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Abstract

For the past two decades, electronic devices have revolutionized the traceability of
social phenomena. Social dynamics now leave numerical footprints, which can be
analyzed to better understand collective behaviors. The development of large online
social networks (like Facebook, Twitter and more generally mobile communications)
and connected physical structures (like transportation networks and geolocalised social
platforms) resulted in the emergence of large longitudinal datasets. These new datasets
bring the opportunity to develop new methods to analyze temporal dynamics in and
of these systems.

Nowadays, the plurality of data available requires to adapt and combine a plurality
of existing methods in order to enlarge the global vision that one has on such complex
systems. The purpose of this thesis is to explore the dynamics of social systems using
three sets of tools: network science, statistical physics modeling and machine learn-
ing. This thesis starts by giving general definitions and some historical context on the
methods mentioned above. After that, we show the complex dynamics induced by in-
troducing an infinitesimal quantity of new agents to a Schelling-like model and discuss
the limitations of statistical model simulation. The third chapter shows the added
value of using longitudinal data. We study the behavior evolution of bike sharing sys-
tem users and analyze the results of an unsupervised machine learning model aiming
to classify users based on their profiles. The fourth chapter explores the differences be-
tween global and local methods for temporal community detection using scientometric
networks. The last chapter merges complex network analysis and supervised machine
learning in order to describe and predict the impact of new businesses on already es-
tablished ones. We explore the temporal evolution of this impact and show the benefit
of combining networks topology measures with machine learning algorithms.
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Résumé

Au cours des deux dernières décennies les objets connectés ont révolutionné la traça-
bilité des phénomènes sociaux. Les trajectoires sociales laissent aujourd’hui des traces
numériques, qui peuvent être analysées pour obtenir une compréhension plus profonde
des comportements collectifs. L’essor de grands réseaux sociaux (comme Facebook,
Twitter et plus généralement les réseaux de communication mobile) et d’infrastruc-
tures connectées (comme les réseaux de transports publiques et les plate-formes en
ligne géolocalisées) ont permis la constitution de grands jeux de données temporelles.
Ces nouveaux jeux de données nous donnent l’occasion de développer de nouvelles
méthodes pour analyser les dynamiques temporelles de et dans ces systèmes.

De nos jours, la pluralité des données nécessite d’adapter et combiner une pluralité
de méthodes déjà existantes pour élargir la vision globale que l’on a de ces systèmes
complexes. Le but de cette thèse est d’explorer les dynamiques des systèmes sociaux
au moyen de trois groupes d’outils : les réseaux complexes, la physique statistique et
l’apprentissage automatique. Dans cette thèse je commencerai par donner quelques
définitions générales et un contexte historique des méthodes mentionnées ci-dessus.
Après quoi, nous montrerons la dynamique complexe d’un modèle de Schelling suite
à l’introduction d’une quantité infinitésimale de nouveaux agents et discuterons des
limites des modèles statistiques. Le troisième chapitre montre la valeur ajoutée de
l’utilisation de jeux de données temporelles. Nous étudions l’évolution du comporte-
ment des utilisateurs d’un réseau de vélos en libre-service. Puis, nous analysons les
résultats d’un algorithme d’apprentissage automatique non supervisé ayant pour but
de classer les utilisateurs en fonction de leurs profils. Le quatrième chapitre explore
les différences entre une méthode globale et une méthode locale de détection de com-
munautés temporelles sur des réseaux scientométriques. Le dernier chapitre combine
l’analyse de réseaux complexes et l’apprentissage automatique supervisé pour décrire
et prédire l’impact de l’introduction de nouveaux commerces sur les commerces exis-
tants. Nous explorons l’évolution temporelle de l’impact et montrons le bénéfice de
l’utilisation de mesures de topologies de réseaux avec des algorithmes d’apprentissage
automatique.
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1
Introduction

The amount of available data has been continuously increasing for the past two
decades. Due to the dramatic increase of computer power, storage capacity and the
ubiquity of connected devices (smartphones, Internet Of Things) large datasets have
emerged with a fine-grained description of complex systems. I will for the rest of this
thesis use the definition of complex systems from [Barrat et al., 2008a]:

"complex systems consist of a large number of elements capable of interact-
ing with each other and their environment in order to organize in specific
emergent structures"

Such systems have fascinating properties regarding their dynamics. One can think of
systems where the overall dynamics is more than the dynamics of its units. Whereas
other systems can exhibit a steady state architecture and properties despite the con-
tinuous changes of its units. These examples illustrate the need to develop different
approaches to think the emergent dynamics of complex systems.

Complex systems can be found in very wide range of areas: (1) in biology (proteins
and genes interact to form and regulate cells activities, see [Barrat et al., 2008b, Kovács
et al., 2019]); (2) in ecology (food webs can be represented as a complex network of
species, see [Caldarelli et al., 2003]); (3) in finance (the world financial market is
a network of banks and institutions trading assets [Schweitzer et al., 2009, Caccioli
et al., 2014]); and more closely related to the subject of this thesis in sociology and
economics. We will take a deeper look at these in section 1.1.3.

In parallel with this increase in available data, methods and fields of research have
been developing accordingly to process these data and help understand the complex
nature of real-world problems with data, see [Donoho, 2017, Liao et al., 2012, Sagiroglu
and Sinanc, 2013].

It has been now around twenty years that the data journey has started leading to
the relatively recent constitution of large longitudinal datasets taking into account one
more dimension: time. Many systems have an inherent temporal component and there
is nowadays a need for new tools in order to get an understanding of the temporal
dynamics of such complex systems. In order to get a global understanding of complex
systems problems, it is necessary to tackle them from different angles. Therefore, the
necessity to accumulate methods from different fields of research and combine them is

1



CHAPTER 1. INTRODUCTION 2

critical. The aim of this thesis is to explore the plurality of approaches available and
merge them into new methodologies.

The tools used in this thesis will focus on network science, machine learning, and
statistical physics modeling. In the following paragraphs, I will present the fields of
research I explored before developing my contributions.

1.1 An Overview of Network Science

1.1.1 Static Complex Networks

Let us first speak about what network science is and what are the motivations of this
field of research. Network science aims to model interactions between different units
of a system using graph theory. It was first used for information technology purposes
- like the mapping the World Wide Web (WWW) in order to optimize search engines.
Then, network sciences appeared to be efficient enough to model a huge amount of
complex systems belonging to the field of biology, ecology, finance, and so on, as seen
previously.

The principle of complex networks study is to understand the global system be-
havior by describing the interactions between its units. Formally a network can be
represented as a graph G. This graph is composed of a set of nodes N and a set of
edges E linking the nodes to each other. This formalism makes it easy to visualize and
measure interactions between the units of the network as the interactions are coded
in the topology of the graph. In order to understand the topology of the system, one
can look at measures describing the state of connectivity of its units. Some of the
most common measures are degree-related measures, clustering, centrality measures
(e.g. closeness, betweenness, etc), modularity. We will come to a formal definition of
most of these measures in the core of this thesis. More details on complex networks
measures can be found in [Newman, 2010].

1.1.2 Temporal Complex Networks

As discussed earlier, the appearance of temporal data led to the evolution of network
science to include the new area of temporal networks [Holme and Saramäki, 2012].
Some real-world networks are by nature temporal, these are networks where nodes
can (dis)appear over time or where edges are not continuously active. For example,
communication networks (i.e. e-mails, text messages, and phone calls) are temporal
networks. Cities are temporal networks as well and one can study and visualize the
flow of people in them [Roth et al., 2011]. A temporal network is a union of static
network snapshots at each time t. Hence, the temporal network GT is composed of
the set of nodes NT =

ST

t=1 Nt and set of edges ET =
ST

t=1 Et. Considering a sequence
of interactions, we can construct the corresponding temporal graph; or a static aggre-
gated graph, where an edge between two nodes accounts for all the interactions which
happened between the nodes during the time window of observation.

Using a temporal graph rather than an aggregated one can be useful when we need
to take into account the order of interactions (like in the case of modeling spreading
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Figure 1.1 – Moreno’s network of runaways, taken from [Borgatti et al., 2009]. Circles
C12, C10, C5 and C3 represent the cottages in which the girls lived. Circles within the
cottages represent girls and the 14 runaways are identified by their initials. Undirected
edges between two girls represent feelings of mutual attraction, whereas directed edges
represent one-way feelings of attraction. From this network, Moreno visualized the
flow of social influence among the girls and argued that their location in the social
network was determining when they ran away.

phenomena [Karsai and Perra, 2017]). In this case the temporal path matters as it
does not result in the same people being informed/infected.

In the next section, I give some historical context of social and urban systems.

1.1.3 Networks in Social Sciences

In social science, networks are used to model interactions between people and collec-
tive behaviors. The use of social networks started in the early twentieth century when
J. Moreno and H. Jennings worked on the epidemic of runaways at the Hudson School
for Girls, NY, USA. They, for the first time, used sociometry to model relationships
between the runaway girls [Moreno, 1934]. Figure 1.1 shows one of the first sociograms
published by Moreno in 1934. They represent interactions between girls in the case
of the Hudson School runaways mentioned earlier in this paragraph. This work falls
within the movement of social physics initiated by A. Comte [Comte and Martineau,
1856]. This movement envisioned a description of sociology following natural sciences
paradigms. Hence terms such as ’social atoms’ and ’social gravitation’ have emerged
during that period.

Following the work of Moreno, social networks research continued growing. In the
fifties, M. Kochen and de Sola Pool [de Sola Pool and Kochen, 1978] formulated the
small world problem, which would then become the subject of the well-known Milgram
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experiment in 1967 [Milgram, 1967] and finally was modeled by Watts and Strogatz
in 1998 [Watts and Strogatz, 1998]. The small-world phenomenon is the observation
that there exists a ’short path’ connecting any two nodes in a network. Milgram, in his
experiment, randomly sent packets to individuals living in two U.S. cities. Then these
individuals needed to send the letter to a target person in Boston. If the randomly
selected individuals did not know the target person, then they had to send the letter
to someone who they thought would be more likely to know the target person. Every
time a letter reached a new person, they must add their identity details to the letter,
and repeat the process until reaching the target person. Over the 296 letters, 232 never
reached destination [Milgram, 1967]. The remaining 64 letters eventually reached the
target individual. The average path length, that is the number of intermediate people
the letters went through, was around six. Later on, in 2008, small-world network prop-
erties were popularized in a Hollywood movie Connected: The Power of Six Degrees
[Talas, 2008]. Nowadays, modern online social networks have usually smaller average
path lengths: Facebook, 4.7 [Backstrom et al., 2012]; Twitter, 5.4 [Kwak et al., 2010];
MSN, 6.6 [Leskovec and Horvitz, 2008];

Back to the history of social networks, in the 60-70’s research developed around
community structures and their role in socio-economic levels of individuals [Bott, 1957]
- notably with the theory of the influential strength of weak ties [Granovetter, 1973]
and later the theory of social capital [Bourdieu, 1986, Putnam, 2000], acknowledging
the relationships of people as one of their main resources.

After this short overview of social networks evolution, it is worth noting that for a
long time the dichotomy between social science and computer science has constrained
social scientists to limit their analysis to relatively small networks [Degenne and Forsé,
2004]. Fortunately, the development of large online social networks and connected
devices led computer scientists to develop tools to treat and visualize large amounts of
data. Following the foundations of the twentieth century, the last twenty years have
seen the emergence of new social systems. I will divide datasets into two groups:

} Online social networks: like Facebook, Twitter and more generally mobile com-
munications. These data allow to describe interactions between people and to
study recurring structures in the society. For example in [Leo et al., 2016] the
authors studied the socio-economic class structure of Mexican society using (1)
mobile phone data, (2) credit and purchase data and (3) location data. In an-
other work [Kovanen et al., 2013], the authors studied the correlations between
demographics (gender, age) and differences in communication patterns.

} mobility data: geolocalised social platforms such as foursquare, transportation
systems (e.g. bike sharing systems [Fishman et al., 2013], plane network [Neal,
2014], etc, enable to model the flow of people at various scales (city, country) and
the interactions between flows and events, new policies and so on. For example,
in [Zhou et al., 2017] the authors study the impact of cultural investment policies
in London neighborhoods using government data (socio-economic variables, cul-
tural expenditures) and foursquare data. Another article, [Faghih-Imani et al.,
2014], explores the relationship between land use (restaurants, facilities, etc) and
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the flow of Montreal’s bike sharing system.

After this overview on complex networks and social systems, I would like to in-
troduce another story of research on social systems which was built in parallel with
traditional social sciences.

1.2 Statistical Physics Models

Statistical mechanics is the art of turning the microscopic laws of physics
into a description of Nature on a macroscopic scale.

This definition is taken from [Tong, 2011]. Indeed the whole idea behind statistical
physics is to find a way to describe from the microscopic properties of system com-
ponents (atoms, particles, etc) the macroscopic evolution of the system itself. As its
name suggests statistical physics uses methods from probability theory and statistics.
More specifically, if one knows the states of atoms in a box, can one infer the state of
the box content as a whole?

With this kind of framework, it is easy to understand why some statistical physi-
cists went from the study of matter to describing complex systems from other fields
of research such as biology [Peyrard, 2004], society [Castellano et al., 2009a] and eco-
nomics [Jovanovic and Schinckus, 2013]. Therefore, over the past century, terms such
as socio-physics and econophysics have emerged. Scientists have developed statistical
models to understand concepts and model social phenomena.

For example, the Schelling model is an agent-based model developed by Nobel
prize winner Thomas Schelling. In the model, each agent belongs to one of two groups
(let us say ’green’ and ’red’) and aims to reside in a neighborhood with at least a
small amount of agents with same color (not necessarily a majority). Schelling showed
that when having this kind of personal (microscopic) rule, the system would converge
to a segregated (macroscopic) state where red agents and green agents do not live
in the same neighborhoods, despite their personal preferences. This model, which
oversimplifies society does not aim to describe any real world phenomenon. This
counterintuitive result illustrates the difficulty to infer microscopic states of system
components (personal preferences, homophily, racism) from the macroscopic state of
a system (segregation).

In chapter 2, we present a variant of the Schelling model studying the effect of
mixing populations in such dynamical models and the resulting chaotic convergence
tendency.

Finally, after the small social networks analysis and the mathematical toy models
of the past century, the recent avalanche of data brings the hope of someday being
able to model and predict social systems’ evolution with an accuracy better than ever.
In the next section, I give an overview of the more recent field of Machine Learning.
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1.3 Machine Learning

Machine learning algorithms are being developed to analyze and make sense of large
amounts of data. They have progressively conquered various fields of application, such
as urban planning, natural language processing (text and speech), computer vision,
market segmentation, to only name a few.

In the following, I describe only two subareas of machine learning, supervised and
unsupervised learning. In this context, a machine learning model is implemented to
predict the class of a data point (classification) or the value of a data point (regres-
sion). Developing such a model always requires to split the given data into two disjoint
subsets: (1) the training data which are used for training the model and (2) the test-
ing data which are used for testing that the model can actually predict the outcomes
correctly.

In the case of supervised learning the classes/values that we try to predict are
known. Hence, we can use this information during the training to learn the combi-
nations of explanatory variables which ’explain’ the class. For example, in the article
[Todorova and Noulas, 2019], the authors identify spatio-temporal patterns in ambu-
lance call activity and assess the health risk of a geographic area. They, then, build a
supervised learning model (Random Forest classifier) to predict for a given time which
regions need an ambulance.

In unsupervised learning, the labels/values that we want to predict are not known.
Therefore, unsupervised learning algorithms try to detect clusters in the data. In the
case of customer segmentation, segments are constructed from customer data such
as demographic characteristics, past purchase and product-use behaviors. See for ex-
ample [Venkatesan, 2018], where the author uses K-means algorithm to discuss the
importance of customer segmentation in marketing.

When implementing a machine learning model all the difficulty lies in being able
to fit the training data with good accuracy (not underfitting) while still having a good
generalization of outcomes (not overfitting), that is predicting accurately labels/values
using test data. This is known as the Bias-Variance Tradeoff.

In chapter 3, we discuss the use of an unsupervised machine learning model to
classify users of a bike sharing system using temporal data. In chapter 5, we implement
a binary classification supervised machine learning model in order to predict the impact
of a new business on other businesses in its neighborhood.

1.4 Contributions and Chapter Outline

The purpose of this thesis is to explore the dynamics of social systems. The rest of
this thesis will start with a statistical model in chapter 2. This chapter will show
the extreme sensitivity of Schelling-like models to population composition and discuss
the importance of seeing such models as what they are: toy models that help shape
concepts to better think our society. However, they should not be intended to model
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society.
In the first part of chapter 3, we study the behaviors evolution of the Vélo’v

Lyon’s bike sharing system (BSS) users over 5 years. We, then, discuss the results of
an unsupervised machine learning model aiming to classify users based on their use
profile. Using a methodology similar to a previous work [Vogel et al., 2014] analyzing
a 1-year dataset, we show this study overestimated one class density due to the lack
of temporal component.

Chapter 4 explores temporal community detection using two scientometric net-
works. It describes the differences between local and global approaches. It also dis-
cusses ways to evaluate temporal community detection methods. More particularly,
it compares Mutual Information measures to measures based on a bipartite graph
representation of the partitions.

Chapter 5 merges complex network analysis and supervised machine learning in
order to describe and predict interactions between new businesses and already estab-
lished businesses in a neighborhood. This chapter combines practices from both com-
plex networks modeling and machine learning. We show that using networks topology
measures as explanatory variables increases the predictive power of the algorithm.

1.5 List of PhD Publications

During my PhD, I have worked on the following four papers, one has been published
and three are currently under review. The chapters of this thesis are based on these
articles.

[1] J. Cambe, K. D’Silva, A. Noulas, C. Mascolo, A. Waksman, (2019) ‘Modelling
Cooperation and Competition in Urban Retail Ecosystems with Complex Net-
work Metrics’.

[2] J. Cambe, S. Grauwin, P. Flandrin, P. Jensen (2019) ‘Exploring and comparing
temporal clustering methods’.

[3] J. Cambe, P. Abry, J. Barnier, P. Borgnat, M. Vogel, P. Jensen, (2019) ‘Evolu-
tions of Individuals Use of Lyon’s Bike Sharing System’, pre-print:
https://arxiv.org/abs/1803.11505

[4] P. Jensen, T. Matreux, J. Cambe, H. Larralde, E. Bertin, (2018) ‘Giant Catalytic
Effect of Altruists in Schelling’s Segregation Model’, Phys. Rev. Lett. 120,
208301, URL:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.208301



2
Complex Dynamics From a Simple Social Model

2.1 Introduction

As mentioned earlier, simple social models can be useful to improve our intuitive,
conceptualizations of social processes [Castellano et al., 2009b, Watts, 2011, Jensen,
2018]. For example, the segregation model proposed by Schelling [Schelling, 1971]
helps understanding that the collective state reached by agents may well be different
from what each of them seeks individually. Specifically, Schelling’s model shows that
even when all agents share a preference for a mixed city, the macroscopic stationary
state may be segregated [Grauwin et al., 2009]. In this thesis, we show that introducing
a vanishingly small concentration of altruist agents gives rise to a strongly non linear
response.

Our model combines two important themes for many disciplines, including physics
and economics: The large effects of small perturbations and the influence of altruistic
behavior on coordination problems. On the first point, microscopic causes leading to
macroscopic effects are well-known in physics. Chaos theory has shown that some
dynamical systems are prone to an exponential increase of small perturbations [Eck-
mann and Ruelle, 1985], a topic of recurring interest in other fields, such as modeling
of ecological competition [Hébert-Dufresne et al., 2017] or pattern formation [Cross
and Hohenberg, 1993]. More related to this chapter, there are several examples of
large effects arising from small changes in population composition. It has been shown
that a small variation in the proportion of uninformed individuals may lead to strong
changes in the way collective consensus is achieved by animal groups manipulated
by an opinionated minority [Couzin et al., 2011]. In the minority game [Challet and
Zhang, 1997], introducing a small proportion of fixed agents - i.e. agents that always
choose the same option - induces a global change in the population behavior, leading to
an increase of the overall gain [Liaw and Liu, 2005, Liaw, 2009]. In the voter model, a
finite density of voters that never change opinion can prevent consensus to be reached
[Mobilia et al., 2007].

On the second point, altruism is a major topic in evolutionary biology and eco-
nomics [Fehr and Gachter, 2002, Boyd et al., 2003, Kirman and Teschl, 2010]. Many
models have shown that pair interactions between selfish players lead to stationary
states of low utility. They have introduced various types of altruistic behavior to in-

8
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vestigate how it may lead to a better equilibrium: altruistic punishment [Fehr and
Gachter, 2002, Boyd et al., 2003], inequity aversion [Hetzer and Sornette, 2013], fra-
ternal attitudes [Szabo et al., 2013], agent mobility[Cong et al., 2017] . . . Here, we use
a simple definition of altruism (see below) and concentrate on the proportion of altru-
ists needed to reach the social optimum. We show that, unexpectedly, an infinitesimal
proportion of altruists can coordinate a large number of egoists and allow the whole
system to reach the social optimum.

2.2 Description of the model

Our model represents the movement of a population of agents in a "city", which is
divided into Q ! 1 non overlapping blocks, also called neighborhoods. Each block is
divided into H sites and has the capacity to accommodate H agents (one per site).
Initially, a number of agents N = QH⇢0 are distributed randomly over the blocks,
leading to an average block density ⇢0 (⇢0 = 0.4 throughout the chapter). All agents
share the same utility function u(⇢) that depends on the agents density ⇢ in the
neighborhood where they are located. We choose a triangular utility (see Fig. 2.1):
agents experience zero utility if they are alone (⇢ = 0) or in full blocks (⇢ = 1), and
maximum utility u = 1 in half-filled blocks (⇢ = 0.5). The collective utility U is
defined as the sum of all agents’ utilities, U = H

PQ

q=1 ⇢qu(⇢q) and the average utility
ũ per agent is ũ = U/N .

Building upon past work on Schelling’s segregation model [Grauwin et al., 2009],
we now mix two types of agents: "egoists", who act to improve their own, individual,
utility, and a fraction p of "altruists", who act to improve the collective utility. Thus,
egoists have as objective function the variation of their individual utility ∆u, while
altruists consider the variation of the overall utility ∆U . The dynamics is the following:
at each time step, an agent and a free site in another block are selected at random. The
agent accepts to move to this new site only if its objective function strictly increases
(note that the moving agent is taken into account to compute the density of the new
block). Otherwise, it stays in its present block. Then, another agent and another
empty site are chosen at random, and the same process is repeated until a stationary
state is reached, i.e., until there are no possible moves for any agent.

2.3 Limiting cases: pure egoist or altruist popula-

tions

Authors in [Grauwin et al., 2009] computed analytically the stationary states of a
homogeneous population of egoist or altruist agents. Altruists always reach the optimal
state, given by half filled (or empty) blocks and an average pure altruist utility ũA ' 1.
In contrast, a pure egoist population collectively maximizes not U but an effective free
energy that we have called the link L. The link is given by the sum over all blocks q
of a potential lq: L =

P

q lq, where lq =
PNq

nq=0 u(nq/H), with Nq = H⇢q is the total
number of agents in block q. In the large H limit,

l(⇢q) ⇡ H

Z ρq

0

u(⇢) d⇢. (2.1)
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Figure 2.1 – Agent utility function: u(⇢) = 2⇢ for ⇢  0.5 and u(⇢) = 2(1 − ⇢) for
⇢ > 0.5.

The link may be interpreted as the cumulative of the individual marginal utilities
gained by agents, as they progressively enter the blocks from a reservoir of zero utility.
Its key property is that, for any move, ∆L = ∆u. Since egoists move only when their
individual ∆u is positive, the stationary state is given by maximizing L over all possible
densities {⇢q} of the blocks, from which no further ∆u > 0 can be found. Analytical
calculations [Grauwin et al., 2009] show that this stationary state corresponds to
crowded neighborhoods, far above the state of maximum average utility given by
⇢q = 1/2. For the case studied in this chapter, the stationary density is given by
⇢E = 1/

p
2, leading to a pure egoist utility ũE = 2(1 − ⇢E) ' 0.586 ⌧ 1. Numerical

simulations have confirmed these results, though the existence of many metastable
states around ⇢E ' 0.7 leads to fluctuations in the simulated final densities.

2.4 Mixing populations: qualitative picture

We now investigate how adding a fraction of altruists drives the system away from the
frustrated pure egoist case to the optimal configuration observed in the pure altruist
case. We find that, instead of a linear response, the system reaches the optimal state
even at very low altruist concentrations (p < 0.01 in figure 2.2 a). To help understand-
ing the origin of this strongly non-linear effect, the different panels of Fig. 2.3 illustrate
the evolution of a small system (H = 225, Q = 36 and p = 0.04). Initially, altruists
(yellow) and egoists (red) are distributed randomly in the blocks (a), which all have
a density ⇢ ' ⇢0 = 0.4. Then, blocks with the lowest densities are depleted by both
altruists and egoists that prefer districts with higher densities. At some point, when
the block density increases, the behavior of the two kinds of agents diverge. Altruists
"sacrifice" themselves and leave these high density blocks, moving to blocks with lower
densities, as this increases the utility of their many (former) neighbors, leading to an
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(a)

(b)

Figure 2.2 – Evolution of the average utility as a function of (a) the altruists’ fraction
p (note the log scale on the x-axis) and (b) the rescaled fraction p⇤ = 2pQ⇢0. We
take H = 200 and vary Q as shown. The fluctuations for low p⇤ values (before the
transition) arise from metastable states in the pure egoist regime.
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increase in global utility. On the other hand, egoists would loose individual utility
by doing so, and therefore remain in these high density blocks which continue to feed
on the remaining neighborhoods with ⇢ < 1/2. After a few iterations (Fig. 2.3b-c),
selfish agents have gathered into "segregated" neighborhoods. This is the classical
segregation observed in the pure egoist case [Grauwin et al., 2009], arising from the
well studied amplification of density fluctuations. Note that all altruists have left the
egoist blocks and gather into few blocks with lower densities (Fig. 2.3c) and then into
a single neighborhood, whose density increases until it becomes attractive for egoist
agents who "invade" it (Fig. 2.3d-e), while altruists leave it for other lower density
blocks (Fig. 2.3e). The density of some of these new blocks then increases, allowing for
successive egoist invasions (Fig. 2.3f-g). These migrations of egoist agents reduce the
density of the overcrowded egoist blocks, increasing the overall utility. Eventually, the
system reaches a stationary state in which no agent can move to increase its objective
function (Fig. 2.3h).

2.5 Quantitative description

We now give a quantitative explanation of the decrease of egoist block densities and
show that an altruist concentration p ' 1/Q is sufficient to drive the system towards
the optimal state, ũ = 1. To understand altruists’ dynamics, it is useful to replace their
dynamics by an equivalent egoist dynamics with a utility ualtr(⇢) that differs from the
original utility u(⇢). An exact mapping can be done in the following way. As mentioned
above, each altruist agent tries to maximize the global utility U = H

PQ

q=1 ⇢qu(⇢q).
In contrast, an egoist agent acts to maximize the link function L =

P

q `(⇢q), with
`(⇢q) given in Eq. (2.1). As a result, an altruist agent exactly behaves as an equivalent
egoist agent with a utility function ualtr(⇢) satisfying the relation

⇢u(⇢) =

Z ρ

0

ualtr(⇢
0) d⇢0 (2.2)

since the resulting function to be maximized is the same. Differentiating this last
equation, one finds

ualtr(⇢) =
@
(

⇢ u(⇢)
)

@⇢
=

(

4⇢, for ⇢  1
2

2(1− 2⇢), for ⇢ > 1
2

(2.3)

This effective utility function for altruists is plotted on Fig. 2.4. Note that this ef-
fective utility is not the one used to compute average or global utilities, it only helps
understanding altruists’ moves, since an altruist moves to a new block only if ualtr(⇢)
increases. Fig. 2.4 shows that altruists have a clear preference for blocks with densities
just below 1/2. The large discontinuity at ⇢ = 1/2 arises because at this density the
original utility function u(⇢) changes slope and starts to decrease. Then, an altruist
moving from a block with ⇢ < 1/2 to a slightly more populated one with ⇢ > 1/2
induces a large decrease of total utility, since all its former neighbors loose utility (as
the density of the initial block decreases) and so do its new neighbors, as the density
of their block increases.
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(a) t = 0 (b) t = 2 (c) t = 5

(d) t = 10 (e) t = 12 (f) t = 35

(g) t = 36 (h) t = 240

(i) Density profile

Figure 2.3 – Evolution of the city for p = 0.03, Q = 36 and H = 225. Panels (a-
h) show the occupation of the different neighborhoods at different times. Egoists
are represented in red, altruists in yellow, empty sites in black. (a) initial; (b) first
steps; (c) usual segregation; (d-e): first invasion and altruist escape from the block
surrounded in blue; (f-g): final invasion of the block surrounded in blue; (h): stationary
state. In panel (i), each continuous line represents the evolution of the density of a
single neighborhood. Vertical dashed lines show the times corresponding to panels
(a-h).
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Figure 2.4 – Effective utility function of altruistic agents.

Fig. 2.2b suggests that the transition towards the optimal state is continuous and
takes place at an altruist concentration p ' 1/Q for all values of Q. This Q dependence
is important, since in the thermodynamic limit (Q ! 1), the transition would take
place at p ! 0. We now derive this result in a simple way by computing analytically
the evolution of the average utility as a function of the altruist concentration p. Let’s
start with very low altruist concentrations and assume that the initial dynamics is
dominated by egoists, which form the usual Schelling’s overcrowded blocks, as observed
above (Fig. 2.3c) and in previous work [Grauwin et al., 2009]. Therefore, we take
as starting point a city composed of nE egoist blocks with uniform density ⇢e =
⇢E > 1/2, such that ⇢E = (1 − p)Q⇢0/nE. Taking a uniform ⇢e value is justified
because any density fluctuation for ⇢e > 1/2 is rapidly wiped out by the dynamics,
as shown by the unique density of egoist blocks in Fig. 2.3i. Altruists can be initially
somewhat scattered over the remaining blocks but, as their effective utility clearly
shows (Fig. 2.4), they rapidly aggregate into a single block, leading to an altruist
density ⇢a = pQ⇢0 provided ⇢a < 1/2, or equivalently

p < phigh ⌘ 1

2⇢0Q
. (2.4)

The driving force for the transition are the relative values of agents’ utilities in egoist
and altruist blocks, respectively ue = uE = 2 − 2⇢E and ua = 2⇢a since ⇢a < 1/2
and ⇢E > 1/2. For very low p values, ⇢a is small, leading to ue > ua and the system
remains in the usual frustrated Schelling egoist state ũ(p) ' ũE which is essentially
constant. When p reaches a value plow such that u(⇢a+1/H) > u(⇢E), a first egoist can
improve its utility by moving into the altruist block, whose density becomes ⇢a +1/H
(Fig. 2.3d-f). This gives :

plow ⌘ 1− ⇢E − 1/H

⇢0Q
, (2.5)

The density of the invaded block rapidly increases (Fig. 2.3e) and eventually reaches
1/2. At this point, altruists’ effective utility becomes negative, pushing them to leave
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for other lower density blocks (Fig. 2.3f). As previously, altruists gather in another
single block of identical density ⇢a = pQ⇢0. The invasion has led to a slight decrease
of the density of egoist blocks to ⇢e < ⇢E, and therefore to a slight increase of egoists’
utility, ue = u(⇢e) > u(⇢E). Successive invasions of the block partially filled by altruists
are possible until ⇢e decreases down to the value ⇢⇤e such that u(⇢⇤e) = u(⇢a+1/H). This
leads to ⇢⇤e = 1− pQ⇢0 − 1/H (⇢⇤e > 1/2 as long as p < phigh). The equality of utilities
implies ũ(p) = u(⇢a) = 2pQ⇢0+2/H. When p = phigh, the final (lowest) egoist density
reaches the optimal value ⇢⇤e = 1/2 and no further improvement in average utility
is possible: ũ(p) = 1 (to simplify the discussion, we ignore here corrections of order
1/H that depend on the parity of H). This description remains valid for larger altruist
concentrations, the only difference being that, at the end, the additional altruists form
stable blocks with densities ⇢a = 1/2.

In summary, the evolution of the average utility ũ follows:
8

>

<

>

:

ũ(p) = 2− 2⇢E for p  plow

ũ(p) = 2pQ⇢0 + 2/H for plow  p  phigh

ũ(p) = 1 for p ≥ phigh

(2.6)

Our analysis predicts that plotting ũ as a function of the rescaled altruist proportion
p⇤ = p/phigh = 2pQ⇢0 should lead to a universal transition starting at p⇤ = 2− 2⇢E '
0.586 and ending at p⇤ = 1. Simulations perfectly confirm our calculations (Fig. 2.2b).

2.6 Discussion

Our model illustrates the complexity of the dynamics produced by two types of agents,
even when they follow simple rules. Introducing altruists into a population dominated
by egoists increases the average utility much more rapidly than expected from a lin-
ear projection. The interplay between the different behaviors leads to complex "cat-
alytic" phenomena. By catalytic, we mean that altruists are not "consumed" once
they coordinate egoists, and can continue to help egoists finding the optimal config-
uration indefinitely. The global utility increase per altruist can be computed easily:
δUaltr ⌘ (U(p)−U(p = 0))/NA ' (1−0.56)⇢0QH/(p⇢0QH) = 0.44/p. When p = 1/Q,
δUaltr ' 0.44Q. Each altruist induces a utility change proportional to the system size,
which becomes infinite for infinite systems.

Interestingly, while the stationary state of a system composed of a single type of
agents (either egoists or altruists) can be mapped to an equilibrium state, this is no
longer the case when including two types of agents, except if some restrictive conditions
are met [Grauwin et al., 2009]. In a thermodynamic analogy, the utility function can
be mapped (in the zero temperature limit considered here) to a chemical potential, as
shown in [Lemoy et al., 2012], when a single type of agents is present. If a system with
both egoist and altruist agents could be mapped to an equilibrium system, chemical
potentials could be defined as µe(⇢a, ⇢e) = u(⇢a+⇢e) and µa(⇢a, ⇢e) = ualtr(⇢a+⇢e). As
chemical potentials derive from a free energy, their cross derivatives would be equal,
@µe/@⇢a = @µa/@⇢e, leading to u0(⇢) = u0

altr(⇢). This equality is not satisfied as seen
from Figs. 2.1 and 2.4, showing that the system reaches a non equilibrium steady state.



CHAPTER 2. COMPLEX DYNAMICS FROM A SIMPLE SOCIAL MODEL 16

We are well aware that simple models do not allow to draw any rigorous conclusion
about what is going on in the real world [Venturini et al., 2015, Ostrom, 2010, Jensen,
2018]. While Schelling’s segregation model neatly shows that one cannot logically
deduce individual racism from global segregation, it may well be that for some towns
racism is one cause of segregation, for some others not; at any rate the reasons behind
urban segregation are far more complex than those that any simple model can come
up with. Simple models can be helpful to analyze some interesting phenomena, the
origin of which may be obscured in more complicated realistic settings. Ours may
help thinking about the effectiveness of coordination by an infinitesimal proportion of
altruist agents, but it cannot be directly applied to real systems. Real agents do not
behave like these virtual robots: they are able to put their actions into context, to
anticipate the behavior of the others and moreover, they disagree about what is the
social "optimum" [Jensen, 2018, Latour, 1988].

In this chapter we discussed the limitations of simple statistical physics models of
society and the complex dynamics which can emerge from simple simulated models.
In the next chapter, we explore the dynamics of a real world system using the dataset
of Vélo’v users, a bike sharing system based in Lyon. We will illustrate the advantage
of using temporal data and the difference between global evolution of the system and
individual evolutions of its units.



3
Dynamics of Bike Sharing System Users

3.1 Introduction

Bike Sharing Systems (BSS) have been developing rapidly all over the world in the
last decades, being now present in more than 500 cities. The number of studies of BSS
has followed a similar pattern, focusing on 3 topics : quantifying BSS characteristics,
describing users’ socio-demographic profiles and evaluating its impacts on environment
and public health.

The automatic recording of BSS activities has allowed a quantitative description
of many BSS characteristics: Circadian and monthly activity patterns (see [Borgnat
et al., 2011, Côme et al., 2014]), average speed ([Jensen et al., 2010]), patterns of
bicycle flows over the cities (see [Côme et al., 2014, Jensen et al., 2010, Borgnat et al.,
2011, Borgnat et al., 2013]) and influence of weather conditions ([Borgnat et al., 2011]).
The knowledge derived from these studies, especially on bicycle flows between stations
(see [Côme et al., 2014, Tran et al., 2015]) and the prediction of bike reallocation
schedules ([Zhang et al., 2016]), can help the management of station balancing (see
[Singla et al., 2015, Côme et al., 2014, Côme and Oukhellou, 2014]), one of the main
financial challenges of BSS ([Yang et al., 2011]).

Socio-demographics profiles of BSS users differ generally from the overall cities
demographics. Studies carried out in Europe and North America (see [Beecham and
Wood, 2014, LDA-Consulting, 2012, Ogilvie and Goodman, 2012, Shaheen et al., 2012,
Fuller et al., 2011, Raux et al., 2017]) have shown that users are more likely to be young,
male, with a high level of education and living in the city center.

Finally, several studies have described the impact of BSS policies on environment
and public health (see [Pucher and Buehler, 2012]). [Shaheen et al., 2010, Shaheen
et al., 2011] have listed the benefits of BSS: Emission reductions, individual financial
savings, physical activity benefits, reduced congestion and facilitation of multimodal
transport connections. Yet, other studies question the real impact of BSS on some
of the latter. Notably [Shaheen et al., 2012] showed the relatively low impact on
people favorite mode of transportation. In particular [Fishman et al., 2013, Midgley,
2011, LDA-Consulting, 2012, Buttner et al., 2011] exhibited, for several cities in Europe
and Canada the low substitution rates from car usage to BSS. Most BSS riders are
indeed people who used to walk and take public transportation.
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Among all the research axes cited, questions remain on the commitment of BSS
subscribers in the long term. This is due to the lack of accurate trip datasets over
long periods of time, as mentioned in [Fishman et al., 2013]. Some articles have tried
to characterize travel behaviors using surveys, such as [Guo et al., 2017, Raux et al.,
2017]. But the temporal evolution of users has never been deeply investigated. This
is the reason why in this chapter we approach BSS travel behaviors and usage rates
under the temporal angle. We address questions related to BSS sustainability, such
as : how long do users remain active over the years ? Does their activity increase,
decrease or remain stable? Do these trajectories depend on their level of activity?
These questions are addressed using a five years long dataset covering about 150,000
long-term distinct users, among which 13,358 have stayed in the system for the whole
period. We follow previous work on Lyon’s BSS, Vélo’v, by [Vogel et al., 2014] which,
using a single year dataset (2011), characterized users according to their intensity and
frequency of uses at different time scales (day, week, month and year). This work
found 9 classes of users, ranging from ’extreme users’, that use Vélo’v twice a day on
average to ’sunday cyclists’, who only use the system a few week-ends per year. Using
a single year dataset to classify users has however two main limitations. Firstly, there
is no way to distinguish between two possible interpretations for a user that appears
to be very active from September to December. This could correspond either to (a)
someone arriving in town in September that remains very active for the months/years
to come or (b) someone who for an unknown reason uses the system only in those
months. The second limitation arises from the impossibility to test the stability of
users’ characteristics over years, which would allow to interpret them as real user
properties. For example, do users classified in 2011 as ’sunday cyclists’ retain this
characteristic over the years? Have they only used Vélo’v in this way in 2011 or is this
pattern a more personal - and stable - use of the system that lasts for longer periods?

The work presented in this chapter is one of the first giving a detailed description of
how different segment of customers use Vélo’v over years. A recent article from [Jain
et al., 2018] highlighted the lack of temporal analysis on BSS’ users and importance of
tracing longitudinal usage trends. Our study could open the way to the establishment
of a methodology to dynamically assess impact of BSS policies and other transportation
facilities on different segment of users.

After presenting our 5-years dataset in Section 3.2, we start by describing the overall
system stability. We, then, show the heterogeneous individual trajectories masked by
this overall system stability in Section 3.4. Finally, we compute in section 3.5 user
classes using a similar approach to [Vogel et al., 2014] and break down individual
evolutions from section 3.4 using the classes we computed.

3.2 Dataset

The Vélo’v program started in 2005 in Lyon, France. The Vélo’v network now has 340
stations, where roughly 4000 bicycles are available. The stations are in the street and
can be accessed at anytime (24/7) for rental or return. More information about the
history of Vélo’v and the deployment of stations can be found in [Borgnat et al., 2011].
The dataset used in this chapter records all bicycle trips from 2011/01 to 2015/12 for
the Vélo’v system. It contains more than 38 million trips made by more than 3.8
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million users. Each trip is documented with starting and ending times, duration, a
user ID code and a tag describing the class of user (year-long subscriber, weekly or
daily subscription, maintenance operation, etc). Data are filtered according to the
process used in [Vogel et al., 2014], keeping only year-long users and eliminating any
anomalies. This leads to a subset of the original population containing 147,354 long-
term users. For each person, we count years from the first active day: For example,
a user appearing in the records for the first time on March 16th, 2011 will end the
first adapted year on March 15th, 2012. To avoid boundary artifacts for users that are
active over several years, we stop recording trips at the anniversary date in 2015, even
if there are recorded trips later in 2015.

Note that our elementary unit of analysis is therefore the ’person-year’, i.e. the
vector of 21 features for each user and each year. One person can therefore appear
several times (up to 5) and change group from year to year. One could adopt a different
point of view, using persons as the entities and computing a single vector for each of
them, averaged over their whole period of activity. This would have two drawbacks:
masking the single user trajectories over the years and comparing vectors computed
over different periods (from 1 to 5 years). Comparing the third and fourth columns of
Table 3.3 shows that using the ’person-year’ or the ’person’ as the basic entity leads to
roughly the same proportions for the different classes. We then retain the ’person-year’
description, which allows studying users’ trajectories.

3.3 Overall evolution

We first analyze the global system evolution over the 5 years. Table 3.1 shows that
there is a steady increase in the number of users and trips. However, the average
number of trips per user remains remarkably stable around 92 trips/year, despite
the large variability (standard deviation larger that the average). A similar general
temporal trend is found in [Jain et al., 2018].

3.4 Individual evolutions

The overall system stationarity (slow increase of user numbers) hides a great variability
at the individual level that can be uncovered only using long-term datasets at the
individual level as ours. Every year, there is a strong user renewal, as the majority of
users leave the system after their first year of activity and are replaced by a greater

Year 2011 2012 2013 2014 2015
Active Users 50,393 55,896 61,806 70,068 76,511

Trips 4,702,498 5,138,971 5,576,973 6,625,090 7,044,707
Trips per user 93.3 91.9 90.2 94.5 92.0

Median trips per user 45 46 45 49 46
Standard Deviation 125.6 122.8 120.7 123.8 123.8

Table 3.1 – Number of trips per active user.
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Figure 3.1 – Progressive renewal of users over the years. For each year, the box height
represents the total number of users and the colors the year users have entered the
system. For example, in 2015, 34.4% of users are new to the system, while 18% started
in 2011.

number of new users. Figure 3.1 shows that every year the new users represent around
35% of the total. Then, they progressively leave the system, in a quite predictable
way: They represent 26-28% of users the year after and 11-12% two years later. The
only exception is the 2011 cohort, which by lack of data over the previous years, also
includes users that entered the system before 2011.

3.4.1 Most users leave the system after one year

Analyzing user activity over calendar years as in Figure 3.1 is confusing, since users
enter the system at any time during the year. To follow individual evolutions, we
have to shift the different starting dates to a common origin using ’adapted’ years as
explained above.

Figure 3.2 shows that a large majority of users (60.8%, blue rectangle) quit after a
single year of practice. These users are significantly younger than more loyal users (24
years old against 31), more likely women (51.1% of men compared to 59.1%) and less
active: their median number of trips is 47, to be compared to 91. This low activity is
mainly explained by a shorter time span of their activity (median close to 9 months
instead of the whole year). This means that many of them stop using the system
before the 12-month validity of their subscription, because they leave Lyon, buy a
bike, change job. . .

Almost 20% of users stay in the system for 2 years (yellow rectangles in figure 3.2).
Note that their activity is significantly lower than that of more loyal users, that will
stay in the system for 3 or 4 years (89 trips against 100, p-value < 2.2⇤ 10−16). In this
case, this reduced activity cannot be explained by a shorter activity time span. These
users are consistently less active over the whole year, a feature that allows to predict a
higher chance of quitting the system the following year as we will check below. When
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Figure 3.2 – Percentages of users leaving the system at the end of different adapted
years. For each group of users is given the median number of trips per year, the median
number of active months, the median age and the percentage of men. For example
’Blue users’ stopped at the end of their first adapted year, after a median number of
8.9 months of activity. They represent 60.8% of first year users. They had a median
number of trips during that year of 47, a median age of 24 years old and 51.1% were
men. Yellow users stopped at the end of their second adapted year. They had a
median number of trips during their first year of 89 and during their second year of
35. They stopped after a number of 7.7 active months during their second year.

these users reach their second (and last) active year, their activity becomes quite
similar to the blue users, as their time span is reduced to 7.7 months and their activity
much lower than in their first year (35 trips instead of 89).

Almost 9% of users stay in the system for 3 years (orange rectangles in figure 3.2).
Again, their activity, even two years before leaving the system, is significantly lower
than that of more loyal users (100 trips against 104, p-value < 2.2 ⇤ 10−16). This
activity progressively diminishes over the years, reaching a very low value on the third
and final year (36 trips over 6.3 months).

Finally, 12.7% of users stay in the system for at least 4 years (red rectangles in
figure 3.2). Their activity is consistently higher than average, and these users are
older and more often men. Their activity also progressively diminishes over the years,
a feature that we study in more detail below.

The most striking result is the high proportion (60.8%) of users that quit after a
single year of practice (called ’leavers’ hereafter). To the best of our knowledge, this
surprising figure was previously unknown. It is worth noting however that this figure



CHAPTER 3. DYNAMICS OF BIKE SHARING SYSTEM USERS 22

Figure 3.3 – Probability to stay in the system at the end of an adapted year (Ps) as
a function of the average number of trips during that year. When activity reaches
110-120 trips per year, users are more likely to stay (Ps ≥ 0.5). Each point represents
an average of Ps over 2500 person-years.

might be slightly overestimated. The reason is that users are identified through the
ID of different cards, the most common being Velo’v own card (30.3% of the users),
public transportation card (Tecely, 59.7%) and train card (Oura, 5.2%). The point is
that the Tecely cards have to be renewed every 5 years. In some (uncontrolled) cases,
this leads to a change of ID, which our analysis interprets as if the user had left the
system and another had entered it. To estimate the proportion of incorrectly labeled
exits from the system, we note that only 46.6% of Velo’v cards users give up after one
year, the corresponding figure being 61.3% for Tecely users. As Velo’v cards do not go
through the yearly renewal process, this percentage could represent a lower bound on
the ’leavers’ proportion, if we assume that the proportion of leavers does not depend
on the card used, which seems unlikely as using the specific Velo’v card suggests a
higher loyalty. To obtain another estimation, we may assume that all renewed Tecely
cards (20% per year) change their ID. This would mean that the 61.3% figure is an
overestimation of the real figure (61.3 - 20)/0.8 = 51.6%. These estimates converge to
a proportion of leavers between 50 and 55%.

We noted above that the loyalty of users was correlated to their activity. Figure 3.3
shows the general trend over all users. It confirms that the higher the intensity of use,
the higher the probability Ps to stay in the system. This result can help predicting
users’ loyalty.

3.4.2 Long-term users are older, more likely men and more

urban than average

Let us now focus on the most loyal users, the 25,963 users that have been active for
at least 3 years, which we now call ’long-term’ users. Comparing them to those that
leave after a single year reveals interesting facts about their specific characteristics.
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Ages N % men % long-term users % men in long-term users
13-22 11,231 54.8 25.2 60.5
23-32 18,081 54.5 31.6 59.3
33-42 9,572 62.6 49.8 65.7
43-52 6,413 57.6 57.3 58.8
53-62 3,774 55.9 59.6 57.0
63-72 1,194 65.1 64.7 67.4

Table 3.2 – Description of long-term users characteristics

They are older (median age 35, against 24, p-value < 2.2 ⇤ 10−16), more likely men
(men proportion 62.9% against 49.9%, p-value < 2.2 ⇤ 10−16) and live within the
Lyon-Villeurbanne urban area (85.3% against 81.7%, p-value < 2.2 ⇤ 10−16)

Table 3.2 shows the proportions of long-term users for different 10-years slices.
Clearly, loyalty steeply increases with age, from 25.2% for 13-22 years old users up to
64.7% for 63-72 years old users. Men are over-represented among the long-term users
for all ages, but the difference is highly significant among younger users. It would be
interesting to understand why there are (comparatively) so few young women among
the most loyal BSS users.

Finally, we study how long-term users change their activity over the years. For
each user, we computed the percentage of change in the number of trips per year from
one year to another. Figure 3.4 shows that only one quarter (26.5%) maintain their
number of trips within a ±20% range. Roughly two-thirds (61.8%) users lower their
activity, almost halving it (median decrease 42.3%). The remaining third increases
its activity (median increase 42.6%). The median evolution of long term users is a
decrease of activity by 16.3%.

We now apply a k-mean algorithm to the set of person-years to describe to finer
level the evolution of users, we discuss the number of clusters and compare our findings
to the results of [Vogel et al., 2014], in which the authors used the same methodology
on a 1-year dataset.

3.5 Classes of users

In this section, we compute users classes on our 5 years dataset, using a similar ap-
proach to [Vogel et al., 2014], and offer a brief description of them. Computing these
classes allows us to compare our results to the one found in [Vogel et al., 2014]. This
comparison illustrates the effect of temporality on users classification accuracy.

3.5.1 Computing users classes

From this dataset, we compute the same 21 normalized features characterizing the
activity as in [Vogel et al., 2014]. For each person, these features quantify the intensity
and regularity of use over the year (14 features) and the week (7 features).

• trips week, averaged number of trips made per week, calculated over the weeks
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Figure 3.4 – Density distribution of percentage of change in the number of trips per
year from one year to another. Percentages are computed for each user that remained
active for at least 3 years.

during which users traveled at least once, and normalised dividing by 1.5 times
the interquartile range of the distribution for all users (equal to the difference
between the lower and upper quartile of the distribution).

• trips day1 − 5, number of trips per week day. Days are ranked from one to
five, day 1 being the day with the highest number of trips and day 5 the day
with the lowest number of trips. trips saturday, average number of trips made
on Saturdays. trips sunday, average number of trips made on Sundays. These
seven features are normalized over a total sum unity over the week.

• trips year, total number of trips made over the adapted year, normalized dividing
by 1.5 times the interquartile range of the distribution for all users (i.e. the
difference between the lower and upper quartile of the distribution).

• trips month1− 12, number of trips per month, normalized to a total sum unity,
months are ranked from one to twelve, month 1 being the month with the highest
number of trips and month 12 the month with the lowest number of trips.

As explained in [Vogel et al., 2014], there is some correlation and redundancy
between intensity and regularity features. Nevertheless, a simple K-means clustering
method (see, e.g., [MacKay, 2003]) is used, coupled with statistical appraisal and
careful analysis of the results, as our main intent is to create and interpret a relevant
typology, not to find well-defined, pre-existing, classes. Also, we prefer to use the
original variables instead of PCA axes, because this makes the interpretation of the
obtained classes straightforward.

To choose the number of clusters, we studied as [Vogel et al., 2014] the partitions
obtained when choosing from three to twelve clusters. However, as shown on figure
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Figure 3.5 – Visualization of the users-year on the two main axis given by principal
component analysis (PCA)

3.5, there is a continuum distribution of users-year and therefore no clear separation to
split the clusters. Moreover we also computed the Akaike Information Criteria (AIC)
for the different number of clusters k. The AIC is defined as follow:

AIC(k) = −2L(k) + 2q(k) (3.1)

Where −L(k) is the negative maximum likelihood for k clusters and q(k) is the number
of parameters of the model with k clusters. Hence, the AIC represents the trade-off be-
tween a model which clusters well the data (given by the likelihood) and the complexity
of the model. The optimal number of clusters k is in theory argmink[−2L(k)+2q(k)].
However after plotting AIC(k) (Figure 3.6), we observe that there is no clear knee
showing an optimal value.

Hence, we chose nine clusters for two reasons. Firstly, we found that as in [Vogel
et al., 2014], this number of clusters represents the best compromise between a reduced
but rich enough description (differentiating for example week-end users from week
users), without introducing uninformative clusters. Secondly, this number allows a
simple comparison of our results with the study from 2014.

A detailed description of the nine classes is given in Table 3.3 and Figure 3.7.

3.5.2 User Classes

The nine classes correspond to different profiles of use. There are 6% of ’one-off’
users, who make on average only 3 trips per year, generally the same month and
then disappear from the database. Another almost 12% of users are mainly active in
week-ends, either for shopping (Saturdays) or leisure (Sundays) (second line of Table
3.3). The last 6 lines of Table 3.3 represent users that show a regular activity over the
year and differ mainly by their intensity of use, from twice a month (regular0 class,
gathering 27% of users) to nearly twice a day (regular5, 1% of users). The part-time
class is quite peculiar: we will show below that it can be interpreted as the class where
users end up for the last year of activity.

3.6 Evolution of user classes

This section answers to the question: what are the differences between stable users in
terms of practice, i.e. what is the dynamics of stable users within the classes?
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Figure 3.6 – AIC

Figures 3.8b and 3.8a present these ’transfer matrices’ for different years for each
class.

These matrices give key informations about the evolution of stable users in the
system, it shows:

• the overall stability of classes (diagonal terms). The high values found around
the matrix diagonals (light colors in Figures 3.8b and 3.8a) show that many
users remain in the same class over several years : the probability to stay in
the same class is higher than any other probability (except leaving). As dis-
cussed briefly below, the second highest probability corresponds to a shift to
the neighboring class with lower activity. The matrix also shows that this ’class
fidelity’ is correlated to the intensity of use: For example, on the first year
PI5!I5 = 30.2% > PI4!I4 = 22.8% > PI3!I3 = 17.5% . . . This intensity is
therefore a good predictor of future behavior : Staying in the same class or, as
discovered earlier (Figure 3.3), leaving the system.

• the decrease of activity for users that remain active (asymmetry of the non
diagonal terms). We observe the upper parts contain higher values than the
lower parts. As the lines in the graph are ordered by intensity, this means that
users have a high probability of reducing their activity from one year to another.
This joins results from Figure 3.4.

• in each year, a high proportion of users leave the system (last column). However
the probability to leave the system decreases continuously as the classes increase
in intensity of use.
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Figure 3.7 – Boxplots of the behavioral patterns at different time scales of the 9
classes. (a) number of uses per year (right) and per active week (left), for each class.
A week is considered ’active’ for a user whenever he/she takes a bicycle at least once.
(b) normalized number of uses for each day of the week and for each class. Week
days range from one to five in decreasing order of activity for each user. Saturday
and Sunday are computed separately as users’ activity is different on week-ends. (c)
normalized number of uses for each month of the year and for each class.
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(a)

(b)

Figure 3.8 – Transfer matrices from year n (lines) to year n+1 (columns). (a) Absolute
number of users. Reading: (first line, first table) : 217 users that belonged to the
regular-5 class in their first year became regular-4 users in their second year; 330
remained regular-5 and 349 were no longer active; (second line, third table): 411 users
that belonged to the regular-4 class in their third year remained regular-4 users in
their fourth year; 59 became regular-5 and 305 left the system. (b) Percentage of
users. Reading : (first line, first table) : 19.9% users that belonged to the regular-5
class in their first year became regular-4 users in their second year; 30.2% remained
regular-5 and 31.9% were no longer active; (second line, third table): 34.3% users that
belonged to the regular-4 class in their third year remained regular-4 users in their
fourth year; 4.9% became regular-5 and 25.5% left the system.
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Class # person-year freq 1st-year freq #trips/year
’one-off’ users 12164 5.8 5.2 3.0

Week-end cyclist 24313 11.6 11.8 17
Part-time 7639 3.6 4.3 80
Regular0 56849 27.1 27.1 25
Regular1 51446 24.5 24.9 83
Regular2 29225 13.9 14.2 175
Regular3 17183 8.2 8.0 295
Regular4 8444 4.0 3.6 454
Regular5 2361 1.1 0.9 695

Table 3.3 – Description of user classes found by the k-means for the 21 features.
Note that since the entity is a ’person-year’, these counts do not directly represent
proportions of individuals, because users that stay in the system for long periods are
over-represented. However, the comparison with the proportions obtained for year
one (third column), which correspond to real users, shows that this effect is relatively
weak. #trips/year is the median number of trips in a year for each class.

Length of use and activity

Let us now break down the length use, first mentioned in 3.2. The increase of use
from classes regular0 to regular5 arises from the combination of two factors: both the
number of active weeks (figure 3.9) and the number of trips per active week increase.
For example, regular5 users are almost 30 times more active over the year than regular0
users (695 instead of 25 trips, see Table 3.3), because they are at the same time more
often active (50 active weeks instead of 12) and more active during these weeks (14
trips per week instead of 2). Note that the decrease of the number of active weeks is
not due to a simple seasonal effect: Figure 3.10) shows that active weeks of regular0
users span a median period of nearly 40 weeks (between the first and the last trip of
the year).

3.6.1 Comparing the 5-years and 1-year classes

When comparing the classification obtained here to that found over a single year [Vogel
et al., 2014], we note many similarities and a major difference. As in [Vogel et al.,
2014], a ’one-off’ and a ’week-end’ class are found, with similar proportions, as well as
six ’regular’ classes differing mainly by their intensity of use. The major difference is
the ’part-time’ class, that represents 3.6% of users, instead of 29% for the single year
classification (summing their ’intensive and part-time’ and ’irregular’ classes). This
means that those two 1-year classes mostly gathered users that have in fact a regular
behavior appearing to be ’part-time’ because they are observed over a too short period
of time. For example, a user starting in September 2011 will appear active only for (at
most) 4 months, even if they keep the same activity over the subsequent (unobserved)
year. Figures 3.8b and 3.8a show that the ’part-time’ class gathers users that massively
leave the system at the end of the year (nearly 90% the first year and 70% the second).
Year after year, the ’part-time’ class is filled again by users coming from all (previous
year) classes, as shown by the numbers in the ’part-time’ column in Figures 3.8b and
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Figure 3.9 – Number of active weeks per year for each class of regular users. An active
week is defined as a week where at least a trip took place.

Figure 3.10 – Length of use per adapted year for each class of regular users. The length
of use is the time difference between the first active week and the last active week of
the adapted year.
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3.8a. Therefore, this class does not represent a stable behavior of a class of users -
people being active every year only 3 months - but the class where users end up for
their last year of activity.

3.7 Discussion

As seen in the introduction, there was a lack of in-depth studies on the temporal
evolution of long-term bicycle usage, mainly due to the lack of long-term datasets.
Thus, we studied the temporal evolutions of year-long Vélo’v users thanks to a unique
dataset spanning over 5 years. After adapting the data, we extended the method
from [Vogel et al., 2014] to characterize temporal patterns and we showed that using
a 5-year database corrects the 1-year classification by avoiding the overestimation of
part-time users (from 29% to 3.6%). This indicates that the seasonal effect in bike
usage is much smaller than expected.

Also, users’ yearly activity was organized in three main classes: 6% of ’one-off’
users, with only 3 trips per year; 12% of ’week-end’ users and the rest presenting a
regularly distributed activity over the year. We divided the latter class into 6 groups
with considerable differences in numbers of trips (from twice a month to twice a day).
From these classes, we studied the evolution of activity for longer times and found
two main trajectories: About 60% of the users stay in the system for one year at
most and show a low median activity (47 trips); the remaining 40% of users are more
active (median activity of 96 trips in their first year) and remain continuously active
for several years (mean time = 2.9 years).

This high proportion of leavers can be explained by many reasons : moving to
other towns, buying one’s own bike, finding the service unsatisfactory. . . It would be
interesting to ascertain the relative proportions of each. Note that considering the
number of trips (and not of users) leads to a more stable picture, as the 40% of stable
users perform around 60% of the annual trips. Their activity is relatively stable,
slightly decreasing over the years. We showed that this long-term behavior strongly
depends on the user initial class, as fidelity rapidly increases with the number of trips
observed the first year.

On the socio-demographic point of view, stable users are generally older than av-
erage users (30 to 40 years old) and live closer to the city center. This result agrees
with previous articles socio-demographically characterizing BSS users population (see
[Beecham and Wood, 2014, LDA-Consulting, 2012, Ogilvie and Goodman, 2012, Sha-
heen et al., 2012, Fuller et al., 2011, Raux et al., 2017]).

A comprehensive analysis of the reason of evolution patterns would be an insightful
extension of this study. Though data about the motivations of users are not yet
available, a survey would help addressing questions on the motivations behind the
patterns such as why users leave the system. Such answer would complement our
description.

This analysis is a first step to understanding usage trends and monitoring the
evolution of users’ segments which could help authorities to design more adapted
systems.

This chapter describes for the first time in great detail the evolution of customers
of a large BSS and suggest further work on important policy issues which we cannot
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address for lack of appropriate data. So far, one study performed a similar analysis
to ours. [Jain et al., 2018] found similar demographic characteristics to long-term
users and general system’s usage (slowly increasing over years). The development
of temporal study on the evolution of usage and commitment for other BSS in the
world would be of high profitability, in order to compare the evolution of trends and
socio-demographics in the world and releasing BSS more adapted to users’ segments.

In this chapter, we studied individual dynamics of users using mobility data. Now,
after individual dynamics, we would like to study collective dynamics. In the next
chapter, we explore temporal community detection on scientometric networks. More
particularly, we investigate the differences between two approaches for generating au-
tomatic history of scientific research.



4
Dynamics of Scientific Research Communities

4.1 Introduction

Networks are a convenient way to represent real-world complex systems, such as social
interactions [Newman, 2003, Barabási et al., 2002, Onnela et al., 2007], metabolic in-
teractions [Boccaletti et al., 2006, Barabási and Oltvai, 2004], the Internet/world wide
web [Pastor-Satorras and Vespignani, 2001, Barabási and Albert, 1999], transportation
systems [Dall’Asta et al., 2006, Barthélemy, 2011], etc. For several systems it is inter-
esting to find and describe areas of the network which are more densely connected, i.e.
the communities of the network. In 20 years of complex networks history extensive
work was conducted on community detection in static -non evolving- networks, see
[Newman, 2006, Blondel et al., 2008, Fortunato and Barthélemy, 2007] and the review
[Fortunato and Hric, 2016] for an overview on community detection in static graphs.

However, many networks have a temporal dimension and need a dynamic meso-
scopic description at risk of non-negligible information losses if studied as static net-
works. Therefore the description of large temporal graphs has been a hot topic of
research for the last decade, see the excellent reviews [Holme and Saramäki, 2012]
and [Holme, 2015] for a complete description of temporal networks. Most recently the
detection of dynamic communities, that is communities on temporal networks, has
become one of the main interests in network science, as temporal networks require to
adapt the methods of static community detection. So far no consensual method was
found and around 60 methods have been proposed to try to detect dynamic commu-
nities evolving with temporal networks. A total of 4 published reviews try to classify
and summarize them [Aynaud et al., 2013], [Hartmann et al., 2016], [Masuda and
Lambiotte, 2016] and [Rossetti and Cazabet, 2018].

In the most recent one ([Rossetti and Cazabet, 2018]), these methods are classified
into 3 main categories: (a) instant optimal, (b) temporal trade-off and (c) cross-time.
In this chapter we propose a method inspired from [Morini et al., 2017], which falls
into category (a). These methods aim to detect clusters at different times t, i.e. for
many snapshots of the temporal network. As these clusters are only dependent on
the state of the network at time t, it is then necessary to match the communities
at different t with some similarity measures, e.g. Jaccard based [Morini et al., 2017,
Lorenz et al., 2018, Greene et al., 2010], core-node [Wang et al., 2008]. Methods in

33
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category (b) define clusters at t depending on current and past states of the network.
Clusters are incrementally temporally smooth. However such methods are subject to
drift as clusters are added up to each other locally. There is no compromise between
temporal smoothness and ’optimal’ partition at time t, see for example [Rossetti et al.,
2017, Guo et al., 2014, Görke et al., 2010, Görke et al., 2013]. Finally, in category (c)
clusters at t depend on both past and future states of the network, see [Duan et al.,
2009, Mucha et al., 2010, Matias and Miele, 2016, Ghasemian et al., 2016]. Clusters
are completely temporally smooth and not subject to drift, but they do not respect
causality as communities at t are determined using network’s information at t + n,
i.e. communities at time t can change depending on what comes next, which makes
communities temporally unstable. This limitation also makes these methods difficult
to use on-the-fly, as it requires full knowledge of the history.

This chapter has two goals : (1) present tools to describe community dynamics
in history of science, such as : the description of the emergence and death of sci-
entific disciplines, the description of merge and split of two disciplines; (2) illustrate
the difference between global optimization (category (c) methods) and local temporal
optimization (category (a) methods). We describe a method in-between which re-
turns a mesoscopic description of the network, which we call: temporal streams. The
main difficulties for meta-community detection methods are to find the right temporal
smoothing and to quantify the ’stability’ of communities. It is difficult to distinguish
if changes between snapshots are due to structural evolution of the community or al-
gorithm instability, as static community detection methods used at each time t can
find different communities for a same topology (see [Rossetti and Cazabet, 2018] for a
complete description of pros and cons of each clustering category). In this chapter we
propose an algorithm which aims to find balance between temporal inertia (smooth-
ness) and ’optimal’ community at particular time t. We compare this method to the
most basic algorithm which runs a Louvain method on the aggregated network. The
latter can be assimilated to a category (c) method in [Rossetti and Cazabet, 2018]. We
introduce the platform BiblioMaps that we used for visualizing dynamic communities.
We then describe the methods we used to analyze differences between partitions: mu-
tual information (MI) measures and bipartite network (BN) representation. We see
that MI based measures are interesting but give a limited amount of information on
how different two partitions are, whereas bipartite network representation allows to
see how streams split between partitions. We used the methods on two bibliographic
datasets: (1) the scientific publications of the ENS Lyon and (2) publications related to
the field of wavelets. We find that the basic aggregated method finds partitions which
present similarities with our method, but differs in cases where optimal partitioning
at time t is preferred over smoothness of the history.

4.2 Methods

We start by presenting the two building blocks used in the algorithms we want to
compare: how we define and partition a Bibliographic Coupling (BC) network and
how we match clusters from successive time period to create streams (meta-clusters).
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4.2.1 Bibliographic Coupling partitioning

Given a set of publications on a given period, a Bibliographic Coupling (BC) network
can be defined based on the relative overlap between the references of each pair of
publications. More specifically, we compute Kessler’s similarities !ij = Rij/

p

RiRj,
where Rij is the number of shared references between publications i and j and Ri is
the number of references of publication i. In the BC network, each publication cor-
responds to a node and two publications i and j share a link of weight !ij. If they
don’t share any reference, they are not linked (!ij = 0); if they have an identical set
of references, their connexion has a maximal weight (!ij = 1). In this chapter, we
considered that the link between two publications is only meaningful if they share at
least two references and we impose !ij = 0 if they share only one reference.

We use weighted links to reinforce the dense (in terms of links per publication)
regions of the BC networks. This reinforcement facilitates the partition of the network
into meaningful groups of cohesive publications, or communities. We measure the
quality of the partition with the modularity Q (eq. 4.1), a quantity that roughly
compares the weight of the edges inside the communities to the expected weight of
these edges if the network were randomly produced:

Q =
1

2Ω

X

i,j

h

!i,j −
!i!j

2Ω

i

δ (ci, cj) , (4.1)

where !i =
P

j !ij is the sum of the weights of the edges linked to node i, ci and cj
are the communities containing respectively nodes i and j, δ is the Kronecker function
(δ(u, v) is 1 if u = v and 0 otherwise) and Ω = 1

2

P

ij !ij is the total weight of edges.
We compute the graph partition using the efficient heuristic algorithm presented in
[Blondel et al., 2008].

4.2.2 Matching communities from successive time periods

Given the sets of communities {Ct
1, ...C

t
kt
} in each time windows t, the problem at hand

is to identify a set of relevant historical communities, or streams, that correspond to a
chain of communities from successive time periods (at most one per period). In order
to decide which community of a given period should be added to a chain of commu-
nities from previous periods, we need to use some measure to assess the similarity
between communities from different time periods. In the dynamical communities lit-
erature, one method often use is the Jaccard index, based on a proportion of shared
nodes between clusters of successive and overlapping periods (see e.g. [Claveau and
Gingras, 2016, Morini et al., 2017]). One drawback from this method is that because
of the use of overlapping periods, there is no bijection between the publications and
the streams (a given publications can be part of several streams).

Here, we take advantage of the BC nature of our network, which ensures that links
can exist between nodes from different time periods (publications from different periods
can have common references). We can thus define a similarity measure between two
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clusters Ca and Cb from different periods either by the total sum of the links between
pairs of publications from these clusters Ωa,b =

P

i2Ca,j2Cb
!i,j or by a normalized ver-

sion of this sum !a,b = Ωa,b/|Ca||Cb|, which is comprised between 0 and 1. While these
two measures can appear quite intuitive, each of them has some drawbacks as well:
using Ωa,b may sometime bias the construction of the streams by linking two "large"
(in terms of publications) but dissimilar top clusters. On the opposite, using !a,b may
sometime put too much emphasis on one cluster (e.g. a strong similarity between clus-
ters of very different size over a second-best similarity between cluster of similar sized).

To be coherent with our construction of clusters from each time period by maxi-
mizing the modularities within each time period, we propose here to use a modularity-
based concept on the set of clusters from 2 successive time periods. We, thus, use
as similarity measure the quantity δQ = Ωa,b − ΩaΩb/2ΩA,B which corresponds to an
increase in the modularity of the BC network built from the two periods A and B.

Matching Algorithm

Only compare pairs of communities (a, b) with a minimum similarity
!a,b > Θ = 10−6.

Define the best match of each cluster by the one maximizing δQ.
for each temporal window do

Define the predecessor of each cluster as its best match from the
previous time period.

Define the successor of each cluster as its best match from the next time
period.

end
Two clusters are said to be paired if they are predecessors / successors of each
other.

If a cluster is not the successor of its predecessor, we have a split.
If a cluster is not the predecessor of its successor, we have a merge.
Streams are defined as chains of paired clusters.

4.2.3 Different algorithms used to define historical streams

We investigated the results of four algorithms to define historical communities, or
streams, on a given dataset of publications over a long period, which we cut into suc-
cessive periods of ∆T years. Two methods have a temporally global approach (GA,
GPA), and two methods have a temporally local approach (BMLA, BCLA). In fact
results between (GA and GPA) and (BMLA and BCLA) are very close (see Annex
B). For this reason and for the sake of illustration, we only present the GA and BCLA
methods. The two other methods (GPA, BMLA) and their results are shown in Annex
B.

Global Algorithm (GA)

Building the global BC network by taking into account all the publications in the
dataset, we simply define the streams as the communities maximizing the global mod-
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ularity found by running the Louvain algorithm. Since we are working in a single
(large) time period, this approach does not yield any dynamical events such as split-
ting / merging of communities, but it provides a simple reference.

Best-Combination Local Algorithm (BCLA)

The BCLA is an incrementation of the work from [Morini et al., 2017]. On each time
period, we run N independent runs (we used N = 100) of the Louvain algorithm.
Because of the noise inherent to the Louvain algorithm, choosing the best-modularity
partitions chosen in each time period are not necessarily the ones that best match
each other across successive time periods. We propose the BCLA to optimize the
inter-period combination.

BCLA Algorithm

Compute the Bibliographic Coupling Graph ;
Split the dataset into temporal windows ∆t ;
for each of the N = 100 partitions of the first period and each of the N = 100
partitions of the second period do

Run the matching algorithm to define the 2-periods streams;
end
Among the N ⇤N defined streams, select the ones maximizing the modularity
of the BC network on the first 2 periods. ;

Define the "best combination" partitions of the first 2 periods as those
corresponding to those streams;

for each pair of successive temporal windows A and B, starting from the
second one do

for each of the N = 100 partitions of the period B do
Run the matching algorithm between these partition and the "best
combination" partition of period A (known from a previous step) to
define 2-periods streams;

end
Among the N defined streams, select the ones maximizing the modularity
of the BC network on periods A and B;

Define the "best combination" partition of period B as the one
corresponding to those streams

end

Note that maximizing a global indicator over the T periods with N runs would
take too long as there would be NT possibilities to explore. For this reason, we first
choose the best combination between the first two periods (N2 checks) and then we
choose the "best match" one period at a time (N(T − 2) checks).

This algorithm returns temporal streams which we call BCLA-streams. These
streams still maximize the modularity at each time t while using some cross-time
information to improve the global modularity.

Choosing the value of the period T is a trade-off. It needs to be long enough so
that communities within each period have enough articles to give meaning to the com-
munities. But it also needs to be small enough compared to the total dataset duration
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Dataset Type Period N NBC ⇢links < d > < w > QGA

Wavelets Thematic 1963-2012 6,582 5,568 0.0065 35.98 0.000719 0.677
ENS-Lyon Institution 1988-2017 16,679 14,389 0.0019 27.04 0.000175 0.919

Table 4.1 – Statistics on datasets investigated in the chapter. Type is the type of
organization data come from. Period is the period over which spans the dataset. N
is the number of publications in the dataset. NBC is the number of articles in the BC
table. ⇢links is the density of links in the BC network. < d >= (NBC − 1) ⇤ ⇢links,
it indicates the average number of publications a given publication shares references
with. < w > indicates the average link weight. Q is the modularity of the network
using global partioning (GA).

to see dynamics. After trying different periods, we chose, in the following, a period
T = 5 years.

Akin to [Claveau and Gingras, 2016], these methods take advantage of local infor-
mation to partition the data.

4.2.4 BiblioTools / BiblioMaps

All the datasets were extracted from the ISI Web of Knowledge Core Collection
database1. The bibliographic records were parsed and analyzed using Bibliotools, a
Python-based open-source software and the historical streams figures were generated
using the web-based visualisation platform BiblioMaps. Bibliotools and its exten-
sion BiblioMaps were developed by one of us and are available online2. They were
also used and presented in previous studies [Grauwin and Jensen, 2011, Lund et al.,
2017, Grauwin and Sperano, 2018].

4.3 Datasets

In this section, we present specificities of each dataset and the motivations to use them.
Key informations are summarized in table 4.1.

4.3.1 ENS-Lyon Publications Dataset

The ENS-Lyon Publications Dataset contains all publications produced by researchers
affiliated to the École Normale Supérieure de Lyon in natural science fields. It spans
from 1988 to 2017 and contains 16,679 publications. The ENS-Lyon is an institution,
hence this dataset exhibits publications well classified into academic departments with
a relatively low level of interdisciplinarity, see [Grauwin and Jensen, 2011] for a first
study on this dataset. In this chapter, we compare our temporal clustering methods
to a temporal partition of articles following the laboratories of the ENS-Lyon. We call
it our reference partition (PREF ).

1http://apps.isiknowledge.com/
2http://www.sebastian-grauwin.com/bibliomaps/
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4.3.2 Wavelets Publications Dataset

The Wavelets Publications Dataset contains all publications related to wavelets and
spans from 1910 to 2012 (however the period before 1960 contains only a few publica-
tions). This dataset contains 6,582 publications, corresponding to all the publications
of a list of 83 key actors in the field of wavelets selected by expert advice and biblio-
graphic searches. See [Morini et al., 2017] where the dataset was initially presented.
The study of this dataset represents a difficult task because it emerged from the col-
laboration of several research fields, constituted by many entangled subfields. Based
on the knowledge of field’s expert, Patrick Flandrin from the physics laboratory of the
ENS Lyon, we built manually a temporal partition drawing the history of wavelets.
We refer to this partition as PREF and compare our automatically generated par-
titions to this partition of reference. We acknowledge that this partition is not an
absolute ground truth as it relies on the subjectivity of an expert. However, it gives
an approximation of the field dynamics.

4.4 Results

As illustrated in Figures 4.1 and 4.2, the global method (a) does not include much
dynamics in the historical streams it returns. GA-streams are flat in Figure 4.1a
and have only a few splits/merges in 4.2a. On the opposite, BCLA-streams give a
dynamical history of research for both datasets. In Figure 4.1b many streams remain
flat due to the low multidisciplinarity of research between the different departments
of the institution. However, we can see some splits corresponding to teams splitting
to focus on different research topics (like streams ’Blichert-Toft/Lecuyer’). Similarly,
many splits and merges occur in 4.1b.

As we observe these differences in dynamics, we compare the partitions for each
dataset using two sets of measures to better describe their dynamics: (1) mutual
information based measures and (2) measures from a bipartite network representation
of the partitions. Then, we show some examples of major differences in partitioning
that we spotted using bipartite network representation.

4.4.1 Normalized Mutual Information

The mutual information (MI) is a widely used measure for comparing community de-
tection algorithms. It is defined as a measure of the statistical independence between
two random variables (see eq. 4.2). In other words, if H(PX) is the entropy associated
with partition X and H(PY ) is the entropy associated with partition Y -the entropy
is a measure of how partitioned is our network, the more communities (here tempo-
ral streams), the higher the entropy- then MI(PX , PY ) represents the overlap of the
two partitions. It gives an answer to the question: how much do I know about the
partition PX when the partition PY is given? Note that the mutual information is a
symmetrical measure, that is MI(PX , PY ) = MI(PY , PX). See [Wagner and Wagner,
2007, Kvålseth, 2017] for deeper description on mutual information.

MI(PX , PY ) = H(PY )−H(PY |PX) = MI(PY , PX) (4.2)
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MI is defined on [0,+1], therefore it is difficult to make sense of it without an
upper-bound. There exists different ways to normalize the mutual information. The
idea is to take into account the entropies of the partitions we consider, so that it
is possible to gauge the proportion of mutual information between the partitions.
Normalizing by the entropy of one of the partition, e.g. H(PX) (see eq. 4.3) measures
how much of the partition PX is included in the partition PY . We call this normalized
mutual information NMIX . If it reaches its maximum value 1, then it is possible to
retrieve all the information -all the partition- of PX from the partition PY . However
this measure does not take into account the size of the other partition, PY . A partition
PY where each node would be its own community would make NMIX equals to 1 even
though both partitions are very different. This measure then needs to be combined
with at least another NMI which takes into account the relative size of both partitions
(see eq. 4.4). Here the mutual information is normalized by

p

H(PX) ⇤H(PY ), which
shows how much of the two entropies overlap on a scale between 0 and 1. This
expresses how similar are the partitions. It is equal to 1 when the partitions are the
same. Moreover, this last NMI is symmetrical, so it takes into account both retrieval
of PX from PY and retrieval of PY from PX .

NMIX(PX , PY ) =
MI(PX , PY )

H(PX)
(4.3)

NMI(PX , PY ) =
MI(PX , PY )

p

H(PX) ⇤H(PY )
= NMI(PY , PX) (4.4)

Entropies, MI and NMIs computed on the 3 datasets are given in table 4.2.
Mutual information based measures can give a value of similarity between two

partitions. However, it is not straightforward to analyze and it does not allow to track
where the (dis)similarity comes from. To allow in depth comparison, we represent
pairs of partitions as bipartite networks. We present our results in the next section.

4.4.2 Bipartite Network of streams

To track and quantify differences between partitions X and Y , we compute a bipartite
network where the ni

X 2 NX are the first kind of nodes. They represent the streams
siX 2 PX (hence |NX | = |PX |). It follows that the second kind of nodes nj

Y 2 NY

represent the streams sjY 2 PY . A weighted directed edge is drawn between ni
X and

nj
Y only if their corresponding streams siGA and sjBCLA share articles. For a given pair

of nodes (ni
X ,nj

Y ) the weights of the two edges between them (one in each direction)
are defined in eq.4.5. We quantify differences between streams of two partitions from
this graph, quantities are given in table 4.3.

8
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Measures ENS-Lyon Wavelets
|PGA| 57 27

|PBCLA| 97 36
|PREF | 17 36

H(PGA) 3.63 2.87
H(PBCLA) 4.05 3.04
H(PREF ) 2.37 3.18

MI(GA,REF ) 1.93 2.03
MI(BCLA,REF ) 1.93 2.49
MI(GA,BCLA) 3.10 1.90

NMIGA(GA,REF ) 0.53 0.73
NMIREF (GA,REF ) 0.82 0.64

NMI(GA,REF ) 0.66 0.68
NMIBCLA(BCLA,REF ) 0.48 0.84
NMIREF (BCLA,REF ) 0.81 0.80

NMI(BCLA,REF ) 0.63 0.82
NMIGA(GA,BCLA) 0.86 0.67

NMIBCLA(GA,BCLA) 0.77 0.62
NMI(GA,BCLA) 0.81 0.64

Table 4.2 – |PX | is the number of streams in partition X. H(PX) is the entropy of
partition X. MI(PX , PY ) is the mutual information between the partitions X and
Y . NMIX is the mutual information MI normalized by H(PX). NMI(PX , PY ) is the
symmetrical normalized mutual information (normalized by

p

H(X) ⇤H(Y )).
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Figure 4.3 shows a part of the bipartite network between PGA (left) and PBCLA

(right) on the ENS Lyon publications dataset. The part of the network is centered on
nine streams from PGA equivalent to 17 streams from PBCLA.

4.4.3 Results on ENS-Lyon Dataset

From Table 4.2, the first thing to notice on this dataset is the very different number
of streams of each partition. Our global method GA has 57 streams whereas our local
method BCLA contains 97 streams. The reference partition contains 17 streams,
which are the 17 laboratories of the ENS-lyon in natural sciences. The high values
of NMIREF (GA,REF ) (0.82) and NMIREF (BCLA,REF ) (0.81) suggests that the
extra streams in both PGA and PBCLA are mostly hierarchical subdivisions of the
laboratory streams from PREF . A partition being a subdivision of another does not
result in a decrease of MI between them. The MI decreases only if communities of a
partition need to be mixed to become communities of another. These results argue that
PGA and PBCLA are both the same description as PREF at different scales. Similarly,
the high value of NMI(GA,BCLA) (0.81) suggests that PBCLA and PGA share mostly
the same information.

The measures from Table 4.3 confirm the previous analysis. 1stE(GA,REF ) shows
that streams from PGA share on average 86 ± 17% of their articles with a stream
from PREF and an average of 3.37 ± 1.76 streams from PGA are needed to retrieve
80% of streams from PREF . Similar observations can be made for PBCLA. Moreover,
Sum80(GA,BCLA) shows that it takes on average two streams from PBCLA to reach
80% of streams from PGA. This is illustrated in Figure 4.3

These observations confirm that here streams from PREF are not mix of different
streams parts from PGA (PBCLA). But they are unions of (almost) entire streams. In
this case, GA and BCLA yield almost the same partition, only different in scale.

Examples of major differences

Here, we illustrate our analysis with BN representations. We show the hierarchical
subdivisions between PGA and PBCLA for the ENS Lyon dataset. In figure 4.3, we
see that PGA streams (in red) can be almost entirely retrieved from the union of a
few complete PBCLA streams (in blue). Sometimes PBCLA streams share articles with
more than one PGA stream. However, for all PBCLA streams sharing articles with more
than one PGA streams, the proportion of shared articles with the most similar article
is more than five times higher on average than the other proportions of shared articles
with the other PGA streams. This illustrates that PGA differs from PBCLA mostly by
scale.

4.4.4 Results on Wavelets Dataset

Describing the history of the wavelet research field is a complicated task as it is born
from the collaboration of multiple fields and sub-fields. The values from table 4.2
point that, even though partitions have closer number of streams (27 for PGA and 36
for PBCLA) they are significant differences between our local and global method. In
this case, NMI(BCLA,REF ) is significantly higher than NMI(GA,REF ) (0.82 vs.
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Figure 4.3 – Part of the bipartite network representation of ENS Lyon dataset. This
network shows the links between temporal communities from PGA (left in red) and
PBCLA (right in blue). On each node is given the stream ID and the most frequent
author name of the temporal community. Size of nodes accounts for the size of the
streams, each stream contains at least 20 articles.
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Measures ENS-Lyon Wavelets

1stE(GA,REF )
0.86± 0.17 0.75± 0.20
0.49± 0.20 0.81± 0.17

Sum80(GA,REF )
1.26± 0.54 1.88± 0.93
3.37± 1.76 1.5± 0.73

1stE(BCLA,REF )
0.89± 0.14 0.87± 0.17
0.49± 0.26 0.87± 0.15

Sum80(BCLA,REF )
1.23± 0.44 1.26± 0.50
4.87± 3.35 1.31± 0.57

1stE(GA,BCLA)
0.74± 0.23 0.72± 0.23
0.85± 0.16 0.83± 0.19

Sum80(GA,BCLA)
1.96± 1.14 1.88± 0.96
1.34± 0.51 1.61± 0.83

Table 4.3 – In this table each cell contains two lines. Each measure M(X, Y ) is made
on edges. The first line correspond to M measured on edges from nX to nY and
the second line corresponds to M being measured on edges from nY to nX . So, the
first row in 1stE(X, Y ) is the average proportion of articles nX shares with nY ± its
standard deviation. The second row is the average proportion of articles nY shares
with nX ± its standard deviation. For instance, for the ENS-Lyon, this means that
streams of PGA share on average 86% of their articles with their most similar stream
in PREF , whereas streams from PREF only share on average 49% of their articles with
their most similar stream in PGA. Sum80(X, Y ) is the average number of streams from
PY it takes to retrieve 80% of the streams’ articles from PX . For example in the case
of the Wavelet Dataset, on average 1.88 ± 0.96 streams from PBCLA are needed to
retrieve 80% of a stream from PGA.

0.68). Moreover NMI(GA,BCLA) is rather low (0.64) which suggests that differences
here are not only due to the difference of scales. We visualize some of these differences
in the section 4.4.4.

From Table 4.3 we see that most similar streams between PGA and PREF share
75%± 20% of articles on average, whereas it is 87%± 17% of articles shared between
PBCLA and PREF .

Examples of major differences

We now show some major differences between PGA and PBCLA for the wavelets dataset.
From Figure 4.4a, we can see two kind of differences between partitions: scale differ-
ences (e.g. g_9 with s_42 and s_9) like in the ENS Lyon case; and differences where
PGA streams are mixed to retrieve PBCLA streams, such as the group of streams around
g_5 and g_31. Interestingly, g_7 cumulates scale and mixing differences.

If we now look at the BN representation of the same PBCLA streams with corre-
sponding PREF streams (Figure 4.4b), we see that our PBCLA description is closer to
the description in PREF . There are more ’stream-to-stream’ equivalences, represented
by the double arrow on each side of the edge linking streams. Note that, though PBCLA

is closer to PREF , there are still scale differences (e.g. s_21, s_111) and mixing dif-
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ferences (e.g. s_85, s_52).
It is also worth noting the difference between s_21 and s_53. The global method

(GA) merges both into one stream g_7 (see Fig. 4.4a), However, PREF and PBCLA

partitioned them separately (respectively (s_21, s_53) and (r_2 and r_24). If we
look at Figure 4.2b, we see that these streams do not belong to the same time period.
s_53 corresponds to one of the early works on wavelets, from 1963 to 1994. The second
one, s_21 came after (1987 - 2014) working on different problems.

(a) Part of the bipartite network representation of Wavelets dataset. This network shows
the links between temporal communities from PGA (left in red) and PBCLA (right in blue).
On each node is given the stream ID and the most frequent author name of the temporal
community. Size of nodes accounts for the size of the streams, each stream contains at least
20 articles.

From these examples we saw that our BCLA method takes into account better the
complexity in the dynamics than global methods which simply merged these streams
into one in PGA.
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(b) Part of the bipartite network representation of Wavelets dataset. This network shows the
links between temporal communities from PBCLA (left in blue) and PREF (right in green).
On each node is given the stream ID and the most frequent author name of the temporal
community. Size of nodes accounts for the size of the streams, each stream contains at least
20 articles.

Figure 4.4 – Part of the bipartite network representation of Wavelets dataset.
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4.5 Discussion

In our method, we first analyzed mutual information based measures. We saw that
MI based measures are interesting to quantify how different two partitions are. But
they are limited when it comes to describing these differences. For this reason it was
necessary to visualize the partitions. The bipartite network representation allowed us
to see how streams split between partitions. We saw with some examples that global
methods could do as well as local methods to automatically generate history from
datasets with a clear structure (high modularity), like in the case of ENS-Lyon data.
But it reached limitations when working on datasets where streams are entangled as
illustrated in Section 4.4.4. On the opposite, our BCLA could better take into account
the complexity in the dynamics and led to a partition closer to the reference, manually
drawn by the field expert.

Now, for the last chapter of this thesis, in the fashion of a grand finale, we will com-
bine complex networks, mobility data of customers, and supervised machine learning.
More precisely, we will look at how mobility data can enable us to study the impact
of new businesses on already established ones.



5
Dynamics of Retail Environments

Keywords: Urban mobility; Spatio-temporal patterns; Predictive modeling

5.1 Introduction

Location is known to be highly influential in the success of a new business opening
in a city. Where a business is positioned across the urban plane not only determines
its reach by clienteles of relevant demographics, but more critically, it determines its
exposure to a local ecosystem of businesses who strive to increase their own share
in a local market. The types of businesses and brands that are present in an urban
neighborhood in particular has been shown [Jensen, 2006] to play a vital role in de-
termining whether a new retail facility will grow and blossom, or instead whether it
will become a sterile investment and eventually close. Competition is nonetheless only
one determinant in retail success. How a local business establishes a cooperative net-
work with other places in its vicinity has been shown to also play a decisive role in
its sales growth [Daggitt et al., 2016]. Local businesses can complement each other
by exchanging customer flows with regards to activities that succeed each other (e.g.
going to a bar after dining at a restaurant), or through the formation of urban enclaves
of similar local businesses that give rise to characteristic identities that then become
recognisable by urban dwellers. A classic example of the latter is the presence of many
Chinese restaurants in a Chinatown [Zhou, 2010].

It is therefore natural to hypothesize that the rise of a business lies on the complex
interplay between cooperation and competition that manifests in a local area. Mea-
suring these cooperative and competitive forces in a city remains, however, a major
challenge. Today’s cities change rapidly driven by urban migration and phenomena
such as gentrification as well as large urban development projects, which can lead to
shops opening and closing at increasing rates. Already in 2011, the fail rate of restau-
rants in certain cities, such as New York, was as high as 80% 1 with some businesses
closing in only a matter of months. A similar picture has been reported recently for
high street retailers in the United Kingdom with part of the crisis being also attributed

1https://www.businessinsider.com/new-york-restaurants-fail-rate-2011-8
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to the increasing dominance of online retailers 2.
Data generated in location technology platforms by mobile users who navigate the

city provides a unique opportunity to respond to the aforementioned challenges. In
addition to providing quick updates, in almost real time, on the places that open (or
close) in cities - thus accurately reflecting the set of local businesses in a given area -
they offer a view on urban mobility flows between areas and places at fine spatial and
temporal scales. The ability to describe these two dimensions of urban activity - places
and mobility - paves the way for measuring the impact, either positive or negative,
that retail facilities have on each another. In this chapter, we harness this opportunity,
building on a longitudinal dataset by Foursquare that describes mobility interactions
between places in 26 cities around the world. Our contribution are summarized in
more detail in the following:

• Detecting patterns of cooperation in urban activity networks: We model
businesses in a city as a connected network of nodes belonging to different activ-
ity types. We examine the properties of these networks spatially and temporally.
With respect to a null network model, we observe higher clustering coefficient,
higher modularity and lower closeness centrality scores which are indicators of
strong tendencies for local businesses to cluster and form collaborative communi-
ties that exchange customer flows. In numerical terms, the modularity of urban
activity networks is ⇡ 0.6 relative to the corresponding null models with ⇡ 0.15.

• Measuring the impact of new businesses using spatio-temporal met-
rics: We next model the impact of a new business opening in a given area.
Previous work [Daggitt et al., 2016] conducted a preliminary analysis of homo-
geneous impact of new businesses. However, this work was limited as it did
not isolate numerous contributing factors such as whether multiple new venues
have opened when attributing the impact to a given business. We develop a
methodology more robust to bias through the use of spatio-temporal filters.
Moreover our approach generalizes to heterogeneous interactions between venue
types present in an urban system by considering impact measurements between
different venue categories (e.g. measuring the impact of a restaurant to a bar).
Notably, we observe that the opening of a Fast Food Restaurant near other Fast
Food Restaurants results in the most significant competition, with a median de-
cline in customer flows of 21% over 6 months. We also show how this competitive
ranking can be created for heterogeneous categories.

• Predicting optimal retail environment using urban dynamics and net-
work topology measures: Lastly, we built a supervised learning model to
predict the impact of multiple new venues on an existing venue. We incorpo-
rated additional network metrics into our model to consider the urban environ-
ment of a given venue and its capacity to operate cooperatively with other places
in vicinity. We observe significant heterogeneity between categories where some
have more predictable trends while others have greater variations. In light of this

2https://www.theguardian.com/cities/ng-interactive/2019/jan/30/high-street-crisis-town-centres-
lose-8-of-shops-in-five-years
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heterogeneity across venue types we tailor supervised learning models by train-
ing them in a manner that reflects the idiosyncrasies of its category. Despite
the inherent difficulty of the prediction task, due to the multi-factorial nature of
dynamic and complex interactions in retail ecosystems, our results suggest that
incorporating complex signals in predictive machine learning frameworks can of-
fer meaningful insight in real world application scenarios. For certain business
categories, AUC scores above 0.7 are consistently attained, whereas complex
network metrics consistently boost the performance of classifiers offering a clear
advantage over baseline methods.

Our results are especially important in a digital age with shifting customer prefer-
ences as physical business are forced to adapt to remain competitive. Our methodology
can enable a better understanding of interactions within local retail ecosystems. Mod-
ern data and methods, such as those employed in the present chapter, not only can
allow for monitoring these phenomena at scale, but also offer novel opportunities for
retail facility owners to assess the risk of opening a new venture through location-based
analytics. Similar methods can be applied beyond the scope of the retail sector we
study here, namely for urban planning and innovation e.g. by assessing the impact of
opening transport hubs, leisure and social centers or health and sanitation facilities in
city neighborhoods.

5.2 Related Work

Understanding retail ecosystems and determining the optimal location for a business to
open have for long been questions in operations research and spatial economics [Ghosh
and Craig, 1983, Eiselt and Laporte, 1989]. Compared to modern approaches, these
methods were characterized by static datasets informing on population distribution
across geographies, tracked through census surveys and the extraction of retail catch-
ment areas through spatial optimization methods [Applebaum, 1966]. Gravity models
on population location and mobility later became a common approach for site place-
ment of new brands [Gibson and Pullen, 1972].

The availability of spatio-temporally granular urban datasets and the popular-
ization of spatial analysis methods in the past decade led to a new generation of
approaches to quantify retail success in cities. In this line, network-based approaches
have been proposed to understand the retail survival of local businesses through qual-
ity assessment on the interactions of urban activities locally [Jensen, 2006]. In addition
to networks of places, street network analysis emerged as an alternative medium to
understand customer flows in cities, with various network centrality being proposed
as a proxy to understand urban economic activities [Crucitti et al., 2006, Porta et al.,
2012].

More recently, machine learning and optimization methods have been introduced
to solve location optimization problems in the urban domain, focusing not only on re-
tail store optimization [Karamshuk et al., 2013] but also real estate ranking [Fu et al.,
2014] amongst other applications. Location technology platforms such as Foursquare
opened the window of opportunity for customer mobility patterns to be studied at
fine spatio-temporal scales [D’Silva et al., 2018b, D’Silva et al., 2018a] and moreover,
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semantic annotations on places presented direct knowledge on the types of urban ac-
tivities that emerge geographically and led to works that allowed for the tracking and
comparing of urban growth patterns at global scale [Daggitt et al., 2016]. Closer to
the spirit of the present chapter from a modelling perspective, the authors in [Hi-
dalgo and Castanẽr, 2015] study co-location patterns of urban activities in Boston
and subsequently recommend areas where certain types of activities may be missing.

5.3 Dataset Description

Within the last decade, Online Location-based Services have experienced a surge in
popularity, attracting hundreds of millions of users worldwide. These systems have
created troves of data which describe, at a fine spatio-temporal granularity, the ways
in which users visit different businesses and areas of a city. We hypothesize these
data can be used to build a predictive model of the impact of a new venue on the
surrounding businesses. To this end, we utilize data from Foursquare, a location tech-
nology platform with a consumer application that allows users to check into different
locations. As of August 2015, Foursquare had more than 50 million active users and
more than 10 billion check-ins [VentureBeat, 2015].

The basis of our analysis is a longitudinal dataset from 26 cities that spans three
years, from 2011 to 2013, and included over 80 million checkins. We aggregate data
from the 10 most represented cities in North America3 and the 16 most represented
cities in Europe4. A summary of our data is described in Table 5.1.

For each venue, we have the following information: geographic coordinates, specific
and general category, creation date, total number of check-ins, and number of unique
visitors. The specific and general categories fall within Foursquare’s API of hierarchical
categories. A full list of the categories can be found by querying the Foursquare API
[Foursquare, 2018]. The dataset also contains a list of transitions within a given city.
A transition is defined as a pair of check-ins by an anonymous user to two different
venues within the span of three hours. It is identified by a start time, end time, source
venue, and destination venue. We consider the set of venues V in a city. A venue
v 2 V is represented with a tuple < loc, date, category > where loc is the geographic
coordinates of the venue, date is its creation date, and category is the specific category
of the venue. The creation date, date, for a given venue refers to the date it was added
to the Foursquare platform. Prior work by Daggitt et al. [Daggitt et al., 2016] showed
that across all cities when examining the number of venues added per month, the last
20% of venues were new venues rather than existing venues added to the database for
the first time. We apply this methodology to all cities and define new venues as those
that fall within the last 20% of venues added to Foursquare for that city.

3North American cities are: Austin, Boston, Dallas, San Francisco, New York City, Houston, Las

Vegas, Los Angeles, Toronto, Washington.
4European cities are: Amsterdam, Antwerpen, Barcelona, Berlin, Brussels, Budapest, Copen-

hagen, Gent, Helsinki, Kiev, Madrid, Milano, Paris, Prague, Riga, London
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(a) Paris

(b) London

Figure 5.1 – Network visualization of categories during the evening in Paris (a) and
London (b). Different colors represent different Louvain communities [Blondel et al.,
2008]. We see clusters of travel and transport (blue), nightlife (red), and shopping
activities (green).
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5.4 Urban Activity Networks

We begin by examining transitions between Foursquare venues of different category
types that we refer to as urban activities. While we are considering a mix of categories
users check in in the city, our focus from an analysis and modelling point of view will be
focusing on urban activities corresponding to retail establishments (e.g. restaurants).

5.4.1 Visualizing Mobility Interactions

To visualize an urban activity network, we create a graph Gi for each city i, where the
set of nodes Ncat is the set of business categories defined previously in Section 5.3. In
this network, business categories are linked by weighted directed edges es!d. A directed
link is created from the source category cs to the destination category cd if at least one
transition happens during the time window we consider (e.g. weekend, weekday, or a
period of hours during a day). Thus, the weight of each edge is proportional to the
total number of transitions from the source category to the destination category for
the particular time period of interest for each city. The weights are then normalized
by the total number of check-ins that occurred at cd. Therefore, the weight can be
interpreted as the percentage of customers of cd who come from cs. To eliminate
insignificant links, we filter out edges that have less than 50 transitions total. We
examine two time intervals of interest: morning AM (6am-12pm) and evening PM
(6pm-12am).

In Figure 5.1 we visualize the network in the evening for two cities, London and
Paris. The colors represent different communities, obtained using the Louvain com-
munity detection algorithm [Blondel et al., 2008]. Further, the size of nodes is pro-
portional to their degree. This visualization, as one example, describes similarities
and variations in the structure of urban activities in different cities. We observe an
underlying common structure for the two cities, even though cultural distinctions can
also be noted. We have observed a similar pattern across many cities. In terms of
similarity in network structure, we see a shopping cluster (green) centered around De-
partment Stores; a cluster for travel and transport (blue) centered around categories
such as Train Stations and Subways; a leisure cluster (light brown) centered around
Plazas and containing outdoor categories (e.g. Parks, Gardens, Soccer Stadiums). On
the other hand, differences in network structure become also apparent. We note for
instance how recreation activities in the evenings differs across the two cities. London
has a considerably large nightlife cluster (red) centered around pubs from which a
number of different nightlife categories unfold (e.g. Nightclubs, restaurants of differ-
ent types, Theater). Paris is more segregated and contains two nightlife clusters: one

Region # venues # new venues # transitions
North America 94,094 29,552 43,200,432

Europe 101,101 40,275 44,600,446
Total 195,195 69,827 87,800,878

Table 5.1 – Foursquare dataset description for 10 North American cities and 16 Euro-
pean cities.
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cluster around French Restaurants (red) linked to Coffee Shops, Theaters, Nightclubs;
and another cluster (gray) centered around Bars which contains Food Trucks, Fast
Food Restaurants, and Music Venues. This dichotomy translates to the presence of
two classes of customers each of which adheres to different types of activity sequences
during nighttime. Another observation is regarding variations in network structure
over time: the Coffee Shop category in London is separated from the nightlife clus-
ter, which may indicate different kind of customer behaviors between daytime and
evening. Interestingly, we also see associations emerging between types of businesses.
Taking Paris as an example, French Restaurants interact a lot with Coffee Shops and
Nightclubs and so do Bars with Food Trucks. In both cities, Coffee Shops are drawing
crowds from Subways, Toy Stores with Electronics Stores and Sport Stores.

Overall, these results suggest strong structural characteristics in urban activity
networks where different categories of places form interaction patterns of cooperation,
where mobile users move from one to the other. Competition on the other hand
manifests in a more implicit manner in the network in two ways: first, retail facilities
that are grouped in the same node (e.g. Bars) have to share customers that have been
previously performing a different activity (e.g. going to a Restaurant) and second,
through activities that do not share an edge in the network and as a result they do
not interact with one another in terms of mobility patterns.

5.4.2 Network Properties

We next quantify the structure of these networks in terms of different network proper-
ties considering also different time intervals. For our two cities of comparison, we list
the network metrics in Table 5.2 and enlist those next:

• the average clustering coefficient, < C >, is the tendency of categories to form
triangles, that is to gather locally into fully connected groups. It varies between
0 and 1 with higher values implying a higher number of triangles in the network
(see [Newman, 2010] for more details).

• the average closeness centrality, < Cc >, is the average length of the shortest
path between the nodes and here accounts for the tendency of categories to be
close to each in terms of shortest paths [Newman, 2010]. It varies between 0 and
1 where a higher closeness centrality score for a node suggests higher proximity
to other nodes in the network.

London Paris
AM Random AM PM Random PM AM Random AM PM Random PM

# of nodes 204 204 208 208 180 180 149 149
# of edges 2271 2271 3055 3055 2160 2160 2184 2184
< C > 0.657 0.304 0.645 0.301 0.744 0.134 0.645 0.173
< Cc > 0.313 0.552 0.402 0.541 0.352 0.513 0.434 0.551

Q 0.583 0.150 0.608 0.131 0.588 0.148 0.641 0.161

Table 5.2 – Network metrics for London and Paris for during the morning AM (6am
- 12pm) and evening PM (6pm-12am). These metrics are compared to an

Barabási-Albert model (Random).



CHAPTER 5. DYNAMICS OF RETAIL ENVIRONMENTS 60

• the modularity, Q, is a well established metric indicating how well defined com-
munities are within the network [Blondel et al., 2008]. Modularity values fall
within the range [−1, 1], with greater positive values indicating greater presence
of community structure.

We compare our network metrics to a random baseline which maintains the degree
distribution, a Barabási-Albert network [Albert and Barabási, 2003], in Table 5.2. The
comparison with the null model provides an indication of how significant empirical ob-
servations are with respect to the random case. First we note that for all three metrics
the real networks are very different to the corresponding null models. In general, high
clustering coefficient and modularity together with a lower closeness centrality scores
point to the tendency of local businesses to form significantly tight clusters that are
well isolated from one another. Furthermore, these networks properties vary for dif-
ferent period of the day and are subtly different from city to city. We see for instance
closeness centrality being higher in the evening relative to morning hours whereas and
the average clustering being lower in the evening. This means that categories are less
locally connected to each other during evening hours. This could be due to the fact
that users have more well planned series of movements in the morning following daily
commuting routines. For instance, users are more likely to travel directly from a train
station to an office in the morning on a weekday while they may instead wander from
a pub to a bar in the evenings.

Looking closer at the network modularity scores presented in Table 5.2 we note a
clear partitioning of different categories into communities with scores around 0.6 for
both cities compared to much smaller values ⇡ 0.15 for the null model. Modularity
values increase in the evening in both cities. This translates to a stronger community
structure, suggesting customers may be less likely to experience activities in different
category communities than in the morning and confirm the dichotomies from previous
sections such as Coffee Shops vs. Pubs in London and Bars vs. French Restaurants
in Paris). Finally, the similarity in terms of network properties values between the
two cities, as well as the prominent community structure in both suggest that the
hypothesis that the organization of the retail business ecosystem is similar across
cities is a plausible one. This is true to a certain degree nonetheless, as variations are
also noted due to apparent cultural differences.

5.5 Measuring Impact

In this section we examine the impact of new businesses on other establishments within
their vicinity. Previous work [Daggitt et al., 2016] has considered the homogeneous
impact of a new business opening, that is the impact that venue categories have on
categories of the same type (e.g. the impact of a new Coffee Shop on another Coffee
Shop). In this section we generalize the impact metric to heterogeneous mixes of
categories, and develop a methodology more robust to spatio-temporal bias effects.

5.5.1 Spatio-temporal Scope of Impact

To measure the impact of a new venue opening in an area we need to define its
geographic scope. We define the spatial neighborhood of a venue as the set of venues
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that are located within the radius rs. Formally, we define the spatial neighbourhood
of a venue vn as:

SN(vn, rs) = {ve 2 V : dist(vn, ve) < rs ^ vn 6= ve} (5.1)

where V is the set of venues in the city and dist(vn, ve) is the Euclidean distance
between venue vn and ve.

Further we introduce a similar notion across the temporal dimension. In particular,
given a temporal radius rt, then two businesses opening within rt are considered to be
temporal neighbors. Formally, we define the temporal neighbors of a venue vn as:

TN(vn, rt) = {ve 2 V : t_dist(vn, ve) < rt ^ vn 6= ve} (5.2)

where t_dist is the difference in the number of months between the creation date of
vn and ve. Finally, we define WT as the temporal window of observation, i.e. the total
period in months over which we measure the number of check-ins at a given business.

5.5.2 Measuring Impact

Defining the impact formula

We base our impact metric Ivn(ve, tvn) of a new venue vn on an existing venue ve on the
metric introduced in [Daggitt et al., 2016]. This is defined as the normalized number
of transitions for an existing venue in a specific time period prior to and after a new
venue opens in its spatial neighborhood. We define the number of check-ins during
the posterior time interval as follows:

Cpost
vn

(ve, tvn ,∆t) =

tvn+∆t−1
X

d=tvn

nve (d, d+ 1) (5.3)

This calculates the sum of check-ins at venue ve, nve , after the opening of vn at tvn
and over a period of ∆t = WT/2 months. We define the number of checkins during
the prior time interval as follows:

Cprior
vn

(ve, tvn ,∆t) =

tvn−∆t−1
X

d=tvn

nve (d− 1, d) (5.4)

Similarly, this calculates the number of check-ins over the period of ∆t months
before the opening of vn. Formally, the impact metric is defined as follows:

Ivn(ve, tvn ,∆t) =
Cpost

vn
(ve, tvn ,∆t)/Ncat(tvn , tvn +∆t)

Cprior
vn (ve, tvn ,∆t)/Ncat(tvn , tvn −∆t)

(5.5)

Ncat(tvn , tvn +∆t) (and respectively Ncat(tvn , tvn −∆t)) is the total number of check-
ins to all businesses of ve’s category during the period [tvn , tvn + ∆t] (respectively
[tvn , tvn −∆t]). This normalizing factor takes into account both the background trend
of the category and the potential season effect which can occur in the market. This
factor is calculated at a per city level.
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Category Median Impact % Businesses I < 0 # Businesses
Fast Food Restaurants 0.79 67.9 28

Bakeries 0.81 73.1 26
Pizza Places 0.81 69.3 39
Coffee Shops 0.84 66.4 202

Sandwich Places 0.84 62.0 63

Table 5.3 – Ranking of the categories which have the strongest homogeneous
negative impact.

(a) Effect of the size of the spatial radius on the number of data points when rt is set to 3
months. An optimal value of rs is drawn for 100 m.

(b) Effect of the size of the temporal radius on the number of data points when rs is set to
100m. The number of data points continues to decrease for rt > 1 months.

Figure 5.2 – Tuning the spatial and temporal parameters of our model.
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Impact metric interpretation

Above, we define Ncat(tvn , tvn +∆t) as the total number of check-ins to all businesses
of a specific category. We define the market share of a given venue as the total number
of check-ins to that venue as a percentage of Ncat. Using the impact metric defined
in Section 5.5.2 we can calculate the percentage of market share gained or lost by
venue ve after the opening of venue vn. For example, if vn is a clothing store and
ve is a sandwich shop Ivn(ve, tvn ,∆t) = 1.2 means the market share of venue ve (the
sandwich shop) increased by 20% over the ∆t months following the opening of vn (the
clothing store). Conversely, a number below 1 means the market share of the venue ve
decreased after the opening of venue vn, suggesting the new venue was a competitor.
For the example above if Ivn(ve, tvn ,∆t) = 0.81 this would correspond to the market
share of venue ve (the sandwich shop) decreasing by 19% over the ∆t months following
the opening of vn (the clothing store).

5.5.3 Tuning Spatial and Temporal Windows

A major challenge in analyzing correlation in a complex system is to implement a
methodology which can limit the effect of potential hidden variables which may bias
the observed correlation.

For our model, our methodology must isolate the impact of one business in con-
stantly changing neighborhoods. For this reason, as a first analysis, we set rt to
∆t = WT/2, that is half of the window of observation, and we only choose a pair
(vn, ve) if the new business vn has no temporal neighbors (defined above in Equa-
tion 5.2). In other words, if we set ∆t = WT/2 = 3 months, we only measure the
impact of vn on ve if ve was open at least 3 months before vn and if no other business
opened in the spatial neighborhood of ve during [tvn − ∆t, tvn + ∆t]. We apply this
form of filtering to isolate the confounding effect of multiple businesses opening next
to each other. This naturally introduces a trade-off with regards to the data points
considered for our measurement.

The number of data points resulting from our approach depends on two parameters.
The spatial radius rs and the temporal radius rt. As shown in Figure 5.2(a) where rt
is fixed at 3 months, when the spatial radius is small the probability of a new business
nearby opening is low. Hence the number of data points remains small as well. As the
spatial radius increases so does the number of data points until a maximum is reached
after which it decreases again. This likely due to the fact that after a certain distance
threshold the probability of finding only one business opening within rs decreases as
well. Based on these results we set parameter rs to 100 meters for our subsequent
analysis. We apply the same reasoning for tuning the temporal radius rt setting rs to
100m. However, tuning rt is more challenging. Our hypothesis is that after a time
period, tvn + rt, the positive (or negative) impact of a new business will become stable
within the scope of a neighborhood. After this period of time, vn will be considered
as part of the baseline of the neighborhood, when examining the impact of future new
venues. Our hypothesis is that as rt increases, the less likely we are to be considering
other new shops that are interfering with the impact we measure. Figure 5.2(b) shows
that the number of data points steadily decreases from rt = ∆t > 1 month onwards.
This implies that the optimal value for rt in terms of data points is smaller than
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Figure 5.3 – Plot of the impact measure of Coffee Shops on Burger Joints. Each column
is a Burger Joint for which only a Coffee Shop opened in its neighborhood during a
period ∆t = 3 months. We see that 37/56 joints are over I = 1, that is 66% of Burger
Joints have been impacted negatively by the opening of a Coffee Shop.
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Figure 5.4 – Matrix of median impact of categories on each other. The size of the
circles represent the number of pairs of businesses which were used (e.g. Coffee Shops
- Coffee Shops is 200). The color varies according to the median impact value of
the pair, dark blue corresponds to impact below 1 (representing competition), grey
represents neutral median impact equal to 1, and dark red translates to high median
impact (representing cooperation). Read: French Restaurants (9th row) have a median
impact on Bars (2nd column) of 1.2 and less than 100 pairs were counted.
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one month. However, as suggested earlier increasing rt limits the risk to consider
previously new venues that opened just before the time window of interest in the
impact measure. For this reason we choose a value of rt longer than one month. For
the analysis described below, we set rt to three months.

5.5.4 Measuring Impact on Retail Activity

We perform the analysis using the aforementioned setup on the 16 most popular re-
tail categories and aggregated data from the 26 cities listed above in Section 5.3. We
aggregated data from these cities based on observed similarities in consumer trends as
discussed in Section 5.4. This enabled us to build a set of 10, 238 businesses. The top
16 retail categories examined were as follows: Bakeries, Bars, Burger Joints, Cloth-
ing Stores, Cocktail Bars, Coffee Shops, Fast Food Restaurants, French Restaurants,
Grocery Stores, Hotels, Italian Restaurants, Nightclubs, Pizza Places, Pubs, Sandwich
Places, and Supermarkets.

Figure 5.3 shows the impact measured for each Burger Joint where a Coffee Shop
opened within its spatial neighborhood. We observe a heterogeneous distribution
of impact scores. However 66.1% of the 56 burger joints in this configuration were
impacted negatively. The median impact is 0.85 which corresponds to a 15% decrease
in demand to Burger Joint when a Coffee Shop opens within 100 meters. In this
analysis, due to the skewness of the impact measures distribution, we use the median
and the percentage of positively (or negatively) impacted businesses as key numbers
to represent the directed impact of pairs of categories. Furthermore, we note the
structure of Burger Joints in Figure 5.3. It is composed of two parts: a high impact
peak followed by a linear decline. Interestingly, this structure is consistent across all
pairs of categories, generalized with a peak of ⇠ 10% of high impacts shops (I > 1.5),
followed by a linear decline of impact (⇠ 80 − 90% of shops), and succeeded with an
optional ⇠ 10% discontinuously negatively impacted shops, representing competition
in the area (0 < I < 0.5).

In Figure 5.4 we show the matrix of median impact of our top 16 retail cate-
gories on each other. A few observations are worth noting. First, impact scores on
the diagonal tend to be negative. This observation shows and quantifies the direct
competitive effect of businesses belonging to the same category. Second, most impact
scores are negative suggesting the general tendency for retail establishments to com-
pete. Third, some cooperative pairs are noticeable (e.g. Hotels on Pizza Place: 70%
of positive impact, median impact: 1.2; Nightclubs on French Restaurants: 67% of
positive impact, median impact: 1.8). We also note that certain network links seen
in Figure 5.1 between categories can be found as positive impact pairs in the matrix,
such as Nightclubs and French Restaurants and Fast Food Restaurants and Bars.

Building a competitive ranking

Using the aforementioned results we list a ranking of homogeneous competition in
Table 5.3. This ranking shows the top categories in terms of negative impact, when
a business of the same category opens within 100 meters. The list suggests that
fast food restaurants feature the strongest homogeneous negative impact (−21%),
closely followed by other businesses where people may visit for food or a snack, namely
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Bakeries, Pizza Places, Coffee Shops, Sandwich places. Note also the high probability
of negative impact for Bakeries with a 73.1% chance to be negatively impacted.

Our methodology can also be applied to heterogeneous pairs of businesses to deter-
mine which new business type would create the greatest competition or cooperation
for an existing business. Using Coffee Shops as an example, we saw in Table 5.3 that
a new Coffee Shop creates a median impact of I = 0.84. We similarly see in Figure
5.4 a competitive effect from new Burger Joints, which result in a median impact of
I = 0.85. A competitive ranking of this type can be established for all categories to
better understand trends in the impact of new businesses.

To our knowledge the methodology described above is novel, and despite the limi-
tations that we discuss in more detail in Section 6, it allows for the principled quan-
tification of the impact that new businesses have in the retail ecosystem they operate.
We exploit this formulation in the context of a prediction task in Section 5.6 where
impact scores are modeled as target labels and the goal becomes to predict the impact
of new businesses opening on their local environment. From an economic perspective
these results highlight the most competitive types of business categories that operate
in cities and moreover the highlight cases of categories where cooperation in terms of
customer flows is more likely to emerge.

5.5.5 Takeaways

The methodology we have developed in Section 5.5.2 can enable one to quantify com-
petitive and cooperative behaviors between pairs of categories. Further, it highlights
general trends, such as competition between food-related categories and cooperation
between certain clusters of categories. However, reducing the complexity has two lim-
itations. It limits the number of data as it filters out neighborhoods with more than
one business opening within WT . It also over-simplifies the problem. Often, for a
given pair of categories, there is heterogeneity in the impact measure for those two
categories (e.g. there is a range in the impact of a new Coffee Shop on a Bakery). This
suggests there are complex interactions between a new venue and its environment and
there may be additional factors to consider. In the following sections, we study the
impact of combinations of multiple new businesses coupled with the network topology
of their environment. This methodology leads to insights which can help determine
the optimal location for a new venue.

In Section 5.6, we implicitly considered a more complex interaction setup by taking
into account the combinations of multiple new businesses, modeled as features, and
coupled those with network topological characteristics of the local environment. This
methodology led to insights which can help determine the optimal location for a new
venue of a particular category.

5.6 Predicting New Business Impact

In Section 5.5, we explored the impact of the opening of a single business on its
neighborhood. Next, we investigate in the form of a prediction task the cumulative
impact of multiple shops opening within the same spatial and temporal neighborhoods,
as defined in the previous section.
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Category Coffee Shops Bars Italian Restaurants Hotels French Restaurants Bakeries
Train/test size 1956/218 2275/253 1629/181 2129/237 1631/181 1526/170

AUC (Business Features Baseline) 0.611 0.603 0.618 0.621 0.701 0.771
AUC (Network Features Baseline) 0.549 0.551 0.564 0.557 0.591 0.584

AUC (All Features) 0.627 0.642 0.658 0.702 0.742 0.861

Table 5.4 – AUC Scores for a subset of categories using a Gradient Boosting model.

5.6.1 Prediction Task

To illustrate our methodology, let us consider the example of French Restaurants. To
understand the impact of new venues on French Restaurants in Europe and North
America, we consider all new venues that opened within the spatial radius rs of a
French restaurant within a given period rt. We then examine how the demand of
that given French restaurant changed after the opening of the new venues. We aim
to predict whether the opening of those new venues will have a positive or negative
impact on the French restaurant given network features about the venue, and a count
of the types of venues that opened within rt. We consider this prediction task for all
retail categories aiming to understand how each category is impacted by new venues
opening nearby.

We model the impact of new venues as a binary classification task where the impact
on the existing venue is the dependent variable and the features described below in
Section 5.6.2 are independent variables. We further represent a positive impact label as
1 and a negative impact label with a 0. Considering a supervised learning methodogy,
our goal then becomes to learn an association of the input feature vector x with
a binary label y. We experiment with a number of supervised learning algorithms
described in the following paragraphs. All network features were min-max normalised.
We split our dataset into training and test sets with the training set consisting of
80% of the data and the test set consisting of the remaining 20%. We perform 5-fold
cross-validation to pick the best performing model and report the subsequent accuracy
of prediction. Finally, we also sub-sample our dataset performing our predictions on
a balanced dataset of positive and negative classes.

5.6.2 Extracting features

Business features

When a new venue vn opens at time tvn within a given spatial neighborhood SN(vn, rs)
we count all other businesses which opened within the temporal neighborhood TN(vn, rt)
of vn and in the same spatial neighborhood SN(vn, rs). For each existing venue ve,
the counts of each category of venue within its spatial and temporal neighborhood is
encoded as a feature. We refer to these features as Business features.

Network features

As described above, we utilize network topology measures at the venue neighborhood
level considering each venue ve 2 SN(vn, rs) where each venue is a node in the network.
Edges in the network represent the number of transitions from the source venue to the
destination venue. These features are described as follows. The in-degree of a venue ve
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is the number of edges coming from the other venues to ve. The out-degree of a venue
ve is the number of edges coming from ve to the other venues. The degree of ve is the
total number of edges between ve and the other venues. The closeness centrality of a
venue ve is the average of its shortest paths to all the other venues of the network. The
diversity of a venue ve is defined by the Shannon equitability index from information
theory which calculates the variety of the neighbors of venue ve [Sheldon, 1969]. These
features give a representation of how well a given venue is connected to the rest of the
city network and also describe the distribution of its customers.

5.6.3 Evaluation

In this section, we report our findings on the predictive ability of the features as well
as the supervised learning models we employ in the prediction task. We compare the
predictions against different baselines:

• Network connectivity features, as described in section 5.6.2.

• Business features, as described in section 5.6.2.

We first discuss how our combined model outperforms both baselines, then show the
predictive capabilities of different categories, and lastly discuss the value of network
metrics in our prediction task.

Model Selection: We explored a number of different models, including Logistic
Regression, Gradient Boosting, Support Vector Machines, Random Forests, and Neu-
ral Networks. As described above, we train our models to predict the impact of new
businesses on a given type of retail category. When aggregating our data across all
categories and working to predict the impact of a new venue on any type of existing
venue category, this resulted in models with low predictive power. As discussed previ-
ously in Section 5.5, this suggests there is significant heterogeneity of behavior across
different category types and therefore a training strategy tailored for each category
would be more effective. To take this into account, we segregated our data by cate-
gory and built a separate model for each type of category. We individually modelled
the ten retail categories with the largest total number of data points. These categories
were as follows: Bars, Hotels, Coffee Shops, Italian Restaurants, French Restaurants,
Bakeries, Clothing Stores, Pizza Places, Nightclubs, and Grocery Stores. To compare
our supervised learning models, we calculated the average AUC scores across all ten
categories using our different feature baselines.

Our combined models, using both business and network features, had a resulting
AUC of 0.611 for Logistic Regression, 0.687 for Gradient Boosting, 0.631 for Support
Vector Machines, 0.640 for Random Forest, and 0.667 for Neural Networks. These
results suggest that venue-specific metrics can support the prediction of the impact
of a new venue. Across all categories, we saw that Gradient Boosting was the most
robust model for our task with the highest average AUC across all ten categories. As
such, we use Gradient Boosting to further analyze our models below.

Variations across Categories We next examine the predictability of different
category types. Table 5.4 shows the predictability of six of the ten categories trained
using a Gradient Boosting model. The AUCs of the remaining categories are as fol-
lows: Clothing Stores (AUC: 0.664, train/test size: 1362/152), Pizza Places (AUC:
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Figure 5.5 – ROC Curves of Bakeries for the performance of each class of features and
for the combined model.

0.682, train/test size: 1287/143), Nightclubs (AUC: 0.686, train/test size: 622/70),
and Grocery Stores (AUC: 0.690, train/test size: 581/65). We see a range in the pre-
dictability of different venue types: Bakeries have the highest AUC of 0.861 and Bars
have the lowest AUC of 0.627. This suggests that certain activities adapt to a more
heterogeneous set of environment, making them more challenging to predict. These
more challenging categories tend to be those that are ubiquitous and general, such as
Bars and Coffee Shops.

The Value of Network Metrics: To understand the influence of different feature
classes on our results, we run our Gradient Boosting model on each class separately and
in combination. We report our observations in Figure 5.5 and note that for Bakeries
the category features alone reach AUC of ⇡ 0.77, the network features alone reach AUC
of ⇡ 0.60 and combined model leads to a higher overall AUC of ⇡ 0.85. These results,
which were consistent across all retail categories, suggest using network features in
lieu of venue features alone supports our prediction task. We see that the two feature
classes together have the best prediction results, suggesting that the impact of new
venues is driven by a number of forces, including the network connectivity, which
modulate the nature of their interactions within their neighborhood.

5.7 Discussion And Future Work

Our methodology highlights the power of complex networks measures in building ma-
chine learning prediction models. This is especially valuable for systems in which
interactions between agents must be taken into account. We began in Section 5.4 of
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this chapter by detecting patterns of cooperation in urban networks and quantifying
similarities and differences in network structure across cities. Next, in Section 5.5 we
measured the impact of new businesses isolating cases in which exactly one new venue
opened within a given region. Using urban network topology measures and our busi-
ness impact metrics, we developed a machine learning model to predict the optimal
location for a new business in Section 5.6. The novelty of our approach in methodolog-
ical terms stems from the use of complex networks measures, combined with machine
learning methods to tackle modern societal challenges. These results can support pol-
icy makers, business owners, and urban planners as they have the potential to pave
the way for the development of sophisticated models describing urban neighborhoods
and help determine the optimal conditions for establishing a new venue.

One of the limitations of the work presented here is that we only examine the impact
of retail venues. However, this analysis can be more broadly applied to venues of other
categories as well. The present study sets the frame for further general studies. As one
example of future work, one could examine the impact of new bus stops or transport
hubs on those venues within their proximity. Additionally, in this chapter we conduct
a preliminary examination of the variations in network trends across cities worldwide.
Future work could expand upon this to explore the duality between general network
trends and cultural consumer idiosyncrasies across cities. Our analysis could also be
further expanded by considering temporal network analysis, examining the variations
in features across different time intervals of interest.



6
Conclusion

The explosion of connected devices all around the world has been changing the eco-
nomical landscape by revolutionizing the way people interact, consume and move.
These actions leave traces, footprints are left by some users for most of their actions
and social dynamics emerge.

These traces are an opportunity to better understand collective behaviors. Nowa-
days, the plurality of data available is such that it requires adapting and combining a
plurality of existing methods in order to enlarge the global vision one has on a given
system. This thesis has been the opportunity for me to investigate some of the hottest
topics in data analysis. From network science to machine learning, I have explored
different ways to model and analyze data.

We illustrated the complexity of dynamics which can emerge from simple statistical
models of society, even when models follow simplistic rules. We showed that simple
models can be helpful to analyze social phenomena while keeping in mind that they
do not allow for drawing any rigorous conclusion about the real world.

I, then, continued my exploration of complex systems modeling working on real
world data - bike sharing system users data. We worked on describing temporal
dynamics of long-term bike sharing system customers. We were the first to conduct
such kind of analysis on individual dynamics. We highlighted a low seasonal effect
in bike usage and two main trajectories of users: the majority of users (⇠ 60%)
leaves the system after at most one year; and the minority (⇠ 40%) remains in the
system for several years (average ⇠ 3 years). We described the usage profile and socio-
demographic profile of these two classes of users. Then, we used unsupervised learning
(K-means algorithm) to generate segments of customers and we compared results to
a static baseline from [Vogel et al., 2014].

Moving forward in the analysis of temporal data and collective dynamics, we ex-
plored tools to describe and visualize differences between temporal partitions. We used
them to illustrate essential differences between global methods and local methods of
temporal complex networks clustering.

Finally, using mobility data from Foursquare, we worked on describing business
cooperation and competition in urban networks. This project enabled us to work on
metrics to measure the impact of new businesses on their neighborhood and build
supervised machine learning models aiming at predicting optimal location for new
businesses. Further, we could illustrate the power of complex networks measures in
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building machine learning models.
In a context of smart cities emergence, where technology is used with the goal to

make transportation and urban planning more efficient, the topics of research pre-
sented in this thesis are of particular interest. They aim at a better understanding
of customer usages and mobility at different layers of a city (public transportation,
people’s customer profiles, etc). Such research can benefit policy makers, business
owners, and urban planners as understanding customers segments and trends can help
design more adapted systems.

The work presented in this thesis can be expanded in many regards. In partic-
ular on the dynamics of retail businesses, we have conducted preliminary work on
business trajectories and the evolution of impact over months. It shows there exists
some significant trends depending on business categories. Taking into account more
temporality in the design of impact metrics and machine learning features (through
temporal networks metrics, opening hours of businesses, etc) together with exploring
the variations in cooperation networks across cities worldwide (i.e. impact of cultural
trends vs. general consumer trends) could help refine our understanding of retail envi-
ronments. These are research projects of interest and I hope to continue contributing
to them in the future.
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A
Résumé long

Au cours des deux dernières décennies les objets connectés ont révolutionné la traça-
bilité des phénomènes sociaux. Les trajectoires sociales laissent aujourd’hui des traces
numériques, qui peuvent être analysées pour obtenir une compréhension plus profonde
des comportements collectifs. L’essor de grands réseaux sociaux (comme Facebook,
Twitter et plus généralement les réseaux de communication mobile) et d’infrastructures
connectées (comme les réseaux de transports publiques et les plate-formes en ligne
géolocalisées) ont permis la constitution de grands jeux de données temporelles. Ces
nouveaux jeux de données nous donnent l’occasion de développer de nouvelles méth-
odes pour analyser les dynamiques temporelles de et dans ces systèmes.

De nos jours, la pluralité des données nécessite d’adapter et combiner une pluralité
de méthodes déjà existantes pour élargir la vision globale que l’on a de ces systèmes
complexes. Le but de cette thèse est d’explorer les dynamiques des systèmes sociaux
au moyen de trois groupes d’outils : les réseaux complexes, la physique statistique et
l’apprentissage automatique. Cette thèse commence par donner quelques définitions
générales et un contexte historique des méthodes mentionnées ci-dessus.

Après quoi, nous montrons la dynamique complexe d’un modèle de Schelling suite
à l’introduction d’une quantité infinitésimale de nouveaux agents, dits altruistes. Nous
trouvons que cette quatité infinitésimale induit un effect catalytique sur l’utilité globale
du système. Ces altruistes permettent au système d’échapper à l’état sous-optimal
normalement atteint lorsqu’il est seulement constitué d’agents égoïstes. À partir de cet
exemple, nous concluons le chapitre en discutant des limites des modèles statistiques
de société.

Le troisième chapitre montre la valeur ajoutée de l’utilisation de jeux de données
temporelles. Nous étudions l’évolution du comportement des utilisateurs d’un réseau
de vélos en libre-service. Ces réseaux se sont développés rapidement à l’échelle mondi-
ale et peu de données temporelles individuelles sont disponibles. Ce chapitre donne une
première description détaillée de l’évolution temporelle de 120827 utilisateurs annuels
répartis sur 5 ans. Nous montrons que l’apparente stabilité générale du système est
constituée d’une distribution hétérogène de trajectoires individuelles. Les utilisateurs
suivent principalement deux trajectoires : environ 50 à 55% quittent le système après
au plus un an. Ces utilisateurs ont une activité médiane basse (env. 40 trajets) ; les
autres 45% correspondent aux utilisateurs plus actifs (activité médiane de 91 trajets
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la première année) qui restent actifs sur plusieurs années (en moyenne 2.9 ans). Ces
utilisateurs réduisent générallement leur activité progressivement (diminution médiane
de -16.3%). Nous montrons que les hommes, d’âge moyen, et vivant en centre-ville
sont sur-représentés parmi cette dernière classe d’utilisateurs. Enfin, nous analysons
les résultats d’un algorithme d’apprentissage automatique non supervisé ayant pour
but de classer les utilisateurs en fonction de leurs profils.

Le quatrième chapitre explore les différences entre une méthode globale et une
méthode locale de détection de communautés temporelles sur des réseaux scientométriques.
La description de réseaux temporels et la détection de communautés dynamiques sont
des sujets de recherche en pleine croissance depuis une décennenie. Cependant, il n’y
a pas encore de réponse unanime à ces questions dû à la complexité de la tâche. Les
communautés statiques ne sont pas des objets bien définis et l’ajout de la composante
temporelle ne fait qu’ajouter à la difficulté. Dans ce chapitre, nous proposons de com-
parer une méthode basique de partionnement global (Global Algorithm (GA)) et une
méthode intuitive de partitionnement temporel (Best-Combination Local Algorithm
(BCLA)), qui a pour but de trouver un compromis entre partitionnement optimal au
temps t et continuité temporel. Nous testons ces algorithmes sur deux jeux de données
bibliographiques. Afin de faciliter la visualisation des dynamiques temporelles nous
introduisons la plate-forme BiblioMaps. Nous montrons que les deux algorithmes ne
présentent que très peu de différences sur le jeu de données aux dynamiques simples,
avec peu d’enchevêtrement entre trajectoires. En revanche, pour le jeu de données
avec une dynamique plus complexe, la méthode locale permet une description plus
fine des trajectoires.

Le dernier chapitre combine l’analyse de réseaux complexes et l’apprentissage au-
tomatique supervisé pour décrire et prédire l’impact de l’introduction de nouveaux
commerces sur des commerces existants.

Comprendre l’impact d’un nouveau commerce sur son écosystème local est une
tâche difficile de par sa nature multi-facteurs. Des études précédentes ont examiné le
rôle collaboratif ou compétitif de commerces de même type (i.e. l’impact d’une nou-
velle librairie sur les librairies existantes) ce qui limitaient leur horizon. Pour mieux
mesurer les performances des commerces dans une ville moderne, il est nécessaire de
considérer plusieurs facteurs interagissant de façon synchrone. Ce chapitre étudie les
intéractions multi-facteurs se produisant dans des villes pour examiner l’impact de nou-
veaux commerces. En utilisant un jeu de données longitudinal venant de Foursquare,
une réseau social géolocalisé, nous modélisons l’impact de nouveaux commerces pour
26 villes de grandes tailles dans le monde. Nous représentons les villes comme des
réseaux de commerces et quantifions leur structure et dynamique temporelle. Nous
relevons une forte structure en communautés dans ces réseaux ce qui souligne les re-
lations de coopération et compétition propres aux écosystèmes de commerces locaux.
Ensuite, nous mettons en place une métrique capturant les impacts de premier ordre
d’un nouveau commerce sur son écosystème locale en tenant compte des intéractions
homogènes et hétérogènes entre commerces. Finalement, nous construisons un modèle
d’apprentissage automatique supervisé pour prédire l’impact d’un nouveau commerce
sur son écosystème commercial local. À l’aide de deux classes de variables explicatives,
tenant en compte la présence de différents types de commerces et le réseau de coopéra-
tivité de ceux-ci, le modèle atteint une aire sous la courbe jusqu’à 80% pour certaines
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catégories de commerces. Notre approche souligne la puissance de l’utilisation de
mesures de topologies de réseaux complexes dans le développement de modèle prédic-
tifs d’apprentissage automatique. Cette méthodologie et resultats pourraient assister
les autorités urbaines et les propriétaires de commerces dans le développement de
modèles pour décrire et prédire des changement dans l’environnement urbain.



B
Dynamics of Scientific Research Communities

We investigated four temporal community detection methods, two global and two local
methods. However, as measures from GA and GPA are very close and measures from
BMLA and BCLA are also very close, we only presented the GA and BCLA methods
in the core of this thesis (see Chapter 4). The two other methods (GPA and BMLA)
and their measures are described below.

B.1 Global Projected Algorithm (GPA)

Here, we want to include some dynamics into our global algorithm. So, as for our
global method, we first run the Louvain algorithm on the total BC network. It results
a set of GA-streams. Then, we define successive BC networks by taking into account
articles sharing at least two references with articles within their own publication pe-
riod. We, now, have a subset of the total BC network (BC network articles minus
the articles not sharing two references within their own period). This subset is on
average 7.8% smaller than the total BC network. For each time period, we define local
communities by grouping together the publications that are in the same GA-streams.
We now have a set of local projected communities in each period. Finally, we compute
historical streams by applying our matching algorithm to the projected communities.
This approach allows the emergence of dynamical events.

B.2 Best-Modularity Local Algorithm (BMLA)

The BMLA is an incrementation of the work from [Morini et al., 2017]. On each time
period, we run N independent runs (we used N = 100) of the Louvain algorithm.
Because of the noise inherent to the Louvain algorithm, these partitions may be a
bit different, while having close values of modularity. BMLA historical streams are
defined by applying the matching algorithm to the partitions with the best modularity
in each time period.
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BMLA Algorithm

Compute the Bibliographic Coupling Graph ;
Split the dataset into temporal windows ∆t ;
for each temporal window do

run N = 100 Louvain algorithm on the instant network;
select the instant partition with the highest modularity Q;

end
Match the most similar communities between successive temporal windows ;
Link the paired communities along time;

This algorithm returns temporal streams which we call BMLA-streams. These
streams maximize the modularity at each time t without considering the global mod-
ularity of the whole system.

B.3 Comparing All Algorithms

Table B.1 and Table B.2 show there is very little difference between the local algorithms
and between the global algorithms, for all measures on both datasets.
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Measures ENS-Lyon Wavelets
|PGA| 57 27

|PGPA| 54 30
|PBCLA| 97 36
|PBMLA| 103 40
|PREF | 17 36

H(PGA) 3.63 2.87
H(PGPA) 3.63 2.94

H(PBCLA) 4.05 3.04
H(PBMLA) 4.04 3.17
H(PREF ) 2.37 3.18

MI(GA,REF ) 1.93 2.03
MI(GPA,REF ) 1.94 2.09

MI(BCLA,REF ) 1.93 2.49
MI(BMLA,REF ) 1.94 2.47

MI(GA,BCLA) 3.10 1.90
NMIGA(GA,REF ) 0.53 0.73

NMIREF (GA,REF ) 0.82 0.64
NMI(GA,REF ) 0.66 0.68

NMIGPA(GPA,REF ) 0.54 0.74
NMIREF (GPA,REF ) 0.82 0.66

NMI(GPA,REF ) 0.67 0.70
NMIBCLA(BCLA,REF ) 0.48 0.84
NMIREF (BCLA,REF ) 0.81 0.80

NMI(BCLA,REF ) 0.63 0.82
NMIBMLA(BMLA,REF ) 0.48 0.78
NMIREF (BMLA,REF ) 0.82 0.80

NMI(BMLA,REF ) 0.63 0.79
NMIGA(GA,BCLA) 0.86 0.67

NMIBCLA(GA,BCLA) 0.77 0.62
NMI(GA,BCLA) 0.81 0.64

Table B.1 – Similarly to Table 4.2, |PX | is the number of streams in partition X.
H(PX) is the entropy of partition X. MI(PX , PY ) is the mutual information be-
tween the partitions X and Y . NMIX is the mutual information MI normalized by
H(PX). NMI(PX , PY ) is the symmetrical normalized mutual information (normalized
by

p

H(X) ⇤H(Y )).
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Measures ENS-Lyon Wavelets

1stE(GA,REF )
0.86± 0.17 0.75± 0.20
0.49± 0.20 0.81± 0.17

Sum80(GA,REF )
1.26± 0.54 1.88± 0.93
3.37± 1.76 1.5± 0.73

1stE(GPA,REF )
0.87± 0.16 0.78± 0.19
0.54± 0.23 0.83± 0.17

Sum80(GPA,REF )
1.24± 0.5 1.65± 0.84
3.12± 1.61 1.47± 0.72

1stE(BCLA,REF )
0.89± 0.14 0.87± 0.17
0.49± 0.26 0.87± 0.15

Sum80(BCLA,REF )
1.23± 0.44 1.26± 0.50
4.87± 3.35 1.31± 0.57

1stE(BMLA,REF )
0.89± 0.14 0.85± 0.19
0.49± 0.25 0.84± 0.17

Sum80(BMLA,REF )
1.23± 0.44 1.34± 0.63
5.0± 3.60 1.37± 0.59

1stE(GA,BCLA)
0.74± 0.23 0.72± 0.23
0.85± 0.16 0.83± 0.19

Sum80(GA,BCLA)
1.96± 1.14 1.88± 0.96
1.34± 0.51 1.61± 0.83

Table B.2 – Similarly to Table 4.3, In this table each cell contains two lines. Each
measure M(X, Y ) is made on edges. The first line correspond to M measured on edges
from nX to nY and the second line corresponds to M being measured on edges from
nY to nX . So, the first row in 1stE(X, Y ) is the average proportion of articles nX

shares with nY ± its standard deviation. The second row is the average proportion of
articles nY shares with nX ± its standard deviation. For instance, for the ENS-Lyon,
this means that streams of PGA share on average 86% of their articles with their most
similar stream in PREF , whereas streams from PREF only share on average 49% of their
articles with their most similar stream in PGA. Sum80(X, Y ) is the average number of
streams from PY it takes to retrieve 80% of the streams’ articles from PX . For example
in the case of the Wavelet Dataset, on average 1.88 ± 0.96 streams from PBCLA are
needed to retrieve 80% of a stream from PGA.
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