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Résumé

Cette thèse porte sur la conjecture de Baum-Connes pour les groupes quantiques. Le but principal
de ce travail est l’étude de la stabilité de la conjecture de Baum-Connes par certaines constructions
de groupes quantiques discrets.

Dans un premier temps, nous réalisons une étude détaillé et approfondie de la reformulation
catégorielle de la conjecture de Baum-Connes d’après les travaux de R. Meyer et R. Nest [132].
Ensuite, nous appliquons ces techniques au cas concret des groupes quantiques discrets sans torsion.

Nous réalisons une étude exhaustive des produits croisés afin de pouvoir les manipuler aisément en
connexion avec la conjecture de Baum-Connes. Notamment nous donnons une preuve de la propriété
universelle d’un produit croisé réduit par un groupe quantique discret. Nous analysons également
quelques propriétés d’importance pour le contexte de cette thèse. Mentionnons particulièrement la
propriété d’associativité du produit croisé par rapport à un produit semi-direct.

En s’inspirant des travaux pionniers de J. Chabert [34] nous menons une généralisation pour
les groupes quantiques discrets de la stabilité de la conjecture de Baum-Connes par rapport à un
produit semi-direct. Deux propriétés d’invariance d’intérêt indépendant sont également étudiées, à
savoir le phénomène de torsion et la K-moyennabilité. Nous observons que l’hypothèse sans torsion
force un biproduit crosié compact à être un produit semi-direct quantique sans torsion. Ainsi, la
conjecture de Baum-Connes correspondante ne fournit pas d’information remarquable dans ce cas.

La stratégie générale pour mener à bien une telle généralisation consiste à définir un foncteur de
“décomposition” entre les catégories de Kasparov suivant l’opération de produit semi-direct. Nous
observons que cette stratégie peut être extrapolée à d’autres constructions de groupes quantiques.
Notamment un produit direct de groupe quantiques. Dans ce cas, nous établissons une connexion
avec la formule de Künneth de manière analogue à ce qui a été démontré dans [37] par J. Chabert,
S. Echterhoff et H. Oyono-Oyono pour les groupes localement compacts classiques. Les propriétés
de torsion et de K-moyennabilité ont également été étudiées.

Nous savons, grâce à R. Vergnioux and C. Voigt [208], que la conjecture de Baum-Connes forte
est préservée par le passage aux sous-groupes quantiques discrets divisibles. Le même résultat est
vrai pour la propriété de torsion forte, grâce à Y. Arano et K. De Commer [3]. Dans ce travail nous
montrons que la conjecture de Baum-Connes usuelle est préservée par le passage aux sous-groupes
quantiques discrets divisibles sous l’hypothèse sans torsion. La propriété de K-moyennabilité a
également été étudiée.

Une notable propriété de permanence inclue dans cette thèse est la stabilité de la conjecture
de Baum-Connes forte par produit en couronne libre. Pour cela, nous réalisons une complète
classification des actions de torsion pour un produit libre quantique, ce qui permet de donner une
formulation adéquate de la conjecture de Baum-Connes forte pour un produit en couronne libre
inspirés par le travail pionnier de C. Voigt [212]. Une application majeure est un calcul explicite de

iii



iv

K-théorie, dans trois situations pertinentes, pour le groupe quantique compact de Lemeux-Tarrago
qui est monoïdallement équivalent à un produit en couronne libre [120]. Cette propriété de stabilité
pour un produit en couronne libre ainsi que les calculs de K-théorie s’intègrent dans un travail en
collaboration avec A. Freslon [127].

Pour conclure, nous nous questionnons sur les résultats obtenus afin de proposer une liste
de questions, problems et objectifs que l’auteur a rencontré durant l’intégralité de la période de
recherche de cette thèse et qui rassemblent quelques unes des lignes de travail pour ses projets
futures de recherche.

Mots Clés. groupes quantique, Baum-Connes, K-théorie, catégorie triangulée, catégorie de
Kasparov, C˚-catégorie (tensorielle), produit semi-direct, produit en couronne libre, produit direct,
torsion quantique, K-moyennabilité.



Abstract

The present dissertation is focused on the Baum-Connes conjecture for quantum groups. The main
purpose of this work is the study of the Baum-Connes conjecture stability under some constructions
of discrete quantum groups.

In a first phase, we carry out a detailed and extensive study about the categorical reformulation
of the Baum-Connes conjecture according to the results of R. Meyer and R. Nest [132]. Next, we
apply these techniques to the specific case of torsion-free discrete quantum groups.

We carry out an exhaustive study of crossed products in order to handle them comfortably in
connexion with the Baum-Connes conjecture. Notably, we give a proof of the universal property
satisfied by a reduced crossed product by a discrete quantum group. We analyze as well some
important properties for this dissertation. Let us mention in particular the associativity property
of the crossed product with respect to a semi-direct product.

Being inspired by the pionneer work of J. Chabert [34], we perform a generalization for discrete
quantum groups of the invariance property of the Baum-Connes conjecture under the semi-direct
product construction. Two permanence properties of own interest are studied as well. Namely,
the torsion-freeness and the K-amenability. We observe that the torsion-freeness assumption
forces a compact bicrossed product to be a torsion-free quantum semi-direct product, so that the
corresponding Baum-Connes conjecture does not give any relevant information in this case.

The general strategy used to accomplish such a generalization consists in defining a “decomposi-
tion” functor between the corresponding Kasparov categories in accordance with the semi-direct
product operation. Thus, we observe that this strategy can be extrapolate to other (quantum)
group constructions. Namely, to a a quantum direct product. In this case, we state a connexion
with the Künneth formula as pointed out in [37] by J. Chabert, S. Echterhoff and H. Oyono-Oyono
for classical locally compact groups. The properties of torsion-frenness and K-amenability are also
analyzed.

It is known, thanks to R. Vergnioux and C. Voigt [208], that the strong Baum-Connes conjecture
is preserved by divisible discrete quantum subgroups. The same is true for the strong torsion-freeness
property, thanks to Y. Arano and K. De Commer [3]. Here we show that the usual Baum-Connes
conjecture is preserved by divisible discrete quantum subgroups under torsion-freeness assumption.
The K-amenability property is analyzed too.

A notably permanence property included in this dissertation is the invariance of the strong
Baum-Connes conjecture under the free wreath product construction. For this, we carry out
a complete classification of torsion actions of a quantum free product, which allows to give an
appropriated formulation of the strong Baum-Connes conjecture for a free wreath product inspired
by the pioneer work of C. Voigt [212]. A major application is an explicit K-theory computation, in
three relevant situations, for the Lemeux-Tarrago’s compact quantum group which is monoidally
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equivalent to a free wreath product [120]. Both this stability property for a free wreath product
and the K-theory computations are part of a collaboration work with A. Freslon [127].

To conclude, we question ourselves about the results obtained in order to suggest a list of
questions, problems and goals that the author has encountered during the whole research period of
the present dissertation and that are part of his future research projects.

Keywords. quantum group, Baum-Connes, K-theory, triangulated category, Kasparov category,
C˚(-tensor) category, semi-direct product, free wreath product, direct product, quantum torsion,
K-amenability.
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Introduction

La realité qui nous entoure est purement géométrique et pour maîtriser une telle géométrie
nous avons utilisé, depuis l’époque d’Euclide, des outils et des postulats naturellement
construits de l’intuition élaborée à partir de nos observations immédiates. Cependant,
tout au long du XXème siècle la physique a fournit des nouveaux paradigmes pour décrire

la réalité.
D’une part, la théorie de la relativité d’A. Einstein a donné une vision plus mathématique de

l’Univers en l’encadrant dans une géométrie beaucoup plus souple que la géométrie euclidienne.
Il a mis en relief le caractère local de la réalité directe que nous apercevons. D’autre part, la
physique quantique stimulée par W. Heisenberg a donné une vision plus changeante de l’Univers
en l’encadrant dans ce cas dans une mer de possibilités, chacune d’elles étant dépendantes des
observations faites.

Dû précisément à ce caractère changeant, la notion classique de position doit être remplacée par
la notion d’opérateur. Par conséquent, l’espace géométrique où la réalité quantique se développe
n’est plus un espace usuel au sens de Descartes, mais un espace où la mesure de ses propriétés n’est
pas une opération commutative (principe d’incertitude).

Ce changement de point de vu s’illustre en mathématiques par la naissance de la Géométrie
non Commutative. Son but fondateur était donc d’allier sous un même cadre conceptuel l’aspect
non commutatif ou opérationnel de la physique quantique avec l’aspect purement géométrique de la
théorie de la relativité.

Depuis qu’A. Connes a commencé à développer, avec beaucoup de succès, cette théorie en 1979,
la Géométrie non Commutative et l’Algèbre d’Opérateurs plus généralement ont expérimenté un
élargissement remarquable grâce aux travaux de mathématiciens de très grande envergure.

Rappelons le célèbre théorème de dualité de Gelfand: “la catégorie des espaces topologiques
Hausdorff localement compacts est équivalente à la catégorie des C˚-algèbres commutatives”. Ce
théorème représente le point de départ du changement de philosophie pour la géométrie non
commutative d’A. Connes [41] et il contient également l’idée essentielle pour aboutir à la notion
de groupe quantique. La théorie des groupes s’est développée sous des perspectives différentes et
variées depuis l’époque d’E. Galois et la moderne théorie des groupes quantiques a essayé de créer
d’énigmatiques reflets dans le cadre de la géométrie non commutative.

Il est compliqué de donner une description exhaustive de l’évolution historique de ces objects
car la notion de groupe quantique apparaît aussi bien dans la physique que dans les mathématiques
et avec des significations différentes a priori. Également, les contributions au développement de
ces objets ont été très éparses dans le panorama mathématique entre les années 60 et 80, ce qui
contribuait à une vision assez hétérogène de la théorie des groupes quantiques. À l’heure actuelle,
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même s’il existent encore des débats concernant certaines terminologies ou notations, nous pouvons
dire que les groupes quantiques ont réussi à consolider ses bases en créant ainsi une théorie bien
comprise qui continue sa croissance en élargissant ses domaines d’action et d’application.

Afin de donner un aperçu sur cette théorie qui permette d’expliquer aussi bien leurs origines
que leur état actuel, nous pouvons distinguer trois axes principaux autour desquels se développent
les travaux sur les groupes quantiques : iq analyse harmonique et théorie des représentations, iiq
espaces homogènes et groupes de transformations et iiiq combinatoire et géométrie.

i) Analyse harmonique et théorie des représentations. L’analyse harmonique classique étudie la
représentation de fonctions (définies sur R) comme une superposition de fonctions élémentaires
trigonométriques par le biais de la transformée de Fourier. À la moitié du XXème siècle on a
observé que certaines propriétés de R et de la transformée de Fourier classique peuvent être
généralisées pour n’importe quel groupe localement compact en donnant lieu à ce que l’on
appel l’analyse harmonique abstraite.
Le point de départ est l’existence d’une mesure appropriée sur tout groupe localement compact,
que l’on appelle measure de Haar (en honneur de A. Haar), qui est unique à multiplication
d’une constante positive près et qui est notée µ. Cette mesure joue le rôle de la mesure
de Lebesgue sur R. L’autre ingrédient essentiel pour développer cette théorie est la notion
de caractère qui joue, quant à lui, le rôle des fonctions élémentaires trigonométriques dans
une décomposition de type Fourier classique. Plus précisément, si G est un groupe abélien
localement compact, alors pG dénote le groupe (abélien) des caractères de G, ce soit, l’ensemble
des homomorphismes de groupes entre G et S1. Il s’appelle groupe dual de G. La théorie
générale affirme que pG est toujours un groupe localement compact. Remarquons tout de même
que l’hypothèse “G abélien” est nécessaire pour achever cette conclusion puisque l’on utilise
la dualité de Gelfand pour identifier pG avec le spectre de L1pG,µq. Dans ce contexte, les
propriétés de la transformée de Fourier classique trouvent une raison conceptuelle en vertu de
ce que l’on appelle la dualité de Pontryagin [159] (en honneur de L. Pontryagin) et qui assure
que G – p

pG, pour tout groupe abélien localement compact G. En outre, si G est compact, alors
son dual de Pontryagin est un groupe discret.
Observons le fait suivant : S1 peut être vu comme le groupe des opérateurs unitaires de C,
c’est à dire, le groupe d’automorphismes de C en tant qu’espace de Hilbert. Par conséquent,
un caractère de G peut être vu comme une représentation unitaire de dimension 1 de G et
réciproquement. Autrement dit, il existe une correspondance bijective entre les caractères d’un
groupe abélien localement compact et ses représentations unitaires de dimension 1.
Ainsi, la dualité de Pontryagin répond à une question de reconstruction : pouvons-nous
reconstruire un groupe à partir de la catégorie de ses représentations ?
Si nous éliminons l’hypothèse de commutativité de G, alors il faut trouver un remplaçant
convenable pour pG. Ceci sera l’ensemble des représentations unitaires et irréductibles de G.
Observons en revanche que cet ensemble ne sera plus un groupe car le produit tensoriel de
représentations irréductibles n’est pas forcément une représentation irréductible (pour cette
raison nous seront intéressés à étudier ce que l’on appelle les règles de fusion, c’est à dire, les
règles de décomposition en irréductibles d’un produit tensoriel de représentations irréductibles).
Or, nous pouvons munir cet ensemble d’une structure de C˚-catégorie tensorielle.
La question de reconstruction précédente devient ainsi une question plus profonde, à savoir :
quelles sont les catégories équivalentes à une catégorie de représentations d’un groupe?
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Cette problématique de reconstruction dans le cadre non commutatif est connue sous le nom
de dualité de Tannaka-Krein et elle est le point de départ de l’approche mathématique pour
la naissance des groupes quantiques. Les premières tentatives de résoudre ce problème ont
été menées par T. Tannaka [185] et par M. G. Krein [109], [110] en utilisant tout de même la
théorie de Peter-Weyl pour les groupes compacts [149].
Or, dans ces travaux le groupe et son dual sont des objets de nature différente et dans ce sens on
obtient seulement une solution partielle par rapport au cas abélien. Il faut attendre G. I. Kac
qui avait eu l’idée de décrire un groupe localement compact et son dual en termes d’algèbres
de von Neumann munies d’une co-multiplication [91], [92], [93]. Ainsi la philosophie générale
de la géométrie non commutative entre en jeu. Durant les années 70 la théorie des algèbres de
Kac est développée de façon indépendante par G. V. Kac-L. I. Vainerman [198], [199] et par M.
Enock-J-M. Schwartz [58], [59]. Ensuite, une version C˚-algébrique de la théorie des algèbres
de Kac est aussi développée par J-M. Vallin [200] et par M. Enock et J-M. Vallin [60]. Ces
deux approches achèvent certainement une théorie de dualité en termes de la problématique de
reconstruction de Tannaka-Krein qui inclut tous les groupes localement compacts. Néanmoins,
la théorie reste encore limitée à cause des nombreux axiomes dans la définition d’algèbre de
Kac et de la manque d’exemples en dehors de ceux provenant des groupes classiques.
En 1987, S. L. Woronowicz [226] donne une première définition de groupe quantique compact G
en termes de C˚-algèbres unifères munies d’une co-multiplication. Dans les années qui suivent,
il améliore sa propre approche avec les articles [228], [229] et [231]. Il développe une théorie
très riche et proche de celle des groupes compacts. D’une part, il démontre l’existence d’un
état distingué, appelé état de Haar, qui joue le rôle de la measure de Haar sur un groupe
localement compact suivant la dualité de Gelfand. D’autre part, il développe une théorie des
représentations satisfaisante qui lui permet d’achever un analogue du théorème de Peter-Weyl
dans le cadre non commutatif. Plus précisément, il obtient que toute représentation unitaire de
G se décompose comme une somme directe de représentations irréductibles de dimension finie
et, de plus, les coefficients de ces représentations sont liés par des relations d’orthogonalité
par rapport à l’état de Haar. En ce qui concerne la théorie de dualité, les groupes quantiques
compacts donnent une réponse affirmative. Nous pouvons construire un groupe quantique (non
compact) pG tel que G – p

pG, ce qui s’appelle dualité de Tannaka-Krein-Woronowicz. En effet, pG
est complètement défini par la catégorie des représentations irréductibles de dimension finie de
G. En vertu de cette dualité, pG est appelé groupe quantique dual de G et les duaux de groupes
quantiques compacts sont appelés groupes quantiques discrets.
En outre, la théorie de Woronowicz est remplie d’exemples dont le plus important est SUqp2q
[227]. En effet, les objets issus des travaux de V. G. Drinfeld [55] et de M. Jimbo [87] sur les
déformations d’algèbres enveloppantes de groupes de Lie trouvent leur place dans la théorie
de S. L. Woronowicz grâce aux travaux de M. Rosso [166]. Également, des groupes classiques
comme le groupe unitaire, le groupe orthogonal ou le groupe de permutations trouvent une
version quantique dans la théorie de S. L. Woronowicz notés respectivement U`pnq, O`pnq,
S`N et qui ont été introduits par S. Wang dans [215], [217].
Afin de donner une généralisation complète de l’analyse harmonique classique, le cas localement
compact dans le cadre quantique a été abordé par différents auteurs sous différentes perspectives.
Citons l’élégante approche des unitaires multiplicatifs de S. Baaj et G. Skandalis [7] ou l’approche
purement algébrique dans le cadre des algèbres de Hopf non unifères de A. van Daele [201],
[202]. Mais la définition de groupe quantique localement compact qui est à ce jour communément
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acceptée est celle donnée par J. Kustermans et S. Vaes [112], [113] dans les années 2000 en
termes d’algèbres de von Neumann et de C˚-algèbres. Dans ce cas, la théorie devient beaucoup
plus technique et délicate que celle de Woronowicz (par exemple, un analogue de la mesure de
Haar n’existe pas automatiquement) mais on achève également un analogue de la dualité de
Pontryagin et tous les exemples de groupes quantiques antérieurement construits y trouvent
un cadre théorique précis.

ii) Espaces homogènes et groupes de transformations. Rappelons brièvement la philosophie générale
du programme d’Erlangen [108], initiée par F. Klein dans la seconde moitié du XIXème siè-
cle. L’idée fondatrice est celle de construire la géométrie à partir de la notion de groupe et
d’invariant. Ainsi, un groupe est vu comme un groupe de transformations d’un espace et ses
éléments représentent les symétries qui préservent la géométrie de l’espace. Si nous demandons
de plus que l’action du groupe sur l’espace soit transitive, il n’y aura pas de points distingués
et nous obtenons une notion d’isotropie car les points de l’espace forment une seule orbite selon
le groupe. Nous parlons ainsi d’espace homogène.
Un exemple éclairant est le suivant. Étant donné n P N considérons la sphère de dimension
n ´ 1 dans Rn et notons-la Sn´1. Considérons aussi le groupe orthogonal de Rn, SOpn,Rq.
Nous savons que ce groupe préserve les distances, les angles et aussi les rotations de Rn. Ainsi,
l’action naturelle de ce groupe sur la sphère Sn´1 préserve sa géométrie et donc Sn´1 doit
être vu comme un espace homogène selon la philosophie de F. Klein. En effet, un exercice
élémentaire est de prouver que l’action de SOpn,Rq sur Sn´1 est transitive. De même, nous
obtenons une description explicite de la sphère en tant qu’espace quotient

Sn´1 – SOpn,Rq{SOpn´ 1,Rq

Lorsque nous considérons la sphère S2n´1 dans Cn, sa description comme espace homogène est
donnée par le groupe spécial unitaire

S2n´1 – SUpnq{SUpn´ 1q

Étant donné la similitude des groupes quantiques avec les groupes classiques, nous voulons
aussi mener dans le cadre quantique une géométrie basée sur les espaces homogènes. Nous
parlerons ainsi d’espace homogène quantique.
D’une part, l’espace géométrique sous-jacent sur lequel le groupe quantique va agir devra être
un “espace quantique”, c’est à dire, une “C˚-algèbre” d’après la dualité de Gelfand. La notion
d’action d’un groupe quantique compact sur une C˚-algèbre a été introduite par P. Podleś dans
[156] et utilisée ultérieurement par plusieurs auteurs comme F. Boca dans [25], M. Marciniak
dans [126], S. Wang dans [217], S. Vaes dans [194] ou C. Pinzari-J. E. Roberts dans [153]. Une
classe importante d’actions de groupes quantiques compacts est celle des actions ergodiques
avec lesquelles on développe une théorie spectrale proche de celle pour les groupes compacts
classiques. Dans le cadre de cette thèse les actions ergodiques sont spécialement intéressantes
en relation avec le phénomène de torsion (d’après R. Meyer et R. Nest [133], [131]) et avec la
notion d’équivalence monoïdale (d’après J. Bichon, A. De Rijdt et S. Vaes [23]). En outre, les
actions ergodiques s’avèrent en étroite relation avec les espaces homogènes quantiques grâce
aux travaux de K. De Commer et M. Yamashita [50], [51].
D’autre part, la théorie des espaces homogènes dans le cas classique entraîne naturellement
travailler avec des sous-groupes du groupe de transformations en question. Ceci représente
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un obstacle lorsque nous voulons imiter cette théorie dans le cadre quantique, de sorte que
différentes stratégies ont été proposées pour achever cette généralisation [52], [102]. En effet,
dans [155] P. Podleś définit une sphère quantique S2

q (avec q P p0, 1q) qui mérite la nomenclature
d’espace homogène de SUqp2q, mais ces espaces ne peuvent pas être définis en termes des
sous-groupes quantiques de SUqp2q.
Remarquons que la théorie des espaces homogènes a un but purement géométrique. En
particulier, les espaces homogènes à l’issu des groupes de Lie donnent lieu à une approche
de théorie de groupes de la géométrie différentielle. Dans ce sens, nous voudrions aborder la
géométrie non commutative d’A. Connes suivant l’approche des espaces homogènes quantiques.
Plusieurs travaux se sont faits à ce sujet. Mentionnons les travaux de D. Goswani [72] et
les travaux de J. Bhowmick et D. Goswani [74], [73], [75], [20], [170] où est étudié l’analogue
quantique du groupe d’isométries riemanniennes d’une variété différentielle usuelle (notamment,
on caractérise SOqp3q comme le groupe quantique d’isométries d’une variété riemannienne non
commutative). Bien que la géométrie différentielle non commutative développée par A. Connes
concerne les variétés réelles, il y a eu quelques tentatives pour construire une géométrie complexe
non commutative. Premièrement, la structure complexe sur les sphères de P. Podleś a été
étudiée [105] suivant des travaux précédents de S. Majid [125] et de S. Schwartz-A. Polishchuk
[158]. Deuxièmement, on a étudié la structure complexe sur le plan projectif complexe [107],
[106] suivant des travaux précédents de F. D’Andrea et L. Da̧browski [46]. Une nouvelle
approche à la géométrie complexe non commutative en termes d’espaces homogènes quantiques
est développée depuis très récemment par R. Buachalla [30] où un cadre non commutative
pour la géométrie de Kähler est établit.
Dans le même ordre de questions, nous pouvons nous demander quel devrait être le groupe
d’automorphismes d’un espace quantique. Étant donné qu’un espace quantique est une C˚-
algèbre A, la définition de AutpAq issu de la géométrie ne peut pas être celle des transformations
ou permutations de ses points (si Xn denote l’espace fini de n-points, alors par définition nous
avons AutpXnq “ Sn, le groupe de permutations de n-éléments). Nous devons donc suivre une
nouvelle approche. Pour cela nous remarquons que si X est un espace quelconque, son groupe
d’automorphismes AutpXq vérifie la propriété universelle suivante : si G est un groupe qui agit
sur X, alors il existe un unique homomorphisme de groupes G ÝÑ AutpXq compatible avec
les actions respectives sur X. Cette observation a permis à S. Wang de donner une définition
abstraite de groupe quantique d’automorphismes dans [217] qui devient une description explicite
pour le cas des C˚-algèbres de dimension finie.

iii) Combinatoire et géométrie. La théorie de S. L. Woronowicz sur les groupes quantiques compacts
s’est avérée très productive grâce à sa simplicité et sa richesse. Ainsi, plusieurs théories classiques
sur les groupes ont été transportées dans le cas quantique suivant l’approche de Woronowicz.
Cela a donné lieu à une large variété de thématiques qui sont maintenant étudiées avec les
groupes quantiques.
La théorie géométrique des groupes, qui étudie le rapport entre les propriétés des groupes et la
géométrie des espaces où ces groupes agissent, a vu son jour à l’issu de l’étude des groupes libres
et des présentations de groupes. Ceci était basé sur des approches purement combinatoires
selon W. von Dyck [213]. Durant la première moitié du XXème siècle, plusieurs mathématiciens
comme M. Dehn, J. Nielsen, J. H. Whitehead ou E. van Kampen ont commencé à introduire des
approches géométriques pour l’étude des groupes. En 1977, J.-P. Serre développe une théorie
élégante et fructueuse sur les groupes agissant sur des arbres en généralisant des propriétés
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connues sur les produits libres et les extensions HNN. Elle s’appelle théorie de Bass-Serre
[169] et elle a été étudiée en détaille dans le cadre des groupes quantiques discrets par R.
Vergnioux [206], [207], par P. Fima [63] et par P. Fima-A. Freslon [64] en obtenant notamment
une généralisation dans le cadre quantique de la “K-moyennabilité des groupes discrets agissant
sur des arbres avec des stabilisateurs moyennables” (résultat dû à P. Julg et A. Valette [90]).
Un point de vue différent pour aborder la géométrie d’un groupe serait une étude analytique
du groupe en question. Cela donne lieu à une connexion directe avec la théorie des C˚-algèbres
et donc un passage naturel vers les groupes quantiques. Dans ce sens on parle de propriétés
d’approximation de groupes (quantiques).
Bien que les véritables origines de la théorie des propriétés d’approximation doit se placer
dans les pionniers travaux d’A. Grothendieck sur les produits tensoriels topologiques d’espaces
vectoriels topologiques [76], [77] ; on pourra placer les origines des propriétés d’approximation
des groupes dans les années 30 avec la définition de moyennabilité de J. von Neumann [214]
dans le contexte de la célèbre paradoxe de Banach-Tarski [8]. Ensuite, diverses propriétés sont
apparues avec différentes applications dans différents domaines. La notion de nucléarité pour
les C˚-algèbres [116], [39] est la propriété d’approximation pour les C˚-algèbres la plus proche
de la théorie originale d’A. Grothendieck. Dire qu’une C˚-algèbre A est nucléaire équivaut
à dire que tous les produits tensoriels de C˚-algèbres par A donnent la même C˚-algèbre.
Mentionnons d’autres propriétés d’approximation importantes. La propriété de Haagerup [81],
considérée comme un affaiblissement de la moyennabilité, s’avère spécialement intéressante
en vertu des profondes conséquences analytiques et topologiques [82]. La propriété pT q de
Kazhdan [104] doit être vue comme un opposé direct à la propriété de Haagerup et elle pourrait
éventuellement aider à la construction d’obstructions pour des théorèmes d’isomorphismes. La
moyennabilité faible [79], [80] a donné lieu quant à elle à des résultats de classification d’algèbres
de von Neumann et aussi elle a permis le développement des techniques de rigidité-déformation
de S. Popa [145], [146], [195].
Le lien entre les différentes propriétés d’approximation a été beaucoup étudié et à l’heure
actuelle il existent encore des questions ouvertes à ce sujet. Notamment le lien entre la propriété
de Haagerup et la moyennabilité faible. Dans le contexte de classification de C˚-algèbres et
du calcul des groupes de K-théorie, les propriétés de moyennabilité et de nucléarité ont été
définies aussi au niveau de la K-théorie. En effet, J. Cuntz introduit dans [44] la notion de
K-moyennabilité permettant de donner des raisons conceptuelles aux calculs de la K-théorie
des C˚-algèbres du groupe libre et G. Skandalis introduit dans [172] la notion de K-nucléarité,
qui a permis le développement de l’étude de la KK-théorie des produits libres par E. Germain
[70], [71].
En ce qui concerne les groupes quantiques, les propriétés d’approximation ont été également
abordées de façon fructueuse pendant les dernières années. Tandis que les notions de moyennabil-
ité et de K-moyennabilité trouvent une généralisation flagrante pour le cas quantique dans
le contexte de la théorie de S. L. Woronowicz, les propriétés de Haagerup et la propriété pT q
de Kazhdan nécessitent un traitement plus minutieux. P. Fima a introduit la propriété pT q
de Kazhdan pour les groupes quantiques discrets dans [62] et M. Daws P. Fima, A. Skalski
et S. White ont introduit la propriété de Haagerup pour les groupes quantiques localement
compacts dans [47]. Mentionnons quelques travaux remarquables sur ce sujet : [26], [27], [32],
[119], [189]. Pour un aperçu général de cette théorie nous mentionnons l’exposé très détaillé
[28].
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Les probabilités libres offrent une perspective combinatoire et intéressante sur les groupes
quantiques. Cette théorie a été initiée par D. Voiculescu dans les années 80-90 [209] et largement
développée par D. Voiculescu R. Speicher. Elle a pour but d’étudier les variables aléatoires
dans un cadre non commutatif suivant la notion d’indépendance libre. Le livre [179] servira au
lecteur intéressé pour une introduction complète à ce sujet.
Le lien entre la probabilité libre et les groupes quantiques se fait par le biais de la notion de
groupe quantique “easy” introduite par T. Banica et R. Speicher [178] et étudiée ultérieurement
par plusieurs auteurs [176], [177], [68]. En effet, les groupes quantiques “easy” possèdent
par définition une structure combinatoire intrinsèque (les entrelaceurs de ses représentations
irréductibles sont indexés par des partitions d’ensembles finis), ce qui permet d’étudier la
notion d’indépendance libre selon les actions du groupe quantique de permutations S`N .
L’approche combinatoire des groupes quantiques a permis notamment iq une description
complète de la théorie des représentations de S`N et les groupes quantiques libres avec des
conséquences concernant la moyennabilité [9], [10], [12], [11] [13], [14] iiq la construction d’un
produit en couronne par un groupe quantique d’automorphismes [66] et iiiq l’étude de sa
propriété de Haagerup [186]. Les ingrédients principaux pour ces résultats sont les partitions
non-croisées, les diagrammes de Temperley-Lieb [150] et les algèbres planaires [88]. Cela donne
tout de mème une forte connexion avec la théorie des sous-facteurs de type II1.

D’une part, nous observons que les groupes quantiques peuvent être vus comme des analogues
non commutatifs des groupes, de sorte que beaucoup de propriétés et résultats classiques peuvent
être transportés dans ce cadre plus général. D’autre part, nous observons également que la perte de
commutativité représente parfois un véritable phénomène d’obstruction et nous sommes obligés de
créer des nouvelles stratégies afin d’obtenir une complète généralisation des théories classiques dans
un cadre non commutatif.

Il est important de dire que la théorie des groupes quantiques ne représente pas uniquement
une jolie généralisation au cadre non commutatif de résultats classiques connus, mais ils permettent
d’avoir aussi une nouvelle perspective des problèmes classiques qui pourra éventuellement aboutir à
des solutions. Cela entraîne notamment un nouveau paradigme, ce qui est le cas de la problématique
étudiée dans la présente thèse.

La conjecture de Baum-Connes a été formulée en 1982 par P. Baum et A. Connes [18]. Nous
ne connaissons pas encore un contre-exemple pour la conjecture originale mais il est connu que
celle avec coefficients est fausse [83]. Pour cette raison nous allons nous référer à la conjecture de
Baum-Connes avec coefficients comme la propriété de Baum-Connes. Le but de la conjecture est de
comprendre le rapport entre deux groupes de K-théorie de nature différente, ce qui pourra établir
une forte connexion entre la géométrie et la topologie dans un contexte généralisé de la théorie
de l’indice. Plus précisément, si G est un groupe localement compact et A est une G-C˚-algèbre,
alors la propriété de Baum-Connes pour G avec coefficients dans A affirme que le morphisme
d’assemblage

µGA : Ktop
˚ pG;Aq ÝÑ K˚pG˙

r
Aq

est un isomorphisme, où Ktop
˚ pG;Aq :“ R

´

KKG
˚ pEG,Aq

¯

:“ lim
YĂEG

G´compact

´

KKG
˚ pC0pY q, Aq

¯

est la

K-homologie équivariante de G à support compact avec coefficients dans A et K˚pG˙
r
Aq est la
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K-théorie du produit croisé réduit G˙
r
A. Cette propriété a été prouvée pour une large classe de

groupes. Mentionnons les remarquables travaux de N. Higson et G. Kasparov [82] sur les groupes
ayant la propriété de Haagerup et les travaux de V. Lafforgue [115] sur les groupes hyperboliques.

LaK-homologie équivariante à support compactKtop
˚ pG;Aq est, bien entendu, l’object géométrique

obtenu à partir de l’espace classifiant des actions propres de G. Donc il est a priori plus facile à
calculer que le groupe K˚pG˙

r
Aq, qui est quant à lui de nature analytique et donc moins souple

dans sa structure. Néanmoins, le groupe Ktop
˚ pG;Aq crée parfois des problèmes non-triviaux. Pour

cette raison, R. Meyer et R. Nest proposent en 2006 une nouvelle formulation de la propriété de
Baum-Connes dans un cadre catégoriel approprié [132]. Plus précisément, si maintenant K K G

désigne la catégorie de Kasparov G-équivariante et F pAq :“ K˚pG˙
r
Aq est le foncteur homologique

sur K K G qui définit le membre de droite du morphisme d’assemblage, alors R. Meyer et R. Nest
montrent dans [132] que le morphisme d’assemblage µGA est équivalent à la transformation naturelle

ηGA : LF pAq ÝÑ F pAq,

où LF est la localisation du foncteur F par rapport à une paire convenable de sous-catégories
complémentaires pL ,N q. Plus précisément, L est la sous-catégorie de K K G des G-C˚-algèbres
compactement induites et N est la sous-catégorie de K K G des G-C˚-algèbres compactement
contractiles.

Cette reformulation permet notamment d’éviter toute construction géométrique. Nous pouvons
donc remplacer G par un groupe quantique localement compact G. Le problème pour aboutir
à une formulation complète dans le cas quantique est la torsion d’un tel groupe quantique. En
effet, si Γ est un groupe discret, sa torsion est complètement déterminée par ses sous-groupes finis
tandis que si pG est un groupe quantique discret, la notion de torsion n’est pas du tout un problème
trivial et elle a été introduite pour la première fois par R. Meyer et R. Nest dans [133], [131] et
récemment re-interprétée par Y. Arano et K. De Commer en termes d’anneaux de fusion dans [3].
Néanmoins, le phénomène de torsion dans le cas quantique est loin d’être complètement compris.
Ainsi, l’actuelle formulation de la propriété de Baum-Connes concerne uniquement les groupes
quantiques discrets sans torsion. Dans ce sens nous pouvons parler de propriété de Baum-Connes
quantique.

La propriété de Baum-Connes s’avère spécialement intéressante pour un groupe discret Γ et elle
a été beaucoup étudiée depuis sa formulation. En outre, grâce aux travaux de G. Kasparov [96],
de G. Kasparov et G. Skandalis [99], [100] et de J.-L. Tu [191], [192], [193] nous disposons d’une
méthode “constructive” pour aborder la conjecture, nommée méthode Dirac-dual Dirac. Elle a été
utilisée dans la plupart des preuves connues actuellement. La stratégie est basée sur un théorème
de J.-L. Tu [191] qui affirme que “si Γ est un groupe discret et A est une Γ-C˚-algèbre propre, alors
la propriété de Baum-Connes pour Γ avec coefficients dans A est satisfaite”. Ainsi, la méthode
Dirac-dual Dirac consiste à construire

i) une Γ-C˚-algèbre propre A,

ii) un élément α P KKΓpA,Cq (nommé élément Dirac),

iii) un élément β P KKΓpC, Aq (nomé élément dual-Dirac),

tels que β bA α “ 1C dans KKΓpC,Cq. Cette situation garantit la vérification de la propriété
de Baum-Connes pour Γ avec coefficients. Plus généralement, nous pouvons nous contenter de
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construire un élément γ :“ β bA α P KK
ΓpC,Cq vérifiant une certaine condition topologique

concernant les Γ-espaces propres (nommé alors élément γ). Dans cette situation, un résultat de
J.-L. Tu [191] affirme que le morphisme d’assemblage µΓ

B est injectif, pour toute Γ-C˚-algèbre B.
Des considérations analogues sont vraies pour un groupe localement compact G quelconque.

La situation idéale lorsque γ “ 1C dans KKGpC,Cq se traduit dans le contexte catégoriel de
Meyer-Nest par dire que L “ K K G et dans ce cas nous disons que G vérifie la propriété de
Baum-Connes forte. Notons que la définition de la sous-catégorie L dépend directement des sous-
groupes compacts de G, c’est à dire, de la torsion de G lorsque G est discret. Comme conséquence,
la vérification ou non de la propriété de Baum-Connes forte pour un groupe quantique discret pG
dépend directement de la torsion d’un tel groupe quantique.

Lorsque G vérifie la propriété de Baum-Connes, des nombreuses propriétés géométriques liées à
G en découlent [136], notamment la conjecture de Novikov. Étant donné que la géométrie liée à
un groupe quantique G doit être vue comme une notion “virtuelle” d’après la dualité de Gelfand,
ce type de conséquences n’auront pas un analogue dans le contexte quantique. Nous devrons
plutôt nous concentrer sur les applications concernant la structure des C˚-algèbres. Dans ce sens,
rappelons la conjecture de Kadison-Kaplansky: “si Γ est un groupe discret sans torsion, alors C˚r pΓq
ne possède pas d’idempotents non triviaux”.

Une application plus directe de la propriété de Baum-Connes serait le calcul explicite de la
K-théorie de la C˚-algèbre réduite d’un groupe discret Γ. En effet, puisque le groupe Ktop

˚ pΓ;Cq
est construit de façon géométrique, un expert en topologie pourra appliquer des techniques de
suites spectrales afin de le calculer explicitement. Ainsi, l’éventuel isomorphisme de l’application
d’assemblage donnerait le calcul correspondant pour la K-théorie de C˚r pΓq. Observons toutefois
que la reformulation de R. Meyer et R. Nest de la propriété de Baum-Connes change essentiellement
cette perspective : le groupe de nature topologique Ktop

˚ pΓ;Cq sera maintenant un groupe de
K-théorie dont la construction n’est pas tellement parlante comme dans le cas de l’utilisation des
espaces classifiants. De toutes manières, le contexte catégoriel développé par R. Meyer et R. Nest
[134], [131] fournit également des outils, en s’appuyant sur des techniques d’algèbre homologique,
pour faire aboutir un tel calcul.

Dans ce contexte nous pouvons rappeler un problème classique en algèbre d’opérateurs et qui
reste ouvert à l’heure actuelle : étant donnés n,m P N et si Fn et Fm désignent les groupes libres
à n et m générateurs, respectivement ; est-ce que LpFnq – LpFmq si et seulement si n “ m ?, où
LpΓq denote l’algèbre de von Neumann associée à un groupe discret Γ. Si au lieu de considérer les
algèbres de von Neumann nous considérons les C˚-algèbres réduites, la question a été répondue
affirmativement grâce au calcul direct des groupes de K-théorie. En effet, M. Pimsner et D.
Voiculescu ont montré dans [152] que K0pC

˚
r pFnqq “ Z et que K1pC

˚
r pFnqq “ Zn. Il faut remarquer

que J. Cuntz avait déjà calculé dans [43] la K-théorie pour les C˚-algèbres maximales d’un groupe
libre en obtenant le même résultat que M. Pimsner et D. Voiculescu. Cela l’avait motivé à introduire
la notion de K-moyennabilité dans [44], lui permettant de donner une raison conceptuelle à la
distinction des C˚-algèbres réduites et maximales du groupe libre au niveau de la K-théorie.

Ces deux remarquables problématiques en algèbre d’opérateurs : existence d’idempotents non
triviaux et calcul des groupes de K-théorie, ont été abordées avec beaucoup de succès dans le
contexte des groupes quantiques. Dans le “bestiaire” des groupes quantiques nous pouvons signaler
les groupes quantiques compacts SUqp2q (avec q P p0, 1q), O`pnq, U`pnq et S`N comme étant les
exemples fondamentaux de la théorie et donc ils fournissent la première cible lorsque nous voulons
résoudre des problèmes précis.
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C. Voigt a commencé en 2010 une série d’articles (avec diverses collaborations avec R. Nest
et R. Vergnioux) où il a obtenu des résultats favorables au développement des problématiques
précédentes [140], [208], [210], [211], [212].

D’une part, l’étude du phénomène de torsion pour un groupe quantique montre que {SUqp2q,
{O`pnq et {U`pnq sont sans torsion tandis que xS`N non (et sa torsion est due uniquement à l’action
ergodique canonique de S`N sur CN ). Ils possèdent également la propriété quantique de Baum-Connes
forte. Or, en rapport avec la conjecture de Kadison-Kaplansky, nous obtenons le résultat suivant :
l’analogue de cette conjecture est vrai pour O`pnq mais non pour SUqp2q [210]. Autrement dit,
C˚r pO

`pnqq ne contient pas d’idempotents non triviaux tandis que CpSUqp2qq en contient beaucoup.
D’autre part, une fois que la propriété de Baum-Connes forte est établie pour les groupes

quantiques duaux {SUqp2q, {O`pnq, {U`pnq et xS`N ; la propriété de K-moyenabbilité en découle
automatiquement et les techniques d’algèbre homologique développées par R. Meyer et R. Nest
ont permis à C. Voigt d’obtenir des calculs précis sur la K-théorie des C˚-algèbres de ces groupes
quantiques (et aussi d’un groupe quantique libre et du groupe quantique d’automorphismes d’une
C˚-algèbre de dimension finie) :

K0 K1
SUqp2q Z Z
O`pnq Z Z
U`pnq Z Z‘ Z

U`
1 ˚ . . . ˚U`

k ˚O`
1 ˚ . . . ˚O`

l Z Z2k ‘ Zl

S`N ZN2
´2N`2 Z

QutpMnpCqq Z‘ Zn Z
Qut

´

Mn1pCq ‘ . . .‘MnrpCq
¯

Zpr´1q2`1 ‘ Z2r´1
gcdpn1,...,nrq

Z

En particulier, le calcul de la K-théorie pour S`N entraîne le résultat de classification suivant :
C˚r pS

`
N q – C˚r pS

`
N 1q si et seulement si N “ N 1 [212].

Une manière effective de produire de nouveaux groupes consiste à faire des opérations entre
deux ou plus groupes donnés. Ainsi nous pouvons signaler les constructions remarquables suivantes
: produit direct, produit semi-direct, biproduit croisé, produit libre et produit en couronne. Dans
un premier temps, il paraît raisonnable d’analyser quelle est la classe de groupes dans laquelle la
propriété de Baum-Connes reste vraie. Il s’agit d’une question élémentaire, mais certaines de ces
constructions posent des difficultés non triviales et méritent ainsi une analyse soigneuse.

Dans ce contexte, une série d’articles de J. Chabert, S. Echterhoff et H. Oyono-Oyono ont
établi la stabilité de la propriété de Baum-Connes par quelques constructions de groupes. Plus
précisément, l’article [34] de J. Chabert établit que la propriété de Baum-Connes est stable pour un
produit semi-direct de groupes localement compacts sous certaines hypothèses. Toutefois, un an plus
tard et en collaboration avec S. Echterhoff, ils obtiennent dans l’article [35] le même résultat que
précédemment mais en remarquant qu’une des hypothèses initiales était superflue. Dans ce même
article, J. Chabert et S. Echterhoff ont étudié également la stabilité de la propriété de Baum-Connes
pour les sous-groupes fermés d’un groupe localement compact et pour les produits directs de
groupes localement compacts. En ce qui concerne le cas des groupes discrets, H. Oyono-Oyono les
a étudié en détail dans [141] [142], [144] et [143]. Dans le dernier, il démontre que la propriété de
Baum-Connes est stable par rapport aux extensions de groupes discrets sous certaines conditions et
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des conséquences remarquables s’en tirent. Notamment, la propriété de Baum-Connes est stable
par les extensions centrales de groupes discrets, par les produits semi-directs (sous les hypothèses
analogues à celles de Chabert-Echterhoff) et par les produits directs de groupes discrets. Une
application directe de ces résultats est la suivante : “tous les groupes des tresses pures vérifient la
propriété de Baum-Connes”.

Un premier objectif de la présente thèse a été la généralisation de ces propriétés de stabilité pour
les groupes quantiques. En effet, les constructions mentionnées ci-dessus peuvent être réalisées pour
les groupes quantiques compacts. Plus précisément, les travaux de S. Wang [216], [215] donnent
une version quantique du produit direct, semi-direct et libre de groupes. L’article de J. Bichon [22]
donne une version quantique du produit en couronne par un groupe de permutations (qui a été
généralisée pour un groupe quantique d’automorphismes quelconque dans [66] par P. Fima et L.
Pittau). L’article de S. Vaes et L. I. Vainerman [196] donne une version très générale de la notion
d’extension pour les groupes quantiques localement compacts en obtenant une notion de biproduit
croisé dans ce contexte. L’article de P. Fima, K. Mukherjee et I. Patri [65] donne quant à lui une
version beaucoup plus précise de cette construction appelée biproduit croisé compact. Donc on se
demande si la propriété de Baum-Connes quantique est stable par ces constructions de groupes
quantiques.

D’une part, R. Vergnioux et C. Voigt ont montré dans [208] que la propriété de Baum-Connes
forte est stable par un produit libre de groupes quantiques discrets. Pour cela, R. Vergnioux et
C. Voigt suivent les idées de G. Kasparov et G. Skandalis dans [99] afin d’appliquer la méthode
Dirac-dual Dirac dans un contexte quantique de la théorie de Bass-Serre. En particulier, {O`pnq et
{U`pnq vérifient la propriété quantique de Baum-Connes forte.

D’autre part, pour un produit direct quantique, un produit semi-direct quantique et un biproduit
croisé compact, nous présentons ici une preuve suivant la philosophie des cas classiques de J. Chabert,
S. Echterhoff et H. Oyono-Oyono expliqués ci-dessus tout en utilisant la machinerie de Meyer-Nest.
Il est opportun de signaler que l’hypothèse sans torsion force un biproduit croisé compact à devenir
un produit semi-direct quantique. Ainsi, la propriété de Baum-Connes correspondante ne fournit
pas d’information remarquable dans ce cas, le cas avec torsion présentant des problèmes théoriques
majeures. L’étude de la propriété de Baum-Connes pour un produit direct quantique donne lieu à
une connexion avec la formule de Künneth de manière analogue à ce qui a été démontré dans [37]
par J. Chabert, S. Echterhoff and H. Oyono-Oyono pour les groupes localement compact classiques.

Lorsque nous analysons les articles originaux des cas classiques, nous observons que les difficultés
se trouvent lors du traitement du groupe de K-homologie équivariante en relation avec l’opération
réalisée avec les groupes. Cela entraîne un traitement minutieux et technique du membre de
gauche du morphisme d’assemblage. Grâce à l’approche catégoriel de Meyer-Nest, ces technicités
disparaissent et nous sommes capables d’obtenir une preuve plus conceptuelle. Si nous voulons
expliquer de manière simple la stratégie générale que nous avons suivi, nous pouvons dire qu’il
s’agit de transporter l’opération en question entre les groupes (quantiques) vers une décomposition
convenable de la catégorie de Kasparov.

À la connaissance de l’auteur, il est une question ouverte de savoir si la propriété usuelle de
Baum-Connes quantique est préservée par passage aux sous-groupes quantiques. Mais la condition
de divisible garantit l’invariance de la propriété de Baum-Connes forte [208]. Nous montrons que le
même résultat d’invariance est vrai pour la propriété usuelle de Baum-Connes. En ce qui concerne
la stabilité de la propriété de Baum-Connes pour une extension quelconque de groupes quantiques
au sens de Vaes-Vainerman, cela reste en dehors du champ de la présente thèse dû aux difficultés
techniques de cette construction par rapport à la formulation de la propriété de Baum-Connes
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quantique en toute généralité.
Concernant un produit en couronne d’un groupe quantique compact G dont le dual vérifie la

propriété de Baum-Connes forte par S`N , G o˚ S`N , la propriété de stabilité découle de la description
complète de la torsion d’un tel produit en couronne. En particulier, un produit en couronne libre
n’est jamais sans torsion. Pour cela, nous réalisons d’abord une complète classification des actions
de torsion pour un produit libre quantique, ce qui permet de donner une formulation adéquate de
la propriété de Baum-Connes forte pour un produit en couronne libre.

Cette étude détaillée d’un produit en couronne libre, nous a permis d’achever une application
majeure, à savoir un calcul explicite de K-théorie. Plus précisément, nous menons à bien le calcul
de la K-théorie, pour trois choix pertinents du groupes quantique G, pour le groupe quantique
compact de Lemeux-Tarrago qui est monoïdallement équivalent à un produit en couronne libre [120].
Il est judicieux de signaler qu’aussi bien la propriété d’invariance pour un produit en couronne libre
que les calculs de K-théorie intègrent un travail de collaboration avec A. Freslon [127].

Afin d’achever les objectifs précédemment exposés nous avons essayé de faire le mémoire aussi
auto-contenu et détaillé que possible selon l’organisation suivante.

Le premier chapitre Background consiste à établir tous les outils nécessaires pour aborder les
problèmes de la propriété de Baum-Connes, de la torsion et du calcul de la K-théorie. Notamment,
nous donnons un exposé très détaillé sur la machinerie de Meyer-Nest afin de présenter aussi
nettement que possible la reformulation de la propriété de Baum-Connes et son analogue dans le
cas quantique. Nous détaillons également la théorie générale des groupes quantiques compacts
d’après S. L. Woronowicz et la construction explicite des produits croisés dans ce cadre.

Le deuxième chapitre Construction of Compact Quantum Groups présente les exemples les plus
importants de groupes quantiques compacts en regroupant tous les résultats connus et d’intérêt
pour la présente thèse durant les 30 dernières années.

Le troisième chapitre Stability properties for the BCc doit être vu comme le “noyau” de la thèse
où nous développons la stabilité de la propriété de Baum-Connes sous certaines constructions de
groupes quantiques. Notamment, nous traitons les cas d’intérêt suivants : un groupe quantique
compact, le dual d’un groupe de Lie compact, connexe et avec groupe fondamental sans torsion,
un produit direct quantique, un produit semi-direct quantique, un biproduit croisé compact, un
produit libre quantique et un produit en couronne libre. Dans chacune de ces situations, nous
analysons également le phénomène de torsion et la propriété de K-moyennabilité.

Le quatrième chapitre An application: the K-theory for the Lemeux-Tarrago’s pHq ă {G ˚ SUqp2q
peut être vu comme l’apogée de la recherche réalisée en cette thèse. Nous illustrons une application
majeure des propriétés de stabilité obtenues dans le chapitre 3, à savoir nous menons à bien le
calcul explicite de la K-théorie de CpHqq pour trois choix pertinents de G : aq lorsque G est un
groupe orthogonal libre, bq lorsque G est un groupe quantique libre et cq lorsque G est le groupe
classique libre à n générateurs.

Le cinquième et dernier chapitre Conclusion: open questions and possible lines of attack est
consacré à nous questionner sur les résultats obtenus et sur les résultats à obtenir idéalement.
Notamment, cela tourne autour de quatre axes : iq stabilité de la propriété de Baum-Connes
(resp. forte) pour les constructions traités dans le chapitre 3, iiq stratégie des tores maximaux pour
achever la propriété de Baum-Connes forte, iiiq stratégie pour les calculs de la K-théorie dans des
nouveaux examples issu d’un produit semi-direct quantique ou un produit en couronne libre et ivq



CONTENTS 13

problématique de la formulation de la propriété de Baum-Connes pour un groupe quantique discret
arbitraire (non nécessairement sans torsion).

En dehors de ces chapitres, nous avons inclut dans ce mémoire deux annexes qui servent d’appui
à tous les résultats présentés au long du document. L’annexe A est consacré à des faits généraux
sur différents objets de base tels comme les C˚-algèbres, les algèbres de von Neumann, les modules
hilbertiens ou les algèbres de multiplicateurs. L’annexe B est consacré à des faits généraux sur les
catégories et les catégories tensorielles.
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Background

In the first chapter we establish all the foundations for the good understanding and development of
the thesis.

First of all, in Section 1.1 we point out all the conventions and notations used in the document
and they should be kept in mind. Section 1.2 is devoted to the detailed exposition of the general
categorical framework for the Meyer-Nest’s Baum-Connes conjecture reformulation, which is
complemented by Section 1.7 where we apply this machinery for (torsion-free) discrete quantum
groups and establish thus the quantum counterpart of the Baum-Connes conjecture.

To this end, there are three aspects that must be exposed as well. Firstly, Section 1.3 gives the
general picture of compact quantum groups in the sense of S. L. Woronowicz (representation and
spectral theory) including the study of induced actions from discrete quantum subgroups. Secondly,
in Section 1.5 we give a detailed proof of the universal property of a (reduced) crossed product
by a discrete quantum group and investigate further properties of interest for the study of the
Baum-Connes conjecture’s stability properties. Thirdly, in Section 1.6 we present the notion of
torsion for a discrete quantum group.

15
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1.1 Conventions and notations
Conventions

- All locally compact groups are supposed to be second countable.

- All C˚-algebras are supposed to be separable and all ideals of C˚-algebras are supposed to be
two-sided closed ideals. All Hilbert modules are supposed to be countably generated.

- We use the symbol ˝ to denote the composition of maps. If the context is clear, then we omit
such a symbol.

- We use the symbol \ to denote the disjoint unions.

- If S is any set, then we denote by #S the cardinal of the set S (possibly 8). The symbol H
stands for the empty set.

- If G is a set of generators and R is a set of relations on the generators, the corresponding
universal C˚-algebra (if it exists) is denoted by C˚xG | Ry.
If A is a C˚-algebra and S is a subset of elements in A, then we write xSy :“ C˚xS Y S˚y
for the corresponding C˚-subalgebra of A generated by S, that is, the intersection of all
C˚-subalgebras of A containing S. In this case, the elements of S are called generators of
xSy.

- If E is a C-vector space and S is a subset of vectors of E, then we write spantSu for the
corresponding C-vector subspace generated by S.

- If pE, || ¨ ||q is a normed C-vector space and S is a subset of vectors in E, then we write
spantSu :“ rspantSus for the corresponding normed C-vector subspace generated by S.

In particular, if F Ă E is a vector subspace, we write rF s :“ F
||¨|| for the || ¨ ||-closure of F in

E.
We write E˚ for the corresponding dual space.

- The commutativity of functor’s diagrams are considered with respect to the notion of equiva-
lence of functors.

- If C is a category and S is a subset of objects in C , then we write xSy for the corresponding
full subcategory of C generated by S, that is, the intersection of all full subcategories of C
containing S.

- All additive categories are supposed to have countable direct sums. If F is an additive functor
on such an additive category, it is, by definition, compatible with finite direct sums. Whenever
we require F to be compatible with infinite (countable) direct sums, it will be explicitly
indicated.

- We use the symbol A to denote abelian categories. The category of abelian groups is denoted
by A b and the (locally small) category of sets is denoted by Set.



1.1. Conventions and notations 17

- If H is a Hilbert space and S Ă BpHq is any subset of operators on H, then we denote by S 1
the commutant of S, that is,

S 1 :“ tT P BpHq | T ˝X “ X ˝ T , for all X P Su

We denote by S2 :“
`

S 1
˘1 the bicommutant of S.

- If A is a C˚-algebra, we denote by A` the convex cone of its positive elements.

- If M is a von Neumann algebra, we denote by M˚ the pre-dual of M .

- If A is a C˚-algebra, H is a Hilbert A-module and N Ă H is a Hilbert A-submodule, then
given ξ P H we denote by rξs P H{N the image of ξ by the quotient map. This notation shall
be applied in other contexts with quotients.

- If H1, H2 are Hilbert spaces, we denote by BpH1, H2q the C˚-algebra of linear operators
between H1 and H2 and by KpH1, H2q the C˚-algebra of compact operators between H1 and
H2. If H1 “ H “ H2, we write BpHq for the linear operators on H and KpHq for the compact
operators on H.

- If A is a C˚-algebra and H1, H2 are Hilbert A-modules, we denote by LApH1, H2q the C˚-
algebra of adjointable operators between H1 and H2 and by KApH1, H2q the C˚-algebra of
the compact adjointable operators between H1 and H2. If H1 “ H “ H2, we write LApHq
for the adjointable operators on H and KApHq for the compact adjointable operators on H.

- Hilbert A-modules are considered to be right A-modules, so that the corresponding inner
products are considered to be conjugate-linear on the left and linear on the right.

- If H is a finite dimensional Hilbert space and tξ1, . . . , ξdimpHqu is an orthonormal basis in
H, the associated matrix units in BpHq are denoted by tmijui,j“1,...,dimpHq and we have the
following relations for all i, j, k, r, s “ 1, . . . , dimpHq,

mij ¨ ξk “ ξiδjk, ξk ¨mij “ ξjδki and mir ¨msj “ δr,smij

The coordinate linear forms on BpHq with respect to the basis tξ1, . . . , ξdimpHqu are denoted
by ωξi,ξj :“ ωi,j and defined by

ωξi,ξj pT q :“ xξi, T pξjqy, for all i, j “ 1, . . . , dimpHq and all T P BpHq

Remark that ω˚i,j “ ωj,i, for all i, j “ 1, . . . , dimpHq. Notice that the analogous definition is
valid for any vectors ξ, η P H: ωξ,ηpT q :“ xξ, T pηqy, for all T P BpHq.

- Let H be a complex vector space. We denote by H its complex conjugate, whose underlying
additive group is the same as the one of H and whose scalar multiplication is given by complex
conjugation of scalars. In order to distinguish the vectors of H from those of H, given an
element ξ of their common underlying additive group, we write ξ to specify that it is a vector
in H. We denote by H˚ its dual vector space formed by all linear functionals on H. If H is a
Hilbert space, then we still denote by H˚ its topological dual space formed by all continuous
linear functionals on H and we refer to it simply as dual space of H.
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Let H be a Hilbert space. The inner product of H is defined by xη, ξy :“ xξ, ηy, for all ξ, η P H.
Every linear operator T P BpHq gives rise to a linear operator T P BpHq defined by the same
action of T , that is, T pξq :“ T pξq, for all ξ P H. We denote by j : BpHq ÝÑ BpH˚q the
map that sends an operator to its dual. Namely, jpT qpωq :“ ω ˝ T , for all T P BpHq and all
ω P H˚. Sometimes, the dual operator of T P BpHq is denoted by T t.
We recall that, by virtue of the celebrated Riesz-Fréchet representation theorem, H is identified
to H˚ by means of the linear isometry ρ : H „

ÝÑ H˚ defined by ρpξq :“ x¨, ξy, for all ξ P H.
By means of this identification, the scalar product on H˚ is given by xρpξq, ρpηqy :“ xξ, ηy,
for every ξ, η P H. Moreover, the map j : BpHq ÝÑ BpHq is given by

jpT qpξq “ T˚pξq,

for all T P BpHq and all ξ P H, where T˚ P BpHq denotes the adjoint operator of T . For this,
we have just to remark that ρ ˝ T˚ “ T t ˝ ρ, which is a straightforward computation. Observe
that j is an anti-multiplicative linear ˚-homomorphism.
By abuse of notation we still denote by j : BpHq bC ÝÑ BpHq bC the map defined by j b˚,
where C is any C˚-algebra and ˚ is the conjugation map on C.
Assume that H is finite dimensional with orthonormal basis tξ1, . . . , ξdimpHqu. The corre-
sponding dual basis in H˚ – H is denoted by tξ˚1 , . . . , ξ˚dimpHqu :“ tω1, . . . , ωdimpHqu.
Remark that ωξ˚

i
,ξ˚
j
pjpT qq “ ω˚ξi,ξj pT

˚q, for all i, j “ 1, . . . , dimpHq and all T P BpHq, where

we use the identification ξi
ρ
– ξ˚i , for all i “ 1, . . . , dimpHq.

- The algebraic tensor product between two structures is denoted by d.
The minimal tensor product between two C˚-algebras is denoted by b.
The maximal tensor product between C˚-algebras is denoted by b

max
.

The exterior tensor product between two Hilbert modules is denoted by b.
The interior tensor product between two Hilbert modules with respect to a ˚-homomorphism
φ is denoted by b

φ
.

In any of the previous cases, the elementary tensors in the corresponding tensor product are
denoted simply by b and the context will distinguish the specific situation in which we are
working. The elementary tensors of a interior tensor product will be usually denoted by b

φ

for more clarity of the exposition.

- If A and B are two C˚-algebras, Σ : AbB ÝÑ BbA denotes the flip map. We use the same
symbol Σ for the flip between tensor product of Hilbert modules.
The symbol Σ is used as well for the suspension functor in the framework of triangulated
categories. The context will distinguish the specific situation in which we are working.

- Given a family of normed vector spaces tpEi, || ¨ ||quiPI , an element x :“ pxiqiPI P
ś

iPI

Ei is said

to vanish at 8 if for every ε ą 0 there exists a finite subset J Ă I such that ||xi|| ă ε, for all
i P IzJ . In this case we write x 8

ÝÑ 0 and we define
à

iPI

c0
Ei :“ tx P

ź

iPI

Ei | x
8
ÝÑ 0u
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If tpEi, || ¨ ||quiPI is a family of involutive Banach algebras,
À

iPI

c0Ei is an involutive Banach

algebra with the supremum norm.

- Given a family of normed vector spaces tpEi, || ¨ ||quiPI , an element x :“ pxiqiPI P
ś

iPI

Ei is said

to be bounded if p||xi||qiPI P l8pIq. We define
à

iPI

l8

Ei :“ tx P
ź

iPI

Ei | x is boundedu

If tpEi, || ¨ ||quiPI is a family of involutive Banach algebras,
À

iPI

l8
Ei is an involutive Banach

algebra with the supremum norm.

Leg numbering notation

- Let A be a unital C˚-algebra and consider the tensor product A b A. The leg numbering
notation indicates the three obvious ways in which we can embed AbA in AbAbA. More
precisely, given x P AbA we write

x12 :“ xb 1A, x13 :“ pidA b Σqpx12q, x23 :“ 1A b x

Likewise, if T : AbA ÝÑ AbA is any ˚-homomorphism, we can consider the corresponding
legs of T as ˚-homomorphisms from A b A b A to itself in accordance with the obvious
embeddings mentioned above. More precisely, we write

T12 :“ T b idA, T13 :“ pidA b Σq ˝ T12 ˝ pidA b Σq, T23 :“ idA b T

1.1.1 Remarks. 1. Sometimes, the leg numbering notation xij or Tij can be found in this
document as

“

x
‰

ij
or

“

T
‰

ij
. The reason for this is only “esthetic” in order to stress the

use of the corresponding legs and facilitate the reading of computations.
2. If A is not unital, the same notations stand using the multiplier algebra of A, MpAq,

which is a unital C˚-algebra.
3. More generally, given n,m P N with n ď m consider a faithful map of sets ι :
t1, . . . , nu ÝÑ t1, . . . ,mu. This defines an embedding Abn ãÑ Abm. Given x P Abn,
its image in Abm following the embedding ι is written in leg numbering notation as
xιp1q,...,ιpnq. Given a ˚-homomorphism T : Abn ÝÑ Abn, its leg following the embedding
ι is written as Tιp1q,...,ιpnq meaning that T only acts only on the places ιp1q, . . . , ιpnq in
Abm.

4. Notice that similar notations are adopted when we consider tensor product of different
C˚-algebras.

- Let H be a Hilbert space and A a unital C˚-algebra. The leg numbering notation can be
applied also to the tensor product H bA following the obvious embeddings when we add a
copy of A by the right. More precisely, given x P H bA we define

x12 :“ xb 1A, x13 :“ pidH b Σqpx12q, x23 :“ pΣb idAqpx13q
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Likewise, if T : H bA ÝÑ H bA is any homomorphism, we can consider the corresponding
legs of T as homomorphisms from H bAbA (or AbH bA) to itself in accordance with the
obvious embeddings mentioned above. More precisely, we write

T12 :“ T b idA, T13 :“ pidH b Σq ˝ T12 ˝ pidH b Σq, T23 :“ pidA b T q ˝ pΣb idAq

Sweedler notation

Let A be a unital C˚-algebra and consider the tensor product A d A. The Sweedler notation
simplifies the expression of any element in this tensor product. Namely, we know that every element
x P AdA can be written (in a not unique fashion) under the form x “

n
ř

i“1
a1i b a2i, for some n P N

and some a1i, a2i P A for all i “ 1, . . . , n. In this way, Sweedler notation suggests the following
writing

x :“ ap1q b ap2q,
where the subscripts p1q and p2q point out the order of the factors in the tensor product. Notice
that it is important to keep in mind this order. In particular, the Sweedler notation yields the
following writing for the flip of x,

Σpxq :“ ap2q b ap1q

1.1.2 Remarks. 1. If AdA is dense in AbA, then by abuse of notation we still use the Sweedler
notation for elementary tensors in the analytical tensor product. Namely, notice that by
the density condition we can perform computations on the algebraic level using Sweedler
notations and pass then to the analytical level.

2. If A is not unital, then we may work with its multiplier algebra MpAq, which is a unital
C˚-algebra. However, every element in x P MpA d Aq can not be written as a finite sum
x “

n
ř

i“1
a1i b a2i, for some n P N and some a1i, a2i PMpAq for all i “ 1, . . . , n.

Nevertheless, Sweedler notation can be still applied with a very precise meaning and we must
be careful in this case. See Notation 2.1.7 in [188] or [203] for more details.

3. Notice that similar notations are adopted when we consider tensor products of different
C˚-algebras.

Multiplicative unitaries

The celebrated theory of multiplicative unitaries (developed by S. Baaj and G. Skandalis [7]) is not
really used in this dissertation. Nevertheless, some notations and notions concerning multiplicative
unitaries are mentioned in the document. We collect here the elementary language that we need for
the convenience of the reader. We refer to the original article [7] or to Chapter 7 and Chapter 9 of
[188] for a comprehensive and detailed exposition of the subject (we refer as well to [230] and [175]).

Let H be a Hilbert space and V P BpH b Hq be a multiplicative unitary on H, that is, a
unitary operator such that V12 ˝ V13 ˝ V23 “ V23 ˝ V12. If V is a multiplicative unitary on H, then
V op :“ pV :“ Σ ˝ V ˚ ˝ Σ is again a multiplicative unitary on H. We have the following objects:
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p∆V : BpHq ÝÑ BpH bHq
T ÞÝÑ p∆V pT q :“ V ˚ ˝ pidb T q ˝ V

∆V : BpHq ÝÑ BpH bHq
T ÞÝÑ ∆V pT q :“ V ˝ pT b idq ˝ V ˚

pA0pV q :“ tpaω :“ pidb ωqpV q | ω P BpHq˚u Ă BpHq

A0pV q :“ taω :“ pω b idqpV q | ω P BpHq˚u Ă BpHq

pApV q :“ }¨ } ´ closure of pA0pV q in BpHq
ApV q :“ }¨ } ´ closure of A0pV q in BpHq

The pairs p pApV q, p∆V q and pApV q,∆V q are called left leg of V and right leg of V , respectively.

1.2 Triangulated categories
Triangulated categories are one of the main achievements in abstract homotopy theory during the
60’s thanks to the work of A. Grothendieck and J. L. Verdier. Roughly speaking, a triangulated
category is an additive category with a translation functor and a distinguished class of triangles.
The main motivation for this notion is the axiomatization and understanding of the derived category.

If C is any additive category, let us consider the corresponding homotopy category H pC q
(see Theorem B.2.11 for a definition). If C is abelian, it is not guarantee that H pC q is again
an abelian category (take for instance C as the category of abelian groups). However, it can be
shown that H pC q is a triangulated category, so that distinguished triangles should be regarded as
the replacement of short exact sequences (indeed, it is not very hard to show that in an abelian
triangulated category, every short exact sequence splits). In a simple way, the main problem consists
in the construction of homology theories in order to describe obstructions for a given property.
Hence, the derived category of C is the localization of H pC q with respect to quasi-isomorphisms
and, in this way, it gives a general and abstract description of homology theories and its triangulated
structure gives the appropriate understanding of the manipulation of long exact sequences.

The goal of this section is not to enter in the details of this abstract homological picture, but
to introduce the general framework and the main useful results for the purpose of the present
dissertation. Good references for more details are [138], [85] or [205].

An other example of triangulated category that is interesting for us is the Kasparov category
(see Section 1.2.3), which allows the application of these abstract categorical theories to non
commutative geometry. The most important innovation is the homological algebra developed
in such a triangulated category. This homological algebra has been developed by R. Meyer and
R. Nest in [134] and [131] inspired by previous work of different authors as A. Beligiannis [19],
J. D. Christensen [40] and S. Eilenberg and J.C. Moore [57]. In the triangulated context, the
corresponding homological algebra is always relative to some fixed ideal J , which will be supposed
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to be the homomorphism-kernel of some triangulated functor. We can then translate the classical
notions of homological algebra relatively to such ideal J , but sometimes we must be careful in the
definitions in order to obtain a notion that only depends on the ideal and not in the functor itself.
In Section 1.2.2 we give a first approach to this homological algebra in order to justify properly the
reformulation of the Baum-Connes property in this categorical framework. In Section 1.2.4 we carry
out a deeper analysis of this homological algebra in order to treat the derived category picture in
the triangulated framework and obtain thus some tools for the existence of useful exact sequences.

1.2.1 Elementary facts
1.2.1.1 Definition. Let T be an additive category equipped with an additive auto-equivalence Σ
(that is, a stable additive category). A triangle in T is a sequence of objects and homomorphisms
in T of the form

X
u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq

1.2.1.2 Definition. Let T be an additive category equipped with an additive auto-equivalence Σ. A
homomorphism between two triangles X u

ÝÑ Y
v
ÝÑ Z

w
ÝÑ ΣpXq and X 1 u1

ÝÑ Y 1
v1
ÝÑ Z 1

w1
ÝÑ ΣpX 1q

in T is the data of three homomorphisms f : X ÝÑ X 1, g : Y ÝÑ Y 1, h : Z ÝÑ Z 1 such that the
following diagram is commutative

X

f
��

u // Y
v //

g
��

Z
w //

h
��

ΣpXq

Σpfq
��

X 1
u1
// Y 1

v1
// Z 1

w1
// ΣpX 1q

The triangles are said to be isomorphic if f, g, h are isomorphisms.

1.2.1.3 Definition. A triangulated category is the data pT ,Σ,∆Σq where T is an additive category,
Σ is an additive auto-equivalence of T called suspension functor and ∆Σ is a class of triangles in T
called distinguished triangles such that

i) every triangle isomorphic to a distinguished one is a distinguished triangle and for every object
X P ObjpT q the triangle

X
id
ÝÑ X ÝÑ 0 ÝÑ ΣpXq

is a distinguished triangle,

ii) for every homomorphism f : X ÝÑ Y in T , there exists a distinguished triangle of the form

X
f
ÝÑ Y ÝÑ Cf ÝÑ ΣpXq

where the object Cf is called cone of f and the corresponding distinguished triangle is called
cone triangle of f ,

iii) (rotation axiom) a triangle X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq is a distinguished one if and only if the

triangle Y v
ÝÑ Z

w
ÝÑ ΣpXq ´Σpuq

ÝÑ ΣpY q is a distinguished one,
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iv) if X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq and X 1 u1

ÝÑ Y 1
v1
ÝÑ Z 1

w1
ÝÑ ΣpX 1q are two distinguished triangles

in T , then every commutative diagram of the form

X

f
��

u // Y
v //

g
��

Z
w //

��

ΣpXq

Σpfq
��

X 1
u1
// Y 1

v1
// Z 1

w1
// ΣpX 1q

meaning that g ˝ u “ u1 ˝ f can be completed into a homomorphism of triangles.

v) (octahedron axiom) if X u
ÝÑ Y ÝÑ Z 1 ÝÑ ΣpXq, Y v

ÝÑ Z ÝÑ X 1 ÝÑ ΣpY q, X v˝u
ÝÑ

Z ÝÑ Y 1 ÝÑ ΣpXq are distinguished triangles in T , then there exists a distinguished triangle
Z 1 ÝÑ Y 1 ÝÑ X 1 ÝÑ ΣpZ 1q such that the following diagram is commutative

X

idX

// Y //

v
��

Z 1 //

��

ΣpXq

idΣpXq

X v ˝ u
//

u
��

Z //

idZ

Y 1 //

��

ΣpXq

Σpuq
��

Y v
//

��

Z //

��

X 1 //

idX1

ΣpY q

��
Z 1 // Y 1 // X 1 // ΣpZ 1q

1.2.1.4 Remarks. 1. Given a homomorphism f : X ÝÑ Y in T , it is shown later on (see Remarks
1.2.1.18) that the cone triangle of f is unique up to isomorphism, which explains the notation
Cf for the object of the axiom piiq of the preceding definition.

2. Notice that if pT ,Σ,∆Σq is a triangulated category, we can consider the opposite category
T op which is again a triangulated one with suspension functor Σ´1. Moreover, a triangle
X

u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq in T becomes the triangle Σ´1pXq

wop
ÝÑ Z

vop
ÝÑ Y

uop
ÝÑ X in T op.

1.2.1.5 Definition. Let pT ,Σ,∆Σq be a triangulated category. A triangulated subcategory of T
is an additive full subcategory S of T such that

i) every object of T isomorphic to an object in S is an object of S,

ii) ΣpSq Ă S,

iii) if X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq is a distinguished triangle in T with X,Y P ObjpSq, then

Z P ObjpSq.

1.2.1.6 Definition. Let pT ,Σ,∆Σq be a triangulated category. A thick subcategory of T is a
triangulated subcategory S of T such that if X,Y P ObjpT q are such that X ‘ Y P ObjpSq, then
X,Y P ObjpSq.
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1.2.1.7 Definition. Let pT ,Σ,∆Σq be a triangulated category. A localizing subcategory of T is a
triangulated subcategory S of T such that every countable direct sum of objects of S is an object
of S.

1.2.1.8 Definition. Let pT ,Σ,∆Σq be a triangulated category. If S Ă ObjpT q is any class of
objects in T , we denote by xSy the smallest triangulated subcategory of T such that

i) the objects of S are in xSy,

ii) every countable direct sum of objects of S is an object of xSy,

iii) the subcategory xSy is thick.

In that case, we say that xSy is the subcategory of T generated by S.

1.2.1.9 Remarks. 1. Fix a class of objects S in a triangulated category T . Then xSy is well-
defined. Namely, it is the intersection of all triangulated subcategories of T satisfying the
properties piq, piiq and piiiq of the preceding definition. Indeed, let G :“

Ş

iPI

Si such an

intersection. Notice that ObjpGq “
Ş

iPI

ObjpSiq by definition.

- G is clearly a triangulated subcategory of T .
- G satisfies the properties piq, piiq and piiiq of the preceding definition. Namely,

i) by assumption we have that S Ă ObjpSiq, for all i P I. Hence, S Ă ObjpGq,
ii) if D is a countable direct sum of objects of S, then by assumption we have that

D P ObjpSiq, for all i P I. Hence, D P ObjpGq,
iii) by assumption we have that Si is thick for all i P I. This means that for all

X,Y P ObjpT q such that X ‘ Y P ObjpSiq, we have X,Y P ObjpSiq. This is true
for every i P I. Hence, whenever X,Y P ObjpT q are such that X ‘ Y P ObjpGq, we
have X,Y P ObjpGq. In other words, G is a thick subcategory

2. By virtue of the rotation axiom of a triangulated category, it is clear that the axiom piiiq of a
triangulated subcategory can be formulated with any pair of objects of a given distinguished
triangle. More precisely, let X u

ÝÑ Y
v
ÝÑ Z

w
ÝÑ ΣpXq be a distinguished triangle in T and

let S be an additive full subcategory of T , then, thanks to the rotation axiom, the following
assertions are equivalent

a) X,Y P ObjpSq ñ Z P ObjpSq
b) X,Z P ObjpSq ñ Y P ObjpSq
c) Y, Z P ObjpSq ñ X P ObjpSq

3. We can show that any localizing subcategory is automatically a thick subcategory (see Remark
3.2.7 in [138]). Notice that [138] works in a more general framework. Namely, a localization
subcategory is defined with respect to a given cardinal. We restrict our attention to the
countable cardinal ℵ0 as indicated in Section 1.1. Recall that all our additive categories are
supposed to have countable direct sums.

4. With these definitions and the preceding remark, we observe that xSy is the localizing
subcategory generated by S meaning that xSy is the smallest triangulated category containing
the objects of S and stable with respect to countable direct sums.
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1.2.1.10 Definition. Let pT ,Σ,∆Σq and pT 1,Σ1,∆Σ1q two triangulated categories and F : T ÝÑ

T 1 an additive functor. We say that F is a triangulated functor if

i) F is stable meaning that F ˝ Σ – Σ1 ˝ F ,

ii) F transforms distinguished triangles into distinguished triangles.

1.2.1.11 Definition. Let pT ,Σ,∆Σq be a triangulated category, A any abelian category and
F : T ÝÑ A a covariant (resp. contravariant) additive functor. We say that F is a homological
(resp. co-homological) functor if for every distinguished triangle X u

ÝÑ Y
v
ÝÑ Z

w
ÝÑ ΣpXq in T ,

the sequence F pXq F puqÝÑ F pY q
F pvq
ÝÑ F pZq is exact in A .

1.2.1.12 Note. When triangulated structures are involved, triangulated or stable additive categories
are needed and when exact sequences are involved, abelian categories are needed. Moreover, we
shall work with stable abelian categories, so with stable homological functors. All these assumptions
are clear by the context on each statement of the theory.
1.2.1.13 Remark. Given a triangulated functor F : T ÝÑ T 1 (or a stable homological functor
F : T ÝÑ A ) we have a natural additive full subcategory of T defined by

kerObjpF q :“ tX P ObjpT q | F pXq – 0u

In fact, kerObjpF q is a thick subcategory of T . Namely,

- kerObjpF q is a triangulated subcategory of T .

i) If X P ObjpT q is isomorphic to an object K P kerObjpF q, then we have that F pXq –
F pKq – 0, whence X P kerObjpF q.

ii) Consider K P kerObjpF q. Since F is a triangulated (resp. stable homological) functor,
then F is stable and we have

F pΣpKqq – Σ1pF pKqq – Σ1p0q – 0,

whence ΣpKq P kerObjpF q.
iii) Let X ÝÑ Y ÝÑ Z ÝÑ ΣpXq be a distinguished triangle in T with X,Y P kerObjpF q.

Since F is a triangulated (resp. stable homological) functor, then we have the following
distinguished triangle in T 1 (resp. short exact sequence in A )

F pXq ÝÑ F pY q ÝÑ F pZq ÝÑ Σ1pF pXqq

(resp. F pXq ÝÑ F pY q ÝÑ F pZq)

By assumption we have that F pXq – 0 – F pY q, which implies that the above distin-
guished triangle (resp. short exact sequence) is isomorphic to the distinguished triangle
0 ÝÑ 0 ÝÑ F pZq ÝÑ 0 (resp. to the short exact sequence 0 ÝÑ 0 ÝÑ F pZq). In
particular, F pZq – 0 whence Z P kerObjpF q.

- kerObjpF q is thick. Consider two objects X,Y P ObjpT q such that X ‘ Y P kerObjpF q. Since
F is an additive functor, then we have that 0 – F pX ‘ Y q – F pXq ‘ F pY q. This implies
that F pXq – 0 – F pY q by definition of direct sum object.
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Observe that kerObjpF q is a localizing subcategory whenever F is compatible with countable
direct sums.
1.2.1.14 Remark. By virtue of the rotation axiom, if F : T ÝÑ A is a homological (resp. co-
homological) functor, then for every distinguished triangle X u

ÝÑ Y
v
ÝÑ Z

w
ÝÑ ΣpXq there exists a

long exact sequence in A

. . .Ñ F pΣi´1pZqq Ñ F pΣipXqq Ñ F pΣipY qq Ñ F pΣipZqq Ñ F pΣi`1pXqq Ñ . . .

(resp. . . .Ð F pΣi´1pZqq Ð F pΣipXqq Ð F pΣipY qq Ð F pΣipZqq Ð F pΣi`1pXqq Ð . . . )

1.2.1.15 Lemma. Let pT ,Σ,∆Σq be a triangulated category. If X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq is any

distinguished triangle in T , then we always have

v ˝ u “ 0 “ w ˝ v

Proof. Let X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq be any distinguished triangle in T . Firstly we observe that,

by virtue of the rotation axiom, it is enough to prove that v ˝ u “ 0. Now, applying again the
rotation axiom, we know that Y v

ÝÑ Z
w
ÝÑ ΣpXq ´Σpuq

ÝÑ ΣpY q is a distinguished triangle in T as
well.

Apply the axiom piq of a triangulated category to the object Z, so that Z id
ÝÑ Z ÝÑ 0 ÝÑ ΣpZq

is a distinguished triangle in T . We have then the following commutative diagram,

Y

v
��

v // Z
w //

id

ΣpXq
´Σpuq

//

��

ΣpY q

Σpvq
��

Z
id
// Z 0

// 0 0
// ΣpZq

which can be completed into a homomorphism of triangles by virtue of the axiom pivq of a
triangulated category. In particular, we have 0 “ Σpvq ˝ p´Σpuqq “ ´Σpv ˝ uq so that v ˝ u “ 0
because Σ is an auto-equivalence in T . �

1.2.1.16 Proposition (Long exact sequence for homomorphisms). Let pT ,Σ,∆Σq be a triangulated
category. Given an object T P ObjpT q, the homomorphism functor HomT pT, ¨ q is homological
and the homomorphism functor HomT p ¨ , T q is co-homological.

Consequently, given any distinguished triangle X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq in T , there exist long

exact sequences of abelian groups

. . .Ñ HomT pT,Σi´1pZqq Ñ HomT pT,ΣipXqq Ñ HomT pT,ΣipY qq
Ñ HomT pT,ΣipZqq Ñ HomT pT,Σi`1pXqq Ñ . . .

. . .Ð HomT pΣi´1pZq, T q Ð HomT pΣipXq, T q Ð HomT pΣipY q, T q
Ð HomT pΣipZq, T q Ð HomT pΣi`1pXq, T q Ð . . .
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Proof. Let’s prove the result for the functor HomT pT, ¨ q (the argument for HomT p ¨ , T q is
completely analogous). Let X u

ÝÑ Y
v
ÝÑ Z

w
ÝÑ ΣpXq be any distinguished triangle in T . We have

to show that
HomT pT,Xq

u˚
ÝÑ HomT pT, Y q

v˚
ÝÑ HomT pT,Zq

is an exact sequence of abelian groups.
Thanks to the previous lemma we know that v ˝ u “ 0 and so pu ˝ vq˚ “ v˚ ˝ u˚ “ 0. In other

words, Impu˚q Ă kerpv˚q. In order to show that kerpv˚q Ă Impu˚q, take any f P kerpv˚q.
Given the distinguished triangle above, the rotation axiom assures that Y v

ÝÑ Z
w
ÝÑ ΣpXq ´Σpuq

ÝÑ

ΣpY q is a distinguished triangle in T as well. Given an object T P ObjpT q, consider the corresponding
distinguished triangle given by the axiom piq of a triangulated category: T id

ÝÑ T ÝÑ 0 ÝÑ ΣpT q.
Apply again the rotation axiom so that T 0

ÝÑ 0 ÝÑ ΣpT q ´idÝÑ ΣpT q is a distinguished triangle in
T as well.

Since f P kerpv˚q the following diagram is commutative,

T

f
��

0 // 0 0 //

0
��

ΣpT q ´id //

h
��

ΣpT q

Σpfq
��

Y v
// Z w

// ΣpXq
Σpuq

// ΣpY q

and hence it can be completed via h into a homomorphism of triangles by virtue of the axiom pivq
of a triangulated category. In particular, we have Σpfq˝ p´idq “ ´Σpuq˝h, that is, Σpfq “ Σpuq˝h
and so f “ u ˝ Σ´1phq. In other words, f “ u˚pΣ´1phqq P Impu˚q. �

1.2.1.17 Lemma (Five’s lemma for triangulated categories). Let pT ,Σ,∆Σq be a triangulated
category and let

X

f
��

u // Y
v //

g
��

Z
w //

h
��

ΣpXq

Σpfq
��

X 1
u1
// Y 1

v1
// Z 1

w1
// ΣpX 1q

be a homomorphism of distinguished triangles in T .
If f and g are isomorphisms, so it is h and consequently the triangles are isomorphic.

Proof. Fix the object Z 1 P ObjpT q and consider the homological functor HomT pZ
1, ¨ q. By virtue

of the preceding proposition, we can consider the following commutative diagram with exact lines,

HomT pZ
1, Xq //

f˚
��

HomT pZ
1, Y q //

g˚
��

HomT pZ
1, Zq //

h˚
��

HomT pZ
1,ΣpXqq //

Σpf˚q
��

HomT pZ
1,ΣpY qq

Σpg˚q
��

HomT pZ
1, X 1q // HomT pZ

1, Y 1q // HomT pZ
1, Z 1q // HomT pZ

1,ΣpX 1qq // HomT pZ
1,ΣpY 1qq

Since f and g are isomorphisms by assumption, then f˚, g˚, Σpf˚q and Σpg˚q are isomorphisms
as well. Hence the five’s lemma for abelian categories guarantees that h˚ is an isomorphism as well.
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In particular, given idZ1 P HomT pZ
1, Z 1q there exists a unique homomorphism q P HomT pZ

1, Zq
such that idZ1 “ h˚pqq “ h ˝ q. In other words, q is a right inverse for h. Now, the same argument
as above using the homological functor HomT p ¨ , Z

1q yields a left inverse for h and so we conclude
that h is an isomorphism. �

1.2.1.18 Remarks. 1. The five’s lemma for triangulated categories can be stated for a more
general class of triangles not necessary distinguished. Namely, it is enough to consider triangles
X

u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq such that

a) v ˝ v “ 0 “ w ˝ v

b) the homological functors HomT pT, ¨ q and HomT p ¨ , T q yield long exact sequences

. . .Ñ HomT pT,Xq
u˚
ÝÑ HomT pT, Y q

v˚
ÝÑ HomT pT,Zq

w˚
ÝÑ HomT pT,ΣpXqq

Σpuq˚
ÝÑ HomT pT,ΣpY qq Ñ . . .

. . .Ð HomT pX,T q
u˚
Ð HomT pY, T q

v˚
Ð HomT pZ, T q

w˚
Ð HomT pΣpXq, T q

Σpuq˚
Ð HomT pΣpY q, T q Ð . . .

for every object T P ObjpT q.

For more details we refer to Chapter 1 of [138] (for instance, see Caution 1.1.16 and Proposition
1.1.20).

2. By virtue of the five’s lemma, it is clear that the cone of a given homomorphism is unique up
to isomorphism. Namely, given a homomorphism f : X ÝÑ Y in T , consider two different
cone triangle for f , say

X
f
ÝÑ Y ÝÑ Cf ÝÑ ΣpXq and X f

ÝÑ Y ÝÑ C 1f ÝÑ ΣpXq

We can consider the following commutative diagram

X

idX

f // Y //

idY

Cf //

��

ΣpXq

idΣpXq

X
f
// Y // C 1f // ΣpXq

which can be completed into a homomorphism of triangles. Since idX and idY are isomor-
phisms, the five’s lemma yield that Cf – C 1f as we wanted to show. In fact, the whole cone
triangle associated to a homomorphism is unique up to isomorphism.

1.2.1.19 Proposition (Direct sum of distinguished triangles). Let pT ,Σ,∆Σq be a triangulated
category. If X u

ÝÑ Y
v
ÝÑ Z

w
ÝÑ ΣpXq and X 1 u1

ÝÑ Y 1
v1
ÝÑ Z 1

w1
ÝÑ ΣpX 1q are two distinguished

triangles in T , then
X ‘X 1

u‘u1
ÝÑ Y ‘ Y 1

v‘v1
ÝÑ Z ‘ Z 1

w‘w1
ÝÑ ΣpX ‘X 1q

is a distinguished triangle in T .
As a result, for every objects X,Y P ObjpT q the triangle Y ÝÑ X ‘ Y ÝÑ X ÝÑ ΣpY q is a

distinguished one and so every triangulated subcategory is stable under finite direct sums.
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Proof. Consider the cone triangle associated to the homomorphism X ‘X 1
u‘u1
ÝÑ Y ‘ Y 1 given by

the axiom piiq of a triangulated category,

X ‘X 1
u‘u1
ÝÑ Y ‘ Y 1 ÝÑ Cu‘u1 ÝÑ ΣpX ‘X 1q

Consider the following commutative diagrams whose lines are distinguished triangles,

X

pidX , 0q
��

u // Y
v //

pidY , 0q
��

Z
w //

h
��

ΣpXq

ΣpidX , 0q
��

X ‘X 1
u‘ u1

// Y ‘ Y 1 // Cu‘u1 // ΣpX ‘X 1q

X 1

p0, idX1q
��

u1 // Y 1
v1 //

p0, idY 1q
��

Z 1
w1 //

h1

��

ΣpXq

Σp0, idX1q
��

X ‘X 1
u‘ u1

// Y ‘ Y 1 // Cu‘u1 // ΣpX ‘X 1q

which can be completed into a homomorphism of triangles via h and h1, respectively thanks to the
axiom pivq of a triangulated category. Consider thus the following commutative diagram,

X ‘X 1

pidX , idX1q

u‘ u1// Y ‘ Y 1
v ‘ v1 //

pidY , idY 1q

Z ‘ Z 1
w ‘ w1//

ph, h1q
��

ΣpX ‘X 1q

ΣpidX , idX1q

X ‘X 1
u‘ u1

// Y ‘ Y 1 // Cu‘u1 // ΣpX ‘X 1q

which is actually an isomorphism of triangles by virtue of the five’s lemma. Indeed, notice that the
top triangle (that is, the direct sum triangle) satisfies the properties of Remark 1.2.1.18 (since the
homological functor HomT preserves direct sums), so that the five’s lemma still holds. In other
words, the direct sum triangle X ‘X 1 u‘u

1

ÝÑ Y ‘ Y 1
v‘v1
ÝÑ Z ‘Z 1

w‘w1
ÝÑ ΣpX ‘X 1q of the statement is

isomorphic to the distinguished triangle X ‘X 1 u‘u
1

ÝÑ Y ‘ Y 1 ÝÑ Cu‘u1 ÝÑ ΣpX ‘X 1q and so the
axiom piq of a triangulated category yields the conclusion.

Finally, remark that the triangle Y ÝÑ X ‘ Y ÝÑ X ÝÑ ΣpY q is clearly the direct sum of
the distinguished triangles 0 ÝÑ X ÝÑ X ÝÑ 0 and Y ÝÑ Y ÝÑ 0 ÝÑ ΣpY q. Hence it is a
distinguished one by the first part of the proof. �

1.2.1.20 Proposition (Split triangles). Let pT ,Σ,∆Σq be a triangulated category. If X u
ÝÑ Y

v
ÝÑ

Z
w
ÝÑ ΣpXq is a distinguished triangle with w “ 0, then the triangle splits meaning that u admits a

section, say s, and v admits a retraction, say r.
As a consequence, we have two isomorphisms of distinguished triangles

X

idX

u // Y

o ps, vq
��

v // Z
w //

idZ

ΣpXq

idΣpXq

X
pidX , 0q

// X ‘ Z
p0, idZq

// Z w
// ΣpXq

X

idX

pidX , 0q// X ‘ Z

o pu` rq
��

p0, idZq // Z

idZ

w // ΣpXq

idΣpXq

X u
// Y v

// Z w
// ΣpXq
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In particular, we have Y – X ‘ Z via ps, vq and X ‘ Z – Y via u` r. These isomorphisms
coincide if and only if s ˝ r “ 0.

Besides, X
u
– Y if and only if Z – 0. Consequently, any homomorphism f : X ÝÑ Y in T is

an isomorphism if and only if Cf – 0.

Proof. Let us prove that u admits a section, that is, a homomorphism s : Y ÝÑ X such that
s ˝ u “ idX . Consider the distinguished triangle associated to the object X given by the axiom
piq of a triangulated category : X idX

ÝÑ X ÝÑ 0 ÝÑ ΣpXq. Since w “ 0 by assumption, we can
consider the following commutative diagram,

X

idX

u // Y
v //

s
��

Z
w //

0
��

ΣpXq

ΣpidXq

X
idX

// X 0
// 0 0

// ΣpXq

which can be completed into a homomorphism of triangles via s by virtue of the axiom pivq of a
triangulated category. In particular, we have s ˝ u “ idX as required.

In order to show that v admits a retraction, that is, a homomorphism r : Z ÝÑ Y such that
v ˝ r “ idZ we do the same argument as above using the object Z, the rotation axiom and the
following commutative diagram,

0

0
��

0 // Z
idZ //

r
��

Z
0 //

idZ

Σp0q

Σp0q
��

X u
// Y v

// Z w
// ΣpXq

Next, consider the following distinguished triangles

X
idX
ÝÑ X ÝÑ 0 ÝÑ ΣpXq and 0 ÝÑ Z

idZ
ÝÑ Z ÝÑ Σp0q

By virtue of Proposition 1.2.1.19 the direct sum triangle

X
pidX ,0q
ÝÑ X ‘ Z

p0,idZq
ÝÑ Z

0
ÝÑ ΣpXq

is a distinguished triangle in T . Hence, the diagrams of the statement are homomorphisms of
distinguished triangles. Observe that by virtue of the five’s lemma we can extend them into
isomorphisms of distinguished triangles.

Notice that the composition

X ‘ Z
pu`rq
ÝÑ Y

ps,vq
ÝÑ X ‘ Z

can be expressed by construction as

ps, vq ˝ pu` rq “ ps ˝ pu` rq, v ˝ pu` rqq “ pidX ` s ˝ r, 0` idZq,
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where we use that v ˝ u “ 0 thanks to Lemma 1.2.1.15. Therefore, the isomorphisms Y – X ‘ Z
and X ‘ Z – Y obtained above coincide if and only if s ˝ r “ 0.

Assume now that X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq is any distinguished triangle in T . If Z – 0, then

it is clear that w “ 0 and then the preceding result assures that Y – X ‘ 0 – X. Conversely,
suppose that X

u
– Y is an isomorphism. Consider the following commutative diagram,

X

idX

u // Y
v //

u´1

��

Z
w //

h
��

ΣpXq

ΣpidXq

X
idX

X 0
// 0 0

// ΣpXq

which can be completed, via h, into an isomorphism of triangles by virtue of the axiom pivq of a
triangulated category and the five’s lemma for triangulated categories. In other words, Z – 0.

Finally, the consequence of the statement is clear applying the axiom piiq of a triangulated
category. �

In this framework, we can actually formulated a “categorical Baum-Connes property” for a
given triangulated category. Let us show here the general process that we’ll adapt suitably later in
order to get the classical Baum-Connes property in the context of the Kasparov’s theory (which
will be regarded as a triangulated category of course).
1.2.1.21 Definition. Let pT ,Σ,∆Σq be a triangulated category and S a thick subcategory of T .

A S-quasi-isomorphism in T is any homomorphism f in T whose cone object Cf is an object in
S.

The localization of T with respect to the class of S-quasi-isomorphisms is denoted by T {S.
1.2.1.22 Remark. The general theory of localization of categories attempt to imitate the classical
theory of localization of rings. Its existence in the context of triangulated categories is a celebrated
theorem of J. L. Verdier and we refer to Theorem B.1.20 for the precise statement.

Here it is important to do the following observation. Let F : T ÝÑ T 1 be a triangulated
functor between two triangulated categories. Assume that N Ă T is a thick subcategory such
that N Ă kerObjpF q. Take a N -quasi-isomorphism in T , say f : X ÝÑ Y with X,Y P ObjpT q.
Consider the corresponding cone triangle (given by the axiom piiq of a triangulated category),

X
f
ÝÑ Y ÝÑ Cf ÝÑ ΣpXq

Since f is a N -quasi-isomorphism, then Cf P ObjpN q Ă kerObjpF q, so that F pCf q – 0. Since
F is a triangulated functor, the following is again a distinguished triangle

F pXq
F pfq
ÝÑ F pY q ÝÑ F pCf q ÝÑ ΣpF pXqq,

where we have to remark that the cone object is unique up to isomorphism, so that it must be
F pCf q – CF pfq. Hence CF pfq – 0. By Proposition 1.2.1.20 we have that F pfq is an isomorphism
in T 1.

In other words, N -quasi-isomorphisms are transformed into isomorphisms through F . This
means in particular that any homomorphism in N Ă T is transformed into an isomorphism in
T {N through the Verdier localization functor Q : T ÝÑ T {N , which explains the nomenclature
of Definition 1.2.1.21.
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1.2.1.23 Definition. Let pT ,Σ,∆Σq be a triangulated category and S a thick subcategory of T .

- The left orthogonal complement of S is the thick subcategory of T defined by

S$ :“ tX P ObjpT q | HomT pX,Sq “ p0q @S P ObjpSqu

- The right orthogonal complement of S is the thick subcategory of T defined by

S% :“ tX P ObjpT q | HomT pS,Xq “ p0q @S P ObjpSqu

1.2.1.24 Remark. If S is a localizing subcategory of T , so it is S$ and S% because the homomorphism
functors are always compatible with countable direct sums.

1.2.1.25 Definition. Let pT ,Σ,∆Σq be a triangulated category and L , N two thick subcategories
of T . We say that pL ,N q is a complementary pair of thick subcategories if

i) L Ă N $,

ii) for evey object X P ObjpT q there exists a distinguished triangle of the form

L
u
ÝÑ X

v
ÝÑ N

w
ÝÑ ΣpLq

for some L P ObjpL q and N P ObjpN q. Such a distinguished triangle will be called pL ,N q-
triangle associated to X in the sequel.

The following result contains the main elementary properties of complementary pair of thick
subcategories. The proof uses routine arguments in combination with the preceding results. For
more details we refer to Proposition 2.9 in [132].

1.2.1.26 Lemma (Fundamental lemma about complementary pair of thick subcategories). Let
pT ,Σ,∆Σq be a triangulated category and pL ,N q a complementary pair of thick subcategories.
The following hold

i) L “ N $ and N “ L %.

ii) Given an object X P ObjpT q, the associated pL ,N q-triangle L u
ÝÑ X

v
ÝÑ N

w
ÝÑ ΣpLq is

unique up to canonical isomorphism and depends functorially on X. In particular, its entries
define functors

L : T ÝÑ L and N : T ÝÑ N ,
which are unique up to natural isomorphism. Precisely, if L1 : T ÝÑ L and N 1 : T ÝÑ N
are two other functors such that for every object X P ObjpT q there exists a unique up to
a canonical isomorphism pL ,N q-triangle L1pXq ÝÑ X ÝÑ N 1pXq ÝÑ ΣpL1pXqq which
depends functorially on X, then L and L1 are naturally isomorphic and N and N 1 are naturally
isomorphic.

iii) The functors L,N : T ÝÑ T are triangulated.

iv) The functors L,N : T ÝÑ T descend to triangulated functors

L : T {N ÝÑ L and N : T {L ÝÑ N

which are the inverses of the natural equivalences L ãÑ T ÝÑ T {N and N ãÑ T ÝÑ T {L .
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1.2.1.27 Definition. Let pT ,Σ,∆Σq be a triangulated category and C any category. Fix a
complementary pair of thick subcategories pL ,N q in T and a functor F : T ÝÑ C .

- The localization of F with respect to pL ,N q is the functor

LF :“ F ˝ L : T ÝÑ C

- The obstruction of F with respect to pL ,N q is the functor

OF :“ F ˝N : T ÝÑ C

1.2.1.28 Remarks. 1. If F is a triangulated or homological functor, so it is LF and OF .

2. Since the functors L and N descend to triangulated functors on the quotient categories, the
same is true for the localization and obstruction of F :

LF : T {N ÝÑ C and OF : T {L ÝÑ C

Moreover, by construction we have

LF|N “ 0 and OF|L “ 0

To see this we have just to remark that the functor L (resp. N) factorizes via the the
localization functor Q of T {N (resp. T {L ). But N “ kerObjpQq (resp. L “ kerObjpQq),
so that

F pLpN qq “ F pP ˝QpN qq “ P p0q “ 0
(resp. F pNpL qq “ F pP ˝QpL qq “ P p0q “ 0),

where we follow the same notations as in the preceding lemma.

3. There exists a natural transformation

η : LF ÝÑ F

Namely, given any object X P ObjpT q, consider the corresponding pL ,N q-triangle LpXq u
ÝÑ

X
v
ÝÑ NpXq

w
ÝÑ ΣpLpXqq. So, it suffices to take ηX :“ F puq. Indeed, if f : X ÝÑ Y is any

homomorphism in T , then by functoriality of the pL ,N q-triangles, we have the following
homomorphism of distinguished triangles

LpXq

Lpfq
��

u // X
v //

f
��

NpXq
w //

Npfq
��

ΣpLpXqq

ΣpLf q
��

LpY q
u1

// Y
v1
// NpY q

w1
// ΣpLpY qq

where LpY q u1
ÝÑ Y

v1
ÝÑ NpY q

w1
ÝÑ ΣpLpY qq is the pL ,N q-triangle associated to the object

Y . In particular, we have f ˝ u “ u1 ˝Lpfq so F pfq ˝F puq “ F pu1q ˝F pLpfqq. In other words,
F pfq ˝ ηX “ ηY ˝ LF pfq.
Likewise, we have a natural transformation

ν : F ÝÑ OF

taking νX :“ F pvq, for all object X P ObjpT q.
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1.2.1.29 Theorem (Universal property of localization). Let pT ,Σ,∆Σq be a triangulated category
and C a triangulated (resp. stable abelian) category. Fix a complementary pair of thick subcategories
pL ,N q in T and a triangulated (resp. stable homological) functor F : T ÝÑ C .

If G : T ÝÑ C is any triangulated (resp. stable homological) functor such that G|N “ 0 and G

is equipped with a natural transformation G η1

ÝÑ F , then there exists a unique natural factorization

G

!!

η1 // F

LF

η

OO

Consequently, the natural transformation η : LF ÝÑ F is invertible if and only if F|N “ 0.

Proof. Given any object X P ObjpT q, consider the corresponding pL ,N q-triangle LpXq u
ÝÑ X

v
ÝÑ

NpXq
w
ÝÑ ΣpLpXqq and apply the functor G of the statement. We obtain then a distinguished

triangle (respectively, a long exact sequence)

GpLpXqq
Gpuq
ÝÑ GpXq ÝÑ GpNpXqq ÝÑ ΣpGpLpXqqq

(resp. GpLpXqq GpuqÝÑ GpXq ÝÑ GpNpXqq)

Since G|N “ 0, we have that GpNpXqq – 0 which implies that GpLpXqq
Gpuq
– GpXq (see

Proposition 1.2.1.20).
Next, let’s apply the natural transformation G η1

ÝÑ F of the statement to the object LpXq, so
that we have η1LpXq : GpLpXqq ÝÑ LF pXq and we define a natural transformation G ÝÑ LF by
the composition

GpXq
Gpuq
– GpLpXqq

η1LpXq
ÝÑ LF pXq

By construction, we obtain a commutative diagram

GpXq
Gpuq
– GpLpXqq

η1LpXq ''

η1X // F pXq

LF pXq

ηX

OO

as required.
Finally, suppose that η : LF ÝÑ F is invertible, then there exists a natural transformation

m : F ÝÑ LF such that η ˝m – id. In other words, id : F ÝÑ F satisfies the above universal
property and so it must be F|N “ 0. Conversly, if F|N “ 0, then F pLpXqq – F pXq for every
object X P ObjpT q via ηX because F is a triangulated (resp. stable homological) functor. In other
words, the natural tranformation η : LF ÝÑ F is invertible. �
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1.2.1.30 Definition. Let pT ,Σ,∆Σq be a triangulated category and C a triangulated (resp.
abelian) category. Fix a complementary pair of thick subcategories pL ,N q in T and a triangulated
(resp. homological) functor F : T ÝÑ C .

The categorical Baum-Connes assembly map for T with respect to pL ,N , F q is the natural
transformation

η : LF ÝÑ F

Thus the categorical Baum-Connes property for T with respect to pL ,N , F q consists in
investigate wheather η is invertible. Of course, it is very improbable that such a conjecture will be
true in full generality. But we can realized this conjecture in a more concrete framework, where
there may be reasons that become interesting the study of this problem. Namely, in the context of
the Kasparov’s theory. In order to establish this relationship, we need the following result.

1.2.1.31 Lemma. Let pT ,Σ,∆Σq be a triangulated category, P any class of objects in T and N
a localizing subcategory in T such that pxPy,N q is a complementary pair of localizing subcategories
in T .

Let F,G : T ÝÑ A be two homological functors compatible with countable direct sums and
Φ : G ÝÑ F a natural transformation.

If G|N “ 0 and ΦX : GpXq ÝÑ F pXq is an isomorphism for every object X P P, then Φ
descent to a unique natural equivalence

G – LF

Proof. Since G|N “ 0, universal property of localization yields that there exists a unique natural
transformation G ÝÑ LF such that

G

!!

Φ // F

LF

η

OO

is a commutative diagram.
Since pxPy,N q is a complementary pair of localizing subcategories in T , we can apply the

fundamental lemma about complementary pairs (recall Lemma 1.2.1.26). Hence there exists a
triangulated functor L : T {N ÝÑ xPy such that LpXq – X, for all X P P. In particular, we have
LF pXq – F pXq, for all X P P.

Now, by assumption, we have that ΦX : GpXq ÝÑ F pXq is an isomorphism for all X P P . Hence
we can write GpXq – F pXq – LF pXq, for all X P P. In other words, the natural transformation
G ÝÑ LF given by universal property is a natural equivalence on P. Since G and F are supposed
to be compatible with countable direct sums, the same conclusion is true on xPy. To conclude,
recall from the proof of the preceding theorem that the natural transformation G ÝÑ LF is defined
by the composition GpXq Gpuq

´1

ÝÑ GpLpXqq
ΦLpXq
ÝÑ LF pXq, for all X P ObjpT q. Since Φ is a natural

equivalence on xPy, we obtain that G – LF as claimed.
�

1.2.2 Meyer-Nest’s homological algebra
First of all, observe that the main tool for the categorification of the Baum-Connes property
explained in the preceding section is the choice of a complementary pair of thick subcategories.
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This pair is then used to localize a fixed functor. Hence, it is advisable to provide methods by which
we can construct such complementary pairs in a given triangulated category. The Meyer-Nest’s
idea is to develop an adapted homological algebra in a triangulated category (very close to the one
that we develop for any abelian category) in such a way that we can obtain complementary pairs
from projective objects.

1.2.2.1 Definition. Let T any additive category. An ideal J in T is a family of homomorphism
subgroups tJ pX,Y quX,Y PObjpT q Ă HomT pX,Y q such that

HomT pZ,W q ˝ J pY,Zq ˝HomT pX,Y q Ă J pX,W q,

for all X,Y, Z,W P ObjpT q.
We say that J is additive if J is compatible with countable direct sums meaning that

J p
À

i

Xi, Y q –
ś

i

J pXi, Y q through the canonical map HomT p
À

i

Xi, Y q ÝÑ
ś

i

HomT pXi, Y q.

for all Xi, Y P ObjpT q.

1.2.2.2 Remarks. 1. Given any additive (resp. compatible with countable direct sums) functor
F : T ÝÑ T 1 we have an obvious ideal (resp. additive ideal) in T defined for all X,Y P ObjpT q
by

kerHompF qpX,Y q :“ tf P HomT pX,Y q | F pfq – 0u

2. If tJlulPI is a family of (additive) ideals in T , then it is straightforward to see that their
intersection J :“

Ş

lPI

Jl is a (additive) ideal in T . More precisely, for every X,Y P ObjpT q we

define
J pX,Y q :“

č

lPI

JlpX,Y q Ă HomT pX,Y q

1.2.2.3 Definition. Let pT ,Σ,∆Σq be a triangulated category. An homological ideal in T is
an ideal J in T for which there exists an stable homological functor F : T ÝÑ A such that
J “ kerHompF q.

1.2.2.4 Remark. It is a non trivial fact, but we can show by virtue of the Freyd’s theorem (see
Remark 2.21 in [134] for the details) that an homological ideal can be realized as kerHompF q with
F triangulated. This is important for this dissertation because when we apply this general theory to
the Kasparov category, the corresponding ideal that we choose comes from a triangulated functor
(namely, the restriction functor).

For simplicity in the exposition, we carry out all the following arguments concerning homological
ideals with respect a stable homological functor. Nevertheless, the same results hold when we work
with triangulated functors instead. Indeed, it is enough to consider distinguished triangles instead
of exact sequences and apply the split triangles strategy using Proposition 1.2.1.20.
1.2.2.5 Remark. If tJlulPI is a family of homological ideals in T where Jl :“ kerHompFlq with stable
homological (resp. triangulated) functors Fl : T ÝÑ Al for every l P I, then their intersection
J :“

Ş

lPI

Jl is a homological ideal. More precisely, we define the following stable homological (resp.

triangulated) functor
F :“

`

Fl
˘

lPI
: T ÝÑ

ź

lPI

Al,

so that J “ kerHompF q by construction.
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1.2.2.6 Definition. Let pT ,Σ,∆Σq be a triangulated category and J a homological ideal in T .
Let f : X ÝÑ Y be a homomorphism in T and write X f

ÝÑ Y
v
ÝÑ Cf

w
ÝÑ ΣpXq for the cone

triangle associated to f . We say that

- f is a J -epimorphism if v P J pY,Cf q,

- f is a J -monomorphism if w P J pCf ,ΣpXqq,

- f is a J -isomorphism if f is both a J -epimorphism and a J -monomorphism.

1.2.2.7 Proposition. Let pT ,Σ,∆Σq be a triangulated category and J :“ kerHompF q a homological
ideal in T with F : T ÝÑ A . If f : X ÝÑ Y is a homomorphism in T and X f

ÝÑ Y
v
ÝÑ Cf

w
ÝÑ

ΣpXq is its cone triangle, then we have that

i) f is a J -epimorphism if and only if F pfq is an epimorphism,

ii) f is a J -monomorphism if and only if F pfq is a monomorphism,

iii) f is a J -isomorphism if and only if F pfq is an isomorphism.

Proof. Given the distinguished triangle X f
ÝÑ Y

v
ÝÑ Cf

w
ÝÑ ΣpXq, we construct a long exact

sequence on A by applying the functor F (because it is a stable homological one)

. . .Ñ F pΣ´1pCf qq
F pΣ´1

pwqq
Ñ F pXq

F pfq
Ñ F pY q

F pvq
Ñ F pCf q

F pwq
Ñ F pΣpXqq F pΣpfqqÑ F pΣpY qq Ñ . . .

In this situation, we have

i) f is a J -epimorphismô v P J pY,Cf q ô F pvq “ 0 ô F pfq is an epimorphism.

ii) f is a J -monomorphismô w P J pCf ,ΣpXqq ô Σ´1pwq P J pΣ´1pCf q, Xq ô F pΣ´1pwqq “ 0 ô
F pfq is a monomorphism.

iii) the statement “f is a J -isomorphism if and only if F pfq is an isomorphism” is obvious thanks
to the previous ones.

�

1.2.2.8 Definition. Let pT ,Σ,∆Σq be a triangulated category and J an homological ideal in T .
Let pXn, dnqnPZ a chain complex in T and for each n P Z consider the cone triangle associated to
the differential dn, say Xn

dn
ÝÑ Xn`1

vn
ÝÑ Cn

wn
ÝÑ ΣpXnq.

We say that pXn, dnq is J -exact at degree n if the composition Cn
wn
ÝÑ ΣpXnq

Σpvn`1q
ÝÑ ΣpCn`1q

is a homomorphism in J pCn,ΣpCn`1qq.
We say that pXn, dnq is J -exact if pXn, dnq is J -exact at degree n, for all n P Z.

1.2.2.9 Proposition. Let pT ,Σ,∆Σq be a triangulated category and J :“ kerHompF q a homological
ideal in T with F : T ÝÑ A .

A chain complexe pXn, dnqnPZ in T is J -exact at degree n if and only if F pXn`1q
F pdn`1q
ÝÑ

F pXnq
F pdnq
ÝÑ F pXn´1q is a short exact sequence in A .
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Proof. First of all, consider the short sequence F pXn`1q
F pdn`1q
ÝÑ F pXnq

F pdnq
ÝÑ F pXn´1q. Since

pXn, dnqnPZ is a chain complexe, we have dn ˝ dn`1 “ 0, so that F pdnq ˝ F pdn`1q “ 0, that is,
ImpF pdn`1qq Ă kerpF pdnqq, for all n P Z. It remains to show that the converse inclusion holds if
and only if pXn, dnqnPZ is J -exact.

Next, consider the cone triangle associated to the differential dn, say Xn
dn
ÝÑ Xn`1

vn
ÝÑ Cn

wn
ÝÑ

ΣpXnq. Since F is a stable homological functor, we consider the following long exact sequence in A

. . .Ñ F pΣ´1pCnqq
F pΣ´1

pwnqq
Ñ F pXnq

F pdnq
Ñ F pXn`1q

F pvnq
Ñ F pCnq

F pwnq
Ñ F pΣpXnqq

F pΣpdnqq
Ñ F pΣpXn`1qq Ñ . . .

which implies in particular that

ImpΣ´1pF pwnqqq “ kerpF pdnqq and ImpF pdn`1qq “ kerpF pvn`1qq (1.2.1)

By definition, pXn, dnqnPZ is a J -exact chain complexe in T at degree n if and only if the
composition

Cn
wn
ÝÑ ΣpXnq

Σpvn`1q
ÝÑ ΣpCn`1q

is a homomorphism in J pCn,ΣpCn`1qq, which is equivalent to say that the composition

Σ´1pCnq
Σ´1

pwnq
ÝÑ Xn

vn`1
ÝÑ Cn`1

is a homomorphism in J pΣ´1pCnq, Cn`1q, which is equivalent to say that the composition

Σ´1pF pCnqq
Σ´1

pF pwnqq
ÝÑ F pXnq

F pvn`1q
ÝÑ F pCn`1q

is the zero homomorphism in A , that is,

ImpΣ´1pF pwnqqq Ă kerpF pvn`1qq

In other words, by virtue of the identities (1.2.1) above, we have that pXn, dnqnPZ is a J -exact
chain complexe in T at degree n if and only if kerpF pdnqq Ă ImpF pdn`1qq, which finishes the
proof. �

1.2.2.10 Definition. Let pT ,Σ,∆Σq be a triangulated category and J an homological ideal in T .
A homological functor G : T ÝÑ A is said to be J -exact if J Ă kerHompGq.

1.2.2.11 Proposition. Let pT ,Σ,∆Σq be a triangulated category and J an homological ideal in
T . If G : T ÝÑ A is a stable homological functor, then the following statements are equivalent

i) G is J -exact.

ii) G transforms J -epimorphisms into epimorphisms.

iii) G transforms J -monomorphisms into monomorphisms.

iv) G transforms J -exact chain complexes into long exact sequences.
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Proof. Let f : X ÝÑ Y be a homomorphism in T and consider its cone triangle X f
ÝÑ Y

v
ÝÑ

Cf
w
ÝÑ ΣpXq. Next, consider the long exact sequence

. . . ÝÑ GpΣ´1pCf qq
GpΣ´1

pwqq
Ñ GpXq

Gpfq
Ñ GpY q

Gpvq
Ñ GpCf q

Gpwq
Ñ GpΣpXqq ÝÑ . . .

In this situation, it is clear by definition that G is J -exact if and only if Gpfq is an epimorphism
(resp. monomorphism) whenever f is a J -epimorphism (resp. J -monomorphism).

Next, let pXn, dnq be a J -exact chain complex in T , which means that the composition

Cn
wn
ÝÑ ΣpXnq

Σpvn`1q
ÝÑ ΣpCn`1q

is a homomorphism in J pCn,ΣpCn`1qq, for all n P Z where Cn is the cone of the differential
dn : Xn ÝÑ Xn`1.

If G is a J -exact functor, then J Ă kerHompGq and so we have GpΣpvn`1q ˝ wnq “ 0. In this
situation, the same argument of Proposition 1.2.2.9 yields that pGpXnq, Gpdnqq is a long exact
sequence. This shows piq ñ pivq.

Conversely, suppose that G transforms J -exact chain complexes into long exact sequences and
let f : X ÝÑ Y any homomorphism in J pX,Y q with X,Y P ObjpT q. We have to show that
Gpfq “ 0. Indeed, we can consider the following J -exact chain complex,

. . . ÝÑ 0 ÝÑ 0 ÝÑ . . . 0 ÝÑ X
f
ÝÑ Y ÝÑ 0 ÝÑ 0 ÝÑ . . . 0 ÝÑ 0 ÝÑ . . .

By assumption, we have a long exact sequence,

. . . ÝÑ 0 ÝÑ 0 ÝÑ . . . 0 ÝÑ GpXq
Gpfq
ÝÑ GpY q ÝÑ 0 ÝÑ 0 ÝÑ . . . 0 ÝÑ 0 ÝÑ . . . ,

which implies clearly that Gpfq “ 0 as required. This shows pivq ñ piq
�

1.2.2.12 Definition. Let pT ,Σ,∆Σq be a triangulated category and J a homological ideal in
T . A J -projective object in T is an object P P ObjpT q such that the homomorphism functor
HomT pP, ¨ q : T ÝÑ A b is J -exact.

The class of J -projective objects in T is denoted by pJ .

1.2.2.13 Remarks. 1. Observe that the suspension functor and the direct sum functor are
triangulated, so that the class of J -projective objects is closed under suspension, retractions
and direct sums. This implies that all the objects in the minimal localizing subcategory xpJ y

generated by J -projective objects are J -projective objects as well.

2. If pT ,Σ,∆Σq is a triangulated category and J is a homological ideal in T , then given an
object P P ObjpT q we have

P P pJ ô J pP, Y q “ p0q, for all object Y P ObjpT q

Indeed, assume that P is a J -projective object and take f P J pP, Y q any homomorphism in
the ideal J where Y is any object in T . We have just to write

f “ f ˝ idP “ f˚pidP q,
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so that f “ 0, since J pP, Y q Ă kerHompHomT pP, ¨ qqpP, Y q by assumption.
Conversely, assume that J pP, Y q “ p0q, for all object Y P ObjpT q. Consider any object
Z P ObjpT q and take any f P J pY,Zq. By definition, given any h P HomT pP, Y q we have

f˚phq “ f ˝ h “ idZ ˝ f ˝ h,

which implies that f˚phq P J pP,Zq by definition of ideal of an additive category. So, by
hypothesis, we obtain that f˚phq “ 0. In other words, f P kerHompHomT pP, ¨ qq. Since
f P J pY,Zq and Y, Z are arbitrary objects in T , we deduce that P is J -projective.

1.2.2.14 Definition. Let pT ,Σ,∆Σq be a triangulated category and J an homological ideal in T .
Consider an object X P ObjpT q.

- A simple J -projective resolution for X is a J -epimorphism π : P ÝÑ X where P P pJ .

- A J -projective resolution for X is a J -exact chain complexe pPn, dnqnPZ` in T with Pn P pJ
for all n P Z` and with d0 : P0 ÝÑ X. In this case we write P‚ ÝÑ X for such a resolution.

We say that T has enough J -projectives if every objectX P ObjpT q admits a simple J -projective
resolution.

In this theoretic context, we can state the main theorem about the construction of complementary
pairs from J -projective objects in a given triangulated category.

1.2.2.15 Theorem (Complementary pairs from J -projective objects). Let pT ,Σ,∆Σq be a trian-
gulated category and J “ kerHompF q an additive homological ideal in T .

If T has enough J -projective objects, then pxpJ y, kerObjpF qq is a complementary pair of localizing
subcategories in T .

1.2.2.16 Remark. Notice that the converse of the above theorem is also true. Namely, suppose that
pxpJ y, kerObjpF qq is a complementary pair of localizing subcategories in T . In this case, for every
object X P ObjpT q there exists a (unique up to isomorphism) distinguished triangle of the form

L
u
ÝÑ X

v
ÝÑ N

w
ÝÑ ΣpLq,

with L P xpJ y and N P kerObjpF q. Thanks to Remarks 1.2.2.13 we know that L is also a J -
projective object. Next, we claim that the homomorphism u : L ÝÑ X is a J -epimorphism, which
yields the existence of a simple J -projective resolution for X.

Indeed, consider the following long exact sequence

. . . ÝÑ F pΣ´1pNqq
F pΣ´1

pwqq
Ñ F pLq

F puq
Ñ F pXq

F pvq
Ñ F pNq ÝÑ . . .

Since N P kerObjpF q, we have F pNq – 0 and the above exact sequence implies that F pvq “ 0
and so F puq is an epimorphism, which means that u is a J -epimorphism.

Following the notations of the preceding section, we may put L :“ xpJ y and N :“ kerObjpF q.
First of all, notice that L “ xpJ y is a localizing subcategory of T by definition and N “ kerObjpF q
is a localizing subcategory as well because F is supposed to be compatible with countable direct



1.2. Triangulated categories 41

sums (since J is, by assumption, an additive homological ideal), consequently kerObjpF q is a
localizing subcategory and Remark 1.2.1.24 assures that its orthogonal complement is localizing as
well. Remember that in our framework, a localizing subcategory is automatically thick (see Remark
1.2.1.9).

In order to show that this is a complementary pair of localizing subcategories in T , we have to
check the two axioms of Definition 1.2.1.25. The first one is easy to prove.

1.2.2.17 Lemma. Let pT ,Σ,∆Σq be a triangulated category and J “ kerHompF q an additive
homological ideal in T . Then we have

xpJ y Ă pkerObjpF qq$

Proof. Take any J -projective object, say P P pJ . By definition, we have kerHompF q Ă kerHompHomT pP, ¨ qq.
Take any object N P kerObjpF q, which means that F pNq – 0 and so F pidN q “ 0, that is,
idN P kerHompF qpN,Nq. Hence we have also that HomT pP, idN q “ pidN q˚ “ 0. Now, if
g P HomT pP,Nq is any homomorphism between P and N , we can write

g “ idN ˝ g “ pidN q˚pgq “ HomT pP, idN qpgq,

whence g “ 0. Since this is true for every homomorphism g P HomT pP,Nq, any object N P

kerObjpF q and any object P P pJ , we deduce that pJ Ă pkerObjpF qq$, by definition of left
orthogonal complement.

Finally, remark that pkerObjpF qq$ is a localizing subcategory. In other words, pkerObjpF qq$ is
stable under countable direct sums and so we conclude that xpJ y Ă pkerObjpF qq$ by definition of
localizing subcategory generated by. �

Concerning the second axiom of the definition of a complementary pair of localizing subcategories,
that is, the existence of a pxpJ y, kerObjpF qq-triangle for every object in T , the proof is not at all
trivial and it requires a more delicate study. We refer to Theorem 3.21 in [131] for a proof and
more details.

In this situation, there arises a natural question: how can we construct J -projective objects in a
given triangulated category? We observe that the result of the preceding theorem depends strongly
on the choice of the functor F to construct the corresponding complementary pair. In this way, we
may think that such J -projective objects could be constructed directly using the functor F itself.
More precisely, we can show that whenever F admits a “gentle” adjoint functor F`, the localizing
subcategory of J -projective objects can be realized as the localizing subcategory of objects of the
form F`pObjpPqq, for some specific subcategory P.

Let us describe with more details this process. Compare the following definition with the
classical one (see Definition B.1.13).

1.2.2.18 Definition. Let pT ,Σ,∆Σq be a triangulated category, C an additive category and
F : T ÝÑ C a functor. Let P Ă C be a full subcategory.

A partially defined left adjoint for F is a functor F$ : P ÝÑ T such that for every objects
X P ObjpT q and Y P ObjpPq we have an isomorphism

HomT pF
$pY q, Xq – HomC pY, F pXqq

such that ψ : HomT pF
$p¨q, ¨ q ÝÑ HomC p ¨ , F p¨qq is a natural isomorphism in each variable.
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1.2.2.19 Remark. Let us remark that for every object Y P ObjpPq, the object F$pY q P ObjpT q is a
J -projective one for J :“ kerHompF q, whenever F is a stable homological functor.

Indeed, given an object Y P ObjpPq, it is enough to show, thanks to the definition of adjoint
functor, that J Ă kerHompHomC pY, F p¨qqq, which is straightforward because if f : X1 ÝÑ
X2 is a homomorphism in T with X1, X2 P ObjpT q, then the corresponding homomorphism
HomC pY, F pX1qq ÝÑ HomC pY, F pX2qq is given by the left composition by F pfq, so that if
f P J pX1, X2q, it is clear that F pfq˚ is the zero map.

In conclusion, F$pObjpPqq Ă pJ with J :“ kerHompF q.

The following theorem can be found in Proposition 3.37 of [134], but we include here a proof of
a simpler statement for the convenience of the exposition.

1.2.2.20 Theorem. Let pT ,Σ,∆Σq be a triangulated category and J “ kerHompF q an additive
homological ideal in T with F : T ÝÑ A .

Let P Ă A be a full subcategory such that

i) for any object X P ObjpT q there exists an epimorphism P ÝÑ F pXq for some P P ObjpPq,

ii) F admits a partially defined left adjoint on P, say F$ : P ÝÑ T .

In this situation, T has enough J -projective objects and consequently
´

xF$pObjpPqqy, kerObjpF q
¯

is a complementary pair of localizing subcategories.

Proof. First of all, thanks to Remark 1.2.2.19 above we know that F$pObjpPqq Ă pJ .
Next, given any object X P ObjpT q we have to construct a J -epimorphism π : P ÝÑ X for some

P P pJ . By assumption, given X P ObjpT q there exists an epimorphism π1 : P 1 ÝÑ F pXq for some
P 1 P ObjpPq, that is, we have an epimorphism π1 P HomC pP

1, F pXqq. Put P :“ F$pP 1q P pJ .
Since F$ is a (partially defined) left adjoint of F on P, the adjointness relation yields a

homomorphism π P HomT pP,Xq. We must check that π is a J -epimorphism, which is equivalent
to show that F pπq is an epimorphism in A .

Consider the identity homomorphism idF$pP 1q P HomT pF
$pP 1q, F$pP 1qq which yields, by

adjointness, a map α P HomC pP
1, F pF$pP 1qqq “ HomC pP

1, F pP qq. Since the adjointness relation
is a natural isomorphism, we have the following commutative diagram

HomT pF
$pP 1q, F$pP 1qq

π˚
��

ψ // HomC pP
1, F pP qq

F pπq˚
��

HomT pF
$pP 1q, Xq

ψ
// HomC pP

1, F pXqq

As a consequence, we have that

F pπq˚pψpidP qq “ ψpπ˚pidP qq ô F pπq ˝ α “ π1,

where π1 is an epimorphism and the formula F pπq ˝ α “ π1 implies that F pπq is an epimorphism as
well.

At this stage, Theorem 1.2.2.15 guarantees that pxpJ y, kerObjpF qq is a complementary pair of
localizing subcategories in T . It remains to show that xpJ y “ xF

$pObjpPqqy.
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Let X P pJ be any J -projective object in T . Thanks to the preceding argument, there exists a
J -epimorphism π : P ÝÑ X with P P F$pObjpPqq. Let’s embed π into a distinguished triangle,
say P π

ÝÑ X ÝÑ Cπ ÝÑ ΣpP q which can be supposed of the form C ÝÑ P
π
ÝÑ X

w
ÝÑ ΣpCq

for some object C P ObjpT q by virtue of the rotation axiom. In this case, observe that we have
w P J pX,ΣpCqq “ p0q because X is J -projective (recall Remark 1.2.2.13) and π is a J -epimorphism
(recall Definition 1.2.2.6). Hence Proposition 1.2.1.20 assures that the triangle splits and we have
P – C ‘X P F$pObjpPqq. In other words, X is a retract of P and xF$pObjpPqqy is by definition
the smallest localizing subcategory containing the objects F$pObjpPqq so it is thick, that is, stable
by retracts. In conclusion, X P xF$pObjpPqqy, which ends the proof. �

It is important to observe that the above proof is quite constructive once the adjoint functor is
known. Indeed, in that case the projective objects are exactly direct summands of F$pObjpPqq.
For the case of the Kasparov category with respect to a discrete group G we’ll have that the
corresponding projective objects are exactly direct summands of induced C˚-algebras by finite
subgroups (see Theorem 1.2.3.11 below).

1.2.3 Reformulation of the Baum-Connes conjecture
The Kasparov’s category

Here we introduce the equivariant Kasparov’s category. It consists in observing the triangulated
aspect of the Kasparov’s theory using, of course, elementary facts of the KK-theory.

1.2.3.1 Definition. Let G be a (second countable) locally compact group. The G-equivariant
Kasparov’s category, denoted by K K G, is the additive category defined by

- The objects of K K G are the separable G-C˚-algebras.

- The homomorphisms between two (separable) G-C˚-algebras are given by the corresponding
G-equivariant Kasparov triples. More precisely,

HomK K GpA,Bq :“ KKGpA,Bq,

for all (separable) G-C˚-algebras A,B. The composition of two homomorphisms in K K G

being the Kasparov product of the corresponding Kasparov triples.

1.2.3.2 Remarks. 1. Since all our G-C˚-algebras are supposed to be separable, then the cor-
responding Kasparov groups are abelian and the properties of the Kasparov product give
to K K G the additive character. More precisely, any G-C˚-algebra KKG-equivalent to
the zero algebra is the zero element in K K G. The well known classical Kasparov theory
assures that the Kasparov product is bilinear with respect to the sum of Kasparov triples.
Finally, if A1 and A2 are two G-C˚-algebras, the direct sum A1 ‘ A2 is a G-C˚-algebra in
the obvious way and we have two natural inclusions, ι1 : A1 ãÑ A1 ‘A2, ι2 : A2 ãÑ A1 ‘A2
and two natural projections p1 : A1 ‘A2 � A1, p2 : A1 ‘A2 � A2. In this way we have that
KKGpA1 ‘ A2, Bq – KKGpA1, Bq ˆKKGpA2, Bq, for all G-C˚-algebra B. Notice as well
that the Kasparov category admits countable direct sums thanks to the separability condition.

2. Observe that in K K G the word homomorphism (respectively, isomorphism) will mean a
true homomorphism (respectively, isomorphism) between C˚-algebras or any Kasparov triple
between C˚-algebras (respectively, any KK-equivalence between C˚-algebras).
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Next, we wish to give a triangulated structure to K K G. Firstly, our suspension functor will
be just the suspension of C˚-algebras. Namely,

- if pA,αq is any G-C˚-algebra, then we define

ΣpAq :“ th P Cpr0, 1s, Aq | hp0q “ 0 “ hp1qu – C0pRq bA

- if pA,αq, pB, βq are two G-C˚-algebras and f :“ pH,π, F q P KKGpA,Bq any G-equivariant
Kasparov triple for pA,Bq, then we define

Σpfq :“ pC0pRq bH, idb π, idb F q P KKGpΣpAq,ΣpBqq,

where C0pRq is equipped with the trivial action of G.

1.2.3.3 Remark. Notice that whenever pA,αq is a G-C˚-algebra, the suspension ΣpAq is again a
G-C˚-algebra. Namely, we define the action rα : G ÝÑ AutpΣpAqq by

rαgphqptq :“ αgphptqq,

for all g P G, all h P Cpr0, 1s, Aq and all t P r0, 1s.
Notice as well that, by virtue of Bott periodicity, Σ establish an (additive) auto-equivalence.

Indeed, by Bott periodicity we have that KG
0 pAq – KG

1 pΣpAqq, for all G-C˚-algebra A and the
general Kasparov theory yields the following identifications

KG
0 pAq – KKGpC, Aq and KG

1 pΣpAqq – KKGpC,Σ2pAqq

Therefore, we obtain that A is KKG-equivalent to Σ2pAq, for all G-C˚-algebra A. See [24] for
more details.

Next, we have to define the class of distinguished triangles in K K G. Given a ˚-homomorphism
between two G-C˚-algebras, say ϕ : A ÝÑ B, recall the definition of its cone

Cϕ :“ tpa, hq P Aˆ C0pp0, 1s, Bq | ϕpaq “ hp1qu,

which is a G-C˚-algebra in an obvious way.
In this situation, we have a natural exact sequence of G-C˚-algebras,

ΣpBq ãÑ Cϕ � A

1.2.3.4 Definition. Let pK K G,Σq be the G-equivariant Kasparov Category. A standard triangle
or mapping cone triangle in K K G is a triangle in K K G of the form

ΣpBq ÝÑ Cϕ ÝÑ A
ϕ
ÝÑ B,

where ϕ is a ˚-homomorphism between G-C˚-algebras.
The class of all triangles in K K G isomorphic to a mapping cone triangle is denoted by ∆Σ.
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1.2.3.5 Definition. Let pK K G,Σq be the G-equivariant Kasparov Category. An extension
triangle in K K G is a triangle in K K G of the form

ΣpAq ÝÑ B
ι
ÝÑ E

p
ÝÑ A,

where B ι
ãÑ E

p
� A is G-equivariant semi-split extension of G-C˚-algebras and the homomorphism

ΣpAq ÝÑ B in K K G is given by the class of the extension B
ι

ãÑ E
p
� A in Ext´1pA,Bq –

KKGpΣpAq, Bq (recall Remark A.1.8).
The class of all triangles in K K G isomorphic to an extension triangle is denoted by ΞΣ.

1.2.3.6 Remark. Notice that in the Kasparov category, triangles are considered to be diagrams in
K K G of the form ΣpBq ÝÑ C ÝÑ A ÝÑ B, which are the opposite with respect to the notations
followed in the preceding sections. However, having in mind that the suspension of C˚-algebras is
such that Σ “ Σ´1 in K K G, Remarks 1.2.1.4 yields the coherence of our notations.

1.2.3.7 Lemma. Let pK K G,Σq the G-equivariant Kasparov category. Then we have

∆Σ “ ΞΣ

Proof. Firstly, we see that ∆Σ Ă ΞΣ. Let ϕ : A ÝÑ B be G-equivariant ˚-homomorphism and
consider the corresponding mapping cone triangle ΣpBq ÝÑ Cϕ ÝÑ A

ϕ
ÝÑ B. Recall now the

definition of the cylinder of ϕ,

Zϕ :“ tpa, hq P Aˆ Cpr0, 1s, Bq | ϕpaq “ hp1qu

We claim that Zϕ and A are G-equivariant homotopic equivalent, which means that there exist
two G-equivariant ˚-homomorphisms f : A ÝÑ Zϕ and g : Zϕ ÝÑ A such that f ˝g is G-equivariant
homotopic equivalent to idZϕ and g ˝ f is G-equivariant homotopic equivalent to idA. Namely, put

f : A ÝÑ Zϕ g : Zϕ ÝÑ A
a ÞÝÑ fpaq :“ pa, ϕpaqq pa, hq ÞÝÑ gpa, hq :“ a

It is clear that g ˝ f “ idA and the collection of ˚-homomorphisms

ϕt : Zϕ ÝÑ Zϕ
pa, hq ÞÝÑ ϕtpa, hq :“

`

a, h
`

¨ t` p1´ tq
˘˘

,

for all t P r0, 1s is a continuous G-equivariant homotopy between f ˝g and idZϕ . Precisely, ϕ0 “ f ˝g,
ϕ1 “ idZϕ and the map t ÞÑ ϕtpa, hq is continous for every pa, hq P Zϕ.

Next, consider the obvious G-equivariant semi-split extension Cϕ ãÑ Zϕ
rp
� B, where rppa, hq :“

hp0q. This yields an extension triangle ΣpBq ÝÑ Cϕ ÝÑ Zϕ
rp
ÝÑ B.

Moreover, the homotopy between Zϕ and A described before yields an isomorphism of distin-
guished triangles in K K G

ΣpBq

��

// Cϕ // A

f
��

ϕ // B

ΣpBq // Cϕ // Zϕ
rp
// B
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Hence the mapping cone triangle is isomorphic to the extension triangle given by the cylinder.
Conversely, let’s see ΞΣ Ă ∆Σ. Consider a G-equivariant semi-split extension B ι

ãÑ E
p
� A and

the corresponding extension triangle ΣpAq ÝÑ B
ι
ÝÑ E

p
ÝÑ A. Consider as well the G-equivariant

semi-split extension of the cylinder of p, Cp ãÑ Zp
rp
� A, and the corresponding extension triangle,

ΣpAq ÝÑ Cp ÝÑ Zp
rp
ÝÑ A.

Next, consider the G-equivariant homotopy between Zp and E as before, which is given by
means of

f : E ÝÑ Zp g : Zϕ ÝÑ E
e ÞÝÑ fpeq :“ pe, ppeqq pe, hq ÞÝÑ gpe, hq :“ e

Observe that the map f restricts to a map

f| : B ÝÑ Cp
b ÞÝÑ f|pbq :“ pιpbq, 0q

Hence, the homotopy between Zp and E described before yields an isomorphism of distinguished
triangles in K K G

ΣpAq // B

f|
��

// E

f
��

p // A

ΣpAq // Cp // Zp
rp
// A

In particular, B – Cp in K K G. Observe that rp is G-equivariant homotopic equivalent to
p ˝ g because rp ˝ f “ p and f ˝ g is G-equivariant homotopic equivalent to idZp . In this way, Cp
is G-equivariant homotopic equivalent to C

rp, which allows to consider the bottom distinguished
triangle of the above diagram as a mapping cone triangle and the proof is complete. �

The preceding lemma allows to show that the G-equivariant Kasparov category is triangulated
using either ∆Σ or ΞΣ for defining the corresponding distinguished triangles. We refer to Appendix
A in [132] for the details.

1.2.3.8 Theorem. Let G be a (second countable) locally compact group. The G-equivariant
Kasparov’s category K K G equipped with the C˚-algebra suspension functor Σ and the class of
distinguished triangles ∆Σp“ ΞΣq given by the mapping cone triangles (or the extension triangles)
is a triangulated category.

1.2.3.9 Remark. Since pK K G,Σ,∆Σq is a triangulated category all the elementary facts that
we have established in Section 1.2.1 can be applied to K K G. In particular, it is important to
observe that for any (separable) G-C˚-algebra T P ObjpK K Gq, the homomorphism functors
KKGpT, ¨ q and KKGp ¨ , T q are homological, so that for every distinguished triangle in K K G we
can construct long exact sequences in KK-theory (see Remark 1.2.1.14 and Proposition 1.2.1.16).

Choice of the complementary pair

In order to construct a suitable complementary pair of localizing subcategories in K K G, we are
going to apply the Meyer-Nest’s homological algebra developed previously. It is important to say
that the treatment with projective objects in the Kasparov’s category needs of course deep results of
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locally compact groups and Kasparov’s theory that are out of the scope of this survey chapter and
so we may refer to the original papers [132] and [131] for all the details. Despite of this difficulty,
the case in which G is a discrete group can be easily established and we’ll explain the argument.
Moreover, the discrete case is specially interesting for the present thesis.

Given a (second countable) locally compact group G and a compact subgroup H ă G, we have
two natural functors that we can consider. Namely,

- Restriction functor:
ResGH : K K G ÝÑ K K H ,

which is just a forgetful functor.

- Induction functor:
IndGH : K K H ÝÑ K K G,

defined on the objects level as follows: if pB, βq is any (separable) H-C˚-algebra, then

IndGHpB, βq :“
 

f P CbpG,Bq | fpghq “ h´1fpgq @g P G, h P H

and pgH ÞÑ ||fpgq||q P C0pG{Hq
(

,

equipped with the action of G by left translations is a (separable) G-C˚-algebra. It is
well known that this association is functorial with respect to the KK-theory, so that if
g P KKHpB,B1q is a Kasparov triple between two H-C˚-algebras pB, βq and pB1, β1q, then
there exists a Kasparov triple IndGHpgq P KKGpIndGHpB, βq, Ind

G
HpB

1, β1qq and so the this
yields the existence of the induction functor IndGH above (see Section 3 in [98] or Theorem
20.5.4 in [24] for more details about this construction).

Let us write F for the family of all compact subgroups of G. Then we define the following
subcategories of K K G

- Compactly Contractible objects:

CC :“ tA P ObjpK K Gq | ResGHpAq – 0 @H P Fu “
č

HPF
kerObjpResGHq

- Compactly Induced objects:

xCIy :“ xtA P ObjpK K Gq | A – IndGHpBq with H P F , B P ObjpK K Hquy

1.2.3.10 Remarks. 1. Notice that the restriction functor ResGH is just a forgetful one, so it
is clear that it is compatible with countable direct sums. And it is straightforward to
see that ResGH is a triangulated functor. Namely, it is clear applying the definitions that
ΣpResGHpAqq “ ResGHpΣpAqq, for all A P ObjpK K Gq and that ResGHpCf q “ CResG

H
pfq, for

all ˚-homomorphism f : A ÝÑ B between G-C˚-algebras. In other words, ResGH is a stable
functor that transforms mapping cone triangles into mapping cone triangles, that is, ResGH
is a triangulated functor. Hence, thanks to Remark 1.2.1.13, we have that kerObjpResGHq
is a localizing subcategory of K K G, for every compact subgroup H ă G; as a result,
CC “

Ş

HPF
kerObjpResGHq is also a localizing subcategory of K K G (see Remark 1.2.1.9).
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2. The induction functor is more complicated than the restriction one. For instance, IndGH is
not at all compatible with (finite or countable) direct sums. In this way, CI is just a class
of objects in K K G. Hence we are forced to take the corresponding localizing subcategory
generated by compactly induced objects.

3. Following the notations of the preceding sections, we may put L :“ xCIy and N :“ CC. In
order to apply the Meyer-Nest machinery, we want to show that pxCIy, CCq is a complementary
pair of localizing subcategories in K K G. To this end, the strategy consists in constructing
projective objects in K K G with respect an additive homological ideal. Namely, this ideal is
simply J :“

Ş

HPF
kerHompResGHq (recall Theorem 1.2.2.15).

Notice that ResGH is a triangulated functor compatible with countable direct sums, so
kerHompResGHq is an additive homological ideal in K K G by virtue of Remark 1.2.2.2 and
Remark 1.2.2.4. As a result, J :“

Ş

HPF
kerHompResGHq is also an additive homological ideal

(see Remark 1.2.2.2 and Remark 1.2.2.5).

1.2.3.11 Theorem. Let G be a (second countable) locally compact group and F the family of all
compact subgroups of G. If J :“

Ş

HPF
kerHompResGHq, then

i) xCIy “ xpJ y,

ii) K K G has enough J -projective objects.

Therefore, pxCIy, CCq is a complementary pair of localizing subcategories in K K G.

Proof. We distinguish two cases.

A) The general case in which G is any (second countable) locally compact group requires, on the
one hand, structural results about compact subgroups in locally compact groups (for instance,
existence of a maximal compact subgroup in a almost connected group) and, on the other hand,
deep results in KK-theory due to Kasparov (for instance, the relationship between the functors
Res and Res ˝ Ind in the context of maximal compact subgroups. See Theorem 5.8 in [98] and
Lemma 3.3 in [132]). With these preliminaries (which can be found in Section 3 of [132]), some
work yields that

- CC “ pxCIyq%, so xCIy Ă CC$

- and CI Ă pJ

(see Proposition 4.4 in [132] for a proof). In order to achieve the conclusion of the statement, we
want to apply Theorem 1.2.2.15. However, when G is a locally compact group, the restriction
functor does not always have an adjoint functor. Nevertheless, we can define an adjoint functor
for the restriction on enough compact subgroups, so that Theorem 1.2.2.15 can be applied. For
a proof following these ideas, we refer to Theorem 7.3 in [131]. For a more analytical and direct
approach to this proof, we refer to Proposition 4.6 and Theorem 4.7 in [132].

B) The case in which G is a discrete group is much easier to establish. In this case, the family
F of all compact subgroups of G becomes the family of all finite subgroups of G. Since G is
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discrete, F is formed, in particular, by closed subgroups of G, so that the classical Frobenius
reciprocity in KK-theory (due to Wassermann in 1983, [220]) can be applied and we have that
for every H P F

KKGpIndGHpAq, Bq – KKHpA,ResGHpBqq,1

for all H-C˚-algebra A and all G-C˚-algebra B. In other words, the functors ResGH and IndGH
are adjoints in K K G, for all finite subgroup H P F . More precisely, IndGH is a left adjoint
functor for ResGH , for all finite subgroup H P F .
Let’s consider the following triangulated functor,

F :“ pResGHqHPF : K K G ÝÑ
ź

HPF
K K H ,

which is defined in an obvious way. With these notations, it is clear that

CC “ kerObjpF q and J “ kerHompF q

Let’s define the functor
F$ :

ź

HPF
K K H ÝÑ K K G

- on objects by
F$

`

pAHqHPF
˘

:“
à

HPF
IndGHpAHq,

for all pAHqHPF P Objp
ś

HPF
K K Hq.

Remark that since G is discrete, F is a countable set. Hence the above direct sum is
countable and F$ is well-defined.

- and on homomorphisms by functoriality of the induction functor.

We claim that F$ is a left adjoint functor for F . Indeed, we have just to apply the fact that
IndGH is a left adjoint functor for ResGH , for all finite subgroup H P F by virtue of the Frobenius
reciprocity and the structure of a product category,

KKGpF$
`

pAHqHPF
˘

, Bq –
ź

HPF
KKGp

à

HPH
IndGHpAHq, Bq

–
ź

HPF
KKGpIndGHpAHq, Bq

–
ź

HPF
KKHpAH , Res

G
HpBqq “

´

ź

HPF
KKH

¯

pAH , F pBqq

Therefore, Theorem 1.2.2.20 assures that K K G has enough J -projective objects and con-
sequently, by Theorem 1.2.2.15, pxpJ y, CCq is a complementary pair in K K G with xpJ y “

xF$
`

Objp
ś

HPF
K K Hq

˘

y.

1In the discrete case we can prove directly this adjointness property (using Theorem B.1.15) instead of using
the stronger result of Wassermann (see for instance Section 3.2 in [132] for more details). Namely, the argument is
analogous to the one given for the discrete quantum groups, see Lemma 1.7.2.4.
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To conclude, observe that xCIy is the minimal localizing subcategory containing the compactly
induced objects by definition, so it contains objects of the form F$

`

Objp
ś

HPF
K K Hq

˘

, so we

have xF$
`

Objp
ś

HPF
K K Hq

˘

y Ă xCIy and, by minimality, this inclusion must be an equality.

This yields the conclusion of the statement.

�

1.2.3.12 Remark. Since pxCIy, CCq is a complementary pair of localizing subcategories in K K G,
the fundamental lemma about complementary pairs (see Lemma 1.2.1.26) can be applied, so that
in particular we have two triangulated functors

L : K K G ÝÑ xCIy and N : K K G ÝÑ CC

such that for any G-C˚-algebra A P ObjpK K Gq there exists a (unique up to isomorphism)
distinguished triangle of the form

ΣpNpAqq ÝÑ LpAq
D
ÝÑ A ÝÑ NpAq,

where D is called Dirac homomorphism.
This nomenclature is used according to the classical Dirac-dual Dirac method. More precisely,

the homomorphism D of the above distinguished triangle must be regarded as an element D P

KKGpLpAq, Aq. Let us denote by DC P KK
GpLpCq,Cq the Dirac homomorphism corresponding

to the trivial G-C˚-algebra C. We call DC Dirac element. Assume that there exists an element
ηC P KK

GpC, LpCqq such that DC b
C
ηC “ 1LpCq P KKGpLpCq, LpCqq. We call ηC dual Dirac

element. In this situation, the element γC :“ ηC b
LpCq

DC P KK
GpC,Cq, called γ-element, is an

idempotent. We can show that

γ “ 1C ðñ xCIy “ K K G

In other words, the categorical framework of Meyer-Nest provides a categorical formulation of
the classical Dirac-dual Dirac method. The main difference is that in this case the Dirac element is
fixed, so that we only have to construct the dual Dirac element in order to apply the method.

We refer to Section 8 of [132] for all the details about the Dirac-dual Dirac method in the
categorical framework.

Reformulation

Finally, we have just to choose an appropriated triangulated or homological functor on K K G whose
localization with respect to our complementary pair pxCIy, CCq yields the classical Baum-Connes
assembly map. To this end, we consider the functor defining the right-hand side of the classical
Baum-Connes assembly map, that is,

F˚ : K K G ÝÑ A bZ{2

pA,αq ÞÝÑ F˚pA,αq :“ K˚pG ˙
α,r

Aq, with ˚ “ 0, 1
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where A bZ{2 denotes the abelian category of Z{2-graded groups of A b, which is equipped with
the obvious suspension functor ΣA bZ{2 given by shifting the grading. Observe that F˚ is a stable
thanks to Bott periodicity. Indeed,

F˚pΣpA,αqq “ K˚pG˙
r

ΣpAqq “ K˚pG˙
r
C0pRq bAq – K˚pC0pRq bG ˙

α,r
Aq

“ K˚pΣpG ˙
α,r

Aqq – K˚`1pG ˙
α,r

Aq “ ΣA bZ{2pK˚pG ˙
α,r

Aqq

“ ΣA bZ{2pF˚pA,αqq,

for all pA,αq P ObjpK K Gq. Moreover, F˚ is a homological functor compatible with countable
direct sums. Indeed, for all pA,αq P ObjpK K Gq we have

F0pA,αq “ K0pG ˙
α,r

Aq – KKpC, G ˙
α,r

Aq “ KKpC, ¨q ˝G˙
r
¨ pA,αq

F1pA,αq “ K1pG ˙
α,r

Aq – KKpC,ΣpG ˙
α,r

Aqq “ KKpC, ¨q ˝G˙
r
¨ ΣpA,αq,

where the descent functor G˙
r
¨ : K K G ÝÑ K K is triangulated and compatible with countable

direct sums and the homomorphism functorKKpC, ¨q : K K ÝÑ A b is homological and compatible
with countable direct sums. Hence the compositions above are homological functors compatible
with countable direct sums.

By abuse of notation we write simply F˚ :“ F . In this situation, Definition 1.2.1.30 can be
applied to our context.

1.2.3.13 Definition. Let G be a (second countable) locally compact group and fix the homological
functor F : K K G ÝÑ A bZ{2 defined by F pA,αq :“ K˚pG ˙

α,r
Aq, for all pA,αq P ObjpK K Gq.

The categorical Baum-Connes assembly map for G is the categorical Baum-Connes assembly
map for K K G with respect to pxCIy, CC, F q, that is, the natural tranformation

ηG : LF ÝÑ F

1.2.3.14 Definition. Let G be a (second countable) locally compact group.

- We say that G satisfies the (categorical) Baum-Connes property (with coefficients) if ηG is a
natural equivalence.

- We say that G satisfies the strong (categorical) Baum-Connes property if xCIy “ K K G.

1.2.3.15 Remark. It is clear that the strong (categorical) Baum-Connes property implies the
(categorical) Baum-Connes property by virtue of the uniqueness of the pxCIy, CCq-triangles. Notice,
by the way, that G always satisfies the (categorical) Baum-Connes property with coefficients in
objects of xCIy.
1.2.3.16 Note. It is worth mentioning that what has been called classically strong Baum-Connes
conjecture is some weaker condition with respect to the above definition. Namely, following the
Dirac-dual Dirac method explained in the introduction of this dissertation, when there exists a
γ-element γ P KKGpC,Cq, it defines a projection in EndpK˚pG˙

r
Bqq, for all G-C˚-algebra B by

means of the descent homomorphism. Moreover, the image of µGB is precisely the image of this
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projection in K˚pG˙
r
Bq (see [97], [114], [78] for more details). Hence, classically we say that G

satisfies the strong Baum-Connes conjecture with coefficients if the image of this projection is
invertible in KKpG˙

r
B,G˙

r
Bq, which is weaker than the above definition as explained in Remark

1.2.3.12.

One of the main achievement of this categorical formulation of the Baum-Connes property is not
only a new approach to the conjecture, but we can establish different criterion to decide whether
the conjecture is true or not regarding only the family of compact subgroups of G, which may be
useful in practice. Namely, we have the following

1.2.3.17 Theorem (Baum-Connes conjecture Reformulation). Let G be a (second countable)
locally compact group and F the family of all compact subgroups of G. The following assertions are
equivalent

i) G satisfies the Baum-Connes property, that is, µGA is an isomorphism, for all (separable)
G-C˚-algebra A.

ii) G satisfies the categorical Baum-Connes property, that is, ηG is a natural equivalence.

iii) K˚pG ˙
α,r

Aq “ p0q, for all pA,αq P ObjpCCq.

iv) K˚pG ˙
α,r

Aq “ p0q, for all G-C˚-algebra pA,αq that is H-contractible for all H P F .

v) If pA,αq is a G-C˚-algebra such that K˚pH ˙
α,r
Aq “ p0q for all H P F , then K˚pG ˙

α,r
Aq “ p0q.

vi) If f : A ÝÑ B is a ˚-homomorphism between G-C˚-algebras that is a H-homotopy equivalence
for all H P F , then f induces an isomorphism K˚pG˙

r
Aq – K˚pG˙

r
Bq.

vii) If ψ P KKGpA,Bq is any Kasparov triple between two G-C˚-algebras that induces an iso-
morphism K˚pH ˙

r
Aq – K˚pH ˙

r
Bq for all H P F , then ψ induces an isomorphism

K˚pG˙
r
Aq – K˚pG˙

r
Bq.

viii) If ψ P KKGpA,Bq is any Kasparov triple between two G-C˚-algebras that is invertible in
KKHpA,Bq for all H P F , then ψ induces an isomorphism K˚pG˙

r
Aq – K˚pG˙

r
Bq.

Proof. - piq ô piiq. Consider the two following homological functors compatible with countable
direct sums,

H : K K G ÝÑ A bZ{2 and F : K K G ÝÑ A bZ{2,

defined on objects by

HpAq :“ R
´

KKG
˚ pEG,Aq

¯

and F pAq :“ K˚pG˙
r
Aq,

for all G-C˚-algebra A; and on homomorphisms by functoriality.

In this way, the classical assembly map of the Baum-Connes property, µGA : R
´

KKG
˚ pEG,Aq

¯

ÝÑ

K˚pG˙
r
Aq can be regarded as a natural transformation between H and F , say µG : H ÝÑ F .
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Next, we have to use some well-known (but non-trivial) results about the assembly map.
On the one hand, G satisfies the Baum-Connes property with coefficients in compactly
induced C˚-algebras, that is, µG

|CI is an isomorphism (see [36] and [35] for more details). On
the other hand, Theorem 7.1 of [132] assures that we have an isomorphism of categories
K K G{CC – R

´

KKG
˚ pEG, ¨ q

¯

, which implies that H|CC “ 0 by definition of the Verdier
quotient.
In this situation, Lemma 1.2.1.31 can be applied, so that µG induces a natural equivalence
H – LF , which yields the equivalence between the classical assembly map µG and the
categorical one ηG.

- piiq ô piiiq. This is true by virtue of the universal property of localization (see Theorem
1.2.1.29).

- piiiq ô pivq. In [130] R. Meyer performs a description of equivariant Kasparov theory in
terms of generalized homomorphisms following the pioneer work of J. Cuntz [45]. Given
a G-C˚-algebra A, R. Meyer defines a universal C˚-algebra qsA so that, if B is an other
G-C˚-algebra, the Kasparov group KKGpA,Bq is identified with the set of homotopy classes
of G-equivariant homomorphisms from KpL2pGq b l2pNqq b qsA to KpL2pGq b l2pNqq b B,
denoted by rKpL2pGq b l2pNqq b qsA,KpL2pGq b l2pNqq bBs (see Theorem 5.5 in [130]).
If A P CC, then ResGHpAq – 0 in K K H for all H P F . This means that there exists an
invertible Kasparov triple EH P KKHpResGHpAq, 0q, for allH P F . SinceKKHpResGHpAq, 0q –
rKpL2pHq b l2pNqq b qsRes

G
HpAq, 0s, then the invertible Kasparov triple EH is transformed

into a H-equivariant homotopy equivalence between KpL2pHq b l2pNqq b qsResGHpAq and 0,
which means that KpL2pGq b l2pNqq b qsA is a G-C˚-algebra which is H-contractible for all
H P F .
In other words, if A P CC, then A isKKG-equivalent to aG-C˚-algebra which isH-contractible
for all compact subgroup H P F . This yields obviously the equivalence piiiq ô pivq.

- pivq ô pvq. Let’s see the following implications,

- pvq ñ piiiq. Let pA,αq be a G-C˚-algebra in CC. By definition, we have that ResGHpAq –
0, for all H P F . As a consequence, H ˙

α|,r
ResGHpAq – 0 and so K˚pH ˙

α|,r
ResGHpAqq – p0q.

Since this is true for all compact subgroup H P F , the hypothesis of pvq implies that
K˚pG ˙

α,r
Aq – p0q and we get piiiq.

- piiq ñ pvq. If G is an arbitrary topological group, then there always exists an open
almost connected subgroup U ă G. Namely, if G0 ă G denotes the connected component
of the neutral element, it is well-known that G{G0 is always a totally disconnected group
(see Theorem 7.3 in [56] for a proof). This means that G{G0 contains a compact
open subgroup, say U . If q : G ÝÑ G{G0 denotes the canonical quotient map, then
U :“ q´1pUq is an almost connected subgroup of G since U{G0 “ qpUq “ U is compact.
If G is a locally compact group, a compact subgroup K ă G is said to be large if it is a
maximal compact subgroup of some open almost connected subgroup of G. In Lemma
3.1 of [132] it is shown that any compact subgroup of G is contained in a large one.
Hence, in the definitions of the localizing subcategories xCIy and CC it is enough to
consider large compact subgroups.
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Large compact subgroups are also smooth following the terminology of Section 3 in [132],
which allows to apply Theorem 9.3 of [132] in order to show the implication piiq ñ pvq.
More precisely, assume that ηG is a natural equivalence and take a G-C˚-algebra pA,αq
such that K˚pH ˙

α|,r
ResGHpAqq “ p0q for all large compact subgroup H. Theorem 9.3

of [132] implies that LF pAq “ K˚pG ˙
α,r

LpAqq “ p0q, which implies by our assumption

that F pAq “ K˚pG ˙
α,r

Aq “ p0q.

In other words, we have that pivq ô piiiq ô piiq ô pvq.

- pviiq ñ pvq. Let’s see the following implications,

- pviiq ñ pviiiq. Let ψ P KKGpA,Bq be any Kasparov triple between two G-C˚-algebras
that is invertible in KKHpA,Bq for all H P F . In this case, A and B have the same H-
equivariant K-theory, for all H P F . That is, KH

˚ pAq – KH
˚ pBq or, thanks to Green-Julg

theorem, we have also that K˚pH ˙
r
Aq – K˚pH ˙

r
Bq, for all H P F . The hypothesis of

pviiq implies that K˚pG˙
r
Aq – K˚pG˙

r
Bq and we get pviiiq.

- pviiiq ñ pviq. Let f : A ÝÑ B be a ˚-homomorphism between G-C˚-algebras that
is a H-homotopy equivalence for all H P F . Then the corresponding Kasparov triple
rf s P KKGpA,Bq induces an invertible element in KKHpA,Bq, for all H P F (since
KK-theory is a homotopy invariant). The hypothesis of pviiiq implies that K˚pG˙

r
Aq –

K˚pG˙
r
Bq and we get pviq.

- pviq ñ pivq. Let A be any H-contractible G-C˚-algebra for all H P F . This means that
the zero homomorphism 0 ÝÑ A is a H-homotopy equivalence, for all H P F . The
hypothesis of pviq implies that p0q – K˚pG˙

r
0q – K˚pG˙

r
Aq and we get pivq.

In other words, we have that pviiq ñ pviiiq ñ pviq ñ pivq ô pvq.

- pvq ñ pviiq. Let ψ P KKGpA,Bq be any Kasparov triple between two G-C˚-algebras that
induces an isomorphism K˚pH ˙

r
Aq – K˚pH ˙

r
Bq for all H P F .

Given the homomorphism ψ : A ÝÑ B in the Kasparov category K K G, apply the axiom
piiq of a triangulated category and consider the cone triangle associated to ψ,

ΣpBq ÝÑ Cψ ÝÑ A
ψ
ÝÑ B

Now, given a compact subgroup H P F , consider the homological functor of homomorphisms
with respect to C in K K G given by K˚pH ˙

r
¨ q. Consider the following long exact sequence

. . .Ñ K˚pH ˙
r

ΣpBqq Ñ K˚pH ˙
r
Cψq Ñ K˚pH ˙

r
Aq Ñ K˚pH ˙

r
Bq

Ñ K˚pH ˙
r

Σ´1pCψqq Ñ . . .

Since K˚pH ˙
r
Aq – K˚pH ˙

r
Bq for all H P F , we deduce that K˚pH ˙

r
Cψq – p0q –

K˚pH ˙
r

Σ´1pCψqq, for all H P F . The hypothesis of pvq implies that K˚pG˙
r
Cψq – p0q –

K˚pG˙
r

Σ´1pCψqq as well.
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Now, consider the homological functor of homomorphisms with respect to C in K K G given
by K˚pG˙

r
¨ q. Consider the following long exact sequence

. . .Ñ K˚pG˙
r

ΣpBqq Ñ K˚pG˙
r
Cψq Ñ K˚pG˙

r
Aq Ñ K˚pG˙

r
Bq

Ñ K˚pG˙
r

Σ´1pCψqq Ñ . . .

Since K˚pG˙
r
Cψq – p0q – K˚pG˙

r
Σ´1pCψqq, we deduce that K˚pG˙

r
Aq – K˚pG˙

r
Bq and

we get pviiq.
�

1.2.4 Meyer-Nest’s homological algebra revisited
In this section we want to give a closer inspection of the Meyer-Nest’s homological algebra introduced
in Section 1.2.2. More precisely, the goal here is to define derived functors in a similar way as
we do for abelian categories. Hence, spectral sequences can be established and for some concrete
situations we obtain useful results for K-group computations as soon as we restrict ourselves to the
Kasparov category, which will be explained with more details in Chapter 5. For more details about
spectral sequences and related subjects we refer to [134] and [131].

1.2.4.1 Definition. Let pT ,Σ,∆Σq be a triangulated category and J a homological ideal in T . A
distinguished triangle X u

ÝÑ Y
v
ÝÑ Z

w
ÝÑ ΣpXq in T is called J -exact if w P J pZ,ΣpXqq.

1.2.4.2 Definition. Let pT ,Σ,∆Σq be a triangulated category and J a homological ideal in T .
An object X P ObjpT q is called J -contractible if idX P J pX,Xq.

1.2.4.3 Proposition. Let pT ,Σ,∆Σq be a triangulated category and J :“ kerHompF q a homological
ideal in T with F : T ÝÑ A .

i) A distinguished triangle X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq in T is J -exact if and only if 0 ÝÑ

F pXq
F puq
ÝÑ F pY q

F pvq
ÝÑ F pZq ÝÑ 0 is a short exact sequence in A .

ii) An object X P ObjpT q is J -contractible if and only if 0 ÝÑ X is a J -isomorphism. In other
words, J -contractible objects are exactly the objects in kerObjpF q.

iii) A homomorphism f : X ÝÑ Y in T is a J -isomorphism if and only if Cf is a J -contractible
object.

Proof. i) Given the distinguished triangle X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq, consider the corresponding

long exact sequence in A ,

. . .Ñ F pΣ´1pZqq
F pΣ´1

pwqq
Ñ F pXq

F puq
Ñ F pY q

F pvq
Ñ F pZq

F pwq
Ñ F pΣpXqq Ñ . . .

Hence, the distinguished triangle above is J -exact if and only if w P J pZ,ΣpXqq, which means
that F pwq “ 0 and also that F pΣpwqq “ 0 and these conditions say that the above long exact
sequence yields the following short exact sequence, 0 ÝÑ F pXq

F puq
ÝÑ F pY q

F pvq
ÝÑ F pZq ÝÑ 0.
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ii) By virtue of Proposition 1.2.2.7, 0 ÝÑ X is a J -isomorphism if and only if F pXq – 0, that is,
X P kerObjpF q.
Suppose that X is a J -contractible object, then idX P J pX,Xq, that is, F pidXq “ idF pXq “ 0,
which implies that F pXq – 0. Conversely, suppose that X P kerObjpF q, then F pXq – 0 and so
idF pXq “ F pidXq “ 0, that is, idX P J pX,Xq

iii) By virtue of Proposition 1.2.2.7, f : X ÝÑ Y in T is a J -isomorphism if and only if
F pfq : F pXq ÝÑ F pY q is an isomorphism, which is equivalent to say that F pCf q – 0 using
the short exact sequence F pXq F pfqÝÑ F pY q ÝÑ F pCf q given by the image under F of the cone
triangle associated to f . The preceding property yields the conclusion.

�

1.2.4.4 Lemma. Let pT ,Σ,∆Σq be a triangulated category and J :“ kerHompF q a homological
ideal in T with F : T ÝÑ A .

A 3-chain complex
. . . 0 ÝÑ X

f
ÝÑ Y

g
ÝÑ Z ÝÑ 0 . . .

is J -exact if and only if there exists a J -exact distinguished triangle X 1 u1
ÝÑ Y 1

v1
ÝÑ Z 1

w1
ÝÑ ΣpX 1q

and a commutative diagram

X 1

α
��

u1 // Y 1

β
��

v1 // Z 1

γ
��

X
f
// Y g

// Z

where the homomorphisms α, β and γ are J -isomorphisms. Actually, α and β are identity
homomorphisms.

Proof. Assume that there exists a J -exact distinguished triangle X 1 u1
ÝÑ Y 1

v1
ÝÑ Z 1

w1
ÝÑ ΣpX 1q and

a commutative diagram as in the statement. Since α, β and γ are J -isomorphisms, then F pαq, F pβq
and F pγq are isomorphisms (see Proposition 1.2.2.7). Since F is a stable homological functor, we
have a short exact sequence

0 ÝÑ F pX 1q
F pu1q
ÝÑ F pY 1q

F pv1q
ÝÑ F pZ 1q ÝÑ 0

Hence the commutativity of the diagram of the statement yields a short exact sequence

0 ÝÑ F pXq
F pfq
ÝÑ F pY q

F pgq
ÝÑ F pZq ÝÑ 0,

which is equivalent to the J -exactness of the chain complex

. . . 0 ÝÑ X
f
ÝÑ Y

g
ÝÑ Z ÝÑ 0 . . .

by virtue of Proposition 1.2.2.9.
Conversely, assume that . . . 0 ÝÑ X

f
ÝÑ Y

g
ÝÑ Z ÝÑ 0 . . . is a J -exact complex in T . By

Proposition 1.2.2.9 this is equivalent to say that

0 ÝÑ F pXq
F pfq
ÝÑ F pY q

F pgq
ÝÑ F pZq ÝÑ 0
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is a short exact sequence. In particular, F pfq is a monomorphism, which is equivalent to say that
the homomorphism f : X ÝÑ Y is a J -monomorphism.

Next, consider the cone triangle associated to f , say

X
f
ÝÑ Y

v
ÝÑ Cf

w
ÝÑ ΣpXq

Since f is J -monomorphism, we have that w P J pCf ,ΣpXqq, which means by definition that
the cone triangle associated to f is J -exact.

Take α :“ idX and β :“ idY . Consider the homological functor HomT p ¨ , Zq given by the right
composition, which yields the following short exact sequence

HomT pX,Zq
f˚

ÐÝ HomT pY,Zq
v˚
ÐÝ HomT pCf , Zq

Remark that g ˝ f “ 0 because of the chain complex condition. In other words, we have that
f˚pgq “ 0, that is, g P kerpf˚q “ Impv˚q. Hence, there exists a homomorphism γ P HomT pCf , Zq
such that v˚pγq “ γ ˝ v “ g.

In this situation, we have a commutative diagram

X

α
��

f // Y

β
��

v // Cf

γ
��

X
f
// Y g

// Z

Observe that its image under F is also a commutative diagram with F pαq and F pβq isomorphisms,
so that F pγq is as well an isomorphism (by virtue of Five’s lemma), that is, γ is a J -isomorphism. �

The following theorem is the triangulated counterpart of the existence of projective resolutions
as it is known for abelian categories. Its proof is very close to the classical one and we refer to
Proposition 3.26 of [134] for more details.

1.2.4.5 Theorem. Let pT ,Σ,∆Σq be a triangulated category and J a homological ideal in T .

i) If T has enough J -projective objects, then every object of T has a unique up to homotopy
J -projective resolution.

ii) Given two objects X,X 1 P ObjpT q, let P‚ ÝÑ X and P 1‚ ÝÑ X 1 be two J -projective resolutions.
Every homomorphism f : X ÝÑ X 1 induces a unique up to homotopy homomorphism of chain
complexes rf : P‚ ÝÑ P 1‚.
As a consequence we have a functor

P : T ÝÑ H pT q,

where H pT q denotes the homotopy category of T .

iii) Let X u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq be a J -exact distinguished triangle in T . There exists a canonical

homomorphism η : PpZq ÝÑ ΣpPpXqq such that PpXq
Ppuq
ÝÑ PpY q

Ppvq
ÝÑ PpZq

Ppwq
ÝÑ

PpXq r1s is a distinguished triangle on H pT q.
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Given a triangulated category pT ,Σ,∆Σq and a homological ideal J in T , assume that T has
enough J -projective objects. Hence, given any object X P ObjpT q consider the corresponding
J -projective resolution for X, say pP‚, δ‚q with δ0 : P0 ÝÑ X a J -epimorphism.

Next, let A be an abelian category and consider a (covariant) additive functor F : T ÝÑ A .
The chain complex pP‚, δ‚q in T is then transformed into a chain complexe pF pP‚q, F pδ‚qq in A ,

. . .
F pδ3q
ÝÑ F pP2q

F pδ2q
ÝÑ F pP1q

F pδ1q
ÝÑ F pP0q

F pδ0q
ÝÑ F pXq (1.2.2)

Consider now the following chain complex,

. . .
F pδ3q
ÝÑ F pP2q

F pδ2q
ÝÑ F pP1q

F pδ1q
ÝÑ F pP0q ÝÑ 0 (1.2.3)

In this situation, we can consider thus the corresponding homology functor and we put

LnF pXq :“ Hn

`

p1.2.3q
˘

“ kerpF pδnqq{ImpF pδn`1qq,

for every n P Z`, where

L0F pXq “ kerpF pP0q ÝÑ 0q{ImpF pδ1qq “ F pP0q{ImpF pδ1qq “ cokerpF pδ1qq

Since the association to each object the corresponding J -projective resolution is functorial
(thanks to Theorem 1.2.4.5), the above construction yields a functor

LnF : T ÝÑ A ,

for every n P Z`. It is called nth left derived functor.
1.2.4.6 Remark. Under the same assumptions as above, suppose in addition that F is a homological
functor. If

X
u
ÝÑ Y

v
ÝÑ Z

w
ÝÑ ΣpXq

is J -exact triangle in T , then Theorem 1.2.4.5 gives a distinguished triangle

PpXq
Ppuq
ÝÑ PpY q

Ppvq
ÝÑ PpZq

Ppwq
ÝÑ ΣpPpXqq

in the homotopy category of T and the application of the functor F yields a short exact sequence
of chain complexes. Now, it is well known that the nth homology functor is homological so that
we obtain a long exact sequence in homology, that is, a long exact sequence between the derived
functors

. . . ÝÑ LnF pXq ÝÑ LnF pY q ÝÑ LnF pZq ÝÑ Ln´1F pXq

ÝÑ . . . ÝÑ L1F pZq ÝÑ L0F pXq ÝÑ L0F pY q ÝÑ L0F pZq ÝÑ 0

1.2.4.7 Proposition. Let pT ,Σ,∆Σq be a triangulated category and J a homological ideal in T
such that T has enough J -projective objects. If F : T ÝÑ A is a stable homological functor, then
the following assertions are equivalent

i) F is J -exact.

ii) L0F pXq – F pXq and LnF pXq “ 0, for all n ą 0 and all X P ObjpT q.
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iii) L0F pXq – F pXq, for all X P ObjpT q.

Proof. By virtue of Proposition 1.2.2.11, F is J -exact if and only if it transforms J -exact chain
complexes into long exact sequences, which can be applied to J -projective resolutions. Hence the
complex (1.2.2) is exact with F pδ0q an epimorphism so that

LnF pXq “ 0 for all n ą 0 and

L0F pXq “ F pP0q{ImpF pδ1qq “ F pP0q{ kerpF pδ0qq “ F pXq

This shows piq ñ piiq ñ piiiq.
Conversely, suppose that L0F pXq – F pXq, for all X P ObjpT q. Observe that if X u

ÝÑ Y
v
ÝÑ

Z
w
ÝÑ ΣpXq is a J -exact triangle in T , then v is a J -epimorphism (use the characterization of

Proposition 1.2.4.3). By the previous remark we can construct the following long exact sequence

. . . ÝÑ L1F pZq ÝÑ L0F pXq ÝÑ L0F pY q ÝÑ L0F pZq ÝÑ 0,

which is actually
. . . ÝÑ L1F pZq ÝÑ F pXq ÝÑ F pY q ÝÑ F pZq ÝÑ 0,

thanks to our assumption. Hence, F pvq is an epimorphism. Since the objects Y and Z are arbitrary
we deduce that the functor F transforms J -epimorphisms into epimorphisms under the assumption
of piiiq and this characterizes the J -exact (see Proposition 1.2.2.11) functors obtaining thus piq. �

1.2.4.8 Remark. Let pT ,Σ,∆Σq be a triangulated category and J :“ kerHompF 1q an additive
homological ideal in T with F 1 : T ÝÑ A 1 such that T has enough J -projective objects. In this
situation, Theorem 1.2.2.15 guarantees that pxpJ y, kerObjpF 1qq is a complementary pair of localizing
subcategories in T . Notice that objects in kerObjpF 1q are exactly the J -contractible objects (see
Proposition 1.2.4.3).

Hence, given a complementary pair of localizing subcategories we can define the localization
of any given functor as in Definition 1.2.1.27. Precisely, if F : T ÝÑ A is a stable homological
functor, then we define its localization with respect to pxpJ y, kerObjpF 1qq as the functor

LF :“ F ˝ L : T ÝÑ A ,

where L : T ÝÑ xpJ y is the canonical triangulated functor associated to the complementary pair.
Recall as well that such localization enjoys the following universal property (see Theorem

1.2.1.29): there exists a natural transformation η : LF ÝÑ F such that LF| kerObjpF 1q “ 0.
We claim that the 0th left derived functor L0F coincides with the localization functor LF with

respect to the projective complementary pair of localizing subcategories.
To see this, it is enough to check the universal property for L0F . Indeed,

- there exists a natural transformation η1 : L0F ÝÑ F given by the augmentation map. More
precisely, given any object X P ObjpT q, consider the corresponding J -projective resolution,
say pP‚, δ‚q with augmentation map δ0 : P0 ÝÑ X, which is a J -epimorphism. Since (1.2.2)
is a chain complex, we have that ImpF pδ1qq Ă kerpF pδ0qq so that we can write

L0F pXq “ F pP0q{ImpF pδ1qq ÝÑ F pP0q{ kerpF pδ0qq ÝÑ F pXq

And this association is clearly natural.
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- the 0th left derived functor is J -exact, that is, J Ă kerHompL0F q. More precisely, let
f : X ÝÑ Y be any homomorphism in T and consider J -projective resolutions for each
object, say pP‚, δ‚q for X and pQ‚, ρ‚q for Y . If f P J pX,Y q, then the zero homomorphism
0 : P0 ÝÑ Q0 defines a homomorphism of chain complexes lifting f , that is, we have a
commutative diagram

. . . // P0

0
��

δ0 // X

f
��

. . . // Q0 ρ0
// Y

Indeed, since f P J pX,Y q we have that f ˝ δ0 P J pP0, Y q by definition of ideal and since P0
is a J -projective object, then it must be f ˝ δ0 “ 0 (recall Remark 1.2.2.13). Consequently,
L0F pXq

L0F pfq
ÝÑ L0F pY q is the zero homomorphism. In particular, L0F pidXq “ 0 for every

J -contractible object X. In other words, L0F| kerObjpF 1q “ 0.

1.2.4.9 Theorem. Let pT ,Σ,∆Σq be a triangulated category and J a homological ideal in T . Let
F : T ÝÑ A be a stable homological functor.

If X P ObjpT q is an object such that

i) X has a J -projective resolution of length 1,

ii) HomT pX,Y q “ p0q, for all J -contractible object Y

then there exists a natural short exact sequence

0 ÝÑ L0F pXq ÝÑ F pXq ÝÑ L1F pΣpXqq ÝÑ 0

Proof. Let 0 ÝÑ P1
δ1
ÝÑ P0

δ0
ÝÑ X ÝÑ 0 be a J -projective resolution for X of length 1, which

can be viewed as a J -exact 3-chain complex. By virtue of Lemma 1.2.4.4, there exists a J -exact
distinguished triangle P1

δ1
ÝÑ P0 ÝÑ rX ÝÑ ΣpP1q and a commutative diagram

P1

α

δ1 // P0

β

// rX

γ
��

P1
δ1
// P0

δ0
// X

where γ is a J -isomorphism. Consider the cone triangle associated to γ : rX ÝÑ X, say rX
γ
ÝÑ

X
v
ÝÑ Cγ ÝÑ Σp rXq and apply the rotation axiom so that Σ´1pCγq ÝÑ rX

γ
ÝÑ X

v
ÝÑ Cγ is

again a distinguished triangle. Since γ is a J -isomorphism, then Cγ is a J -contractible object
(see Proposition 1.2.4.3). Hence, thanks to the assumptions on the object X, we have that
HomT pX,Cγq “ p0q which implies that v “ 0. In other words, the above triangle splits and we
have X – rX ‘ Cγ (see Proposition 1.2.1.20).
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Next, remark that this decomposition yields that HomT pCγ , Cγq Ă HomT pX,Cγq “ p0q. In
particular, idCγ “ 0 so Cγ – 0. In other words, γ is an isomorphism and we have X – rX.

In this way, we obtain a distinguished triangle given by

P1
δ1
ÝÑ P0 ÝÑ X ÝÑ ΣpP1q

Since F is a stable homological functor, we obtain as well a long exact sequence

. . .Ñ F pΣ´1pXqq Ñ F pP1q
F pδ1q
Ñ F pP0q Ñ F pXq Ñ F pΣpP1qq

F pΣpδ1qq
Ñ F pΣpP0qq Ñ . . .

which yields the following natural short exact sequence

cokerpF pδ1qq ãÑ F pXq� kerpF pΣpδ1qqq

And by definition of the (left) derived functors we have,

L0F pXq ãÑ F pXq� L1F pΣpXqq,

where we should remark that our resolution is of length 1, so that

L1F pΣpXqq “ kerpF pΣpδ1qqq{Imp0 ÝÑ ΣpP1qq – kerpF pΣpδ1qqq

�

1.2.4.10 Remarks. 1. In the proof of the preceding theorem, the conclusion is achieved thanks
to the fact that γ is actually an isomorphism and not only a J -equivalence. In this sense, the
above theorem is still valid for an object X P ObjpT q whenever

i) X has a J -projective resolution of length 1,
ii) every J -isomorphism for X is an isomorphism.

2. It is obvious that the statement of the preceding theorem is more general in the sense that we
obtain a natural short exact sequence

L0F pΣipXqq ãÑ F pΣipXqq� L1F pΣi`1pXqq,

for all i P Z, which is straightforward by the above proof.

1.3 Compact Quantum Groups
Let us introduce the theory of compact quantum groups in the sense of S. L. Woronowicz by giving
two fundamental examples that should be regarded as the reference ones.

On the one hand, let G be a compact group and consider its (unital) C˚-algebra of continuous
functions CpGq. We have a canonical ˚-isomorphism CpGq b CpGq – CpGˆGq and we can define
thus a unital ˚-homomorphism ∆ : CpGq ÝÑ CpGˆGq by

∆pfqpx, yq :“ fpxyq,

for all f P CpGq and all x, y P G. This map satisfies two important properties,
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i) pidb∆q∆ “ p∆b idq∆, thanks to the associativity of the internal law of G.

ii) pCpGq b 1q∆pCpGqq and p1 b CpGqq∆pGq are linearly dense in CpG ˆ Gq. Indeed, it is
enough to remark that the space pCpGq b 1q∆pCpGqq is spanned by functions of the form
px, yq ÞÑ f1pxqf2pxyq. These functions separate points in G, so that the Stone-Weierstrass
theorem yields the conclusion.

In this way, the data G :“ pCpGq,∆q with the above properties is a compact quantum group in
the sense of Woronowicz.

Besides, assume thatA is a unital commutative C˚-algebra equipped with a unital ˚-homomorphism
∆ : A ÝÑ A b A satisfying the analogue of the two properties piq and piiq above. In this case,
we can show by applying the Gelfand duality that there exists a compact group G such that the
corresponding compact quantum group G identifies to the data pA,∆q. In this sense, we obtain a
bijective correspondence between compact classical groups and commutative compact quantum
groups.

#

Compact Classical Groups
+

ÐÑ

#

Commutative
Compact Quantum Groups

+

On the other hand, let Γ be a discrete group and consider its reduced C˚-algebra C˚r pΓq,
which is by definition the closed linear span of the operators λγ with γ P Γ, where λ is the
left regular representation of Γ on l2pΓq. In this way, we can define a unital ˚-homomorphism
∆r : C˚r pΓq ÝÑ C˚r pΓq b C˚r pΓq such that

∆rpλγq :“ λγ b λγ ,

for all γ P Γ. This map satisfies obviously the analogue of the two properties piq and piiq above.
In this way, the data �r :“ pC˚r pΓq,∆rq is a compact quantum group in the sense of Woronowicz.
An important observation is that the same construction as above can be made by taking the

universal C˚-algebra of Γ and we can form the compact quantum group �m :“ pC˚mpΓq,∆mq. By
construction, there exists a canonical surjective ˚-homomorphism τ : C˚mpΓq� C˚r pΓq.

Notice by the way that the map ∆ is invariant under the flip map Σ : C˚r pΓq b C˚r pΓq ÝÑ
C˚r pΓq b C˚r pΓq, that is, ∆ “ Σ ˝ ∆ “: ∆op. We say then that ∆ is co-commutative. Besides,
assume that A is a unital C˚-algebra equipped with a unital co-commutative ˚-homomorphism
∆ : A ÝÑ AbA satisfying the analogue of the two properties piq and piiq above. In this case, we
can show that there exists a discrete group Γ such that the data pA,∆q sits between the �m and
�r as compact quantum groups. Specifically, there exists surjective homomorphisms of compact
quantum groups C˚mpΓq

τm
� A

τr
� C˚r pΓq such that τ “ τr ˝ τm.

Remark that if Γ was amenable, there wouldn’t be any difference between its reduced and
maximal C˚-algebras. This is the situation for the compact case. In this sense, we obtain a bijective
correspondence between discrete amenable classical groups and co-commutative compact quantum
groups.

#

Discrete Amenable Classical Groups
+

ÐÑ

#

Co-commutative
Compact Quantum Groups

+

One of the main achievement of the Woronowicz’s theory with respect to earlier attempts is a
large repertory of examples that are neither commutative nor co-commutative. For this, Chapter
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2 give a complete overview of the main “genuine” examples of compact quantum groups. In the
present section we give, in contrast, the theoretical context for compact quantum groups in the
sense of S. L. Woronowicz. Thus we develop, as in detail as possible, the representation and the
duality theory for compact quantum groups.

Finally, let us recall that in the classical case the Pontryagin dual of a commutative compact
group is a commutative discrete group and viceversa. Sometimes the notations and nomenclature
in the literature are misleading. For this reason we wish to clarify this point with the following
diagrams.

Classical Abelian Groups

Γ, D.G.

yy %%

G, C.G.

yy %%
� :“ pC˚r pΓq,∆rq

C.Q.G., pΓ
p� :“ pc0pΓq,∆q

D.Q.G., Γ
G :“ pCpGq,∆q

C.Q.G., G
pG :“ pC˚r pGq,∆rq

D.Q.G., pG

Assume that G is an abelian compact group. In this case, pG “: Γ is an abelian discrete group
by virtue of the Pontryagin duality (remark that, with these notations, G – pΓ). Besides, we have
the following isomorphisms of C˚-algebras

c0pΓq – C˚r pGq and CpGq – C˚r pΓq,

so that the above notations are consistent in the following sense

� – GÐÑ pΓ – G and p� – pGÐÑ Γ – pG

If we want to have a more precise picture in our mind, we’ll think about the well known
Pontryagin duality between Z and S1.

Therefore, we extend these notations for any (locally) compact group and also for any (locally)
compact quantum group.

Classical Groups

G, L.C.G.

yy %%

G, C.G.

yy %%
G :“ pC0pGq,∆q
L.C.Q.G., G

pG :“ pC˚r pGq,∆rq

L.C.Q.G., pG

G :“ pCpGq,∆q
C.Q.G., G

pG :“ pC˚r pGq,∆rq

D.Q.G., pG

Quantum Groups

G, L.C.Q.G.

xx &&

G, C.Q.G.

xx &&
G :“ pC0pGq,∆q

L.C.Q.G.
pG :“ pC˚r pGq, p∆q

L.C.Q.G.
G :“ pCpGq,∆q

C.Q.G.
pG :“ pc0ppGq, p∆q

D.Q.G.
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1.3.1 Woronowicz’s theory
1.3.1.1 Definition. A compact quantum group G is the data pCpGq,∆q where CpGq is a unital
C˚-algebra and ∆ : CpGq ÝÑ CpGq b CpGq is a unital ˚-homomorphism such that

i) ∆ is co-associative meaning that the diagram

CpGq

∆
��

∆ // CpGq b CpGq

idb∆

��
CpGq b CpGq ∆bid // CpGq b CpGq b CpGq

is commutative.

ii) ∆ satisfies the cancellation property meaning that

rpCpGq b 1q∆pCpGqqs “ CpGq b CpGq “ rp1b CpGqq∆pCpGqqs

1.3.1.2 Note. The object G defined above has different names in the literature. Namely, such G
may be called compact topological quantum group, C˚-Woronowicz algebra, C˚-algebraic compact
quantum group or unital bisimplifiable C˚-bialgebra.

Other common language that is used in this dissertation is the following: the data pCpGq,∆q
of the preceding definition is also called a unital Hopf C˚-algebra. A Hopf C˚-algebra is the data
S :“ pS,∆q, where S is a C˚-algebra and ∆ : S ÝÑ ĂMpS b Sq is a ˚-homomorphism satisfying the
analogue properties of the above definition. It is important to remark that in the context of general
Hopf C˚-algebras we don’t use the usual multiplier algebra Mp¨q, but the refinement ĂMp¨q (see
Definition A.4.4 and [6], [206] for more details).

For any Hopf C˚-algebra S “ pS,∆q we write Scop :“ pS,∆copq for the corresponding co-opposite
Hopf C˚-algebra, where ∆cop :“ Σ ˝∆.

1.3.1.3 Definition. Let G “ pCpGq,∆q and G1 “ pCpG1q,∆1q be two compact quantum groups.
A Hopf ˚-homomorphism from G to G1, denoted by f : G ÝÑ G1, is a unital ˚-homomorphism
f : CpG1q ÝÑ CpGq such that

∆ ˝ f “ pf b fq∆1

In particular, if G “ G1, such a f is called Hopf ˚-automorphism.

1.3.1.4 Note. It turns out that this early definition must be suitably modified in order to take
into account the analytical subtleties for giving an appropriated notion of morphism of compact
quantum groups. We will be more precise later on.

The most remarkable result in compact quantum group theory is the next theorem whose proof
can be found in Theorem 1.2.1 of [139], Theorem 4.4 of [124], Theorem 5.1.6 of [188] or in the
original paper of Woronowicz, Section 2 of [231].

1.3.1.5 Theorem. For any compact quantum group G “ pCpGq,∆q, there exists a unique state
hG P CpGq˚ such that

phG b idq∆paq “ hGpaq1 “ pidb hGq∆paq,
for all a P CpGq. The state hG is called the Haar state of G.
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1.3.1.6 Remarks. 1. If τ : CpGq ÝÑ CpGq is a Hopf ˚-automorphism and hG is the Haar state
of G, then we have hG ˝ τ “ hG. Indeed, we have just to apply the uniqueness of the Haar
state under the condition phG b idq∆paq “ hGpaq1 “ pidb hGq∆paq, for all a P CpGq. So, for
all a P CpGq we have

hGpτpaqq1 “ phG b idq∆pτpaqq “ phG b idqpτ b τq∆paq “ phG ˝ τ b τq∆paq

Since τ is a unital ˚-automorphism of CpGq, the above equation is equivalent to the following
one,

hGpτpaqq1 “ hGpτpaqqτ
´1p1q “ pidb τ´1qphG ˝ τ b τq∆paq “ phG ˝ τ b idq∆paq

In the same way we show that hGpτpaqq1 “ pidb hG ˝ τq∆paq, for all a P CpGq.

2. Given a compact quantum group G “ pCpGq,∆q with Haar state hG, we can perform
the associated GNS construction, which is denoted by pL2pGq, λ,Ωq. Here we adopt the
standard convention for the inner product on L2pGq. Namely, for all a, b P CpGq we put
xλpaq, λpbqy :“ hGpa

˚bq.

1.3.1.7 Definition. Let G “ pCpGq,∆q be a compact quantum group. A (unitary) representation
of G on a Hilbert space H is an invertible (resp. unitary) element w PMpKpHq bCpGqq sucht that

pidb∆qpwq “ w12w13

The collection of all unitary finite dimensional representations of G is denoted by ReppGq.

1.3.1.8 Remarks. 1. Let C be any C˚-algebra. If S :“ pS,∆q is any Hopf C˚-algebra (not
necessarily unital), we can give the notion of (resp. unitary) representation of S on an Hilbert
C-module H (or (resp. unitary) co-representation of S on H). This means an invertible (resp.
unitary) element V P LCpH b Sq “MpKpHq b Sq such that pidb∆qpV q “ V12V13.

2. Assume that H is a finite dimensional Hilbert space. In this case we have BpHq “ KpHq and
MpKpHq b CpGqq – BpHq b CpGq.
Therefore, if w P BpHq b CpGq is a finite dimensional representation of G on H, consider
tξ1, . . . , ξnu an orthonormal basis for H and tmi,jui,j“1,...,n the corresponding matrix units
in BpHq.
We define the matrix coefficients of w as the elements

wi,j :“ pωξi,ξj b idCpGqqpwq P CpGq,

for all i, j “ 1 . . . , n where ωξi,ξj are the coordinate linear forms on BpHq defined by
ωξi,ξj pT q :“ xξi, T pξjqy, for all T P BpHq.
In this situation, the representation w can be written in coordinates as

w “
n
ÿ

i,j“1
mij b wij
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and the condition of the definition above becomes

∆pwi,jq “
n
ÿ

k“1
wik b wkj ,

for all i, j “ 1, . . . , n.
In particular, if w is unitary, the following relations hold

n
ÿ

k“1
w˚ki wkj “ δij1CpGq “

n
ÿ

k“1
wik w

˚
jk,

for all i, j “ 1, . . . , n
Hence, given a (unitary) finite dimensional representation w of G on H, we have constructed
an invertible (resp. unitary) matrix pwijqi,j P MnpCpGqq satisfying the formula above. Such
a matrix is called representation matrix of G on H.

3. Let w P BpHq b CpGq be a finite dimensional representation of G on H. With the same
notations as above, we define the character of w in G to be the element

χGpwq :“
n
ÿ

i“1
wii P CpGq

1.3.1.9 Definition. Let G “ pCpGq,∆q be a compact quantum group and w, v two (unitary)
representations of G on Hilbert spaces Hw and Hv, respectively. The direct sum representation of
G, denoted by w ‘ v, is the (unitary) representation of G on Hw ‘Hv defined as

w ‘ v :“ w ` v PMpKpHw ‘Hvq b CpGqq

1.3.1.10 Remark. Assume that both Hw and Hv are finite dimensional Hilbert spaces. Let us
compute the matrix coefficients of the direct sum representation.

Let tξ1, . . . , ξdimpHwqu and tη1, . . . , ηdimpHvqu be orthonormal basis for Hw and Hv, respectively
and let tmi,jui,j“1,...,dimpHwq and tnl,kul,k“1,...,dimpHvq be the corresponding matrix units in BpHwq

and BpHvq, respectively. We know that tξ1, . . . , ξdimpHwq, η1, . . . , ηdimpHvqu is an orthonormal basis
for Hw ‘Hv. Denote by Iw and by Iv the set of indices corresponding to the vector basis of Hw

and Hv, respectively.
A straightforward computation shows that

ωζr,ζs “

$

&

%

ωξr,ξs , if r, s P Iw
ωηr,ηs , if r, s P Iv
0, otherwise

,

for all r, s P Iw \ Iv. So that we obtain that the matrix coefficients of the direct sum representation
are exactly

pw ‘ vqr,s “

$

&

%

wr,s, if r, s P Iw
vr,s, if r, s P Iv
0, otherwise

,

for all r, s P Iw \ Iv. It is clear that

χGpw ‘ vq “ χGpwq ` χGpvq
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1.3.1.11 Definition. Let G “ pCpGq,∆q be a compact quantum group and w, v two (unitary)
representations of G on Hilbert spaces Hw and Hv, respectively. The tensor product representation
of G, denoted by w j v, is the (unitary) representation of G on Hw bHv defined as

w j v :“ w13v23 PMpKpHw bHvq b CpGqq

1.3.1.12 Remark. Assume that both Hw and Hv are finite dimensional Hilbert spaces. Let us
compute the matrix coefficients of the tensor product representation.

Let tξ1, . . . , ξdimpHwqu and tη1, . . . , ηdimpHvqu be orthonormal basis for Hw and Hv, respectively
and let tmi,jui,j“1,...,dimpHwq and tnk,luk,l“1,...,dimpHvq be the corresponding matrix units in BpHwq

and BpHvq, respectively. We know that tζr :“ ξi b ηkui“1,...,dimpHwq
k“1,...,dimpHvq

is an orthonormal basis for

Hw bHv. Denote by Iw and by Iv the set of indices corresponding to the vector basis of Hw and
Hv, respectively.

A straightforward computation shows that

ωζr,ζs “ ωξi,ξj b ωηk,ηl ,

for all r “ pi, kq, s “ pj, lq P Iw ˆ Iv. So that we obtain that the matrix coefficients of the tensor
product representation are exactly

pw j vqr,s “ wi,j vk,l,

for all r “ pi, kq, s “ pj, lq P Iw ˆ Iv. It is clear that

χGpw j vq “ χGpwqχGpvq

1.3.1.13 Definition. Let G “ pCpGq,∆q be a compact quantum group and w, v two (unitary)
representations of G on Hilbert spaces Hw and Hv, respectively. An intertwiner between w and v
is a linear operator Φ : Hw ÝÑ Hv such that

pΦb 1CpGqqw “ vpΦb 1CpGqq

The space of all intertwiners between w and v is denoted by Morpw, vq. In particular, if w “ v,
we write Endpwq :“Morpw,wq.

1.3.1.14 Definition. Let G “ pCpGq,∆q be a compact quantum group.

i) Two (unitary) representations of G w, v are called (unitary) equivalents if Morpw, vq contains
an invertible (resp. unitary) operator.

ii) A (unitary) representation w of G is called irreducible if Endpwq “ C.

The set of all unitary equivalence classes of irreducible unitary finite dimensional representations
of G is denoted by IrrpGq.

1.3.1.15 Note. If x P IrrpGq is such a class, then we use the symbol wx P BpHxqbCpGq to denote an
irreducible unitary finite dimensional representation of G representing x. Once such a representative
is fixed, we write
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- Hx for the corresponding finite dimensional representation Hilbert space,

- nx :“ dimpxq :“ dimpHxq,

- Morpx, yq for the space of all intertwiners, up to unitary equivalence, between representatives
wx and wy, where y P IrrpGq,

- χGpxq :“ χGpw
xq.

For any compact quantum group G there always exists a distinguished irreducible representation.
Namely, the trivial representation ε :“ 1Cb 1CpGq P CbCpGq. By abuse of notation, we still denote
by ε the corresponding class in IrrpGq.

1.3.1.16 Remark. If w, v are two unitary representations of G, then it is easy to show that
Φ˚ PMorpv, wq whenever Φ PMorpw, vq. Indeed,

Φ PMorpw, vq ô pΦb 1CpGqqw “ vpΦb 1CpGqq ô w˚pΦ˚ b 1CpGqq “ pΦ˚ b 1CpGqqv˚

ô ww˚pΦ˚ b 1CpGqqv “ wpΦ˚ b 1CpGqqv˚v
ô pΦ˚ b 1CpGqqv “ wpΦ˚ b 1CpGqq ô Φ˚ PMorpv, wq

In particular, Endpwq is a C˚-algebra for all unitary representation w of G. Notice that the set of
compact intertwiners of w is a C˚-subalgebra of Endpwq.

1.3.1.17 Proposition (Quantum Schur’s lemma). Let G “ pCpGq,∆q be a compact quantum
group. If x, y P IrrpGq, then

- either x “ y and Morpx, yq is a one dimensional vector space

- or Morpx, yq “ p0q.

Proof. Given the classes x, y P IrrpGq, take two representatives wx and wy, respectively. Suppose
that Φ : Hx ÝÑ Hy is a non-zero intertwiner between wx and wy. We are going to see that wx and
wy are unitary equivalent and that Morpwx, wyq is a one dimensional vector space.

Indeed, since wx and wy are unitaries, then we have Φ˚ P Morpwy, wxq. So we have Φ˚ ˝
Φ P Endpwxq and Φ ˝ Φ˚ P Endpwyq. But wx and wy are irreducible by assumption, then
Endpwxq “ C “ Endpwyq. In other words, there exist some scalars α, β P Czt0u such that
Φ˚ ˝Φ “ α idHx and Φ ˝Φ˚ “ β idHy . This means that the operator Φ is unitary up to a constant.
Finally, if Ψ P Morpwx, wyq is another non-zero intertwiner between wx and wy, then we have
Φ˚ ˝ Ψ P Endpwxq “ C, hence Ψ P Φ ¨ C and so Morpwx, wyq is a one dimensional vector space
generated by the intertwiner realizing the equivalence between wx and wy. �

1.3.1.18 Definition. Let G “ pCpGq,∆q be a compact quantum group and w a (unitary) finite
dimensional representation of G on a Hilbert space H. The contragredient or adjoint representation
of w, denoted by w, is the finite dimensional representation of G on H defined as

w :“ pj b idCpGqqpw´1q P BpHq b CpGq,

where j : BpHq ÝÑ BpHq is the anti-multiplicative linear ˚-homomorphism that sends an operator
to its dual.
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1.3.1.19 Remark. Let tξ1, . . . , ξdimpHqu be an orthonormal basis of H and tω1, . . . , ωdimpHqu be its
dual basis of the dual space H. If twi,jui,j“1,...,dimpHq are the matrix coefficients of w with respect
to the basis tξ1, . . . , ξdimpHqu, then it is straightforward to see that the matrix coefficients of w
with respect to the dual basis tω1, . . . , ωdimpHqu are exactly

wi,j “ w˚i,j ,

for all i, j “ 1, . . . , dimpHq whenever w is unitary. It is clear that

χGpwq “ χGpwq
˚

Since ∆ is a ˚-homomorphism it is clear that w is still an element of BpHqbCpGq satisfying the
condition pidb∆qpwq “ w12w13. For a general finite dimensional representation w (not necessarily
unitary), this condition still holds because j is a conjugate ˚-homomorphism, so that

pidb∆qpwq “ pj b idCpGqqw´1
13 w

´1
12 “ w12w13

However, the invertibility of such an element w needs some work to be established (see Proposition
1.3.11 in [139] for a proof). And it is important to remark that it is not guarantee a priori that
such an element w is still a unitary one even if w itself is unitary. Actually, w is well-defined as a
unitary representation only in the set of irreducible classes meaning that if x P IrrpGq, then we can
prove that wx defined above is unitary equivalent to a unitary irreducible representation defining
then a class x P IrrpGq. We refer to Definition 1.4.5 in [139] or to Proposition 6.10 in [124] for the
details.

The representation theory of a compact quantum group is very closed to the one of a classical
compact group. For instance, we can prove that every finite dimensional representation of a
compact quantum group decomposes as a direct sum of irreducible representations, then IrrpGq
provides all relevant information about representations of G. Let us establish the main results of
the representation theory of a compact quantum group.

1.3.1.20 Lemma. Let G “ pCpGq,∆q be a compact quantum group and let w PMpKpHwqbCpGqq,
v PMpKpHvq b CpGqq be two representations of G on Hilbert spaces Hw and Hv, respectively.

If Φ : Hw ÝÑ Hv is any linear (resp. compact) operator, then the linear (resp. compact)
operator S :“ pidb hGqpw˚pΦb 1CpGqqvq is such that

S b 1CpGq “ w˚pS b 1CpGqqv

In particular, if w is a unitary representation, then S PMorpw, vq.

Proof. Since the co-multiplication ∆ is a unital ˚-homomorphism, we can write

pidb∆qpw˚pΦb 1CpGqqvq “ pidb∆qpwq˚pidb∆qpΦb 1CpGqqpidb∆qpvq
“ w˚13w

˚
12pΦb 1CpGq b 1CpGqqv12v13

If now we apply to this equation the operator pidb hG b idq, we get

pidb hG b idq
`

pidb∆qpw˚pΦb 1CpGqqvq
˘

“ pidb phG b idq ˝∆qpw˚pΦb 1CpGqqvq
“ pidb hG ¨ 1CpGqqqpw˚pΦb 1CpGqqvq “ S b 1CpGq



70 CHAPTER 1. Background

pidb hG b idq
`

w˚13w
˚
12pΦb 1CpGq b 1CpGqqv12v13

˘

– w˚pidb hGqpw
˚pΦb 1CpGqqv b 1CpGqqv

“ w˚pS b 1CpGqqv,
which ends the proof. �

1.3.1.21 Proposition (Quantum Maschke’s theorem). Let G “ pCpGq,∆q be a compact quantum
group.

i) Every finite dimensional representation of G is equivalent to a unitary finite dimensional
representation.

ii) Every finite dimensional representation of G is equivalent to a direct sum of finite dimensional
unitary irreducible representations.

Proof. i) Let w P BpHqbCpGq be a finite dimensional representation of G on a finite dimensional
Hilbert space H. Consider the identity operator idH and apply Lemma 1.3.1.20 above, so that
the operator S :“ pidb hGqpw˚wq is such that S b 1CpGq “ w˚pS b 1CpGqqw.
Now, since w P BpHq b CpGq is an invertible element, the same is true for w˚w and then we
can write w˚w ą ε for some ε ą 0 . Since pid b hGq is positive, we can also write S ą ε. In
this case, we can consider the square root S1{2.
We claim that the element

v :“ pS1{2 b 1CpGqqwpS´1{2 b 1CpGqq P BpHq b CpGq

is a unitary representation of G on H. Indeed,

pidb∆qpvq “ pS1{2 b 1CpGq b 1CpGqqw12w13pS
´1{2 b 1CpGq b 1CpGqq “ v12v13

v˚v “ pS´1{2 b 1CpGqqw˚pS1{2 b 1CpGqqpS1{2 b 1CpGqqwpS´1{2 b 1CpGqq
“ pS´1{2 b 1CpGqqw˚pS b 1CpGqqwpS´1{2 b 1CpGqq
“ pS´1{2 b 1CpGqqpS b 1CpGqqpS´1{2 b 1CpGqq “ idb 1CpGq,

By definition of v, it is clear that S1{2 PMorpw, vq. Since S1{2 is an invertible operator, we
conclude that w is equivalent to the unitary representation v.

ii) If w P BpHqbCpGq is a finite dimensional representation of G on the finite dimensional Hilbert
space H, we can assume, without loose of generality, that w is unitary thanks to the statement
piq proven above.
In this case, we know that Endpwq is a C˚-algebra formed of compact operators. Hence,
let p1, . . . , pr P Endpwq be a finite number of minimal mutually orthogonal projections such
that idH “ p1 ` . . .` pr. In this situation, we have an orthogonal decomposition for H, say
H “ H1 ‘ . . .‘Hr where Hl :“ plpHq, for all l “ 1, . . . , r.
For every l “ 1, . . . , r we define the element

wl :“ wppl b 1CpGqq P BpHlq b CpGq

It is straightforward to see that every wl is still a unitary representation of G (because wl is
just the restriction of w to the subspace Hl) and by construction we have that w “

r
À

l“1
wl.
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To conclude, we have to show that each unitary representation wl is irreducible. Indeed, since
Endpwlq is a finite dimensional C˚-algebra for all l “ 1, . . . , r, it suffices to see that given any
projection P P Endpwlq, then either P “ 0 or P “ pl, for all l “ 1, . . . , r. By construction we
have that ImpP q Ă Impplq, so p ď pl. Moreover, P P Endpwq because

pP b idqw
p˚q
“ pP b 1qppl b 1qw “ pP b 1qwl “ wlpP b 1q “ wppl b 1qpP b 1q p˚q“ wpP b 1q,

where in p˚q we use the fact that P ˝ pl “ P . Hence, minimality of pl implies that either P “ 0
or P “ pl, for all l “ 1, . . . , r.

�

1.3.1.22 Remarks. 1. Notice that the above proposition (in particular the decomposition into a
direct sum of finite dimensional unitary irreducible representations) is still true for infinite
dimensional representations of G (see for instance Theorem 1.5.4 in [139] or Theorem 5.3.3 in
[188]). This is why we can restrict our attention to the study of finite dimensional unitary
irreducible representations.

2. Let w a (unitary) representation of G on a Hilbert space H. On the one hand, a subspace
K Ă H is said to be w-invariant if ppK b 1qwppK b 1q “ wppK b 1q, where pK denotes the
orthogonal projection of H onto K.
It is possible to characterize this definition in the following way. K Ă H is w-invariant if and
only if

´

pid b ωqw
¯

pkq “ kωp1q, for all k P K and all linear form ω P CpGq˚. We refer to
Proposition 5.2.8 in [188] or to page 25 in [139] for a proof.
On the other hand, the definition of irreducible representation given in Definition 1.3.1.14
can be characterized in the following way. A (unitary) representation w is irreducible if and
only if there are no proper w-invariant subspaces besides 0 and H. We refer to page 25 in
[139] or to Proposition 5.2.7 in [188] for a proof.

3. Finally, it is worth pointing out that calling Proposition 1.3.1.17 “Quantum Schur’s lemma” is
a bit misleading. Indeed, classically the Schur’s lemma states that if a unitary representation
if irreducible, then its commutant is trivial. However, this is exactly our original definition
of irreducible representation (Definition 1.3.1.14). If we want to be rigorous, we may show
Proposition 1.3.1.17 starting from the definition of irreducible representation given by the
above characterization in terms of invariant subspaces. This can be done as in the classical
case and we refer to Proposition 5.3.4 in [188] or to Lemma 6.6 in [124] for a proof.

1.3.1.23 Proposition. Let G “ pCpGq,∆q be a compact quantum group. If w PMpKpHqbCpGqq
is a unitary representation of G on a Hilbert space H, then

P :“ pidb hGqw

is the orthogonal projection onto the subspace of all w-invariant vectors.

Proof. First of all, thanks to the preceding proposition and the preceding remarks we can assume
that w is irreducible.

Since w is a unitary representation of G, we have pidb∆qw “ w12w13. If we apply pidb idbhGq
to both sides of this equation, we get that P b id “ wpP b idq because

pidb idb hGqpidb∆qw “ pidb hGqw b id “ P b id
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pidb idb hGqw12w13 “ pidb idqwpidb hGqw b id “ wpP b idq

This relation shows that the range of P is formed by w-invariant vectors because given any
vector ξ P H and any linear form ω P CpGq˚ we write

´

pidb ωqw
¯

P pξq “ pidb ωqwpP pξq b 1q “ pidb ωqpP pξq b 1q “ P pξqωp1q

Next, if w is a non-trivial irreducible representation, then H does not contain any proper
w-invariant vector, so that P “ 0. If w is trivial, then w “ idb 1 and P “ id. In any case, P is the
orthogonal projection onto the subspace of all w-invariant vectors and the proof is complete. �

Next we can establish the analogue of the Peter-Weyl theory in the framework of compact
quantum groups. In particular, the proof of orthogonality relations can be found in Theorem 1.4.3
of [139], Proposition 5.3.8 of [188] or Section 6 of [231].

1.3.1.24 Theorem (Quantum Schur’s orthogonality relations). Let G be a compact quantum group
with Haar state hG. Fix an irreducible representation x P IrrpGq.

i) We have that
Morpε, wx j wxq ‰ 0 ‰Morpε, wx j wxq

and consequently there exist non-trivial invariant vectors in Hx bHx and Hx bHx, say Ex
and Ex, respectively.
The vector Ex, canonically associated to an invertible anti-linear map Jx : Hx ÝÑ Hx, and the
vector Ex, canonically associated to an invertible anti-linear map Jx : Hx ÝÑ Hx; are defined
up to non-zero multiplicative factors. We choose these factors in such a way that

xEx, Exy “ xEx, Exy and Jx “ J´1
x

In that case, the operator Qx :“ J˚x Jx is uniquely determined, TrpQxq “ TrpQ´1
x q and

Qx “ Q´1
x . We define the quantum dimension of x as the number

dimqpxq :“ TrpQxq

ii) If pwxi,jqi,j“1,...,nx are the matrix coefficients of wx with respect to an orthonormal basis of Hx,
then we have

hGpw
x
k,lpw

xq˚i,jq “
δk,ipQxqj,l
dimqpxq

and hGppwxq˚i,jwxk,lq “
δj,lpQ

´1
x qk,i

dimqpxq

iii) Let y P IrrpGq be an other irreducible representation of G with matrix coefficients pwyk,lqi,j“1,...,ny .
If y is not equivalent to x, then

hGpw
y
k,lpw

xq˚i,jq “ 0 “ hGppw
xq˚i,jw

y
k,lq

1.3.1.25 Remarks. 1. The preceding orthogonality relations yield clearly that for every irreducible
representations x, y P IrrpGq we have

hG

´

χGpxq
˚χGpyq

¯

“ hG

´

χGpxqχGpyq
˚
¯

“

"

1, if x “ y
0, otherwise
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2. It is worth pointing out some elementary facts about the invariant vectors Ex, Ex of the
preceding theorem. We refer to Section 6 of [231] for more details.
Let X,Y be two Hilbert spaces. It is well-known (see for instance [1]) that the tensor product
X b Y can be identified with space of all anti-linear maps from X into Y . Precisely, for any
element E P X b Y there exists a unique anti-linear map JE : X ÝÑ Y such that

xE, ξ b ηy “ xJEpξq, ηy “ xJ
˚
Epηq, ξy,

for all ξ P X, η P Y where the second equality defines the conjugation for JE .
If both X and Y are finite dimensional with dimpXq “ rankpEq “ dimpY q, then JE is
invertible and a straightforward computation by taking orthonormal basis on X and Y shows
that ||E||2 “ TrpJ˚EJEq.
If x P IrrpGq, then the preceding theorem guarantees that there exists a non-trivial xj x-
invariant vector Ex P Hx bHx and a non-trivial xj x-invariant vector Ex P Hx bHx which
are unique up to a non-zero multiplicative factor (which is chosen as in the statement of the
preceding theorem). Let us introduce the following operator on Hx bHx

TEx : Hx bHx ÝÑ Hx bHx

ζ ÞÝÑ TExpζq :“ xEx, ζyEx

In this way, Proposition 1.3.1.23 applied to this context yields that

pidb hGqpxj yq “
δx,y
||Ex||2

TEx “
δx,y

dimqpxq
TEx ,

for every x, y P IrrpGq. Next, using the xjx-equivariance of Ex a straightforward computation
by taking orthonormal basis on Hx and Hx shows that

´

pωJ˚x pηq,ξ b idqw
x
¯˚

“ pωη,Jxpξq b idqw
x,

for all ξ P Hx, η P Hx.

As in the classical theory, we can also define an analogue of the left regular representation. The
proof of the following theorem can be found in Theorem 1.5.2 and Theorem 1.5.3 of [139], Section 5
of [124] or Section 4 of [231].

1.3.1.26 Theorem (Left regular representation). Let G “ pCpGq,∆q be a compact quantum group.

i) There exists a unique unitary operator W P BpL2pGq b L2pGqq such that

W˚pξ b λpaqΩq “ pλb λq ˝∆paqpξ b Ωq,

for all ξ P L2pGq and all a P CpGq.

ii) W is a unitary representation of G on L2pGq meaning that W P MpKpL2pGq b λpCpGqqq is
a unitary element such that pid b∆qpW q “ W12W13. The element W is called left regular
representation of G.
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iii) The space spantpidb ωqpW q | ω P KpL2pGqq˚u is dense in λpCpGqq and the co-multiplication
∆ is given by

pλb λq∆paq “W˚p1b λpaqqW ,
for all a P CpGq.

iv) W is a multiplicative unitary on L2pGq in the sense of Baaj-Skandalis, that is, W P BpL2pGqb
L2pGqq is a unitary operator satisfying the pentagonal equation W12W13W23 “W23W12. It is
called fundamental unitary of G and denoted by WG.

1.3.1.27 Remark. In a similar way, we can define the right regular representation of G. More
precisely, we can imitate the preceding theorem in order to show that there exists a unique unitary
operator V P BpL2pGq b L2pGqq such that

V pλpaqΩb ξq “ pλb λq ˝∆paqpΩb ξq,

for all ξ P L2pGq and all a P CpGq. Such a unitary is denoted by VG and it satisfies the analogue
properties of those of WG. In particular, the co-multiplication of G is characterized by the formula

pλb λq∆paq “ VGpλpaq b 1qV ˚G ,

for all a P CpGq.

The following result says that inside every compact quantum group there exists an algebraic
compact quantum group meaning that there always exists a (unital) ˚-Hopf algebra with an invariant
state with respect to the co-multiplication (see Chapter 3 in [188] for more details). Namely,

1.3.1.28 Proposition. Let G “ pCpGq,∆q be a compact quantum group. Denote by PolpGq :“
CrGs the linear span of matrix coefficients of all finite dimensional representations of G. We have
that

i) PolpGq is a dense unital ˚-subalgebra of CpGq,

ii) the set twxi,ju xPIrrpGq
i,j“1,...,nx

provides a basis of PolpGq,

iii) pPolpGq,∆, ε, Sq is a ˚-Hopf algebra where

- ε, the co-unit, is given by εpwxi,jq :“ δi,j, for all x P IrrpGq and all i, j “ 1, . . . , nx,
- S, the antipode, is given by Spwxi,jq :“ pwxi,jq˚, for all x P IrrpGq and all i, j “ 1, . . . , nx,

iv) the Haar state hG is faithful on PolpGq,

v) if τ : CpGq ÝÑ CpGq is a Hopf ˚-automorphism of G, then τpPolpGqq “ PolpGq. Moreover,
tτpwxi,jqui,j“1,...,nx is an irreducible representation of G whenever x P IrrpGq.

Proof. i) First of all, we observe that PolpGq is a unital ˚-subalgebra of CpGq by virtue of remarks
1.3.1.12 and 1.3.1.19. The density of PolpGq in CpGq is proven as follows.
Consider the left regular representation W of G on the Hilbert space L2pGq and decompose
it in a direct sum of finite dimensional unitary irreducible representations (recall Remark
1.3.1.22), so that

L2pGq “
à

αPI

Hα and W “
à

αPI

wα
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For each α P I, put nα :“ dimpHαq and fix an orthonormal basis tξα1 , . . . , ξαnαu in Hα. Given
α, β P I, we define the following linear form on BpL2pGqq

ωξα
i
,ξβ
j
pT q :“ xξαi , T pξ

β
j qy,

for all i “ 1, . . . , nα, all j “ 1, . . . , nβ and for all T P BpHq. So by the decomposition of W we
have

pidb ωξα
i
,ξβ
j
qpW q “

"

0, if α ‰ β
pidb ωξα

i
,ξα
j
qpwαq “ pwαqi,j , if α “ β

Remark that spantωξα
i
,ξβ
j
| α, β P I, i “ 1, . . . , nα, j “ 1, . . . , nβu defines a dense subspace in

KpL2pGqq˚. Moreover, Theorem 1.3.1.26 guarantees that spantpidb ωqpW q | ω P KpL2pGqq˚u
is dense in CpGq, so that the formula above concludes the claim.

ii) Since every finite dimensional representation decomposes in a direct sum of unitary irreducible
ones, then the set B :“ twxi,ju xPIrrpGq

i,j“1,...,nx

provides a system of generators for PolpGq. Let’s see

these elements are linearly independent.
Since the operator Qx is an invertible positive self-adjoint one for each x P IrrpGq, then we
choose orthonormal basis of the corresponding Hx that diagonalizes Qx. We take the matrix
coefficients in B with respect to theses basis.
Let

ř

xPIrrpGq
i,j“1,...,nx

λxi,j wxi,j be a finite linear combination of elements of B and assume that

ř

xPIrrpGq
i,j“1,...,nx

λxi,j w
x
i,j “ 0. Given an other class y P IrrpGq and index k, l “ 1, . . . , ny, we ap-

ply the orthogonality relations and write
ÿ

xPIrrpGq
i,j“1,...,nx

λxi,j w
x
i,j “ 0 ñ

ÿ

xPIrrpGq
i,j“1,...,nx

λxi,j pw
yq˚k,l w

x
i,j “ 0

ñ
ÿ

xPIrrpGq
i,j“1,...,nx

λxi,j hGppw
yq˚k,l w

x
i,jq “

ÿ

xPIrrpGq
i,j“1,...,nx

λxi,j δy,x
δl,jpQ

´1
x qi,k

dimqpxq

“
1

dimqpyq

ÿ

i

λxi,l pQ
´1
y qi,k “ 0,

since this is true for every y P IrrpGq and we have chosen diagonalizing basis for every operator
Qx for all x P IrrpGq, we conclude that λxi,l “ 0 for all i, l “ 1, . . . , nx and all x P IrrpGq,
which ends the proof.

iii) First of all, by virtue of Remark 1.3.1.8 we have that ∆pPolpGqq Ă PolpGq d PolpGq. In order
to show that the homomorphism ε and S defined in the statement satisfy the co-unit and
antipode axioms, respectively; we are going to check the corresponding axioms on the basis of
PolpGq and conclude by linearity. Namely, for all x P IrrpGq and all i, j “ 1, . . . , nx we have

pidb εq∆pwxi,jq “ pidb εq
nx
ÿ

k“1
wxik b wkj “

nx
ÿ

k“1
wxikεpwkjq “ wxi,j
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m ˝ pidb Sq∆pwxi,jq “ m ˝ pidb Sq
nx
ÿ

k“1
wxik b wkj “

nx
ÿ

k“1
wxik Spwkjq “ δi,j “ εpwxi,jq

iv) Given a P PolpGq we have to show that hGpa˚aq ą 0 whenever a ‰ 0. By orthogonality relations
and statement piiq above we have showed that the set twxi,ju xPIrrpGq

i,j“1,...,nx

provides an orthogonal

basis of PolpGq with respect to the sesquilinear form xa, by :“ hGpa
˚bq, for all a, b P PolpGq.

Therefore, we can suppose that a “ wxi,j for some x P IrrpGq and some i, j “ 1, . . . , nx. In this
case we have just to apply orthogonality relations: hGppwxq˚ijwxijq “

pQ´1
x qi,i

dimqpxq
ą 0.

v) Given the Hopf ˚-automorphism τ , consider the set tτpwxi,jqu xPIrrpGq
i,j“1,...,nx

. We have the following

formula

∆pτpwxi,jqq “ pτ b τq∆pwxi,jq “ pτ b τq
n
ÿ

k“1
wik b wkj “

n
ÿ

k“1
τpwikq b τpwkjq,

for all x P IrrpGq and all i, j “ 1, . . . , nx. This means that pid b τqpwxq is again a unitary
finite dimensional representation of G on Hx, for all x P IrrpGq. Hence τpPolpGqq Ă PolpGq.
It is straightforward to see that τ´1 is still a quantum automorphism of G, so that we have
τpPolpGqq “ PolpGq. Moreover, tτpwxi,jqui,j“1,...,nx is an irreducible representation of G
whenever x P IrrpGq because the Haar state hG is preserved by τ (recall Remarks 1.3.1.6) and
we have

hG

´

χGpτpw
xqq˚χGpτpw

xqq

¯

“ hG

´

τpχGpxq
˚χGpxqq

¯

“ hG

´

χGpxq
˚χGpxq

¯

�

Thus we observe that the matrix coefficients of finite dimensional representations of a compact
quantum group G play an important role in the theory. In fact, we are going to show that these
matrices characterize completely such a compact quantum group.

1.3.1.29 Proposition. Let A be a unital C˚-algebra equipped with a unital ˚-homomorphism
∆ : A ÝÑ AbA. The following assertions are equivalent

i) G :“ pA,∆q is a compact quantum group.

ii) There exist an index set I and a collection of invertible matrices wα P MnαpAq, for all α P I
with nα P N such that

- the ˚-subalgebra of A generated by the matrix coefficients twαi,ju αPI
i,j“1,...,nα

is dense in A,

- the conjugate matrices wα :“
´

pwαi,jq
˚

¯

i,j
are invertible for all α P I,

- for all α P I we have ∆pwαi,jq “
n
ř

k“1
wαik b w

α
kj for all i, j “ 1, . . . , nα.

iii) There exist an index set I and a collection of invertible matrices wα P MnαpAq, for all α P I
with nα P N such that
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- the subalgebra of A generated by the matrix coefficients twαi,ju αPI
i,j“1,...,nα

is dense in A,

- for all α P I we have ∆pwαi,jq “
n
ř

k“1
wαik b w

α
kj for all i, j “ 1, . . . , nα.

Proof. The implication piq ñ piiq follows from Proposition 1.3.1.28 because if G “ pA,∆q is a
compact quantum group, then PolpGq is the dense unital ˚-algebra in A generated by the matrix
coefficients of all finite dimensional representations. Actually, a basis for PolpGq is given by the
coefficients of unitary irreducible finite dimensional representations. Recall by Remark 1.3.1.19,
that the conjugate representation matrix (of a unitary one) is also an invertible one.

The implication piiq ñ piiiq is clear: we take simply the collection twαuαPI Y twαuαPI .
Let’s see the implication piiiq ñ piq. Given α P I, consider the coefficients pwαijqi,j“1,...,nα .

Thanks to our assumption we have

pidb∆q∆pwαijq “
ÿ

k,l

wαik b w
α
kl b w

α
lj “ p∆b idq∆pwαijq,

for all i, j “ 1, . . . , nα. So ∆ is co-associative.
Now let pvαijqi,j be the inverse matrix of pwαijqi,j and write

1A b wαij “
ÿ

l

δjl1A b wαli “
ÿ

l,k

vαjk w
α
kl b w

α
li “

ÿ

k

pvαjk b 1Aq∆pwαkiq P pAb 1Aq∆pAq (1.3.1)

Remark as well that given a, a1 P A such that

1A b a “
ÿ

k

pbk b 1Aq∆pckq and 1A b a1 “
ÿ

k1

pb1k1 b 1Aq∆pc1k1q,

for some bk, b1k1 , ck, c1k1 P A, then an easy computation yields that

1A b aa1 “
ÿ

k,k1

pb1k1bk b 1Aq∆pckc1k1q

In other words, the space
!

a P A | 1Aba “
ř

k

pbkb1Aq∆pckq for some bk, ck P A
)

is a subalgebra

of A.
By assumption we know that the subalgebra ofA generated by the matrix coefficients twαi,ju αPI

i,j“1,...,nα

is dense in A, so the above space is dense in A thanks to the computations (1.3.1). Therefore,
pAb1Aq∆pAq is dense in AbA (similarly for p1AbAq∆pAq). We conclude that pA,∆q is a compact
quantum group. �

For our purpose it will be useful to have explicit formulas for the GNS construction of the Haar
sate. In this sense, we have the next result which can be found in [231]. We include here a proof
for the convenience of the exposition.

1.3.1.30 Proposition. Let G “ pCpGq,∆q be a compact quantum group and pL2pGq, λ,Ωq the
GNS construction associated to the Haar state hG. We have a canonical identification

L2pGq –
à

xPIrrpGq
pHx bHxq
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and the formula
λ
`

pωξ,ξ1 b idCpGqqpw
xq
˘

pΩq “ 1
a

dimqpxq
ξ b Jxpξ

1q,

holds for all x P IrrpGq and all ξ, ξ1 P Hx.

Proof. Given x P IrrpGq, we define the following linear map

ψx : Hx bHx ÝÑ PolpGq
ξ b η ÞÝÑ ψxpξ b ηq :“ pωJ˚x pηq,ξ b idqpw

xq

Remark that given an element wxξ,ξ1 :“ pωξ,ξ1 b idCpGqqpw
xq P PolpGq with ξ, ξ1 P Hx, then the

element ξ1 b Jxpξq P Hx bHx is such that ψxpξ1 b Jxpξqq “ wxξ,ξ1 by definition/construction.
Remember that PolpGq is generated by the elements twxξ,ξ1uxPIrrpGq

ξ,ξ1PHx

, so that any element of

PolpGq can be write as a sum of the form
ř

xPIrrpGq
ψxpζxq with ζx P Hx bHx, where only a finite

number of terms in the sum are non zero.
Given x P IrrpGq define the following linear map

Ψx : Hx bHx ÝÑ L2pGq
ζx ÞÝÑ Ψxpζxq :“ λpψxpζxqqΩ

Since PolpGq is dense in CpGq and Ω is a cyclic vector for λ, then the above discussion yields
the decomposition

L2pGq “ ‘
xPIrrpGq

ΨxpHx bHxq

Remark that this is actually an orthogonal decomposition. Indeed, by definition of the GNS
construction, for every x, y P IrrpGq and every ζx P Hx bHx, ζy P Hy bHy we can write

xΨypζyq,Ψxpζxqy “ xλpψypζyqqΩ, λpψxpζxqqΩy
“ xΩ, λpψypζyqq˚λpψxpζxqqΩy
“ xΩ, λ

`

ψypζyq
˚ψxpζxq

˘

Ωy

“ hG
`

ψypζyq
˚ψxpζxq

˘

“
δy,x

dimqpxq
xζy, ζxy

(1.3.2)

In other words, the operator Ψx is a multiple of an isometry and the spaces tΨxpHxbHxquxPIrrpGq
are pairwise orthogonal. In the preceding computation we must clarify the last equality. Let
α, β P IrrpGq and fix orthonormal basis tξα1 , . . . , ξαnαu and tη

β
1 , . . . , η

β
nβ
u of Hα and Hβ , respectively.

Accordingly, we consider the orthonormal basis tζr :“ ξαi b η
β
k ui“1,...,nα

k“1,...,nβ

on HαbHβ . Given vectors

ξ, ξ1 P Hα and η, η1 P Hβ consider their corresponding coordinate expressions, say

ξ “

nα
ÿ

i“1
λiξ

α
i , ξ1 “

nα
ÿ

j“1
λ1jξ

α
j , η “

nβ
ÿ

k“1
µkη

β
k and η1 “

nβ
ÿ

l“1
µ1lη

β
l ,

so that it is clear that

ωξ,ξ1 “
ÿ

i,j

λiλ
1
jωi,j and ωη,η1 “

ÿ

k,l

µkµ
1
lωk,l
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Hence we write the following,

hG
`

pωξ,ξ1 b idqw
αpωη,η1 b idqw

β
˘

“
ÿ

i,j,k,l

λiλ
1
jµkµ

1
lhG

`

pωi,j b idqw
αpωk,l b idqw

β
˘

“
ÿ

r“pi,kq,s“pj,lq

λiλ
1
jµkµ

1
lpωr,s b idqpidb hGqw

α j wβ

“
ÿ

r“pi,kq,s“pj,lq

λiλ
1
jµkµ

1
lpωr,s b idqpidb hGqw

α
13w

β
23

p1q
“

ÿ

r“pi,kq,s“pj,lq

λiλ
1
jµkµ

1
l ωr,s

δα,β
dimqpαq

TEα

“
δα,β

dimqpαq

ÿ

r“pi,kq,s“pj,lq

λiλ
1
jµkµ

1
l xζr, TEαpζsqy

“
δα,β

dimqpαq

ÿ

i,j,k,lq

λiλ
1
jµkµ

1
l xξ

α
i b η

β
k , TEαpξ

α
j b η

β
l qy

“
δα,β

dimqpαq

ÿ

i,j,k,lq

λiλ
1
jµkµ

1
l xξ

α
i b η

β
k , xEα, ξ

α
j b η

β
l yEαy

“
δα,β

dimqpαq

ÿ

i,j,k,lq

λiλ
1
jµkµ

1
l xξ

α
i b η

β
k , EαyxEα, ξ

α
j b η

β
l y

“
δα,β

dimqpαq

ÿ

i,j,k,lq

λiλ
1
jµkµ

1
l xη

β
k , Jαpξ

α
i qyxJαpξ

α
j q, η

β
l y

“
δα,β

dimqpαq
xη, JαpξqyxJαpξ

1q, η1y,

where in p1q we use Remark 1.3.1.25. Using again Remark 1.3.1.25 we can apply the preceding
computations to the elements ψxpξbηq˚ and ψypξ1bη1q for any ξbη P HxbHx and ξ1bη1 P HybHy

and we obtain
hG

`

ψxpξ b ηq
˚ψypξ

1 b η1q
˘

“
δx,y

dimqpxq
xξ b η, ξ1 b η1y,

which justifies the last equality in formula p1.3.2q.

In order to get the decomposition of the statement, it is enough to consider the following map

Ψ :
À

xPIrrpGq
pHx bHxq ÝÑ L2pGq

`

ζx
˘

xPIrrpGq ÞÝÑ Ψ
`

ζx
˘

xPIrrpGq :“
´

a

dimqpxq Ψxpζxq
¯

xPIrrpGq
,

which defines an isometric isomorphism of Hilbert spaces. Through this identification, the formula
of the statement is easy to establish. Indeed,

λ
`

pωξ,ξ1 b idqpw
xq
˘

pΩq “ λpψxpξ b Jxpξ
1qqqΩ – 1

a

dimqpxq
ξ b Jxpξ

1q,

for all ξ, ξ1 P Hx. �
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1.3.1.31 Remarks. 1. Notice that the operator Qx is an invertible positive self-adjoint operator.
In that case, we can choose an orthonormal basis tξx1 , . . . , ξxnxu of Hx that diagonalises Qx.
Let tωx1 , . . . , ωxnxu be its dual basis in the dual space Hx.
For every j “ 1, . . . , nx, let λxj P R` be the eigenvalue of Qx associated to the vector ξxj
meaning that

Qxpξ
x
j q “ λxj ξ

x
j

Recall from Theorem 1.3.1.24 that Qx “ J˚x Jx and Jx “ J´1
x , so that the singular values of

Jx and Jx are t
a

λxj uj“1,...,nx and
 1?

λx
j

(

j“1,...,nx
, respectively which means that

Jxpξ
x
j q “

b

λxj ξ
x
j and Jxpξxj q “

1
a

λxj
ξxj ,

where tξx1 , . . . , ξxnxu is an orthonormal basis of Hx.

The well-known Riesz-Fréchet identification Hx – H˚x yields that any continuous linear
functional ω P H˚x is of the form x¨, ξy, for some ξ P Hx (recall Section 1.1). Hence the dual
Hilbert space Hx is identified to Hx by means of the map

Hx ÝÑ Hx

ω “ x¨, ξy ÞÝÑ Jxpξq,

which is an isomorphism because Jx is a bijective anti-linear map. In coordinates, this
identification yields

ωxj ÞÑ
b

λxj ξ
x
j ,

for all j “ 1, . . . , nx. By duality, we have as well Hx – Hx via Jx so that if tωx1 , . . . , ωxnxu
denotes the dual basis of tξx1 , . . . , ξxnxu in Hx, then the above identification yields

ωxj ÞÑ
1

a

λxj
ξxj ,

for all j “ 1, . . . , nx.
Since twxi,ju xPIrrpGq

i,j“1,...,nx

is a basis of PolpGq, it is interesting to have a formula for λpwxi,jqpΩq.

Fix a diagonalisation basis of Qx as above, then the formula obtained in Proposition 1.3.1.30
yields to the following one for all x P IrrpGq and all i, j “ 1, . . . , nx

λpwxi,jqpΩq “
1

a

dimqpxq
ξxi b Jxpξ

x
j q “

a

λxj
a

dimqpxq
ξxi b ξ

x
j

2. The non-trivial invariant vectors Ex P Hx bHx, Ex P Hx bHx of Theorem 1.3.1.24 can be
regarded as intertwiner operators, Φx P Morpε, x j xq and Φx P Morpε, x j xq defined by
Φxp1q “ Ex and Φxp1q “ Ex and they are called canonical intertwiners.
From now on we we don’t distinguish the non-invariant vectors from the corresponding
intertwiner operators and we choose the notation Φx and Φx for them. In this way, a
straightforward computation yields the following coordinate expressions for these vectors

Φx “
nx
ÿ

k“1

a

λxk ξ
x
k b ξ

x
k and Φx “

nx
ÿ

k“1

1
a

λxk
ξxk b ξ

x
k ,
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where we use the same notations as above. A family of basis tξx1 , . . . , ξxnxu, tξ
x
1 , . . . , ξ

x
nxu

satisfying the formulae above is called canonical orthonormal basis.

3. Notice that the cyclic vector Ω “ Λp1CpGqq of the GNS construction of hG can be identified,
via the canonical isomorphism of the preceding proposition, to the canonical unit vector in
Hε bHε “ C.

Given a compact quantum group G we can construct two new compact quantum groups: the
reduced and the universal/maximal picture of G. Both pictures have the same representation theory
as G. In this sense, both pictures represent the same object under the representation theory point
of view. More precisely, we have the following theorem.

1.3.1.32 Theorem. Let G “ pCpGq,∆q be a compact quantum group.

i) The C˚-enveloping algebra of PolpGq is a compact quantum group denoted by Gm “ pCmpGq,∆mq

and called maximal picture of G, where ∆m is the extension of ∆| : PolpGq ÝÑ CmpGqbCmpGq
to CmpGq. Moreover, we have that PolpGmq – PolpGq. The co-unit ε : PolpGq ÝÑ C extends
to a character on CmpGq which is still denoted by ε and satisfies the relation

pεb idq ˝∆m “ id “ pidb εq ˝∆m

If H “ pCpHq,Θq is another compact quantum group and f : PolpHq ÝÑ CpGq is a ˚-
homomorphism intertwining the co-multiplications, then it extends to a Hopf ˚-homomorphism
fm : G ÝÑ Hm.

ii) The C˚-algebra λpCpGqq Ă BpL2pGqq is a compact quantum group denoted by Gr “ pCrpGq,∆rq

and called reduced picture of G, where ∆r is the extension of ∆| : PolpGq ÝÑ CrpGq b CrpGq
to CrpGq. Moreover, we have that PolpGrq – PolpGq. The Haar state hr on CrpGq is faithful.
Besides, since any Hopf ˚-automorphism τ : CpGq ÝÑ CpGq preserves the Haar state, then its
restriction τ| : PolpGq ÝÑ PolpGq extends to a Hopf ˚-automorphism τr : CrpGq ÝÑ CrpGq.

iii) If ιm, ι, ιr denote the canonical embedding of PolpGq in CmpGq, CpGq and CrpGq, respectively;
then we have the following commutative diagram

PolpGq
lLιm

zz

� r

ιr

$$

� _

ι
��

CmpGq τm
// // CpGq

λ
// // CrpGq

where the horizontal maps are surjective homomorphisms of compact quantum groups.

Proof. i) First of all, observe that PolpGq is spanned by the matrix coefficients of unitary matrices
over PolpGq. These are actually unitary representations of PolpGq, so that for all x P IrrpGq, we
have ||wxi,j || ď 1, for all i, j “ 1, . . . , nx where the norm is taken with respect to the sesquilinear
form xa, by :“ hGpa

˚bq, for all a, b P PolpGq. Thus it is licit to consider the enveloping algebra
of PolpGq, say CmpGq. Next, the co-multiplication ∆| : PolpGq ÝÑ CmpGqbCmpGq extends to
a unital ˚-homomorphism ∆m : CmpGq ÝÑ CmpGq b CmpGq by universality. By construction



82 CHAPTER 1. Background

it is clear that Gm :“ pCmpGq,∆mq is a compact quantum group such that PolpGmq – PolpGq.
Likewise, the co-unit map ε : PolpGq ÝÑ C extends to a character on CmpGq by universality.
The relation satisfied by the character ε is true thanks to the co-unit axiom and the density of
PolpGq in CmpGq.

ii) If pL2pGq, λ,Ωq denotes the GNS construction for the Haar state hG, then we put CrpGq :“
λpCpGqq Ă BpL2pGqq. For all a P PolpGqzt0u we have

0 ă hpa˚aq “ ||λpaqΩ||2 ď ||λpaq||2

because hG|PolpGq is faithful and so we obtain that λ is faithful on PolpGq. This means that we
have a natural embedding ιr : PolpGq ãÑ CrpGq and that CrpGq is the operator completion of
PolpGq in BpL2pGqq.
Now, we have to show that the co-multiplication ∆| : PolpGq ÝÑ CrpGq b CrpGq extends
to a co-multiplication on CrpGq. For this, consider the left regular representation W P

MpKpL2pGqq bCpGqq and put Wr :“ pidb λqpW q P BpL2pGq bL2pGqq. Then by the theorem
1.3.1.26 we have

∆rpaq “W˚
r p1b aqWr,

for all a P CrpGq where ∆r :“ pidb λq∆.
By construction, Gr :“ pCrpGq,∆rq is a compact quantum group such that PolpGrq – PolpGq
with Haar state defined by hrpxq “ xΩ, xy, for all x P CrpGq. We can show that hr is faithful,
see Corollary 1.7.5 of [139] or Theorem 5.4.5 of [188] for a proof.

iii) It is straightforward.
�

1.3.1.33 Definition. Let G “ pCpGq,∆q be a compact quantum group.

- We say that G is a maximal compact quantum group if τm is an isomorphism.

- We say that G is a reduced compact quantum group if τr is an isomorphism.

Recall Note 1.3.1.4. The main problem with the early Definition 1.3.1.3 is that it is not well-
behaved, in general, with the duality between compact and discrete quantum groups (see Theorem
1.3.1.36 below). A homomorphism between locally compact groups always induces a homomorphism
between the corresponding maximal C˚-algebras. But this is not the case for the reduced ones. For
instance, let G be a classical locally compact group and consider the constant map from G to the
trivial group teu, G ÝÑ teu. This induces a map between the corresponding reduced C˚-algebras,
C˚r pGq ÝÑ C˚r pteuq – C, if and only if G is amenable. Recall from the introduction to Section 1.3
that C˚r pGq must be regarded as the generalized Pontryagin dual of G. We refer to [48] and [135]
for more details.

For this reason, Definition 1.3.1.3 must be refined as follows in order to give an appropriated
notion of morphism of compact quantum groups.

1.3.1.34 Definition. Let G “ pCpGq,∆q and G1 “ pCpG1q,∆1q be two compact quantum groups.
A quantum homomorphism from G to G1, denoted by f : G ÝÑ G1, is a unital ˚-homomorphism
fm : CmpG1q ÝÑ CmpGq such that

∆m ˝ fm “ pfm b fmq∆1m
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In particular, if G “ G1, such a f is called quantum automorphism. The group of all quantum
automorphism of G is denoted by AutpGq.
1.3.1.35 Remark. Notice that, by Theorem 1.3.1.32, a unital ˚-homomorphism fm : CmpG1q ÝÑ
CmpGq such that ∆m˝fm “ pfmbfmq∆1m is equivalent to a unital ˚-homomorphism f : PolpG1q ÝÑ
PolpGq such that ∆| ˝ f “ pf b fq∆1|.

Finally, given a compact quantum group G we can define its quantum Pontryagin dual pG. It
is important to notice that such a dual is not longer a compact quantum group in the sense of
Woronowicz, but a locally compact quantum group in the sense of Kustermans-Vaes (we refer to
Section 1.3.2 for the main definitions and results). This object can be described in several different
ways.

First of all, recall that the main reason to develop the theory of quantum groups was to give
a general framework in which the Pontryagin duality of locally compact abelian groups holds in
full generality. Hence, the theory developed by J. Kustermans and S. Vaes in [113] for locally
compact quantum groups seems to be the right context to understand the duality between compact
and discrete quantum groups. However, the Kustermans-Vaes’s theory is quite technical and too
much powerful for our objectives. A different approach to locally compact quantum groups is the
theory developed by S. Baaj and G. Skandalis in [7] using multiplicative unitaries. In this case,
any (“nice” enough) multiplicative unitary gives rise to two quantum groups in duality. Recall that
any locally compact quantum group has a fundamental unitary and so we can define its dual using
the corresponding right/left leg. In particular, if G is a compact quantum group, the left regular
representation WG of G on L2pGq (Theorem 1.3.1.26) is its fundamental unitary and we could define
pG to be left leg of W and apply the Baaj-Skandalis theory to conclude the corresponding duality.

Nevertheless, the context of compact quantum groups of Woronowicz is quite explicit thanks to
its rich representation theory as we have just presented. Therefore, such a Pontryagin dual can be
built in a more precise way avoiding these technical and general theories. Namely, we have the
following result.
1.3.1.36 Theorem-Definition. Let G “ pCpGq,∆q be a compact quantum group and define the
following C˚-algebra

c0ppGq :“
c0
à

xPIrrpGq
BpHxq

We have that
i) Mpc0ppGqq “

Àl8

xPIrrpGq
BpHxq and we denote it by l8ppGq,

ii) the element V :“
À

xPIrrpGq
wx is a unitary element in Mpc0ppGq b CpGqq satisfying the formula

pidb∆qV “ V12V13,

which means that V is a (infinite dimensional) representation of G,

iii) there exists a ˚-homomorphism p∆ : c0ppGq ÝÑ Mpc0ppGq b c0ppGqq such that given x P IrrpGq
and T P BpHxq we have

p∆pT q ˝ Φ “ Φ ˝ T ,
for every y, z P IrrpGq and every Φ PMorpx, y j zq,
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iv) the pair pc0ppGq, p∆q is a reduced C˚-locally compact quantum group whose left and right Haar
weights are given respectively by

phLpaq “
ÿ

xPIrrpGq
dimqpxq Tr

`

Qx
`

apx
˘˘

phRpaq “
ÿ

xPIrrpGq
dimqpxq Tr

`

Q´1
x

`

apx
˘˘

,

for all a P c0ppGq where px with x P IrrpGq denotes the minimal central projection of c0ppGq on
BpHxq,

v) the co-multiplication p∆ extends to a normal map p∆ : l8ppGq ÝÑ l8ppGq b l8ppGq, so that
pl8ppGq, p∆,phL,phRq is a vN-locally compact quantum group,

The locally compact quantum group pG “ pc0ppGq, p∆,phL,phRq is called the (quantum Pontryagin)
dual of G. In general, a discrete quantum group is the dual of a compact quantum group.

1.3.1.37 Remark. By virtue of the preceding theorem, a discrete quantum group pG is completely
defined by the corresponding compact quantum group G (and vice versa). More precisely, given a
compact quantum group G, the corresponding ˚-Hopf algebra PolpGq yields the definition of pG.
Conversely, given a discrete quantum group pG, we can recover, by definition, the ˚-Hopf algebra
PolpGq. Hence, under the representation theory point of view, we recover the object G itself. But
notice that the C˚-norm on PolpGq is not unique as it has been pointed out in Theorem 1.3.1.32.
1.3.1.38 Remarks. For a precise treatment of discrete quantum groups with respect to the above
picture, we refer to [231], [232], [124] and Section 1 in [197]. Let us give some general remarks.

1. If pL2pGq, λ,Ωq is the GNS construction for the Haar state hG, then the GNS space represen-
tation of the left Haar weight phL can be identified to L2pGq. Actually, we can give a precise
description of the corresponding GNS construction, denoted by pL2pGq, pΛL, pλq (see Section
1 in [197] for more details). For the present dissertation we only need the description of
the corresponding GNS-representation pλ : c0ppGq ÝÑ BpL2pGqq, which satisfies the following
formula

pλpaqζx “ papx b idHxqζx,

for all x P IrrpGq, all a P c0ppGq and all ζx P Hx b Hx (recall Proposition 1.3.1.30). In
particular, we have

pλppεqλpw
x
i,jqΩ “ hGpw

x
i,jqΩ,

for all a P c0p pGq, x P IrrpGq, i, j “ 1, . . . , nx, where ε denotes the trivial representation.

2. As in the compact case, we can show that there exists a unique unitary operator W
pG P

BpL2pGq b L2pGqq such that

W˚
pG p
pΛLpaq b pΛLpbqq “ ppΛL b pΛLqp∆pbqpab 1q,

for all a, b P N
phL

. Moreover,
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- W
pG P Bpc0ppGq bKpL2pGqqq is a unitary representation of pG on L2pGq called left regular

representation of pG.
- W

pG is a multiplicative unitary on L2pGq in the sense of Baaj-Skandalis called fundamental
unitary of pG.

- W
pG “ pidb λqpV q.

And following the Baaj-Skandalis picture (see Section 1.3.2) we have

c0ppGq – ApWGq “ pBpL2pGqq˚ b idqpWGq
||¨||

and l8ppGq – A0pWGq
2

p∆paq “ xW˚
G pidb aq

xWG, for all a P c0ppGq,

where xWG :“W
pG “ ΣW˚

GΣ.

3. Finally, it is important to say that a discrete quantum group is equipped naturally with a
co-unit pε, that is, a linear map ε

pG :“ pε : c0ppGq ÝÑ C such that

ppεb idqp∆ “ id “ pidb pεqp∆

Namely, in the picture of the above theorem we have pεpxq :“ pε x pε, for all x P c0ppGq.

1.3.1.39 Definition. Let G “ pCpGq,∆q be a compact quantum group.

- We say that G is co-amenable (or that pG is amenable) if τ :“ τr ˝ τm is an isomorphism.

- We say that G is co-K-amenable (or that pG is K-amenable) if τ :“ τr ˝ τm is a K-equivalence.

1.3.1.40 Remark. The well-known characterization of amenability for classical groups (see [29] for
more details) can be translated for compact quantum groups (see Theorem 2.7.10 of [139] for a
proof). Namely, if G is a compact quantum group, then the following assertions are equivalent.

i) G is co-amenable.

ii) the co-unit map ε : PolpGq ÝÑ C extends to a character on CrpGq.

iii) the Haar state of Gm is faithful.

1.3.1.41 Remark. The well-known characterization of K-amenability of J. Cuntz for classical groups
(see [44] for more details) can be translated for compact quantum groups (see Theorem 5.14 of [206]
for a proof). Namely, if G is a compact quantum group, then the following assertions are equivalent.

i) G is co-K-amenable.

ii) The canonical map rτ : pG˙
m
A ÝÑ pG˙

r
A is a K-equivalence, for every pG-C˚-algebra A.

iii) There exists an element α P KKpCrpGq,Cq such that rτ s b
CrpGq

α “ rεs, where ε : PolpGq ÝÑ C

denotes the co-unit of G whose extension to CmpGq is still denoted by ε.
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1.3.1.42 Remark. Observe that if G is a compact (classical) group, it is automatically amenable and
then we have automatically C˚mpGq – C˚r pGq denoted simply by CpGq. In the quantum case, the
analogous property is encoded under the notion of co-amenability of G whenever G is a (locally)
compact quantum group.

Thus, a compact quantum group G is always amenable in the sense that it admits a left invariant
mean (namely, the Haar state of G). But this doesn’t imply, in general, the co-amenability, that is,
that the canonical surjection τ : CmpGq� CrpGq is an ˚-isomorphism. Actually, if G is any locally
compact quantum group, the connexion between amenability and co-amenability is as follows

pG co-amenable ùñ G amenable

G amenable ?
ùñ pG co-amenable

The second implication has been proven by R. Tomatsu in [189] for discrete quantum groups.

1.3.2 Locally compact case
The goal of this section is just to present the main definitions and results of the locally compact
groups theory in order to have an overlook of the general theory with respect to the Woronowicz’s,
and so the compact’s, one. Therefore, we don’t give any proof in that regard and, for more
information and details, we refer to the original paper [113] of J. Kustermans and S. Vaes; also
Chapter 8 of [188] provides a very useful reference to get introduced into this subject. In order to
understand the following presentation, it is advisable to keep in mind the elementary notions about
multiplicative unitaries of Baaj-Skandalis recalled in Section 1.1 and the elementary notions about
von Neumann algebras recalled in Section A.2.

1.3.2.1 Definition. A vN-locally compact quantum group G is the data pM,∆, φ, ψq where M
is a von Neumann algebra, ∆ : M ÝÑ M bM is a normal unital ˚-homomorphism called co-
multiplication and φ, ψ are normal semi-finite faithful weights on M called left Haar weight and
right Haar weight, respectively; such that

i) ∆ is co-associative meaning that the diagram

M

∆
��

∆ // M bM

idb∆
��

M bM
∆bid // M bM bM

is commutative.

ii) φ is left invariant with respect to ∆ meaning that

φ
`

pω b idq∆paq
˘

“ ωp1M qφpaq,

for all a PM` and all ω PM`
˚ .

iii) ψ is right invariant with respect to ∆ meaning that

ψ
`

pidb ωq∆paq
˘

“ ωp1M qψpaq,

for all a PM` and all ω PM`
˚ .



1.3. Compact Quantum Groups 87

1.3.2.2 Definition. A reduced C˚-locally compact quantum group G is the data pA,∆, φ, ψq
where pA,∆q is Hopf C˚-algebra and φ, ψ are faithful KMS-weights on A called left Haar weight
and right Haar weight, respectively; such that

i) the sets
tpω b idq∆paq | ω P A˚`, a P Au and tpidb ωq∆paq | ω P A˚`, a P Au

are linearly dense in A.

ii) φ is left invariant with respect to ∆ meaning that

φ
`

pω b idq∆paq
˘

“ ωp1qφpaq,

for all a P A` and all ω P A˚`.

iii) ψ is right invariant with respect to ∆ meaning that

ψ
`

pidb ωq∆paq
˘

“ ωp1qψpaq,

for all a P A` and all ω P A˚`.

1.3.2.3 Theorem. Let G “ pA,∆, φ, ψq be a reduced C˚-locally compact quantum group. If
pL2pGq,Λφ, πφq is the GNS construction of the left Haar weight φ, then

i) there exists a multiplicative unitary W P BpL2pGqbL2pGqq on L2pGq such that for all x, y P Nφ

∆pyqpxb 1q P Nφbφ and W˚pΛφpxq b Λφpyqq “ pΛφ b Λφq
`

∆pyqpxb 1q
˘

The operator W “: WG is called fundamental unitary of G;

ii) the fundamental unitary of G is well-behaved. As a consequence, the left and right legs of W
are Hopf C˚-algebras. Moreover, the explicit description of the left leg is given by

pApWGq – πφpAq
||¨||

and p∆WG ˝ πφ “ pπφ b πφq ˝∆

1.3.2.4 Note. If W is a multiplicative unitary on a Hilbert space H, then its left and right legs,
p pApW q, p∆W q and pApW q,∆W q, are always subalgebras of BpHq but they are not necessarily C˚-
algebras. We say that W is well-behaved if its left and right legs are Hopf C˚-algebras and
W PMp pApW q bApW qq.

It is advisable to have general criteria that assure the well-behaved condition for a given
multiplicative unitary. There are several of such criteria. For instance, regularity introduced by S.
Baaj and G. Skandalis in [7] or manageability introduced by S. L. Woronowicz in [230].

We refer to Chapter 7 of [188] for more details about these notions.

1.3.2.5 Definition. Let G “ pA,∆, φ, ψq be a reduced C˚-locally compact quantum group.

- The algebra of continuous functions vanishing at 8 of G is by definition the left leg of the
fundamental unitary of G,

C0pGq :“ pApWGq Ă BpL2pGqq
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- The reduced algebra of G is by definition the right leg of the fundamental unitary of G,

C˚r pGq :“ ApWGq Ă BpL2pGqq

1.3.2.6 Remark. Since the fundamental unitary of G is well-behaved, its legs are Hopf C˚-algebras,
that is, C0pGq, C˚r pGq are Hopf C˚-algebras and we have W P MpC0pGq b C˚r pGqq. The corre-
sponding co-multiplications are given precisely by

∆Gpxq :“ p∆W pxq “W˚pidb xqW , for all x P C0pGq

p∆Gpxq :“ ∆W pxq “W op˚pidb xqW op, for all x P C˚r pGq,

where we recall that W op :“ xW :“ ΣW˚Σ.
1.3.2.7 Theorem (Quantum Pontryagin duality). Let G “ pA,∆, φ, ψq be a reduced C˚-locally
compact quantum group.
i) The algebra of continuous functions vanishing at 8 of G is a reduced C˚-locally compact

quantum group such that G “ pC0pGq,∆Gq. The fundamental unitary of G is given by WG.

ii) The reduced algebra of G is a reduced C˚-locally compact quantum group called quantum dual of
G and we put pG :“ pC˚r pGq, p∆Gq. The fundamental unitary of pG is given by W

pG “ Σ ˝W˚
G ˝Σ,

which is denoted by xWG.

iii) There exists a canonical isomorphism of reduced C˚-locally compact quantum groups p

pG – G
called quantum Pontryagin duality.

1.3.2.8 Note. By construction, both C0pGq and C˚r pGq describe the reduced pictures of G and pG,
respectively (because these C˚-algebras are constructed by means of the GNS constructions of the
Haar weights, that is, both G and pG are represented on the GNS-Hilbert space representation of
their Haar weights). In accordance with Theorem 1.3.1.32, it is possible to show that both G and pG
admit universal pictures, denoted by Gm :“ pCm0 pGq,∆mq and pGm :“ pC˚mpGq, p∆mq, respectively.
Precisely, Cm0 pGq and C˚mpGq are defined as enveloping C˚-algebras of appropriated ˚-subalgebras
of C˚r pGq˚ “ ApWGq

˚ and C0pGq˚ “ pApWGq
˚, respectively. As in the compact case, there exist

canonical surjective ˚-homomorphisms τm : Cm0 pGq ÝÑ C0pGq and pτm : C˚mpGq ÝÑ C˚r pGq, which
intertwine the corresponding co-multiplications. Moreover, it is possible to show that there exist
unitary elements WG PMpC

m
0 pGq b C˚r pGqq and xWG PMpC0pGq b C˚mpGqq such that

pidb p∆GqpWGq “
`

WG
˘

12

`

WG
˘

13 and p∆G b idqpxWGq “
`

xWG
˘

13

`

WG
˘

23

These results are technically involved and we refer to [111] for the full details. In particular, if
G is a compact quantum group, its discrete dual pG defined in Theorem 1.3.1.36, which is a reduced
picture of pG, admits a universal picture pGm :“ pcm0 ppGq, p∆q. But, by Remark 1.3.1.42, pG is always
co-amenable so that cm0 ppGq is always canonically isomorphic to c0ppGq. Moreover, there exists a
unitary element WG PMpCmpGq b c0ppGqq such that

pidb p∆GqpWGq “
`

WG
˘

12

`

WG
˘

13

In accordance with [111], the unitary WG allows to produce unitary representations of pG. Hence
it must be regarded as a universal representation of G. The connection with the fundamental
unitary of G introduced in Theorem 1.3.1.26 is given by the formula pτm b idqWG “WG.
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1.3.2.9 Remark. In the formalism of multiplicative unitaries, the quantum Pontryagin duality can
be easily established. Namely, it is enough to check that the multiplicative unitary associated to G
is the same to the one associated to p

pG, which is straightforward,

W
p

pG
“ Σ ˝W˚

pG ˝ Σ “ Σ ˝ pΣ ˝ pW˚
G q
˚ ˝ Σq ˝ Σ “WG

1.3.2.10 Remark. It is possible to pass from the picture of Definition 1.3.2.1 to the picture of
Definition 1.3.2.2 by taking the bicommutant of the leg defining the locally compact quantum
group. We can prove that there exists a bijective correspondence (up to isomorphism) between all
vN-locally compact quantum groups and all reduced C˚-locally compact quantum groups.

This correspondence is realized as follows. Given a C˚-locally compact quantum group G “
pC0pGq,∆Gq and its dual pG :“ pC˚r pGq, p∆Gq, we put

L8pGq :“ pA0pWGq
σ´w

Ą C0pGq

L8ppGq :“ LpGq :“ A0pWGq
σ´w

Ą C˚r pGq

Hence, pL8pGq,∆Gq and pLpGq, p∆Gq are vN-locally compact quantum groups. See Section 8.3.4
in [188] for more details. In particular we have that

L8pGq “ PolpGq
σ´w

“ CrpGq2

PolppGq :“ A0pWGq ñ l8ppGq :“ LpGq “ PolppGq
σ´w

“ c0ppGq2

whenever G is a compact quantum group (see Theorem 7.2.14 in [188]).

1.4 Actions of Quantum Groups
Let us introduce the theory of actions of quantum groups by giving one example coming from the
classical case, which should be regarded as the reference one.

Let G be a locally compact group. An action of G on a C˚-algebra A is a continuous group
homomorphism

α : G ÝÑ AutpAq
g ÞÝÑ αg

which means that αgg1 “ αg ˝ αg1 for all g, g1 P G and that the application G ÝÑ A given by
g ÞÑ αgpaq is continuous for all a P A. In this situation, the data pA,αq is called G-C˚-algebra.
Recall from Section 1.3 that the data G :“ pC0pGq,∆q defines a locally compact quantum group.

The notion of G-C˚-algebra can be dualize in the following way. Given the locally compact
group G and the C˚-algebra A, we denote by evg : C0pGq ÝÑ C the evaluation map on g P G
and by CbpG,Aq the C˚-algebra of bounded continuous functions on G with values on A. This
can be identified with a C˚-subalgebra of MpA b C0pGqq. More precisely, it is well-known that
A b C0pGq – C0pG,Aq, so that MpC0pG,Aqq – CbpG,MpAqq by virtue of a classical result of
Akerman-Pedersen-Tomiyama (see Corollary 3.4 of [2]). Hence, it is not difficult to show that we
have CbpG,Aq – ĂMpAb C0pGqq ĂMpAb C0pGqq (recall Definition A.4.4).
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Let us define the following non-degenerate ˚-homomorphism

φα : A ÝÑ ĂMpAb C0pGqq
a ÞÝÑ φαpaq; φαpaqpgq :“ αgpaq, for all g P G

This map satisfies several important properties (see Theorem 9.2.4 in [188] for a proof),

i) φα is injectif,

ii) pφα b idC0pGqq ˝ φα “ pidA b∆q ˝ φα,

iii) rφαpAqp1b C0pGqqs “ Ab C0pGq.

In this way, the data pA, φαq with the above properties is a G-C˚-algebra and the homomorphism
φα is called either a (right) action of G on A or a (left) co-action of C0pGq on A.

Conversely, if A is a C˚-algebra equipped with a non-degenerate ˚-homomorphism φ : A ÝÑ
ĂMpAb C0pGqq satisfying the analogue of the properties piq, piiq and piiiq above, then we can show
(see Theorem 9.2.4 in [188]) that the map

pαφqg : A ÝÑ MpAq
a ÞÝÑ pαφqgpaq :“ pidA b evgqpφpaqq

defines an automorphism of A for all g P G such that the map G ÝÑ AutpAq, g ÞÑ pαφqg, defines an
action of G on A. For a fact, in the preceding setting we only need to consider either the property
piq or the property piiiq (see Theorem 9.2.4 in [188] for more details).

In other words, we obtain a bijective correspondence between G-C˚-algebras and G-C˚-algebras,
whenever G is a locally compact group and G “ pC0pGq,∆q is the corresponding locally compact
quantum group.

#

(left) G-C˚-algebras
G

α
ñ A

+

ÐÑ

#

(right) G-C˚-algebras
G φ

ñ A

+

In the present section we formalize the preceding notion of pG-C˚-algebra when G is a compact
quantum group. In this case, we’ll observe that the standard definition can be translated into
a more explicite picture using the representation theory approach for pG presented in Theorem
1.3.1.36. We give also an overview of the well-known spectral theory for actions of compact quantum
groups. Finally we discuss the notion of discrete quantum subgroup and the corresponding theory
of induced actions.

1.4.1 Actions of Discrete Quantum Groups
For more details about actions of quantum groups we refer to the original article [157], the book
[188] or the surveys [49], [174].

1.4.1.1 Definition. Let G be a compact quantum group and A a C˚-algebra. We say that
A is a (resp. injective) left pG-C˚-algebra if there exists a non-degenerate ˚-homomorphism
α : A ÝÑ ĂMpc0ppGq bAq such that
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i) (resp. α is injective),

ii) α intertwines the co-multiplication meaning that the diagram

A

α

��

α // ĂMpc0ppGq bAq

idc0ppGq
bα

��
ĂMpc0ppGq bAq

p∆bidA
// Mpc0ppGq b c0ppGq bAq

is commutative,

iii) α satisfies the cancellation property meaning that

rαpAqpc0ppGq b 1qs “ c0ppGq bA

Such a homomorphism is called a (resp. injective) left action of pG on A or a right co-action of
c0ppGq on A.

1.4.1.2 Note. A right action of pG on A (or a left co-action of c0ppGq on A) is a non-degenerate
˚-homomorphism α : A ÝÑ ĂMpA b c0ppGqq satisfying the analogue properties of the preceding
definition. We must point out that the subalgebra ĂM used for right actions of pG is lightly different
from the one used for left actions pG. Indeed, here we have to exchange S and A of Definition A.4.4.

In the present thesis, an action of a discrete quantum group pG is supposed to be an injective
left one unless the contrary is explicitly indicated. Hence, we refer to such actions simply as action
of pG.
1.4.1.3 Remarks. 1. If α : A ÝÑ ĂMpc0ppGq b Aq is an injective action of pG on A, then the

following formula holds
ppεb idAq ˝ α “ idA,

where pε is co-unit of pG. Indeed,

pp∆b idAqα “ pidc0ppGq b αqα

ñ ppεb idc0ppGq b idAqp
p∆b idAqα “ ppεb idc0ppGq b idAqpidc0ppGq b αqα

ñ pidc0ppGq b idAqα “ ppεb αqα

ñ α “ ppεb αqαñ idA “ ppεb idAqα,

where the last implication is true thanks to the injectivity of α.

2. Let G and H be two compact quantum groups. If pA,αq is a pG-C˚-algebra and pB, βq is
a pH-C˚-algebra, then the tensor product A b B is equipped with an action of {GˆH (see
Section 2.2 for more details) given by the following composition,

δ : AbB αbβ
ÝÑĂMpc0ppGq bAq b ĂMpc0ppHq bBq Ă ĂMpc0ppGq bAb c0ppHq bBq

Σ23
– ĂMpc0ppGq b c0ppHq bAbBq “ ĂMpc0ppFq bAbBq

By abuse of notation we denote this composition simply by δ :“ αb β.
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1.4.1.4 Definition. Let G be a compact quantum group and pA,αq, pB, βq two pG-C˚-algebras. A
non-degenerate ˚-homomorphism ϕ : A ÝÑMpBq is called pG-equivariant if the following diagram
commutes,

A

α

��

ϕ // MpBq

β

��
ĂMpc0ppGq bAq

idc0ppGq
bϕ

// ĂMpc0ppGq bBq

1.4.1.5 Proposition. Let G be a compact quantum group and A a C˚-algebra. If α : A ÝÑ
ĂMpc0ppGq bAq is a non-degenerate ˚-homomorphism, then

- for every irreducible representation x P IrrpGq we define the following ˚-homomorphism

αx : A ÝÑ BpHxq bA
a ÞÝÑ αxpaq :“ αpaqppx b idAq,

where px denotes the minimal central projection of c0ppGq on BpHxq.

- and for every unitary finite dimensional representation u P ReppGq we define the following
˚-homomorphism

αu : A ÝÑ BpHuq bA
a ÞÝÑ αupaq :“

ř

k
xĂu

pΦk b idAqαxpaqpΦ˚k b idAq,

where we consider the decomposition of u into direct sum of irreducible representations, that
is, for every x Ă u denote by pux P BpHuq the corresponding orthogonal finite dimensional
projection such that

ř

xĂu
pux “ idHu and for every k “ 1, . . . , dim

´

Morpx, uq
¯

consider a

family of intertwiners Φk PMorpx, uq such that Φ˚kΦk “ idHx and
ř

k

ΦkΦ˚k “ pux.

The following assertions are equivalent.

i) pA,αq is a pG-C˚-algebra with (resp. injective) action α : A ÝÑ ĂMpc0ppGq bAq.

ii) The family of ˚-homomorphisms αx : A ÝÑ BpHxq bA for every x P IrrpGq is such that

a) (resp. αε “ idA),
b) pΦ b idAqα

xpaq “ pidHz b αyqpαzpaqqpΦ b idAq, for all a P A, all x, y, z P IrrpGq and all
Φ PMorpx, y j zq,

c) rαxpAqpHx bAqs “ Hx bA, for all x P IrrpGq.

iii) The family of ˚-homomorphisms αu : A ÝÑ BpHuq bA for every u P ReppGq is such that

a) (resp. αε “ idA),
b) αujv “ pidHu b αvq ˝ αu, for all u, v P ReppGq,
c) pΦb idAqαupaq “ αvpaqpΦb idAq, for all a P A, all u, v P ReppGq and all Φ PMorpu, vq,
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d) rαupAqpHu bAqs “ Hu bA, for all u P ReppGq.

Proof. - piq ô piiq. Assume that pA,αq is a pG-C˚-algebra with (resp. injective) action
α : A ÝÑ ĂMpc0ppGqbAq. Notice that the ˚-homomorphism αx of the statement is well defined
because for all a P A we have αpaq P ĂMpc0ppGq bAq, so that αpaqppx b idAq P BpHxq bA, for
all x P IrrpGq.

a) (resp. αε “ idA whenever α is injective. Namely, in this case the formula obtained in
Remarks 1.4.1.3 allows to write

αεpaq “ αpaqppε b idAq “ ppε b idAqαpaqppε b idAq “ ppεb idAqαpaq “ a,

for all a P A).
b) For all x, y, z P IrrpGq and all Φ PMorpx, y j zq we recall from Theorem 1.3.1.36 that

p∆pT q ˝ Φ “ Φ ˝ T , for all T P BpHxq. Hence, for all a P A, we write the following,

pΦb idAqαxpaq “ pΦb idAqαpaqppx b idAq “ pp∆b idAqαpaqppy b pz b idAqpΦb idAq
“ pidc0ppGq b αqαpaqppy b pz b idAqpΦb idAq

“ pidHz b αqppy b idHz b idAqαpaqppz b idAqpΦb idAq
“ pidHz b α

yqpαzpaqqpΦb idAq

c) Observe that BpHxq b A Ă MpBpHxq b Aq – LApHx b Aq, for all x P IrrpGq. By the
cancellation property of α we have,

rαxpAqpHx bAqs “ rαpAqppx b idAqpc0ppGqq b 1s “ rαpAqpc0ppGqq b 1sppx b idAq

“ c0ppGq bAppx b idAq “ Hx bA,

for all x P IrrpGq.

Conversely, assume that
`

αx
˘

xPIrrpGq is a family of ˚-homomorphisms as in the statement.
Then we define the following non-degenerate ˚-homomorphism

α : A ÝÑ ĂMpc0ppGq bAq
a ÞÝÑ αpaq :“ ‘c0

xPIrrpGq
αxpaq,

where we notice that αpaq P ĂMpc0ppGq bAq.

a) (resp. α is injective whenever every αε “ idA. Namely, by definition of α we can write

ppεb idAqαpaq “ ppεb idAq
´

‘c0

xPIrrpGq
αxpaq

¯

“ αεpaq “ a,

for all a P A. This clearly implies the injectivity of α).
b) Given y, z P IrrpGq, denote by pyjzx P BpHy b Hzq the orthogonal finite dimensional

projection associated to an irreducible x Ă y j z such that
ř

xĂyjz
pyjzx “ idHybHz . For
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every k “ 1, . . . , dim
´

Morpx, yjzq
¯

consider a family of intertwiners Φk PMorpx, yjzq

such that Φ˚kΦk “ idHx and
ř

k

ΦkΦ˚k “ pyjzx . From our assumption we can write the

following for every k “ 1, . . . , dim
´

Morpx, y j zq
¯

and every a P A

pΦk b idAqαxpaq “ pidHz b αyqpαzpaqqpΦk b idAq
ñ pΦk b idAqαxpaqpΦ˚k b idAq “ pidHz b αyqpαzpaqqpΦkΦ˚k b idAq

ñ
ÿ

k

pΦk b idAqαxpaqpΦ˚k b idAq “ pidHz b αyqpαzpaqqppyjzx b idAq

ñ
ÿ

k
xĂyjz

pΦk b idAqαxpaqpΦ˚k b idAq “ pidHz b αyqpαzpaqq

ô pp∆b idAq
ÿ

k
xĂyjz

αxpaqpΦkΦ˚k b idAq “ pidHz b αyqpαzpaqq

ô pp∆b idAq
ÿ

xĂyjz

αxpaqppyjzx b idAq “ pidHz b α
yqpαzpaqq

Since this is true for any y, z P IrrpGq, we deduce that pp∆b idAq ˝ α “ pidc0ppGq b αq ˝ α

c)

rαpAqpc0ppGq b 1qs “ r ‘c0

xPIrrpGq
αxpAqpBpHxq bAqs “ ‘c0

xPIrrpGq
rαxpAqpBpHxq bAqs

“ ‘c0

xPIrrpGq
BpHxq bA “ c0ppGq bA

- piiq ô piiiq. Assume that
`

αx
˘

xPIrrpGq is a family of ˚-homomorphisms as in the statement.
Given a unitary finite dimensional representation u P ReppGq, consider its decomposition
into direct sum of irreducible representations, so that for every x Ă u denote by pux P BpHuq

the corresponding orthogonal finite dimensional projection such that
ř

xĂu
pux “ idHu . For

every k “ 1, . . . , dim
´

Morpx, uq
¯

consider a family of intertwiners Φk PMorpx, uq such that
Φ˚kΦk “ idHx and

ř

k

ΦkΦ˚k “ pux. Consider the family of ˚-homomorphism
`

αu
˘

uPReppGq of

the statement.

a) (resp. αε “ idA).
b) Given u, v P ReppGq, remark that x Ă uj v is irreducible if and only if x Ă y j z with

y Ă u and z Ă v irreducibles.
Given x Ă u j v, denote by pujvx P BpHu b Hvq the corresponding orthogonal finite
dimensional projection and consider a family of intertwiners Φk P Morpx, uj vq such
that Φ˚kΦk “ idHx and

ř

k

ΦkΦ˚k “ pujvx , for all k “ 1, . . . , dim
´

Morpx, uj vq
¯

. Given

y Ă u, denote by puy P BpHuq the corresponding orthogonal finite dimensional projection
and consider a family of intertwiners Ψi P Morpy, uq such that Ψ˚i Ψi “ idHy and
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ř

i

ΨiΨ˚i “ puy , for all i “ 1, . . . , dim
´

Morpy, uq
¯

. Likewise, given z Ă v, denote by

pvz P BpHvq the corresponding orthogonal finite dimensional projection and consider
a family of intertwiners Ψ1j P Morpz, vq such that Ψ1˚j Ψ1j “ idHz and

ř

j

Ψ1jΨ1˚j “ pvz ,

for all j “ 1, . . . , dim
´

Morpz, vq
¯

. Remark that the composition Hx
Φk
ÝÑ Hu bHv –

HvbHu

Ψ1˚
j
bΨ˚

i
ÝÑ HzbHy is clearly an operator in Morpx, zj yq and by construction we

have that
ř

k
xĂyjz

pΨ1˚j bΨ˚i qΦkΦ˚kpΨ1j bΨiq “ idHz b idHy . Then for all a P A we write

αujvpaq “
ÿ

k
xĂujv

pΦk b idAqαxpaqpΦ˚k b idAq

“
ÿ

i
yĂu

ÿ

j
zĂv

ÿ

k
xĂyjz

pΨ1jΨ1˚j bΨiΨ˚i b idAqpΦk b idAqαxpaqpΦ˚k b idAq

pΨ1jΨ1˚j bΨiΨ˚i b idAq

“
ÿ

i
yĂu

ÿ

j
zĂv

ÿ

k
xĂyjz

pΨ1j bΨi b idAqppΨ1˚j bΨ˚i qΦk b idAqαxpaq

pΦ˚kpΨ1j bΨiq b idAqpΨ1˚j bΨ˚i b idAq
p1q
“

ÿ

i
yĂu

ÿ

j
zĂv

ÿ

k
xĂyjz

pΨ1j bΨi b idAqpidHz b α
yqpαzpaqqppΨ1˚j bΨ˚i qΦk b idAq

pΦ˚kpΨ1j bΨiq b idAqpΨ1˚j bΨ˚i b idAq

“
ÿ

i
yĂu

ÿ

j
zĂv

ÿ

k
xĂyjz

pΨ1j bΨi b idAqpidHz b α
yqpαzpaqq

ppΨ1˚j bΨ˚i qΦkΦ˚kpΨ1j bΨiq b idAqpΨ1˚j bΨ˚i b idAq

“
ÿ

i
yĂu

ÿ

j
zĂv

pΨ1j bΨi b idAqpidHz b α
yqpαzpaqqpΨ1˚j bΨ˚i b idAq

“
ÿ

i
yĂu

ÿ

j
zĂv

´

idHu b pΨ1j b idAqαypΨ1˚j b idAq
¯´

pΨi b idAqα
zpaqpΨ˚i b idAq

¯

“

´

ÿ

j
zĂv

idHu b pΨ1j b idAqαzpΨ1˚j b idAq
¯´

ÿ

i
yĂu

pΨi b idAqα
ypaqpΨ˚i b idAq

¯

“ pidHu b α
vqpαupaqq,

where in p1q we apply the properties of the family pαxqxPIrrpGq with pΨ1˚j b Ψ˚i qΦk P

Morpx, z j yq.
c) Let u, v P ReppGq be unitary finite dimensional representations of G. Given y Ă

u, denote by puy P BpHuq the corresponding orthogonal finite dimensional projection
and consider a family of intertwiners Ψi P Morpy, uq such that Ψ˚i Ψi “ idHy and
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ř

i

ΨiΨ˚i “ puy , for all i “ 1, . . . , dim
´

Morpy, uq
¯

. Likewise, given z Ă v, denote by

pvz P BpHvq the corresponding orthogonal finite dimensional projection and consider a
family of intertwiners Ψ1j PMorpz, vq such that Ψ1˚j Ψ1j “ idHz and

ř

j

Ψ1jΨ1˚j “ pvz , for all

j “ 1, . . . , dim
´

Morpz, vq
¯

.

Given Φ P Morpu, vq, then the composition Hy
Ψi
ÝÑ Hu

Φ
ÝÑ Hv

Ψ1˚
j
ÝÑ Hz is clearly an

operator in Morpy, zq, which is denoted by Φi,j . Then for all a P A we write

pΦb idAqαupaq “ pΦb idAq
ÿ

i
yĂu

pΨi b idAqα
ypaqpΨ˚i b idAq

“
ÿ

i
yĂu

pidHv b idAqpΦΨi b idAqα
ypaqpΨ˚i b idAq

“
ÿ

i
yĂu

ÿ

j
zĂv

pΨ1jΨ1˚j b idAqpΦΨi b idAqα
ypaqpΨ˚i b idAq

“
ÿ

i
yĂu

ÿ

j
zĂv

pΨ1j b idAqpΦi,j b idAqαypaqpΨ˚i b idAq

p1q
“

ÿ

i
yĂu

ÿ

j
zĂv

pΨ1j b idAqpidHz b αεqαzpaqpΦi,j b idAqpΨ˚i b idAq

“
ÿ

i
yĂu

ÿ

j
zĂv

pΨ1j b idAqαzpaqpΨ1˚j ΦΨiΨ˚i b idAq

“
ÿ

j
zĂv

pΨ1j b idAqαzpaqpΨ1˚j b idAqpΦb idAq “ αvpaqpΦb idAq,

where in p1q we apply the properties of the family pαxqxPIrrpGq with Φi,j PMorpy, zq “
Morpy, εj zq.

d) By the hypothesis of the family pαxqxPIrrpGq we have,

rαupAqpHu bAqs “
”

ÿ

k
xĂu

pΦk b idAqαxpAqpΦ˚k b idAqpHu bAq
ı

“

”

ÿ

k
xĂu

pΦk b idAqαxpAqpΦ˚k b idAqpΦkΦ˚kq bA
ı

“
ÿ

k
xĂu

pΦk b idAq
”

αxpAqpHx bAq
ı

pΦ˚k b idAq

“
ÿ

k
xĂu

pΦk b idAqpHx bAqpΦ˚k b idAq “ Hu bA,

for all u P ReppGq.
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Conversely, assume that
`

αu
˘

uPReppGq is a family of ˚-homomorphisms as in the statement.
In particular, the family

`

αx
˘

xPIrrpGq satisfies the properties paq, pbq, pcq and pdq of piiiq. Let
us check the properties paq, pbq and pcq of piiq.

a) (resp. αε “ idA).
b) Given x, y, z P IrrpGq and Φ PMorpx, yj zq we write the following using the properties
pbq and pcq of piiiq

pΦb idAqαxpaq “ αyjzpaqpΦb idAq “ pidHz b αyqpαzpaqqpΦb idAq,

for all a P A.
c) rαxpAqpHx bAqs “ Hx bA, for all x P IrrpGq because this is true for any unitary finite

dimensional representation.
�

1.4.1.6 Remark. The preceding characterization yields straightforwardly the following reformulation
of Definition 1.4.1.4. Let G be a compact quantum group and pA,αq, pB, βq two pG-C˚-algebras. A
non-degenerate ˚-homomorphism ϕ : A ÝÑ MpBq is called pG-equivariant if one of the following
equivalent conditions holds.

i) The following diagram commutes

A

α

��

ϕ // MpBq

β

��
ĂMpc0ppGq bAq

idc0ppGq
bϕ

// ĂMpc0ppGq bBq

ii) The following diagram commutes for every x P IrrpGq

A

αx

��

ϕ // MpBq

βx

��
BpHxq bA

idBpHxqbϕ
// BpHxq bB

iii) The following diagram commutes for every u P ReppGq

A

αu

��

ϕ // MpBq

βu

��
BpHuq bA

idBpHuqbϕ
// BpHuq bB
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1.4.1.7 Definition. Let G be a compact quantum group. A graded pG-C˚-algebra is a pG-C˚-algebra
pA, pαuquPReppGqq such that

i) A is a graded C˚-algebra meaning that there exist two closed self-adjoint linear subspaces of
A, Ap0q and Ap1q, such that A “ Ap0q ‘Ap1q and ApiqApjq Ă Api`jq mod.2, for all i, j “ 0, 1.

ii) for every u P ReppGq we have αupApiqq Ă BpHuq bA
piq, for all i “ 0, 1.

The elements in Apiq are called homogeneous of degree i, for all i “ 0, 1. We say that A is
trivially graded if Ap1q “ 0.

1.4.1.8 Remark. This definition is equivalent to the standard one given Remarks A.3.21. More
precisely, if A “ Ap0q ‘Ap1q is a graded C˚-algebra with graduation automorphism θ P AutpAq and
pA, pαuquPReppGqq “ pA,αq is a pG-C˚-algebra, then the following assertions are equivalent.

i) For every u P ReppGq we have αupApiqq Ă BpHuq bA
piq, for all i “ 0, 1.

ii) For every x P IrrpGq we have αxpApiqq Ă BpHxq bA
piq, for all i “ 0, 1.

iii) For every u P ReppGq we have pidBpHuq b θqα
upaq “ αupθpaqq, for all a P A.

iv) For every x P IrrpGq we have pidBpHxq b θqα
xpaq “ αxpθpaqq, for all a P A.

v) αpApiqq Ă ĂMpc0ppGq bApiqq, for all i “ 0, 1.

vi) pidc0ppGq b θqαpaq “ αpθpaqq, for all a P A.

Namely,

- piq ô piiq. The implication piq ñ piiq is obvious. For the converse, recall from Proposition
1.4.1.5 that given u P ReppGq, we have

αupaq “
ÿ

k
xĂu

pΦk b idAqαxpaqpΦ˚k b idAq,

where Φk P Morpx, uq for all k “ 1, . . . dim
´

Morpx, uq
¯

with x Ă u are the family of inter-
twiners associated to the decomposition of of u into direct sum of irreducible representations.

- piiiq ô pivq. The same argument yields this equivalence.

- piq ô piiiq. Since A “ Ap0q ‘ Ap1q is a graded C˚-algebra with graduation automorphism
θ P AutpAq, we know that

Ap0q “ ta P A | θpaq “ au and Ap1q “ ta P A | θpaq “ ´au

Assume that piq holds. Given a P A, write a “ x ` y with x P Ap0q and y P Ap1q. By
assumption we have that αupxq P BpHuq bA

p0q and αupyq P BpHuq bA
p1q. Hence,

pidBpHuq b θqα
upaq “ pidBpHuq b θqα

upxq ` pidBpHuq b θqα
upyq

“ αupxq ´ αupyq “ αupx´ yq “ αupθpaqq,



1.4. Actions of Quantum Groups 99

which yields piiiq. Conversely, assume that piiiq holds. Given a P Ap0q (resp. a P Ap1q), we
have θpaq “ a (resp. θpaq “ ´a). Hence the relation pidBpHuq b θqα

upaq “ αupθpaqq from the
assumption becomes pidBpHuqb θqα

upaq “ αupaq (resp. pidBpHuqb θqα
upaq “ ´αupaq), which

means that αupaq P BpHuq bA
p0q (resp. αupaq P BpHuq bA

p1q).

- piiq ô pvq. Recall from Proposition 1.4.1.5 that

αpaq “ ‘c0

xPIrrpGq
αxpaq and αxpaq “ αpaqppx b idAq,

for all a P A and x P IrrpGq. Hence the equivalence piiq ô pvq is obvious.

- pvq ô pviq. This has been observed in Remarks A.3.21.

By virtue of the preceding characterization of action of a discrete quantum group on a C˚-algebra,
we shall give explicit expressions in coordinates.

Let us introduce some useful notations for the sequel. Let α be an injective action of pG on A,
which is equivalent to give a family of ˚-homomorphisms pαuquPReppGq, αu : A ÝÑ BpHuq bA as
in Proposition 1.4.1.5. If tξu1 , . . . , ξunuu is an orthonormal basis of Hu, then we define the matrix
coefficients of α with respect to u P ReppGq as follows

αui,jpaq :“ pωξu
i
,ξu
j
b idAqpα

upaqq P A,

for all a P A and all i, j “ 1 . . . , nu. We observe the following elementary facts.
- If tmu

i,jui,j“1,...,nu are the matrix units in BpHuq associated to the basis tξu1 , . . . , ξunuu, then
we have the following expression in coordinates

αupaq “
nu
ÿ

i,j“1
mu
i,j b α

u
i,jpaq,

for all a P A.

- The maps αui,j “ pωξui ,ξuj b idAq ˝ α
u : A ÝÑ A are completely bounded, for all i, j “ 1, . . . , nu

and completely positive whenever i “ j.

- Since αu is a ˚-homomorphism for all u P ReppGq, then for all a P A and all i, j “ 1, . . . , nu
we have αui,jpaq˚ “ αuj,ipa

˚q. Namely,

αui,jpaq
˚ “

`

pωξu
i
,ξu
j
b idAqα

upaq
˘˚
“ pω˚ξu

i
,ξu
j
b idAqα

upa˚q “ pωξu
j
,ξu
i
b idAqα

upa˚q “ αuj,ipa
˚q

- Since αu is a ˚-homomorphism for all u P ReppGq, then for all a, b P A and all i, j “ 1, . . . , nu
we have αui,jpabq “

nu
ř

k“1
αui,kpaqα

u
k,jpbq. Namely

αupabq “ αupaqαupbq “
´

nu
ÿ

i,r“1
mu
i,r b α

u
i,rpaq

¯´

nu
ÿ

s,j“1
mu
s,j b α

u
s,jpbq

¯

“
ÿ

i,r,s,j

mu
i,rm

u
s,j b α

u
i,rpaqα

u
s,jpbq

“
ÿ

i,r,s,j

δr,sm
u
i,j b α

u
i,rpaqα

u
s,jpbq “

nu
ÿ

i,j“1

nu
ÿ

k“1
mu
i,j b α

u
i,kpaqα

u
k,jpbq
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- If pA, pαuquPReppGq is a graded pG-C˚-algebra with graduation automorphism θ P AutpAq, then
the formula pidBpHxq b θqαx “ αx ˝ θ, with x P IrrpGq can be written in coordinates with
respect to a canonical orthonormal basis. More precisely we have the following formula,

θpαxi,jpaqq “ αxi,jpθpaqq,

for all x P IrrpGq, a P A, i, j “ 1, . . . , nx.

- Given an irreducible representation x P IrrpGq, then the conditions pbq and pcq of the
family pαuquPReppGq can be written explicitly in coordinates for the canonical intertwiner
Φx PMorpε, xjxq. Indeed, if tξx1 , . . . , ξxnxu is an orthonormal basis of Hx that diagonalizes the
operator Qx and tωx1 , . . . , ωxnxu is its dual basis in Hx, then, using the coordinate expression
of Φx from Remarks 1.3.1.31, a straightforward computation yields that the formula

pΦx b idAqαεpaq “ pidHx b α
xqpαxpaqqpΦx b idAq,

for all a P A can be written as
nx
ÿ

k“1

a

λxk
a

λxi
αxi,k ˝ α

x
j,k “ δi,j idA

Analogously, the corresponding formulas for Φx P Morpε, x j xq, Φ˚x P Morpx j x, εq, Φ˚x P
Morpxj x, εq can be written respectively as follows
nx
ÿ

k“1

a

λxi
a

λxk
αxi,k ˝ α

x
j,k “ δi,j idA;

nx
ÿ

k“1

a

λxk
a

λxi
αxk,i ˝ α

x
k,j “ δi,j idA and

nx
ÿ

k“1

a

λxi
a

λxk
αxk,i ˝ α

x
k,j “ δi,j idA

1.4.1.9 Remark. If V P MpC b c0ppGqq – LCpC b c0ppGqq is a unitary representation of pG on C
(recall Remarks 1.3.1.8), where C is any C˚-algebra (or even more generally, when C is any Hilbert
module), then we use the analogous notations. Namely, we put

V xi,j :“ pidC b ωξx
i
,ξx
j
qV pidC b pxq PMpCq,

for all x P IrrpGq and all i, j “ 1, . . . , nx. More generally, if u P ReppGq, then we put

V ur,s :“
ÿ

k
zĂu

pidC b ωξur ,ξus qpidC b ΦkqV pidC b Φ˚kq PMpCq,

for all r, s “ 1, . . . , nu where we follow the usual notations: puz P BpHuq is the corresponding orthog-
onal finite dimensional projection such that

ř

zĂu
puz “ idHu and for every k “ 1, . . . , dim

´

Morpz, uq
¯

consider a family of intertwiners Φk PMorpz, uq such that Φ˚kΦk “ idHz and
ř

k

ΦkΦ˚k “ puz .

1.4.1.10 Proposition. Let pG “ pc0ppGq, p∆q be a discrete quantum group and C any C˚-algebra.

i) If V PMpC b c0ppGqq is a unitary representation of pG on C, then there exists a non-degenerate
˚-homomorphism φV : CmpGq ÝÑMpCq such that

φV pw
x
i,jq “ V xi,j,

for all x P IrrpGq and all i, j “ 1, . . . , nx.
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ii) If φ : CmpGq ÝÑ MpCq is a non-degenerate ˚-homomorphism, then there exists a unitary
representation of pG on C, Vφ PMpC b c0ppGqq such that

pVφq
x
i,jpcq “ φpwxi,jqpcq,

for all c P C, x P IrrpGq and all i, j “ 1, . . . , nx.

Proof. i) Let V PMpC b c0ppGqq be a unitary operator such that pidC b p∆qV “ V12V13. On the
algebraic level, PolpGq, we define the linear map φV on the basis as follows

φV pw
x
i,jq :“ V xi,j PMpCq,

for all x P IrrpGq and all i, j “ 1, . . . , nx (recall, by Proposition 1.3.1.28, that the set of matrix
coefficients of classes of irreducible finite dimensional representations forms a basis of PolpGq).
Let us show that φV is a non-degenerate ˚-homomorphism. Take orthonormal basis tξx1 , . . . , ξxnxu
and tξy1 , . . . , ξynyu of Hx and Hy, respectively and denote by tωx1 , . . . , ωxnxu, tω

y
1 , . . . , ω

y
nyu the

respective dual basis in Hx and Hy, respectively. By Remark 1.3.1.12 and Remark 1.3.1.19 we
know that if x, y P IrrpGq, i, j “ 1, . . . , nx and k, l “ 1, . . . , ny, then we have

wxi,j w
y
k,l “ wxjyr,s and pwxi,jq˚ “ wxi,j ,

where r :“ pi, kq and s :“ pj, lq are the indices corresponding to the usual basis of the tensor
product Hx bHy, that is, tζxjyr :“ ξxi b ξ

y
kui“1,...,nx

k“1,...,ny

and tζxjys :“ ξxj b ξ
y
l uj“1,...,nx

l“1,...,ny

.

Moreover, let us decompose xj y into a direct sum of irreducible representations: if z Ă xj y,
denote by pxjyz P BpHxjyq the corresponding orthogonal finite dimensional projection such
that

ř

zĂu
pxjyz “ idHxjy and for every k “ 1, . . . , dim

´

Morpz, xj yq
¯

consider a family of

intertwiners Φk PMorpz, xj yq such that Φ˚kΦk “ idHz and
ř

k

ΦkΦ˚k “ pxjyz . Hence, we write

φV pw
x
i,jqφV pw

y
k,lq “ V xi,j V

y
k,l “ pidC b ωξxi ,ξxj qV pidC b pxqpidC b ωξxk ,ξ

x
l
qV pidC b pyq

“ pidC b ωξx
i
,ξx
j
b ωξx

k
,ξx
l
qV12V13pidC b px b pyq

“ pidC b ωξx
i
,ξx
j
b ωξx

k
,ξx
l
qpidC b p∆qpV qpidC b px b pyq

“
ÿ

k
zĂxjy

pidC b ωξx
i
,ξx
j
b ωξx

k
,ξx
l
qpidC b p∆qpV qpidC b ΦkΦ˚kq

“
ÿ

k
zĂxjy

pidC b ωξx
i
,ξx
j
b ωξx

k
,ξx
l
qpidC b ΦkqV pidC b Φ˚kq

“
ÿ

k
zĂxjy

pidC b ωζxjyr ,ζxjys
qpidC b ΦkqV pidC b Φ˚kq

“ V xjyr,s “ φV pw
xjy
r,s q “ φV pw

x
i,j w

y
k,lq
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φV
`

pwxi,jq
˚
˘

“ φV pw
x
i,jq “ V xi,j “ pidb ωωxi ,ωxj qjpV qpidb pxq

“ pidb ωpξx
i
q˚,pξx

j
q˚qjpV qpidb pxq

“ pidb ω˚ξx
i
,ξx
j
qV ˚pidb pxq

“

´

pidb ωξx
i
,ξx
j
qV pidb pxq

¯˚

“
`

V xi,j
˘˚
“ φV pw

x
i,jq

˚,

which shows that φV is a ˚-homomorphism.
Finally, since V is a unitary operator, we know that V pCbc0ppGqq is linearly dense in Cbc0ppGq,
so that pidb ωξx

i
,ξx
j
qV pC b pxq “ φV pw

x
i,jqpCq is linearly dense in C for all x P IrrpGq and all

i, j “ 1, . . . , nx. In other words, the map φV : PolpGq ÝÑ MpCq is non-degenerate and we
extend it into a non-degenerate ˚-homomorphism φV : CmpGq ÝÑMpCq.

ii) Let φ : CmpGq ÝÑMpCq be a non-degenerate ˚-homomorphism. If WG PMpCmpGq b c0ppGqq
is the universal representation of G (recall Note 1.3.2.8), then we put

Vφ :“ pφb idqWG

Since φ is a non-degenerate ˚-homomorphism and WG is a unitary operator, Vφ is a unitary
operator as well. The relation pidC b p∆qVφ “ pVφq12pVφq13 holds thanks to the analogous
relation for WG. Namely,

pidC b p∆qWG “ pWGq12pWGq13

ñ pφb idb idqpidC b p∆qWG “ pφb idb idqpWGq12pWGq13

ô pidC b p∆qVφ “ pVφq12pVφq13

Routine computations show the relation of the statement pVφqxi,jpcq “ φpwxi,jqpcq, for all c P C,
x P IrrpGq and all i, j “ 1, . . . , nx. The proof is therefore complete.

�

1.4.2 Spectral theory for Compact Quantum Groups
Classical spectral theory for compact groups consists in the study of classification of ergodic actions
on von Neumann algebras through the irreducible decomposition of the group representations.
It was deeply studied by R. Høegh-Krohn, M. B. Landstad and E. Størmer in [84] and by A.
Wassermann in [223], [221], [222]. The quantum counterpart was initiated by F. Boca in [25] and
by M. B. Landstad in [118] and further studied by R. Tomatsu in [190] where he gives the complete
classification of ergodic actions of SUqp2q and by J. Bichon, A. De Rijdt, S. Vaes in [23] where they
introduce the notion of monodial equivalence in order to produce new ergodic actions.

Hence, spectral theory shall be a useful strategy for the study of torsion-freeness in the context
of quantum groups. We refer to the original articles mentioned before or to the survey [49] for more
details.
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1.4.2.1 Definition. Let G “ pCpGq,∆q be a compact quantum group and A a (resp. unital)
C˚-algebra. We say that A is a (resp. injective) right G-C˚-algebra if there exists a non-degenerate
˚-homomorphism δ : A ÝÑMpAb CpGqq such that

i) (resp. δ is injective),

ii) δ intertwines the co-multiplication meaning that the diagram

A

δ

��

δ // MpAb CpGqq

δbidCpGq

��
MpAb CpGqq

idAb∆
// MpAb CpGq b CpGqq

is commutative,

iii) δ satisfies the cancellation property meaning that

rδpAqp1b CpGqqs “ Ab CpGq

Such a homomorphism is called a (resp. injective) right action of G on A or a left co-action of
CpGq on A.

1.4.2.2 Note. A left action of G on A (or a right co-action of CpGq on A) is a non-degenerate
˚-homomorphism δ : A ÝÑ MpCpGq b Aq satisfying the analogue properties of the preceding
definition.

In the present thesis, an action of a compact quantum group G is supposed to be a right one
unless the contrary is explicitly indicated. Hence, we refer to such actions simply as action of G.
1.4.2.3 Remarks. 1. If G “ pCpGq,∆q is a compact quantum group, then every C˚-algebra A is

equipped with an action of G, namely the trivial action defined as

trv : A ÝÑ MpAb CpGqq
a ÞÝÑ trvpaq :“ ab 1CpGq

2. If G “ pCpGq,∆q is a compact quantum group, then CpGq is naturally a G-C˚-algebra via
the co-multiplication. More precisely, the co-multiplication

∆ : CpGq ÝÑ CpGq b CpGq

is by definition an action of G on A. It is called regular action of G.

3. If G “ pCpGq,∆q is a compact quantum group and u P BpHqbCpGq is a unitary representation
of G on a finite dimensional Hilbert space H, then BpHq is naturally a G-C˚-algebra via the
adjoint action with respect to u. More precisely,

Adu : BpHq ÝÑ BpHq b CpGq
T ÞÝÑ AdupT q :“ upT b 1CpGqqu˚

is an action of G on BpHq.
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1.4.2.4 Definition. Let G “ pCpGq,∆q be a compact quantum group and pA, δq, pB, δ1q two
G-C˚-algebras. A non-degenerate ˚-homomorphism ϕ : A ÝÑMpBq is called G-equivariant if the
following diagram commutes,

A

δ

��

ϕ // MpBq

δ1

��
MpAb CpGqq

ϕbidCpGq

// MpB b CpGqq

1.4.2.5 Remark. On the one hand, the injectivity condition of a compact quantum group action is a
delicate axiom that some authors include in the definition and others don’t (we refer to [174] for a
detailed exposition of this subject). Nevertheless, when we work in the context of spectral theory,
we can prove (see Proposition 3.22 in [49]) that if δ is not injective, we can restrict δ to an injective
action of G on A{ kerpδq so that pA, δq and pA{ kerpδq, δ|q have the same algebraic core.

On the other hand, according to Theorem 1.3.1.32 there are two pictures that represent the
same compact quantum group G, the universal one Gm and the reduced one Gr. In this way, it is
important to specify if an action of G is an action of Gm or an action of Gr. Let us explain this
problem more precisely.

Let A be a C˚-algebra and δ0 : A ÝÑ A d PolpGq Ă A d CpGq a co-action of PolpGq, which
means that δ0 is a ˚-homomorphism such that

i) δ0 intertwines the co-multiplication meaning that pδ0 b idPolpGqqδ0 “ pidA b∆qδ0,

ii) pidA b εq ˝ δ0 “ idA.

In this situation, it is clear by universality that δ0 extends to a ˚-homomorphism δ : A ÝÑ
AbCmpGq which intertwines the co-multiplication of G as in Definition 1.4.2.1. Let us show that the
above condition piiq implies the cancellation property for δ. It is clear that δ0pAqp1A d PolpGqq Ă
Ad PolpGq. Now, given a P A we write

mpidA b Sqpδ0 b idPolpGqqδ0paq “ mpidA b SqpidA b∆qδ0paq “ ab 1PolpGq
ô δ0pap1qqp1A b Spap2qqq “ ab 1PolpGq,

where m : PolpGq b PolpGq ÝÑ PolpGq denotes the multiplication map and S : PolpGq ÝÑ
PolpGq denotes the antipode of the ˚-Hopf algebra PolpGq (see Proposition 1.3.1.28). Notice
that we have used as well the Sweedler notation as explained in Section 1.1. This shows that
δ0pAqp1A d PolpGqq “ Ad PolpGq and the cancellation property for δ follows.

In other words, δ0 extends to an action of Gm on A. Observe that we can not guarantee in
general that δ0 extends to an action of Gr. However, the spectral theory for compact quantum
groups allows to solve this issue. Namely, given a G-C˚-algebra pA, δq as in Definition 1.4.2.1, the
action δ restricts to a co-action δPolpGq of PolpGq on the algebraic core of A, AG (see Proposition
1.4.2.12). This co-action extends to an (injective) action of Gm on C˚pAGq and also to an (injective)
action of Gr on some C˚-algebra AG,r. In both cases, the algebraic core and the fixed points space
are preserved. We refer to Theorem 4.2 and Theorem 4.6 in [49] for a proof of these results.
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1.4.2.6 Definition. Let G “ pCpGq,∆q be a compact quantum group and pA, δq a G-C˚-algebra.
The δ-fixed points space of A is the C˚-algebra defined as

Aδ :“ ta P A | δpaq “ ab 1CpGqu
If A is unital, we say that

i) δ is an ergodic action if Aδ “ C1A.

ii) δ is a torsion action if δ is ergodic and A is finite dimensional.
1.4.2.7 Remark. If G “ pCpGq,∆q is a compact quantum group and u P BpHq b CpGq is a unitary
representation of G on a finite dimensional Hilbert space H, then by definition of adjoint action it
is clear that

BpHqAdu “ Endpuq

1.4.2.8 Note. For simplicity of the exposition, all G-C˚-algebras considered in this section are
supposed to be unital for the development of the spectral theory for compact quantum groups.
1.4.2.9 Proposition. Let G “ pCpGq,∆q be a compact quantum group and pA, δq a G-C˚-algebra.
There always exists a non-degenerate δ-invariant conditional expectation

Eδ : A ÝÑ Aδ

a ÞÝÑ Eδpaq :“ pidA b hGqδpaq

Moreover, Eδ is a state on A whenever δ is ergodic and it is denoted by hA.
Proof. First of all, let’s check that Eδ is well-defined. Namely, given a P A we write

δpEδpaqq “ δ
`

pidA b hGqδpaq
˘

“ pidA b idCpGq b hGqpδ b idCpGqqδpaq

“ pidA b idCpGq b hGqpidA b∆qδpaq “
´

idA b
`

pidCpGq b hGq ˝∆
˘

¯

δpaq

“ pidA b hG1CpGqqδpaq “ Eδpaq b 1CpGq
Next, since δ is a ˚-homomorphism and hG is a state, it is clear that Eδ is a completely contractive

positive map. It is straightforward to see that Eδ is a projection and a Aδ-bimodule map. Namely,
given a, a1 P Aδ and c P A we write

Eδpaq “ pidA b hGqδpaq “ pidA b hGqpab 1CpGqq “ a

Eδpaca1q “ EδpaqEδpcqEδpa1q “ aEδpcqa1

Remark that Eδ is also a non-degenerate map because if tenunPN is an approximate unit for A,
then for every b P A we have

lim
nÑ8

Eδpenqb “ lim
nÑ8

pidA b hGqpδpenqpbb 1CpGqqq “ b

Let us check the δ-invariance of Eδ. Given a P A we have to show that pEδ b idCpGqqδpaq “
Eδpaq b 1CpGq. Namely,

pEδ b idCpGqqδpaq “ ppidA b hGqδ b idCpGqqδpaq “ pidA b hG b idCpGqqpδ b idCpGqqδpaq
“ pidA b hG b idCpGqqpidA b∆qδpaq “ pidA b phG b idCpGqq∆qδpaq
“ pidA b hG1CpGqqδpaq “ pidA b hGqδpaq b 1CpGq “ Eδpaq b 1CpGq

Finally, suppose that δ is an ergodic action. In this case we have Aδ “ C1A and the conditional
expectation Eδ becomes a state because Eδp1Aq “ 1 and it is completely positive (so positive). �
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1.4.2.10 Definition. Let G “ pCpGq,∆q be a compact quantum group and pA, δq a G-C˚-algebra.
Given an irreducible representation x P IrrpGq, the x-isotypical component of δ or the x-spectral
space of δ is the following vector space

Morpx, δq :“ tT : Hx ÝÑ A | T is linear such that δpT pξqq “ pT b idCpGqqwxpξ b 1CpGqqu

By abuse of language, we call x-spectral space of δ also the following vector subspace of A

Ax :“ spantT pξq | ξ P Hx, T PMorpx, δqu

The Podleś subalgebra of A or algebraic core of A is the following vector subspace of A

AG :“ spantAx | x P IrrpGqu

1.4.2.11 Remarks. 1. By definition it is clear that the ε-spectral space of δ is exactly the fixed
points space of A, that is, Morpε, δq “ Aδ.

2. Given an irreducible representation x P IrrpGq, there exists a natural identification

Kx –Morpx, δq,

where Kx :“ tX P Hx b A | pid b δqpXq “
“

X
‰

12

“

wx
‰

13u. This identification is done by
associating to any X P Kx the following linear map

TX : Hx ÝÑ A
ξ ÞÝÑ TXpξq :“ Xpξ b 1Aq

3. Given an irreducible representation x P IrrpGq, the x-spectral space of δ, Ax, is a closed
subspace of A. Indeed, let tξx1 , . . . , ξxnxu be an orthonormal basis for Hx that diagonalizes the
canonical operator Qx with positive eigenvalues tλxi ui“1,...,nx and define the following element
of CpGq (actually, an element of PolpGq)

χx :“ dimqpxq
nx
ÿ

i“1
wxξx

i
,pQxq´1pξx

i
q P CpGq,

where wxξx
i
,pQxq´1pξx

i
q

:“ pωξx
i
,pQxq´1pξx

i
q b idCpGqqpw

xq, for all i “ 1, . . . , nx (recall Remark
1.3.1.8 for these notations). Notice that pQxq´1pξxi q “

1
λx
i
ξxi (recall Remarks 1.3.1.31), so that

wxξx
i
,pQxq´1pξx

i
q
“ 1

λx
i
wxξx

i
,ξx
i
, for all i “ 1, . . . , nx. Define now the following linear map

Ex : A ÝÑ A
a ÞÝÑ Expaq :“ pidA b hGqpδpaqp1A b χ˚xqq

We claim that
Ax “ ta P A | Expaq “ au,
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which yields the closedness of Ax in A. Namely, given any linear map
T PMorpx, δq and any vector ξ P Hx we have

ExpT pξqq “ pidA b hGqpδpT pξqqp1A b χ˚xqq
“ pidA b hGq

`

pT b idCpGqqw
xpξ b idCpGqqp1A b χ˚xq

˘

“ pT b hGqw
x
´

ξ b dimqpxq
nx
ÿ

i“1
pwxξx

i
,pQxq´1pξx

i
qq
˚
¯

“ pT b hGq
´

ÿ

l,k

ml,k b w
x
l,k

¯´

ξ b dimqpxq
nx
ÿ

i“1

1
λxi
pwxξx

i
,ξx
i
q˚
¯

“
ÿ

l,k

T pml,kpξqq b dimqpxq
ÿ

l,k,i

1
λxi
hGpw

x
l,kpw

x
ξx
i
,ξx
i
q˚q

“
ÿ

l,k

T pml,kpξqq b dimqpxq
ÿ

l,k,i

1
λxi

δl,ipQxqi,k
dimqpxq

“
ÿ

l,k

T pml,kpξqq b
ÿ

l,k

1
λxl
pQxql,k

“
ÿ

k

T pmk,kpξqq b
ÿ

k

1
λxk
pQxqk,k “ T pξq b

1
dimqpxq

dimqpxq “ T pξq,

which shows that Ax Ă ta P A | Expaq “ au by linearity. Conversely, given any a P A such
that Expaq “ a and any η P Hx define the following linear map

T : Hx ÝÑ A
ξ ÞÝÑ T pξq :“ pidA b hGqpδpaqp1A b pwxξ,ηq˚qq,

so that we have

δpT pξqq “ δ
´

pidA b hGqpδpaqp1A b pwxξ,ηq˚qq
¯

“ pidA b idCpGq b hGqpδ b idCpGqqδpaqp1A b 1A b pwxξ,ηq˚q
“ pidA b idCpGq b hGqpidA b∆qδpaqp1A b 1A b pwxξ,ηq˚q

“

´

idA b
`

pidCpGq b hGq ˝∆
˘

¯

δpaqp1A b pwxξ,ηq˚q

“

nx
ÿ

i“1
pidA b idCpGq b hGq

“

δpaq
‰

13p1A b w
x
ξi,ξ b pw

x
ξi,ηq

˚q

“

nx
ÿ

i“1
T pξiq b w

x
ξi,ξ “ pT b idCpGqqw

xpξ b 1CpGqq,

where tξx1 , . . . , ξxnxu is an orthonormal basis of Hx. This shows that T PMorpx, δq. Since χx
is a linear combination of wxξ,η’s, then we deduce that ExpAq Ă Ax.

1.4.2.12 Proposition. Let G “ pCpGq,∆q be a compact quantum group and pA, δq a G-C˚-algebra.
The algebraic core of A, AG, is a dense ˚-subalgebra of A which is unital whenever A is unital.

Moreover, we have that
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i) the action δ : A ÝÑ Ab CpGq restricts to an action of pPolpGq,∆|q on AG, say

δPolpGq : AG ÝÑ AG d PolpGq,

which is ergodic whenever δ is ergodic.

ii) the canonical conditional expectation Eδ is faithful on AG. Consequently, the algebraic core of
A admits the following spectral decomposition

AG “
à

xPIrrpGq
Ax

Proof. First of all, if A is unital, then AG contains the unit of A because given the trivial
representation ε P IrrpGq (which is represented by the element 1 b 1CpGq P C b CpGq) the
linear map

Tε : C ÝÑ A
z ÞÝÑ Tεpzq :“ z ¨ 1A

is clearly a linear map in Morpε, δq. Indeed,

δpTεpzqq “ δpz ¨ 1Aq “ zp1A b 1CpGqq “ pTε b idCpGqqp1b 1CpGqqpz b idCpGqq

Hence, 1A “ Tεp1q P AG. Next, given two irreducible representations x, y P IrrpGq, consider the
elements a :“ T pξq, b :“ Spηq P AG with T P Morpx, δq, S P Morpy, δq and ξ P Hx, η P Hy. Note
that

ab :“ m ˝ pT b Sqpξ b ηq,
wherem denotes the multiplication homomorphismm : AGdAG ÝÑ AG. Observe thatm˝pTbSq P
Morpxj y, δq since for every ξ P Hx and η P Hy we have

δ
`

m ˝ pT b Sqpξ b ηqq “ δpT pξqqδpSpηq
˘

“

“ pT b idCpGqqw
xpξ b idCpGqqpS b idCpGqqw

ypη b idCpGqq

“ p
“

T
‰

1

“

S
‰

2 b idCpGqqp
“

wx
‰

13

“

wy
‰

23qpξ b η b idCpGqq

“ pm ˝ pT b Sq b idCpGqqpw
x j wyqpξ b η b idCpGqq

This shows that AG is a subalgebra of A. Next, given x P IrrpGq and a :“ T pξq with
T P Morpx, δq and ξ P Hx, we define a˚ :“ T`pξq˚, where T` : ξ˚ ÞÑ pT pξqq˚, for all ξ P Hx.
Observe that

δpT`pξ˚qq “ δ
`

pT pξqq˚
˘

“

´

pT b idCpGqqw
xpξ b idCpGqq

¯˚

“ pT` b idCpGqqw
xpξ˚ b idCpGqq,

so that η˚ ÞÑ T pηq˚ is in Morpx, δq. This shows that AG is a ˚-subalgebra. Finally, AG is dense in
A. Indeed, by cancellation property of δ and since PolpGq is dense in CpGq we have

A “ Ab C Ă Ab CpGq “ rδpAqp1b CpGqqs “ rδpAqp1b PolpGqqs

This implies that A Ă
“

pidA b hGqδpAqp1 b PolpGqq
‰

. By Remark 1.4.2.11 the space pidA b
hGqδpAqp1b PolpGqq is contained in AG Ă A, whence AG is dense in A.

Moreover,



1.4. Actions of Quantum Groups 109

i) let us show that the action δ restricts to an action δPolpGq : AG ÝÑ AG d PolpGq, which is
ergodic whenever δ is ergodic. Namely, given an irreducible representation x P IrrpGq consider
the element a :“ T pξq P AG with T PMorpx, δq and ξ P Hx and write

δpaq “ δpT pξqq “ pT b idCpGqqw
xpξ b idCpGqq P Ax d PolpGq Ă AG d PolpGq,

so that δPolpGq is well-defined and it is straightforward that δ intertwines the co-multiplication
of PolpGq. Let us check the co-unit condition, that is, the formula

pidAG b εq ˝ δ “ idAG ,

where ε is co-unit of PolpGq. Given an irreducible representation x P IrrpGq consider the
element a :“ T pξq P AG with T PMorpx, δq and ξ P Hx and write

pidAG b εqδpT pξqq “ pidAG b εqpT b idCpGqqw
xpξ b idCpGqq

“ T
´

pidHx b εqw
xpξ b idCpGqq

¯

“ T pξq,

where the last equality can be shown by taken an orthonormal basis of Hx and by applying
the definition of ε from Proposition 1.3.1.28.

ii) let us show that the canonical conditional expectation Eδ is faithful on AG. Namely, let a P AG
be an element such that Eδpa˚aq “ 0. Consider any positive linear form φ : A ÝÑ C and write

0 “ φpEδpa˚aqq “ φ
`

pidA b hGqδpa
˚aq

˘

“ hG
`

pφb idCpGqqδpa
˚aq

˘

,

where we observe that pφ b idCpGqqδpa
˚aq P PolpGq because δ restricts to an action of

pPolpGq,∆|q on AG. Besides, it is a positive element (because φ is positive) and hG is a
state which is faithful on PolpGq, so it must be pφb idCpGqqδpa˚aq “ 0. This is true for every
positive linear form φ and δpa˚aq “ δpaq˚δpaq is a positive element in AbCpGq. Hence it must
be δpa˚aq “ 0. Apply the co-unit of PolpGq: 0 “ pidA b εqδpa˚aq “ a˚a, so it must be a “ 0.
Finally, remark that we have shown by the way that δpAxq Ă Ax d PolpGq. Hence, given two
non-equivalent irreducible representations, say x, y P IrrpGq we have that Eδpa˚bq “ 0, for all
a P Ax and all b P Ay thanks to the orthogonality relations, which yields the decomposition of
the statement.

�

One of the main achievement in spectral theory of quantum groups is the following theorem
due to F. Boca [25] and improved later by in J. Bichon, A. De Rijdt and S. Vaes in [23] and by R.
Tomatsu in [190]. See for instance Theorem 6.11 in [49] for a proof.

1.4.2.13 Theorem. Let G “ pCpGq,∆q be a compact quantum group and pA, δq a G-C˚-algebra.
If δ is an ergodic action and x P IrrpGq is an irreducible representation of G, then the x-spectral
space of δ, Ax, is finite dimensional and we have

dimpAxq ď dimqpxq

Next, it is advisable to establish some notations and auxiliary results, which will be applied
later on in this dissertation. It is important to recall notations and formulas of Remarks 1.3.1.31.
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1.4.2.14 Definition. Let G be a compact quantum group and pA, δq a unital G-C˚-algebra.
Consider irreducible representations of G, say x, y, z P IrrpGq and an intertwiner Φ PMorpz, xj yq.
Given X P Kx and Y P Ky we define their spectral product with respect to Φ as the element

X b
Φ
Y :“

´

“

X
‰

13

“

Y
‰

23

¯

pΦb 1Aq P Kz,

where
“

X
‰

13 and
“

Y
‰

23 are the corresponding legs of X and Y in Hx bHy bA.

1.4.2.15 Remarks. 1. Let us check that X b
Φ
Y is indeed an element of the z-spectral space Kz

pidb δqpX b
Φ
Y q “ pidb δqp

“

X
‰

13

“

Y
‰

23qpΦb 1Aq

“ pidb δqp
“

X
‰

13qpidb δqp
“

Y
‰

23qpΦb 1Aq
“
““

X
‰

13

‰

13

“

wx
‰

14

““

Y
‰

23

‰

23

“

wy
‰

24pΦb 1Aq
“
““

X
‰

13

‰

13

““

Y
‰

23

‰

23

“

wx
‰

14

“

wy
‰

24pΦb 1Aq
“
““

X
‰

13

‰

13

““

Y
‰

23

‰

23

“

wxjy
‰

124pΦb 1Aq
“
““

X
‰

13

‰

13

““

Y
‰

23

‰

23pΦb 1CpGqq
“

wz
‰

13

“
“

X b
Φ
Y
‰

12

“

wz
‰

13

2. Given X P Kx and Y P Ky, the analogous computation as above yields the following formula

pidb δq
´

“

X
‰

13

“

Y
‰

23

¯

“

”

“

X
‰

13

“

Y
‰

23

ı

12

“

wxjy
‰

13,

where the legs of the right hand side of the identity are considered in Hxjy b A b CpGq.
Hence, the decomposition of xjy in direct sum of irreducible representations, say tzkuk“1,...,r
for some r P N yields that

“

X
‰

13

“

Y
‰

23 P
r
à

k“1
Kzk

Namely, by virtue of the decomposition x j y “
r
À

k“1
zk we have the identification Hxjy –

Hz1 ‘ . . . ‘ Hzr . If tpkuk“1,...,r Ă BpHxjyq denotes the set of mutually orthogonal finite-
dimensional projections with sum idHxjy , then by construction we have

wzk “ wxjyppk b 1CpGqq, @k “ 1, . . . , r

“

X
‰

13

“

Y
‰

23 “
r
ÿ

k“1
ppk b 1Aq

´

“

X
‰

13

“

Y
‰

23

¯

“

r
ÿ

k“1
ppk b 1Aq

´

“

X
‰

13

“

Y
‰

23

¯

ppk b idAq,

where we remark that

pidb δq
´

ppk b 1Aq
´

“

X
‰

13

“

Y
‰

23

¯

ppk b 1Aq
¯

“

”

ppk b 1Aq
´

“

X
‰

13

“

Y
‰

23

¯ı

12

“

wzk
‰

13,

for all k “ 1, . . . , r thanks to the formula above.
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1.4.2.16 Definition. Let G be a compact quantum group and pA, δq a unital G-C˚-algebra. Given
an irreducible representation x P IrrpGq and an element X P Kx, we define its spectral conjugate
as the element

X# :“ p˚ ˝ Jx b idAqpX˚q P Kx

1.4.2.17 Remarks. 1. Let us write in coordinates the spectral conjugate X# (recall Remarks
1.3.1.31). Namely, given an irreducible representation of G, say x P IrrpGq, fix an orthonor-
mal basis tξx1 , . . . , ξxnxu of Hx that diagonalizes the canonical operator Qx “ J˚x Jx and let
tωx1 , . . . , ω

x
nxu be its dual basis in the dual space Hx.

If the coordinate expression of an element X P Kx Ă Hx bA is given by X “
nx
ř

i“1
ωxi b ai, for

some ai P A, for all i “ 1, . . . , nx; then we have

X# “

nx
ÿ

i“1
Jxpξ

x
i q
˚ b a˚i “

nx
ÿ

i“1
p
a

λxi ξ
x
i q
˚ b a˚i ,

where tξx1 , . . . , ξxnxu is an orthonormal basis of Hx as in Remarks 1.3.1.31.

2. We must check that X# is indeed an element of the x-spectral space Kx.

pidb δqpX#q “ pidb δq
´

nx
ÿ

i“1
Jxpξ

x
i q
˚ b a˚i

¯

“

nx
ÿ

i“1
p
a

λxi ξ
x
i q
˚ b δpa˚i q

“

nx
ÿ

i“1

´

a

λxi pω
x
i q
˚

a

λxi

¯

b δpaiq
˚ “

´

nx
ÿ

i“1
ωxi b δpaiq

¯˚

“

´

pidb δqpXq
¯˚

“

´

“

X
‰

12

“

wx
‰

13

¯˚

“

´

“

X
‰

12

¯˚´
“

wx
‰

13

¯˚

“

´

nx
ÿ

i“1
ωxi b ai b 1CpGq

¯˚
“

wx
‰

13

“

nx
ÿ

i“1

´

a

λxi ω
x
i

a

λxi

¯˚

b a˚i b 1CpGq
“

wx
‰

13

“

nx
ÿ

i“1
p
a

λxi ξ
x
i q
˚ b a˚i b 1CpGq

“

wx
‰

13

“

nx
ÿ

i“1
Jxpξ

x
i q
˚ b a˚i b 1CpGq

“

wx
‰

13 “
“

X#‰

12

“

wx
‰

13

3. Moreover, the association X ÞÝÑ X# is anti-linear thanks to the anti-linearity of Jx and the
vector space structure of the dual space Hx. Indeed, given λ P C we write



112 CHAPTER 1. Background

pλ Xq# “
´

λ
nx
ÿ

i“1
ωxi b ai

¯#
“

´

nx
ÿ

i“1
λ ωxi b ai

¯#

p1q
“

nx
ÿ

i“1
Jxpλ ξ

x
i q
˚ b a˚i “

nx
ÿ

i“1
λ Jxpξ

x
i q
˚ b a˚i

“ λ
nx
ÿ

i“1
Jxpξ

x
i q
˚ b a˚i “ λ X#,

where in p1q we use the fact that the transition between Hx and H˚x is anti-linear (recall
Section 1.1). Notice that the same formula is true if we introduce the scalar λ P C in the
second term of the tensor product.

4. Observe that we can consider the canonical intertwiners Φx P Morpε, x j xq and Φx P

Morpε, xj xq. In this case we have by construction that

X b
Φx
X# P Kε and X# b

Φx
X P Kε

Recall that, by definition, we have Kε “ Aδ. Hence, if δ is an ergodic action of G on A, we
have Kε “ C1A and X b

Φx
X#, X# b

Φx
X are scalar multiples of 1A. More precisely, we have

the following coordinate expressions

X b
Φx
X# “

ÿ

i,j

ωxi b Jxpξ
x
j q
˚ ˝ Φx b aia˚j “

ÿ

i,j

ωxi b p
b

λxj ξ
x
j q
˚ ˝ Φx b aia˚j

“
ÿ

i,j

ωxi b
b

λxj ω
x
j ˝ Φx b aia˚j

“
ÿ

i,j

ωxi b
b

λxj ω
x
j ˝

´

nx
ÿ

k“1

a

λxk ξ
x
k b ξ

x
k

¯

b aia
˚
j

“
ÿ

i,j

a

λxk δi,k b
b

λxj δj,k b aia
˚
j “

nx
ÿ

i“1
λxi aia

˚
i

X# b
Φx
X “

ÿ

i,j

Jxpξ
x
j q
˚ b ωxi ˝ Φx b a˚j ai “

ÿ

i,j

p

b

λxj ξ
x
j q
˚ b ωxi ˝ Φx b a˚j ai

“
ÿ

i,j

b

λxj ω
x
j b ω

x
i ˝ Φx b a˚j ai

“
ÿ

i,j

b

λxj ω
x
j b ω

x
i ˝

´

nx
ÿ

k“1

1
a

λxk
ξxk b ξ

x
k

¯

b a˚j ai

“
ÿ

i,j

a

λxj
a

λxk
δj,k b δi,k b aia

˚
j “

nx
ÿ

i“1
a˚i ai
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1.4.2.18 Lemma. Let G be a compact quantum group and pA, δq a ergodic G-C˚-algebra. Given
irreducible representations x, y P IrrpGq and non-zero elements X P Kx, Y P Ky; then there exist
an irreducible representation z P IrrpGq and an intertwiner Φ PMorpz, xj yq such that Xb

Φ
Y ‰ 0.

Proof. Let’s fix orthonormal basis tξx1 , . . . , ξxnxu of Hx and tξy1 , . . . , ξynyu of Hy that diagonalizes
the canonical operators Qx “ J˚x Jx and Qy “ J˚y Jy, respectively; with eigenvalues tλxi ui“1,...,nx
and tµyj uj“1,...,ny , respectively. Denote by tωx1 , . . . , ωxnxu and tω

y
1 , . . . , ω

y
nyu the corresponding dual

basis of Hx and Hy, respectively. The elements X and Y are written with respect to these basis
under the form

X “

nx
ÿ

i“1
ωxi b ai and Y “

ny
ÿ

j“1
ωyj b bj ,

for some ai, bj P A for each i “ 1, . . . , nx and j “ 1, . . . , ny so that their spectral product with
respect to Φ is given by

X b
Φ
Y “

ÿ

i,j

ωxi b ω
y
j ˝ Φb aibj

Suppose that for all irreducible representation z P IrrpGq and all intertwiner Φ PMorpz, xj yq
we have X b

Φ
Y “ 0, that is,

X b
Φ
Y “

ÿ

i,j

ωxi b ω
y
j ˝ Φb aibj “ 0

Multiplying by Φ˚ b 1A by the right, the equality still holds
ÿ

i,j

ωxi b ω
y
j ˝ ΦΦ˚ b aibj “ 0 (1.4.1)

This is true for every irreducible representation z P IrrpGq and every intertwiner Φ PMorpz, xj
yq. Given the unitary representation xjy, let’s consider its decomposition in direct sum of irreducible
representations (recall Proposition 1.3.1.21). Given z Ă x j y an irreducible representation of
this decomposition, denote by pxjyz P BpHx bHyq the corresponding orthogonal finite-dimensional
projection such that

ÿ

zĂxjy

pxjyz “ idHxbHy

For every k “ 1, . . . , dim
`

Morpz, xj yq
˘

consider a family of intertwiners Φk PMorpz, xj yq
such that

Φ˚kΦk “ idHz and
dim

`

Morpz,xjyq
˘

ÿ

k“1
ΦkΦ˚k “ pxjyz

Hence we write down the identity (1.4.1) above for these intertwiners Φk for each k “

1, . . . , dim
`

Morpz, xj yq
˘

and sum over k. We get
ÿ

i,j

ωxi b ω
y
j ˝ p

xjy
z b aibj “ 0
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Next, we can sum over z Ă xj y (since this is true for every irreducible representation of G).
We get

ÿ

i,j

ωxi b ω
y
j b aibj “ 0, (1.4.2)

which implies that aibj “ 0, for all i “ 1, . . . , nx and all j “ 1, . . . , ny.
Since δ is an ergodic action by assumption we have that

X# b
Φx
X “

nx
ÿ

i“1
a˚i ai “ λ 1A and Y b

Φy
Y # “

ny
ÿ

j“1
µyj bjb

˚
j “ µ 1A,

for some λ, µ P C. Since X and Y are supposed to be non-zero, there exist at least one i “ 1, . . . , nx
and one j “ 1, . . . , ny such that ai ‰ 0 and bj ‰ 0. Consequently, X# b

Φx
X ‰ 0 and Y b

Φy
Y # ‰ 0.

In other words, we have λ ‰ 0 and µ ‰ 0. Using equation (1.4.2) above, we get

0 ‰ λ µ “
´

nx
ÿ

i“1
a˚i ai

¯´

ny
ÿ

j“1
µyj bjb

˚
j

¯

“
ÿ

i,j

µyj a
˚
i aibjb

˚
j “ 0,

a contradiction. �

1.4.2.19 Remark. It is important to observe the following. The argument used in the proof of
the preceding lemma shows that the irreducible representation z P IrrpGq and the intertwiner
Φ PMorpz, xj yq such that X b

Φ
Y ‰ 0 are related to xj y in the following way. Given z Ă xj y,

denote by pxjyz P BpHx b Hyq the corresponding orthogonal finite dimensional projection and
consider a family of intertwiners Φk PMorpz, xj yq such that Φ˚kΦk “ idHz and

ř

k

ΦkΦ˚k “ pxjyz ,

for all k “ 1, . . . , dim
´

Morpz, xj yq
¯

. The preceding lemma guarantees that for every z Ă xj y

there exists an intertwiner Φk PMorpz, xj yq such that X b
Φk
Y ‰ 0.

1.4.3 Induced actions from Discrete Quantum Subgroups
Induction functor concerning quantum groups is a delicate notion whose more general definition for
locally compact quantum groups can be found in Theorem 7.2 of [194]. However, the treatment of
the compact/discrete case yields a more concrete description (see Section 3 of [208] for a detailed
exposition). Here we include an overview of this approach for the convenience of the exposition.

First of all, we need a notion of quantum subgroup. For the compact case, this notion was
introduced by P. Podleś in [157] and further studied by S. Wang in [215], [219]. The general locally
compact case is more involved and there is no unanimous definition. S. Vaes introduced in [194] a
notion of closed quantum subgroup in the context of von Neumann algebras in order to develop all
the induction and homogeneous spaces machinery and in [48] S. L. Woronowicz proposed a different
approach in the context of C˚-algebras and closer to the initial idea of P. Podleś. Fortunately, both
definitions coincide in the case of discrete quantum groups, which is specially interesting for this
dissertation and admits, by the way, a more concrete and algebraic picture as we can see in [207].

1.4.3.1 Definition. Let G “ pCpGq,∆Gq and H “ pCpHq,∆Hq be two compact quantum groups.
We say that H is a compact quantum subgroup of G, denoted by H ă G, if there exists a surjective
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˚-homomorphism ρ : CmpGq� CmpHq such that

∆H ˝ ρ “ pρb ρq∆G

In this case we define the left and right coset spaces as

CpG{Hq :“ ta P CpGq | pidb ρq∆Gpaq “ ab 1CpGqu

CpHzGq :“ ta P CpGq | pρb idq∆Gpaq “ 1CpGq b au

respectively. We say that H is a normal (compact) quantum group of G if CpG{Hq “ CpHzGq.
The trivial quantum subgroup of G, denoted by E, is given by

E :“ pCpt‚uq,∆Eq – C

with the co-unit map εG : CmpGq� C as the corresponding surjective ˚-homomorphism.

1.4.3.2 Definition. Let pG “ pc0ppGq, p∆Gq and pH “ pc0ppHq, p∆Hq be two discrete quantum groups.
We say that pH is a discrete quantum subgroup of pG, denoted by pH ă pG, if there exists an injective
homomorphism of ˚-Hopf algebras ι : PolpHq ãÑ PolpGq.

Some important structural properties of discrete quantum subgroups are gathered in the following
theorem.

1.4.3.3 Theorem. Let pG and pH be discrete quantum groups such that pH ă pG.

i) (R. Vergnioux, [207]) There exists a faithful conditional expectation

EH : CrpGq ÝÑ CrpHq

which sends PolpGq to PolpHq such that

- pidb EHq ˝∆G “ ∆H ˝ EH “ pEH b idq ˝∆G

- hH ˝ EH “ hG, so that pidb EHqpw
xq “

"

wx, if x P IrrpHq
0, otherwise , for all x P IrrpGq.

ii) (P. Fima, [62]) Define the central projection pH :“
ř

zPIrrpHq
pz. Then we have that

- p∆GppHqppH b 1q “ pH b pH,

- M
`

c0ppHq
˘

“ pH
`

M
`

c0ppGq
˘˘

,

- p∆Hpaq “ p∆GpaqppH b pHq, for all a P c0ppGq,

- if phL,G denotes the left Haar weight for pG, then the map a ÞÑ phL,G
`

pHpaq
˘

for all a P c0ppGq,
defines a left Haar weight for pH and it is denoted by phL,H.

The definition of discrete quantum subgroup admits several equivalent formulations which are
useful in practice. We refer to [48] and [194] for more details about this notion for general locally
compact quantum groups.
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1.4.3.4 Proposition. Let pH and pG be two discrete quantum groups. The following assertions are
equivalent.

i) pH is a discrete quantum subgroup of pG, pH ă pG.

ii) ReppHq is a full subcategory of ReppGq containing the trivial representation and stable by
direct sums, tensor product and adjoint operations.

iii) There exists an injective ˚-homomorphism ιrH : CrpHq ãÑ CrpGq that intertwines the co-
multiplications.

iv) There exists an injective ˚-homomorphism ιmH : CmpHq ãÑ CmpGq that intertwines the co-
multiplications.

v) There exists a non-degenerate ˚-homomorphism pρ : c0ppGq ÝÑMpc0ppHqq such that pρpc0ppGqq “
c0ppHq and that intertwines the co-multiplications.

vi) There exists a normal injective ˚-homomorphism rι : L8pHq ãÑ L8pGq that intertwines the
co-multiplications.

Proof. - piq ô piiq. This is true by virtue of Tannaka-Krein-Woronowicz duality (see Theorem
B.3.16). In addition, the Tannaka-Krein reconstruction theorem of Woronowicz describe
explicitly the discrete quantum subgroup pH in terms of the corresponding full subcategory
ReppHq. Namely, c0ppHq is obtained as the sum of matrix blocks of c0ppGq corresponding to
the irreducible representations in IrrpHq (see Remark B.3.17).

- piq ñ piiiq. Since we have an injective homomorphism of ˚-Hopf algebras ι : PolpHq ãÑ PolpGq,
then we obtain by completion a subalgebra A :“ ιpPolpHqq of CrpGq which is stable under
the co-multiplication of G (that is, ∆GpAq Ă AbA). Hence pA,∆Gq is a compact quantum
group. Recall that the Haar state of G is faithful on CrpGq, so its restriction is still faithful
on A. We deduce that A “ CrpHq. Notice that the inclusion of C˚-algebras CrpHq ãÑ CrpGq
is compatible with the co-multiplications by construction.

- piq ð piiiq. If A is a C˚-subalgebra of CrpGq stable under the co-multiplication of G such
that H :“ pA,∆q is a compact quantum group, then A “ CrpHq because its Haar state is
faithful. Hence any representation of H induces a representation of G and so pH is a discrete
quantum subgroup of pG.

- piq ñ pivq. Since we have an injective homomorphism of ˚-Hopf algebras ι : PolpHq ãÑ PolpGq,
then we identify PolpHq to a ˚-Hopf subalgebra of PolpGq, namely PolpHq – ιpPolpHqq Ă
PolpGq.
By universal property, the homomorphism of ˚-Hopf algebras ι : PolpHq ãÑ PolpGq Ă CmpGq
extends to a homomorphism of C˚-algebras, say ιmH : CmpHq ÝÑ CmpGq, which intertwines
the co-multiplications. We have to show that ιmH is still injective. For this, we shall show that
CmpHq “ C˚pιpPolpHqqq, which is straightforward by universal property.

- piq ð pivq. This is straightforward because the inclusion CmpHq ãÑ CmpGq intertwining the
co-multiplications yields, by definition of the maximal compact quantum groups, an obvious
inclusion of ˚-Hopf algebras PolpHq ãÑ PolpGq.
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- piiq ñ pvq. As explained in the equivalence piq ô piiq above, c0ppHq is obtained as the sum
of matrix blocks of c0ppGq corresponding to the irreducible representations in IrrpHq by the
Tannaka-Krein reconstruction theorem of Woronowicz. More precisely, we have

c0ppGq “
c0
à

xPIrrpGq
BpHxq and c0ppHq “

c0
à

xPIrrpHq
BpHxq Ă c0ppGq

Hence, we consider the canonical surjection (so a non-degenerate ˚-homomorphism) pρ :
c0ppGq� c0ppHq ĂMpc0ppHqq given by the central projection pH “

ř

zPIrrpHq
pz. In addition, pρ

intertwines the co-multiplications by construction.

- pvq ñ pviq. See Theorem 3.3, Theorem 3.6 and Theorem 6.2 in [48].

- pviq ñ piq. Recall that L8pHq :“ CrpHq2 and L8pGq :“ CrpGq2 (see Remark 1.3.2.10), where

CrpHq “ PolpHq
||¨||BpL2pHqq

Ă PolpHq
σ´w

“ CrpHq2

CrpGq “ PolpGq
||¨||BpL2pGqq

Ă PolpGq
σ´w

“ CrpGq2

Since rι : L8pHq ãÑ L8pGq is a normal injective ˚-homomorphism, then by continuity it
restricts to an injective ˚-homomorphism ι : PolpHq ãÑ PolpGq. Since rι intertwines the
co-multiplications by assumption, then ι is a homomorphism of ˚-Hopf algebras.

�

1.4.3.5 Remarks. 1. Let pG, pH be discrete quantum groups. If pH ă pG is a discrete quantum
subgroup, then we have the canonical surjection pρ : c0ppGq Ñ Mpc0ppHqq by the preceding
proposition. Assume that A is any pG-C˚-algebra with (left) action α : A ÝÑ ĂMpc0ppGq bAq.

Then we can restrict the action α in order to have an action α
pH of pH on A. This means

precisely that the composition with the canonical surjection pρ yields an action of pH on A,

α
pH : A α

ÝÑ ĂMpc0ppGq bAq
pρbidA
ÝÑ ĂMpc0ppHq bAq

Routine computations show that the pair pA,α
pHq satisfies Definition 1.4.1.1.

2. Let pG, pH be discrete quantum groups. If pH ă pG is a discrete quantum subgroup, then we have
CmpHq Ă CmpGq by the preceding proposition. Assume that A is any H-C˚-algebra with
(right) action δ : A ÝÑMpAb CmpHqq. Since CmpHq Ă CmpGq, we can obviously extend δ
into a action of G on A, say rδ : A ÝÑMpAb CmpHqq ĂMpAb CmpGqq. Observe that rδ is
ergodic whenever δ is ergodic.
For this reason, we write IndGHpδq :“ IndGHpA, δq for the same C˚-algebra A equipped now
with the action rδ. We must be careful to not mislead IndGHp¨q with Ind

pG
pH
p¨q, which will be

defined in Theorem 1.4.3.8 below. The difference will be clear by the context.
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Let us summarize the induction process in the quantum setting following [208]. For the full
details of the next results, we refer to Section 3 in [208]. It is worth mentioning that the construction
given in [208] uses the algebraic approach for quantum groups in the sense of A. Van Daele. Namely,
if G is a compact quantum group, the algebraic level of the right leg of WG, PolppGq :“ A0pWGq,
must be regarded as a dense multiplier Hopf ˚-algebra inside c0ppGq. For more details about these
notions we refer to the original articles [201], [202] and to Chapter 2 of [188].

1.4.3.6 Definition. Let pH “ pc0ppHq, p∆Hq be a discrete quantum subgroup of a discrete quantum
group pG “ pc0ppGq, p∆Gq. The algebra of all functions on the homogeneous space pG{pH is defined as

FppG{pHq :“ ta PM
`

PolppGq
˘

| pidd pρqp∆Gpaq “ ad 1u,

where pρ : c0ppGq � Mpc0ppHqq is the canonical projection and M
`

PolppGqq denotes the algebraic
multipliers of PolppGq in the sense of A. Van Daele [202]. Moreover we define

PolpG{Hq :“ PolpGq d
PolpHq

C

1.4.3.7 Remark. Notice that both PolpGq and C are PolpHq-modules. Indeed, PolpHq acts on
PolpGq via the canonical injection ι : PolpHq ãÑ PolpGq and PolpHq acts on C via the co-unit
εH : PolpHq ÝÑ C.

In order to state the definition of induced actions by discrete quantum subgroups, we need some
nomenclature. Consider a discrete quantum subgroup pH of a discrete quantum group pG (recall
Proposition 1.4.3.4 above)

- For each x P IrrpGq we define

PolpGqx :“ spantwxij | i, j “ 1, . . . , nxu Ă PolpGq

Hence, by definition of tensor product of representations, we have

PolpGqx ¨ PolpGqy “
à

zĂxjy

PolpGqz,

for all x, y P IrrpGq.

- We define the following equivalence relation on IrrpGq: given x, y P IrrpGq

x „
L
y ô y Ă xj z ô z Ă xj y, for some z P IrrpHq

In this case, we write IrrpGq{ „
L

:“ IrrpGq{IrrpHq for the corresponding quotient space.
Likewise, given x, y P IrrpGq we define

x „
R
y ô y Ă z j xô z Ă y j x, for some z P IrrpHq

In this case, we write „
R
zIrrpGq :“ IrrpHqzIrrpGq for the corresponding quotient space.
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- For every class rxs P IrrpGq{ „
L
we define

PolpGqrxs :“
à

x1Prxs

PolpGqx1

In particular, we have PolpGqrεs “ PolpHq.

- With these notations we have

PolpGq “
à

rxsPIrrpGq{„
L

PolpGqrxs and MpPolppGqq “
ź

rxsPIrrpGq{„
L

BpHxq

- Given x P IrrpGq, denote by px P MpPolppGqq the central projection on BpHxq, which is
associated to the identity in BpHxq. Next, given rxs P IrrpGq{ „

L
, we define

prxs :“
ÿ

x1Prxs

px1 PMpPolppGqq

Hence, by construction we have that
ř

rxsPIrrpGq{„
L

prxs “ id. Moreover, we can show that

prxs P FppG{pHq.

- We define the following spaces

FcppG{pHq :“
à

rxsPIrrpGq{„
L

prxs

´

FppG{pHq
¯

ĂMpPolppGqq and c0ppG{pHq :“ FcppG{pHq
||¨||BpL2pGqq

- If B is a ˚-algebra (resp. C˚-algebra), we define the following ˚-subalgebra of MpPolppGqdBq
- which denotes the algebraic multipliers of PolppGq dB in the sense of A. Van Daele [202] -
(resp. Mpc0ppGq bBq)

FppG, Bq :“
ź

xPIrrpGq
BpHxq dB

´

resp. cbppG, Bq :“
l8
à

xPIrrpGq
BpHxq bB Ă FppG, Bq

¯

If B is equipped with a (injective) left co-action of PolppHq, say β : B ÝÑ MpPolppHq d Bq,
then we define

FppG, BqpH :“ tf P FppG, Bq | p∆d idqpfq “ pidd βqpfqu,

where ∆ “ pidd pρqp∆G is the action of pH on pG by right translations. Remark that prxs d 1 is
central in MpFppG, BqpHq, for every rxs P IrrpGq{ „

L
. In particular, if B :“ C equipped with

the trivial co-action of PolppHq, then it is clear that FppG,CqpH “ FppG{pHq.
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1.4.3.8 Theorem-Definition. Let pH be a discrete quantum subgroup of a discrete quantum group
pG. If pB, βq is a pH-algebra, the algebraic induced algebra of pB, βq is the following pG-algebra,

alg.Ind
pG
pHpB, βq :“

à

rxsPIrrpGq{„
L

prxs

´

FppG, BqpH
¯

Ă FppG, BqpH

with action alg.IndpG
pH
pβq :“ p∆G d idB.

Besides, if pB, βq is a pH-C˚-algebra, we have that alg.IndpG
pH
pB, βq Ă cbppG, Bq. We define the

induced algebra of pB, βq as the closure of the algebraic induction inside cbppG, Bq, that is,

Ind
pG
pHpB, βq :“ alg.Ind

pG
pH
pB, βq ĂMpc0ppGq bBq

In other words, we have that

Ind
pG
pHpB, βq “

c0
à

xPIrrpGq
prxs

´

alg.Ind
pG
pHpB, βq

¯

,

which is a pG-C˚-algebra with action IndpG
pH
pβq :“ p∆G b idB.

In particular, if B “ C with the trivial action, then IndpG
pH
pCq “ c0ppG{pHq :“ alg.Ind

pG
pH
pCq.

1.4.3.9 Remark. As shown in Proposition 3.5 of [208], the preceding notion of induced pH-C˚-algebras
coincides with the analogous notion given by S. Vaes in Theorem 7.2 in [194] for the general case of
locally compact quantum groups and closed quantum subgroups. More precisely, using the same
notations as in Section 1.3.2, IndpG

pH
pBq is the unique C˚-subalgebra of

rB :“ tX PM
`

KpL2pGqq bB
˘

| X P pl8ppGq1 b 1q1 and p∆b idBqpXq “ pidb βqpXqu

such that

i) p∆b idB : IndpG
pH
pBq ÝÑMpc0ppGq b Ind

pG
pH
pBqq is an action of pG on IndpG

pH
pBq.

ii) p∆ b idB : rB ÝÑ Mpc0ppGq b Ind
pG
pH
pBqq is a well-defined ˚-homomorphism which is strictly

continuous on the unit ball of rB.

iii) IndpG
pH
pBq Ă rB is non-degenerate, meaning that

“

Ind
pG
pH
pBqpL2pGq bBq

‰

“ L2pGq bB.

Using this explicit description of induced C˚-algebras, we see that any pH-C˚-algebra B is a
retract of RespG

pH

´

Ind
pG
pH
pBq

¯

. In other words, there exist pH-equivariant homomorphisms

B ÝÑ Res
pG
pH

´

Ind
pG
pH
pBq

¯

and RespG
pH

´

Ind
pG
pH
pBq

¯

ÝÑ B, whose composition yields the identity on B.
Let us give more details of this retraction. Given b P B we claim that the element βpbq P

ĂMpc0ppHq b Bq is an element in rB. On the one hand, since pH ă pG then we have by Theorem
1.4.3.3 that M

`

c0ppHq
˘

“ pρ
`

M
`

c0ppGq
˘˘

“ pρpl8ppGqq so that it is clear that rβpbq, yb1s “ 0 for every
y P l8ppGq1, that is, βpbq P pl8ppGq1 b 1q1. On the other hand, using the formulae of Theorem 1.4.3.3
we write

pidbβqpβpbqq “ pp∆HbidBqβpbq “
`

p∆GppρbpρqbidB
˘

βpbq “
`

pidbpρqp∆GbidB
˘

βpbq “ p∆bidBqpβpbqq,
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which yields the claim and allows to define the following pH-equivariant homomorphism

B ÝÑ Res
pG
pH

´

Ind
pG
pH
pBq

¯

b ÞÝÑ βpbq

Next, we define the following homomorphism

Res
pG
pH

´

Ind
pG
pH
pBq

¯

ÝÑ B

x ÞÝÑ ppεb idBqpxq,

where pεH : c0ppHq ÝÑ C is the co-unit of pH (recall Remark 1.3.1.38). Notice that, according to
Note 1.4.1.2, all actions of discrete quantum groups are supposed to be injective. Hence, as we
have showed in Remarks 1.4.1.3, the formula ppεH b idBq ˝ β “ idB holds, which implies that the
preceding map is pH-equivariant and that B is a retract of RespG

pH

´

Ind
pG
pH
pBq

¯

.

1.5 Crossed Products by Discrete (Quantum) Groups
In order to study the Baum-Connes property for a quantum group, we have to deal with reduced
crossed products. This is why we have to define such a crossed product by a quantum group.
We can give a very general construction in the context of multiplicative unitaries in the sense of
Baaj-Skandalis (see for instance [7], [206], [188]). But using the rich representation theory of a
compact quantum group as we have presented in Section 1.3, we can give an explicit construction
of a crossed product by a discrete quantum group which is, by the way, very close to the classical
one. Actually we’re going to establish a universal property for the reduced crossed product by a
discrete quantum group that will be very useful for our purpose.

1.5.1 Classical crossed products
For more information about classical crossed products, we refer to Section 2 and Section 7.2 of [147]
or Section 4.1 of [29]. We include here a proof of the universal property of the reduced crossed product
by a discrete group for the convenience of the exposition. Afterwards, the quantum case will imitate
this construction. To this end it is advisable to recall the definition of strict completely positive
maps and the corresponding KSGNS construction (see Theorem A.3.11 and Remark A.3.12).

1.5.1.1 Theorem-Definition. Let Γ be a discrete group and pA,αq a Γ-C˚-algebra.
There exists a C˚-algebra P with a non-degenerate faithful ˚-homomorphism π : A ÝÑ P , a

group homomorphism u : Γ ÝÑ UpMpP qq and a non-degenerate completely positive KSGNS-faithful
map E : P ÝÑMpAq such that

i) uγπpaqu˚γ “ πpαγpaqq, for all γ P Γ and all a P A,

ii) P “ C˚xπpaquγ : a P A and γ P Γy,

iii) Epπpaquγq “ aδγ,e for all γ P Γ and all a P A,
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In addition, P is unique up to a canonical isomorphism meaning that for any C˚-algebra Q with a
triple pρ, v, E1q where ρ : A ÝÑ Q is a non-degenerate faithful ˚-homomorphism, v : Γ ÝÑ UpMpQqq
is a group homomorphism and E1 : Q ÝÑ MpAq is a strict completely positive KSGNS-faithful
map satisfying the analogous properties piq, piiq and piiiq above, there exists a (necessarily unique)
˚-isomorphism ψ : P ÝÑ Q such that

ψpπpaquγq “ ρpaqvγ ,

for all γ P Γ and all a P A. Moreover, E1 is a non-degenerate map and we have E “ E1 ˝ ψ.

The C˚-algebra P constructed in this way is called reduced crossed product of A by Γ and is
denoted by Γ ˙

α,r
A.

Proof. We construct P as an explicit C˚-algebra of operators. Given the group Γ, we consider
the left regular representation of Γ, λ : Γ ãÑ Bpl2pΓqq (which is a unitary faithful representation).
Consider the Hilbert A-module l2pΓq bA.

Define the homomorphisms π and u of the statement. For π we consider the representation of
A on l2pΓq bA “twisting” by the action α. More precisely, we put

π : A ÝÑ LApl2pΓq bAq
a ÞÝÑ πpaq

such that
πpaqpδγ b bq :“ δγ b αγ´1paqb,

for all b P A and all γ P Γ. Remark that this formula extends to the whole tensor product l2pΓq bA
because Γ acts by automophisms on A. Moreover, πpaq is well-defined as an adjointable operator
on l2pΓq b A for all a P A whose adjoint is given by πpaq˚ :“ πpa˚q, for all a P A. Indeed, given
γ P Γ and b, b1 P A we have

xπpaqpδγ b bq, δγ b b
1y “ xδγ b αγ´1paqb, δγ b b

1y “ xδγ , δγy
`

αγ´1paqb
˘˚
b1

“ xδγ , δγyb
˚αγ´1pa˚qb1 “ xδγ b b, δγ b αγ´1pa˚qb1y

“ xδγ b b, πpa
˚qpδγ b b

1qy,

for all a P A. Since Γ is acting on A by automorphisms, π is a faithful ˚-homomorphism and it is
non-degenerate by construction.

For u we consider the representation of Γ on l2pΓq bA induced by λ. Precisely,

u :“ λb idA : Γ ÝÑ LApl2pΓq bAq
γ ÞÝÑ uγ :“ λγ b idA

such that
uγpδγ1 b bq “ λγ b idApδγ1 b bq :“ λγpδγ1q b b “ δγγ1 b b,

for all b P A and all γ P Γ. By construction, u is a unitary representation of Γ.
In this situation, we easily check the formula uγπpaqu˚γ “ πpαγpaqq, for all γ P Γ and all a A.

Indeed,

uγπpaqu
˚
γ

´

δγ1 b b
¯

“ uγπpaq
´

δγ´1γ1 b b
¯

“ uγ

´

δγ´1γ1 b αγ1´1γpaqb
¯

“ δγ1 b αγ1´1γpaqb “ δγ1 b αγ1´1pαγpaqqb

“ πpαγpaqq
´

δγ1 b b
¯

,
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which is true for all b P A and all γ1 P Γ.
Thus we define

P :“ C˚xπpaquγ : a P A et γ P Γy Ă LApl2pΓq bAq

To conclude the construction of P as in the statement, we have to define a non-degenerate
completely positive KSGNS-faithful map E : P ÝÑMpAq satisfying the formula Epπpaquγq “ aδγ,e
for all γ P Γ and all a P A. With this aim in mind, we define directly the associated KSGNS
construction (recall Remark A.3.12). Namely, let us define the following A-linear map

Υ : A ÝÑ l2pΓq bA
a ÞÝÑ Υpaq :“ δe b a

Define the A-linear operator Υ˚ : λpCrΓsqδe dA ÝÑ A by the formula

Υ˚pλpδγqδe b aq “ χepγqa,

for all γ P Γ and all a P A, where χe is the positive type function defining the GNS construction
for the left regular representation λ, that is, the characteristic function of teu. Remark that Υ˚ is
bounded,

||Υ˚pλpδγqδe b aq||2 “ ||xΥ˚pλpδγqδe b aq,Υ˚pλpδγqδe b aqy||
“ ||xχepγqa, χepγqay|| “ |χepγq|

2 ||a˚a||

ď χepγ
´1γq||a˚a|| “ ||χepγ

´1γqa˚a||

“ ||xδe, λpδ
˚
γ δγqδeya

˚a||

“ ||xδe b a, λpδ
˚
γ δγqδe b ay||

“ ||xδe b a, λpδγq
˚λpδγqδe b ay||

“ ||xλpδγqδe b a, λpδγqδe b ay||

“ ||λpδγqδe b a||
2

Therefore we can extend the above formula to the whole l2pΓqbA obtaining a bounded operator
Υ˚ : l2pΓq bA ÝÑ A. Moreover, Υ and Υ˚ defined in this way are adjoint,

xΥpaq, λpδgqδe b by “ xδe b a, λpδgqδe b by “ χepγqa
˚b

“ xa, χepγqby “ xa,Υ˚pλpδγqδe b bqy,

for all γ P Γ and all a, b P A.
In other words, Υ is an adjointable operator between A and l2pΓq b A whose adjoint is Υ˚

satisfying the formulas above. Hence, we define the following completely positive map

E : P ÝÑ MpAq
X ÞÝÑ EpXq :“ Υ˚ ˝X ˝Υ

We assure that the triple pl2pΓq bA, id,Υq is the KSGNS construction for E. We only have to
prove that l2pΓq bA “ spantPΥpAqu. By construction, it is enough to show that δγ b a P PΥpAq,
for all a P A and all γ P Γ. Indeed,

δγ b a “ uγpδe b aq “ uγΥpaq “ lim
rÑ8

`

πperquγΥpaq
˘

P PΥpAq,
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where terurPN is an approximate unit for A, so that tπperqurPN is an approximate unit for πpAq.
Finally, it is straightforward that the formula Epπpaquγq “ aδγ,e holds for all γ P Γ and all

a P A. Indeed,

Epπpaquγqpbq “ Υ˚
`

πpaquγΥpbq
˘

“ Υ˚
`

πpaquγpδe b bq
˘

“ Υ˚
`

πpaqpδγ b bq
˘

“ Υ˚
`

δγ b αγ´1paqb
˘

“ χepγqαγ´1paqb “ δγ,eαγ´1paqb “ aδγ,e b,

where we have just used the definition of our KSGNS construction. Since this is true for all b P B,
we conclude the required formula.

Observe that, by KSGNS construction, E is just a strict completely positive map (recall Section
A.3 for the details). But, thanks to the property Epπpaqq “ a, for all a P A that we have just
proved, it is clear that E is actually a non-degenerate completely positive map as assured in the
statement.

Now, let us establish the uniqueness of such a construction. Suppose that Q is another C˚-
algebra with a triple pρ, v, E1q where ρ : A ÝÑ Q is a non-degenerate faithful ˚-homomorphism,
v : Γ ÝÑ UpMpQqq is a group homomorphism and E1 : Q ÝÑMpAq is a strict completely positive
KSGNS-faithful map satisfying the analogous properties piq, piiq and piiiq of the triple pπ, u,Eq
associated to P . We have to show that there exists a (necessarily unique) ˚-isomorphism ψ : P ÝÑ Q
such that ψpπpaquγq “ ρpaqvγ for all γ P Γ and all a P A.

Given the non-degenerate completely positive KSGNS-faithful maps E : P ÝÑMpAq and E1 :
Q ÝÑMpAq, consider their KSGNS constructions; say pl2pΓqbA, id,Υq and pK,σ,Υ1q, respectively.
This means in particular that l2pΓq b A “ spantPΥpAqu, σ : Q ÝÑ LApKq is a non-degenerate
faithful ˚-homomorphism such that K “ spantσpQqΥ1pAqu and that E1pY q “ pΥ1q˚ ˝ σpY q ˝ Υ1,
for all Y P Q.

Firstly, we define a unitary operator U : l2pΓq bA ÝÑ K such that U
`

XΥpbq
˘

“ σpY qΥ1pbq,
for all generators X P P , Y P Q and all b P B. Notice that this formula defines a bounded operator
with dense range by construction.

Namely, take b, b1 P A and X :“ πpaquγ , X
1 :“ πpa1quγ1 P P , Y :“ ρpaqvγ , Y

1 :“ ρpa1qvγ1 P Q
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with a, a1 P A and γ, γ1 P Γ and write the following

xU
´

XΥpbq
¯

,U
´

X 1Υpb1q
¯

y

“ xYΥ1pbq, Y 1Υ1pb1qy “ xρpaqvγΥ1pbq, ρpa1qvγ1Υ1pb1qy
“ xΥ1pbq, pvγq˚ρpa˚qρpa1qvγ1Υ1pb1qy
“ xΥ1pbq, pvγq˚ρpa˚a1qvγ1Υ1pb1qy
“ xb, pΥ1q˚

`

pvγq
˚ρpa˚a1qvγ1Υ1pb1q

˘

y

“ xb, E1
`

pvγq
˚ρpa˚a1qvγ1

˘

pb1qy

“ xb, E1
´

ρpαγ´1pa˚a1qqpvγq
˚vγ1

¯

pb1qy

“ xb, E1
´

ρpαγ´1pa˚a1qqvγ´1γ1

¯

pb1qy

“ xb, αγ´1pa˚a1qδγ´1γ1,e b
1y

“ xb, E
´

πpαγ´1pa˚a1qquγ´1γ1

¯

pb1qy

“ xb, E
´

πpαγ´1pa˚a1qqpuγq
˚uγ1

¯

pb1qy

“ xb, E
`

puγq
˚πpa˚a1quγ1

˘

pb1qy

“ xb,Υ˚
`

puγq
˚πpa˚a1quγ1Υpb1q

˘

y

“ xΥpbq, puγq˚πpa˚a1quγ1Υpb1qy
“ xΥpbq, puγq˚πpa˚qπpa1quγ1Υpb1qy
“ xπpaquγΥpbq, πpa1quγ1Υpb1qy “ xXΥpbq, X 1Υpb1qy

Since the range of U is dense in K by construction, the preceding computation shows that U
defines actually a unitary operator. Doing the identification Q – σpQq, we define the following
˚-isomorphism

ψ : P ÝÑ Q
X ÞÝÑ ψpXq :“ U ˝X ˝U ˚

By construction it is clear that the formula ψpπpaquγq “ ρpaqvγ holds for all γ P Γ and all a P A.
Namely, given η :“ YΥ1pbq P K with Y “ ρpa1qvγ1 P Q with a1, b P A and γ1 P Γ, one has

ψpπpaquγqpηq “ U
´

πpaquγU
˚pηq

¯

“ U
´

πpaquγU
˚pYΥ1pbqq

¯

“ U
´

πpaquγ πpa
1quγ1Υpbq

¯

“ ρpaqvγ ρpa
1qvγ1Υ1pbqq

“ ρpaqvγ YΥ1pbq “ ρpaqvγpηq

Moreover, by assumption we have E1pρpaqvγq “ aδγ,e for all γ P Γ and all a P A so E1pρpaqq “ a,
for all a P A. It is clear then that E1 is in fact a non-degenerate map.

Finally, the relation E “ E1 ˝ ψ holds: the isomorphism ψ satisfies the identity ψpπpaquγq “
ρpaqvγ , for all γ P Γ and all a P A; so one has,

Epπpaquγq “ aδγ,e “ E1pρpaqvγq “ E1 ˝ ψpπpaquγq,
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for all γ P Γ and all a P A. In other words, the relation holds on generators of P , so it holds on
P . �

It is important to observe that we can construct a C˚-algebra Pm satisfying the analogous
statement of the preceding theorem without the claims concerning the map E. In this case case,
we give the following definition.

1.5.1.2 Definition. Let Γ be a discrete group and pA,αq a Γ-C˚-algebra. The maximal crossed
product of A by Γ, denoted by Γ ˙

α,m
A, is a C˚-algebra equipped with a non-degenerate faithful

˚-homomorphism π : A ÝÑ Γ ˙
α,m

A and a group homomorphism u : Γ ÝÑ UpMpΓ ˙
α,m

Aqq such
that

i) uγπpaqu˚γ “ πpαγpaqq, for all γ P Γ and all a P A,

ii) Γ ˙
α,m

A “ C˚xπpaquγ : a P A and γ P Γy,

1.5.1.3 Remark. As for the reduced crossed product constructions, Γ ˙
α,m

A is unique up to a canonical

isomorphism meaning that for any C˚-algebra Q with a non-degenerate faithful ˚-homomorphism
ρ : A ÝÑ Q and a group homomorphism v : Γ ÝÑ UpMpQqq satisfying the analogous properties piq
and piiq above, there exists a (necessarily unique) ˚-isomorphism ψ : Γ ˙

α,m
A ÝÑ Q such that

ψpπpaquγq “ ρpaqvγ ,

for all γ P Γ and all a P A.
1.5.1.4 Remark. It is advisable to collect some well known facts about the crossed products by
discrete groups.

- If pA,αq “ pC, trvq is the C˚-algebra of complex numbers equipped with the trivial action
trv of Γ, then we have that Γ ˙

trv,r
C “ C˚r pΓq and Γ ˙

trv,m
C “ C˚mpΓq, by universal property.

More generally, if pA, trvq is a C˚-algebra equipped with the trivial action trv of Γ, then we
have that Γ ˙

trv,r
A “ Ab C˚r pΓq and Γ ˙

trv,m
A “ A b

max
C˚mpΓq, by universal property.

- Constructions of the reduced and maximal crossed products are functorial. More precisely,
if pA,αq and pB, βq are two Γ-C˚-algebras and ϕ : A ÝÑ MpBq is a Γ-equivariant ˚-
homomorphism, then there exist unique ˚-homomorphisms

rϕ :“ id˙
r
ϕ : Γ ˙

α,r
A ÝÑMpΓ ˙

β,r
Bq

rϕ :“ id˙
m
ϕ : Γ ˙

α,m
A ÝÑMpΓ ˙

β,m
Bq

such that
rϕpπpaquγq “ ρpϕpaqqvγ ,

for all a P A and all γ P Γ.
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1.5.1.5 Remark. If G is a locally compact group and pA,αq is a G-C˚-algebra, then we can also
construct the corresponding reduced and maximal crossed products

G ˙
α,r

A and G ˙
α,m

A

The construction is technically more involved and we refer to [147] for more details. We give
here a definition for the convenience of the exposition. We denote by µ the left Haar measure on G
and by ∆ the corresponding modular function.

- Let CcpG,Aq be the C-vector space of continuous functions G ÝÑ A with compact support.
We equip CcpG,Aq with the following convolution product and involution

f ‹ gpxq :“
ż

G

fpyqαy
`

gpy´1xq
˘

dµpyq , @x P G, @f, g P CcpG,Aq

f˚pxq :“ ∆px´1qαx
`

fpx´1q˚
˘

, @x P G, @f P CcpG,Aq

It is well known that given any covariant representation pπ, Uq of A on a Hilbert space H
(that is, π : A ÝÑ BpHq is a ˚-homomorphism and U : G ÝÑ UpHq is a group homomorphism
such that πpαgpaqq “ Ug ˝ πpaq ˝ U

˚
g , for all g P G and all a P A), then there exists a unique

representation of CcpG,Aq on H, which is denoted by U ˙ π and it is faithful whenever π is
faithful.
In this situation we define

G ˙
α,m

A :“ CcpG,Aq
||¨||max ,

where

||f ||max :“ supt||U ˙ πpfq|| | pπ, Uq is a covariant representation of Au,

for all f P CcpG,Aq.

- Let λ : G ÝÑ BpL2pGqq be the left regular representation of G. If π0 : A ãÑ BpHq is any
faithful representation of A on a Hilbert space H, then we consider the obvious representation
λ :“ λb idH : G ÝÑ BpL2pGqbHq and we define the representation π : A ÝÑ BpL2pGqbHq
by the formula

πpaqpf b ξqpgq :“
´

f b π0pαg´1paqqpξq
¯

pgq , f P L2pGq,@ξ P H, g P G

A straightforward computation yields that the pair pπ, λq defines a covariant representation
of A on L2pGq bH and the corresponding representation of CcpG,Aq on L2pGq bH, denoted
by λ˙ π, is faithful because π0 is faithful.
In this situation we define

G ˙
α,r

A :“ λ˙ π
`

CcpG,Aq
˘||¨||

,

where || ¨ || denotes the operator norm in BpL2pGq bHq. We can prove that this definition is
independent of the choice of π0.

The analogous results stated in Remark 1.5.1.4 still hold for the crossed products G ˙
α,r

A and
G ˙
α,m

A.
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1.5.2 Quantum crossed products
The next result concerning the universal property of the reduced crossed product by a discrete
quantum group is well known by specialists. In order to give a proof it is advisable to recall the
definition of strict completely positive maps, the corresponding KSGNS construction (see Theorem
A.3.11 and Remark A.3.12) and the characterization of a discrete quantum group action given in
Proposition 1.4.1.5.

1.5.2.1 Theorem-Definition. Let G be a compact quantum group and pA,αq a pG-C˚-algebra.
There exists a C˚-algebra P with a non-degenerate ˚-homomorphism π : A ÝÑ P , a unitary

representation U PMpc0ppGq b P q and a non-degenerate completely positive KSGNS-faithful map
E : P ÝÑMpAq such that

i) πpaqUui,j “
nu
ř

k“1
Uui,kπpα

u
k,jpaqq, for all u P ReppGq, all a P A and all i, j “ 1, . . . , nu,

ii) P “ C˚xπpaqUui,j : a P A, u P ReppGq, i, j “ 1, . . . , nuy,

iii) EpπpaqUui,jq “ δu,εa for all u P IrrpGq and all a P A,

In addition, P is unique up to a canonical isomorphism meaning that for any C˚-algebra Q
with a triple pρ, V,E1q where ρ : A ÝÑ Q is a non-degenerate ˚-homomorphism, V PMpc0ppGq bQq
is a unitary representation and E1 : Q ÝÑ MpAq is a strict completely positive KSGNS-faithful
map satisfying the analogous properties piq, piiq and piiiq above, there exists a (necessarily unique)
˚-isomorphism ψ : P ÝÑ Q such that

ψpπpaqUui,jq “ ρpaqV ui,j,

for all u P ReppGq, all a A and all i, j “ 1, . . . , nu. Moreover, E1 is a non-degenerate map and we
have E “ E1 ˝ ψ.

The C˚-algebra P constructed in this way is called reduced crossed product of A by pG and is
denoted by pG ˙

α,r
A.

Proof. First of all, notice that the statement is proven once it is proven for any x P IrrpGq.
If pL2pGq, pλ,Ωq denotes the GNS construction associated to the left Haar weight phL of pG, then

pλb idA : c0ppGq bA ÝÑ LApL2pGq bAq is a non-degenerate ˚-homomorphism and we define

π : A ÝÑ LApL2pGq bAq
a ÞÝÑ πpaq :“ ppλb idAq ˝ αpaq,

for all a P A.
If pL2pGq, λ,Ωq denotes the GNS construction associated to the Haar state hG, then we define

U :“ pidc0ppGq b λqpV q b idA PMpc0p
pGq b LApL2pGq bAqq,

where V is a unitary representation of pG defined by V :“
Àc0

xPIrrpGq
wx P Mpc0ppGq b CrpGqq with

wx P BpHxq b CpGq, for all x P IrrpGq (see Theorem 1.3.1.36).
Fix an orthonormal basis tξx1 , . . . , ξxnxu on Hx, for every x P IrrpGq. Straightforward computa-

tions yield the following expressions
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- Ux “ pidBpHxq b λqpw
xq b idA P BpHxq b LApL2pGq bAq. Namely,

Ux “ Uppx b idLApL2pGqbAqq “
´

pidc0ppGq b λqpV q b idA
¯

ppx b idLApL2pGqbAqq

“ pidBpHxq b λqpw
xq b idA

- Uxi,j “ λpwxi,jq b idA P LApL2pGq bAq, for all x P IrrpGq and all i, j “ 1, . . . , nx. Namely,

Uxi,j “ pωξxi ,ξxj b idLApL2pGqbAqqpU
xq

“ pωξx
i
,ξx
j
b idLApL2pGqbAqq

´

pidBpHxq b λqw
x b idA

¯

“ pωξx
i
,ξx
j
b idLApL2pGqbAqq

´

pidBpHxq b λq
`

nx
ÿ

k,l“1
mx
k,l b w

x
k,l

˘

b idA

¯

“ pωξx
i
,ξx
j
b idLApL2pGqbAqq

´

nx
ÿ

k,l“1
mx
k,l b λpw

x
k,lq b idA

¯

“

nx
ÿ

k,l“1
ωξx

i
,ξx
j
pmx

k,lqλpw
x
k,lq b idA

“

nx
ÿ

k“1
l“j

δk,iλpw
x
k,jq b idA “ λpwxi,jq b idA

In this situation, we can check the formula πpaqUxi,j “
nx
ř

k“1
Uxi,kπpα

x
k,jpaqq, for all x P IrrpGq, all

a P A and all i, j “ 1, . . . , nx. Indeed,
nx
ÿ

k“1
Uxi,kπpα

x
k,jpaqq “

nx
ÿ

k“1
pωξx

i
,ξx
k
b idq

´

ppidb λqpV q b idAqppx b idq
¯

`

ppλb idAq ˝ αpα
x
k,jpaqq

˘

“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idq

´

pppλb λqpV q b idAqppx b idq
¯

`

αpαxk,jpaqq
˘

“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idq

´

pppλb λqpV q b idAqppx b idq
¯

`

α
`

pωξx
k
,ξx
j
b idqαpaqppx b idq

˘˘

“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idqpωξx

k
,ξx
j
b idq

´

ppx b idqpppλb λqpV q b idAq
¯

`

pidb αqαpaqppx b idq
˘˘

p1q
“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idqpωξx

k
,ξx
j
b idq

´

ppx b idqpppλb λqpV q b idAq
¯

`

pp∆b idqαpaqppx b idq
˘˘

p2q
“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idqpωξx

k
,ξx
j
b idq

´

ppx b idqp1b αpaqqppλb λqpV q b idAq
¯

ppx b idq

“ pωξx
i
,ξx
j
b idb idq

´

p1b αpaqqppλb λqpV q b idAq
¯

ppx b idq

“ ppλb idqαpaqpωξx
i
,ξx
j
b idb idq

´

pidb λqpV q b idAq
¯

ppx b idq “ πpaqUxij ,
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where the equality p1q holds because α is a left action of pG on A and the equality p2q holds because
of the definition of the co-multiplication p∆ of pG in terms of its fundamental unitary (observe that
xWG “ pidb λqpV q as stated in Theorem 1.3.1.36).

Thus we define

P :“ C˚xπpaqUxi,j : a P A, x P IrrpGq, i, j “ 1, . . . , nxy Ă LApL2pGq bAq

To conclude the construction of P as in the statement, we have to define a non-degenerate
completely positive KSGNS-faithful map E : P ÝÑ MpAq “ LApAq satisfying the formula
EpπpaqUxi,jq “ aδx,ε for all x P IrrpGq, all a P A and all i, j “ 1, . . . , nx. We are going to define
directly the associated KSGNS construction (recall Remark A.3.12). Namely, let us define the
following A-linear map

Υ : A ÝÑ L2pGq bA
a ÞÝÑ Υpaq :“ Ωb a

Define the A-linear operator Υ˚ : λpPolpGqqΩdA ÝÑ A by the formula

Υ˚pλpwxi,jqΩb aq “ hGpw
x
i,jqa,

for all x P IrrpGq, all i, j “ 1, . . . , nx and all a P A. Remark that Υ˚ is bounded,

||Υ˚pλpwxi,jqΩb aq||2 “ ||xΥ˚pλpwxi,jqΩb aq,Υ˚pλpwxi,jqΩb aqy||

“ ||xhGpw
x
i,jqa, hGpw

x
i,jqay|| “ ||hGpw

x
i,jqhGpw

x
i,jqa

˚a||

“ || |hGpw
x
i,jq|

2 a˚a|| “ |hGpw
x
i,jq|

2||a˚a||

p1q
ď hGppw

x
i,jq

˚wxi,jq||a
˚a|| “ ||hGppw

x
i,jq

˚wxi,jq a
˚a||

“ ||xΩ, λppwxi,jq˚wxi,jqΩya˚a||
“ ||xΩ, λpwxi,jq˚λpwxi,jqΩya˚a||
“ ||xλpwxi,jqΩ, λpwxi,jqΩya˚a||
“ ||xλpwxi,jqΩb a, λpwxi,jqΩb ay||
“ ||λpwxi,jqΩb a||2,

where in p1q we apply the Schwarz inequality to the Haar state. Therefore we can extend the above
formula to the whole L2pGq bA obtaining a bounded operator Υ˚ : L2pGq bA ÝÑ A. Moreover,
Υ and Υ˚ defined in this way are adjoint,

xΥpaq, λpwxi,jqΩb by “ xΩb a, λpwxi,jqΩb by “ hpwxi,jqa
˚b

“ xa, hpwxi,jqby “ xa,Υ˚pλpwxi,jqΩb bqy,

for all x P IrrpGq, all i, j “ 1, . . . , nx and all a, b P A.
In other words, Υ is an adjointable operator between A and L2pGq b A whose adjoint is Υ˚

satisfying the formulas above. Hence, we define the following completely positive map

E : P ÝÑ MpAq
X ÞÝÑ EpXq :“ Υ˚ ˝X ˝Υ
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We claim that the triple pL2pGq b A, id,Υq is the KSGNS construction for E. We only
have to prove that L2pGq b A “ spantPΥpAqu. By construction, it is enough to show that
λpwxi,jqΩb a P PΥpAq for all a P A, all x P IrrpGq and all i, j “ 1, . . . , nx. Namely,

λpwxi,jqΩb a “ pλpwxi,jq b idAqpΩb aq “ Uxi,jpΩb aq

“ Uxi,jΥpaq “ lim
rÑ8

`

πperqU
x
i,jΥpaq

˘

P PΥpAq,

where terurPN is an approximate unit for A, so that tπperqurPN is an approximate unit for πpAq.
Finally, a direct computation shows that the formula EpπpaqUxi,jq “ aδx,ε holds for all x P

IrrpGq, all a P A and all i, j “ 1, . . . , nx. Namely, fix an orthonormal basis tξx1 , . . . , ξxnxu of
Hx diagonalizing the canonical operator Qx with eigenvalues tλxj uj“1,...,nx , so that the formula

λpwxi,jqΩ “
?
λx
j?

dimqpxq
ξxi b ω

x
j holds for all i, j “ 1, . . . , nx where tωx1 , . . . , ωxnxu is the dual basis of

tξx1 , . . . , ξ
x
nxu in the dual space Hx (recall Remarks 1.3.1.31). We write

EpπpaqUxi,jqpbq “ Υ˚
`

πpaqUxi,jpΥpbqq
˘

“ Υ˚
`

πpaqUxi,jpΩb bq
˘

“ Υ˚
`

πpaqpλpwxi,jq b idAqpΩb bq
˘

“ Υ˚
`

πpaq
`

λpwxi,jqΩb b
˘˘

“ Υ˚
´

ppλb idAq ˝ αpaq
`

λpwxi,jqΩb b
˘

¯

“ Υ˚
´

ppx b idAq
”

ppλb idAq ˝ αpaq
ı

ppx b idAq
`

λpwxi,jqΩb b
˘

¯

“ Υ˚
´

ppx b idAq
”

ppλb idAq ˝ α
xpaq

ı

`

λpwxi,jqΩb b
˘

¯

“ Υ˚
´

ppx b idAq
”

ppλb idAq ˝
nx
ÿ

i,j“1
mx
i,j b α

x
i,jpaq

ı´´

a

λxj
a

dimqpxq
ξxi b ω

x
j

¯

b b
¯¯

“ Υ˚
´

nx
ÿ

i,j“1

`

mx
i,j b idHx b α

x
i,jpaq

˘

´´

a

λxj
a

dimqpxq
ξxi b ω

x
j

¯

b b
¯¯

“ Υ˚
´

a

λxj
a

dimqpxq

nx
ÿ

i,j“1
δj,iξ

x
i b ω

x
j b α

x
i,jpaqb

¯

“ Υ˚
´

a

λxi
a

dimqpxq
ξxi b ω

x
i b α

x
i,ipaqb

¯

“ Υ˚
´

λpwxi,iqΩb αxi,ipaqb
¯

“ hGpw
x
i,iqα

x
i,ipaqb “ αxi,ipaqbδx,ε “ abδx,ε,

where we use the orthogonality relations (and the definition of the KSGNS construction). Notice
that, as we warned in Note 1.4.1.2, an action of a discrete quantum group is supposed to be injective
so that we have also αε “ idA as shown in Proposition 1.4.1.5. Since it is true for all b P A, we
conclude the required formula.

Observe that by KSGNS construction, E is just a strict completely positive map (recall Section
A.3 for the details). But, thanks to the property Epπpaqq “ a, for all a P A that we have just
proved, it is clear that E is actually a non-degenerate completely positive map as assured in the
statement.

Next, let us establish the uniqueness of such a construction. Suppose Q is another C˚-algebra
with a triple pρ, V,E1q where ρ : A ÝÑ Q is a non degenerate ˚-homomorphism, V PMpc0ppGq bQq
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is a unitary representation and E1 : Q ÝÑ MpAq is a strict completely positive KSGNS-faithful
map satisfying the analogous properties piq, piiq and piiiq of the triple pπ, U,Eq associated to P .
We have to show that there exists a (necessarily unique) ˚-isomorphism ψ : P ÝÑ Q such that
ψpπpaqUxi,jq “ ρpaqV xi,j , for all x P IrrpGq, all a P A and all i, j “ 1, . . . , nx.

Given the strict completely positive KSGNS-faithful maps E : P ÝÑ MpAq and E1 : Q ÝÑ
MpAq, consider their KSGNS constructions; say pL2pGq b A, id,Υq and pK,σ,Υ1q, respectively.
This means in particular that L2pGq b A “ spantPΥpAqu, σ : Q ÝÑ LApKq is a non-degenerate
faithful ˚-homomorphism such that K “ spantσpQqΥ1pAqu and that E1pY q “ pΥ1q˚ ˝ σpY q ˝ Υ1,
for all all Y P Q.

Define a unitary operator U : L2pGq bA ÝÑ K. If such an operator exists, it must verify the
formula U

`

XΥpbq
˘

“ σpY qΥ1pbq, for all X “ πpaqUxi,j P P , Y “ ρpaqV xi,j P Q and all b P A.
Actually, a straightforward computation shows that the formula above defines an isometry.

Indeed, doing the identification Q – σpQq (by virtue of the faithfulness of the KSGNS construction),
let’s take X “ πpaqUxi,j , X

1 “ πpa1qUx
1

i,j P P , Y “ ρpaqV xi,j , Y
1 “ ρpa1qV x

1

i,j P Q, b, b1 P A and write

xU
´

XΥpbq
¯

,U
´

X 1Υpb1q
¯

y “ xYΥ1pbq, Y 1Υ1pb1qy

“ xρpaqV xi,jΥ1pbq, ρpa1qV x
1

i,jΥ1pb1qy “ xΥ1pbq, pV xi,jq˚ρpa˚qρpa1qV x
1

i,jΥ1pb1qy

“ xb, pΥ1q˚
`

pV xi,jq
˚ρpa˚a1qV x

1

i,jΥ1pb1q
˘

y “ xb, E1
`

pV xi,jq
˚ρpa˚a1qV x

1

i,j

˘

pb1qy

“ xb, E1
`

V xi,jρpa
˚a1qV x

1

i,j

˘

pb1qy “ xb, E1
´

nx
ÿ

k“1
ρpαxj,kpa

˚a1qqV xi,kV
x1

i,j

¯

pb1qy

p1q
“ xb, E1

´´

nx
ÿ

k“1
ρpαxjεj,k pa

˚a1qqV xjx
1

r,t

¯

pb1qy “ xb,
ÿ

t

αxjεj,k pa
˚a1qδxjx1,ε b

1y

“ xb, E
´

nx
ÿ

k“1
πpαxjεj,k pa

˚a1qqUxjx
1

r,t

¯

pb1qy

“ xb, E
´

nx
ÿ

k“1
πpαxj,kpa

˚a1qqUxi,k U
x1

i,j

¯

pb1qy “ xb, E
`

Uxi,jπpa
˚a1qUx

1

i,j

˘

pb1qy

“ xb, E
`

pUxi,jq
˚πpa˚a1qUx

1

i,j

˘

pb1qy “ xb,Υ˚
`

pUxi,jq
˚πpa˚a1qUx

1

i,jΥpb1q
˘

y

“ xΥpbq, pUxi,jq˚πpa˚a1qUx
1

i,jΥpb1qy “ xΥpbq, pUxi,jq˚πpa˚qπpa1qUx
1

i,jΥpb1qy

“ xπpaqUxi,jΥpbq, πpa1qUx
1

i,jΥpb1qy “ xXΥpbq, X 1Υpb1qy,

where it should be noticed that in p1q we use the index notation r :“ pi, iq, t :“ pk, jq in order to
write down properly the coefficients for the tensor product xj x1.

Doing again the identification Q – σpQq, we define

ψ : P ÝÑ Q
X ÞÝÑ ψpXq :“ U ˝X ˝U ˚

It is clear that ψ is a ˚-isomorphism and the formula ψpπpaqUxi,jq “ ρpaqV xi,j for all x P IrrpGq,
all a P A and all i, j “ 1, . . . , dimpxq is easily checked. Namely, given η :“ YΥ1pbq P K with
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Y “ ρpa1qV x
1

i,j P Q with a1, b P A, x1 P IrrpGq and i, j “ 1, . . . , nx, one has

ψpπpaqUxi,jqpηq “ U
´

πpaqUxi,jU
˚pηq

¯

“ U
´

πpaqUxi,jU
˚pYΥ1pbqq

¯

“ U
´

πpaqUxi,j πpa
1qUx

1

i,jΥpbq
¯

“ ρpaqV xi,j ρpa
1qV x

1

i,jΥ1pbqq

“ ρpaqV xi,j YΥ1pbq “ ρpaqV xi,jpηq

Moreover, by assumption we have E1pρpaqV xi,jq “ aδγ,e for all x P IrrpGq, all a P A and all
i, j “ 1, . . . , nx and so E1pρpaqq “ a for all a P A; then it is clear that E1 is in fact a non-degenerate
map. The relation E “ E1 ˝ψ holds: the isomorphism ψ satisfies the identity ψpπpaqUxi,jq “ ρpaqV xi,j ,
for all x P IrrpGq, all a A and all i, j “ 1, . . . , nx; so one has,

EpπpaqUxi,jq “ aδγ,e “ E1pρpaqV xi,jq “ E1 ˝ ψpπpaqUxi,jq,

for all x P IrrpGq, all a A and all i, j “ 1, . . . , nx. �

It is important to observe that we can construct a C˚-algebra Pm satisfying the analogous
statement of the preceding theorem without the claims concerning the map E. In this case case,
we give the following definition.

1.5.2.2 Definition. Let G be a compact quantum group and pA,αq a pG-C˚-algebra. The maximal
crossed product of A by pG, denoted by pG ˙

α,m
A, is a C˚-algebra equipped with a non-degenerate

˚-homomorphism π : A ÝÑ pG ˙
α,m

A and a unitary representation U P Mpc0ppGq b pG ˙
α,m

Aq such
that

i) πpaqUui,j “
nu
ř

k“1
Uui,kπpα

u
k,jpaqq, for all u P ReppGq, all a P A and all i, j “ 1, . . . , nu,

ii) P “ C˚xπpaqUui,j : a P A, x P ReppGq, i, j “ 1, . . . , nuy,

1.5.2.3 Remark. As in for the reduced crossed product construction, pG ˙
α,m

A is unique up to a

canonical isomorphism meaning that for any C˚-algebra Q with a non-degenerate ˚-homomorphism
ρ : A ÝÑ Q and a unitary representation V PMpc0ppGq bQq satisfying the analogous properties piq
and piiq above, there exists a (necessarily unique) ˚-isomorphism ψ : pG ˙

α,m
A ÝÑ Q such that

ψpπpaqUui,jq “ ρpaqV ui,j ,

for all u P ReppGq, all a A and all i, j “ 1, . . . , nu.

1.5.2.4 Remark. It is worth mentioning that the proof of the preceding theorem has been completely
written down using coordinate expressions. This allows, on the one hand, to imitate directly the
proof of the construction of a reduced crossed product by a classical discrete group (Theorem
1.5.1.1). On the other hand, this approach has been chosen in order to obtain explicit formulae for
the subsequent results (Section 1.5.3, Section 2.3 and Section 2.4).
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However, we can give a more common and conceptual statement whose proof follows the
analogous computation of the preceding one without taking coordinate expressions. More precisely,
under the same assumptions of Theorem 1.5.2.1, the conditions piq, piiq and piiiq are equivalent to
the following ones

i’) pUuq˚pidBpHuq b πpaqqU
u “ pidBpHuq b πqα

upaq, for all a P A and all u P ReppGq.

ii’) P “ C˚xπpaqpω b idqpUuq : ω P BpHuq˚y,

iii’) pidBpHuq b Eq
´

pidBpHuqq b πpaqqUu
¯

“ puε b a, for all u P IrrpGq and all a P A, where
puε P BpHuq denotes the orthogonal projection onto the subspace of u-invariant vectors.

Besides, the map E : pG ˙
α,r

A ÝÑ MpAq of the statement, where we recall that pG ˙
α,r

A Ă

LApL2pGq bAq, can be defined simply by restricting Ωb idA : LApL2pGq bAq ÝÑMpAq given by
Ωb idApXq :“ xΩb idA, XpΩb idAq, for all X P LApL2pGq bAq.
1.5.2.5 Remark. Let us briefly explain the functoriality of the reduced crossed product construction
in the quantum group setting. Remark that the maximal crossed product construction is also
functorial. For more details about this we refer to Section 4.3 of [206].

Let G be a compact quantum group, pA,αq, pB, βq two pG-C˚-algebras and ϕ : A ÝÑ B a
pG-equivariant ˚-homomorphism. In this situation, there exists a ˚-homomorphism Zpϕq :“ id˙

r
ϕ :

pG ˙
α,r

A ÝÑ pG ˙
β,r

B such that

ZpϕqpπαpaqpUαqxi,jq “ πβpϕpaqpU
βqxi,jq,

for all a P A, all x P IrrpGq and all i, j “ 1, . . . , nx where pπα, Uα, Eαq and pπβ , Uβ , Eβq are the
canonical triples associated to the reduced crossed products pG ˙

α,r
A and pG ˙

β,r
B, respectively (given

by Theorem 1.5.2.1).
The ˚-homomorphism Zpϕq above is nothing but the restriction of

LApL2pGq bAq ÝÑ LBpL2pGq bBq
T ÞÝÑ UϕpT b

ϕ
idBqU ´1

ϕ

where Uϕ : L2pGq bAb
ϕ
B

„
ÝÑ L2pGq bB is the canonical isometry of Hilbert modules such that

Uϕpξ b ab
ϕ
bq “ ξ b ϕpaqb, for all ξ P L2pGq, all a P A and all b P B.

Finally, observe that Zpϕq “ id˙
r
ϕ is, by construction, compatible with the elements of the

canonical triples in the following sense

Zpϕqpπαpaqq “ πβpϕpaqq, ZpϕqppUαqxi,jq “ pUβqxi,j , Eβ ˝ Zpϕq “ Eα ˝ ϕ,

for all a P A, all x P IrrpGq and all i, j “ 1, . . . , nx.
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1.5.3 Further properties
In order to reach stability properties of the Baum-Connes property, we need “good” stability
properties of the reduced crossed product with respect to some operations between C˚-algebras
and likewise “good” stability properties of the reduced crossed product with respect to the cone of
˚-homomorphisms. Hence, this section is devoted to the study of several of such properties that
will be used later on.

1.5.3.1 Proposition. Let G, H be two compact quantum groups and let F :“ G ˆ H be the
corresponding quantum direct product of G and H (as in Theorem 2.2.1).

If pA,αq is a pG-C˚-algebra and pB, βq is a pH-C˚-algebra, then there exists a canonical ˚-
isomorphism

pF ˙
δ,r
C – pG ˙

α,r
Ab pH ˙

β,r
B,

where C :“ AbB is the pF-C˚-algebra with action δ :“ αb β.
Proof. The isomorphism of the statement is simply induced by the canonical map

LApL2pGq bAq b LBpL2pHq bBq ÝÑ LAbB
`

L2pGq b L2pHq bAbB
˘

“ LAbBpL2pFq b Cq

Let us check studiously the universal property of pF ˙
δ,r
C for the C˚-algebra pG ˙

α,r
Ab pH ˙

β,r
B

following Theorem 1.5.2.1. In other words, we have to construct a triple pρ, V,Eq associated to the
C˚-algebra pG ˙

α,r
Ab pH ˙

β,r
B satisfying the analogue properties of the triple pπδ, U,Eδq associated

to the reduced crossed product pF ˙
δ,r
C.

If pπα, U 1, Eαq is the triple associated to pG ˙
α,r

A and pπβ , U2, Eβq is the triple associated to

pH ˙
β,r

B, then we define

- ρ : C ÝÑ pG ˙
α,r

Ab pH ˙
β,r

B as the tensor product ρ :“ πα b πβ (recall Theorem A.1.11),

- V PM
`

c0ppFqbppG ˙
α,r
AbpH˙

β,r
Bq

˘

through the corresponding non-degenerate ˚-homomorphims

(recall Proposition 1.4.1.10). For this, recall that CmpFq “ CmpGq b
max

CmpHq (see Theorem
2.2.1), so that we can apply the universal property of the maximal tensor product (see
Theorem A.1.12) and we put

φV :“ φU 1 ˆ φU2 : CmpFq ÑMppG ˙
α,r

Aq bMppH ˙
β,r

Bq ĂMppG ˙
α,r

Ab pH ˙
β,r

Bq,

- E : pG ˙
α,r

Ab pH ˙
β,r
B ÝÑMpCq as the tensor product E :“ EαbEβ (recall Theorem A.1.11).

Remark that, by construction, we have clearly

V xi,j “ pU
1q
y
i1,j1 b pU

2qzi2,j2 and δxk,jpcq “ αyk1,j1pcq b β
z
k2,j2paq,

for all x P IrrpFq such that x “
`

y
˘

13

`

z
˘

24 with y P IrrpGq and z P IrrpHq (recall Theorem 2.2.1),
all c P C “ AbB and for all i, j, k “ 1, . . . , nx, i1, j1, k1 “ 1, . . . , ny, i2, j2, k2 “ 1, . . . , nz.

To conclude, we have to check the following.
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i) ρpcqV xi,j “
nx
ř

k“1
V xi,kρ

`

δxk,jpcq
˘

, for all x P IrrpFq, all a P C and all i, j “ 1, . . . , nx. Indeed, given

c “ ab b P C “ AbB and x “
`

x1
˘

13

`

x2
˘

24 P IrrpFq “
`

IrrpGq
˘

13

`

IrrpHq
˘

24 we write

ρpcqV xi,j “ pπαpaq b πβpbqq
`

pU 1qyi1,j1 b pU
2qzi2,j2

˘

“ παpaqpU
1q
y
i1,j1 b πβpbqpU

2qzi2,j2

“

ny
ÿ

k1“1
pU 1qyi1,k1πα

`

pαqyk1,j1paq
˘

b

nz
ÿ

k2“1
pU2qzi2,k2πβ

`

pβqzk2,j2pbq
˘

“
ÿ

k1,k2

´

pU 1qyi1,k1 b pU
2qzi2,k2

¯´

πα
`

pαqyk1,j1paq
˘

b πβ
`

pβqzk2,j2pbq
˘

¯

“

nx
ÿ

k“1
V xi,k

´

πα b πα
`

pαqyk1,j1paq b pβq
z
k2,j2pbq

˘

¯

“

nx
ÿ

k“1
V xi,kρ

`

δxk,jpcq
˘

ii) E :“ Eα b Eβ is always a KSGNS-faithful map. To this end, we give the explicit KSGNS-
construction of E. If pL2pGq b A, id,Υ1q is the KSGNS-construction for Eα and pL2pHq b
B, id,Υ2q is the KSGNS-construction for Eβ (recall Theorem 1.5.2.1), then we consider the triple
pL2pGqbL2pHqbC, idbid,Υ :“ Υ1bΥ2q. It is straightforward to check that E “ Υ˚˝idbid˝Υ,
so that this triple is the KSGNS-construction for E. Hence, the KSGNS-faithfulness for E
follows.

�

The following result is well known for classical groups.

1.5.3.2 Proposition. Let G be a compact quantum group. If pA,αq is a pG-C˚-algebra and B is
any C˚-algebra, then there exists a canonical ˚-isomorphism

pG ˙
idbα,r

pB bAq – B b pG ˙
α,r

A,

where idb α : B bA ÝÑ ĂMpc0ppGq bB bAq denotes, by abuse of notation, the action given by the
composition pΣ12 b idAqpidB b αq.

Proof. The isomorphism of the statement is simply induced by the canonical map

B b LApL2pGq bAq ÝÑ LBbA
`

L2pGq bB bA
˘

Let us check studiously the universal property of pG ˙
idbα,r

pBbAq for the C˚-algebra Bb pG ˙
α,r
A

following Theorem 1.5.2.1. In other words, we are going to construct a triple pρ, V ,Eq associated
to the C˚-algebra B b pG ˙

α,r
A satisfying the analogue properties of the triple prπ, rU, rEq associated

to the reduced crossed product pG ˙
idbα,r

pB bAq. Namely, let’s put
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- ρ : B bA ÝÑ B b pG ˙
α,r

A as the tensor product idB b π.

- V PMpc0ppGq bB b pG ˙
α,r

Aq as the unitary U13.

- E : B b pG ˙
α,r

A ÝÑMpB bAq as the tensor product ιB b E.

where pπ, U,Eq is the canonical triple associated to the reduced crossed product pG ˙
α,r

A and

ιB : B ÝÑMpBq is the canonical injection.
Remark that, by construction, we have clearly V xi,j “ idB b Uxi,j , for all x P IrrpGq and all

i, j “ 1, . . . , nx. To conclude, we have to check the following.

i) ρpb b aqV
x

i,j “
nx
ř

k“1
V
x

i,kρ
`

pid b αqxk,jpb b aq
˘

, for all x P IrrpFq, all b b a P B b A and all

i, j “ 1, . . . , nx. Indeed,

ρpbb aqV
x

i,j “ pbb πpaqqpidB b U
x
i,jq “ bb πpaqUxi,j

“ bb
nx
ÿ

k“1
Uxi,kπpα

x
k,jpaqq “

nx
ÿ

k“1
bb Uxi,kπpα

x
k,jpaqq

“

nx
ÿ

k“1
pidB b U

x
i,kqpbb πpα

x
k,jpaqqq

“

nx
ÿ

k“1
pidB b U

x
i,kqρpbb α

x
k,jpaqq

“

nx
ÿ

k“1
V
x

i,kρ
`

pidb αqxk,jpbb aq
˘

ii) E “ ιB b E is a KSGNS-faithful map. Namely, if pL2pGq b A, id,Υq denotes the KSGNS-
construction for E (recall Theorem 1.5.2.1), then it is straightforward to check that the
triple pB b L2pGq bA, ιB b id,Υ :“ idB bΥq is the KSGNS-construction for E. Hence, the
KSGNS-faithfulness for E follows.

�

1.5.3.3 Proposition. Let G and H be two compact quantum groups. If A0 is a pG-C˚-algebra and
φ : B ÝÑ B1 is a pH-equivariant ˚-homomorphism, then there exists a canonical ˚-isomorphism

A0 b Cφ – Cidbφ,

where Cφ denotes the cone of the ˚-homomorphism φ and Cidbφ the cone of the induced ˚-
homomorphism idA0 b φ : A0 bB ÝÑ A0 bB

1.

Proof. Recall the definitions of the cones associated to the ˚-homomorphisms φ and idb φ of the
statement.

Cφ :“ tpb, gq P B ˆ C0
`

p0, 1s, B1
˘

| φpbq “ gp1qu

Cidbφ :“ tpx, hq P A0 bB ˆ C0
`

p0, 1s, A0 bB
1
˘

| pidb φqpxq “ hp1qu
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Hence the identification of the statement is simply induced by the canonical identification
A0 b C0

`

p0, 1s, B1
˘

– C0
`

p0, 1s, A0 bB
1
˘

. Namely, this identification is such that

ab f ÞÑ
´

t ÞÑ ab fptq
¯

,

for all a P A0, all f P C0
`

p0, 1s, B1
˘

and all t P p0, 1s, which preserves the definition of the cones.
More precisely, if a P A0 and pb, gq P Cφ, then the element

`

pab bq, h
˘

where hptq :“ ab gptq, for
all t P p0, 1s, lies in Cidbφ because hp1q “ ab gp1q “ ab φpbq “ pidb φqpab bq. �

1.5.3.4 Proposition. Let G be a compact quantum group and pA,αq, pB, βq two pG-C˚-algebras.
If ϕ : A ÝÑ B is any pG-equivariant ˚-homomorphism, then the corresponding cone Cϕ is a
pG-C˚-algebra with action

δ : Cϕ ÝÑ Mpc0ppGq b Cϕq
pa, hq ÞÝÑ δpa, hq :“ pαpaq, β ˝ hq

Given an irreducible representation x P IrrpGq, the matrix coefficients of δx with respect to an
orthonormal basis of Hx are given by

δxi,jpa, hq :“
`

αxi,jpaq, β
x
i,j ˝ h

˘

P Cϕ,

for all pa, hq P Cϕ and all i, j “ 1, . . . , nx.

Proof. First, recall the definition of the cone associated to ϕ

Cϕ :“ tpa, hq P Aˆ C0
`

p0, 1s, B
˘

| ϕpaq “ hp1qu

In order to define the action δ as in the statement, use the canonical identification
`

c0ppGq b
A
˘

ˆ
`

c0ppGq b C0
`

p0, 1s, B
˘˘

– c0ppGq b
`

Aˆ C0
`

p0, 1s, B
˘˘

and recall that the multiplier algebra
is compatible with direct products (see Proposition A.4.3). In this situation, we have

δ : Cϕ ÝÑ M
´

`

c0ppGq bA
˘

ˆ
`

c0ppGq b C0
`

p0, 1s, B
˘˘

¯

–M
´

c0ppGq b
`

Aˆ C0
`

p0, 1s, B
˘˘

¯

pa, hq ÞÝÑ δpa, hq :“ pαpaq, β ˝ hq

Observe that δ takes its values in Mpc0ppGq b Cϕq thanks to the pG-equivariance of ϕ:

pidb ϕqpαpaqq “ βpϕpaqq “ βphp1qq,

for all pa, hq P Cϕ. It is straightforward to check that δ defines a left action of pG on Cϕ.
Fix an irreducible representation x P IrrpGq and an orthonormal basis tξx1 , . . . , ξxnxu of Hx.

Let’s compute the corresponding matrix coefficients of δx.

δxi,jpa, hq “ pωξxi ,ξxj b idCϕqpδpa, hqppx b idCϕqq

“ ppωξx
i
,ξx
j
, ωξx

i
,ξx
j
q b idCϕqppαpaq, β ˝ hqpppx, pxq b idCϕqq

“
`

αxi,jpaq, β
x
i,j ˝ h

˘

,

for all pa, hq P Cϕ. �
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The following result is well-known for classical groups.

1.5.3.5 Proposition. Let G be a compact quantum group and pA,αq, pB, βq two pG-C˚-algebras.
If ϕ : A ÝÑ B is any pG-equivariant ˚-homomorphism, then there exists a canonical ˚-isomorphism

pG˙
r
Cϕ – Cid˙ϕ,

where Cϕ denotes the cone of the ˚-homomorphism ϕ and Cid˙ϕ the cone of the induced ˚-
homomorphism id˙ ϕ : pG ˙

α,r
A ÝÑ pG ˙

β,r
B.

Proof. First, recall the definitions of our cones

Cϕ :“ tpa, hq P Aˆ C0
`

p0, 1s, B
˘

| ϕpaq “ hp1qu

Cid˙ϕ :“ tpX,rhq P pG ˙
α,r

Aˆ C0
`

p0, 1s, pG ˙
β,r

B
˘

| id˙ ϕpXq “ rhp1qu

and observe that if pA,αq, pB, βq are pG-C˚-algebras, then pCϕ, δq is again a pG-C˚-algebra by virtue
of the preceding proposition, where the action δ is such that

δxi,jpa, hq :“
`

αxi,jpaq, β
x
i,j ˝ h

˘

P Cϕ,

for all pa, hq P Cϕ, all x P IrrpGq and all i, j “ 1, . . . , nx.
The isomorphism of the statement is simply the restriction of the canonical isomorphism

pG ˙
δ,r

`

Aˆ C0
`

p0, 1s
˘

bB
˘

– pG ˙
α,r

Aˆ C0
`

p0, 1s
˘

b pG ˙
β,r

B

Let us show studiously that the C˚-algebra Cid˙ϕ satisfies the universal property of the reduced
crossed product pG ˙

r
Cϕ. To do so, we have to define a triple pρ, V ,Eq where ρ : Cϕ ÝÑ Cid˙ϕ

is a non-degenerate ˚-homomorphism, V PMpc0ppGq b Cid˙ϕq is a unitary representation and E :
Cid˙ϕ ÝÑMpCϕq is a strict completely positive KSGNS-faithful map satisfying the corresponding
properties piq, piiq and piiiq of Theorem 1.5.2.1.

Given the reduced crossed products pG ˙
α,r

A and pG ˙
β,r

B, consider the corresponding canonical

associated triples, say pπα, Uα, Eαq and pπβ , Uβ , Eβq, respectively. This means precisely that

- πα : A ÝÑ pG ˙
α,r

A is a non-degenerate ˚-homomorphism, Uα P Mpc0ppGq b pG ˙
α,r

Aq is a

unitary representation and Eα : pG ˙
α,r

A ÝÑMpAq is a non-degenerate completely positive

KSGNS-faithful map satisfying the corresponding properties piq, piiq and piiiq of Theorem
1.5.2.1.

- πβ : B ÝÑ pG ˙
β,r

B is a non-degenerate ˚-homomorphism, Uβ P Mpc0ppGq b pG ˙
β,r

Bq is a

unitary representation and Eβ : pG ˙
β,r

B ÝÑMpBq is a non-degenerate completely positive

KSGNS-faithful map satisfying the corresponding properties piq, piiq and piiiq of Theorem
1.5.2.1.
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With all these objects we can easily define the required triple pρ, V ,Eq. Namely,

- for the non-degenerate ˚-homomorphism ρ let’s put

ρ : Cϕ ÝÑ Cid˙ϕ
pa, hq ÞÝÑ ρpa, hq :“ pπαpaq, πβ ˝ hq,

which is a non-degenerate ˚-homomorphism and it is well defined because

id˙ ϕpπαpaqq “ πβpϕpaqq “ πβphp1qq “ πβ ˝ hp1q,

for all pa, hq P Cϕ.

- for the unitary representation V PMpc0ppGq b Cid˙ϕq we define, in an equivalent way, a non-
degenerate ˚-homomorphism φV : CmpGq ÝÑMpCid˙ϕq such that V “ pidc0ppGq b φV qpWGq.
Let’s put

φV : CmpGq ÝÑ MpCid˙ϕq “ LCid˙ϕpCid˙ϕq
c ÞÝÑ φV pcq :“

`

φUαpcq¨ , φUβ pcq ¨
˘

,

which is a non-degenerate ˚-homomorphism and it is well defined because

id˙ ϕpφUαpcqXq “ id˙ ϕpφUαpcqqid˙ ϕpXq “ φUβ pcqrhp1q,

for all pX,rhq P Cid˙ϕ.
Observe that, by construction, it is clear that for all x P IrrpGq and all i, j “ 1, . . . , nx we
have

V
x

i,j “
`

pUαqxi,j ¨ , pU
βqxi,j ¨

˘

PMpCid˙ϕq

- for the strict completely positive KSGNS-faithful map E let’s put

E : Cid˙ϕ ÝÑ MpCϕq “ LCϕpCϕq
pX,rhq ÞÝÑ EpX,rhq :“

`

EαpXq¨ , Eβ ˝ rh ¨
˘

what is a non-degenerate completely positive map (since so are Eα and Eβ) and it is well
defined because

ϕpEαpXqaq “ ϕpEαpXqqϕpaq “ Eβpid˙ ϕpXqqhp1q “ Eβprhp1qqhp1q,

for all pa, hq P Cϕ.

By construction we have

Cid˙ϕ “ C˚xρpa, hqV
x

i,j : pa, hq P Cϕ, x P IrrpGq, i, j “ 1 . . . , nxy

To conclude we have to check the following,
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i) ρpa, hqV xi,j “
nx
ř

k“1
V
x

i,kρpδ
x
k,jpa, hqq, for all pa, hq P Cϕ, all x P IrrpGq and all i, j “ 1, . . . , nx.

Indeed, for all t P p0, 1s we write

ρpa, hptqqV
x

i,j “ pπαpaq, πβphptqqq
`

pUαqxi,j ¨ , pU
βqxi,j ¨

˘

“
`

παpaqpU
αqxi,j ¨ , πβphptqqpU

βqxi,j ¨
˘

“

´

nx
ÿ

k“1
pUαqxi,kπαpα

x
k,jpaqq¨ ,

nx
ÿ

k“1
pUβqxi,kπβpβ

x
k,jphptqqq ¨

¯

“

nx
ÿ

k“1

´

`

pUαqxi,k¨ , pU
βqxi,k ¨

˘`

παpα
x
k,jpaqq, πβpβ

x
k,jphptqqq

˘

¯

“

nx
ÿ

k“1
V
x

i,kρpα
x
k,jpaq, β

x
k,jphptqqq

“

nx
ÿ

k“1
V
x

i,kρpδ
x
k,jpa, hptqqq

ii) E is a KSGNS-faithful map such that Epρpa, hqV xi,jq “ pa, hqδx,ε, for all pa, hq P Cϕ, all
x P IrrpGq and all i, j “ 1, . . . , nx. For all t P p0, 1s we have

Epρpa, hptqqV
x

i,jq “ E
´

pπαpaq, πβphptqqq
`

pUαqxi,j ¨ , pU
βqxi,j ¨

˘

¯

“ E
´

παpaqpU
αqxi,j ¨ , πβphptqqpU

βqxi,j ¨

¯

“

´

EαpπαpaqpU
αqxi,j ¨ q¨ , EβpπβphptqqpU

βqxi,j ¨ q ¨

¯

“

´

aδx,ε¨ , hptqδx,ε ¨
¯

“ pa, hptqqδx,ε¨

Concerning the KSGNS-faithfulness, we are going to exhibit directly the KSGNS-construction
for our E : Cid˙ϕ ÝÑMpCϕq “ LCϕpCϕq. Define

H :“ tpξ, ηq P L2pGq bAˆ C0
`

p0, 1s, L2pGq bB
˘

| ηp1q “ Uϕpξ b
ϕ
idBqu,

where Uϕ is the canonical isometry between L2pGq bAb
ϕ
B and L2pGq bB defined in Remark

1.5.2.5
Next, put the following adjointable operator between Cϕ and H

Υ : Cϕ ÝÑ H
pa, hq ÞÝÑ Υpa, hq :“

`

Υαpaq,Υβ ˝ h
˘

,

which is well defined because of the definition of Uϕ:

Υβ ˝ hp1q “ Υβpϕpaqq “ Ωb ϕpaq “ UϕpΩb ab
ϕ
idBq “ UϕpΥαpaq b

ϕ
idBq

and whose adjoint is simply given by

Υ˚ :“ pΥ˚α,Υ˚β ˝ ηq,
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for all η P C0
`

p0, 1s, L2pGq bB
˘

.
Finally, we define the following representation of Cid˙ϕ on H

σ : Cid˙ϕ ÝÑ LCϕpH q

pX,rhq ÞÝÑ σpX,rhq :“
`

X¨ ,rh ¨
˘

,

which is well defined because of the definition of Uϕ. Indeed, for every pξ, ηq PH we have

rh ¨ ηp1q “ rhp1qηp1q “ id˙ ϕpXqUϕpξ b
ϕ
idBq

“ UϕpX b
ϕ
idBqUϕpξ b

ϕ
idBq “ UϕpXξ b

ϕ
idBq

Note that σ is faithful thanks to the faithfulness of the KSGNS constructions of Eα and Eβ .
Consider the following Hilbert Cϕ-submodule of H

G :“ spantσpCid˙ϕqΥpCϕqu

Hence, to conclude, observe that for all pX,rhq P Cid˙ϕ, all pa, hq P Cϕ and all t P p0, 1s we have

Υ˚ ˝ σpX,rhq ˝Υpa, hptqq “ Υ˚
`

σpX,rhqpΥαpaq,Υβphptqqq
˘

“ Υ˚
`

XpΥαpaqq,rhptqΥβphptqq
˘

“
`

Υ˚αpXpΥαpaqqq,Υ˚βprhptqΥβphptqqq
˘

“
`

EαpXqpaq, Eβprhptqqhptq
˘

“ EpX,rhqpa, hptqq

�

Recall Section 1.4.3. An important result in this context is the Green’s Imprimitivity theorem.
In the classical case, this result states the following: let G be a locally compact group and H ă G
a closed subgroup. If pB, βq is any H-C˚-algebra, then we have the natural Morita equivalences

G˙
m
IndGHpB, βq „

M
H ˙

m
B and G˙

r
IndGHpB, βq „

M
H ˙

r
B

As a consequence, the well-known Green-Julg theorem yields

K˚pG˙
r
IndGHpB, βqq – K˚pH ˙

r
Bq – KH

˚ pBq,

whenever H is compact.
We refer to [147] and [161] for a detailed exposition about the theory of induced C˚-algebras

and imprimitivity theorems for classical locally compact groups. The quantum counterpart has
been established in Theorem 7.3 in [194] by S. Vaes for a general locally compact quantum group
and a closed quantum subgroup. The corresponding statement in the discrete quantum case is the
following.



1.6. Torsion phenomena in the quantum setting 143

1.5.3.6 Theorem (Quantum Green’s imprimitivity theorem). Let pH be a discrete quantum subgroup
of a discrete quantum group pG. If pB, βq is a pH-C˚-algebra, then there exists a natural equivariant
Morita equivalence

pG˙
r
Ind

pG
pHpB, βq „M

pH˙
r
B,

where equivariance is understood with respect to the dual actions on the crossed products.

1.6 Torsion phenomena in the quantum setting
In the categorical formulation of the Baum-Connes conjecture given by R. Meyer and R. Nest for a
locally compact group G we use the family F of compact subgroups of G (see Section 1.2.3). If G
is discrete, then the family F is formed by the finite subgroups of G, which is exactly the torsion
of G. Hence, the torsion of a discrete group allows to define an obvious complementary pair of
subcategories (see Theorem 1.2.3.11), which yields the definition of the categorical assembly map.

In this way, we may investigate the torsion phenomena for discrete quantum groups in order to
construct the analogous complementary pair of subcategories and so the corresponding quantum
assembly map. It turns out that torsion for a discrete quantum group pG can appeared under
different exotic fashions. Hence, “quantum torsion” is more complicated than “classical torsion”
and we don’t have yet a complete understanding of this phenomena in order to handle it in the
general categorical framework of Meyer-Nest. The first notion of torsion for a discrete quantum
group was introduced by R. Meyer and R. Nest [133], [131] and recently re-interpreted by Y. Arano
and K. De Commer in terms of fusion rings [3].

As we shall explain in Section 1.7.2, the current formulation of the Baum-Connes conjecture
for quantum groups deals only with torsion-free discrete quantum groups. Moreover, in Chapter 3
we investigate the torsion phenomena for some constructions of quantum groups (quantum direct
product, quantum semi-direct product, compact bicrossed product, free product and free wreath
product) in order to tackle the corresponding stability properties of the Baum-Connes property. In
some cases, the torsion phenomena of a discrete quantum group can be successfully controlled in
order to give a suitable Baum-Connes property formulation. For instance, this is the case for the
quantum automorphism group [212] and the free wreath product Section 3.7.

1.6.1 Torsion à la Meyer-Nest
For more details about the following statements we refer to Section 4 in [212].

1.6.1.1 Definition. Let G be a compact quantum group. The discrete quantum group pG is called
torsion-free (or torsion-free in the sense of Meyer-Nest) if every finite dimensional G-C˚-algebra
is G-equivariantly isomorphic to a direct sum of G-C˚-algebras which are G-equivariantly Morita
equivalent to the trivial G-C˚-algebra C.

1.6.1.2 Remark. Let G be a compact quantum group and let u be a unitary representation of G on
a finite dimensional Hilbert space H. As we have indicated in Remark 1.4.2.3, BpHq “ KpHq is an
obvious G-C˚-algebra with the adjoint action induced by u, which is denoted by Adu.
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By definition of Morita equivalence (see Definition A.3.15), it is straightforward to show that
a discrete quantum group pG is torsion-free if and only if for any finite dimensional G-C˚-algebra
pA, δq there exist l P N and finite dimensional unitary representations ui P BpHiq b CpGq, for all
i “ 1, . . . , l such that

pA, δq – pBpH1q, Adpu1qq ‘ . . .‘ pBpHlq, Adpulqq

In other words, A – KpH1q ‘ . . .‘KpHlq as G-C˚-algebras.

The following is an elementary but useful result.

1.6.1.3 Lemma. Let G be a compact quantum group. Let A be a simple C˚-algebra and p P A a
non zero projection. The following properties hold.

i) A is Morita equivalent to pAp by means of Ap. More precisely, the ˚-homomorphism

π : A ÝÑ KpAppApq
a ÞÝÑ πpaq, πpaqpbpq :“ abp, for all b P A

is an isomorphism.

ii) If δ is an action of G on A and p P Aδ, then A is G-equivariantly Morita equivalent to pAp by
means of Ap. More precisely, the isomorphism π of piq is G-equivariant.
Moreover, if A is unital and p P Aδ is minimal, then ppAp, δq is an ergodic action.

Proof. i) First of all, routine computations show that Ap is a Hilbert pAp-module with inner
product defined by

xap, bpy :“ pa˚bp,

for all a, b P A. Next consider the two-sided closed ideal ApA of A. Since A is simple and p is
non zero by assumption, it must be A “ ApA.
The map π defined in the statement is clearly a homomorphism. Given a P A, let us describe
the adjoint operator of πpaq. We claim that πpaq˚ “ πpa˚q. Indeed, for all a, b, b1 P A we write

xπpaqpbpq, b1py “ xabp, b1py “ pb˚a˚b1p

xbp, πpa˚qpb1pqy “ xbp, a˚b1py “ pb˚a˚b1p,

which yields the claim. Accordingly, π is a ˚-homomorphism.
Since A is simple by assumption, π must be injective. Let us show that π is surjective. Given
a, b P A, we claim that the finite rank operator Θap,bp P KpAppApq is in the image of π. Indeed,
for all c P A we write

Θap,bppcpq “ apxbp, cpy “ apppb˚cpq “ papb˚qcp “ πpapb˚qpcpq,

which yields the claim. To conclude, notice that A “ ApA which means that every element
in A can be approximated by elements of the form apb with a, b P A. Since every compact
operator in KpAppApq can be approximated by finite rank operators Θap,bp with a, b P A, the
preceding computation yields that πpAq “ KpAppApq and the proof is complete.
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ii) pA, δq is a G-C˚-algebra. Since p P Aδ by assumption, then both pAp and Ap are G-C˚-algebras
by restricting δ. In order to show that π is G-equivariant, we have to show that the diagram

A

δ

��

π // KpAppApq

rδ

��
MpAb CpGqq

πbidCpGq

// MpKpAppApq b CpGqq

is commutative where rδ is the action induced by δ and determined by rδpΘap,bpq “ Θδpapq,δpbpq,
for all a, b P A (see Remarks 1.7.1.7). Indeed, computations of piq and δ-invariance of p allow
to write

apb˚
π
ÞÑ πpapb˚q “ Θap,bp

rδ
ÞÑ Θδpapq,δpbpq “ Θδpaqppb1q,δpbqppb1q

apb˚
δ
ÞÑ δpapb˚q “ δpaqppb 1qδpbq˚ πbidÞÑ Θδpaqppb1q,δpbqppb1q,

which yields the claim.
Moreover, assume that A is unital and that p P Aδ is minimal. In this case, it is clear that
p P ppApqδ, so ppApqδ “ C1A by minimality.

�

Let us show the following useful characterization for torsion-freeness of a discrete quantum
group.

1.6.1.4 Theorem-Definition. Let G be a compact quantum group. The following assertions are
equivalent.

i) pG is torsion-free.

ii) Let pA, δq be a finite dimensional G-C˚-algebra.

- If δ is ergodic, then A is simple. In other words, there are no non-simple ergodic finite
dimensional G-C˚-algebras. In this case, we say that pG is permutation torsion-free.

- If A is simple, then there exists a finite dimensional unitary representation pu,Hq of
G such that A – KpHq as G-C˚-algebras. In this case, we say that pG is projective
torsion-free.

iii) Every finite dimensional ergodic action of G is G-equivariantly Morita equivalent to the trivial
G-C˚-algebra C.

Proof. - piq ñ piiq. Assume that pG is torsion-free, which means that given a finite dimensional
G-C˚-algebra pA, δq there exist l P N and finite dimensional unitary representations ui P
BpHiq b CpGq, for all i “ 1, . . . , l such that A – KpH1q ‘ . . .‘KpHlq as G-C˚-algebras.
If A is simple, the it is clear that pG is projective torsion-free.
Assume that A is non-simple and δ is ergodic. Since A is non-simple, it must be l ą 1. But in
this case, the direct sum pKpH1q, Adu1q ‘ . . .‘ pKpHlq, Adulq is not an ergodic G-C˚-algebra,
which contradicts the ergodicity of δ. Hence a non-simple ergodic G-C˚-algebra can not exist
so that pG is permutation torsion-free.
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- piiq ñ piq. Conversely, assume that pG is both permutation and projective torsion-free. Let
pA, δq be a finite dimensional G-C˚-algebra. If A is simple, then the result follows from the
projective torsion-freeness assumption. If δ is ergodic, then the result follows from the torsion
and projective torsion-freeness assumption. Suppose then that A is not simple and δ is not
ergodic.
Let us write A under the form A “ Mk1pCq ‘ . . . ‘ MknpCq, for some k1, . . . , kn, n P N.
Observe that the subalgebra of δ-fixed points of A, Aδ, is clearly δ-invariant. Let P1, . . . , Pr
be mutually orthogonal minimal projections in Aδ such that P1 ` . . . ` Pr “ id. For
each j “ 1, . . . , r consider the decomposition of Pj following the blocks of A and write
Pj “ pp

j
1, . . . , p

j
nq.

Since Pj P Aδ is δ-invariant, then PjAPj is a G-C˚-algebra. Since Pj is minimal in Aδ,
then it is ergodic. Since pG is both permutation and projective torsion-free by assumption,
we have that there exists a finite dimensional unitary representation puj , Hjq of G such
that PjAPj – KpHjq as G-C˚-algebras. This means in particular that there exists a single
i “ 1, . . . , n such that pji ‰ 0. Consequently, Pj is supported on single matrix block for all
j “ 1, . . . , r. In other words, since P1 ` . . . ` Pr “ id, we can identify P1, . . . , Pr with the
minimal central projections of A on each matrix block, p1, . . . , pn (so r “ n). In particular,
each minimal central projection of A is δ-invariant, which allows to assume that A is a single
matrix block, that is, A is simple. In this case, since pG is supposed to be projective torsion-free,
the result follows.

- piiq ñ piiiq. This is straightforward. Namely, assume that pG is both permutation and
projective torsion-free. If pA, δq is a finite dimensional ergodic action of G, then A is simple by
the permutation torsion-freeness assumption. By projective torsion-freeness assumption, we
know in this case that there exists a unitary representation pu,Hq of G such that A – KpHq
as G-C˚-algebras, which yields the claim.

- piiiq ñ piiq. Let pA, δq be any finite dimensional G-C˚-algebra.
If δ is ergodic, then by assumption A is G-equivariantly Morita equivalent to the trivial
G-C˚-algebra C, which implies in particular that A is simple.
If A is simple, we are going to show that A is G-equivariantly Morita equivalent to a finite
dimensional ergodic action of G. Namely, consider the subalgebra of δ-fixed points of A,
Aδ, which is clearly δ-invariant. Let P1, . . . , Pr be non zero mutually orthogonal minimal
projections in Aδ. For every j “ 1, . . . , r consider the two-sided closed ideal APjA of A. Since
A is simple and Pj is non zero, it must be A “ APjA, which is true for every j “ 1, . . . , r so
that it is enough to consider a single non zero minimal projection p P Aδ. In this situation,
Lemma 1.6.1.3 assures that A „

G´M
pAp, where ppAp, δq is a finite dimensional ergodic action.

Hence, our assumption yields that A is G-equivariantly Morita equivalent to the trivial
G-C˚-algebra C, which completes the proof.

�

The preceding characterization allows to give the following reformulation of Definition 1.6.1.1
by using Remark 1.6.1.2 and the terminology of Definition 1.4.2.6.
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1.6.1.5 Definition. Let G be a compact quantum group. The discrete quantum group pG is
called torsion-free if any torsion action of G is G-equivariantly Morita equivalent to the trivial
G-C˚-algebra C.

It leads as well to the following definition.

1.6.1.6 Definition. Let G be a compact quantum group.

- A non-simple ergodic finite dimensional G-C˚-algebra is called torsion action of permutation
type. If such a G-C˚-algebra exists, we say that pG has torsion of permutation type.

- A simple ergodic finite dimensional G-C˚-algebra which is not G-equivariantly Morita equiv-
alent to the trivial G-C˚-algebra C is called torsion action of projective type. If such a
G-C˚-algebra exists, we say that pG has torsion of projective type.

1.6.1.7 Remark. If pG is a discrete quantum group that has a non-trivial finite discrete quantum
subgroup, then pG is not torsion-free. Indeed, in this case PolpGq contains a non-trivial finite
dimensional Hopf ˚-algebra, say PolpΛq. So its co-multiplication

∆Λ : PolpΛq ÝÑ PolpΛq b PolpΛq Ă PolpΛq b PolpGq

defines an ergodic action of G on PolpΛq. If it was isomorphic to an adjoint action associated to a
representation pu,Hq, then the co-unit over PolpΛq would give a character on BpHq, which implies
that H is one-dimensional and so PolpΛq “ C, a contradiction.

In other words, regular actions of finite discrete quantum subgroups of pG yield torsion of
permutation type for pG.

Of course, if Γ is a classical discrete group, then the usual torsion-freeness for Γ is equivalent to
the torsion-freeness for p� in the sense of Meyer-Nest. We have precisely the following result (see
Proposition 4.2 of [212] for a proof).

1.6.1.8 Theorem. Let Γ be a classical discrete group. For every torsion action of pΓ, pA, δq, there
exists a finite subgroup Λ ă Γ and a normalized 2-cocycle ω P Z2pΛ, S1q such that A „

pΓ´M
C˚ωpΛq,

where C˚ωpΛq is the twisted group C˚-algebra of Λ.
As a consequence, Γ is torsion-free in the classical sense if and only if p� is torsion-free in the

sense of Meyer-Nest.

If Γ is a classical discrete group, then the torsion of Γ is given exactly by the finite subgroups of
Γ. The above theorem guarantees that the torsion of Γ corresponds exactly to the quantum torsion
of p�. In other words, if Γ is a classical discrete group, then all torsion of the discrete quantum group
p� is only of permutation type arising from finite dimensional discrete quantum subgroups. More
exotic torsion phenomena can appear whenever we work with genuine discrete quantum groups.
For instance we can regard duals of classical compact groups.

Let G be a classical compact group. Then pG is a discrete quantum group. In this situation, the
quantum torsion phenomena of pG can be related to the topology of G. We refer to [181] and [56]
for the general theory of topological groups (and particularly, for locally compact groups). More
precisely, we have the following result.
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1.6.1.9 Theorem. Let G be a classical compact group.

i) G is connected if and only if pG is permutation torsion-free.

ii) G has no non-trivial normalized 2-cocycles if and only if pG is projective torsion-free.

Proof. i) Assume that G is connected. Let δ be an ergodic action of G on a finite dimensional
C˚-algebra A, which will be written under the form A “ Mk1pCq ‘ . . .‘MknpCq, for some
k1, . . . , kn, n P N. We have to show that A is simple.
The stabilizer group of any block Mkj pCq, which is always a closed subgroup of G, is an open
subgroup of G. For the latter, observe that the ergodic action of G on A yields a transitive
action of G on the center ZpAq “ Cn – Cp1 ‘ . . . ‘ Cpn, where p1, . . . , pn are the minimal
central projections of A on each matrix block. In other words, we have a transitive action
of G on the discret set of n-points t1, . . . , nu. Hence t1, . . . , nu “ Opj – G{StabGppjq and
StabGppjq must be open.
To conclude we observe that the action of G on A preserves the individual matrix blocks.
Indeed, if there was some i “ 1, . . . , n such that MkipCq is not preserved by δ, then the
stabilizer group of the block MkipCq is a closed and open subgroup of G, which is neither
empty (because the identity element e is always a stabilizer) nor G itself (because δ does not
preserve the block MkipCq). Since G is connected by assumption, this conclusion is impossible.
Since δ preserves the individual matrix blocks and it is ergodic, it must be n “ 1. Hence, A is
simple.
For the converse, let us assume that G is not connected. We will show that pG has torsion of
permutation type.
Let G0 be the connected component of the identity element e, which is always a closed normal
subgroup of G. Consequently, G{G0 is a compact group because G is supposed to be compact.
In addition, it is well-known that the quotient space G{G0 is always a totally disconnected
topological space (for instance, see Theorem 7.3 in [56] for a proof). In other words, G{G0 is a
pro-finite group (for instance, see Theorem 19.9 in [181]).
Remark that G{G0 is non-trivial because G is not connected by assumption. Thus, let N be a
normal open subgroup of G{G0 and consider the corresponding quotient group, F :“ pG{G0q{N .
Notice that, since G{G0 is compact, F is a finite group. Hence, the C˚-algebra of its continuous
functions, CpF q, is a commutative non-simple (because F is not trivial) finite dimensional
C˚-algebra, which defines a finite discrete quantum subgroup of pG by means of the canonical
quotient homomorphisms G� G{G0 � F .

ii) Assume that G has a non-trivial normalized 2-cocycle ω P H2pG,S1q. Denote by λ the usual
left regular representation of G on L2pGq, which is given by

λ : G ÝÑ BpL2pGqq
g ÞÝÑ λg, λgpfqpxq :“ fpg´1xq, for all f P L2pGq and x P G.

Define the following continuous map

λω : G ÝÑ BpL2pGqq
g ÞÝÑ λωg , λωg pfqpxq :“ ωpx´1, gqλgpfqpxq, for all f P L2pGq and x P G.
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A straightforward computation shows that pλωg q˚pfqpxq “ ωpx´1g´1, gqλg´1pfqpxq, for all
f P L2pGq and g, x P G. Namely, for all h P L2pGq we write

xλωg pfq, hy “

ż

G

λωg pfqpxqhpxq dµpxq “

ż

G

ωpx´1, gqfpg´1xqhpxq dµpxq

“

ż

G

ωpy´1g´1, gqfpyqhpgyq dµpyq “

ż

G

fpyqωpy´1g´1, gqhpgyq dµpyq

“ xf, ωpp¨q´1g´1, gqhpg¨qy “ xf, ωpp¨q´1g´1, gqλg´1phqy,

where we have put the change y :“ g´1x and µ denotes the left Haar measure on G. This
formula shows that, for every g P G, λωg is a unitary operator on L2pGq. Namely, for all
f P L2pGq and all x P G we write

pλωg q
˚
´

λωg pfqpxq
¯

“ pλωg q
˚
´

ωpx´1, gqλgpfqpxq
¯

“ pλωg q
˚
´

ωpx´1, gqfpg´1xq
¯

“ ωpx´1g´1, gqωpx´1g´1, gqfpg´1gxq “ fpxq

Hence pλωg q˚ ˝ λωg “ idL2pGq and a similar computation shows that λωg ˝ pλωg q˚ “ idL2pGq, for
all g P G. Moreover, the map λω defines a unitary projective representations of G on L2pGq
with associated multiplier ω, that is, we have λω : G ÝÑ UpL2pGqq{C˚id and the formula
λωg1g2

“ ωpg1, g2qλ
ω
g1
˝ λωg2

holds for all g1, g2 P G. Namely, for all f P L2pGq and all x P G we
write

λωg1g2
pfqpxq “ ωpx´1, g1g2qλg1g2pfqpxq “ ωpx´1, g1g2qfpg

´1
2 g´1

1 xq

λωg1

´

λωg2
pfqpxq

¯

“ λωg1

´

ωpx´1, g2qλg2pfqpxq
¯

“ λωg1

´

ωpx´1, g2qfpg
´1
2 xq

¯

“ ωpx´1, g1qωpx
´1g1, g2qfpg

´1
2 g´1

1 xq

and we recall the 2-cocycle equation ωpg1, g2qωpg1g2, g3q “ ωpg1, g2g3qωpg2, g3q, for all g1, g2, g3 P
G, which applied to the preceding computation yields the formula for λω. Accordingly, the
map

Adλω : G ÝÑ Aut
`

BpL2pGqq
˘

g ÞÝÑ “
`

Adλω
˘

g
,
`

Adλω
˘

g
pT q “ λωg ˝ T ˝ pλ

ω
g q
˚, for all T P BpL2pGqq

defines an action of G on BpL2pGqq.
The theory of projective representations of compact groups is completely analogous to classical
theory of usual representations of compact groups. In particular, the projective representation
λω defined above (called left regular projective representation of G with respect to ω) decomposes
as a direct sum of irreducible unitary projective representations obtaining an analogue of the
celebrated Peter-Weyl theorem (we refer to [38] for more details). In other words, there exists
a non-zero finite dimensional Hilbert subspace K Ă L2pGq such that λωg pKq “ K, for every
g P G. In this case, we define an action of G on BpKq by restricting the adjoint action of λω
defined above

αω : G ÝÑ Aut
`

BpKq
˘

g ÞÝÑ αωg :“
`

Adλω
˘

g |K
, αωg pT q “ λωg ˝ T ˝ pλ

ω
g q
˚, for all T P BpKq
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Hence, the pair pBpKq, αωq is a simple ergodic finite dimensional G-C˚-algebra. We claim
that this action is a torsion action of projective type, that is, it is not G-equivariantly Morita
equivalent to the trivial G-C˚-algebra C. Indeed, if this was not the case, which means
that pG would be projective torsion-free, then there would exist a finite dimensional unitary
representation pu,Hq of G such that BpKq – BpHq as G-C˚-algebras. More precisely, there
exists a ˚-isomorphism ψ : BpKq ÝÑ BpHq such that ψ ˝αωg “ Adug ˝ψ, for all g P G. Observe
that the commutator ru˚g ˝ ψpλωg q, ψpT qs is trivial for every g P G and every T P BpKq. This
implies that u˚g ˝ψpλωg q P S1id, for all g P G (notice that the operator u˚g ˝ψpλωg q is unitary for
all g P G).
Accordingly, we define the following continuous function

f : G ÝÑ S1

g ÞÝÑ fpgq, such that fpgqid “ u˚g ˝ ψpλ
ω
g q ô fpgqug “ ψpλωg q

We claim that this function trivializes the 2-cocycle ω, which is a contradiction by our
assumption. Namely, for every g1, g2 P G we write

ψpλωg1g2
q “ ψ

`

ωpg1, g2qλ
ω
g1
λωg2

˘

“ ωpg1, g2qψpλ
ω
g1
λωg2
q “ ωpg1, g2qfpg1qfpg2qug1ug2

ψpλωg1g2
q “ fpg1g2qug1g2 “ fpg1g2qug1ug2

so that ωpg1, g2qfpg1qfpg2q “ fpg1g2q ô ωpg1, g2q “
fpg1g2q

fpg1qfpg2q
, for all g1, g2 P G, which yields

the claim. Therefore pG must not be projective torsion-free and the non-trivial 2-cocycle ω
gives rise to a non-trivial torsion action of projective type αω.
Conversely, assume that there exists a simple ergodic finite dimensional G-C˚-algebra A which
is not G-equivariantly Morita equivalent to the trivial one, say pA, δq and write A “ BpHq
with H a finite dimensional Hilbert space. We are going to construct explicitly a non-trivial
2-cocycle of G.
Let tξ1, . . . , ξnu be an orthonormal basis of H and let tξ˚1 , . . . , ξ˚nu its dual basis in H˚. By
uniqueness of the trace Tr on BpHq, we have Tr ˝ δg “ Tr, for all g P G. Consequently,
δgpξiξ

˚
i q is a rank one projection, for all i “ 1, . . . , n. For every g P G and every i “ 1, . . . , n,

let ηgi be a norm one vector in Impδgpξiξ˚i qq, so that δgpξiξ˚i q “ ηgi pη
g
i q
˚, for all g P G and all

i “ 1, . . . , n. Since
δgpξiξ

˚
i qδgpξjξ

˚
j q “ δi,j ¨ η

g
i pη

g
j q
˚,

for all g P G and all i, j “ 1, . . . , n, then tηg1 , . . . , ηgnu is an orthonormal basis of H, for all
g P G.
For every g P G, we denote by ug the unitary in BpHq such that

ugpξiq “ ηgi ,

for all i “ 1, . . . , n. A straightforward computation shows that

δgpT q “ ug ˝ T ˝ u
˚
g ,

for all g P G and all T P BpHq. In particular, we can write the following

ugh ˝ T ˝ u
˚
gh “ δghpT q “ δg

`

δhpT q
˘

“ ug ˝ uh ˝ T ˝ u
˚
h ˝ u

˚
g ,
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for all g, h P G and all T P BpHq. This formula shows clearly that u˚h ˝ u˚g ˝ ugh P ZpBpHqq “
CidH , so that we write u˚h ˝ u˚g ˝ ugh “ ωpg, hqidH with ωpg, hq P C˚. Since this is true for
every g, h P G, we define

ω : GˆG ÝÑ S1

pg, hq ÞÝÑ ωpg, hq,

by the previous construction (up to normalization). A straightforward computation shows
that ω is a 2-cocycle of G. Moreover it must be non-trivial (non-cohomologous to the trivial
2-cocycle). Otherwise, there would exist a continuous fonction f : G ÝÑ S1 such that
ωpg, hq “ fpghq´1fpgqfphq, for all g, h P G. The group homomorphism

v : G ÝÑ BpHq
g ÞÝÑ vg :“ fpgqug

defines a unitary representation of G on H and by construction we have δgpT q “ vg ˝ T ˝ v
˚
g ,

for all T P BpHq. This would imply that A “ BpHq is G-equivariantly Morita equivalent to C,
which is impossible because of our assumption. Hence ω is a non-trivial normalized 2-cocycle
of G and the proof is complete.

�

1.6.1.10 Note. The following bijective correspondence is well-known
#

projective representations of G
π : G ÝÑ BpHq{C˚id

+

ÐÑ

#

normalized 2-cocycles
ω P H2pG,S1q

+

,

where a projective representation of G on a Hilbert space H is a continuous map π : G ÝÑ BpHq
such that πg1g2 “ ωpg1, g2qπg1πg2 , for all g1, g2 P G. For a detailed exposition about the elementary
theory of projective representations we refer to [38].

A typical example that illustrates the preceding theorem is the following. Consider the classical
rotation group G :“ SOp3q, which is connected. Then {SOp3q is not torsion-free in the sense of
Meyer-Nest. Namely, {SOp3q has torsion of projective type because of the well-known projective
representation of SOp3q on C2 given by its universal covering group SUp2q. Let us be more precise.
It is a classical result that SOp3q – SUp2q{Z2, where Z2 – ZpSUp2qq is the center of the special
unitary group SUp2q. Consider the following action of SUp2q on M2pCq

δ : SUp2q ˆM2pCq ÝÑ M2pCq
pN,Mq ÞÝÑ δN pMq :“ NMN˚,

which is obviously trivial on Z2 – ZpSUp2qq. Hence, δ descends to an action of SOp3q on M2pCq,
so that pM2pCq, δq defines a simple ergodic finite dimensional SOp3q-C˚-algebra, which is not
equivariantly Morita equivalent to to C. Indeed, if M2pCq was equivariantly Morita equivalent to
C, then it would exist a Hilbert space H such that M2pCq – KpHq. Because of dimension reasons,
it must be dimpHq “ 2. Thus, we assume without loss of generality, that H “ C2.

Observe that SOp3q acts on C2 by means of its projective representation. More precisely, consider
the usual representation of SUp2q on C2 given by matrix multiplication, π : SUp2q ÝÑ BpC2q. It
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is well-known that SUp2q is the universal covering of SOp3q, so that the corresponding universal
covering map rp yields the projective representation announced before.

SUp2q π //

rp

����

BpC2q

SOp3q

rπ

<<

This prevents M2pCq to be SOp3q-equivariantly Morita equivalent to C.

Furthermore, this example can be translated in the quantum setting. On the one hand, it is
possible to give a quantum version of the rotation group as explained in Remarks 2.1.4 by deforming
with a parameter q P r´1, 1szt0u the C˚-algebra of its continuous functions. We denote such a
deformation by SOqp3q. On the other hand, P. Soltan gives in [173] an explicit construction of
torsion actions of projective type of SOqp3q on M2pCq, which is the analogue to the one described
above in the classical case. In addition, it is known that every quantum automorphism group
QutpA,ωq is monoidally equivalent to SOqp3q, for some q P p0, 1s (recall Theorem B.3.19). The
projective torsion of {SOqp3q is turned into the permutation torsion of {QutpA,ωq given by its defining
action (see Lemma 4.4 in [212] for more details)

1.6.2 Torsion à l’Arano-De Commer
The re-interpretation of torsion for quantum groups by Y. Arano and K. De Commer follows a
categorical and combinatorial approach through the notion of fusions ring. Indeed, associated to any
discrete quantum group we have an obvious fusion ring arising from its irreducible representations.

It is advisable to keep in mind notations and definitions from Section B.3. In particular, given
a compact quantum group G, we denote by ReppGq the corresponding rigid C˚-tensor category,
which is called representation category of G. Given a subset S Ă IrrpGq, we denote by C :“ xSy
the smallest full subcategory of ReppGq containing S. If, in addition, C contains the trivial
representation and it is closed under taking tensor product and contragredient representations, by
Tannaka-Krein-Woronowicz duality (see Theorem B.3.16 and Remark B.3.17), there is an associated
C˚-subalgebra CpHq such that restricting the coproduct to CpHq endows it with the structure of
compact quantum group H. Moreover, ReppHq naturally identifies with C and we say that pH is
the quantum subgroup of pG generated by S.

Let us recall the main definitions an results about fusion rings in order to summarize the work
[3] by Y. Arano and K. De Commer. We refer to [3] and [61] for more details of the subject. By
the convenience of the exposition, the next presentation have been adapted with respect to the
special case of fusion rings coming from discrete quantum groups (which is the relevant one for the
present dissertation), so that these definitions are equivalent with the standard ones.

Let pI, 1q be a pointed set with distinguished element 1, called unit of I. We equip I with an
involution

I ÝÑ I
α ÞÝÑ α,
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such that 1 “ 1 and we say that pI, 1q is an involutive pointed set. Denote by ZI the free Z-module
with basis I, that is to say, every element in ZI is a unique finite Z-linear combination of elements
of I. The addition operation in ZI is denoted by ‘. A ring structure b on ZI is given by constants
λiα,α1 P NY t0u for all α, α1, i P I, called fusion rules, such that

αb α1 “
ÿ

iPI

λiα,α1 ¨ i,

where all but finitely many terms vanish. This rule extends obviously to any element of ZI and it
can be regarded as an action of ZI on itself; we call it regular action of ZI . We write i Ă αb α1

whenever λiα,α1 ‰ 0.

1.6.2.1 Definition. Let pI, 1q be an involutive pointed set. Let pZI ,‘q be the corresponding free
Z-module equipped with a ring structure b. We say that ZI is a I-based ring if

i) αb α1 “ α1 b α, for all α, α1 P I,

ii) 1 Ă αb α1 if and only if α “ α1, for all α, α1 P I.

- A dimension function on a I-based ring pZI ,‘,bq is a unital ring homomorphism d : ZI ÝÑ R
such that

i) dpαq ą 0, for all α P I,
ii) dpαq “ dpαq, for all α P I.

- A fusion ring is a I-based ring endowed with a dimension function, pZI ,‘,b, dq.

The main examples and constructions of fusion rings which are interesting for the present
dissertation are the following.

a) Let Γ be a discrete group. Define pI, 1q :“ pΓ, eq as the pointed set with involution given by the
inverse in the group. We define the fusion ring of Γ as the Γ-based ring ZΓ with ring structure
and dimension function given by

g b h :“ gh and dpγq :“ 1,

for all g, h, γ P Γ. This ring is denoted by FuspΓq or RpΓq and sometimes we refer to it as the
representation ring of Γ.

b) Let pG be a discrete quantum group. Define pI, 1q :“ pIrrpGq, εq as the pointed set with involution
given by the adjoint representation. We define the fusion ring of pG as the IrrpGq-based ring
ZIrrpGq with fusion rules and dimension function given by

Nz
x,y :“ dim

´

Morppz, xj yqq
¯

and dpxq :“ dimpxq ,

for all x, y, z P IrrpGq. In other words, the ring structure is given simply by the tensor product
of representations and so by the corresponding fusion rules. This ring is denoted by FusppGq or
RpGq and sometimes we refer to it as the representation ring of G.
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c) Let R1 :“ pZI1 ,‘,b, d1q and R2 :“ pZI2 ,‘,b, d2q be two fusion rings. We define the tensor
product of ZI1 and ZI2 as the free Z-module ZI1dZ

ZI2 , which is a fusion ring denoted by R1bR2

with

- basis I1 d
Z
I2,

- unit 11 d 12,
- involution xd y “ xd y, for all x P ZI1 and all y P ZI2 ,
- and dimension function dpαd βq “ d1pαqd2pβq, for all α P I1 and all β P I2.

d) Let R1 :“ pZI1 ,‘,b, d1q and R2 :“ pZI2 ,‘,b, d2q be two fusion rings. We define the free
product of R1 and R2, denoted by R1 ˚R2, as the free Z-module with basis I :“ I1 ˚ I2, which
is a fusion ring with

- basis I :“ I1 ˚ I2, which is the set of alternating words (possibly empty) in I1zt11u and
I2zt12u. I is an involutive pointed set with the empty word as the distinguished element
and involution given by inverting order and acting as involution of Ii on each letter,

- unit the empty word,
- ring structure b such that

a) if ω, ω1 P I “ I1 ˚ I2 are words such that ω ends in I1 and ω1 starts in I2 (or vice-versa),
then

ω b ω1 :“ ωω1

b) if ω “ ζα, ω1 “ α1ζ 1 P I “ I1 ˚ I2 are words such that α, α1 P I1 (or in I2), then

ω b ω1 “
à

tĂαbα1

t‰11

λtα,α1ζtζ
1 ‘ λ11

α,α1ζ b ζ
1

- and dimension function d uniquely determined by d|Ii “ di, for all i “ 1, 2.

e) Let R :“ pZI ,‘,b, dq be a fusion ring. If L Ă I is subset such that pL,1q is an involutive
pointed set such that λiα,α1 “ 0, for all α, α1 P L and all i P IzL, then we obtain by restriction
of b and d a fusion ring S :“ pZL,‘,b|, d|q, which is called fusion subring of R and we write
S Ă R.
For instance, given any basis element α P I we can consider the fusion ring generated by α,
which is the smallest fusion subring of R containing α.

Next, let J be any set and consider the corresponding free Z-module with basis J , ZJ . Assume
that pZI ,‘q is equipped with a ring structure b following the same notations as above. Then
a ZI-module structure on ZJ , denoted by the same symbol b by abuse of notation, is given by
constants λjα,β P NY t0u for all α P I, β, j P J such that

αb β “
ÿ

jPJ

λjα,β ¨ j,

where all but finitely many terms vanish. This rule extends obviously to any element of ZI and
ZJ and it can be regarded as an action of ZI on Zj ; we say that ZJ is a ZI -module. We write
j Ă αb β whenever λjα,β ‰ 0.
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1.6.2.2 Definition. Let pI, 1q be an involutive pointed set and let J be any set. Let pZI ,‘q be
the free Z-module with basis I equipped with a ring structure b. Let pZJ ,‘q be the free Z-module
with basis J equipped with a ZI -module structure b. We say that ZJ is a J-based module if the
following condition holds,

β Ă αb j if and only if j Ă αb β,

for all α P I, β, j P J .

- A J-based module pZJ ,‘,bq is said to be co-finite if for all β, j P J , the set tα P I | j Ă αbβu
is finite.

- A J-based module pZJ ,‘,bq is said to be connected if for all β, j P J , there exists α P I such
that j Ă αb β.

- A J-based module is said to be a torsion module, if it is co-finite and connected.

- If pZI ,‘,b, dIq is a fusion ring, a compatible dimension function on a J-based module
pZJ ,‘,bq is a linear map dJ : ZJ ÝÑ R such that

i) dJpβq ą 0, for all β P J ,
ii) dJpαb βq “ dIpαqdJpβq, for all α P I and all β P J .

- A fusion module is a J-based module over ZI endowed with a compatible dimension function,
pZJ ,‘,b, dJq.

1.6.2.3 Remarks. 1. If M :“ pZJ ,‘,bq is a co-finite based module over a fusion ring R :“
pZI ,‘,b, dIq as in the above definition, then we can define a ZI -valued bilinear form on M
by

xβ, β1y :“
ÿ

iPI

λβ
1

i,β
¨ i,

for all β, β1 P J . This rule extends obviously to any pair of elements of M . Notice the
following,

- For any α P I, β, β1 P J we have xαb β, β1y “ αb xβ, β1y.
- For any j0 P J , the map dJ : M ÝÑ R defined by dJpβq :“ dIpxβ, j0yq, for all β P J is a
compatible dimension function on M .

2. Let R :“ pZI ,‘,b, dq be a fusion ring. The regular action of ZI turns R into a I-based module
over R and its dimension function is a compatible dimension function on the corresponding
module. It follows from Definition 1.6.2.1 that R is itself a co-finite and connected fusion
module. The corresponding ZI -valued bilinear form on R is given simply by

xα, α1y “ αb α1,

for all α, α1 P I. In this way, we say that R is equipped with the standard fusion module
structure.
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3. Let R be a fusion ring and let S Ă R be a fusion subring of R. By restriction, it is clear
that R can be viewed as a fusion S-module. If N is a fusion S-module, the tensor product
M :“ Rb

S
N is naturally a fusion R-module. We denote this module by

IndRS pNq :“ Rb
S
N

and we call it induced R-module from N .
Notice that this construction imitates the classical algebraic construction of induced represen-
tation from a subgroup. Moreover, if pH is a discrete quantum subgroup of a discrete quantum
group pG, then we have CpHq Ă CpGq and by Tannaka-Krein-Woronowicz duality, ReppHq is
a full subcategory of ReppGq. Hence, RpHq is a fusion subring of RpGq. In this case, we use
the notation IndRpGqRpHqp¨q

1.6.2.4 Definition. Let R be a fusion ring. A standard fusion module is any fusion R-module
which is isomorphic to R with its standard fusion module structure.

1.6.2.5 Remark. Let R be a fusion ring and S Ă R a fusion subring. Assume that N is a standard
fusion S-module. Then N – S as in the definition above. It is clear that the induction of N is
again a standard fusion R-module because

IndRS pNq “ Rb
S
N – Rb

S
S – R

1.6.2.6 Definition. A fusion ring R is said to be torsion-free if any torsion R-module is standard.
In particular, a discrete quantum group pG is called strong torsion-free (or torsion-free in the

sense of Arano-De Commer) if FusppGq is torsion-free.

1.6.2.7 Remark. Let us explain the motivation for the preceding definition. Let G be a compact
quantum group and let pA, δq be a torsion action of G. Then the category of G-equivariant Hilbert
A-modules, say H , (see Section 1.7.1 for more details) can be regarded as a module C˚-category
over ReppGq. As a consequence, its Grothendieck group is a based module over FusppGq and it is
not hard to see that

- the finite-dimensionality of A implies that this module is co-finite

- and the ergodicity of δ implies that this module is connected.

In other words, any torsion action of G gives rise to a torsion module in H over FusppGq.
Moreover, if pA, δq is the trivial torsion action, then we have H “ ReppGq by construction and
the corresponding module is simply FusppGq.

Notice that if pH is a discrete quantum subgroup of a discrete quantum group pG, then the
induction of actions IndGHp¨q explained in Remarks 1.4.3.5 corresponds to the induction of modules
explained in Remarks 1.6.2.3 through the above categorical interplay.

Of course, if Γ is a classical discrete group, then the usual torsion-freeness for Γ is equivalent to
the strong torsion-freeness for p� in the sense above. Moreover, we can show that the torsion-freeness
in the sense of Arano-De Commer implies the torsion-freeness in the sense of Meyer-Nest (see
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Theorem 2.8 in [3] for a proof). However, the converse may not hold because it is not clear that
any torsion FusppGq-module can be traced back to a torsion action of G.

The previous remark brings us to give a more general notion of (strong) torsion-freeness in the
framework of C˚-tensor categories, which has been done in [3] by Y. Arano and K. De Commer.
Furthermore, this approach of torsion-freeness turns out to be very helpful in order to exhibit
the torsion-freeness in the sense of Meyer-Nest for a given discrete quantum group. Indeed, this
approach allows to tackle the problem through fusion modules (for instance, Section 3.6.1 illustrates
this process).

Let us give some elementary definitions and constructions related to latter idea. We refer to [3],
[50] and [121] for more precisions and details.

Let C be a rigid C˚-tensor category. We can associate to C a fusion ring, denoted by FuspC q,
with basis given by the irreducible objects of C , fusion rules analogous to the fusion rules of a
discrete quantum group and dimension function defined in [121].

Let M be a C -module C˚-category. Observe that, associated to M , we have a J-based FuspC q-
module, denoted by FuspM q, where J is the set of equivalence classes of irreducible objects in
M .

In this situation, we say that

- M is co-finite if FuspM q is co-finite as J-based FuspC q-module,

- M is connected if FuspM q is connected as J-based FuspC q-module,

- M is a torsion C -module C˚-category if FuspM q is a torsion FuspC q-module.

1.6.2.8 Remark. We can show (see Lemma 3.10 in [3] for a proof) that if FuspM q – FuspC q as
based modules, then M – C as C -module C˚-categories.

The following definition must be regarded as an abstraction of the notion of torsion-freeness in
the sense of Meyer-Nest. Indeed, it is compatible with Definition 1.6.1.1 as shown in Proposition
3.4 of [3].

1.6.2.9 Definition. A rigid C˚-tensor category C is said to be torsion-free if every non-trivial
torsion C -module C˚-category is equivalent to C as C -module C˚-categories.

1.6.2.10 Note. It is important to warn that the preceding definition is rather a characterization
(Lemma 3.11 in [3]) of the original definition of torsion-freeness for a rigid C˚-tensor category
(Definition 3.7 in [3]). Since the original definition requires more categorical preliminaries, we prefer
to give directly the preceding one, which is enough for our purpose.

Among all the results obtained by Y. Arano and K. De Commer in [3], the following two (see
Theorem 1.26 and Proposition 1.28, respectively in [3] for a proof) are particularly useful for the
present dissertation.

1.6.2.11 Theorem. Let R1 :“ pZI1 ,‘,b, d1q and R2 :“ pZI2 ,‘,b, d2q be torsion-free fusion rings.
If R1 bR2 is not torsion-free, then R1 and R2 have non-trivial isomorphic finite fusion subrings.

1.6.2.12 Proposition. Let R :“ pZI ,‘,b, dq and S :“ pZL,‘,b|, d|q be fusion rings such that S
is a fusion subring of R. Assume that R is torsion-free.

If S is divisible in R (which means that R –
À

S as based S-modules), then S is torsion-free.
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1.7 KK-theory in the quantum setting
Given a (second countable) locally compact group G, the corresponding G-equivariant Kasparov
theory has been (and will be) presupposed for this dissertation and standard references for the
necessary material on this subject are [86], [224], [24] or [164] (we can refer as well to the original
articles of J. Cuntz, G. G. Kasparov and G. Skandalis, see for example [171], [45], [95], [97], [98]).

Given a locally compact quantum group G we can construct a quantum G-equivariant Kasparov
theory which imitates all the classical constructions and definitions. In this section we are going to
present this quantum picture of KK-theory for the convenience of the exposition, so that it shall
recall as well the classical well known Kasparov theory.

In the early work [6], S. Baaj and G. Skandalis define an equivariant KK-theory with respect
to any Hopf C˚-algebra, extend the Kasparov product into this framework and give a particular
version of the Baaj-Skandalis duality for locally compact groups and its duals. In addition, it is
possible to give a more general perspective of this quantum KK-theory working with a weak Kac
system (in the sense of R. Vergnioux) instead of working directly with a Hopf C˚-algebra. For a
well detailed exposition of this we refer to Chapter 3 and Chapter 5 in [206].

1.7.1 Quantum Kasparov’s theory and Baaj-Skandalis Duality
In order to simplify notations and to have a general perspective of the quantum Kasparov’s theory,
we work with any Hopf C˚-algebra S :“ pS,∆q. However, in the context of the present dissertation
such a Hopf C˚-algebra is supposed to be either pG “ pc0ppGq, p∆q or G “ pCpGq,∆q, where G is a
compact quantum group. In order to understand the following presentation, it is advisable to keep
in mind elementary notions about Hilbert modules recalled in Section A.3 and the corresponding
notion of multipliers (see Definition A.4.5 and Definition A.4.6).

1.7.1.1 Definition. Let S “ pS,∆q be a Hopf C˚-algebra and pA, δq a S-C˚-algebra. A left
S-equivariant Hilbert A-module is a Hilbert A-module H equipped with a linear map δH : H ÝÑ
ĂMpS bHq such that

i) δHpξ ¨ aq “ δHpξq ˝ δpaq, for all ξ P H and all a P A,

ii) δpxξ, ηyq “ xδHpξq, δHpηqy, for all ξ, η P H,

iii) pidS b δHq ˝ δH “ p∆b idHq ˝ δH ,

iv) rδHpHqpS bAqs “ S bH.

Such a map is called a left action of S on H or a right co-action of S on H.

1.7.1.2 Remark. If pH, δHq is a S-equivariant Hilbert A-module, then the action δH is an isometry
hence injective whenever δA is injective.
1.7.1.3 Note. A right action of S on H (or a left co-action of S on H) is a linear map δH : H ÝÑ

ĂMpH b Sq satisfying the analogue properties of the preceding definition.
In the present thesis, an action of a Hopf C˚-algebra is supposed to be a left one unless the

contrary is explicitly indicated. Hence, we refer to such actions simply as action of S.
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1.7.1.4 Note. There are some different terminologies in the literature that must be clarified here.
Let S “ pS,∆q be a Hopf C˚-algebra and consider C as a trivial S-C˚-algebra. In this case we
consider a Hilbert space H. A linear map δH : H ÝÑMpS bHq satisfying piiq, piiiq and pivq of
the definition above (observe that piq is automatically satisfied in this case) is called sometimes
unitary representation of S on H. Namely, it is easy to show (see Proposition 5.2.2 in [188] for
a proof) that such a linear map is equivalent to a unitary operator w P MpKpHq b Sq such that
pidb∆qpwq “ w12w13. This correspondence is realized by means of the following relation

δHpξq “ wpidS b ξq,

for all ξ P H. For an arbitrary Hilbert A-module, the analogous correspondence is established in
Proposition 1.7.1.6 below.

Hence, if we do these constructions for a compact quantum group G, we obtain that a unitary
representation of G on a Hilbert space H is equivalent to a linear map δH : H ÝÑMpCpGq bHq
satisfying piiq, piiiq and pivq of the definition above. In other words, a unitary representation of G
on a Hilbert space H is exactly the unitary admissible of Proposition 1.7.1.6 below associated to an
action δH of G on H.

Remark as well that, in general, if δH : H ÝÑ ĂMpS b Hq is an action of S on a Hilbert
A-module H where A is equipped with the trivial action of S, then the admissible unitary associated
to pH, δHq (see Proposition 1.7.1.6 below) is a unitary operator VH P MpKpHq b Sq such that
pidb∆qpVHq “ pVHq12pVHq13. Such an operator is called unitary representation of S on H (recall
Remarks 1.3.1.8).

Remark finally that we can take in particular the C˚-algebra A itself as a Hilbert A-module. In
this case, the above definition restricts to the usual definition of an action of G or pG on A (notice
that conditions piq and piiq are automatically fulfilled because such an action is a ˚-homomorphism;
recall Definition 1.4.1.1 and Definition 1.4.2.1).
1.7.1.5 Remark. Let pH, δHq be a S-quivariant Hilbert A-module. In order to handle properly the
admissible operator associated to H (which we introduce in the next proposition) it is advisable to
notice the following canonical identifications of Hilbert A-modules.

- pS bHq b
idSbδ

pS b S bAq – S b pH b
δ
pS bAqq

-
`

H b
δ
pS bAq

˘

b
idSbδ

`

S b S bA
˘

– H b
δ2
pS b S bAq

-
`

H b
δ
pS bAq

˘

b
∆bidA

`

S b S bA
˘

– H b
δ2
pS b S bAq

- S b S bH –
`

S b
∆
pS b Sq

˘

bH –
`

S bH
˘

b
∆bidA

`

S b S bA
˘

The proof of these identifications is straightforward.

1.7.1.6 Proposition. Let S “ pS,∆q be a Hopf C˚-algebra and pA, δq a S-C˚-algebra. If H is any
Hilbert A-module and δH : H ÝÑ ĂMpSbHq is a linear map, the following assertions are equivalent

i) δH : H ÝÑ ĂMpS bHq is an action of S on H.

ii) There exists a unique unitary operator (called admissible operator for H)
VH P LSbApH b

δ
pS bAq, S bHq such that
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- δHpξq “ VH ˝ Tξ, for all ξ P H where Tξ P LSbApS b A,H b
δ
pS b Aqq is defined by

Tξpxq :“ ξ b
δ
x, for all x P S bA;

- pidS b VHq ˝ pVH b
idSbδ

idSbSbAq “ VH b
∆bidA

idSbSbA.

Proof. Suppose that δH : H ÝÑ ĂMpS b Hq is an action of S on H. Define the following linear
operator

W : H d pS bAq ÝÑ S bH
ξ b x ÞÝÑ W pξ b xq :“ δHpξqpxq,

which can be extended to the internal tensor product (recall Theorem A.3.5) thanks to axioms
piq and piiq of Definition 1.7.1.1. Let VH : H b

δ
pS b Aq ÝÑ S b H be such extension. Thanks

to axiom pivq of Definition 1.7.1.1, VH is surjective. Define thus W˚pδHpξqpxqq :“ ξ b x, for all
ξ P H and all x P S b A. The extension of W˚ to S bH is the adjoint of VH . We deduce that
VH P LSbApHb

δ
pSbAq, SbHq is an adjointable operator and V ˚H “ V ´1

H . Notice that the equation
δHpξq “ VH ˝ Tξ is satisfied for all ξ P H by construction.

Conversely, suppose that there exists a unitary operator VH P LSbApH b
δ
pS bAq, S bHq such

that δHpξq “ VH ˝ Tξ, for all ξ P H. In this case, it is straightforward to check the axioms piq, piiq
and pivq of Definition 1.7.1.1 for the linear map δH : H ÝÑ ĂMpS bHq.

Finally, it remains to show that axiom piiiq of Definition 1.7.1.1 is equivalent to the condition
pidS b VHq ˝ pVH b

idSbδ
idSbSbAq “ VH b

∆bidA
idSbSbA. Some computations show that for all ξ P H

we have
pidS b δHq ˝ δHpξq “ pidS b VHq ˝ pVH b

idSbδ
idSbSbAq ˝ T

1
ξ

p∆b idHq ˝ δHpξq “ pVH b
∆bidA

idSbSbAq ˝ T
1
ξ,

where we define T 1ξ P LSbSbApSbSbA,H b
δ2
pSbSbAqq by T 1ξpxq :“ ξb

δ2
x, for all x P SbSbA.

We have used as well the natural identifications of Remark 1.7.1.5. These relations yield clearly the
equivalence required.

�

1.7.1.7 Remarks. 1. If pH, δHq is a S-equivariant Hilbert A-module, the equation pidS b VHq ˝
pVH b

idSbδ
idSbSbAq “ VH b

∆bidA
idSbSbA of the admissible operator means the commutativity

of the following diagram by virtue of the natural identifications of Remark 1.7.1.5.

H b
δ2
pS b S bAq

VH b
∆bidA

idSbSbA
//

VH b
idSbδ

idSbSbA

��

S b S bH

pS bHq b
idSbδ

pS b S bAq

idS b VH

66
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2. If pH, δHq is a S-equivariant Hilbert A-module, then KApHq is a S-C˚-algebra with the adjoint
action with respect to the admissible operator VH associated to pH, δHq

rδH :“ AdVH : KApHq ÝÑ ĂMpS bKApHqq
T ÞÝÑ AdVH pT q :“ VH ˝ pT b

δ
idSbAq ˝ V

˚
H ,

Observe that this action can be described directly by the formula

rδHpΘξ,ηq :“ δHpξqδHpηq
˚ “ ΘδHpξq,δHpηq P KA

`

ĂMpS bHq
˘

Ă ĂMpS bKApHqq,

for all ξ, η P H.

1.7.1.8 Definition. Let S “ pS,∆q be a Hopf C˚-algebra, pA, δAq and pB, δBq (resp. graded)S-
C˚-algebras. If pH, δHq is a (resp. graded) S-equivariant Hilbert B-module, a (resp. graded)
S-equivariant representation of A on H is a (resp. graded) ˚-homomorphism π : A ÝÑ LBpHq such
that

δH ˝ πpaqpξq “ pidS b πqpδApaqq ˝ δHpξq,

for all a P A and all ξ P H.
In this case we say that pH, δH , πq is a (resp. graded) S-equivariant pA,Bq-bimodule.

1.7.1.9 Note. Let A andB be C˚-algebras. IfH is a HilbertB-module equipped with a representation
of A on H, π : A ÝÑ LBpHq, the pair pH,πq is called an pA,Bq-bimodule and sometimes the
following notation is useful

AHB ,

where the right action of B on H is given by the corresponding Hilbert B-module structure and
the left action of A on H is given by the representation π.
1.7.1.10 Remarks. 1. Let pH, δH , πq be S-equivariant pA,Bq-bimodule. If VH denotes the ad-

missible operator associated to the action δH , then the S-equivariance condition for π of the
above definition is expressed in a equivalent way by the following equation

pidS b πqpδApaqq “ VHpπpaq b
δ
idSbAqV

˚
H ,

for all a P A.

2. Let S “ pS,∆q be a Hopf C˚-algebra, pA, δAq and pB, δBq S-C˚-algebras. Let pH, δHq be a
S-equivariant Hilbert A-module and pK, δKq S-equivariant Hilbert B-module. If π : A ÝÑ
LBpKq is a S-equivariant representation, then routine arguments show that the interior tensor
product Hb

π
K is a S-equivariant Hilbert B-module with action δπ : Hb

π
K ÝÑMpSbHb

π
Kq

such that
δπpξ b

π
ηq “ pδHpξq b idBq ˝ δKpηq,

for all ξ P H and all η P K.

1.7.1.11 Definition. Let S “ pS,∆q be a Hopf C˚-algebra, pA, δAq and pB, δBq graded S-C˚-
algebras. A S-equivariant Kasparov pA,Bq-bimodule or a S-equivariant Kasparov triple for pA,Bq is
the data ppH, δHq, π, F q where pH, δH , πq is a graded S-equivariant pA,Bq-bimodule and F P LBpHq
is a degree one operator such that
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i) pH,π, F q is a usual Kasparov pA,Bq-bimodule

ii) for all x P S bA we have

pVHpF b
δB
idSbBqV

˚
H ´ idS bC

F qpidS b πqpxq P KSbBpS bBq,

where VH is the admissible operator associated to pH, δHq.

The set of all S-equivariant Kasparov pA,Bq-bimodules is denoted by ESpA,Bq.
If pH,π, F q is a usual degenerate Kasparov pA,Bq-bimodule and pVHpF b

δB
idSbBqV

˚
H ´ idS bC

F qpidS b πqpxq “ 0 for all x P S bA, then we say pH,π, F q is a degenerate S-equivariant Kasparov
pA,Bq-bimodule. The set of all degenerate S-equivariant Kasparov pA,Bq-bimodules is denoted by
DSpA,Bq.

1.7.1.12 Definition. Let S “ pS,∆q be a Hopf C˚-algebra, pA, δAq and pB, δBq graded S-C˚-
algebras. Two S-equivariant Kasparov pA,Bq-bimodules pH,π, F q and pH 1, π1, F 1q are said to be
unitary equivalent if there exists an isomorphism of graded Hilbert B-modules U : H ÝÑ H 1 such
that

i) U intertwines the representations, π1paq ˝ U “ U ˝ πpaq, for all a P A,

ii) U intertwines the operators, F 1 ˝ U “ U ˝ F ,

iii) U is compatible with the admisible operators, VH1pU b
δB
idqV ˚H “ idS b

C
U .

In this case we write pH,π, F q – pH 1, π1, F 1q.

1.7.1.13 Definition. Let S “ pS,∆q be a Hopf C˚-algebra, pA, δAq and pB, δBq graded S-C˚-
algebras. Two S-equivariant Kasparov pA,Bq-bimodules pH,π, F q and pH 1, π1, F 1q are said to be
homotopic if there exists S-equivariant Kasparov pA,Cpr0, 1sq bBq-bimodule E such that

i) Eev0 – pH,π, F q,

ii) Eev1 – pH
1, π1, F 1q.

In this case we write pH,π, F q „h pH 1, π1, F 1q.

1.7.1.14 Remarks. 1. Observe that if pB, δBq is a S-C˚-algebra, then Cpr0, 1sq b B is also a
S-C˚-algebra with action δ1 : Cpr0, 1sq bB ÝÑMpS b Cpr0, 1sq bBq defined by

δ1pfqptq :“ δBpfptqq,

for all f P Cpr0, 1sq bB – Cpr0, 1s, Bq and all t P r0, 1s.

2. Given t P r0, 1s, evt : Cpr0, 1sq bB – Cpr0, 1s, Bq ÝÑ B denotes the evaluation map. Hence,
given a S-equivariant Kasparov pA,Cpr0, 1sq bBq-bimodule E :“ pE, ρ,Gq, we can construct
the pushout of E with respect to evt. More precisely, it is a S-equivariant Kasparov pA,Bq-
bimodule given by Eevt :“ pEevt , ρevt , Gevtq, where Eevt is the usual pushout Hilbert module
(see Theorem A.3.5 and Theorem A.3.22 for more precisions).
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Using the analogous arguments as in the classical case, we obtain thus the corresponding
quantum Kasparov groups.

1.7.1.15 Theorem-Definition. Let S “ pS,∆q be a Hopf C˚-algebra, pA, δAq and pB, δBq graded
S-C˚-algebras. The quotient set of S-equivariant Kasparov triples for pA,Bq by the homotopy
relation is an abelian group with the direct sum of S-equivariant Kasparov triples and with zero
element represented by the degenerated S-equivariant Kasparov triples.

We write
KKSpA,Bq :“

`

ESpA,Bq{ „h,‘
˘

for such a group and we call it S-equivariant Kasparov group for pA,Bq.

The whole formal theory concerning the Kasparov groups can be generalized in the setting of
Hopf C˚-algebras and so for any locally compact quantum group. We collect in the next theorem
the most relevant results concerning functoriality and the Kasparov product (for a detailed proof of
these facts we refer to [206], [6], [86] and [24]).

1.7.1.16 Theorem. Let S “ pS,∆q be a Hopf C˚-algebra.

i) If ϕ : A ÝÑ B is a S-equivariant ˚-homomorphism, then it defines a S-equivariant Kasparov
triple. Namely,

rϕs :“ rpB,ϕ, 0qs

In particular, we write 1A :“ ridAs P KKSpA,Aq.

ii) if A1, A2, B are S-C˚-algebras and f : A1 ÝÑ A2 is a S-equivariant ˚-homomorphism, then
there exists a homomorphism of abelian groups

f˚ : KKSpA2, Bq ÝÑ KKSpA1, Bq
rpH,π, F qs ÞÝÑ f˚

`

rpH,π, F qs
˘

:“ rpH,π ˝ f, F qs

iii) if A,B1, B2 are S-C˚-algebras and g : B1 ÝÑ B2 is a S-equivariant ˚-homomorphism, then
there exists a homomorphism of abelian groups

g˚ : KKSpA,B1q ÝÑ KKSpA,B2q

rpH,π, F qs ÞÝÑ g˚
`

rpH,π, F qs
˘

:“ rpH b
g
B2, π b

g
id, F b

g
idqs

iv) if A,B,C are S-C˚-algebras, then there exists a bilinear map (called Kasparov product)

b
C

: KKSpA,Cq ˆKKSpC,Bq ÝÑ KKSpA,Bq

pE , E 1q ÞÝÑ E b
C

E 1

such that

- b
C

is associative meaning that if C 1 is another S-C˚-algebra, then

pxb
C
yq b

C1
z “ xb

C
py b

C1
zq,

for all x P KKSpA,Cq, y P KKSpC,C 1q and z P KKSpC 1, Bq.
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- 1A is the neutral element by the left for the operation b
A
,

- rf s b
C
y “ f˚pyq, for all ˚-homomorphism f : AÑ C and all y P KKSpC,Bq,

- xb
C
rgs “ g˚pxq, for all x P KKSpA,Cq and all ˚-homomorphism g : C Ñ B.

v) If A,A1, B,B1, C are C˚-algebras, then the exterior tensor product of Kasparov triples induces
two group homomorphisms

τCR : KKpA,Bq ÝÑ KKpAb C,B b Cq
E ÞÝÑ τCR pEq :“ E b C

τCL : KKpA,Bq ÝÑ KKpC bA,C bBq
E ÞÝÑ τCL pEq :“ C b E

such that

- τCR prϕsq “ rϕb idCs, for all ˚-homomorphism ϕ : A ÝÑ B,
- τCL prϕsq “ ridC b ϕs, for all ˚-homomorphism ϕ : A ÝÑ B.

Consequently, there exists a bilinear map

τC : KKpA,A1 b Cq ˆKKpC bB,B1q ÝÑ KKpAbB,A1 bB1q

pE ,Gq ÞÝÑ τCpE ,Gq :“ τBR pEq b
A1bCbB

τA
1

L pGq,

which is contravariantly functorial in A and B and covariantly functorial in A1 and B1.
If C :“ C, the bilinear map τC defines what we call a tensor product of Kasparov triples and
we write τCpE ,Gq “: E b G, for all pE ,Gq P KKpA,A1q ˆKKpB,B1q.

1.7.1.17 Remark. In particular, if G is any locally compact quantum group (for instance a compact
or a discrete quantum group), it is licit to consider the corresponding Kasparov category K K G

defined as in the classical case (recall Section 1.2.3). Hence, in the same way as before, K K G is
actually a triangulated category. The problem appears when we want to apply the general categorical
machinery to this triangulated category due to the more complicated structure of such a quantum
group. In this sense we need some technical restrictions to formulate a quantum Baum-Connes
property.

1.7.1.18 Definition. Let S “ pS,∆q be a Hopf C˚-algebra, pA, δAq and pB, δBq graded S-C˚-
algebras. We say that A and B are S-equivariantly KK-equivalent if there exist elements α P
KKSpA,Bq and β P KKSpB,Aq such that

αb
B
β “ 1A and β b

A
α “ 1B

Finally, in the context of this quantum Kasparov theory we can obtain a generalization of the
classical Takesaki-Takai duality called Baaj-Skandalis duality (see Theorem 9.5.11 in [188] for a
more general statement in the context of multiplicative unitaries in the sense of Baaj-Skandalis).
This duality is useful to pass from the Kasparov category of a given compact quantum group G to
the Kasparov category corresponding to the discrete quantum group pG. For this, we have firstly to
establish a quantum version of the descent homomorphism (see Section 5 in [206] or [6] for the full
details).
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1.7.1.19 Theorem-Definition. Let G be a compact quantum group, pA, δAq and pB, δBq graded
pG-C˚-algebras. Given a pG-equivariant Kasparov triple pH,π, F q, then the data

ppG˙
r
H, id˙

r
π, F b

ιB
idq,

where pG˙
r
H :“ H b

ιB
ppG˙

r
Bq, id˙

r
π : pG˙

r
A ÝÑ L

pG˙
r

Bp
pG˙

r
Hq and F b

ιB
id P L

pG˙
r

Bp
pG˙

r
Hq are

defined by functoriality; is a Kasparov triple in EppG˙
r
A, pG˙

r
Bq called descent triple.

Moreover, there exists a group homomorphism

j
pG : KK pGpA,Bq ÝÑ KKppG˙

r
A, pG˙

r
Bq,

which is compatible with the Kasparov product, that is, if pC, δCq is another pG-C˚-algebra and
α P KK

pGpA,Cq, β P KK pGpC,Bq, then we have

j
pGpαb

C
βq “ j

pGpαq b
pG˙
r

C

j
pGpβq and jpGp1Aq “ 1

pG˙
r

A

The homomorphism j
pG is called descent homomorphism with respect to pG. In an analogous

way we define the descent homomorphism with respect to G, denoted by jG.

1.7.1.20 Theorem (Baaj-Skandalis duality). Let G be a compact quantum group. If pA,αq is any
G-C˚-algebra, then the reduced crossed product G ˙

α,r
A is naturally a pGcop-C˚-algebra with action

pα :“ pp∆cop b idq ˝ α so that we have a G-equivariant isomorphism

pG ˙
pα,r
pG ˙

α,r
Aq – AbKpL2pGqq

that identifies the bi-dual action p

pα with the action

rα :“ AdidAbWG ˝
“

α
‰

13 : AbKpL2pGqq ÝÑMpCpGq bAbKpL2pGqqq

As a consequence, for every G-C˚-algebras pA,αq and pB, βq we have a canonical isomorphism
of abelian groups

JG : KKGpA,Bq
„
ÝÑ KK

pGcoppG ˙
α,r

A,G ˙
β,r

Bq

which is compatible with the Kasparov product, that is, if pC, γq is another G-C˚-algebra and
α P KKGpA,Cq, β P KKGpC,Bq, then we have

JGpαb
C
βq “ JGpαq b

G˙
r

C
JGpβq and JGp1Aq “ 1G˙

r

A

In an analogous way we define the isomorphism of abelian groups J
pG, which is the inverse of JG.

Moreover, we have that jG “ O
pG ˝ JG and j

pG “ OG ˝ JpG, where O
pG and OG are the obvious

forgetful functors.
In particular, we have the following.

- If pA, trvq is a trivial G-C˚-algebra, then G ˙
trv,r

A – c0ppGq bA.

- If pC, trvq is considered as a trivial G-C˚-algebra, then G ˙
trv,r

C – c0ppGq.
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1.7.1.21 Remark. Baaj-Skandalis duality yields in particular a canonical ˚-isomorphism

pG ˙
p∆,r

c0ppGq – pG ˙
ytrv,r

`

G ˙
trv,r

C
˘

– KpL2pGqq

It is advisable to give an explicit description of this identification. For this, denote by
pπ

p∆, U p∆, E p∆q the canonical triple associated to the reduced crossed product pG ˙
p∆,r

c0ppGq following

Theorem 1.5.2.1, which is given precisely by ppλ,xWG b idc0ppGq,Ωb idc0ppGqq.
We are going to show that the C˚-algebra KpL2pGqq satisfies the universal property of pG ˙

p∆,r
c0ppGq.

On the one hand, consider the canonical left regular representations pλ : c0ppGq ÝÑ BpL2pGqq and
λ : CpGq ÝÑ BpL2pGqq defined by the GNS construction of phL and hG, respectively. By definition
of the fundamental unitary xWG PMpc0ppGq bCpGqq (recall Theorem 1.3.1.36 and Remark 1.3.1.38),
we have that

xW˚
G pidc0ppGq b

pλpaqqxWG “ pidc0ppGq b
pλqp∆paq and

`

xW x
G
˘

i,j
“ λpwxi,jq,

for all a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx.
On the other hand, consider the following C˚-algebra

C :“ C˚xpλpaqλpwxi,jq | a P c0p
pGq, x P IrrpGq, i, j “ 1, . . . , nxy Ă BpL2pGqq

We claim that C “ KpL2pGqq. Notice that the operators pλpaq with a P c0ppGq are compact
on L2pGq. Indeed, it is enough to observe that Imppλpapxqq Ă Hx b Hx, for all x P IrrpGq.
Consequently, the operators pλpaqλpwxi,jq with a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx are compact
on L2pGq. Conversely, to show that KpL2pGqq Ă C it is enough to show that ξξ˚ P C , for all
ξ P L2pGq. Take ξ :“ λpwxi,jqΩ and write

ξξ˚pλpwyk,lqΩq “ ξxλpwyk,lqΩ, λpw
x
i,jqΩy “ ξhG

`

pwxi,jq
˚wyk,lq

˘

“ λpwxi,jq
pλppεqλppw

x
i,jq

˚wyk,lqqΩ “ λpwxi,jq
pλppεqλppw

x
i,jq

˚qpλpwyk,lqΩq,

for all y P IrrpGq, k, l “ 1, . . . , ny. To conclude, observe that the set tξ P L2pGq | ξξ˚ P C u is
closed, which is a routine computation.

In order to define a non-degenerate completely positive KSGNS-faithful map pE : KpL2pGq ÝÑ
Mpc0ppGqq such that pEppλpaqλpwxi,jqq “ δx,εa, for all a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx, we are
going to define directly the associated KSGNS construction (recall Remark A.3.12). Define the
following c0ppGq-linear map

Υ : c0ppGq ÝÑ L2pGq b c0ppGq
a ÞÝÑ Υpxq :“ Ωb a

Define the c0ppGq-linear operator Υ˚ : λpPolpGqqΩd c0ppGq ÝÑ c0ppGq by the formula

Υ˚pλpwxi,jqΩb aq “ hGpw
x
i,jqa,

for all x P IrrpGq, all i, j “ 1, . . . , nx and all a P c0ppGq. Applying Schwarz inequality to the Haar
state, a routine computation shows that Υ˚ is bounded. Therefore we can extend the above formula
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to the whole L2pGqb c0ppGq obtaining a bounded operator Υ˚ : L2pGqb c0ppGq ÝÑ c0ppGq. Moreover,
it is clear that Υ and Υ˚ defined in this way are adjoint.

Next, we define the following faithful representation of KpL2pGqq on L2pGq b c0ppGq,

ϑ : KpL2pGqq ÝÑ Lc0ppGqpL
2pGq b c0ppGqq

T ÞÝÑ ϑpT q :“ T b idc0p pGq

and the following completely positive map

pE : KpL2pGqq ÝÑ Mpc0ppGqq
T ÞÝÑ pEpT q :“ Υ˚ ˝ ϑpT q ˝Υ

We claim that the data pL2pGq b c0ppGq, ϑ,Υq is the KSGNS construction for pE. We only have
to prove that L2pGqb c0ppGq “ spantϑpKpL2pGqqqΥpc0p pGqqu. By construction, it is enough to show
that λpwxi,jqΩ b a P ϑpKpL2pGqqqΥpc0p pGqq for all x P IrrpGq, all i, j “ 1, . . . , nx and a P c0ppGq.
Namely,

λpwxi,jqΩb a “ pλpwxi,jq b idc0p pGqqpΩb aq “ pλpw
x
i,jq b idc0p pGqqΥpaq

“ lim
rÑ8

`

pλperqλpw
x
i,jq b idc0p pGqqΥpaq

˘

P ϑpKpL2pGqqqΥpc0p pGqq,

where terurPN is an approximate unit for c0p pGq, so that tpλperqurPN is an approximate unit for
pλpc0p pGqq. To conclude, let us check the formula pEppλpaqλpwxi,jqq “ δx,εa, for all a P c0ppGq, x P IrrpGq,
i, j “ 1, . . . , nx. Namely,

pEppλpaqλpwxi,jqqpbq “ Υ˚
`

ϑppλpaqλpwxi,jqq
`

Υpbq
˘˘

“ Υ˚
`

ϑppλpaqλpwxi,jqq
`

Υpbq
˘˘

“ Υ˚
`

ϑppλpaqλpwxi,jqq
`

Ωb b
˘˘

“ Υ˚
`

pλpaqλpwxi,jq b idc0p pGq
`

Ωb b
˘˘

“ Υ˚
`

pλpaqλpwxi,jqΩb b
˘

“ Υ˚
´

pλpaq

a

λxj
a

dimqpxq
ξxi b ξ

x
j b b

¯

“ Υ˚
´

a

λxj
a

dimqpxq
papx b idHxqξ

x
i b ξ

x
j b b

¯

“ papx b idHxqΥ
˚
´

λpwxi,jqΩb b
¯

“ papx b idHxqhGpw
x
i,jqb “ abδx,ε,

which is true for every b P c0ppGq and shows the formula.
In conclusion, the triple ppλ,xWG, pEq associated to KpL2pGqq in the sense of Theorem 1.5.2.1

together with the preceding computations yield, by universal property of pG ˙
p∆,r

c0ppGq, that there

exists a canonical ˚-isomorphism

ψ : pG ˙
p∆,r

c0ppGq ÝÑ KpL2pGqq

such that
ψpπ

p∆paq
`

Ux
p∆

˘

i,j
q “ pλpaqλpwxi,jq,

for all a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx.
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1.7.1.22 Theorem (Quantum Green-Julg theorem). Let G “ pCpGq,∆q be a compact quantum
group.

i) Let pA, δAq and pB, δBq be graded G-C˚-algebras. If δA is the trivial action, then there exists
a group isomorphism

KKGpA,Bq – KKpA,G˙
r
Bq

ii) Let pA, δAq and pB, δBq graded pG-C˚-algebras. If δB is the trivial action, then there exists a
group isomorphism

KK
pGpA,Bq – KKppG˙

m
A,Bq

1.7.1.23 Remark. The following ring isomorphism is well-known

RpGq – KKGpC,Cq,

where RpGq is the representation ring of G (introduced in Section 1.6.2) equipped with the tensor
product of irreducible representations as ring product andKKGpC,Cq is the G-equivariant Kasparov
group for pC,Cq equipped with the Kasparov product as ring product.

Observe that given any pG-C˚-algebra B we can write

K0pBq – K0pBbKpL2pGqqq “ KKpC, BbKpL2pGqqq – KKpC,G˙
r
ppG˙

r
Bqq – KKGpC, pG˙

r
Bq

by combining Baaj-Skandalis duality and quantum Green-Julg theorem. Consequently, the Kasparov
product induces an RpGq-module structure on K0pBq for any pG-C˚-algebra B,

RpGq ˆK0pBq ÝÑ K0pBq

and if C is any pG-C˚-algebra, then every element E P KK
pGpB,Cq induces an RpGq-module

homomorphism E˚ : K0pBq ÝÑ K0pCq by right Kasparov product with E .
It is advisable to point out two particular cases.

a) If B :“ c0ppGq, then the above identification yields K0pc0ppGqq – RpGq and the preceding RpGq-
module structure on K0pc0ppGqq is simply the action of RpGq on itself by multiplication of
irreducible representations.

b) If B :“ C, then we have K0pCq – Z and the preceding RpGq-module structure on K0pCq is
induced by the dimension function on irreducible representations.
More precisely, notice that, by definition, RpGq has an additive basis indexed by IrrpGq. In
this way, we identify RpGq with the free abelian group ZrIrrpGqs and we define the dimension
function ZrIrrpGqs ÝÑ Z to be such that x ÞÑ nx, for every x P IrrpGq.

1.7.2 Quantum Baum-Connes conjecture
In this section we want to formulate a version of the Baum-Connes property for a discrete quantum
group pG. In order to do so, we are going to imitate the reformulation of R. Meyer and R. Nest for
classical groups as we have explained in Section 1.2.3.
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Recall that for this we use the family F of compact subgroups of the given locally compact
group G in order to define the complementary pair of subcategories pL ,N q :“ pxCIy, CCq. Then
we define the corresponding categorical assembly map. The first issue that we find here is that we
can not translate the notion of compact subgroup in the quantum setting. For this reason, we have
to restrict our attention to the discrete case for which the compact subgroups become the finite
ones and so the family F describes actually the torsion of the considered discrete group. In this
way, the quantum formulation deals with the family F of torsion C˚-algebras for pG. Observe that,
a priori, the discrete quantum subgroups do not give all possible torsion; other exotic phenomena
can occur (recall Section 1.6.1).

Since torsion phenomena in the quantum setting is more complicated than in the classical case,
a quantum Baum-Connes property concerns currently only torsion-free discrete quantum groups.

As a result, if G is a compact quantum group such that pG is a torsion-free discrete quantum
group, the family F is formed in this case just by the trivial quantum subgroup E (which is, by the
way, the only finite quantum subgroup of pG, recall Remark 1.6.1.7). That is, F “ tEu.

Hence the subcategories L and N in the quantum picture are described precisely as follows:

- (Quantum) Compactly Contractible objects:

N :“ N
pG :“ CCQut. :“ tA P ObjpK K

pGq | A – 0 in K K as a trivial pG-C˚-algebrau

- (Quantum) Compactly Induced objects:

L :“ L
pG :“ xCIQut.y :“ xtA P ObjpK K

pGq | A – c0ppGq bB for some B P ObjpK K quy

1.7.2.1 Note. Sometimes, the study of the Baum-Connes property of a discrete quantum group
requires to work in a more restricted category. Namely, the Kasparov category associated to the
Drinfeld double, K K DppGq, where there exists a notion of tensor product (see Remark A.3.24). In
this way, we may define the following subcategories

N
pG´Y D :“ tA P ObjpK K DppGqq | A – 0 in K K as a trivial pG-C˚-algebrau

L
pG´Y D :“ xtA P ObjpK K DppGqq | A – c0ppGq bB for some B P ObjpK K quy

We observe that the pG-C˚-algebras of the form c0ppGqbB with B P ObjpK K q are automatically
pG-Y D-C˚-algebras by taking the dual co-multiplication. Therefore, when pG is torsion-free, the
canonical forgetful functor K K DppGq ÝÑ K K

pG sends L
pG´Y D to L

pG.
1.7.2.2 Remarks. 1. Since in our framework we have F “ tEu, there exists only one restriction

functor RespGE and one induction functor IndpGE .
Restriction functor is always a forgetful functor and, in our case, we forget completely any
action of pG on the C˚-algebra considered, this is why we may write RespGE pAq “ A, for any
A P ObjpK K

pGq.
Induction functor concerning quantum groups is a more delicate notion as we have noticed in
Section 1.4, but in our framework the only quantum subgroup that we consider is the trivial
one, so that, as in the classical case, the induction from such a subgroup yields a pG-C˚-algebra
of the form Ind

pG
E pBq – c0ppGq bB, for some C˚-algebra B.
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2. In order to apply the Meyer-Nest machinery, we want to show that pxCIQut.y, CCQut.q is a
complementary pair of localizing subcategories in K K

pG. To this end, the strategy consists
in constructing projective objects in K K

pG with respect to an additive homological ideal. In
our situation, this ideal is simply J :“ kerHompRes

pG
E q (recall Theorem 1.2.2.20 and Theorem

1.2.3.11).
Notice that these constructions (that arise naturally from the classical case developed in Section

1.2.3) are located in the Kasparov category with respect to pG, K K
pG. But sometimes it is interesting

and useful to work in the Kasparov category associated to the compact quantum group, that is,
in K K G. We can easily do the translation from one category to the other using Baaj-Skandalis
duality. More precisely, we have the next result.

1.7.2.3 Proposition. Let G be a compact quantum group such that pG is a torsion-free discrete
quantum group. The Baaj-Skandalis duals of the pair pxCIQut.y, CCQut.q in K K

pG is the pair
pxxCIQut.y,xCCQut.q in K K G, where

xL :“ LG “ xxCIQut.y “ xtA P ObjpK K Gq | A with trivial action of Guy

xN :“ NG “ xCCQut. “ tA P ObjpK K Gq | G˙
r
A – 0 in K K as a trivial pGcop-C˚-algebrau

Proof. Recall that Baaj-Skandalis duality (Theorem 1.7.1.20) states a canonical equivalence of
categories

K K G – K K
pGcop

via the crossed product functor. More precisely, any G-C˚-algebra pA,αq is equivalent to the
pGcop-C˚-algebra given by G ˙

α,r
A with action pα :“ pp∆cop b idq ˝ α.

Under this duality it is clear the identification CCQut. – xCCQut..
For the identification xCIQut.y – xxCIQut.y notice that given any C˚-algebra B, the action of

pGcop on IndpGE pBq “ c0ppGq bB is given simply by p∆cop b idB . If we apply Baaj-Skandalis duality,
we obtain the G-C˚-algebra

pG ˙
p∆copbidB ,r

pc0ppGq bBq – ppG ˙
p∆cop,r

c0ppGqq bB

“
`

pG ˙
p∆cop,r

pG ˙
trv,r

Cq
˘

bB – CbKpL2pGqq bB – B

with action p∆b idq ˝ pp∆cop b idBq. By virtue of Baaj-Skandalis duality (see Theorem 1.7.1.20)
we know that this action is identified to the action AdWGp

p∆cop b idBq of G on CbKpL2pGqq bB.
Next, recall that p∆copp¨q “WGpidb ¨qW

˚
G . Hence, pG ˙

p∆copbidB ,r

pc0ppGq bBq – B is a G-C˚-algebra

with trivial action.

AdWGp
p∆cop b idBq “W˚

G
`

WGpidb ¨qW
˚
G b idB

˘

WG

“
`

W˚
GWGpidb ¨qW

˚
GWG

˘

b idB “ idB b 1

In other words, CIQut. – xCIQut. under Baaj-Skandalis duality. �
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It remains to show that the pair pxCIQut.y, CCQut.q is actually a complementary pair of localizing
subcategories in K K

pG. To do this, the strategy consists in imitating the classical discrete case for
which we use the adjoint approach for constructing projective objects (recall Theorem 1.2.2.20 and
Theorem 1.2.3.11). In this way, the adjointness property between the induction and the restriction
functors is the main ingredient that we need. This can be showed using the explicit description
of induced actions stated in Section 1.4 and the characterization of Theorem B.1.15 for adjoint
functors. A detailed proof can be found in Proposition 6.2 of [208].

1.7.2.4 Lemma. Let G be a compact quantum group and pH ă pG any discrete quantum subgroup.
The restriction functor RespG

pH
and the induction functor IndpG

pH
are adjoint in the following sense,

KK
pGpInd

pG
pHpBq, Aq – KK

pHpB,Res
pG
pHpAqq,

for all pG-C˚-algebra A and all pH-C˚-algebra B.
In particular, this is true for the trivial quantum subgroup E.

1.7.2.5 Remark. First of all, observe that the preceding formula can be written under the form

KK
pGpA, Ind

pG
pHpBqq – KK

pHpRes
pG
pHpAq, Bq,

for all pG-C˚-algebra A and all pH-C˚-algebra B.
Moreover, this adjointness property can be established in a more general framework. Namely, if

G is any locally compact quantum group and H ă G is a co-compact quantum subgroup (which
means that the C˚-algebra c0pG{Hq of the corresponding homogeneous space is unital), then we
can show that IndGH is a left adjoint of ResGH in the sense above whenever G is co-amenable. The
proof is essentially the same as the one for the above statement (under some regularity condition)
and we refer to Proposition 4.7 in [140] for a proof.

1.7.2.6 Theorem. Let G be a compact quantum group such that pG is a torsion-free discrete
quantum group. If J “ kerHompRes

pG
E q, then

i) xCIQut.y “ xpJ y,

ii) K K
pG has enough J -projective objects.

Therefore, pxCIQut.y, CCQut.q is a complementary pair of localizing subcategories in K K
pG.

Proof. By virtue of the preceding lemma, we have that

KK
pGpInd

pG
E pAq, Bq – KKpA,Res

pG
E pBqq,

for all C˚-algebra A and all pG-C˚-algebra B. In other words, the functors RespGE and Ind
pG
E are

adjoints in K K
pG. More precisely, IndpGE is a left adjoint functor for RespGE .

In this way, we have by definition that

CCQut. “ kerObjpRes
pG
E q and J “ kerHompRes

pG
E q
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Therefore, Theorem 1.2.2.20 assures that K K
pG has enough J -projective objects and con-

sequently, by Theorem 1.2.2.15, pxpJ y, CCQut.q is a complementary pair in K K G with xpJ y “

xpRes
pG
E q
$
`

ObjpK K q
˘

y “ xInd
pG
E
`

ObjpK K q
˘

y.
To conclude, observe that xCIQut.y is the minimal localizing subcategory containing the compactly

induced objects by definition, so it contains objects of the form Ind
pG
E
`

ObjpK K q
˘

, so we have
xInd

pG
E
`

ObjpK K q
˘

y Ă xCIQut.y and, by minimality, this inclusion must be an equality. This yields
the conclusion of the statement. �

1.7.2.7 Remark. Since pxCIQut.y, CCQutq is a complementary pair of localizing subcategories in
K K

pG, the fundamental lemma about complementary pairs (recall Lemma 1.2.1.26) can be applied,
so that in particular we have two triangulated functors

L : K K
pG ÝÑ xCIQut.y and N : K K

pG ÝÑ CCQut.

such that for any pG-C˚-algebra A P ObjpK K
pGq there exists a (unique up to isomorphism)

distinguished triangle of the form

ΣpNpAqq ÝÑ LpAq
D
ÝÑ A ÝÑ NpAq,

where D is called quantum Dirac homomorphism.
The analogous remark about the Dirac-dual Dirac method as in Remark 1.2.3.12 can be applied

for the quantum case. Namely, the Dirac homomorphism corresponding to the trivial pG-C˚-algebra
C is denoted by DC P KK

pGpLpCq,Cq. We call DC Dirac element. Assume that there exists an
element ηC P KK

pGpC, LpCqq such that DC b
C
ηC “ 1LpCq P KK

pGpLpCq, LpCqq. We call ηC dual

Dirac element. In this situation, the element γC :“ ηC b
LpCq

DC P KK
pGpC,Cq, called γ-element, is

an idempotent. We can show that

γ “ 1C ðñ xCIQut.y “ K K
pG

In this situation, we are able to establish the quantum version of the classical Baum-Connes
property. Namely,

1.7.2.8 Definition. Let G be a compact quantum group such that pG is a torsion-free discrete
quantum group and fix the homological functor F : K K

pG ÝÑ A bZ{2 defined by F pA,αq :“
K˚ppG ˙

α,r
Aq, for all pA,αq P ObjpK K

pGq.

The quantum Baum-Connes assembly map for pG is the categorical Baum-Connes assembly map
for K K

pG with respect to pxCIQut.y, CCQut., F q, that is, the natural transformation

η
pG : LF ÝÑ F

1.7.2.9 Definition. Let G be a compact quantum group such that pG is a torsion-free discrete
quantum group.

- We say that pG satisfies the (quantum) Baum-Connes property (with coefficients) if ηpG is a
natural equivalence.

- We say that pG satisfies the strong (quantum) Baum-Connes property if xCIQut.y “ K K
pG.
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1.7.2.10 Remark. It is clear that the strong (quantum) Baum-Connes property implies the (quantum)
Baum-Connes property by virtue of the uniqueness of the pxCIQut.y, CCQut.q-triangles. Notice, by
the way, that pG always satisfies the (categorical) Baum-Connes property with coefficients in objects
of xCIQut.y.

Finally, using the universal property of the localization (Theorem 1.2.1.29) we obtain that pG
satisfies the (quantum) Baum-Connes property with coefficients if and only if K˚ppG ˙

α,r
Aq “ p0q,

for all compactly contractible object pA,αq P ObjpCCQut.q.

1.7.2.11 Remark. From the strong Baum-Connes property and the torsion-freeness assumption, we
get the K-amenability property automatically. Indeed, suppose that pG is any torsion-free discrete
quantum group satisfying the quantum strong Baum-Connes property K K

pG “ L
pG. Given a

compactly induced pG-C˚-algebra in K K
pG of the form A :“ c0ppGq b C, we write

pG˙
m
A “ pG˙

m
pc0ppGq b Cq

p˚q

– Kb C
p˚q

– pG˙
r
pc0ppGq b Cq “ pG˙

r
A,

where in p˚q we use Proposition 1.5.3.2 and apply Baaj-Skandalis duality to obtain the corresponding
Morita equivalence. Since the crossed product functor is compatible with countable direct sums, we
can replace A for any pG-C˚-algebra in K K

pG “ L
pG. Hence the canonical map pG˙

m
A ÝÑ pG˙

r
A is

a K-equivalence for all pG-C˚-algebra A. In other words, pG is K-amenable (recall Remark 1.3.1.41).

It is important to say that the torsion-freeness assumption is needed for the formal framework
of the theory. That is, this is the case for which the classical constructions can be imitated without
restrictions. Of course, a better understanding of the torsion phenomena in the quantum setting
should allow to develop a satisfactory theory in which a quantum Baum-Connes property for any
discrete quantum group can be stated.

Some of the typical examples of compact quantum groups presented in the next chapter have
discrete duals that fail to be torsion-free. However, since the main goal is the K-group computation
for C˚-algebras defining quantum groups, the strategy to achieve this (as we’ll explain more precisely
in Chapter 4) consists in proving the strong Baum-Connes property, so that we can use suitably
Baaj-Skandalis duality and monoidal equivalences in order to show xCIQut.y “ K K

pG for which we
don’t need, a priori, either the existence of the assembly map or the formal framework developed
previously, but only an appropriate definition of xCIQut.y. For instance, this is the case for the
quantum automorphism group [212] and the free wreath product Section 3.7.
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Construction of Compact Quantum Groups

The second chapter of this thesis is devoted to illustrate the Woronowicz’s theory with the main
examples and constructions of compact quantum groups.

In Section 2.1 we give the definition and the main related results of concrete compact quantum
groups as the free orthogonal quantum group O`pnq (including the q-deformation of SUp2q), the
free unitary quantum group U`pnq and the quantum automorphism group QutpA,ωq (including
the quantum permutation group S`N ).

The next sections describe the main construction processes in order to obtain new compact
quantum groups imitating the classical setting. Namely, in Section 2.2 we explain the construction
and the main properties of a direct product of two compact quantum groups following the work
of S. Wang [216]. In Section 2.3 we explain the construction and the main properties of a the
semi-direct product of a compact quantum group by a discrete group following the work of S. Wang
[216]. In Section 2.4 we explain the construction and the main properties of a compact bicrossed
product in the sense of P. Fima-K. Mukherjee-I. Patri [65] (which is a very concrete picture of the
more general object defined in [196] by S. Vaes and L. Vainerman). In Section 2.5 we explain the
construction and the main properties of a free product of two compact quantum groups following
the work of S. Wang [215]. In Section 2.6 we explain the construction and the main properties of a
free wreath product of a compact quantum group by S`N following the work of J. Bichon ??.

As we have already noticed in the introduction of the dissertation, the fundamental examples
SUqp2q, O`pnq, U`pnq and S`N above have been the main source of satisfactory results for the
quantum Baum-Connes property in accordance with the work of C. Voigt and his collaborators.
Likewise, the classical constructions of new groups as direct products, semi-direct products or free
products are a natural class of groups in which the Baum-Connes property is stable in accordance
with the work of J. Chabert-S. Echterhoff [35] and H. Oyono-Oyono [143].

In this sense, the present chapter should be regarded as the natural prelude for the core of the
thesis contained in Chapter 3.

175
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2.1 Typical examples
In this section we recall the definitions of the main examples of compact quantum groups that are
interesting with respect to the framework of the present dissertation. In order to have a general
perspective of each of these compact quantum groups, we collect (without proofs but with the
corresponding references) the main results known until now due to different authors throughout
the last thirty years.

A general method for defining compact quantum groups is by giving a fundamental representation
of the compact quantum group itself. In this way we obtain what we call a compact matrix quantum
group.

2.1.1 Definition. A compact matrix quantum group G is the data pCpGq,∆, uq where CpGq is a
unital C˚-algebra, ∆ : CpGq ÝÑ CpGqbCpGq is a unital ˚-homomorphism and u “ puijqi,j“1,...,n P
MnpCpGqq is a matrix called fundamental representation of G such that

i) CpGq is generated, as ˚-algebra, by the matrix coefficients of u,

ii) for all i, j “ 1, . . . , n we have ∆puijq “
n
ř

k“1
uik b ukj ,

iii) the matrices u and u :“ pu˚ijqi,j“1,...,n are invertible.

2.1.2 Remark. The analogue argument as the one given in Proposition 1.3.1.29 yields that every
compact matrix quantum group is a compact quantum group in the usual sense. The difference
between these two approaches is that in the above one we choose a concrete representation for the
quantum group and so we regard it directly as a “matrix quantum group”. In this way, the choice
of a unitary representation allows to define the corresponding quantum group by using generators
and relations and taking thus the corresponding universal (unital) C˚-algebra with the natural
co-multiplication satisfying the definition above. Observe that this strategy could fail because not
every ˚-algebra admits a C˚-enveloping algebra. However, in the examples that we are interested in,
the corresponding generators form a fundamental representation that is unitary, which assures that
the corresponding C˚-enveloping algebra is well-defined.

Free orthogonal quantum group

The following definition is due to A. van Daele and S. Wang [204].

2.1.3 Definition. Fix a natural number n P N and an invertible matrix Q P GLnpCq such
that QQ P RId. The free orthogonal quantum group is the compact matrix quantum group
O`pQq :“ pAopQq,∆o, vq whose fundamental representation v “ pvijqi,j“1,...,n satisfies the following
relations

i) v is a unitary matrix,

ii) v “ QvQ´1.

If Q “ Id P GLnpCq, we write O`pIdq :“ O`pnq.
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2.1.4 Remarks. 1. We claim that any compact matrix quantum group G “ pCpGq,∆, wq such
that w is irreducible and w – w is a compact quantum subgroup of some free orthogonal
quantum group O`pQq. Indeed, given the fundamental representation w of G, which is
equivalent to its contragredient representation w by assumption, we can find an invertible
matrix Q P GLnpCq such that w “ QwQ´1 is unitary. Observe that we can write

w “ QwQ´1 ñ w “ QpQwQ´1qQ´1 “ pQQqwpQQq´1

If QQ R Cid, then the Quantum Schur’s lemma (recall Proposition 1.3.1.17) would say that
w is a reducible representation, which is impossible by our assumption. Hence, it must be
QQ P Cid and an easy linear algebra computation yields that this condition implies that
QQ P Rid.
Hence, by universality we can define a (surjective) ˚-homomorphism f : AopQq � CpGq
such that fpvijq “ wij , for all i, j “ 1, . . . , n. This map is clearly compatible with the
co-multiplications of each compact quantum group and so G is a compact quantum subgroup
of O`pQq.

2. The q-deformation of SUp2q, whose definition is due to S.L. Woronowicz [227], is a particular
example of free orthogonal quantum group. Let us be more precise.
Fix a real number q P r´1, 1szt0u (called deformation parameter). The quantum SUp2q
group is the compact matrix quantum group SUqp2q :“ pCpSUqp2qq,∆, uq whose fundamental

representation u “
ˆ

α ´qγ˚

γ α˚

˙

is unitary meaning precisely that the following relations

hold
α˚α` γ˚γ “ 1; αα˚ ` q2γ˚γ “ 1; αγ “ qγα; αγ˚ “ qγ˚α,

where α, γ are two letters called generators of SUqp2q. The co-multiplication ∆ of SUqp2q, the
co-unit ε and the antipode S corresponding to the ˚-Hopf algebra PolpSUqp2qq are such that

∆pαq “ αb α´ qγ˚ b γ and ∆pγq “ γ b α` α˚ b γ,

εpαq “ 1 and εpγq “ 0,

Spαq “ α˚, Spα˚q “ α, Spγq “ ´qγ and Spγ˚q “ ´q´1γ

It is important to make the following observation. Consider the unit circle

S1 :“ tz P C | |z| “ 1u,

which is an abelian compact group. Thus its continuous functions CpS1q is naturally a
compact quantum group with the co-multiplication given by the multiplication in the group.
Let us write T :“ pCpS1q,∆Tq.
If z denotes the function on S1 given by z ÞÝÑ z, for all z P S1; then we put ρTpαq :“
z and ρTpγq :“ 0. It is clear by the definitions that the relation pρTb ρTq ˝∆ “ ∆T ˝ ρT holds
on generators of SUqp2q and so by universality we can extend ρT (in a unique fashion) into a
homomorphism of compact quantum groups,

ρT : SUqp2q ÝÑ T
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Again by universality there exists a unique ˚-homomorphism

θζ : SUqp2q ÝÑ C,

such that θζpαq “ ζ and θζpγq “ 0, for each ζ P S1.
Suppose that w P BpHq b CpSUqp2qq is a finite dimensional representation of SUqp2q on
a Hilbert space H. Since ρT is a quantum homomorphism, then pid b ρTqpwq is a finite
dimensional representation of T on H. Notice that the compact quantum group T comes
from the classical compact group S1, so that such representation corresponds to the following
classical representation of S1,

πw : S1 ÝÑ BpHq
ζ ÞÝÑ πwpζq :“ pidb θζqpwq

Decompose πw as a sum of irreducibles, say H –
À

kPZ
Hk, where we recall that the space

Hk :“ tξ P H | πwpζqpξq “ ξζk for all ζ P S1u is called kth weight space of w and the
parameter k is called a weight of w whenever Hk ‰ 0. The weight function of w is defined by

Ww : Z ÝÑ N
k ÞÝÑ Wwpkq :“ dimpHkq

3. From SUqp2q we can obtain another relevant compact quantum group: the q-deformation of
SOp3q, whose definition is due to P. Podleś [155], [157].
Given a real number q P r´1, 1szt0u, the quantum SOp3q group is the compact matrix quantum
group SOqp3q :“ pCpSOqp3qq,∆, uq whose fundamental representation is the following unitary

u “

¨

˝

pα˚q2 ´pq2 ` 1qα˚γ˚ ´qγ2

γ˚α˚ 1´ pq2 ` 1qγ˚γ αγ
´qpγ˚q2 ´pq2 ` 1qγ˚α α2

˛

‚,

where α, γ are two letters called generators of SOqp3q. It is possible to describe CpSOqp3qq as
the universal C˚-algebra generated by five elements and satisfying a list of twenty relations.
We refer to [155] and [157] for more precisions. There are several properties of SOqp3q that
must be mentioned.

- We have CpSOqp3qq “ C
´

SUqp2q{Z2

¯

. Moreover, {SOqp3q is a discrete quantum subgroup

of {SUqp2q, meaning that CpSOqp3qq Ă CpSUqp2qq (recall Definition 1.4.3.2). More
precisely, CpSOqp3qq is generated by the coefficients of uj2

SUqp2q, where uSUqp2q denotes
the fundamental representation of SUqp2q.

- For q “ 1 we recover the classical rotation group SOp3q. Moreover, SOqp3q – SO´qp3q,
for all q P r´1, 1szt0u. In particular, the Podleś SO´1p3q is nothing but the classical
rotation group.

The main results about the free orthogonal quantum group are stated in the following theorem.
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2.1.5 Theorem. Fix a natural number n P N and an invertible matrix Q P GLnpCq such that
QQ P Rid.

i) (S. Wang, [218]) Let Q1 P GLnpCq such that Q1Q1 P Rid. The compact quantum groups O`pQq
and O`pQ1q are isomorphic if and only if there exists a unitary matrix U P UnpCq such that
Q1 “ U tQU .

ii) (S.L. Woronowicz, [227] or [188]) For each r P N there exists a unique (up to equivalence)
irreducible representation matrix wr P Mr`1pCpSUqp2qqq with weight function given by

Wrpkq :“
"

1, if k P t´r, 2´ r, . . . , r ´ 2, ru
0, otherwise

for all k P Z.
Every finite dimensional representation of SUqp2q is completely determined, up to equivalence,
by its weight function. Moreover the following fusion rules hold

w1 “ u; wr j ws “ w|r´s| ‘ w|r´s|`2 ‘ . . .‘ wr`s´2 ‘ wr`s,

for all r, s P N.

iii) (T. Banica, [9]) There exists a familiy of pairwise inequivalent irreducible representation
txrurPN of O`pQq that are exactly the irreducible representations of SUqp2q such that the
following fusion rules hold

x0 “ 1; x1 “ v; xr j xs “ x|r´s| ‘ x|r´s|`2 ‘ . . .‘ xr`s´2 ‘ xr`s,

for all r, s P N. Every irreducible representation of O`pQq is equivalent to xr, for some r P N.

iv) (T. Banica, [9] or [139]) O`pQq is co-amenable for n “ 2 and not co-amenable if n ą 2.
In particular, SUqp2q is co-amenable (see also E. Bédos, J. G. Murphy and L. Tuset, [31] or
[139]).

v) (C. Voigt, [210]) {O`pQq is torsion-free and satisfies the strong (quantum) Baum-Connes
property. As a result, {O`pQq is K-amenable.

In particular, {SUqp2q is torsion-free and satisfies the strong (quantum) Baum-Connes property
(see also [211]).

vi) - (C. Voigt, [210]) The K-theory of O`pQq is given by

K0pA0pQqq “ Z and K1pA0pQqq “ Z

- (T. Masuda, Y. Nakagami and J. Watanabe, [128]; C. Voigt, [210]) The K-theory of
SUqp2q is given by

K0pCpSUqp2qqq “ Z and K1pCpSUqp2qqq “ Z
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Free unitary quantum group

The following definition is due to A. van Daele and S. Wang [204].

2.1.6 Definition. Fix a natural number n P N and an invertible matrix Q P GLnpCq. The free
unitary quantum group is the compact matrix quantum group U`pQq :“ pAupQq,∆u, uq whose
fundamental representation u “ puijqi,j“1,...,n satisfies the following relations

i) u is a unitary matrix,

ii) QuQ´1 is a unitary matrix.

If Q “ Id P GLnpCq, we write U`pIdq :“ U`pnq.

2.1.7 Remark. We claim that any compact matrix quantum group G “ pCpGq,∆, wq is a compact
quantum subgroup of some free unitary quantum group U`pQq. Indeed, given the fundamental
representation w of G, consider its contragredient representation w, which is always unitary
equivalent to a unitary representation (recall Remark 1.3.1.19 or Remark 1.3.1.21). In other
words, there always exists an invertible matrix Q P GLnpCq such that QwQ´1 is unitary. Hence, by
universality we can define a (surjective) ˚-homomorphism f : AupQq� CpGq such that fpuijq “ wij ,
for all i, j “ 1, . . . , n. This map is clearly compatible with the co-multiplications of each compact
quantum group and so G is a compact quantum subgroup of U`pQq.

The main results about the free unitary quantum group are stated in the following theorem.

2.1.8 Theorem. Fix a natural number n P N and an invertible matrix Q P GLnpCq.

i) (S. Wang, [218]) Let Q1 P GLnpCq and assume that Q and Q1 are positive matrices. Let
pλ1, . . . , λnq and pλ11, . . . , λ1nq the (positive) eigen values of Q and Q1, respectively. The compact
quantum groups U`pQq and U`pQ1q are isomorphic if and only if pλ1, . . . , λnq “ pλ

1
1, . . . , λ

1
nq

or pλ´1
n , . . . , λ´1

1 q “ pλ11, . . . , λ
1
nq.

ii) (T. Banica, [10]) There exists a family of pairwise inequivalent irreducible representations
txγuγPN˚N of U`pQq such that the following fusion rules hold

xe “ 1; xα “ u; xβ “ u; xr j xs “
ÿ

a,b,cPN˚N
r“ac,s“cb

xab,

for all r, s P N where α, β P N˚N are the canonical generators. Every irreducible representation
of U`pQq is equivalent to xγ , for some γ P N ˚ N.

iii) (T. Banica, [10]) U`pQq is not co-amenable.

iv) (R. Vergnioux and C. Voigt, [208]) {U`pQq satisfies the strong (quantum) Baum-Connes
property. As a result, {U`pQq is K-amenable.

v) (R. Vergnioux and C. Voigt, [208]) The K-theory of U`pQq is given by

K0pAupQqq “ Z and K1pAupQqq “ Z‘ Z
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Quantum automorphisms group

The quantum permutation group of N -points and the quantum automorphisms group of MnpCq fit
in a more general context. Namely, they are particular cases of a quantum automorphism group of
a quantum or noncommutative space. The following definition is due to S. Wang [217].

2.1.9 Definition. Fix a C˚-algebra A and a continuous linear form ω P A˚. The quantum
automorphism group of pA,ωq is a compact quantum group QutpA,ωq acting on A and preserving
ω such that if G is another compact quantum group acting on A and preserving ω, then there exists
a unique quantum group homomorphism G ÝÑ QutpA,ωq preserving ω.

If the linear form ω is clear by the context, we write simply QutpA,ωq :“ QutpAq.

If such a quantum automorphism group exists, it is automatically unique. The main problem is
thus to establish the existence of such a quantum group. We might fail if we want the existence
in full generality, but under some assumptions on the pair pA,ωq we achieve interesting results.
Namely, whenever A is finite dimensional and ω is a δ-form, we can perform a satisfactory theory.
Let us be more precise.

Given a C˚-algebra A, fix a faithful state ω on A, that is, a continuous linear form ω : A ÝÑ C
such that

i) ωpaa˚q ě 0, for all a P A and ωp1q “ 1,

ii) ωpaa˚q ‰ 0, for all non-zero a P A,

iii) (sometimes such state is tracial, meaning that ωpabq “ ωpbaq, for all a, b P A).

In this case, we can perform the corresponding GNS construction, which allows in particular
to equip A (and hence A b A) with a Hilbert space structure whose inner product is such that
xx, yy “ ωpx˚yq, for all x, y P A. The multiplication of A can be regarded as a linear homomorphism
m : AbA ÝÑ A.

Fix now a positive number δ ą 0. We say that ω is a δ-form if mm˚ “ δ2idA.
If A is in addition a finite dimensional C˚-algebra, it is well known that it can be expressed as a

direct sum of matrices say A “ Mn1pCq ‘ . . .‘Mnr pCq. Hence, the corresponding quantum auto-
morphism group can be explicitly described in terms of generators and relations via a fundamental
representation u (see and compare Theorem 5.1 in [217] and Theorem 1.1 in [13]).
2.1.10 Remarks. 1. If te1, . . . , eNu denotes the canonical orthonormal basis of CN , for some

N P N, then there exists a natural action of QutpCN q on CN given by

α : CN ÝÑ CpQutpCN qq b CN

ej ÞÝÑ αpejq :“
N
ř

i“1
uij b ei, for all j “ 1, . . . , N ,

where u :“ puijqi,j“1,...,N is the fundamental representation of QutpCN q.
The quantum permutation group of N -points is defined as the quantum automorphism group
of CN with the uniform probability measure on N -points as a trace, which is a δ-form for
δ :“

?
n (see Theorem 3.1 in [217] for more details). We write

S`N :“ QutpCN q
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It is important to make the following observation. Consider the classical permutation group
SN , which is a finite discrete group. Thus its continuous functions CpSN q is naturally a
compact quantum group. By abuse of notation, we write SN :“ pCpSN q,∆SN q.
For every i, j “ 1, . . . , N consider the following subset of SN ,

Sij :“ tσ P SN | σpjq “ iu

and denote by χSij “: χij its characteristic function, which can be regarded as a continuous
function on SN . Put ρSN puijq :“ χij , for all i, j “ 1, . . . , N . It is clear by the definitions that
the relation pρSN b ρSN q ˝∆ “ ∆SN ˝ ρSN holds on generators of S`N and so by universality
we can extend ρSN (in a unique fashion) into a homomorphism of compact quantum groups,

ρSN : S`N ÝÑ SN

We can show that for N “ 1, 2, 3 we have S`N – SN as compact quantum groups (because in
this case the magic unitaries defining S`N must mutually commute). For N ě 4, CpS`N q is not
commutative and infinite dimensional, which prevent ρSN to be a isomorphism. In this sense
we say that quantum permutations exist only for N ě 4. For a proof of these facts we refer to
[217] or [16].

2. If tmijui,j“1,...,n denotes the canonical orthonormal basis of matrix units of MnpCq, for some
n P N, there exists a natural action of QutpMnpCqq on MnpCq given by

α : MnpCq ÝÑ CpQutpMnpCqqq bMnpCq

mij ÞÝÑ αpmijq :“
n
ř

k,l“1
uklij bmkl, for all i, j “ 1, . . . , n,

where u “ pulkij qi,j,l,k“1,...,n is the fundamental representation of QutpMnpCqq.
Actually, we can show (see Theorem 4.1 in [217] for a proof) that QutpMnpCqq is the quantum
automorphism group of MnpCq with the canonical (normalized) trace as a linear form ω :“ tr.,
which is a δ-form (for a well-chosen δ ą 0, see Proposition 2.1 in [13] for the details).

3. By virtue of the above remark about S`N “ QutpCN q, all quantum automorphism groups of
C˚-algebras of dimension 1, 2 or 3 are classical automorphism groups. For dimension N “ 4,
we have two possibilities.

a) either we consider the C˚-algebra C4 whose quantum automorphism group is given by
S`4 – SO´1p3q thanks to the result [15] due to T. Banica and J. Bichon. Here the quantum
group SO´1p3q is a 2-cocycle twist of the classical group SOp3q, so it is different from the
Podleś q-deformation introduced in Remarks 2.1.4

b) or we consider the C˚-algebra M2pCq whose quantum automorphism group is given by
QutpM2pCqq – SOqp3q, for a unique q P p0, 1s by virtue of a P. M. Soltan’s result [173].

Hence, for the treatment of the quantum automorphism group we can restrict our attention
to the ě 4th-dimensional case.

The main results about the quantum permutation group are stated in the following theorem.
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2.1.11 Theorem. Fix a finite dimensional C˚-algebra A with dimpAq “ n ě 4 and a δ-form
ω P A˚.

i) (T. Banica, [13]) For each r P N there exists a unique (up to equivalence) irreducible represen-
tation wr of QutpA,ωq such that

w0 “ ε, w0 ‘ w1 “ u and wr “ wr, for all r P N

Moreover, the following (recursive) fusion rules hold

w1 j wr “ wr´1 ‘ wr ‘ wr`1,

for all r P N.

ii) (C. Voigt, [212]) {QutpA,ωq is not torsion-free. Moreover, the trivial action on C and the
canonical action of QutpA,ωq on A are the unique, up to Morita equivalence, torsion actions.
In particular, we have that

- xS`N is not torsion-free and its unique, up to Morita equivalence, torsion actions are the
trivial action on C and the canonical action on CN ,

- (see also [211]) {QutpMnpCqq is not torsion-free and its unique, up to Morita equivalence,
torsion actions are the trivial action on C and the canonical action on MnpCq.

iii) (T. Banica, [13]) S`N is co-amenable if and only if N ď 4.

iv) (C. Voigt, [212]) {QutpA,ωq satisfies the strong (quantum) Baum-Connes property and it is
K-amenable.
In particular, we have that

- xS`N satisfies the strong (quantum) Baum-Connes property and it is K-amenable,

- (see also [211]) {QutpMnpCqq satisfies the strong (quantum) Baum-Connes property and
it is K-amenable.

v) (C. Voigt, [212]) If we write A “ Mn1pCq‘ . . .‘Mnr pCq, the K-theory of QutpA,ωq is given
by

K0pCpQutpA,ωqqq “ Zpr´1q2`1 ‘ Z2r´1
d and K1pCpQutpA,ωqqq “ Z,

where d :“ gcdpn1, . . . , nrq.
In particular, we have that

- the K-theory of S`N is given by

K0pCpS
`
N qq “ ZN

2
´2N`2 and K1pCpS

`
N qq “ Z

As a consequence, CpS`N q – CpS`N 1q if and only if N “ N 1.
- (see also [211]) the K-theory of QutpMnpCqq is given by

K0
`

CpQutpMnpCqqq
˘

“ Z‘ Zn and K1
`

CpQutpMnpCqqq
˘

“ Z
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2.2 Quantum direct product
We introduce the direct product of two compact quantum groups and we analyze some structure
properties of this object which are useful for our purpose. We may recall the leg and Sweedler
notations from Section 1.1.

The following theorem is due to S. Wang [216].

2.2.1 Theorem-Definition. Let G “ pCpGq,∆Gq and H “ pCpHq,∆Hq be two compact quantum
groups.

There exists a unique unital ˚-homomorphism

Θ : CmpGq b
max

CmpHq ÝÑ CmpGq b
max

CmpHq b CmpGq b
max

CmpHq

such that
Θpab bq “ ∆Gpaqp1q b∆Hpbqp1q b∆Gpaqp2q b∆Hpbqp2q,

for all a P CmpGq and all b P CmpHq.
Besides, we have that

i) F :“ pCmpGq b
max

CmpHq,Θq is a compact quantum group,

ii) the Haar state on F is given by hF “ hG b
max

hH, where hG and hH are the Haar states on G
and H, respectively,

iii) the maximal picture of F is given by CmpFq “ CmpGq b
max

CmpHq,

iv) the reduced picture of F is given by CrpFq “ CrpGq b CrpHq,

v) the irreducible representations of F are described as follows: for every irreducible representation
y P IrrpFq, take a representative wy P BpHyq b CpFq. There exist unique irreducible represen-
tations x P IrrpGq and z P IrrpHq such that if wx P BpHxq b CpGq and wz P BpHzq b CpHq
are respective representatives of x and z, then we have

wy –
“

wx
‰

13

“

wz
‰

24 P BpHx bHzq b CpFq,

where
“

wx
‰

13 and
“

wz
‰

24 are the corresponding legs of wx and wz, respectively inside BpHxq b

BpHzq b CmpGq b
max

CmpHq. In this case we write wy :“ wpx,zq.

In other words, the irreducible representations described above provide a complete set of
mutually inequivalent irreducible representations of F. For this reason we write IrrpFq “
“

IrrpGq
‰

13

“

IrrpHq
‰

24.

The compact quantum group F constructed in this way is called quantum direct product of G
and H and is denoted by GˆH.
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2.2.2 Remark. The representation theory of a quantum direct product F described in the theorem
above allows to give some explicit expressions which are useful for subsequent computations.

- Let x, x1 P IrrpGq and z, z1 P IrrpHq irreducible representations of G and H and consider the
corresponding irreducible representations of F, say y :“ px, zq, y1 :“ px1, z1q P IrrpFq. Thanks
to the theorem above we know that

wy “
“

wx
‰

13

“

wz
‰

24 and wy
1

“
“

wx
1‰

13

“

wz
1‰

24,

where the legs are considered inside BpHxqbBpHzqbCmpGq b
max

CmpHq and BpHx1qbBpHz1qb

CmpGq b
max

CmpHq, respectively.

The flip map Hz bHx1 ÝÑ Hx1 bHz yields the following obvious identification

wyjy
1

:“ wy j wy
1

“
“

wx j wx
1‰

13

“

wz j wz
1‰

24

- The C˚-algebra of the quantum discrete dual of F can be written as

c0ppFq – c0ppGq b c0ppHq

Indeed,

c0ppFq “
c0
à

yPIrrpFq
BpHyq “

c0
à

px,zqPIrrpGqˆIrrpHq
BpHx bHzq

–

´ c0
à

xPIrrpGq
BpHxq

¯

b

´ c0
à

zPIrrpHq
BpHzq

¯

“ c0ppGq b c0ppHq

- The fundamental multiplicative unitary of F can be written as

WF “
“

WG
‰

13

“

WH
‰

24

Indeed, by definition we have

WG “
à

xPIrrpGq
wx PMpc0ppGq b CrpGqq

ùñ
“

WG
‰

13 “
à

xPIrrpGq

“

wx
‰

13 PMpc0p
pGq b c0ppHq b CpFqq

WH “
à

zPIrrpHq
wz PMpc0ppHq b CrpHqq

ùñ
“

WG
‰

24 “
à

zPIrrpHq

“

wz
‰

24 PMpc0p
pGq b c0ppHq b CpFqq,

where we understand the legs p13q and p24q in the space c0ppGq b c0ppHq b CmpGq b
max

CmpHq.
In this way, we have

WF “
à

yPIrrpFq
wy “

à

px,zqPIrrpGqˆIrrpHq

“

wx
‰

13

“

wz
‰

24

“

´

à

xPIrrpGq

“

wx
‰

13

¯´

à

zPIrrpHq

“

wz
‰

24

¯

“
“

WG
‰

13

“

WH
‰

24
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From now on, G “ pCpGq,∆Gq and H “ pCpHq,∆Hq denote compact quantum groups and
F :“ GˆH denotes the corresponding quantum direct product as in the theorem above.

2.2.3 Proposition. The canonical injections

ιrG : CrpGq ãÑ CrpFq and ιrH : CrpHq ãÑ CrpFq

are such that
pιrG b ι

r
Gq ˝∆G “ Θ ˝ ιrG and pιrH b ιrHq ˝∆H “ Θ ˝ ιrH

In other words, pG and pH are discrete quantum subgroups of pF.

Proof. We have just to remark that Θ “ pid b Σ b idq ˝ ∆G b ∆H by definition, where Σ :
CpGq b CpHq ÝÑ CpHq b CpGq denotes the flip map.

Hence, the canonical inclusions ιrG and ιrH intertwine the corresponding co-multiplications by
construction.

Consequently, pG and pH are discrete quantum subgroups of pF as explained in Proposition
1.4.3.4. �

2.2.4 Remark. Furthermore, the representation theory of F yields that pG and pH are divisible in pF
(recall the equivalence relation defined in terms of discrete quantum subgroups in Section 1.4.3 and
see Definition 3.2.1 and Lemma 3.2.2 for more details).

Namely, take an irreducible representation y :“ px, zq P IrrpFq with x P IrrpGq and z P IrrpHq.
Then x “ px, εHq P rys in IrrpHqzIrrpFq because px, zq j px, εHq “ pεG, zq “ z P IrrpHq. Likewise,
we have that z “ pεG, zq P rys in IrrpGqzIrrpFq because px, zq j pεG, zq “ px, εHq “ x P IrrpGq.

Consequently, pG is divisible in pF because for all s P IrrpGq we have that sj pε, zq “ ps, εHq j
pεG, zq “ ps, zq P IrrpFq. Likewise, pH is divisible in pF because for all s P IrrpHq we have that
px, εHq j s “ px, εHq j pεG, sq “ px, sq P IrrpFq.

2.3 Quantum semi-direct product
We introduce the semi-direct product of a compact quantum group by a discrete group and analyze
some structure properties of this compact quantum group which are useful for our purpose. We
may recall the crossed product constructions from Section 1.5.1 and Section 1.5.

In order to do so, the discrete group acts on the compact quantum group by quantum auto-
morphisms. In this way, it is licit to form a natural crossed product that defines the C˚-algebra of
the resulting compact quantum group. This construction is due to S. Wang [216]. For a proof of
Theorem 2.3.2 below we refer to [216] and [65].

2.3.1 Definition. Let G be a compact quantum group and Γ be a discrete group. We say that Γ
acts on G by quantum automorphisms if there exists a group homomorphism α : Γ ÝÑ AutpGq.

In that case we say that α is a (quantum) action of Γ on G.

2.3.2 Theorem-Definition. Let G “ pCpGq,∆q be a compact quantum group and Γ be a discrete
group acting on G by quantum automorphisms with action α.
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There exists a unique unital ˚-homomorphism

Θ : Γ ˙
α,m

CmpGq ÝÑ Γ ˙
α,m

CmpGq b Γ ˙
α,m

CmpGq

such that
Θpπpaqq “ pπ b πq

`

∆Gpaq
˘

and Θpuγq “ uγ b uγ ,

for all a P CmpGq and all γ P Γ, where π : CmpGq ÝÑ Γ ˙
α,m

CmpGq is the unital faithful ˚-

homomorphism and u : Γ ÝÑ UpMpΓ ˙
α,m

CmpGqqq the group homomorphism defining the crossed
product.

Besides, we have that

i) F :“ pΓ ˙
α,m

CmpGq,Θq is a compact quantum group,

ii) the Haar state on F is given by hF :“ hG ˝ E ˝ κ, where hG is the Haar state of G, κ :
Γ ˙
α,m

CmpGq � Γ ˙
α,r

CrpGq is the canonical surjection and E : Γ ˙
α,r

CrpGq Ñ CrpGq is the
canonical conditional expectation,

iii) the maximal picture of F is given by CmpFq “ Γ ˙
α,m

CmpGq,

iv) the reduced picture of F is given by CrpFq “ Γ ˙
α,r

CrpGq,

v) the irreducible representations of F are described as follows: for every irreducible representation
y P IrrpFq, take a representative wy P BpHyqbCpFq. There exist unique γ P Γ and x P IrrpGq
such that if wγ P CbC˚r pΓq and wx P BpHxq bCpGq are respective representatives of γ and x,
then we have

wy – vγ j vx P BpCbHxq b CpFq,

where vγ :“ pidb uqpwγq P CbCpFq and vx :“ pidb πqpwxq P BpHxq bCpFq. In this case we
write wy :“ wpγ,xq.
In other words, the tensor product of irreducible representations of Γ by irreducible representa-
tions of G provide a complete set of mutually inequivalent irreducible representations of F. For
this reason we write IrrpFq “ Γ

Ê

IrrpGq.

The compact quantum group F constructed in this way is called quantum semi-direct product of
G by Γ and is denoted by Γ˙

α
G.

2.3.3 Remark. The representation theory of a quantum semi-direct product F described in the
theorem above allows to give some explicit expressions which are useful for subsequent computations.
For instance, it is advisable to give an explicit description of pF in terms of Theorem 1.3.1.36.

- First of all, since α is an action of Γ on G by quantum automorphisms, then for every γ P Γ,
we have that pid b αγqpw

xq is an irreducible unitary finite dimensional representation of
G on Hx whenever x P IrrpGq (recall Proposition 1.3.1.28). Hence there exists a unique
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class αγpxq P IrrpGq such that pidb αγqpwxq – wαγpxq. Since dimpαγpxqq “ dimpxq we can
assume that wαγpxq P BpHxq b CpGq, for all γ P Γ (if this is not the case, we might change
the representative of αγpxq by an appropriate one in the orbit of x).
Hence, there exists a unique, up to a multiplicative factor in S1, unitary operator Vγ,x P UpHxq

such that
pidb αγqpw

xq “ pVγ,x b idqw
αγpxqpV ˚γ,x b idq

Notice that it is clear that αepxq “ x, for all x P IrrpGq and that αγpεq “ ε, for all γ P Γ.
Therefore, we can choose the multiplicative factor defining Vγ,x such that Ve,x “ idHx , for all
x P IrrpGq and Vγ,ε “ 1C, for all γ P Γ. We keep this choice for the sequel.

- Let γ, γ1 P Γ and x, x1 P IrrpGq be irreducible representations of Γ and G and consider the
corresponding irreducible representations of F, say y :“ pγ, xq, y1 :“ pγ1, x1q P IrrpFq. Thanks
to the theorem above we know that

wy “ vγ j vx and wy
1

“ vγ
1

j vx
1

,

where vγ :“ pid b uqpwγq, vγ
1 :“ pid b uqpwγ

1

q P C b CpFq and vx :“ pid b πqpwxq, vx
1 :“

pidb πqpwx
1

q P BpHxq b CpFq.
A straightforward computation yields the following

wyjy
1

:“ wy j wy
1

“ vγγ
1

j
`

pVγ1´1 b idqvαγ1´1 pxqpV ˚γ1´1 b idq j v
x1
˘

,

where vαγ1´1 pxq :“ pidbπ˝αγ1´1qpwxq P BpHxqbCpFq. Indeed, let tξx1 , . . . , ξxnxu be an orthonor-
mal basis for Hx and tmi,jui,j“1,...,nx the corresponding matrix units in BpHxq. Likewise, let
tξx

1

1 , . . . , ξ
x1

nx1
u be an orthonormal basis for Hx1 and tm1k,luk,l“1,...,nx1 the corresponding matrix

units in BpHx1q. Using the relation between the homomorphisms π : CmpGq ÝÑ Γ ˙
α,m

CmpGq

and u : Γ ÝÑ UpMpΓ ˙
α,m

CmpGqqq defining the crossed product CpFq “ Γ ˙
α,m

CmpGq we can
write the following

wy j wy
1

“
“

vγ j vx
‰

13

“

vγ
1

j vx
1‰

23

“

”

nx
ÿ

i,j“1
1C bmi,j b uγπpw

x
ijq

ı

13

”

nx1
ÿ

k,l“1
1C bm1k,l b uγ1πpwx

1

klq

ı

23

“
ÿ

i,j,k,l

1C bmi,j b 1C bm1k,l b uγπpwxijquγ1πpwx
1

klq

“
ÿ

i,j,k,l

1C bmi,j b 1C bm1k,l b uγuγ1π
`

αγ1´1pwxijq
˘

πpwx
1

klq

“
ÿ

i,j,k,l

1C b 1C bmi,j bm
1
k,l b uγuγ1π

`

αγ1´1pwxijq
˘

πpwx
1

klq

“
“

1C b 1C b uγuγ1
‰

13

”

ÿ

i,j,k,l

mij bm
1
kl b π

`

αγ1´1pwxijq
˘

πpwx
1

klq

ı

23

“
“

vγ j vγ
1‰

13

“

pVγ1´1 b idqvαγ1´1 pxqpV ˚γ1´1 b idq j v
x1
‰

23

“
`

vγ j vγ
1˘

j
`

pVγ1´1 b idqvαγ1´1 pxqpV ˚γ1´1 b idq j v
x1
˘

“ vγγ
1

j
`

pVγ1´1 b idqvαγ1´1 pxqpV ˚γ1´1 b idq j v
x1
˘

,
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which is the formula announced above. Consequently, the decomposition of y j y1 into
direct sum of irreducible representations depends only on the corresponding decomposition
of αγ1´1pxq j x1. More precisely, if txkuk“1,...,r is such a decomposition for αγ1´1pxq j x1,
then the formula above implies that the corresponding decomposition for y j y1 is given by
tpγγ1, xkquk“1,...,r.

2.3.4 Lemma. Let G “ pCpGq,∆q be a compact quantum group and Γ be a discrete group acting
on G by quantum automorphisms with action α. Let F :“ Γ ˙

α
G be the corresponding quantum

semi-direct product.

i) For all γ, g, h P Γ and all x, y, z P IrrpGq, we have

hF

´

χFpγ, xq
˚χF

`

pg, yq j ph, zq
˘

¯

“

#

hG

´

χGpxq
˚χG

`

αh´1pyq j z
˘

¯

, if γ “ gh

0, otherwise

ii) For all γ, g, h P Γ and all x, y, z P IrrpGq, we have

Mor
´

pγ, xq, pg, yq j ph, zq
¯

–

#

Mor
´

x, αh´1pyq j z
¯

, if γ “ gh

0, otherwise

iii) The dual discrete quantum group pF “ pc0ppFq, pΘq is given precisely by

c0ppFq – c0pΓq b c0ppGq

and pΘ : c0ppFq ÝÑMpc0ppFq b c0ppFqq such that

pΘpδγbaq
`

ppg,yqbpph,zq
˘

“ δγ,gh pδgbpybδhbpzq
´

pVh´1,ybpzqp∆paqppybpzqpV ˚h´1,ybpzq
¯

24
,

for all γ, g, h P Γ, all a P c0ppGq and all y, z P IrrpGq.

Proof. i) The elementary properties of the character together with the definition of the Haar
state of F given by Theorem 2.3.2 allow to write the desired formula,

hF

´

χFpγ, xq
˚χF

`

pg, yq j ph, zq
˘

¯

“ hF

´

χFpv
γ j vxq˚χF

`

vgh j
`

vαh´1 pyq j vz
˘˘

¯

“ hF

´

uγ´1χFpv
xq˚ughχF

`

vαh´1 pyq j vz
˘

¯

“ hF

´

uγ´1ghχFpv
xq˚χF

`

vαh´1 pyq j vz
˘

¯

“ δγ´1gh,e hG

´

χGpw
xq˚χG

`

wαh´1 pyq j wz
˘

¯

“ δγ´1gh,e hG

´

χGpxq
˚χG

`

αh´1pyq j z
˘

¯

,

for all γ, g, h P Γ and all x, y, z P IrrpGq where e P Γ denotes the identity element of Γ.
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ii) On the one hand, given γ, g, h P Γ and all x, y, z P IrrpGq, the computation ofMor
´

pγ, xq, pg, yqj

ph, zq
¯

reduces to case when γ “ gh thanks to the formula of piq. On the other hand,
by Remark 2.3.3 we know that, for all γ P Γ and all x P IrrpGq, there exists a unique
(up to a multiplicative factor) unitary operator Vγ,x P UpHxq such that pid b αγqpw

xq “

pVγ,x b idCpGqqw
αγpxqpV ˚γ,x b idCpGqq.

Hence for all γ, g, h P Γ and all x, y, z P IrrpGq such that γ “ gh, we define

ψ : Mor
´

x, αh´1pyq j z
¯

ÝÑ Mor
´

pγ, xq, pg, yq j ph, zq
¯

Φ ÞÝÑ ψpΦq :“ pVh´1,y b idHz q ˝ Φ,

which is a linear isomorphism with inverse ψ´1prΦq “ pV ˚
h´1,y

b idHz q ˝
rΦ, for all rΦ P

Mor
´

pγ, xq, pg, yq j ph, zq
¯

. Let us check that ψ is well-defined. Namely, we have to show that
pψpΦq b idCpFqqwpγ,xq “ wpg,yq j wph,zqpψpΦq b idCpFqq,

wpg,yq j wph,zqpψpΦq b idCpFqq

“ vgh j
´

pVh´1,y b idCpFqqv
αh´1 pyqpV ˚h´1,y b idCpFqq j v

z
¯

pψpΦq b idCpFqq

“ vgh j
´

pVh´1,y b idHz b idCpFqqv
αh´1 pyq j vzpV ˚h´1,y b idHz b idCpFqq

¯

pψpΦq b idCpFqq

“ vγ j
´

pVh´1,y b idHz b idCpFqqv
αh´1 pyq j vzpΦb idCpFqq

¯

“ vγ j
´

pVh´1,y b idHz b idCpFqqpΦb idCpFqqvx
¯

“

´

pVh´1,y b idHz b idCpFqqpΦb idCpFqqvγ j vx
¯

“ pψpΦq b idCpFqqwpγ,xq,

where we have used the computations of Remark 2.3.3.

iii) The description of the C˚-algebra of the quantum discrete dual of F is easy to establish. Indeed,

c0ppFq “
c0
à

yPIrrpFq
BpHyq “

c0
à

pγ,xqPΓˆIrrpGq
BpCbHxq

–

´ c0
à

γPΓ
C
¯

b

´ c0
à

xPIrrpGq
BpHxq

¯

“ c0pΓq b c0ppGq

Let us compute the dual co-multiplication pΘ using the identification c0ppFq – c0pΓq b c0ppGq
above. Following Theorem 1.3.1.36, pΘ is completely determined by the relation

pΘpSq ˝ rΦ “ rΦ ˝ S,

for all S P BpHpγ,xqq – BpHxq with pγ, xq P IrrpFq, rΦ P Mor
´

pγ, xq, pg, yq j ph, zq
¯

and all
pg, yq, ph, zq P IrrpFq. Thanks to the isomorphism ψ given in piiq we write
pΘpSq ˝ rΦ “ rΦ ˝ S “ δγ,gh pVh´1,y b idHz qψ

´1prΦq ˝ S

“ δγ,gh pVh´1,y b idHz q
p∆pSqppy b pzq ˝ ψ´1prΦq

“ δγ,gh pδg b py b δh b pzq
´

pVh´1,y b idHz q
p∆pSqppy b pzqpV ˚h´1,y b idHz q

¯

24
˝ rΦ
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Next, for every pγ, xq Ă pg, yqjph, zq denote by ppg,yqjph,zq
pγ,xq P BpHpg,yqjph,zqq the corresponding

orthogonal finite dimensional projection on the direct sum of subrepresentations of pg, yqjph, zq
which are isomorphic to pγ, xq. This projection is such that

ř

pγ,xqĂpg,yqjph,zq

p
pg,yqjph,zq
pγ,xq “

idHpg,yqjph,zq and for every k “ 1, . . . , dim
´

Morppγ, xq, pg, yq j ph, zqq
¯

consider a family of in-

tertwiners rΦk PMorppγ, xq, pg, yqjph, zqq such that rΦ˚k rΦk “ idHpγ,xq and
ř

k

rΦkrΦ˚k “ p
pg,yqjph,zq
pγ,xq .

Hence, for all a P c0ppFq we write the following,

pΘpaq ˝ ppg,yqjph,zq
pγ,xq “

ÿ

k

pΘpaq ˝ rΦkrΦ˚k

“
ÿ

k

δγ,gh pδg b py b δh b pzq
´

pVh´1,y b idHz q
p∆paγqppy b pzqpV ˚h´1,y b idHz q

¯

24
˝ rΦkrΦ˚k

“ δγ,gh pδg b py b δh b pzq
´

Vh´1,y b idHz q
p∆paγqppy b pzqpV ˚h´1,y b idHz q

¯

24
˝ p
pg,yqjph,zq
pγ,xq ,

where aγ :“ pδγ b idc0ppGqqa P c0p
pGq, where δγ denotes the minimal central projection of c0pΓq

on BpHγq. Next, for all γ P Γ, a P c0ppGq and all pg, yq, ph, zq P IrrpFq we write the following

pΘpδγ b aq
`

ppg,yq b pph,zq
˘

“
ÿ

pγ,xqĂpg,yqjph,zq

pΘpδγ b aq ˝ ppg,yqjph,zqpγ,xq

“
ÿ

pγ,xqĂpg,yqjph,zq

δγ,gh pδg b py b δh b pzq
´

pVh´1,y b idHz q
p∆paqppy b pzqpV ˚h´1,y b idHz q

¯

24
˝ p
pg,yqjph,zq
pγ,xq

“ δγ,gh pδg b py b δh b pzq
´

pVh´1,y b idHz q
p∆paqppy b pzqpV ˚h´1,y b idHz q

¯

24

which is the formula of the statement.
�

From now on, G “ pCpGq,∆q denotes a compact quantum group, Γ denotes a discrete group
acting on G by quantum automorphisms with action α and F :“ Γ˙

α
G denotes the corresponding

quantum semi-direct product as in the theorem above. Remark as well that Γ can be regarded as a
discrete quantum group and we write Γ “ pc0pΓq, p∆Γq.

2.3.5 Proposition. There exist non-degenerate ˚-homomorphisms

ρ
pG : c0ppFq ÝÑMpc0ppGqq and ρΓ : c0ppFq ÝÑMpc0pΓqq

such that ρ
pGpc0p

pFqq “ c0ppGq, ρΓpc0ppFqq “ c0pΓq and

p∆ ˝ ρ
pG “ pρpG b ρpGq

pΘ and p∆Γ ˝ ρΓ “ pρΓ b ρΓqpΘ

In other words, pG and Γ are discrete quantum subgroups of pF. As a result, if pA, δq is any
pF-C˚-algebra, then pA, δ

pGq is a pG-C˚-algebra and pA, δΓq is a Γ-C˚-algebra with actions

δ
pG :“ pρ

pG b idAq ˝ δ and δΓ :“ pρΓ b idAq ˝ δ
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Proof. In order to define the ˚-homomorphisms ρ
pG and ρΓ of the statement, consider the co-unit

homomorphisms of Γ and pG. Namely,

εΓ : c0pΓq ÝÑ C ε
pG : c0ppGq ÝÑ C

f ÞÝÑ εΓpfq :“ fpeq a ÞÝÑ ε
pGpaq :“ pε a pε,

where e P Γ is the identity element of Γ, ε P IrrpGq is the trivial representation of G and pε the
corresponding central projection from c0ppGq into Hε “ C (recall as well Remark 1.3.1.38).

Taking into account the decomposition c0ppFq “ c0pΓq b c0ppGq, we put

ρ
pG :“ εΓ b idc0ppGq and ρΓ :“ idc0pΓq b εpG

It is clear that the above ρ
pG and ρΓ are surjective ˚-homomorphisms on c0ppGq and c0pΓq

because they are projections on the corresponding component of c0ppFq “ c0pΓq b c0ppGq. Therefore,
ρ
pG : c0ppFq ÝÑMpc0ppGqq and ρΓ : c0ppFq ÝÑMpc0pΓqq are non-degenerate ˚-homomorphisms.
Moreover, using the explicit description of pΘ given by Lemma 2.3.4, it is straightforward to

check that ρ
pG and ρΓ intertwine the corresponding co-multiplications. Namely, for all γ P Γ, all

a P c0ppGq and all pg, yq, ph, zq P IrrpFq we write

pρ
pG b ρpGq

pΘpδγ b aq
`

ppg,yq b pph,zq
˘

“ pρ
pG b ρpGq

´

δγ,gh pδg b py b δh b pzq
´

pVh´1,y b idHz q
p∆paqppy b pzqpV ˚h´1,y b idHz q

¯

24

¯

“ pεΓ b idb εΓ b idq
´

δγ,gh pδg b py b δh b pzq
´

pVh´1,y b idHz q
p∆paqppy b pzqpV ˚h´1,y b idHz q

¯

24

¯

“ pVe,y b pzqp∆paqppy b pzqpV ˚e,y b pzq “ p∆paqppy b pzq

“ p∆pεΓ b idqpδγ b aqppy b pzq “ p∆
`

ρ
pGpδγ b aqpppg,yq b pph,zqq

˘

,

and

pρΓ b ρΓqpΘpδγ b aq
`

ppg,yq b pph,zq
˘

“ pρΓ b ρΓq
´

δγ,gh pδg b py b δh b pzq
´

pVh´1,y b idHz q
p∆paqppy b pzqpV ˚h´1,y b idHz q

¯

24

¯

“ pidb ε
pG b idb εpGq

´

δγ,gh pδg b py b δh b pzq
´

pVh´1,y b idHz q
p∆paqppy b pzqpV ˚h´1,y b idHz q

¯

24

¯

“ δγ,gh pδg b py b δh b pzq
´

pVh´1,ε b pεqp∆paqppε b pεqpV ˚h´1,ε b pεq
¯

24

“ δγ,gh pδg b py b δh b pzq
´

p∆paqppε b pεq
¯

24
“ δγ,gh pδg b py b δh b pzq

´

pε
pG b εpGq

p∆paq
¯

24

“ δγ,gh pδg b py b δh b pzq
´

pidb ε
pGqpaq

¯

4
“ p∆Γpidb εpGqpδγ b aq

`

ppg,yq b pph,zq
˘

“ p∆Γ
`

ρΓpδγ b aqpppg,yq b pph,zq
˘

�

2.3.6 Remark. Since Γ is a classical group, a Γ-C˚-algebra is equivalent to a C˚-algebra equipped
with a co-action of c0pΓq as explained in the introduction of Section 1.4. This correspondence
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explains the abuse of language used in the preceding proposition. Indeed, the non-degenerate
˚-homomorphism δΓ :“ pρΓ b idAq ˝ δ : A ÝÑ Mpc0pΓq b Aq defined above is a co-action of
pc0pΓq, p∆Γq. Thanks to the characterization of Proposition 1.4.1.5, the latter is equivalent to give a
family of ˚-homomorphisms δγΓ : A ÝÑ A, for all γ P Γ satisfying δeΓ “ idA and δγγ

1

Γ “ δγ
1

Γ ˝ δ
γ
Γ for

all γ, γ1 P Γ, among other properties. Hence, the map

Γ ÝÑ AutpAq

γ ÞÝÑ
`

δΓ
˘

γ
,
`

δΓ
˘

γ
paq :“ δγ

´1

Γ paq

defines an action of Γ on A. By abuse of notation, we denote this action by δΓ and the difference
between the action and the co-action will be clear by the context.

2.3.7 Corollary. The following properties hold

i) The C˚-algebra c0ppFq “ c0pΓq b c0ppGq is a pG-C˚-algebra with action pΘ
pG :“ pρ

pG b idc0ppFqq ˝
pΘ

such that

pΘ
pGpδγ b aq

`

py b δh b pz
˘

“ δγ,h ppy b δh b pzq
´

pVh´1,y b pzqp∆paqppy b pzqpV ˚h´1,y b pzq
¯

13
,

for all γ, h P Γ, all a P c0ppGq and all y, z P IrrpGq.

ii) The C˚-algebra c0ppFq “ c0pΓq b c0ppGq is a Γ-C˚-algebra with action pΘΓ :“ pρΓ b idc0ppFqq ˝
pΘ

such that
pΘΓpδγ b aq

`

δg b δh b pz
˘

“ δγ,gh pδg b δh b pzqpidb idb aq,

for all γ, g, h P Γ, all a P c0ppGq and all z P IrrpGq.

iii) If η : c0pΓq b c0ppGq ÝÑ ĂMpc0ppGq b c0pΓq b c0ppGqq denotes the action of pG on c0ppFq “
c0pΓq b c0ppGq given by the composition pΣ12 b idc0ppGqq ˝ pidc0pΓq b

p∆q, then

pΘ
pGp¨q “ pU b idc0ppGqqηp¨qpU

˚ b idc0ppGqq,

where U P U
`

Mpc0ppGq b c0pΓqq
˘

is the unitary such that U ppx b δγq “ Vγ´1,x b δγ , for every
x P IrrpGq and every γ P Γ.

Proof. For the formulas in piq and piiq we have just to apply Lemma 2.3.4 and Proposition 2.3.5.
Let us show that the action pΘ

pG is the conjugation of the action η by the unitary U P

U
`

Mpc0ppGq b c0pΓqq
˘

defined in the statement. Namely, for all γ, h P Γ, a P c0ppGq and all
y, z P IrrpGq we write

pU b idc0ppGqqηpδγ b aq
`

py b δh b pz
˘

pU ˚ b idc0ppGqq

“ pU b pzqq
`

py b δγ b pzq
˘`

p∆paq
˘

13

`

py b δh b pz
˘

pU ˚ b pzq

“ δγ,h ppy b δh b pzq
´

pVh´1,y b pzqp∆paqppy b pzqpV ˚h´1,y b pzqq
¯

13

“ pΘ
pGpδγ b aq

`

ppg,yq b pph,zq
˘

,

which shows that pΘ
pGp¨q “ pU b idc0ppGqqηp¨qpU

˚ b idc0ppGqq.
�
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2.3.8 Remark. In accordance with Remark 2.3.6, let us give the expression of pΘΓ as a true action
of Γ on c0pΓq b c0ppGq and not as a co-action of pc0pΓq, p∆Γq as done in the previous corollary. By
applying the characterization of Proposition 1.4.1.5 and the formula obtained in the previous
corollary, for every γ, r P Γ and a P c0ppGq we write

pΘγ
Γpδr b aq “

pΘΓpδr b aqpδγ b idc0ppFqq

“
ÿ

s,t
r“st

pδs b δt b idc0ppGqqpidc0pΓq b idc0pΓq b aqpδγ b idc0ppFqq “ δγ´1r b a

Hence, the corresponding action of Γ on c0pΓq b c0ppGq, still denoted by pΘΓ, is given by
`

pΘΓ
˘

γ
pδr b aq “ pΘγ´1

Γ pδr b aq “ δγr b a,

for all γ, r P Γ and a P c0ppGq.
2.3.9 Remark. By applying Proposition 1.4.3.4 we know that Γ and pG are discrete quantum
subgroups of pF if and only if there exist injections

ιrΓ : C˚r pΓq ãÑ CrpFq and ιrG : CrpGq ãÑ CrpFq
´

or ιmΓ : C˚mpΓq ãÑ CmpFq and ιmG : CmpGq ãÑ CmpFq
¯

that intertwine the corresponding co-multiplications. We can give an explicit description of these
injections for a quantum semi-direct product.

The co-unit map εG : PolpGq ÝÑ C extends to a (α-invariant) character on CmpGq, which we
always denote by εG : CmpGq ÝÑ C.

Recall that CmpFq “ Γ ˙
α,m

CmpGq “ C˚xπpaquγ : a P CmpGq, γ P Γy. So, with the help of the

α-invariant character above, we can identify C˚mpΓq with the subalgebra of CmpFq generated by
tuγ : γ P Γu by universal property (see Remark 3.6 in [65] for more details).

Likewise, recall that CrpFq “ Γ ˙
α,r

CrpGq “ C˚xπpaquγ : a P CrpGq, γ P Γy is equipped

with a GNS-faithful conditional expectation E : Γ ˙
α,r

CrpGq ÝÑ CrpGq, which restricted to

the subalgebra generated by tuγ : γ P Γu is just Epuγq “ δγ,e P C. Remember as well that
uγ “ λγ b idCrpGq –

“

λγ
‰

1 in Γ ˙
α,r

CrpGq Ă LCrpGqpl2pΓq b CrpGqq; so that this subalgebra is

identified canonically to C˚r pΓq “ Γ ˙
trv,r

C by universal property (here trv denotes the trivial action).
In conclusion, we consider the following canonical injections

ιrΓ : C˚r pΓq ãÑ CrpFq and ιmΓ : C˚mpΓq ãÑ CmpFq

By definition of the co-multiplication Θ of the quantum semi-direct product F, it is clear that
the canonical injections ιrΓ and ιmΓ intertwine the corresponding co-multiplications. Observe that,
by construction, we have the following commutative diagrams

CmpFq
τF // // CrpFq CmpFq

εF // C

C˚mpΓq τΓ
// //

?�

ιmΓ

OO

C˚r pΓq
?�

ιrΓ

OO

C˚mpΓq
?�

ιmΓ

OO

εΓ

88
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where τF : CmpFq� CrpFq, τΓ : C˚mpΓq� C˚r pΓq are the canonical surjections and εF : PolpFq ÝÑ
C, εΓ : Γ ÝÑ C are the co-unit of F and Γ, respectively whose extension to CmpFq and C˚mpΓq are
still denoted by εF and εΓ, respectively.

Notice by the way that we have also canonical injections

ιrG : CrpGq ãÑ CrpFq and ιmG : CmpGq ãÑ CmpFq

Again, it is clear, by the definition of the co-multiplication Θ, that the canonical injections ιrG and
ιmG intertwine the corresponding co-multiplications. Again, we have commutative diagrams

CmpFq
τF // // CrpFq CmpFq

εF // C

CmpGq τG
// //

?�

ιmG

OO

CrpGq
?�

ιrG

OO

CmpGq
?�

ιmG

OO

εG

88

where τG : CmpGq� CrpGq is the canonical surjection and εG : PolpGq ÝÑ C is the co-unit of G
whose extension to CmpGq is still denoted by εG.

2.3.10 Remark. Furthermore, the representation theory of F yields that pG and Γ are divisible in pF
(recall the equivalence relation defined in terms of discrete quantum subgroups in Section 1.4.3 and
see Definition 3.2.1 and Lemma 3.2.2 for more details).

Namely, take an irreducible representation y :“ pγ, xq P IrrpFq with γ P Γ and x P IrrpGq.
Then γ “ pγ, εGq P rys in IrrpFq{IrrpGq because pγ´1, εGq j pγ, xq “ pe, xq “ x P IrrpGq. Likewise,
we have that x “ pe, xq P rys in ΓzIrrpFq because pγ, xq j pe, xq “ pγ, εGq “ γ P Γ.

Consequently, pG is divisible in pF because for all s P IrrpGq we have that pγ, εGq j s “

pγ, εGq j pe, sq “ pγ, sq P IrrpFq. Likewise, Γ is divisible in pF because for all s P Γ we have that
sj pe, xq “ ps, εGq j pe, xq “ ps, xq P IrrpFq.

In order to carry out our study it is advisable to set some notations. If pA, δq is a pF-C˚-algebra,
we know that pA, δ

pGq is a pG-C˚-algebra and that pA, δΓq is a Γ-C˚-algebra by virtue of the preceding
proposition. Hence we can form the corresponding reduced crossed products,

pF ˙
δ,r
A Ă LApL2pFq bAq, pG ˙

δ
pG,r
A Ă LApL2pGq bAq, Γ ˙

δΓ,r
A Ă LApl2pΓq bAq

Let us establish adapted notations for these crossed products following the general constructions
from Theorem 1.5.1.1 and Theorem 1.5.2.1. These notations will be used in the sequel.

- There exist a non-degenerate ˚-homomorphism πδ : A ÝÑ pF ˙
δ,r
A, a unitary representation

V P Mpc0ppFq b pF ˙
δ,r
Aq and a non-degenerate completely positive KSGNS-faithful map

Eδ : pF ˙
δ,r
A ÝÑMpAq such that

pF ˙
δ,r
A “ C˚xπδpaqV

y
i,j : a P A, y P IrrpFq, i, j “ 1, . . . , nyy
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Recall from Proposition 1.4.1.10 that the unitary representation V P Mpc0ppFq b pF ˙
δ,r
Aq is

canonically associated to a non-degenerate ˚-homomorphism φV : CmpFq ÝÑMppF ˙
δ,r
Aq such

that
φV pw

y
ijq “ V yij ,

for all y P IrrpFq and all i, j “ 1, . . . , ny.

- There exist a non-degenerate ˚-homomorphism πδ
pG

: A ÝÑ pG ˙
δ
pG,r
A, a unitary representation

U P Mpc0ppGq b pG ˙
δ
pG,r
Aq and a non-degenerate completely positive KSGNS-faithful map

Eδ
pG

: pG ˙
δ
pG,r
A ÝÑMpAq such that

pG ˙
δ
pG,r
A “ C˚xπδ

pG
paqUxi,j : a P A, x P IrrpGq, i, j “ 1, . . . , nxy

Recall from Proposition 1.4.1.10 that the unitary representation U PMpc0ppGq b pG ˙
δ
pG,r
Aq is

canonically associated to a non-degenerate ˚-homomorphism φU : CmpGq ÝÑ MppG ˙
δ
pG,r
Aq

such that
φU pw

x
ijq “ Uxij ,

for all x P IrrpGq and all i, j “ 1, . . . , nx.

- There exist a non-degenerate faithful ˚-homomorphism σ : A ÝÑ Γ ˙
δΓ,r

A, a group homomor-

phism ν : Γ ÝÑ UpMpΓ ˙
δΓ,r

Aqq defined by νγ “ λγ b idA, for all γ P Γ and a non-degenerate

completely positive KSGNS-faithful map E : Γ ˙
δΓ,r

A ÝÑMpAq such that

Γ ˙
δΓ,r

A “ C˚xσpaqνγ : a P A, γ P Γy

2.3.11 Lemma. Put C :“ C˚xπδpaqV
pe,xq
i,j : a P A, x P IrrpGq, i, j “ 1, . . . , nxy. If pA, δq is a

pF-C˚-algebra, there exists a canonical ˚-isomorphism

ψ : pG ˙
δ
pG,r
A

„
ÝÑ C ,

such that
ψpπδ

pG
paqq “ πδpaq and ψpUxi,jq “ V

pe,xq
i,j ,

for all a P A, all x P IrrpGq and all i, j “ 1, . . . , nx.

Proof. In order to prove the (canonical) ˚-isomorphism pG ˙
δ
pG,r
A – C of the statement we shall show

that the C˚-algebra C satisfies the universal property of pG ˙
δ
pG,r
A.
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Notice that C is actually a C˚-subalgebra of pF ˙
δ,r
A by construction. Hence we can restrict the

elements defining pF ˙
δ,r
A to check such universal property. In particular, we define

V e :“ pidc0ppFq b λFq
´ c0

à

xPIrrpGq
wpe,xq

¯

b idA PMpc0ppFq b C q,

where we must remark that, by construction, we have
`

V e
˘x

i,j
“ V

pe,xq
i,j , for all x P IrrpGq and all

i, j “ 1, . . . , nx.
By definition of pF ˙

δ,r
A, the formulas

πδpaqV
y
i,j “

ÿ

k

V yi,kπδpδ
y
k,jpaqq and EδpπδpaqV

y
i,jq “ a δy,εF

hold for all a P A, all y P IrrpFq and all i, j “ 1, . . . , ny. In particular, it holds for y :“ ej x with
x P IrrpGq.

It remains to justify that the restriction Eδ| is always KSGNS-faithful. We know that
pL2pFq bA, id,ΥFq is the KSGNS construction for Eδ. Consider the Hilbert A-module defined as
H :“ spantC ΥFpAqu Ă L2pFq b A. Observe that C

id|
ÝÑ LApH q, so pH , id|,ΥFq is the KSGNS

construction for the restriction Eδ|, whence the faithfulness required.
This discussion shows that C is a C˚-algebra equipped with a triple pπδ|, V e, Eδ|q satisfying

the analogue properties of the triple pπδ
pG
, U,Eδ

pG
q associated to pG ˙

δ
pG,r
A. The universal property

property of pG ˙
δ
pG,r
A yields the canonical ˚-isomorphism of the statement. �

2.3.12 Proposition. If pA, δq is a pF-C˚-algebra, then pG ˙
δ
pG,r

A is a Γ-C˚-algebra with action

B : Γ Ñ AutppG ˙
δ
pG,r
Aq such that

Bγpπδ
pG
paqq “ πδ

``

δΓ
˘

γ
paq

˘

and BγpUxi,jq “ φU
`

αγpw
x
i,jq

˘

,

for all γ P Γ, all a P A, all x P IrrpGq and all i, j “ 1, . . . , nx.

Proof. First of all, using the lemma above, we use systematically the canonical identifications
πδ

pG
paq – πδpaq and Uxi,j – V

pe,xq
i,j , for all a P A, all x P IrrpGq and all i, j “ 1, . . . , nx.

Fix an element γ P Γ. In order to define an automorphism Bγ : pG ˙
δ
pG,r
A ÝÑ pG ˙

δ
pG,r
A, we

shall define a non-degenerate ˚-homomorphism rπγ : A ÝÑ pG ˙
δ
pG,r
A and a unitary representation

rUγ PMpc0ppGq b pG ˙
δ
pG,r
Aq.

Let’s put
rπγpaq :“ πδ

`

δγΓpaq
˘

, for all a P A

rUγ :“ pidc0ppGq b λGq
´ c0

à

xPIrrpGq
pidBpHxq b αγqw

x
¯

b idA
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Observe that α is a quantum action so that αγpPolpGqq “ PolpGq, for all γ P Γ (recall
Proposition 1.3.1.28). Hence it is licit to consider the above definition of rUγ .

Before going on with the proof, we need some useful remarks:

1. Doing the canonical identification CpGq – λGpCpGqq in BpL2pGqq we have that
`

rUγ
˘x

i,j
“ αγpw

x
i,jq b idA “ φU

`

αγpw
x
i,jq

˘

,

for all x P IrrpGq and all i, j “ 1, . . . , nx. Likewise, since π : CmpGq ÝÑ Γ ˙
α,m

CmpGq is a

unital faithful ˚-homomorphism we can do the canonical identification CmpGq – πpCmpGq. As
a consequence, the relation between π and u coming from the definition of the crossed product
can be written on PolpGq as uγwxi,ju˚γ “ αγpw

x
i,jq, for all x P IrrpGq and all i, j “ 1, . . . , nx.

2. By construction we have that Impπδq Ă LApL2pFq b Aq and Impσq Ă LApl2pΓq b Aq. By
Remark 2.3.3 we recall that L2pFq “ l2pΓq b L2pGq. In this way, we can consider the leg p13q
of σ inside L2pFq bA and then we can compare πδpaq and

“

σpaq
‰

13 for every a P A.

Doing the canonical identification c0ppGq – pλGpc0ppGqq in BpL2pGqq, a straightforward compu-
tation yields naturally to πδpaq “

“

σpaq
‰

13, for all a P A.

3. By construction we have that Impuq Ă LApl2pΓq b CmpGqq and Impνq Ă LApl2pΓq b Aq.
Precisely, we have uγ “ λγ b idCmpGq and νγ “ λγ b idA, for all γ P Γ. Thus, inside the space
l2pΓq b CmpGq bA, it is clear that

“

uγ
‰

12 “
“

νγ
‰

13, for all γ P Γ.

In order to apply the universal property of pG ˙
δ
pG,r
A and conclude the existence of the automorphism

Bγ of the statement, we have to check the formula

rπγpaq
`

rUγ
˘x

i,j
“

nx
ÿ

k“1

`

rUγ
˘x

i,k
rπγpδ

pe,xq
k,j paqq,
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for all a P A, all x P IrrpGq and all i, j “ 1, . . . , nx. Namely,

rπγpaq
`

rUγ
˘x

i,j
“ πδpδ

γ
Γpaqqαγpw

x
i,jq b idA “

“

σpδγΓpaqq
‰

13

“

αγpw
x
i,jq b idA

‰

23

“
“

νγσpaqνγ´1
‰

13

“

uγw
x
i,juγ´1 b idA

‰

23

“
“

νγ
‰

13

“

σpaq
‰

13

“

wxi,j b idA
‰

23

“

uγ´1
‰

12

“
“

νγ
‰

13πδpaqw
x
i,j b idA

“

uγ´1
‰

12

“
“

νγ
‰

13

´

nx
ÿ

k“1
wxi,k b idAπδpδ

pe,xq
k,j paqq

¯

“

uγ´1
‰

12

“
“

νγ
‰

13

´

nx
ÿ

k“1

“

wxi,k b idA
‰

23

“

σpδ
pe,xq
k,j paqq

‰

13

¯

“

uγ´1
‰

12

“

nx
ÿ

k“1

“

νγ
‰

13

“

wxi,k b idA
‰

23

“

νγ´1σ
´

δγΓ
`

δ
pe,xq
k,j paq

˘

¯

νγ
‰

13

“

uγ´1
‰

12

“

nx
ÿ

k“1

“

νγ
‰

13

“

wxi,k b idA
‰

23

“

νγ´1
‰

13

“

σ
´

δγΓ
`

δ
pe,xq
k,j paq

˘

¯

‰

12

“

nx
ÿ

k“1
uγw

x
i,kuγ´1 b idAπδ

´

δγΓ
`

δ
pe,xq
k,j paq

˘

¯

“

nx
ÿ

k“1
αγpw

x
i,kq b idAπδ

´

δγΓ
`

δ
pe,xq
k,j paq

˘

¯

“

nx
ÿ

k“1

`

rUγ
˘x

i,j
rπγpδ

pe,xq
k,j paqq

To conclude the relations of the statement we have just to apply Remark 2.3.6. �

2.3.13 Remark. The action B of Γ on pG ˙
δ
pG,r
A constructed in the preceding proposition can be defined

in a more direct manner. Namely, given γ P Γ we define the automorphism Bγ : pG ˙
δ
pG,r
A ÝÑ pG ˙

δ
pG,r
A

by
Bγ :“ AdφV puγq,

where Adp¨q denotes the adjoint map. This defines clearly an invertible map for each γ P Γ (because
φV is a ˚-homomorphism and elements uγ are unitaries). It remains to show that the space pG ˙

δ
pG,r
A

is preserved.
On the one hand, we have

Bγ
`

φV pw
x
i,jq

˘

“ φV puγqφV pw
x
i,jqφ

˚
V puγq “ φV

`

uγw
x
i,ju

˚
γ

˘

“ φV
`

αγpw
x
i,jq

˘

P pG ˙
δ
pG,r
A,

for all γ P Γ, x P IrrpGq, i, j “ 1, . . . , nx.
On the other hand, the relations of the reduced crossed product pF ˙

δ,r
A following Theorem 1.5.2.1

are precisely

πδpaqφV puγv
x
i,jq “

nx
ÿ

k“1
φV puγv

x
i,kqπδpδ

y
k,jpaqq,
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for all y :“ pγ, xq P IrrpFq, a P A and all i, j “ 1, . . . , nx. In particular, if we take x :“ ε this
formula becomes

πδ
pG
paqφV puγq “ φV puγqπδ

pG

`

δγΓpaq
˘

ô
`

Bγpπδ
pG
paqq

˘˚
“ φ˚V puγqπδ

pG
paqφV puγq “ πδ

pG

`

δγΓpaq
˘

P pG ˙
δ
pG,r
A,

for all γ P Γ, a P A. In particular, we have φV puγqπδ
pG
paqφ˚V puγq “ πδ

pG

`

δγ
´1

Γ paq
˘

. Hence, Remark
2.3.6 yields that the action B is such that

Bγ
`

πδ
pG
paqUxi,j

˘

“ πδ
``

δΓ
˘

γ
paq

˘

φU
`

αγpw
x
i,jq

˘

,

for all γ P Γ, all a P A, all x P IrrpGq and all i, j “ 1, . . . , nx

In order to finish our study it is advisable to set some notations. If pA, δq is a pF-C˚-algebra, the
above proposition assures that ppG ˙

δ
pG,r
A, Bq is a Γ-C˚-algebra. Recall as well that we have a canonical

˚-isomorphism pG ˙
δ
pG,r
A – C thanks to Lemma 2.3.11. Hence we can form the corresponding reduced

crossed product,
Γ ˙
B,r

C Ă LC pl
2pΓq b C q

We shall use the following adapted notations for this crossed product following the general
construction from Theorem 1.5.1.1: there exist a non-degenerate faithful ˚-homomorphism % : C ÝÑ

Γ˙
B,r

C Ă LApl2pΓqbC q, a group homomorphism ϑ : Γ ÝÑ UpMpΓ˙
B,r

C qq defined by ϑγ :“ λγbidC ,

for all γ P Γ and a non-degenerate completely positive KSGNS-faithful map E : Γ ˙
B,r

C ÝÑMpC q

such that
Γ ˙
B,r

C “ C˚x%pcqϑγ : c P C , γ P Γy

2.3.14 Theorem (Associativity for a quantum semi-direct product). Let F “ Γ ˙
α
G be the

quantum semi-direct product of a compact quantum group G by a discrete group Γ acting by quantum
automorphisms on G with action α.

If pA, δq is a pF-C˚-algebra, then there exists a canonical ˚-isomorphism

pF ˙
δ,r
A – Γ ˙

B,r

´

pG ˙
δ
pG,r
A
¯

Proof. In order to prove the canonical ˚-isomorphism pF ˙
δ,r
A – Γ ˙

B,r
C of the statement, we shall

apply the universal property of the reduced crossed product pF ˙
δ,r
A. In other words, we are going

to construct a triple pρ, V ,Eq associated to the reduced crossed product Γ ˙
B,r

C satisfying the

analogues properties of the triple pπδ, V, Eδq associated to pF ˙
δ,r
A. Namely, let’s put

- ρ : A ÝÑ Γ ˙
B,r

C as the composition A πδ
ÝÑ C

%
ÝÑ Γ ˙

B,r
C ,
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- V PMpc0ppFq b Γ ˙
B,r

C q as the unitary V itself p˚q,

- E : Γ ˙
B,r

C ÝÑ A as the composition Γ ˙
B,r

C
E
ÝÑMpC q

Eδ|
ÝÑMpAq.

Notice that it is licit to define V as above in p˚q because, by the well-known correspondence from
Proposition 1.4.1.10, giving a unitary V PMpc0ppFq bΓ ˙

B,r
C q is equivalent to give a non-degenerate

˚-homomorphism φV : CmpFq ÝÑ MpΓ ˙
B,r

C q such that V “ pidc0ppFq b φV qpWFq. Hence we take

simply
φV :“ id˙ φU : Γ ˙

α,m
CmpGq ÝÑMpΓ ˙

B,r
C q,

where we use the canonical identification of Lemma 2.3.11 and that CmpFq “ Γ ˙
α,m

CmpGq by
construction. In this situation, we easily check that φV induces actually the unitary V itself.
Namely, we have

V “ pidc0ppFq b λFq
´ c0

à

yPIrrpFq
wy

¯

b idA

“ pidc0pΓq b idc0ppGq b λb λGq
´ c0

à

pγ,xqPΓˆIrrpGq
wpγ,xq

¯

b idA,

which can be seen as an element in Mpc0ppFq b LC pl
2pΓq b C qq.

Notice as well that ρ is a non-degenerate ˚-homomorphism because it is a composition of
non-degenerate ˚-homomorphisms and E is a non-degenerate completely positive map because it is
a composition of non-degenerate completely positive maps.

To conclude we have to check the following.

i) ρpaqV yi,j “
ny
ř

k“1
V
y

i,kρpδ
y
k,jpaqq, for all y P IrrpFq, all a P A and all i, j “ 1, . . . , ny. Indeed, it

suffices to remember that % is a non-degenerate faithful ˚-homomorphism and to apply the
corresponding formula on pF ˙

δ,r
A.

ρpaqV
y

i,j “ %pπδpaqqV
y
i,j – πδpaqV

y
i,j “

ny
ÿ

k“1
V yi,kπδpδ

y
k,jpaqq

–

ny
ÿ

k“1
V yi,k%

`

πδpδ
y
k,jpaqq

˘

“

ny
ÿ

k“1
V
y

i,kρpδ
y
k,jpaqq

ii) E “ Eδ| ˝ E is always a KSGNS-faithful map. It suffices to observe that, by all previous
constructions, we can be reduced to the more simple situation in which C Ă B Ă A are
C˚-algebras with conditional expectations A EA

ÝÑ B
EB
ÝÑ C in such a way that both EA and

EB are KSGNS-faithful. In this situation, it is straightforward to see that the composition
E :“ EB ˝ EA : A ÝÑ C is always a KSGNS-faithful conditional expectation recall Remark
A.3.13. Namely,
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Since % : C ÝÑ Γ ˙
B,r

C is faithful, we have that C – %pC q Ă Γ ˙
B,r

C . Moreover, we have

E p%pcqq “ c, for all c P C by definition of the reduced crossed product.
In other words, E : Γ ˙

B,r
C ÝÑMpC q is a (non-degenerate) completely positive map and

also a projection from C – %pC q to Γ ˙
B,r

C ; that is, a conditional expectation.

Thanks again to the definition of the reduced crossed product, we have that Eδpπδpaqq “ a,
for all a P A. In this way, Eδ : pF ˙

δ,r
A ÝÑMpπδpAqq is also a conditional expectation and

so it is Eδ| : C ÝÑMpπδpAqq.

Therefore we have the sequence of C˚-algebras πδpAq Ă C Ă Γ ˙
B,r

C with conditional expecta-

tions Γ ˙
B,r

C
E
ÝÑMpC q

Eδ|
ÝÑMpπδpAqq. Since E and Eδ| are KSGNS-faithful by assumption,

we obtain the KSGNS-faithfulness of E as required.

�

The preceding results are true for any pF-C˚-algebra. We can apply them to the case of the
pF-C˚-algebra pc0ppFq, pΘq, which is particularly interesting for our purpose. Recall from Lemma 2.3.4
that we have the identification c0ppFq “ c0pΓq b c0ppGq and that the dual co-multiplication pΘ has
been explicitly described in terms of this identification (recall Lemma 2.3.4). Next, we want to
describe explicitly the action B of Γ on pG ˙

pΘ
pG

`

c0pΓq b c0ppGq
˘

given by Proposition 2.3.12.

Let us set some notations. We denote by pπ
pΘ, UpΘ, EpΘq, pπ p∆, U p∆, E p∆q, pπη, Uη, Eηq the canonical

triples (following Theorem 1.5.2.1) associated to the reduced crossed products pG ˙
pΘ

pG

`

c0pΓqb c0ppGq
˘

,

pG˙
p∆
c0ppGq, pG˙

η

`

c0pΓq b c0ppGq
˘

, respectively. We denote by U P U
`

Mpc0ppGq b c0pΓqq
˘

the unitary

introduced in Corollary 2.3.7 such that U ppx b δγq “ Vγ´1,x b δγ , for every x P IrrpGq and every
γ P Γ.

2.3.15 Lemma. The following properties hold.

i) There exists a canonical ˚-isomorphism

pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘

– c0pΓq b pG˙
p∆
c0ppGq

which is Γ-equivariant, where c0pΓq b pG˙
p∆
c0ppGq is equipped with the action µ of Γ such that

µγ
`

pδr b π p∆paqqW
x
i,j

˘

“ pδγr b π p∆paqqφW
`

αγpw
x
i,jq

˘

,

for all a P c0ppGq, γ P Γ, x P IrrpGq, i, j “ 1, . . . , nx, where

W :“
`

U
p∆
˘

13

`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU ˚ b idc0ppGqq PM
`

c0ppGq b c0pΓq b pG˙
p∆
c0ppGq

˘
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ii) There exists a canonical Γ-equivariant ˚-isomorphism

c0pΓq b pG˙
p∆
c0ppGq – c0pΓq bKpL2pGqq,

where c0pΓq b pG˙
p∆
c0ppGq is equipped with the action µ defined in piq, c0pΓq is equipped with the

action induced by co-multiplication p∆Γ and KpL2pGqq is equipped with the adjoint action of Γ
with respect to the unitary representation of Γ on L2pGq induced by α.
In particular, there exists a canonical Γ-equivariant Morita equivalence

c0pΓq b pG˙
p∆
c0ppGq „

Γ´M
c0pΓq

Proof. i) Recall that η “ pΣ12 b idc0ppGqq ˝ pidc0pΓq b
p∆q. By Proposition 1.5.3.2 we know that

there exists a canonical ˚-isomorphism pG˙
η

`

c0pΓq b c0ppGq
˘

– c0pΓq b pG˙
p∆
c0ppGq, where the

latter is equipped with the triple
`

idc0pΓq b π
p∆,
`

U
p∆
˘

13, idc0pΓq b E
p∆
˘

. Next, if we replace
`

U
p∆
˘

13 by the unitary W of the statement, the corresponding triple is again associated to
c0pΓq b pG˙

p∆
c0ppGq in the sense of Theorem 1.5.2.1.

Observe that both triple give rise to isomorphic underlying C˚-algebras by means of the unitary
U . We claim that the C˚-algebra described in terms of the triple

`

idc0pΓqbπ p∆,W, idc0pΓqbE p∆
˘

is identified to the reduced crossed product pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘

. Let us check its universal

property.
On the one hand, for all a P c0pΓq b c0ppGq we write

W˚
`

idc0ppGq b pidc0pΓq b π p∆qpaq
˘

W

“
`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU b idc0ppGqq
`

U˚
p∆

˘

13

`

idc0ppGq b pidc0pΓq b π p∆qpaq
˘`

U
p∆
˘

13
`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU ˚ b idc0ppGqq

p1q
“

`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU b idc0ppGqq
`

idc0ppGq b pidc0pΓq b π p∆
˘

pΣ12 b idc0ppGqqpidc0pΓq b
p∆qpaq

`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU ˚ b idc0ppGqq

“
`

idc0ppGq b pidc0pΓq b π p∆q
˘

´

pU b idc0ppGqqηpaqpU
˚ b idc0ppGqq

¯

p2q
“

`

idc0ppGq b pidc0pΓq b π p∆q
˘

pΘ
pGpaq,

where in p1q we have used Proposition 1.5.3.2 and in p2q we have used that pΘ
pG is conjugate

of η by U thanks to Corollary 2.3.7. On the other hand, a routine computation yields the
following expression for all x P IrrpGq, i, j “ 1, . . . , nx

W x
i,j “

ÿ

γPΓ
δγ b

`

Ux
p∆

˘

i,j

`

V ˚γ,x
˘

i,j
PM

`

c0pΓq b pG˙
p∆
c0ppGq

˘

,
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so that for all r P Γ, a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx we have

pidc0pΓq b E p∆q
´

pidc0pΓq b π p∆qpδr b aqW
x
i,j

¯

“ pidc0pΓq b E p∆q
´

δr b π p∆paq
`

Ux
p∆

˘

i,j

`

V ˚γ,x
˘

i,j

¯

“ δr b a δx,ε
`

V ˚γ,x
˘

i,j
“ δr b a δx,ε “ E

pΘpπpΘpδr b aq
`

Ux
pΘ

˘

i,j
q

Hence, by universal property of pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘

there exists a canonical ˚-isomorphism

ψ : pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘ „
ÝÑ c0pΓq b pG˙

p∆
c0ppGq

such that
ψ
`

π
pΘpδγ b aq

`

Ux
pΘ

˘

i,j

˘

“ pδγ b π p∆paqqW
x
i,j ,

for all γ P Γ, a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx. Moreover, for all γ, r P Γ, a P c0ppGq,
x P IrrpGq, i, j “ 1, . . . , nx we write

π
pΘpδr b aq

`

Ux
pΘ

˘

i,j

Bγ
ÞÑ π

pΘ
`

ppΘΓqγpδr b aq
˘

φU
xΘ
pαγpw

x
i,jqq

ψ
ÞÑ pδγr b π p∆paqqφW pαγpw

x
i,jqq

π
pΘpδr b aq

`

Ux
pΘ

˘

i,j

ψ
ÞÑ pδr b π p∆paqqW

x
i,j

µγ
ÞÑ pδγr b π p∆paqqφW pαγpw

x
i,jqq,

which yields that µ is a well-defined action of Γ on c0pΓqb pG˙
p∆
c0ppGq and thus the Γ-equivariance

of the statement.

ii) We are going to establish a canonical ˚-isomorphism ψ : c0pΓqb pG˙
p∆
c0ppGq

„
ÝÑ c0pΓqbKpL2pGqq.

For this, remark firstly that the canonical triple pπ
p∆, U p∆, E p∆q associated to pG˙

p∆
c0ppGq following

Theorem 1.5.2.1 is exactly ppλ,xWG b idc0ppGq,Ωb idc0ppGqq.

Moreover, it is well-known that pG˙
p∆
c0ppGq – KpL2pGqq and for the latter we have the triple

ppλ,xWG, pEq following Remark 1.7.1.21. In particular, we have

KpL2pGqq “ C˚xpλpaqλpwxi,jq | a P c0p
pGq, x P IrrpGq, i.j “ 1, . . . , nxy

Since Γ acts on G by quantum automorphisms with action α, then L2pGq is equipped with
the action of Γ such that γ ¨ λpwx1k,lqΩ “ λ

`

αγpw
x1

k,lq
˘

Ω, for all γ P Γ, x1 P IrrpGq, k, l “
1, . . . , nx1 . Therefore, the corresponding action on KpL2pGqq (recall Remark A.3.0.3) is such
that γ ¨ pλpaqλpwxi,jq “ pλpaqλ

`

αγpw
x
i,jq

˘

, for all a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx, which is
a straightforward computation.
Since c0pΓq b pG˙

p∆
c0ppGq has been described in piiq with the help of the unitary U , then we

consider now the triple pidc0pΓq b pλ,ĂW, idc0pΓq b
pEq associated to c0pΓq bKpL2pGqq where

ĂW :“
`

xWG
˘

13

`

idc0ppGq b pidc0pΓq b
pλq
˘

pU ˚ b idc0ppGqq PM
`

c0ppGq b c0pΓq bKpL2pGq
˘



2.3. Quantum semi-direct product 205

Observe that both triple pidc0pΓq b pλ,
`

xWG
˘

13, idc0pΓq b
pEq and pidc0pΓq b pλ,ĂW, idc0pΓq b

pEq
give rise to isomorphic underlying C˚-algebras by means of the unitary U . We claim that the
C˚-algebra c0pΓq bKpL2pGqq described in terms of the triple

`

idc0pΓq b π p∆,
ĂW, idc0pΓq b E p∆

˘

is identified to the reduced crossed product pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘

. Let us check its universal

property.
On the one hand, for all a P c0pΓq b c0ppGq we write

ĂW˚
`

idc0ppGq b pidc0pΓq b
pλqpaq

˘

ĂW

“
`

idc0ppGq b pidc0pΓq b
pλq
˘

pU b idc0ppGqq
`

xW˚
G
˘

13

`

idc0ppGq b pidc0pΓq b π p∆qpaq
˘`

xWG
˘

13
`

idc0ppGq b pidc0pΓq b
pλq
˘

pU ˚ b idc0ppGqq

p1q
“

`

idc0ppGq b pidc0pΓq b
pλq
˘

pU b idc0ppGqq
`

idc0ppGq b pidc0pΓq b
pλ
˘

pΣ12 b idc0ppGqqpidc0pΓq b
p∆qpaq

`

idc0ppGq b pidc0pΓq b
pλq
˘

pU ˚ b idc0ppGqq

“
`

idc0ppGq b pidc0pΓq b
pλq
˘

´

pU b idc0ppGqqηpaqpU
˚ b idc0ppGqq

¯

p2q
“

`

idc0ppGq b pidc0pΓq b
pλq
˘

pΘ
pGpaq,

where in p1q we have used the definition of xWG (recall Theorem 1.3.1.36) and in p2q we have
used that pΘ

pG is conjugate of η by U thanks to Corollary 2.3.7. On the other hand, a routine
computation yields the following expression for all x P IrrpGq, i, j “ 1, . . . , nx

ĂW x
i,j “

ÿ

γPΓ
δγ b

`

xW x
G
˘

i,j

`

V ˚γ,x
˘

i,j
PM

`

c0pΓq bKpL2pGqq
˘

,

so that for all r P Γ, a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx we have

pidc0pΓq b
pEq
´

pidc0pΓq b
pλqpδr b aqĂW

x
i,j

¯

“ pidc0pΓq b
pEq
´

δr b pλpaq
`

xW x
G
˘

i,j

`

V ˚γ,x
˘

i,j

¯

“ δr b a δx,ε
`

V ˚γ,x
˘

i,j
“ δr b a δx,ε “ E

pΘpπpΘpδr b aq
`

Ux
pΘ

˘

i,j
q

Hence, by property piq and universal property of pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘

there exists a canonical

˚-isomorphism
ψ : c0pΓq b pG˙

p∆
c0ppGq

„
ÝÑ c0pΓq bKpL2pGqq

such that
ψ
`

pδγ b π p∆paqqW
x
i,j

˘

“ pδγ b pλpaqqĂW x
i,j ,

for all γ P Γ, a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx.



206 CHAPTER 2. Construction of Compact Quantum Groups

Finally, let us study the Γ-equivariance condition. By definition, the action of Γ on c0pΓq b
KpL2pGqq is such that for all γ, r P Γ, a P c0ppGq, i, j “ 1, . . . , nx

γ ¨
`

δr b pλpaqλpwxi,jq
˘

“ δγr b pλpaqλ
`

αγpw
x
i,jq

˘

,

which allows to show the Γ-equivariance of the above ˚-isomorphism because for all γ, r P Γ,
a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx we write

pδr b π p∆paqqW
x
i,j

µγ
ÞÑ pδγr b π p∆paqqφW

`

αγpw
x
i,jq

˘ ψ
ÞÑ pδγr b pλpaqqφ

ĂW

`

αγpw
x
i,jq

˘

pδr b π p∆paqqW
x
i,j

ψ
ÞÑ pδr b pλpaqqĂW x

i,j
γ¨
ÞÑ pδγr b pλpaqqφ

ĂW

`

αγpw
x
i,jq

˘

�

2.4 Compact bicrossed product
We introduce the compact bicrossed product of a matched pair of a discrete group and a compact
group and we analyze some structure properties of this compact quantum group which are useful
for our purpose.

It is important to say that the bicrossed product construction have had different approaches
throughout the history and that we are interested in a very concrete case. More precisely, in the
fundamental work [94], G. I. Kac introduced the notion of matched pair of finite groups in order to
study the classification of extensions of finite groups. In the context of multiplictive unitaries, S.
Baaj and G. Skandalis give in [7] a generalization of the Kac’s work defining the notion of matched
pair of locally compact groups. Finally, the work of S. Vaes and L. Vainerman [196] give a very
general framework for the bicrossed product defining the notion of matched pair of locally compact
quantum groups. This allows in particular to develop a very technical theory by which we can give
a satisfactory notion of extension of locally compact quantum groups.

If we restrict our attention to a matched pair of a discrete group and a compact group (we say
compact matched pair), the resulting object is a compact quantum group and we can investigate in
a much more clear fashion the properties of its representation theory and approximation properties
as we can see in the work [65] due to P. Fima, K. Mukherjee and I. Patri. Actually, we refer to [65]
for more details about compact matched pairs and specifically for a proof of Theorem 2.4.1 below
defining the compact bicrossed product.

Let Γ be a discrete group and G a compact group such that the pair pΓ, Gq is a matched pair
(see [7] or [65] for a precise definition). Then we have that

- there exists a continuous left action of Γ on the topological space G, α : ΓˆG ÝÑ G,

- there exists a continuous right action of G on the topological space Γ, β : Gˆ Γ ÝÑ Γ

- and both actions α and β are related in the following way: for every γ P Γ and every g P G,
we have

γg “ αγpgqβgpγq



2.4. Compact bicrossed product 207

In particular, if e P Γ denotes the identity element of Γ, then βgpeq “ e, for all g P G. Hence
#res “ 1, where res P Γ{G is the corresponding class in the orbit space. Observe that αe “ idG
and βe “ idΓ, where e denotes either the identity element in Γ or in G, respectively.

In this situation, we write pΓ, G, α, βq for a compact matched pair with associated actions α
and β according to the statements above. For every class rγs P Γ{G in the orbit space, we define
the following clopen subsets of G (see [65] for more details)

Ar,s :“ tg P G : βgprq “ su,

for every r, s P rγs. Consider as well its characteristic function, say 1Ar,s “: 1r,s, for all r, s P rγs.
We can show that

´

1r,s
¯

r,sPrγs
P M#rγspCq bCpGq is a magic unitary and a unitary representation

of G (again, see [65] for more details).
We shall use all these notations for the sequel.

2.4.1 Theorem-Definition. Let pΓ, G, α, βq be a compact matched pair.
There exists a unique unital ˚-homomorphism

Θ : Γ ˙
α,m

CpGq ÝÑ Γ ˙
α,m

CpGq b Γ ˙
α,m

CpGq

such that
Θpπpaqq “ pπ b πq

`

∆Gpaq
˘

and Θpuγq “
ÿ

rPrγs

uγαp1γ,rq b ur,

for all a P CmpGq and all γ P Γ, where π : CpGq ÝÑ Γ ˙
α,m

CpGq is the unital faithful ˚-

homomorphism and u : Γ ÝÑ UpMpΓ ˙
α,m

CpGqqq the group homomorphism defining the crossed
product.

Besides, we have that

i) F :“ pΓ ˙
α,m

CpGq,Θq is a compact quantum group,

ii) the Haar state on F is given by hF :“ hG ˝ E ˝ κ, where hG is the Haar integral of G,
κ : Γ ˙

α,m
CpGq � Γ ˙

α,r
CpGq is the canonical surjection and E : Γ ˙

α,r
CpGq Ñ CpGq is the

canonical conditional expectation,

iii) the maximal picture of F is given by CmpFq “ Γ ˙
α,m

CpGq,

iv) the reduced picture of F is given by CrpFq “ Γ ˙
α,r

CpGq,

The compact quantum group F constructed in this way is called compact bicrossed product of
the matched pair pΓ, Gq and is denoted by Γα ’β G.
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2.4.2 Note. It is possible to give an explicit description of the representation theory of Γα ’β G in
the same spirit of Theorem 2.3.2 for the quantum semi-direct product construction. Nevertheless,
the presence of the action β (which is trivial in the quantum semi-direct product case) makes the
classification of the irreducible representations of Γα ’β G more complicated.

Using this classification it is possible to carry out the analogous study of Section 2.3 in order
to achieve the associativity property for a compact bicrossed product. Since the classification of
irreducible representations of Γα ’β G given in [65] is not correct and its rectification is a work in
progress, we do not develop here the associativity property for a compact bicrossed product.

2.4.3 Remark. Since G is a classical compact group, we have an obvious injective ˚-homomorphism
ιG : CpGq ãÑ Γ ˙

α,m
CpGq. Moreover, the definition of the co-multiplication Θ of F yields clearly

that ιG intertwines the corresponding co-multiplication. This shows, thanks to Proposition 1.4.3.4,
that pG is a discrete quantum subgroup of pF.
As in Remark 2.3.9 we define canonical injections ιmΓ : C˚mpΓq ãÑ CmpFq and ιrΓ : C˚r pΓq ãÑ CrpFq.
However, the definition of the co-multiplication Θ of the compact bicrossed product F prevent ιrΓ
and ιmΓ from intertwining the corresponding co-multiplications. Hence, Γ can not be a quantum
subgroup of F (compare with the quantum semi-direct product case, see Proposition 2.3.5 and
Remark 2.3.9). However, these injections are clearly compatible with the canonical surjections and
co-units as in Remark 2.3.9.

2.5 Quantum free product
We introduce the free product of two compact quantum groups and we analyze some structure
properties of this object which are useful for our purpose. We may recall the maximal free product
construction for C˚-algebras from Theorem A.1.10.

The following theorem is due to S. Wang [215].

2.5.1 Theorem-Definition. Let G “ pCpGq,∆Gq and H “ pCpHq,∆Hq be two compact quantum
groups.

There exists a unique unital ˚-homomorphism

Θ : CmpGq ˚ CmpHq ÝÑ CmpGq ˚ CmpHq b CmpGq ˚ CmpHq

such that
ΘpνGpaqq “ pνG b νGq

`

∆Gpaq
˘

and ΘpνHpbqq “ pνH b νHq
`

∆Hpbq
˘

,

for all a P CmpGq and all b P CmpHq, where νG : CpGq ÝÑ CmpGq ˚ CmpHq and νH : CpHq ÝÑ
CmpGq ˚ CmpHq denote the canonical inclusions.

Besides, we have that

i) F :“ pCmpGq ˚ CmpHq,Θq is a compact quantum group,

ii) the Haar state on F is given by hF “ hG ˚ hH, where hG and hH are the Haar states on G and
H, respectively,
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iii) the maximal picture of F is given by CmpFq “ CmpGq ˚ CmpHq,

iv) the irreducible representations of F are described as follows: for every irreducible representation
y P IrrpFq, take a representative wy P BpHyq b CpFq. There exist a natural number n P N
and irreducible representations ζ1, . . . , ζn either in IrrpGq or in IrrpHq such that if wζi P
BpHiq b CpG or Hq are respective representatives of ζi, for all i “ 1, . . . , n, then we have

wy – wζl1 j wζl2 j . . .j wζln P BpHl1 b . . . Hlnq b CpFq

in such a way that li P t1, . . . , nu with li ‰ lj for all i ‰ j and if ζli P IrrpGq then ζli`1 P IrrpHq
(and vice-versa), for all i, j “ 1, . . . , n´ 1.
In other words, the words with letters in IrrpGq and IrrpHq (according the above formulae)
provide a complete set of mutually inequivalent irreducible representations of F. For this reason
we write IrrpFq “ IrrpGq ˚ IrrpHq.
In addition, the fusion rules are described in the following way.

a) If y, y1 P IrrpFq “ IrrpGq ˚ IrrpHq are words such that y ends in IrrpGq and y1 starts in
IrrpHq (or vice-versa), then

y j y1 “ yy1

is an irreducible representation of F.
b) If y “ ζx, y1 “ x1ζ 1 P IrrpFq “ IrrpGq ˚ IrrpHq are words such that x, x1 P IrrpGq (or in

IrrpHq), then
y j y1 “

à

tĂxjx1
ζtζ 1 ‘ δx,x1pζ j ζ

1q,

where the sum runs over all non-trivial irreducible representations t P IrrpGq (or in IrrpHq)
contained in xj x1 with multiplicity.

The compact quantum group F constructed in this way is called quantum free product of G and
H and is denoted by G ˚H.

2.5.2 Remark. By definition of a quantum free product of G and H, it is clear that both pG and pH
are discrete quantum subgroups of {G ˚H with canonical inclusions given by νG and νH, respectively
(recall Proposition 1.4.3.4).

Observe that both pG and pH are divisible in pF. Let us show that, for example, pG is divisible in
pF (the proof for pH is analogous). Take any irreducible representation of F, which is given by an
alternating word in IrrpGq and IrrpHq, say

y :“ xi1zi2 . . . xin´1zin

By definition, a representative of y in IrrpGqzIrrpFq (resp. in IrrpFq{IrrpGq) is an irreducible
representation y1 P IrrpFq such that y j y1 (resp. y1 j y) contains an irreducible representation of
G (inside F). The latter is possible if and only if the tensor product y j y1 (resp. y1 j y) reduces to
a single letter in IrrpGq.

Assume that y starts in IrrpGq, then it is enough to put y1 :“ zi2 . . . xin´1zin . The fusion rules
of a quantum free product yield that y j y1 “ xi1 P IrrpGq.
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In this situation, given any s P IrrpGq we have to prove that s j y1 P IrrpFq. Since y starts
in IrrpGq, then y1 starts in IrrpHq, so that the fusion rules of a quantum free product yield that
sj y1 “ sy1 P IrrpFq.

Assume that y starts in IrrpHq and ends in IrrpGq, then it is enough to put y1 :“ xi1zi2 . . . xin´1 .
The fusion rules of a quantum free product yield that y1j y “ zin P IrrpGq. Since y ends in IrrpGq,
then y1 ends in IrrpHq and the fusion rules of a quantum free product yield that y1js “ y1s P IrrpFq,
for every s P IrrpGq.

Assume that y starts and ends in IrrpHq, then we can not choose any representative y1 of y
either in IrrpGqzIrrpFq or in IrrpFq{IrrpGq such that either yjy1 or y1jy reduces to a single letter
in IrrpGq. In other words, the class of rys is formed only by y itself (notice that yb y “ εH – εG in
IrrpFq). In this case, it is obvious that sj y1 “ sy1 P IrrpFq, for every s P IrrpGq.

2.5.3 Definition. A free quantum group is a compact quantum group that is a free product of
free unitary and free orthogonal quantum groups

U`pP1q ˚ . . . ˚ U
`pPkq ˚O

`pQ1q ˚ . . . ˚O
`pQlq,

for some k, l P N where Pi P GLmipCq with mi ě 2 for all i “ 1, . . . , k and Qj P GLnj pCq with
nj ě 2 satisfies QjQj “ ˘id for all j “ 1, . . . , l.

2.5.4 Remark. Observe that if in the preceding definition we take l “ 0, mi “ 1 and Pi “ id P
GL1pCq, for all i “ 1, . . . , k, then the corresponding free quantum group reduces to a classical free
group on k generators.

In this sense, the preceding definition is a generalization of the classical case. Namely, the
classical free group on n generators can be written as a free product of n copies of Z, Fn “ Z˚ . . .˚Z.
In the quantum setting, we need to allow different building blocks for constructing free quantum
groups.

The quantum free product construction and particularly the case of a free quantum group have
been successfully studied by R. Vergnioux and C. Voigt [208] in relation with the Baum-Connes
property and the K-theory computations. In Section 3.6 we will give an overview of the Vergnioux-
Voigt’s work concerning the Baum-Connes property. Let us state here the corresponding result
concerning the K-theory computations. Notice that the following result is a generalization of the
well-known Pimsner-Voiculescu exact sequence [151], [152] for free quantum groups.

2.5.5 Theorem (R. Vergnioux and C. Voigt, [208]). Let G :“ U`pP1q ˚ . . . ˚ U
`pPkq ˚O

`pQ1q ˚

. . . ˚O`pQlq be a free quantum group. Then pG is K-amenable and for every pG-C˚-algebra A there
exists a six-term exact sequence

2k`l
À

r“1
K0pAq // K0pAq // K0ppG˙Aq

��

K1ppG˙Aq

OO

K1pAqoo
2k`l
À

r“1
K1pAqoo

As a consequence, we have that the K-theory of G “ U`pP1q ˚ . . .˚U
`pPkq ˚O

`pQ1q ˚ . . .˚O
`pQlq

is given by
K0pCpGqq “ Z and K1pCpGqq “ Z2k ‘ Zl
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2.6 Free wreath product
We introduce the wreath product of a compact quantum group by S`N and we analyze some structure
properties of this object that are useful for our purpose.

It is important to recall that in the classical case, a wreath product can be regarded as a
generalization of a semi-direct product that provides new and interesting examples of groups in
order to study automorphism groups. With this philosophy in mind, we want to give a quantum
version of such an object. The first definition and construction of a free wreath product was given
by J. Bichon in [22] where he defines the wreath product of a compact quantum group G by a
quantum permutation group S`N , denoted by G o˚ S`N . Recently, the work of P. Fima and L. Pittau
in [66] gives a generalization of this construction replacing S`N by any quantum automorphism
group QutpA,ωq, defining thus the compact quantum group G o˚ QutpA,ωq.

In the context of the present thesis, the original definition of J. Bichon is enough for our purpose.
The main construction of the following theorem can be found in [22] and we refer to the work of F.
Lemeux and P. Tarrago in [120] for the corresponding representation theory and more details.

2.6.1 Theorem-Definition. Let G “ pCpGq,∆q be a compact quantum group and fix a natural
number N P N. Given the free product G˚N , denote by νk : CpGq ÝÑ CpG˚N q the canonical
faithful ˚-homomorphism corresponding to the k-th component, for each k “ 1, . . . , N . Denote by
u “ puijqi,j“1,...,N the fundamental representation of S`N .

There exists a unique ˚-homomorphism

Θ : CpG˚N q ˚ CpS`N q{I ÝÑ CpG˚N q ˚ CpS`N q{I b CpG
˚N q ˚ CpS`N q{I,

where I is the closed two-sided ideal in CpG˚N q ˚ CpS`N q generated by tνkpaquki ´ ukiνkpaq | a P
CpGqui,k“1,...,N ; such that

Θpνipaqq “
N
ÿ

k“1
νipap1qquik b νkpap2qq and Θpuijq “

N
ÿ

k“1
uik b ukj,

for all a P CpGq and all i “ 1, . . . N and for all i, j “ 1, . . . N .
Besides, we have that

i) F :“ pCpG˚nq ˚ CpS`N q{I,Θq is a compact quantum group,

ii) If G is a maximal compact quantum group, then F too,

iii) the irreducible representations of F are described as follows: for every irreducible representation
x P IrrpGq, take a representative wx P BpHxq b CpGq, denote by pwxqpkq a representative of x
in the k-th component of G˚N and put

rpxq :“
´

uijνkppw
x
ijq
pkqq

¯

k,i,j“1,...,N

Irreducible representations of F are subrepresentations of the tensor products

rpx1q j . . .j rpxnq,
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for all n P N. In other words, the irreducible representation of F are labelled by words over
IrrpGq. For this reason we write IrrpFq “ xIrrpGqy.
In addition, the fusion rules are described in the following way. If x, y P xIrrpGqy and
ωpxq, ωpyq P IrrpFq denotes the corresponding irreducible representations of F, then

ωpxq j ωpyq “
´

ÿ

x“ut

y“tv

ωpu, vq
¯

‘

´

ÿ

x“ut, u‰H

y“tv, v‰H

ωpuj vq
¯

,

where we must point out the notation.

- xIrrpGqy is equipped with an involution defined by

px1, . . . , xnq :“ pxn, . . . , x1q,

for all x1, . . . , xn P IrrpGq.
- If u, v P xIrrpGqy are two words, we denote by pu, vq their concatenation.
- Given two words u :“ px1, . . . , xnq, v :“ py1, . . . , ymq P xIrrpGqy, we denote by uj v the
following operation

uj v :“
à

zĂxnjy1

px1, . . . , xn´1, z, y2, . . . , ymq

The compact quantum group F constructed in this way is called free wreath product of G by S`N
and is denoted by G o˚ S`N .

We will see in Section 3.7.1 that a free wreath product Go˚S`N is never torsion-free. Consequently,
it is not clear, from a theoretical point of view, how to formulate the Baum-Connes property for it.
As we have already pointed out in the end of Section 1.7.2, one possible strategy is to consider a
suitable monoidal equivalence between G o˚ S`N and some compact quantum group H, for which it
is easier to establish or to formulate the Baum-Connes property. In this sense, the following result
is crucial in order to develop the study of the torsion phenomena and the Baum-Connes property
for a free wreath product as we have done in Section 3.7.

2.6.2 Theorem (F. Lemeux and P. Tarrago, [120]). Let G be a compact quantum group. If u
denotes the fundamental representation of SUqp2q, let Hq be the compact quantum group generated
by uxu for all x P IrrpGq. The following properties hold.

i) pHq is a discrete quantum subgroup of {G ˚ SUqp2q.

ii) If N ě 4, there exists 0 ă |q| ă 1 with q ` q´1 “
?
N such that Hq is monoidally equivalent to

G o˚ S`N .

2.6.3 Remark. In order to carry out a study of the torsion phenomena and the Baum-Connes
property for a free wreath product G o˚ S`N , it is advisable to give some explicite expressions
concerning the representation theory of G o˚ S`N and Hq. We refer to Section 5 of [120] for more
details.

First of all, the precise description of the Lemeux-Tarrago’s compact quantum group Hq :“
pCpHqq,∆qq of the preceding theorem is the following.
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- CpHqq is generated, as ˚-algebra, by the matrix coefficients of representations of the form
uxu, for all x P IrrpGq. In other words, Hq is defined by Tannaka-Krein-Woronowicz duality
where ReppHqq is identified with the smallest full subcategory of ReppG ˚SUqp2qq containing
tuxu | x P IrrpGqu Ă IrrpG ˚ SUqp2qq.

- The co-multiplication ∆q : CpHqq ÝÑ CpHqq b CpHqq is such that

∆qpuijxrsuklq “ ∆SUqp2qpuijq∆Gpxrsq∆SUqp2qpuklq,

for all i, j, k, l “ 1, 2, all r, s “ 1, . . . , nx and all x P IrrpGq.

This means that the irreducible representations of Hq are subrepresentations of the tensor
products

pux1uq j . . .j puxnuq,

with x1, . . . , xn P IrrpGq and n P N; which decomposes as a direct sum of irreducible representations
of the form

ul1z1u
l2 . . . zln´1u

ln P IrrpGq ˚ IrrpSUqp2qq,

where l1 and ln are odd integers, for all i “ 2, . . . , n´1 li are even integers and for all i “ 1, . . . , ln´1
zi Ă xi1 j . . .j xit is irreducible for some i1, . . . , it P t1, . . . , nu.

In this way, we have a bijection between IrrpHqq and the free monoid xIrrpGqy formed by the
words over IrrpGq, so that any irreducible representation of Hq is labelled by a word in xIrrpGqy.
This description of IrrpHqq, together with the fusion rules of a free product of compact quantum
groups (see Theorem 2.5.1), allows to give an explicit description of the inclusion Λ : FusppHqq ãÑ

Fusp {G ˚ SUqp2qq given by pHq ă {G ˚ SUqp2q of the preceding theorem.

- If x1 “ . . . “ xn “ εG, then ΛpεnGq “ u2n, for all n P N.

- If xi ‰ εG, for all i “ 1, . . . , n, then Λpx1 . . . xnq “ ux1u
2x2u

2 . . . u2xnu, for all n P N.

- In general, if ω is any word over IrrpGq, we can write it under the form ω “ εn1
G ω1ε

n2
G ω2 . . . ωkε

nk`1
G ,

where each ωi does not contain εG. Denote by rΛpωiq the same expression as Λpωiq from
the preceding case except that the first and last u are removed. Then, we have Λpωq “
u2n1`1

rΛpω1qu
2n2`1

rΛpω2q . . . u
2nk`1

rΛpωkqu2nk`1`1, for all k P N.

Finally, using the above description of IrrpHqq, the fusion rules of Hq are described as follows:
if x1, . . . , xn, y1, . . . , ym P IrrpGq, then

px1 . . . xnq j py1 . . . ymq “
´

ÿ

zĂxnjy1

x1 . . . xn´1 z y2 . . . ym

¯

‘ δxn,y1 px1 . . . xn´1q j py2 . . . ymq

2.6.4 Remark. Notice that the discrete quantum group pHq might not be divisible in {G ˚ SUqp2q
in general. Namely, as we will see in Section 3.7.1, the dual of the free wreath product G o˚ S`N
is never torsion-free, even when pG is torsion-free. Hence, pHq is never torsion-free, by monoidal
equivalence. But, if pG is torsion-free, then it is well-known that {G ˚ SUqp2q is torsion-free (by
combining Theorem 2.1.5 and Theorem 3.6.1.1). If pHq was divisible in {G ˚ SUqp2q, then pHq would
be torsion-free provided that torsion-freeness is preserved by divisible discrete quantum groups as
conjectured in the end of Section 3.2.1.
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This shortcoming makes the proof of the strong Baum-Connes property for {G o˚ S`N of Section
3.7.2 a non trivial result. Namely, if pG is torsion-free and satisfies the strong Baum-Connes property,
then it is well-known that {G ˚ SUqp2q is torsion-free and satisfies the strong Baum-Connes property
as well (by combining Theorem 2.1.5 and Theorem 3.6.2.3). If pHq was divisible in {G ˚ SUqp2q,
then pHq would satisfy automatically the strong Baum-Connes property by Theorem 3.2.2.1. Thus,
{G o˚ S`N too by monoidal equivalence (recall Theorem B.3.19).
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Stability properties for the Quantum Baum-Connes prop-
erty

This chapter should be regarded as the core of the thesis. Here we develop the main contributions
of the present dissertation.

In Section 3.1 we care about the compact case. Namely, we study the Baum-Connes property
for any compact quantum group and for the duals of compact Lie groups which are connected and
have torsion-free fundamental group following the work of R. Meyer and R. Nest [133].

In Section 3.2 we recall that the divisible condition of a discrete quantum subgroup is a sufficient
one to conclude that the strong Baum-Connes property passes to quantum subgroups following
the work of R. Vergnioux and C. Voigt [208] and also to conclude that the strong torsion-freeness
passes to quantum subgroups following the work of Y. Arano and K. De Commer [3]. Moreover, we
establish the analogue stability result for the usual Baum-Connes property. The K-amenability
property for a discrete quantum subgroup is analyzed.

In Section 3.3 we establish the quantum counterpart of the stability for the Baum-Connes
property for a direct product in connexion with the Künneth formula as studied in [37] by J.
Chabert, S. Echterhoff and H. Oyono-Oyono for classical locally compact groups. In addition, the
K-amenability property for such a construction is analyzed.

In Section 3.4 we establish the quantum counterpart of the stability for the Baum-Connes
property for a semi-direct product obtained by H. Oyono-Oyono [143] in the classical discrete case.
In Section 3.5 we observe that, under the torsion-freeness assumption, the analogue study of the
Baum-Connes property for a compact bicrossed product in the sense of P. Fima-K. Mukherjee-I.
Patri [65] reduces to the quantum semi-direct product studied earlier. In addition, theK-amenability
property for both constructions is analyzed.

In Section 3.6 we recall that the Baum-Connes property is stable under the free product
construction for quantum groups following the work of R. Vergnioux and C. Voigt [208]. Our
contribution here is the complete classification of the torsion actions for a quantum free product,
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which is part of a collaboration work with A. Freslon [127].
In Section 3.7 we show that the Baum-Connes property is stable under the free wreath product

construction using the well-known monoidal equivalence given by F. Lemeux and P. Tarrago in
[120] and being inspired by the pioneering work of C. Voigt in [212]. In addition the K-amenability
property for such a construction is analyzed. The whole content of Section 3.7 is a collaboration
work with A. Freslon [127].
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3.1 The Baum-Connes property for compact quan-
tum groups

The compact case is one of the first situations that we have to analyze in relation with the
Baum-Connes property. Indeed, from a topological point of view, compact groups are particularly
interesting and rich concerning the representation theory and the approximation properties.

In this sense, it is well-known that classical compact groups always satisfy the Baum-Connes
property. We can see this in different ways. On the one hand, we can prove it directly by recalling
that the corresponding classifying space for proper actions is a singleton. On the other hand, we can
apply the celebrated and strong result of Higson-Kasparov [82] to conclude that, actually, compact
groups satisfy the strong Baum-Connes property.

Let us analyze the Baum-Connes property for compact quantum groups.

3.1.1 Theorem. Let G be a compact quantum group such that pG is a torsion-free discrete quantum
group. Consider the homological functor rF : K K G ÝÑ A bZ{2 defined by rF pA, δq :“ K˚pG ˙

δ,r
Aq,

for all pA, δq P ObjpK K Gq.
Then G satisfies the Baum-Connes property with respect to pLG,NG, rF q.

Proof. Recall from Section 1.7.2 that, under the torsion-freeness assumption, the complementary
pair of subcategories pLG,NGq is given by Baaj-Skandalis duality by

LG “ xtA P ObjpK K Gq | A with trivial action of Guy

NG “ tA P ObjpK K Gq | G˙
r
A – 0 in K K as a trivial pGcop-C˚-algebrau

Denote by prL, rNq the canonical triangulated functors associated to this complementary pair.
Consider the homological functor rF of the statement and the categorical assembly map with respect
to pLG,NG, rF q (recall Definition 1.2.1.30)

rη : L rF ÝÑ rF ,

where by definition we have L rF “ rF ˝ rL.
We have to prove that rη is a natural equivalence. By universal property of localization (recall

Theorem 1.2.1.29 and Theorem 1.2.3.17) this is equivalent to say that rF|NG “ 0, which is obvious
by definition of NG.

�

Once the Baum-Connes property for the compact case is clarified, we have to care about discrete
quantum groups, which arise as duals of compact (quantum) groups. As we have already explained
at different stages of the dissertation, the torsion phenomena is one of the main obstacles for this
study.

An important source of examples of topological groups is Lie groups. Moreover, they are in the
origins of the quantum groups theory from the physical point of view. In this sense, it is reasonable
to look at duals of compact Lie groups, which should be regarded as a particular case of discrete
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quantum groups. This is the object of study of the article [133] by R. Meyer and R. Nest. More
precisely, they give a concrete application of the abstract formulation of the Baum-Connes property
for duals of compact connected Lie groups. In particular, they are able to manage properly the
quantum torsion phenomena in this situation.

Let us present here the torsion-free version of the main theorem of [133] in order to exhibit
the strategy followed by Meyer-Nest in such a situation. Firstly, a combination of some classical
well-known results [129], [165], [180] yields the following lemma (see Proposition 2.1 of [133] for a
proof).

3.1.2 Lemma. Let G be a compact connected Lie group with torsion-free fundamental group. If
T ă G denotes the maximal torus of G, then there exists N P N such that

CN – CpG{T q in K K G

3.1.3 Theorem. Let G be a compact connected Lie group with torsion-free fundamental group.
Then pG satisfies the strong Baum-Connes property. As a consequence, pG satisfies the Baum-Connes
property.

Proof. Given the discrete quantum group pG, consider the corresponding pG-equivariant Kasparov
category K K

pG with the usual complementary pair of localizing subcategories pL ,N q as explained
in Section 1.7.2. By definition, pG satisfies the strong Baum-Connes property if and only if
L “ K K

pG. Since L and N are complementary, this condition is equivalent to the condition
N “ p0q.

In other words, we have to see the following: given B P ObjpK K
pGq such that B – 0 in K K ,

then B – 0 in K K
pG.

Next, by Baaj-Skandalis duality this statement is equivalent to the following one: given
A P ObjpK K Gq such that G˙

r
A – 0 in K K , then A – 0 in K K G.

Therefore, consider any G-C˚-algebra A P ObjpK K Gq and denote by T ă G the maximal
torus of the compact Lie group G. Apply the preceding lemma to write the following chain of
equivalences.

G˙
r
A – 0 in K K ô G˙

r
pAb CN q – 0 in K K

ô G˙
r
pAb CpG{T qq – 0 in K K

ô T ˙
r
ResGT pAq – 0 in K K ,

where the last one is true by virtue of the obvious Morita equivalence AbCpG{T q „
M
IndGT pRes

G
T pAqq,

so that the Green’s Imprimitivity theorem guarantees that T ˙
r
ResGT pAq „

M
G˙

r
pAb CpG{T qq.

The preceding lemma yields also the following chain of equivalences.

A – 0 in K K G ô Ab CN – 0 in K K G

ô Ab CpG{T q – 0 in K K G

ô IndGT pRes
G
T pAqq – 0 in K K G,

where the last one is true by virtue of the same Morita equivalence as above.
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These computations assure that pG satisfies the strong Baum-Connes property whenever pT
satisfies the strong Baum-Connes property, which is obviously true. Indeed, the maximal torus T is
isomorphic to a n-dimensional torus TN for some n P N and the classical Pontryagin duality yields

xTn – Zn and Tn – xZn,

where xTn – Zn satisfies the strong Baum-Connes property by virtue of the Higson-Kasparov
theorem [82] since it is amenable. �

3.2 The Baum-Connes property for a quantum sub-
group

In this section we recall that the divisible condition of a discrete quantum subgroup is a sufficient
one to conclude that the strong Baum-Connes property passes to quantum subgroups following
the work of R. Vergnioux and C. Voigt [208]. We will see that the same is true for the usual
Baum-Connes property.

The divisibility condition for a quantum discrete subgroup may be regarded as a condition of
existence of a section for the canonical quotient map. In this way, every classical discrete subgroup
H ă G is divisible. We refer to Section 4 of [208] for the full details and we state here the main
results. Notations and definitions of Section 1.4.3 concerning induced actions and discrete quantum
subgroups may be kept in mind for what follows.

3.2.1 Definition. Let pH be a discrete quantum subgroup of a discrete quantum group pG. We say
that pH ă pG is divisible if there exists a pH-equivariant ˚-isomorphism

c0ppGq – c0ppHq b c0ppHzpGq

with respect to the restricted action on the left hand side and the action given by co-multiplication
on c0ppHq on the right hand side.

This notion can be characterized in terms of the representation theory of the quantum groups
involved. More precisely, we have the following result.

3.2.2 Lemma. Let pH be a discrete quantum subgroup of a discrete quantum group pG. The following
assertions are equivalent.

i) pH ă pG is divisible.

ii) For each equivalence class α P IrrpHqzIrrpGq there exists a representation lα P α such that
sj lα is irreducible, for all s P IrrpHq.

iii) For each equivalence class α P IrrpGq{IrrpHq there exists a representation rα P α such that
rα j s is irreducible, for all s P IrrpHq.
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3.2.1 Torsion property
As we have already explained, the torsion phenomena for discrete quantum groups is closely related
with the strong Baum-Connes property (see Section 1.7.2 and Chapter 5 for more precisions). The
divisibility condition is sufficient to state the strong torsion-freeness (torsion-freeness in the sense of
Arano-De Commer) of a discrete quantum subgroup from the strong torsion-freeness of the discrete
quantum group. More precisely, we have the following result due to Y. Arano and K. De Commer
(see Proposition 1.28 in [3]).

3.2.1.1 Theorem (Y. Arano and K. De Commer, [3]). Let pH be a discrete quantum subgroup of
a discrete quantum group pG. If pH ă pG is divisible and pG is strong torsion-free, then pH is strong
torsion-free.

It is important to observe that usual torsion-freeness (that is, torsion-freeness in the sense of
Meyer-Nest) is not preserved, in general, by discrete quantum subgroups. For instance, we have
explained in Section 2.1 that {SOqp3q ă {SUqp2q. Moreover, while {SUqp2q is torsion-free by [210],
{SOqp3q is not torsion-free by [173] (recall the discussion in the end of Section 1.6.1).

In relation with the results obtained in [127], we can consider an other example more complicated.
Let G be a compact quantum group such that pG is torsion-free. Then the dual of the free product
G ˚ SUqp2q is torsion-free (because {SUqp2q is torsion-free for all q P p´1, 1qzt0u as it is shown
in [210] and torsion-freeness is preserved by free product as it is shown in [3]). Consider the
Lemeux-Tarrago’s discrete quantum subgroup pHq ă {G ˚ SUqp2q which is such that Hq is monoidally
equivalent to the free wreath product G o˚ S`N (see [120] or Section 2.6 for more details). It is
explained in [127] (and in Section 3.7) that the dual of G o˚ S`N is never torsion-free. Hence pHq
neither (because torsion-freeness is preserved under monoidally equivalence as it is shown in [210]
or [163]).

It is reasonable to expect that torsion-freeness (in the sense of Meyer-Nest) is preserved under
divisible discrete quantum subgroups. Inspired by the study carried out in Section 3.6.1, we expect
to be able to apply the techniques from [3] for proving the following stability result: given a compact
quantum group G, pG is torsion-free if and only if every divisible discrete quantum subgroup pH ă pG
is torsion-free.

3.2.2 The Baum-Connes property

In order to legitimate the Baum-Connes property formulation for a discrete quantum group pG, we
need pG to be torsion-free. The same is true for a discrete quantum subgroup pH ă pG. Hence, we
must keep the preceding section in mind. For simplicity we assume that every discrete quantum
group considered in what follows is torsion-free.

Next, let us set up the adapted notations of the categorical framework of Meyer-Nest to this
situation. Consider the equivariant Kasparov categories associated to pG and pH, say

K K
pG and K K

pH,

respectively. The canonical suspension functors for each of the above Kasparov categories are
denoted simply by Σ.
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Notice that from now on, the word homomorphism (respectively, isomorphism) will mean
homomorphism (respectively, isomorphism) in the corresponding Kasparov category; it can be either
a true homomorphism (respectively, isomorphism) between C˚-algebras or any Kasparov triple
between C˚-algebras (respectively, any KK-equivalence between C˚-algebras).

Consider the canonical complementary pair of localizing subcategories in K K
pG and K K

pH,
say

pL
pG,NpGq and pLpH,NpHq,

respectively. In this way, the canonical triangulated functors associated to these complementary
pairs are denoted by pL,Nq, pL1, N 1q, respectively.

Consider the homological functors defining the quantum Baum-Connes assembly maps for pF, pG
and pH. Namely,

F : K K
pG ÝÑ A bZ{2 F 1 : K K

pH ÝÑ A bZ{2

pA,αq ÞÝÑ F pAq :“ K˚ppG ˙
α,r

Aq pB, βq ÞÝÑ F 1pBq :“ K˚ppH ˙
β,r

Bq

Therefore, the quantum assembly maps for pG and pH are given by the following natural transfor-
mations

η
pG : LF ÝÑ F and ηpH : LF 1 ÝÑ F 1,

where by definition we have
LF “ F ˝ L and LF 1 “ F 1 ˝ L1

By the torsion-freeness assumption, the subcategory L
pG (resp. L

pH) is easily described as the
localizing subcategory of K K

pG (resp. K K
pH) generated by the objects of the form c0ppGqbC (resp.

c0ppHq b C) with C any C˚-algebra in the Kasparov category K K .

In relation with the strong Baum-Connes property, the divisibility condition of a discrete
quantum subgroup guarantees that the restriction functor preserves the localizing subcategories
of compactly induced C˚-algebras. More precisely, if pH is a divisible discrete quantum subgroup
of a discrete quantum group pG, then by definition we have a pH-equivariant ˚-isomorphism as in
Definition 3.2.1

c0ppGq – c0ppHq b c0ppHzpGq

Both pG and pH are supposed to be torsion-free. Hence the description of the subcategories L
pG

and L
pH yields clearly that

Res
pG
pHpLpGq Ă L

pH,

whenever pH is divisible in pG.
Assume that pG satisfies the strong Baum-Connes property. Let B P ObjpK K

pHq be any
pH-C˚-algebra. Since K K

pG “ L
pG by assumption, then Ind

pG
pH
pBq P L

pG. Since pH is divisible in
pG, the preceding discussion yields that RespG

pH

´

Ind
pG
pH
pBq

¯

P L
pH. Next, the explicit description of

induced C˚-algebras with respect to discrete quantum subgroups (see Section 1.4.3), yields that B
is a retract of RespG

pH

´

Ind
pG
pH
pBq

¯

. Hence B P L
pH as well because L

pH is, by definition, closed under
retracts. In other words, we have proved the following result.
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3.2.2.1 Theorem (R. Vergnioux and C. Voigt, [208]). Let pH be a discrete quantum subgroup of a
discrete quantum group pG. Assume that pG is torsion-free.

If pH ă pG is divisible and pG satisfies the strong Baum-Connes property, then pH satisfies the
strong Baum-Connes property.

To the best knowledge of the author it is open to know if the strong Baum-Connes property is
preserved by quantum subgroups in general. As well as the usual Baum-Connes property. However,
the divisibility condition is still sufficient to state the usual Baum-Connes property for a discrete
quantum subgroup from the usual Baum-Connes property of the discrete quantum group.

3.2.2.2 Lemma. Let G, H be two compact quantum groups. If pG is torsion-free and pH ă pG is a
divisible torsion-free discrete quantum subgroup, then the following properties hold.

i) RespG
pH
pL

pGq Ă L
pH and RespG

pH
pN

pGq Ă N
pH. Hence, Res

pG
pH
˝L “ L1˝Res

pG
pH
and RespG

pH
˝N “ N 1˝Res

pG
pH
.

ii) IndpG
pH
pL

pHq Ă L
pG and IndpG

pH
pN

pHq Ă N
pG. Hence, Ind

pG
pH
˝L1 “ L˝Ind

pG
pH
and IndpG

pH
˝N 1 “ N ˝Ind

pG
pH
.

Consequently, RespG
pH
transforms the assembly map for pG into the assembly map for pH and IndpG

pH
transforms the assembly map for pH into the assembly map for pG.

Proof. i) Since pH is divisible in pG, then c0ppGq “ c0ppHq b c0ppHzpGq as pH-C˚-algebras. Hence, it is
clear that RespG

pH
pL

pGq Ă L
pH. Take N P N

pG, then we have that RespGE pNq “ 0. Restriction by
stages yields that 0 “ Res

pG
E pNq “ Res

pH
E
`

Res
pG
pH
pNq

˘

, which means that RespG
pH
pNq P N

pH.

Given any A P ObjpK K
pGq, its corresponding pL

pG,NpGq-triangle is transformed into a distin-
guished triangle by restriction because RespG

pH
is a triangulated functor. We have just seen that

restriction functor preserves the subcategories L and N . Hence the distinguished triangle
given by restriction is actually a pL

pH,NpHq-triangle for RespG
pH
pAq. By uniqueness of these

distinguished triangles we get the relations.

ii) Take a generator IndpHE pCq P L
pH with C P ObjpK K q. Induction by stages (see Proposition

2.7 in [140] for a proof) yields that IndpG
pH

`

Ind
pH
E pCq

˘

“ Ind
pG
E pCq, which is again a generator in

L
pG. Hence, we also have IndpG

pH
pL

pHq Ă L
pG.

Take N 1 P N
pH. Recall that, since L

pH and N
pH are complementary, then we have N

pH “ L %
pH
.

Accordingly, KK pHpL1, N 1q “ p0q, for all L1 P L
pH. By virtue of property piq above, we can

take L1 :“ Res
pG
pH
pLq for any L P L

pG. Hence, the adjointness property between restriction and
induction functor of Lemma 1.7.2.4, yields that

KK
pGpL, Ind

pG
pHpN

1qq “ KK
pHpRes

pG
pHpLq, N

1q “ p0q,

for all L P L
pG, which means that IndpG

pH
pN 1q P L %

pG
“ N

pG.

Given any B P ObjpK K
pHq, its corresponding pL

pH,NpHq-triangle is transformed into a distin-
guished triangle by induction because IndpG

pH
is a triangulated functor. We have just seen that

induction functor preserves the subcategories L and N . Hence the distinguished triangle given
by induction is actually a pL

pG,NpGq-triangle for Ind
pG
pH
pBq. By uniqueness of these distinguished

triangles we get the relations.
�
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3.2.2.3 Proposition. Let pG be a discrete quantum group. Assume that pG is torsion-free.
pG satisfies the quantum Baum-Connes property if and only if every divisible torsion-free discrete

quantum subgroup pH ă pG satisfies the quantum Baum-Connes property.

Proof. Assume that pG satisfies the quantum Baum-Connes property and consider a divisible discrete
quantum subgroup pH ă pG.

By assumption, pG satisfies the quantum Baum-Connes property with coefficients. In particular,
we have a natural isomorphism η

pG
Ind

pG
pH
pBq

: K˚
`

pG ˙ LpInd
pG
pH
pBqq

˘

ÝÑ K˚
`

pG ˙ Ind
pG
pH
pBq

˘

, for all

B P ObjpK K
pHq.

Thanks to the preceding lemma IndpG
pH
˝ L1 “ L ˝ Ind

pG
pH
, so that we have a natural isomorphism

η
pG
Ind

pG
pH
pBq

: K˚
`

pG˙ IndpG
pH
pL1pBq

˘

ÝÑ K˚
`

pG˙ IndpG
pH
pBq

˘

, for all B P ObjpK K
pHq.

By virtue of the quantum Green’s Imprimitivity theorem (see Theorem 1.5.3.6 or Theorem
7.3 in [194] for a proof) we have a natural Morita equivalence pG ˙ Ind

pG
pH
pBq „

M

pH ˙ B for all

B P ObjpK K
pHq, which yields an isomorphism between pG˙ IndpG

pH
pBq and pH˙B in K K .

Moreover, the induction functor transforms the assembly map for pH into the assembly map for
pG by the preceding lemma. More precisely, given B P ObjpK K

pHq if

ΣpN 1pBqq ÝÑ L1pBq
u1
ÝÑB ÝÑ N 1pBq (3.2.1)

is the pL
pH,NpHq-triangle for B, then

ΣpIndpG
pH

`

N 1pBqq
˘

ÝÑ Ind
pG
pH

`

L1pBq
˘Ind

pG
pH
pu1q

ÝÑ Ind
pG
pH

`

B
˘

ÝÑ Ind
pG
pH

`

N 1pBq
˘ (3.2.2)

is the pL
pG,NpGq-triangle for IndpG

pH

`

B
˘

.
Apply the triangulated functors pH˙

r
¨ and pG˙

r
¨ to the triangles p3.2.1q and p3.2.2q, respectively

so that we get the following distinguished triangles in K K

ΣppH˙
r
N 1pBqq ÝÑ pH˙

r
L1pBq

pH˙u1
ÝÑ pH˙

r
B ÝÑ pH˙

r
N 1pBq

Σ
`

pG˙
r
Ind

pG
pH

`

N 1pBq
˘˘

ÝÑ pG˙
r
Ind

pG
pH

`

L1pBq
˘

pG˙IndpG
pH
pu1q

ÝÑ pG˙
r
Ind

pG
pH

`

B
˘

ÝÑ pG˙
r
Ind

pG
pH

`

N 1pBq
˘

Since the isomorphism between pG˙ IndpG
pH
pBq and pH˙B in K K is natural by the quantum

Green’s Imprimitivity theorem, then we get an isomorphism of distinguished triangles

ΣppH˙
r
N 1pBqq

o

��

// pH˙
r
L1pBq

pH˙ u1 //

o

��

pH˙
r
B //

o

��

pH˙
r
N 1pBq

o

��
Σ
`

pG˙
r
Ind

pG
pH

`

N 1pBq
˘˘

// pG˙
r
Ind

pG
pH

`

L1pBq
˘

pG˙ IndpG
pH
pu1q

// pG˙
r
Ind

pG
pH

`

B
˘

// pG˙
r
Ind

pG
pH

`

N 1pBq
˘
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which allows to consider the following commutative diagram,

LF 1pBq
η
pH
B //

o

��

F 1pBq

o

��
LF

`

Ind
pG
pH

`

L1pBq
˘˘

η
pG
Ind

pG
pH
pBq

// F
`

Ind
pG
pH

`

B
˘˘

Since ηpG
Ind

pG
pH
pBq

is an isomorphism for all B P ObjpK K
pHq, we conclude that the same is true for

η
pH
B , that is, pH satisfies the quantum Baum-Connes property with coefficients.

The converse is obvious and the proof is complete. �

3.2.2.4 Remark. For classical groups it is well-known that the Baum-Connes property is preserved
by closed subgroups. It was showed by J. Chabert and S. Echterhoff in [35]. To this end they
showed that the induction homomorphism Ktop

˚ pH;Bq ÝÑ Ktop
˚ pG; IndGHpBqq is always bijective

(see Theorem 2.2 in [35] for a proof). In our case, this result is encoded in the identification
K˚ppH˙ L1pBqq – K˚ppG˙ LpInd

pG
pH
pBqqq, obtained by the property IndpG

pH
˝ L1 “ L ˝ Ind

pG
pH
plus the

quantum Green’s Imprimitivity theorem.
3.2.2.5 Remark. Assume that pG is any discrete quantum group not necessarily torsion-free. We
have a reasonable definition for the localizing subcategory L

pG of compactly induced C˚-algebras
as it is explained in Section 4.1.2. This definition takes into account the torsion phenomena of
pG. Hence, the abstract conditions RespG

pH
pL

pGq Ă L
pH and IndpG

pH
pL

pHq Ă L
pG, where pH ă pG is some

discrete quantum subgroup, must be checked also for all torsion actions and not only for the trivial
torsion action of the torsion-free case, as it has been done in Lemma 3.2.2.2. An example of this
process can be found in Theorem 3.7.2.6.

3.2.3 K-amenability property
Here we care about a property of own interest, namely the K-amenability of a quantum subgroup.
More precisely we have the following result.

3.2.3.1 Theorem. Let pH be a discrete quantum subgroup of a discrete quantum group pG. If G is
co-K-amenable, then H is co-K-amenable.

Proof. Since pH ă pG, then we have canonical injections between their reduced C˚-algebras and also
between the maximal ones (recall Proposition 1.4.3.4). Let’s put

ιrH : CrpHq ãÑ CrpGq and ιmH : CmpHq ãÑ CmpGq

for such injections, which intertwine the corresponding co-multiplications.
Next, let τG : CmpGq � CrpGq, τH : CmpHq � CrpHq denote the canonical surjections and

εG : PolpGq ÝÑ C, εH : PolpHq ÝÑ C the co-units of G and H, respectively whose extension to
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CmpGq and CmpHq are still denoted by εG and εH, respectively. Hence, by construction we have
the following commutative diagrams

CmpGq
τG // // CrpGq CmpGq

εG // C

CmpHq τH
// //

?�

ιmH

OO

CrpHq
?�

ιrH

OO

CmpHq
?�

ιmH

OO

εH

88

(3.2.3)

Since G is supposed to be co-K-amenable, then Remark 1.3.1.41 assures that there exists an
element αG P KKpCrpGq,Cq such that rτGs b

CrpGq
αG “ rεGs. In order to show that H is also

co-K-amenable, let us define

αH :“ rιrHs b
CrpGq

αG P KKpCrpHq,Cq

Hence, diagrams p3.2.3q above yields that rτHs b
CrpHq

αH “ rεHs. Indeed,

rτHs b
CrpHq

αH “ rτHs b
CrpHq

rιrHs b
CrpGq

αG “ rι
r
H ˝ τHs b

CrpGq
αG

“ rτG ˝ ι
m
H s b

CrpGq
αG “ rι

m
H s b

CmpGq
rτGs b

CrpGq
αG

“ rιmH s b
CmpGq

rεGs “ rεG ˝ ι
m
H s “ rεHs

Therefore, Remark 1.3.1.41 yields the co-K-amenability for H.
�

3.3 The Baum-Connes property for a quantum direct
product

In this section we are going to study the strong Baum-Connes property for the dual of a direct
product of compact quantum groups in terms of the involved compact quantum groups. Recall
that H. Oyono-Oyono has already successfully studied the stability of the Baum-Connes property
for classical discrete groups in [143]. The locally compact case has also been studied by J. Chabert
and S. Echterhoff in [35].

It is important to remark that our study must be restricted to the strong version of the Baum-
Connes property. Indeed, we will see that the usual Baum-Connes property for a quantum direct
product is closely related to the Künneth formula (as pointed already out in [37] by J. Chabert, S.
Echterhoff and H. Oyono-Oyono for classical locally compact groups) so that more hypothesis are
needed in order to establish the corresponding stability property.

In order to do so, we carry the same notations of Section 2.2 on. Let F :“ GˆH be a quantum
direct product, where G and H are two compact quantum groups.
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3.3.1 Torsion property
We have already explained that all our discrete quantum groups are supposed to be torsion-free in
order to study the corresponding quantum Baum-Connes property. For this reason it is advisable
to study in more detail the torsion phenomena of the dual of a quantum direct product F “ GˆH
in terms of the involved quantum groups.

First of all, the description of the irreducible representations of F “ G ˆ H allows to give a
suitable decomposition of its fusion ring so that we can study the strong torsion-freeness of pF in
terms of the strong torsion-freeness of pG and pH. Namely, we have

3.3.1.1 Proposition. Let F “ GˆH be a quantum direct product. The fusion ring of pF decomposes
as

FusppFq “ FusppGq b FusppHq

Consequently, if pG and pH are strong torsion-free, then pF is strong torsion-free.

Proof. Recall Section 2.2. The representation theory for F yields the decomposition IrrpFq “
“

IrrpGq
‰

13

“

IrrpHq
‰

24, so that IrrpFq can be regarded as the tensor product of IrrpGq and IrrpHq
as based rings (recall Section 1.6.2). Indeed, given y P IrrpFq, take x P IrrpGq and z P IrrpHq such
that y “

“

x
‰

13

“

z
‰

24. If w
y, wx and wz are representatives of y, x and z, respectively; then we have

- εF “ εG j εH

- wy “
“

wx
‰

13

“

wz
‰

24 “
“

wx
‰

13

“

wz
‰

24

- dpwy “
“

wx
‰

13

“

wz
‰

24q “ dpwxqdpwzq

In conclusion, the decomposition FusppFq “ FusppGq b FusppHq holds.

Finally, assume that pG and pH are strong torsion-free. Then they are in particular torsion-
free. By Remark 1.6.1.7, pG and pH can not contain finite discrete quantum subgroups. Hence,
FusppGq and FusppHq can not contain finite fusion subrings. Theorem 1.6.2.11 assures thus that
FusppGq b FusppHq “ FusppFq is torsion-free. In other words, pF is strong torsion-free as we wanted
to show. �

Although this result implies in particular the torsion-freeness of pF in the sense of Meyer-Nest
(whenever pG and pH are strong torsion-free), it is interesting to obtain the torsion-freeness in the
sense of Meyer-Nest directly from the torsion-freeness in the sense of Meyer-Nest of pG and pH.

3.3.1.2 Theorem (Y. Arano and K. De Commer, [3]). Let F :“ G ˆ H be the quantum direct
product. If pG and pH are torsion-free, then pF is torsion-free.

3.3.1.3 Note. The converse of the preceding statement would be true whenever the torsion-freeness
is preserved under divisible discrete quantum subgroups as conjectured in the end of Section 3.2.1.
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3.3.2 The Baum-Connes property
In order to legitimate the Baum-Connes property formulation for the dual of a quantum direct
product F “ GˆH, we need pF to be torsion-free. And, in order to legitimate the Baum-Connes
property formulation for pG and pH, we need these discrete quantum groups to be torsion-free. Hence,
we must keep the preceding section in mind and, for simplicity, we assume that pF, pG and pH are all
torsion-free.

Next, let us set up the adapted notations of the categorical framework of Meyer-Nest to this
situation. Consider the equivariant Kasparov categories associated to pF, pG and pH, say

K K
pF, K K

pG and K K
pH,

respectively. The canonical suspension functors for each of the above Kasparov categories are
denoted simply by Σ.

Notice that from now on, the word homomorphism (respectively, isomorphism) will mean
homomorphism (respectively, isomorphism) in the corresponding Kasparov category; it can be either
a true homomorphism (respectively, isomorphism) between C˚-algebras or any Kasparov triple
between C˚-algebras (respectively, any KK-equivalence between C˚-algebras).

Consider the canonical complementary pair of localizing subcategories in K K
pF, K K

pG and
K K

pH, say
pL

pFNpFq, pLpGN
pGq and pLpHN

pHq,
respectively. In this way, the canonical triangulated functors associated to these complementary
pairs are denoted by pL,Nq, pL1, N 1q and pL2, N2q, respectively.

Consider the homological functors defining the quantum Baum-Connes assembly maps for pF, pG
and pH. Namely,

F : K K
pF ÝÑ A bZ{2

pC, δq ÞÝÑ F pCq :“ K˚ppF ˙
δ,r
Cq

F 1 : K K
pG ÝÑ A bZ{2 F 2 : K K

pH ÝÑ A bZ{2

pA,αq ÞÝÑ F 1pAq :“ K˚ppG ˙
α,r

Aq pB, βq ÞÝÑ F 2pBq :“ K˚ppH ˙
β,r

Bq

Therefore, the quantum assembly maps for pF, pG and pH are given by the following natural
transformations

η
pF : LF ÝÑ F , ηpG : LF 1 ÝÑ F 1 and ηpH : LF 2 ÝÑ F 2,

where by definition we have

LF “ F ˝ L, LF 1 “ F 1 ˝ L1 and LF 2 “ F 2 ˝ L2

By the torsion-freeness assumption, the subcategory L
pF (resp. L

pG, L
pH) is easily described as

the localizing subcategory of K K
pF (resp. K K

pG, K K
pH) generated by the objects of the form

c0ppFq b C (resp. c0ppGq b C, c0ppHq b C) with C any C˚-algebra in the Kasparov category K K .

Now, we are ready to start the study of the strong Baum-Connes property for a quantum direct
product. To this end, we consider the following functor

Z : K K
pG ˆK K

pH ÝÑ K K
pF

pA,αq ˆ pB, βq ÞÝÑ ZpA,Bq :“ pC :“ AbB, δ :“ αb βq,
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which is defined on homomorphisms by functoriality thanks to Theorem 1.7.1.16. Let us be more
precise in the definition of Z as a functor between K K

pG ˆK K
pH and K K

pF. For this we have
to keep in mind all the notations and results obtained in Section 2.2.

Consider an object in K K
pG ˆK K

pH, say pA,αq ˆ pB, βq P ObjpK K
pGq ˆObjpK K

pHq. The
tensor product AbB is a C˚-algebra equipped with the following action of pF,

AbB
αbβ
ÝÑĂMpc0ppGq bAq b ĂMpc0ppHq bBq Ă ĂMpc0ppGq bAb c0ppHq bBq

Σ
– ĂMpc0ppGq b c0ppHq bAbBq “ ĂMpc0ppFq bAbBq

By abuse of notation we denote this composition simply by αb β. Hence, Z is well-defined on
objects. Let us explain its definition on homomorphisms.

Let pA1, α1q ˆ pB1, β1q P ObjpK K
pGq ˆObjpK K

pHq an other object in K K
pG ˆK K

pH.
Let X :“ ppH, δHq, π, F q P KK

pGpA,A1q and Y :“ ppH 1, δH1q, π
1, F 1q P KK

pHpB,B1q be two
Kasparov triples so that X ˆ Y P KK pGpA,A1q ˆKK

pHpB,B1q is a homomorphism between pA,Bq
and pA1, B1q in K K

pG ˆK K
pH.

Hence the corresponding homomorphism between ZpA,Bq and ZpA1, B1q in K K
pF is defined

in the following way.
ZpX ,Yq :“ τBR pX q b

A1bB
τA

1

L pYq “: X b Y

Observe that by Theorem 1.7.1.16 we know that the Kasparov triple X b Y defined above is an
element in KKpAbB,A1 bB1q. Next, it is easy to establish an action of pF on X b Y. Indeed,

- since pA,αq, pA1, α1q are pG-C˚-algebras and pB, βq, pB1, β1q are pH-C˚-algebras, then pA b
B,αb βq, pA1 bB,α1 b βq, pA1 bB1, α1 b β1q are pF-C˚-algebras.

- Since X is pG-equivariant Kasparov triple and pB, βq is a pH-C˚-algebra, then τBR pX q “ XbB P
KK

pFpAbB,A1 bBq is a pF-equivariant Kasparov triple (recall Remark A.3.23).

- Since Y is pH-equivariant Kasparov triple and pA1, α1q is a pG-C˚-algebra, then τA
1

L pYq “
A1 b Y P KKpFpA1 bB,A1 bB1q is a pF-equivariant Kasparov triple (recall Remark A.3.23).

Consequently, since X b Y defined above is a Kasparov product of two pF-equivariant Kasparov
triples, then it is as well a pF-equivariant one, so that X b Y P KKpFpAbB,A1 bB1q. Hence, Z is
well-defined on homomorphisms.

3.3.2.1 Lemma. The functor

Z : K K
pG ˆK K

pH ÝÑ K K
pF

pA,αq ˆ pB, βq ÞÝÑ ZpA,Bq :“ pC :“ AbB, δ :“ αb βq

is such that ZpL
pG ˆL

pHq Ă L
pF and ZpN

pG ˆN
pHq Ă N

pF.
If pA0, α0q P ObjpK K

pGq is a given pG-C˚-algebra, the functor

A0Z : K K
pH ÝÑ K K

pF

pB, βq ÞÝÑ A0ZpBq :“ ZpA0, Bq
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is triangulated such that A0ZpN
pHq Ă N

pF.
If pB0, β0q P ObjpK K

pHq is a given pH-C˚-algebra, the functor

ZB0 : K K
pG ÝÑ K K

pF

pA,αq ÞÝÑ ZB0pAq :“ ZpA,B0q

is triangulated such that ZB0pNpGq Ă N
pF.

Proof. Firstly, let us show that ZpL
pG ˆL

pHq Ă L
pF. Namely, since all our discrete quantum groups

are supposed to be torsion-free, then we know that L
pG, L

pH and L
pF are the localizing subcategories

generated by the objects of the form c0ppGq bC1, c0ppHq bC2 and c0ppFq bC3 in K K
pG, K K

pH and
K K

pF, respectively where C1, C2, C3 P ObjpK K q. Recall as well that c0ppFq “ c0ppGq b c0ppHq by
virtue of the representation theory of F “ GˆH (see Section 2.2). Hence we write

Z
`

c0ppGq b C1, c0ppHq b C2
˘

“ c0ppGq b C1 b c0ppHq b C2

– c0ppGq b c0ppHq b C1 b C2 “ c0ppFq b C3 P ObjpLpFq,

where C3 :“ C1 bC2 P ObjpK K q. This shows that Z sends generators of L
pG ˆL

pH to generators
of L

pF, so Z sends generators of L
pG ˆ L

pH to L
pF. Next, since Z is compatible with countable

direct sums, it is clear that the subcategory ZpL
pG ˆL

pHq is contained in the localizing subcategory
generated by the objects of the form Zp“generator of L

pG ˆL
pH”q. The latter is the smallest

triangulated subcategory containing the objects of the form Zp“generator of L
pG ˆL

pH”q and stable
with respect to countable direct sums. L

pF is a triangulated subcategory containing the objects of
the form Zp“generator of L

pG ˆL
pH”q by the discussion above and stable with respect to countable

direct sums by definition. Hence, by minimality, we have that the localizing subcategory generated
by the objects of the form Zp“generator of L

pG ˆL
pH”q is contained in L

pF, which yields the claim.
Secondly, let us show that ZpN

pG ˆN
pHq Ă N

pF. For this we have to notice that the restriction
functor is obviously compatible with the tensor functor Z. Given A P ObjpN

pGq and B P ObjpNpHq,
we can write

Res
pF
E
`

ZpA,Bq
˘

“ Res
pF
EpAbBq “ Res

pG
E pAq bRes

pH
E pBq – 0,

so that ZpA,Bq P ObjpN
pFq.

Next, fix a pG-C˚-algebra pA0, α0q P ObjpK K
pGq and consider the functor A0Z of the statement

(which is well defined on homomorphisms in an analogous way as Z by using Theorem 1.7.1.16).
In order to show that A0Z is triangulated, we are going to show that A0Z is compatible with the
suspension functors of the corresponding Kasparov categories and that A0Z preserves mapping
cone triangles.

For the first claim, given pB, βq P ObjpK K
pHq we have

A0ZpΣpBqq “ A0Z
`

C0pRq bB
˘

“ A0 b C0pRq bB

– C0pRq bA0 bB
p1q
– ΣpA0 bBq “ ΣpA0ZpBqq,

where the identification p1q is simply induced by the canonical identification A0 b C0
`

r0, 1s, B
˘

–

C0
`

r0, 1s, A0 bB
˘

. Let us show that A0Z preserves mapping cone triangles. Consider a mapping
cone triangle in K K

pH, say
ΣpB1q ÝÑ Cφ ÝÑ B

φ
ÝÑ B1,
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where φ : B ÝÑ B1 is a pH-equivariant ˚-homomorphism. Apply the functor A0Z so that we obtain
the following diagram

ΣpA0 bB
1q ÝÑ A0 b Cφ ÝÑ A0 bB

idbφ
ÝÑ A0 bB

1,

where A0 b Cφ – Cidbφ by virtue of Proposition 1.5.3.3. Hence the above diagram is again
a mapping cone triangle in K K

pF. Moreover, if now B P ObjpN
pHq, then Res

pF
E
`

A0ZpBq
˘

“

Res
pG
E pA0qbRes

pH
E pBq – 0, which implies that A0ZpBq P N

pH. The same argument can be applied to
the functor ZB0 of the statement for a given pH-C˚-algebra pB0, β0q P ObjpK K

pHq and the proof is
complete. �

3.3.2.2 Lemma. Let F “ G ˆ H be a quantum direct product of compact quantum groups such
that pF, pG and pH are a torsion-free discrete quantum groups.

i) For all pG-C˚-algebra pA,αq and all pH-C˚-algebra pB, βq there exists a Kasparov triple

ψ P KK
pF`L1pAq b L2pBq, LpAbBq

˘

such that the following diagram is commutative

pG˙
r
L1pAq b pH˙

r
L2pBq

pG˙
r
u1 b pH˙

r
u2

��

Ψ // pF˙
r
LpAbBq

pF˙
r
u

��
pG˙

r
Ab pH˙

r
B

– // pF˙
r
pAbBq

(3.3.1)

where Ψ :“ pF˙
r
ψ and u1, u2, u are the Dirac homomorphisms for A, B, AbB, respectively.

ii) For all pG-C˚-algebra pA0, α0q P L
pG and all pH-C˚-algebra pB, βq there exists an invertible

Kasparov triple
A0ψ P KK

pF`A0 b L
2pBq, LpA0 bBq

˘

such that the following diagram is commutative

pG˙
r
A0 b pH˙

r
L2pBq

pF˙
r
A0Zpu2q

��

A0Ψ
„ // pF˙

r
LpA0 bBq

pF˙
r
u

��
pG˙

r
A0 b pH˙

r
B

– // pF˙
r
pA0 bBq

(3.3.2)

where A0Ψ :“ pF˙
r
A0ψ and u2, u are the Dirac homomorphism for B, A0 bB, respectively.



3.3. The Baum-Connes property for a quantum direct product 231

Proof. First of all, we recall that for all pG-C˚-algebra pA,αq and all pH-C˚-algebra pB, βq we have
a canonical ˚-isomorphism pF ˙

δ,r
pAbBq – pG ˙

α,r
Ab pH ˙

β,r
B by Proposition 1.5.3.1.

i) Given a pG-C˚-algebra pA,αq, consider the corresponding pL
pG,NpGq-triangle, say ΣpN 1pAqq ÝÑ

L1pAq
u1
ÝÑ A ÝÑ N 1pAq. Given a pH-C˚-algebra pB, βq, consider the corresponding pL

pH,NpHq-
triangle, say ΣpN2pBqq ÝÑ L2pBq

u2
ÝÑ B ÝÑ N2pBq. Consider the pL

pF,NpFq-triangle of the
pF-C˚-algebra ZpAbBq “ AbB, say

ΣpNpAbBqq ÝÑ LpAbBq
u
ÝÑ AbB ÝÑ NpAbBq

Let’s fix the object ZpL1pAq, L2pBqq “ L1pAq b L2pBq “: T P ObjpK K
pFq and take the long

exact sequence associated to the above triangle with respect to the object T . Namely,

. . .Ñ KK
pFpT,ΣpNpAbBqqq Ñ KK

pFpT, LpAbBqq
puq˚
Ñ

Ñ KK
pFpT,AbBq Ñ KK

pFpT,NpAbBqq Ñ . . .

Since pL1pAq, L2pBqq P L
pG ˆ L

pH, then T P L
pF by Lemma 3.3.2.1. But, by definition of

complementary pair, we have L
pF Ă N $

pF
. In particular, we obtain KKpFpT,ΣpNpAbBqqq “

p0q “ KK
pFpT,NpA b Bqq. Hence the above long exact sequence yields the isomorphism

KK
pFpT, LpAbBqq

puq˚
– KK

pFpT,AbBq. Take ψ :“ puq´1
˚ pZpu1, u2qq. Consequently, we have

u ˝ ψ “ Zpu1, u2q “ u1 b u2, by definition.

If we put Ψ :“ pF ˙
r
ψ : pF ˙

r
pL1pAq b L2pBqq ÝÑ pF ˙

r
LpA b Bq, then the functoriality of

constructions and the definition of the element ψ yields straightforwardly the diagram p3.3.1q
of the statement.

ii) Given a pG-C˚-algebra pA0, α0q P L
pG and a pH-C˚-algebra pB, βq, consider the corresponding

pL ,N q-triangles as above.
The same argument as in piq by replacing L1pAq by A0 yields the existence of a Kasparov
triple A0ψ P KK

pF`A0 b L2pBq, LpA0 b Bq
˘

such that diagram p3.3.2q of the statement is
commutative. Namely, put A0ψ :“ puq´1

˚ pA0Zpu2qq.
Let us show that the Kasparov triple A0ψ is invertible. If we apply the triangulated (by Lemma
3.3.2.1) functor A0Z to the pL

pH,NpHq-triangle of B, we get the following distinguished triangle
in K K

pF

ΣpA0 bN
2pBqq ÝÑ A0 b L

2pBq
A0 Zpu2q
ÝÑ A0 bB ÝÑ A0 bN

2pBq,

where A0 bL
2pBq “ ZpA0, L

2pBqq P L
pF because A0 P L

pG, L
2pBq P L

pH and we apply Lemma
3.3.2.1 and A0 bN

2pBq P N
pF because A0ZpN

pHq Ă N
pF by Lemma 3.3.2.1. In other words, the

above is a pL
pF,NpFq-triangle for A0 b B. Hence, by uniqueness of this kind of distinguished
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triangles, we have the following isomorphism of distinguished triangles in K K
pF,

ΣpA0 b L
2pBqq

o

��

// A0 b L
2pBq

A0Zpu2q
//

o A0ψ

��

A0 bB //

id

A0 bN
2pBqq

o

��
Σ1pNpA0 bBq // LpA0 bBq u

// A0 bB // NpA0 bBq

which yields in particular the invertibility of A0ψ as claimed.

�

3.3.2.3 Theorem. Let F “ GˆH be a quantum direct product of compact quantum groups such
that pF, pG and pH are a torsion-free discrete quantum groups.

i) If pG and pH satisfy the strong quantum Baum-Connes property, then pF satisfies the quantum
Baum-Connes property with coefficients in A b B, for every A P ObjpK K

pGq and B P

ObjpK K
pHq.

ii) If pF satisfies the strong quantum Baum-Connes property, then pG and pH satisfy the strong
quantum Baum-Connes property.

iii) If pF satisfies the quantum Baum-Connes property, then pG and pH satisfy the quantum Baum-
Connes property with coefficients.

Proof. i) Given A P ObjpK K
pGq and B P ObjpK K

pHq consider the commutative diagram p3.3.1q
of the preceding lemma,

pG˙
r
L1pAq b pH˙

r
L2pBq

pG˙
r
u1 b pH˙

r
u2

��

Ψ // pF˙
r
LpAbBq

pF˙
r
u

��
pG˙

r
Ab pH˙

r
B

– // pF˙
r
pAbBq

(3.3.3)

where Ψ “ pF˙
r
ψ with ψ “ puq´1

˚ pZpu1, u2qq.

Since pG satisfies the strong quantum Baum-Connes property by assumption, then any Dirac
homomorphism for A is an isomorphism, that is, L1pAq

u1

– A P L
pG. In other words, u1 P

KK
pGpL1pAq, Aq is an invertible Kasparov triple. Accordingly, τL

2
pBq

R pu1q P KK
pFpL1pAq b

L2pBq, Ab L2pBqq is also an invertible Kasparov triple.
Recall that by definition we have

Zpu1, u2q “ u1 b u2 “ τ
L2pBq
R pu1q b

A0bL2pBq
τAL pu

2q P KK
pFpL1pAq b L2pBq, AbBq
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AZpu2q “ τAL pu
2q P KK

pFpAb L2pBq, AbBq

This two elements can be identified via the Kasparov multiplication τL
2
pBq

R pu1q b
AbL2pBq

p ¨ q. In

other words, the element ψ can be identified to the element Aψ via this Kasparov multiplication.
The latter is invertible by piiq of Lemma 3.3.2.2, which yields that Ψ in diagram p3.3.3q is
invertible as well.
Next, since pH satisfies the strong quantum Baum-Connes property by assumption, then any
Dirac homomorphism for B is an isomorphism, that is, L2pBq

u2

– B P L
pH. Hence, the element

pG˙
r
u1b pH˙

r
u2 of diagram p3.3.3q is invertible. The commutativity of p3.3.3q yields that pF˙

r
u

is an isomorphism in K K
pF, which implies that the assembly map ηpFAbB is invertible, that is,

pF satisfies the quantum Baum-Connes property with coefficients in AbB.

ii) We have just to recall that pG and pH are divisible torsion-free discrete quantum subgroups of pF
as explained in Remark 2.2.4. Therefore, Theorem 3.2.2.1 yields the assertion.

iii) In this case we apply Proposition 3.2.2.3.
�

3.3.2.4 Remark. It is worth mentioning the following. The element ψ constructed in piq of Lemma
3.3.2.2 is such that

L1pAq b L2pBq

u1 b u2

��

ψ // LpAbBq

u

��
AbB AbB

The argument followed in piq of the preceding theorem yields actually that both ψ and u1 b u2
are isomorphisms, which implies that u is also an isomorphism by the commutativity of the above
diagram. In other words, we have proved that the pF-C˚-algebras of the form AbB, where A is a
pG-C˚-algebra and B is a pH-C˚-algebra, are actually in the subcategory L

pF, which yields of course
the conclusion given in piq of the preceding theorem.

Taking crossed products in the preceding arguments has been done just for convenience of the
presentation in order to make appear more clearly the corresponding assembly maps.

The above theorem yields immediately the connexion of the usual quantum Baum-Connes
property for pF “ {GˆH with the Künneth formula as announced in the introduction. Let A be a
C˚-algebra, we say that A satisfies the Künneth formula if for every C˚-algebra B with free abelian
K-group K˚pBq, the canonical homomorphism K˚pAq bK˚pBq ÝÑ K˚pAbBq is an isomorphism.
Observe that this homomorphism is natural in A and B and it can be described in terms of the
Kasparov product. We refer to Section 23 of [24] for more details.
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3.3.2.5 Corollary. Let F “ GˆH be a quantum direct product of compact quantum groups such
that pF, pG and pH are torsion-free discrete quantum groups.

For all pG-C˚-algebra pA,αq and all pH-C˚-algebra pB, βq the following diagram is commutative

K˚
`

pG˙
r
L1pAq b pH˙

r
L2pBq

˘

K˚
`

pG˙
r
u1 b pH˙

r
u2
˘

��

K˚pΨq // LF pAbBq

η
pF
AbB

��
K˚

`

pG ˙
α,r

Ab pH ˙
β,r

B
˘ – // F pAbBq

Denote by N the class of C˚-algebras satisfying the Künneth formula.

i) If either pG satisfies the strong Baum-Connes property, pH satisfies the Baum-Connes property
with coefficients in B or pH satisfies the strong Baum-Connes property, pG satisfies the Baum-
Connes property with coefficients in A; either pG ˙

α,r
A or pH ˙

β,r
B belong to the class N and

either pG ˙
α,r

L1pAq (and K˚ppH ˙
β,r
L2pBqq is free abelian) or pH ˙

β,r
L2pBq (and K˚ppG ˙

α,r
L1pAqq is

free abelian) belong to the class N , then pF satisfies the Baum-Connes property with coefficients
in AbB.

ii) If pG satisfies the strong Baum-Connes property, pH satisfies the Baum-Connes property with
coefficients in C, either CrpGq or CrpHq belong to the class N and either pG ˙

r
L1pCq (and

K˚ppH ˙
β,r

L2pCqq is free abelian) or pH˙
r
L2pCq (and K˚ppG ˙

β,r
L1pCqq is free abelian) belong to

the class N , then pF satisfies the Baum-Connes property with coefficients in C.

Proof. The commutative diagram of the statement is obtained by simply applying the functor
K˚p¨q to diagram (3.3.1) from Lemma 3.3.2.2.

i) Let A be a pG-C˚-algebra and B a pH-C˚-algebra. Assume that

- pG satisfies the strong Baum-Connes property,
- pH satisfies the Baum-Connes property with coefficients in B,
- pG ˙

α,r
A P N ,

- pG ˙
α,r

L1pAq P N and K˚ppH ˙
β,r

L2pBqq is free abelian.

The last condition guarantees that K˚ppH ˙
β,r

Bq is free abelian too because the Dirac homomor-

phism for B, L2pBq u2
ÝÑ B, induces a group homomorphism K˚ppH ˙

β,r
L2pBqq ÝÑ K˚ppH ˙

β,r
Bq

by functoriality. Hence, by Künneth formula we have natural isomorphisms

K˚
`

pG˙
r
L1pAq b pH˙

r
L2pBq

˘

– K˚
`

pG˙
r
L1pAqq bK˚ppH˙

r
L2pBq

˘
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and
K˚

`

pG˙
r
Ab pH˙

r
B
˘

– K˚
`

pG˙
r
Aq bK˚ppH˙

r
B
˘

which allows to write the commutative diagram of the statement as follows

K˚
`

pG˙
r
L1pAqq bK˚ppH˙

r
L2pBq

˘

η
pG
A b η

pH
B

��

K˚pΨq // LF pAbBq

η
pF
AbB

��
K˚

`

pG ˙
α,r

Aq bK˚ppH ˙
β,r

B
˘ – // F pAbBq

Since pG satisfies the strong Baum-Connes property, it satisfies the Baum-Connes property with
coefficients in A. pH satisfies the Baum-Connes property with coefficients in B by assumption.
Hence ηpGA and ηpHB are isomorphisms. Since pG satisfies the strong Baum-Connes property, the
same argument as in Theorem 3.3.2.3 shows that Ψ is invertible, so K˚pΨq of the above diagram
is an isomorphism. We conclude that ηpFAbB is an isomorphism by commutativity of the above
diagram, which yields the claim.

ii) This is a particular case of piq.

�

3.3.1 Remark. It is important to say that the Künneth formula is a non trivial problem studied by
several authors (see for instance [37], [168], [24] for more details) in connexion with the Baum-Connes
property and the K-theory of tensor product of C˚-algebras.

Let us recall the following theorem of J. Chabert, S. Echterhoff and H. Oyono-Oyono contained
in [37]: “Let G, H be two locally compact groups. If G and H satisfy the Baum-Connes property
with coefficients in C and either C˚r pGq or C˚r pHq belong to the class N , then GˆH satisfies the
Baum-Connes property with coefficients in C”.

The above corollary is thus a generalization of the Chabert-Echterhoff-Oyono-Oyono’s result for
(torsion-free) discrete quantum groups. However, we would like to remove the strong Baum-Connes
property assumption from the statement.

If we wanted to give a more optimal result concerning the Baum-Connes property for a quantum
direct product, we would have to carry out a detailed study about the Künneth formula in the
equivariant quantum setting, which is out of the scope of the present dissertation. In particular, we
would like to find sufficient conditions to a crossed product to belong to the class N .

3.3.3 K-amenability property
Here we care about a property of own interest, namely the K-amenability of a quantum direct
product. More precisely we have the following result.

3.3.3.1 Theorem. Let F “ GˆH be a quantum direct product of compact quantum groups. Then
F is co-K-amenable if and only if G and H are co-K-amenable.
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Proof. Assume that F is co-K-amenable. This means that there exists an element αF P KKpCrpFq,Cq
such that

rτFs b
CrpFq

αF “ rεFs P KKpCmpFq,Cq,

where τF : CmpFq � CrpFq is the canonical surjection and εF : PolpFq ÝÑ C is the co-unit of F
whose extension to CmpFq is still denoted by εF (recall Remark 1.3.1.41).

By virtue of Proposition 2.2.3 and we know that pG and pH are discrete quantum subgroups of pF
via the canonical injections

ιrG : CrpGq ãÑ CrpFq and ιrH : CrpHq ãÑ CrpFq

Hence, by virtue of Theorem 3.2.3.1 we conclude that G and H are co-K-amenable with elements

αG :“ rιrGs b
CrpFq

αF P KKpCrpGq,Cq

αH :“ rιrHs b
CrpFq

αF P KKpCrpHq,Cq

Conversely, assume that both G and H are co-K-amenable. This means that there exist elements
αG P KKpCrpGq,Cq and αH P KKpCrpHq,Cq such that

rτGs b
CrpGq

αG “ rεGs and rτHs b
CrpHq

αH “ rεHs

where τG : CmpGq� CrpGq, τH : CmpHq� CrpHq are the canonical surjections and εG : PolpGq ÝÑ
C, εH : PolpHq ÝÑ C are the co-units of G and H, respectively whose extensions to CmpGq and
CmpHq are still denoted by εG and εH, respectively (recall Remark 1.3.1.41).

By using the canonical injections ιrG : CrpGq ãÑ CrpFq and ιrH : CrpHq ãÑ CrpFq, we observe
that τF “ τG ˆ τH by universal property of the maximal tensor product. We have as well that
εF “ εG ˆ εH. If π : CmpGq b

max
CmpHq� CmpGq b CmpHq denotes the canonical surjection, then

by universal property of the maximal tensor product we have the following commutative diagrams

CmpFq
τF // //

π
����

CrpFq CmpFq

π
����

εF // C

CmpGq b CmpHq

τG b τH

88

CmpGq b CmpHq

εG b εH

88

where τGbτH : CmpGqbCmpHq� CrpGqbCrpHq is the tensor product of the canonical surjections
τG and τH and εG b εH : CmpGq b CmpHq ÝÑ C is the tensor product of the co-units εG and εH
(recall Theorem A.1.11).

In this way, the canonical surjection τF : CmpFq� CrpFq and the co-unit εF : CmpFq ÝÑ C can
be written, as Kasparov bimodules, under the following form

rτFs “ rπs b
CmpGqbCmpHq

rτG b τHs “ π˚
`

rτG b τHs
˘

P KKpCmpFq, CrpFqq,

rεFs “ rπs b
CmpGqbCmpHq

rεG b εHs “ π˚
`

rεG b εHs
˘

P KKpCmpFq,Cq,
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By using Theorem 1.7.1.16 we define the following element

αF :“ αG b αH :“ τ
CrpHq
R pαGq b

CrpHq
τCL pαHq P KKpCrpFq,Cq

and we claim that
rτFs b

CrpFq
αF “ rεFs P KKpCmpFq,Cq,

which yields the result. Indeed, by applying the elementary properties of the Kasparov product of
Theorem 1.7.1.16 we write the following

rτFs b
CrpFq

αF “
´

π˚
`

rτG b τHs
˘

¯

b
CrpFq

´

τ
CrpHq
R pαGq b

CrpHq
τCL pαHq

¯

“ π˚
´

`

rτG b τHs
˘

b
CrpFq

`

τ
CrpHq
R pαGq b

CrpHq
τCL pαHq

˘

¯

“ π˚
´

“

pτG b idCrpHqqpidCmpGq b τHq
‰

b
CrpFq

`

τ
CrpHq
R pαGq b

CrpHq
τCL pαHq

˘

¯

“ π˚
´

`

ridCmpGq b τHs b
CmpGqbCrpHq

rτG b idCrpHqs
˘

b
CrpFq

`

τ
CrpHq
R pαGq b

CrpHq
τCL pαHq

˘

¯

“ π˚
´

ridCmpGq b τHs b
CmpGqbCrpHq

`

rτG b idCrpHqs b
CrpFq

τ
CrpHq
R pαGq

˘

b
CrpHq

τCL pαHq
¯

“ π˚
´

ridCmpGq b τHs b
CmpGqbCrpHq

`

τG b idCrpHq
˘˚`

τ
CrpHq
R pαGq

˘

b
CrpHq

τCL pαHq
¯

“ π˚
´

ridCmpGq b τHs b
CmpGqbCrpHq

τ
CrpHq
R

`

rτGs b
CrpGq

αG
˘

b
CrpHq

τCL pαHq
¯

“ π˚
´

ridCmpGq b τHs b
CmpGqbCrpHq

τ
CrpHq
R

`

rεGs
˘

b
CrpHq

τCL pαHq
¯

“ π˚
´

ridCmpGq b τHs b
CmpGqbCrpHq

rεG b idCrpHqs b
CrpHq

τCL pαHq
¯

“ π˚
´

“

pεG b idCrpHqqpidCmpGq b τHq
‰

b
CrpHq

τCL pαHq
¯

“ π˚
´

“

εG b τH
‰

b
CrpHq

τCL pαHq
¯

“ π˚
´

“

pidC b τHqpεG b idCmpHqq
‰

b
CrpHq

τCL pαHq
¯

“ π˚
´

`

rεG b idCmpHqs b
CmpHq

ridC b τHs
˘

b
CrpHq

τCL pαHq
¯

“ π˚
´

rεG b idCmpHqs b
CmpHq

`

ridC b τHs b
CrpHq

τCL pαHq
˘

¯

“ π˚
´

rεG b idCmpHqs b
CmpHq

`

idC b τH
˘˚`

τCL pαHq
˘

¯

“ π˚
´

rεG b idCmpHqs b
CmpHq

τCL
`

rτHs b
CrpHq

αH
˘

¯

“ π˚
´

rεG b idCmpHqs b
CmpHq

τCL
`

rεHs
˘

¯

“ π˚
´

rεG b idCmpHqs b
CmpHq

ridC b εHs
¯

“ π˚
´

“

pidC b εHqpεG b idCmpHqq
‰

¯

“ π˚
´

“

εG b εH
‰

¯

“ rεFs

�
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3.4 The Baum-Connes property for a quantum semi-
direct product

In this section we are going to study the Baum-Connes property for the dual of a quantum semi-
direct product of a compact quantum group by a discrete group in terms of the involved (quantum)
groups. Recall that J. Chabert has already studied the Baum-Connes property for this construction
in the context of classical locally compact groups in [34]. Likewise, J. Chabert and S. Echterhoff
studied again the same property for a semi-direct product of classical locally compact groups in [35]
removing a superfluous hypothesis from the earlier work [34] (we will be more precise about this
later on). It is important to say that H. Oyono-Oyono has also studied some permanence properties
of the Baum-Connes property for classical discrete groups. Namely, he obtained in [143] that the
Baum-Connes property is stable under the semi-direct product construction with the analogous
hypothesis to the ones of the locally compact case of Chabert-Echterhoff.

Thus, we give here a generalization of this result for the dual of a quantum semi-direct product
of a compact quantum group by a discrete group as defined in Section 2.3. The strategy to reach
this result consists in doing the translation of the arguments of the articles [34], [35] into the
categorical framework of Meyer-Nest. We observe in particular that this new perspective avoids all
technical problems appeared in the classical situation with respect to the treatment of the left-hand
side of the assembly map, which yields a more conceptual proof.

In order to do so, we carry the same notations of Section 2.3 on. Let F “ Γ˙
α
G be a quantum

semi-direct product, where Γ is a classical discrete group and G is a compact quantum group.

3.4.1 Torsion property
We have already explained that all our discrete quantum groups are supposed to be torsion-free in
order to study the corresponding quantum Baum-Connes property. For this reason it is advisable to
study in more detail the torsion phenomena of the dual of a quantum semi-direct product F “ Γ˙

α
G

in terms of the involved (quantum) groups.

Let us study the torsion in the sense of Meyer-Nest. For the following result it is advisable to
keep in mind the spectral theory for compact quantum groups explained in Section 1.4.2.

3.4.1.1 Theorem. Let F “ Γ˙
α
G be the quantum semi-direct product of G by Γ. If Γ and pG are

torsion-free, then pF is torsion-free.

Proof. Let A be a unital finite dimensional C˚-algebra equipped with a right torsion action of F,
say δ : A ÝÑ Ab CpFq.

Let’s define
Λ :“ tγ P Γ | D x P IrrpGq such that Kpγ,xq ‰ 0u,

where Kpγ,xq denotes the spectral subspace associated to the representation pγ, xq “: y P IrrpFq.
We claim that Λ is a finite subgroup of Γ. Indeed, Λ is a subgroup of Γ because given g, h P Λ,
let Xg P Kpg,xgq and Xh P Kph,xhq be some non-zero elements for the corresponding irreducible
representations xg, xh P IrrpGq. Put yg :“ pg, xgq, yh :“ ph, xhq P IrrpFq. By virtue of Lemma
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1.4.2.18, there exist an irreducible representation z :“ pγ, xq P IrrpFq and an intertwiner Φ P

Morpz, yg j yhq such that Xg b
Φ
Xh ‰ 0.

Besides, the proof of Lemma 1.4.2.18 shows that z is an irreducible representation of the
decomposition of yg j yh in direct sum of irreducible representations. Thanks to the fusion rules of
a quantum semi-direct product we have that wyg j wyh “ vgh j pvαh´1 pxgq j vxhq. Next, consider
the decomposition in direct sum of irreducible representations of the tensor product αh´1pxgq j xh,

say txkuk“1,...,r for some r P N. Hence we write wygjyh “
r
À

k“1
vghjxk. As a result, the irreducible

representation z “ pγ, xq P IrrpFq found above must be of the form pgh, xkq for some k “ 1, . . . , r.
Recall that Xg b

Φ
Xh P Kz by definition. This shows that gh “ γ P Λ as required. Moreover, Λ is

finite because A is finite dimensional.
Thanks to the torsion-freeness of Γ, Λ is just the trivial subgroup teu. Hence, for every y P IrrpFq,

Ky ‰ 0 implies y “ pe, xq for some x P IrrpGq. Consequently, the spectral decomposition for
A “ AF becomes A “

À

xPIrrpGq
Ape,xq “ AG and the action δ takes its values on A b πpCmpGqq

so that δ is actually an action of G on A. Since pG is torsion-free by assumption, we achieve the
conclusion. �

3.4.1.2 Note. The converse of the preceding statement would be true whenever the torsion-freeness
is preserved under divisible discrete quantum subgroups as conjectured in the end of Section 3.2.1.

3.4.2 The Baum-Connes property
In order to legitimate the Baum-Connes property formulation for the dual of a quantum semi-direct
product F “ Γ˙

α
G, we need pF to be torsion-free. And, in order to legitimate the Baum-Connes

property formulation for Γ and pG, we need these discrete (quantum) groups to be torsion-free.
Hence, we must keep the preceding section in mind and, for simplicity, we assume that pF, Γ and pG
are all torsion-free.

Next, let us set up the adapted notations to this situation of the categorical framework of
Meyer-Nest. Consider the equivariant Kasparov categories associated to pF and Γ, say

K K
pF and K K Γ,

respectively. The canonical suspension functors for each of the above Kasparov categories are
denoted simply by Σ.

Notice that from now on, the word homomorphism (respectively, isomorphism) will mean
homomorphism (respectively, isomorphism) in the corresponding Kasparov category; it can be either
a true homomorphism (respectively, isomorphism) between C˚-algebras or any Kasparov triple
between C˚-algebras (respectively, any KK-equivalence between C˚-algebras).

Consider the canonical complementary pair of localizing subcategories in K K
pF and K K Γ,

say
pL

pF,NpFq and pLΓ,NΓq,

respectively. In this way, the canonical triangulated functors associated to these complementary
pairs are denoted by pL,Nq and pL1, N 1q, respectively.
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Consider the homological functors defining the (quantum) Baum-Connes assembly maps for pF
and Γ. Namely,

F : K K
pF ÝÑ A bZ{2 F 1 : K K Γ ÝÑ A bZ{2

pA, δq ÞÝÑ F pAq :“ K˚ppF ˙
δ,r
Aq pB, βq ÞÝÑ F 1pBq :“ K˚pΓ ˙

β,r
Bq

Therefore, the (quantum) assembly maps for pF and for Γ are given by the following natural
transformations

η
pF : LF ÝÑ F and ηΓ : LF 1 ÝÑ F 1,

where, by definition, we have

LF “ F ˝ L and LF 1 “ F 1 ˝ L1

By the torsion-freeness assumption, the subcategory L
pF (resp. LΓ) is easily described as the

localizing subcategory of K K
pF (resp. K K Γ) generated by the objects of the form c0ppFq bC (resp.

c0pΓq b C) with C any C˚-algebra in the Kasparov category K K .

Now, we are now ready to start the study of the Baum-Connes property for a quantum semi-direct
product. To this end, consider the following functor

Z : K K
pF ÝÑ K K Γ

pA, δq ÞÝÑ ZpAq :“ ppG ˙
δ
pG,r
A, Bq,

which is defined on homomorphisms by functoriality. Let us be more precise in the definition of
Z as a functor between K K

pF and K K Γ. For this we have to keep in mind all notations and
results obtained in Section 2.3.

Given any pF-C˚-algebra pA, δq P ObjpK K
pFq, we regard it either as an object in K K

pG or as
an object in K K Γ by restricting the action δ as explained in Proposition 2.3.5. More precisely, we
can consider the following

pA, δ
pGq P ObjpK K

pGq and pA, δΓq P ObjpK K Γq

In this way, it is licit to consider the crossed product pG ˙
δ
pG,r
A, which is now a Γ-C˚-algebra with

action B by virtue of Proposition 2.3.12.
Hence Z is well-defined on objects. Let us explain its definition on homomorphisms. Let

pB, νq P ObjpK K
pFq be an other pF-C˚-algebra and consider the corresponding objects in K K

pG

and in K K Γ,

pB, ν
pGq P ObjpK K

pGq, pB, νΓq P ObjpK K Γq and ppG ˙
ν
pG,r
B, B1q P ObjpK K Γq

Let X :“ ppH, δHq, π, F q P KK
pFpA,Bq be a homomorphism between A and B in K K

pF.
Restricting again the corresponding action, we can regard this Kasparov triple either as an element
in KK pGpA,Bq or as an element in KKΓpA,Bq. We denote both elements simply by X and we
write

X :“ ppH, δH,pGq, π, F q P KK
pGpA,Bq and X :“ ppH, δH,Γq, π, F q P KKΓpA,Bq
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In this way, the descent homomorphism with the functoriality of the crossed product yield the
existence of a Kasparov triple pG˙

r
X P KKppG ˙

δ
pG,r
A, pG ˙

ν
pG,r
Bq, which is given precisely by (recall

Theorem 1.7.1.19)
pG˙

r
X :“

`

H b
πν

pG ˙
ν
pG,r
B, id˙

r
π, F b

πν
id
˘

Next, it is easy to establish an action of Γ on pG˙
r

X in order to get a Γ-equivariant Kasparov

triple between pG ˙
δ
pG,r
A and pG ˙

ν
pG,r
B. Indeed, since X is also a Γ-equivariant Kasparov triple with

action δH,Γ and pG ˙
ν
pG,r
B is also a Γ-C˚-algebra with action B1, we can equip H b

πν

pG ˙
ν
pG,r
B with the

corresponding diagonal action, say

σ : Γ ÝÑ AutpH b
πν

pG ˙
ν
pG,r
Bq

γ ÞÝÑ σγ :“
`

δH,Γ
˘

γ
b
πν
B1γ ,

where AutpHb
πν

pG ˙
ν
pG,r
Bq denotes the group of invertible bounded linear transformations ofHb

πν

pG ˙
ν
pG,r
B

(not necessarily module homomorphisms). It turns out that this action makes pG˙
r

X a Γ-equivariant

Kasparov triple, so that we have actually that pG ˙
r

X P KKΓppG ˙
δ
pG,r
A, pG ˙

ν
pG,r
Bq. Hence Z is

well-defined on homomorphisms. Let us precise the computations to show the Γ-equivariance of
pG˙

r
X . Since we have already that pG˙

r
X P KKppG ˙

δ
pG,r
A, pG ˙

ν
pG,r
Bq by Theorem 1.7.1.19, we only

have to check the Γ-equivariance properties of this Kasparov triple (see for instance [24] for more
details about the equivariant Kasparov KK-theory). Namely,

- First of all, observe that the linear map

ξ d
πν
x ÞÑ

`

δH,Γ
˘

γ
pξq b

πν
B1γpxq, ξ P H, x P pG ˙

ν
pG,r
B

is bounded for all γ P Γ because B1γ is bounded on pG ˙
ν
pG,r
B for all γ P Γ and we have

x
`

δH,Γ
˘

γ
pξq b

πν
B1γpxq,

`

δH,Γ
˘

γ
pξq b

πν
B1γpxqy “ xB

1
γpxq, πν

´

x
`

δH,Γ
˘

γ
pξq,

`

δH,Γ
˘

γ
pξqy

¯

B1γpxqy

p1q
“ xB1γpxq, πν

´

`

νΓ
˘

γ
xξ, ξy

¯

B1γpxqy
p2q
“ xB1γpxq, B

1
γ

´

πν
`

xξ, ξy
˘

¯

B1γpxqy

“ xB1γpxq, B
1
γ

´

πν
`

xξ, ξy
˘

x
¯

y

p3q
“ B1γ

´

xx, πν
`

xξ, ξy
˘

xy
¯

“ B1γ

´

xξ d
πν
x, ξ d

πν
xy
¯

,

where in p1q we use the fact that X “ ppH, δH,Γq, π, F q P KK
ΓpA,Bq, in p2q we use the

definition of the action B1 of Γ on pG ˙
ν
pG,r
B and in p3q we regard pG ˙

ν
pG,r
B as a Γ-equivariant

Hilbert pG ˙
ν
pG,r
B-module with its action B1. Hence it extends to a bounded linear map on
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Hb
πν

pG ˙
ν
pG,r
B, whence the definition of σ. Moreover, this formula yields clearly that σ´1

γ “ σγ´1 ,

for all γ P Γ.

- H b
πν

pG ˙
ν
pG,r
B is a Γ-equivariant Hilbert pG ˙

ν
pG,r
B-module. Namely, for all ξ, η P H and all

x, y P pG ˙
ν
pG,r
B we have

σγ
`

pξ b
πν
xq ¨ y

˘

q “ σγpξ b
πν
xyq “

`

δH,Γ
˘

γ
pξq b

πν
B1γpxyq

“
`

δH,Γ
˘

γ
pξq b

πν
B1γpxqB

1
γpyq “

´

`

δH,Γ
˘

γ
pξq b

πν
B1γpxq

¯

¨ B1γpyq

“ σγ
`

pξ b
πν
xq ¨ B1γpyq,

and

xσγpξ b
πν
xq, σγpη b

πν
yqy “ x

`

δH,Γ
˘

γ
pξq b

πν
B1γpxq,

`

δH,Γ
˘

γ
pηq b

πν
B1γpyqy

“ xB1γpxq, πν

´

x
`

δH,Γ
˘

γ
pξq,

`

δH,Γ
˘

γ
pηqy

¯

B1γpyqy

p1q
“ xB1γpxq, πν

´

`

νΓ
˘

γ
xξ, ηy

¯

B1γpyqy

p2q
“ xB1γpxq, B

1
γ

´

πν
`

xξ, ηy
˘

¯

B1γpyqy “ xB
1
γpxq, B

1
γ

´

πν
`

xξ, ηy
˘

y
¯

y

p3q
“ B1γ

´

xx, πν
`

xξ, ηy
˘

yy
¯

“ B1γ

´

xξ b
πν
x, η b

πν
yy
¯

,

where in p1q we use the fact that X “ ppH, δH,Γq, π, F q P KK
ΓpA,Bq, in p2q we use the

definition of the action B1 of Γ on pG ˙
ν
pG,r
B and in p3q we regard pG ˙

ν
pG,r
B as a Γ-equivariant

Hilbert pG ˙
ν
pG,r
B-module with its action B1.

- The representation id˙
r
π : pG ˙

δ
pG,r
A ÝÑ L

pG ˙
ν
pG,r
B

`

H b
πν

pG ˙
ν
pG,r
B
˘

is Γ-equivariant. Indeed, for

all γ P Γ, a P A, x P IrrpGq, i, j “ 1, . . . , nx we write

id˙
r
π
`

B1γpπδpaqU
x
ijq

˘

“ id˙
r
π
´

πδ
`

pδΓqγpaq
˘

φU
`

αγpw
x
ijq

˘

¯

“ πK
`

π
`

pδΓqγpaq
˘˘

φW
`

αγpw
x
ijq

˘

p1q
“

`

δH,Γ
˘

γ
πK

`

πpaq
˘`

δH,Γ
˘

γ´1B
1
γ

`

W x
ij

˘

“
`

δH,Γ
˘

γ
πK

`

πpaq
˘`

δH,Γ
˘

γ´1B
1
γ

`

W x
ij ¨ B

1
γ´1

˘

“
`

δH,Γ
˘

γ
b
πν
B1γ ˝ πK

`

πpaq
˘

W x
ij ˝

`

δH,Γ
˘

γ´1 b
πν
B1γ´1

“ σγ ˝ πK
`

πpaq
˘

W x
ij ˝ σγ´1

“ σγ ˝ id˙
r
πpπδpaqU

x
ijq ˝ σγ´1 ,
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where in p1q we use the fact that X “ ppH, δH,Γq, π, F q P KK
ΓpA,Bq and the definition of

the action B1 of Γ on pG ˙
ν
pG,r
B. Moreover it is important to remark that for the preceding

computations we have taken into account the identification

L
pG ˙
ν
pG,r
B

`

H b
πν

pG ˙
ν
pG,r
B
˘

“M
`

K
pG ˙
ν
pG,r
B

`

H b
πν

pG ˙
ν
pG,r
B
˘˘

–M
`

pG ˙
AdV

H,pG
,r

KBpHq
˘

,

given by Lemma 5.2 in [206], which yields the definition of id˙
r
π by functoriality of the reduced

crossed product (recall Remark 1.5.2.5). In this way, πK : KBpHq ÝÑ pG ˙
AdV

H,pG
,r

KBpHq

denotes the non-degenerate ˚-homomorphism and W P M
`

c0ppGq b pG ˙
AdV

H,pG
,r

KBpHq
˘

the

unitary representation associated to the reduced crossed product construction pG ˙
AdV

H,pG
,r

KBpHq

following Theorem 1.5.2.1.

- We have
´

σγ ˝ F b
πν
id ˝ σγ´1 ´ F b

πν
id
¯

id ˙
r
πpxq P K

pG ˙
ν
pG,r
B

`

H b
πν

pG ˙
ν
pG,r
B
˘

, for all γ P Γ,

x P pG ˙
δ
pG,r
A. Indeed, for all γ P Γ, a P A, x P IrrpGq, i, j “ 1, . . . , nx we write

´

σγ ˝ F b
πν
id ˝ σγ´1 ´ F b

πν
id
¯

id˙
r
π
`

πδpaqU
x
ijq

˘

“

´

σγ ˝ F b
πν
id ˝ σγ´1 ´ F b id

¯

`

πK
`

πpaq
˘

W x
ij

˘

“

´

`

δH,Γ
˘

γ
b
πν
B1γ ˝ F b

πν
id ˝

`

δH,Γ
˘

γ´1 b
πν
B1γ´1 ´ F b

πν
id
¯

`

πK
`

πpaq
˘

W x
ij

˘

“
`

δH,Γ
˘

γ
F
`

δH,Γ
˘

γ´1pπKpπpaqqqB
1
γ

`

B1γ´1pW x
ijq

˘

´ F pπK
`

πpaqqW x
ij

“

´

`

δH,Γ
˘

γ
F
`

δH,Γ
˘

γ´1pπKpπpaqqq ´ F pπK
`

πpaqq
¯

W x
ij

“

´´

`

δH,Γ
˘

γ
˝ F ˝

`

δH,Γ
˘

γ´1 ´ F
¯

πK
`

πpaq
˘

¯

W x
ij ,

which is compact because X “ ppH, δH,Γq, π, F q P KKΓpA,Bq so that
´

`

δH,Γ
˘

γ
˝ F ˝

`

δH,Γ
˘

γ´1 ´ F
¯

πpaq is compact for all γ P Γ, a P A. Again we have used the identifica-

tion L
pG ˙
ν
pG,r
B

`

H b
πν

pG ˙
ν
pG,r
B
˘

–M
`

pG ˙
AdV

H,pG
,r

KBpHq
˘

and the same notations as above.

3.4.2.1 Remark. Notice that the functor above is well defined at the level of equivariant Kasparov
groups. Indeed, let X :“ ppH, δHq, π, F q,X 1 :“ ppH 1, δH1q, π

1, F 1q P EpFpA,Bq two pF-equivariant
Kasparov triple which are homotopic by means of E :“ ppE , δEq, ρ, Lq P E

pFpA,Cpr0, 1sqbBq. Remark
that X and X 1 will be also homotopic with respect to the restriction actions to pG and Γ. By the well-
known descent homomorphism, ZpEq P E

`

pG ˙
δ
pG,r
A,Cpr0, 1sq b pG ˙

ν
pG,r
B
˘

yields a homotopy between

ZpX q and ZpX 1q. If we equipped ZpX q, ZpX 1q and ZpEq with the diagonal actions τ :“ pδH,ΓqbB1,
τ 1 :“ pδH1,Γq b B1 and rτ :“ pδE,Γq b B

1, then a straightforward computation yields that ZpX q and
ZpX 1q are equivariantly homotopic by means of ZpEq P EΓ`

pG ˙
δ
pG,r
A,Cpr0, 1sq b pG ˙

ν
pG,r
B
˘

.
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3.4.2.2 Lemma. The functor

Z : K K
pF ÝÑ K K Γ

pA, δq ÞÝÑ ZpAq :“ ppG ˙
δ
pG,r
A, Bq

is triangulated such that ZpL
pFq Ă LΓ.

Proof. First of all, using Proposition 1.5.3.2 it is straightforward to see the stability of Z with
respect to the canonical suspension functors of the corresponding Kasparov categories. Indeed,

ZpΣpAqq “ pG˙
r

ΣpAq – pG˙
r

`

C0pRq bA
˘

– C0pRq b pG˙
r
A “ ΣpZpAqq,

for all pF-C˚-algebra pA, δq.
Next, consider any mapping cone triangle in K K

pF, say

ΣpBq ÝÑ Cϕ ÝÑ A
ϕ
ÝÑ B,

where ϕ : A ÝÑ B is a pF-equivariant ˚-homomorphism. Apply the functor Z of the statement. We
obtain the following diagram

ΣpZpBqq ÝÑ pG˙
r
Cϕ ÝÑ pG˙

r
A

Zpϕq
ÝÑ pG˙

r
B,

where Zpϕq is nothing but id˙ϕ. By virtue of Proposition 1.5.3.5 we have a canonical ˚-isomorphism
pG˙

r
Cϕ – CZpϕq, so that the above diagram is again a mapping cone triangle in K K Γ. In other

words, the functor Z transforms mapping cone triangles into mapping cone triangles and thus it is
triangulated.

Let us show that ZpL
pFq Ă LΓ. Namely, since all our discrete quantum groups are supposed

to be torsion-free, then we know that L
pF is the localizing subcategory of K K

pF generated by the
objects of the form c0ppFqbC with C any C˚-algebra in the Kasparov category K K . Likewise, LΓ
is by definition the localizing subcategory of K K Γ generated by the objects of the form IndΓ

teupBq

with B any C˚-algebra in the Kasparov category K K . Recall as well that c0ppFq – c0pΓq b c0ppGq
by virtue of the representation theory of F “ Γ˙

α
G (see Section 2.3). Hence we write

Zpc0ppFq b Cq “ pG ˙
pΘ

pG,r

`

c0ppFq b C
˘

– pG ˙
pΘ

pG,r

`

c0pΓq b c0ppGq b C
˘

p1q
– pG ˙

pΘ
pG,r

`

c0pΓq b c0ppGq
˘

b C
p2q
– c0pΓq b C

where in p1q we use Proposition 1.5.3.2 and in p2q we use the Γ-equivariant Morita equivalence
given by Lemma 2.3.15. In other words, Zpc0ppFq b Cq is a Γ-C˚-algebra in K K Γ induced by the
trivial subgroup teu ă Γ, which yields the claim. �

3.4.1 Remark. Consider the following functors:

K K
pF j

pF
ÝÑ K K and K K

pF Z
ÝÑ K K Γ jΓ

ÝÑ K K ,
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where j
pF is the descent functor with respect to pF and jΓ is the descent functor with respect to Γ.

By virtue of Theorem 2.3.14, we know that for all pF-C˚-algebra pA, δq P ObjpK K
pFq there

exists an isomorphism ηA : pF ˙
δ,r
A

„
ÝÑ Γ ˙

B,r

´

pG ˙
δ
pG,r
A
¯

in K K .

Actually, we obtain a natural equivalence between the functors above. More precisely, given two
pF-C˚-algebras pA, δq, pB, νq P ObjpK K

pFq and a Kasparov triple X P KK
pFpA,Bq, the following

diagram in K K is commutative

pF ˙
δ,r
A

ηA

��

pF˙
r

X
// pF ˙

ν,r
B

ηB

��

Γ ˙
B,r

´

pG ˙
δ
pG,r
A
¯

Γ˙
r

´

pG˙
r

X
¯

// Γ ˙
B1,r

´

pG ˙
ν
pG,r
B
¯

which is a routine computation. Hence, we have F – F 1 ˝ Z.
Observe that the argument used in Lemma 3.3.2.2 can be performed in a more general framework.

Indeed, the following result must be regarded as an abstraction of Lemma 3.3.2.2.

3.4.2.3 Lemma. Let pT ,Σq, pT 1,Σ1q be two triangulated categories. Let pLT ,NT q and pLT 1 ,NT 1q

be two complementary pairs of localizing subcategories in T and T 1, respectively. Denote by pL,Nq
and by pL1, N 1q respectively, the canonical triangulated functors associated the these complementary
pairs. Let F : T ÝÑ Ab and F 1 : T 1 ÝÑ Ab be two homological functors.

If Z : T ÝÑ T 1 is a triangulated functor such that F – F 1 ˝ Z and ZpLT q Ă LT 1 , then for all
object X P ObjpT q there exists a homomorphism

ψ P HomT 1pZpLpXqq, L1pZpXqqq

such that the following diagram is commutative

LF pXq

ηX

��

Ψ // LF 1pZpXqq

η1ZpXq

��
F pXq

– // F 1pZpXqq

where Ψ “ F 1pψq. If moreover ZpNT q Ă NT 1 , then ψ is an isomorphism.

Proof. Given an object X P ObjpT q, consider the corresponding distinguished triangle with respect
to the complementary pair pLT ,NT q, say ΣpNpXqq ÝÑ LpXq

u
ÝÑ X ÝÑ NpXq. Consider the

distinguished pLT 1 ,NT 1q-triangle associated to the object ZpXq P ObjpT 1q say

Σ1pN 1pZpXqqq ÝÑ L1pZpXqq u1
ÝÑ ZpXq ÝÑ N 1pZpXqq (3.4.1)
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Let’s fix the object ZpLpXqq “: T P ObjpT 1q and take the long exact sequence associated to
the above triangle with respect to the object T . Namely,

. . .Ñ HomT 1pT,Σ1pN 1pZpXqqqq Ñ HomT 1pT, L
1pZpXqqq pu

1
q˚
Ñ

Ñ HomT 1pT,ZpXqq Ñ HomT 1pT,N
1pZpXqqq Ñ . . .

Since LpXq P LT and we have ZpLT q Ă LT 1 by assumption, then T P LT 1 . But, by definition
of complementary pair, we have LT 1 Ă N %

T 1 . In particular, we obtain HomT 1pT,Σ1pN 1pZpXqqqq “
p0q “ HomT 1pT,N

1pZpXqqq. Hence the above long exact sequence yields the isomorphism

HomT 1pT, L
1pZpXqqq

pu1q˚
– HomT 1pT,ZpXqq. Hence, just take ψ :“ pu1q´1

˚ pZpuqq.
Next, put Ψ :“ F 1pψq : F 1

`

ZpLpXqq
˘

ÝÑ F 1
`

L1pZpXqq
˘

. The functoriality of constructions
and the definition of the element ψ above yields straightforwardly the diagram of the statement.

If moreover we have ZpNT q Ă NT 1 , then the functor Z transforms a pLT ,NT q-triangle for X
into a pLT 1 ,NT 1q-triangle for ZpXq. Since the distinguished triangles associated to a complementary
pair are unique up to a isomorphism, we have an isomorphism of distinguished triangles between
(3.4.1) and the image of ΣpNpXqq ÝÑ LpXq

u
ÝÑ X ÝÑ NpXq by Z,

Σ1pZpNpXqqq

o

��

// ZpLpXqq
Zpuq

//

o ψ

��

ZpXq //

id

ZpNpXqq

o

��
Σ1pN 1pZpXqqq // L1pZpXqq

u1
// ZpXq // N 1pZpXqq

�

Let us apply the preceding lemma to our particular situation with the triangulated functor Z
introduced in Lemma 3.4.2.2 and the homological functors F , F 1 introduced in the introduction
of this section. Then we obtain that for every pF-C˚-algebra pA, δq there exists an element ψ P
KKΓppG˙

r
LpAq, L1ppG ˙

δ
pG,r
Aqq such that the following diagram is commutative

LF pAq

η
pF
A

��

Ψ // LF 1ppG ˙
δ
pG,r
Aq

ηΓ
pG˙
r

A

��
F pAq

– // F 1ppG ˙
δ
pG,r
Aq

(3.4.2)

where Ψ :“ F 1pψq, ηpFA is the assembly map for pF with coefficients in A and ηΓ
pG˙rA

is the assembly
map for Γ with coefficients in pG ˙

δ
pG,r
A. Precisely, if ΣpNpAqq ÝÑ LpAq

u
ÝÑ A ÝÑ NpAq is a

pL
pF,NpFq-triangle associated to A and ΣpN 1ppG ˙

δ
pG,r
Aqq ÝÑ L1ppG ˙

δ
pG,r
Aq

u1
ÝÑ pG ˙

δ
pG,r
A ÝÑ N 1ppG ˙

δ
pG,r
Aq
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is a pLΓ,NΓq-triangle associated to pG ˙
δ
pG,r
A, then ψ :“ pu1q´1

˚ pZpuqq. Moreover, the definition of

the element ψ yields the following commutative diagram

pG˙
r
LpAq

Zpuq “ pG ˙
δ
pG,r
u

��

ψ // L1ppG ˙
δ
pG,r
Aq

u1

��
pG ˙
δ
pG,r
A pG ˙

δ
pG,r
A

(3.4.3)

We can now conclude our study with the following theorem, generalizing the result [34] of J.
Chabert as we have discussed in the introduction.

3.4.2.4 Theorem. Let F “ Γ˙
α
G be a quantum semi-direct product. Assume that pF, Γ and pG are

torsion-free discrete quantum groups. Let pA, δq be a pF-C˚-algebra.
pF satisfies the quantum Baum-Connes property with coefficients in A if and only if Γ satisfies

the Baum-Connes property with coefficients in pG ˙
δ
pG,r
A and pG satisfies the quantum Baum-Connes

property with coefficients in A.

Proof. Assume that pF satisfies the quantum Baum-Connes property. Since Γ and pG are divisible
torsion-free discrete quantum subgroups of pF thanks to Remark 2.3.10, then by Proposition 3.2.2.3
they satisfy the Baum-Connes property.

Conversely, assume that pG satisfies the quantum Baum-Connes property with coefficients in
A and Γ satisfies the Baum-Connes property with coefficients in pG ˙

δ
pG,r
A. By the torsion-freeness

assumption, the only finite subgroup of Γ is the trivial one, teu ă Γ. It is obvious that the trivial
group teu satisfies the Baum-Connes property. We can do the same preceding constructions with
Fteu :“ teu ˙

α|
G “ G. In particular, we have the following commutative diagram,

LFteupAq

η
pFteu
A

��

Ψteu // LF 1
teup

pG ˙
δ
pG,r
Aq

η
teu
pG˙
r

A

��
FteupAq F 1

teup
pG ˙
δ
pG,r
Aq

where Fteu et F 1teu are the analogous functors to F and F 1 defined with respect to pFteu “ pG and
teu, respectively. Likewise, we have Ψteu :“ F 1

teupψq where ψ P KK
ΓppG˙

r
LpAq, L1ppG ˙

δ
pG,r
Aqq is the

element constructed from Lemma 3.4.2.3. In this situation we have η
pFteu
A “ η

pG
A. Since pG satisfies
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the quantum Baum-Connes property by assumption, then η
pFteu
A “ η

pG
A is a natural isomorphism.

Hence, Ψteu is a natural isomorphism. This means in particular that pG˙
r
LpAq and L1ppG ˙

δ
pG,r
Aq

are K-equivalent via the element ψ of Lemma 3.4.2.3. Therefore the same element induces a
K-equivalence between Γ˙

r
L1
´

pG˙
r
LpAq

¯

and Γ˙
r
L1ppG ˙

δ
pG,r
Aq by virtue of Theorem 9.3 in [132].

Observe that LpAq P L
pF, so pG ˙

r
LpAq “ ZpLpAqq P LΓ thanks to Lemma 3.4.2.2. Hence we

have L1
´

pG ˙
r
LpAq

¯

– pG ˙
r
LpAq in K K Γ. In other words, Γ ˙

r

´

pG ˙
r
LpAq

¯

is K-equivalent to

Γ˙
r
L1ppG ˙

δ
pG,r
Aq via the element ψ. That is, Ψ “ F 1pψq is an isomorphism.

To conclude, we use the commutative diagramme (3.4.2). Namely, since Γ satisfies the Baum-
Connes property with coefficients in pG ˙

δ
pG,r
A by assumption, then K˚pΓ˙

r
L1ppG ˙

δ
pG,r
Aqq – K˚pΓ ˙

B,r

ppG ˙
δ
pG,r
Aqq via ηΓ

pG˙
r

A
. By using the associativity for quantum semi-direct products from Theorem

2.3.14 we get K˚ppF˙
r
LpAqq

„
ÝÑ K˚ppF ˙

δ,r
Aq via ηΓ

pG˙
r

A
˝Ψ. So LF pAq – F pAq through ηpFA thanks

to the commutativity of diagram (3.4.2). That is, pF satisfies the quantum Baum-Connes property
with coefficients in A. �

3.4.2.5 Remark. The argument of the preceding theorem can be applied when Γ has more finite
subgroups than the trivial one. Indeed, we could do the argument with the quantum semi-direct
products given by FΛ :“ Λ˙

α|
G for every finite subgroup Λ ă Γ. In that case, the claim “Ψ “ F 1pψq

is an isomorphism”, which is used in order to conclude using the commutative diagram (3.4.2),
can be achieved by applying Theorem 9.3 in [132]. The problem with this case is that the finite
subgroups of Γ provide torsion of pF. Hence the theoretical framework for the quantum Baum-Connes
property fails. It is reasonable to expect that the same stability property holds for any quantum
semi-direct product (not necessarily torsion-free) once the Baum-Connes property can be formulated
properly without the torsion-freeness assumption.

Let us analyze the stability of the strong version of the Baum-Connes property.

3.4.2.6 Theorem. Let F “ Γ ˙
α
G be a quantum semi-direct product such that pF, Γ and pG is a

torsion-free discrete quantum groups.
If pF satisfies the strong quantum Baum-Connes property, then Γ satisfies the strong Baum-

Connes property and pG satisfies the strong quantum Baum-Connes property.

Proof. Assume that pF satisfies the strong quantum Baum-Connes property. Since Γ and pG are
divisible torsion-free discrete quantum subgroups of pF thanks to Remark 2.3.10, then they satisfy
the strong Baum-Connes property by virtue of Theorem 3.2.2.1.

�

3.4.2 Remark. As we have already mentioned, the original result of J. Chabert in [34] was not
optimal. The precise statement of [34] concerning the Baum-Connes property for a semi-direct
product is the following
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“Let F “ Γ˙G be a semi-direct product of two locally compact groups equipped with a γ-element.
Assume that

i) Γ has a compact-open subgroup,

ii) for any compact subgroup Λ ă Γ the group FΛ :“ Λ˙G satisfies the Baum-Connes property
with coefficients.

Then if the Baum-Connes property holds for Γ, it holds for G too.”

On the one hand, the hypothesis piq about the existence of a compact-open subgroup of Γ is
automatically fulfilled in the discrete case (taking the singleton of the identity element teu). On
the other hand, the hypothesis about the existence of a γ-element for F “ Γ˙G is just a way to
use the J.-L. Tu’s result [191], which assures the injectivity of the corresponding assembly map
under the γ-element assumption. In this sense, it is a superfluous hypothesis as shown later in [35].

The initial strategy of J. Chabert was defining a partial descent homomorphism following the
semi-direct product construction (see Section 2 in [34]). In this way, our commutative diagram
(3.4.2) is the analogous one to the diagram obtained in Proposition 3.10 of [34].

Notice that in the above statement, J. Chabert only obtains one implication for the Baum-
Connes property. In Theorem 3.4.2.4 we obtain an “if and only if” result. This is possible thanks
to the isomorphism of Ψ in diagram p3.4.2q, which follows from Theorem 9.3 of [132] as explained in
the proof above. In Corollary 3.4 of [35], J. Chabert and S. Echterhoff also obtain both implications
for the Baum-Connes property. In fact, H. Oyono-Oyono obtained an “if and only if” result for
discrete groups in [143], which partly inspired the work [35].

3.4.3 K-amenability property
Here we care about a property of own interest, namely the K-amenability of a quantum semi-direct
product. More precisely we have the following result.theo.

3.4.3.1 Theorem. Let F “ Γ˙
α
G be a quantum semi-direct product. Then F is co-K-amenable if

and only if Γ is K-amenable and G is co-K-amenable.

Proof. Assume that F is co-K-amenable. This means that there exists an element αF P KKpCrpFq,Cq
such that

rτFs b
CrpFq

αF “ rεFs P KKpCmpFq,Cq,

where τF : CmpFq � CrpFq is the canonical surjection and εF : PolpFq ÝÑ C is the co-unit of F
whose extension to CmpFq is still denoted by εF.

By virtue of Remark 2.3.9 we know that Γ and pG are discrete quantum subgroups of pF via the
canonical injections

ιrΓ : C˚r pΓq ãÑ CrpFq and ιrG : CrpGq ãÑ CrpFq

Hence, by virtue of Theorem 3.2.3.1 we conclude that Γ and pG are K-amenable with elements

αΓ :“ rιrΓs b
CrpFq

αF P KKpC
˚
r pΓq,Cq

αG :“ rιrGs b
CrpFq

αF P KKpCrpGq,Cq
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Conversely, assume that Γ is K-amenable and that G is co-K-amenable. By virtue of the
K-amenability characterization of J. Cuntz (see Theorem 2.1 in [44]), the surjection Γ˙

m
A� Γ˙

r
A

induces a KK-equivalence for every Γ-C˚-algebra A. In particular,

Γ˙
m
CmpGq� Γ˙

r
CmpGq

induces a KK-equivalence. Since G is co-K-amenable, then the canonical surjection

τG : CmpGq� CrpGq,

which is Γ-equivariant, induces a Γ-equivariant KK-equivalence. If jΓ denotes the descent homo-
morphism with respect to Γ, which is compatible with the Kasparov product, then it is clear that
rid ˙ τGs “ jΓprτGsq P KKpΓ ˙

r
CmpGq,Γ ˙

r
CrpGqq is an invertible element. In other words, the

composition
Γ˙
m
CmpGq� Γ˙

r
CmpGq

id˙τG
Ñ Γ˙

r
CrpGqq,

which is precisely τF, induces a KK-equivalence. Hence F is co-K-amenable. �

3.5 The Baum-Connes property for a compact bi-
crossed product

It is worth mentioning that a compact bicrossed product in the sense of [65] is a special case of
a more general construction called bicrossed product. This object has been studied in detail in
[196] by S. Vaes and L. I. Vainerman giving a great general notion of extension of locally compact
quantum groups. In this way, the quantum semi-direct product and the compact bicrossed product
may be regarded as part of a same class of objects. The Baum-Connes property for extensions of
locally compact groups has been successfully studied by J. Chabert and S. Echterhoff in [35] and
also by H. Oyono-Oyono in [143] for discrete groups. For this reason it is licit to think about a
permanence property of the quantum Baum-Connes property for extensions of quantum groups.
However, such a property remains out of the scope of the present dissertation because of the torsion
phenomena problems and the technical difficulties of the construction of [196].

We carry the same notations of Section 2.4 on. Let F “ Γα ’β G be a compact bicrossed
product, where pΓ, G, α, βq is a compact matched pair.

In order to legitimate the Baum-Connes property formulation for the dual of a compact bicrossed
product F “ Γα ’β G, we need pF to be torsion-free. In this way, we do the following crucial
observation.

3.5.1 Proposition. Let F “ Γα ’β G be a compact bicrossed product of the matched pair pΓ, Gq.
If pF is torsion-free, then the action β is trivial. Consequently, F “ Γ˙

α
G is a quantum semi-direct

product with G :“ pCpGq,∆q.
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Proof. Let G0 be the connected component of the identity element e, which is always a closed
normal subgroup of G. Consequently, G{G0 is a finite group because G is supposed to be compact.
Its dual is therefore a finite discrete quantum subgroup of pG. The latter is a discrete quantum
subgroup of pF as explained in Remark 2.4.3. Since pF is torsion-free by assumption, then G{G0 must
be the trivial group (recall Remark 1.6.1.7). Hence G must be connected, which forces β to be the
trivial action. �

As we have pointed out several times, the torsion-freeness assumption is a theoretical obstruction
for the (current) quantum Baum-Connes property formulation for discrete quantum groups. The
preceding proposition shows that this hypothesis forces the compact bicrossed product to be a
torsion-free quantum semi-direct product. Therefore, the analogous results from Section 3.4 still
hold for the dual of a torsion-free compact bicrossed product (particularly, Theorem 3.4.2.4 and
Theorem 3.4.2.6 still hold).

In this sense, the torsion case is the interesting one. The general analogous strategy used in
Section 3.4 may be applied for a compact bicrossed product provided that an associativity property
can be established (recall Note 2.4.2), which has been one of the main ingredients to reach Theorem
3.4.2.4. It is reasonable to expect that the same stability property holds for any compact bicrossed
product (not necessarily torsion-free) once the Baum-Connes property can be formulated without
the torsion-freeness assumption, which is the the main obstacle to achieve such a result.1

3.5.1 K-amenability property
Here we care about a property of own interest, namely the K-amenability of a compact bicrossed
product. Observe that this property is completely independent of the torsion-freeness assumption.
The analogous result to Theorem 3.4.3.1 for a quantum semi-direct product can be established.
Recall by Remark 2.4.3 that Γ is not a quantum subgroup of pF anymore. Moreover notice that G is
a classical compact group, so it is automatically amenable (so, K-amenable). The corresponding
statement for the compact bicrossed product is the following (compare with Theorem 3.4.3.1 and
see Remark 1.3.1.42).

3.5.1.1 Theorem. Let F “ Γα ’β G be a compact bicrossed product. Then F is co-K-amenable if
and only if Γ is K-amenable.

Proof. Given the compact bicrossed product F, consider the canonical surjection τF : CmpFq �
CrpFq, where we recall that CmpFq “ Γ ˙

α,m
CpGq and CrpFq “ Γ ˙

α,r
CpGq. Likewise, given the

discrete group Γ, consider the canonical surjection τΓ : C˚mpΓq� C˚r pΓq.
Assume that F is co-K-amenable. This means that the canonical surjection τF : CmpFq� CrpFq

induces a KK-equivalence, that is, the induced element rτFs P KKpCmpFq, CrpFqq is invertible. Let
us denote by X P KKpCrpFq, CmpFqq its inverse, so that we have

rτFs b
CrpFq

X “ 1CmpFq and X b
CmpFq

rτFs “ 1CrpFq

Since G is a classical compact group, we have the canonical (α-invariant) character on CpGq
defined precisely by

εG : CpGq ÝÑ C
f ÞÝÑ εpfq :“ fpeq

1This is a work in progress in collaboration with P. Fima.
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Consider thus the following (unital) ˚-homomorphisms

εmΓ :“ Γ ˙
α,m

εG : CmpFq ÝÑ C˚mpΓq

εrΓ :“ Γ ˙
α,r

εG : CrpFq ÝÑ C˚r pΓq

In this situation, we have the following commutative diagram

CmpFq

τF
����

εmΓ // C˚mpΓq

τΓ
����

CrpFq
εrΓ

// C˚r pΓq

(3.5.1)

Recall that CmpFq “ Γ ˙
α,m

CpGq “ C˚xπpfquγ : f P CpGq, γ P Γy. So, with the help of the

α-invariant character above, we can identify C˚mpΓq with the subalgebra of CmpFq generated by
tuγ : γ P Γu by universal property (see Remark 3.6 in [65] for more details). Hence, we consider the
canonical injection ιm : C˚mpΓq ãÑ CmpFq, which is such that

εmΓ ˝ ιm “ idC˚mpΓq (3.5.2)

Likewise, recall that CrpFq “ Γ ˙
α,r

CpGq “ C˚xπpfquγ : f P CpGq, γ P Γy is equipped with a

conditional expectation E : Γ ˙
α,r

CpGq ÝÑ CpGq which restricted to the subalgebra generated by

tuγ : γ P Γu is just Epuγq “ δγ,e P C. Remember as well that uγ “ λγ b idCpGq in Γ ˙
α,r

CpGq Ă

LCpGqpl2pΓq b CpGqq; so that this subalgebra will be identified canonically to C˚r pΓq “ Γ ˙
trv,r

C by

universal property. Hence, we consider the canonical injection ιr : C˚r pΓq ãÑ CrpFq, which is such
that

εrΓ ˝ ιr “ idC˚r pΓq (3.5.3)
Finally, remark that the following equation holds by construction

τF ˝ ιm “ ιr ˝ τΓ (3.5.4)

Given the induced element rτΓs P KKpC˚mpΓq, C˚r pΓqq, we claim that the element

Y :“ rιrs b
CrpFq

X b
CmpFq

rεmΓ s P KKpC
˚
r pΓq, C˚mpΓqq

is its inverse and hence Γ is K-amenable. Indeed, using the equations p3.5.1q, p3.5.2q, p3.5.3q, p3.5.4q
above and the definition of X we can write the following

Y b
C˚mpΓq

rτΓs “ rιrs b
CrpFq

X b
CmpFq

rεmΓ s b
C˚mpΓq

rτΓs “ rιrs b
CrpFq

X b
CmpFq

rτΓ ˝ ε
m
Γ s

“ rιrs b
CrpFq

X b
CmpFq

rεrΓ ˝ τ s “ rιrs b
CrpFq

X b
CmpFq

rτ s b
CrpFq

rεrΓs

“ rιrs b
CrpFq

rεrΓs “ rε
r
Γ ˝ ιrs “ 1C˚r pΓq
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rτΓs b
C˚r pΓq

Y “ rτΓs b
C˚r pΓq

rιrs b
CrpFq

X b
CmpFq

rεmΓ s “ rιr ˝ τΓs b
CrpFq

X b
CmpFq

rεmΓ s

“ rτ ˝ ιms b
CrpFq

X b
CmpFq

rεmΓ s “ rιms b
CmpFq

rτ s b
CrpFq

X b
CmpFq

rεmΓ s

“ rιms b
CmpFq

rεmΓ s “ rε
m
Γ ˝ ιms “ 1C˚mpΓq

Conversely, assume that Γ is K-amenable, then by virtue of the K-amenability characterization
of J. Cuntz (see Theorem 2.1 in [44]), the surjection τF : Γ ˙

α,m
CpGq � Γ ˙

α,r
CpGq induces a

KK-equivalence, whence the K-amenability of F. �

3.5.1.2 Remark. It is important to notice that the preceding proof can be simplified by using
the same argument as in Theorem 3.4.3.1. Indeed, even if Γ is not longer a quantum discrete
subgroup of the compact bicrossed product pF, we have observed in Remarks 2.4.3 that there
exist still canonical injections ιmΓ : C˚mpΓq ãÑ CmpFq and ιrΓ : C˚r pΓq ãÑ CrpFq compatible with
the corresponding canonical surjections and co-units as in Remark 2.3.9. This allows to define
the element αΓ :“ rιrΓs b

CrpFq
αF P KKpC

˚
r pΓq,Cq provided that F is co-K-amenable with element

αF P KKpCrpFq,Cq such that rτFs b
CrpFq

αF “ rεFs P KKpCmpFq,Cq. In this way, the analogous

computation as in Theorem 3.2.3.1 yields that rτΓs b
C˚r pΓq

αΓ “ rεΓs, which yields the K-amenability

for Γ by Remark 1.3.1.41.

3.6 The Baum-Connes property for a quantum free
product

In this section we recall that the strong Baum-Connes property is stable under the free product
construction for quantum groups following the work of R. Vergnioux and C. Voigt [208]. It is
important to say that the strategy of R. Vergnioux and C. Voigt in [208] to achieve such a stability
property follows earlier work of G. Kasparov and G. Skandalis [99] and R. Vergnioux [206], [207].
More precisely, they apply the Dirac-dual Dirac method in a quantum version of the Bass-Serre
theory. In this sense, the Vergnioux-Voigt’s approach is very constructive and gives lot of information
in the process of proving the (strong) Baum-Connes property for a free product of (torsion-free)
discrete quantum groups.

In order to do so, we carry the same notations of Section 2.5 on. Let F :“ G ˚H be a quantum
free product, where G and H are compact quantum groups.

3.6.1 Torsion property
We have already explained that all our discrete quantum groups are supposed to be torsion-free in
order to study the corresponding quantum Baum-Connes property. For this reason it is advisable
to study in more detail the torsion phenomena of the dual of a quantum free product F “ G ˚H in
terms of the involved quantum groups.
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It is important to say that, in the original article [208], R. Vergnioux and C. Voigt expected
that all free quantum groups must be torsion-free, but they did not give any proof. Nevertheless,
the case of the free orthogonal quantum group was already proven in [210] by C. Voigt thanks to
the invariance of the torsion-freeness under monoidal equivalence (Theorem B.3.19) and the fact
that {SUqp2q is torsion-free, which is also shown in [210].

The general case has been recently studied by Y. Arano and K. De Commer in [3] and they
have obtained a positive answer to this problem using the approach of fusion rings and C˚-tensor
categories (recall Section 1.6.2 for definitions and more details).

3.6.1.1 Theorem (Y. Arano and K. De Commer, [3]). i) Let pG and pH be two discrete quantum
groups and let pF :“ {G ˚H be the dual of the corresponding quantum free product.
If pG and pH are (resp. strong) torsion-free, then pF is (resp. strong) torsion-free.

ii) Let n ą 1 and Q P GLnpCq. Then {U`pQq is strong torsion-free. As a consequence, it is
torsion-free.

Using the combinatorial methods introduced in [3] by Y. Arano and K. De Commer (recall
Section 1.6.2 for definitions and more details), we can give a more precise picture of the torsion
phenomena for a quantum free product. Namely, we can classify the torsion actions of a quantum
free product, which will be very useful in Section 3.7.1 where we will investigate the torsion
phenomena for a free wreath product. The following results have been obtained as a collaboration
with A. Freslon [127].

First of all, given a quantum free product F “ G ˚H, it is clear that both pG and pH are discrete
quantum subgroups of pF. In particular, we have CpGq Ă CpFq and CpHq Ă CpFq, so that any
action of G (resp. H) can be extended to an action of F in the sense of Remarks 1.4.3.5. Thus, it is
reasonable to expect that torsion actions of the quantum free product all are induced from either
torsion actions of G or torsion actions of H. This is the goal of this section.

The definition of induced module (recall Remarks 1.6.2.3) and the construction of the free
product of fusion rings yield immediately the following result.

3.6.1.2 Lemma. Let R1 be a I1-based ring and R2 be a I2-based ring. If N is a J-based R1-module,
then the induced module IndR1˚R2

R1
pNq is a rJ-based R1 ˚R2-module with basis

rJ :“ tωj | ω PW pI1, I2q YH and j P Ju –W pI1, I2q d
R1
J ,

where W pI1, I2q denotes the set of alternating words in I1 and I2 ending in I2 and the obvious
action of R1 ˚R2.

By definition of induced module, it is clear that the induction of standard modules yields
standard modules. We shall show that the induction of non-standard torsion modules yields again
a non-standard one.

3.6.1.3 Definition. Let R be a I-based ring and M a J-based R-module. Given a basis element
β P J we define the stabilizer of β by

Stabpβq :“ tα P I | β Ă αb βu
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The preceding definition yields the following immediate observations.

i) If M is co-finite, then Stabpβq is finite for all β P J .

ii) If M is standard, that is M – R, then there exists exactly one element with trivial stabilizer,
which is the one corresponding to the unit of I. Namely, by definition of based ring we have
that

Stabp1q “ tα P I | 1 Ă αb 1u “ t1u

Moreover, if there was some α1 P I such that Stabpαq “ txu is a singleton, then for all α P I,
α1 Ă α b α1 implies α “ x. In particular, 1 is such that α1 Ă 1 b α1 “ α1. So it must be
α “ 1 “ x.

3.6.1.4 Lemma. Let R be a fusion ring with basis I and M a fusion R-module with basis J . M
is standard if and only there exists a basis element j0 P J with trivial stabilizer.

Proof. If M is a standard fusion R-module, then we have explained above that Stabp1q “ t1u and
that 1 is the only basis element with trivial stabilizer.

Conversely, assume that M is a fusion R-module with basis J such that there exists a basis
element j0 P J with trivial stabilizer. Recall from Remarks 1.6.2.3 that we have a bilinear form on
M such that

xβ, β1y :“
ÿ

iPI

λβ
1

i,β
¨ i,

for all β, β1 P J . Since Stabpj0q “ t1u by assumption, which means that λj0α,j0 ‰ 0 ô α “ 1, then
by definition we have

xj0, j0y “ λj01,j0 ¨ 1 “ 1

Given any α P Izt1u, set αb j0 “
n
ř

k“1
λkjk. Hence we write the following

n
ÿ

k“1
λkxjk, j0y “ xαb j0, j0y “ αb xj0, j0y “ αb 1 “ α

Since xjk, j0y always contains α and the coefficients λk are non-negative integer, it must be
k “ 1. In other words, we have αb j0 “ j1, which is a basis element. Hence, in order to define an
isomorphism of fusion R-modules M ÝÑ R, it is enough to send the basis element j0 P J to the
unit 1 P I. �

3.6.1.5 Lemma. Let R1 be a fusion ring with basis I1 and R2 be a fusion ring with basis I2. If
N is a torsion R1-module with basis J , then the induced module M :“ IndR1˚R2

R1
pNq splits as a

R1-module into a direct sum of N and standard modules.
In particular, IndR1˚R2

R1
pNq – IndR1˚R2

R1
pN 1q as R1 ˚ R2-modules if and only if N – N 1 as

R1-modules.

Proof. Let P be an arbitrary R1-submodule of M and let ω be an alternating word in I1 and I2
of minimal length such that there exists a basis element j P J satisfying ωj P P , which exists by
Lemma 3.6.1.2.

Assume that ω ‰ H and write ω “ αk . . . α1. Notice that we can not have αk P I1 since
otherwise αk´1 . . . α1 Ă αk b ωj P P because P is a R1-module, which contradicts the minimality
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of ω. Thus, αk P I2 and the definition of the ring structure on R1 ˚R2 together with Lemma 3.6.1.2
imply that P is standard with respect to R1. Indeed, it is enough to remark that Stabpωjq “ t11u,
where we recall that ωj is a basis element in rJ . If α P Stabpωjq X I1, then ωj Ă α b ωj “ αωj,
where αω is now a new word and so αωj is a new basis element in rJ . Hence, it must be ω “ αω,
that is, α “ 11.

If ω “ H, then P contains a basis element of N , which implies P “ N .
In particular, if IndR1˚R2

R1
pNq ÝÑ IndR1˚R2

R1
pN 1q is an isomorphism of R1 ˚R2-modules, it can

be seen as an isomorphism of R1-modules, which preserves standard modules. Hence it must send
N isomorphically to N 1 and the proof is completed. �

3.6.1.6 Proposition. Let R1 be a fusion ring with basis I1 and R2 be a fusion ring with basis I2.
If M is a torsion R1 ˚R2-module with basis J , then M is induced from a module over one of the
factors.

Proof. If M is standard, then we can write either M – IndR1˚R2
R1

pR1q or M – IndR1˚R2
R2

pR2q and
the proof is completed.

Let e P J be a basis element and denote by Ne
1 (resp. Ne

2 ) the R1-submodule (resp. R2-
submodule) generated by the action of R1 (resp. R2) on e. The proof of Theorem 1.25 in [3] shows
that if both Ne

1 and Ne
2 are standard for all e P J , then M is itself standard.

Let us assume that M is not standard and assume that e P J is such that Ne
1 is not standard

(the case where Ne
2 is not standard is similiar). We are going to prove that M is isomorphic to

IndR1˚R2
R1

pNe
1 q. Recall from Lemma 3.6.1.2 that the latter has the basis ĂJe1 , where Je1 denotes the

basis of Ne
1 .

The natural candidate for the isomorphism is the following: given any word ω PW pI1, I2q and
any basis element j P Je1 , it should send the basis element ωj P ĂJe1 to ωb j. For this, we must show
that such an element ω b j is still a basis element of M . Let us prove this by induction on the
length of ω :“ αk . . . α1.

- For k “ 1, take a (non-trivial) word of length 1 in W pI1, I2q, say α2 P I2zt12u. Assume that
α2 b j is not a basis element. This means that we can take α2 such that j Ă α2 b j. Let α1
be a non-trivial element in Stabpjq X I1, which exists by Lemma 3.6.1.4 because Ne

1 is not
standard. Then, for any integer l P N, pα1α2q

bl P I1 ˚ I2 is a non-trivial stabilizer of j,

j Ă α1 b j Ă α1α2 b j Ă α1α2α1 b j Ă . . .

Consequently, we obtain infinitely many stabilizers, which contradicts the co-finiteness of
M . Thus, Stabpjq X I1 “ t11u, which implies that the R1-module generated by j must be
standard and the corresponding isomorphism sends j to 11 (by Lemma 3.6.1.4). In particular,
α2 b j – α2 is a basis element for all α2 P I2zt12u.

- Assume now that for some k P N, ω b j is a basis element with ω “ αk . . . α1 PW pI1, I2q and
j P Je1 .

- Without loss of generality, assume that αk P I2zt12u. Put j1 :“ αk . . . α1 b j, which is a basis
element by the induction hypothesis. By the same argument as before, Stabpj1q X I1 “ t11u,
so that N j1

1 is standard for R1. In particular, for any αk`1 P I1zt11u, αk`1 b j1 is a basis
element and the claim is proved.
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Now, let ϕ : IndR1˚R2
R1

pNe
1 q ÝÑ M be the homomorphism sending ωj to ω b j, for any word

ω PW pI1, I2q and any j P Je1 .
Since M is connected by assumption, the homomorphism ϕ is clearly surjective. Let us show

that ϕ is injective. Let ω, ω1 PW pI1, I2q with ω ‰ ω1 and let j, j1 P Je1 be basis elements with j ‰ j1

such that ϕpωjq “ ϕpω1j1q, that is, ωb j “ ω1b j1. In particular, we have that j1 Ă pω1bωqb j. By
definition of the ring structure on R1 ˚R2, we observe that ω1bω is a direct sum of non-empty words
starting and ending in I2zt12u. In particular, there exists ω2 P W pI1, I2q such that j1 Ă ω2 b j.
But such an element ω2 b j is a basis element, so it must be j1 “ ω2 b j. Now, if α, α1 P I1zt11u
are stabilizers of j and j1, respectively, then we get for any l P N a stabilizer of j given by

`

ω2α1ω2α
˘bl

“
`

ω2 b α1 b ω2 b α
˘bl,

which contradicts the co-finiteness of M . Thus, it must be ω “ ω1 and j “ j1. The proof is then
complete. �

The preceding results have been obtained at the level of fusion modules for which we have
used the general combinatoric description of the free product of fusion rings. In order to state the
corresponding result for a quantum free product at the level of torsion actions we have to recast
the preceding proof in the setting of module C˚-categories as we have illustrated in Remark 1.6.2.7.
This is, by the way, the strategy used in [3] for showing that a free product of torsion-free discrete
quantum groups is torsion-free (see Theorem 3.16 in [3] for more details).

3.6.1.7 Theorem. Let G and H be compact quantum groups. There is a one-to-one correspondence,
up to equivariant Morita equivalence, between torsion actions of G ˚H and torsion actions induced
from G or H.

Proof. Let pA, δq be a torsion action of G ˚H and consider the corresponding module C˚-category
over ReppG ˚Hq, say H , whose objects are G ˚H-equivariant Hilbert A-modules.

Given any irreducible object X P ObjpH q, we denote by H X
G (resp. H X

H ) the module
C˚-category generated by X and the action of ReppGq (resp. ReppHq).

By the proof of Proposition 3.6.1.6, there is an object X such that either H X
G or H X

H contains
a non-standard fusion module whenever pA, δq is not trivial. Without loss of generality, let us say
that this is case for H X

G . By Lemma 3.10 in [3], the module C˚-category is equivalent to the one
of the trivial action if its associated fusion module is standard. The same reasoning as for fusion
modules yields therefore an equivalence between H and the module C˚-category induced from
H X

G .
To conclude, notice that by the general result of [50], there exists a torsion action pA1, δ1q of G

such that the associated module C˚-category is H X
G . Thus, H is equivalent to the module C˚-

category associated to the induced action IndG˚HG pδ1q and again by [50] the actions are equivariantly
Morita equivalent.

Consider now two induced torsion actions which are equivariantly Morita equivalent. If they are
induced from different factors, then the fusion module of the one induced from H is a direct sum of
standard modules when restricted to G. Thus, the fusion module associated to the one induced by
G is isomorphic to a direct sum of standard module with respect to RpGq. Since all its submodules
are also standard with respect to RpHq, we conclude by Theorem 1.25 in [3] that the actions are
trivial.
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This leaves us with the case of two induced torsion actions from the same factor which are
equivariantly Morita equivalent. Without loss of generality, let us say that pA, δq and pA1, δ1q are
two torsion actions of G such that IndG˚HG pδq and IndG˚HG pδ1q are equivariantly Morita equivalent.
The same reasoning as in Lemma 3.6.1.5 shows that in both associated module C˚-categories,
the module C˚-subategory coming from the original action is the only one to be non-trivial over
ReppGq. The equivalence of categories must therefore restrict to an equivalence between these
subcategories and we conclude by [50]. �

3.6.2 The Baum-Connes property
In order to legitimate the Baum-Connes property formulation for the dual of a quantum free product
F “ G ˚H, we need pF to be torsion-free. And, in order to legitimate the Baum-Connes property
formulation for pG and pH, we need these discrete quantum groups to be torsion-free. Hence, we
must keep the preceding section in mind and we assume that pF, pG and pH are all torsion-free.

The aim of this section is to summarize the strategy carried out by R. Vergnioux and C. Voigt
in [208]. Here we collect the main results and definitions and we refer to Section 5 and Section 6 of
[208] for the full details.

Given a locally compact quantum group G we denote by DpGq the Drinfeld quantum double
of G (see Remark A.3.24 and [140] for more details). Given two discrete quantum groups pG and
pH, let us explain the notations concerning the quantum Bass-Serre theory for the quantum free
product pF “ {G ˚H.

The tree associated to pF is defined by

l2pXq :“ l2pXp0qq ‘ l2pXp1qq,

where
l2pXp0qq :“ l2ppF{pGq ‘ l2ppF{pHq and l2pXp1qq :“ l2ppFq,

where we remark that X may represent the quantum tree associated to pG, so that in the quantum
context it must be regarded as a virtual object.

Consider the one-dimensional affine space E :“ tpt0, t1q P R2 | t0 ` t1 “ 1u and write Cl1 for
the one-dimensional Clifford algebra.

Finally, observe that the compact operators on l2pXq, Kpl2pXqq, can be viewed as a graded
C˚-algebra following the decomposition of the definition of l2pXq. Recall that we use the symbol p‘
for the graded tensor product.

3.6.2.1 Theorem (R. Vergnioux and C. Voigt, [208]). Let pG and pH be two discrete quantum groups
and let pF “ {G ˚H be the dual of the corresponding quantum free product.

i) There exists a DppFq-C˚-algebra AX Ă
`

C0pEq b Cl1
˘

p‘Kpl2pXqq, which is KKDppFq-equivalent
to P :“ C0pRq b BX , for some ungraded DppGq-C˚-algebra BX Ă C0pEq bKpl2pXqq.

We define the Dirac element for pF as the element

D P KKDppFqpAX ,Cq

defined as the composition of the canonical inclusion AX ãÑ
`

C0pEq bCl1
˘

p‘Kpl2pXqq with the
Bott periodicity isomorphism and the equivariant Morita equivalence Kpl2pXqq „

M
C.
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ii) There exists un element γ P KKDppFqpC,Cq such that γ “ 1C.

iii) There exists a dual-Dirac element for D, that is, an element η P KKDppFqpC,AXq such that

η b
AX

D “ 1C

3.6.2.2 Remark. Notice that the Dirac element for pF is defined with respect to the C˚-algebra AX .
But this one is KKDppFq-equivalent to P, which is ungraded. By abuse of notation we still write

D P KKDppFqpP,Cq

for the Dirac element. Moreover, we can show that this element is still invertible (see Lemma 6.4
and Lemma 6.5 in [208] for more details).

A combination of the preceding results and the equivariant Poincaré duality for quantum groups
developed by R. Meyer and C. Voigt in [140] yields the stability of the Baum-Connes property for
quantum free products, which generalizes the classical case studied in [144], [193].

3.6.2.3 Theorem (R. Vergnioux and C. Voigt, [208]). Let pG and pH be two discrete quantum groups
such that pG and pH are torsion-free. Let pF “ {G ˚H be the dual of the corresponding quantum free
product.

If pG and pH satisfies the strong Baum-Connes property, then pF satisfies the strong Baum-Connes
property.

Next, recall the following facts:
- The strong Baum-Connes property is invariant under monoidal equivalences (Theorem B.3.19).

- Divisible discrete quantum subgroups of a discrete quantum group satisfying the strong
Baum-Connes property satisfy the strong Baum-Connes property (Theorem 3.2.2.1).

- For all n ą 1, all Q P GLnpCq with QQ “ ˘id and all q P r´1, 1szt0u, SUqp2q is monoidally
equivalent to O`pQq (Theorem B.3.19).

- {SUqp2q satisfies the strong Baum-Connes property, for all q P r´1, 1szt0u (Theorem 2.1.5).

- Z satisfies the strong Baum-Connes property [82].

- For all n ą 1, all Q P GLnpCq with QQ “ ˘id, {U`pQq Ă {O`pQq ˚ Z is divisible (Proposition
4.3 in [208]).

With all these properties in mind, it is not very hard to establish that duals of free unitary
quantum groups satisfy the strong Baum-Connes property (see Theorem 6.8 in [208] for more
details).

3.6.2.4 Theorem (R. Vergnioux and C. Voigt, [208]). Let n ą 1 and Q P GLnpCq. Then {U`pQq
satisfy the strong Baum-Connes property.
3.6.2.5 Remark. As we have pointed out in Remark 2.5.2, both pG and pH are divisible discrete
quantum subgroups of {G ˚H. Consequently, if both pG and pH are torsion-free and {G ˚H satisfies the
(resp. strong) Baum-Connes property, then both pG and pH satisfy the (resp. strong) Baum-Connes
property by applying (resp. Theorem 3.2.2.1) Proposition 3.2.2.3.
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3.6.3 K-amenability property
Here we care about a property of own interest, namely the K-amenability of a quantum free
product.

On the one hand, we recall Remark 1.7.2.11 where we have noticed that the torsion-freeness as-
sumption and the strong Baum-Connes property for a discrete quantum group implies automatically
the K-amenability of the discrete quantum group.

On the other hand, as explained in the introduction of this dissertation, several work of R.
Vergnioux [206], [207], P. Fima [63] and P. Fima-A. Freslon [64] have been made for studying the
K-amenability property for quantum groups acting on quantum trees using a quantum version of
the Bass-Serre theory generalizing the classical case [90] studied by P. Julg and A. Valette.

Therefore, from Remark 1.7.2.11 and the work mentioned above, we obtain the following result.

3.6.3.1 Theorem. i) Let pG and pH be two discrete quantum groups and let pF “ {G ˚H be the
dual of the corresponding quantum free product.

a) G and H are co-amenable if and only if F is co-K-amenable.
b) If pG and pH are torsion-free and satisfy the strong Baum-Connes property, then F is co-K-

amenable.

ii) Let n ą 1 and Q P GLnpCq. Then {U`pQq is K-amenable.

iii) Let n ą 1 and Q P GLnpCq with QQ P Rid. Then {O`pQq is K-amenable.

3.7 The Baum-Connes property for a free wreath
product

First of all, the whole content of this section together with Section 4.2 is a collaboration work with
A. Freslon [127].

In this section we are going to study the Baum-Connes property for the dual of a free wreath
product, G o˚ S`N , of a compact quantum group G by S`N (with N ě 4) in terms of G and S`N .

The Baum-Connes property for a classical wreath product has been studied under different
perspectives during the last years. More precisely, Y. Cornulier, Y. Stalder and A. Valette have
studied the stability of the Haagerup property for the wreath product construction in [42]. They
have showed that if G and H are two countable groups with the Haagerup property, then their
wreath product G o H has the Haagerup property too. Consequently, the celebrated result of
Higson-Kasparov [82] yields in this case that G oH satisfies the strong Baum-Connes property.

This result allows to include an extensive list of groups satisfying the strong Baum-Connes
property. For instance, this is true for the lamplighter group Z{Z2 o Z or, more generally, for a
wreath product G oH, where G is any finite group and H :“ Fn is the free group on n generators.
However, the abstract conclusion about the Baum-Connes property for this kind of groups does not
bring any information about the explicit computation of the K-theory and the K-homology groups
of the corresponding C˚-algebra. Recently, R. Flores, S. Pooya and A. Valette [67] and S. Pooya
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[160] have provided an explicit proof of the Baum-Connes property by computing both sides of the
assembly map in this two cases, respectively.

The quantum case presents a first issue : the presence of non-trivial torsion for the dual of a
free wreath product G o˚ S`N (even when pG is torsion-free). In Section 3.7.1 we classify all torsion
actions of G o˚ S`N .

As we have already mentioned, the torsion-phenomena prevents a proper theoretical formulation
of the quantum Baum-Connes property, which is the second main issue. Nevertheless, as it is
explained in full detail in Section 4.1, there exists a reasonable choice for the analogue of the
localizing subcategory of compactly induced C˚-algebras in the quantum setting, taking into account
all torsion actions of the compact quantum group. This choice turns out to be the appropriated
one in order to analyze the strong Baum-Connes property for a free wreath product, as it is shown
in Section 3.7.2. A major application of these results is the explicit computation of the K-theory of
the C˚-algebras associated to several free wreath products, for which we refer to Section 4.2.

We carry the same notations of Section 2.6 on. Let F :“ G o˚ S`N be a free wreath product,
where G is a compact quantum group and N ě 4 is a natural number. We denote by Hq the
Lemeux-Tarrago’s compact quantum group which is monoidally equivalent to G o˚ S`N (recall
Theorem 2.6.2). We denote by Λ : RpHqq ãÑ RpG ˚ SUqp2qq the corresponding inclusion described
in Remark 2.6.3.

3.7.1 Torsion property
In contrast to the compact quantum group constructions studied in preceding sections, the free
wreath product construction is never torsion-free because xS`N is never torsion-free, so that every
torsion action of G o˚ S`N is induced by the defining action of S`N on CN , which is a torsion one.
This section is dedicated to show in detail these affirmations. For this we should recall notations
and results from Section 1.6.2 and Section 3.6.1.

3.7.1.1 Lemma. Let G be a compact quantum group. If N is a torsion RpGq-module with basis J
and M :“ Ind

RpGq˚RpSUqp2qq
RpGq pNq, then M contains a unique non-standard torsion RpHqq-module.

Proof. Let j P J be a basis element of N and let ω PW
´

IrrpGq, IrrpSUqp2qq
¯

be a word ending

in IrrpSUqp2qq. Recall from Lemma 3.6.1.2 that ωj P rJ is a basis element of M . Denote by Npωjq
the RppHqq-submodule generated by ωj. Let ω1 be a word of minimal length such that ω1j P Npωjq.

If ω1 “ H, then for any non-trivial word ω2 PW
´

IrrpGq, IrrpSUqp2qq
¯

, we have Λpω2q b j “
Λpω2qj, which is a basis element, so that Npωjq “ Npjq is standard.

If ω1 starts in IrrpGq, then for any non-trivial word ω2 P W
´

IrrpGq, IrrpSUqp2qq
¯

, we have
Λpω2q b ω1j “ Λpω2qω1j, which is a basis element, so that Npωjq “ Npω1jq is standard.

Therefore, let us assume that ω1 “ un0x1 . . . xku
nk , for some k P N. If n0 ą 1, we see that

un0´2x1 . . . xku
nkj Ă u2 b ω1j P Npωjq because u2 P IrrpHqq by definition. This contradicts the

minimality of ω1. Hence, we can assume that n0 “ 1.
If k ą 0, then see that un1x2 . . . xku

nk P Npωjq by tensoring ω1 by ux1u. This contradicts the
minimality of ω1. Hence, it must be ω1 “ u.

Since N is by assumption a connected RpGq-module, for any basis element j1 P J , there exists
x P IrrpGq such that j1 Ă xb j. Therefore, uj1 Ă xb uj Ă Λpxq b uj “ uxub uj P Npujq since
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uxu P IrrpHqq by definition. In other words, Npuj1q “ Npujq and we obtain in this way a torsion
module, which is unique by construction and we denote it by Nu. Moreover, it is non-standard
because u2 is clearly a non-trivial stabilizer of uj, which is the generator of Nu. �

3.7.1.2 Theorem. Let G be a compact quantum group and N ě 4 a natural number. The
equivariant Morita equivalence classes of non-trivial torsion actions of G o˚ S`N are in one-to-one
correspondence with all the equivariant Morita equivalence classes of torsion actions of G.

In particular, a free wreath product G o˚ S`N is never torsion-free and pCN , αN q is the only, up
to equivariant Morita equivalence, non-trivial torsion action of G o˚ S`N whenever pG is torsion-free.

Proof. First of all, thanks to the monoidal equivalence between G o˚ S`N and Hq, it is enough to
study the torsion actions of Hq.

Let pA, δq be a non-trivial torsion action of Hq. Then it is clear that IndG˚SUqp2qHq pδq is again a
torsion action of G ˚SUqp2q. By Theorem 3.6.1.7, IndG˚SUqp2qHq pδq is equivariantly Morita equivalent
to a torsion action induced from G (since {SUqp2q is torsion-free). By Lemma 3.7.1.1, the restriction
of such an action to Hq has exactly one non-trivial summand. Thus, this summand is equivariantly
Morita equivalent to pA, δq.

Moreover, if two torsion actions of Hq are equivariantly Morita equivalent, then the same holds
for their induction to G ˚ SUqp2q, so that by Theorem 3.6.1.7 the original actions of G are also
equivariantly Morita equivalent.

In particular, G o˚ S`N is never torsion-free because the trivial action of G (which is a torsion
action) gives rise to a non-trivial torsion action of the free wreath product. Let us describe explicitly
this action.

Consider the quantum subgroup of pHq generated by u2, which is isomorphic to {SOqp3q. As
we have mentioned in Remarks 2.1.10, we have an isomorphism QutpM2pCqq – SOqp3q. Hence,
thanks to Theorem 2.1.11, the only non-trivial torsion action of SOqp3q is the canonical action of
QutpM2pCqq on M2pCq, say αq (see as well [173]).

By definition, {SOqp3q ă {SUqp2q and since {SUqp2q is torsion-free, Ind
SUqp2q
SOqp3qpαqq must be the triv-

ial action (up to equivariantly Morita equivalence). By what we have proven before, IndHqp2qSOqp3qpαqq

must be a non-trivial torsion action whose induction to G ˚ SUqp2q is trivial. Under the monoidal
equivalence between Hq and G o˚ S`N , pM2, αqq becomes the canonical action of S`N on CN . Induc-
ing this action to G o˚ S`N yields a non-trivial torsion action pCN , αN q, which is precisely the one
obtained from the trivial action of G. If G is torsion-free, this is the only source of torsion in the
free wreath product. �

3.7.1.3 Remark. The proof of the preceding theorem shows precisely which is the only torsion action
of a free wreath product G o˚ S`N , where pG is torsion-free. Namely, it is the defining action of S`N on
CN induced to G o˚ S`N . If αq denotes the torsion action of SOqp3q on M2pCq, then the monoidal
equivalence between Hq and G o˚ S`N yields a correspondence between these torsion actions,

Ind
Go˚S`N
S`
N

pαN q ÐÑ Ind
Hqp2q
SOqp3qpαqq
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3.7.2 The Baum-Connes property
By virtue of the preceding section, the dual of a free wreath product F “ Go˚S`N is never torsion-free,
even if pG is torsion-free. Hence, the theoretical framework developed in Section 1.7.2 for a quantum
Baum-Connes property formulation can not be applied. Let K K Go˚S`N be the equivariant Kasparov
category associated to the compact quantum group G o˚ S`N . Being inspired by the pioneering work
of C. Voigt in [212], we can re-define the localizing subcategory of quantum compactly induced
C˚-algebras LF :“ xL

pF by taking into account the torsion phenomena of the discrete dual of the
free wreath product,

LF :“ xtT bB with T P TorppFq and B P ObjpK K quy Ă K K Go˚S`N

L
pF :“ xtF˙

r
T bB with T P TorppFq and B P ObjpK K quy Ă K K

{Go˚S`N

3.7.2.1 Definition. Let G be a compact quantum group and N ě 4 a natural number. We say
that pF :“ {G o˚ S`N satisfies the strong Baum-Connes property if

L
pF “ K K

pF

Recall that, by virtue of Theorem 2.6.2, there exists a discrete quantum subgroup pHq ă
{G ˚ SUqp2q such that Hq is monoidally equivalent to G o˚ S`N . Denote by K K Go˚S`N the corre-

sponding equivariant Kasparov category. Therefore, pHq is neither torsion-free because all torsion
actions of monoidally equivalent compact quantum groups are in bijection as it is shown in
[163]. In this way, we can re-define the localizing subcategory of quantum compactly induced
C˚-algebras LHq :“ xL

pHq by taking into account the torsion phenomena of the discrete dual of the
Lemeux-Tarrago’s Hq,

LHq :“ xtS bB with S P TorppHqq and B P ObjpK K quy Ă K K Hq

L
pHq :“ xtHq ˙

r
S bB with S P TorppHqq and B P ObjpK K quy Ă K K

pHq

3.7.2.2 Definition. Let G be a compact quantum group and N ě 4 a natural number. Let Hq
the Lemeux-Tarrago’s compact quantum group monoidally equivalent to G o˚ S`N . We say that Hq
satisfies the strong Baum-Connes property if

L
pHq “ K K

pHq

By virtue of the monoidal equivalence between Hq and G o˚ S`N , we know that the corresponding
equivariant Kasparov categories, K K Hq and K K Go˚S`N , are equivalent (see [210] for more details).
Moreover, the choice of our localizing subcategories of quantum compactly induced C˚-algebras
together with the bijective correspondence between torsion actions from [163] and Baaj-Skandalis
duality yield the following

3.7.2.3 Lemma. {G o˚ S`N satisfies the strong Baum-Connes property if and only if pHq satisfies the
strong Baum-Connes property.
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3.7.2.4 Remark. In other words, we re-define the strong Baum-Connes property by requiring the
abstract condition L

pF “ K K
pF, which is consistent with the torsion-free case as it is pointed out

in Remark 4.1.
However, the formal statement for the usual Baum-Connes property in the framework of Meyer-

Nest requires the definition of an other localizing subcategory N
pF such that the pair pL

pF,NpFq is
complementary. The definition of such a N

pF must be the the right orthogonal complement of L
pF

(recall Definition 1.2.1.23). But it is not clear, a priori, that this pair is complementary in K K
pF.

These difficulties have been out of the scope of the present dissertation, but we give a more precise
overview of this problem in Chapter 5.

Since pHq is a discrete quantum subgroup of the dual of quantum free product and for the later
the strong Baum-Connes property has already been studied in Section 3.6, we will work with pHq
and not with {G o˚ S`N itself.
3.7.2.5 Remark. Before carrying on, it is advisable to describe explicitly the generator objects of
the localizing subcategory L

pHq .
Assume that pG is torsion-free. Then the only, up to equivariant Morita equivalence, non-trivial

torsion action of G o˚ S`N is, by virtue of Theorem 3.7.1.2, the defining action of S`N on CN induced
to G o˚ S`N . As we have pointed out in Remark 3.7.1.3, this torsion action is in correspondence
with the torsion action of Hq given by pM2pCq, αqq. Let us describe the Baaj-Skandalis dual of
this torsion action, that is, the crossed product Hq ˙

r
M2pCq.

Let us define the subset Ju :“ S Ă IrrpG ˚ SUqp2qq as the set of irreducible representations of
G ˚ SUqp2q generated by the action of IrrpHqq on u, that is,

Ju :“ S :“ ty P IrrpG ˚ SUqp2qq | y Ă hj u with h P IrrpHqqu

Then we put

Au :“ Aq :“
c0
à

yPS
BpHyq Ă c0

`

{G ˚ SUqp2q
˘

and observe that, by virtue of Theorem 3.7.1.2, we have the following decomposition

c0
`

{G ˚ SUqp2q
˘

“ Aq ‘
´

à

N
c0ppHqq

¯

as pHq-C˚-algebras. Again by Theorem 3.7.1.2 we observe that pHq ˙
r
Aq must be equivariantly

Morita equivalent to pM2pCq, αqq (because {G ˚ SUqp2q is torsion-free, so that G ˚ SUqp2q only
admits the trivial torsion action, which restricted to an action of Hq gives the corresponding torsion
action of Hq). In particular, Aq is equivariantly Morita equivalent to Hq ˙

r
M2pCq.

In other words, we have showed that

L
pHq :“ xtAq bB with B P ObjpK K qu Y tc0ppHqq bB with B P ObjpK K quy

again by virtue of Theorem 3.7.1.2.
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3.7.2.6 Theorem. Let G be a compact quantum group and N ě 4 a natural number. If pG
is torsion-free and satisfies the strong Baum-Connes property, then {G o˚ S`N satisfies the strong
Baum-Connes property.

Proof. By virtue of Lemma 3.7.2.3 it is enough to prove that pHq satisfies the strong Baum-Connes
property.

Recall that pHq ă {G ˚ SUqp2q is a discrete quantum subgroup of the dual of a quantum free
product. pG is torsion-free and satisfies the strong Baum-Connes property by assumption and
{SUqp2q is torsion-free and satisfies the strong Baum-Connes property by [210], [211] (recall as well
Theorem 2.1.5). Hence, {G ˚ SUqp2q is again torsion-free by Theorem 3.6.1.1 and satisfies the strong
Baum-Connes property by Theorem 3.6.2.3. This means that L

{G˚SUqp2q
“ K K

{G˚SUqp2q.

Let B P ObjpK K
pHq q any pHq-C˚-algebra. We have Ind

{G˚SUqp2q
pHq

pBq P L
{G˚SUqp2q

. Thanks to

Remark 3.7.2.5 we know that c0p {G ˚ SUqp2qq “ Aq‘
´

À

N
c0ppHqq

¯

as pHq-C˚-algebras. Hence it is clear

that the restriction functor preserves the localizing subcategories of compactly induced C˚-algebras,
that is, Res

{G˚SUqp2q
pHq

´

L
{G˚SUqp2q

¯

Ă L
pHq . In particular, Res

{G˚SUqp2q
pHq

´

Ind
{G˚SUqp2q

pHq
pBq

¯

P L
pHq .

Finally, using the explicit description of induced C˚-algebras given in Section 1.4.3 we know that
B is a retract of Res

{G˚SUqp2q
pHq

´

Ind
{G˚SUqp2q

pHq
pBq

¯

. Since L
pHq is closed under retracts by definition of

localizing subcategory, then we obtain that B P L
pHq , which completes the proof. �

3.7.3 K-amenability property
Here we care about a property of own interest, namely the K-amenability of a free wreath product.
In contrast to the compact quantum group constructions studied in preceding sections, here the
K-amenability property will be particularly useful for the K-theory computations in Section 4.2.

In Remark 1.7.2.11 we have noticed that the K-amenability property is automatically fulfilled
for every torsion-free discrete quantum group pG satisfying the strong Baum-Connes property.
Recall that the argument used in Remark 1.7.2.11 consists in proving that the action of pG on the
Baaj-Skandalis dual of the trivial torsion action is always amenable.

Following the discussion of the preceding section, an obvious generalization of this fact can be
carried out in the torsion case.

3.7.3.1 Definition. Let pG be any discrete quantum group. A pG-C˚-agebra P is said to be proper
almost homogenous if it is equivariantly Morita equivalent to G ˙

r
T , for some torsion action

T P TorppGq.

3.7.3.2 Note. The terminology proper almost homogeneous has been firstly introduced in [212] by
C. Voigt and inspired by the work of R. Meyer and R. Nest in [133], where they formulate and
establish the strong Baum-Connes property for duals of classical compact connected groups.

3.7.3.3 Lemma (C. Voigt, [212]). Let pG be any discrete quantum group. If P is a proper almost
homogenous pG-C˚-algebra, then pG acts amenably on P .
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3.7.3.4 Remark. In addition, if xG1 is another discrete quantum subgroup such that G and G1 are
monoidally equivalent, then P is proper almost homogenous with respect to pG if and only if it is
with respect to xG1.

3.7.3.5 Theorem. Let pG be any discrete quantum group. Denote by K K
pG the corresponding

equivariant Kasparov category and put

LG :“ xtT bB with T P TorppGq and B P ObjpK K quy Ă K K G

L
pG :“ xtG˙

r
T bB with T P TorppGq and B P ObjpK K quy Ă K K

pG

If pG satisfies the strong Baum-Connes property, which means that L
pG “ K K

pG, then pG is
automatically K-amenable.

Proof. Indeed, it enough to observe that every generator of L
pG is a proper almost homogeneous

pG-C˚-algebra and so pG acts amenably on generators of L
pG “ K K

pG by Lemma 3.7.3.3. This
concludes the proof because the crossed product functor is compatible with countable direct
sums. �

3.7.3.6 Corollary. Let G be a compact quantum group and N ě 4 a natural number. If pG is
torsion-free and satisfies the strong Baum-Connes property, then {G o˚ S`N is K-amenable.
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An application: the K-theory for the Lemeux-Tarrago’s
pHq ă

{G ˚ SUqp2q

The fourth chapter is dedicated to illustrate the general and abstract theory about the quantum
Baum-Connes formulation, as it has been presented in the present thesis, with a major application:
explicit K-theory computations. More concretely, we achieve the computation of the K-theory
groups for some free wreath products by using the results obtained in Section 3.7.

In Section 4.1 we explain the different general strategies for computing the K-theory of C˚-
algebras defining compact quantum groups by using the categorical framework of Meyer-Nest for
the quantum Baum-Connes property. In other words, we describe in detail the general method
used by C. Voigt and his collaborators to this end.

In Section 4.2 we perform, inspired by the pioneering work of C. Voigt and his collaborators,
an explicit K-theory computation for some free wreath product. More precisely, we compute
the K-theory groups of the C˚-algebra CpHqq, where pHq ă {G ˚ SUqp2q is the Lemeux-Tarrago’s
discrete quantum subgroup which is such that Hq is monoidally equivalent to G o˚ S`N . This is done
in three different situations: aq when G is a free orthogonal quantum group, bq when G is a free
quantum group and cq when G :“ Fn is the classical free group on n generators. The whole content
of Section 4.2 is a collaboration work with A. Freslon [127].

267
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4.1 Strategies for K-theory computations
The work of C. Voigt and his collaborators [140], [208], [210], [211], [212] have been very fruitful
with respect to the K-theory computations of C˚-algebras associated to compact quantum groups.
Let us explain the general strategy used by C. Voigt to this end.

The categorical framework adopted by R. Meyer and R. Nest in their approach for the Baum-
Connes property is also a powerful tool for the K-group computations. The notion of spectral
sequence coming from algebraic topology and algebraic geometry turns out to be a very useful
method to compute homology groups. In this way, the general idea in the Meyer-Nest’s work is to
develop an adapted homological algebra for triangulated categories with which we can establish
appropriated spectral sequences. Once we restrict ourselves to the Kasparov category, these spectral
sequences reveal a strong connexion with the KK-groups. Nevertheless, it is important to say that
using spectral sequences in full generality in this context is still a very hard problem to solve for
doing explicit computations. But in some concrete situations, spectral sequences restrict to much
more handle sequences, which allows such explicit computations.

In order to understand what follows, Section 1.2 and specially Section 1.2.4 contain the main
material that we need.

First of all, we have already explained that, for the moment, a quantum version of the Baum-
Connes property must be formulated for discrete quantum groups. Likewise, all along in this
dissertation we have stressed that the torsion phenomena in the quantum setting is one of the
main obstacles in order to formulate properly a quantum version of the Baum-Connes property.
Recall that, doing the comparison with the classical discrete case, the main problem comes from
the definition of the localizing subcategory L . Indeed, we must be careful in the manipulation of
the induction functor.

Although we have already noticed in the end of Section 1.7.2 that some typical examples of
compact quantum groups have discrete duals that fail to be torsion-free, the corresponding K-group
computations may avoid this shortcoming.

In this way, if G is a compact quantum group, we shall distinguish two main complementary
situations for the K-group computations of CpGq: pG is torsion-free and pG is not torsion-free.

4.1.1 Torsion-free discrete quantum group case
The “algorithm” for the K-theory computations is the following.

i) We show that pG satisfies the strong Baum-Connes property. This means that L
pG “ K K

pG.
For this we may use different techniques. For instance, Poincaré duality and Dirac-dual Dirac
method is used for the quantum free product case or the maximal torus argument is used for
{SUqp2q (and also for duals of connected compact Lie groups).

ii) Since pG is torsion-free and it satisfies the strong Baum-Connes property, we know that G
is automatically co-K-amenable as explained in Remark 1.7.2.11. This means in particular
that CmpGq is isomorphic to CrpGq at the level of the K-theory, so that we do not make any
difference between these C˚-algebras in the corresponding Kasparov category and we write
simply CpGq.
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By virtue of the K-amenability characterization of J. Cuntz, which is still true in the quantum
setting (see Remark 1.3.1.41), we know that there doesn’t exist any difference between reduced
and maximal crossed product at the level of the K-theory, so that we write simply pG˙ ¨ for
both the reduced and the maximal crossed product functor.

iii) We consider the homological ideal J :“ kerHompRes
pG
E q and we construct a J -projective

resolution of length 1 for C in K K
pG, say

0 ÝÑ P1
δ1
ÝÑ P0

δ0
ÝÑ C ÝÑ 0

4.1.1.1 Remark. On the one hand, since pG is supposed to be torsion-free, L
pG is described as

the localizing subcategory of K K
pG generated by the objects of the form c0ppGq b C with C

any C˚-algebra in the Kasparov category K K . In particular, c0ppGq b C – c0ppGq P L
pG.

On the other hand, by virtue of Theorem 1.7.2.6, we know that L
pG is actually the localizing

subcategory of K K
pG generated by J -projective objects.

In this way, the most obvious candidates for the J -projective resolution above are P0 :“ c0ppGq
and P1 :“ c0ppGq. Otherwise, we may take suitably modifications of these P0 and P1 depending
on the concrete situation.
Notice by the way that, given an irreducible representation x P IrrpGq, there exists an obvious
map from c0ppGq to itself in K K

pG induced by the co-multiplication p∆. More precisely, we
have the following composition

Tx : c0ppGq
p∆
ÝÑMpc0ppGq b c0ppGqq

idbpx
ÝÑ Mpc0ppGq b BpHxqq – c0ppGq,

where the last identification is the evident Morita equivalence. Moreover, it is straight-
forward to see that the corresponding induced map at the level of the K-theory, pTxq˚ :
K0pc0ppGqq ÝÑ K0pc0ppGqq, identifies with the right multiplication by x under the usual identi-
fication K0pc0ppGqq – RpGq. So we put rx :“ pTxq˚, for all x P IrrpGq.

Likewise, the left regular representation of pG, pλ : c0ppGq ÝÑ KpL2pGqq, yields a map in K K
pG

between c0ppGq and C (notice that KpL2pGqq – C in K K
pG). Moreover, we recall that the

RpGq-module structure on Z is induced by the dimension function. In other words, it is
straightforward to see that the corresponding induced map at the level of the K-theory, pλ˚ :
K0pc0ppGqq ÝÑ K0pCq is given by the dimension function ε, which is such that εpxq “ dimpxq

for all x P IrrpGq under the usual identification K0pc0ppGqq – RpGq and K0pCq – Z. So we
put ε :“ pλ˚, for all x P IrrpGq.
These identifications are in accordance with Remark 1.7.1.23.

iv) Observe that, by virtue of the adjointness between induction and restriction functors (recall
Lemma 1.7.2.4), we have that KK pGpA,Bq “ p0q, for all A P ObjpK K

pGq and for all B P N
pG.

Indeed, since pG satisfy the strong Baum-Connes property by step piq, it is enough to check
this for pG-C˚-algebras A P L

pG. Hence, we write

KK
pGpInd

pG
E pBq, Aq “ KKpB,Res

pG
E pAqq “ p0q,
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for all B P N
pG.

Observe that, thanks to the strong Baum-Connes property, this is also true for A :“ C P

ObjpK K
pGq.

v) Step piiiq and the observation of step pivq allow to apply Theorem 1.2.4.9. Hence, we know
that there exists a short exact sequence

L0F pΣipCqq ãÑ F pΣipCqq� L1F pΣi`1pCqq,

where F : K K
pG ÝÑ A bZ{2 is the homological functor given by F pAq :“ K˚ppG˙

r
Aq, for all

A P ObjpK K
pGq.

In the Kasparov category K K
pG and thanks to Bott periodicity, this sequence is precisely the

following six-terms exact sequence,

K0ppG˙ P1q
K0ppG˙ δ1q // K0ppG˙ P0q

K0ppG˙ δ0q // K0pCpGqq

��
K1pCpGqq

OO

K1ppG˙ P0q
K1ppG˙ δ0q

oo K1ppG˙ P1q
K1ppG˙ δ1q
oo

vi) This may yield the computation of K0pCpGqq and K1pCpGqq since P0 and P1 shall be chosen
in such a way that we know the K-groups of the crossed products pG˙ P0 and pG˙ P1. Indeed,
recall Remark 4.1.1.1 above.

vii) It is important to observe the following. Sometimes, it seems that working in the “compact
category” K K G (doing Baaj-Skandalis duality) is more convenient. In this case, we may
modify step piiiq above by constructing a I-projective resolution of length 1 for CpGq for an
appropriated homological ideal I in K K G. Therefore, we obtain an analogous 6-terms exact
sequence as above by applying directly Theorem 1.2.4.9 with the K-theory functor.

4.1.2 Torsion discrete quantum group case
The “algorithm” for the K-theory computations is the following.
i) We carry out a complete classification of the torsion for pG. Let us denote by TorppGq the set of

all torsion actions of G. Recall that a torsion action of G is the pair pA, δq, where A is a unital
C˚-algebra and δ is an ergodic action of G on A.

ii) By analogy with the classical locally compact case, we may re-define the corresponding localizing
subcategory xCIQut.y by adding the pG-C˚-algebras arising from the torsion phenomena studied
in step piq. More precisely, we may put

LG :“ xL
pG :“ xxCIQut.y :“ xtT bB with T P TorppGq and B P ObjpK K quy,

whose Baaj-Skandalis dual is denoted by L
pG :“ xCIQut.y.
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4.1 Remark. Observe that this definition is consistent with the definitions and constructions of
Section 1.7.2 for the torsion-free case. Indeed, assume that pG is a torsion-free discrete quantum
group. In this case, the unique torsion action of G is the trivial one. Hence TorppGq “ tCu and
the above definition yields

xxCIQut.y “ xtCbB with the trivial action of G on C and B P ObjpK K quy

– xtB P ObjpK K Gq | B with trivial action of Guy,

which corresponds exactly to xCIQut.y “ xtc0ppGqbB with B P ObjpK K quy by Baaj-Skandalis
duality (recall Theorem 1.7.1.20 and Proposition 1.7.2.3).

iii) We show that pG satisfies the strong Baum-Connes property. This means that L
pG “ K K

pG.
Notice that from a theoretical point of view, we do not have any right to speak about “quantum
Baum-Connes property” for the torsion case. Nevertheless, we can re-define the strong Baum-
Connes property for this case by requiring the abstract condition L

pG “ K K
pG, where L

pG
depends now on the torsion phenomena of pG as established in step piiq.
For proving this, we shall have two possibilities

a) either we prove it directly using adapted techniques coming from the torsion-free case
b) or we prove it using monoidal equivalences. Indeed, we have already explained in Theorem

B.3.19 that torsion actions of monoidallly equivalent discrete quantum groups are in bijective
correspondence. In this way, if pF is a discrete quantum group that is monoidally equivalent
to pG, then we have

TorppGq – TorppFq and K K
pG – K K

pF

If pF is “well-related” with an other discrete quantum quantum group for which we know
the strong Baum-Connes property, the monoidal equivalence may yield the property for pG
itself. For instance, this is the situation for the quantum automorphism group of a finite
dimensional C˚-algebra [212] or for the free wreath product as it has been shown in Section
3.7.

iv) Since L
pG takes into account the torsion phenomena of pG, Remark 1.7.2.11 can not be applied

in a straight fashion, so that in the torsion case the K-amenability is not guaranteed a priori.
However, the notion of proper almost homogeneous pG-C˚-algebra (see Definition 4.5 and Lemma
4.6 in [212] for more details) allows to generalize Remark 1.7.2.11 in the torsion case as it has
been shown in Theorem 3.7.3.5.
In other words, our definition of the subcategory L

pG and thus the corresponding definition of
strong Baum-Connes property guarantees the K-amenability property whenever pG satisfies the
strong Baum-Connes property.
Therefore, we write simply CpGq for both the reduced and the maximal C˚-algebra associated
to G. Likewise, we write simply pG˙ ¨ for both the reduced and the maximal crossed product
functor.

v) We consider a homological ideal J and we construct a J -projective resolution of length 1 for
C in K K

pG, say
0 ÝÑ P1

δ1
ÝÑ P0

δ0
ÝÑ C ÝÑ 0
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4.1.2.1 Remarks. 1. Notice that, because of the torsion of pG, we can not do an obvious choice
of the homological ideal J . Its definition depends thus on the concrete situation in which
we are working.

2. Notice that, because of the torsion of pG, we can not do an obvious choice of the J -projective
objects P0 and P1. However, following Remark 4.1.1.1 and the definition of the subcategory
L

pG in step piiq, the reasonable choice should be a suitable combination of c0ppGq and objects
T P TorppGq. For instance this is the situation for the quantum automorphism group of a
finite dimensional C˚-algebra [212].
Nevertheless, remark that we must check that such combinations defining P0 and P1 are
actually J -projective objects (in terms of the choice of the homological ideal J ). In other
words, we have to stress that in the torsion case we don’t have a priori an analogue of
Theorem 1.7.2.6, so that we don’t have a priori that L

pG is generated by J -projective objects.

vi) We prove that KK pGpA,Bq “ p0q, for all A P ObjpK K
pGq and for all J -contractible object B

in K K
pG.

Notice that this step is automatically fulfilled in the torsion-free case thanks to the adjointness
between induction and restriction functors and the obvious choice of the homological ideal J .

vii) Step pvq and step pviq allow to apply Theorem 1.2.4.9. Hence, we know that there exists a
short exact sequence

L0F pΣipCqq ãÑ F pΣipCqq� L1F pΣi`1pCqq,

where F : K K
pG ÝÑ A bZ{2 is the homological functor given by F pAq :“ K˚ppG˙

r
Aq, for all

A P ObjpK K
pGq.

In the Kasparov category K K
pG and thanks to Bott periodicity, this sequence is precisely the

following 6-terms exact sequence,

K0ppG˙ P1q
K0ppG˙ δ1q // K0ppG˙ P0q

K0ppG˙ δ0q // K0pCpGqq

��
K1pCpGqq

OO

K1ppG˙ P0q
K1ppG˙ δ0q

oo K1ppG˙ P1q
K1ppG˙ δ1q
oo

viii) This may yield the computation of K0pCpGqq and K1pCpGqq since P0 and P1 shall be chosen
in such a way that we know the K-groups of the crossed products pG˙ P0 and pG˙ P1. Indeed,
recall Remark 4.1.2.1 above and observe that now we have to know in addition the K-theory
of TorppGq.

ix) It is important to observe the following. Sometimes, it seems that working in the “compact
category” K K G (doing Baaj-Skandalis duality) is more convenient. In this case, we may
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modify step pvq above by constructing a I-projective resolution of length 1 for CpGq for an
appropriated homological ideal I in K K G. Therefore, we obtain an analogous 6-terms exact
sequence as above by applying directly Theorem 1.2.4.9 with the K-theory functor.

From the preceding panorama we may conclude the following. The torsion-free case is well-
understood up to natural choices of the J -projective resolution for C. However, the torsion case
presents deep difficulties since we have to adapt the general theoretical framework in order to give
a meaning to the “quantum Baum-Connes property”. In addition, the torsion phenomena yields
new C˚-algebras for which neither there exists a natural choice for the J -projective resolution for
C nor the corresponding K-groups are known a priori.

For this reason, even if we solve the theoretical issue for a general formulation of a quantum
Baum-Connes property, the study of the torsion phenomena remains a central stage that we can
not avoid for the K-theory computations.

The general torsion-free-strategy has been successfully applied for free quantum groups [208]
and for SUqp2q [210] obtaining in particular the following K-groups

K0pCpU
`pnqqq “ Z and K1pCpU

`pnqqq “ Z‘ Z

K0pCpO
`pnqqq “ Z and K1pCpO

`pnqqq “ Z

Likewise, the general torsion-strategy has been successfully applied in a ingenious way for a
quantum automorphism group of a finite dimensional C˚-algebra [212] obtaining in particular the
following K-groups

K0pCpS
`
N qq “ ZN

2
´2N`2 and K1pCpS

`
N qq “ Z

4.2 The Lemeux-Tarrago’s pHq ă
{G ˚ SUqp2q

First of all, the whole content of this section is a collaboration work with A. Freslon [127]. We will
follow the same notations from Section 2.6 and Section 3.7.

The main motivation for this work has been the computation of the K-theory of the C˚-algebra
defining a free wreath product G o˚ S`N , where G is a compact quantum group and N ě 4 is a
natural number. However, the research carried out in [127] has not shed light on how to apply the
methods described in the preceding section in order to perform such a computation. To the best
knowledge of the author, the cohomological dimension of a free wreath product (see [21] for more
details) is not known yet, so that it is reasonable to expect that the K-theory of C˚pG o˚ S`N q can
be computed by means of a spectral sequence (that is to say, it is not enough to construct projective
resolutions of length 1), which differs from the examples known up to the present.

Despite this setback, we can work with the Lemeux-Tarrago’s compact quantum subgroup Hq,
which is monidally equivalent to the free wreath product G o˚ S`N . The reason for this is that pHq is a
discrete quantum subgroup of {G ˚ SUqp2q, which is the dual of a free product of compact quantum
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groups. Hence, our strategy consists in combining the work [208] by R. Vergnioux and C. Voigt
with the work [211] by C. Voigt.

Let us be more precise. Let G be a compact quantum group such that pG is torsion-free and
satisfies the strong Baum-Connes conjecture. Put F :“ G˚SUqp2q. We shall begin by particularizing
the steps described in Section 4.1.1 and Section 4.1.2 using the results from Section 3.7.

i) The torsion for the dual of the free wreath product G o˚ S`N is completely classified. Hence, the
torsion for pHq too by monoidal equivalence. In particular, the only, up to equivariant Morita
equivalence, torsion action of Hq is given by pM2pCq, αqq (see Remark 3.7.1.3).

ii) The dual of the free wreath product G o˚ S`N satisfies the strong Baum-Connes property. Hence,
pHq too by monoidal equivalence (see Theorem 3.7.2.6). In particular, L

pHq “ K K
pHq , where

L
pHq :“ xtHq ˙

r
M2pCq bB with B P ObjpK K qu Y tc0ppHqq bB with B P ObjpK K quy

iii) The dual of the free wreath product G o˚ S`N is K-amenable. Hence, pHq too by monoidal
equivalence (see Corollary 3.7.3.6). For this reason we write simply CpHqq for both the reduced
and the maximal C˚-algebra associated to Hq. Likewise, we write simply Hq ˙ ¨ for both the
reduced and the maximal crossed product functor.

iv) Since pG is torsion-free by assumption and {SUqp2q is torsion-free (recall Theorem 2.1.5), then
pF “ {G ˚ SUqp2q is still torsion-free by Theorem 3.6.1.1. In this situation, let us consider the
usual homological ideal J :“ kerHom

´

Res
{G˚SUqp2q

E

¯

. Assume that we have a J -projective

resolution of length 1 for C in K K
{G˚SUqp2q, say

0 ÝÑ P1
δ1
ÝÑ P0

δ0
ÝÑ C ÝÑ 0

Moreover, pG satisfies the strong Baum-Connes property by assumption and {SUqp2q too (recall
Theorem 2.1.5). Hence pF “ {G ˚ SUqp2q satisfies the strong Baum-Connes property by Theorem
3.6.2.3. So, by virtue of Theorem 1.2.4.9 there exists a distinguished triangle in K K

{G˚SUqp2q,
which can be written, up to J -isomorphism, under the form

P1
δ1
ÝÑ P0

δ0
ÝÑ C ÝÑ ΣpP1q

v) Given the discrete quantum group pHq ă {G ˚ SUqp2q “ pF, let us restrict the preceding distin-
guished triangle to a distinguished triangle in K K

pHq ,

Res
pF
pHq
pP1q

Respδ1q
ÝÑ Res

pF
pHq
pP0q

Respδ0q
ÝÑ C ÝÑ Σ

´

Res
pF
pHq
pP1q

¯

(4.2.1)

vi) Finally, applying the homological functor F : K K
pHq ÝÑ A bZ{2 given by F pBq :“ K˚ppHq˙Bq,
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for all B P ObjpK K
pHq q leads to the following six-term exact sequence

K0

´

pHq ˙Res
pF
pHq
pP1q

¯

// K0

´

pHq ˙Res
pF
pHq
pP0q

¯

// K0pCpHqqq

��

K1pCpHqqq

OO

K1

´

pHq ˙Res
pF
pHq
pP0q

¯

oo K1

´

pHq ˙Res
pF
pHq
pP1q

¯

oo

(4.2.2)

To sum up, our strategy consists in constructing a J -projective resolution of length 1 for C in
K K

{G˚SUqp2q and then restricting the corresponding distinguished triangle in K K
{G˚SUqp2q to a

distinguished triangle in K K
pHq , which leads a six-term exact sequence by applying the functor

K˚ppHq ˙ ¨q, which allows to compute the K-theory of CpHqq. This process is plausible because
{G ˚ SUqp2q is torsion-free and satisfies the strong Baum-Connes property. Moreover, for some

choices of G we can give an explicit J -projective resolution by applying the result [208] by R.
Vergnioux and C. Voigt. Namely,

a) if G :“ O`pnq is a free orthogonal quantum group with n ě 2, then Theorem 7.1 in [208]
suggests

P1 :“ c0

´

{O`pnq ˚ SUqp2q
¯

‘ c0

´

{O`pnq ˚ SUqp2q
¯

and P0 :“ c0

´

{O`pnq ˚ SUqp2q
¯

δ1 :“ pTu ´ dimpuqidq ‘ pTv ´ dimpvqidq and δ0 :“ pλ,

where u denotes de fundamental representation of SUqp2q, v the fundamental representation of
O`pnq and pλ the left regular representation. Recall that the homomorphisms Tu and Tv were
defined in Remark 4.1.1.1.

b) if G :“ U`pP1q ˚ . . . ˚ U
`pPkq ˚ O

`pQ1q ˚ . . . ˚ O
`pQlq is a free product of free unitary and

free orthogonal quantum groups, where Pi P GLmipCq with mi ě 2 for all i “ 1, . . . , k and
Qj P GLnj pCq with nj ě 2 satisfies QjQj “ ˘id for all j “ 1, . . . , l; then Theorem 7.1 in [208]
suggests

P1 :“
2k`l`1
à

r“1
c0

´

{G ˚ SUqp2q
¯

and P0 :“ c0

´

{G ˚ SUqp2q
¯

δ1 :“
k
à

i“1

´

pTui´dimpuiqidq ‘ pTui´dimpuiqidq
¯

‘

l
à

j“1

´

pTvj ´dimpvjqidq
¯

‘ pTu´dimpuqidq

and δ0 :“ pλ,

where u denotes de fundamental representation of SUqp2q, ui the fundamental representation of
U`pPiq for every i “ 1, . . . , k, vj the fundamental representation of O`pQjq for every j “ 1, . . . , l
and pλ the left regular representation.
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c) if G :“ Fn is the classical free group on n generators, then an appropriated modification of the
resolution given in [208] suggests to take

P1 :“
n`1
à

r“1
c0

´

{Fn ˚ SUqp2q
¯

and P0 :“ c0

´

{Fn ˚ SUqp2q
¯

δ1 :“
n
à

i“1
pTai ´ idq ‘ pTu ´ 2 idq and δ0 :“ pλ,

where u denotes the fundamental representation of SUqp2q, a1, . . . , an the canonical generators
of Fn and pλ the left regular representation.
It is important to remark that in this case we must check that the corresponding diagram
P1

δ1
ÝÑ P0

δ0
ÝÑ C defines actually a J -projective resolution of length 1 for C in K K

{Fn˚SUqp2q

because we can not apply directly the result [208]. We will be more precise later on.

In the first stage of this process we work with {G ˚ SUqp2q, which is torsion-free and then we
only have to restrict the corresponding resolution to pHq. It seems that the torsion phenomena of
pHq does not play any role in this computation. But this is not true at all. Namely, the process of
restriction of the step pvq above implies the computation of the distinguished triangle p4.2.1q, for
which the torsion phenomena of pHq is central. This computation is our next goal.
4.2.1 Note. This restriction strategy has already been used by C. Voigt for computing the K-theory
of the quantum automorphism group of matrices. See Theorem 5.2 in [211] for more details.

4.2.1 Preliminary computations

Given the quantum free product F :“ G ˚ SUqp2q, recall from Section 2.5 that c0p {G ˚ SUqp2qq “
Àc0

yPIrrpG˚SUqp2qq
BpHyq, where IrrpG˚SUqp2qq “ IrrpGq˚IrrpSUqp2qq. Denote by u the fundamental

representation of SUqp2q, which can be viewed as an irreducible representation of the quantum free
product, u “ εG ˚ u. Denote by pu the minimal central projection of c0p {G ˚ SUqp2qq on BpHuq. As
in Remark 4.1.1.1 we consider the following composition

Tu : c0ppFq
pΘ
ÝÑMpc0ppFq b c0ppFqq

idbpu
ÝÑ Mpc0ppFq b BpHuqq – c0ppFq,

where the last identification is the canonical Morita equivalence and Θ denotes the co-multiplication
of the quantum free product F “ G˚SUqp2q. This composition is a homomorphism in K K

{G˚SUqp2q,
so that it is viewed as an equivariant Kasparov triple Tu P KK

pFpc0ppFq, c0ppFqq. We can restrict
this element to a homomorphism in K K

pHq because pHq ă pF. By abuse of notation, the element
Res

pF
pHq
pTuq P KK

pHq pc0ppFq, c0ppFqq is still denoted by Tu.

More precisely, the equivariant Kasparov triple Tu is defined by the Hilbert c0ppFq-module
H :“ c0ppFq bHu with right action of pF given simply by multiplication of the first tensor, that is,
the action δH : H ÝÑ ĂMpH b c0ppFqq is such that δHpab ηqpbq “ a ¨ bb η, for all a, b P c0ppFq and all
η P Hu. Moreover, the ˚-homomorphism pidb puq ˝ pΘ : c0ppFq ÝÑMpc0ppFq b BpHuqq “ Lc0ppFqpHq
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defines an equivariant representation of c0ppFq on H. Recall Section 1.7.1 for the general definitions
of equivariant Kasparov triples in the quantum setting.

Consider the descent homomorphism with respect to pHq,

j
pHq : KK pHq pc0ppFq, c0ppFqq ÝÑ KKppHq ˙ c0ppFq, pHq ˙ c0ppFqq

We want to understand the image of Tu under j
pHq . For this, we must describe c0ppFq as a pHq-C˚-

algebra. In other words, we are going to compute RespF
pHq

´

c0ppFq
¯

. Let ω P IrrpGq ˚ IrrpSUqp2qq “
IrrpFq be a word with letters in IrrpGq \ IrrpSUqp2qq which is

- either empty

- or starts in IrrpGq.

For instance, the fundamental representation u is a plausible word ω in the sense of the preceding
definition. Given any word ω as above, we define the following subset of IrrpFq,

Jω :“ ty P IrrpFq | y Ă hj ω with h P IrrpHqqu

Notice that JH “ IrrpHqq by definition. Given any word ω as above, we define the following
C˚-algebra,

Aω :“
c0
à

yPJω

BpHyq

Let us give two important observations.

- Given a word ω as above, we write

c0ppHqq b BpHωq “

´ c0
à

hPIrrpHqq
BpHhq

¯

b BpHωq “

c0
à

hPIrrpHqq
BpHh bHωq

–

c0
à

yĂhjω

BpHyq “

c0
à

yPJω

BpHyq “ Aω,

which implies that Aω is equivariantly Morita equivalent to c0ppHqq. Consequently, Baaj-
Skandalis duality yields the following isomorphism in K K

pHq

pHq ˙Aω – CbKpL2pHqqq,

for all word ω as above.

- Since pHq is a discrete quantum subgroup of pF “ {G ˚ SUqp2q, then we know from Proposition
1.4.3.4 that

c0ppFq “
´ c0

à

hPIrrpHqq
BpHhq

¯

‘

´ c0
à

yPIrrpFqzIrrpHqq
BpHyq

¯
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But we have JH “ IrrpHqq, so that IrrpFqzIrrpHqq “
À

ω‰H

Jω because Hq is generated, by

definition, by the words of the form uxu with x P IrrpGq (recall Theorem 2.6.2). Hence we
write

c0ppFq “
´ c0
à

yPJH

BpHyq

¯

‘

´

à

ω‰H

´ c0
à

yPJω

BpHyq

¯¯

“ AH ‘
´

à

ω‰H
ω‰u

Aω

¯

‘Au

“ Au ‘
´

à

ω‰u

Aω

¯

(4.2.3)

In other words, we have obtained that RespF
pHq

´

c0ppFq
¯

“ Au‘
´

À

ω‰u
Aω

¯

. By abuse of notation

we still denote by c0ppFq this restriction. Consequently, Baaj-Skandalis duality yields the
following isomorphism in K K

pHq

pHq ˙ c0ppFq – CbKpL2pHqqq ‘
´

à

ω‰u

CbKpL2pHqqq
¯

,

which, at the level of K-theory, yields

K0ppHq ˙ c0ppFqq “ Zu ‘
´

à

ω‰u

Zω
¯

and K1ppHq ˙ c0ppFqq “ p0q,

where Zu denotes the copy of Z corresponding to Au and Zω denotes the copy of Z cor-
responding to Aω with ω ‰ u. Let us denote by eu and by eω the unit of Zu and Zω,
respectively.

The description of c0ppFq as a pHq-C˚-algebra given in p4.2.3q yields that the element Tu P
KK

pHq pc0ppFq, c0ppFqq splits as a direct sum, so that we can study each summand separately. With
the same notations as above, we can compute the element j

pHq pTuq at the level of K-theory, which
will be denoted in the same way by abuse of notation.

4.2.1.1 Proposition. The element Bu :“ j
pHq pTuq acts on the basis as follows

i) if ω ‰ H and ω ends in IrrpGq, then Bupeωukq “ eωuk`1 ` eωuk´1 ,

ii) if ω ‰ H and ω ends in IrrpGq, then Bupeωq “ eωu,

iii) if ω “ u, then Bupeuq “ 2eH,

iv) if ω “ H, then BupeHq “ 2eu.

Proof. First of all, remark that given any a P BpHyq with y P IrrpFq, then by construction we have

Tupaq “ pidb puqpΘpaq P
c0
À

yĂzju
BpHzq b BpHuq. Therefore, we have four possibilities.
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i) If y P Jωuk with ω ‰ H ending in IrrpGq, then either z P Jωuk`1 or z P Jωuk´1 . Indeed,
y P Jωuk means that y Ă h j ωuk, for some h P IrrpHqq. Since y Ă z j u, then it must be
either z P Jωuk`1 or z P Jωuk´1 because applying the fusion rules of SUqp2q we have

either z Ă hj ωuk`1 ñ y Ă hj ωuk`1 j u “ phj ωukq ‘ phj ωuk`2q, for some h P IrrpHqq

or z Ă hj ωuk´1 ñ y Ă hj ωuk´1 j u “ phj ωuk´2q ‘ phj ωukq, for some h P IrrpHqq

Therefore, Bupeωukq P Zeωuk`1 ‘ Zeωuk´1 .

ii) If y P Jω with ω ‰ H ending in IrrpGq, then z P Jωu. Indeed, y P Jω means that y Ă hj ω,
for some h P IrrpHqq. Since y Ă z j u, then it must be z P Jωu because applying the fusion
rules of SUqp2q we have

z Ă hj ωuñ y Ă hj ωuj u “ phj ωq ‘ phj u2q, for some h P IrrpHqq

Therefore, Bupeωq P Zeωu.

iii) If y P Ju, then z P JH. Indeed, y P Ju means that y Ă h j u, for some h P IrrpHqq. Since
y Ă z j u, then it is clear that it must be z P JH “ IrrpHqq.
Therefore, Bupeuq P ZeH.

iv) If y P JH, then z P Ju. Indeed, y P JH “ IrrpHqq means that y “ h P IrrpHqq. Since y Ă zju,
then it must be z P Ju because applying the fusion rules of SUqp2q we have

z Ă hj uñ y Ă hj uj u “ h‘ phj u2q, with h :“ y P IrrpHqq

Therefore, BupeHq P Zeu.

Let us analyze the first case, so that consider a non-empty word ω ending in IrrpGq and
consider an irreducible representation y P Jωuk . By the above discussion, we know that Tupaq P
c0
À

yĂzju
BpHzq b BpHuq with either z P Jωuk`1 or z P Jωuk´1 , for all a P BpHyq. Hence, in order

to study Bu “ j
pHq pTuq, we have to understand the image by the descent homomorphism of the

Kasparov triple associated to Tu corresponding to the term associated to either ωuk`1 or to ωuk´1

in the direct sum decomposition of c0ppFq (recall the formula (4.2.3) and that each term Aω is
isomorphic to c0ppHqq b BpHωq). In other words, we have to understand either the module

pHq ˙
´

c0ppHqq b BpHωuk`1q bHu

¯

P KK
´

pHq ˙ c0ppHqq b BpHωukq, pHq ˙ c0ppHqq b BpHωuk`1q

¯

,

equipped with the right action given simply by multiplication on the first two tensors and the
representation of pHq ˙ c0ppHqq b BpHωukq given by multiplication for the crossed product and
ppωuk`1 b puq ˝ pΘ for BpHωukq; or the module

pHq ˙
´

c0ppHqq b BpHωuk´1q bHu

¯

P KK
´

pHq ˙ c0ppHqq b BpHωukq, pHq ˙ c0ppHqq b BpHωuk´1q

¯

,

equipped with the right action given simply by multiplication on the first two tensors and the
representation of pHq ˙ c0ppHqq b BpHωukq given by multiplication for the crossed product and
ppωuk´1 b puq ˝ pΘ for BpHωukq.
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Let us concentrate on the first one and write it in the following way as bimodule,

pHq˙c0ppHqqbBpH
ωuk

q

´

pHq ˙ c0ppHqq b BpHωuk`1q bHu

¯

pHq˙c0ppHqqbBpH
ωuk`1 q

Notice that the crossed product appearing here is isomorphic to the compact operators by
Takesaki-Takai duality, so that we can remove it.

BpH
ωuk

q

´

BpHωuk`1q bHu

¯

BpH
ωuk`1 q

Next, remark that Hωuk`1 is a finite dimensional Hilbert space. Hence, BpHωuk`1q is Morita
equivalent to C by means of Hωuk`1 , so that we write the following

BpH
ωuk

q

´

BpHωuk`1q bHu

¯

BpH
ωuk`1 q

–BpH
ωuk

q

´

Hωuk`1 b
BpH

ωuk`1 q
BpHωuk`1q bHu

¯

C

–BpH
ωuk

q

´

Hωuk`1 bHu

¯

C
,

where the representation of BpHωukq is given simply by the embedding of BpHωukq as a corner in
BpHωuk`1 bHuq. Next, let us apply Morita equivalence on the left action in analogous way. We
have

BpH
ωuk

q

´

Hωuk`1 bHu

¯

C
–C

´

Hωuk b
BpH

ωuk
q

`

Hωuk`1 bHu

˘

¯

C

–C

´

Hωuk b
BpH

ωuk
q

`

Hωuk ‘Hωuk`2
˘

¯

C

“C

´

Hωuk b
BpH

ωuk
q

Hωuk

¯

C
,

where for the last equality we remark that BpHωukq acts by zero on Hωuk`2 (recall that BpHωukq is
embedded as a corner in BpHωuk`1 bHuq “ BpHωuk ‘Hωuk`2q).

In other words, we have obtained that the module corresponding to the term ωuk`1 identifies
with 1 P Z “ K0pCq “ KKpC,Cq in the copy Zωuk`1 , that is, with eωuk`1 . The same computation
works for the module corresponding to the term ωuk´1. Hence, by virtue of the above discussion,
we have Bupeωukq “ eωuk`1 ` eωuk´1 , as claimed in the statement.

The same computation works for the case piiq of the statement. For the cases piiiq and pivq of
the statement, it is clear that eu and eH are exchanged. Moreover, the action of Bu on ZeH ‘ Zeu
does not depend on the compact quantum group G, so that it is enough to do the computation
when G is trivial. In that case, we have Hq “ SOqp3q and the result was proven in [211].

�

4.2.1.2 Lemma. For a word ω ‰ H and ω ‰ u which ends in IrrpGq we put

Eω :“ spanteωuk | k P Nu and Eu :“ ZeH ‘ Zeu

Put du :“ Bu ´ 2 id. The following properties hold.

i) The image of Eu by du is 2ZpeH ´ euq.
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ii) The image of Eω by du is the free module spanned by the vectors ξk :“ eωuk`1´akeω for all k P N,
where panqnPN is the sequence defined recursively by a0 :“ 2, a1 :“ 3 and ak`1 :“ 2ak ´ ak´1,
for all k ě 1.

Proof. i) Indeed, using the formulas obtained in Proposition 4.2.1.1 we write

dupeHq “ pBu ´ 2 idqpeHq “ BupeHq ´ 2eH “ 2eu ´ 2eH P 2ZpeH ´ euq

dupeuq “ pBu ´ 2 idqpeuq “ Bupeuq ´ 2eu “ 2eH ´ 2eu P 2ZpeH ´ euq

Hence dupEuq “ 2ZpeH ´ euq as claimed.

ii) For this we proceed by induction showing that the image of the span of tdupeωulqu0ďlďk equals
the span of tξlu0ďlďk.

- For k “ 0 and k “ 1 we have respectively the following

dupeωq “ pBu ´ 2 idqpeωq “ eωu ´ 2eω “ ξ0

dupeωuq “ pBu ´ 2 idqpeωuq “ eωu2 ` eω ´ 2eωu “ eωu2 ´ 3eω ` 4eω ´ 2eωu “ ξ1 ´ 2ξ0

- Assume that for every 0 ď l ď k the span of tdupeωulqu equals the span of tξlu.
- Then we write

dupeωuk`1q “ pBu ´ 2 idqpeωuk`1q “ eωuk`2 ` eωuk ´ 2eωuk`1

“ eωuk`2 ` pξk´1 ` ak´1eωq ´ 2pξk ` akeωq
“ eωuk`2 ` pak´1 ´ 2akqeω ` ξk´1 ´ 2ξk
“ eωuk`2 ´ ak`1eω ` ξk´1 ´ 2ξk
“ ξk`1 ` ξk´1 ´ 2ξk P spantξlu0ďlďk`1

Since the family tξkukPN is free, the result follows.
�

After these preliminary computations, we can carry out the study of the K-theory of CpHqq for
the different choices of G as explained in the beginning of this section.

4.2.2 G :“ O`pnq is a free orthogonal quantum group
If G :“ O`pnq is a free orthogonal quantum group with n ě 2 and we put F :“ O`pnq ˚ SUqp2q,
then Theorem 7.1 in [208] suggests

P1 :“ c0ppFq ‘ c0ppFq and P0 :“ c0ppFq

δ1 :“ pTu ´ dimpuqidq ‘ pTv ´ dimpvqidq and δ0 :“ pλ,

where u denotes de fundamental representation of SUqp2q, v the fundamental representation of
O`pnq and pλ the left regular representation.
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Hence, the preliminary computations above yield that diagram p4.2.2q becomes now the following
six-term exact sequence

´

Zu ‘
´

À

ω‰u
Zω

¯¯‘2 du ‘ dv // Zu ‘
´

À

ω‰u
Zω

¯

// K0pCpHqqq

��
K1pCpHqqq

OO

0oo 0oo

where dv :“ Bv ´ n id and Bv :“ j
pHq pTvq. Therefore, we have to compute

K0pCpHqqq “ cokerpdu ‘ dvq and K1pCpHqqq “ kerpdu ‘ dvq

In order to so, we need an analogue of Proposition 4.2.1.1 for Bv. Let us denote by fu and by
fω the unit of Zu and Zω, respectively of the second copy of Zu ‘

´

À

ω‰u
Zω

¯

coming from P1.

4.2.2.1 Proposition. The element Bv :“ j
pHq pTvq acts on the basis as follows

i) for all word ω, Bvpfωvkq “ fωvk`1 ` fωvk´1 ,

ii) if ω “ H or ω ends in IrrpSUqp2qq, then Bvpfωq “ fωv,

iii) if ω “ u, then Bvpfuq “ nfu,

Proof. The first two cases follow from the same computations as in Proposition 4.2.1.1. Let us
show the third one.

As in Proposition 4.2.1.1, remark that given any a P BpHyq with y P IrrpFq, then by construction

we have Tvpaq “ pid b pvqpΘpaq P
c0
À

yĂzjv
BpHzq b BpHvq. In particular, the only representation z

such that u Ă z j v is uv. Moreover, uv P Ju because uv Ă uvuj u “ uv ‘ uvu2, where we take
h :“ uvu P IrrpHqq. Hence, it is clear that Bvpfuq P Zfu.

In order to study Bv “ j
pHq pTvq, we have to understand the image by the descent homomorphism

of the Kasparov triple associated to Tv corresponding to the term associated to u (recall the formula
(4.2.3)). In other words, we have to understand the following module

pHq ˙Au bHv P KKppHq ˙Au, pHq ˙Auq,

equipped with the right action given simply by multiplication on the first tensor and the represen-
tation of pHq ˙Au given by pHq ˙ pidb pvqpΘ. Let us write it in the following way as bimodule,

pHq˙Au

´

pHq ˙Au bHv

¯

pHq˙Au

By virtue of Remark 3.7.2.5, this yields the same KK-theory element as

M2pCq

´

M2pCq bHv

¯

M2pCq
,
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where the right action is simply multiplication on the first tensor and the representation of M2pCq
is faithful.

Next, remark that M2pCq is Morita equivalent to C by means of C2, so that we write the
following

M2pCq

´

M2pCq bHv

¯

M2pCq
–M2pCq

´

C2 b
M2pCq

M2pCq bHv

¯

C

–M2pCq

´

C2 bHv

¯

C

–C

´

C2 b
M2pCq

`

C2 bHv

˘

¯

C

By faithfulness of the representation of M2pCq, the latter Hilbert space has dimension n. In
other words, the module corresponding to the term u identifies with n P Z “ K0pCq “ KKpC,Cq
in the copy Zu, that is, with nfu and the proof is complete. �

4.2.2.2 Lemma. The following properties hold.

i) The kernel of du ‘ dv is ZpeH ` euq ‘ Zfu.

ii) The image of dv is spanned by the vectors ηk :“ eωvk`1 ´ bkeω for all k P N, where ω is a
word ending in IrrpSUqp2qq (possibly empty) and pbnqnPN is the sequence defined recursively by
b0 :“ n, b1 :“ n2 ´ 1 and bk`1 :“ nbk ´ bk´1, for all k ě 1.

Proof. i) We are going to prove that the vectors peH` euq‘ fu provide a Z-basis for kerpdu‘dvq.
Consider an element

x :“ λueu ` µufu `
ÿ

ω‰u

`

λωeω ` µωfω
˘

P Zu ‘ Zu ‘
´

à

ω‰u

Zω
¯

‘

´

à

ω‰u

Zω
¯

and assume that pdu ‘ dvqpxq “ 0.
Denote by L the maximal length of the words appearing in this sum with non-zero coefficient.
If L ą 1, then a word ω of length L must be either of the form ω1uk or ω1vk. Assume that ω
is of the form ω1uk and let k0 be maximal so that ω1uk0 occurs in the element x. So either
λω ‰ 0 or µω ‰ 0. If λω ‰ 0, then

λωeω1uk0`1 ´ pdu ‘ dvqpxq

must be a linear combination of basis vectors non including eω1uk0`1 , which is impossible
because pdu ‘ dvqpxq “ 0. If µω ‰ 0, then

µωfω1uk0`1 ´ pdu ‘ dvqpxq

must be a linear combination of basis vectors non including fω1uk0`1 , which is impossible
because pdu ‘ dvqpxq “ 0.
The same argument works when ω is of the form ω1vk.
If L “ 1 and ω “ vk, then we get the same contradiction. In conclusion, the sum only contains
terms associated to ω “ u or ω “ H. So we write

x “ λueu ` µufu ` λHeH ` µHfH
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and we compute its image by du ‘ dv,

pdu ‘ dvqpxq “ dupλueu ` λHeHq ` dvpµufu ` µHfHq

“ λup2eH ´ 2euq ` λHp2eu ´ 2eHq ` µupn fu ´ n fuq ` µHpfv ´ n fHq
“ p2λu ´ 2λHqeH ` p2λH ´ 2λuqeu ` µHpfv ´ n fHq

Since pdu ‘ dvqpxq “ 0 by assumption, the above computation implies λu “ λH and µH “ 0.
In other words, peu ` eHq ‘ fu is a Z-basis for kerpdu ‘ dvq, which ends the proof.

ii) The analogous argument as the one of Lemma 4.2.1.2 yields the claim of the statement.
�

4.2.2.3 Theorem. Let n ě 2 and N ě 4 be natural numbers. Let O`pnq o˚ S`N be the free wreath
product of the free orthogonal quantum group O`pnq by S`N . If Hq denotes the corresponding
Lemeux-Tarrago’s compact quantum group which is monoidally equivalent to O`pnq o˚ S`N , then

K0pCpHqqq “ Z‘ Z2 and K1pCpHqqq “ Z2

Proof. Thanks to Lemma 4.2.2.2, we have

K1pCpHqqq “ kerpdu ‘ dvq – Z‘ Z

Let us compute K0pCpHqqq “ cokerpdu ‘ dvq. Denote by π the canonical quotient map
Zu ‘

´

À

ω‰u
Zω

¯

� Zu ‘
´

À

ω‰u
Zω

¯

{Impdu ‘ dvq “ cokerpdu ‘ dvq.

If we consider a word of the form ωuk of length at least 2 (so ω ‰ H), then we have that

πpeωukq “ ak´1πpeωq

Namely, since ω ‰ H, then eωuk P Eω and Lemma 4.2.1.2 assures that dupEωq is spanned by the
vectors ξk “ eωuk`1 ´ akeω, for all k P N. This relation yields in particular eωuk ´ ξk´1 “ ak´1eω.
Since ξk´1 P Impduq Ă Impdu ‘ dvq by construction, then we obtain the formula above.

If we consider a word of the form ωvk for any ω (possibly empty), then we have that

πpeωvkq “ bk´1πpeωq

Namely, Lemma 4.2.2.2 assures that Impdvq is spanned by the vectors ηk “ eωvk`1´bkeω, for all
k P N. This relation yields in particular eωvk ´ ηk´1 “ bk´1eω. Since ηk´1 P Impdvq Ă Impdu‘ dvq
by construction, then we obtain the formula above.

In conclusion, cokerpdu‘ dvq is spanned by the vectors πpeωq with ω a word of length at least 1.
But notice that πpevkq “ bk´1πpeHq. Hence we have to consider only the vectors πpeuq and πpeHq
and cokerpdu ‘ dvq has rank at most two.

Observe that eu R Impdvq by construction. Moreover, recall from Lemma 4.2.1.2 that dupEuq “
2ZpeH ´ euq Ă Impduq Ă Impdu ‘ dvq. Hence, 2πpeHq “ 2πpeuq.

In other words, the vector πpeuq is free in cokerpdu ‘ dvq and it generates a copy of Z inside
cokerpdu ‘ dvq and the vector πpeHq satisfies the relation 2πpeHq “ 2πpeuq inside cokerpdu ‘ dvq,
so that it generates a copy of Z2 inside cokerpdu ‘ dvq. In conclusion,

K0pCpHqqq “ cokerpdu ‘ dvq – Z‘ Z2,

generated by πpeH ` euq and πpeH ´ euq. �
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4.2.3 G :“ U`
1 ˚ . . . ˚ U`

k ˚O`
1 ˚ . . . ˚O`

l is a free quantum group
If G :“ U`pP1q ˚ . . . ˚ U

`pPkq ˚ O
`pQ1q ˚ . . . ˚ O

`pQlq is a free product of free unitary and free
orthogonal quantum groups, where Pi P GLmipCq withmi ě 2 for all i “ 1, . . . , k and Qj P GLnj pCq
with nj ě 2 satisfies QjQj “ ˘id for all j “ 1, . . . , l and we put F :“ G ˚ SUqp2q, then Theorem
7.1 in [208] suggests

P1 :“
2k`l`1
à

r“1
c0ppFq and P0 :“ c0ppFq

δ1 :“
k
à

i“1

´

pTui ´ dimpuiqidq ‘ pTui ´ dimpuiqidq
¯

‘

l
à

j“1

´

pTvj ´ dimpvjqidq
¯

‘ pTu ´ dimpuqidq

and δ0 :“ pλ,

where u denotes de fundamental representation of SUqp2q, ui the fundamental representation of
U`pPiq for every i “ 1, . . . , k, vj the fundamental representation of O`pQjq for every j “ 1, . . . , l
and pλ the left regular representation.

Hence, the preliminary computations above yield that diagram p4.2.2q becomes now the following
six-term exact sequence

´

Zu ‘
´

À

ω‰u
Zω

¯¯‘2k`l`1 d // Zu ‘
´

À

ω‰u
Zω

¯

// K0pCpHqqq

��
K1pCpHqqq

OO

0oo 0oo

where d :“
2k
À

i

`

dui ‘ dui
˘

‘
l
À

j

`

dvj
˘

‘ du with

dui :“ Bui ´mi id and Bui :“ j
pHq pTuiq, for all i “ 1, . . . , k

dvj :“ Bvj ´ nj id and Bvj :“ j
pHq pTvj q, for all j “ 1, . . . , l

Therefore, we have to compute

K0pCpHqqq “ cokerpdq and K1pCpHqqq “ kerpdq

and the same computations as before yield the following result.

4.2.3.1 Theorem. Let mi ě 2, nj ě 2 and N ě 4 be natural numbers, for all i “ 1, . . . , k and
j “ 1, . . . , l. Let G :“ U`pP1q ˚ . . . ˚ U

`pPkq ˚ O
`pQ1q ˚ . . . ˚ O

`pQlq be a free product of free
unitary and free orthogonal quantum groups as above. Let G o˚ S`N be the free wreath product of
the quantum free product G by S`N . If Hq denotes the corresponding Lemeux-Tarrago’s compact
quantum group which is monoidally equivalent to G o˚ S`N , then

K0pCpHqqq “ Z‘ Z2 and K1pCpHqqq “ Z2k`l`1
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4.2.4 G :“ Fn is the classical free group on n generators
If G :“ Fn is the classical free group on n generators and we put F :“ Fn ˚ SUqp2q, then an
appropriated modification of the resolution given in [208] suggests to take

P1 :“
n`1
à

r“1
c0ppFq and P0 :“ c0ppFq

δ :“ δ1 :“
n
à

i“1
pTai ´ idq ‘ pTu ´ 2 idq and δ0 :“ pλ,

where u denotes the fundamental representation of SUqp2q, a1, . . . , an the canonical generators of
Fn and pλ the left regular representation.

First of all, let us check that the complex 0 ÝÑ P1
δ
ÝÑ P0

λ
ÝÑ C ÝÑ 0 defines actually a

J -projective resolution of length 1 for C in K K
pF, where J :“ kerHom

´

Res
pF
E

¯

as usual. For this,

it is enough to check that the application of the functor KKpFpc0ppFq, ¨ q yields an exact sequence of
abelian groups. More precisely, we obtain the following diagram

0 ÝÑ KK
pF
´

c0ppFq,
n`1
à

r“1
c0ppFq

¯

ÝÑ KK
pFpc0ppFq, c0ppFqq ÝÑ KK

pFpc0ppFq,Cq ÝÑ 0

that is to say,

0 ÝÑ
n`1
à

r“1
RpFq δ1

ÝÑ RpFq ε
ÝÑ Z ÝÑ 0,

where δ1 :“
n
À

i“1
pra´1

i
´ idq ‘ pru ´ 2 idq (“r” denotes the right multiplication operator) and ε is

the map induced by the dimension function (recall Remark 4.1.1.1 and notice that u – u because
SUqp2q is a free orthogonal quantum group, see Remarks 2.1.4).

4.2.4.1 Lemma. With the same notations as above, the diagram

0 ÝÑ
n`1
à

r“1
RpFq δ1

ÝÑ RpFq ε
ÝÑ Z ÝÑ 0

is an exact sequence of abelian groups.

Proof. First of all, notice that ε is such that εpaiq “ 1, for all i “ 1, . . . , n and εpuq “ 2. So the
surjectivity of ε is clear. Moreover, by construction it is also clear that Impδ1q Ă ker ε.

Let us show that δ1 is injective. Denote by ekω the basis element corresponding to the repre-
sentation ω in the k-th copy of RpFq. Denote by x a finite linear combination of such elements in
kerpδ1q. Moreover, consider a word ω of maximal length appearing in x with non-zero coefficient.

If it appears in the last component, then either ω ends in Fn and ωu appears in δ1pωq or ω ends
with some uk and then, taking k maximal, ωu (which ends with uk`1) appears in δ1pωq. In both
cases, the same argument as in Lemma 4.2.2.2 yields a contradiction.

Therefore, we may assume that ω appears in of the first n components and, without loss of
generality, let us assume that ω appears in the first component. If ω ends with some uk, then the
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same argument as above yields a contradiction. Thus, we have ω “ ω1γ, for some γ P Fn and we
may assume that γ is of maximal length. The same argument as above implies that γ must end
with a1. Then δ1pωγq “ ωγa´1

1 ´ ωγ “ 0, so that ωγ appears in δ1pxq, which means that x must
contain terms whose images by δ1 simplify with ωγ. But by definition of free groups, such a term
must be of the form ωpγaiq, which contradicts the maximality of γ.

In conclusion, δ1 is injective. It remains to show that kerpεq Ă Impδ1q. For this we observe that
the vectors xω :“ ω ´ dimpωq with ω any word, form a basis of kerpεq. Denote by π the canonical
quotient map kerpεq� kerpεq{Impδ1q. Let us consider a non-empty word.

If it is of the form ωuk, then the fusion rules of SUqp2q yields the equality

ωuk “ pru ´ 2 idqpωuk´1q ´ ωuk´2 ` 2ωuk´1,

(with the convention ωu´1 “ 0) so that

xωuk “ pru ´ 2 idqpωuk´1q ´ ωuk´2 ` 2ωuk´1 ´ dimpωukq

“ pru ´ 2 idqpωuk´1q ´
`

xωuk´2 ` dimpωuk´2q
˘

`
`

2xωuk´1 ` 2dimpωuk´1q
˘

´ dimpωukq

“ pru ´ 2 idqpωuk´1q ´ xωuk´2 ` 2xωuk´1 ,

so that πpxωukq P Zπpωuk´2q ‘ Zπpωuk´1q (since pru ´ 2 idqpωuk´1q P Impδ1q). Applying this
inductively, we see that πpωukq P Zπpωq.

If the word is of the form ωakl , then using the equality

ωakl ´ ωa
k`1
l “ pra´1

l
´ idqpωak`1

l q

we see that we can increase or decrease k depending on its sign until we get πpωakl q P Zπpωq.
We have shown that all the basis elements have the same image by π. Since xu “ u ´ 2 “

pru ´ 2 idqpεq is the image of the trivial representation, its image by π is zero and the proof is
complete. �

In this situation, we can apply the same strategy as before. Hence, the preliminary computations
above yield that diagram p4.2.2q becomes now the following six-term exact sequence

´

Zu ‘
´

À

ω‰u
Zω

¯¯‘n`1 d // Zu ‘
´

À

ω‰u
Zω

¯

// K0pCpHqqq

��
K1pCpHqqq

OO

0oo 0oo

where d :“
n
À

i

`

dai
˘

‘ du with

dai :“ Bai ´ id and Bai :“ j
pHq pTaiq, for all i “ 1, . . . , n

Therefore, we have to compute

K0pCpHqqq “ cokerpdq and K1pCpHqqq “ kerpdq

and the same computations as before yield the following result.
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4.2.4.2 Theorem. Let n ě 1 and N ě 4 be natural numbers. Let Fn o˚ S`N be the free wreath
product of the classical free group on n generators Fn by S`N . If Hq denotes the corresponding
Lemeux-Tarrago’s compact quantum group which is monoidally equivalent to Fn o˚ S`N , then

K0pCpHqqq “ Z‘ Z2 and K1pCpHqqq “ Zn`1
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Conclusion: open questions and possible lines of attack

The fifth and last chapter of the thesis is devoted to question ourselves about the results that we
have obtained. This chapter must be regarded as a compendium of the main questions, problems and
goals that the author has encountered during the whole research period of the present dissertation.
Most of the following subjects are part of future research projects of the author.

In Section 5.1 we care about the stability of the (resp. strong) Baum-Connes property for
constructions of Chapter 3. In Section 5.2 we care about the maximal torus strategy for proving
the strong Baum-Connes property. In Section 5.3 we care about the K-theory computations of
C˚-algebras associated to concrete examples of compact quantum groups guided by the results
of Chapter 3 and Chapter 4. In Section 5.4 we care about the formulation of the Baum-Connes
property for arbitrary discrete quantum groups (torsion-free or not).

289
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5.1 Stability of the Baum-Connes property
Notice that one of the main application of the quantum Baum-Connes property is the computation
of the K-theory of C˚-algebras arising from compact quantum groups. To this end, the strong
Baum-Connes property is the first requirement that we need. For this reason it is interesting to
analyze the strong version of the Baum-Connes property for the constructions of Chapter 3. From
a theoretical point of view, the usual Baum-Connes property is the original problem to solve and it
would be also interesting to know if we can establish directly this weaker version.

- Compact groups. If G is a classical compact group, then it is automatically amenable and
so it satisfies the strong Baum-Connes property by applying the celebrated result of Higson-
Kasparov [82]. Accordingly, G satisfies the usual Baum-Connes property. In the quantum
setting, Theorem 3.1.1 gives a model of the Kasparov category K K G in terms of the
complementary pair associated to pG under torsion-freeness assumption.
As a matter of fact, the amenability property is one of the main differences between compact
classical groups and compact quantum groups as we have explained in Remark 1.3.1.42. In
this sense, the first question would be the following: if G is a co-K-amenable compact quantum
group such that pG is torsion-free, then does G satisfy automatically the strong Baum-Connes
property ?
Recall from Remark 1.3.1.42 that if pG is amenable, then G is automatically co-amenable
(and so co-K-amenable). We can thus wonder about the relation between the Baum-Connes
property for a compact quantum group and the one for its discrete dual. Observe the following
obvious implications in the classical commutative case:

If G is compact abelian ñ pG is discrete abelian ñ pG satisfies the strong BC property

If Γ is discrete abelian ñ pΓ is compact abelian ñ pΓ satisfies the strong BC property

As it has been shown in [133] (see as well Theorem 3.1.3), if G is a classical connected compact
group (which satisfies the strong Baum-Connes property), then the discrete quantum group
pG satisfies the strong Baum-Connes property.
From these results it is reasonable to consider the following questions.

i) Given a classical compact group G (which satisfies the strong Baum-Connes property),
does its discrete dual pG satisfy the strong Baum-Connes property?

ii) Given a compact co-amenable (or even co-K-amenable) quantum group G such that pG
is torsion-free, does its discrete dual pG satisfy the strong Baum-Connes property? Can
we remove the torsion-freeness assumption?

iii) Inspired by Remark 1.3.1.42, the preceding question can be formulated as follows: if pG is
an amenable torsion-free discrete quantum group, does it satisfy the strong Baum-Connes
property? Can we remove the torsion-freeness assumption?

iv) Can we prove a quantum version of the Higson-Kasparov theorem? Namely, can we
prove that a torsion-free discrete quantum group satisfying the Haagerup property sat-
isfies directly the strong Baum-Connes property? Can we remove the torsion-freeness
assumption?
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- Quantum subgroups. On the one hand, we know from Theorem 3.2.2.1 and Proposition
3.2.2.3 that the (resp. strong) Baum-Connes property is hereditary for divisible discrete
quantum subgroups. But, to the best knowledge of the author, it is still open to know if the
(resp. strong) Baum-Connes property is preserved by arbitrary discrete quantum subgroups.
Moreover, up to the present, it has not been shown a discrete quantum group that does not
satisfy the (resp. strong) Baum-Connes property.
On the other hand, we know from [3] that strong torsion-freeness is preserved under divisible
discrete quantum subgroups. We have conjectured in the end of Section 3.2.1 that the same
stability result must hold for the torsion-freeness in the sense of Meyer-Nest. Observe that, in
general, discrete quantum groups involved in constructions of other discrete quantum groups
are discrete quantum subgroups of the resulting object. In this way, if the divisibility condition
assured the stability of torsion-freeness in the sense of Meyer-Nest, then we could simplify the
statements of Chapter 3 concerning the stability of the Baum-Connes property by removing
the assumptions of torsion-freeness of all discrete quantum groups involved.

- Quantum direct product. On the one hand, we have studied the strong Baum-property for
a quantum direct product in terms of the quantum groups involved obtaining the stability
result of Theorem 3.3.2.3.
On the other hand, we wanted to study directly the usual Baum-Connes property for a
quantum direct product in terms of the quantum groups involved. However, we have observed
that such a stability result is closely related to the Künneth formula (see Corollary 3.3.2.5 and
Remark 3.3.1) as in the classical case [37]. Nevertheless, the quantum counterpart contained
in this dissertation is not a totally optimal conclusion.
In this way, we open a first line of work beyond the present dissertation. Namely, it would be
interesting to establish a quantum setting for the Künneth formula in order to find sufficient
conditions to a crossed product (by a discrete quantum group) to belong to the class N . More
precisely, we are inspired by the work of J. Chabert, S. Echterhoff and H. Oyono-Oyono in
[37]. They develop an abstract categorical framework for the Künneth formula in terms of
what they call “Künneth functors”. If G is a locally compact group, then this approach allows
to give an equivariant version of the class N , say NG. One of the main theorems in [37] is
the following: “Let A be a G-C˚-algebra. If K ˙ A P N , for all compact subgroup K ă G,
then A P NG”.
It is reasonable to extend these definitions and constructions for discrete quantum groups. Can
we replace G by a discrete quantum group pG (perhaps under the torsion-freeness assumption)
?

- Quantum semi-direct product and compact bicrossed product. We have studied the usual
Baum-Connes property for a quantum semi-direct product in terms of the quantum groups
involved. In this way, Theorem 3.4.2.4 is the quantum counterpart of the result [34] by J.
Chabert. Under the torsion-freeness assumption, a compact bicrossed product becomes a quan-
tum semi-direct product as explained in Section 3.5. Hence, the corresponding Baum-Connes
property does not give any relevant information.
The strong version of the Baum-Connes property has been studied in Theorem 3.4.2.6. Notice
that it is not clear a priori (even with torsion-freeness assumption) that we can recover the
strong Baum-Connes property for pF from the strong Baum-Connes property for Γ and pG.
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In this sense, the stability of the strong Baum-Connes property for a quantum semi-direct
product has been half-achieved. However, the classification of torsion actions of pF must be
the key point in order to complete this stability result and we can tackle this classification
problem using a similar strategy as the one used for the free product construction in Section
3.6.1.
In other words, the torsion phenomena turns out to be crucial for the study of the strong
Baum-Connes property, which leads us to the problem of a Baum-Connes property formulation
without the torsion-freeness assumption. In such a situation, the compact bicrossed product
plays a much more interesting role as we have pointed out in the end of Section 3.5.

- Quantum free product. As we have explained in Section 3.6, R. Vergnioux and C. Voigt have
proven in [208] that the strong Baum-Connes property is stable under the quantum free
product construction.
To this end, they adapt geometrical strategies from classical well-known results in order
to apply directly the Dirac-dual Dirac method. However, once the discrete dual of such a
quantum free product is torsion-free (which has been investigated in detail in Section 3.6.1),
it is legitimate to speak about the usual Baum-Connes property. Can we establish directly the
usual Baum-Connes property for a quantum free product in terms of the usual Baum-Connes
property of the quantum groups involved?

- Free wreath product. In Theorem 3.7.2.6 we have showed that the dual of a free wreath
product G o˚ S`N with N ě 4 satisfies the strong Baum-Connes property whenever pG is
torsion-free and satisfies the strong Baum-Connes property.
To this end, we have had to give a suitable definition of strong Baum-Connes property taking
into account the torsion phenomena of {G o˚ S`N . Once we can give a proper formulation for
the usual Baum-Connes property without the torsion-freeness assumption, we could consider
the question, can we establish the usual Baum-Connes property for a free wreath product from
the usual Baum-Connes property of the quantum groups involved?

- Quantum group extension. In the classical case, both a direct product and a semi-direct
product can be viewed as group extensions. Moreover, the notion of extension for locally
compact quantum groups has been established in [196] by S. Vaes and L. I. Vainerman in
terms of the bicrossed product construction.
We know thanks to the work [143] of H. Oyono-Oyono that the Baum-Connes conjecture
is stable under central extensions of discrete groups. Can we establish the stability of the
Baum-Connes porperty for a general quantum group extension?

5.2 Maximal torus strategy
If G is a compact connected Lie group with torsion-free fundamental group, then pG satisfies
automatically the strong Baum-Connes property as explained in Theorem 3.1.3. Notice that the
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torsion-freeness assumption of the fundamental group is not necessary since R. Meyer and R. Nest
are able to manage the quantum torsion phenomena in this case [133].

It is important to have in mind the proof of Theorem 3.1.3. Namely, given the compact Lie
group G, we consider the corresponding maximal torus T ă G. Hence, using Lemma 3.1.2 it turns
out that the strong Baum-Connes property for pT is enough to guarantee the strong Baum-Connes
property for pG. And the strong Baum-Connes property for pT – Zn with n P N is immediate.

This strategy for duals of compact Lie groups have been imitated by C. Voigt in order to
prove the strong Baum-Connes property for {SUqp2q [210], [211]. These examples bring several
observations out.

a) Given a compact quantum group G, we shall find a maximal torus T ă G.

b) Given the maximal torus T , we shall carry KK-theory computations out in order to understand
the object CpG{T q in K K G.

c) If G :“ Gq is a q-deformation of a compact connected Lie group, then there always exists a
maximal torus T ă Gq but the KK-theory computations for CpGq{T q remain the main obstacle
to imitate the above arguments. For Gq :“ SUqp2q we have to deal with the KK-theory of the
Podleś sphere. We can find a very detailed treatment of this in Section 4 of [210]. It should be
expected that these arguments can be turned out to be general enough to be applied to any
q-deformation of a compact connected Lie group.

Observe that for q-deformations, the corresponding maximal torus corresponds to a maximal
torus in the usual sense. However, we can not expect the same for a general compact quantum
group. In this way, we have to face several issues.

i) What is the precise notion of maximal torus in the quantum setting? For this, we refer to
[17] where we can find a detailed survey about the subject. Roughly speaking, given any
compact quantum group G with pG ă {U`pnq, we can construct a family of duals subgroups
tpΓQ ă pGuQPUpnq that plays the role of maximal tori of the classical case. For instance, we have
the following remarkable examples

G :“ U`pnq ù ΓQ “ Fn

G :“ O`pnq ù ΓQ “ Fn{x
`

QQt
˘

ij
‰ 0 ñ gigj “ 1y,

for all Q P Upnq, where Fn “ xg1, . . . , gny is the free group on n generators.

ii) We shall deal with KK-theory computations for CpG{ΓQq, for every Q P Upnq.

iii) We obtain a family of groups parametrized by unitaries playing the role of maximal tori but
we can not construct a unique formal maximal torus.

iv) Once we have obtained this family, we have to adapt the arguments of Theorem 3.1.3 to this
more general setting. In particular, we shall prove that the corresponding ΓQ satisfy the strong
Baum-Connes property to achieve the conclusion for pG.

For instance, observe that the free group Fn satisfies clearly the strong Baum-Connes property
and we have stated in piq above that the family of maximal tori for the free unitary quantum group
is given simply by the free group. In this sense, we can think about a different method from the
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the one used by R. Vergnioux and C. Voigt in [208] as explained in Section 3.6 in order to prove
the strong Baum-Connes property for yU`pnq.

Observe finally that the key point of the argument of [133] is that the compact connected Lie
group G contains some subgroup T ă G that satisfies the strong Baum-Connes property and such
that the object CpG{T q is well understood in K K G in terms of the torsion phenomena of pG. Let
G be a compact quantum group. We contemplate proving the strong Baum-Connes property for pG
using the maximal torus strategy. The above observation leads us to suggest not searching for a
maximal torus, but searching for an appropriated discrete quantum subgroup pH ă pG. Namely, pH
should be such that it satisfies the strong Baum-Connes property and the object CpG{Hq is well
understood in K K G in terms of the torsion phenomena of pG.

5.3 K-theory computations
One of the main application of the quantum Baum-Connes property is the computation of the
K-theory of C˚-algebras arising from compact quantum groups. In this way, the stability results
obtained in Chapter 3 lead us to consider concrete examples of compact quantum groups for which
we contemplate computing the K-theory for the corresponding defining C˚-algebras.

The present dissertation has already illustrated a concrete application. Namely, Chapter 4 has
been devoted to compute the K-theory of CpHqq, where Hq is Lemeux-Tarrago’s compact quantum
group which is monoidal equivalent to the free wreath product G o˚ S`N with N ě 4. We recall
that such a computation has been carried out for three different choices of G: aq when G is a free
orthogonal quantum group, bq when G is a free quantum group and cq when G is the classical free
group on n generators.

Other concrete and interesting examples that we can consider are the following.

i) If F :“ Γ ˙
α
G denotes the quantum semi-direct product of a compact quantum group G by

a discrete group Γ, we shall find concrete examples of this construction arising from known
(quantum) groups. Let us be more precise following [216].

a) Examples coming from classical groups. Let G be a compact group and consider a discrete
subgroup of G, sayH ă G. There always exists an action ofH on G by inner automorphisms,
say α. In this way we can construct the corresponding quantum semi-direct product,

F :“ H ˙
α
G,

which is, in general, a genuine compact quantum group. If both G and H are finite
groups, this construction yields examples of finite quantum groups. But in this case the
corresponding pF is not torsion-free. For instance, the finite subgroups of H yield torsion for
pF by Theorem 3.4.1.1. Hence, we should do a preliminary analysis of the torsion phenomena
in order to perform the corresponding K-theory computation.

b) General construction. Let G “ pCpGq,∆q be a compact quantum group. We describe the
general construction with the following steps.
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- Define the following set

XpCpGqq :“ tφ : CpGq ÝÑ C, ˚-homomorphism ‰ 0u,

which is a compact group whenever it is not empty. Suppose that for a given G,
XpCpGqq ‰ H.

- For every φ P XpCpGqq we define the following automorphisms of CpGq,

λφ :“ pφ´1 b idq ˝∆ and ρφ :“ pidb φq ˝∆,

where φ´1 denotes the inverse of φ in the group XpCpGqq.
- It is straightforward to show that λφ and ρφ commute, so that we define the following
quantum automorphism of G

αφ :“ λφ ˝ ρφ,

for every φ P XpCpGqq. In other words, we have just defined an action α : XpCpGqq ÝÑ
AutpGq of XpCpGqq on G by quantum automorphisms.

- In this situation we can construct the corresponding quantum semi-direct product,

F :“ XpCpGqq ˙
α
G

Observe that, in this general construction, the condition XpCpGqq ‰ H is the key point
in order to obtain the compact quantum group F :“ XpCpGqq ˙

α
G. The typical compact

quantum groups as SUqp2q, O`pnq or U`pnq (recall Section 2.1) satisfy this condition.
Besides, it is possible to describe explicitly the corresponding compact group XpCpGqq (and
even the corresponding action α) for these typical examples (see Section 4 in [216] for more
details)

G :“ SU´1p2q ù X
`

CpSU´1p2qq
˘

“

!

ˆ

x ´y
y x

˙

P SUp2q | xy “ 0
)

G :“ O`pnq ù X
`

CpO`pnqq
˘

“ Opnq

G :“ U`pnq ù X
`

CpU`pnqq
˘

“ Upnq

In particular, we contemplate computing the following K-theory groups,

K0

´

C
`

Opnq ˙
α
O`pnq

˘

¯

“ ? and K1

´

C
`

Opnq ˙
α
O`pnq

˘

¯

“ ?

K0

´

C
`

Upnq ˙
α
U`pnq

˘

¯

“ ? and K1

´

C
`

Upnq ˙
α
U`pnq

˘

¯

“ ?

ii) As we have already explained in Section 4.2, the main motivation of the collaboration work
with A. Freslon [127] has been the computation of the K-theory of the C˚-algebra defining a
free wreath product G o˚ S`N with N ě 4. But, to the best knowledge of the author, there is
not an obvious way to apply the methodologies from the work of R. Vergnioux and C. Voigt
to the free wreath product case. However, it is an open question to know the cohomological
dimension of G o˚ S`N [21]. This, together with the research carried out in [127], yields the



296 CHAPTER 5. Conclusion: open questions and possible lines of attack

expectation of computing the corresponding K-theory by means of a spectral sequence, which
differs from the examples known up to the present.
To this end, the first step should be to adapt some classical homological notions into the
framework of triangulated categories in the spirit of Section 1.2.2 and Section 1.2.4 such as the
cohomological dimension. Next, inspired by Section 5 in [134] and guided by the analysis of the
torsion phenomena of {G o˚ S`N performed in Section 3.7.1, we should carry out a study of the
functor Ext for {G o˚ S`N . This, together with the general theory of the Universal Coefficient
Theorem, should suggest an advisable spectral sequence.

5.4 Formulation of the Baum-Connes property for ar-
bitrary quantum groups

First of all, we focus on a less ambitious problem than the one announced in the title. Namely, we
focus on the the Baum-Connes property formulation for arbitrary discrete quantum groups.

We have already pointed out several times throughout the present dissertation that the torsion-
freeness assumption of a discrete quantum group pG is crucial in order to give a satisfactory
formulation of the Baum-Connes property in the quantum setting, as it has been done in Section
1.7.2.

The main issue to such a formulation is that it is not clear

a) either what should be the homological ideal J in K K
pG, which would define the localizing

subcategory N of (quantum) compactly contractible objects

b) or what should be the localizing subcategory L of (quantum) compactly induced objects.

In Section 1.6.1 we have illustrated, with duals of classical compact groups, that the torsion
phenomena in the quantum setting is not restricted to the study of discrete quantum subgroups,
but other more exotic phenomena can occur. For this reason, it is not enough to take

a) either J as the homological ideal by means of the finite discrete quantum subgroups of pG by
analogy with the classical case of discrete groups (recall Section 1.2.3)

b) or L by means of the finite discrete quantum subgroups of pG by analogy with the classical case
of discrete groups (recall Section 1.2.3)

If the only torsion phenomena for pG comes from finite discrete quantum subgroups, the Meyer-
Nest’s strategy can be applied verbatim as in the torsion-free case of Section 1.7.2 because the
induction and restriction functors with respect to discrete quantum subgroups are always adjoint by
Lemma 1.7.2.4, which allows the construction of J -projective objects. Otherwise, when pG admits
other types of torsion, the Meyer-Nest’s strategy must be suitably modified.

Essentially, there are two main ways to tackle this problem. On the one hand, we should find
directly an advisable candidate for both L and N and prove that they form a complementary
pair of localizing subcategories in K K

pG. Notice that it is enough to know one of the localizing
subcategories of the pair because the other one is completely determined by taking the orthogonal
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complement by virtue of Lemma 1.2.1.26. On the other hand, we should find either a stable abelian
category or a triangulated category C and respectively, either a stable homological functor or a
triangulated functor F : K K

pG ÝÑ C . Moreover, this functor must admit a partially defined
adjoint functor in the sense of Definition 1.2.2.18. In this situation, the choice of the complementary
pair pL ,N q is given by Theorem 1.2.2.20.

In any case, the whole torsion phenomena for pG must be taken into account for achieving a
satisfactory Baum-Connes property formulation. In this way, inspired by the pioneering work by
R. Meyer and R. Nest [133] and by C. Voigt [212], we have announced in Section 4.1.2 that there
exists an appropriated candidate for the localizing subcategory L

pG of compactly induced objects
when pG has torsion. Indeed, this choice of L

pG allows to give an abstract categorical sense to the
strong Baum-Connes property for: iq the dual of a classical compact connected group [133], iiq the
quantum automorphism group [212] and iiiq the free wreath product Section 3.7.

In connexion with the above discussion, we suggest the following questions.

a) With the purpose of defining the homological ideal J and then of constructing J -projective
objects in K K

pG, could it be possible to choose a stable abelian or triangulated category Cδ and
to construct a, respectively, stable homological or triangulated functor

Fδ : K K
pG ÝÑ C ,

for every torsion action pA, δq of G such that the functor

F :“
´

Fδ

¯

δPTorppGq
: K K

pG ÝÑ
ź

δPTorppGq

Cδ

admits a partially defined adjoint functor?

b) Could it be possible to show directly that the localizing subcategory L
pG suggested in Section

4.1.2 together with its orthogonal complement L %
pG

form a complementary pair of localizing
subcategories in K K

pG?
If G is a classical compact connected group, the subcategory L

pG is explicitly described in [133].
Can we do a similar description without the connectedness assumption?
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Generalities

The goal of this appendix is just to establish some nomenclature of well-known theories as C˚-
algebras, von Neumann algebras, Hilbert modules and multiplier algebras. We don’t give any proof
and we refer to the corresponding references for the details.

As we have explained in the introduction, the main object of interest in this dissertation is
C˚-algebras. They are the underlying structure for compact quantum groups (in the sense of
Woronowicz) and (quantum) KK-theory. Nevertheless, the general notion of locally compact
quantum group in the sense of Kustermans-Vaes, that is currently accepted to be the most proper
one, fit in the context of von Neumann algebras and it needs a very technical theory background.
We don’t need in this dissertation to go into these details, but in order to give to the notion of
compact quantum group (in the sense of Woronowicz) an understandable perspective inside the
general theory (Section 1.3.2), it is advisable to establish some language of von Neumann algebras.
Finally, Hilbert modules are the elementary objects for the study of KK-theory so it is important
to establish the main definitions and constructions that we use in the dissertation.

A.1 Elements of C˚-algebras
Standard references for the necessary material on this subject are [53], [137], [148] and [167] (see
also [29] and [154]).

Let A be a ˚-algebra. A C˚-norm (resp. C˚-semi-norm) on A is a norm (resp. semi-norm) p on
A such that ppabq ď ppaqppbq, ppa˚q “ ppaq and ppa˚aq “ ppaq2, for all a, b P A.

- If C is any C˚-algebra and ϕ : A ÝÑ C is a ˚-homomorphism, then it is clear that the
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application
p : A ÝÑ R`

a ÞÝÑ ppaq :“ ||ϕpaq||

is a C˚-semi-norm on A. It is a C˚-norm whenever ϕ is injective.

- If P is a family of C˚-semi-norms on A, then the subset

AP :“ ta P A | sup
pPP
tppaqu ă 8u

is a ˚-subalgebra of A and the appllicatoin

rp : AP ÝÑ R`
a ÞÝÑ rppaq :“ sup

pPP
tppaqu

is a C˚-semi-norm on AP .

A.1.1 Definition. Let A be a ˚-algebra. The enveloping C˚-algebra of A, denoted by C˚pAq, is
the separated completion of A by the C˚-semi-norm

|| ¨ ||max : A ÝÑ R`
a ÞÝÑ ||a||max :“ supt||πpaq|| | π is a representation of Au

whenever this supremum is finite.

A.1.2 Remarks. 1. It is well-known that every ˚-Banach algebra admits a C˚-enveloping algebra.

2. If A is a ˚-algebra and C˚pAq exists, then the enveloping C˚-algebra satisfies the following
universal property. For every ˚-homomorphism ϕ : A ÝÑ C, where C is a C˚-algebra, there
exists a unique ˚-homomorphism rϕ : C˚pAq ÝÑ C such that rϕ˝j “ ϕ, where j : A ÝÑ C˚pAq
denotes the canonical map.

A.1.3 Definition. Let A be a C˚-algebra. An approximate unit for A is a increasing sequence
tenunPN of positive elements in the closed unit ball of A such that

lim
nÝÑ8

aen “ a “ lim
nÝÑ8

ena,

for all a P A.

A.1.4 Remark. It is well known that every C˚-algebra admits an approximate unit as a generalized
sequence. If A is in addition separable, such approximate unit can be realized as a sequence. Recall
that all C˚-algebras of this dissertation are supposed to be separable.

In this case, A is called sometimes σ-unital and it can be shown (see [148] for a proof) that
the existence of a countable approximate unit is equivalent to the existence of a strictly positive
element, that is, an element h P A such that φphq ą 0, for all state φ P A˚ (a positive element
h P A is strictly positive if and only if hA is dense in A).

A.1.5 Definition. Let A be a C˚-algebra and I Ă A an ideal. We say that I is essential if the
following condition holds,

@a P A, aI “ p0q ñ a “ 0
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A.1.6 Remark. If I is in addition a two-sided closed ideal, then I is itself a C˚-subalgebra of A as
well as the quotient A{I. Essential ideals are important for the notion of multiplier algebra.

A.1.7 Definition. Let A, B and E three C˚-algebras. We say that E is an extension of A by B
if there is a short exact sequence of C˚-algebras,

0 ÝÑ B
ι
ÝÑ E

p
ÝÑ A ÝÑ 0,

meaning more precisely that ι is an injective ˚-homomorphism, p is a surjective ˚-homomorphism
and Impιq “ kerppq.

We say that B is a split extension if there exists a ˚-homomorphism s : A ÝÑ E (called section
of p) such that p ˝ s “ idA. If such a section is just a completely positive linear contraction, we say
that B is a semi-split extension.

The set of all extensions of A by B is denoted by ExtpA,Bq.

A.1.8 Remark. It is important to recall that, by means of the Busby invariant, ExtpA,Bq is an
additive commutative semi-group and, by defining an appropriate notion of equivalent extensions,
the corresponding quotient ExtpA,Bq :“ ExtpA,Bq{ „ is an additive commutative semi-group with
neutral element.

Denote by Ext´1pA,Bq the group of invertible classes in ExtpA,Bq. It can be shown that,
whenever A is separable, a class of extension in ExtpA,Bq is invertible if and only if the extension
is semi-split. Moreover, it is a well-known result that Ext´1pA,Bq – KKpΣpAq, Bq.

The analogous constructions and results hold when we require equivariance conditions with
respect to a group action. We refer to [24], [86] and [187] for more information about the theory of
extensions of C˚-algebras and for the proof the results stated in this remark.

A.1.9 Theorem. Let A be a C˚-algebra. The following properties hold.

i) The relation defined on projections of A by

p ě q ô pq “ q “ qp

is a partial order.

ii) Given two projections p, q P A we have that p ě q if and only if pAp Ě qAq. In particular,
pAp “ qAq if and only if p “ q.

iii) Given a projection p P A, if pAp is finite dimensional and dimppApq ą 1, then there exists a
non zero projection q P A such that p ě q.

iv) If A is unital and finite dimensional, then it has a minimal non zero projection with respect to
the order ě. If p denotes such a projection, then we have pAp “ Cp.

v) A is finite dimensional if and only if A – Mk1pCq ‘ . . .‘MknpCq, for some k1, . . . , kn, n P N.

vi) A is simple if and only if A – MkpCq, for some k P N.

Some standard constructions for C˚-algebras are the following.
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A.1.10 Theorem-Definition. Let A and B two C˚-algebras. There exists a unique (up to a
canonical ˚-isomorphism) C˚-algebra P with ˚-homomorphisms jA : A ÝÑ P and jB : B ÝÑ P
such that

i) P “ C˚xjApAq, jBpBqy

ii) For any C˚-algebra Q with ˚-homomorphisms φA : A ÝÑ Q and φB : B ÝÑ Q, there exists a
(necessarily unique) ˚-homomorphism ψ : P ÝÑ Q such that

ψ ˝ jA “ φA and ψ ˝ jB “ φB

The C˚-algebra P constructed in this way is called maximal free product of A and B and is
denoted by A ˚B. The ˚-homomorphisms jA and jB are called canonical inclusions.

A.1.11 Theorem-Definition. Let A and B two C˚-algebras. If π : A ÝÑ BpHq and ρ : B ÝÑ
BpKq are two faithful representations of A and B on Hilbert spaces H and K, respectively; then
there exists a unique ˚-homomorphism λ : AdB ÝÑ BpH bKq such that

λpab bq “ πpaq b ρpbq,

for all a P A and all b P B.
The application

|| ¨ ||min : AdB ÝÑ R`
x ÞÝÑ ||x||min :“ ||λpxq||

defines a C˚-norm on A d B, called minimal norm. Moreover, || ¨ ||min does not depend on the
choice of the faithful representations π and ρ.

The completion of AdB with respect to the minimal norm is denoted by AbB and it is called
minimal tensor product of A and B.

Moreover, if C, D are two C˚-algebras and ϕ : A ÝÑ C, ψ : B ÝÑ D are two ˚-homomorphisms,
then there exists a unique ˚-homomorphism

ϕb ψ : AbB ÝÑ C bD

A.1.12 Theorem-Definition. Let A and B two C˚-algebras. Let || ¨ ||β be any C˚-norm on
AdB and let Abβ B the corresponding completion. If γ : Abβ B ÝÑ BpHq is a non-degenerate
representation of AbβB on a Hilbert space H, then there exist unique non-degenerate representations
π : A ÝÑ BpHq and ρ : B ÝÑ BpHq such that

γpab bq “ πpaqρpbq,

for all a P A and all b P B. Moreover, π and ρ commute in BpHq.
The application

|| ¨ ||max : AdB ÝÑ R`
x ÞÝÑ ||x||max :“ supt||γpxq|| | γ is a non-degenerate rep. of AdBu

defines a C˚-norm on AdB, called maximal norm.
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The completion of A d B with respect to the maximal norm is denoted by A b
max

B and it is
called maximal tensor product of A and B.

Moreover, if C is a C˚-algebra and ϕ : A ÝÑ C, ψ : B ÝÑ C are two ˚-homomorphisms with
commuting ranges, then there exists a unique ˚-homomorphism

ϕˆ ψ : A b
max

B ÝÑ C

such that ϕˆ ψpab bq “ ϕpaqψpbq, for all a P A and all b P B.

It is advisable to establish some nomenclature about states and weights on a C˚-algebras.

A.1.13 Definition. Let A be a C˚-algebra. A linear form φ : A ÝÑ C is called

- positive if φpaa˚q ě 0, for all a P A,

- normalized if ||φ|| “ 1,

- faithful if φpaa˚q ‰ 0 for all non-zero a P A,

- tracial if φpabq “ φpbaq, for all a, b P A.

- state if φ is positive and normalized.

A.1.14 Remark. Let A be any ˚-algebra. Consider a non-zero positive linear form φ : A ÝÑ C. For
any a, b P A the following formula holds

φpa˚bq “ φpb˚aq

Indeed, given a, b P A we write

0 ď φ
`

pa` bq˚pa` bq
˘

“ φ
`

a˚a` a˚b` b˚a` b˚b
˘

“ φpa˚aq ` φpa˚bq ` φpb˚aq ` φpb˚bq

Since φpa˚aq ě 0 and φpb˚bq ě 0, it must be 0 “ Im
`

φpa˚bq ` φpb˚aq
˘

“ Impφpa˚bqq `
Impφpb˚aqq. Since this is true for all b P B, it is also true for ib. Hence we have that 0 “
Impiφpa˚bqq`Impiφpb˚aqq “ Repφpa˚bqq´Repφpb˚aqq. In other words, we have that Impφpa˚bqq “
´Impφpb˚aqq and Repφpa˚bqq “ Repφpb˚aqq, whence the formula.

In particular, any positive linear form φ : A ÝÑ C is involutive whenever A is unital.

A.1.15 Proposition. Let A be a C˚-algebra.

i) If φ : A ÝÑ C is a positive linear form, then φ satisfies the Schwarz inequality meaning that

|φpb˚aq|2 ď φpa˚aqφpb˚bq,

for all a, b P A. Moreover, ||φ|| “ φp1Aq whenever A is unital.

ii) If φ : A ÝÑ C is a positive linear form, then it is bounded.
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iii) If φ : A ÝÑ C is a bounded linear form, then φ is positive if and only if ||φ|| “ lim
nÑ8

φpenq,
for every approximate unit tenunPN of A. In particular, a bounded linear form on a unital
C˚-algebra A is positive if and only if φp1q “ ||φ||.

iv) If B Ă A is a C˚-subalgebra of A and φ : B ÝÑ C is a positive linear form, then there exists a
positive linear functional rφ : A ÝÑ C extending φ and such that ||rφ|| “ ||φ||.

The GNS construction is the main result that we have to recall,

A.1.16 Theorem (GNS construction for states on C˚-algebras). Let A be a C˚-algebra. Given a
(faithful) state φ : A ÝÑ C there exists a (unique up to a unitary transformation) triple pHφ,Λφ, πφq
where Hφ is a Hilbert space, Λφ : A ÝÑ Hφ is a linear map with dense image and πφ : A ÝÑ BpHφq

is a (faithful) representation such that

i) φpa˚bq “ xΛφpaq,Λφpbqy, for all a, b P A,

ii) πφpaqpΛφpbqq “ Λφpabq, for all a, b P A.

Moreover, there exists a unique norm 1 vector Ω P Hφ (called cyclic vector) such that

i) Λφpaq “ πφpaqpΩq, for all a P A,

ii) φpaq “ xΩ, πφpaqpΩqy, for all a P A.

A.1.17 Definition. Let A be a C˚-algebra. A function φ : A` ÝÑ r0,`8s is called a weight if

i) φpa` bq “ φpaq ` φpbq, for all a, b P A`,

ii) φpraq “ rφpaq, for all a P A` and all r P r0,`8q.

In that case, we write

- M`
φ :“ ta P A` | φpaq ă `8u for the positive φ-integrable elements,

- Nφ :“ ta P A` | φpa˚aq ă `8u for the φ-square-integrable elements,

- Mφ :“ span M`
φ “ span N ˚

φ Nφ for the φ-integrable elements.

A.1.18 Definition. Let A be a C˚-algebra. A weight φ : A` ÝÑ r0,`8s is called

- faithful if φpaq ‰ 0 for all non-zero a P A`,

- lower semi-continuous if the subset ta P A` | φpaq ď λu Ă A is closed for all λ P R`,

- densely defined if M`
φ is dense in A` (or, equivalently, if Nφ or Mφ is dense in A).

The C˚-algebraic picture of locally compact quantum groups needs the notion of KMS-weights.
We refer to [113], [148] or [184] for more details about them. We give here the definition for the
convenience of the exposition.
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A.1.19 Definition. Let A be a C˚-algebra. A KMS-weight on A is a non-zero densely defined
and lower semi-continuous weight φ : A` ÝÑ r0,`8s for which there exists a norm continuous
one-parameter group σ on A (called modular automorphism group for φ) such that

i) φ ˝ σt “ φ, for all t P R,

ii) φpx˚xq “ φpσi{2pxqσi{2pxq
˚q, for all x P Dompσi{2q.

The same as for states on C˚-algebras, we can establish a GNS construction for weights.

A.1.20 Theorem (GNS construction for weights on C˚-algebras). Let A be a C˚-algebra. Given
a (faithful) weight φ : A` ÝÑ r0,`8s there exists a (unique up to a unitary transformation) triple
pHφ,Λφ, πφq where Hφ is a Hilbert space, Λφ : Nφ ÝÑ Hφ is a linear map with dense image and
πφ : A ÝÑ BpHφq is a (faithful) representation such that

i) φpa˚bq “ xΛφpaq,Λφpbqy, for all a, b P Nφ,

ii) πφpcqpΛφpbqq “ Λφpcbq, for all c P A and all b P Nφ.

Next, some nomenclature about complete positivity is required for the construction of quantum
crossed product by a discrete quantum group (namely, the notion of conditional expectation).

A.1.21 Definition. Let A and B two C˚-algebras. A linear map ϕ : A ÝÑ B is called

- completely positive (c.p. for short) if for any n P N the obvious linear map ϕn : MnpAq ÝÑ
MnpBq is positive. If A, B and ϕ are in addition unital, then it is called unital completely
positive (u.c.p. for short).

- completely bounded (c.b. for short) if

||ϕ||cb :“ sup
nPN
t||ϕn||u ă 8

- contractive completely positive (c.c.p. for short) if ϕ is c.p. and ||ϕ||cb ď 1.

A.1.22 Remark. Any ˚-homomorphism and any positive linear form is c.p.

The classical GNS construction can be generalized for c.p. maps with the celebrated Stinespring’s
theorem (see Theorem 1.5.3 in [29] for a proof).

A.1.23 Theorem (Stinespring). Let A be a unital C˚-algebra and H a Hilbert space. If ϕ :
A ÝÑ BpHq is a c.p. map, then there exists a triple pHϕ, πϕ, Vϕq where Hϕ is a Hilbert space,
πϕ : A ÝÑ BpHϕq is a representation and Vϕ : H ÝÑ Hϕ is a bounded operator such that

ϕpaq “ V ˚ϕ ˝ πϕpaq ˝ Vϕ,

for all a P A. In particular, ||ϕ|| “ ||V ˚ϕ ˝ Vϕ|| “ ||ϕp1q||.
Moreover, if πϕpAqVϕpHq is a dense subspace in Hϕ, then the triple pHϕ, πϕ, Vϕq is unique up

to a unitary transformation. Such a triple is called Stinespring dilation of ϕ.
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A.1.24 Definition. Let A be a C˚-algebra and B Ă A a C˚-subalgebra. A conditional expectation
from A to B is a linear map E : A ÝÑ B such that

i) E is a projection, that is, Epbq “ b for all b P B,

ii) E is a B-bimodule map, that is, Epbab1q “ bEpaqb1 for all b, b1 P B and all a P A,

iii) E is c.c.p.

We say that E is faithful if the following condition holds

@a P A`, Epaq “ 0 ñ a “ 0

A.2 Elements of von Neumann algebras
Standard references for the necessary material on this subject are [54], [167], [183], [184] or Chapter
4 in [137] (see also [89]).

Let H be a Hilbert space. The space BpHq of linear operator on H can be equipped with the
following convex topology. For every ξ, η P H b l2pNq we define the following semi-norm on BpHq,

rφξ,ηpT q :“ |xη, pT b idqξy|,

for all T P BpHq. The topology on BpHq defined by the family of semi-norms trφξ,ηuξ,ηPHbl2pNq
is called σ-weak topology or ultraweak topology. If E Ă BpHq is a subspace, its σ-weak closure is
denoted by Eσ´w.

A.2.1 Definition. Let H and K be two Hilbert spaces. If M Ă BpHq and N Ă BpKq are two von
Neumann algebras, a linear map ϕ : M ÝÑ N is called normal if it is continuous with respect to
the σ-weak topologies on M and N , respectively.

A.2.2 Definition. Let H be a Hilbert space. IfM Ă BpHq is a von Neumann algebra, the pre-dual
of M , denoted by M˚, is the following closed vector subspace of the dual space of M

M˚ :“ tω PM˚ | ω is σ-weakly continuousu

A.2.3 Definition. Let H be a Hilbert space. If M Ă BpHq is a von Neumann algebra, a function
φ : M` ÝÑ r0,`8s is called a weight if

i) φpa` bq “ φpaq ` φpbq, for all a, b PM`,

ii) φpraq “ rφpaq, for all a PM` and all r P r0,`8q.

In that case, we write

- M`
φ :“ ta PM` | φpaq ă `8u for the positive φ-integrable elements,
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- Nφ :“ ta PM` | φpa˚aq ă `8u for the φ-square-integrable elements,

- Mφ :“ span M`
φ “ span N ˚

φ Nφ for the φ-integrable elements.

A.2.4 Definition. Let H be a Hilbert space and M Ă BpHq a von Neumann algebra. A weight
φ : M` ÝÑ r0,`8s is called

- faithful if φpaq ‰ 0 for all non-zero a PM`,

- normal if the subset ta PM` | φpaq ă λu ĂM is ultraweakly closed for all λ P r0,`8q,

- semi-finite if M`
φ is dense in M` (or, equivalently, if Nφ or Mφ is dense in M) with respect

to the ultraweakly topology.

The same as for states on C˚-algebras, we can establish a GNS construction for weights on von
Neumann algebras. The celebrated Tomita-Takesaki theory [182] provides a detailed description
of such a GNS construction which is, by the way, one of the main ingredients for the proper
development of the locally compact quantum groups theory.

A.2.5 Theorem (GNS construction for weights on von Neumann algebras). Let H be a Hilbert
space and M Ă BpHq a von Neumann algebra. Given a (faithful) weight φ : M` ÝÑ r0,`8s
there exists a (unique up to a unitary transformation) triple pHφ,Λφ, πφq where Hφ is a Hilbert
space, Λφ : Nφ ÝÑ Hφ is a linear map with dense image and πφ : M ÝÑ BpHφq is a (faithful)
representation such that

i) φpa˚bq “ xΛφpaq,Λφpbqy, for all a, b P Nφ,

ii) πφpcqpΛφpbqq “ Λφpcbq, for all c PM and all b P Nφ.

Moreover, if φ is normal and semi-finite, then Λφ is closed with respect to the ultraweakly
topology on M and the weak topology on Hφ.

A.3 Elements of Hilbert modules
Standard references for the necessary material on this subject are [117], [224], [86], [24] (see also
[101] and [161]).
A.3.1 Remarks. 1. Every C˚-algebra A is a Hilbert A-module with inner product given by

xa, by :“ a˚b, for all a, b P A.

2. If A is a C˚-algebra, tenunPN is an approximate unit for A and H is a Hilbert A-module, then
it is easy to see that

lim
nÑ8

ξen “ ξ “ lim
nÑ8

enξ,

for all ξ P H. As a consequence, HA is dense in H.
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3. Let A be a C˚-algebra and H a Hilbert A-module. Put xH,Hy :“ spantxξ, ηy | ξ, η P Hu.
We can show that xH,Hy is a two-sided closed ideal in A such that HxH,Hy is dense in H.
If moreover xH,Hy is dense in A, then we say that H is a full Hilbert A-module.

A.3.2 Definition. Let A be a C˚-algebra and H a Hilbert A-module. We say that H is countably
generated if there exists a countable set tξnunPN in H such that spantξna | a P Au is dense in H.

In this case, the set tξnunPN is called set of generators for H.

A.3.3 Definition. Let A be a C˚-algebra and H,K Hilbert A-modules.

- An adjointable operator between H and K is a linear map T : H ÝÑ K for which there exists
a (necessary unique) linear map T˚ : K ÝÑ H such that

xT pξq, ηy “ xξ, T˚pηqy,

for all ξ P H and all η P K.
In this case T˚ is called adjoint operator of T and the C˚-algebra of all adjointable operators
between H and K is denoted by LApH,Kq.

- A finite rank operator between K and H is an adjointable operator between K and H of the
form

θξ,η : K ÝÑ H
ζ ÞÝÑ θξ,ηpζq :“ ξxη, ζy,

for some given vectors ξ P H and η P K.
We define the set of compact operators between K and H as the following two-sided closed
essential ideal of LApK,Hq

KApK,Hq :“ spantθξ,η | ξ P H, η P Ku

A.3.4 Remark. Sometimes it is useful to work with other topologies than the norm one on LApH,Kq.
Namely, the strict topology which is the topology given by the following seminorms

T ÞÑ ||T pξq|| and T ÞÑ ||T˚pηq||,

with ξ P H and η P K (see Chapter 1 in [117] for more details).

A.3.5 Theorem (Standard Hilbert module constructions). i) (Exterior tensor product) Let A,B
be two C˚-algebras. If H is a Hilbert A-module and K a Hilbert B-module, the exterior tensor
product of H and K, denoted by H bK, is the Hilbert AbB-module defined as the completion
of H dK with respect to the AbB-valued inner product given by

xξ b η, ξ1 b η1y :“ xξ, ηy b xξ1, η1y,

for all ξ, ξ1 P H and all η, η1 P K.
Moreover, there exists a injective ˚-homomorphism

j : LApHq b LBpKq ÝÑ LAbBpH bKq

such that jpT b Sqpξ b ηq “ T pξq b Spηq, for all T P LApHq, S P LBpKq and all ξ P H, η P K.
Moreover, j

`

KApHq bKBpKq
˘

“ KAbBpH bKq.
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ii) (Interior tensor product) Let A,B be two C˚-algebras. If H is a Hilbert A-module, K a Hilbert
B-module and φ : A ÝÑ LBpKq is a ˚-homomorphism, the interior tensor product of H and
K with respect to φ, denoted by H b

φ
K, is the Hilbert B-module defined as the completion of

H dK with respect to the B-valued inner product given by

xξ b η, ξ1 b η1y :“ xη, φpxξ, ξ1yqη1y,

for all ξ, ξ1 P H and all η, η1 P K.
Moreover, there exists a ˚-homomorphism

j : LApHq ÝÑ LBpH b
φ
Kq

such that jpT q “ T b
φ
id, for all T P LApHq. If φ is injective, then so is j.

The ˚-homomorphism j transforms compact operators into compact operators whenever φ :
A ÝÑ KBpKq is a ˚-homomorphism. In this case, if φ is injective (resp. surjective), then so
is j.

iii) (Pushout) Let A,B be two C˚-algebras. If H is a Hilbert A-module and ϕ : A ÝÑ B is a
surjective ˚-homomorphism, the pushout of H by ϕ, denoted by Hϕ, is the Hilbert B-module
defined as the completion of H{Nϕ, where Nϕ :“ tξ P H | ϕpxξ, ξyq “ 0u, with respect to the
B-valued inner product given by

xrξs, rηsy :“ ϕpxξ, ηyq,

for all ξ, η P H.
Moreover, there exists a ˚-homomorphism

j : LApHq ÝÑ LBpHϕq

T ÞÝÑ jpT q :“ Tf , Tf prξsq :“ rT pξqs, for all ξ P H

The ˚-homomorphism j transforms compact operators into compact operators.

A.3.6 Theorem (Kasparov’s stability theorem). Let A be a C˚-algebra and H a Hilbert A-module.
If H is countably generated, then

H ‘HA – HA,

where HA :“
À

iPI

A.

As a consequence, H is countably generated if and only if KApHq is σ-unital.

A.3.7 Definition. Let A,B be two C˚-algebras and H a Hilbert B-module. A ˚-homomorphism
ϕ : A ÝÑ LBpHq is called non-degenerate if ϕpAqH is dense in H.

A.3.8 Remark. We can give several equivalent conditions for the notion of non-degenerate ˚-
homomorphism (see Proposition 2.5 in [117] for a proof). Namely, ϕ : A ÝÑ LBpHq is a non-
degenerate ˚-homomorphism if and only if there exists an approximate unit tenunPN of A such that
lim
nÑ8

ϕpenq “ idH with respect to the strict topology.
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A.3.9 Definition. Let A,B be two C˚-algebras and H a Hilbert B-module. A completely positive
map ϕ : A ÝÑ LBpHq is called strict if there exists an approximate unit tenunPN of A such that
tϕpenqunPN is a Cauchy sequence in LBpHq with respect to the strict topology.

A.3.10 Remark. Of course, non-degeneracy implies strictness and strictness is always fulfilled
whenever A is unital.

A far-reaching generalization of the classical GNS construction and Stinespring dilation was
given by G. G. Kasparov in [101] for strict completely positive maps in the framework of Hilbert
modules (see Theorem 5.6 in [117] for a proof).

A.3.11 Theorem (KSGNS construction). Let A,B be two C˚-algebras and H a Hilbert B-module.
If ϕ : A ÝÑ LBpHq is a strict completely positive map, then there exists a (unique up to a
unitary transformation) triple pHϕ, Vϕ, πϕq where Hϕ is a Hilbert B-module, Vϕ P LBpH,Hϕq is an
adjointable operator and πϕ : A ÝÑ LBpHϕq is a representation such that

i) ϕpaq “ V ˚ϕ ˝ πϕpaq ˝ Vϕ, for all a P A,

ii) πϕpAq ˝ VϕpHq is dense in Hϕ.

We say that ϕ is KSGNS-faithful if the corresponding representation πϕ is faithful.

A.3.12 Remark. Let A,B be two C˚-algebras and H,E Hilbert B-modules. If π : A ÝÑ LBpEq
is a non-degenerate representation and V P LBpH,Eq is an adjointable operator, then the map
ϕ : A ÝÑ LBpHq defined by

ϕpaq :“ V ˚ ˝ πpaq ˝ V , for all a P A

is a strict completely positive map in the sense of Definition A.3.9.
This observation with the theorem above assure that a strict completely positive map is fully

determined by its KSGNS-construction. This fact is used in the construction of reduced crossed
products by a discrete (quantum) group (see Theorem 1.5.1.1 and Theorem 1.5.2.1).
A.3.13 Remark. We can apply this construction to (strict) conditional expectations, which has been
used for the explicit construction of the reduced crossed product by a discrete (quantum) group.

Let C Ă B Ă A be C˚-algebras with conditional expectations A EA
ÝÑ B

EB
ÝÑ C. Assume that

both EA and EB are KSGNS-faithful. We claim that the composition E :“ EB ˝EA : A ÝÑ C is a
KSGNS-faithful conditional expectation from A to C.

Namely, given a P A suppose that Eppaxq˚axq “ 0, for all x P A. In particular, this is true for
x :“ yb for some y P A and b P B Ă A and we have Eppaybq˚aybq “ 0, for all b P B and all y P A.
In other words,

EB
`

EAppaybq
˚aybq

˘

“ EB
`

EAppb
˚y˚a˚aybq

˘

“ EB
`

b˚EApy
˚a˚ayqb

˘

“ 0,

for all b P B and all y P A. Since EAppayq˚ayq ě 0 (because E is c.p.) and EB is KSGNS-faithful,
it must be EApy˚a˚ayq “ 0 for all y P A. Since EA is also KSGNS-faithful, we conclude that a “ 0
and hence E “ EB ˝ EA is KSGNS-faithful as claimed.

A.3.14 Definition. Let A,B two C˚-algebras. We say that A and B are stably isomorphic if
K bA – K bB.
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A.3.15 Definition. Let A,B two C˚-algebras. We say that A and B are Morita equivalent if
there exists a full Hilbert A-module H such that B – KApHq.

In this case we write A „
M
B.

A.3.16 Remark. We can show thatMorita equivalence is an equivalence relation between C˚-algebras.
In addition, if our C˚-algebras are supposed to be σ-unital, then the notions of stably isomorphism
and Morita equivalence are the same. We refer to Chapter 7 of [117] for more details.

We can give a more algebraic approach of Morita equivalence by means of the notion of
imprimitivity bimodules. In this way, we can show that A and B are Morita equivalent if and only
if there exists and pA,Bq-bimodule AXB (called imprimitivity bimodule) such that the categories of
Hilbert A-modules and Hilbert B-modules are equivalent through the functor of tensor product by
AXB . We refer to [161] and [162] for more details.

In order to present the Kasparov KK-theory of Section 1.7, it is advisable to recall the notions
of graded Hilbert modules. For more details we refer to [24].

A.3.17 Definition. Let G be a locally compact group. A G-C˚-algebra is a C˚-algebra A with a
group homomorphism α : G ÝÑ AutpAq, g ÞÝÑ αg, such that for every a P A the map

G ÝÑ A
g ÞÝÑ αgpaq

is norm-continuous.

A.3.18 Definition. Let G be a locally compact group and A a G-C˚-algebra. A G-equivariant
Hilbert A-module is a Hilbert A-module H with a continuous action

GˆH ÝÑ H
pg, ξq ÞÝÑ g ¨ ξ,

such that

i) g ¨ pξ ` ηq “ g ¨ ξ ` g ¨ η, for all g P G and all ξ, η P H,

ii) g ¨ pξ ¨ aq “ pg ¨ ξqg ¨ a, for all g P G, all ξ P H and all a P A,

iii) xg ¨ ξ, g ¨ ηy “ g ¨ xξ, ηy, for all g P G and all ξ, η P H.

A.3.0.3 Remark. If H is a G-equivariant Hilbert A-module as in the above definition, then LApHq
is a G-C˚-algebra with the following action

g ¨ T :“ Lg ˝ T ˝ Lg´1 ,

for all g P G and all T P LApHq, where Lg P LApHq denotes the operator defined by Lgpξq :“ g ¨ ξ,
for all ξ P H. Observe that this action restricts to an action of G on KApHq.

If A,B are two G-C˚-algebras, we say that A and B are G-equivariantly Morita equivalent if
there exists a full G-equivariant Hilbert A-module H such that B – KApHq as G-C˚-algebras. In
this case we write A „

G´M
B.
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A.3.19 Definition. Let G be a locally compact group and A a G-C˚-algebra. A graded G-C˚-
algebra is a G-C˚-algebra A such that

i) A is a graded C˚-algebra meaning that there exist two closed self-adjoint linear subspaces of
A, Ap0q and Ap1q, such that A “ Ap0q ‘Ap1q and ApiqApjq Ă Api`jq mod.2, for all i, j “ 0, 1.

ii) g ¨Apiq P Apiq, for all g P G and all i “ 0, 1.

The elements in Apiq are called homogeneous of degree i, for all i “ 0, 1. We say that A is
trivially graded if Ap1q “ 0.

A.3.20 Definition. Let G be a locally compact group and A a graded G-C˚-algebra. A graded
G-equivariant Hilbert A-module is a G-equivariant Hilbert A-module H such that

i) H is a graded Hilbert A-module meaning that there exist two linear subspaces, Hp0q and Hp1q,
such that H “ Hp0q ‘Hp1q, HpiqApjq Ă Hpi`jq mod.2, and xHpiq, Hpjqy Ă Api`jq mod.2, for all
i, j “ 0, 1.

ii) g ¨Hpiq P Hpiq, for all g P G and all i “ 0, 1.

The elements in Hpiq are called homogeneous of degree i, for all i “ 0, 1. We say that H is
trivially graded if Hp1q “ 0.

A.3.21 Remarks. 1. If ϕ : A ÝÑ B is a G-equivariant homomorphism between G-graded G-C˚-
algebras, then we say that ϕ is graded if ϕpApiqq Ă Bpiq, for all i “ 0, 1. If T : H ÝÑ E is a
G-equivariant operator between G-graded G-equivariant Hilbert A-modules, then we say that
T is graded if T pHpiqq Ă Epiq, for all i “ 0, 1.

2. Let A be any G-C˚-algebra. It is straightforward to see that giving a (resp. G-equivariant)
graduation on A in the sense of Definition A.3.19 is equivalent to give an (resp. G-equivariant)
automorphism θ P AutpAq such that θ2 “ idA. Moreover we have that

Ap0q “ ta P A | θpaq “ au and Ap1q “ ta P A | θpaq “ ´au

3. Let H be any G-equivariant Hilbert A-module. It is straightforward to see that giving a (resp.
G-equivariant) graduation on H in the sense of Definition A.3.20 is equivalent to give a (resp.
G-equivariant) operator R P LApHq such that

- R2 “ idH ,
- Rpξaq “ Rpξqθpaq, for all ξ P H and all a P A,
- xRpξq, Rpηqy “ θpxξ, ηyq, for all ξ, η P H.

Moreover we have that

Hp0q “ tξ P H | Rpξq “ ξu and Hp1q “ tξ P H | Rpξq “ ´ξu

4. Let H be a G-graded G-equivariant Hilbert A-module. The G-C˚-algebra of its adjointable
operators LApHq is equipped with a G-equivariant graduation induced by the automorphism

θH : LApHq ÝÑ LApHq
T ÞÝÑ θHpT q :“ R ˝ T ˝R´1

Notice that θH preserves compact operators. Hence, KApHq is also a G-graded G-C˚-algebra.
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5. It is possible to obtain the graded version of the standard Hilbert module constructions of
Theorem A.3.5 in the obvious way. See [24] for more details.

6. If we replace G by any Hopf C˚-algebra S :“ pS,∆q, then the preceding definitions are still
valid. We have just to adapt in the obvious way the equivariant conditions piiq of Definition
A.3.19 and piiiq of Definition A.3.20. More precisely,

- A graded S-C˚-algebra is a S-C˚-algebra pA, δq such that A is a graded C˚-algebra with
graduation automorphism θ P AutpAq and one of the following equivalent conditions
holds,
i) δpApiqq Ă ĂMpS bApiqq, for all i “ 0, 1.
ii) pidS b θqδpaq “ δpθpaqq, for all a P A.

- Let pA, δq be a graded S-C˚-algebra. A graded S-equiariant Hilbert A-module is a
S-equivariant Hilbert A-module pH, δHq such that H is a graded Hilbert A-module with
graduation operator R P LApHq and one of the following equivalent conditions holds,

i) δHpHpiqq Ă ĂMpS bHpiqq, for all i “ 0, 1.
ii) pidS bRqδHpξq “ δHpRpξqq, for all ξ P H.

- Let pA, δq be a graded S-C˚-algebra and pH, δHq a graded S-equivariant Hilbert A-
module. If VH P LSbApH b

δ
pS bAq, S bHq denotes the admissible operator associated

to δH , then KApHq is a S-C˚-algebra with action AdVH (as stated in Remarks 1.7.1.7).
Moreover, the condition of grade-preserving of the action δH is equivalent to say that
the admissible operator VH is of degree 0.

- If A,B are two S-C˚-algebras, we say that A and B are S-equivariantly Morita equivalent
if there exists a full S-equivariant Hilbert A-module H such that B – KApHq as S-C˚-
algebras. In this case we write A „

S´M
B.

In the context of the Kasparov theory, the constructions of Hilbert modules stated in Theorem
A.3.5 can be performed for Kasparov triples. It is advisable to give the precise statement.

A.3.22 Theorem (Standard Kasparov triple constructions). i) (Exterior tensor product) Let
A,B,C be graded C˚-algebras. If E :“ pH,π, F q is a Kasparov pA,Bq-bimodule, the exterior
tensor product of E and C, denoted by E bC, is the Kasparov pAbC,B bCq-bimodule defined
as the triple

E b C :“ pH b C, jpπq “: π b id, jpF q “: F b idq,

where j : LBpHq b C ÝÑ LBbCpH b Cq is the canonical injective ˚-homomorphism such that
jpT b Cqpξ b cq “ T pξq b Cc, for all T P LBpHq and all ξ P H, c P C.
In an analogous fashion, we define the Kasparov pC bA,C bBq-bimodule C b E.

ii) (Interior tensor product) Let A,B,C be graded C˚-algebras. If E :“ pH,π, F q is a Kasparov
pA,Bq-bimodule and φ : B ÝÑ C is a graded ˚-homomorphism, the interior tensor product of
E and C with respect to φ, denoted by E b

φ
C, is the Kasparov pA,Cq-bimodule defined as the

triple
E b
φ
C :“ pH b

φ
C, jpπq, jpF qq,



316 APPENDIX A. Generalities

where j : LBpHq ÝÑ LCpH b
φ
Cq is the canonical ˚-homomorphism such that jpT q “ T b id,

for all T P LBpHq.

iii) (Pushout) Let A,B,C be graded C˚-algebras. If E :“ pH,π, F q is a Kasparov pA,Bq-bimodule
and ϕ : B ÝÑ C is a surjective graded ˚-homomorphism, the interior tensor product of E and
C with respect to ϕ, denoted by Eϕ, is the Kasparov pA,Cq-bimodule defined as the triple

Eϕ :“ pHϕ, πϕ, Fϕq,

where j : LBpHq ÝÑ LCpHϕq is the canonical ˚-homomorphism such that jpT qprξsq :“
Tϕprξsq “ rT pξqs, for all T P LBpHq and all ξ P H.

A.3.23 Remark. The constructions of Hilbert modules stated in Theorem A.3.5 can be performed
under G-equivariance assumptions for a locally compact group G in the obvious way. Consequently,
the constructions of Kasparov triples stated in the preceding theorem can also be performed under
G-equivariance assumptions.

Moreover, if we replace G by any Hopf C˚-algebra S :“ pS,∆q, then the preceding Kasparov
triple constructions are still valid with the obvious definitions.

For instance, let us describe the case for an exterior tensor product and for an interior tensor
product.
i) Let pB, δBq be (S-graded) S-equivariant C˚-algebra and pC, δCq a (P-graded) P-equivariant
C˚-algebra, where S :“ pS,∆Sq and P :“ pP,∆P q are given Hopf C˚-algebras. If pH, δHq is
a (graded) S-equivariant Hilbert B-module and pE, δEq is a (graded) P-equivariant Hilbert
C-module, then the exterior tensor product HbE is a (graded) Hilbert BbC-module equipped
with an action of Sb P, δ : H b E ÝÑ ĂMpS b P bH b Eq such that

δpξ, ηq :“ pidP b Σb idHq ˝ pδHpξq b δEpηqq,

for all ξ P H and all η P E.

ii) Let pA, δAq and pB, δBq be (S-graded) S-equivariant C˚-algebras, where S :“ pS,∆q is a
given Hopf C˚-algebra. If pH, δHq is a (graded) S-equivariant Hilbert A-module, pK, δKq is
a (graded) S-equivariant Hilbert B-module and φ : A ÝÑ LBpKq is a (graded) S-equivariant
˚-homomorphism, then the map

rδφpξ, ηq :“ pδHpξq b
idSbφ

idq ˝ δKpηq,

for all ξ P H, η P K defines a linear map δφ : H b
φ
K ÝÑ ĂMpS bH b

φ
Kq so that pH b

φ
K, δφq

is a (S-graded) S-equivariant Hilbert B-module.
A.3.24 Remark. It is important to say that there doesn’t exist a natural way of defining a tensor
product of S-C˚-algebras in order to obtain again a S-C˚-algebra. For this reason, we have to
consider two different Hopf C˚-algebras in order to give a sense to the equivariance of a exterior
product of Hilbert modules.

In other words, if G denotes a locally compact quantum group, then the Kasparov category
K K G is not equipped with a natural tensor product. In [140], R. Nest and C. Voigt introduced
the braided tensor product b in order to solve this problem. This notion has been occasionally used
in Chapter 3. We do not explain the construction of b here, but for completeness of the exposition
we include here some elementary related properties. Let G be a locally compact quantum group.
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- We denote by DpGq the Drinfeld quantum double of G, which is a locally compact quantum
group given by

C0pDpGqq :“ C0pGq b C˚r pGq

∆DpGq :“ pidb Σb idq ˝ pidbAdWG b idq ˝ p∆b p∆q

- A G-Y D-C˚-algebra (where Y D stands for Yetter-Drinfeld) is a C˚-algebra A equipped with
an action α of G and an action λ of pG such that

pΣb idqpidb αqλ “ pAdWG b idqpidb λqα

- It can be shown (see Proposition 3.2 in [140] for a proof) that the G-Y D-C˚-algebras are
exactly the DpGq-C˚-algebras.

- If pA,α, λq is a G-Y D-C˚-algebra and pB, βq is a G-C˚-algebra, then the braided tensor
product Ab

G
B is the C˚-subalgebra of LAbBpL2pGq bAbBq generated by all elements of

the form λ12paqβ13pbq with a P A, b P B (see Definition 3.3 in [140] for more details).

- The braided tensor product Ab
G
B becomes a G-C˚-algebra in a canonical way whose action

is denoted by α b β. In particular, if B is a trivial G-C˚-algebra, then A b
G
B – Ab B as

G-C˚-algebras with αb id.

- Moreover, the braided tensor product defines a triangulated functor (see Proposition 4.8 in
[140] for a proof)

Ab
G
¨ : K K G ÝÑ K K G

- If H ă G is a closed quantum subgroup and A1 is a H-Y D-C˚-algebra, then IndGH
`

A1
˘

is a
G-Y D-C˚-algebra (see Proposition 3.4 in [140] for a proof).

- If H ă G is a closed quantum subgroup, A1 is a H-Y D-C˚-algebra and B is a G-C˚-algebra,
then there exists a natural G-equivariant isomorphism (see Theorem 3.6 in [140] for a proof)

IndGH

´

A1 b
H
ResGH

`

B
˘

¯

– IndGH
`

A1
˘

b
G
B

A.4 Elements of multiplier algebras
Standard references for the necessary material on this subject are [137], [224], [117] (see as well [24]
and [148]).

A.4.1 Definition. Let A be a C˚-algebra. The multiplier algebra of A, denoted by MpAq, is the
unital C˚-algebra

MpAq :“ LApAq,

where A is regarded as a Hilbert A-module.
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A.4.2 Remark. Let A and B two C˚-algebras. The notion of non-degenerate ˚-homomorphism for
Hilbert modules (recall Definition A.3.7) can be applied to a given ˚-homomorphism ϕ : A ÝÑMpBq.
Observe that a surjective ˚-homomorphism ϕ : A ÝÑ B is automatically non-degenerate. In addition,
we shall equip MpBq “ LBpBq with the strict topology (recall Remark A.3.4).

It is important to say that this class of homomorphism turns out to be more flexible and so
more appropriate than the usual class of ˚-homomorphism between C˚-algebras. For this reason,
it is common to find in the literature that a homomorphism between C˚-algebras ϕ : A ÝÑ B is
presupposed to be a non-degenerate ˚-homomorphism ϕ : A ÝÑMpBq.

A.4.3 Proposition (Main properties of multiplier algebras). i) If A is a C˚-algebra and H is
a Hilbert A-module, then MpKApHqq “ LApHq.

ii) Let A and B two C˚-algebras. If ϕ : A ÝÑMpBq is a non-degenerate
˚-homomorphism, then ϕ extends in a unique fashion into a unital ˚-homomorphism ϕ :
MpAq ÝÑMpBq.

iii) If pAiqiPI is a family of C˚-algebras, then

M
´

à

iPI

Ai

¯

–
ź

iPI

MpAiq and M
´

ź

iPI

Ai

¯

–
ź

iPI

MpAiq

iv) If A and B are two C˚-algebras, there always exists a unital injective
˚-homomorphism

MpAq bMpBq ãÑMpAbBq

v) If A is a C˚-algebra, then MnpMpAqq –MpMnpAqq, for all n P N.

vi) Let A,A1, B,B1 be C˚-algebras. If ϕ : A ÝÑ MpBq and ϕ1 : A1 ÝÑ MpB1q are two non-
degenerate ˚-homomorphisms, then the tensor product ˚-homomorphism ϕb ϕ1 : AbA1 ÝÑ
MpBq bMpB1q ĂMpB bB1q is again a non-degenerate ˚-homomorphism. As a consequence,
we have a unital ˚-homomorphism
ϕb ϕ1 : MpAbA1q ÝÑMpB bB1q.

vii) Let A and B two C˚-algebras. The flip ˚-isomorphism Σ : A b B ÝÑ B b A induces a
˚-isomorphism Σ : MpAbBq ÝÑMpB bAq.

viii) Let A be a C˚-algebra and B Ă A a C˚-subalgebra. If A is σ-unital and B contains the
corresponding strictly positive element, then there exists a unital injective ˚-homomorphism
MpBq ãÑMpAq.

The following definitions are useful for the general treatment of quantum groups in the context
of Hopf C˚-algebras. For more details we refer to [6] and [206].

A.4.4 Definition. Let S,A be C˚-algebras. We define the following C˚-subalgebra of MpS bAq

ĂMpS bAq :“ tx PMpS bAq | xpS b idAq Ă S bA and pS b idAqx Ă S bAu,

which contains S bMpAq.
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A.4.5 Definition. Let A be a C˚-algebra and H a Hilbert A-module. We define the multiplier
algebra of H, denoted by MpHq, as the following Hilbert MpAq-module

MpHq :“ LApA,Hq,

which contains canonically H – KpA,Hq.

A.4.6 Definition. Let S, A be C˚-algebra and H a Hilbert A-module. We define the following
Hilbert ĂMpS bAq-submodule of MpS bHq

ĂMpS bHq :“ tX PMpS bHq | XpS b idAq Ă S bH and pS b idHqX Ă S bHu,

which contains MpSq bH.
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Categories

In this appendix we want to collect the main definitions and results of the category theory for
two reasons: aq the current formulation of the Baum-Connes property for quantum groups fit
in a categorical framework bq quantum groups and related concepts admit a fruitful categorical
perspective (for instance, categorification of the Yang-Baxter equation or the notion of monoidal
equivalence). Hence, it is advisable to have in mind the categorical language.

Because of the well-known logical issue that appears as soon as we want to formalize the category
theory within the Zermelo-Fraenkel set theory, we must be careful in the nomenclature. Recall
that a category C is said to be small if both ObjpC q and HomC p ¨ , ¨ q are sets. It is said to be
large otherwise. It is said to be locally small if only HomC p ¨ , ¨ q are sets. Recall that a class is a
collection of sets that can be well-defined by a property that all of its members have. The category
of sets is denoted by Set and it is locally small. Remark that in the framework of this dissertation
we work just with locally small categories (for instance, the equivariant Kasparov category with
respect to a locally compact (quantum) group).

We don’t give any proof in this appendix and we refer to standard references for all the details,
[122], [4], [61], [139], [103].

B.1 Generalities
B.1.1 Definition. A locally small category is the data C “ pObjpC q, HomC p ¨ , ¨ q, id¨, ˝q where

i) ObjpC q is a class called class of objects of C ,

ii) for every two objects X,Y P ObjpC q, HomC pX,Y q is a set called set of homomorphisms
between X and Y whose elements are represented as an arrow from X to Y , say f : X ÝÑ Y .
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The object X is called domain (or source) of f and denoted by Dompfq and the object Y is
called co-domain (or target) of f and denoted by Codompfq,

iii) for every object X P ObjpC q, idX : X ÝÑ X is a distinguished homomorphism from X to
itself called identity of X,

iv) for every objects X,Y, Z P ObjpC q,

˝ : HomC pX,Zq ˆHomC pZ, Y q ÝÑ HomC pX,Y q
pf, gq ÞÝÑ g ˝ f

is an operation called composition such that

- ˝ is associative meaning that for every homomorphisms f P HomC pX,Zq, g P HomC pZ, Y q
and h P HomC pY,W q with objects X,Y, Z,W P ObjpC q we have that

h ˝ pg ˝ fq “ ph ˝ gq ˝ f

in HomC pX,W q.
- ˝ has an identity meaning that for every objects X,Y P ObjpC q and every homomorphism
f P HomC pX,Y q we have that

idY ˝ f “ f “ f ˝ idX

An object Z P ObjpC q is called

- initial if for every object X P ObjpC q there exists exactly one homomorphism Z ÝÑ X,

- terminal if for every object X P ObjpC q there exists exactly one homomorphism X ÝÑ Z,

- null if it is both initial and terminal.

B.1.2 Note. From now on, the word category will mean locally small category.
B.1.3 Remark. Given a category C “ pObjpC q, HomC p ¨ , ¨ q, id¨, ˝q, we call dual or opposite
category of C the category C op “ pObjpC opq, HomC opp ¨ , ¨ q, idop¨ , ˝opq where

- ObjpC opq :“ ObjpC q,

- HomC oppX,Y q :“ HomC pY,Xq, for all X,Y P ObjpC opq,

- idop¨ “ id¨,

- g ˝op f :“ f ˝g, for all f P HomC oppX,Zq and all g P HomC oppZ, Y q with X,Y, Z P ObjpC opq.

B.1.4 Definition. Let C be a category. A category S is a subcategory of C if the following
conditions hold

i) ObjpS q Ă ObjpC q,

ii) HomS pX,Y q Ă HomC pX,Y q, for all objects X,Y P ObjpS q,

iii) for all object X P ObjpS q the identity homomorphism idX P HomC pX,Xq is an element of
HomS pX,Xq,



B.1. Generalities 323

iv) the composition operation on HomS p ¨ , ¨ q is the restriction of the composition operation on
HomC p ¨ , ¨ q.

We say that S is a full subcategory of C if HomS pX,Y q “ HomC pX,Y q, for all objects
X,Y P ObjpS q. In that case we write S Ă C .

B.1.5 Definition. Let C be a category. Given two objects X,Y P ObjpC q consider a homomor-
phism f : X ÝÑ Y .

- f is called isomorphism if there exists a (necessarily unique) homomorphism g : Y ÝÑ X,
called inverse of f , such that g ˝ f “ idX and f ˝ g “ idY . In that case we write f´1 :“ and
we say that X and Y are isomorphic.

- f is called monomorphism if the following condition holds,

@ g1, g2 : Z ÝÑ X with Z P ObjpC q, f ˝ g1 “ f ˝ g2 ñ g1 “ g2

- f is called epimorphism if the following condition holds,

@ g1, g2 : Y ÝÑ Z with Z P ObjpC q, g1 ˝ f “ g2 ˝ f ñ g1 “ g2

- a section of f is a left inverse for f , that is, a homomorphism s : Y ÝÑ X such that
s ˝ f “ idX .

- a retraction of f is a right inverse for f , that is, a homomorphism r : Y ÝÑ X such that
f ˝ r “ idY .

B.1.6 Remark. The following are straightforward observations from the definitions. Let C be a
category.

- pidXq´1 “ idX , for all object X P ObjpC q.

- Given two objects X,Y P ObjpC q if f : X ÝÑ Y is an isomorphism, then its inverse
f´1 : Y ÝÑ X is an isomorphism as well and pf´1q´1 “ f .

- Given three objects X,Y, Z P ObjpC q if f P HomC pX,Zq and g P HomC pZ, Y q are isomor-
phisms, then their composition g ˝ f is an isomorphism as well and pg ˝ fq´1 “ f´1 ˝ g´1.

- The relation “to be isomorphic” establish an equivalence relation on ObjpC q whenever ObjpC q
is a set.

B.1.7 Definition. Let C and D be two categories. A covariant (resp. contravariant) functor
F from C to D , denoted by F : C ÝÑ D , is a rule that assigns to any object X P ObjpC q an
object F pXq P ObjpDq and to any homomorphism f P HomC pX,Y q a homomorphism F pfq P
HomDpF pXq, F pY qq (resp. F pfq P HomDpF pY q, F pXqq) with X,Y P ObjpC q such that

i) F pg ˝ fq “ F pgq ˝ F pfq (resp. F pg ˝ fq “ F pfq ˝ F pgq), for all f P HomC pX,Zq and all
g P HomC pZ, Y q with X,Y, Z P ObjpC q,

ii) F pidXq “ idF pXq, for all object X P ObjpC q.
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B.1.8 Remark. The following are straightforward observations from the definitions. Let C and D
be two categories.

- If F : C ÝÑ D is a (covariant or contravariant) functor, then F op : C op ÝÑ Dop defined
exactly as F is a (covariant or contravariant) functor between the dual categories.

- If F : C ÝÑ D is a functor, then F preserves isomorphisms. In fact, F transforms commutative
diagrams on C into commutative diagrams on D .

Some typical examples of functors are the following,

i) identity functor : the obvious rule idC : C ÝÑ C that assigns to any object and to any
homomorphism the same object and the same homomorphism is a functor from C to itself
called identity functor.

ii) constant functor : fix an object X 10 P ObjpDq, a constant functor from C to D assigns to any
object of C the object X 10 and to any homomorphism on C to the identity of X 10.

iii) forgetful functor : a functor which simply “forgets” some or all the structure of an algebraic
object is commonly called a forgetful functor or underlying functor.

iv) homomorphism functors: if we fix an object X P ObjpC q, the left homomorphism functor is
the following covariant functor

HomC pX, ¨ q : C ÝÑ Set
Y ÞÝÑ HomC pX,Y q

f : Y ÝÑ Y 1 ÞÝÑ f˚ :“ f ˝ ¨

If we fix an object Y P ObjpC q, the right homomorphism functor is the following contravariant
functor

HomC p ¨ , Y q : C ÝÑ Set
X ÞÝÑ HomC pX,Y q

f : X ÝÑ X 1 ÞÝÑ : f˚ :“ ¨ ˝ f

B.1.9 Definition. Let C and D be two categories. A functor F : C ÝÑ D is called

- isomorphism if there exists a (necessarily unique) functor G : D ÝÑ C , called inverse of F ,
such that G ˝ F “ idC and F ˝G “ idD . In that case we write F´1 :“ G and we say that C
and D are isomorphic. If C “ D , we that that F is an automorphism.

- faithful if for every objects X,Y P ObjpC q the map

F|Hom : HomC pX,Y q ÝÑ HomDpF pXq, F pY qq

is injective.

- full if for every objects X,Y P ObjpC q the map

F|Hom : HomC pX,Y q ÝÑ HomDpF pXq, F pY qq

is surjective.



B.1. Generalities 325

- equivalence if F is full and faithful and for every object X 1 P ObjpDq there exists an object
X P ObjpC q such that F pXq – X 1 in D . In that case we say that C and D are equivalent. If
C “ D , we say that F is an auto-equivalence.

B.1.10 Remarks. 1. Given a full and faithful functor F : C ÝÑ D , it is straightforward to see
that F is an isomorphism of categories if and only if the map F|Obj : ObjpC q ÝÑ ObjpDq is
bijective. As a consequence, every full and faithful functor F : C ÝÑ D yields an isomorphism
between C and F pDq, where F pDq is the image of C by F , which is a category in an obvious
fashion (actually, it is a full subcategory of D).

2. If S is a subcategory of a given category C , then there exists an obvious inclusion functor.
This functor is automatically faithful, so that S is a full subcategory of C if and only if the
inclusion functor is full. As a result, in order to define a full subcategory we only need to
define its class of objects.

B.1.11 Definition. Let C and D be two categories and F,G : C ÝÑ D two functors. A natural
transformation between F and G, denoted by η : F ÝÑ G, is a collection of homomorphisms
tηX : F pXq ÝÑ GpXquXPObjpC q in D such that the following diagram commutes

F pXq

F pfq
��

ηX // GpXq

Gpfq
��

F pY q ηY
// GpY q

for all X,Y P ObjpC q and all f P HomC pX,Y q.
If the collection tηX : F pXq ÝÑ GpXquXPObjpC q is formed by isomorphisms, then we say that η

is a natural isomorphism. In this case we say that F and G are naturally isomorphic and we write
F

η
– G.

B.1.12 Remark. We can show that a functor F : C ÝÑ D is an equivalence if and only if there
exists a functor G : D ÝÑ C such that G ˝ F – idC and F ˝G – idD .

B.1.13 Definition. Let C be a category and R P ObjpC q an object. A functor F : C ÝÑ Set is
called representable by R if

F – HomC pR, ¨ q

B.1.14 Definition. Let C and D be two categories and F : C ÝÑ D a functor. A left (resp.
right) adjoint for F is a functor F$ : D ÝÑ C (resp. F% : D ÝÑ C ) such that for every objects
X P ObjpC q and Y P ObjpDq we have an isomorphism

HomC pF
$pY q, Xq – HomDpY, F pXqq (resp. HomC pX,F

%pY qq – HomDpF pXq, Y q)

such that ψ : HomC pF
$p¨q, ¨ q ÝÑ HomDp ¨ , F p¨qq

(resp. HomC p ¨ , F
%p¨qq ÝÑ HomDpF p¨q, ¨ q) is a natural isomorphism in each variable.

In order to prove that two functors are adjoints each other, it is advisable to have another
characterization that allow manipulable formulas. Namely, we have the following result whose proof
can be found in Theorem IV.1.2 of [122].
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B.1.15 Theorem. Let C and D be two categories and F : C ÝÑ D a functor. The following
assertions are equivalent,

i) F$ : D ÝÑ C is a left adjoint for F with natural isomorphism between the homomorphisms
sets ψ.

ii) There exist a functor S : D ÝÑ C and natural transformations η : IdD ÝÑ F ˝S, ε : S ˝F ÝÑ
IdC such that

- the composition F η˝idF
ÝÑ F ˝ S ˝ F

idF ˝ε
ÝÑ F is the identity transformation of F ,

- the composition S idS˝η
ÝÑ S ˝ F ˝ S

ε˝idS
ÝÑ S is the identity transformation of S.

The natural transformations η and ε are called unit and co-unit of the adjunction, respectively.

The correspondence above is realized by means of the following formulas

S :“ F$, ηY :“ ψY,F$pY qpidF$pY qq and εX :“ ψ´1
F pXq,XpidF pXqq

F$ :“ S, ψpfq :“ Spfq ˝ ηY and ψ´1pgq :“ εX ˝ Spgq,

for all X P ObjpC q, Y P ObjpDq, f P HomC pF
$pY q, Xq and g P HomDpY, F pXqq.

Moreover, if rF$ is another left adjoint for F , then rF$ and F$ are naturally isomorphic.

Of course, given any functor F : C ÝÑ D it is not at all guarantee the existence of its (left or
right) adjoint. Actually, the existence of such an adjoint is related to the continuity of the functor
F in the sense that it commutes with limits. This characterization is due to P. J. Freyd and we refer
to Theorem V.6.2 of [122] or Theorem 9.28 of [4] for a proof and more precisions. It is important to
remark that in the above definition we require the domain of the adjoint functor to be the whole
category D , which is the arrival category of the starting functor F . We can be more flexible and
define F$ just on some appropriated class of objects of D . In the context of triangulated categories
this is advisable in order to construct complementary pair of subcategories (see Definition 1.2.2.18
and Theorem 1.2.2.20).

Finally, we shall recall some standard constructions of categories, namely the product category,
the quotient category and the localization category.

B.1.16 Definition. Let C and D be two categories. The product category of C and D , denoted
by C ˆD , is the category defined in the following way

- Objects of C ˆ D are pairs of objects of C and D , which is indicated by ObjpC ˆ Dq :“
ObjpC q ˆObjpDq.

- Given two objects U :“ pX,Y q, V :“ pX 1, Y 1q P ObjpC ˆ Dq, a homomorphism h P

HomCˆDpU, V q is a pair of homomorphisms pf, gq P HomC pX,X
1q ˆHomDpY, Y

1q.

- The composition operation on HomCˆDp ¨ , ¨ q is defined component-wise.
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B.1.17 Remarks. 1. Observe that the product category C ˆ D enjoys the following universal
property. There exist two obvious functors

P : C ˆD ÝÑ C and Q : C ˆD ÝÑ D

called projections such that given any category E with two functors T : E ÝÑ C and S :
E ÝÑ D , there exists a unique functor F : E ÝÑ C ˆD such that P ˝F “ T and Q ˝F “ S.

2. Given categories C ,D ,C 1,D 1 and functors F : C ÝÑ D , F 1 : C 1 ÝÑ D 1, we can define the
product functor by component-wise

F ˆ F 1 : C ˆD ÝÑ C 1 ˆD 1,

which is, by the way, compatible with the canonical projection functors.

3. We can define the product category for an arbitrary family of categories, say tCiuiPI , and it
is denoted by

ś

iPI

Ci.

B.1.18 Theorem-Definition. Let C be a category and R a rule that assigns to any pair of objects
X,Y P ObjpC q a binary relation RX,Y on HomC pX,Y q.

The quotient category of C by the rule R is the category denoted by C {R endowed with a functor
Q : C ÝÑ C {R, which is a bijection on objects, such that
i) if f, g : X ÝÑ Y are homomorphisms in C such that pf, gq P RX,Y for some objects X,Y P
ObjpC q, then Qpfq “ Qpgq,

ii) if C 1 is another category and F : C ÝÑ C 1 is a functor such that F pfq “ F pgq whenever f, g :
X ÝÑ Y are homomorphisms in C such that pf, gq P RX,Y for some objects X,Y P ObjpC q,
then there exists a unique functor H : C {R ÝÑ C 1 such that H ˝Q – F .

There is, however, a quotient category in the sense of Verdier which is more interesting for this
dissertation. The basic idea for the Verdier quotient category is the localization process in ring
theory. Namely we want to transform a class of homomorphisms into isomorphisms in a bigger
category. To this end, we can develop a theory of calculus of fractions, which imitates the classical
ring localization. In addition, we would like to endow such a category with a triangulated structure
whenever the starting category is a triangulated one. This is a non trivial problem solved by J. L.
Verdier in [205]. For more details we refer to [138] or [69].
B.1.19 Definition. Let C be a category and S Ă HomC p ¨ , ¨ q a class of homomorphisms. The
localization of C with respect to S is the category denoted by C

“

S´1‰ endowed with a functor
Q : C ÝÑ C

“

S´1‰ such that

i) Qpsq is an isomorphism in C
“

S´1‰, for every homomorphism s in S,

ii) if C 1 is another category and F : C ÝÑ C 1 is a functor such that F psq is an isomorphism in
C 1 for all homomorphism s in S, then there exists a unique factorization

C
Q //

F
��

C
“

S´1‰

{{
C 1
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Let us consider a specific localization in the context of triangulated categories following the
preceding definition. Let T be a triangulated category and let N Ă T be a triangulated (resp.
thick) subcategory.

A homomorphism f P HomT is called N -quasi-isomorphism if Cf P ObjpN q. In this case, the
localization of T with respect to the class of N -quasi-isomorphisms is denoted by

T
”

`

N -quasi-isomorphisms
˘´1

ı

“: T {N

B.1.20 Theorem. Let T be a triangulated category and N Ă T a triangulated (resp. thick)
subcategory.

The localization category T {N is a triangulated category endowed with a triangulated localization
functor Q : T ÝÑ T {N such that

i) N Ă kerpQq (resp. N “ kerpQq),

ii) if T 1 is another triangulated category and F : T ÝÑ T 1 is a triangulated functor such that
N Ă kerpF q (resp. N “ kerpF q), then there exists a unique factorization

T
Q //

F
��

T {N

||
T 1

The category T {N is called Verdier quotient of T by N and the functor Q is called Verdier
localization functor.

B.2 Abelian categories
B.2.1 Definition. Let C be a category. We say that C is additive if

i) for every objects X,Y P ObjpC q, the corresponding set of homomorphisms HomC pX,Y q is an
additive abelian group such that the composition operation ˝ is bilinear with respect to the
group additive law,

ii) there exists a distinguished object in C denoted by 0 P ObjpC q such that HomC p0, 0q “ 0. It
is called zero object,

iii) for every objects X,Y P ObjpC q, there exists an object Z P ObjpC q with homomorphisms

X Z Y
ι q

p j

such that
p ˝ ι “ idX , q ˝ j “ idY and ι ˝ p` j ˝ q “ idZ
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The object Z is called direct sum of X and Y and it is denoted by Z :“ X ‘ Y . The
homomorphisms ι and j are called canonical injections of X ‘ Y and the homomorphisms p
and q are called canonical projections of X ‘ Y .

B.2.2 Remark. If C is a pre-additive category (that is, a category C satisfying only the axiom piq of
the above definition) and Z P ObjpC q is any object, it is straightforward to show that the following
assertions are equivalent

i) Z is initial.

ii) Z is terminal.

iii) idZ “ 0.

iv) HomC pZ,Zq “ 0.

In particular, any initial or any terminal object in C is a null object. Hence in an additive
category, the zero object is a null object and it is unique up to isomorphism.

B.2.3 Definition. Let C and D be two additive categories and F : C ÝÑ D a functor. We say
that F is additive if for every objects X,Y P ObjpC q the map

F|Hom : HomC pX,Y q ÝÑ HomDpF pXq, F pY qq

is a group homomorphism.

B.2.4 Remarks. 1. If X,Y P ObjpC q are two objects in an additive category C , then it is
straightforward to deduce that

p ˝ j “ 0 and q ˝ ι “ 0

2. If X,Y P ObjpC q are two objects in an additive category C , then their direct sum object
X ‘ Y together with the canonical injections and projections is uniquely determined up to an
isomorphism of X ‘ Y . If all such direct sums exist, then a choice of the object X ‘ Y for
each pair pX,Y q in C defines a bifunctor

‘ : C ˆ C ÝÑ C

whose definition on homomorphisms is the following: given objects X,X 1, Y, Y 1 P ObjpC q and
homomorphisms f P HomC pX,X

1q and g P HomC pY, Y
1q, then f‘g P HomC pX‘Y,X

1‘Y 1q
is defined by

f ‘ g :“ ι1 ˝ f ˝ p` j1 ˝ g ˝ q,

where pι, p, j, qq and pι1, p1, j1, q1q are the canonical homomorphisms associated to the direct
sums X ‘ Y and X 1 ‘ Y 1, respectively.

3. A straightforward iterated argument yields the existence of a direct sum object for any finite
collection of objects in the category. Namely, if X1, . . . , Xn P ObjpC q are objects in an additive
category C , then their direct sum X1 ‘ . . .‘Xn is defined, uniquely up to isomorphism, by
the equations

ι1 ˝ p1 ` . . .` ιn ˝ pn “ id and pk ˝ ιk “ idXk @k “ 1, . . . , n
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Moreover, if Y1, . . . , Yn P ObjpC q are other objects in C , then we have a isomorphism of
abelian groups

HomC

´ n
à

k“1
Xk,

n
à

k“1
Yk

¯

–

n
à

k“1
HomC pXk, Ykq

4. If F : C ÝÑ D is an additive functor between additive categories, it is clear that F transforms
the zero object in C into the zero object in D . Moreover, F is compatible with direct sums,
that is, F pX ‘ Y q – F pXq ‘ F pY q, for every objects X,Y P ObjpC q. Finally, if F is in
addition an equivalence, then the corresponding inverse equivalence is always an additive
functor.

5. It is important to observe the following: given two objects X,Y P ObjpC q in an additive
category C , then their direct sum object X‘Y as defined above corresponds to both a product
and a co-product of X and Y (denoted usually by X ˆY and by X \Y , respectively). In this
sense, we say that X ‘ Y is a bi-product. In fact, we can show that in a pre-additive category
two objects have a product if and only if they have a co-product so that the corresponding
bi-product is characterized as in the definition above (see Theorem V III.2 in [122] for a
proof). In other words, finite product and finite co-product objects are isomorphic in an
additive category.
Notice that the product and co-product can be defined for an arbitrary family of objects
tXiuiPI in C . However, they are not isomorphic in general. In this way, an additive category
always has finite bi-products by definition but not infinite ones in general.
For the appropriate development of the homological algebra on a triangulated category,
we have to require the existence of countable bi-products, that is, countable direct sums in
the terminology above. This condition is automatically fulfilled for our main example of
triangulated category: the equivariant Kasparov category with respect to a locally compact
(quantum) group.

B.2.5 Definition. Let C be an additive category. Consider a homomorphism f P HomC pX,Y q
with X,Y P ObjpC q.

- A kernel for f is an object K P ObjpC q and a homomorphism k : K ÝÑ X such that

i) f ˝ k “ 0,
ii) ifK 1 P ObjpC q is another object with a homomorphism k1 : K 1 ÝÑ X such that f ˝k1 “ 0,

then there exists a unique homomorphism u : K 1 ÝÑ K such that k1 “ k ˝ u.

In this case we write kerpfq :“ pK, kq. By abuse of notation we write kerpfq “ K as well.

- A co-kernel for f is an object Q P ObjpC q and a homomorphism q : Y ÝÑ Q such that

i) q ˝ f “ 0,
ii) if Q1 P ObjpC q is another object with a homomorphism q1 : Y ÝÑ Q1 such that q1 ˝f “ 0,

then there exists a unique homomorphism u : Q ÝÑ Q1 such that q1 “ u ˝ q.

In this case we write cokerpfq :“ pQ, qq. By abuse of notation we write cokerpfq “ Q as well.

- If f has a co-kernel pQ, qq and p has a kernel, then we define the image of f as Impfq :“
kerpqq :“ pImpfq, uq.
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- If f has a kernel pK, kq and k has a co-kernel, then we define the co-image of f as coimpfq :“
cokerpkq :“ pcoimpfq, vq.

B.2.6 Remark. If pK, kq is a kernel for a homomorphism f , then the object K is unique up to
isomorphism and the homomorphism k is necessarily a monomorphism. If pQ, qq is a co-kernel
for f , then the object Q is unique up to isomorphism and the homomorphism q is necessarily an
epimorphism.

B.2.7 Definition. Let C be an additive category. We say that C is abelian if

i) every homomorphism in C has a kernel and a co-kernel,

ii) every monomorphism is a kernel for some homomorphism in C and every epimorphism is a
co-kernel for some homomorphism in C .

B.2.8 Remark. Observe that the axiom piiq in the previous definition implies that any homomorphism
in an abelian category which is both a monomorphism and an epimorphism is automatically an
isomorphism.

B.2.9 Definition. Let C be an abelian category. Given objects X,Y, Z P ObjpC q and composable
homomorphisms f P HomC pX,Zq and g P HomC pZ, Y q, a sequence

X
f
ÝÑ Z

g
ÝÑ Y

is called

- exact at Z if Impfq “ kerpgq. In this case we write X f
ÝÑ Z

g
ÝÑ Y ,

- left (resp. right) exact if it is exact at X (resp. at Y ) and at Z, that is, if f is a monomorphism
(resp. g is an epimorphism) and Impfq “ kerpgq. In that case we write 0 ÝÑ X

f
ÝÑ Z

g
ÝÑ Y

(resp. X f
ÝÑ Z

g
ÝÑ Y ÝÑ 0),

- exact if it is left and right exact. In this case we write 0 ÝÑ X
f
ÝÑ Z

g
ÝÑ Y ÝÑ 0 and it is

called short exact sequence.

B.2.10 Definition. Let C and D be two abelian categories and F : C ÝÑ D an additive functor.
We say that F is exact if it transforms short exact sequences in C into short exact sequences in D .

It is well known that abelian categories have enough good properties so that we can develop a
fruitful homological algebra, which is very useful in lots of different branches of mathematics. Of
course, this classical homological algebra is presupposed for this dissertation and standard references
are [225], [33], [123], [85]. On the contrary, the concept of triangulated category introduced in
Section 1.2 generalizes in a natural fashion the structure of abelian categories in such a way that
we can also develop an analogous homological algebra. We have included a detailed presentation in
Section 1.2.2 and Section 1.2.4 and it shall serve as a comparison with the classical one.

For instance, the paradigmatic example of a triangulated category is the homotopy category
related to a given additive category. This is the starting point to the development of the celebrated
derived category of A. Grothendieck and J. L. Verdier. We recall here its definition.
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B.2.11 Theorem-Definition. Let C be an additive category. The homotopy category related to
C , denoted by H pC q, is the additive category defined in the following way

- objects of H pC q are chain complexes on C ,

- homomorphisms of H pC q are homotopy classes of chain complex homomorphisms.

Moreover, H pC q is not an abelian category in general, but it is always a triangulated one.
Precisely,

- the suspension functor Σ “: r1s : H pC q ÝÑ H pC q is defined on objects by,

Σ
`

ppX‚, d‚q
˘

:“ pX‚ r1s , d‚ r1sq, for all pX‚, d‚q P ObjpH pC qq,

where
`

X‚ r1s
˘

n
:“

`

X‚
˘

n´1 and
`

d‚ r1s
˘

n
:“ ´

`

d‚
˘

n´1, for all n P Z; and on homomor-
phisms by,

Σpfq :“ f r1s , for all f P HomH pC qpX‚, Y‚q with X‚, Y‚ P ObjpH pC qq

where
`

f r1s
˘

n
:“ fn´1, for all n P Z.

- given a chain complex homomorphism f P HomH pC qpX‚, Y‚q with pX‚, dX‚q, pY‚, dY ‚q P
ObjpH pC qq, define its cone, denoted by pCf‚, df‚q, as the following chain complex

`

Cf‚
˘

n
:“

`

X‚
˘

n´1 ‘
`

Y‚
˘

n
, for all n P Z

`

df‚
˘

n
:“

ˆ

´
`

dX‚
˘

n´1 0
fn´1

`

dY ‚
˘

n

˙

, for all n P Z

Hence, a mapping cone triangle is a triangle in H pC q of the form

X‚
f
ÝÑ Y‚ ÝÑ Cf‚ ÝÑ ΣpX‚q

The class of distinguished triangles on H pC q, denoted by ∆Σ, is given by any triangle
isomorphic to a mapping cone triangle.

B.3 C˚-tensor categories. Categorical picture of
Quantum Groups

B.3.1 Definition. A tensor category is the data pC ,b,1, α, l, rq where

- C is a category,

- b : C ˆ C ÝÑ C is a functor, called tensor product on C ,

- 1 P ObjpC q is a distinguished object of the category C , called unit object,
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- α : b˝ pbˆ idq ÝÑ b˝ pidˆbq is a natural equivalence, called associativity constraint for b,

- l : b ˝ p1ˆ idq ÝÑ id is a natural equivalence, called left unit constraint for b,

- r : b ˝ pidˆ 1q ÝÑ idq is a natural equivalence, called right unit constraint for b;

such that

i) α satisfies the pentagon axiom meaning that the diagram

pX b Y q b pZ bW q

αX,Y,ZbW

&&
`

pX b Y q b Z
˘

bW

αXbY,Z,W

88

αX,Y,Z b idW

��

X b
`

Y b pZ bW q
˘

`

X b pY b Zq
˘

bW αX,YbZ,W
// X b

`

pY b Zq bW
˘

idX b αY,Z,W

@@

is commutative for all objects X,Y, Z,W P ObjpC q.

ii) α, l and r satisfy the triangle axiom meaning that the diagram

pX b 1q b Y

rA b idY &&

αX,1,Y // X b p1b Y q

idXblYxx
X b Y

is commutative for all objects X,Y P ObjpC q.

We say that C is strict if α, l and r are identities.

B.3.2 Definition. Let C be a category. We say that C is a C˚-category if

i) for any pair of objectsX,Y P ObjpC q, the set of the corresponding homomorphismsHomC pX,Y q
is a Banach space and the composition map

HomC pY, Zq ˆHomC pX,Y q ÝÑ HomC pX,Zq
pS, T q ÞÝÑ S ˝ T

is bilinear for all object Z P ObjpC q such that ||S ˝ T || ď ||S|| ¨ ||T ||,
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ii) there exists an antilinear contravariant functor ˚ : C ÝÑ C such that

- ˚| ObjpC q “ id,
- given objects X,Y P ObjpC q and a homomorphism T P HomC pX,Y q, then

T˚ P HomC pY,Xq, T˚˚ “ T , ||T˚T || “ ||T ||2

B.3.3 Definition. A C˚-tensor category is the data pC , ˚,b,1, α, l, rq where pC , ˚q is a C˚-
category and pC ,b,1, α, l, rq is a tensor category such that both structures are compatibles in the
following sense

pT b Sq˚ “ T˚ b S˚,

for all T P HomC pX,Y q, S P HomC pX
1, Y 1q with X,X 1, Y, Y 1 P ObjpC q.

B.3.4 Remark. The functor ˚ of a C˚-category allows to define the notions of unitary, projection,
etc. for homomorphisms imitating the usual case of C˚-algebras. Moreover, we observe that for
every object X P ObjpC q, EndC pXq is a C˚-algebra.

For a more successful development of the theory, it is advisable to make also the following
assumptions in our C˚-tensor categories.

i) C has finite direct sums. More precisely, given objects X1, . . . , Xn P ObjpC q, there exists an
object S P ObjpC q and isometries ui P HomC pXi, Sq for each i “ 1, . . . , n such that

n
ÿ

i“1
uiu

˚
i “ idS and uiu˚j “ δij @i, j “ 1, . . . , n

ii) C has subobjects. More precisely, for any object X P ObjpC q and for any projection p P
EndC pXq, there exists an object Y P ObjpC q and an isometry u P HomC pY,Xq such that
p “ uu˚.
In particular, C has a zero object. Namely, the object defined by the zero projection.

iii) The unit object 1 is simple (or irreducible), that is, EndC p1q “ C.

iv) C is small, that is, the class of objects is a set.

B.3.5 Definition. Let pC , ˚,b,1C , α, l, rq and pD , ˚,b,1D , α
1, l1, r1q be two C˚-tensor categories.

A C˚-tensor functor between C and D is the data pF,ϕ0, ϕ2q where F : C ÝÑ D is a functor,
ϕ0 : 1D ÝÑ F p1C q is an isomorphism and ϕ2 : b˝ pF ˆF q ÝÑ F ˝b is a natural equivalence such
that

i) F is linear on homomorphisms,
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ii) for every objects X,Y, Z P ObjpC q we have

`

F pXq b F pY q
˘

b F pZq

ϕ2pX,Y q b idF pZq

��

α1F pXq,F pY q,F pZq // F pXq b
`

F pY q b F pZq
˘

idF pXq b ϕ2pY, Zq

��
F pX b Y q b F pZq

ϕ2pX b Y, Zq

��

F pXq b F pY b Zq

ϕ2pX,Y b Zq

��
F
`

pX b Y q b Z
˘

F pαX,Y,Zq
// F

`

X b pY b Zq
˘

iii) for every object X P ObjpC q the following diagram is commutative

1D b F pXq

ϕ0 b idF pXq

��

l1F pXq // F pXq

F p1C q b F pXq
ϕ2p1C ,Xq

// F p1C bXq

F plXq

OO

iv) for every object X P ObjpC q the following diagram is commutative

F pXq b 1D

idF pXq b ϕ0

��

r1F pXq // F pXq

F pXq b F p1C q
ϕ2pX,1C q

// F pX b 1C q

F prXq

OO

We say that F is strict if the ϕ0, ϕ2 are identities in D .
We say that F is unitary if for every objects X,Y P ObjpC q we have that

F pT q˚ “ F pT˚q, ϕ2pX,Y q is unitary, ϕ0 is unitary,

for all T P HomC pX,Y q.

B.3.6 Definition. Let pC , ˚,b,1C , α, l, rq and pD , ˚,b,1D , α
1, l1, r1q be two C˚-tensor categories.

Suppose that pF,ϕ0, ϕ2q and pG,ϕ10, ϕ12q are two C˚-tensor functors between C and D . A natural
tensor transformation between pF,ϕ0, ϕ2q and pG,ϕ10, ϕ12q is a natural transformation η : F ÝÑ G
such that
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i) the following diagram is commutative

1D

ϕ10

##

ϕ0

{{
F p1C q η

// Gp1C q

ii) for every objects X,Y P ObjpC q the following diagram is commutative

F pXq b F pY q

η b η

��

ϕ2 // F pX b Y q

η

��
GpXq bGpY q

ϕ12pX,Y q
// F pX b Y q

We say that η is a monoidal equivalence if η is a natural equivalence.

B.3.7 Definition. Two C˚-tensor categories pC , ˚,b,1C , α, l, rq and pD , ˚,b,1D , α
1, l1, r1q are

said to be (unitarily) monoidally equivalent if there exist C˚-tensor (unitary) functors F : C ÝÑ D
and G : D ÝÑ C such that

i) G ˝ F is naturally monoidally (unitary) equivalent to idC in C ,

ii) F ˝G is naturally monoidally (unitary) equivalent to idD in D

B.3.8 Remark. It is important to make the following observation concerning the strict tensor
categories.

Roughly speaking, a tensor category is a category equipped with a “tensor product” operation.
This operation must be, at least, associative and must verify some obvious axioms with respect
a unit object (actually, It is an abstraction of the notion of monoid). However, this associativity
holds up to isomorphisms. Sometimes it is advisable to have true equalities for the tensor product
associativity.

Mac Lane has proven that “every C˚-tensor category is unitarily monoidally equivalent to a
strict C˚-tensor category” (see Theorem XI.5.3 in [103] for a proof).

Thus, for the general development of the theory of tensor categories, we may assume that they
are strict. Nevertheless, the strictification of a tensor category insert new objects to the category
that are isomorphic to the original ones, so that a non-strictified tensor category may give a better
picture than the strictified one in some cases.

Fortunately, the main example of tensor category for the present dissertation, specifically the
category of finite dimensional unitary representations of a compact quantum group, is strict.

B.3.9 Definition. Let C be a strict C˚-tensor category. Given an object X P ObjpC q, an object
X P ObjpC q is called conjugate of X in C if there exist homomorphisms

R : 1 ÝÑ X bX and R : 1 ÝÑ X bX
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such that the compositions

X
idbR
ÝÑ X bX bX

R˚bid
ÝÑ X and X idbR

ÝÑ X bX bX
R˚bid
ÝÑ X

are identities in C .
In this case, the identities pR˚ b idq ˝ pidbRq “ idX and pR˚ b idq ˝ pidbRq “ idX are called

conjugate equations.
We say that C is rigid if any object of C admits a conjugate object.

Conjugate objects are also called dual objects in the literature and they can be defined and
studied for a general tensor category (see [61] for the details). In the context of the present
dissertation, it is convenient to restrict ourselves to C˚-tensor categories and to use the above
terminology. There exist some results of interest concerning conjugate objects that can be found in
Chapter 2 of [139], for instance. Let us state some of them.

B.3.10 Theorem (Frobenius reciprocity). Let C be a strict C˚-tensor category. If X P ObjpC q
is an object with conjugate X P ObjpC q, then the homomorphism

HomC pX b Y, Zq ÝÑ HomC pY,X b Zq
T ÞÝÑ pidX b T q ˝ pRb idY q

is an isomorphism of vector spaces for all objects Y,Z P ObjpC q, where pR,Rq are some solutions
of the conjugate equations for X and X.

Moreover, if X is a simple object, then X is simple as well and the spaces HomC p1, X bXq,
HomC p1, X bXq are one dimensional.

B.3.11 Proposition. Let C be a strict C˚-tensor category. If X P ObjpC q is an object that admits
a conjugate X P ObjpC q, then X is unique up to isomorphism. More precisely, if pR,Rq are the
solutions of the conjugate equations for X and X and pR1, R1q are the solutions for the conjugate
equations for X and X 1, then the homomorphism

T :“ pidX bR1
˚
q ˝ pRb id

X
1q P HomC pX

1
, Xq

is invertible with inverse

S :“ pid
X
1 bR

˚
q ˝ pR1 b idXq P HomC pX,X

1
q

Moreover, we have
R1 “ pT´1 b idq ˝R and R1 “ pidb T˚q ˝R

In particular, if X is simple, then there exists λ P C˚ such that

R1 “ λR and R1 “ λ´1R

B.3.12 Proposition. Let C be a strict C˚-tensor category. If X P ObjpC q is an object with
conjugate X P ObjpC q, then EndC pXq is finite dimensional.

As a consequence, every object with a conjugate decomposes into a finite direct sum of simple
objects. In other words, in a rigid C˚-tensor category every object is semi-simple.
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B.3.13 Definition. Let C be a strict rigid C˚-tensor category. If X P ObjpC q is a simple object
with conjugate X P ObjpC q, we call intrinsic dimension of X the number

dipXq :“ ||R|| ¨ ||R||,

where pR,Rq are the solution to the conjugate equations for X and X.

B.3.14 Remarks. 1. Notice that the intrinsic dimension of a simple object is independent of the
choice of the solutions for the corresponding conjugate equations by virtue of Proposition
B.3.11 above.

2. If X P ObjpC q is any object (not necessarily simple), then we decompose it into a finite direct
sum of simple objects, say X “

n
À

k“1
Xk by virtue of Proposition B.3.12 above. In this case, we

define the intrinsic dimension of X to be

dipXq :“
n
ÿ

k“1
dipXkq

3. Observe that we always have dip1q “ 1.

Next, let us describe the categorical picture for quantum groups. To this end, we give the two
main examples of C˚-tensor categories for the present dissertation. Namely, the C˚-tensor category
of Hilbert spaces and the C˚-tensor category of finite dimensional unitary representations of a
compact quantum group. Both of them are crucial in order to achieve the celebrated Tannaka-
Krein-Woronowicz duality. For this reason, we wish to illustrate the preceding theory with these
two examples. For the details in the computations and in the arguments we refer to [139].

The C˚-tensor category of Hilbert Spaces

We denote by Hilbf the category of finite dimensional Hilbert spaces.

- Choosing a large enough set of finite dimensional Hilbert spaces to fit all constructions of
interest, we can assume that Hilbf is small.

- The usual tensor product of Hilbert spaces yields a tensor functor on Hilbf .

- The unit object on Hilbf is given by C.

- We can assume without loose of generality that Hilbf is strict.

- Given two finite dimensional Hilbert spaces H,H 1 P ObjpHilbf q, the homomorphisms between
them are given by the linear operators

HomHilbf pH,H
1q :“ BpH,H 1q,

so that it is a Banach space with bilinear composition map satisfying the norm condition of
Definition B.3.2.
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- We define an antilinear contravariant functor ˚ : Hilbf ÝÑ Hilbf to be the identity on objects
and the adjoint operator on homomorphisms. It satisfies the conditions of Definition B.3.2
and Definition B.3.3 by virtue of the well-known theory of operators on Hilbert spaces.

- Hilbf is a rigid C˚-tensor category. Indeed, given a finite dimensional Hilbert space H P

ObjpHilbf q, fix an orthonormal basis of H, say tξ1, . . . , ξnu where n :“ dimpHq.
The conjugate object of H is simply its dual space H. One possible pair of solutions to the
corresponding conjugate equations are given by

R : C ÝÑ H bH

1 ÞÝÑ Rp1q :“
n
ř

i“1
ξi b ξi

R : C ÝÑ H bH

1 ÞÝÑ Rp1q :“
n
ř

i“1
ξi b ξi

- Notice that given a finite dimensional Hilbert space H P ObjpHilbf q and fixing an orthonormal

basis of H, we can always write the following direct sum decomposition H –
n
À

i“1
C, where

n “ dimpHq. As a consequence, for every object H P ObjpHilbf q its intrinsic dimension is
given simply by the dimension of the corresponding Hilbert space,

dipHq “ dimpHq

The C˚-tensor category of a C.Q.G.

Consider a compact quantum group G in the sense of Woronowicz. We denote by ReppGq the
category of finite dimensional unitary representations of G. ReppGq is called representation category
of G.

- Assuming that the Hilbert spaces of the representations of G are those of the set considered
above to define Hilbf , we can assume that ReppGq is small.

- The tensor product of representations (recall Definition 1.3.1.11) yields a tensor functor on
ReppGq.

- The unit object on ReppGq is given by the trivial representation ε.

- We can assume without loose of generality that ReppGq is strict.

- Given two finite dimensional unitary representations of G, say w, v P ObjpReppGqq, the
homomorphisms between them are given by the corresponding space of intertwiners

HomReppGqpw, vq :“Morpw, vq,

so that it is a Banach space with bilinear composition map satisfying the norm condition of
Definition B.3.2 (recall Definition 1.3.1.13 and Remark 1.3.1.16)

- We define an antilinear contravariant functor ˚ : ReppGq ÝÑ ReppGq to be the identity on
objects and the adjoint operator on homomorphisms. It satisfies the conditions of Definition
B.3.2 and Definition B.3.3 by virtue of the well-known theory of operators on Hilbert spaces
and Remark 1.3.1.16.
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- ReppGq is a rigid C˚-tensor category. Indeed, given a finite dimensional unitary repre-
sentations of G, say w P ObjpReppGqq, suppose that the representation space of w is
H P ObjpHilbf q.
The conjugate object of w is simply its contragredient representation w, which is a finite
dimensional unitary representation of G on H (recall Definition 1.3.1.18).
A straightforward computation shows that if pR,Rq is the pair of solutions to the conjugate
equations forH andH from the above example, then R PMorpε, wjwq and R PMorpε, wjwq.
One possible pair of solutions to the conjugate equations for w and w are given by

RG :“ pidbQ´1{2
w q ˝R and RG :“ pQ1{2

w b idq ˝R,

where Qw is the invertible positive self-adjoint operator of Theorem 1.3.1.24 defining the
quantum dimension of w.

- Let w P ObjpReppGqq be an irreducible unitary representation of G. Given the solutions
pRG, RGq to the conjugate equations for w and w as above, a straightforward computations
yields that

dipwq “ dimqpwq

The Tannaka-Krein duality for compact quantum groups in the sense of Woronowicz can be
successfully established using the language and the formalism of C˚-tensor categories. We refer to
Section 2.3 of [139] for a detailed proof.

B.3.15 Definition. Let C be a C˚-tensor category. A C˚-tensor functor F : C ÝÑ Hilbf is called
fiber functor if it is faithful and exact.

Given a compact quantum group G, there exists a canonical fiber functor given simply by the
obvious forgetful functor

ReppGq ÝÑ Hilbf ,

which send to any finite dimensional unitary representation of G to its corresponding representation
Hilbert space.

B.3.16 Theorem (Tannaka-Krein-Woronowicz’s duality). Let C be a rigid C˚-tensor category
and F : C ÝÑ Hilbf a unitary fiber functor. Then there exist a compact quantum group G and
a unitary monoidal equivalence E : C ÝÑ ReppGq such that F is naturally unitarily monoidally
isomorphic to the composition C

E
ÝÑ ReppGq ÝÑ Hilbf .

Besides, the ˚-Hopf algebra pPolpGq,∆, ε, Sq associated to G is uniquely determined up to
isomorphism.

B.3.17 Remark. Observe that a discrete quantum group pG is completely defined by the corresponding
compact quantum group G (and vice versa) by means of the ˚-Hopf algebra PolpGq (recall Theorem
1.3.1.36). Moreover, Tannaka-Krein-Woronowicz duality allows to construct discrete quantum
subgroups by means of purely algebraic and and categorical methods as we have already pointed
out in Proposition 1.4.3.4.

Namely, if pA, p∆, pε, pSq is any ˚-Hopf algebra, we can easily show that the category ReppAq of its
finite dimensional unital ˚-representations is a C˚-tensor category. Consider now a rigid C˚-tensor
subcategory of ReppAq, say C . Assume the following properties.
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i) C is full,

ii) the class of representations in C is closed (up to isomorphism) under taking direct sums, tensor
product and contragredient representations,

iii) C contains the trivial representation 1 “ pε.

In this situation, the dual space A˚ gives raise to a new ˚-Hopf algebra, say pB,∆, ε, Sq where
B is the subspace of A˚ spanned by the matrix coefficients of all representations in C .

Furthermore, there exists a compact quantum group G such that

i) pB,∆, ε, Sq “ pPolpGq,∆, ε, Sq,

ii) C is unitarily monoidally equivalent to ReppGq.

For the details of these constructions we refer to Theorem 2.3.13 of [139].

As an application of the preceding construction we observe the following (see Proposition
6.1 in [206] for more details). Given a compact quantum group G and any subset S Ă IrrpGq
of equivalence classes of irreducible representations of G, denote by C :“ xSy the smallest full
subcategory of ReppGq containing S. If, in addition, C contains the trivial representation and
it is closed under taking tensor product and contragredient representations, then Tannaka-Krein-
Woronowicz duality and the above discussion guarantee that there is an associated C˚-subalgebra
CpHq such that restricting the co-product of G to CpHq endows it with the structure of compact
quantum group H. By definition (recall Proposition 1.4.3.4), pH is a discrete quantum subgroup of
pG.

Moreover, ReppHq naturally identifies with C and we say that pH is the discrete quantum
subgroup of pG generated by S. Sometimes, by abuse of language, we say as well that H is generated
by S.

By virtue of the Tannaka-Krein-Woronowicz’s duality, any compact quantum group is completely
determined by the category of its finite dimensional unitary representations. However, a rigid
C˚-tensor category can also have fiber functors producing non-isomorphic compact quantum groups
(for instance, see Example 2.3.9 in [139]). In this sense, we have the following definition.

B.3.18 Definition. Two compact quantum groups G1 and G2 are called monoidally equivalent if
ReppG1q and ReppG2q are unitarily monoidally equivalent.

This notion is important for the present dissertation. Indeed, monoidal equivalences have been
turned out to be very useful in order to obtain the Baum-Connes property for some quantum groups
and also for K-theory computations. In this sense, there are some important results that we have
to mention.

On the one hand, J. Bichon, A. De Rijdt and S. Vaes give a very explicit description of the
notion of monoidal equivalence [23]. They show the monoidal equivalence between the orthogonal
quantum groups and the one between the unitary quantum groups (using the earlier work by T.
Banica [9], [10]). They provide as well a tool to produce new examples of ergodic actions coming
from unitary fiber functors in order to study the spectral theory of compact quantum groups.

On the other hand, A. De Rijdt and N. V. Vennet obtain, in a concrete and constructive way, a
bijective correspondence between actions (not necessarily ergodic) of monoidally equivalent compact
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quantum groups on unital C˚-algebras [163]. Moreover, this correspondence is such that spectral
subspaces of the actions are preserved. These results have been extended by C. Voigt [210] at
the level of the equivariant Kasparov category of discrete quantum groups, which allows to study
the Baum-Connes property and the K-theory for quantum groups. In particular, the equivariant
Morita equivalence classes of torsion actions are in one-to-one correspondence between monoidally
equivalent compact quantum groups. Recently, these results have been generalized for regular
locally compact quantum groups by S. Baaj and J. Crespo [5].

B.3.19 Theorem. i) (J. Bichon, A. De Rijdt and S. Vaes, [23]) Fix a natural number n P N.
Let Q,P P GLnpCq be two invertible matrices such that TrpQ˚Qq “ Tr

`

pQ˚Qq´1˘ and
TrpP˚P q “ Tr

`

pP˚P q´1˘.
The free unitary quantum groups U`pQq and U`pP q are monoidally equivalent if and only if

TrpQ˚Qq “ TrpP˚P q

ii) (J. Bichon, A. De Rijdt and S. Vaes, [23]) Fix a natural number n P N. Let Q,P P GLnpCq
be two invertible matrices such that QQ “ λId and PP “ µId, for some λ, µ P R.
The free orthogonal quantum groups O`pQq and O`pP q are monoidally equivalent if and only
if

λ

TrpQ˚Qq
“

µ

TrpP˚P q

In particular, for any Q P GLnpCq such that QQ “ ˘1, SUqp2q is monoidally equivalent to
O`pQq for a unique q P r´1, 1szt0u.

iii) (A. D. Rijdt and N. V. Vennet, [163]) Let A and B two finite dimensional C˚-algebras with
dimpAq ě 4 and dimpBq ě 4. Let ω P A˚ be a continuous δ-form and let ω1 P B˚ be a
continuous δ1-form, for some δ, δ1 ą 0.
The quantum automorphism groups QutpA,ωq and QutpB,ω1q are monoidally equivalent if and
only if δ “ δ1.
As a consequence, S`N “ QutpCN q with N P N are pairwise monoidally inequivalent and every
quantum automorphism group is monoidally equivalent to SOqp3q for some q P p0, 1s.

iv) (C. Voigt, [210]) Let pG1 and pG2 be two discrete quantum groups. If pG1 is monoidally equivalent
to pG2, then pG1 is torsion-free if and only if pG2 is torsion-free.

v) (C. Voigt, [210]) Let pG1 and pG2 be two discrete quantum groups. If pG1 is monoidally equivalent
to pG2, then K K

pG1 is equivalent to K K
pG2 as triangulated categories.

vi) (C. Voigt, [210]) Let pG1 and pG2 be two torsion-free discrete quantum groups. If pG1 is monoidally
equivalent to pG2, then pG1 satisfies the strong Baum-Connes property if and only if pG2 satisfies
the strong Baum-Connes property.
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