishing disk tested. Disk rotation speed: 300 RPM, header rotation speed: 150 RPM. Pressure: 40 kPa. Direction of disk/header rotation: complementary-rotation. conclusion, grinding disks (cf. Table5.8) are inducing very significant surface damages which would extend drastically the duration of the polishing step. Such disks are not recommended for the abrasion step if the target is a 2-step recipe. However, the finest grinding disk (resin -15 µm diamonds) could be envisaged in case the workpiece is showing a bad flatness or is tilted relatively to the disk . The recovery of form errors and waviness could be very inefficient with abrasives dimensions below 10 µm. During sample studies, resin -15 µm diamonds disk has been used several times to correct tilt (for small samples) or flatness (large samples) issues.Rigid lapping disks (cf. Table5.9) have been tested but observations comparable to grinding disks have been done. Moreover, abrasives dimensions below 9 µm is not recommended [251] with such disks. For smaller abrasives, soft lapping disks (cf. Table5.10) have to be used. The surface roughness is significantly improved at the expense of a reduced, but still reasonable MRR. Scratches are visible on the surface with a typical depth of few µm (See first picture of Figure5.22) but these could be "erased" by the polishing step within few hour.

	Material, Type	MRR,	S a , µm	S z , µm	S sk	S dr	Observations
	and Size of	µm/min					
	Abrasive						
	Viscous fiber cloth	-	0.045 ± 0.005	1.49 ± 0.29	-1.92 ± 0.48	0.0007 ±	No-depollution
	+ diamonds 1 µm					0.0002	
	Microporous	0.01 ± 0.01	0.03 ± 0.2	2.0± 0.2	-2.05 ± 0.56 0.008 ± 0.003 Depollution observed,
	polyurethane cloth						re-appearance of
	+ SiO 2 50 nm						grains
	Compressed	0.025 ± 0.003	0.05 ± 0.3	2.2± 0.4	-1.95 ± 0.95 0.018 ± 0.023 Depollution observed,
	polyurethane cloth						re-appearance of
	+ SiO 2 50 nm						grains

Table 5 .

 5 12: Residual stress (Positive + negative tilt range) measurements in

	Omega mode.		
	Step	Stress, MPa	Error, MPa
	Synthetic fiber + 9	-76	21.34
	µm dia		
	Hard composite disk	-182.5	55.4
	+ 9 µm dia		
	Soft composite disk +	-142.1	25.1
	3 µm dia		
	Resin -15 µm	-238.6	56
	diamonds		

Table 5 .

 5 [START_REF] Jo | SUPERCONDUCTING Nb TM010 MODE ELECTRON-BEAM WELDED CAVITIES[END_REF]: Surface parameters for polishing step.

	Material, Type and Size of	S z , [µm]	S a , [µm]	Processed
	Abrasive			time, [min]
	Viscous fiber + dia 1 µm	1.49 ±0.29	0.04 ±0.01	15
	Microporous polyurethane	3.44 ±0.38	0.02 ±0.01	15
	+ SiO 2 50 nm			
	Microporous polyurethane	2.58 ±0.43	0.1 ±0.05	200
	+ SiO 2 50 nm			
	Compressed polyurethane	2.5 ±0.45	0.10 ±0.03	200
	+ SiO 2 50 nm			

but could be lower then after electro-polishing (S a ∼ 50 nm) if time of treatment is adapted (less than 225 min).

Table 5 .

 5 

	14: Surface roughness parameters after abrasion and polishing steps. Disk
	rotation speed : 150 rpm, header rotation speed : 150 rpm, Pressure : 10 kPa, no
	counter-rotation.					
	Step	Ref disk	Type and	MRR,	S z , µm	S a , µm Estimated
			Size of	[µm/min]			duration
			Abrasives				time
	Abrasion	Soft	diamonds	1.20 ± 0.1	3.27 ±	0.07 ±	125 min 1
	step	composite	3 µm		1.09	0.01	
		disk					
	Polishing	Microporous	SiO 2 50	0.01 ±	2.58 ±	0.1 ±	200 min 2
	step	polyurethane	nm	0.01	0.43	0.05	

  Every 15 minutes the supply of SiO 2 is stopped while the polishing device running and water is flushed on the disk during 30 seconds and cleaned with brush polishing step (See Table5.7).

			Residual stress measurement by the sin 2 ψ technique
		1.046				
							Negative Psi
		1.0455					Positive Psi
		1.045				
	Å					
	d(310)	1.0445				
		1.044				
		1.0435				
		1.043	0.05	0.1	0.15	0.2	0.25
					sin 2 ψ	
							.32
	and Table 5.15.				
	One can appreciate how residual stress is removed by this technique compared
	to CBP process, for which the residual stress (peak shift) remained constant after

1 Every 30 minutes the supply of diamond suspension is stopped while the polishing device running and water is flushed on the disk during 30 seconds 2

Table 5 .

 5 15: Residual stress (Positive + negative tilt range) measurements in

	Omega mode.		
	Step	Stress, MPa	Error, MPa
	1 Step	-142.1	25.1
	2 Step	-20.7	60.4

a few microns by using EDS at 20 kV. The energy spectrum of the polished surface after the 2 step recipe is showing a clean surface, comparable chemical etching (BCP), see

Figures 5.33a 

Table E .

 E 1: Preparation process for stainless steel samples developed by metallographic laboratory[START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF].

	Step	Disk	Abrasive type-size RPM disk/header Pressure
	1	Paper	SiC -68 µm	300/150	30 kPa
	2	RCD, soft	Diamond -9 µm	150/150	35 kPa
	3	Cloth, hard Diamond -3 µm	150/150	30 kPa
	4	Cloth, soft	SiO 2 -0.05 µm	150/150	20 kPa
	5	Cloth, soft	Al 2 O 3 -0.02 µm	150/150	20 kPa

Table E .

 E 2: Preparation process for stainless steel samples developed by metallographic company Lamplan [227].

	Step	Disk	Abrasive type-size RPM disk/header Pressure
	1	Resine	Diamond -59 µm	150/125	15 kPa
	2	RCD, soft	Diamond -6 µm	150/125	15 kPa
	3	Cloth, hard Diamond -3 µm	150/125	12.5 kPa
	4	Cloth, soft	Diamond -1 µm	150/125	10 kPa
	Table E.3: Preparation process for niobium samples developed by metallographic
	laboratory [261] (method C-55).		
	Step	Disk	Abrasive type-size RPM disk/header	Pressure
	1	Resine	Diamond -68 µm	300/150	25-35 kPa
	2	RCD, soft	Diamond -9 µm	150/150	25-35 kPa
	3	Cloth, hard Diamond -3 µm	150/150	35 kPa
	4	Cloth, soft	SiO 2 -0.04 µm	150/150	12.5-15 kPa

Table E .

 E 4: Preparation process for niobium samples developed by metallographic laboratory[START_REF] Geels | Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing[END_REF] (method T-55).

	Step	Disk	Abrasive type-size RPM disk/header Pressure
	1	SiC paper	SiC -68 µm	300/150	25-35 kPa
	2	SiC paper	SiC -46 µm	300/150	25-35 kPa
	3	SiC paper	SiC -30 µm	300/150	25-35 kPa
	4	SiC paper	SiC -15 µm	300/150	25-35 kPa
	5	SiC paper	SiC -8.4 µm	150/150	25-35 kPa
	6	Cloth, hard Diamond -3 µm	150/150	25 kPa
	7	Cloth, soft	SiO 2 -0.04 µm	150/150	25 kPa
	Table E.5: Preparation process for copper samples developed by metallographic
	laboratory [262].			
	Step	Disk	Abrasive type-size RPM disk/header Pressure
	1	Paper	SiC -68 µm	300/150	30 kPa
	2	Paper	SiC -46 µm	300/150	30 kPa
	3	Paper	SiC -30 µm	300/150	30 kPa
	4	Paper	SiC -15 µm	300/150	30 kPa
	5	Paper	SiC -8.4 µm	300/150	30 kPa
	6	Paper	SiC -5 µm	300/150	30 kPa
	7	Cloth, hard Diamond -3 µm	150/150	22 kPa
	8	Paper	SiC -5 µm	150/150	30 kPa
	9	Cloth, soft	SiO 2 -0.05 µm	150/150	10 kPa
			223		
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Height parameters describe the characteristics of the amplitude deviations of the surface roughness from the mean line. Table 3.1 shows all height parameters, their mathematics formula and their meaning.

Metallographic Preparation

Polishing 

.20: Metallographic preparation is divided into three families of surface processing (from left to right): grinding (red), lapping (green) and polishing (blue). Polishing process in his order of particles nature can be divided to three families: diamonds, oxides (silica, alumina, cerium, chromium, ferric) and chemical-mechanical polishing (CMP).

Experimental Setup

The EBSD analysis was performed using a SEM of Sigma Family (Figure 4.39)

from ZEISS [START_REF][END_REF] (non-fixed abrasives), synthetic fiber + 9 µm diamond suspension (non-fixed abrasives) and soft composite disk + 3 µm diamond suspension (non-fixed abrasives).

Perspectives

This thesis has been mainly focused on the development and optimization of polishing recipes, which required to investigate plenty of parameters (rotation speed, abrasives, disks...) and how they affect on Nb surface, leaving the fabrication of cavity outside the scope of this manuscript. However, based on the work presented in this thesis we give some recommendations for future on mechanical polishing.

Metallographic polishing (MP) is a candidate not only for bulk Nb treatment, but could also provide the mirror-finished substrate for alternative SRF thin films deposition. Roughness of polished surface by a 2 steps recipe has been proven better than standard EP/BCP treatment and less polluted than CBP. MP provides on flat surfaces a high removal rate (above 1 µm/min) and high reproducibility. So as to remove the damaged layer and recover superconducting properties it requires less than 6 hours of treatment (one day treatment). There are some future steps required to fully qualify metallographic polishing as an alternative to chemical treatment:

• characterize the polishing disk at lower frequencies (few Ghz) at IPNO in order to mitigate technical limitations (RF contacts)encountered at frequencies higher than 5 GHz.

• extend the polishing process to larger sheets (at least 300 mm), corresponding to dimensions of disks needed to form half-cells for 1.3 GHz elliptical cavities.

• apply alternative cavity forming technique, as electro-hydroforming, to polished sheets (no-direct contact with dies in order to protect the polished surface). Preliminary studies carried out by CERN with BM AX company are very encouraging [START_REF] Atieh | First results of SRF cavity fabrication by electro-hydraulic forming at CERN[END_REF].

• study more carefully the real impact of sub-grain/stress in surface on superconducting properties after MP procedure.

Appendix A Python Algorithms

A.1 Script for Identification of the Chemical Elements in SIMS Spectrum

To identify the chemical elements presented in the spectrum, the Python algorithm has been developed. 

Appendix C

Cross-Section Preparation for

EBSD Analysis

Special procedure of the surface preparation for EBSD measurements has been inspired from metallographic science and were adopted for our needs. EBSD analysis requires the mirror polished surface, proper cleaned surface and the compact sizes.

Typically the general preparation of the EBSD samples starts from sectioning in order to obtain the required dimensions for SEM chamber. After sectioning is mounting, several grinding steps and several polishing steps. Before and after each step the samples were rinsed by deionized water, degreased by ethanol and cleaned in the ultrasonic bath. Blow-drier have been used in order to remove the water from the analyzed surface to the edges of the sample, otherwise evaporated hydrides from surface will disturb the images of the grains. Hence LR disk has been chosen for EBSD cross-section preparation. Cutting parameters which were used for cutting procedure:

• Cutting wheel: diamond (LR from PRESI production),

• Rotational speed of wheel: 1500 RPM,

• Diameter of the wheel: 150 mm,

• Speed of the platform: 0.1 mm/s

• Used Lubricant: deionized water 

Appendix D Functional Surface Parameters

In the tribology science may be used the additional parameters. For example, the functional parameters(S k , S pk , S vk , S xp , S mr1 , S mr2 , V mc ,V mp ,V vc ,V mc ) define the bearing area of surface during contact with another surface due to the elimination of the certain peaks and valleys [START_REF] Rîpȃ | Tribological characterisation of surface topography using Abbott-Firestone curve[END_REF][START_REF] Schmähling | Generalizing the Abbott-Firestone curve by two new surface descriptors[END_REF], see the Abbott-Firestone curve ( Figure A4.1). These material ratio defines the wear of the surface.

They do not give any information about directional characteristics, but they are useful to investigate the height distribution regions.

Parameter S pk defines the highest peak, this place characterized by the largest contact stress due to small contact-interfaces between the surfaces. To cut this region the parameter S mr1 , defined in the percentages (typically 10 % ), may be used. The highest points of the height profile have the fastest wear. The functional volume parameter S mp represents the S pk , but for volume under peak.

Parameter S vk indicates the deepest valley, it is region where debris of processing is trapped. To cut this region analogical parameter to S mr1 , can be used, which is called as S mr2 (typically 80 %). The functional volume parameter V vv represents the S vk , but for volume above valley.

S k represents the core height of the surface. This parameter characterizes the roughness and shows the bearing area, the place where the applied pressure will be distributed during processing between the surfaces. The functional volume parameters S mc and S vc represents the S k , but for volume under and above the core line respectively. Appendix E

Examples of Metallographic Procedures

The preparation procedures for several metals (stainless steel, copper and niobium), inspired from metallographic laboratories/companies, are presented here.

The preparation procedure consists from number of steps, which aims to obtain the best preparation quality (no-scratches, no-damaged layer...) with shortest period of time, hence to reduce the costs during process. Each process has a number of parameters which varies from step to step. Main parameters presented in the tables of mastered procedures.

• Disk (paper, resine, RCD, cloth...) used for grinding and polishing as carrier of abrasives

• Abrasives (SiC, diamond, silica, alumina...)

• Grain size of abrasives in µm

• Rotation speed of disk/header in RPM

• Applied pressure per sample controlled by force [N].

Complementary parameters such as the lubricant type used for lubrication (water, oil, alcohol based), the direction of rotation disk/header (either clock wise or counter clock wise) and dossing frequency of lubricant/suspension could be changed.