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Résumé

Cette these porte sur la conjecture de Baum-Connes pour les groupes quantiques. Le but principal
de ce travail est ’étude de la stabilité de la conjecture de Baum-Connes par certaines constructions
de groupes quantiques discrets.

Dans un premier temps, nous réalisons une étude détaillé et approfondie de la reformulation
catégorielle de la conjecture de Baum-Connes d’apreés les travaux de R. Meyer et R. Nest [132].
Ensuite, nous appliquons ces techniques au cas concret des groupes quantiques discrets sans torsion.

Nous réalisons une étude exhaustive des produits croisés afin de pouvoir les manipuler aisément en
connexion avec la conjecture de Baum-Connes. Notamment nous donnons une preuve de la propriété
universelle d’un produit croisé réduit par un groupe quantique discret. Nous analysons également
quelques propriétés d’importance pour le contexte de cette thése. Mentionnons particulierement la
propriété d’associativité du produit croisé par rapport a un produit semi-direct.

En s’inspirant des travaux pionniers de J. Chabert [34] nous menons une généralisation pour
les groupes quantiques discrets de la stabilité de la conjecture de Baum-Connes par rapport & un
produit semi-direct. Deux propriétés d’invariance d’intérét indépendant sont également étudiées, a
savoir le phénomeéne de torsion et la K-moyennabilité. Nous observons que 'hypothése sans torsion
force un biproduit crosié compact & étre un produit semi-direct quantique sans torsion. Ainsi, la
conjecture de Baum-Connes correspondante ne fournit pas d’information remarquable dans ce cas.

La stratégie générale pour mener & bien une telle généralisation consiste a définir un foncteur de
“décomposition” entre les catégories de Kasparov suivant 'opération de produit semi-direct. Nous
observons que cette stratégie peut étre extrapolée a d’autres constructions de groupes quantiques.
Notamment un produit direct de groupe quantiques. Dans ce cas, nous établissons une connexion
avec la formule de Kiinneth de maniére analogue & ce qui a été démontré dans [37] par J. Chabert,
S. Echterhoff et H. Oyono-Oyono pour les groupes localement compacts classiques. Les propriétés
de torsion et de K-moyennabilité ont également été étudiées.

Nous savons, grace & R. Vergnioux and C. Voigt [208], que la conjecture de Baum-Connes forte
est préservée par le passage aux sous-groupes quantiques discrets divisibles. Le méme résultat est
vrai pour la propriété de torsion forte, grace & Y. Arano et K. De Commer [3]. Dans ce travail nous
montrons que la conjecture de Baum-Connes usuelle est préservée par le passage aux sous-groupes
quantiques discrets divisibles sous I’hypothese sans torsion. La propriété de K-moyennabilité a
également été étudiée.

Une notable propriété de permanence inclue dans cette these est la stabilité de la conjecture
de Baum-Connes forte par produit en couronne libre. Pour cela, nous réalisons une compléte
classification des actions de torsion pour un produit libre quantique, ce qui permet de donner une
formulation adéquate de la conjecture de Baum-Connes forte pour un produit en couronne libre
inspirés par le travail pionnier de C. Voigt [212]. Une application majeure est un calcul explicite de
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K-théorie, dans trois situations pertinentes, pour le groupe quantique compact de Lemeux-Tarrago
qui est monoidallement équivalent & un produit en couronne libre [120]. Cette propriété de stabilité
pour un produit en couronne libre ainsi que les calculs de K-théorie s’integrent dans un travail en
collaboration avec A. Freslon [127].

Pour conclure, nous nous questionnons sur les résultats obtenus afin de proposer une liste
de questions, problems et objectifs que I'auteur a rencontré durant l'intégralité de la période de
recherche de cette thése et qui rassemblent quelques unes des lignes de travail pour ses projets
futures de recherche.

Mots CLES. groupes quantique, Baum-Connes, K-théorie, catégorie triangulée, catégorie de
Kasparov, C*-catégorie (tensorielle), produit semi-direct, produit en couronne libre, produit direct,
torsion quantique, K-moyennabilité.



Abstract

The present dissertation is focused on the Baum-Connes conjecture for quantum groups. The main
purpose of this work is the study of the Baum-Connes conjecture stability under some constructions
of discrete quantum groups.

In a first phase, we carry out a detailed and extensive study about the categorical reformulation
of the Baum-Connes conjecture according to the results of R. Meyer and R. Nest [132]. Next, we
apply these techniques to the specific case of torsion-free discrete quantum groups.

We carry out an exhaustive study of crossed products in order to handle them comfortably in
connexion with the Baum-Connes conjecture. Notably, we give a proof of the universal property
satisfied by a reduced crossed product by a discrete quantum group. We analyze as well some
important properties for this dissertation. Let us mention in particular the associativity property
of the crossed product with respect to a semi-direct product.

Being inspired by the pionneer work of J. Chabert [34], we perform a generalization for discrete
quantum groups of the invariance property of the Baum-Connes conjecture under the semi-direct
product construction. Two permanence properties of own interest are studied as well. Namely,
the torsion-freeness and the K-amenability. We observe that the torsion-freeness assumption
forces a compact bicrossed product to be a torsion-free quantum semi-direct product, so that the
corresponding Baum-Connes conjecture does not give any relevant information in this case.

The general strategy used to accomplish such a generalization consists in defining a “decomposi-
tion” functor between the corresponding Kasparov categories in accordance with the semi-direct
product operation. Thus, we observe that this strategy can be extrapolate to other (quantum)
group constructions. Namely, to a a quantum direct product. In this case, we state a connexion
with the Kiinneth formula as pointed out in [37] by J. Chabert, S. Echterhoff and H. Oyono-Oyono
for classical locally compact groups. The properties of torsion-frenness and K-amenability are also
analyzed.

It is known, thanks to R. Vergnioux and C. Voigt [208], that the strong Baum-Connes conjecture
is preserved by divisible discrete quantum subgroups. The same is true for the strong torsion-freeness
property, thanks to Y. Arano and K. De Commer [3]. Here we show that the usual Baum-Connes
conjecture is preserved by divisible discrete quantum subgroups under torsion-freeness assumption.
The K-amenability property is analyzed too.

A notably permanence property included in this dissertation is the invariance of the strong
Baum-Connes conjecture under the free wreath product construction. For this, we carry out
a complete classification of torsion actions of a quantum free product, which allows to give an
appropriated formulation of the strong Baum-Connes conjecture for a free wreath product inspired
by the pioneer work of C. Voigt [212]. A major application is an explicit K-theory computation, in
three relevant situations, for the Lemeux-Tarrago’s compact quantum group which is monoidally
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equivalent to a free wreath product [120]. Both this stability property for a free wreath product
and the K-theory computations are part of a collaboration work with A. Freslon [127].

To conclude, we question ourselves about the results obtained in order to suggest a list of
questions, problems and goals that the author has encountered during the whole research period of
the present dissertation and that are part of his future research projects.

KEYWORDS. quantum group, Baum-Connes, K-theory, triangulated category, Kasparov category,
C*(-tensor) category, semi-direct product, free wreath product, direct product, quantum torsion,
K-amenability.
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Introduction

A REALITE qui nous entoure est purement géométrique et pour maitriser une telle géométrie
nous avons utilisé, depuis I’époque d’Euclide, des outils et des postulats naturellement
construits de I'intuition élaborée a partir de nos observations immeédiates. Cependant,
tout au long du XXeme siecle la physique a fournit des nouveaux paradigmes pour décrire

la réalité.

D’une part, la théorie de la relativité d’A. Einstein a donné une vision plus mathématique de
I’Univers en ’encadrant dans une géométrie beaucoup plus souple que la géométrie euclidienne.
Il a mis en relief le caractere local de la réalité directe que nous apercevons. D’autre part, la
physique quantique stimulée par W. Heisenberg a donné une vision plus changeante de I’Univers
en ’encadrant dans ce cas dans une mer de possibilités, chacune d’elles étant dépendantes des
observations faites.

D1 précisément a ce caractere changeant, la notion classique de position doit étre remplacée par
la notion d’opérateur. Par conséquent, ’espace géométrique ou la réalité quantique se développe
n’est plus un espace usuel au sens de Descartes, mais un espace ou la mesure de ses propriétés n’est
pas une opération commutative (principe d’incertitude).

Ce changement de point de vu s’illustre en mathématiques par la naissance de la Géométrie
non Commutative. Son but fondateur était donc d’allier sous un méme cadre conceptuel I'aspect
non commutatif ou opérationnel de la physique quantique avec I'aspect purement géométrique de la
théorie de la relativité.

Depuis qu’A. Connes a commencé a développer, avec beaucoup de succes, cette théorie en 1979,
la Géométrie non Commutative et I’Algebre d’Opérateurs plus généralement ont expérimenté un
élargissement remarquable grace aux travaux de mathématiciens de trés grande envergure.

Rappelons le célebre théoreme de dualité de Gelfand: “la catégorie des espaces topologiques
Hausdorff localement compacts est équivalente d la catégorie des C*-algébres commutatives”. Ce
théoréme représente le point de départ du changement de philosophie pour la géométrie non
commutative d’A. Connes [41] et il contient également 'idée essentielle pour aboutir & la notion
de groupe quantique. La théorie des groupes s’est développée sous des perspectives différentes et
variées depuis I’époque d’E. Galois et la moderne théorie des groupes quantiques a essayé de créer
d’énigmatiques reflets dans le cadre de la géométrie non commutative.

Il est compliqué de donner une description exhaustive de I’évolution historique de ces objects
car la notion de groupe quantique apparait aussi bien dans la physique que dans les mathématiques
et avec des significations différentes a priori. Egalement, les contributions au développement de
ces objets ont été tres éparses dans le panorama mathématique entre les années 60 et 80, ce qui
contribuait & une vision assez hétérogéne de la théorie des groupes quantiques. A I'heure actuelle,
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méme s’il existent encore des débats concernant certaines terminologies ou notations, nous pouvons
dire que les groupes quantiques ont réussi a consolider ses bases en créant ainsi une théorie bien
comprise qui continue sa croissance en élargissant ses domaines d’action et d’application.

Afin de donner un apergu sur cette théorie qui permette d’expliquer aussi bien leurs origines
que leur état actuel, nous pouvons distinguer trois axes principaux autour desquels se développent
les travaux sur les groupes quantiques : i) analyse harmonique et théorie des représentations, ii)
espaces homogeénes et groupes de transformations et iii) combinatoire et géométrie.

i) Analyse harmonique et théorie des représentations. L’analyse harmonique classique étudie la
représentation de fonctions (définies sur R) comme une superposition de fonctions élémentaires
trigonométriques par le biais de la transformée de Fourier. A la moitié du XXéme sidcle on a
observé que certaines propriétés de R et de la transformée de Fourier classique peuvent étre
généralisées pour n’importe quel groupe localement compact en donnant lieu a ce que 'on
appel I'analyse harmonique abstraite.

Le point de départ est I’existence d’une mesure appropriée sur tout groupe localement compact,
que l'on appelle measure de Haar (en honneur de A. Haar), qui est unique & multiplication
d’une constante positive pres et qui est notée p. Cette mesure joue le role de la mesure
de Lebesgue sur R. L’autre ingrédient essentiel pour développer cette théorie est la notion
de caractére qui joue, quant a lui, le role des fonctions élémentaires trigonométriques dans
une décomposition de type Fourier classique. Plus précisément, si G est un groupe abélien
localement compact, alors G dénote le groupe (abélien) des caractéres de G, ce soit, 'ensemble
des homomorphismes de groupes entre G' et S L. 11 s’appelle groupe dual de G. La théorie
générale affirme que G est toujours un groupe localement compact. Remarquons tout de méme
que I'hypothese “G abélien” est nécessaire pour achever cette conclusion puisque 'on utilise
la dualité de Gelfand pour identifier G avec le spectre de L'(G, ). Dans ce contexte, les
propriétés de la transformée de Fourier classique trouvent une raison conceptuelle en vertu de
ce que l'on appelle la dualité de Pontryagin [159] (en honneur de L. Pontryagin) et qui assure

que G = CA;, pour tout groupe abélien localement compact G. En outre, si G est compact, alors
son dual de Pontryagin est un groupe discret.

Observons le fait suivant : S! peut étre vu comme le groupe des opérateurs unitaires de C,
c’est a dire, le groupe d’automorphismes de C en tant qu’espace de Hilbert. Par conséquent,
un caractére de G peut étre vu comme une représentation unitaire de dimension 1 de G et
réciproquement. Autrement dit, il existe une correspondance bijective entre les caractéres d’un
groupe abélien localement compact et ses représentations unitaires de dimension 1.

Ainsi, la dualité de Pontryagin répond a une question de reconstruction : pouvons-nous
reconstruire un groupe d partir de la catégorie de ses représentations ?

Si nous éliminons I'hypothese de commutativité de G, alors il faut trouver un remplagant
convenable pour G. Ceci sera I’ensemble des représentations unitaires et irréductibles de G.
Observons en revanche que cet ensemble ne sera plus un groupe car le produit tensoriel de
représentations irréductibles n’est pas forcément une représentation irréductible (pour cette
raison nous seront intéressés a étudier ce que l'on appelle les régles de fusion, c’est a dire, les
régles de décomposition en irréductibles d’un produit tensoriel de représentations irréductibles).
Or, nous pouvons munir cet ensemble d’une structure de C*-catégorie tensorielle.

La question de reconstruction précédente devient ainsi une question plus profonde, a savoir :
quelles sont les catégories équivalentes a une catégorie de représentations d’un groupe?
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Cette problématique de reconstruction dans le cadre non commutatif est connue sous le nom
de dualité de Tannaka-Krein et elle est le point de départ de I’approche mathématique pour
la naissance des groupes quantiques. Les premieres tentatives de résoudre ce probleme ont
été menées par T. Tannaka [185] et par M. G. Krein [109], [110] en utilisant tout de méme la
théorie de Peter-Weyl pour les groupes compacts [149].

Or, dans ces travaux le groupe et son dual sont des objets de nature différente et dans ce sens on
obtient seulement une solution partielle par rapport au cas abélien. Il faut attendre G. I. Kac
qui avait eu 'idée de décrire un groupe localement compact et son dual en termes d’algebres
de von Neumann munies d’une co-multiplication [91], [92], [93]. Ainsi la philosophie générale
de la géométrie non commutative entre en jeu. Durant les années 70 la théorie des algébres de
Kac est développée de fagon indépendante par G. V. Kac-L. I. Vainerman [198], [199] et par M.
Enock-J-M. Schwartz [58], [59]. Ensuite, une version C*-algébrique de la théorie des algebres
de Kac est aussi développée par J-M. Vallin [200] et par M. Enock et J-M. Vallin [60]. Ces
deux approches achévent certainement une théorie de dualité en termes de la problématique de
reconstruction de Tannaka-Krein qui inclut tous les groupes localement compacts. Néanmoins,
la théorie reste encore limitée a cause des nombreux axiomes dans la définition d’algebre de
Kac et de la manque d’exemples en dehors de ceux provenant des groupes classiques.

En 1987, S. L. Woronowicz [226] donne une premiére définition de groupe quantique compact G
en termes de C*-algébres uniféres munies d’une co-multiplication. Dans les années qui suivent,
il améliore sa propre approche avec les articles [228], [229] et [231]. 11 développe une théorie
trés riche et proche de celle des groupes compacts. D’une part, il démontre I'existence d’un
état distingué, appelé état de Haar, qui joue le role de la measure de Haar sur un groupe
localement compact suivant la dualité de Gelfand. D’autre part, il développe une théorie des
représentations satisfaisante qui lui permet d’achever un analogue du théoreme de Peter-Weyl
dans le cadre non commutatif. Plus précisément, il obtient que toute représentation unitaire de
G se décompose comme une somme directe de représentations irréductibles de dimension finie
et, de plus, les coefficients de ces représentations sont liés par des relations d’orthogonalité
par rapport a ’état de Haar. En ce qui concerne la théorie de dualité, les groupes quantiques
compacts donnent une réponse affirmative. Nous pouvons construire un groupe quantique (non

compact) G tel que G =~ @, ce qui s’appelle dualité de Tannaka-Krein- Woronowicz. En effet, G
est completement défini par la catégorie des représentations irréductibles de dimension finie de
G. En vertu de cette dualité, G est appelé groupe quantique dual de G et les duaux de groupes
quantiques compacts sont appelés groupes quantiques discrets.

En outre, la théorie de Woronowicz est remplie d’exemples dont le plus important est SU,(2)
[227]. En effet, les objets issus des travaux de V. G. Drinfeld [55] et de M. Jimbo [87] sur les
déformations d’algebres enveloppantes de groupes de Lie trouvent leur place dans la théorie
de S. L. Woronowicz grice aux travaux de M. Rosso [166]. Egalement, des groupes classiques
comme le groupe unitaire, le groupe orthogonal ou le groupe de permutations trouvent une
version quantique dans la théorie de S. L. Woronowicz notés respectivement U™ (n), Ot (n),
S et qui ont été introduits par S. Wang dans [215], [217].

Afin de donner une généralisation compléte de I'analyse harmonique classique, le cas localement
compact dans le cadre quantique a été abordé par différents auteurs sous différentes perspectives.
Citons I’élégante approche des unitaires multiplicatifs de S. Baaj et G. Skandalis [7] ou Papproche
purement algébrique dans le cadre des algébres de Hopf non uniféres de A. van Daele [201],

[202]. Mais la définition de groupe quantique localement compact qui est & ce jour communément
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acceptée est celle donnée par J. Kustermans et S. Vaes [112], [113] dans les années 2000 en
termes d’algebres de von Neumann et de C*-algebres. Dans ce cas, la théorie devient beaucoup
plus technique et délicate que celle de Woronowicz (par exemple, un analogue de la mesure de
Haar n’existe pas automatiquement) mais on achéve également un analogue de la dualité de
Pontryagin et tous les exemples de groupes quantiques antérieurement construits y trouvent
un cadre théorique précis.

Espaces homogénes et groupes de transformations. Rappelons brievement la philosophie générale

du programme d’Erlangen [108], initiée par F. Klein dans la seconde moitié du XIXeéme sie-
cle. L’idée fondatrice est celle de construire la géométrie a partir de la notion de groupe et
d’invariant. Ainsi, un groupe est vu comme un groupe de transformations d’un espace et ses
éléments représentent les symétries qui préservent la géométrie de Iespace. Si nous demandons
de plus que 'action du groupe sur ’espace soit transitive, il n’y aura pas de points distingués
et nous obtenons une notion d’isotropie car les points de ’espace forment une seule orbite selon
le groupe. Nous parlons ainsi d’espace homogéne.

Un exemple éclairant est le suivant. Etant donné n € N considérons la sphére de dimension
n — 1 dans R™ et notons-la S*~!. Considérons aussi le groupe orthogonal de R", SO(n,R).
Nous savons que ce groupe préserve les distances, les angles et aussi les rotations de R™. Ainsi,
l’action naturelle de ce groupe sur la sphére S*~! préserve sa géométrie et donc S*~! doit
étre vu comme un espace homogene selon la philosophie de F. Klein. En effet, un exercice
élémentaire est de prouver que l'action de SO(n,R) sur S"~! est transitive. De méme, nous
obtenons une description explicite de la spheére en tant qu’espace quotient

S"t ~ SO(n,R)/SO(n — 1,R)

Lorsque nous considérons la sphere S?»~1 dans C", sa description comme espace homogene est
donnée par le groupe spécial unitaire

§*~1 ~ SU(n)/SU(n — 1)

Etant donné la similitude des groupes quantiques avec les groupes classiques, nous voulons
aussi mener dans le cadre quantique une géométrie basée sur les espaces homogenes. Nous
parlerons ainsi d’espace homogéne quantique.

D’une part, I'espace géométrique sous-jacent sur lequel le groupe quantique va agir devra étre
un “espace quantique”, c’est a dire, une “C*-algebre” d’aprés la dualité de Gelfand. La notion
d’action d’un groupe quantique compact sur une C*-algébre a été introduite par P. Podle$ dans
[156] et utilisée ultérieurement par plusieurs auteurs comme F. Boca dans [25], M. Marciniak
dans [126], S. Wang dans [217], S. Vaes dans [194] ou C. Pinzari-J. E. Roberts dans [153]. Une
classe importante d’actions de groupes quantiques compacts est celle des actions ergodiques
avec lesquelles on développe une théorie spectrale proche de celle pour les groupes compacts
classiques. Dans le cadre de cette these les actions ergodiques sont spécialement intéressantes
en relation avec le phénomeéne de torsion (d’aprés R. Meyer et R. Nest [133], [131]) et avec la
notion d’équivalence monoidale (d’aprés J. Bichon, A. De Rijdt et S. Vaes [23]). En outre, les
actions ergodiques s’averent en étroite relation avec les espaces homogenes quantiques grace
aux travaux de K. De Commer et M. Yamashita [50], [51].

D’autre part, la théorie des espaces homogenes dans le cas classique entraine naturellement
travailler avec des sous-groupes du groupe de transformations en question. Ceci représente
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un obstacle lorsque nous voulons imiter cette théorie dans le cadre quantique, de sorte que
différentes stratégies ont été proposées pour achever cette généralisation [52], [102]. En effet,
dans [155] P. Podle$ définit une sphere quantique S? (avec ¢ € (0,1)) qui mérite la nomenclature
d’espace homogene de SU,(2), mais ces espaces ne peuvent pas étre définis en termes des
sous-groupes quantiques de SU,(2).

Remarquons que la théorie des espaces homogeénes a un but purement géométrique. En
particulier, les espaces homogenes a I’issu des groupes de Lie donnent lieu & une approche
de théorie de groupes de la géométrie différentielle. Dans ce sens, nous voudrions aborder la
géométrie non commutative d’A. Connes suivant ’approche des espaces homogeénes quantiques.
Plusieurs travaux se sont faits a ce sujet. Mentionnons les travaux de D. Goswani [72] et
les travaux de J. Bhowmick et D. Goswani [74], [73], [75], [20], [L70] ou est étudié I’analogue
quantique du groupe d’isométries riemanniennes d’une variété différentielle usuelle (notamment,
on caractérise SO4(3) comme le groupe quantique d’isométries d’une variété riemannienne non
commutative). Bien que la géométrie différentielle non commutative développée par A. Connes
concerne les variétés réelles, il y a eu quelques tentatives pour construire une géométrie complexe
non commutative. Premieérement, la structure complexe sur les spheres de P. Podles a été
étudiée [105] suivant des travaux précédents de S. Majid [125] et de S. Schwartz-A. Polishchuk
[158]. Deuxiémement, on a étudié la structure complexe sur le plan projectif complexe [107],
[106] suivant des travaux précédents de F. D’Andrea et L. Dabrowski [46]. Une nouvelle
approche a la géométrie complexe non commutative en termes d’espaces homogenes quantiques
est développée depuis trés récemment par R. Buachalla [30] ot un cadre non commutative
pour la géométrie de Kéahler est établit.

Dans le méme ordre de questions, nous pouvons nous demander quel devrait étre le groupe
d’automorphismes d’un espace quantique. Etant donné qu’un espace quantique est une C*-
algebre A, la définition de Aut(A) issu de la géométrie ne peut pas étre celle des transformations
ou permutations de ses points (si X,, denote ’espace fini de n-points, alors par définition nous
avons Aut(X,) = S,, le groupe de permutations de n-éléments). Nous devons donc suivre une
nouvelle approche. Pour cela nous remarquons que si X est un espace quelconque, son groupe
d’automorphismes Aut(X) vérifie la propriété universelle suivante : si G est un groupe qui agit
sur X, alors il existe un unique homomorphisme de groupes G —> Aut(X) compatible avec
les actions respectives sur X. Cette observation a permis a S. Wang de donner une définition
abstraite de groupe quantique d’automorphismes dans [217] qui devient une description explicite
pour le cas des C*-algebres de dimension finie.

Combinatoire et géométrie. La théorie de S. L. Woronowicz sur les groupes quantiques compacts
s’est avérée tres productive grace a sa simplicité et sa richesse. Ainsi, plusieurs théories classiques
sur les groupes ont été transportées dans le cas quantique suivant I’approche de Woronowicz.
Cela a donné lieu a une large variété de thématiques qui sont maintenant étudiées avec les
groupes quantiques.

La théorie géométrique des groupes, qui étudie le rapport entre les propriétés des groupes et la
géométrie des espaces ol ces groupes agissent, a vu son jour a l'issu de I’étude des groupes libres
et des présentations de groupes. Ceci était basé sur des approches purement combinatoires
selon W. von Dyck [213]. Durant la premiére moitié du XXeéme siécle, plusieurs mathématiciens
comme M. Dehn, J. Nielsen, J. H. Whitehead ou E. van Kampen ont commencé a introduire des
approches géométriques pour 1’étude des groupes. En 1977, J.-P. Serre développe une théorie
élégante et fructueuse sur les groupes agissant sur des arbres en généralisant des propriétés
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connues sur les produits libres et les extensions HNN. Elle s’appelle théorie de Bass-Serre
[169] et elle a été étudiée en détaille dans le cadre des groupes quantiques discrets par R.
Vergnioux [206], [207], par P. Fima [63] et par P. Fima-A. Freslon [64] en obtenant notamment
une généralisation dans le cadre quantique de la “K-moyennabilité des groupes discrets agissant
sur des arbres avec des stabilisateurs moyennables” (résultat d a P. Julg et A. Valette [90]).

Un point de vue différent pour aborder la géométrie d’un groupe serait une étude analytique
du groupe en question. Cela donne lieu & une connexion directe avec la théorie des C*-algebres
et donc un passage naturel vers les groupes quantiques. Dans ce sens on parle de propriétés
d’approzimation de groupes (quantiques).

Bien que les véritables origines de la théorie des propriétés d’approximation doit se placer
dans les pionniers travaux d’A. Grothendieck sur les produits tensoriels topologiques d’espaces
vectoriels topologiques [76], [77] ; on pourra placer les origines des propriétés d’approximation
des groupes dans les années 30 avec la définition de moyennabilité de J. von Neumann [214]
dans le contexte de la célebre paradoze de Banach-Tarski [8]. Ensuite, diverses propriétés sont
apparues avec différentes applications dans différents domaines. La notion de nucléarité pour
les C*-algebres [116], [39] est la propriété d’approximation pour les C*-algébres la plus proche
de la théorie originale d’A. Grothendieck. Dire qu'une C*-algébre A est nucléaire équivaut
a dire que tous les produits tensoriels de C*-algebres par A donnent la méme C*-algébre.
Mentionnons d’autres propriétés d’approximation importantes. La propriété de Haagerup [81],
considérée comme un affaiblissement de la moyennabilité, s’avere spécialement intéressante
en vertu des profondes conséquences analytiques et topologiques [82]. La propriété (T) de
Kazhdan [104] doit étre vue comme un opposé direct & la propriété de Haagerup et elle pourrait
éventuellement aider & la construction d’obstructions pour des théorémes d’isomorphismes. La
moyennabilité faible [79], [80] a donné lieu quant & elle & des résultats de classification d’algébres
de von Neumann et aussi elle a permis le développement des techniques de rigidité-déformation
de S. Popa [145], [146], [195].

Le lien entre les différentes propriétés d’approximation a été beaucoup étudié et a ’heure
actuelle il existent encore des questions ouvertes a ce sujet. Notamment le lien entre la propriété
de Haagerup et la moyennabilité faible. Dans le contexte de classification de C*-algebres et
du calcul des groupes de K-théorie, les propriétés de moyennabilité et de nucléarité ont été
définies aussi au niveau de la K-théorie. En effet, J. Cuntz introduit dans [44] la notion de
K-moyennabilité permettant de donner des raisons conceptuelles aux calculs de la K-théorie
des C*-algebres du groupe libre et G. Skandalis introduit dans [172] la notion de K -nucléarité,
qui a permis le développement de I’étude de la K K-théorie des produits libres par E. Germain
[70], [71].

En ce qui concerne les groupes quantiques, les propriétés d’approximation ont été également
abordées de fagon fructueuse pendant les derniéres années. Tandis que les notions de moyennabil-
ité et de K-moyennabilité trouvent une généralisation flagrante pour le cas quantique dans
le contexte de la théorie de S. L. Woronowicz, les propriétés de Haagerup et la propriété (T')
de Kazhdan nécessitent un traitement plus minutieux. P. Fima a introduit la propriété (T')
de Kazhdan pour les groupes quantiques discrets dans [62] et M. Daws P. Fima, A. Skalski
et S. White ont introduit la propriété de Haagerup pour les groupes quantiques localement
compacts dans [47]. Mentionnons quelques travaux remarquables sur ce sujet : [26], [27], [32],
[119], [189]. Pour un apergu général de cette théorie nous mentionnons I'exposé tres détaillé
[28].
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Les probabilités libres offrent une perspective combinatoire et intéressante sur les groupes
quantiques. Cette théorie a été initiée par D. Voiculescu dans les années 80-90 [209] et largement
développée par D. Voiculescu R. Speicher. Elle a pour but d’étudier les variables aléatoires
dans un cadre non commutatif suivant la notion d’indépendance libre. Le livre [179] servira au
lecteur intéressé pour une introduction complete a ce sujet.

Le lien entre la probabilité libre et les groupes quantiques se fait par le biais de la notion de
groupe quantique “easy” introduite par T. Banica et R. Speicher [178] et étudiée ultérieurement
par plusieurs auteurs [176], [177], [68]. En effet, les groupes quantiques “easy” posseédent
par définition une structure combinatoire intrinseéque (les entrelaceurs de ses représentations
irréductibles sont indexés par des partitions d’ensembles finis), ce qui permet d’étudier la
notion d’indépendance libre selon les actions du groupe quantique de permutations S;{, .

L’approche combinatoire des groupes quantiques a permis notamment ¢) une description
complete de la théorie des représentations de S;{, et les groupes quantiques libres avec des
conséquences concernant la moyennabilité [9], [10], [12], [11] [13], [14] ) la construction d'un
produit en couronne par un groupe quantique d’automorphismes [66] et iii) I’étude de sa
propriété de Haagerup [186]. Les ingrédients principaux pour ces résultats sont les partitions
non-croisées, les diagrammes de Temperley-Lieb [150] et les algebres planaires [88]. Cela donne
tout de meéme une forte connexion avec la théorie des sous-facteurs de type I17.

D’une part, nous observons que les groupes quantiques peuvent étre vus comme des analogues
non commutatifs des groupes, de sorte que beaucoup de propriétés et résultats classiques peuvent
étre transportés dans ce cadre plus général. D’autre part, nous observons également que la perte de
commutativité représente parfois un véritable phénomeéne d’obstruction et nous sommes obligés de
créer des nouvelles stratégies afin d’obtenir une compléte généralisation des théories classiques dans
un cadre non commutatif.

Il est important de dire que la théorie des groupes quantiques ne représente pas uniquement
une jolie généralisation au cadre non commutatif de résultats classiques connus, mais ils permettent
d’avoir aussi une nouvelle perspective des problémes classiques qui pourra éventuellement aboutir a
des solutions. Cela entraine notamment un nouveau paradigme, ce qui est le cas de la problématique
étudiée dans la présente these.

La conjecture de Baum-Connes a été formulée en 1982 par P. Baum et A. Connes [18]. Nous
ne connaissons pas encore un contre-exemple pour la conjecture originale mais il est connu que
celle avec coefficients est fausse [83]. Pour cette raison nous allons nous référer a la conjecture de
Baum-Connes avec coefficients comme la propriété de Baum-Connes. Le but de la conjecture est de
comprendre le rapport entre deux groupes de K-théorie de nature différente, ce qui pourra établir
une forte connexion entre la géométrie et la topologie dans un contexte généralisé de la théorie
de l'indice. Plus précisément, si G est un groupe localement compact et A est une G-C*-algebre,
alors la propriété de Baum-Connes pour G avec coefficients dans A affirme que le morphisme
d’assemblage

uG 1 KIP(G5 A) — K (G x A)
T

est un isomorphisme, ot KiP(G; A) := R(KKE(EG,A)) = YlirgG (KKE(C’O(Y),A)) est la
c_conTpact

K-homologie équivariante de G & support compact avec coefficients dans A et Ky (G x A) est la
T
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K-théorie du produit croisé réduit G x A. Cette propriété a été prouvée pour une large classe de

r
groupes. Mentionnons les remarquables travaux de N. Higson et G. Kasparov [82] sur les groupes
ayant la propriété de Haagerup et les travaux de V. Lafforgue [115] sur les groupes hyperboliques.
La K-homologie équivariante a support compact K. i"p (G; A) est, bien entendu, 'object géométrique
obtenu a partir de I'espace classifiant des actions propres de G. Donc il est a priori plus facile a
calculer que le groupe K, (G x A), qui est quant & lui de nature analytique et donc moins souple
T

dans sa structure. Néanmoins, le groupe K. i"p (G; A) crée parfois des problémes non-triviaux. Pour

cette raison, R. Meyer et R. Nest proposent en 2006 une nouvelle formulation de la propriété de

Baum-Connes dans un cadre catégoriel approprié [132]. Plus précisément, si maintenant ¢ ¢ ¢

désigne la catégorie de Kasparov G-équivariante et F'(A) := K, (G x A) est le foncteur homologique
T

sur # # ¢ qui définit le membre de droite du morphisme d’assemblage, alors R. Meyer et R. Nest
montrent dans [132] que le morphisme d’assemblage ufj est équivalent & la transformation naturelle

nf :LF(A) — F(A),

ou LF est la localisation du foncteur F' par rapport a une paire convenable de sous-catégories
complémentaires (£, .#"). Plus précisément, .# est la sous-catégorie de ¢ % ¢ des G-C*-algébres
compactement induites et A est la sous-catégorie de # # ¢ des G-C*-algébres compactement
contractiles.

Cette reformulation permet notamment d’éviter toute construction géométrique. Nous pouvons
donc remplacer G par un groupe quantique localement compact G. Le probléme pour aboutir
a une formulation compléte dans le cas quantique est la torsion d’un tel groupe quantique. En
effet, si I' est un groupe discret, sa torsion est complétement déterminée par ses sous-groupes finis
tandis que si G est un groupe quantique discret, la notion de torsion n’est pas du tout un probleme
trivial et elle a été introduite pour la premiére fois par R. Meyer et R. Nest dans [133], [131] et
récemment re-interprétée par Y. Arano et K. De Commer en termes d’anneaux de fusion dans [3].
Néanmoins, le phénomene de torsion dans le cas quantique est loin d’étre complétement compris.
Ainsi, 'actuelle formulation de la propriété de Baum-Connes concerne uniquement les groupes
quantiques discrets sans torsion. Dans ce sens nous pouvons parler de propriété de Baum-Connes
quantique.

La propriété de Baum-Connes s’avere spécialement intéressante pour un groupe discret I' et elle
a été beaucoup étudiée depuis sa formulation. En outre, grace aux travaux de G. Kasparov [96],
de G. Kasparov et G. Skandalis [99], [100] et de J.-L. Tu [191], [192], [193] nous disposons d’une
méthode “constructive” pour aborder la conjecture, nommée méthode Dirac-dual Dirac. Elle a été
utilisée dans la plupart des preuves connues actuellement. La stratégie est basée sur un théoreme
de J.-L. Tu [191] qui affirme que “si T' est un groupe discret et A est une I'-C*-algébre propre, alors
la propriété de Baum-Connes pour I' avec coefficients dans A est satisfaite”. Ainsi, la méthode
Dirac-dual Dirac consiste a construire

i) une I'-C*-algebre propre A,
ii) un élément o € KK (A, C) (nommé élément Dirac),
iii) un élément 3 € KK''(C, A) (nomé élément dual-Dirac),

tels que B ®4 o = 1¢c dans KK (C,C). Cette situation garantit la vérification de la propriété
de Baum-Connes pour I' avec coefficients. Plus généralement, nous pouvons nous contenter de



CONTENTS 9

construire un élément v := S ®4 a € KK'(C,C) vérifiant une certaine condition topologique
concernant les T-espaces propres (nommé alors élément ). Dans cette situation, un résultat de
J.-L. Tu [191] affirme que le morphisme d’assemblage pk est injectif, pour toute I'-C*-algebre B.
Des considérations analogues sont vraies pour un groupe localement compact G quelconque.

La situation idéale lorsque ¥ = 1¢ dans K K% (C,C) se traduit dans le contexte catégoriel de
Meyer-Nest par dire que £ = # . #C et dans ce cas nous disons que G vérifie la propriété de
Baum-Connes forte. Notons que la définition de la sous-catégorie .Z dépend directement des sous-
groupes compacts de G, c’est a dire, de la torsion de G lorsque G est discret. Comme conséquence,
la vérification ou non de la propriété de Baum-Connes forte pour un groupe quantique discret G
dépend directement de la torsion d’un tel groupe quantique.

Lorsque G vérifie la propriété de Baum-Connes, des nombreuses propriétés géométriques liées a
G en découlent [136], notamment la conjecture de Nowvikov. Etant donné que la géométrie liée a
un groupe quantique G doit étre vue comme une notion “virtuelle” d’apres la dualité de Gelfand,
ce type de conséquences n’auront pas un analogue dans le contexte quantique. Nous devrons
plutot nous concentrer sur les applications concernant la structure des C*-algebres. Dans ce sens,
rappelons la conjecture de Kadison-Kaplansky: “siT' est un groupe discret sans torsion, alors C*(T)
ne posséde pas d’idempotents non triviauz”.

Une application plus directe de la propriété de Baum-Connes serait le calcul explicite de la
K-théorie de la C*-algebre réduite d’un groupe discret I'. En effet, puisque le groupe K. i‘)p (I; C)
est construit de facon géométrique, un expert en topologie pourra appliquer des techniques de
suites spectrales afin de le calculer explicitement. Ainsi, I’éventuel isomorphisme de I'application
d’assemblage donnerait le calcul correspondant pour la K-théorie de C*(I"). Observons toutefois
que la reformulation de R. Meyer et R. Nest de la propriété de Baum-Connes change essentiellement
cette perspective : le groupe de nature topologique KL (T'; C) sera maintenant un groupe de
K-théorie dont la construction n’est pas tellement parlante comme dans le cas de 'utilisation des
espaces classifiants. De toutes manieres, le contexte catégoriel développé par R. Meyer et R. Nest
[134], [131] fournit également des outils, en s’appuyant sur des techniques d’algebre homologique,
pour faire aboutir un tel calcul.

Dans ce contexte nous pouvons rappeler un probleme classique en algebre d’opérateurs et qui
reste ouvert a I’heure actuelle : étant donnés n,m € N et si F,, et F,,, désignent les groupes libres
an et m générateurs, respectivement ; est-ce que L(F,) = L(F,,) si et seulement sin =m 2, ol
L(T) denote 'algébre de von Neumann associée & un groupe discret I'. Si au lieu de considérer les
algebres de von Neumann nous considérons les C*-algebres réduites, la question a été répondue
affirmativement grdce au calcul direct des groupes de K-théorie. En effet, M. Pimsner et D.
Voiculescu ont montré dans [152] que Ko(C*(F,,)) = Z et que K1(C¥*(F,,)) = Z,,. 1l faut remarquer
que J. Cuntz avait déja calculé dans [43] la K-théorie pour les C*-algébres mazimales d’un groupe
libre en obtenant le méme résultat que M. Pimsner et D. Voiculescu. Cela I'avait motivé a introduire
la notion de K-moyennabilité dans [44], lui permettant de donner une raison conceptuelle a la
distinction des C*-algebres réduites et maximales du groupe libre au niveau de la K-théorie.

Ces deux remarquables problématiques en algebre d’opérateurs : existence d’idempotents non
triviaux et calcul des groupes de K-théorie, ont été abordées avec beaucoup de succes dans le
contexte des groupes quantiques. Dans le “bestiaire” des groupes quantiques nous pouvons signaler
les groupes quantiques compacts SU,(2) (avec ¢ € (0,1)), O (n), Ut (n) et S} comme étant les
exemples fondamentaux de la théorie et donc ils fournissent la premiere cible lorsque nous voulons
résoudre des problémes précis.
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C. Voigt a commencé en 2010 une série d’articles (avec diverses collaborations avec R. Nest
et R. Vergnioux) ot il a obtenu des résultats favorables au développement des problématiques
précédentes [140], [208], [210], [211], [212].

D’une part, I’étude du phénomene de torsion pour un groupe quantique montre que SU,(2),

—_

—_

O*(n) et UT(n) sont sans torsion tandis que S3; non (et sa torsion est due uniquement a 'action
ergodique canonique de S]f, sur CV). Tls possédent également la propriété quantique de Baum-Connes
forte. Or, en rapport avec la conjecture de Kadison-Kaplansky, nous obtenons le résultat suivant :
lanalogue de cette conjecture est vrai pour OT(n) mais non pour SU,(2) [210]. Autrement dit,
C#(O™(n)) ne contient pas d’idempotents non triviaux tandis que C(SU4(2)) en contient beaucoup.

D’autre part, une fois que la propriété de/\Baum—Connes forte est établie pour les groupes

— -

quantiques duaux SU,(2), Ot(n), U*(n) et S} ; la propriété de K-moyenabbilité en découle
automatiquement et les techniques d’algebre homologique développées par R. Meyer et R. Nest
ont permis & C. Voigt d’obtenir des calculs précis sur la K-théorie des C*-algebres de ces groupes
quantiques (et aussi d’un groupe quantique libre et du groupe quantique d’automorphismes d’une
C*-algebre de dimension finie) :

Ko K;
SU4(2) Z Z
O™ (n) Z Z
UT(n) Z YASYA

U‘{*...*Ult*Of*...*Oi" Z 7 7!
SIJ\FI ZN —2N+2 7
Qut(M,(C)) YASY/N Z
Qut(Mn, (€)@ ... O M, (0) | 20V @z2) ]z

En particulier, le calcul de la K-théorie pour Sj\', entraine le résultat de classification suivant :
CH*(Sk) = C¥(S,) si et seulement si N = N’ [212].

Une maniére effective de produire de nouveaux groupes consiste a faire des opérations entre
deux ou plus groupes donnés. Ainsi nous pouvons signaler les constructions remarquables suivantes
: produit direct, produit semi-direct, biproduit croisé, produit libre et produit en couronne. Dans
un premier temps, il parait raisonnable d’analyser quelle est la classe de groupes dans laquelle la
propriété de Baum-Connes reste vraie. Il s’agit d’'une question élémentaire, mais certaines de ces
constructions posent des difficultés non triviales et méritent ainsi une analyse soigneuse.

Dans ce contexte, une série d’articles de J. Chabert, S. Echterhoff et H. Oyono-Oyono ont
établi la stabilité de la propriété de Baum-Connes par quelques constructions de groupes. Plus
précisément, larticle [34] de J. Chabert établit que la propriété de Baum-Connes est stable pour un
produit semi-direct de groupes localement compacts sous certaines hypothéses. Toutefois, un an plus
tard et en collaboration avec S. Echterhoff, ils obtiennent dans l'article [35] le méme résultat que
précédemment mais en remarquant qu'une des hypotheses initiales était superflue. Dans ce méme
article, J. Chabert et S. Echterhoff ont étudié également la stabilité de la propriété de Baum-Connes
pour les sous-groupes fermés d’un groupe localement compact et pour les produits directs de
groupes localement compacts. En ce qui concerne le cas des groupes discrets, H. Oyono-Oyono les
a étudié en détail dans [141] [142], [144] et [143]. Dans le dernier, il démontre que la propriété de
Baum-Connes est stable par rapport aux extensions de groupes discrets sous certaines conditions et
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des conséquences remarquables s’en tirent. Notamment, la propriété de Baum-Connes est stable
par les extensions centrales de groupes discrets, par les produits semi-directs (sous les hypotheses
analogues & celles de Chabert-Echterhoff) et par les produits directs de groupes discrets. Une
application directe de ces résultats est la suivante : “tous les groupes des tresses pures vérifient la
propriété de Baum-Connes”.

Un premier objectif de la présente thése a été la généralisation de ces propriétés de stabilité pour
les groupes quantiques. En effet, les constructions mentionnées ci-dessus peuvent étre réalisées pour
les groupes quantiques compacts. Plus précisément, les travaux de S. Wang [216], [215] donnent
une version quantique du produit direct, semi-direct et libre de groupes. L’article de J. Bichon [22]
donne une version quantique du produit en couronne par un groupe de permutations (qui a été
généralisée pour un groupe quantique d’automorphismes quelconque dans [66] par P. Fima et L.
Pittau). L’article de S. Vaes et L. I. Vainerman [196] donne une version trés générale de la notion
d’extension pour les groupes quantiques localement compacts en obtenant une notion de biproduit
croisé dans ce contexte. L’article de P. Fima, K. Mukherjee et I. Patri [65] donne quant & lui une
version beaucoup plus précise de cette construction appelée biproduit croisé compact. Donc on se
demande si la propriété de Baum-Connes quantique est stable par ces constructions de groupes
quantiques.

D’une part, R. Vergnioux et C. Voigt ont montré dans [208] que la propriété de Baum-Connes
forte est stable par un produit libre de groupes quantiques discrets. Pour cela, R. Vergnioux et
C. Voigt suivent les idées de G. Kasparov et G. Skandalis dans [99] afin d’appliquer la méthode

Dirac-dual Dirac dans un contexte quantique de la théorie de Bass-Serre. En particulier, O*(n) et

—_

U+ (n) vérifient la propriété quantique de Baum-Connes forte.

D’autre part, pour un produit direct quantique, un produit semi-direct quantique et un biproduit
croisé compact, nous présentons ici une preuve suivant la philosophie des cas classiques de J. Chabert,
S. Echterhoff et H. Oyono-Oyono expliqués ci-dessus tout en utilisant la machinerie de Meyer-Nest.
Il est opportun de signaler que '’hypothése sans torsion force un biproduit croisé compact a devenir
un produit semi-direct quantique. Ainsi, la propriété de Baum-Connes correspondante ne fournit
pas d’information remarquable dans ce cas, le cas avec torsion présentant des problémes théoriques
majeures. L’étude de la propriété de Baum-Connes pour un produit direct quantique donne lieu a
une connexion avec la formule de Kiinneth de maniére analogue a ce qui a été démontré dans [37]
par J. Chabert, S. Echterhoff and H. Oyono-Oyono pour les groupes localement compact classiques.

Lorsque nous analysons les articles originaux des cas classiques, nous observons que les difficultés
se trouvent lors du traitement du groupe de K-homologie équivariante en relation avec I’opération
réalisée avec les groupes. Cela entraine un traitement minutieux et technique du membre de
gauche du morphisme d’assemblage. Grace a ’approche catégoriel de Meyer-Nest, ces technicités
disparaissent et nous sommes capables d’obtenir une preuve plus conceptuelle. Si nous voulons
expliquer de maniere simple la stratégie générale que nous avons suivi, nous pouvons dire qu’il
s’agit de transporter l'opération en question entre les groupes (quantiques) vers une décomposition
convenable de la catégorie de Kasparov.

A la connaissance de 'auteur, il est une question ouverte de savoir si la propriété usuelle de
Baum-Connes quantique est préservée par passage aux sous-groupes quantiques. Mais la condition
de divisible garantit I'invariance de la propriété de Baum-Connes forte [208]. Nous montrons que le
méme résultat d’invariance est vrai pour la propriété usuelle de Baum-Connes. En ce qui concerne
la stabilité de la propriété de Baum-Connes pour une extension quelconque de groupes quantiques
au sens de Vaes-Vainerman, cela reste en dehors du champ de la présente these dit aux difficultés
techniques de cette construction par rapport a la formulation de la propriété de Baum-Connes
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quantique en toute généralité.

Concernant un produit en couronne d’un groupe quantique compact G dont le dual vérifie la
propriété de Baum-Connes forte par Sy, G 1 Sy, la propriété de stabilité découle de la description
complete de la torsion d’un tel produit en couronne. En particulier, un produit en couronne libre
n’est jamais sans torsion. Pour cela, nous réalisons d’abord une complete classification des actions
de torsion pour un produit libre quantique, ce qui permet de donner une formulation adéquate de
la propriété de Baum-Connes forte pour un produit en couronne libre.

Cette étude détaillée d’un produit en couronne libre, nous a permis d’achever une application
majeure, a savoir un calcul explicite de K-théorie. Plus précisément, nous menons a bien le calcul
de la K-théorie, pour trois choix pertinents du groupes quantique G, pour le groupe quantique
compact de Lemeux-Tarrago qui est monoidallement équivalent & un produit en couronne libre [120].
Il est judicieux de signaler qu’aussi bien la propriété d’invariance pour un produit en couronne libre
que les calculs de K-théorie intégrent un travail de collaboration avec A. Freslon [127].

Afin d’achever les objectifs précédemment exposés nous avons essayé de faire le mémoire aussi
auto-contenu et détaillé que possible selon 'organisation suivante.

Le premier chapitre Background consiste a établir tous les outils nécessaires pour aborder les
problémes de la propriété de Baum-Connes, de la torsion et du calcul de la K-théorie. Notamment,
nous donnons un exposé tres détaillé sur la machinerie de Meyer-Nest afin de présenter aussi
nettement que possible la reformulation de la propriété de Baum-Connes et son analogue dans le
cas quantique. Nous détaillons également la théorie générale des groupes quantiques compacts
d’apres S. L. Woronowicz et la construction explicite des produits croisés dans ce cadre.

Le deuxiéme chapitre Construction of Compact Quantum Groups présente les exemples les plus
importants de groupes quantiques compacts en regroupant tous les résultats connus et d’intérét
pour la présente these durant les 30 derniéres années.

Le troisiéme chapitre Stability properties for the BCc doit étre vu comme le “noyau” de la these
ou nous développons la stabilité de la propriété de Baum-Connes sous certaines constructions de
groupes quantiques. Notamment, nous traitons les cas d’intérét suivants : un groupe quantique
compact, le dual d’'un groupe de Lie compact, connexe et avec groupe fondamental sans torsion,
un produit direct quantique, un produit semi-direct quantique, un biproduit croisé compact, un
produit libre quantique et un produit en couronne libre. Dans chacune de ces situations, nous
analysons également le phénomene de torsion et la propriété de K-moyennabilité. -

Le quatrieme chapitre An application: the K-theory for the Lemeuz-Tarrago’s ]ﬁlQ <G = SU4(2)
peut étre vu comme ’apogée de la recherche réalisée en cette these. Nous illustrons une application
majeure des propriétés de stabilité obtenues dans le chapitre 3, & savoir nous menons a bien le
calcul explicite de la K-théorie de C'(H,) pour trois choix pertinents de G : a) lorsque G est un
groupe orthogonal libre, b) lorsque G est un groupe quantique libre et ¢) lorsque G est le groupe
classique libre a n générateurs.

Le cinquiéme et dernier chapitre Conclusion: open questions and possible lines of attack est
consacré a nous questionner sur les résultats obtenus et sur les résultats a obtenir idéalement.
Notamment, cela tourne autour de quatre axes : i) stabilité de la propriété de Baum-Connes
(resp. forte) pour les constructions traités dans le chapitre 3, ii) stratégie des tores mazimauz pour
achever la propriété de Baum-Connes forte, iii) stratégie pour les calculs de la K-théorie dans des
nouveaux examples issu d’un produit semi-direct quantique ou un produit en couronne libre et iv)
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problématique de la formulation de la propriété de Baum-Connes pour un groupe quantique discret
arbitraire (non nécessairement sans torsion).

En dehors de ces chapitres, nous avons inclut dans ce mémoire deux annexes qui servent d’appui
a tous les résultats présentés au long du document. L’annexe A est consacré a des faits généraux
sur différents objets de base tels comme les C*-algebres, les algébres de von Neumann, les modules
hilbertiens ou les algeébres de multiplicateurs. L’annexe B est consacré a des faits généraux sur les
catégories et les catégories tensorielles.
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CHAPTER

Background

In the first chapter we establish all the foundations for the good understanding and development of
the thesis.

First of all, in Section 1.1 we point out all the conventions and notations used in the document
and they should be kept in mind. Section 1.2 is devoted to the detailed exposition of the general
categorical framework for the Meyer-Nest’s Baum-Connes conjecture reformulation, which is
complemented by Section 1.7 where we apply this machinery for (torsion-free) discrete quantum
groups and establish thus the quantum counterpart of the Baum-Connes conjecture.

To this end, there are three aspects that must be exposed as well. Firstly, Section 1.3 gives the
general picture of compact quantum groups in the sense of S. L. Woronowicz (representation and
spectral theory) including the study of induced actions from discrete quantum subgroups. Secondly,
in Section 1.5 we give a detailed proof of the universal property of a (reduced) crossed product
by a discrete quantum group and investigate further properties of interest for the study of the
Baum-Connes conjecture’s stability properties. Thirdly, in Section 1.6 we present the notion of
torsion for a discrete quantum group.

15
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CHAPTER 1. Background

Conventions and notations

Conventions

All locally compact groups are supposed to be second countable.

All C*-algebras are supposed to be separable and all ideals of C*-algebras are supposed to be
two-sided closed ideals. All Hilbert modules are supposed to be countably generated.

We use the symbol o to denote the composition of maps. If the context is clear, then we omit
such a symbol.

We use the symbol s to denote the disjoint unions.

If S is any set, then we denote by #S the cardinal of the set S (possibly c0). The symbol &J
stands for the empty set.

If ¢ is a set of generators and Z is a set of relations on the generators, the corresponding
universal C*-algebra (if it exists) is denoted by C*(¥¢ | #).

If Aisa C*-algebra and S is a subset of elements in A, then we write (S) := C*(S U §*)
for the corresponding C*-subalgebra of A generated by S, that is, the intersection of all
C*-subalgebras of A containing S. In this case, the elements of S are called generators of

(8

If E is a C-vector space and S is a subset of vectors of E, then we write span{S} for the
corresponding C-vector subspace generated by S.

If (E,||-]]) is a normed C-vector space and S is a subset of vectors in F, then we write
span{S} := [span{S}] for the corresponding normed C-vector subspace generated by S.

In particular, if F'  E is a vector subspace, we write [F] := F' for the || - ||-closure of F in
E.

We write E* for the corresponding dual space.

The commutativity of functor’s diagrams are considered with respect to the notion of equiva-
lence of functors.

If € is a category and S is a subset of objects in &, then we write (S) for the corresponding
full subcategory of € generated by S, that is, the intersection of all full subcategories of €
containing S.

All additive categories are supposed to have countable direct sums. If F' is an additive functor
on such an additive category, it is, by definition, compatible with finite direct sums. Whenever
we require F' to be compatible with infinite (countable) direct sums, it will be explicitly
indicated.

We use the symbol 7 to denote abelian categories. The category of abelian groups is denoted
by /b and the (locally small) category of sets is denoted by Set.
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- If H is a Hilbert space and § < B(H) is any subset of operators on H, then we denote by S’
the commutant of S, that is,

S ={TeBH)|ToX=XoT, for all X € S}

We denote by §” := (S’)I the bicommutant of S.
- If A is a C*-algebra, we denote by A" the convex cone of its positive elements.
- If M is a von Neumann algebra, we denote by M, the pre-dual of M.

- If Ais a C*-algebra, H is a Hilbert A-module and N ¢ H is a Hilbert A-submodule, then
given £ € H we denote by [£] € H/N the image of £ by the quotient map. This notation shall
be applied in other contexts with quotients.

- If Hy, Hy are Hilbert spaces, we denote by B(H;, Hy) the C*-algebra of linear operators
between H; and Hy and by K(H;, Hs) the C*-algebra of compact operators between H; and
H,. If Hy = H = Hs, we write B(H) for the linear operators on H and K(H) for the compact
operators on H.

- If Ais a C*-algebra and Hy, Hy are Hilbert A-modules, we denote by L£4(Hy, Hy) the C*-
algebra of adjointable operators between H; and Hy and by K4 (H, H2) the C*-algebra of
the compact adjointable operators between Hy and Hy. If Hy = H = Hs, we write L4(H)
for the adjointable operators on H and K4 (H) for the compact adjointable operators on H.

- Hilbert A-modules are considered to be right A-modules, so that the corresponding inner
products are considered to be conjugate-linear on the left and linear on the right.

- If H is a finite dimensional Hilbert space and {£1,...,&gim(m)} is an orthonormal basis in
H, the associated matriz units in B(H) are denoted by {m;}; j—1, .. aim(m) and we have the
following relations for all i, 5, k,r,s = 1,...,dim(H),

mij - &k = &gk, §k - My = &0k and myy - Mgy = Op sy

The coordinate linear forms on B(H) with respect to the basis {1, ..., qim(m)} are denoted
by we, ¢, := w; ; and defined by

we, 6, (T) 1= (&, T(&)), foralld,j = 1,...,dim(H) and all T € B(H)

Remark that w;’fj =wj;, forall 4,5 =1,...,dim(H). Notice that the analogous definition is
valid for any vectors ,n € H: we o(T) := (&, T(n)), for all T' e B(H).

- Let H be a complex vector space. We denote by H its complex conjugate, whose underlying
additive group is the same as the one of H and whose scalar multiplication is given by complex
conjugation of scalars. In order to distinguish the vectors of H from those of H, given an
element ¢ of their common underlying additive group, we write € to specify that it is a vector
in H. We denote by H* its dual vector space formed by all linear functionals on H. If H is a
Hilbert space, then we still denote by H* its topological dual space formed by all continuous
linear functionals on H and we refer to it simply as dual space of H.
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Let H be a Hilbert space. The inner product of H is defined by (7}, &) := (&, ), for all €, n e H.
Every linear operator T'€ B(H) gives rise to a linear operator T € B(H) defined by the same
action of T, that is, T(§) := T(€), for all £ € H. We denote by j : B(H) — B(H*) the
map that sends an operator to its dual. Namely, j(T)(w) := wo T, for all T € B(H) and all
w € H*. Sometimes, the dual operator of T' € B(H) is denoted by T".

We recall that, by virtue of the celebrated Riesz-Fréchet representation theorem, H is identified
to H* by means of the linear isometry p : H — H* defined by p(€) := (-, &), for all £ € H.
By means of this identification, the scalar product on H* is given by {(p(€), p(7)) := (£, 1),
for every &, € H. Moreover, the map j : B(H) — B(H) is given by

J(T)(E) = T*(E),

for all T e B(H) and all £ € H, where T* € B(H) denotes the adjoint operator of T. For this,
we have just to remark that poT* = T o p, which is a straightforward computation. Observe
that j is an anti-multiplicative linear *-homomorphism.

By abuse of notation we still denote by j : B(H) ® C — B(H)® C' the map defined by j ® *,
where C is any C*-algebra and = is the conjugation map on C.

Assume that H is finite dimensional with orthonormal basis {{1,...,&4imm)}. The corre-
sponding dual basis in H* >~ H is denoted by {&f, ... ,§;‘im(H)} = {w, o, Waim(H) }-
Remark that Wes ¢ (G(Mm) = wg‘i@ (T*), for alli,j =1,...,dim(H) and all T € B(H), where
we use the identification &, & ¢¥, for all i = 1, ..., dim(H).

The algebraic tensor product between two structures is denoted by ©.
The minimal tensor product between two C*-algebras is denoted by ®.

The mazimal tensor product between C*-algebras is denoted by & .
max

The exterior tensor product between two Hilbert modules is denoted by ®.

The interior tensor product between two Hilbert modules with respect to a #-homomorphism
¢ is denoted by ®.
¢

In any of the previous cases, the elementary tensors in the corresponding tensor product are
denoted simply by ® and the context will distinguish the specific situation in which we are
working. The elementary tensors of a interior tensor product will be usually denoted by ®

¢

for more clarity of the exposition.

If A and B are two C*-algebras, ¥ : AQ B —> B® A denotes the flip map. We use the same
symbol ¥ for the flip between tensor product of Hilbert modules.

The symbol ¥ is used as well for the suspension functor in the framework of triangulated

categories. The context will distinguish the specific situation in which we are working.

Given a family of normed vector spaces {(F, || - ||) }icr, an element x := (z;);er € [ [ F; is said
i€l

to vanish at oo if for every e > 0 there exists a finite subset J < I such that ||z;|| < €, for all

i€ I\J. In this case we write  — 0 and we define

(—BCOEi ={ze€ HEl | 2 %0}

iel iel



1.1. Conventions and notations 19

If {(E;, || - |)}ier is a family of involutive Banach algebras, @“E; is an involutive Banach
i€l
algebra with the supremum norm.

- Given a family of normed vector spaces {(E;, || - ||) }ier, an element x := (z;)er € [ [ E; is said

i€l
to be bounded if (||x;|])icr € I°(I). We define

@lei ={xze€ HEZ | 2 is bounded}

el el

If {(E;,|| - ||)}ier is a family of involutive Banach algebras, (‘Dlei is an involutive Banach
i€l
algebra with the supremum norm.

Leg numbering notation

- Let A be a unital C*-algebra and consider the tensor product A ® A. The leg numbering
notation indicates the three obvious ways in which we can embed A® A in A® A® A. More
precisely, given z € A ® A we write

12 =2 Q®1ga, 13 := (ida ® X)(x12), T2z 1= 1la @z

Likewise, if T: AQ A — A® A is any *-homomorphism, we can consider the corresponding
legs of T as *-homomorphisms from A ® A ® A to itself in accordance with the obvious
embeddings mentioned above. More precisely, we write

Tlg = T@idA, T13 = (ZdA®Z) OT12 ©] (ZdA ®Z), ng = ZdA®T

1.1.1 Remarks. 1. Sometimes, the leg numbering notation x;; or Tj; can be found in this
document as [x]” or [T]Z.j. The reason for this is only “esthetic” in order to stress the
use of the corresponding legs and facilitate the reading of computations.

2. If A is not unital, the same notations stand using the multiplier algebra of A, M(A),
which is a unital C*-algebra.

3. More generally, given n,m € N with n < m consider a faithful map of sets ¢ :
{1,...,n} —> {1,...,m}. This defines an embedding A®" < A®™.  Given v € A®"
its image in A®™ following the embedding ¢ is written in leg numbering notation as
L,(1),....u(n)- Given a s-homomorphism 7" : A®™ — A®" its leg following the embedding
L 1(; written as T)(1),... ,(n) meaning that 7" only acts only on the places ¢(1),...,¢(n) in
A®™,

.....

4. Notice that similar notations are adopted when we consider tensor product of different
C*-algebras.

- Let H be a Hilbert space and A a unital C*-algebra. The leg numbering notation can be
applied also to the tensor product H ® A following the obvious embeddings when we add a
copy of A by the right. More precisely, given x € H ® A we define

12 =2 ® 14, 13 := (idg ® X)(x12), x23 := (X ®ida)(z13)
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Likewise, if T': H® A — H ® A is any homomorphism, we can consider the corresponding
legs of T' as homomorphisms from H® A® A (or AQ H® A) to itself in accordance with the
obvious embeddings mentioned above. More precisely, we write

T12 = T®ZdA, T13 = (’LdH®E) OT12 o (ZdH®E), T23 = (ZdA®T) o} (E@ZdA)

Sweedler notation

Let A be a unital C*-algebra and consider the tensor product A ® A. The Sweedler notation
simplifies the expression of any element in this tensor product. Namely, we know that every element
n

x € A® A can be written (in a not unique fashion) under the form z = > a1; ® ag;, for some n € N

i=1

and some ay;,a9; € A for all i = 1,... n. In this way, Sweedler notation suggests the following

writing

€T = (l(l) ®a(2),

where the subscripts (1) and (2) point out the order of the factors in the tensor product. Notice

that it is important to keep in mind this order. In particular, the Sweedler notation yields the

following writing for the flip of =z,
Y(z) = ae2) ® a(y)

1.1.2 Remarks. 1. If A© A is dense in A® A, then by abuse of notation we still use the Sweedler
notation for elementary tensors in the analytical tensor product. Namely, notice that by
the density condition we can perform computations on the algebraic level using Sweedler
notations and pass then to the analytical level.

2. If A is not unital, then we may work with its multiplier algebra M (A), which is a unital
C*-algebra. However, every element in x € M (A ® A) can not be written as a finite sum
n
x = Y a1; ®ag;, for some n € N and some ay;,a9; € M(A) foralli =1,...,n.
i=1
Nevertheless, Sweedler notation can be still applied with a very precise meaning and we must
be careful in this case. See Notation 2.1.7 in [188] or [203] for more details.

3. Notice that similar notations are adopted when we consider tensor products of different
C*-algebras.

Multiplicative unitaries

The celebrated theory of multiplicative unitaries (developed by S. Baaj and G. Skandalis [7]) is not
really used in this dissertation. Nevertheless, some notations and notions concerning multiplicative
unitaries are mentioned in the document. We collect here the elementary language that we need for
the convenience of the reader. We refer to the original article [7] or to Chapter 7 and Chapter 9 of
[188] for a comprehensive and detailed exposition of the subject (we refer as well to [230] and [175]).

Let H be a Hilbert space and V € B(H ® H) be a multiplicative unitary on H, that is, a
unitary operator such that Via 0 Vi3 0 Va3 = Vag o Vip. If V' is a multiplicative unitary on H, then
VP =V := 3o V*o3 is again a multiplicative unitary on H. We have the following objects:
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— B(H®H)

~

(H)

T +— Ay(T):=V*o(id®T)oV
Ay: B(H) — B(H®H)

T +— Ay(T):=Vo(T®id)oV*
Ag(V) = {dy := (id®w)(V) | we B(H)+} < B(H)
Ao(V) :i={ay, == (w®id)(V) | we B(H)} < B(H)

~

(V):
AV):

[ ] — closure of AO(V) in B(H)
|- | = closure of Ag(V') in B(H)

I

~

The pairs (A(V), Ay) and (A(V), Ay ) are called left leg of V' and right leg of V', respectively.

Triangulated categories

Triangulated categories are one of the main achievements in abstract homotopy theory during the
60’s thanks to the work of A. Grothendieck and J. L. Verdier. Roughly speaking, a triangulated
category is an additive category with a translation functor and a distinguished class of triangles.
The main motivation for this notion is the axiomatization and understanding of the derived category.

If € is any additive category, let us consider the corresponding homotopy category 72 (€)
(see Theorem B.2.11 for a definition). If ¥ is abelian, it is not guarantee that (%) is again
an abelian category (take for instance & as the category of abelian groups). However, it can be
shown that (%) is a triangulated category, so that distinguished triangles should be regarded as
the replacement of short exact sequences (indeed, it is not very hard to show that in an abelian
triangulated category, every short exact sequence splits). In a simple way, the main problem consists
in the construction of homology theories in order to describe obstructions for a given property.
Hence, the derived category of € is the localization of (%) with respect to quasi-isomorphisms
and, in this way, it gives a general and abstract description of homology theories and its triangulated
structure gives the appropriate understanding of the manipulation of long exact sequences.

The goal of this section is not to enter in the details of this abstract homological picture, but
to introduce the general framework and the main useful results for the purpose of the present
dissertation. Good references for more details are [138], [85] or [205].

An other example of triangulated category that is interesting for us is the Kasparov category
(see Section 1.2.3), which allows the application of these abstract categorical theories to non
commutative geometry. The most important innovation is the homological algebra developed
in such a triangulated category. This homological algebra has been developed by R. Meyer and
R. Nest in [134] and [131] inspired by previous work of different authors as A. Beligiannis [19],
J. D. Christensen [40] and S. Eilenberg and J.C. Moore [57]. In the triangulated context, the
corresponding homological algebra is always relative to some fixed ideal 7, which will be supposed
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to be the homomorphism-kernel of some triangulated functor. We can then translate the classical
notions of homological algebra relatively to such ideal J, but sometimes we must be careful in the
definitions in order to obtain a notion that only depends on the ideal and not in the functor itself.
In Section 1.2.2 we give a first approach to this homological algebra in order to justify properly the
reformulation of the Baum-Connes property in this categorical framework. In Section 1.2.4 we carry
out a deeper analysis of this homological algebra in order to treat the derived category picture in
the triangulated framework and obtain thus some tools for the existence of useful exact sequences.

1.2.1 Elementary facts

1.2.1.1 Definition. Let 7 be an additive category equipped with an additive auto-equivalence %
(that is, a stable additive category). A triangle in T is a sequence of objects and homomorphisms
in 7 of the form

X5y -5 75 %NX)

1.2.1.2 Definition. Let 7 be an additive category equipped with an additive auto-equivalence . A

homomorphism between two triangles X —> Y —» Z —% %(X) and X’ oyr Y g (X7
in T is the data of three homomorphisms f: X — X', g: Y — Y’ h: Z — Z’ such that the
following diagram is commutative

X Y Z S(X)
C Tl
X Y > 7 ——= 5(X)

The triangles are said to be isomorphic if f, g, h are isomorphisms.

1.2.1.3 Definition. A triangulated category is the data (7, %, Ax) where T is an additive category,
¥ is an additive auto-equivalence of 7 called suspension functor and Ay is a class of triangles in T
called distinguished triangles such that

i) every triangle isomorphic to a distinguished one is a distinguished triangle and for every object
X € Obj(T) the triangle
X x5 0— 2(X)

is a distinguished triangle,

ii) for every homomorphism f: X — Y in T, there exists a distinguished triangle of the form
x-Ly o —xnx)

where the object C' is called cone of f and the corresponding distinguished triangle is called
cone triangle of f,

iii) (rotation aziom) a triangle X —> Y —» Z — %(X) is a distinguished one if and only if the
triangle Y —» Z - 3(X) =W X(Y) is a distinguished one,
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iv) if X 5 Y -5 Z - n(X) and X7 5 v - 27 L 5(XY) are two distinguished triangles
in 7, then every commutative diagram of the form

xX—Ysy z 2(X)
lf lg | =)
A
X Y 7 ——3(X)

meaning that g ou = ¢/ o f can be completed into a homomorphism of triangles.

v) (octahedron axziom) if X %Y — 7/ — 2(X), Y 5 7 — X' — %(Y), X X5
Z — Y’ — 3(X) are distinguished triangles in T, then there exists a distinguished triangle
7' —Y' — X' — 3(Z') such that the following diagram is commutative

X Y 7 2(X)
idx J{v : idyx)
Z Vv 2(X)
B
Y S(Y)

N

X

vou
ul
Y A
J{ v
Z'——>Y' - - X' - ->3%5(7")

1.2.1.4 Remarks. 1. Given a homomorphism f : X — Y in T, it is shown later on (see Remarks
1.2.1.18) that the cone triangle of f is unique up to isomorphism, which explains the notation
C for the object of the axiom (i7) of the preceding definition.

2. Notice that if (7, %, Ay) is a triangulated category, we can consider the opposite category
T°P which is again a triangulated one with suspension functor ¥~!. Moreover, a triangle

X %Y 2 72 5(X) in T becomes the triangle ¥-1(X) 25 7 25 v 25 X in TP,

1.2.1.5 Definition. Let (7,X, Ayx) be a triangulated category. A triangulated subcategory of T
is an additive full subcategory S of 7 such that

i) every object of 7 isomorphic to an object in S is an object of S,
ii) X(S) c S,

iii) if X -5 Y % Z % %(X) is a distinguished triangle in 7 with X,Y € Obj(S), then
Z € Obj(S).

1.2.1.6 Definition. Let (7,%,Ays) be a triangulated category. A thick subcategory of T is a
triangulated subcategory S of T such that if X,Y € Obj(T) are such that X ®Y € Obj(S), then
X,Y € Obj(S).
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1.2.1.7 Definition. Let (7, %, Ay) be a triangulated category. A localizing subcategory of T is a
triangulated subcategory S of T such that every countable direct sum of objects of S is an object
of S.

1.2.1.8 Definition. Let (7,3, Ay) be a triangulated category. If S < Obj(T) is any class of
objects in T, we denote by (S) the smallest triangulated subcategory of 7 such that

i) the objects of S are in (S),
ii) every countable direct sum of objects of S is an object of {(S),
iii) the subcategory (S) is thick.
In that case, we say that (S) is the subcategory of T generated by S.

1.2.1.9 Remarks. 1. Fix a class of objects § in a triangulated category 7. Then {(S) is well-
defined. Namely, it is the intersection of all triangulated subcategories of T satisfying the
properties (i), (i1) and (iit) of the preceding definition. Indeed, let G := [\S; such an
el
intersection. Notice that Obj(G) = [ Obj(S;) by definition.
iel
- G is clearly a triangulated subcategory of T .
- G satisfies the properties (i), (i7) and (ziz) of the preceding definition. Namely,
i) by assumption we have that S < Obj(S;), for all ¢ € I. Hence, S < Obj(G),

ii) if D is a countable direct sum of objects of S, then by assumption we have that
D € Obj(S;), for all i € I. Hence, D € Obj(G),

ili) by assumption we have that S; is thick for all ¢ € I. This means that for all
X,Y € Obj(T) such that X @Y € Obj(S;), we have X,Y € Obj(S;). This is true
for every ¢ € I. Hence, whenever X,Y € Obj(T) are such that X @Y € Obj(G), we
have X, Y € Obj(G). In other words, G is a thick subcategory

2. By virtue of the rotation axiom of a triangulated category, it is clear that the axiom (iii) of a
triangulated subcategory can be formulated with any pair of objects of a given distinguished
triangle. More precisely, let X — Y — Z - %(X) be a distinguished triangle in 7 and
let S be an additive full subcategory of 7, then, thanks to the rotation axiom, the following
assertions are equivalent

a) X,Y € Obj(S) = Z € Obj(S)
b) X,Z e Obj(S) = Y € Obj(S)
¢) Y,Z € Obj(S) = X € Obj(S)

3. We can show that any localizing subcategory is automatically a thick subcategory (see Remark
3.2.7 in [138]). Notice that [138] works in a more general framework. Namely, a localization
subcategory is defined with respect to a given cardinal. We restrict our attention to the
countable cardinal R, as indicated in Section 1.1. Recall that all our additive categories are
supposed to have countable direct sums.

4. With these definitions and the preceding remark, we observe that (S) is the localizing
subcategory generated by S meaning that (S) is the smallest triangulated category containing
the objects of S and stable with respect to countable direct sums.
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1.2.1.10 Definition. Let (7,%,Ay) and (77,%/, Ayy) two triangulated categories and F': T —>
T’ an additive functor. We say that F is a triangulated functor if

i) F is stable meaning that Fo X >~ ¥ o F,
ii) F transforms distinguished triangles into distinguished triangles.

1.2.1.11 Definition. Let (7,3, Ayx) be a triangulated category, &/ any abelian category and
F :T — & a covariant (resp. contravariant) additive functor. We say that F is a homological
(resp. co-homological) functor if for every distinguished triangle X —- Y - Z - %(X) in T,

the sequence F(X) i F(Y) ) F(Z) is exact in &7.

1.2.1.12 Note. When triangulated structures are involved, triangulated or stable additive categories
are needed and when exact sequences are involved, abelian categories are needed. Moreover, we
shall work with stable abelian categories, so with stable homological functors. All these assumptions
are clear by the context on each statement of the theory.

1.2.1.13 Remark. Given a triangulated functor F' : T — T’ (or a stable homological functor
F : T — /) we have a natural additive full subcategory of 7 defined by
kerObj(F) = {X € Ob](T) ‘ F(X) = 0}
In fact, keroy; (F) is a thick subcategory of T. Namely,
- keroy; (F') is a triangulated subcategory of T.
i) If X € Obj(T) is isomorphic to an object K € keroy;(F), then we have that F(X) =~
F(K) = 0, whence X € keroy,; (F').

i) Consider K € kerpy;(F'). Since F is a triangulated (resp. stable homological) functor,
then F' is stable and we have

whence 3(K) € keroy,; (F).

iii) Let X — Y — Z — 3(X) be a distinguished triangle in 7 with X,Y € kerpp; (F).
Since F' is a triangulated (resp. stable homological) functor, then we have the following
distinguished triangle in 7" (resp. short exact sequence in &7)

(resp. F(X) — F(Y) — F(2))

By assumption we have that F(X) =~ 0 ~ F(Y), which implies that the above distin-
guished triangle (resp. short exact sequence) is isomorphic to the distinguished triangle
0 — 0 — F(Z) — 0 (resp. to the short exact sequence 0 — 0 — F(Z)). In
particular, F'(Z) =~ 0 whence Z € kerpp; (F).

- keroy;(F') is thick. Consider two objects X,Y € Obj(T) such that X @Y € kerpy;(F). Since
F is an additive functor, then we have that 0 @ F(X @Y) =~ F(X)® F(Y). This implies
that F(X) =~ 0 = F(Y) by definition of direct sum object.
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Observe that keroy; (F') is a localizing subcategory whenever F' is compatible with countable
direct sums.

1.2.1.14 Remark. By virtue of the rotation axiom, if F' : T — &/ is a homological (resp. co-
homological) functor, then for every distinguished triangle X — Y —%» Z - %(X) there exists a
long exact sequence in &7

= F(ETH(Z)) = F(E'(X)) » F(E(Y)) = F(S'(Z)) » F(E™(X) — ...

(resp. ...« F(X7H2)) « F(ZY(X)) « F(ZY(Y)) « F(X(2)) <« F(Z"H(X)) < ...)

1.2.1.15 Lemma. Let (T,%,Ayx) be a triangulated category. If X Y > Z - %(X) is any
distinguished triangle in T, then we always have

vou=0=wow

Proof. Let X %Y % Z % %(X) be any distinguished triangle in 7. Firstly we observe that,
by virtue of the rotation axiom, it is enough to prove that v ou = 0. Now, applying again the
rotation axiom, we know that Y - Z - ¥(X) =) 3(Y) is a distinguished triangle in T as
well.

Apply the axiom (¢) of a triangulated category to the object Z, so that Z 70— X(2)
is a distinguished triangle in 7. We have then the following commutative diagram,

y_ Uy W s =X (u)
(X) E(Y)
lv id : lE(fu)
\
Z = Z 0 0 5 3(Z)

which can be completed into a homomorphism of triangles by virtue of the axiom (iv) of a
triangulated category. In particular, we have 0 = X(v) o (—3(u)) = —X(vowu) so that vou =0
because X is an auto-equivalence in T . |

1.2.1.16 Proposition (Long exact sequence for homomorphisms). Let (7,3, Ax) be a triangulated
category. Given an object T € Obj(T), the homomorphism functor Homy(T, - ) is homological
and the homomorphism functor Homy( - ,T) is co-homological.
Consequently, given any distinguished triangle X ——Y %> Z 2> (X)) in T, there exist long
exact sequences of abelian groups
.. = Hom7(T, %" (2)) > Homy(T,5(X)) —» Hom7 (T, (Y))
— Hom7(T,%"(2)) — Hom (T, 2" (X)) — ...

.. — Homr(X7Y2),T) « Homy(24(X),T) — Hom(XY(Y),T)
— Homr(X4(Z),T) «— Homr (21 (X),T) — ...
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Proof. Let’s prove the result for the functor Homy (T, - ) (the argument for Homy( - ,T) is
completely analogous). Let X — Y —» Z - %(X) be any distinguished triangle in 7. We have
to show that

Homy (T, X) <% Homy(T,Y) —% Hom (T, Z)

is an exact sequence of abelian groups.
Thanks to the previous lemma we know that vou = 0 and so (w0 v)y = v4 o uy = 0. In other

words, Im(uy) < ker(vy). In order to show that ker(vy) < I'm(uy), take any f € ker(vy).

-3
Given the distinguished triangle above, the rotation axiom assures that Y —» Z —> (X)) =)

X (Y) is a distinguished triangle in T as well. Given an object T' € Obj(T), consider the corresponding
distinguished triangle given by the axiom (z) of a triangulated category: T s —s (7).
Apply again the rotation axiom so that T' 20— 3(T) —4 3(T) is a distinguished triangle in
T as well.

Since f € ker(vy) the following diagram is commutative,

and hence it can be completed via h into a homomorphism of triangles by virtue of the axiom (iv)
of a triangulated category. In particular, we have X(f)o(—id) = —X(u)oh, that is, X(f) = X(u)oh
and so f = uwo X7 1(h). In other words, f = us (371 (h)) € Im(us). [ |

1.2.1.17 Lemma (Five’s lemma for triangulated categories). Let (T,%,As) be a triangulated
category and let

be a homomorphism of distinguished triangles in T .
If f and g are isomorphisms, so it is h and consequently the triangles are isomorphic.

Proof. Fix the object Z' € Obj(T) and consider the homological functor Homy(Z’, - ). By virtue
of the preceding proposition, we can consider the following commutative diagram with exact lines,

Homy(Z',X) —— Hom7(Z',Y) —— Homy(Z',Z) —— Homy(Z',X(X)) — Hom7(Z',5(Y))
Js G hs 5(f+) Z(g+)
Homr(Z',X') —> Homr(2,Y') —> Homp(Z', 2') — Homr(Z', S(X")) — Homy(Z',5(Y"))

Since f and g are isomorphisms by assumption, then fy, g«, 2(fx) and 3(g4) are isomorphisms
as well. Hence the five’s lemma for abelian categories guarantees that hy is an isomorphism as well.
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In particular, given idz € Homy(Z', Z') there exists a unique homomorphism g € Hom(Z', Z)
such that idz = hy(q) = h o q. In other words, ¢ is a right inverse for h. Now, the same argument
as above using the homological functor Hom( - , Z') yields a left inverse for h and so we conclude
that h is an isomorphism. [ |

1.2.1.18 Remarks. 1. The five’s lemma for triangulated categories can be stated for a more
general class of triangles not necessary distinguished. Namely, it is enough to consider triangles
X %Y % Z - 5(X) such that
a) vov=0=wow
b) the homological functors Hom (T, - ) and Homy( - ,T) yield long exact sequences
. — Hom7(T,X) =% Homy(T,Y) — Homy (T, Z)
% Homr (T, (X)) % Homr(T,5(Y)) — ...

.— Homy(X,T) o Homy(Y,T) v Homy(Z,T)
u *
Y Homr(2(X),T) " Homr(S(Y),T) < ...
for every object T' € Obj(T).

For more details we refer to Chapter 1 of [138] (for instance, see Caution 1.1.16 and Proposition
1.1.20).

2. By virtue of the five’s lemma, it is clear that the cone of a given homomorphism is unique up
to isomorphism. Namely, given a homomorphism f: X — Y in 7, consider two different
cone triangle for f, say

xLy o —sX)and x Ly — ¢ —2(X)

We can consider the following commutative diagram

x-1.y Cy 2(X)
I
idx idy I Z'dE(X)
A
X—=Y c’ 2(X)

which can be completed into a homomorphism of triangles. Since idx and idy are isomor-
phisms, the five’s lemma yield that C'y = C} as we wanted to show. In fact, the whole cone
triangle associated to a homomorphism is unique up to isomorphism.

1.2.1.19 Proposition (Direct sum of distinguished triangles). Let (T,X, Ax) be a triangulated

’

category. If X Y - Z -5 N(X) and X' —> Y’ NN Y(X') are two distinguished
triangles in T, then
XoX' "B yoy ™5 207 8 2(XaX)
1s a distinguished triangle in T .
As a result, for every objects X, Y € Obj(T) the triangle Y — X ®Y — X — X(Y) is a
distinguished one and so every triangulated subcategory is stable under finite direct sums.
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Proof. Consider the cone triangle associated to the homomorphism X @ X' udy’ y- @Y’ given by
the axiom (i7) of a triangulated category,
XOX "N YQY — Cugw — S(XDX')
Consider the following commutative diagrams whose lines are distinguished triangles,
u

v w

X Y Z X(X)
|
l(idx,()) l(ldy,()) lh iz(ld)ﬁ())
\
X@X/HY@Y/*) u@u/HE(XC'BX/)
u@u
i / !
x —4 vy —Y sz Y L n(X)
|
i(O, ’LdX/) l(O, idy/) LR iE(O, ’LdX/)
\
XX —YPY —— U@UIHE(X®X’)
u®u

which can be completed into a homomorphism of triangles via h and A/, respectively thanks to the
axiom (#v) of a triangulated category. Consider thus the following commutative diagram,

Xox ' QYLlygyt®Y 767 YO x o x)

(idx,idx') ||(idy,idy") l(h, K) S(idy, idx’)

X@XIMY@YIH u@u’ HE(X@X/)

which is actually an isomorphism of triangles by virtue of the five’s lemma. Indeed, notice that the
top triangle (that is, the direct sum triangle) satisfies the properties of Remark 1.2.1.18 (since the
homological functor Homy preserves direct sums), so that the five’s lemma still holds. In other

words, the direct sum triangle X @ X’ udy Y®Y’ vy YASY /A Wy’ Y(X @ X') of the statement is

isomorphic to the distinguished triangle X @ X’ udy YOY' — Cupw — (X @ X') and so the
axiom () of a triangulated category yields the conclusion.

Finally, remark that the triangle Y — X ®Y — X — 3(Y) is clearly the direct sum of
the distinguished triangles 0 — X — X — 0and ¥ — Y — 0 — 3(Y). Hence it is a
distinguished one by the first part of the proof. |

1.2.1.20 Proposition (Split triangles). Let (T,%, Ax) be a triangulated category. If X —>Y —»
7Z =5 Y(X) is a distinguished triangle with w = 0, then the triangle splits meaning that u admits a
section, say s, and v admits a retraction, say T.

As a consequence, we have two isomorphisms of distinguished triangles

idx.0)  (0,id
XY oy U oz Ysx) x X0 o §oidz) YoB(X)
idx J/Z (5,0) idy ids(x) idy ll (u+7) |lidy ids(x)
X—X®Z——7——>%(X) X Y A 3(X)

A
(idx,0) — (0,idz) w u v w
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In particular, we have Y = X @ Z via (s,v) and X ® Z =Y wvia u+ r. These isomorphisms
coincide if and only if sor = 0.

Besides, X 2y if and only if Z = 0. Consequently, any homomorphism f: X —Y in T is
an isomorphism if and only if C¢ = 0.

Proof. Let us prove that u admits a section, that is, a homomorphism s : ¥ — X such that
sowu = idx. Consider the distinguished triangle associated to the object X given by the axiom
(i) of a triangulated category : X M X s 0 — ¥(X). Since w = 0 by assumption, we can
consider the following commutative diagram,

U

v w

X Y z 2(X)
\
idx l's lo E(de)
Y
X X 0 (X
idx 0 o X

which can be completed into a homomorphism of triangles via s by virtue of the axiom (iv) of a
triangulated category. In particular, we have s o u = idx as required.

In order to show that v admits a retraction, that is, a homomorphism r : Z — Y such that
vor =idz we do the same argument as above using the object Z, the rotation axiom and the
following commutative diagram,

id
OZZZZO

0 ‘ ¥(0)

l() I idy lZ(O)
\

X—>Y—>Z——>%(X)

Next, consider the following distinguished triangles
XU X 50— %(X)and 0 — Z 9% 7 — %(0)

By virtue of Proposition 1.2.1.19 the direct sum triangle

x (D) x gz 2D 7 0, 5(x)

is a distinguished triangle in 7. Hence, the diagrams of the statement are homomorphisms of
distinguished triangles. Observe that by virtue of the five’s lemma we can extend them into
isomorphisms of distinguished triangles.

Notice that the composition

u+r) (s,v)

xoz"y "M xaz
can be expressed by construction as

(s,v)o(u+r)=(so(u+r),vo(u+r)) =(idy +sor,0+idz),
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where we use that v o u = 0 thanks to Lemma 1.2.1.15. Therefore, the isomorphisms ¥ =~ X ® Z
and X @ Z = Y obtained above coincide if and only if s or = 0.

Assume now that X Y - Z % (X)) is any distinguished triangle in 7. If Z =~ 0, then
it is clear that w = 0 and then the preceding result assures that ¥ =@~ X @ 0 =~ X. Conversely,
suppose that X 2 Y is an isomorphism. Consider the following commutative diagram,

U w

X y Y-z 2(X)
|
idx L”l 'h E(idx)
v
X—>0—>%(X
idx 0 o >

which can be completed, via h, into an isomorphism of triangles by virtue of the axiom (iv) of a

triangulated category and the five’s lemma for triangulated categories. In other words, Z = 0.
Finally, the consequence of the statement is clear applying the axiom (ii) of a triangulated

category. |

In this framework, we can actually formulated a “categorical Baum-Connes property” for a
given triangulated category. Let us show here the general process that we’ll adapt suitably later in
order to get the classical Baum-Connes property in the context of the Kasparov’s theory (which
will be regarded as a triangulated category of course).

1.2.1.21 Definition. Let (7,X%, Ayx) be a triangulated category and S a thick subcategory of T.
A S-quasi-isomorphism in 7 is any homomorphism f in 7 whose cone object C is an object in
S.
The localization of T with respect to the class of S-quasi-isomorphisms is denoted by T/S.

1.2.1.22 Remark. The general theory of localization of categories attempt to imitate the classical
theory of localization of rings. Its existence in the context of triangulated categories is a celebrated
theorem of J. L. Verdier and we refer to Theorem B.1.20 for the precise statement.

Here it is important to do the following observation. Let F : T — T’ be a triangulated
functor between two triangulated categories. Assume that 4" < 7T is a thick subcategory such
that 4 < kerop;(F). Take a .4 -quasi-isomorphism in 7, say f : X — Y with X,Y e Obj(T).
Consider the corresponding cone triangle (given by the axiom (i) of a triangulated category),

xLy o —yx)

Since f is a .4 -quasi-isomorphism, then Cy € Obj(A") < keroy;(F), so that F(Cy) = 0. Since
F' is a triangulated functor, the following is again a distinguished triangle

Fx) ™) P(y) — F(Cp) — S(F(X)),

where we have to remark that the cone object is unique up to isomorphism, so that it must be
F(Cy) = Cpy). Hence Cp(yy = 0. By Proposition 1.2.1.20 we have that F(f) is an isomorphism
in 7.

In other words, A -quasi-isomorphisms are transformed into isomorphisms through F. This
means in particular that any homomorphism in .4 < T is transformed into an isomorphism in
T /A through the Verdier localization functor @ : T —> T /.4, which explains the nomenclature
of Definition 1.2.1.21.
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1.2.1.23 Definition. Let (7,%, Ayx) be a triangulated category and S a thick subcategory of 7.

- The left orthogonal complement of S is the thick subcategory of 7 defined by
ST = {X e 0bj(T) | Hom7(X,S) = (0) VS € Obj(S)}

- The right orthogonal complement of S is the thick subcategory of T defined by
ST:={X e Obj(T) | Hom7(S,X) = (0) VS € Obj(S)}
1.2.1.24 Remark. If S is a localizing subcategory of T, so it is S™ and S™ because the homomorphism
functors are always compatible with countable direct sums.

1.2.1.25 Definition. Let (7, %, Ax) be a triangulated category and ., 4" two thick subcategories
of T. We say that (&, .4") is a complementary pair of thick subcategories if

i) Lcat,
ii) for evey object X € Obj(T) there exists a distinguished triangle of the form
L% X U N % x(L)

for some L € Obj(.Z) and N € Obj(.#"). Such a distinguished triangle will be called (£, .4")-
triangle associated to X in the sequel.

The following result contains the main elementary properties of complementary pair of thick
subcategories. The proof uses routine arguments in combination with the preceding results. For
more details we refer to Proposition 2.9 in [132].

1.2.1.26 Lemma (Fundamental lemma about complementary pair of thick subcategories). Let
(T,%,Ax) be a triangulated category and (£, A) a complementary pair of thick subcategories.
The following hold

i) L =N and N =L
ii) Given an object X € Obj(T), the associated (£, N )-triangle L > X —*» N - (L) is
unique up to canonical isomorphism and depends functorially on X. In particular, its entries

define functors
L:T—Z2andN:T — N,

which are unique up to natural isomorphism. Precisely, if L' : T — £ and N' : T —> N
are two other functors such that for every object X € Obj(T) there exists a unique up to
a canonical isomorphism (L, N )-triangle L'(X) — X — N'(X) — X(L'(X)) which
depends functorially on X, then L and L' are naturally isomorphic and N and N’ are naturally
isomorphic.

iti) The functors L, N : T —> T are triangulated.
i) The functors L,N : T —> T descend to triangulated functors
L:T/N —>ZLandN: T/ — N
which are the inverses of the natural equivalences & — T — T/ AN and N — T — T/ ZL.
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1.2.1.27 Definition. Let (7,X,Ayx) be a triangulated category and ¢ any category. Fix a
complementary pair of thick subcategories (£, .4") in T and a functor F : T — €.

- The localization of F with respect to (£, /") is the functor
LF:=FoL:T—¢%

- The obstruction of F' with respect to (£, .4") is the functor
OF :=FoN:T —%

1.2.1.28 Remarks. 1. If F is a triangulated or homological functor, so it is LF and OF.

2. Since the functors L and N descend to triangulated functors on the quotient categories, the
same is true for the localization and obstruction of F":

LF:T/A# — € and OF : T/ — €

Moreover, by construction we have

LF.y =0 and OF 4 =0

To see this we have just to remark that the functor L (resp. N) factorizes via the the
localization functor @ of T /A (resp. T/Z). But A = keroy;(Q) (resp. £ = kerop;(Q)),
so that
F(L(A)) = F(PoQ(A)) = P(0) =0
(resp. F(N(Z)) = F(PoQ(£)) = P(0) = 0),
where we follow the same notations as in the preceding lemma.

3. There exists a natural transformation

n:LF — F

Namely, given any object X € Obj(T), consider the corresponding (&, .4 )-triangle L(X) —
X % N(X) % 2(L(X)). So, it suffices to take ny := F(u). Indeed, if f: X — Y is any
homomorphism in 7, then by functoriality of the (£, .#)-triangles, we have the following
homomorphism of distinguished triangles

LX) L s X —% NX) % S(L(X))
L) if v )
LY)——Y —> N{Y) — S(L(Y))

where L(Y) Ly 2, N(Y) N Y(L(Y)) is the (£, A)-triangle associated to the object
Y. In particular, we have fou = u' o L(f) so F(f) o F(u) = F(u') o F(L(f)). In other words,
F(f)onx =mny oLF(f).

Likewise, we have a natural transformation

v:F— OF
taking vy := F(v), for all object X € Obj(T).
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1.2.1.29 Theorem (Universal property of localization). Let (T,%, Ax) be a triangulated category
and € a triangulated (resp. stable abelian) category. Fix a complementary pair of thick subcategories
(Z, AN) in T and a triangulated (resp. stable homological) functor F : T — €.

If G: T —> € is any triangulated (resp. stable homological) functor such that G| 4 =0 and G

is equipped with a natural transformation G —— F, then there exists a unique natural factorization

Consequently, the natural transformation n: LF — F is invertible if and only if F| 4 = 0.

Proof. Given any object X € Obj(T), consider the corresponding (&, .#")-triangle L(X) — X —
N(X) -5 R(L(X)) and apply the functor G of the statement. We obtain then a distinguished
triangle (respectively, a long exact sequence)

G(L(X)) Z G(X) — G(N(X)) — S(G(L(X)))

(resp. G(L(X)) “ G(X) — G(N(X)))

)

G(u
Since G| 4 = 0, we have that G(N(X)) = 0 which implies that G(L(X)) (g G(X) (see

Proposition 1.2.1.20).

Next, let’s apply the natural transformation G —— F' of the statement to the object L(X), so
that we have n’L(X) : G(L(X)) — LF(X) and we define a natural transformation G — LF by
the composition

G(u) nLex)
G(X) = GL(X)) X LF(X)

By construction, we obtain a commutative diagram

a0 Y o Fx)
Tﬁx
77/L(X)

LF(X)

as required.

Finally, suppose that n : LF — F is invertible, then there exists a natural transformation
m : F — LF such that nom = id. In other words, id : F — F satisfies the above universal
property and so it must be F| 4 = 0. Conversly, if F| 4 = 0, then F(L(X)) = F(X) for every
object X € Obj(T) via nx because F is a triangulated (resp. stable homological) functor. In other
words, the natural tranformation n : LF — F' is invertible. |
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1.2.1.30 Definition. Let (7,%,Ay) be a triangulated category and % a triangulated (resp.
abelian) category. Fix a complementary pair of thick subcategories (.£,.4") in T and a triangulated
(resp. homological) functor F : T — %.
The categorical Baum-Connes assembly map for 7 with respect to (£, A", F) is the natural
transformation
n:LF — F

Thus the categorical Baum-Connes property for 7 with respect to (&, 4", F) consists in
investigate wheather 7 is invertible. Of course, it is very improbable that such a conjecture will be
true in full generality. But we can realized this conjecture in a more concrete framework, where
there may be reasons that become interesting the study of this problem. Namely, in the context of
the Kasparov’s theory. In order to establish this relationship, we need the following result.

1.2.1.31 Lemma. Let (T,%,Ay) be a triangulated category, P any class of objects in T and N
a localizing subcategory in T such that ({(P), A") is a complementary pair of localizing subcategories
inT.

Let F,G : T — & be two homological functors compatible with countable direct sums and
® : G — F a natural transformation.

If Gy =0 and ®x : G(X) — F(X) is an isomorphism for every object X € P, then ®
descent to a unique natural equivalence

G =LF

Proof. Since G| 4 = 0, universal property of localization yields that there exists a unique natural
transformation G — LLF such that

is a commutative diagram.

Since ((P),.#") is a complementary pair of localizing subcategories in 7, we can apply the
fundamental lemma about complementary pairs (recall Lemma 1.2.1.26). Hence there exists a
triangulated functor L : T /A4~ — (P) such that L(X) = X, for all X € P. In particular, we have
LF(X) ~ F(X), for all X € P.

Now, by assumption, we have that ®x : G(X) — F(X) is an isomorphism for all X € P. Hence
we can write G(X) = F(X) ~ LF(X), for all X € P. In other words, the natural transformation
G —> LLF given by universal property is a natural equivalence on P. Since G and F' are supposed
to be compatible with countable direct sums, the same conclusion is true on (P). To conclude,
recall from the proof of the preceding theorem that the natural transformation G — LLF' is defined

by the composition G(X) Gl G(L(X)) Lo LF(X), for all X € Obj(T). Since ® is a natural

equivalence on (P), we obtain that G ~ LF as claimed.
|

1.2.2 Meyer-Nest’s homological algebra

First of all, observe that the main tool for the categorification of the Baum-Connes property
explained in the preceding section is the choice of a complementary pair of thick subcategories.
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This pair is then used to localize a fixed functor. Hence, it is advisable to provide methods by which
we can construct such complementary pairs in a given triangulated category. The Meyer-Nest’s
idea is to develop an adapted homological algebra in a triangulated category (very close to the one
that we develop for any abelian category) in such a way that we can obtain complementary pairs
from projective objects.

1.2.2.1 Definition. Let 7 any additive category. An ideal J in T is a family of homomorphism
subgroups {J(X,Y)}x veonj(r) © Hom7(X,Y) such that

Homr(Z,W)o J(Y,Z) o Homr(X,Y) € T(X,W),

for all X, Y, Z, W € Obj(T).
We say that J is additive if J is compatible with countable direct sums meaning that
J(@X,,Y) = [[J(X;,Y) through the canonical map Homr(PX,;,Y) — [[Homr(X;,Y).

for all X;,Y € Obj(T).

1.2.2.2 Remarks. 1. Given any additive (resp. compatible with countable direct sums) functor
F : T —> T’ we have an obvious ideal (resp. additive ideal) in T defined for all X, Y € Obj(T)
by

kergom (F)(X,Y) :=={f € Hom7(X,Y) | F(f) =0}

2. If {Ti}ier is a family of (additive) ideals in T, then it is straightforward to see that their
intersection J := (J is a (additive) ideal in 7. More precisely, for every X,Y € Obj(T) we

lel
define
J(X,Y) = A(X.Y) c Homy(X,Y)
lel
1.2.2.3 Definition. Let (T,X,Ayx) be a triangulated category. An homological ideal in T is
an ideal J in 7 for which there exists an stable homological functor F' : 7 — & such that
j = kergom(F).

1.2.2.4 Remark. It is a non trivial fact, but we can show by virtue of the Freyd’s theorem (see
Remark 2.21 in [134] for the details) that an homological ideal can be realized as ker o, (F') with
F triangulated. This is important for this dissertation because when we apply this general theory to
the Kasparov category, the corresponding ideal that we choose comes from a triangulated functor
(namely, the restriction functor).

For simplicity in the exposition, we carry out all the following arguments concerning homological
ideals with respect a stable homological functor. Nevertheless, the same results hold when we work
with triangulated functors instead. Indeed, it is enough to consider distinguished triangles instead
of exact sequences and apply the split triangles strategy using Proposition 1.2.1.20.

1.2.2.5 Remark. If { T }ier is a family of homological ideals in T where J; := ker g, (F7) with stable
homological (resp. triangulated) functors F} : T — & for every [ € I, then their intersection

J = [T is a homological ideal. More precisely, we define the following stable homological (resp.
lel
triangulated) functor

F = (Fl)lel T — nszfl,

lel
so that J = kergom (F) by construction.
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1.2.2.6 Definition. Let (7,%, Ay) be a triangulated category and J a homological ideal in 7.

Let f: X — Y be a homomorphism in 7 and write X Ly, Cy — %(X) for the cone
triangle associated to f. We say that

- fis a J-epimorphism if v e J (Y, Cy),
- fis a J-monomorphism if w e J(C}, (X)),
- f is a J-isomorphism if f is both a J-epimorphism and a J-monomorphism.

1.2.2.7 Proposition. Let (T,%, Ayx) be a triangulated category and J := ker gom (F) a homological

ideal in T with F: T — . If f: X — Y is a homomorphism in T andX—f>Y—U>Cf -
Y(X) is its cone triangle, then we have that

i) f is a J-epimorphism if and only if F(f) is an epimorphism,
it) f is a J-monomorphism if and only if F(f) is a monomorphism,

iii) f is a J-isomorphism if and only if F(f) is an isomorphism.

Proof. Given the distinguished triangle X Ty 2o t - (X)), we construct a long exact
sequence on & by applying the functor F' (because it is a stable homological one)

- (= (w) F(f) F(v)
Lo F(ETHC)) T T T F(X) S F(Y) S F(Cy)
Fw) =

F(Z(f))
S FX((X)) ST FEY)) —...
In this situation, we have
i) fis a J-epimorphism < ve J(Y,Cf) < F(v) = 0 < F(f) is an epimorphism.

ii) fis a J-monomorphism < we J(Cf, (X)) & X Hw) e J(E7HCy),X) < F(THw)) =0 <
F(f) is a monomorphism.

iii) the statement “f is a J-isomorphism if and only if F(f) is an isomorphism” is obvious thanks
to the previous ones.

1.2.2.8 Definition. Let (7,X, Ax) be a triangulated category and J an homological ideal in 7.
Let (X, dn)nez a chain complex in 7 and for each n € Z consider the cone triangle associated to

the differential dy,, say X, = X1 —2 Cp 22 2(X,,).
We say that (X,,,d,) is J-exact at degree n if the composition C,, — %(X,,) long) 2(Cnt1)

is a homomorphism in J(Cy, X(Chp11)).
We say that (X,,,d,) is J-exact if (X,,d,) is J-exact at degree n, for all n € Z.

1.2.2.9 Proposition. Let (T,%, Ayx) be a triangulated category and J := kergom (F') a homological
ideal in T with F : T — .
A chain complexe (X,,dn)nez in T is J-exact at degree n if and only if F(X,41) Fldng)

F(X,) Fdy) F(X,—1) is a short exact sequence in <.
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Proof. First of all, consider the short sequence F(X,, 1) Fldnya) F(X,) ) F(X,_1). Since

(X, dn)nez is a chain complexe, we have d,, o dy,+1 = 0, so that F(d,) o F(d,+1) = 0, that is,
Im(F(dy,+1)) < ker(F(dy,)), for all n € Z. It remains to show that the converse inclusion holds if
and only if (X, d,)nez is J-exact.

Next, consider the cone triangle associated to the differential d,,, say X, Gn, Xni1 BN @LN
¥(X,). Since F' is a stable homological functor, we consider the following long exact sequence in .o/

_ F(E Y wn F(d, F(vn
s BTN C)) TE S P, TS B(X,a0) TS P

F(wy, F(X(dn
S (X)) T PE(X) -
which implies in particular that
Im(Z~YF(wy))) = ker(F(dy)) and Im(F(dn41)) = ker(F(vng1)) (1.2.1)

By definition, (X, d,)nez is a J-exact chain complexe in T at degree n if and only if the
composition

Cn &’ (Xn) E(UL;I) Z(CnJrl)
is a homomorphism in J(C,,, X(Cp+1)), which is equivalent to say that the composition

—1
Z_l(Cn) ¥ ﬂn) Xn Un_+; C(n-'rl
is a homomorphism in J(X71(C,,), Cp11), which is equivalent to say that the composition

F(vn+t1)
—

SR T ) B(x,) F(Cpin)

is the zero homomorphism in &7, that is,
Im(E7(F(wy))) < ker(F(vn41))

In other words, by virtue of the identities (1.2.1) above, we have that (X, d,)nez is a J-exact
chain complexe in T at degree n if and only if ker(F(d,)) < Im(F(dn+1)), which finishes the
proof. |

1.2.2.10 Definition. Let (7,3, Ayx) be a triangulated category and J an homological ideal in 7.
A homological functor G : T —> & is said to be J-exact if J < kergom(G).

1.2.2.11 Proposition. Let (T,X, Ay) be a triangulated category and J an homological ideal in
T. If G: T — & is a stable homological functor, then the following statements are equivalent

i) G is J-exact.
it) G transforms J-epimorphisms into epimorphisms.
iti) G transforms J-monomorphisms into monomorphisms.

i) G transforms J-exact chain complezxes into long exact sequences.
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Proof. Let f: X — Y be a homomorphism in 7 and consider its cone triangle X Sy o
Cy — ©(X). Next, consider the long exact sequence
- G(="H(w)) G(f) G(v) G(w)
= GETHC) TS E(X) S GY) S G(C) S G(E(X)) —
In this situation, it is clear by definition that G is J-ezact if and only if G(f) is an epimorphism
(resp. monomorphism) whenever f is a J-epimorphism (resp. J-monomorphism,).
Next, let (X,,,d,,) be a J-exact chain complex in 7, which means that the composition

Z(Un+1)
—

is a homomorphism in J(C,,,3(Cpr41)), for all n € Z where C,, is the cone of the differential
dp : X — Xnq1.

If G is a J-exact functor, then J < kergom (G) and so we have G(X(vp41) 0 wy,) = 0. In this
situation, the same argument of Proposition 1.2.2.9 yields that (G(X,),G(dy)) is a long exact
sequence. This shows (i) = (iv).

Conversely, suppose that G transforms J-exact chain complexes into long exact sequences and
let f: X — Y any homomorphism in J(X,Y) with X,Y € Obj(T). We have to show that
G(f) = 0. Indeed, we can consider the following J-exact chain complex,

!

—0—0—..0—- XY —>50—0—..0—0— ...
By assumption, we have a long exact sequence,
00— 00— GX) DY) 00— 00—

which implies clearly that G(f) = 0 as required. This shows (iv) = (i)

1.2.2.12 Definition. Let (7,%, Ax) be a triangulated category and J a homological ideal in
T. A J-projective object in T is an object P € Obj(T) such that the homomorphism functor
Homy(P, - ): T — obis J-exact.

The class of J-projective objects in T is denoted by p 7.

1.2.2.18 Remarks. 1. Observe that the suspension functor and the direct sum functor are
triangulated, so that the class of J-projective objects is closed under suspension, retractions
and direct sums. This implies that all the objects in the minimal localizing subcategory {p7)
generated by J-projective objects are J-projective objects as well.

2. If (T,%,Ay) is a triangulated category and J is a homological ideal in T, then given an
object P € Obj(T) we have

Pepy < J(PY)=(0), for all object Y € Obj(T)

Indeed, assume that P is a J-projective object and take f € J(P,Y) any homomorphism in
the ideal J where Y is any object in 7. We have just to write

f=foidp = fy(idp),
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so that f =0, since J(P,Y) < kergom(Homy (P, - ))(P,Y) by assumption.

Conversely, assume that J(P,Y) = (0), for all object Y € Obj(T). Consider any object
Z € Obj(T) and take any f e J(Y,Z). By definition, given any h € Hom(P,Y) we have

fe(h) = foh=idzofoh,

which implies that fi(h) € J(P,Z) by definition of ideal of an additive category. So, by
hypothesis, we obtain that f.(h) = 0. In other words, f € kergom(Homy (P, - )). Since
feJ(Y,Z) and Y, Z are arbitrary objects in T, we deduce that P is J-projective.

1.2.2.14 Definition. Let (7,X, Ay) be a triangulated category and J an homological ideal in 7.
Consider an object X € Obj(T).

- A simple J-projective resolution for X is a J-epimorphism 7 : P — X where P € p 7.

- A J-projective resolution for X is a J-exact chain complexe (P, d, )pez+ in T with P, € p7
for all n € Z™ and with dg : Py — X. In this case we write P, — X for such a resolution.

We say that 7 has enough J-projectives if every object X € Obj(T ) admits a simple J-projective
resolution.

In this theoretic context, we can state the main theorem about the construction of complementary
pairs from J-projective objects in a given triangulated category.

1.2.2.15 Theorem (Complementary pairs from J-projective objects). Let (T,X, Ax) be a trian-
gulated category and J = kergom(F) an additive homological ideal in T .

If T has enough J -projective objects, then ({p7),kerow;(F)) is a complementary pair of localizing
subcategories in T .

1.2.2.16 Remark. Notice that the converse of the above theorem is also true. Namely, suppose that
({pagy, kerop; (F)) is a complementary pair of localizing subcategories in 7. In this case, for every
object X € Obj(T) there exists a (unique up to isomorphism) distinguished triangle of the form

L% X % N 2% %(L),

with L € (py) and N € kerpp;(F'). Thanks to Remarks 1.2.2.13 we know that L is also a J-
projective object. Next, we claim that the homomorphism v : L — X is a J-epimorphism, which
yields the existence of a simple J-projective resolution for X.

Indeed, consider the following long exact sequence

FESW) pry "9 P ) F(N) —

.— F(Z7YN))
Since N € kerpy; (F'), we have F(N) = 0 and the above exact sequence implies that F(v) =0
and so F'(u) is an epimorphism, which means that u is a J-epimorphism.

Following the notations of the preceding section, we may put . := (p7) and A" := kerpp;(F).
First of all, notice that .2 = (p ) is a localizing subcategory of T by definition and A" = kerop; (F)
is a localizing subcategory as well because F' is supposed to be compatible with countable direct



1.2. Triangulated categories 41

sums (since J is, by assumption, an additive homological ideal), consequently kerpy;(F') is a
localizing subcategory and Remark 1.2.1.24 assures that its orthogonal complement is localizing as
well. Remember that in our framework, a localizing subcategory is automatically thick (see Remark
1.2.1.9).

In order to show that this is a complementary pair of localizing subcategories in 7, we have to
check the two axioms of Definition 1.2.1.25. The first one is easy to prove.

1.2.2.17 Lemma. Let (T,%,Ayx) be a triangulated category and J = kergom(F) an additive
homological ideal in T. Then we have

(b < (kerow; (F))"

Proof. Take any J-projective object, say P € p7. By definition, we have ker g o, (F') < kergom (Hom (P, -)).
Take any object N € kerop;(F), which means that F(N) =~ 0 and so F(idy) = 0, that is,

idy € kergom(F)(N,N). Hence we have also that Homy(P,idy) = (idy)s = 0. Now, if

g € Hom (P, N) is any homomorphism between P and N, we can write

g =1idyog = (idy)«(g9) = Hom7(P,idn)(g),

whence g = 0. Since this is true for every homomorphism g € Homy (P, N), any object N €
kerop; (F) and any object P € py, we deduce that py < (keroy;(F))", by definition of left
orthogonal complement.

Finally, remark that (kerpp;(F'))" is a localizing subcategory. In other words, (keroy;(F))" is
stable under countable direct sums and so we conclude that (p7) < (keroy;(F))™ by definition of
localizing subcategory generated by. |

Concerning the second axiom of the definition of a complementary pair of localizing subcategories,
that is, the existence of a ({ps), kerop; (F'))-triangle for every object in 7T, the proof is not at all
trivial and it requires a more delicate study. We refer to Theorem 3.21 in [131] for a proof and
more details.

In this situation, there arises a natural question: how can we construct J-projective objects in a
given triangulated category? We observe that the result of the preceding theorem depends strongly
on the choice of the functor F' to construct the corresponding complementary pair. In this way, we
may think that such J-projective objects could be constructed directly using the functor F itself.
More precisely, we can show that whenever F' admits a “gentle” adjoint functor F'*, the localizing
subcategory of J-projective objects can be realized as the localizing subcategory of objects of the
form F*(Obj(P)), for some specific subcategory P.

Let us describe with more details this process. Compare the following definition with the
classical one (see Definition B.1.13).

1.2.2.18 Definition. Let (7,%,Ay) be a triangulated category, € an additive category and
F :T — % a functor. Let P < ¥ be a full subcategory.

A partially defined left adjoint for F is a functor F'~ : P — T such that for every objects
X € Obj(T) and Y € Obj(P) we have an isomorphism

Homy(FF(Y), X) = Home (Y, F(X))

such that ¢ : Hom7(F"(-), - ) — Home( -, F(+)) is a natural isomorphism in each variable.
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1.2.2.19 Remark. Let us remark that for every object Y € Obj(P), the object F(Y) € Obj(T) is a
J-projective one for J := kerpgom (F'), whenever F is a stable homological functor.

Indeed, given an object Y € Obj(P), it is enough to show, thanks to the definition of adjoint
functor, that J < kergom(Home (Y, F(+))), which is straightforward because if f : X; —>
Xo is a homomorphism in 7 with X;, X5 € Obj(T), then the corresponding homomorphism
Homg (Y, F(X1)) — Home (Y, F(X3)) is given by the left composition by F(f), so that if
feJ(X1,Xa), it is clear that F(f) is the zero map.

In conclusion, F"(Obj(P)) < ps with J := ker gom (F).

The following theorem can be found in Proposition 3.37 of [134], but we include here a proof of
a simpler statement for the convenience of the exposition.

1.2.2.20 Theorem. Let (7,3, Ax) be a triangulated category and J = kerpgom (F') an additive
homological ideal in T with F : T — .
Let P c of be a full subcategory such that

i) for any object X € Obj(T) there exists an epimorphism P — F(X) for some P € Obj(P),
i) F admits a partially defined left adjoint on P, say F©= : P — T.

In this situation, T has enough J -projective objects and consequently ((F" (Obj(P))), kero;,j(F))
is a complementary pair of localizing subcategories.

Proof. First of all, thanks to Remark 1.2.2.19 above we know that F=(Obj(P)) < p7.

Next, given any object X € Obj(T) we have to construct a J-epimorphism 7 : P — X for some
P € ps. By assumption, given X € Obj(T) there exists an epimorphism 7’ : P/ — F(X) for some
P’ € Obj(P), that is, we have an epimorphism 7’ € Home (P, F(X)). Put P := F=(P") e p7.

Since F" is a (partially defined) left adjoint of F' on P, the adjointness relation yields a
homomorphism 7 € Homy (P, X). We must check that 7 is a J-epimorphism, which is equivalent
to show that F(7) is an epimorphism in <.

Consider the identity homomorphism idpi(py € Homy(F™(P’), F©(P')) which yields, by
adjointness, a map « € Homg (P, F(F™(P'))) = Hom(P', F(P)). Since the adjointness relation
is a natural isomorphism, we have the following commutative diagram

Homy(F=(P"), F~(P")) v Homy(P', F(P))
T F(W)*
Homr (B (), ) ——— Home (P, F(X))

As a consequence, we have that
F(ﬂ-)*(w(ldP)) = w(ﬂ'*(ldp)) = F(Tr) oo = 71-’7

where 7/ is an epimorphism and the formula F(7) o o« = «’ implies that F(7) is an epimorphism as
well.

At this stage, Theorem 1.2.2.15 guarantees that ({p7),keros;(F)) is a complementary pair of
localizing subcategories in 7. It remains to show that (p7> = (FF(0bj(P))).
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Let X € ps be any J-projective object in T. Thanks to the preceding argument, there exists a
J-epimorphism 7 : P — X with P € F"(Obj(P)). Let’s embed 7 into a distinguished triangle,
say P > X — O, —> X(P) which can be supposed of the form C — P - X -% 3(0O)
for some object C' € Obj(T) by virtue of the rotation axiom. In this case, observe that we have
we J(X,%(C)) = (0) because X is J-projective (recall Remark 1.2.2.13) and 7 is a J-epimorphism
(recall Definition 1.2.2.6). Hence Proposition 1.2.1.20 assures that the triangle splits and we have
P>~C®X e F(0Obj(P)). In other words, X is a retract of P and (F™(Obj(P))) is by definition
the smallest localizing subcategory containing the objects F'(Obj(P)) so it is thick, that is, stable
by retracts. In conclusion, X € (F"(Obj(P))), which ends the proof. [ |

It is important to observe that the above proof is quite constructive once the adjoint functor is
known. Indeed, in that case the projective objects are exactly direct summands of F™(Obj(P)).
For the case of the Kasparov category with respect to a discrete group G we’ll have that the
corresponding projective objects are exactly direct summands of induced C*-algebras by finite
subgroups (see Theorem 1.2.3.11 below).

1.2.3 Reformulation of the Baum-Connes conjecture

The Kasparov’s category

Here we introduce the equivariant Kasparov’s category. It consists in observing the triangulated
aspect of the Kasparov’s theory using, of course, elementary facts of the K K-theory.

1.2.3.1 Definition. Let G be a (second countable) locally compact group. The G-equivariant
Kasparov’s category, denoted by J# .# C, is the additive category defined by

- The objects of # # ¢ are the separable G-C*-algebras.

- The homomorphisms between two (separable) G-C*-algebras are given by the corresponding
G-equivariant Kasparov triples. More precisely,

Hom y »c(A,B) := KK%(A, B),

for all (separable) G-C*-algebras A, B. The composition of two homomorphisms in .# "¢ ¢
being the Kasparov product of the corresponding Kasparov triples.

1.2.5.2 Remarks. 1. Since all our G-C*-algebras are supposed to be separable, then the cor-
responding Kasparov groups are abelian and the properties of the Kasparov product give
to G the additive character. More precisely, any G-C*-algebra K K©-equivalent to
the zero algebra is the zero element in .# .#“. The well known classical Kasparov theory
assures that the Kasparov product is bilinear with respect to the sum of Kasparov triples.
Finally, if A; and Ay are two G-C*-algebras, the direct sum A; @ A, is a G-C*-algebra in
the obvious way and we have two natural inclusions, ¢t1 : Ay < A1 @ A, 15 : As > A1 @ Ao
and two natural projections p; : A1 @ Ay — Ay, po : A1 @ Ay — As. In this way we have that
KK%(A, ® Ay, B) = KK (A, B) x KK%(As, B), for all G-C*-algebra B. Notice as well
that the Kasparov category admits countable direct sums thanks to the separability condition.

2. Observe that in # ¢ ¢ the word homomorphism (respectively, isomorphism) will mean a
true homomorphism (respectively, isomorphism) between C*-algebras or any Kasparov triple
between C*-algebras (respectively, any K K-equivalence between C*-algebras).
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Next, we wish to give a triangulated structure to .# .#¢. Firstly, our suspension functor will
be just the suspension of C'*-algebras. Namely,
- if (4, @) is any G-C*-algebra, then we define
S(4) i= {he C([0,1], A) | A(0) = 0 = h(1)} = Co(R) ® A

- if (A4, a), (B, B) are two G-C*-algebras and f := (H, 7, F) e KK%(A, B) any G-equivariant
Kasparov triple for (A, B), then we define

Y(f) = (Co(R)Q@ H,id®@7,id® F) e KK (X(A),2(B)),
where Cy(R) is equipped with the trivial action of G.

1.2.3.3 Remark. Notice that whenever (4, «) is a G-C*-algebra, the suspension X(A) is again a
G-C*-algebra. Namely, we define the action & : G — Aut(X(A)) by

ay(h)(t) == ag(h(t)),

for all g e G, all he C([0,1], A) and all ¢ € [0,1].

Notice as well that, by virtue of Bott periodicity, ¥ establish an (additive) auto-equivalence.
Indeed, by Bott periodicity we have that K§(A4) =~ K& (2(A)), for all G-C*-algebra A and the
general Kasparov theory yields the following identifications

K§(A) = KKY(C, A) and K& (X(A)) = KKY(C,x%(A))

Therefore, we obtain that A is K K “-equivalent to ¥2(A), for all G-C*-algebra A. See [24] for
more details.

Next, we have to define the class of distinguished triangles in .# % ¢. Given a *-homomorphism
between two G-C*-algebras, say ¢ : A — B, recall the definition of its cone

Cp = {(a,h) € Ax Co((0,1], B) | ¢(a) = h(1)},

which is a G-C*-algebra in an obvious way.
In this situation, we have a natural exact sequence of G-C*-algebras,

X(B)—C, > A

1.2.3.4 Definition. Let (7.7 ¢ %) be the G-equivariant Kasparov Category. A standard triangle
or mapping cone triangle in J# % is a triangle in # . # ¢ of the form

»(B) — C, — A% B,

where @ is a *-homomorphism between G-C*-algebras.
The class of all triangles in J#.# ¢ isomorphic to a mapping cone triangle is denoted by Asy;.
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1.2.3.5 Definition. Let (#.# ¢ ¥) be the G-equivariant Kasparov Category. An extension
triangle in .# % € is a triangle in # .# ¢ of the form

S(A) — B -5 E -2 A,

where B <% B 5 A is G-equivariant semi-split extension of G-C*-algebras and the homomorphism

Y(A) — B in ' # ¢ is given by the class of the extension B <> E L A Ext'(A,B) =
KK%(3(A), B) (recall Remark A.1.8).
The class of all triangles in .# . # ¢ isomorphic to an extension triangle is denoted by Zs;.

1.2.3.6 Remark. Notice that in the Kasparov category, triangles are considered to be diagrams in
H # G of the form ¥(B) — C — A — B, which are the opposite with respect to the notations
followed in the preceding sections. However, having in mind that the suspension of C*-algebras is
such that ¥ = £~ in #.# ¢, Remarks 1.2.1.4 yields the coherence of our notations.

1.2.3.7 Lemma. Let (. # % %) the G-equivariant Kasparov category. Then we have

As =

(1]

b

Proof. Firstly, we see that Ay € Zx. Let ¢ : A —> B be G-equivariant *-homomorphism and
consider the corresponding mapping cone triangle ¥(B) — C, — A —, B. Recall now the
definition of the cylinder of ¢,

Zy = {(a,h) € A x C([0,1], B) | pa) = h(1)}

We claim that Z, and A are G-equivariant homotopic equivalent, which means that there exist
two G-equivariant *-homomorphisms f : A — Z, and g : Z, — A such that fog is G-equivariant
homotopic equivalent to idz, and g o f is G-equivariant homotopic equivalent to id4. Namely, put

f: A — ng qg: th —> A
a +— f(a):=(a,p(a)) (a,h) — gla,h):=a
It is clear that g o f = id4 and the collection of *-homomorphisms

Vol th —_— Z(P
(a,h) — @(a,h):= (a,h(- t+ (1— t))),
for all ¢ € [0, 1] is a continuous G-equivariant homotopy between fog and idz,. Precisely, o9 = fog,
1 =idz, and the map t — @;(a, h) is continous for every (a,h) € Z,.
Next, consider the obvious G-equivariant semi-split extension Cy, — Z, LB , where p(a, h) :=

h(0). This yields an extension triangle $(B) — C, — Z, —> B.
Moreover, the homotopy between Z, and A described before yields an isomorphism of distin-
guished triangles in & % ¢

>(B) c, A-%.B
| %
S(B) C, Z, B
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Hence the mapping cone triangle is isomorphic to the extension triangle given by the cylinder.
Conversely, let’s see Zx; Ay Consider a G-equivariant semi-split extension B <> E L Aand
the corresponding extension triangle ¥(A4) — B —— E —£> A. Consider as well the G-equivariant

semi-split extension of the cylinder of p, C}, — Z, S A, and the corresponding extension triangle,
Y(A) — C, — Z, > A
Next, consider the G-equivariant homotopy between Z, and E as before, which is given by

means of
f+ E — Z, g: 4, — E

e — fle):=(eple)) (e;h) —> gle,h):=e
Observe that the map f restricts to a map
f‘ : B — Cp
b — f(b) := (1(b),0)

Hence, the homotopy between Z, and E described before yields an isomorphism of distinguished

triangles in & . # ¢
p

S (A) B E A

"

%(A) C, Z,— A
p

In particular, B = C, in % G. Observe that p is G-equivariant homotopic equivalent to
pog because po f = p and f o g is G-equivariant homotopic equivalent to idz,. In this way, C,
is G-equivariant homotopic equivalent to Cj, which allows to consider the bottom distinguished
triangle of the above diagram as a mapping cone triangle and the proof is complete. ]

The preceding lemma allows to show that the G-equivariant Kasparov category is triangulated
using either Ay, or Zy for defining the corresponding distinguished triangles. We refer to Appendix
A in [132] for the details.

1.2.3.8 Theorem. Let G be a (second countable) locally compact group. The G-equivariant
Kasparov’s category & #C equipped with the C*-algebra suspension functor ¥ and the class of
distinguished triangles Ax(= Ex) given by the mapping cone triangles (or the extension triangles)
s a triangulated category.

1.2.8.9 Remark. Since (¥ ¢ ¢ %, Ay) is a triangulated category all the elementary facts that
we have established in Section 1.2.1 can be applied to # ¢ C¢. In particular, it is important to
observe that for any (separable) G-C*-algebra T € Obj(.# # ), the homomorphism functors
KKS(T, -)and KK%( -, T) are homological, so that for every distinguished triangle in % .# ¢ we
can construct long exact sequences in K K-theory (see Remark 1.2.1.14 and Proposition 1.2.1.16).

Choice of the complementary pair

In order to construct a suitable complementary pair of localizing subcategories in J# . # ¢, we are
going to apply the Meyer-Nest’s homological algebra developed previously. It is important to say
that the treatment with projective objects in the Kasparov’s category needs of course deep results of
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locally compact groups and Kasparov’s theory that are out of the scope of this survey chapter and
so we may refer to the original papers [132] and [131] for all the details. Despite of this difficulty,
the case in which G is a discrete group can be easily established and we’ll explain the argument.
Moreover, the discrete case is specially interesting for the present thesis.

Given a (second countable) locally compact group G and a compact subgroup H < G, we have
two natural functors that we can consider. Namely,

- Restriction functor:

ResG - 4 # ¢ —
which is just a forgetful functor.

- Induction functor:

Ind$ - " — ¢,
defined on the objects level as follows: if (B, 3) is any (separable) H-C*-algebra, then

Ind§; (B, B) = {f € C4(G,B) | f(gh) =h'f(9) Yge G,he H
and (gH — ||f(g)I]) € Co(G/H)},

equipped with the action of G by left translations is a (separable) G-C*-algebra. It is
well known that this association is functorial with respect to the K K-theory, so that if
ge KK (B, B') is a Kasparov triple between two H-C*-algebras (B, ) and (B’, 3'), then
there exists a Kasparov triple Ind$(g) € KK (Ind$ (B, 3), Ind% (B, ') and so the this
yields the existence of the induction functor Ind§ above (see Section 3 in [98] or Theorem
20.5.4 in [24] for more details about this construction).

Let us write F for the family of all compact subgroups of G. Then we define the following
subcategories of # % ¢

- Compactly Contractible objects:

CC:={Ae Obj(H H )| Res§i(A) = 0VH e F} = (] keroy;(Res$)
HeF

- Compactly Induced objects:

({CT) :={{A e Obj(H# X)) | A= Ind(B) with H e F, Be Obj(##T)})

1.2.3.10 Remarks. 1. Notice that the restriction functor Resfl is just a forgetful one, so it
is clear that it is compatible with countable direct sums. And it is straightforward to
see that Resf[ is a triangulated functor. Namely, it is clear applying the definitions that
Y(Res$%(A)) = Res%(%(A)), for all A € Obj(# # ) and that Res$(Cy) = CResS (1), for

all #-homomorphism f : A —> B between G-C*-algebras. In other words, Res$ is a stable
functor that transforms mapping cone triangles into mapping cone triangles, that is, Resg
is a triangulated functor. Hence, thanks to Remark 1.2.1.13, we have that keroy;(Res$)
is a localizing subcategory of & . # ¢ for every compact subgroup H < G; as a result,

CC = () kerop;(Res%) is also a localizing subcategory of & # ¢ (see Remark 1.2.1.9).
HeF
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2. The induction functor is more complicated than the restriction one. For instance, Ind$ is
not at all compatible with (finite or countable) direct sums. In this way, CZ is just a class
of objects in A .#©. Hence we are forced to take the corresponding localizing subcategory
generated by compactly induced objects.

3. Following the notations of the preceding sections, we may put .£ := (CZ) and A4 :=CC. In
order to apply the Meyer-Nest machinery, we want to show that ((CZ),CC) is a complementary
pair of localizing subcategories in .# . # . To this end, the strategy consists in constructing
projective objects in & .# ¢ with respect an additive homological ideal. Namely, this ideal is
simply J := () kergom(Res$) (recall Theorem 1.2.2.15).

HeF
Notice that Resg is a triangulated functor compatible with countable direct sums, so
ker from (Res$) is an additive homological ideal in # % ¢ by virtue of Remark 1.2.2.2 and

Remark 1.2.2.4. As a result, J := [ kerpom(Res$) is also an additive homological ideal
HeF
(see Remark 1.2.2.2 and Remark 1.2.2.5).

1.2.3.11 Theorem. Let G be a (second countable) locally compact group and F the family of all
compact subgroups of G. If J := [ kerpom(Res$), then

HeF

i) {CI) = {pa)s

ii) H G has enough J-projective objects.

Therefore, ({(CI),CC) is a complementary pair of localizing subcategories in & K C.

Proof. We distinguish two cases.

A)

The general case in which G is any (second countable) locally compact group requires, on the
one hand, structural results about compact subgroups in locally compact groups (for instance,
existence of a mazximal compact subgroup in a almost connected group) and, on the other hand,
deep results in K K-theory due to Kasparov (for instance, the relationship between the functors
Res and Res o Ind in the context of maximal compact subgroups. See Theorem 5.8 in [98] and
Lemma 3.3 in [132]). With these preliminaries (which can be found in Section 3 of [132]), some
work yields that

- CC = ({CT))", s0 {CT) = CC™
-and CZ c py

(see Proposition 4.4 in [132] for a proof). In order to achieve the conclusion of the statement, we
want to apply Theorem 1.2.2.15. However, when G is a locally compact group, the restriction
functor does not always have an adjoint functor. Nevertheless, we can define an adjoint functor
for the restriction on enough compact subgroups, so that Theorem 1.2.2.15 can be applied. For
a proof following these ideas, we refer to Theorem 7.3 in [131]. For a more analytical and direct
approach to this proof, we refer to Proposition 4.6 and Theorem 4.7 in [132].

The case in which G is a discrete group is much easier to establish. In this case, the family
F of all compact subgroups of G becomes the family of all finite subgroups of G. Since G is
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discrete, F is formed, in particular, by closed subgroups of GG, so that the classical Frobenius
reciprocity in K K-theory (due to Wassermann in 1983, [220]) can be applied and we have that
for every H € F

KKC%(Ind$(A), B) =~ KK"(A, Res$(B)),!

for all H-C*-algebra A and all G-C*-algebra B. In other words, the functors Res% and Ind$
are adjoints in # % ¢, for all finite subgroup H € F. More precisely, Ind$ is a left adjoint
functor for Res%, for all finite subgroup H € F.

Let’s consider the following triangulated functor,

F = (Res§)ger : X XY — [ A",
HeF

which is defined in an obvious way. With these notations, it is clear that

CC = kerpp;(F) and J = kergom (F)

Let’s define the functor
P [[oaxa™ — xx©
HeF

- on objects by

F™((Am)mer) == P Ind§(An),
HeF

for all (AH)HEJ: € Ob]( H %%H)
HeF
Remark that since G is discrete, F is a countable set. Hence the above direct sum is

countable and F'" is well-defined.

- and on homomorphisms by functoriality of the induction functor.

We claim that F'™ is a left adjoint functor for F'. Indeed, we have just to apply the fact that
Ind$ is a left adjoint functor for Res, for all finite subgroup H € F by virtue of the Frobenius
reciprocity and the structure of a product category,

KKC(F™((An)mer), B) = [ [ KK (@ Ind§;(An), B)

HeF HeH

>~ [[ KK (Ind$(Ax), B)
HeF

> [ KK"(An, Res$(B)) = ( I1 KKH) (Ag, F(B))
HeF HeF

Therefore, Theorem 1.2.2.20 assures that J# . # ¢ has enough J-projective objects and con-
sequently, by Theorem 1.2.2.15, ({(p7),CC) is a complementary pair in .# . # ¢ with (p ;) =
@ (Obj( [T A H™).

€

'n the discrete case we can prove directly this adjointness property (using Theorem B.1.15) instead of using
the stronger result of Wassermann (see for instance Section 3.2 in [132] for more details). Namely, the argument is
analogous to the one given for the discrete quantum groups, see Lemma 1.7.2.4.
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To conclude, observe that (CZ) is the minimal localizing subcategory containing the compactly
induced objects by definition, so it contains objects of the form F (Obj( I %%/H))7 SO we
HeF

have (F'™(Obj( [T 2 #*)))  (CZ) and, by minimality, this inclusion must be an equality.
HeF
This yields the conclusion of the statement.

1.2.8.12 Remark. Since ((CZ),CC) is a complementary pair of localizing subcategories in # ¢ ¢,
the fundamental lemma about complementary pairs (see Lemma 1.2.1.26) can be applied, so that
in particular we have two triangulated functors

L:##%—{(CIyand N: ¥ #% —CC

such that for any G-C*-algebra A € Obj(.# # C) there exists a (unique up to isomorphism)
distinguished triangle of the form

S(N(A)) — L(A) 2 A — N(A),

where D is called Dirac homomorphism.

This nomenclature is used according to the classical Dirac-dual Dirac method. More precisely,
the homomorphism D of the above distinguished triangle must be regarded as an element D €
KKS(L(A), A). Let us denote by Dc € KKY(L(C),C) the Dirac homomorphism corresponding
to the trivial G-C*-algebra C. We call D¢ Dirac element. Assume that there exists an element
nc € KK%(C,L(C)) such that D¢ %)77@ = 1) € KK%(L(C),L(C)). We call nc dual Dirac

element. In this situation, the element v¢c := nc ® D¢ € KK%(C,C), called y-element, is an
L(C)

idempotent. We can show that
y=1c «— I)=H#HC

In other words, the categorical framework of Meyer-Nest provides a categorical formulation of
the classical Dirac-dual Dirac method. The main difference is that in this case the Dirac element is
fixed, so that we only have to construct the dual Dirac element in order to apply the method.

We refer to Section 8 of [132] for all the details about the Dirac-dual Dirac method in the
categorical framework.

Reformulation

Finally, we have just to choose an appropriated triangulated or homological functor on J# . # ¢ whose
localization with respect to our complementary pair ((CZ),CC) yields the classical Baum-Connes
assembly map. To this end, we consider the functor defining the right-hand side of the classical
Baum-Connes assembly map, that is,

Fy: HHC — b2
(A,a) — Fy(A,a):=K.G x A), with = =0,1
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where @/b%/? denotes the abelian category of Z/2-graded groups of /b, which is equipped with
the obvious suspension functor X,z given by shifting the grading. Observe that F} is a stable
thanks to Bott periodicity. Indeed,

Fi(2(4,0)) = Ku(G x T(A)) = K«(G x Co(R) @ 4) = K4 (Co(R) @ G x A)

= Ku(S(G % A)) = Kya1(G % A) = T (Ka(G x A)

o,T

= Y (Fi(4, ),

for all (A,a) € Obj(# #“). Moreover, Fy is a homological functor compatible with countable
direct sums. Indeed, for all (A4, ) € Obj(# # ) we have

Fo(A,a) = Ko(G x A) = KK(C,G x A)=KK(C,-)oGx - (A, )

T

Fi(Aa) = K1 (G x A) =~ KK(C,%(G x A)) = KK(C,-)oG x - (4, a),

s a,r
where the descent functor G x - : # # ¢ — J# % is triangulated and compatible with countable

T
direct sums and the homomorphism functor KK (C, ) : £ # — /b is homological and compatible
with countable direct sums. Hence the compositions above are homological functors compatible
with countable direct sums.
By abuse of notation we write simply Fy := F. In this situation, Definition 1.2.1.30 can be
applied to our context.

1.2.3.13 Definition. Let G be a (second countable) locally compact group and fix the homological
functor F : # # ¢ — a/b"? defined by F(A,a) := K+(G x A), for all (A, ) € Obj(# ).

The categorical Baum-Connes assembly map for G is the categorical Baum-Connes assembly
map for % # ¢ with respect to ((CZ),CC, F), that is, the natural tranformation
n®:LF — F
1.2.3.14 Definition. Let G be a (second countable) locally compact group.

- We say that G satisfies the (categorical) Baum-Connes property (with coefficients) if n¢ is a
natural equivalence.

- We say that G satisfies the strong (categorical) Baum-Connes property if (CZ) = # # €.

1.2.3.15 Remark. It is clear that the strong (categorical) Baum-Connes property implies the
(categorical) Baum-Connes property by virtue of the uniqueness of the ((CZ), CC)-triangles. Notice,
by the way, that G always satisfies the (categorical) Baum-Connes property with coefficients in
objects of (CT).

1.2.3.16 Note. It is worth mentioning that what has been called classically strong Baum-Connes

conjecture is some weaker condition with respect to the above definition. Namely, following the

Dirac-dual Dirac method explained in the introduction of this dissertation, when there exists a

y-element v € KK (C,C), it defines a projection in End(K(G x B)), for all G-C*-algebra B by
ks

means of the descent homomorphism. Moreover, the image of % is precisely the image of this
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projection in K, (G x B) (see [97], [114], [78] for more details). Hence, classically we say that G

satisfies the strong Baum-Connes conjecture with coefficients if the image of this projection is
invertible in KK (G x B,G x B), which is weaker than the above definition as explained in Remark
T T

1.2.3.12.

One of the main achievement of this categorical formulation of the Baum-Connes property is not
only a new approach to the conjecture, but we can establish different criterion to decide whether
the conjecture is true or not regarding only the family of compact subgroups of G, which may be
useful in practice. Namely, we have the following

1.2.3.17 Theorem (Baum-Connes conjecture Reformulation). Let G be a (second countable)
locally compact group and F the family of all compact subgroups of G. The following assertions are
equivalent

i) G satisfies the Baum-Connes property, that is, u§ is an isomorphism, for all (separable)
G-C*-algebra A.

ii) G satisfies the categorical Baum-Connes property, that is, n¢ is a natural equivalence.

iii) K«(G x A) =(0), for all (4,a) € Obj(CC).
w) Ki(G x A) =(0), for all G-C*-algebra (A, a) that is H-contractible for all H € F.
v) If (A, @) is a G-C*-algebra such that K.(H x A) = (0) for all H € F, then K.(G x A) = (0).

vi) If f: A—> B is a x-homomorphism between G-C*-algebras that is a H-homotopy equivalence
for all H € F, then f induces an isomorphism K,(G x A) ~ K,(G x B).

vii) If € KK%(A, B) is any Kasparov triple between two G-C*-algebras that induces an iso-
morphism Ky.(H x A) =~ K. (H x B) for all H € F, then ¢ induces an isomorphism

K.«(Gx A) = K.(G x B).

viii) If ¢ € KK%(A, B) is any Kasparov triple between two G-C*-algebras that is invertible in
KKH(A, B) for all H € F, then v induces an isomorphism K4 (G x A) = K.(G x B).
T T

Proof. - (i) < (i4). Consider the two following homological functors compatible with countable
direct sums,
H: A% — ob"? and F : # #9 — /b2,

defined on objects by

H(A) := R(KKS(EG, 4)) and F(4) i= Ku(G x A),

for all G-C*-algebra A; and on homomorphisms by functoriality.

In this way, the classical assembly map of the Baum-Connes property, ug 'R (K K¢ (EG, A)) —

K4(G x A) can be regarded as a natural transformation between H and F, say & : H — F.
I
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Next, we have to use some well-known (but non-trivial) results about the assembly map.
On the one hand, G satisfies the Baum-Connes property with coefficients in compactly
induced C*-algebras, that is, u‘%z is an isomorphism (see [36] and [35] for more details). On
the other hand, Theorem 7.1 of [132] assures that we have an isomorphism of categories
HHCCC =~ R(KKE(EG, . )), which implies that Hice = 0 by definition of the Verdier
quotient.

In this situation, Lemma 1.2.1.31 can be applied, so that x“ induces a natural equivalence
H =~ LF, which yields the equivalence between the classical assembly map p& and the
categorical one n¢.

- (it) < (i4i). This is true by virtue of the universal property of localization (see Theorem
1.2.1.29).

- (#i1) < (iv). In [130] R. Meyer performs a description of equivariant Kasparov theory in
terms of generalized homomorphisms following the pioneer work of J. Cuntz [45]. Given
a G-C*-algebra A, R. Meyer defines a universal C*-algebra ¢s;A so that, if B is an other
G-C*-algebra, the Kasparov group K K%(A, B) is identified with the set of homotopy classes
of G-equivariant homomorphisms from K(L?(G) ® I?(N)) ® ¢sA4 to K(L*(G) ® I*(N)) ® B,
denoted by [K(L?(G) ® I*(N)) ® ¢;A, K(L*(G) ® I?(N)) ® B] (see Theorem 5.5 in [130]).

If A€ CC, then Res$%(A) =~ 0 in ¢ ¢ H for all H € F. This means that there exists an
invertible Kasparov triple g € K K (Res$(A),0), forall H € F. Since K K (Res$(A),0) =
[K(L*(H) ® I?(N)) ® gs Res$ (A), 0], then the invertible Kasparov triple £ is transformed
into a H-equivariant homotopy equivalence between K(L?(H) ® I2(N)) ® gsRes%(A) and 0,
which means that K(L?(G) ® I2(N)) ® g5 A is a G-C*-algebra which is H-contractible for all
HeF.

In other words, if A € CC, then A is K K “-equivalent to a G-C*-algebra which is H-contractible
for all compact subgroup H € F. This yields obviously the equivalence (iii) < (iv).

- (i) < (v). Let’s see the following implications,

- (v) = (iii). Let (A, a) be a G-C*-algebra in CC. By definition, we have that Res$ (A) =
0, for all H € F. As a consequence, H x Res$%(A) =~ 0andso Ky(H x Res$(A)) = (0).
OL‘,T‘ a‘,r

Since this is true for all compact subgroup H € F, the hypothesis of (v) implies that
Ky(G x A) = (0) and we get (7).

- (#) = (v). If G is an arbitrary topological group, then there always exists an open
almost connected subgroup U < G. Namely, if Gy < G denotes the connected component
of the neutral element, it is well-known that G/G is always a totally disconnected group
(see Theorem 7.3 in [56] for a proof). This means that G/Gq contains a compact
open subgroup, say U. If ¢ : G — G/G\ denotes the canonical quotient map, then
U :=q (U) is an almost connected subgroup of G since U/Gy = q(U) = U is compact.
If G is a locally compact group, a compact subgroup K < G is said to be large if it is a
maximal compact subgroup of some open almost connected subgroup of G. In Lemma
3.1 of [132] it is shown that any compact subgroup of G is contained in a large one.
Hence, in the definitions of the localizing subcategories (CZ) and CC it is enough to
consider large compact subgroups.
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Large compact subgroups are also smooth following the terminology of Section 3 in [132],

which allows to apply Theorem 9.3 of [132] in order to show the implication (i7) = (v).

More precisely, assume that n& is a natural equivalence and take a G-C*-algebra (A, a)

such that K, (H x Res$(A)) = (0) for all large compact subgroup H. Theorem 9.3
LT

|

of [132] implies that LF'(A) = K4(G x L(A)) = (0), which implies by our assumption
that F(A) = K+ (G x A) = (0). ’

In other words, we have that (iv) < (i) < (i) < (v).

- (vii) = (v). Let’s see the following implications,

- (vii) = (viii). Let ¢ € KK%(A, B) be any Kasparov triple between two G-C*-algebras
that is invertible in KK (A, B) for all H € F. In this case, A and B have the same H-
equivariant K-theory, for all H € F. That is, KX (A) ~ KX (B) or, thanks to Green-Julg
theorem, we have also that K, (H x A) =~ K, (H x B), for all H € F. The hypothesis of

(vii) implies that K4 (G x A) = K, (G x B) and we get (vii3).

- (viii) = (vi). Let f : A — B be a #-homomorphism between G-C*-algebras that
is a H-homotopy equivalence for all H € F. Then the corresponding Kasparov triple
[f] € KK®(A, B) induces an invertible element in KK (A, B), for all H € F (since
K K-theory is a homotopy invariant). The hypothesis of (viii) implies that K, (G x A) =~

K.(G x B) and we get (vi).

- (vi) = (iv). Let A be any H-contractible G-C*-algebra for all H € F. This means that
the zero homomorphism 0 — A is a H-homotopy equivalence, for all H € F. The
hypothesis of (vi) implies that (0) = K (G x 0) = K4(G x A) and we get (iv).

In other words, we have that (vii) = (viii) = (vi) = (iv) < (v).

(v) = (vii). Let 9 € KK%(A, B) be any Kasparov triple between two G-C*-algebras that
induces an isomorphism K, (H x A) ~ K,(H x B) for all H € F.

Given the homomorphism v : A — B in the Kasparov category # .# ¢ apply the axiom
(1) of a triangulated category and consider the cone triangle associated to 9,

S(B) — Cy — A% B

Now, given a compact subgroup H € F, consider the homological functor of homomorphisms
with respect to C in .# # ¢ given by K4 (H x - ). Consider the following long exact sequence
T

o Ky(H x S(B)) — Ky (H x Cy) — Ky(H x A) — Ky(H x B)
— Ky (Hx S7HCy)) — ...
Since Ky(H x A) =~ K4(H x B) for all H € F, we deduce that K.(H x Cy) =~ (0) =

Ky«(H x ¥71(Cy)), for all H € F. The hypothesis of (v) implies that K, (G x Cy) =~ (0) =
T s
K(Gx £71(Cy)) as well.
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Now, consider the homological functor of homomorphisms with respect to C in J#.#¢ given
by K.(G x - ). Consider the following long exact sequence
T

.= Ky(GxX(B)) » Ki(Gx Cy) > Ku(Gx A) > Ky (G x B)
— K. (G X SHCY)) — ...

Since K4(G x Cy) = (0) = K4(G x X71(Cy)), we deduce that K, (G x A) =~ K,(G x B) and

we get (vit).
]

1.2.4 Meyer-Nest’s homological algebra revisited

In this section we want to give a closer inspection of the Meyer-Nest’s homological algebra introduced
in Section 1.2.2. More precisely, the goal here is to define derived functors in a similar way as
we do for abelian categories. Hence, spectral sequences can be established and for some concrete
situations we obtain useful results for K-group computations as soon as we restrict ourselves to the
Kasparov category, which will be explained with more details in Chapter 5. For more details about
spectral sequences and related subjects we refer to [134] and [131].

1.2.4.1 Definition. Let (7,%, Ay) be a triangulated category and J a homological ideal in 7. A
distinguished triangle X —> Y —%» Z - %(X) in T is called J-exact if w € J(Z,%(X)).

1.2.4.2 Definition. Let (7,3, Ayx) be a triangulated category and J a homological ideal in 7.
An object X € Obj(T) is called J-contractible if idx € J (X, X).

1.2.4.3 Proposition. Let (T,X, Ayx) be a triangulated category and J := kergom (F) a homological
ideal in T with F: T — .

i) A distinguished triangle X —>'Y — Z % S(X) in T is J-exact if and only if 0 —>

F(u) F(v)

F(X)— F(Y) F(Z) — 0 is a short exact sequence in .

it) An object X € Obj(T) is J-contractible if and only if 0 — X is a J-isomorphism. In other
words, J-contractible objects are exactly the objects in keroy; (F').

itt) A homomorphism f: X — Y in T is a J-isomorphism if and only if Cy is a J-contractible
object.

Proof. i) Given the distinguished triangle X — Y - Z - ¥(X), consider the corresponding
long exact sequence in 7,

F(E:(w)) F(u) F(v)

.= F(ETY(2) F(X) S FY) =~ F(Z) - F(X(X)) —...

Hence, the distinguished triangle above is J-exact if and only if w € J(Z, ¥(X)), which means

that F'(w) = 0 and also that F(X(w)) = 0 and these conditions say that the above long exact

F(u) F(v)

sequence yields the following short exact sequence, 0 — F(X) F(Y)— F(Z)—0.
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ii) By virtue of Proposition 1.2.2.7, 0 — X is a J-isomorphism if and only if F(X) =~ 0, that is,
X e kerObj (F)
Suppose that X is a J-contractible object, then idx € J(X, X), that is, F(idx) = idpx) = 0,
which implies that F'(X) = 0. Conversely, suppose that X € kerpy;(F'), then F(X) = 0 and so
idp(x) = F(idx) = 0, that is, idx € J (X, X)

iii) By virtue of Proposition 1.2.2.7, f : X — Y in T is a J-isomorphism if and only if
F(f): F(X) — F(Y) is an isomorphism, which is equivalent to say that F(Cy) = 0 using
the short exact sequence F(X) ) (Y) — F(Cy) given by the image under F' of the cone

triangle associated to f. The preceding property yields the conclusion.
|

1.2.4.4 Lemma. Let (T,%,Ax) be a triangulated category and J := kergom(F) a homological
ideal in T with F : T — 4.
A 3-chain complex
L0—xLy- Stz 0.

is J-exact if and only if there exists a J-exact distinguished triangle X' > Y' > 7' 5 $(X')
and a commutative diagram

;o ;v /
X —Y -7

eop b

X—Y ——7

where the homomorphisms «, 8 and v are J-isomorphisms. Actually, o and 5 are identity
homomorphisms.

Proof. Assume that there exists a [J-exact distinguished triangle X' oy YL g Y(X') and
a commutative diagram as in the statement. Since a, § and v are J-isomorphisms, then F(«a), F(3)
and F(v) are isomorphisms (see Proposition 1.2.2.7). Since F is a stable homological functor, we
have a short exact sequence

F(v')

(u) F(Y/) AN (Z/) -0

0— F(X") 2
Hence the commutativity of the diagram of the statement yields a short exact sequence
0— F(X) ™D piy) 29 pz) — o0,
which is equivalent to the J-exactness of the chain complex
L0—x-Ly Sz 0.

by virtue of Proposition 1.2.2.9.

Conversely, assume that ...0 — X Sy Sz 0. isa J-exact complex in 7. By
Proposition 1.2.2.9 this is equivalent to say that

0— FX) "D rv) 29 Fz) — 0
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is a short exact sequence. In particular, F'(f) is a monomorphism, which is equivalent to say that
the homomorphism f: X — Y is a J-monomorphism.
Next, consider the cone triangle associated to f, say

x Ly nx)

Since f is J-monomorphism, we have that w € J(Cy, ¥ (X)), which means by definition that
the cone triangle associated to f is J-exact.

Take a := idx and § := idy. Counsider the homological functor Homy( - , Z) given by the right
composition, which yields the following short exact sequence

Hom7 (X, Z) < Homr(Y,2) & Hom+(Cy, 2)

Remark that g o f = 0 because of the chain complex condition. In other words, we have that
f*(g) =0, that is, g € ker(f*) = Im(v*). Hence, there exists a homomorphism y € Hom(Cy, Z)
such that v*(y) =~vov =g.

In this situation, we have a commutative diagram

XL,Y—%Cf

o} B Y

X—Y ——7

f g

Observe that its image under F' is also a commutative diagram with F'(«) and F(f3) isomorphisms,
so that F'(7y) is as well an isomorphism (by virtue of Five’s lemma), that is, v is a J-isomorphism. W

The following theorem is the triangulated counterpart of the existence of projective resolutions
as it is known for abelian categories. Its proof is very close to the classical one and we refer to
Proposition 3.26 of [134] for more details.

1.2.4.5 Theorem. Let (T,%, Ay) be a triangulated category and J a homological ideal in T.

i) If T has enough J-projective objects, then every object of T has a unique up to homotopy
J -projective resolution.

it) Given two objects X, X' € Obj(T), let P, — X and P, — X' be two [J -projective resolutions.
Every homomorphism f: X — X' induces a unique up to homotopy homomorphism of chain
complezes f : Py — P..

As a consequence we have a functor
2T —H(T),
where J€(T) denotes the homotopy category of T .

iii) Let X —Y % Z - N(X) be a J-exact distinguished triangle in T . There exists a canonical

homomorphism 1 : P(Z) — S(P(X)) such that 2(X) 2% @) 29 2(z) ZY

P(X) (1] is a distinguished triangle on € (T).
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Given a triangulated category (7,3, Ayx) and a homological ideal 7 in T, assume that 7 has
enough J-projective objects. Hence, given any object X € Obj(T) consider the corresponding
J-projective resolution for X, say (P, d,) with dg : Py — X a J-epimorphism.

Next, let & be an abelian category and consider a (covariant) additive functor F : T — 7.
The chain complex (P,,d,) in T is then transformed into a chain complexe (F'(P,), F(d.)) in <,

P By 9 popy O ppy) B R (1.2.2)
Consider now the following chain complex,
%) pepy) 1) e Y BBy — 0 (1.2.3)

In this situation, we can consider thus the corresponding homology functor and we put
L, F(X) i= H,((1.2.3)) = ker(F(6,))/Im(F(8,41)),
for every n € Z™, where
LoF(X) = ker(F(Py) —> 0)/Im(F(61)) = F(Py)/Tm(F(81)) = coker(F(31))

Since the association to each object the corresponding J-projective resolution is functorial
(thanks to Theorem 1.2.4.5), the above construction yields a functor

L,F:T — &,

for every n € Z*. It is called nth left derived functor.

1.2.4.6 Remark. Under the same assumptions as above, suppose in addition that F' is a homological

functor. If
X5y -5 7% 5X)

is J-exact triangle in 7, then Theorem 1.2.4.5 gives a distinguished triangle

%) Z(w)

2(x) 29 2(v) 29 2(2) 29 v(2(X))

in the homotopy category of 7 and the application of the functor F' yields a short exact sequence
of chain complexes. Now, it is well known that the nth homology functor is homological so that
we obtain a long exact sequence in homology, that is, a long exact sequence between the derived
functors
..— L, F(X) —> L, FY)—L,F(Z) — L,1F(X)
— ... — L1 F(Z) > LoF(X) > LoF(Y) — LoF(Z) — 0

1.2.4.7 Proposition. Let (T,%,Ayx) be a triangulated category and J a homological ideal in T
such that T has enough J-projective objects. If F': T —> & is a stable homological functor, then
the following assertions are equivalent

1) F is J-exact.
ii) LoF(X) = F(X) and L,F(X) =0, for alln > 0 and all X € Obj(T).
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iti) LoF(X) = F(X), for all X € Obj(T).

Proof. By virtue of Proposition 1.2.2.11, F' is J-exact if and only if it transforms J-exact chain
complexes into long exact sequences, which can be applied to J-projective resolutions. Hence the
complex (1.2.2) is exact with F'(dp) an epimorphism so that

L,F(X) =0 for all n > 0 and

LoF(X) = F(Py)/Tm(F(81)) = F(Ry)/kex(F (b)) = F(X)

This shows (i) = (i) = (ii7).

Conversely, suppose that LoF(X) = F(X), for all X € Obj(T). Observe that if X — Y —*»
7Z % ¥(X) is a J-exact triangle in 7, then v is a J-epimorphism (use the characterization of
Proposition 1.2.4.3). By the previous remark we can construct the following long exact sequence

> L F(Z) — LoF(X) — LoF(Y) —> LoF(Z) —> 0,

which is actually
.— L1 F(Z)— F(X) —> F(Y)— F(Z) — 0,

thanks to our assumption. Hence, F'(v) is an epimorphism. Since the objects Y and Z are arbitrary
we deduce that the functor F' transforms J-epimorphisms into epimorphisms under the assumption
of (i44) and this characterizes the J-exact (see Proposition 1.2.2.11) functors obtaining thus (7). W

1.2.4.8 Remark. Let (T,%,As) be a triangulated category and J := kergom,(F’') an additive
homological ideal in T with F’ : T — &/’ such that T has enough J-projective objects. In this
situation, Theorem 1.2.2.15 guarantees that ((p7), keroy;(F”)) is a complementary pair of localizing
subcategories in 7. Notice that objects in kerpp;(F”) are exactly the J-contractible objects (see
Proposition 1.2.4.3).

Hence, given a complementary pair of localizing subcategories we can define the localization
of any given functor as in Definition 1.2.1.27. Precisely, if F' : T — 47 is a stable homological
functor, then we define its localization with respect to ({p.7), kerop;(F"’)) as the functor

LF:=FoL:T — &,

where L : T —> (p ) is the canonical triangulated functor associated to the complementary pair.
Recall as well that such localization enjoys the following universal property (see Theorem
1.2.1.29): there exists a natural transformation 7 : LF" — [ such that LF] Keron; ) = 0.
We claim that the Oth left derived functor Ly F' coincides with the localization functor LF with
respect to the projective complementary pair of localizing subcategories.

To see this, it is enough to check the universal property for Lo F. Indeed,

- there exists a natural transformation ' : LoF — F given by the augmentation map. More
precisely, given any object X € Obj(T), consider the corresponding J-projective resolution,
say (P,,d.) with augmentation map &g : Py —> X, which is a J-epimorphism. Since (1.2.2)
is a chain complex, we have that Im(F(01)) < ker(F(dp)) so that we can write

LoF(X) = F(Po)/Im(F(é1)) — F(Po)/ker(F(do)) — F(X)

And this association is clearly natural.
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- the Oth left derived functor is J-exact, that is, J < kergom(ILoF). More precisely, let

f+ X — Y be any homomorphism in 7 and consider J-projective resolutions for each
object, say (P.,d.) for X and (Q.,p.) for Y. If f € J(X,Y), then the zero homomorphism
0: Py — Qo defines a homomorphism of chain complexes lifting f, that is, we have a
commutative diagram

do

—>FP——X

0
\4
HQOHY

Po

Indeed, since f € J(X,Y) we have that f odp € J(Fo,Y) by definition of ideal and since Py
is a J-projective object, then it must be f o §y = 0 (recall Remark 1.2.2.13). Consequently,
LoF(X) LoFif) LoF(Y) is the zero homomorphism. In particular, LoF (idx) = 0 for every
J-contractible object X. In other words, Lo F|yer,,; (F) = 0.

1.2.4.9 Theorem. Let (T,%,Ax) be a triangulated category and J a homological ideal in T. Let
F:T — 4 be a stable homological functor.

If X € Obj(T) is an object such that

i) X has a J-projective resolution of length 1,

it) Hom7(X,Y) = (0), for all J-contractible object Y

then there exists a natural short exact sequence

0 — LoF(X) — F(X) — LiF(2(X)) — 0

Proof. Let 0 — Py LY X S 0bead -projective resolution for X of length 1, which
can be viewed as a J-exact 3-chain complex. By virtue of Lemma 1.2.4.4, there exists a J-exact

distinguished triangle P; KR Py — X — Y(P;) and a commutative diagram

51 -

P14>P04>X

s b

P1 HPO —X
01 do

a

where v is a J-isomorphism. Consider the cone triangle associated to - : X ——X , say X X

X 50, — >(X) and apply the rotation axiom so that s, — XL x5 Cy is
again a distinguished triangle. Since v is a J-isomorphism, then C, is a J-contractible object

(see Proposition 1.2.4.3). Hence, thanks to the assumptions on the object X, we have that

Homy(X,C,) = (0) which implies that v = 0. In other words, the above triangle splits and we
have X =~ X @ C, (see Proposition 1.2.1.20).
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Next, remark that this decomposition yields that Homy(C,,C,) € Homy(X,C,)

particular, idc, = 0 so Cy = 0. In other words, v is an isomorphism and we have X = X.
In this way, we obtain a distinguished triangle given by

(0). In

P25 Py — X — 2(P)

Since F' is a stable homological functor, we obtain as well a long exact sequence

F((S]

L= F(ETHX) = F(P) ™ F(Ry) - F(X) - F(S(P) "5

D RE(P) > ...
which yields the following natural short exact sequence
coker(F(61)) — F(X) — ker(F(X(d1)))
And by definition of the (left) derived functors we have,

LoF(X) — F(X) » L F(X(X)),

where we should remark that our resolution is of length 1, so that
Ly F(X(X)) = ker(F(%(61)))/Im(0 — X(P1)) = ker(F(X(61)))

[ |

1.2.4.10 Remarks. 1. In the proof of the preceding theorem, the conclusion is achieved thanks
to the fact that ~ is actually an isomorphism and not only a J-equivalence. In this sense, the
above theorem is still valid for an object X € Obj(T) whenever

i) X has a J-projective resolution of length 1,
ii) every J-isomorphism for X is an isomorphism.

2. It is obvious that the statement of the preceding theorem is more general in the sense that we
obtain a natural short exact sequence

LoF(X(X)) = F(S'(X)) - L F(S7(X),

for all i € Z, which is straightforward by the above proof.

Compact Quantum Groups

Let us introduce the theory of compact quantum groups in the sense of S. L. Woronowicz by giving
two fundamental examples that should be regarded as the reference ones.

On the one hand, let G be a compact group and consider its (unital) C*-algebra of continuous
functions C(G). We have a canonical #-isomorphism C(G) ® C(G) =~ C(G x G) and we can define
thus a unital *-homomorphism A : C(G) — C(G x G) by

A(f)(@,y) = f(zy),
for all f e C(G) and all z,y € G. This map satisfies two important properties,



62 CHAPTER 1. Background

i) (id®A)A = (A®id)A, thanks to the associativity of the internal law of G.

ii) (C(G)® DNA(C(G)) and (1 ® C(G))A(G) are linearly dense in C(G x G). Indeed, it is
enough to remark that the space (C(G) ® 1)A(C(G)) is spanned by functions of the form
(z,y) — fi(x)f2(xy). These functions separate points in G, so that the Stone-Weierstrass
theorem yields the conclusion.

In this way, the data G := (C(G), A) with the above properties is a compact quantum group in
the sense of Woronowicz.

Besides, assume that A is a unital commutative C*-algebra equipped with a unital #-homomorphism
A: A — A® A satisfying the analogue of the two properties (i) and (i7) above. In this case,
we can show by applying the Gelfand duality that there exists a compact group G such that the
corresponding compact quantum group G identifies to the data (A, A). In this sense, we obtain a
bijective correspondence between compact classical groups and commutative compact quantum
groups.

{Compact Classical Groups} — { Commutative }

Compact Quantum Groups

On the other hand, let T" be a discrete group and consider its reduced C*-algebra C*(T'),
which is by definition the closed linear span of the operators A, with v € I', where X is the

left regular representation of I' on (?(T"). In this way, we can define a unital *-homomorphism
A, : CHT) — C*¥(T) ® C*(T') such that

Ar(Ay) = Ay ® Ay,

for all v € T'. This map satisfies obviously the analogue of the two properties (i) and (i) above.

In this way, the data . := (C*(T'), A,) is a compact quantum group in the sense of Woronowicz.

An important observation is that the same construction as above can be made by taking the
universal C*-algebra of I' and we can form the compact quantum group ,, := (C*(I"), A,,). By
construction, there exists a canonical surjective *-homomorphism 7 : C* (T') = C*(T).

Notice by the way that the map A is invariant under the flip map ¥ : C*(T') ® C*(T') —
C*) ® C*(T), that is, A = Yo A =: A°?. We say then that A is co-commutative. Besides,
assume that A is a unital C*-algebra equipped with a unital co-commutative s-homomorphism
A: A— A® A satisfying the analogue of the two properties (i) and (i) above. In this case, we
can show that there exists a discrete group I' such that the data (A, A) sits between the ,, and

» as compact quantum groups. Specifically, there exists surjective homomorphisms of compact

Tm

quantum groups C¥ (I') - A 5 C*(T') such that 7 = 7,. 0 7yp,..

Remark that if I was amenable, there wouldn’t be any difference between its reduced and
maximal C*-algebras. This is the situation for the compact case. In this sense, we obtain a bijective
correspondence between discrete amenable classical groups and co-commutative compact quantum
groups.

Co-commutative
. ical
{Dlscrete Amenable Classica Groups} — { Compact Quantum Groups}

One of the main achievement of the Woronowicz’s theory with respect to earlier attempts is a
large repertory of examples that are neither commutative nor co-commutative. For this, Chapter
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2 give a complete overview of the main “genuine” examples of compact quantum groups. In the
present section we give, in contrast, the theoretical context for compact quantum groups in the
sense of S. L. Woronowicz. Thus we develop, as in detail as possible, the representation and the
duality theory for compact quantum groups.

Finally, let us recall that in the classical case the Pontryagin dual of a commutative compact
group is a commutative discrete group and wviceversa. Sometimes the notations and nomenclature
in the literature are misleading. For this reason we wish to clarify this point with the following
diagrams.

Classical Abelian Groups

I', D.G G, C.G
AN PN
—(C:r),A) — ((I), A) G- (C(E),A) G- (CHE),A)
C.QG., T D.Q.G., T C.Q.G., D.Q.G., G

Assume that G is an abelian compact group. In this case, G =:Tisan abelian discrete group
by virtue of the Pontryagin duality (remark that, with these notations, G =~ T"). Besides, we have
the following isomorphisms of C*-algebras

co(T) = C¥(G) and C(G) = CH(T),
so that the above notations are consistent in the following sense
2Gesl>Gand =2GesT =G

If we want to have a more precise picture in our mind, we’ll think about the well known
Pontryagin duality between Z and S*.

Therefore, we extend these notations for any (locally) compact group and also for any (locally)
compact quantum group.

Classical Groups

G, L.C.G. G, C.G
G := (Co(G),A) G:= (C}(G),Ar) G := (C(G),A) G:= (C}(G),Ar)
LCQG., G L.C.Q.G., G C.Q.G, D.QG., G

Quantum Groups

G, L.C.Q.G. G, C.Q.G.
G := (Ch(G),A) G:= (C}(G),A) G := (C(G),A) G = (c(G),A)

LCQC. LCQG. C.Q.C. D.Q.G.
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1.3.1 Woronowicz’s theory

1.3.1.1 Definition. A compact quantum group G is the data (C(G), A) where C(G) is a unital
C*-algebra and A : C(G) — C(G) ® C(G) is a unital s-homomorphism such that

i) A is co-associative meaning that the diagram

C(G) A C(G)®C(G)
A 1d@A
C(G)® C(G) 294 0(G) ® C(G) ® C(G)

is commutative.
ii) A satisfies the cancellation property meaning that

[(C(G)@DA(C(G))] = C(G) ®C(G) = [1® C(G))A(C(G))]

1.8.1.2 Note. The object G defined above has different names in the literature. Namely, such G
may be called compact topological quantum group, C*-Woronowicz algebra, C*-algebraic compact
quantum group or unital bisimplifiable C*-bialgebra.

Other common language that is used in this dissertation is the following: the data (C(G), A)
of the preceding definition is also called a unital Hopf C*-algebra. A Hopf C*-algebra is the data
S:=(S,A), where S is a C*-algebra and A : S — M(S® S) is a *-homomorphism satisfying the
analogue properties of the above definition. It is important to remark that in the context of general
Hopf C*-algebras we don’t use the usual multiplier algebra M (-), but the refinement M (-) (see
Definition A.4.4 and [6], [206] for more details).

For any Hopf C*-algebra S = (S, A) we write S°°P := (.5, A°P) for the corresponding co-opposite
Hopf C*-algebra, where AP := Y o A.

1.3.1.3 Definition. Let G = (C(G),A) and G’ = (C(G’), A’) be two compact quantum groups.
A Hopf #-homomorphism from G to G’, denoted by f : G — G/, is a unital *-homomorphism
f:C(G") — C(G) such that
Aof=(f®f)A
In particular, if G = G/, such a f is called Hopf *-automorphism.
1.8.1.4 Note. Tt turns out that this early definition must be suitably modified in order to take

into account the analytical subtleties for giving an appropriated notion of morphism of compact
quantum groups. We will be more precise later on.

The most remarkable result in compact quantum group theory is the next theorem whose proof
can be found in Theorem 1.2.1 of [139], Theorem 4.4 of [124], Theorem 5.1.6 of [188] or in the
original paper of Woronowicz, Section 2 of [231].

1.3.1.5 Theorem. For any compact quantum group G = (C(G), A), there exists a unique state
hg € C(G)* such that
(hg ® id)A(a) = hg(a)l = (id® hg)A(a),

for all a € C(G). The state hg is called the Haar state of G.
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1.3.1.6 Remarks. 1. If 7: C(G) — C(G) is a Hopf *-automorphism and hg is the Haar state
of G, then we have hg o7 = hg. Indeed, we have just to apply the uniqueness of the Haar
state under the condition (hg ® id)A(a) = hg(a)l = (id ® hg)A(a), for all a € C(G). So, for
all a € C(G) we have

ha((a)l = (hg ®id)A(7(a)) = (hg ®id)(T ® T)A(a) = (hg o T ® 7)A(a)

Since 7 is a unital *-automorphism of C'(G), the above equation is equivalent to the following
one,

he(m(a)1 = he(r(a))T (1) = (id®@ 7T (hg 0 7@ T)A(a) = (hg o T ®id)A(a)

In the same way we show that hg(7(a))l = (id ® hg o 7)A(a), for all a € C(G).

2. Given a compact quantum group G = (C(G),A) with Haar state hg, we can perform
the associated GNS construction, which is denoted by (L*(G), \,2). Here we adopt the
standard convention for the inner product on L?(G). Namely, for all a,b € C(G) we put
(A@), \(b)) := hg(a™b).

1.3.1.7 Definition. Let G = (C(G), A) be a compact quantum group. A (unitary) representation
of G on a Hilbert space H is an invertible (resp. unitary) element w € M ((H)® C(G)) sucht that

(Zd ® A)(U)) = W12W13
The collection of all unitary finite dimensional representations of G is denoted by Rep(G).

1.8.1.8 Remarks. 1. Let C be any C*-algebra. If S := (S,A) is any Hopf C*-algebra (not
necessarily unital), we can give the notion of (resp. unitary) representation of S on an Hilbert
C-module H (or (resp. unitary) co-representation of S on H). This means an invertible (resp.
unitary) element V € Lo(H ® S) = M(K(H) ® S) such that (id ® A)(V) = V12Vi3.

2. Assume that H is a finite dimensional Hilbert space. In this case we have B(H) = K(H) and
M(K(H)®C(G)) =~ B(H)® C(G).

Therefore, if w e B(H) ® C(G) is a finite dimensional representation of G on H, consider
{&1,...,&,} an orthonormal basis for H and {m; ;}; j—1,..n the corresponding matrix units

in B(H).

We define the matriz coefficients of w as the elements

w; ;= (We, ¢, ®ideg))(w) € C(G),

for all 4,5 = 1...,n where wg, ¢, are the coordinate linear forms on B(H) defined by
We, ¢, (T) =&, T(&)), for all T € B(H).

In this situation, the representation w can be written in coordinates as

n
w = Z mij @ wij

i,j=1
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and the condition of the definition above becomes

Aw; ;) = Zwik ® wy;,

k=1
foralli,j=1,...,n.

In particular, if w is unitary, the following relations hold

n n
ES ES
Dwihi wig = Siylo) = ) wik wi,
k=1 k=1

foralli,j=1,...,n

Hence, given a (unitary) finite dimensional representation w of G on H, we have constructed
an invertible (resp. unitary) matrix (w;;); ; € M, (C(G)) satisfying the formula above. Such
a matrix is called representation matriz of G on H.

3. Let w € B(H) ® C(G) be a finite dimensional representation of G on H. With the same
notations as above, we define the character of w in G to be the element

X(;,(’U}) = Zw“ € C(G)

1.3.1.9 Definition. Let G = (C(G), A) be a compact quantum group and w,v two (unitary)
representations of G on Hilbert spaces H,, and H,, respectively. The direct sum representation of
G, denoted by w @ v, is the (unitary) representation of G on H,, @ H, defined as

wOv:=w+veMK(H,®H, ®C(G))

1.8.1.10 Remark. Assume that both H,, and H, are finite dimensional Hilbert spaces. Let us
compute the matrix coefficients of the direct sum representation.

Let {&1,. .., Eaim(r,)} and {n1, ..., Naim(m,)} be orthonormal basis for ., and H,, respectively
and let {m; ;}; j—1,... dim(H,) a0d {nix}1k=1,... dim(#,) De the corresponding matrix units in B(H,,)
and B(H,), respectively. We know that {{1,. .., &dim(#,), M- - - > Ndim(H,)} 1S an orthonormal basis
for H, @ H,. Denote by I, and by I, the set of indices corresponding to the vector basis of H,,
and H,, respectively.

A straightforward computation shows that

We, &0» if r,S€E Iy
Wep¢s = Wiy s s iftr,sel, ,
0, otherwise

for all r,s € I, L1 I,,. So that we obtain that the matrix coefficients of the direct sum representation
are exactly
Wy s, if 7,5 € Iy
(WBV)ps =1 Urs ifr,sel,
0, otherwise

for all 7, s € I, u I,,. It is clear that

xc(w®v) = xe(w) + xc(v)
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1.3.1.11 Definition. Let G = (C(G), A) be a compact quantum group and w,v two (unitary)
representations of G on Hilbert spaces H,, and H,, respectively. The tensor product representation
of G, denoted by w @ v, is the (unitary) representation of G on H,, ® H, defined as

W = wi3zve3 € M(K(H, ® Hy) ® C(G))

1.3.1.12 Remark. Assume that both H,, and H, are finite dimensional Hilbert spaces. Let us
compute the matrix coefficients of the tensor product representation.

Let {&1,- -+, Saim(m,)} and {n1, ..., Naim(m,)} be orthonormal basis for H,, and H,, respectively
and let {m; ;}; j—1, . dim(i,) and {nk1}ki—1, .. dim(#,) be the corresponding matrix units in B(H,)
and B(H,), respectively. We know that {¢, := & ® Mk }i—1,... dim(H,,) is an orthonormal basis for

k=1,...,dim(Hy)
H, ® H,. Denote by I,, and by I, the set of indices corresponding to the vector basis of H,, and
H,, respectively.
A straightforward computation shows that

W, Cs = Weing; @ Wy

for all r = (i, k), s = (j,1) € I, x I,. So that we obtain that the matrix coefficients of the tensor
product representation are exactly

(U} @’U>r7s = Wj 5 Vk,l,

for all r = (i,k),s = (j,1) € I, x I,,. Tt is clear that

X6 (w@v) = xe(w)xc(v)

1.3.1.13 Definition. Let G = (C(G),A) be a compact quantum group and w,v two (unitary)
representations of G on Hilbert spaces H,, and H,, respectively. An intertwiner between w and v
is a linear operator ® : H,, — H, such that

(PR 1cE)w =v(P®1¢())

The space of all intertwiners between w and v is denoted by Mor(w,v). In particular, if w = v,
we write End(w) := Mor(w,w).

1.3.1.14 Definition. Let G = (C(G), A) be a compact quantum group.

i) Two (unitary) representations of G w, v are called (unitary) equivalents if Mor(w,v) contains
an invertible (resp. unitary) operator.

ii) A (unitary) representation w of G is called irreducible if End(w) = C.

The set of all unitary equivalence classes of irreducible unitary finite dimensional representations
of G is denoted by Irr(G).

1.3.1.15 Note. If z € Irr(G) is such a class, then we use the symbol w® € B(H,)®C(G) to denote an
irreducible unitary finite dimensional representation of G representing x. Once such a representative
is fixed, we write
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- H, for the corresponding finite dimensional representation Hilbert space,

- ng = dim(z) := dim(H,),

Mor(x,y) for the space of all intertwiners, up to unitary equivalence, between representatives
w® and wY, where y € Irr(G),

- Xo(z) == xc(w”).
For any compact quantum group G there always exists a distinguished irreducible representation.

Namely, the trivial representation € := 1c ® 1¢(g) € C® C(G). By abuse of notation, we still denote
by € the corresponding class in Irr(G).

1.8.1.16 Remark. If w,v are two unitary representations of G, then it is easy to show that
O* € Mor(v,w) whenever ® € Mor(w,v). Indeed,

®e Mor(w,v) < (2Q lee)w =v(P®lee) € w (P*®leg) = (2 ® loe)v*
< ww*(P* Q@ log))v = w(P* ® log))v*v
< (P* R 1e@e))v = w(®* @ lee)) < * € Mor(v,w)

In particular, End(w) is a C*-algebra for all unitary representation w of G. Notice that the set of
compact intertwiners of w is a C*-subalgebra of End(w).

1.3.1.17 Proposition (Quantum Schur’s lemma). Let G = (C(G),A) be a compact quantum
group. If x,y € Irr(G), then

- either x =y and Mor(x,y) is a one dimensional vector space
- or Mor(z,y) = (0).

Proof. Given the classes z,y € Irr(G), take two representatives w” and wY, respectively. Suppose
that ® : H, — H,, is a non-zero intertwiner between w® and w?. We are going to see that w” and
wY are unitary equivalent and that Mor(w®,w?) is a one dimensional vector space.

Indeed, since w* and wY are unitaries, then we have ®* € Mor(wY,w”*). So we have ®* o
® € End(w®) and ® o &* € End(wY). But w® and wY are irreducible by assumption, then
End(w®) = C = End(wY). In other words, there exist some scalars o, € C\{0} such that
®* 0 ® = aidy, and ® 0 ®* = B idy,. This means that the operator ® is unitary up to a constant.
Finally, if ¥ € Mor(w®,wY) is another non-zero intertwiner between w” and w¥, then we have
®* o U € End(w”) = C, hence ¥ € @ - C and so Mor(w”,w?) is a one dimensional vector space
generated by the intertwiner realizing the equivalence between w”® and wY. ]

1.3.1.18 Definition. Let G = (C(G), A) be a compact quantum group and w a (unitary) finite
dimensional representation of G on a Hilbert space H. The contragredient or adjoint representation
of w, denoted by w, is the finite dimensional representation of G on H defined as

w = (j ®idC(G))(w71) € B(H)®C(G),

where j : B(H) — B(H) is the anti-multiplicative linear *-homomorphism that sends an operator
to its dual.
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1.3.1.19 Remark. Let {&1,. .. ,§dim(H)} be an orthonormal basis of H and {wy, ... ,wdim(ﬁ)} be its

dual basis of the dual space H. If {wi,j}i7j:1w7dmL(H) are the matrix coefficients of w with respect

to the basis {£1,...,&im )}, then it is straightforward to see that the matrix coefficients of w
with respect to the dual basis {wq, ... ,wdim(ﬁ)} are exactly

Wi = wi,
for all i,5 = 1,...,dim(H) whenever w is unitary. It is clear that

X (W) = xc(w)*

Since A is a #-homomorphism it is clear that @ is still an element of B(H)® C(G) satisfying the
condition (id ® A)(W) = W12W13. For a general finite dimensional representation w (not necessarily
unitary), this condition still holds because j is a conjugate #-homomorphism, so that

(id ® A)(@) = (j ® ide(e) )wis wis = DiaWis

However, the invertibility of such an element w needs some work to be established (see Proposition
1.3.11 in [139] for a proof). And it is important to remark that it is not guarantee a priori that
such an element w is still a unitary one even if w itself is unitary. Actually, w is well-defined as a
unitary representation only in the set of irreducible classes meaning that if x € Irr(G), then we can
prove that w® defined above is unitary equivalent to a unitary irreducible representation defining
then a class T € Irr(G). We refer to Definition 1.4.5 in [139] or to Proposition 6.10 in [124] for the
details.

The representation theory of a compact quantum group is very closed to the one of a classical
compact group. For instance, we can prove that every finite dimensional representation of a
compact quantum group decomposes as a direct sum of irreducible representations, then Irr(G)
provides all relevant information about representations of G. Let us establish the main results of
the representation theory of a compact quantum group.

1.3.1.20 Lemma. Let G = (C(G), A) be a compact quantum group and let w € M(K(H,)RC(G)),
ve M(K(H,)®C(G)) be two representations of G on Hilbert spaces H,, and H,, respectively.

If ® : H, — H, is any linear (resp. compact) operator, then the linear (resp. compact)
operator S := (id ® hg)(w*(® @ 1¢(g))v) is such that

S®loe) =w*(S®loe))v
In particular, if w is a unitary representation, then S € Mor(w,v).
Proof. Since the co-multiplication A is a unital *-homomorphism, we can write

(id ® A) (w* (2 ® Lee)v) = (id® A) () (id ® A)(@ ® o)) (id ® A)(v)

wiwih (P ® 1o ® loe))viavis

If now we apply to this equation the operator (id ® hg ® id), we get

(id ® he ®id) ((id ® A)(w* (® ® 1¢(e))v)) = (id® (he ®id) o A)(w* (P ® e (g))v)
= ([d® hg - 1o()) (W' (2 ®lo@E))v) = S®loe)



70 CHAPTER 1. Background

(Zd X h@ X Zd) (wfgwfg(@ X 10(@) X 10(@))1}12’013) = w*(zd X h(g,)(w*(fl) X 10(@))1} X 1C(G))U
=w*(S® lo))v,
which ends the proof. |
1.3.1.21 Proposition (Quantum Maschke’s theorem). Let G = (C(G), A) be a compact quantum
group.

i) BEvery finite dimensional representation of G is equivalent to a unitary finite dimensional
representation.

it) Every finite dimensional representation of G is equivalent to a direct sum of finite dimensional
unitary irreducible representations.

Proof. i) Let w e B(H)®C(G) be a finite dimensional representation of G on a finite dimensional
Hilbert space H. Consider the identity operator idy and apply Lemma 1.3.1.20 above, so that
the operator S := (id ® hg)(w*w) is such that S ® 1oy = w* (S ® Lo (g))w.

Now, since w € B(H) ® C(G) is an invertible element, the same is true for w*w and then we
can write w*w > € for some € > 0 . Since (id ® hg) is positive, we can also write S > e. In
this case, we can consider the square root S%/2.

We claim that the element
vi= (S’ @ 1) w(S™? ® 1) € B(H) ® C(G)
is a unitary representation of G on H. Indeed,
(id@A)(v) = (S ® lo@e) ® lc(G))w12w13(571/2 ® lee) ®loe)) = vi2v13

v'u = (STVE® 1C(G))W*(Sl/2 ® 10(@))(51/2 ® 1C(G))w(5_1/2 ® le))
= (ST2® o) w* (S ® Lo@e))w(S ™2 ® le)
= (ST ® 1) (S ® 1) (S ®les) = id® 1),

By definition of v, it is clear that S'/2 e Mor(w,v). Since S1/2 is an invertible operator, we
conclude that w is equivalent to the unitary representation v.

ii) If w e B(H)®C(G) is a finite dimensional representation of G on the finite dimensional Hilbert
space H, we can assume, without loose of generality, that w is unitary thanks to the statement
(1) proven above.

In this case, we know that End(w) is a C*-algebra formed of compact operators. Hence,
let p1,...,pr € End(w) be a finite number of minimal mutually orthogonal projections such
that idyg = p1 + ... + p,. In this situation, we have an orthogonal decomposition for H, say
H=H,®...®H, where H, :=p)(H), foralll =1,...,r.

For every [ = 1,...,r we define the element
w; = w(p ® loe)) € B(H) ® C(G)

It is straightforward to see that every wj is still a unitary representation of G (because wj is

T
just the restriction of w to the subspace H;) and by construction we have that w = @uwy.
1=1
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To conclude, we have to show that each unitary representation wy is irreducible. Indeed, since
End(wy) is a finite dimensional C*-algebra for all [ = 1,...,r, it suffices to see that given any
projection P € End(w;), then either P =0 or P = p;, for all [ = 1,...,r. By construction we
have that Im(P) < Im(p;), so p < p;. Moreover, P € End(w) because

(PRiduw® (P 1)@ 1)w= (P )w =w(P®1)=uwpme)(Pe1) ¥ wPel),

where in (*) we use the fact that P op; = P. Hence, minimality of p; implies that either P = 0
or P=p; foralll=1,...,r.
|

1.3.1.22 Remarks. 1. Notice that the above proposition (in particular the decomposition into a
direct sum of finite dimensional unitary irreducible representations) is still true for infinite
dimensional representations of G (see for instance Theorem 1.5.4 in [139] or Theorem 5.3.3 in
[188]). This is why we can restrict our attention to the study of finite dimensional unitary
irreducible representations.

2. Let w a (unitary) representation of G on a Hilbert space H. On the one hand, a subspace
K c H is said to be w-invariant if (px ® 1)w(px ® 1) = w(px ® 1), where px denotes the
orthogonal projection of H onto K.

It is possible to characterize this definition in the following way. K < H is w-invariant if and
only if ((id@w)w) (k) = kw(1), for all k € K and all linear form w € C(G)*. We refer to
Proposition 5.2.8 in [188] or to page 25 in [139] for a proof.

On the other hand, the definition of irreducible representation given in Definition 1.3.1.14
can be characterized in the following way. A (unitary) representation w is irreducible if and
only if there are no proper w-invariant subspaces besides 0 and H. We refer to page 25 in
[139] or to Proposition 5.2.7 in [188] for a proof.

3. Finally, it is worth pointing out that calling Proposition 1.3.1.17 “Quantum Schur’s lemma” is
a bit misleading. Indeed, classically the Schur’s lemma states that if a unitary representation
if irreducible, then its commutant is trivial. However, this is exactly our original definition
of irreducible representation (Definition 1.3.1.14). If we want to be rigorous, we may show
Proposition 1.3.1.17 starting from the definition of irreducible representation given by the
above characterization in terms of invariant subspaces. This can be done as in the classical
case and we refer to Proposition 5.3.4 in [188] or to Lemma 6.6 in [124] for a proof.

1.3.1.23 Proposition. Let G = (C(G), A) be a compact quantum group. If we M(K(H)®C(G))
s a unitary representation of G on a Hilbert space H, then

P = (id® hg)w
is the orthogonal projection onto the subspace of all w-invariant vectors.

Proof. First of all, thanks to the preceding proposition and the preceding remarks we can assume
that w is irreducible.

Since w is a unitary representation of G, we have (id® A)w = wiowis. If we apply (id®id® hg)
to both sides of this equation, we get that P ® id = w(P ® id) because

(id ®id ® hg)(id ® A)w = (id ® hg)w ® id = P @ id
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(id ® id ® hg)wigwyz = (id ® id)w(id ® hg)w ® id = w(P ® id)

This relation shows that the range of P is formed by w-invariant vectors because given any
vector £ € H and any linear form w € C(G)* we write

((id@w)w) P(&) = (id@w)w(PE) ®1) = (id@w)(P() @ 1) = P(€)w(l)

Next, if w is a non-trivial irreducible representation, then H does not contain any proper
w-invariant vector, so that P = 0. If w is trivial, then w = id® 1 and P = id. In any case, P is the
orthogonal projection onto the subspace of all w-invariant vectors and the proof is complete. M

Next we can establish the analogue of the Peter-Weyl theory in the framework of compact
quantum groups. In particular, the proof of orthogonality relations can be found in Theorem 1.4.3
of [139], Proposition 5.3.8 of [188] or Section 6 of [231].

1.3.1.24 Theorem (Quantum Schur’s orthogonality relations). Let G be a compact quantum group
with Haar state hg. Fiz an irreducible representation x € Irr(G).

i) We have that 3 3
Mor (e, w” @ w®) # 0 # Mor(e,w” @ w”)
and consequently there exist non-trivial invariant vectors in H, ® Hz and Hz ® H,, say E,
and Fz, respectively.

The vector E,, canonically associated to an invertible anti-linear map J, : H, — Hz, and the
vector Ez, canonically associated to an invertible anti-linear map Jz : H — Hy; are defined
up to non-zero multiplicative factors. We choose these factors in such a way that

(Ey,E,) = {Fz FEz) and Jz = J; '

In that case, the operator Q. := J¥J, is uniquely determined, Tr(Q,) = Tr(Q;') and
Qz = Q' We define the quantum dimension of z as the number

dimg(z) :=Tr(Qg)

it) If (wlq:,j)i;j=lg~wnz are the matriz coefficients of w* with respect to an orthonormal basis of H,
then we have
_ 0k,i(Qa)ja

he (wi (W)} ;) = “dimg () and he((w®)f;wi ;) =

6;,(Q7 ki

dimg(x)

i) Lety € Irr(G) be an other irreducible representation of G with matriz coefficients (wj, Di=1,...m, -
If y is not equivalent to x, then
hg(wz,l(wm)ﬁj) =0= hG((wz);‘jjwz,l)
1.3.1.25 Remarks. 1. The preceding orthogonality relations yield clearly that for every irreducible
representations z,y € Irr(G) we have

Life=y
0, otherwise

hG(XG(x)*XG(y)) = he (XG(x)XG(y)*> - {
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2. It is worth pointing out some elementary facts about the invariant vectors F,, Ez of the
preceding theorem. We refer to Section 6 of [231] for more details.

Let X,Y be two Hilbert spaces. It is well-known (see for instance [1]) that the tensor product
X ®Y can be identified with space of all anti-linear maps from X into Y. Precisely, for any
element F € X ®Y there exists a unique anti-linear map Jg : X — Y such that

(E,£@n) =<{Jp(§),m) = (Ju), &),

for all £ € X, n €Y where the second equality defines the conjugation for Jg.

If both X and Y are finite dimensional with dim(X) = rank(E) = dim(Y), then Jg is
invertible and a straightforward computation by taking orthonormal basis on X and Y shows
that ||E||> = Tr(JEJg).

If € Irr(G), then the preceding theorem guarantees that there exists a non-trivial T & -
invariant vector Fz € Hz ® H, and a non-trivial x @ Z-invariant vector F, € H, ® Hz which
are unique up to a non-zero multiplicative factor (which is chosen as in the statement of the
preceding theorem). Let us introduce the following operator on Hz ® H,

TE;: H5®H'r - HE@ H,
¢ — Tp(¢) =Bz (k7

In this way, Proposition 1.3.1.23 applied to this context yields that

O O
(id@hg)(TQY) = YT — YTy

7E7: . i
|Eo[[2 77 dimg(z)

for every x,y € Irr(G). Next, using the z@T-equivariance of F, a straightforward computation
by taking orthonormal basis on H, and Hz shows that

* —
((WJ;?‘(n),s ®id)ww> = (wn,s.(e) @id)w,
for all £ € H,, n € Hz.
As in the classical theory, we can also define an analogue of the left reqular representation. The

proof of the following theorem can be found in Theorem 1.5.2 and Theorem 1.5.3 of [139], Section 5
of [124] or Section 4 of [231].

1.3.1.26 Theorem (Left regular representation). Let G = (C(G),A) be a compact quantum group.
i) There exists a unique unitary operator W € B(L*(G) ® L?(G)) such that
WHE@AMa)) = (A®A) 0 A(a)(§®Q),
for all ¢ € L*(G) and all a € C(G).

i) W is a unitary representation of G on L?(G) meaning that W € M(K(L*(G) @ A(C(G))) is
a unitary element such that (id ®@ A)(W) = WiaWis. The element W is called left regular
representation of G.
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iii) The space span{(id @ w)(W) | w e K(L?(G))*} is dense in A\(C(G)) and the co-multiplication
A is given by
(A®NA(a) = W*(1Q Aa))W,
for all a e C(G).
iv) W is a multiplicative unitary on L*(G) in the sense of Baaj-Skandalis, that is, W € B(L*(G)®
L?(G)) is a unitary operator satisfying the pentagonal equation WioW13Waz = WosWisa. It is
called fundamental unitary of G and denoted by Wg.

1.8.1.27 Remark. In a similar way, we can define the right regular representation of G. More
precisely, we can imitate the preceding theorem in order to show that there exists a unique unitary
operator V € B(L?(G) ® L*(G)) such that

VA@N®E) = (A®X) o Aa)(2®¢),
for all ¢ € L?(G) and all a € C(G). Such a unitary is denoted by Vg and it satisfies the analogue
properties of those of Wg. In particular, the co-multiplication of G is characterized by the formula
(A®NA(a) = Ve(Ma) @DV,
for all a € C(G).

The following result says that inside every compact quantum group there exists an algebraic
compact quantum group meaning that there always exists a (unital) =-Hopf algebra with an invariant
state with respect to the co-multiplication (see Chapter 3 in [188] for more details). Namely,

1.3.1.28 Proposition. Let G = (C(G),A) be a compact quantum group. Denote by Pol(G) :=
C[G] the linear span of matrixz coefficients of all finite dimensional representations of G. We have
that

i) Pol(G) is a dense unital x-subalgebra of C(G),

i) the set {wf;} verrr(c) provides a basis of Pol(G),

ii=1,...,ng
iii) (Pol(G), A, ¢,S) is a =-Hopf algebra where

- €, the co-unit, is given by e(wf ;) 1= d; j, for all x € Irr(G) and alli,j =1,...,n,,

- S, the antipode, is given by S(w{ ;) = (wi;)*, for all x € Irr(G) and alli,j =1,...,ng,
iv) the Haar state hg is faithful on Pol(G),

v) if T: C(G) — C(G) is a Hopf =-automorphism of G, then T(Pol(G)) = Pol(G). Moreover,
{T(w§;)}ij=1,.n, is an irreducible representation of G whenever x € Irr(G).

Proof. i) First of all, we observe that Pol(G) is a unital *-subalgebra of C'(G) by virtue of remarks
1.3.1.12 and 1.3.1.19. The density of Pol(G) in C(G) is proven as follows.

Consider the left regular representation W of G on the Hilbert space L?(G) and decompose
it in a direct sum of finite dimensional unitary irreducible representations (recall Remark
1.3.1.22), so that

L*(G) = @H, and W = Pw,

ael ael
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For each a € I, put n, := dim(H,) and fix an orthonormal basis {{7,...,&5 } in H,. Given
a, B € I, we define the following linear form on B(L?*(G))

w@,&f (1) := <§?,T(§f)>7

foralli=1,...,nq,all j=1,...,n3 and for all '€ B(H). So by the decomposition of W we

have ; 3
. 0, if a #

Remark that span{wgq ¢ |o,fel,i=1,...,n4,75=1,...,n3} defines a dense subspace in
K(L*(G))*. Moreover, Theorem 1.3.1.26 guarantees that span{(id ® w)(W) | w e K(L?(G))*}

is dense in C(G), so that the formula above concludes the claim.

Since every finite dimensional representation decomposes in a direct sum of unitary irreducible
ones, then the set & := {wf]} velrr(G) Drovides a system of generators for Pol(G). Let’s see

ij=1,...,ng

these elements are linearly independent.

Since the operator @, is an invertible positive self-adjoint one for each x € Irr(G), then we
choose orthonormal basis of the corresponding H, that diagonalizes @),. We take the matrix
coefficients in 4 with respect to theses basis.

Let 2. A7, wi; be a finite linear combination of elements of % and assume that
:EGI’I’T(G)

2. AP, wi; = 0. Given an other class y € Irr(G) and index k,l = 1,...,n,, we ap-

ply the orthogonahty relations and write

Z Aijwi; =0= Z ALy ()i wi; =0

zelrr( G) zelrr(G)
ih,j=1,...,ng i,j=1,..., ng
. 91,5(Qz ik
P COT RN W R e
zelrr(G) zelrr(G) 4

i,5=1,..., ng i,j=1,..., ng
1
— 75 N(Qr )ik =0
dimg(y) &4 (@ ik =0,

since this is true for every y € Irr(G) and we have chosen diagonalizing basis for every operator
Q. for all x € Irr(G), we conclude that A}, = 0 for all i,/ = 1,...,n, and all z € Irr(G),
which ends the proof.

First of all, by virtue of Remark 1.3.1.8 we have that A(Pol(G)) < Pol(G) ® Pol(G). In order
to show that the homomorphism e and S defined in the statement satisfy the co-unit and
antipode axioms, respectively; we are going to check the corresponding axioms on the basis of
Pol(G) and conclude by linearity. Namely, for all x € Irr(G) and all 7,5 = 1,...,n, we have

(id®e)A(wf;) = (id®€)2wfk Q@ wyj = wakdwkj) =
k=1 k=1
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o (id®@ S)A(w; ;) =mo (id® S) 2w1k®wkjfzwzk (wij) = b5 = e(w; ;)

iv) Given a € Pol(G) we have to show that hg(a*a) > 0 whenever a # 0. By orthogonality relations
and statement (ii) above we have showed that the set {w{,} verrr(@) provides an orthogonal

ii=1,..., ng
basis of Pol(G) with respect to the sesquilinear form {a,b) := hg(a*b), for all a,b € Pol(G).
Therefore, we can suppose that a = wy’; for some z € Irr(G) and some i,j = 1,...,n,. In this

—1y
case we have just to apply orthogonality relations: he((w®)fwy;) = fi?;lqzw) > 0.

v) Given the Hopf #-automorphism 7, consider the set {7(w{;)} zerrr(c) . We have the following
ii=1,...,nz

formula

A(T(w?g)) = (T®T)A(wf,j) = (T®T)Zwik R wy; = Z T(wik) @ 7( wk}])

k=1

for all z € Irr(G) and all 4,5 = 1,...,n,. This means that (id ® 7)(w") is again a unitary
finite dimensional representation of G on Hy, for all « € Irr(G). Hence 7(Pol(G)) < Pol(G).
It is straightforward to see that 7! is still a quantum automorphism of G, so that we have
7(Pol(G)) = Pol(G). Moreover, {7(w{,)}ij=1,.n, is an irreducible representation of G
whenever x € Itr(G) because the Haar state hg is preserved by 7 (recall Remarks 1.3.1.6) and
we have

e (Xa (r(w™)*xe(r(@")) ) = he (r(xs(@)*xa(x))) = he (o (@) *xo(2))
|

Thus we observe that the matrix coefficients of finite dimensional representations of a compact
quantum group G play an important role in the theory. In fact, we are going to show that these
matrices characterize completely such a compact quantum group.

1.3.1.29 Proposition. Let A be a unital C*-algebra equipped with a unital *-homomorphism
A:A— A® A. The following assertions are equivalent

i) G:= (A, A) is a compact quantum group.

it) There exist an index set I and a collection of invertible matrices w® € M,,_(A), for all a e I
with ny € N such that

- the =-subalgebra of A generated by the matriz coefficients {wf]} ael IS dense in A,
Q=1

- the conjugate matrices w® := ((w%)*) ~are invertible for all a € I,
0.

)

n

- for all ae I we have A(wg;) = X wi @wg; for alli,j =1,...,n,.

iii) There exist an index set I and a collection of invertible matrices w® € M,,_ (A), for alla e T
with ny € N such that
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- the subalgebra of A generated by the matrix coefficients {wf‘]} el is dense in A,
i

=1,...,na

- for all a € I we have A(wy';) = k;w?’“ ®ug; foralli,j=1,...,nq.

Proof. The implication (i) = (i7) follows from Proposition 1.3.1.28 because if G = (A4,A) is a
compact quantum group, then Pol(G) is the dense unital *-algebra in A generated by the matrix
coefficients of all finite dimensional representations. Actually, a basis for Pol(G) is given by the
coefficients of unitary irreducible finite dimensional representations. Recall by Remark 1.3.1.19,
that the conjugate representation matrix (of a unitary one) is also an invertible one.

The implication (ii) = (ii7) is clear: we take simply the collection {w®},er U {w®}per-

Let’s see the implication (iii) = (i). Given a € I, consider the coefficients (wg})i j=1,.. n,-
Thanks to our assumption we have

(id ® A)A(ws;) = Y wil @iy @ wiy = (A®id)A(w),
k,l

foralli,j =1,...,n4. So A is co-associative.
Now let (vf})i,; be the inverse matrix of (wy};); ; and write

La@uws = Y 0ila @ufi = Y vf wiy @ wf; = > (05 ® 1a)A(wg;) € (A® 14)A(A) (13.1)
l Ik k

Remark as well that given a,a’ € A such that

la®a =Y (br ®1a)A(ck) and 1Ly ®a’ = Y (bl ® 1a)A(ch),
k K’

for some by, b}/, c, ¢}, € A, then an easy computation yields that

14 ®ad = Z (b;glbk ® 1A)A(Ck02/)

kK’

In other words, the space {a €A|14®a = > (bp®14)A(ck) for some by, ¢y € A} is a subalgebra

k
of A.
By assumption we know that the subalgebra of A generated by the matrix coefficients {wf‘]} ael

j=1,..., N
is dense in A, so the above space is dense in A thanks to the computations (1.3.1). Therefore,
(A®14)A(A) is dense in A®Q A (similarly for (14 ® A)A(A)). We conclude that (A4, A) is a compact
quantum group. |

For our purpose it will be useful to have explicit formulas for the GNS construction of the Haar
sate. In this sense, we have the next result which can be found in [231]. We include here a proof
for the convenience of the exposition.

1.3.1.30 Proposition. Let G = (C(G),A) be a compact quantum group and (L*(G),\,Q) the

GNS construction associated to the Haar state hg. We have a canonical identification

@)z @ (H,®H)

zelrr(G)
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and the formula .
AM(we,er ®idee)) (W) (Q) = —m—== £® Ju(£),

dimg(x)
holds for all x € Irr(G) and all £, € H,.

Proof. Given z € Irr(G), we define the following linear map

Yo: Hy®Hy —> Pol(G)
£®@n > Ye(§®n) = (Wyx(  ®id)(w”)

Remark that given an element w§ ., := (wee ® ido())(w®) € Pol(G) with §,&" € H,, then the
element §' ® J,.(§) € Hy ® Hz is such that 1, (§' ® J.(§)) = w§ o, by definition/construction.
Remember that Pol(G) is generated by the elements {w§ ¢ }zerrr(c), SO that any element of
£.¢'eHy
Pol(G) can be write as a sum of the form >, .((,) with (, € H, ® Hz, where only a finite
zelrr(G)
number of terms in the sum are non zero.
Given z € Irr(G) define the following linear map

V,: H,®Hz — L*G)
Since Pol(G) is dense in C(G) and 2 is a cyclic vector for A, then the above discussion yields

the decomposition

L*(G)= @ V,(H,Q® Hz)
zelrr(G)

Remark that this is actually an orthogonal decomposition. Indeed, by definition of the GNS
construction, for every z,y € Irr(G) and every ¢, € H, ® Hz, ¢, € H, ® Hy we can write

Wy (Cy)y Vo (Ca)) = AWy (Gy)) 2 A% (C2)) 2
= (A (0y (6)* ¥ (G)) W (1.32)

= ho(ty(6) al(Ge)) = =250y, G

- dimg(x)

In other words, the operator ¥, is a multiple of an isometry and the spaces { V. (H,®@Hz)} verrr ()
are pairwise orthogonal. In the preceding computation we must clarify the last equality. Let
a, B € Irr(G) and fix orthonormal basis {£3, ... ,fﬁa} and {nlﬁ, e ,ngﬁ} of Hg and Hg, respectively.

Accordingly, we consider the orthonormal basis {¢, := f?@n,f }i:Lm,nQ on Hyg® Hg. Given vectors
k=1,..., ng

¢,&' € Hy and n,n' € Hp consider their corresponding coordinate expressions, say
ng ng ng ng
E= D NET &€ = DNE = pun and n' = > i),
i=1 j=1 k=1 1=1

so that it is clear that

N / —_— /
weer = Y NiNjwiy and wy = > T,
Y o
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Hence we write the following,
ho ((we.o @ id)uw® (wy ®id)w’) = 3 NiXjpihe ((wij ® id)w™ (wig @ id)w’)
ikl
- > NNt (wr,s ® id) (id ® he)w®™ @ w”
r=(i,k),s=(4,l)
= 2 Xi)\;'ﬁk,“; (wr,s @ id)(id ® h@,)w%w%

r=(4,k),s=(3,0)

- 1)
= Z AMQM;CME Wr,s .ai’ﬂTEE
“m,

—
—

r=(i,k),s=(3,1) dimq(c)
_ Cﬁf:j%_(i,ké_w NN T (G T (Co))
_ d;;@“) ;W NN Tttt (67 @l T (€ @)
_ dfn@) 2) NN iy (€5 @} (B, & @ B
_ dfn‘@) ;M NN Tty (67 @, B Ea, € ® 1)
_ d;@“) 2) NN Tttt s T (€)X T=(€7),
- Cmm Jo O, 1,

where in (1) we use Remark 1.3.1.25. Using again Remark 1.3.1.25 we can apply the preceding
computations to the elements v, (§®n)* and ¢, (§'®@n’) for any E®n € H,®Hz and £'®n' € H,®@ Hy
and we obtain

615 ! /
he (Ve (E@n)* Yy (€' @7)) = dimﬂx) &1,

which justifies the last equality in formula (1.3.2).
In order to get the decomposition of the statement, it is enough to consider the following map

v @ (H.®H;) — L*(G)
zelrr(G)

(Cx)IEI’I‘T(G) - qj(cz)welrr((ﬁ‘,) = (\/W \I’x((x))

which defines an isometric isomorphism of Hilbert spaces. Through this identification, the formula
of the statement is easy to establish. Indeed,

IEITT((G)7

AW%f%Dmeﬂﬂﬂ):AW@@Chhﬁﬁﬂﬁé‘——l——*£®JA€%

dimg(x)

for all £,¢ € H,. (]
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1.3.1.831 Remarks. 1. Notice that the operator ), is an invertible positive self-adjoint operator.

In that case, we can choose an orthonormal basis {7, ... ,fffz} of H, that diagonalises Q.
Let {wf{,...,w? } be its dual basis in the dual space H,.
For every j = 1,...,ng, let A7 € R™ be the eigenvalue of @, associated to the vector 3

meaning that
Qa(8f) = A &5

Recall from Theorem 1.3.1.24 that Q, = J¥J, and Jz = J, 1, so that the singular values of
1 ; .
J. and Jz are {, /)\;‘C}j=1,.~.,nm and {\/Tf.}jzl,...,nm’ respectively which means that

() = /N7 €8 and Jo(€) = —— ¢

where {f,...,&7_} is an orthonormal basis of Hz.

The well-known Riesz-Fréchet identification Fa ~ Hy yields that any continuous linear
functional w € H} is of the form (-, ), for some § € H, (recall Section 1.1). Hence the dual
Hilbert space H, is identified to Hz by means of the map
Hm s HE
w:<'7£> I Jm(g)a
which is an isomorphism because J, is a bijective anti-linear map. In coordinates, this
identification yields

T xT
wi = A/ AT &5

for all j = 1,...,n,. By duality, we have as well Hz = H, via Jg so that if {w{,...,w}_}
denotes the dual basis of {¢f,...,&r_} in Hz, then the above identification yields

forall j =1,...,n,.

Since {w{;} verrr(c) is a basis of Pol(G), it is interesting to have a formula for A(wy;)(Q2).
id=1,...,ng

Fix a diagonalisation basis of @, as above, then the formula obtained in Proposition 1.3.1.30

yields to the following one for all x € Irr(G) and all ¢,j =1,...,n,

1 AT
Awf ) (Q) = ————= F R J, (&) = ——~—=—L—
(wis)(@) dimg(x) ¢ (&) dimg(x)
2. The non-trivial invariant vectors F, € H, ® Hz, Fz € Hz ® H, of Theorem 1.3.1.24 can be

regarded as intertwiner operators, ®, € Mor(e,z @ T) and Pz € Mor(e,T @ x) defined by
®,(1) = E, and ®z(1) = Ez and they are called canonical intertwiners.

&

From now on we we don’t distinguish the non-invariant vectors from the corresponding
intertwiner operators and we choose the notation ®, and ®z for them. In this way, a
straightforward computation yields the following coordinate expressions for these vectors

Ny _ Ny 1 _
O, = DA GG and oz = Y —— R,
k=1

T
k=1 )\k
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where we use the same notations as above. A family of basis {&7,...,&% }, {¢f,...,&8 }
satisfying the formulae above is called canonical orthonormal basis.

3. Notice that the cyclic vector = A(1¢(g)) of the GNS construction of hg can be identified,
via the canonical isomorphism of the preceding proposition, to the canonical unit vector in
H.® Hz =C.

Given a compact quantum group G we can construct two new compact quantum groups: the
reduced and the universal/maximal picture of G. Both pictures have the same representation theory
as G. In this sense, both pictures represent the same object under the representation theory point
of view. More precisely, we have the following theorem.

1.3.1.32 Theorem. Let G = (C(G), A) be a compact quantum group.

i) The C*-enveloping algebra of Pol(G) is a compact quantum group denoted by G, = (C(G), A,,)
and called maximal picture of G, where A, is the extension of A| : Pol(G) — Cp(G)®C i (G)
to Crn(G). Moreover, we have that Pol(G,,) = Pol(G). The co-unit € : Pol(G) — C extends
to a character on Cp,(G) which is still denoted by € and satisfies the relation

(e®id)o Ay, =id = (id®¢e) o Ay,

If H = (C(H),®) is another compact quantum group and f : Pol(H) — C(G) is a *-
homomorphism intertwining the co-multiplications, then it extends to a Hopf #-homomorphism
fm 1 G — H,,.

ii) The C*-algebra \(C(G)) < B(L?*(G)) is a compact quantum group denoted by G, = (C,.(G), A,)
and called reduced picture of G, where A, is the estension of A : Pol(G) — C,(G) ® C,.(G)
to Cr(G). Moreover, we have that Pol(G,) = Pol(G). The Haar state h, on C(G) is faithful.

Besides, since any Hopf =-automorphism 7 : C(G) — C(G) preserves the Haar state, then its
restriction 1) : Pol(G) — Pol(G) extends to a Hopf x-automorphism 7, : C.(G) — C,.(G).

ii1) If tm,t, tp denote the canonical embedding of Pol(G) in Cp(G), C(G) and C,(G), respectively;
then we have the following commutative diagram

Polf((}\
G) — C(G) 3 C(G)

where the horizontal maps are surjective homomorphisms of compact quantum groups.

Chn(

Proof. i) First of all, observe that Pol(G) is spanned by the matrix coefficients of unitary matrices
over Pol(G). These are actually unitary representations of Pol(G), so that for all z € Irr(G), we
have ||wf ;|| <1, for all 4, j = 1,...,n, where the norm is taken with respect to the sesquilinear
form <a,b) := hg(a*b), for all a,b € Pol(G). Thus it is licit to consider the enveloping algebra
of Pol(G), say Cp,(G). Next, the co-multiplication A| : Pol(G) — Cy,(G)®C)y, (G) extends to
a unital *-homomorphism A,, : Cp,(G) — C,,(G) ® C, (G) by universality. By construction
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it is clear that G, := (C,(G), Ay,) is a compact quantum group such that Pol(G,,) = Pol(G).
Likewise, the co-unit map e : Pol(G) — C extends to a character on C,,(G) by universality.
The relation satisfied by the character € is true thanks to the co-unit axiom and the density of
Pol(G) in Cp,(G).

ii) If (L%(G), \, Q) denotes the GNS construction for the Haar state hg, then we put C,.(G) :=
MC(G)) € B(L*(G)). For all a € Pol(G)\{0} we have

0 < h(a*a) = [IM@)Q* < [IX(a)][?

because Ag|,,,, is faithful and so we obtain that A is faithful on Pol(G). This means that we
have a natural embedding ¢, : Pol(G) — C,.(G) and that C,.(G) is the operator completion of
Pol(G) in B(L*(G)).
Now, we have to show that the co-multiplication A : Pol(G) — C,(G) ® C(G) extends
to a co-multiplication on C,(G). For this, consider the left regular representation W €
M(K(L*(G))® C(G)) and put W, := (id®@\)(W) € B(L*(G) ® L*(G)). Then by the theorem
1.3.1.26 we have

Ar(a) =WFi(1®a)W,,
for all a € C,-(G) where A, := (id® \)A.
By construction, G, := (C,(G), A,) is a compact quantum group such that Pol(G,) = Pol(G)

with Haar state defined by h,.(x) = (Q,z), for all z € C.(G). We can show that h, is faithful,
see Corollary 1.7.5 of [139] or Theorem 5.4.5 of [188] for a proof.

iii) It is straightforward.

1.3.1.33 Definition. Let G = (C(G), A) be a compact quantum group.
- We say that G is a maximal compact quantum group if 7, is an isomorphism.

- We say that G is a reduced compact quantum group if 7. is an isomorphism.

Recall Note 1.3.1.4. The main problem with the early Definition 1.3.1.3 is that it is not well-
behaved, in general, with the duality between compact and discrete quantum groups (see Theorem
1.3.1.36 below). A homomorphism between locally compact groups always induces a homomorphism
between the corresponding mazimal C*-algebras. But this is not the case for the reduced ones. For
instance, let G be a classical locally compact group and consider the constant map from G to the
trivial group {e}, G —> {e}. This induces a map between the corresponding reduced C*-algebras,
CH(G) — C¥({e}) = C, if and only if G is amenable. Recall from the introduction to Section 1.3
that C*(G) must be regarded as the generalized Pontryagin dual of G. We refer to [48] and [135]
for more details.

For this reason, Definition 1.3.1.3 must be refined as follows in order to give an appropriated
notion of morphism of compact quantum groups.

1.3.1.34 Definition. Let G = (C(G),A) and G’ = (C(G’), A’) be two compact quantum groups.
A quantum homomorphism from G to G’, denoted by f : G — G/, is a unital *-homomorphism
fm i C(G') — Oy, (G) such that

Ao fm = (fm®fm)Alm



1.3. Compact Quantum Groups 83

In particular, if G = G/, such a f is called quantum automorphism. The group of all quantum
automorphism of G is denoted by Aut(G).

1.3.1.85 Remark. Notice that, by Theorem 1.3.1.32; a unital #-homomorphism f,, : C;,,(G') —
Cin(G) such that Ay, 0 fry = (fm® fin )AL, is equivalent to a unital *-homomorphism f : Pol(G') —
Pol(G) such that Ajo f = (f@f)Ai.

Finally, given a compact quantum group G we can define its quantum Pontryagin dual G. It
is important to notice that such a dual is not longer a compact quantum group in the sense of
Woronowicz, but a locally compact quantum group in the sense of Kustermans-Vaes (we refer to
Section 1.3.2 for the main definitions and results). This object can be described in several different
ways.

First of all, recall that the main reason to develop the theory of quantum groups was to give
a general framework in which the Pontryagin duality of locally compact abelian groups holds in
full generality. Hence, the theory developed by J. Kustermans and S. Vaes in [113] for locally
compact quantum groups seems to be the right context to understand the duality between compact
and discrete quantum groups. However, the Kustermans-Vaes’s theory is quite technical and too
much powerful for our objectives. A different approach to locally compact quantum groups is the
theory developed by S. Baaj and G. Skandalis in [7] using multiplicative unitaries. In this case,
any (“nice” enough) multiplicative unitary gives rise to two quantum groups in duality. Recall that
any locally compact quantum group has a fundamental unitary and so we can define its dual using
the corresponding right/left leg. In particular, if G is a compact quantum group, the left regular
representation Wg of G on L?(G) (Theorem 1.3.1.26) is its fundamental unitary and we could define
G to be left leg of W and apply the Baaj-Skandalis theory to conclude the corresponding duality.

Nevertheless, the context of compact quantum groups of Woronowicz is quite explicit thanks to
its rich representation theory as we have just presented. Therefore, such a Pontryagin dual can be
built in a more precise way avoiding these technical and general theories. Namely, we have the
following result.

1.3.1.36 Theorem-Definition. Let G = (C(G),A) be a compact quantum group and define the
following C*-algebra
~ €0
a(G):= P B(H,)
zelrr(G)
We have that

i) M(co(G)) = @ZTG)B(HQK) and we denote it by 1°(G),
xelrr

ii) the element ¥ := @ w" is a unitary element in M(CO(@) ® C(G)) satisfying the formula
zelrr(G)

(id@A)YV = Y23,
which means that ¥ is a (infinite dimensional) representation of G,

iii) there exists a *-homomorphism A co(@) — M(CO(@) ® CO(@)) such that given xz € Irr(G)
and T € B(H,) we have
A(T)od =0T,

for every y,z € Irr(G) and every ® € Mor(x,y @ z),
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A~

i) the pair (co(G), 3) is a reduced C*-locally compact quantum group whose left and right Haar
weights are given respectively by

h(a)= Y dimy(z) Tr(Qq(aps))
(G)

zelrr

ha@) = 3 dimy(o) Tr(QF (am)
zelrr(G)

~

for all a € co(G) where p, with x € Irr(G) denotes the minimal central projection of co(@) on
B(H,),

v) the co-multiplication A extends to a normal map A : lw(@) — loo(@) ® lw(@), so that
(I*°(G), A, hr,hr) is a vN-locally compact quantum group,

The locally compact quantum group G = (co(((A})7 A,?LLJALR) is called the (quantum Pontryagin)
dual of G. In general, a discrete quantum group is the dual of a compact quantum group.

1.83.1.87 Remark. By virtue of the preceding theorem, a discrete quantum group G is completely
defined by the corresponding compact quantum group G (and wvice versa). More precisely, given a
compact quantum group G, the corresponding *-Hopf algebra Pol(G) yields the definition of G.
Conversely, given a discrete quantum group @, we can recover, by definition, the #-Hopf algebra
Pol(G). Hence, under the representation theory point of view, we recover the object G itself. But
notice that the C*-norm on Pol(G) is not unique as it has been pointed out in Theorem 1.3.1.32.

1.8.1.88 Remarks. For a precise treatment of discrete quantum groups with respect to the above
picture, we refer to [231], [232], [124] and Section 1 in [197]. Let us give some general remarks.

1. If (L*(G), A\, Q) is the GNS construction for the Haar state hg, then the GNS space represen-
tation of the left Haar weight Az can be identified to L?(G). Actually, we can give a precise

description of the corresponding GNS construction, denoted by (L*(G), Az, ) (see Section
1 in [197] for more details). For the present dissertation we only need the description of

the corresponding GNS-representation X co((@) — B(L?*(G)), which satisfies the following
formula

X(G)Cx = (apx ® idH;)Ca:;

for all z € Irr(G), all a € ¢y(G) and all {, € H, ® Hz (recall Proposition 1.3.1.30). In
particular, we have

~

)\(pé)A(wij)Q = hG(wf,j)Qa
for all a € co(é), x€Irr(G), 4,5 =1,...,n,, where ¢ denotes the trivial representation.

2. As in the compact case, we can show that there exists a unique unitary operator Wg €
B(L*(G) ® L?(G)) such that

WiAL(@)@AL() = AL ®A)AB)a®1),

for all a,b e '/VEL' Moreover,
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- Wge B(CO(@) ® K(L?(G))) is a unitary representation of G on L2 (G) called left reqular
representation of G.

- W is a multiplicative unitary on L?(G) in the sense of Baaj-Skandalis called fundamental
unitary of G.

- Wa = (id@N)(¥).

And following the Baaj-Skandalis picture (see Section 1.3.2) we have

I|H ~
|

co(G) = AWg) = (B(L2(G))x ® id)(Wg)  and I°(G) = Ag(Wg)"

~

Afa) = Wg(id@ a)Wg, for all a € co(G),
where Wg := W = SWES.

3. Finally, it is important to say that a discrete quantum group is equipped naturally with a
co-unit &, that is, a linear map eg := €: ¢o(G) — C such that

(EQid)A = id = (id®&)A

~

Namely, in the picture of the above theorem we have &(z) := pe = pe, for all z € ¢o(G).

1.3.1.39 Definition. Let G = (C(G), A) be a compact quantum group.
- We say that G is co-amenable (or that G is amenable) if 7 := 7, 0 7, is an isomorphism.
- We say that G is co-K -amenable (or that G is K-amenable) if 7 := 7, o7, is a K-equivalence.

1.3.1.40 Remark. The well-known characterization of amenability for classical groups (see [29] for
more details) can be translated for compact quantum groups (see Theorem 2.7.10 of [139] for a
proof). Namely, if G is a compact quantum group, then the following assertions are equivalent.

i) G is co-amenable.
ii) the co-unit map e : Pol(G) — C extends to a character on C,.(G).
iii) the Haar state of G,, is faithful.

1.8.1.41 Remark. The well-known characterization of K-amenability of J. Cuntz for classical groups
(see [44] for more details) can be translated for compact quantum groups (see Theorem 5.14 of [206]
for a proof). Namely, if G is a compact quantum group, then the following assertions are equivalent.

i) G is co-K-amenable.

ii) The canonical map 7 : GxA—>GxAisa K -equivalence, for every @—C*—algebra A.

iii) There exists an element o € KK (C,.(G),C) such that [7] ® « = [¢], where ¢ : Pol(G) — C
C(G)
denotes the co-unit of G whose extension to Cy,(G) is still denoted by e.
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1.3.1.42 Remark. Observe that if G is a compact (classical) group, it is automatically amenable and
then we have automatically C* (G) = C*(G) denoted simply by C(G). In the quantum case, the
analogous property is encoded under the notion of co-amenability of G whenever G is a (locally)
compact quantum group.

Thus, a compact quantum group G is always amenable in the sense that it admits a left invariant
mean (namely, the Haar state of G). But this doesn’t imply, in general, the co-amenability, that is,
that the canonical surjection 7 : Cpp, (G) — C,.(G) is an #-isomorphism. Actually, if G is any locally
compact quantum group, the connexion between amenability and co-amenability is as follows

G co-amenable —s> G amenable

G amenable % @ co-amenable

The second implication has been proven by R. Tomatsu in [189] for discrete quantum groups.

1.3.2 Locally compact case

The goal of this section is just to present the main definitions and results of the locally compact
groups theory in order to have an overlook of the general theory with respect to the Woronowicz’s,
and so the compact’s, one. Therefore, we don’t give any proof in that regard and, for more
information and details, we refer to the original paper [113] of J. Kustermans and S. Vaes; also
Chapter 8 of [188] provides a very useful reference to get introduced into this subject. In order to
understand the following presentation, it is advisable to keep in mind the elementary notions about
multiplicative unitaries of Baaj-Skandalis recalled in Section 1.1 and the elementary notions about
von Neumann algebras recalled in Section A.2.

1.3.2.1 Definition. A vN-locally compact quantum group G is the data (M, A, ¢,v) where M
is a von Neumann algebra, A : M — M ® M is a normal unital #-homomorphism called co-
multiplication and ¢, 1 are normal semi-finite faithful weights on M called left Haar weight and
right Haar weight, respectively; such that

i) A is co-associative meaning that the diagram

A

M MM
A 1dQA
M®M A0 M Mo M

is commutative.
ii) ¢ is left invariant with respect to A meaning that
B((w @ id)A(a)) = w(1a)o(a),
for all a € M+ and all w e M.
iii) 1 is right invariant with respect to A meaning that
Y((id®w)A(a)) = w(lar)(a),

for all a e M+ and all w e M, .
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1.3.2.2 Definition. A reduced C*-locally compact quantum group G is the data (A, A, ¢, )
where (A, A) is Hopf C*-algebra and ¢, 9 are faithful KMS-weights on A called left Haar weight
and right Haar weight, respectively; such that

i) the sets
{(w®id)Aa) | we A% ,a e A} and {(id®@w)A(a) | we A%, a e A}

are linearly dense in A.

ii) ¢ is left invariant with respect to A meaning that
¢((w®id)Aa)) = w(1)¢(a),
forallae Ay and all w e A%.

iii) 1) is right invariant with respect to A meaning that
Y((id®@w)A(a)) = w(1)y(a),
for alla e Ay and all w e A%.

1.3.2.3 Theorem. Let G = (A, A,9,v) be a reduced C*-locally compact quantum group. If
(L3(G), Ay, my) is the GNS construction of the left Haar weight ¢, then

i) there exists a multiplicative unitary W € B(L*(G)®L*(G)) on L*(G) such that for all z,y € A

Aly)(z @ 1) € Mgy and W*(Ap(2) @ Ap(y)) = (As ® Ay) (A(y)(z @ 1))

The operator W =: Wg is called fundamental unitary of G;

it) the fundamental unitary of G is well-behaved. As a consequence, the left and right legs of W
are Hopf C*-algebras. Moreover, the explicit description of the left leg is given by

n —

AWg) = my(A) and AWG oy = (T @my) 0 A

1.8.2.4 Note. If W is a multiplicative unitary on a Hilbert space H, then its left and right legs,
(A(W), AW) and (A(W), Aw ), are always subalgebras of B(H) but they are not necessarily C*-
algebras. We say that W is well-behaved if its left and right legs are Hopf C*-algebras and
We MAW)® A(W)).

It is advisable to have general criteria that assure the well-behaved condition for a given
multiplicative unitary. There are several of such criteria. For instance, regularity introduced by S.
Baaj and G. Skandalis in [7] or manageability introduced by S. L. Woronowicz in [230].

We refer to Chapter 7 of [188] for more details about these notions.

1.3.2.5 Definition. Let G = (A4, A, ¢, ) be a reduced C*-locally compact quantum group.

- The algebra of continuous functions vanishing at o0 of G is by definition the left leg of the
fundamental unitary of G,

Co(G) := A(Wg) < B(L*(G))
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- The reduced algebra of G is by definition the right leg of the fundamental unitary of G,
CX(G) == A(We) < BUL(G))

1.8.2.6 Remark. Since the fundamental unitary of G is well-behaved, its legs are Hopf C*-algebras,
that is, Co(G), C*(G) are Hopf C*-algebras and we have W € M(Cy(G) ® C*(G)). The corre-
sponding co-multiplications are given precisely by

Ag(z) = Ay (z) = W*(id®@z)W, for all z € Co(G)
Ag(z) = A (z) = WP (id @ 2)W°P, for all z € C*(G),

—~

where we recall that WP := W = YW*X.

1.3.2.7 Theorem (Quantum Pontryagin duality). Let G = (A4, A, ¢,v) be a reduced C*-locally
compact quantum group.

i) The algebra of continuous functions vanishing at oo of G is a reduced C*-locally compact
quantum group such that G = (Co(G), Ag). The fundamental unitary of G is given by Wg.

it) The reduced algebra of G is a reduced C*-locally compact quantum group called quantum dual of
G and we put G := (C¥(G), Ag). The fundamental unitary of G is given by Wg = oW oX,
which is denoted by I//I\/G,

iti) There exists a canonical isomorphism of reduced C*-locally compact quantum groups G=G
called quantum Pontryagin duality.

1.3.2.8 Note. By construction, both Cy(G) and C*(G) describe the reduced pictures of G and G,
respectively (because these C*-algebras are constructed by means of the GNS constructions of the
Haar weights, that is, both G and G are represented on the GNS-Hilbert space representation of
their Haar weights). In accordance with Theorem 1.3.1.32, it is possible to show that both G and G
admit universal pictures, denoted by G, := (CF(G), Ap) and Gy, := (C(G), Am), respectively.
Precisely, CJ*(G) and C* (G) are defined as enveloping C*-algebras of appropriated #-subalgebras
of C*(G)* = A(Wg)* and Co(G)* = A(Wg)*, respectively. As in the compact case, there exist
canonical surjective #-homomorphisms 7,,, : CJ*(G) — Cy(G) and 7, : Ct (G) — C*(G), which
intertwine the corresponding co-multiplications. Moreover, it is possible to show that there exist
unitary elements Wg € M (C§*(G) ® C*(G)) and Wg € M (Cy(G) ® Cf (G)) such that

(id®£@)(W@) = (We),, (We),; and (Ag ®id)(WG) = (WG)I?; (We) s

These results are technically involved and we refer to [111] for the full details. In particular, if
G is a compact quantum group, its discrete dual G defined in Theorem 1.3.1.36, which is a reduced
picture of @, admits a universal picture Gy 1= (cgl(@), &) But, by Remark 1.3.1.42, G is always
co-amenable so that cg’(@) is always canonically isomorphic to ¢ (@) Moreover, there exists a
unitary element Wg € M (C,,(G) ® co(@)) such that

(id ® Ag)(We) = (Ws) ,(We) 14

In accordance with [111], the unitary Wg allows to produce unitary representations of G. Hence
it must be regarded as a universal representation of G. The connection with the fundamental
unitary of G introduced in Theorem 1.3.1.26 is given by the formula (7, ® id)Wg = Wg.
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1.8.2.9 Remark. In the formalism of multiplicative unitaries, the quantum Pontryagin duality can
be easily established. Namely, it is enough to check that the multiplicative unitary associated to G

is the same to the one associated to @, which is straightforward,
Wé=EOW502=EO(EO(WE)*OE)OZ=WG

1.8.2.10 Remark. It is possible to pass from the picture of Definition 1.3.2.1 to the picture of
Definition 1.3.2.2 by taking the bicommutant of the leg defining the locally compact quantum
group. We can prove that there exists a bijective correspondence (up to isomorphism) between all
vN-locally compact quantum groups and all reduced C*-locally compact quantum groups.

This correspondence is realized as fq\llows. Given a C*-locally compact quantum group G =
(Co(G), Ag) and its dual G := (C*(G), Ag), we put

e Y

LP(G) == A(Wg) > Co(G)
L*(G) = L(G) := A4,(Wg)" " > C*(G)
Hence, (L*(G), Ag) and (L(G), &g) are vN-locally compact quantum groups. See Section 8.3.4
in [188] for more details. In particular we have that

——

LP(G) = Pol(G)" " = C,(G)"

~ ~ =~ 00—

Pol(@) = Ag(Wg) = I®(8) := L(G) = Pol(€) = co(©)"

whenever G is a compact quantum group (see Theorem 7.2.14 in [188]).

Actions of Quantum Groups

Let us introduce the theory of actions of quantum groups by giving one example coming from the
classical case, which should be regarded as the reference one.
Let G be a locally compact group. An action of G on a C*-algebra A is a continuous group
homomorphism
a: G — Aut(A)

g > Oy

which means that agy = g 0 ay for all g,¢' € G and that the application G — A given by
g — agy(a) is continuous for all a € A. In this situation, the data (A, a) is called G-C*-algebra.
Recall from Section 1.3 that the data G := (Co(G), A) defines a locally compact quantum group.

The notion of G-C*-algebra can be dualize in the following way. Given the locally compact
group G and the C*-algebra A, we denote by ev, : Cy(G) — C the evaluation map on g € G
and by Cy(G, A) the C*-algebra of bounded continuous functions on G with values on A. This
can be identified with a C*-subalgebra of M (A ® Cy(G)). More precisely, it is well-known that
A® Co(G) = Cy(G, A), so that M(Cy(G, A)) =~ Cy(G, M(A)) by virtue of a classical result of
Akerman-Pedersen-Tomiyama (see Corollary 3.4 of [2]). Hence, it is not difficult to show that we
have Cy(G, A) = M(A® Co(G)) = M(A® Co(G)) (recall Definition A.4.4).
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Let us define the following non-degenerate #-homomorphism

b A — M(A®Co(G))
a = ¢a(a); ¢o¢(a)(g) = ag(a)v forall ge G

This map satisfies several important properties (see Theorem 9.2.4 in [188] for a proof),
i) ¢ is injectif,
ii) (¢a ®idcy(a)) © Pa = (ida ® A) 0 ¢,
iii) [¢a(A)1® Co(G))] = AR Co(G).

In this way, the data (A, ¢,) with the above properties is a G-C*-algebra and the homomorphism
¢ 1s called either a (right) action of G on A or a (left) co-action of Co(G) on A.
__ Conversely, if A is a C*-algebra equipped with a non-degenerate *-homomorphism ¢ : A —
M(A® Cy(G)) satistying the analogue of the properties (i), (i4) and (iii) above, then we can show
(see Theorem 9.2.4 in [188]) that the map

(ag)g: A — M(4)
a — (ag)g(a) := (ida @ evy)(¢(a))

defines an automorphism of A for all g € G such that the map G — Aut(A), g — (ag)y, defines an
action of G on A. For a fact, in the preceding setting we only need to consider either the property
() or the property (iii) (see Theorem 9.2.4 in [188] for more details).

In other words, we obtain a bijective correspondence between G-C*-algebras and G-C*-algebras,
whenever G is a locally compact group and G = (Cy(G), A) is the corresponding locally compact
quantum group.

(left) G-C*-algebras - (right) G-C*-algebras
G~ A GAhA

In the present section we formalize the preceding notion of G-C *-algebra when G is a compact
quantum group. In this case, we’ll observe that the standard definition can be translated into
a more explicite picture using the representation theory approach for G presented in Theorem
1.3.1.36. We give also an overview of the well-known spectral theory for actions of compact quantum
groups. Finally we discuss the notion of discrete quantum subgroup and the corresponding theory
of induced actions.

1.4.1 Actions of Discrete Quantum Groups

For more details about actions of quantum groups we refer to the original article [157], the book
[188] or the surveys [49], [174].

1.4.1.1 Definition. Let G be a compact quantum group and A a C*-algebra. We say that
A is a (resp. injective) left G-C*-algebra if there exists a non-degenerate #-homomorphism

a: A—> M(co(G)® A) such that
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i) (resp. « is injective),

ii) « intertwines the co-multiplication meaning that the diagram

A & M(co(G) ® A)
o idco (@>®a
M(co(G) ® A) o M@(©) @@ o)
taA

is commutative,

iii) « satisfies the cancellation property meaning that
[(A)(co(G) ® 1)] = ¢o(G) ® A

Such a homomorphism is called a (resp. injective) left action of G onAora right co-action of

~

co(G) on A.

1.4.1.2 Note. A right action of G on A (or a left co-action of co(@) on A) is a non-degenerate
x-homomorphism « : A — M (A® co (@)) satisfying the analogue properties of the preceding
definition. We must point out that the subalgebra M used for right actions of G is lightly different
from the one used for left actions G. Indeed, here we have to exchange S and A of Definition A.4.4.

In the present thesis, an action of a discrete quantum group G is supposed to be an injective
left one unless the contrary is explicitly indicated. Hence, we refer to such actions simply as action

of G.

1.4.1.8 Remarks. 1. If a : A —> M(co(G) ® A) is an injective action of G on A, then the
following formula holds
(E®ida) o =ida,

where £ is co-unit of G. Indeed,
(ﬁ ®idy)a = (ich(@) ® a)a
= (E®id, @ ®ida)(A@ida)a = E@id, g ®ida)(id, g ®a)a
= (ich(@) ®idy)a = (ERQ a)a
=a=Ea)a=ids = (E®ida)a,
where the last implication is true thanks to the injectivity of a.

2. Let G and H be two compact quantum groups. If (4,a) is a @—C*—algebra and (B, f) is

a ]ﬁl—C’*—algebra, then the tensor product A ® B is equipped with an action of G x H (see
Section 2.2 for more details) given by the following composition,

§:A® B XM (co(G) ® A) @ M(co(l) ® B) = M(co(G) ® A® co(H) ® B)
Yoz ~ -~

2 M(co(G)® co(H) ® A® B) = M(co(F) @ AQ B)

By abuse of notation we denote this composition simply by 0 := a ® .
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1.4.1.4 Definition. Let G be a compact quantum group and (4, «), (B, 3) two @-C’*—algebras. A
non-degenerate #-homomorphism ¢ : A — M(B) is called G-equivariant if the following diagram
commutes,

N

o M(B)
o 5

M(co(G) ® A) — e M(co(G) ® B)

1.4.1.5 Proposition. Let G be a compact quantum group and A a C*-algebra. If o : A —>
M(co(G) ® A) is a non-degenerate x-homomorphism, then

- for every irreducible representation x € Irr(G) we define the following *-homomorphism

' A — B(H,)®A
a — a’(a):=ale)(p: ®ida),

where p, denotes the minimal central projection of co(@) on B(Hy).

- and for every unitary finite dimensional representation u € Rep(G) we define the following
x-homomorphism

a — o"(a):= 2 (Pr®ida)a”(a)(PF ®ida),
%

rcu

where we consider the decomposition of w into direct sum of irreducible representations, that
is, for every x < u denote by p* € B(H,) the corresponding orthogonal finite dimensional
projection such that Y, p¥ = idg, and for every k = 1,... ,dim(Mor(x,u)) consider a

TCUu

family of intertwiners ®), € Mor(x,u) such that ®}®) = idy, and ) P} = p.
k

The following assertions are equivalent.

i) (A,a) is a G-C*-algebra with (resp. injective) action o : A —> M(co(G) ® A).

it) The family of x-homomorphisms a® : A — B(H,) ® A for every x € Irr(G) is such that
a) (resp. af =ida),

b) (PR®ida)a®(a) = (idy, ® a¥)(a(a))(P®ida), for alla € A, all x,y,z € Irr(G) and all
b e Mor(z,y® z),

¢) [e*(A)(H, ® A)] = H, ® A, for all x € Irr(G).
iti) The family of x-homomorphisms o : A — B(H,) ® A for every u € Rep(G) is such that

a) (resp. af =idy),
b) o'V = (idy, ® a¥) o a¥, for all u,v € Rep(G),
¢) (P®ida)at(a) =a’(a)(P®ida), for alla € A, all u,v € Rep(G) and all ® € Mor(u,v),
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d) [a"(A)(H, ® A)] = H, ® A, for all u € Rep(G).

Proof. - (i) < (i1). Assume that (A4,a) is a G-C*-algebra with (resp. injective) action
a:A— M(cp(G)®A). Notice that the #-homomorphism o” of the statement is well defined

because for all a € A we have a(a) € M(co(G) ® A), so that a(a)(p, ®ida) € B(H,) ® A, for
all z € Irr(G).

a) (resp. a¢ = id4 whenever « is injective. Namely, in this case the formula obtained in
Remarks 1.4.1.3 allows to write

af(a) = ala)(pe ®ida) = (pe ®ida)a(a)(pe @ida) = (EQida)a(a) = a,

for all a € A).

b) For all z,y,z € Irr(G) and all ® € Mor(x,y @ z) we recall from Theorem 1.3.1.36 that
A(T)o® =doT, for all T € B(H,). Hence, for all a € A, we write the following,

@ ida)a(a)(p, ®ida) = (A®ida)a(a)(py @ p. ® ida)(® @ ida)
id, @) ®a)a(a)(py ®p. ®ida)(P ®ida)

idy, @ a)(py @idy, @ida)a(a)(p. ®ida)(P ®ida)

idy. @ a¥)(% () (P ®ida)

(P ®ida)a”(a) =

—~ Y~ —~

¢) Observe that B(H,) ® A c M(B(Hy)® A) = LA(H, ® A), for all z € Irr(G). By the
cancellation property of a we have,

[0 (A)(Hy ® A)] = [a(A) (ps @ ida)(co(G)) ® 1] = [a(A)(co(G)) ® 1](px @ ida)
= co(G)® A(p, ®ida) = H, ® A,

for all x € Irr(G).

Conversely, assume that (o) is a family of *-homomorphisms as in the statement.

zelrr(G)
Then we define the following non-degenerate #-homomorphism

a: A — M(c(G)® A)
a +— afa):= @ a*(a),
zelrr(G)

where we notice that a(a) € ]\7(00(@) ® A).

a) (resp. « is injective whenever every af = id4. Namely, by definition of o we can write

(E®id)ala) = (F®ida) ( o aw(a)) — a(a) = a,

for all @ € A. This clearly implies the injectivity of «).

b) Given y,z € Irr(G), denote by p¥®* € B(H, ® H,) the orthogonal finite dimensional

projection associated to an irreducible z < y @ z such that Y. p¥®* = tdy,@H,- For
rCyz
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every k =1,...,dim (Mor(ac, y@z)) consider a family of intertwiners ®, € Mor(z, y@z)
such that ®}®;, = idy, and >, @, P} = pY@*. From our assumption we can write the

k

following for every k =1,...,dim (Mor(x, s z)) and every a € A

(Pr ®ida)a”(a) = (idy, ® a?)(a(a))(Pr ®ida)
= (P ®ida)a”(a) (P} ®ida) = (idu, ® a¥)(a(a)) (PP} ®ida)
= ) (Pk ®ida)a”(a)(Pf ®ida) = (idu, ® a¥)(a*(a))(pV¥* @ida)
%

= Z (P ®ida)a”(a)(Pf ®ida) = (idy, @ a¥)(a*(a))
%

rCyDPz
= (A®ida) Y. o®(a) (P40} ®ida) = (id, ® a¥)(a*(a))
k
rCyDz
< A@id) Y, o"(0)pr ®ida) = (idm. ®a¥)(a*(a))
TCYDz

Since this is true for any y, z € Irr(G), we deduce that (A@id,q) oa = <idc0(@) ®a)oa

@@ V] = [ & a*(ANBH)GA] = & [ (A)B(H,)® )
= @° B(H,)®A=c¢G)®A4
zelrr(G)

- (it) < (#i1). Assume that (oﬂ)xejw(g) is a family of *-homomorphisms as in the statement.
Given a unitary finite dimensional representation u € Rep(G), consider its decomposition
into direct sum of irreducible representations, so that for every @ — u denote by p% € B(H,,)

the corresponding orthogonal finite dimensional projection such that Y p% = idy,. For

rCu
every k=1,...,dim (Mor(x, u)) consider a family of intertwiners ®; € Mor(x,u) such that
Or®), = idy, and ), P, @) = pY. Consider the family of *-homomorphism (a“)ueRep(G) of
k

the statement.

a) (resp. af =idy).

b) Given u,v € Rep(G), remark that € u @ v is irreducible if and only if 2 c y @ z with
y < u and z < v irreducibles.
Given x < u @ v, denote by pu®’ € B(H, ® H,) the corresponding orthogonal finite
dimensional projection and consider a family of intertwiners @ € Mor(z,u @ v) such
that @} ®), = idy, and Y, @, @} = pu@”, forallk =1,..., dim(Mor(x,u@v)). Given

k

Y < u, denote by py € B(H,) the corresponding orthogonal finite dimensional projection
and consider a family of intertwiners ¥; € Mor(y,u) such that VjW¥; = idg, and
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Z\III\I/;" = py, for all i = 1,...,dz’m(M0r(y,u)>. Likewise, given z < v, denote by
K3
pY € B(H,) the corresponding orthogonal finite dimensional projection and consider

a family of intertwiners W € Mor(z,v) such that W*W’ = idy, and ;W;\Il;* = pY,

forall j =1,...,dim (Mor(z, v)) Remark that the composition H, 2, H,®H, =
UHEQUF
H,®H, — ' H,Q®H, is clearly an operator in Mor(z,z@y) and by construction we
have that >, (V7 @ UF)®, 0% (V) ® ¥;) = idy, ®idp,. Then for all a € A we write
k

rCyDz

a"®(a) = Y (o ®ida)a”(a)(Pf ®ida)
k

rCudu

=31 DL (WU QU @ida) (P @ida)a” (a)(Rf ®ida)
i i k

J
YCu zov TCYDZ

(V)07 @ W, WF @id,)
- Z Z Z (\I’3‘®\I/i®id,4)((\l’;-*®\Ilzk)q)k®idA)am(a)
i j k

YCu zov TCYD2

(PF (V) @ U;) ®ida) (V] @ UF ®ida)
O S (W@ @id)idy, ®a¥)(a*(a))(VF @ U¥)Dy @ ids)

g k
YCu zcv TCYD2

(P} (V) ®@¥;) ®ida) (V] @ UF ®ida)
=3 ) D (VR W @ida)(idy. ® a¥)(a*(a))
- S~

1 J
YCu zcv TCYDz

(T @ UF) 0,05 (V) @ U;) @ida) (U @ UF @id 4)
= N N (V@ U @ida)(idi, ® a¥) (0 (a)) (V) @ UF @ ida)
% J

Ycu zco
= >, (idHu ® (V) ®ida)a® (¥} ® z'dA)) ((\If,- ®ida)a® (a)(UF ®id,4))
i
Ycu zco
= (Nidn, ® (W) @ida)a* (¥} @ida) ) (3 (Vi @ida)a” (a)(VF @ida))
7 i
zZCv ycu

= (idu, ® a’)(a"(a)),

where in (1) we apply the properties of the family (a®),crrr(c) With (V7 @ UF)®y €
Mor(z,z@y).

¢) Let u,v € Rep(G) be unitary finite dimensional representations of G. Given y
u, denote by p, € B(H,) the corresponding orthogonal finite dimensional projection
and consider a family of intertwiners W; € Mor(y,u) such that W*W¥; = idy, and
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Z\I/ U¥ = py, for all i = 1,...,dim<Mor(y,u)). Likewise, given z < v, denote by

pz € B(H,) the corresponding orthogonal finite dimensional projection and consider a
family of intertwiners W € Mor(z,v) such that V*W’ = idy, and Z\Iﬂ U = pY, for all

j=1,... ,dim(Mor(z,v)).
v g
Given ® € Mor(u,v), then the composition H, LN H, 2, H, —% H, is clearly an
operator in Mor(y, z), which is denoted by ®; ;. Then for all a € A we write
(P®ida)a"(a) = (P®ida) Y. (V; ®ida)a(a)(VF @ida)

i

yCu
= Y idy, ®ida)(@V; ®ida)a? (a)(VF ®ida)
yeu
=1 D (W Rida)(RV; @ ida)a? (a) (U @ida)
vtu 2Ly
= D (W ®@ida)(®i; @ida)a?(a)(VF @ida)
seu 2Ly
DS S, @ida)(idy, ® a%)a*(a)(®i; ®ida) (T} ®ida)
veu 22y
Z 2 L ®@ida)a’ (a)(VFOU,UF ®@ida)
ycu zcv

= Z L @ida)a’ (a)(VF @ida) (P ®ida) = o’ (a)(P @ida),
where in (1) we apply the properties of the family (@) errr(c) With ®; 5 € Mor(y,2) =
Mor(y, e z).
d) By the hypothesis of the family (a®),er,r(c) We have,
[0 (A)(Hu @ A)] = | Y (@ @ ida)a"(A)(@f @ ida) (H, @ 4) |

k
TCu

_ [Z (Br ®@ida)a” (A)(BF @ida)(D,D}) @A]
Dy ®ida) |0 (A)(H, ® A)|(¥F @ida)
Py, ®ida)(He @ A) (P ®@ida) = H, ® A,

k
2
k
2
k

for all u € Rep(G).
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Conversely, assume that (a“) is a family of *-homomorphisms as in the statement.

ueRep(G)
velrr(G) satisfies the properties (a), (b), (¢) and (d) of (iii). Let
us check the properties (a), (b) and (¢) of (i3).

In particular, the family (a“’)

a) (resp. af =ida).
b) Given z,y,z € Irr(G) and ® € Mor(z,y @ z) we write the following using the properties
(b) and (c) of (4i%)
(P ®ida)a”(a) = a¥P*(a) (P ®ida) = (idy. ® a¥)(a®(a))(P ®idy),

for all a € A.

¢) [ (A)(H, ® A)] = H, ® A, for all x € Irr(G) because this is true for any unitary finite
dimensional representation.

1.4.1.6 Remark. The preceding characterization yields straightforwardly the following reformulation
of Definition 1.4.1.4. Let G be a compact quantum group and (4, «), (B, 8) two G-C*-algebras. A

~

non-degenerate *-homomorphism ¢ : A — M (B) is called G-equivariant if one of the following
equivalent conditions holds.

i) The following diagram commutes

A . M(B)
a I
M(eo(®) @ 4) —- —a M(co(G)® B)

ii) The following diagram commutes for every z € Irr(G)

@

A M(B)
: :
B(H,)® A P (H:)®B
iii) The following diagram commutes for every u € Rep(G)
A 4 M(B)
- -
B(H,) ® A B(H,)® B

idB(H,)®P
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1.4.1.7 Definition. Let G be a compact quantum group. A graded @—C*-algebra isa @—C*-algebra
(A7 (au>uERep(G)) such that

i) Ais a graded C*-algebra meaning that there exist two closed self-adjoint linear subspaces of
A, A©® and AM | such that A = A @ AM and AW AG) c AG+I) mod2 for a]] 4§ = 0, 1.

ii) for every u € Rep(G) we have a*(A®) c B(H,) ® AW, for all i = 0, 1.

The elements in A% are called homogeneous of degree i, for all i = 0,1. We say that A is
trivially graded if A = 0.

1.4.1.8 Remark. This definition is equivalent to the standard one given Remarks A.3.21. More
precisely, if A = A® @® AW is a graded C*-algebra with graduation automorphism € Aut(A) and
(A, (@")uerep(c)) = (4, @) is a G-C*-algebra, then the following assertions are equivalent.

i) For every u € Rep(G) we have a*(A®) c B(H,) ® A®, for all i = 0, 1.

ii) For every x € Ir7(G) we have a®(A®) c B(H,) ® AW, for all i = 0,1.

iii) For every u € Rep(G) we have (idg(g,) ® 0)a"(a) = a*(0(a)), for all a € A.
iv) For every x € Irr(G) we have (idgq,) ® 0)a”(a) = a®(0(a)), for all a € A.
v) a(AD)  M(co(G) ® AM), for all i = 0,1.

vi) (ich(@) ®6b)a(a) = a(f(a)), for all a € A.

Namely,
- (i) < (i1). The implication (i) = (ii) is obvious. For the converse, recall from Proposition
1.4.1.5 that given u € Rep(G), we have

a¥(a) = Z (P, ®ida)a”(a)(Pf ®ida),
k

where &y € Mor(z,u) for all k = 1,...dim( Mor(x,u)) with © < u are the family of inter-

twiners associated to the decomposition of of u into direct sum of irreducible representations.
- (411) < (iv). The same argument yields this equivalence.

- (i) < (i14). Since A = A© @AM is a graded C*-algebra with graduation automorphism
0 € Aut(A), we know that

A —fae A|60(a) =a} and AV ={aec A|0(a) = —a}

Assume that (i) holds. Given a € A, write a = z + y with z € A® and y € AD. By
assumption we have that o*(z) € B(H,) ® A®) and a*(y) € B(H,) ® AN, Hence,

(idp(m,) ® 0)a*(a) = (idpn,) ® O)a" (x) + (idsm,) ® 0)a" (y)
= a'(z) —a"(y) = a"(z —y) = a"(0(a)),



1.4. Actions of Quantum Groups 99

which yields (iii). Conversely, assume that (iii) holds. Given a € A®) (resp. a e AM), we
have §(a) = a (resp. 6(a) = —a). Hence the relation (idg(g,) ® 0)a"(a) = a*(0(a)) from the
assumption becomes (idg(q,)®0)a"(a) = a*(a) (vesp. (idg(m,)®0)a"(a) = —a*(a)), which
means that a*(a) € B(H,) ® A® (resp. a*(a) € B(H,) ® AM).

- (i) < (v). Recall from Proposition 1.4.1.5 that

ala) = @° o“(a) and o”(a) = ala)(p; ®ida),
zelrr(G)

for all a € A and x € Irr(G). Hence the equivalence (ii) < (v) is obvious.

- (v) < (vi). This has been observed in Remarks A.3.21.

By virtue of the preceding characterization of action of a discrete quantum group on a C*-algebra,
we shall give explicit expressions in coordinates. R

Let us introduce some useful notations for the sequel. Let o be an injective action of G on A,
which is equivalent to give a family of *-homomorphisms (a"),cpgep(c), @" : A — B(H,) ® A as
in Proposition 1.4.1.5. If {£{',..., &y } is an orthonormal basis of H,, then we define the matriz
coefficients of o with respect to u € Rep(G) as follows

aii(a) == (wggf}b ®ida)(a"(a)) € A,

forallae Aand alli,j =1...,n,. We observe the following elementary facts.

If {m};}ij=1,..n, are the matrix units in B(H,) associated to the basis {¢,..., &, }, then
we have the following expression in coordinates

at(a) = Y mi; ®at;(a),
ij=1
for all a € A.

The maps aj; = (w5iu75;a ®ida)oa™: A—> A are completely bounded, for all i,j = 1,...,n,
and completely positive whenever i = j.

Since a* is a *-homomorphism for all uw € Rep(G), then for all a€ A and all i,j =1,...,n,
we have o ;(a)* = af,;(a*). Namely,

ol j(0)* = ((wer.r ®ida)a"(a)" = (wfs ex ®ida)a" (a*) = (wey » ®ida)a"(a*) = af(a*)

Since a* is a *-homomorphism for all u € Rep(G), then for all a,be A and all i,5 =1,...,n,

N
we have o ;(ab) = 3 of;(a)ay ;(b). Namely
k=1

Ny Ny

(X mt @at,@) (X mi; ©az,0)

i,r=1 s,j=1

= 2, miyme; ®at,(a)ay;(b)

,7,5,]

o (ab) = a*(a)a(b)

I

nu n‘u,

Z 6T7Sm?,j ®azr(a)a?,j(b) = Z Zmﬁj®a§‘,k(a)a%,j(b)

©,7,8,] ij=1 k=1
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- If (A, (@")ueRep(c) is a graded @—C*—algebra with graduation automorphism 6 € Aut(A), then
the formula (idg(py,) ® 0)a” = o o 0, with = € Irr(G) can be written in coordinates with
respect to a canonical orthonormal basis. More precisely we have the following formula,

0(ai;(a)) = o ;(6(a)),
foral z € Irr(G),a€ A, i,j=1,...,n,
- Given an irreducible representation x € Irr(G), then the conditions (b) and (c) of the

family (@")ucrep(c) can be written explicitly in coordinates for the canonical intertwiner
®, € Mor(e,z@T). Indeed, if {£7,...,&) } is an orthonormal basis of H, that diagonalizes the

operator Q. and {wf,...,w;; } is its dual basis in H,, then, using the coordinate expression
of @, from Remarks 1.3.1.31, a straightforward computation yields that the formula

(@, @ ida)a(a) = (idy. ® a®)(a™ (@) (@, @ida),
for all a € A can be written as

Z \/F : 8ij ida

j,k =

*

Analogously, the corresponding formulas for ®z € Mor(e,Z @ x), ®% € Mor(x @ T,€), % €
Mor(Z @ x,€) can be written respectively as follows

Z\/)T zkoajk_élj id A; Z Y ocv?jz&j id4 and Z ‘)\ k, oay ;= 0;jida
k=1

1.4.1.9 Remark. 'V e M(C ® CO(@)) >~ Lo(C® co(@)) is a unitary representation of G on C
(recall Remarks 1.3.1.8), where C is any C*-algebra (or even more generally, when C' is any Hilbert
module), then we use the analogous notations. Namely, we put

VZJ = (id¢o ®W5z’£m) (idc ®pw) € M(C),
for all z € Irr(G) and all 4,5 = 1,...,n,. More generally, if u € Rep(G), then we put

VY = ) (ide @uwen e ) (ido @ By)V (ide @ @) € M(C),
k

zCu

forall r,s =1,...,n, where we follow the usual notations: p? € B(H,) is the corresponding orthog-

onal finite dimensional projection such that >, p¥ = idy, and for every k = 1,...,dim (Mor(z, u))
zCu

consider a family of intertwiners ®; € Mor(z,u) such that ®}®;, = idy, and Y @, PF = p¥.
%
1.4.1.10 Proposition. Let G = (co(@), 3) be a discrete quantum group and C any C*-algebra.

i) If Ve M(C®co(G)) is a unitary representation of G on C, then there exists a non-degenerate
x-homomorphism ¢y : Cp(G) — M(C) such that

ov(wiy) = Vi,
forallx e Irr(G) and alli,j=1,...,n
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i) If ¢ : Cp(G) — M(C) is a non-degenerate #-homomorphism, then there exists a unitary
representation of G on C, Vi € M(C ® ¢p(G)) such that

(V)i (c) = o(wi;)(c),
forallce C, x € Irr(G) and alli,j =1,...,ny.

Proof. i) Let Ve M(C® co(@)) be a unitary operator such that (idc ® ﬁ)V = V12Vi3. On the
algebraic level, Pol(G), we define the linear map ¢y on the basis as follows
qbv(wf’j) =V € M(C),
for all z € Irr(G) and all 4,5 = 1,...,n, (recall, by Proposition 1.3.1.28, that the set of matrix
coefficients of classes of irreducible finite dimensional representations forms a basis of Pol(G)).

Let us show that ¢y is a non-degenerate *-homomorphism. Take orthonormal basis {¢7,...,&5 }
and {¢f,...,&} } of H, and Hy, respectively and denote by {wf,...,wy }, {wf,...,w} } the
respective dual basis in H, and Fy, respectively. By Remark 1.3.1.12 and Remark 1.3.1.19 we
know that if z,y € Irr(G), i,j =1,...,n, and k,l = 1,...,n,, then we have

)* = wzj7

x y DY x
wy ; wy = wp Y and (wy;

where 7 := (i, k) and s := (j,1) are the indices corresponding to the usual basis of the tensor
product H, ® H,, that is, {¢*®¥ := F @ & }iz1,.. n, and {(¥PY := 3 ®& =1, .-
I=1,...,

Moreover, let us decompose x @ y into a direct sum of irreducible representations: if z ¢ x @y,
denote by p*®¥ e B(Hgy) the corresponding orthogonal finite dimensional projection such

that . p?@¥ = idp,., and for every k = 1,...,dim (Mor(z,x@y)) consider a family of

zCu

intertwiners ®5 € Mor(z,z @y) such that ®F®;, = idy, and > &, @F = pZ®Y. Hence, we write
%

ov(wi;)ov (wi ) = Vi Vi) = (idc @wer ¢2)V (ide ® pa)(ide @ weg 7 )V (ide ® py)
= (idc Qer gr @ ez ex)Vi2Vis(ide @ pr @ py)
= (ide @ wer 2 @wez ¢7)(ido ® A) (V) (ide @ pr @ py)

= D) (ido ®@uer ez @ wez ) (ide ® A)(V)(ide ® 2 PF)
zc’:z@y
> (ido @ wer g2 @z &) (ide @ D)V (ido ® )
zclaj@y
Y (ido @weren cvov)(ide ® @1V (ido ® ¥F)
k
2CT@yY

= VI = ¢y (wiDY) = dv (wi; wi,)



102

ii)

CHAPTER 1. Background

ov (wi;)*) = pv(wi;) = V& = (id @ wur we)j (V) (id ® pz)
= (id @w(ez)x (e2)% )1 (V)(id ® pz)
— (id@w} ¢ )V*(1d @ pr)

= (@ we &)V (id@pe) ) = (V)" = b (uf,)*,

which shows that ¢y is a *-homomorphism.

Finally, since V' is a unitary operator, we know that V(C®co(G)) is linearly dense in C ®CO(@),
so that (id@wgf,gf)V(C ®pz) = ¢v(wi,;)(C) is linearly dense in C' for all x € Irr(G) and all
i,j =1,...,ny. In other words, the map ¢v : Pol(G) — M(C) is non-degenerate and we
extend it into a non-degenerate *-homomorphism ¢y : Cp,,(G) — M(C).

Let ¢ : Cpu(G) —> M(C) be a non-degenerate #-homomorphism. If Wg € M (Cyn(G) ® ¢o(G))
is the universal representation of G (recall Note 1.3.2.8), then we put

Vs = (¢ ®@id)WVg

Since ¢ is a non-degenerate *-homomorphism and Wg is a unitary operator, Vy is a unitary
operator as well. The relation (ide ® A)Vy = (Vy)12(Vg)13 holds thanks to the analogous

relation for Wg. Namely,
(ido ® A)Ws = We)12(Wahs
= (¢ @id ®id)(idc ® A)Wg = (¢ @ id @ id)(We)12(We)13
< (ide ® AV = (Vy)1a(Vihs
Routine computations show the relation of the statement (V)7 ;(c) = ¢(w?;)(c), for all ce C,

z € Irr(G) and all i,5 = 1,...,n,. The proof is therefore complete.
[ |

1.4.2 Spectral theory for Compact Quantum Groups

Classical spectral theory for compact groups consists in the study of classification of ergodic actions
on von Neumann algebras through the irreducible decomposition of the group representations.
It was deeply studied by R. Hgegh-Krohn, M. B. Landstad and E. Stgrmer in [84] and by A.
Wassermann in [223], [221], [222]. The quantum counterpart was initiated by F. Boca in [25] and
by M. B. Landstad in [118] and further studied by R. Tomatsu in [190] where he gives the complete
classification of ergodic actions of SU,(2) and by J. Bichon, A. De Rijdt, S. Vaes in [23] where they
introduce the notion of monodial equivalence in order to produce new ergodic actions.

Hence, spectral theory shall be a useful strategy for the study of torsion-freeness in the context

of quantum groups. We refer to the original articles mentioned before or to the survey [49] for more
details.
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1.4.2.1 Definition. Let G = (C(G),A) be a compact quantum group and A a (resp. unital)
C*-algebra. We say that A is a (resp. injective) right G-C*-algebra if there exists a non-degenerate
*-homomorphism 0 : A — M(A® C(G)) such that

i) (resp. ¢ is injective),

ii) d intertwines the co-multiplication meaning that the diagram

A d M(A® C(G))
5 0®idc(c)
M(A®C(G)) e MA®C(E) ®C(G))

is commutative,

iii) ¢ satisfies the cancellation property meaning that

[6(A)(1®C(G))] = A®C(G)

Such a homomorphism is called a (resp. injective) right action of G on A or a left co-action of
C(G) on A.
1.4.2.2 Note. A left action of G on A (or a right co-action of C(G) on A) is a non-degenerate
x-homomorphism ¢ : A — M(C(G) ® A) satisfying the analogue properties of the preceding
definition.

In the present thesis, an action of a compact quantum group G is supposed to be a right one
unless the contrary is explicitly indicated. Hence, we refer to such actions simply as action of G.

1.4.2.3 Remarks. 1. f G = (C(G),A) is a compact quantum group, then every C*-algebra A is
equipped with an action of G, namely the trivial action defined as

trv: A — MA®C(G))
a — trv(a):=a®le)

2. f G = (C(G),A) is a compact quantum group, then C(G) is naturally a G-C*-algebra via
the co-multiplication. More precisely, the co-multiplication

A:C(G) — CG)®C(G)
is by definition an action of G on A. It is called regular action of G.

3. f G = (C(G), A) is a compact quantum group and u € B(H)®C(G) is a unitary representation
of G on a finite dimensional Hilbert space H, then B(H) is naturally a G-C*-algebra via the
adjoint action with respect to u. More precisely,

Ady,: B(H) — B(H)®C(G)
T > Adu(T) 2:’LL(T®10(G))’LL*

is an action of G on B(H).
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1.4.2.4 Definition. Let G = (C(G),A) be a compact quantum group and (4,9), (B,d’) two
G-C*-algebras. A non-degenerate *-homomorphism ¢ : A — M (B) is called G-equivariant if the
following diagram commutes,

A - M(B)
5 &
M(A® C(G)) — o> M(B®C(G))

1.4.2.5 Remark. On the one hand, the injectivity condition of a compact quantum group action is a
delicate axiom that some authors include in the definition and others don’t (we refer to [174] for a
detailed exposition of this subject). Nevertheless, when we work in the context of spectral theory,
we can prove (see Proposition 3.22 in [49]) that if § is not injective, we can restrict ¢ to an injective
action of G on A/ker(d) so that (A,5) and (A/ker(d),d)) have the same algebraic core.

On the other hand, according to Theorem 1.3.1.32 there are two pictures that represent the
same compact quantum group G, the universal one G,,, and the reduced one G,. In this way, it is
important to specify if an action of G is an action of G,, or an action of G,. Let us explain this
problem more precisely.

Let A be a C*-algebra and dp: A — A ©® Pol(G) ¢ A® C(G) a co-action of Pol(G), which
means that dg is a *-homomorphism such that

i) do intertwines the co-multiplication meaning that (6o ® idpy(g))do = (ida ® A)do,
ii) (idA ®E) 0dg =1ida.

In this situation, it is clear by universality that J; extends to a *-homomorphism ¢ : A —
A®C,, (G) which intertwines the co-multiplication of G as in Definition 1.4.2.1. Let us show that the
above condition (7¢) implies the cancellation property for ¢. It is clear that dg(A)(14 ® Pol(G)) <
A® Pol(G). Now, given a € A we write

m(sz ® S)((;O ® idpol(G))éo(a) = m(sz ® S)(ZdA ® A)(So(a) =a ® 1Pol(G)
< do(a@))(1a® S(a)) = a® lpo ),

where m : Pol(G) ® Pol(G) —> Pol(G) denotes the multiplication map and S : Pol(G) —
Pol(G) denotes the antipode of the =-Hopf algebra Pol(G) (see Proposition 1.3.1.28). Notice
that we have used as well the Sweedler notation as explained in Section 1.1. This shows that
30(A)(14 © Pol(G)) = A® Pol(G) and the cancellation property for ¢ follows.

In other words, Jy extends to an action of G,, on A. Observe that we can not guarantee in
general that Jy extends to an action of G,. However, the spectral theory for compact quantum
groups allows to solve this issue. Namely, given a G-C*-algebra (A, d) as in Definition 1.4.2.1, the
action § restricts to a co-action dpy ) of Pol(G) on the algebraic core of A, Ag (see Proposition
1.4.2.12). This co-action extends to an (injective) action of G,, on C*(Ag) and also to an (injective)
action of G, on some C*-algebra Ag,,. In both cases, the algebraic core and the fixed points space
are preserved. We refer to Theorem 4.2 and Theorem 4.6 in [49] for a proof of these results.
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1.4.2.6 Definition. Let G = (C(G), A) be a compact quantum group and (A4, §) a G-C*-algebra.
The 0-fixed points space of A is the C*-algebra defined as

A :i={aeA| ) =a®lee))}
If A is unital, we say that
i) ¢ is an ergodic action if A% = Cl4.
ii) § is a torsion action if § is ergodic and A is finite dimensional.

1.4.2.7 Remark. It G = (C(G), A) is a compact quantum group and u € B(H) ® C(G) is a unitary
representation of G on a finite dimensional Hilbert space H, then by definition of adjoint action it

is clear that
B(H)*% = End(u)

1.4.2.8 Note. For simplicity of the exposition, all G-C*-algebras considered in this section are
supposed to be unital for the development of the spectral theory for compact quantum groups.

1.4.2.9 Proposition. Let G = (C(G),A) be a compact quantum group and (A,d) a G-C*-algebra.
There always ezists a non-degenerate d-invariant conditional expectation

Es: A — A
a +— Es(a):= (ida ® hg)d(a)
Moreover, Es is a state on A whenever § is ergodic and it is denoted by h4.

Proof. First of all, let’s check that Es is well-defined. Namely, given a € A we write
§(Es(a)) = 6((ida ® he)d(a)) = (ida ®ide(e) ® he) (0 @ ide(c))d(a)
= (ida ®ido(c) ® he)(ida ® A)d(a) = (idA ® ((ide () ® he) © A))5(a)
— (ida ® helow)d(a) = Bs(@) ® 1o

Next, since § is a *-homomorphism and hg is a state, it is clear that [Es is a completely contractive
positive map. It is straightforward to see that Es is a projection and a A°-bimodule map. Namely,
given a,a’ € A% and c € A we write

Es(a) = (ida ® hg)d(a) = (ida ® hg)(a® IC(G)) =aqa
Es(aca’) = Es(a)Es(c)Es(a’) = aEs(c)a’

Remark that E; is also a non-degenerate map because if {e;, }nen is an approximate unit for A,
then for every b € A we have

lim E(;(en)b = nlglgc(ZdA ® h@,)(é(en)(b@) 10(@))) = b

n—oo
Let us check the d-invariance of Es. Given a € A we have to show that (E; ® idc(g))d(a) =
Es(a) ® 1¢(g). Namely,
(Es ®idoc))d(a) = ((ida ® he)d @ idc(c))d(a) = (ida @ he ® idc()) (0 ®ido(c))d(a)
= (ida ® hg ®ido(c))(ida ® A)d(a) = (ida ® (he ®idc(s))A)d(a)
= (ida ® h@lc(g))5(a) = (ida ® hg)o(a) ® 1C(G) =Es(a)® lew)

Finally, suppose that ¢ is an ergodic action. In this case we have A% = Cl4 and the conditional
expectation Es becomes a state because Es(14) = 1 and it is completely positive (so positive). W
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1.4.2.10 Definition. Let G = (C(G), A) be a compact quantum group and (A, §) a G-C*-algebra.
Given an irreducible representation x € I'rr(G), the z-isotypical component of § or the z-spectral
space of ¢ is the following vector space

Mor(x,6) :={T : H, — A | T is linear such that 6(7'(§)) = (T ® idc(g))w* (§{ ® 1o(g))}
By abuse of language, we call z-spectral space of § also the following vector subspace of A
Ay = span{T(§) | £ € Hy, T € Mor(z,9)}

The Podles subalgebra of A or algebraic core of A is the following vector subspace of A
Ag := span{A; | x € Irr(G)}

1.4.2.11 Remarks. 1. By definition it is clear that the e-spectral space of ¢ is exactly the fixed
points space of A, that is, Mor(e,§) = A°.

2. Given an irreducible representation = € Irr(G), there exists a natural identification
K, =~ Mor(x,6),

where K, == {X e H, ® A | (id®6)(X) = [X],, [wx]w}. This identification is done by
associating to any X € K, the following linear map

Txl Hx — A
£ — Tx(§:=X({®1a)

3. Given an irreducible representation x € Irr(G), the z-spectral space of §, A, is a closed
subspace of A. Indeed, let {£f,...,&; } be an orthonormal basis for H, that diagonalizes the
canonical operator @, with positive eigenvalues {\7};—1, ., and define the following element
of C(G) (actually, an element of Pol(G))

x

Ny

Xa = dimg (1) Y JwE (g, 1(er) € C(G),
=1

where w%,(Qm)*l(éf) = (Wer (Qu)-1(er) ®ido(e))(w®), for all i = 1,...,n, (recall Remark
1.3.1.8 for these notations). Notice that (Q,) (&) = 3¢ (recall Remarks 1.3.1.31), so that

wgz (@a)-1(e5) = /\%wgﬁg, for alli =1,...,n,. Define now the following linear map

E,: A — A
a — E(a):= (ida®hg)(6(a)1a®x3))

We claim that
A, ={ae A| E,(a) = a},
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which yields the closedness of A, in A. Namely, given any linear map
T € Mor(x,§) and any vector £ € H, we have

E(T(€)) = (ida @ ha)(5(T(£)) (14 ® x3))
= (ida ® he) (T @ ide(s))w” (€ ®ide(c) (14 ® X3))

N

= (T® he)u” (€@ dimg(@) Y, (0F: (0.)+(er)")

=1

= (T®hg) (Zml,k ® wfk) (§ ® dimq(x)f )\%(wggz)*)
1k i=1"%

; 1 xT xT
= ZT(ml,k(f)) ® dimg(z) 2 Ajh@(wl,k(wgf,gf)*)
Lk 1,k
1 01,i(Qa)ik

= 2T (mu () ® dima () 2, 35 =5 s

1k

mik(§)) ®Z%(Qr)l,k
1,k !

1 B
mdlmq(l’) =T(¢),

which shows that A, < {a € A | E.(a) = a} by linearity. Conversely, given any a € A such
that E,(a) = a and any n € H, define the following linear map

Lk

2T

Lk

27
k

M) @ Y5 Qe =T ©
k

T: H, — A
§ > T(&):=(ida®hg)(0(a)(1a ® (w,)*)),

so that we have

o(T(S))

6((ida ® hs)(6(a) (14 ® (wE,))))

= (ida ® idc(e) ® ha) (6 ® ide(c))d(a)(1a ® 14 ® (w,)*)
(idA X idC(G) X h@)(idA X A)é(a)(lA ®1a® (wgm)*)
(14 ® ((idee) ® he) o A) )5(a)(1a ® (wE,,)*)

Mg

= Z (ZdA ® ZdC(G) ® h’G) [6(0/)]13(114 ® w?i,ﬁ ® (wghr])*)

i=1

= Y T(E) ®uE ¢ = (T ®ide)w” (€@ le)),

i=1
where {£7,...,& } is an orthonormal basis of H,. This shows that 7" € Mor(z,0). Since X,

is a linear combination of w¢,’s, then we deduce that E,(A) < As,.

1.4.2.12 Proposition. Let G = (C(G), A) be a compact quantum group and (A,d) a G-C*-algebra.
The algebraic core of A, Ag, is a dense x-subalgebra of A which is unital whenever A is unital.
Moreover, we have that
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i) the action 0 : A — A® C(G) restricts to an action of (Pol(G),A|) on Ag, say
5P0l(G) : .AG I .AG ® POl(G),
which is ergodic whenever § is ergodic.

it) the canonical conditional expectation Bs is faithful on Ag. Consequently, the algebraic core of
A admits the following spectral decomposition

AG: @ Az

zelrr(G)

Proof. First of all, if A is unital, then Ag contains the unit of A because given the trivial
representation € € Irr(G) (which is represented by the element 1 ® 1¢g) € C® C(G)) the

linear map
T.: C — A
z > T(2):=2z-14

is clearly a linear map in Mor(e,d). Indeed,

0(Te(2)) = 6(2-1a) = 2(1a ® L)) = (Te ®ideo(c)) (1 ® leo(c)) (2 ®ide(s))

Hence, 14 = T.(1) € Ag. Next, given two irreducible representations z,y € Irr(G), consider the
elements a := T'(£),b := S(n) € Ag with T € Mor(x,0), S € Mor(y,d) and { € H;, n € H,. Note
that

ab:=mo(T®S)(E®n),

where m denotes the multiplication homomorphism m : AgOAg —> Ag. Observe that mo(T®S) €
Mor(z @y, 9) since for every £ € H, and n € H, we have

§(mo(T®S)(E®@n) =d(T(€)5(S(n) =

= (T ®idoc))w* (€ @ ide(e)) (S ®idoe))w? (n @ ide(g))

= ([T]1[S]2®idC(G))([ww]ls[wy]%)(g@77®idC(G))

= (mo(T®S)Ridowe))(w” @w)(®n®ide))

This shows that Ag is a subalgebra of A. Next, given z € Irr(G) and a := T(£) with
T € Mor(z,8) and £ € H,, we define a* := TT(£)*, where Tt : £* — (T(£))*, for all £ € H,.
Observe that
BT (%) = 6((T(€)*) = ((T ®ideey)u (€ ®ideey))
= (T ®ide ) w” (£* @ideg)),

so that n* — T'(n)* is in Mor(Z,d). This shows that Ag is a =-subalgebra. Finally, Ag is dense in
A. Indeed, by cancellation property of § and since Pol(G) is dense in C(G) we have

A=AQ®Cc ARC(G) = [6(A)(1® C(G))] = [6(A)(1 ® Pol(G))]

This implies that A © [(ida ® hg)d(A)(1 ® Pol(G))]. By Remark 1.4.2.11 the space (ida ®
hg)6(A)(1 ® Pol(G)) is contained in Ag < A, whence Ag is dense in A.
Moreover,
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i) let us show that the action § restricts to an action épy ) : Az — Ag © Pol(G), which is
ergodic whenever § is ergodic. Namely, given an irreducible representation x € Irr(G) consider
the element a := T(§) € Ag with T € Mor(x,6) and £ € H, and write

§(a) = 6(T(8)) = (T ®ide(cy)w” (§ ®idee)) € Az © Pol(G) = Ag © Pol(G),

so that p,y(g) is well-defined and it is straightforward that § intertwines the co-multiplication
of Pol(G). Let us check the co-unit condition, that is, the formula

(ida, ®€) 06 = ida,,

where ¢ is co-unit of Pol(G). Given an irreducible representation = € Irr(G) consider the
element a := T(§) € Ag with T € Mor(x,0) and £ € H, and write

(idas ®€)0(T(§)) = (ida, @) T ®ido))w” (€ ®ide(s))
= 7((idn, ® )" (E @ ide(e)) = T(E),

where the last equality can be shown by taken an orthonormal basis of H, and by applying
the definition of € from Proposition 1.3.1.28.

ii) let us show that the canonical conditional expectation Ej; is faithful on Ag. Namely, let a € Ag
be an element such that Es(a*a) = 0. Consider any positive linear form ¢ : A —> C and write

0= ¢(Es(a*a)) = 6((ida ® hg)d(a*a)) = he((¢ ®ido(e))d(a*a)),

where we observe that (¢ ® idc(g))d(a*a) € Pol(G) because d restricts to an action of
(Pol(G),A|) on Ag. Besides, it is a positive element (because ¢ is positive) and hg is a
state which is faithful on Pol(G), so it must be (¢ ® idc(g))d(a*a) = 0. This is true for every
positive linear form ¢ and 6(a*a) = §(a)*d(a) is a positive element in AQ C(G). Hence it must
be d(a*a) = 0. Apply the co-unit of Pol(G): 0 = (ida ® £)d(a*a) = a*a, so it must be a = 0.
Finally, remark that we have shown by the way that 6(A,) < A, @ Pol(G). Hence, given two
non-equivalent irreducible representations, say x,y € Ir7(G) we have that Es(a*b) = 0, for all
a € A, and all b € A, thanks to the orthogonality relations, which yields the decomposition of
the statement.

One of the main achievement in spectral theory of quantum groups is the following theorem
due to F. Boca [25] and improved later by in J. Bichon, A. De Rijdt and S. Vaes in [23] and by R.
Tomatsu in [190]. See for instance Theorem 6.11 in [49] for a proof.

1.4.2.13 Theorem. Let G = (C(G),A) be a compact quantum group and (A, ) a G-C*-algebra.
If 6 is an ergodic action and x € Itr(G) is an irreducible representation of G, then the x-spectral
space of 0, A, is finite dimensional and we have

dim(A;) < dimg(x)

Next, it is advisable to establish some notations and auxiliary results, which will be applied
later on in this dissertation. It is important to recall notations and formulas of Remarks 1.3.1.31.
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1.4.2.14 Definition. Let G be a compact quantum group and (A,d) a unital G-C*-algebra.
Consider irreducible representations of G, say x,y, z € Irr(G) and an intertwiner ® € Mor(z, zQy).
Given X € K, and Y € K, we define their spectral product with respect to ® as the element

XQY = (X1, ],s) (@@ 1) € K-,

where [X ] and [Y] are the corresponding legs of X and Y in H, ®Fy ® A.

13 23

1.4.2.15 Remarks. 1. Let us check that X ® Y is indeed an element of the z-spectral space K,
o

(id® (X QY) = X]15[Y],5) (@ ®14)

1) ([ ®0)([Y],;)

]14[[ ] ]23[ ]2 (®®1a)
Y]23] [ ]1[ y]24q)®1‘4
|2s]
los]

(P®14)

23[ W ]124((1) ® 1A)

2. Given X € K, and Y € K, the analogous computation as above yields the following formula

(@) ([X]4[Y]ay) = [[XT¥ oo, [0"®] 5.

where the legs of the right hand side of the identity are considered in H,q, ® A ® C(G).
Hence, the decomposition of z @y in direct sum of irreducible representations, say {zx}x=1,.. . r

for some r € N yields that
[X]13[Y]23 € k(:Dl K

T
Namely, by virtue of the decomposition z @y = @ z, we have the identification H,q, =
k=1
H.,®..®H. . If{pp}lr=1,.r < B(Hagy) denotes the set of mutually orthogonal finite-

dimensional projections with sum idpy,g, , then by construction we have
wk = wmey(pk ® 1C(G))7 Vk=1,...,r

T

TV ]y = 33000 10 ([XDal ) = 3008 1) (X[ L) O 010,

k=1

where we remark that
(14©5) (1) ([X] 5[V ], ) 0 © 1)) = [(or @ L) (X1, [V s | [

for all k = 1,...,r thanks to the formula above.
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1.4.2.16 Definition. Let G be a compact quantum group and (A4, J) a unital G-C*-algebra. Given
an irreducible representation z € Irr(G) and an element X € K, we define its spectral conjugate

as the element
X# = (x0J,®ids)(X*) € Kz

1.4.2.17 Remarks. 1. Let us write in coordinates the spectral conjugate X# (recall Remarks
1.3.1.31). Namely, given an irreducible representation of G, say = € Irr(G), fix an orthonor-
mal basis {¢7,...,& } of H, that diagonalizes the canonical operator Q, = Jj.J, and let

{wf,...,wZ } be its dual basis in the dual space H,.

— N
If the coordinate expression of an element X € K, ¢ H, ® A is given by X = > w¥ ® a;, for
i=1

some a; € A, for all i = 1,... n,; then we have

X* = iJA&f)*@a;“ = Z(\/T &) @a
i=1

i=1
where {£7,. .. ,ffw} is an orthonormal basis of Hz as in Remarks 1.3.1.31.

2. We must check that X# is indeed an element of the Z-spectral space Kz.
(id @ §)(X#) = (id®6)(in(£f)* ®az") = ZI«/E &)* ®d(af)
- 5P @sta = (S o ste0)’
= ((id@é)(X))* = ([X]lz[wz]m)* = ([X]m)*([wz]w)*
= (iwf®ai®1c<c>>* [0
i=1
= i (M>* ® a;.k ® IC(G) [wﬂ 13
i=1 W
= i(ﬁ &) ®af @l [w],
i=1

= ZJ *®af ®lee) [wjlg [ #]12[1‘]5]13

3. Moreover, the association X —— X7# is anti-linear thanks to the anti-linearity of .J, and the
vector space structure of the dual space H,. Indeed, given A € C we write
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ne #
(A X)# = ()\ ;wl ®al) (121/\ w; ®al)
(:>f J.(% €5 ZAJ () @ a?

where in (1) we use the fact that the transition between H, and HF is anti-linear (recall
Section 1.1). Notice that the same formula is true if we introduce the scalar A € C in the
second term of the tensor product.

4. Observe that we can consider the canonical intertwiners ®, € Mor(e,z @ T) and Pz €
Mor(e,Z @ z). In this case we have by construction that

X®X”"eK, and X7 ® X € K,
D, o

Recall that, by definition, we have K. = A°. Hence, if ¢ is an ergodic action of G on A, we
have K. (Cl 4 and X ® X#, X# ® X are scalar multiples of 14. More precisely, we have

ac

the following coordlnate eXpI“ebblOIlb

X@X#—Zw ® Jo(&5)* 0 ©, ® a;af Zw ® \/)\75] o ¥, ®a;a}

=Zw ®\/Fw od, ®al

:Ew ®\/)\7w o (Z\//\ngk ®fk)®az
:Zf51k®\/76]k®al Z)\wai

X#®X_ZJ (E)* @ 0Pz ®@aka; = Y (/A% £)* @) 0 Pz ®@ata
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1.4.2.18 Lemma. Let G be a compact quantum group and (A,d) a ergodic G-C*-algebra. Given

irreducible representations x,y € Irr(G) and non-zero elements X € K, Y € K, ; then there exist

an irreducible representation z € Irr(G) and an intertwiner ® € Mor(z, z®y) such that X ®Y # 0.
o

Proof. Let’s fix orthonormal basis {¢7,...,&; } of H, and {¢{,...,&) } of H, that diagonalizes
the canonical operators Q, = JXJ, and Q, = J;" Jy, respectively; with eigenvalues {A\7}i—1  n,
and {gf}j=1, . n,, respectively. Denote by {wf,...,wy } and {wf,... ,wy } the corresponding dual
basis of H, and Fy, respectively. The elements X and Y are written with respect to these basis
under the form

Ny Ny
X = Zw'f@ai and Y = Zw?@bj,
i=1 j=1
for some a;,b; € A for each ¢ = 1,...,n, and j = 1,...,n, so that their spectral product with
respect to ® is given by
X%Y :ng’(@wgofb@aibj
i,

Suppose that for all irreducible representation z € Ir7(G) and all intertwiner ® € Mor(z, 2 @ y)

we have X ® Y = 0, that is,
d

X%Yz%}wf@w?o@@aibj =0

Multiplying by ®* ® 14 by the right, the equality still holds

Y wf @w? 0 8B* ®aib; =0 (1.4.1)

2]

This is true for every irreducible representation z € Irr(G) and every intertwiner ® € Mor(z, &
y). Given the unitary representation z@y, let’s consider its decomposition in direct sum of irreducible
representations (recall Proposition 1.3.1.21). Given z c x @ y an irreducible representation of
this decomposition, denote by p?®¥ € B(H, ® H,) the corresponding orthogonal finite-dimensional
projection such that
Z pi® = idy,en,
zCx@y

For every k = 1,...,dim(Mor(z,z@y)) consider a family of intertwiners ®;, € Mor(z, 2 ©y)
such that
dim (Mor(z,z@y))
OFDy, = idy. and D 0,0 = pIo
k=1
Hence we write down the identity (1.4.1) above for these intertwiners ®j for each k =
1,..., alim(Mor‘(z7 T y)) and sum over k. We get

Zw';” ®wy o p™ ®@ab; =0

4,3
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Next, we can sum over z C z @y (since this is true for every irreducible representation of G).
We get
Dwf @w! ®ab; =0, (1.4.2)
i
which implies that a;b; =0, foralli=1,...,n, and all j =1,...,n,.
Since § is an ergodic action by assumption we have that

Ny
X*®X=)afa;=A1lagandY Q Y*# = ) ¥ b;b* 14,
q(?; ZZ; i A ® ZM =pla

for some A, p € C. Since X and Y are supposed to be non-zero, there exist at least one i = 1,...,n;

and one j = 1,...,n, such that a; # 0 and b; # 0. Consequently, X# ® X#0and Y ® Y# # 0.

y

In other words, we have A % 0 and p # 0. Using equation (1.4.2) above we get

0#Ap= (Z a; az) (Zué’ bjb;’-‘> = Z,ug ajaibjby =0,
i= .3

a contradiction. [ |

1.4.2.19 Remark. It is important to observe the following. The argument used in the proof of
the preceding lemma shows that the irreducible representation z € Irr(G) and the intertwiner
® e Mor(z,x@y) such that X ® Y # 0 are related to x @y in the following way. Given z C z @ ¥,

denote by p*®¥ € B(H, ® H,) the corresponding orthogonal finite dimensional projection and
consider a family of intertwiners ®; € Mor(z,z @y) such that ®F®; = idy, and > &, P} = pr®Y,
k

forallk=1,...,dim (Mor(z7 T y)) The preceding lemma guarantees that for every z c x @y
there exists an intertwiner ®;, € Mor(z,2 @ y) such that X ® ¥ # 0.
Dy

1.4.3 Induced actions from Discrete Quantum Subgroups

Induction functor concerning quantum groups is a delicate notion whose more general definition for
locally compact quantum groups can be found in Theorem 7.2 of [194]. However, the treatment of
the compact/discrete case yields a more concrete description (see Section 3 of [208] for a detailed
exposition). Here we include an overview of this approach for the convenience of the exposition.
First of all, we need a notion of quantum subgroup. For the compact case, this notion was
introduced by P. Podle$ in [157] and further studied by S. Wang in [215], [219]. The general locally
compact case is more involved and there is no unanimous definition. S. Vaes introduced in [194] a
notion of closed quantum subgroup in the context of von Neumann algebras in order to develop all
the induction and homogeneous spaces machinery and in [48] S. L. Woronowicz proposed a different
approach in the context of C*-algebras and closer to the initial idea of P. Podle$. Fortunately, both
definitions coincide in the case of discrete quantum groups, which is specially interesting for this
dissertation and admits, by the way, a more concrete and algebraic picture as we can see in [207].

1.4.3.1 Definition. Let G = (C(G), Ag) and H = (C(H), Ag) be two compact quantum groups.
We say that H is a compact quantum subgroup of G, denoted by H < G, if there exists a surjective
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#-homomorphism p : Cy, (G) — C,, (H) such that
Agop=(p®pA
In this case we define the left and right coset spaces as
C(G/H) :={ae C(G) | (id®p)Ag(a) = a®lcg)}

C(H\G) = {a € C(G) | (r®id)Ac(a) = 1o @)

respectively. We say that H is a normal (compact) quantum group of G if C(G/H) = C(H\G).
The trivial quantum subgroup of G, denoted by E, is given by

E:=(C({e}),Ap) =C
with the co-unit map eg : C,,(G) — C as the corresponding surjective #-homomorphism.

1.4.3.2 Definition. Let G = (c (G) A@,) and H = (co( ), AH) be two discrete quantum groups.

We say that H is a discrete quantum subgroup of G denoted by H< G if there exists an injective
homomorphism of #-Hopf algebras ¢ : Pol(H) — Pol(G).

Some important structural properties of discrete quantum subgroups are gathered in the following
theorem.

1.4.3.3 Theorem. Let G and H be discrete quantum groups such that H<G.

i) (R. Vergniouz, [207]) There exists a faithful conditional expectation
Ey : C.(G) — C,.(H)
which sends Pol(G) to Pol(H) such that

- (id@EH)OAG:AHOEH = (EH®id)OAG

w?, if x € Irr(H)

0. otherwise , for all x € Irr(G).

- hg o Eg = hg, so that (id ® Ey)(w®) = {

it) (P. Fima, [02]) Define the central projection py :== >, p,. Then we have that
zelrr(H)

- Acr;,(pJHI)(plﬂl ®1) = pu ® pu,
M (eo(H)) = pu (M (co(©))),
- ﬁH(a) = AG(LI)(Z?H ®pu), for all a € CO(@)’

- ifﬁL,G denotes the left Haar weight for G, then the map a — lAzL,G (pu(a)) forallac CO(@),
defines a left Haar weight for H and it is denoted by ?LLH.

The definition of discrete quantum subgroup admits several equivalent formulations which are
useful in practice. We refer to [48] and [194] for more details about this notion for general locally
compact quantum groups.
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1.4.3.4 Proposition. Let H and G be two discrete quantum groups. The following assertions are
equivalent.

i) H is a discrete quantum subgroup of @, H<G.

it) Zep(H) is a full subcategory of Zep(G) containing the trivial representation and stable by
direct sums, tensor product and adjoint operations.

iit) There exists an injective x-homomorphism v : Cp(H) — C,.(G) that intertwines the co-
multiplications.

i) There exists an injective *-homomorphism o : Cy,(H) — C,,(G) that intertwines the co-
multiplications.

v) There exists a non-degenerate =-homomorphism p : co((@) —> M(co(H)) such that p(co(G)) =

A~

co(H) and that intertwines the co-multiplications.

vi) There exists a normal injective x-homomorphism T : L (H) — L*(G) that intertwines the
co-multiplications.

Proof. - () < (i4). This is true by virtue of Tannaka-Krein-Woronowicz duality (see Theorem
B.3.16). In addition, the Tannaka-Krein reconstruction theorem of Woronowicz describe
explicitly the discrete quantum subgroup H in terms of the corresponding full subcategory

Hep(H). Namely, co(H) is obtained as the sum of matrix blocks of 00(@) corresponding to
the irreducible representations in Irr(H) (see Remark B.3.17).

- (4) = (@4i). Since we have an injective homomorphism of #-Hopf algebras ¢ : Pol(H) < Pol(G),
then we obtain by completion a subalgebra A := ¢(Pol(H)) of C,(G) which is stable under
the co-multiplication of G (that is, Ag(A) € A® A). Hence (A4, Ag) is a compact quantum
group. Recall that the Haar state of G is faithful on C,(G), so its restriction is still faithful
on A. We deduce that A = C,.(H). Notice that the inclusion of C*-algebras C,(H) — C,.(G)
is compatible with the co-multiplications by construction.

- (i) < (4i3). If A is a C*-subalgebra of C,.(G) stable under the co-multiplication of G such
that H := (A, A) is a compact quantum group, then A = C,.(H) because its Haar state is
faithful. Hence any representation of H induces a representation of G and so H is a discrete
quantum subgroup of G.

- (4) = (iv). Since we have an injective homomorphism of =-Hopf algebras ¢ : Pol(H) < Pol(G),
then we identify Pol(H) to a =-Hopf subalgebra of Pol(G), namely Pol(H) =~ «(Pol(H)) <
Pol(G).

By universal property, the homomorphism of #-Hopf algebras ¢ : Pol(H) < Pol(G) < C,,,(G)
extends to a homomorphism of C*-algebras, say (ff : C,,(H) — C,,(G), which intertwines
the co-multiplications. We have to show that ' is still injective. For this, we shall show that
Cp(H) = C*((Pol(H))), which is straightforward by universal property.

- (i) <= (iv). This is straightforward because the inclusion C,,(H) < C.,(G) intertwining the
co-multiplications yields, by definition of the maximal compact quantum groups, an obvious
inclusion of #-Hopf algebras Pol(H) — Pol(G).
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- (1) = (v). As explained in the equivalence (i) < (ii) above, ¢ (ﬁ) is obtained as the sum

of matrix blocks of ¢o(G) corresponding to the irreducible representations in Irr(H) by the
Tannaka-Krein reconstruction theorem of Woronowicz. More precisely, we have

co(G) = @ B(H,) and co(H) = @ B(H,) < co(G)

zelrr(G) zelrr(H)

Hence, we consider the canonical surjection (so a non-degenerate #-homomorphism) p :

CO(@) — co(]ﬁl) < M(co (ﬁ)) given by the central projection py = >  p,. In addition, p
zelrr(H)
intertwines the co-multiplications by construction.

- (v) = (vi). See Theorem 3.3, Theorem 3.6 and Theorem 6.2 in [48].
- (vi) = (7). Recall that L*(H) := C,.(H)” and L*(G) := C,-(G)" (see Remark 1.3.2.10), where

C,.(H) = Pol(H) 52 « Poyy’ ™" = ¢, (H)"

C.(G) = Pol(G) 5@ < Poi@)" " = C,(G)"

Since 7 : L*(H) — L*(G) is a normal injective *-homomorphism, then by continuity it
restricts to an injective x-homomorphism ¢ : Pol(H) < Pol(G). Since 7 intertwines the
co-multiplications by assumption, then ¢ is a homomorphism of *-Hopf algebras.

|

1.4.3.5 Remarks. 1. Let @, H be discrete quantum groups. If H<G is a discrete quantum
subgroup, then we have the canonical surjection p : ¢o(G) — M (co(H)) by the preceding
proposition. Assume that A is any G-C*-algebra with (left) action o : A — M(co(G) ® A).
Then we can restrict the action « in order to have an action ag of H on A. This means
precisely that the composition with the canonical surjection p yields an action of H on A,

ag A5 M(co(G) ® A) "% M (co () @ A)
Routine computations show that the pair (A, ag) satisfies Definition 1.4.1.1.

2. Let @, M be discrete quantum groups. If H < G is a discrete quantum subgroup, then we have
Cp(H) < C),,(G) by the preceding proposition. Assume that A is any H-C*-algebra with
(right) action § : A — M(A® Cp,(H)). Since Cy,(H) < C),,(G), we can obviously extend ¢
into a action of G on A, say 6 : A —> M(A® Cp,(H)) € M(A® Cp,(G)). Observe that 4 is
ergodic whenever 4 is ergodic.

For this reason, we write Ind%(8) := Ind$(A,§) for the same C*-algebra A equipped now

with the action 5. We must be careful to not mislead I nd%(-) with I nd%(), which will be
defined in Theorem 1.4.3.8 below. The difference will be clear by the context.
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Let us summarize the induction process in the quantum setting following [208]. For the full
details of the next results, we refer to Section 3 in [208]. It is worth mentioning that the construction
given in [208] uses the algebraic approach for quantum groups in the sense of A. Van Daele. Namely,

~

if G is a compact quantum group, the algebraic level of the right leg of Wg, Pol(G) := Ag(Wg),
must be regarded as a dense multiplier Hopf #-algebra inside ¢o(G). For more details about these
notions we refer to the original articles [201], [202] and to Chapter 2 of [188].

1.4.3.6 Definition. Let H = (co (]ﬁl), AH) be a discrete quantum subgroup of a discrete quantum
group G = (¢o(G), Ag). The algebra of all functions on the homogeneous space G/H is defined as

F(G/H) := {a € M(Pol(G)) | (id® p)Ag(a) = a O 1},

where p : ¢ (@) —» M(co(lﬁl)) is the canonical projection and M(Pol(@)) denotes the algebraic

~

multipliers of Pol(G) in the sense of A. Van Daele [202]. Moreover we define

Pol(G/H) := Pol(G) ® C
Pol(H)

1.4.8.7 Remark. Notice that both Pol(G) and C are Pol(H)-modules. Indeed, Pol(H) acts on
Pol(G) via the canonical injection ¢ : Pol(H) — Pol(G) and Pol(H) acts on C via the co-unit
ey : Pol(H) — C.

In order to state the definition of induced actions by discrete quantum subgroups, we need some
nomenclature. Consider a discrete quantum subgroup H of a discrete quantum group G (recall
Proposition 1.4.3.4 above)

- For each = € Irr(G) we define
Pol(G), := span{wy; | i,j = 1,...,n,} < Pol(G)
Hence, by definition of tensor product of representations, we have

Pol(G), - Pol(G)y = @ Pol(G).,

zCx@y
for all z,y € Irr(G).

- We define the following equivalence relation on Irr(G): given x,y € Irr(G)

xzy©ycx@2©ch@y, for some z € I'rr(H)

In this case, we write Irr(G)/ ~i= Irr(G)/Irr(H) for the corresponding quotient space.

Likewise, given z,y € Irr(G) we define

xEyc)ycz@x@zcy@f, for some z € I'rr(H)

In this case, we write p \Irr(G) := Irr(H)\Irr(G) for the corresponding quotient space.
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For every class [z] € Irr(G)/ ~ we define

Pol(G)py := @ Pol(G).

w'e[x]
In particular, we have Pol(G)[q = Pol(H).
With these notations we have
Pol(G)= @  Pol(G)y and M(Pol(G)) =[] B(H,)
[z]eIrr(G)/z [x]elrr(G)/z

A~

Given z € Irr(G), denote by p, € M(Pol(G)) the central projection on B(H,), which is
associated to the identity in B(H,). Next, given [z] € Irr(G)/ ¥ we define

Pl i= Y, Par € M(Pol(G))

z'elz]
Hence, by construction we have that > Pz} = td. Moreover, we can show that
[z]elrr(G)/~
L
We define the following spaces
A A A A ~ ~ A~ ﬁ”'”s([ﬂ(@))
FAC/H) = D p (]—“(G/H)) < M(Pol(G)) and ¢o(G/H) := F.(G/H)

[w]GIT’I‘(G)/Z

~

If B is a =-algebra (resp. C*-algebra), we define the following #-subalgebra of M (Pol(G)® B)

A~

- which denotes the algebraic multipliers of Pol(G) ® B in the sense of A. Van Daele [202] -
(resp. M(co(G) ® B))

o
F@B) = [] B(HZ)QB(resp. @ B) = @ B(Hm)@)Bc]-"(@,B))

zelrr(G) zelrr(G)

If B is equipped with a (injective) left co-action of Pol(H), say 8 : B — M(Pol(H) ® B),
then we define

F@, B = {f e FG,B) | Aoid)(f) = (id® B)(f)},

where A = (id® ﬁ)&g is the action of H on G by right translations. Remark that Pl ©11is
central in M (F(G, B)¥), for every [z] € Irr(G)/ > In particular, if B := C equipped with

the trivial co-action of Pol(]ﬁl), then it is clear that .7-"(@, (C)]ﬁI = f(@/ﬁ)
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1.4.3.8 Theorem-Definition. Let H be a discrete quantum subgroup of a discrete quantum group
G. If (B,B) is a H- algebra, the algebraic induced algebra of (B, ) is the following G-algebra,

alg.Ind2(B.5) = @  pp (f(@B)H) < F(G,B)"
[x]elrr(G)/~
L
with action alg.]nd%(ﬂ) = Ag @idp.
Besides, if (B,f) is a ]ﬁl—C*—algebm, we have that alg.Indg(B,ﬂ) c cb(@7B), We define the

~

induced algebra of (B, ) as the closure of the algebraic induction inside cy(G, B), that is,
IndZ(B, B) := alg.IndS(B, B) © M(co(G) ® B)
In other words, we have that

IndZ(B, ) = 6—) Pla] (aZg.Indg(B,g)),

welrr(G)
which is a G-C* -algebra with action Indg(ﬁ) = A@, ®idpg.
In particular, if B = C with the trivial action, then Ind%((C) = ¢o(G/H) := alg.Indg((C),
1.4.3.9 Remark. As shown in Proposition 3.5 of [208], the preceding notion of induced fi-c *-algebras

coincides with the analogous notion given by S. Vaes in Theorem 7.2 in [194] for the general case of
locally compact quantum groups and closed quantum subgroups. More precisely, using the same

notations as in Section 1.3.2, T nd@(B) is the unique C*-subalgebra of

= {X e M(K(L*G))®B) | X € (I*(G) ®1)" and (A®idp)(X) = (id® B)(X)}
such that
i) A®idpg : Ind%(B) — M(co(@) ®Indg(3)) is an action of G on Ind%(B).

i) A®@idg : B —> M(co(G) ® Indg(B)) is a well-defined #-homomorphism which is strictly

continuous on the unit ball of B.
iii) Ind%(B) c B is non-degenerate, meaning that [Ind%(B)(LQ(G) ® B)| = L*(G) ® B.

Using this explicit description of induced C*-algebras, we see that any ]ﬁl—C*—algebra Bis a

retract of Res& (I ndG’(B )) In other words, there exist ﬁ—equivariant homomorphisms

B —> Res% (IndG(B)> and Res% (IndG(B)) — B, whose composition yields the identity on B.

Let us give more details of this retraction. Given b € B we claim that the element 5(b) €
]\7(00 (]ﬁl) ® B) is an element in B. On the one hand, since H < G then we have by Theorem
1.4.3.3 that M(co(]ﬁl)) = ﬁ(M(co(@))) = ﬁ(loo(@)) so that it is clear that [5(b), y®1] = 0 for every
y € 1°(G), that is, B(b) € (I°(G) ®1). On the other hand, using the formulae of Theorem 1.4.3.3
we write

(id®B)(B(1)) = (Au®idp)B(b) = (As(pRp)®idz)B(b) = ((id®p)Ac®idp)B(b) = (A®idp)(B(b)),
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which yields the claim and allows to define the following ]ﬁl—equivariant homomorphism

B — Resg(lnd%(B))
b — B(b)

Next, we define the following homomorphism

Resg(mdg(m) . B
x — (E®idp)(z),

where £y : co(ﬁ) — C is the co-unit of H (recall Remark 1.3.1.38). Notice that, according to
Note 1.4.1.2, all actions of discrete quantum groups are supposed to be injective. Hence, as we
have showed in Remarks 1.4.1.3, the formula (€ ® idp) o 8 = idp holds, which implies that the

preceding map is ]ﬁl—equivariant and that B is a retract of Resg’[ (I nd%(B ))

Crossed Products by Discrete (Quantum) Groups

In order to study the Baum-Connes property for a quantum group, we have to deal with reduced
crossed products. This is why we have to define such a crossed product by a gquantum group.
We can give a very general construction in the context of multiplicative unitaries in the sense of
Baaj-Skandalis (see for instance [7], [206], [188]). But using the rich representation theory of a
compact quantum group as we have presented in Section 1.3, we can give an explicit construction
of a crossed product by a discrete quantum group which is, by the way, very close to the classical
one. Actually we’re going to establish a universal property for the reduced crossed product by a
discrete quantum group that will be very useful for our purpose.

1.5.1 Classical crossed products

For more information about classical crossed products, we refer to Section 2 and Section 7.2 of [147]
or Section 4.1 of [29]. We include here a proof of the universal property of the reduced crossed product
by a discrete group for the convenience of the exposition. Afterwards, the quantum case will imitate
this construction. To this end it is advisable to recall the definition of strict completely positive
maps and the corresponding KSGNS construction (see Theorem A.3.11 and Remark A.3.12).

1.5.1.1 Theorem-Definition. Let I' be a discrete group and (A, «) a T'-C*-algebra.

There exists a C*-algebra P with a non-degenerate faithful *-homomorphism m: A — P, a
group homomorphism u : T' — U(M(P)) and a non-degenerate completely positive KSGNS-faithful
map E : P — M(A) such that

i) uym(a)ul = m(ay(a)), for ally €T and all a € A,
it) P =C*(n(a)uy:a€ A and yeT),

itt) E(m(a)uy) = adye for allyeT and all a € A,
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In addition, P is unique up to a canonical isomorphism meaning that for any C*-algebra Q with a
triple (p,v, E') where p: A — @ is a non-degenerate faithful =-homomorphism, v : T — U(M(Q))
is a group homomorphism and E' : Q —> M(A) is a strict completely positive KSGNS-faithful
map satisfying the analogous properties (i), (1) and (i) above, there exists a (necessarily unique)
x-isomorphism ¢ : P — Q) such that

P(r(a)uy) = pla)vy,

for all v €T and all a € A. Moreover, E' is a non-degenerate map and we have E = E’ o 1).

The C*-algebra P constructed in this way is called reduced crossed product of A by I and is
denoted by T' x A.

Proof. We construct P as an explicit C*-algebra of operators. Given the group I', we consider
the left regular representation of ', A : T' < B({?(T")) (which is a unitary faithful representation).
Consider the Hilbert A-module I?(T') ® A.

Define the homomorphisms 7 and u of the statement. For m we consider the representation of
Aon 2(T') ® A “twisting” by the action a. More precisely, we put

7 A — LA(PT)®A)
a > w(a)
such that
m(a)(0y ®b) := 6, ® ay-1(a)b,

for all b € A and all v € I'. Remark that this formula extends to the whole tensor product [?(I") ® A
because I' acts by automophisms on A. Moreover, 7(a) is well-defined as an adjointable operator
on I?(T') ® A for all a € A whose adjoint is given by 7(a)* := w(a*), for all a € A. Indeed, given
~veT and b, b’ € A we have

(7(a)(8, @), 8, @) = (5 @ g1 (a)h, 0y @YY = (83,8, (0141 (a)B) "V
= (0,05 )b oty -1 (@) = (55 ® b, 0y @ vy -1 (a™)b')
= {0y @D, 7(a*)(d, ®V)),
for all a € A. Since I is acting on A by automorphisms, 7 is a faithful *-homomorphism and it is

non-degenerate by construction.
For u we consider the representation of I' on I2(I') ® A induced by A. Precisely,

uwi=A®ida: T — La(’T)®A)
Yo Uy = A, ®tidg

such that
Uy (0 @D) = Ay ®ida(0y @D) := Ay (04/) ®b = 5y @D,
for all b € A and all v € I'. By construction, u is a unitary representation of I'.

In this situation, we easily check the formula u,m(a)uX = m(ay(a)), for all v € T" and all a A.
Indeed,

uym(a)ul (57/ ® b) = u,7(a) <57717/ ® b) = Uy (57717/ ® oz,y/fl,y(a)b)
=0y @ ay-14(a)b = 6y ® ay-1(ay(a))b
= n(a, () (6, @),
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which is true for all be A and all ' € T.
Thus we define
P:=C¥m(a)uy:acAet yeT) c L4(IP(T)® A)

To conclude the construction of P as in the statement, we have to define a non-degenerate
completely positive KSGNS-faithful map E : P — M (A) satisfying the formula E(m(a)u,) = ad,,c
for all v € I" and all a € A. With this aim in mind, we define directly the associated KSGNS
construction (recall Remark A.3.12). Namely, let us define the following A-linear map

T: A — POHeA
a +— Y(a):=0®a

Define the A-linear operator T* : A(C[T'])d. ® A —> A by the formula
T*(A(04)0e ® a) = xe(7)a,

for all v € I" and all a € A, where ¥, is the positive type function defining the GNS construction
for the left regular representation A, that is, the characteristic function of {e}. Remark that T* is
bounded,

IT*(A(85)0e ® a)|[* = [[KT*(A(5,)0e ® @), T*(A(6,)de ® a))l|
= [[xe(Ma; xe(Ma)l| = [xe(V)I? |la*al|
< Xe(v )lla*al] = [Ixe (v 17)a*all
= [|{de; A(050)depa*al|
= (|0 ® a, \(830+)0e ® a)|
= [[{0e ® a, A(05)*A(64)de ® )|
= [|[{A(04)0e @ a, M(35)de ® a)l|
= [IA(6,)d. ® al|?

Therefore we can extend the above formula to the whole /2(I') ® A obtaining a bounded operator
T*:12(I')® A —> A. Moreover, T and T* defined in this way are adjoint,

(Y(a),A(0g)de ®b) = (de ® a, A(dg)de @ by = Xe(7)a*b
= {a, Xe(7)b) = {a, T*(A(d,)de ® b)),

for all y e I" and all a,b € A.
In other words, Y is an adjointable operator between A and I?(T") ® A whose adjoint is T*
satisfying the formulas above. Hence, we define the following completely positive map

E: P — M(A)
X — EX)=T*0XoT

We assure that the triple (I?(I') ® A, id, ) is the KSGNS construction for E. We only have to
prove that [?(I") ® A = span{PY(A)}. By construction, it is enough to show that d, ® a € PT(A),
for all a € A and all y € I'. Indeed,

6y ®a=1uy(0e ®a) =u,Y(a) = lim (n(e,)u,Y(a)) € PY(A),

7—00
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where {e,},cy is an approximate unit for A, so that {7 (e;)},en is an approximate unit for m(A).
Finally, it is straightforward that the formula E(7w(a)uy) = ad, . holds for all v € T and all
a € A. Indeed,
E(m(a)uy)(b) = Y*(m(a)u, Y (b)) = T*(7(a)uy (5. @))
=T*(7(a)(6, ®b)) = T*(6, @ ay-1(a)b)
= Xe(7)ay-1(a)b = 0y cay-1(a)b = ady e b,

a

where we have just used the definition of our KSGNS construction. Since this is true for all b € B,
we conclude the required formula.

Observe that, by KSGNS construction, F is just a strict completely positive map (recall Section
A3 for the details). But, thanks to the property E(m(a)) = a, for all a € A that we have just
proved, it is clear that F is actually a non-degenerate completely positive map as assured in the
statement.

Now, let us establish the uniqueness of such a construction. Suppose that @ is another C*-
algebra with a triple (p,v, E') where p : A — @ is a non-degenerate faithful *-homomorphism,
v: T — U(M(Q)) is a group homomorphism and E’ : @ — M (A) is a strict completely positive
KSGNS-faithful map satisfying the analogous properties (i), (i4) and (#ii) of the triple (7, u, E)
associated to P. We have to show that there exists a (necessarily unique) *-isomorphism ¢ : P — @
such that ¢(7(a)uy) = p(a)v, for all vy e T" and all a € A.

Given the non-degenerate completely positive KSGNS-faithful maps F: P — M(A) and E’ :
Q —> M(A), consider their KSGNS constructions; say (I2(I')® A, id, ) and (K, o, '), respectively.
This means in particular that I?(T') ® A = span{PY(A)}, 0 : Q —> L4(K) is a non-degenerate
faithful *-homomorphism such that K = span{c(Q)Y’(A)} and that E'(Y) = (Y)* oo(Y) 0o Y/,
forall Y € Q.

Firstly, we define a unitary operator % : I*(I') ® A — K such that % (XY (b)) = o(Y)Y'(b),
for all generators X € P, Y € @ and all b e B. Notice that this formula defines a bounded operator
with dense range by construction.

Namely, take b,0’ € A and X := 7w(a)uy, X' := w(a')uy € P, Y := p(a)vy, Y’ := p(a')vy € Q
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with a,a’ € A and ~,~’ € I and write the following

@ (X)) % (X T0)))
= (YY) YT W) = (pla)o, Y (b), pla’ oy T (H))
= (X' (b), (vy)*p(a™)p(a’)vy X' (V)
= (Y (b), (vy)*p(a*a)v, T (V"))
= b, (Y)* ((vy)*pla*a oy T (')
o)) *pla*a ), ) ()
= (b, E'(play-1 (a*a)) (v) oy ) (B))

=(b, E' p(afl(a*a’))vw—w)(b/»

(¥
(¥

= (b, 1% ((uy)* 7 (a*a Juy Y (1))

= (X (D), (uy)*m(a*a Yuy Y (V)
= (0 (b), (uy)*m(a*)m(a)uy T(H))
= (m(a)uy Y (b), m(a )y Y (b)) = (XY (b), XY (b))

Since the range of % is dense in K by construction, the preceding computation shows that %
defines actually a unitary operator. Doing the identification Q =~ ¢(Q), we define the following
#-isomorphism

Y: P — Q
X — X)) = oXoU*

By construction it is clear that the formula ¥ (m(a)u,) = p(a)v, holds for all v € " and all a € A.

Namely, given 1 :=YY’'(b) € K with Y = p(a)vy € Q with a’,b € A and 4/ € T, one has

bir(a)u) ) = % (n(@yu, 2 *(n)) =  (w(@)u, 2* (V' (1))
= % (n(@)uy 7(@)uy T(B)) = pla)es, pla’)oy X' (1))
= p(a)v, YY'(b) = p(a)v,(n)

Moreover, by assumption we have E’'(p(a)vy) = ady e forall y e I' and all a € A so E'(p(a)) = q,
for all a € A. It is clear then that E’ is in fact a non-degenerate map.

Finally, the relation £ = E’ o4 holds: the isomorphism v satisfies the identity ¢ (m(a)u,) =
p(a)vy, for all v € T" and all a € A; so one has,

E(r(a)u,) = ad,. = E'(p(a)v,) = E' o (n(a)us),
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for all y € " and all a € A. In other words, the relation holds on generators of P, so it holds on
P. |

It is important to observe that we can construct a C*-algebra P,, satisfying the analogous
statement of the preceding theorem without the claims concerning the map E. In this case case,
we give the following definition.

1.5.1.2 Definition. Let I" be a discrete group and (A4, «) a I'-C*-algebra. The maximal crossed
product of A by I', denoted by I' x A, is a C*-algebra equipped with a non-degenerate faithful

#-homomorphism 7 : A — I' x A and a group homomorphism u : I' — U(M(I' x A)) such
that 7 ’

i) uym(a)ul = w(ay(a)), for all y € T and all a € A,

ii) ' x A=C*(m(a)uy:ac Aandyel),

1.5.1.3 Remark. As for the reduced crossed product constructions, I' x A is unique up to a canonical
a,m

isomorphism meaning that for any C*-algebra Q with a non-degenerate faithful *-homomorphism
p: A— @ and a group homomorphism v : I' — U(M(Q)) satisfying the analogous properties (7)
and (i7) above, there exists a (necessarily unique) #-isomorphism ¢ : I' x A — @ such that

a,m

blr(a)u,) = pla)o,,
for all vy e I" and all a € A.

1.5.1.4 Remark. It is advisable to collect some well known facts about the crossed products by
discrete groups.

- If (A, ) = (C, trv) is the C*-algebra of complex numbers equipped with the trivial action
trv of T', then we have that ' x C=C}(I') and ' x C = C} (I'), by universal property.
t tro,m

More generally, if (A, trv) is a C’;"—algebra equipped with the trivial action trv of I', then we
have that ' x A=AQCHT)andT x A=A ® CX(T), by universal property.

tru,r truv,m max

- Constructions of the reduced and maximal crossed products are functorial. More precisely,
if (A,a) and (B, ) are two I'-C*-algebras and ¢ : A — M(B) is a I'-equivariant s-
homomorphism, then there exist unique *-homomorphisms

pi=idxp: T x A— M(T x B)
T o,T T

pi=idxp: T x A— M([T x B)
m a,m 8,m
such that
P(m(a)uy) = p(e(a))vy,
for alla € A and all yeT.
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1.5.1.5 Remark. If G is a locally compact group and (A, «) is a G-C*-algebra, then we can also
construct the corresponding reduced and maximal crossed products

Gx Aand G x A

a,r a,m

The construction is technically more involved and we refer to [147] for more details. We give
here a definition for the convenience of the exposition. We denote by p the left Haar measure on G
and by A the corresponding modular function.

- Let C.(G, A) be the C-vector space of continuous functions G — A with compact support.
We equip C.(G, A) with the following convolution product and involution

£ gla) = L @y (g(u™"2))duly) , Vo € G, ¥, g € Cu(G, A)

@) = Al Na, (f(z™")*) , Va e G, Vf € C.(G, A)
It is well known that given any covariant representation (7,U) of A on a Hilbert space H
(that is, 7 : A —> B(H) is a *-homomorphism and U : G — U(H) is a group homomorphism
such that m(agy(a)) = Ugom(a) o Uy, for all g € G and all a € A), then there exists a unique

representation of C.(G, A) on H, which is denoted by U x 7 and it is faithful whenever 7 is
faithful.

In this situation we define "
G x A:=C.(G,A) ",

a,m

where
[|f|lmaz := sup{||U x 7(f)|| | (w,U) is a covariant representation of A},
for all f e C.(G, A).

- Let A\ : G — B(L*(Q)) be the left regular representation of G. If my : A — B(H) is any
faithful representation of A on a Hilbert space H, then we consider the obvious representation
A= A®idg : G — B(L*(G)® H) and we define the representation 7 : A — B(L*(G)®@ H)
by the formula

w(@)(f ®)(9) = (F @ molay+(@)(©)(9) , f € LA(G), Ve e Hge G

A straightforward computation yields that the pair (7, \) defines a covariant representation
of A on L?(G)® H and the corresponding representation of C..(G, A) on L?(G) ® H, denoted
by A x 7, is faithful because 7 is faithful.

In this situation we define

G x A= Axw(C.(G, A))"‘”,

a,r
where || - || denotes the operator norm in B(L?(G) ® H). We can prove that this definition is
independent of the choice of .

The analogous results stated in Remark 1.5.1.4 still hold for the crossed products G x A and
G x A ’

a,m
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1.5.2 Quantum crossed products

The next result concerning the universal property of the reduced crossed product by a discrete
quantum group is well known by specialists. In order to give a proof it is advisable to recall the
definition of strict completely positive maps, the corresponding KSGNS construction (see Theorem
A.3.11 and Remark A.3.12) and the characterization of a discrete quantum group action given in
Proposition 1.4.1.5.

1.5.2.1 Theorem-Definition. Let G be a compact quantum group and (A, a) a G-C*- algebra.

There exists a C*-algebra P with a non-degenerate x-homomorphism 7 : A — P, a unitary
representation U € M (co(G) ® P) and a non-degenerate completely positive KSGNS-faithful map
E:P— M(A) such that

i) w(a)U Z txm(ag j(a)), for allue Rep(G), alla€ A and alli,j =1,...,ny,

i) P=C*n(a)U}; :a€ A,ue Rep(G),i,j =1,...,m.,),
iii) E(m(a)U};) = du.ca for allue Irr(G) and all a € A,

In addition, P is unique up to a canonical isomorphism meaning that for any C*-algebra Q
with a triple (p, V, E") where p: A — Q is a non-degenerate x-homomorphism, V € M(co(G) ® Q)
is a unitary representation and E' : Q — M (A) is a strict completely positive KSGNS-faithful
map satisfying the analogous properties (i), (ii) and (#ii) above, there exists a (necessarily unique)
x-isomorphism ¢ : P — @ such that

U(m(a)Ut;) = pla)Viy,
for allw e Rep(G), alla A and alli,j =1,...,ny. Moreover, E' is a non-degenerate map and we

have E = E' o 1.

The C*-algebra P constructed in this way is called reduced crossed product of A by G and is
denoted by G x A.

Proof. First of all, notice that the statement is proven once it is proven for any = € I rr((G)

If (LQ((G) X, Q) denotes the GNS construction associated to the left Haar weight iz, of G, then
A®ida : co( )® A — LA4(L*(G) ® A) is a non-degenerate *-homomorphism and we define

7 A — LA(LA(G)®A)
a +— w(a):=(A®ida)oala),

for all a € A.

If (L3(G), A, Q) denotes the GNS construction associated to the Haar state hg, then we define

U = (id,, g @ N (V) ®ida € M(co(G) ® L4(L*(G) ® A)),

where ¥ is a unitary representation of G defined by ¥ := @% w® € M(co(G) ® C(G)) with

zelrr(G)
w® € B(H;) ® C(G), for all z € Irr(G) (see Theorem 1.3.1.36).
Fix an orthonormal basis {£F,...,&r } on Hy, for every z € Irr(G). Straightforward computa-

tions yield the following expressions
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- U” = (idpm,) ® \)(w”) ®ida € B(H,) ® L4(L*(G) ® A). Namely,

U* = U(pe ®idr  (12G)04)) = ((ich(@) ®N(Y) ®idA)(Pz ®ide ,(L2@)®A))
= (idp(m,) ® \)(w”) ®ida
- UF = Mwi;) ®ida € LA(L*(G)® A), for all z € Irr(G) and all 4,j = 1,...,n,. Namely,
‘)
idp(a,) ® Aw @sz)

Uiy = (wer e ®ide, (L2 @)@4))

= (w57,57 ®idﬁA(L2

k,l=1

3

x

(U
sea)((
= (wer g2 ®idg, (12(c)®4) ( i) @ M) ( Z mi,; @ wi ;) ®sz)

mig1 @ A( wkl)®7’dz4)
1

(wWez ez @ ide, (12(6)4))

k,l

Ng
> wer er (M DA w) @ida
k,l=1

D0k wi ;) ®ida = Mw?;) ®ida
k=1
I=j

In this situation, we can check the formula m(a)U? Z Zxm(ag j(a)), for all z € Irr(G), all

aeAandalli,j=1,...,n,. Indeed,
Z fm(af 5 (a)) = :2’1@5;,5; ®id) (14 @N)(7) ®ida) (p. @) (A ida) © (o 5(a)
= e ®id) (A@N() @ ida) s @ id)) (el a))
- Z (werr @) (A@N(F) @ida) (b2 ®1d) ) (((wez & @id)a(a) (s D id)))
= ) (e ®id)(wer & @ id) (2 @ i) (A @ V() @) ) (14 @ @)ala) (pe ®id)))
= ) (wer g ®@id) (weg r ®id)

D 3 (wer.g @ id)(wep e @id) (22 ®i)(AN () ®ida) ) (A@id)a(a) (ps @ id)))
(v

(2 @ id)(1© (@) A®N)(¥) @ ida) ) (o @ i)

= (wer ¢ ®id@id) (1@ a(@)A@N () @ida) ) (p. @ id)
— A @id)a(a)(wer ¢ ®id@id) (([d@ N (V) ®ida) ) (pa ® id) = (@)U,
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where the equality (1) holds because « is a left action of G on A and the equality (2) holds because
of the definition of the co-multiplication A of G in terms of its fundamental unitary (observe that
Wi = (id® N)(¥) as stated in Theorem 1.3.1.36).
Thus we define
P:=C¥n(a)UF; cae A,z e Irr(G),i,j =1,...,n,) < LA(L*(G) ® A)

.9

To conclude the construction of P as in the statement, we have to define a non-degenerate
completely positive KSGNS-faithful map E : P — M(A) = L4(A) satisfying the formula
E(n(a)Uf;) = ad . for all z € Irr(G), all a € A and all 4,5 = 1,...,n,. We are going to define
directly the associated KSGNS construction (recall Remark A.3.12). Namely, let us define the
following A-linear map

T: A — L[*G)®A
a — Y(a)=02Q®a

Define the A-linear operator T* : A(Pol(G))2® A — A by the formula
T*(A(wij)ﬁ ®a) = hg(wy;)a,

for all x € Irr(G), all 4,5 = 1,...,n, and all a € A. Remark that T* is bounded,

17* (AMwi ;)2 @ a)l[* = [KT* (A )2 ® a), T*(A(w] )2 ® a))|
= [[Khe (wij)a, he (wij)wl| = |lhe(wi ;)he (wi;)a*al|
= Ihe(wi;)I* a*al| = |he(wi;)?||a*all
)
< he((wiy)*wij)lle*all = [lhe((wi;)*wi;) a*al|

= K A(wi ;) *wi ;) aal|

= K, Awg ) * AMwi ;) a*al|

= [[CM(wi;)Q, A(wy ;) a*al|

= [[M (w7 )2 ® a, AM(w ;)2 @ a)|

= |IAw;))®a|l?,
where in (1) we apply the Schwarz inequality to the Haar state. Therefore we can extend the above
formula to the whole L?(G) ® A obtaining a bounded operator T* : L?(G) ® A — A. Moreover,
T and T* defined in this way are adjoint,

(T(a), Mwi;)2® by ={Q®a, )\(wa)Q ®by = h(wf’j)a*b
= (a, h(w;)b) = {a, T*(A(w} ;)2 ® D)),

for all z € Irr(G), alli,j = 1,...,n, and all a,b € A.

In other words, T is an adjointable operator between A and L?(G) ® A whose adjoint is T*
satisfying the formulas above. Hence, we define the following completely positive map

E: P — M(A)
X — EX)=T*0XoT
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We claim that the triple (L*(G) ® A,id,Y) is the KSGNS construction for E. We only
have to prove that L?(G) ® A = span{PT( )}. By construction, it is enough to show that
AMwf;)2®ae PY(A) forallae A, all z € Irr(G) and all 4,5 = 1,...,n,. Namely,

)\(wﬁj)Q ®a= (/\(w‘fd) ®ida)(A®a) = Uﬁj(Q ®a)
=U/;Y(a) = )LII;O(W(GT)UZjT(a)) e PY(4),
where {e,},cn is an approximate unit for A, so that {7(e,)},en is an approximate unit for 7(A).
Finally, a direct computation shows that the formula E(7(a)U?;) = ad,. holds for all = €

Irr(G), all a € A and all 4,5 = 1,...,n,. Namely, fix an orthonormal basis {£7,...,&) } of
H, diagonalizing the canonical operator @), with eigenvalues {Af }iz1,....n,, SO that the formula
Awf ;)8 VAV §’” ® w7 holds for all 4,5 = 1,...,n, where {w{,...,wy } is the dual basis of

\/dzm x)
{&F,...,&, } in the dual space Hz (recall Remarks 1.3.1.31). We write

E(m(a)UF;)(b) = T*(x(a)UF;(T(b))) = T*(7(a)U;(2®))
T* (W(a)()\(wfj ®ida)(Q® b)) =T* (ﬂ(a) ()\(wfj)ﬂ ® b))
(

)
= T*((A®ida) o ala )(A(wg{j)m@b))

_— A ®ida)oala )](pT@)sz)( (w %J)Q@)b))
-1 (

(

(pe ®ida [

(p ®ida)|[(A@ida) 0 a””(a)] (i) @)
(

*

A%
P ®ida) [/\@ZdA ”Z:lm”(@a ]((d\z/wg

= 1( 5 it o0 )«V%W)@b»

3,j=1

)\31'
LZ(SJEI®W ®a?,(a)b

= T*

(
(
(
*(
(
(
(

)
)
)
A/ dim x)mzl
)

; (@)
A
\/d\z/miTEmQDM ® aj; ) ()\ D@ ai;(a ))

= h@,(wii) g z( )b = af (a)b&g,E = abdy,,

where we use the orthogonality relations (and the definition of the KSGNS construction). Notice
that, as we warned in Note 1.4.1.2, an action of a discrete quantum group is supposed to be injective
so that we have also a¢ = id4 as shown in Proposition 1.4.1.5. Since it is true for all b € A, we
conclude the required formula.

Observe that by KSGNS construction, F is just a strict completely positive map (recall Section
A.3 for the details). But, thanks to the property E(m(a)) = a, for all a € A that we have just
proved, it is clear that F is actually a non-degenerate completely positive map as assured in the
statement.

Next, let us establish the uniqueness of such a construction. Suppose @ is another C*-algebra
with a triple (p,V, E’) where p: A — @ is a non degenerate *-homomorphism, V € M(c¢y(G) ® Q)
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is a unitary representation and E’ : Q — M(A) is a strict completely positive KSGNS-faithful
map satisfying the analogous properties (i), (i¢) and (éi¢) of the triple (m, U, E) associated to P.
We have to show that there exists a (necessarily unique) #-isomorphism v : P — @ such that
Y(m(a)U;) = p(a)Viy, for all z € Irr(G), allae Aand all 4, j = 1,...,n,

Given the strict completely positive KSGNS-faithful maps E : P — M(A) and E' : Q —
M(A), consider their KSGNS constructions; say (L*(G) ® A,id,T) and (K, o, Y’), respectively.
This means in particular that L?(G) ® A = span{PY(A)}, 0 : Q — L(K) is a non-degenerate
faithful *-homomorphism such that K = span{c(Q)Y’(A)} and that E'(Y) = (Y)*oo(Y) 0o Y/,
forallall Y € Q.

Define a unitary operator % : L?(G) ® A — K. If such an operator exists, it must verify the
formula % (XY (b)) = o(Y)Y'(b), for all X = n(a)U; € P, Y = p(a)V;; € Q and all b€ A.

Actually, a straightforward computation shows that the formula above defines an isometry.
Indeed, doing the identification @ = o(Q) (by virtue of the faithfulness of the KSGNS construction),
let’s take X = 7(a)Uf;, X' = w(a")U; € P, Y = p(a)V;%,Y" = p(a’)Vi”f]/- €Q, bV € A and write

7,57

(u (XT(b)) U (X’T(b’))} —YT(b), YT (V)
= (p(a) VY (b), p(a ) V5 X (6)) = (X' (b), (V) pla®)p(al ) V5 X/ ()
= (b, (X)) (V) pla*a WL (V) = (b, B (V) *pla*a Vi) (V)

= (b B (VEpla*a Vi) ) = 0.8 (X plo (a*a)VEVE ) )

Y, E’((Zp £ (a*a VI ) () = D5 (@ oo V)

=<b,E(§w 2 (0 UT ) )

=<b,E(Z

SANUT, UL ) ) = (b E(UTm(a*a US) ()

b, E((UZ;)*n(a*d)UE,) () = (b, T*((UF,)*m(a*a ) U T(V)))

(
(), (UF))*m(a*a)UFX (V) = (X0), (UF))*m(a*)m(a" UL L))
(r(@)UF; T (), (@ YUET ) = (XT0), X L)),

4,J

where it should be noticed that in (1) we use the index notation r := (i,4), t := (k,j) in order to
write down properly the coefficients for the tensor product T @ x’.
Doing again the identification @ =~ o(Q), we define

v P — Q
X — YX)=UoXoU*

It is clear that ¢ is a #-isomorphism and the formula (7 (a)Uf;) = p(a)V7; for all z € Irr(G),
all a € A and all 4,5 = 1,...,dim(z) is easily checked. Namely, given n := YY'(b) € K with
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Y = p(a/)Vif; €Q witha',be A, o’ € Irr(G) and i,j = 1,...,n,, one has

(@)U ) = % (n(a)U, )) = % (r(@UEZ* (Y T'0)
= % (n(a)UF; w(a)UET(0)) = pa)Vi5 pla VT (1)
= p(@)V}" YT'( ) pla)ViE; ()

Moreover, by assumption we have E'(p(a)V%;) = ad, . for all z € Irr(G), all a € A and all

i,7=1,...,n, and so E'(p(a)) = a for all a € A; then it is clear that E’ is in fact a non-degenerate
map. The relation £ = E’o1) holds: the isomorphism ¢ satisfies the identity 1 (7 (a)Uf;) = p(a)V;,
for all z € Irr(G), all a A and all 4,5 = 1,...,n,; so one has,

E(n(a)U; 3) =ady.e = E'(p(a )‘/z,j) =Fo 1/)(7'1'((L)Ui”fj)7
for all x € Irr(G), all a A and all i, =1,...,n,. -

It is important to observe that we can construct a C*-algebra P,, satisfying the analogous
statement of the preceding theorem without the claims concerning the map E. In this case case,
we give the following definition.

1.5.2.2 Definition. Let (G be a compact quantum group and (A4, ) a G-C*- algebra. The maximal
crossed product of A by G denoted by G A, is a C*-algebra equipped with a non-degenerate

#-homomorphism 7 : A — G x A and a unitary representation U € M(CO(G) ®G x A) such
that 7 7
i) m(a)U". = Z em(ag ;(a)), for all u e Rep(G), all a € A and all 4,5 = 1,...,ny,

ii) P=C*m(a)U; :ae Az e Rep(G),i,j =1,...,nu),

1.5.2.83 Remark. As in for the reduced crossed product construction, G x Ais unique up to a
a,m

canonical isomorphism meaning that for any C*-algebra @ with a non-degenerate *-homomorphism
: A —> @ and a unitary representation V € M (co(G) ® Q) satisfying the analogous properties (i (4)

and (ii) above, there exists a (necessarily unique) #-isomorphism 1 : G x A —> @Q such that

(r(a)Uf;) = p(a)Vyy,
for all u e Rep(G), all @ A and all 4,5 = 1,...,n,.

1.5.2.4 Remark. It is worth mentioning that the proof of the preceding theorem has been completely
written down using coordinate expressions. This allows, on the one hand, to imitate directly the
proof of the construction of a reduced crossed product by a classical discrete group (Theorem
1.5.1.1). On the other hand, this approach has been chosen in order to obtain explicit formulae for
the subsequent results (Section 1.5.3, Section 2.3 and Section 2.4).
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However, we can give a more common and conceptual statement whose proof follows the
analogous computation of the preceding one without taking coordinate expressions. More precisely,
under the same assumptions of Theorem 1.5.2.1, the conditions (¢), (i4) and (i) are equivalent to
the following ones

i") (U*)*(idp(a,) @n(a))U" = (idpg,) ®7)a*(a), for all a € A and all u € Rep(G).
i) P=C*mr(a)w®id)(U*):we B(Hy)x),

iii’) (idp(m,) ® E)((idB(Hu)) ®7r(a))U“) = p¥®a, for all u € Irr(G) and all a € A, where

p € B(H,) denotes the orthogonal projection onto the subspace of u-invariant vectors.

Besides, the map B : G x A4 —> M(A) of the statement, where we recall that Gx Ac

LA(L*(G)® A), can be defined simply by restricting Q ® ida : L4(L*(G) ® A) — M(A) gi7ven by
Q@’LdA(X) = <Q®ZdA,X(Q®ZdA), for all X € [,A(LQ(G) ®A)

1.5.2.5 Remark. Let us briefly explain the functoriality of the reduced crossed product construction
in the quantum group setting. Remark that the maximal crossed product construction is also
functorial. For more details about this we refer to Section 4.3 of [206].
Let G be a compact quantum group, (4, «), (B, ) two @—C*—algebras and o : A — B a
@—equivariant s-homomorphism. In this situation, there exists a #-homomorphism Z(p) :=id x ¢ :
ks

G x A—> G x B such that

a,r B,r

2(0)(ma(a)(U*)F ;) = ms(e(a)(UP)E),

foralla € A, all x € Irr(G) and all i,j = 1,...,n, where (7,,U?, E,) and (73,U”, Eg) are the

~ ~

canonical triples associated to the reduced crossed products G x A and G x B, respectively (given

a,T B,r
by Theorem 1.5.2.1).
The #-homomorphism Z(¢) above is nothing but the restriction of

LALA(G)®A) — Lp(L2(G)®B)
T — U (T®idp)%,; "
)
where %, : L*(G) ® A® B — L*(G) ® B is the canonical isometry of Hilbert modules such that
)
U (E®a®b) =@ p(a)b, for all £ € L*(G), all ae A and all be B.
%

Finally, observe that Z(¢) = id x ¢ is, by construction, compatible with the elements of the
T

canonical triples in the following sense

Z(p)(ma(a)) = mp(p(a), Z(9)(UM)F;) = (U7}, Bg o Z(p) = Ea 0 ¢,

forallae A, all z € Irr(G) and all 4,5 = 1,...,n,.
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1.5.3 Further properties

In order to reach stability properties of the Baum-Connes property, we need “good” stability
properties of the reduced crossed product with respect to some operations between C*-algebras
and likewise “good” stability properties of the reduced crossed product with respect to the cone of
x-homomorphisms. Hence, this section is devoted to the study of several of such properties that
will be used later on.

1.5.3.1 Proposition. Let G, H be two compact quantum groups and let F := G x H be the
corresponding quantum direct product of G and H (as in Theorem 2.2.1).
If (A,a) is a G-C*-algebra and (B,B) is a H-C*-algebra, then there exists a canonical #-
isomorphism R ~ R
Fx(C>G x AQH x B,

8, a,r B,r
where C := A® B is the I@—C*—algebm with action § == o ® (.

Proof. The isomorphism of the statement is simply induced by the canonical map
LA(L*(G)®A)® Lp(L*(H)® B) — Lapn(L*(G) @ L(H) @ A® B) = Lagn(L*(F) ® C)

Let us check studiously the universal property of F x C for the C*-algebra Gx AQH x B
o,r a,r B,r
following Theorem 1.5.2.1. In other words, we have to construct a triple (p, V, E) associated to the

C*-algebra Gx A9H x B satisfying the analogue properties of the triple (75, U, Ej) associated
B,r

o,T

to the reduced crossed product Fx C.

o,r

If (7o, U’, E,) is the triple associated to G x A and (m3,U", Eg) is the triple associated to

a,r

H B, then we define
B,r

-p:C—> G x A®H x B as the tensor product p := m, ® w5 (recall Theorem A.1.11),

)T B
- Ve M(co (Iﬁ‘)@(@ X A®Iﬁ[ﬁb< B)) through the corresponding non-degenerate *-homomorphims
(recall Proposition 1.4.1.10)’. For this, recall that Cp, (F) = C1,(G) ® Cp,(H) (see Theorem

2.2.1), so that we can apply the universal property of the maximal tensor product (see
Theorem A.1.12) and we put

by = dur x ¢y : Cpu(F) > M(G x A)QM(H x B)c M(G x AQH x B),

B.r a,r B,r
-E:Gx AQH x B—> M (C) as the tensor product E := E, ® E3 (recall Theorem A.1.11).
a,r B,r

Remark that, by construction, we have clearly
Viiy = U} ®(U")u ju and 6 j(c) = gy ;1(c) ® B jn(a),

for all z € I'rr(F) such that = = (y) 13 (2),, with y € Irr(G) and z € I'rr(H) (recall Theorem 2.2.1),
alce C=AQ®B and foralli,j,k=1,...,n,, 7,7,k =1,...,n,,3,7", k" =1,...,n,.
To conclude, we have to check the following.
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i) p(e)V® Z ( ;(c ), for all z € Irr(F), all a € C and all 4,j = 1,...,n,. Indeed, given
c=a®be C A®B and x = (x1)13(x2)24 € Irr(F) = (ITT(G))13(IT7‘(H))Q4 we write

POV = (mala) @ T5(B) (U4, ® (Ui 10)
= ma(@)(U")Y 5 @ ma(0) (Ui 1

= S U (@ (@) ® S (U s (B o (5)
k=1 k=1

= Z ((U/)Zl I ® (U”)ZH k”) ( ((Q)Z/J/(a)> ®7TB((/8)]€” //(b)))
kl k//

2 (7o ® Ta (@)} (@) @ (B)ir 1o (1) )

S (5t ()

k=1

ii) E := E, ® Eg is always a KSGNS-faithful map. To this end, we give the explicit KSGNS-
construction of E. If (L?(G) ® A,id, Y’) is the KSGNS-construction for E, and (L*(H) ®
B, id, ") is the KSGNS-construction for Eg (recall Theorem 1.5.2.1), then we consider the triple
(L2(G)®L?*(H)®C, id®id, T := Y'®Y"). It is straightforward to check that E = T*o0id®ido Y,
so that this triple is the KSGNS-construction for E. Hence, the KSGNS-faithfulness for £
follows.

|
The following result is well known for classical groups.

1.5.3.2 Proposition. Let G be a compact quantum group. If (A,a) is a @—C’*—algebm and B is
any C*-algebra, then there exists a canonical *-isomorphism

G (B®A);B®@ x A,
1d@a,r a,r

where id@a : BRQA — ]\7(00(@) ® B® A) denotes, by abuse of notation, the action given by the
composition (212 ®ida)(idp ® ).

Proof. The isomorphism of the statement is simply induced by the canonical map
B® LA(LA(G) ® A) — L (L*(G)® B® A)

Let us check studiously the universal property of G «x (B® A) for the C*-algebra B QG X A
id@a,r

following Theorem 1.5.2.1. In other words, we are going to construct a triple (p,
to the C*-algebra B ® Gx A satisfying the analogue properties of the triple (7,

o,T

to the reduced crossed product G «x (B® A). Namely, let’s put
1d®a,r

) assomated
) associated



1.5. Crossed Products by Discrete (Quantum) Groups 137
-p:BRA— B®@ x A as the tensor product idg ® 7.
-Ve M(co(@) ®BRG A) as the unitary Us.
a,r

- E:B@@ x A—> M(B® A) as the tensor product 15 ® F.

a,r

where (m,U, E) is the canonical triple associated to the reduced crossed product G x A and

a,r
tp : B— M(B) is the canonical injection.

Remark that, by construction, we have clearly Vf,j

= idp @ UY;, for all z € Irr(G) and all

i,j =1,...,n,;. To conclude, we have to check the following.
i) p(b® a)V; Z v #P((id ® )i (b® a)), for all z € Irr(F), all b® a € B A and all
Li=1...,n. Indeed

ﬁ@@an::w®w<»mmcwW>—b®w<>u

_b®ZUzk7T (e Zb®Uzk7T(ak]( )

k=1 k=1

I
M:

(de ® Ui (b @ m(ag ;(a)))

=
Il

1

I
M:

" (ids ® UE (b ® af;(a)

kel
Il

1

Il
M:

V ((id@a)ﬁﬁj(b(@a))

=
Il

1

ii) £ = 1p® F is a KSGNS-faithful map. Namely, if (L?(G) ® A, id, ) denotes the KSGNS-
construction for E (recall Theorem 1.5.2.1), then it is straightforward to check that the
triple (B® L2(G)® A,1p ®id, T := idp ® T) is the KSGNS-construction for E. Hence, the
KSGNS-faithfulness for E follows.

1.5.3.3 Proposition. Let G and H be two compact quantum groups. If Ao is a @—C*—algebm and
¢ : B— B’ is a H-equivariant s-homomorphism, then there exists a canonical *-isomorphism

Ao ® Cy = Ciage,

where Cy denotes the cone of the x-homomorphism ¢ and Ciage the cone of the induced *-
homomorphism ida, ® ¢ : Ag® B— Ay ® B’.

Proof. Recall the definitions of the cones associated to the #-homomorphisms ¢ and id ® ¢ of the
statement.

Cy:={(b,g) € B x Co((0,1], B') | ¢(b) = g(1)}
Cuags = {(x,h) € Ay @ B x Co((0,1], A ® B') | (id ® 6)(x) = h(1)}
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Hence the identification of the statement is simply induced by the canonical identification
Ag® Co(((), 1], B’) >~ Co((O, 1], Ao ® B’). Namely, this identification is such that

a® f— (t>—>a®f(t)>,

for all a € Ag, all f € Co((O, 1], B’) and all ¢t € (0, 1], which preserves the definition of the cones.
More precisely, if a € Ag and (b, g) € Cy, then the element ((a ®b), h) where h(t) := a® g(t), for
all t € (0,1], lies in Ciggp because h(l) = a® g(1) = a® ¢(b) = (id® ¢)(a ® b). [ |

1.5.3.4 Proposition. Let G be a compact quantum group and (A, «), (B, ) two @—C*—algebms.
If o + A — B is any G-equivariant x-homomorphism, then the corresponding cone C, is a
G-C*-algebra with action

0: C, — M(Co( ) ®Cy)
(a,h) — d(a,h):= (a(a),Boh)

Given an irreducible representation x € Irr(G), the matrix coefficients of 6F with respect to an
orthonormal basis of H, are given by

6;‘;j(a,h) = (af;j(a) HER h) e C,,
for all (a,h) € C, and alli,j =1,...,n
Proof. First, recall the definition of the cone associated to ¢

Cy = {(a,h) € A x Cy((0,1], B) | ¢(a) = h(1)}

In order to define the action § as in the statement, use the canonical identification (co(@) ®
A) x (CO(@) ®Co((0,1], B)) = co G)® (A x Cy((0,1], B)) and recall that the multiplier algebra

is compatible with direct products (see Proposition A.4.3). In this situation, we have
6)® 4) x (co(©) ® Co((0,1], B)) )
( (6)® (4 x Co((0,1], B)) )
(a,h) — d(a,h) = (a () ©h)
Observe that  takes its values in M (co(@) ® Cy,) thanks to the G-equivariance of ¢
(id® p)(a(a)) = B(p(a)) = A(h(1)),

for all (a,h) € C,. It is straightforward to check that ¢ defines a left action of G on Cop.
Fix an irreducible representation z € I7r(G) and an orthonormal basis {£7,...,& } of H,.
Let’s compute the corresponding matrix coefficients of §.

di;(a,h) = (wer ¢ ®idc, ) (d(a, h)(pe ®idc,))
= ((wer gz, wer ¢2) ide, ) ((a(a), B o h)((pe, pa) ®idc,))
= (af;(a), BE; 0 b)),
for all (a,h) € C,,. [

6: 0 Cp — M((eof
M

lle
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The following result is well-known for classical groups.

1.5.3.5 Proposition. Let G be a compact quantum group and (A, «), (B, ) two @-C’*—algebms,
If p : A — B is any G-equivariant =-homomorphism, then there exists a canonical x-isomorphism

G x Cgo = idx s
T

where C, denotes the cone of the *-homomorphism ¢ and Ciqx, the cone of the induced -
homomorphism idx ¢ : G x A— G x B.
a,r Byr

Proof. First, recall the definitions of our cones
Cp = {(a,h) € Ax Co((0,1], B) | p(a) = h(1)}

Ciany = {(X,h) € G x A x Co((0, 1],@; B) | id x o(X) = h(1)}
and observe that if (4, a), (B, ) are G-C*-algebras, then (Cy, ) is again a G-C*-algebra by virtue
of the preceding proposition, where the action ¢ is such that

67 i(a, h) = (aﬁj(a),ﬁij oh) e Cy,

for all (a,h) € Cy, all x € Irr(G) and all 4,5 = 1,..., ng.
The isomorphism of the statement is simply the restriction of the canonical isomorphism

@; (A% Co((0,1]) ® B) = G «x AxC’o((O,l])®@ﬁ>< B

Let us show studiously that the C*-algebra C;qx, satisfies the universal property of the reduced
crossed product G x Cy,. To do so, we have to define a triple (p, V,E) where p : Cyp — Cigxe
T

is a non-degenerate *-homomorphism, V € M(cy(G) ® Cidxy) is a unitary representation and E :
Ciaxp — M(C,) is a strict completely positive KSGNS-faithful map satisfying the corresponding
properties (), (i7) and (i4¢) of Theorem 1.5.2.1.

Given the reduced crossed products G x Aand G x B, consider the corresponding canonical

a,r B,r

associated triples, say (7, U%, E,) and (75, U?, Eg), respectively. This means precisely that

- e : A —> G x A is a non-degenerate #-homomorphism, U® € M(co(G) @ G x A) is a

o,T o,

unitary representation and F,, : Gx A— M (A) is a non-degenerate completely positive
a,r

KSGNS-faithful map satisfying the corresponding properties (i), (i7) and (iii) of Theorem
1.5.2.1.

-m3: B — G x B is a non-degenerate *-homomorphism, U? e M(co(@) ®G B)is a
B,r B,r

unitary representation and Eg : Gx B—M (B) is a non-degenerate completely positive
\T

KSGNS-faithful map satisfying the corresponding properties (¢), (#4) and (ii¢) of Theorem
1.5.2.1.
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With all these objects we can easily define the required triple (p,V, E). Namely,

- for the non-degenerate #-homomorphism p let’s put

p: CLP - idX @
(a,h) +~— pla,h) = (ma(a),7g0h),

which is a non-degenerate *-homomorphism and it is well defined because

id x p(ma(a)) = ms(p(a)) = ma(h(1)) = mg o (1),
for all (a,h) € Cyp.

- for the unitary representation V € M(co (@) ® Ciaxy) we define, in an equivalent way, a non-
degenerate *-homomorphism ¢y7 : Cp, (G) —> M(Ciax) such that V = (ich(@) ® ¢)(Wg).
Let’s put

(1573 Cn(G) — M(Cidxga) = Ecmw(cidwa)
¢ oyp(e) = (¢ualc)  dus(c) ),

which is a non-degenerate *-homomorphism and it is well defined because
id x p(¢ue(€)X) = id x p(du=(c))id x p(X) = dus ()h(1),

for all (X, ) € Ciaup.

Observe that, by construction, it is clear that for all z € Irr(G) and all i,j = 1,...,n, we
have B
Vi = (Ui .U, ) € M(Ciaxy)

,J
- for the strict completely positive KSGNS-faithful map E let’s put

E: Ciaw, — M(C,)=Lc,(Cy)
(X,h) ~— BE(X,h):= (BEa(X) ,Egoh-)

what is a non-degenerate completely positive map (since so are E, and Eg) and it is well
defined because

P(Ea(X)a) = p(Ba(X))pla) = Eg(id x o(X)h(1) = Eg(h(1))A(1),
for all (a, h) € Cyp.
By construction we have
Ciaxy = C*(pla, W)V, : (a,h) € Cp,x € Irr(G),i, j = 1...,ny)

To conclude we have to check the following,
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i) p(a,h)V; i = Z VZ kP(0% ;(a, b)), for all (a,h) € Cp, all z € Irr(G) and all 4,5 = 1,...,n,.
Indeed, for all t e (0, 1] we write

pla, b))V = (ma(a), ms (&) (Ui (UO)F; - )
= (1a(@)(U)F ;- ma(h())(U")F; - )

Mg

(S 0 imaloi @), 3 O ms(6E, () - )

=1 k=1

(@ 0"z ) (malaf @), ms (B, (1))

1

(
(a)

3

x

b
Il

M§

Vi p(of (@), 67 (h(1)))

b
I

1

= 2, Vixp(6i j(a, h(1))

1

3
]

e
Il

ii) E is a KSGNS-faithful map such that E(ﬁ(mh)vzj) = (a,h)dz, for all (a,h) € Cy,, all
x e Irr(G) and all §,j =1,...,n,. For all t € (0,1] we have

E(p(a, h(t))V; ;) = E((mala), ma(h(t) (U, (U7)7, - ))
= B(mal@)@*)z; s (b)) )
= (Balmal@)@)2;0 ) Balms (b)) )
— (dacr PO+ ) = (@, h(1)3c

Concerning the KSGNS-faithfulness, we are going to exhibit directly the KSGNS-construction
for our £ : Cignyp —> M(Cy,) = Lc,(Cy,). Define

H = {(&n) € L(G)®A x Co((0,1], L*(G) ® B) | n(1) = (£ @idp)},
where %, is the canonical isometry between L?(G) ® A® B and L?(G) ® B defined in Remark
@

1.5.2.5
Next, put the following adjointable operator between C, and s

Y. C, — X
(a,h) +—— T(a,h):= (Tala),Tsoh),

which is well defined because of the definition of %,
Tsoh(l) =Ts(p(a)) =Q@p(a) = % Q@ aQidp) = U(Ta(a) ®idp)
® @

and whose adjoint is simply given by

T* = (Y5, TF on),
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for all n € Co((0,1], L*(G) ® B).
Finally, we define the following representation of Cjqwx, on I

g . Cidbigp — [:C‘p(ff) N
(Xah) — 0(X7h) = (th )7

which is well defined because of the definition of %,. Indeed, for every (§,7) € # we have

hen(1) = h(1)n(1) = id % p(X) % (¢ @ idp)
=, (X@ZdB) ¢(§(§de) = %W(XE%?ZCZB)

Note that o is faithful thanks to the faithfulness of the KSGNS constructions of E, and Eg.
Consider the following Hilbert C,-submodule of J#’

G :=span{o(Cian,)Y(Cy)}
Hence, to conclude, observe that for all (X, h) € Cidxg, all (a,h) € C, and all t € (0, 1] we have

T* o 0(X,h) o T(a,h(t)) = T*(o(X,h)(Tala

= T*(X(Tala)), h(t) s (h(t)
= (T5(X(Tala))), T

(Ea(X)(a), Eg(h(t

Recall Section 1.4.3. An important result in this context is the Green’s Imprimitivity theorem.
In the classical case, this result states the following: let G be a locally compact group and H < G
a closed subgroup. If (B, ) is any H-C*-algebra, then we have the natural Morita equivalences

G x Ind$; (B, B) ~ Hx Band G x Ind$ (B, 8) ~HxB

As a consequence, the well-known Green-Julg theorem yields
K.(G x Ind%(B,B)) = K+(H x B) = KX(B),

whenever H is compact.

We refer to [147] and [161] for a detailed exposition about the theory of induced C*-algebras
and imprimitivity theorems for classical locally compact groups. The quantum counterpart has
been established in Theorem 7.3 in [194] by S. Vaes for a general locally compact quantum group
and a closed quantum subgroup. The corresponding statement in the discrete quantum case is the
following.
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1.5.3.6 Theorem (Quantum Green’s imprimitivity theorem). Let H be a discrete quantum subgroup
of a discrete quantum group G. If (B, ) is a H-C*-algebra, then there exists a natural equivariant
Morita equivalence

G x IndZ (B, p) ~ i x B,

where equivariance is understood with respect to the dual actions on the crossed products.

Torsion phenomena in the quantum setting

In the categorical formulation of the Baum-Connes conjecture given by R. Meyer and R. Nest for a
locally compact group G we use the family F of compact subgroups of G (see Section 1.2.3). If G
is discrete, then the family F is formed by the finite subgroups of G, which is exactly the torsion
of G. Hence, the torsion of a discrete group allows to define an obvious complementary pair of
subcategories (see Theorem 1.2.3.11), which yields the definition of the categorical assembly map.

In this way, we may investigate the torsion phenomena for discrete quantum groups in order to
construct the analogous complementary pair of subcategories and so the corresponding quantum
assembly map. It turns out that torsion for a discrete quantum group G can appeared under
different exotic fashions. Hence, “quantum torsion” is more complicated than “classical torsion”
and we don’t have yet a complete understanding of this phenomena in order to handle it in the
general categorical framework of Meyer-Nest. The first notion of torsion for a discrete quantum
group was introduced by R. Meyer and R. Nest [133], [131] and recently re-interpreted by Y. Arano
and K. De Commer in terms of fusion rings [3].

As we shall explain in Section 1.7.2, the current formulation of the Baum-Connes conjecture
for quantum groups deals only with torsion-free discrete quantum groups. Moreover, in Chapter 3
we investigate the torsion phenomena for some constructions of quantum groups (quantum direct
product, quantum semi-direct product, compact bicrossed product, free product and free wreath
product) in order to tackle the corresponding stability properties of the Baum-Connes property. In
some cases, the torsion phenomena of a discrete quantum group can be successfully controlled in
order to give a suitable Baum-Connes property formulation. For instance, this is the case for the
quantum automorphism group [212] and the free wreath product Section 3.7.

1.6.1 Torsion a la Meyer-Nest

For more details about the following statements we refer to Section 4 in [212].

1.6.1.1 Definition. Let G be a compact quantum group. The discrete quantum group G is called
torsion-free (or torsion-free in the sense of Meyer-Nest) if every finite dimensional G-C*-algebra
is G-equivariantly isomorphic to a direct sum of G-C*-algebras which are G-equivariantly Morita
equivalent to the trivial G-C*-algebra C.

1.6.1.2 Remark. Let G be a compact quantum group and let u be a unitary representation of G on
a finite dimensional Hilbert space H. As we have indicated in Remark 1.4.2.3, B(H) = K(H) is an
obvious G-C*-algebra with the adjoint action induced by u, which is denoted by Ad,,.
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By definition of Morita equivalence (see Definition A.3.15), it is straightforward to show that
a discrete quantum group G is torsion-free if and only if for any finite dimensional G-C*-algebra
(4,9) there exist [ € N and finite dimensional unitary representations u; € B(H;) ® C(G), for all
i=1,...,1 such that

(A,0) = (B(Hy),Ad(u1)) ®...® (B(H;), Ad(uy))

In other words, A = K(H,) ®...® K(H;) as G-C*-algebras.

The following is an elementary but useful result.

1.6.1.3 Lemma. Let G be a compact quantum group. Let A be a simple C*-algebra and p e A a
non zero projection. The following properties hold.

i) A is Morita equivalent to pAp by means of Ap. More precisely, the =-homomorphism

7 A — Kpap(Ap)
a +— w(a), w(a)(bp) := abp, for allbe A

is an isomorphism.

i) If § is an action of G on A and p € A°, then A is G-equivariantly Morita equivalent to pAp by
means of Ap. More precisely, the isomorphism 7 of (i) is G-equivariant.
Moreover, if A is unital and p € A° is minimal, then (pAp,§) is an ergodic action.

Proof. i) First of all, routine computations show that Ap is a Hilbert pAp-module with inner
product defined by

{ap, bp) := pa*bp,

for all a,b e A. Next consider the two-sided closed ideal ApA of A. Since A is simple and p is
non zero by assumption, it must be A = ApA.

The map 7 defined in the statement is clearly a homomorphism. Given a € A, let us describe
the adjoint operator of m(a). We claim that 7(a)* = m(a*). Indeed, for all a,b,b’ € A we write

{m(a)(bp),b'p) = {abp,b'p) = pb*a*V'p

(bp, m(a*)(V'p)) = {bp,a*V'p) = pb*a™b'p,
which yields the claim. Accordingly, 7 is a *-homomorphism.

Since A is simple by assumption, 7 must be injective. Let us show that 7 is surjective. Given
a,be A, we claim that the finite rank operator ©qp pp € Kpap(Ap) is in the image of 7. Indeed,
for all c € A we write

Oap,bp(cp) = aplbp, cp) = ap(pb*cp) = (apb™)cp = w(apb™)(cp),

which yields the claim. To conclude, notice that A = ApA which means that every element
in A can be approximated by elements of the form apb with a,b € A. Since every compact
operator in Kp,4,(Ap) can be approximated by finite rank operators Oy, with a,b € A, the
preceding computation yields that 7(A) = K, 4,(Ap) and the proof is complete.
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ii) (A,6) is a G-C*-algebra. Since p € A by assumption, then both pAp and Ap are G-C*-algebras
by restricting §. In order to show that 7 is G-equivariant, we have to show that the diagram

A . Kpap(Ap)
5 ls
M(A® C(G)) ——gr> M(Kyap(Ap) @ C(G))

is commutative where 9 is the action induced by ¢ and determined by (5~(®ap,bp) = Os(ap),5(bp)>
for all a,b e A (see Remarks 1.7.1.7). Indeed, computations of (i) and d-invariance of p allow
to write

x 5
apb® = (apb*) = Oap.bp > Os(ap),6(bp) = Ob(a)(p@1),5(b) (p@1)

9 T®id
apb* > 5(apb*) = 8(a)(p @ 1)3()* " Os(a)p1).6(0) o1
which yields the claim.

Moreover, assume that A is unital and that p € A% is minimal. In this case, it is clear that
pe (pAp)?, so (pAp)® = Cl, by minimality.
[ ]

Let us show the following useful characterization for torsion-freeness of a discrete quantum
group.

1.6.1.4 Theorem-Definition. Let G be a compact quantum group. The following assertions are
equivalent.

i) G is torsion-free.
it) Let (A,9d) be a finite dimensional G-C*-algebra.
- If  is ergodic, then A is simple. In other words, there are no non-simple ergodic finite

dimensional G-C*-algebras. In this case, we say that G is permutation torsion-free.

- If A is simple, then there exists a finite dimensional unitary representation (u, H) of

G such that A =~ K(H) as G-C*-algebras. In this case, we say that G is projective
torsion-free.

i1i) BEvery finite dimensional ergodic action of G is G-equivariantly Morita equivalent to the trivial

G-C*-algebra C.

Proof. - (4) = (i). Assume that G is torsion-free, which means that given a finite dimensional
G-C*-algebra (A, ) there exist [ € N and finite dimensional unitary representations u; €
B(H;))®C(G), forall i =1,...,l such that A ~ KC(H;) ®...®K(H;) as G-C*-algebras.

If A is simple, the it is clear that G is projective torsion-free.

Assume that A is non-simple and § is ergodic. Since A is non-simple, it must be [ > 1. But in
this case, the direct sum (K(H1), Ady,)®...® (K(H;), Ad,,) is not an ergodic G-C*-algebra,
which contradicts the ergodicity of 6. Hence a non-simple ergodic G-C*-algebra can not exist
so that G is permutation torsion-free.



146 CHAPTER 1. Background

- (4#) = (). Conversely, assume that G is both permutation and projective torsion-free. Let
(A,0) be a finite dimensional G-C*-algebra. If A is simple, then the result follows from the
projective torsion-freeness assumption. If § is ergodic, then the result follows from the torsion
and projective torsion-freeness assumption. Suppose then that A is not simple and ¢ is not
ergodic.

Let us write A under the form A = My, (C) @ ... ® My, (C), for some ki,...,k,,n € N.
Observe that the subalgebra of §-fixed points of A, A%, is clearly d-invariant. Let P, ..., P,
be mutually orthogonal minimal projections in A% such that P, + ... + P, = id. For
each j = 1,...,r consider the decomposition of P; following the blocks of A and write
Pj = (pjlv'--ap%)'

Since P; € A% is §-invariant, then P;AP; is a G-C*-algebra. Since P; is minimal in AS
then it is ergodic. Since G is both permutation and projective torsion-free by assumption,
we have that there exists a finite dimensional unitary representation (u;j, H;) of G such
that P;AP; ~ K(H;) as G-C*-algebras. This means in particular that there exists a single
i =1,...,n such that pg # 0. Consequently, P; is supported on single matrix block for all
j=1,...,7. In other words, since P, + ...+ P, = id, we can identify Pi,..., P, with the
minimal central projections of A on each matrix block, p1,...,p, (so r = n). In particular,
each minimal central projection of A is d-invariant, which allows to assume that A is a single
matrix block, that is, A is simple. In this case, since G is supposed to be projective torsion-free,
the result follows.

- (it) = (i9t). This is straightforward. Namely, assume that G is both permutation and
projective torsion-free. If (A4, d) is a finite dimensional ergodic action of G, then A is simple by
the permutation torsion-freeness assumption. By projective torsion-freeness assumption, we
know in this case that there exists a unitary representation (u, H) of G such that A =~ IC(H)
as G-C*-algebras, which yields the claim.

- (4it) = (7). Let (4,9) be any finite dimensional G-C*-algebra.

If ¢ is ergodic, then by assumption A is G-equivariantly Morita equivalent to the trivial
G-C*-algebra C, which implies in particular that A is simple.

If A is simple, we are going to show that A is G-equivariantly Morita equivalent to a finite
dimensional ergodic action of G. Namely, consider the subalgebra of d-fixed points of A,
A% which is clearly §-invariant. Let Py, ..., P, be non zero mutually orthogonal minimal
projections in A%. For every j = 1,...,r consider the two-sided closed ideal AP;A of A. Since
A is simple and P; is non zero, it must be A = AP; A, which is true for every j = 1,...,r so
that it is enough to consider a single non zero minimal projection p € A%. In this situation,
Lemma 1.6.1.3 assures that A e pAp, where (pAp,J) is a finite dimensional ergodic action.

Hence, our assumption yields that A is G-equivariantly Morita equivalent to the trivial
G-C*-algebra C, which completes the proof.
|

The preceding characterization allows to give the following reformulation of Definition 1.6.1.1
by using Remark 1.6.1.2 and the terminology of Definition 1.4.2.6.
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1.6.1.5 Definition. Let G be a compact quantum group. The discrete quantum group G is
called torsion-free if any torsion action of G is G-equivariantly Morita equivalent to the trivial
G-C*-algebra C.

It leads as well to the following definition.
1.6.1.6 Definition. Let G be a compact quantum group.

- A non-simple ergodic finite dimensional G-C*-algebra is called torsion action of permutation
type. If such a G-C*-algebra exists, we say that G has torsion of permutation type.

- A simple ergodic finite dimensional G-C*-algebra which is not G-equivariantly Morita equiv-
alent to the trivial G—C’*—algebraA(C is called torsion action of projective type. If such a
G-C*-algebra exists, we say that G has torsion of projective type.

1.6.1.7 Remark. 1f G is a discrete quantum group that has a non-trivial finite discrete quantum
subgroup, then G is not torsion-free. Indeed, in this case Pol(G) contains a non-trivial finite
dimensional Hopf #-algebra, say Pol(A). So its co-multiplication

Ap : Pol(A) — Pol(A) ® Pol(A) < Pol(A) ® Pol(G)

defines an ergodic action of G on Pol(A). If it was isomorphic to an adjoint action associated to a
representation (u, H), then the co-unit over Pol(A) would give a character on B(H ), which implies
that H is one-dimensional and so Pol(A) = C, a contradiction.

In other words, regular actions of finite discrete quantum subgroups of G yield torsion of
permutation type for G.

Of course, if I' is a classical discrete group, then the usual torsion-freeness for I' is equivalent to
the torsion-freeness for in the sense of Meyer-Nest. We have precisely the following result (see
Proposition 4.2 of [212] for a proof).

1.6.1.8 Theorem. Let I' be a classical discrete group. For every torsion action of f, (A,9), there

exists a finite subgroup A < T and a normalized 2-cocycle w € Z*(A, S*) such that A ~ C¥*(A),
M
where C%(A) is the twisted group C*-algebra of A.
As a consequence, I' is torsion-free in the classical sense if and only if is torsion-free in the
sense of Meyer-Nest.

If T is a classical discrete group, then the torsion of I' is given exactly by the finite subgroups of
I'. The above theorem guarantees that the torsion of I' corresponds exactly to the quantum torsion
of . In other words, if I is a classical discrete group, then all torsion of the discrete quantum group

is only of permutation type arising from finite dimensional discrete quantum subgroups. More
exotic torsion phenomena can appear whenever we work with genuine discrete quantum groups.
For instance we can regard duals of classical compact groups.

Let G be a classical compact group. Then G is a discrete quantum group. In this situation, the
quantum torsion phenomena of G can be related to the topology of G. We refer to [181] and [56]
for the general theory of topological groups (and particularly, for locally compact groups). More
precisely, we have the following result.
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1.6.1.9 Theorem. Let G be a classical compact group.
i) G is connected if and only zf@ is permutation torsion-free.
it) G has no non-trivial normalized 2-cocycles if and only if@ is projective torsion-free.

Proof. i) Assume that G is connected. Let ¢ be an ergodic action of G on a finite dimensional
C*-algebra A, which will be written under the form A = My, (C) ®...® My, (C), for some
ki,...,kn,m € N. We have to show that A is simple.

The stabilizer group of any block My, (C), which is always a closed subgroup of G, is an open
subgroup of G. For the latter, observe that the ergodic action of G on A yields a transitive
action of G on the center Z(A) = C" =~ Cp; @ ... D Cp,, where py,...,p, are the minimal
central projections of A on each matrix block. In other words, we have a transitive action
of G on the discret set of n-points {1,...,n}. Hence {1,...,n} = O, = G/Stabg(p;) and
Stabe(p;) must be open.

To conclude we observe that the action of G on A preserves the individual matrix blocks.
Indeed, if there was some i = 1,...,n such that My, (C) is not preserved by 4, then the
stabilizer group of the block My, (C) is a closed and open subgroup of G, which is neither
empty (because the identity element e is always a stabilizer) nor G itself (because ¢ does not
preserve the block My, (C)). Since G is connected by assumption, this conclusion is impossible.

Since § preserves the individual matrix blocks and it is ergodic, it must be n = 1. Hence, A is
simple.

For the converse, let us assume that G is not connected. We will show that G has torsion of
permutation type.

Let G be the connected component of the identity element e, which is always a closed normal
subgroup of G. Consequently, G/G is a compact group because G is supposed to be compact.
In addition, it is well-known that the quotient space G/Gj is always a totally disconnected
topological space (for instance, see Theorem 7.3 in [56] for a proof). In other words, G/Gj is a
pro-finite group (for instance, see Theorem 19.9 in [181]).

Remark that G/Gy is non-trivial because G is not connected by assumption. Thus, let N be a
normal open subgroup of G/Gg and consider the corresponding quotient group, F' := (G/Gg)/N.
Notice that, since G/G is compact, F' is a finite group. Hence, the C*-algebra of its continuous
functions, C(F'), is a commutative non-simple (because F' is not trivial) finite dimensional
C*-algebra, which defines a finite discrete quantum subgroup of G by means of the canonical
quotient homomorphisms G — G/Gg — F.

ii) Assume that G has a non-trivial normalized 2-cocycle w € H?(G, S*). Denote by A the usual
left regular representation of G on L?(G), which is given by

A G — B(L*Q))
g — Ay, AN(f)(z) = f(g7 ), for all fe L*(G@) and z € G.
Define the following continuous map

i G o— B(L*(G))
g — ML) = wlxTh g)Ag(f)(x), for all fe L?(G) and z € G.
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A straightforward computation shows that (X$)*(f)(z) = w(z~1g™1,g)A;1(f)(x), for all
fe L*(G) and g,x € G. Namely, for all h € L?(G) we write

OS(f). By = J X9 (F) () h() dpu(zr) = f Wz, 9)f (g~ 2)R(@) du(z)

:JGw(y‘ 97 9) fw)h(gy) duly f FWw(y=g=, 9)h(gy) duly)
= {f,w(() gL 9)h(g) = {f,w(()Tg~ 1, 9)Ag-1 (h),

where we have put the change y := ¢~ 'z and p denotes the left Haar measure on G. This

formula shows that, for every g € G, A\j is a unitary operator on L?(G). Namely, for all
f € L*G) and all z € G we write

()* (@) = O (w@™ 9A(N@) = ) (w™ 9) (g 7'a)
=w(z gL gz g7 ) f(g7 gx) = f(2)

Hence (A\y)* o Ay = idp2(g) and a similar computation shows that X o (A\y)* = idp2(q), for
all g e G. Moreover the map A\ defines a unitary projective representatzons of G on L*(G)
with associated multiplier w, that is, we have \* : G — U(L*(G))/C*id and the formula
e go = w(g1,92) Ay, 0 Ay, holds for all g1, g2 € G. Namely, for all f € L?(G) and all x € G we
write

)\21192 (f)(x) = w(w_lngQQ))‘glgz (f)(x) = w(x_laQIQQ)f(gz_lgl_lx)

X5, (X5, (N@) =2, (9™, 02202 (N (@) = N, (w2 02)F (937 ) )
=w(a " g1)w(z " g1,92) (g5 g1 ')

and we recall the 2-cocycle equation w(g1, g2)w(g192, 93) = w(g1, g2g3)w (g2, g3), for all g1, g2, g3 €
G, which applied to the preceding computation yields the formula for A“. Accordingly, the
map

Adyo : G — Aut(B(L*(Q)))
g — = (Adkw)g, (Ad)\w)g(T) = X oT o (X)*, for all T € B(L*(G))

defines an action of G on B(L*(@G)).

The theory of projective representations of compact groups is completely analogous to classical
theory of usual representations of compact groups. In particular, the projective representation
A¥ defined above (called left reqular projective representation of G with respect to w) decomposes
as a direct sum of irreducible unitary projective representations obtaining an analogue of the
celebrated Peter-Weyl theorem (we refer to [38] for more details). In other words, there exists
a non-zero finite dimensional Hilbert subspace K < L*(G) such that ¢ (K) = K, for every
g € G. In this case, we define an action of G on B(K) by restricting the adjoint action of \*
defined above

a¥: G — Aut(B(K))

g — oy :=(Ady )gIK’ “(T) =Xy oTo(\g)*, for all T € B(K)
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Hence, the pair (B(K),a%) is a simple ergodic finite dimensional G-C*-algebra. We claim
that this action is a torsion action of projective type, that is, it is not G-equivariantly Morita
equivalent to the trivial G-C*-algebra C. Indeed, if this was not the case, which means
that G would be projective torsion-free, then there would exist a finite dimensional unitary
representation (u, H) of G such that B(K) = B(H) as G-C*-algebras. More precisely, there
exists a #-isomorphism 1 : B(K) — B(H) such that oy = Ad,, o1, for all g € G. Observe
that the commutator [u} o ¥(\y),¥(T)] is trivial for every g € G and every T € B(K). This
implies that u} o1 (\y) € Sid, for all g € G' (notice that the operator u} o4 (Ay) is unitary for
all g € G).

Accordingly, we define the following continuous function

f: G — St
g > [(g), such that f(g)id = ug o (A7) < f(g)ug = P(A])

We claim that this function trivializes the 2-cocycle w, which is a contradiction by our
assumption. Namely, for every g1, g2 € G we write

Z/J()\(;m) = 1/’@(91792))‘;}1)‘;2) = w(glaQZ)w(X;l X;g) = w(g1,92)f(91) f(g2)ug, ug,

w(/\‘;lgg) = f(gng)uglgz = f(gng)uyl Ugs

s0 that w(gr, 92) f(91) f(92) = F(9192) < w(g1, 92) = FEH#L for all g1, g5 € G, which yields

the claim. Therefore G must not be projective torsion-free and the non-trivial 2-cocycle w
gives rise to a non-trivial torsion action of projective type a®.

Conversely, assume that there exists a simple ergodic finite dimensional G-C*-algebra A which
is not G-equivariantly Morita equivalent to the trivial one, say (A,d) and write A = B(H)
with H a finite dimensional Hilbert space. We are going to construct explicitly a non-trivial
2-cocycle of G.

Let {&1,...,&,} be an orthonormal basis of H and let {£f,...,&*} its dual basis in H*. By
uniqueness of the trace Tr on B(H), we have Tr o 6, = T'r, for all g € G. Consequently,
d4(&:€F) is a rank one projection, for all ¢ = 1,...,n. For every g € G and every i = 1,...,n,
let n{ be a norm one vector in Im(dg4(&;E¥)), so that 0,(&EF) = nf (n?)*, for all g € G and all
i=1,...,n. Since
6q(&i&)04(85€5) = 6ig - mif ()™,

for all g € G and all i,5 = 1,...,n, then {n?,...,n¢} is an orthonormal basis of H, for all
ge@q.

For every g € G, we denote by uy the unitary in B(H) such that
Ug (&) = 77?7
for all : = 1,...,n. A straightforward computation shows that

0g(T) =ugoTou}

g

for all g € G and all T € B(H). In particular, we can write the following

ugh © T ouly, = Sgn(T) = 64 (61(T)) = ug oup o T o ujf ou¥,
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for all g,h € G and all T € B(H). This formula shows clearly that uj o u’ ou,y € Z(B(H)) =
Cidg, so that we write uj o u¥ o ug, = w(g,h)idg with w(g,h) € C*. Since this is true for
every g, h € G, we define
w: GxG@ — St
(9,h) +— w(g,h),

by the previous construction (up to normalization). A straightforward computation shows
that w is a 2-cocycle of G. Moreover it must be non-trivial (non-cohomologous to the trivial
2-cocycle). Otherwise, there would exist a continuous fonction f : G — S! such that
w(g,h) = f(gh)~1f(g)f(h), for all g,h € G. The group homomorphism

v: G — B(H)
g = 'Ug:=f<g)ug

defines a unitary representation of G'on H and by construction we have 6,(T') = vy 0 T o v},
for all T € B(H). This would imply that A = B(H) is G-equivariantly Morita equivalent to C,
which is impossible because of our assumption. Hence w is a non-trivial normalized 2-cocycle
of G and the proof is complete.

|

1.6.1.10 Note. The following bijective correspondence is well-known

projective representations of G - normalized 2-cocycles
m: G — B(H)/C*id we H?*(G,SY) ’

where a projective representation of G on a Hilbert space H is a continuous map m : G — B(H)
such that 7y, 4, = w(g1, g2)mg, Mg, for all g1, g2 € G. For a detailed exposition about the elementary
theory of projective representations we refer to [38].

A typical example that illustrates the preceding theorem is the following. Consider the classical

—_

rotation group G := SO(3), which is connected. Then SO(3) is not torsion-free in the sense of

1

Meyer-Nest. Namely, SO(3) has torsion of projective type because of the well-known projective
representation of SO(3) on C? given by its universal covering group SU(2). Let us be more precise.
Tt is a classical result that SO(3) =~ SU(2)/Za, where Zy =~ Z(SU(2)) is the center of the special
unitary group SU(2). Consider the following action of SU(2) on M3(C)

§: SU(2) x My(C) —> M,(C)
(N, M) —>  6x(M) = NMN*,

which is obviously trivial on Z, =~ Z(SU(2)). Hence, ¢ descends to an action of SO(3) on M3(C),
so that (M2(C),d) defines a simple ergodic finite dimensional SO(3)-C*-algebra, which is not
equivariantly Morita equivalent to to C. Indeed, if My(C) was equivariantly Morita equivalent to
C, then it would exist a Hilbert space H such that My (C) =~ K(H). Because of dimension reasons,
it must be dim(H) = 2. Thus, we assume without loss of generality, that H = C?.

Observe that SO(3) acts on C? by means of its projective representation. More precisely, consider
the usual representation of SU(2) on C? given by matrix multiplication, m : SU(2) — B(C?). It
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is well-known that SU(2) is the universal covering of SO(3), so that the corresponding universal
covering map p yields the projective representation announced before.

SU(2) —— B(C?)

Ve

This prevents My (C) to be SO(3)-equivariantly Morita equivalent to C.

Furthermore, this example can be translated in the quantum setting. On the one hand, it is
possible to give a quantum version of the rotation group as explained in Remarks 2.1.4 by deforming
with a parameter ¢ € [—1,1]\{0} the C*-algebra of its continuous functions. We denote such a
deformation by SO4(3). On the other hand, P. Soltan gives in [173] an explicit construction of
torsion actions of projective type of SOq(3) on My (C), which is the analogue to the one described
above in the classical case. In addition, it is known that every quantum automorphism group
Qut(A,w) is monoidally equivalent to SO,(3), for some ¢ € (0,1] (recall Theorem B.3.19). The

S

projective torsion of SOy(3) is turned into the permutation torsion of Qu/t,(A\7 w) given by its defining
action (see Lemma 4.4 in [212] for more details)

1.6.2 Torsion a I’Arano-De Commer

The re-interpretation of torsion for quantum groups by Y. Arano and K. De Commer follows a
categorical and combinatorial approach through the notion of fusions ring. Indeed, associated to any
discrete quantum group we have an obvious fusion ring arising from its irreducible representations.

It is advisable to keep in mind notations and definitions from Section B.3. In particular, given
a compact quantum group G, we denote by Zep(G) the corresponding rigid C*-tensor category,
which is called representation category of G. Given a subset S < Irr(G), we denote by € :=(S)
the smallest full subcategory of Zep(G) containing S. If, in addition, € contains the trivial
representation and it is closed under taking tensor product and contragredient representations, by
Tannaka-Krein-Woronowicz duality (see Theorem B.3.16 and Remark B.3.17), there is an associated
C*-subalgebra C'(H) such that restricting the coproduct to C(H) endows it with the structure of
compact quantum group H. Moreover, Zep(H) naturally identifies with € and we say that H is

the quantum subgroup of G generated by S.

Let us recall the main definitions an results about fusion rings in order to summarize the work
[3] by Y. Arano and K. De Commer. We refer to [3] and [61] for more details of the subject. By
the convenience of the exposition, the next presentation have been adapted with respect to the
special case of fusion rings coming from discrete quantum groups (which is the relevant one for the
present dissertation), so that these definitions are equivalent with the standard ones.

Let (I,1) be a pointed set with distinguished element 1, called unit of I. We equip I with an

involution
] —
a >

Rl ~
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such that 1 = 1 and we say that (I,1) is an involutive pointed set. Denote by Zj the free Z-module
with basis I, that is to say, every element in Zj is a unique finite Z-linear combination of elements
of I. The addition operation in Zj is denoted by @®. A ring structure ® on Zy is given by constants
)\fl’a, e Nu {0} for all o, ;i € I, called fusion rules, such that

a®a = Z)‘Zé’a’ -1,
i€l

where all but finitely many terms vanish. This rule extends obviously to any element of Z; and it
can be regarded as an action of Z; on itself; we call it reqular action of Z;. We write i € a ® o
whenever A, ., # 0.

1.6.2.1 Definition. Let (7,1) be an involutive pointed set. Let (Z7,®) be the corresponding free
Z-module equipped with a ring structure ®. We say that Zj is a I-based ring if

i) a®ao =o' ®a, for all a,a’ €I,
ii) lca®d if and only if a = ¢, for all a,a’ € 1.

- A dimension function on a I-based ring (Z7, ®,®) is a unital ring homomorphism d : Z; — R
such that
i) d(a) >0, for all a € I,
ii) d(a) =d(a), forall a e I.

- A fusion ring is a I-based ring endowed with a dimension function, (Z;,®,®, d).

The main examples and constructions of fusion rings which are interesting for the present
dissertation are the following.

a) Let I' be a discrete group. Define (I,1) := (I', e) as the pointed set with involution given by the
inverse in the group. We define the fusion ring of I' as the I'-based ring Zr with ring structure
and dimension function given by

g®h :=ghand d(y) :=1,

for all g, h,y € I". This ring is denoted by Fus(I") or R(I") and sometimes we refer to it as the
representation ring of T'.

b) Let G be a discrete quantum group. Define (I,1) := (Irr(G), €) as the pointed set with involution
given by the adjoint representation. We define the fusion ring of G as the Irr(G)-based ring
Zrrr(cy with fusion rules and dimension function given by

N;, =dim (Mor((z,x @y))) and d(x) := dim(x) ,

for all z,y, z € Irr(G). In other words, the ring structure is given simply by the tensor product

A~

of representations and so by the corresponding fusion rules. This ring is denoted by Fus(G) or
R(G) and sometimes we refer to it as the representation ring of G.
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c) Let Ry := (Z1,,®,®,d1) and Ry := (Zr,,®,®,ds2) be two fusion rings. We define the tensor
product of Zy, and Zj, as the free Z-module Zr, ®Zr,, which is a fusion ring denoted by R1 ® Ro
Z

with
- basis I; © I,
Z
- unit 11 ® 12,
- involution z Oy =T Oy, for all x € Z;, and all y € Zy,,
and dimension function d(a ® B) = di(«)d2(B), for all a € I1 and all § € I».

d) Let Ry := (Z1,,®,®,d1) and Ry := (Z1,,®,®,d2) be two fusion rings. We define the free
product of Ry and Rs, denoted by R # R, as the free Z-module with basis I := Iy % I5, which
is a fusion ring with

- basis I := I # I3, which is the set of alternating words (possibly empty) in I;\{1;} and
I:\{12}. I is an involutive pointed set with the empty word as the distinguished element
and involution given by inverting order and acting as involution of I; on each letter,

- unit the empty word,

- ring structure ® such that

a) if w,w’ € I = I * Iy are words such that w ends in I; and w’ starts in Iy (or vice-versa),
then
w®uw = ww

b) if w = Ca,w’ = a/¢’ € I = I % I are words such that a, o’ € I (or in I3), then

wwW = @ M, (DAL
tcti(?la

- and dimension function d uniquely determined by d|, = d;, for all i = 1,2.

e) Let R := (Z;,®,®,d) be a fusion ring. If L < I is subset such that (L,1) is an involutive
pointed set such that )‘fx,a’ =0, for all a,a’ € L and all i € I\L, then we obtain by restriction
of ® and d a fusion ring S := (Zr,®, ®), d|), which is called fusion subring of R and we write
ScR.

For instance, given any basis element « € I we can consider the fusion ring generated by «,
which is the smallest fusion subring of R containing .

Next, let J be any set and consider the corresponding free Z-module with basis J, Z ;. Assume
that (Zr,®) is equipped with a ring structure ® following the same notations as above. Then
a Zr-module structure on Zj, denoted by the same symbol ® by abuse of notation, is given by
constants X}, ; € Nu {0} for all a € I, 8,5 € J such that

a®B= YN 54,
jeJ

where all but finitely many terms vanish. This rule extends obviously to any element of Z; and
Zy and it can be regarded as an action of Z; on Z;; we say that Z; is a Z;-module. We write

Jj © a® B whenever )\iﬁ # 0.
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1.6.2.2 Definition. Let (I,1) be an involutive pointed set and let J be any set. Let (Z;,®) be
the free Z-module with basis I equipped with a ring structure ®. Let (Z;,@®) be the free Z-module
with basis J equipped with a Z;-module structure ®. We say that Z; is a J-based module if the
following condition holds,

fca®jifand only if j ca® S,

forallael, g,j€J.

- A J-based module (Z;,®, ®) is said to be co-finite if for all 8,j € J, the set {a € I | j € a® S}
is finite.

- A J-based module (Z;,®,®) is said to be connected if for all 8,5 € J, there exists o € I such
that j c a® 8.

- A J-based module is said to be a torsion module, if it is co-finite and connected.

- If (Z1,®,®,ds) is a fusion ring, a compatible dimension function on a J-based module
(Z;,®,®) is a linear map dy : Z; —> R such that
i) dj(8) >0, for all B e J,
ii) djy(a®pB) =dr(a)d;(B), for all « € I and all g € J.

- A fusion module is a J-based module over Z; endowed with a compatible dimension function,

(ZJ, @, ®, dJ)

1.6.2.3 Remarks. 1. U M = (Z;,®,8) is a co-finite based module over a fusion ring R :=
(Z1,®,®,dr) as in the above definition, then we can define a Z;-valued bilinear form on M
by
<B7ﬂ/> = Z)\g/ﬁ : 7:’
el
for all 8,8 € J. This rule extends obviously to any pair of elements of M. Notice the
following,

- Forany a €I, 5,5 € J we have (a ® 3, ") = a ® (B, 5.

- For any jg € J, the map dj : M — R defined by d;(8) := d;({B,j0)), for all 5 € J is a
compatible dimension function on M.

2. Let R := (Z;,®,®,d) be a fusion ring. The regular action of Z; turns R into a I-based module
over R and its dimension function is a compatible dimension function on the corresponding
module. It follows from Definition 1.6.2.1 that R is itself a co-finite and connected fusion
module. The corresponding Zj-valued bilinear form on R is given simply by

la,dy=a®,

for all @, o’ € I. In this way, we say that R is equipped with the standard fusion module
structure.
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3. Let R be a fusion ring and let S < R be a fusion subring of R. By restriction, it is clear
that R can be viewed as a fusion S-module. If NV is a fusion S-module, the tensor product
M := R® N is naturally a fusion R-module. We denote this module by

g

Ind%(N) := R(? N

and we call it induced R-module from N.

Notice that this construction imitates the classical algebraic construction of induced represen-
tation from a subgroup. Moreover, if H is a discrete quantum subgroup of a discrete quantum
group G, then we have C(H) < C(G) and by Tannaka-Krein-Woronowicz duality, Zep(H) is
a full subcategory of Zep(G). Hence, R(H) is a fusion subring of R(G). In this case, we use

the notation Indgggg(-)

1.6.2.4 Definition. Let R be a fusion ring. A standard fusion module is any fusion R-module
which is isomorphic to R with its standard fusion module structure.

1.6.2.5 Remark. Let R be a fusion ring and S ¢ R a fusion subring. Assume that N is a standard
fusion S-module. Then N =~ S as in the definition above. It is clear that the induction of IV is
again a standard fusion R-module because

Ind&(N) = R(E)N > R(?S ~R
1.6.2.6 Definition. A fusion ring R is said to be torsion-free if any torsion R-module is standard.
In particular, a discrete quantum group G is called strong torsion-free (or torsion-free in the
sense of Arano-De Commer) if Fus(G) is torsion-free.

1.6.2.7 Remark. Let us explain the motivation for the preceding definition. Let G be a compact
quantum group and let (A, d) be a torsion action of G. Then the category of G-equivariant Hilbert
A-modules, say J, (see Section 1.7.1 for more details) can be regarded as a module C*-category

over Zep(G). As a consequence, its Grothendieck group is a based module over Fus(G) and it is
not hard to see that

- the finite-dimensionality of A implies that this module is co-finite

- and the ergodicity of ¢ implies that this module is connected.

~

In other words, any torsion action of G gives rise to a torsion module in JZ over Fus(G).
Moreover, if (A, ¢) is the trivial torsion action, then we have 5 = Zep(G) by construction and
the corresponding module is simply Fus(G).

Notice that if H is a discrete quantum subgroup of a discrete quantum group @7 then the
induction of actions Ind$(-) explained in Remarks 1.4.3.5 corresponds to the induction of modules

explained in Remarks 1.6.2.3 through the above categorical interplay.

Of course, if I' is a classical discrete group, then the usual torsion-freeness for I' is equivalent to
the strong torsion-freeness for in the sense above. Moreover, we can show that the torsion-freeness
in the sense of Arano-De Commer implies the torsion-freeness in the sense of Meyer-Nest (see
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Theorem 2.8 in [3] for a proof). However, the converse may not hold because it is not clear that
any torsion Fus(@)—module can be traced back to a torsion action of G.

The previous remark brings us to give a more general notion of (strong) torsion-freeness in the
framework of C*-tensor categories, which has been done in [3] by Y. Arano and K. De Commer.
Furthermore, this approach of torsion-freeness turns out to be very helpful in order to exhibit
the torsion-freeness in the sense of Meyer-Nest for a given discrete quantum group. Indeed, this
approach allows to tackle the problem through fusion modules (for instance, Section 3.6.1 illustrates
this process).

Let us give some elementary definitions and constructions related to latter idea. We refer to [3],
[50] and [121] for more precisions and details.

Let € be a rigid C*-tensor category. We can associate to € a fusion ring, denoted by Fus(%),
with basis given by the irreducible objects of €, fusion rules analogous to the fusion rules of a
discrete quantum group and dimension function defined in [121].

Let 4 be a €-module C*-category. Observe that, associated to .#, we have a J-based Fus(%)-
module, denoted by Fus(.#), where J is the set of equivalence classes of irreducible objects in
M .

In this situation, we say that

- M is co-finite if Fus(.#) is co-finite as J-based Fus(%)-module,

- M is connected if Fus(.#) is connected as J-based Fus(%¢)-module,

- M is a torsion €-module C*-category if Fus(.#) is a torsion Fus(%)-module.

1.6.2.8 Remark. We can show (see Lemma 3.10 in [3] for a proof) that if Fus(.#) = Fus(%) as
based modules, then .# ~ € as ¢-module C*-categories.

The following definition must be regarded as an abstraction of the notion of torsion-freeness in
the sense of Meyer-Nest. Indeed, it is compatible with Definition 1.6.1.1 as shown in Proposition
3.4 of [3].

1.6.2.9 Definition. A rigid C*-tensor category % is said to be torsion-free if every non-trivial
torsion ¢-module C*-category is equivalent to ¢ as ¥-module C*-categories.

1.6.2.10 Note. It is important to warn that the preceding definition is rather a characterization
(Lemma 3.11 in [3]) of the original definition of torsion-freeness for a rigid C*-tensor category
(Definition 3.7 in [3]). Since the original definition requires more categorical preliminaries, we prefer
to give directly the preceding one, which is enough for our purpose.

Among all the results obtained by Y. Arano and K. De Commer in [3], the following two (see
Theorem 1.26 and Proposition 1.28, respectively in [3] for a proof) are particularly useful for the
present dissertation.

1.6.2.11 Theorem. Let Ry := (Z1,,®,®,d1) and Ry := (Z1,,®,®, d2) be torsion-free fusion rings.
If R1 ® Ry is not torsion-free, then Ry and Ro have non-trivial isomorphic finite fusion subrings.

1.6.2.12 Proposition. Let R := (Z;,®,®,d) and S := (Z1,®,®),d|) be fusion rings such that S
is a fusion subring of R. Assume that R is torsion-free.
If S is divisible in R (which means that R =~ @ S as based S-modules), then S is torsion-free.
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K K-theory in the quantum setting

Given a (second countable) locally compact group G, the corresponding G-equivariant Kasparov
theory has been (and will be) presupposed for this dissertation and standard references for the
necessary material on this subject are [86], [224], [24] or [164] (we can refer as well to the original
articles of J. Cuntz, G. G. Kasparov and G. Skandalis, see for example [171], [45], [95], [97], [98]).

Given a locally compact quantum group G we can construct a quantum G-equivariant Kasparov
theory which imitates all the classical constructions and definitions. In this section we are going to
present this quantum picture of K K-theory for the convenience of the exposition, so that it shall
recall as well the classical well known Kasparov theory.

In the early work [6], S. Baaj and G. Skandalis define an equivariant K K-theory with respect
to any Hopf C*-algebra, extend the Kasparov product into this framework and give a particular
version of the Baaj-Skandalis duality for locally compact groups and its duals. In addition, it is
possible to give a more general perspective of this quantum K K-theory working with a weak Kac
system (in the sense of R. Vergnioux) instead of working directly with a Hopf C*-algebra. For a
well detailed exposition of this we refer to Chapter 3 and Chapter 5 in [2006].

1.7.1 Quantum Kasparov’s theory and Baaj-Skandalis Duality

In order to simplify notations and to have a general perspective of the quantum Kasparov’s theory,
we work with any Hopf C*-algebra S := (S, A). However, in the context of the present dissertation

such a Hopf C*-algebra is supposed to be either G = (co(@), A) or G = (C(G),A), where G is a
compact quantum group. In order to understand the following presentation, it is advisable to keep
in mind elementary notions about Hilbert modules recalled in Section A.3 and the corresponding
notion of multipliers (see Definition A.4.5 and Definition A.4.6).

1.7.1.1 Definition. Let S = (S, A) be a Hopf C*-algebra and (A4,d) a S-C*-algebra. A left
S-equivariant Hilbert A-module is a Hilbert A-module H equipped with a linear map 0y : H —
M (S ® H) such that

i) Sp(€-a) = o (€) 0 (a), for all € € H and all a € A,
ii) 0(¢&m) =<6u(€),6u(n)), for all {,ne H,

) (ids ® 8g1) 0 0 = (A ®idyr) o oy,
iv) [0x(H)(S®A)] = S® H.

111

Such a map is called a left action of S on H or a right co-action of S on H.

1.7.1.2 Remark. It (H,d0g) is a S-equivariant Hilbert A-module, then the action 0z is an isometry
hence injective whenever 04 is injective.

1.7.1.8 Note. A right action of S on H (or a left co-action of S on H) is a linear map dy : H —

M (H ® S) satisfying the analogue properties of the preceding definition.
In the present thesis, an action of a Hopf C'*-algebra is supposed to be a left one unless the
contrary is explicitly indicated. Hence, we refer to such actions simply as action of S.
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1.7.1.4 Note. There are some different terminologies in the literature that must be clarified here.
Let S = (S,A) be a Hopf C*-algebra and consider C as a trivial S-C*-algebra. In this case we
consider a Hilbert space H. A linear map dy : H — M (S ® H) satisfying (i3), (i#) and (iv) of
the definition above (observe that (i) is automatically satisfied in this case) is called sometimes
unitary representation of S on H. Namely, it is easy to show (see Proposition 5.2.2 in [188] for
a proof) that such a linear map is equivalent to a unitary operator w € M(K(H) ® S) such that
(id ® A)(w) = wiawyz. This correspondence is realized by means of the following relation

6u(§) = w(ids ® ),

for all £ € H. For an arbitrary Hilbert A-module, the analogous correspondence is established in
Proposition 1.7.1.6 below.

Hence, if we do these constructions for a compact quantum group G, we obtain that a unitary
representation of G on a Hilbert space H is equivalent to a linear map gy : H — M(C(G) ® H)
satisfying (i), (#i7) and (iv) of the definition above. In other words, a unitary representation of G
on a Hilbert space H is exactly the unitary admissible of Proposition 1.7.1.6 below associated to an
action 0 of G on H. N

Remark as well that, in general, if 6y : H — M (S ® H) is an action of S on a Hilbert
A-module H where A is equipped with the trivial action of S, then the admissible unitary associated
to (H,d0p) (see Proposition 1.7.1.6 below) is a unitary operator Vg € M(K(H) ® S) such that
(id® A) (Vi) = (Vi)12(Vir)13. Such an operator is called unitary representation of S on H (recall
Remarks 1.3.1.8).

Remark finally that we can take in particular the C*-algebra A itself as a Hilbert A-module. In
this case, the above definition restricts to the usual definition of an action of G or G on A (notice
that conditions (z) and (i7) are automatically fulfilled because such an action is a *-homomorphism;
recall Definition 1.4.1.1 and Definition 1.4.2.1).

1.7.1.5 Remark. Let (H,dp) be a S-quivariant Hilbert A-module. In order to handle properly the
admissible operator associated to H (which we introduce in the next proposition) it is advisable to
notice the following canonical identifications of Hilbert A-modules.

- (S®H)Z_dg>§®§ (5®5@4)= 5@ (H®(S®A4))

- (H(?(S@A)) ®5(S®S®A) ;Hg(S@S@A)

id s

- (HR(S®4) ® (SS®A)=2H®(S®S®A)
4 A®ida 62

-SQSQH=(S®(S®9))®H = (S®H) @ (SQS®A)
A ARida

The proof of these identifications is straightforward.

1.7.1.6 Proposition. Let S = (S, A) be a Hopf C*-algebra and (A, ) a S-C*-algebra. If H is any
Hilbert A-module and 6 : H — M(S® H) is a linear map, the following assertions are equivalent

i) 5H:H—>]\7(S®H) is an action of S on H.

it) There exists a unique unitary operator (called admissible operator for H)
Vi € £S®A(H? (S®A),S® H) such that
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-0u(&) = Vu o Ty, for all § € H where T € £S®A(5®A7H(§) (S® A)) is defined by
Te(z) := 5(?:10, forallz e S® A;

- (st @ VH) (o] (VH id?@& idS@S@A) = VH A@Q?dA idS@S@A-
Proof. Suppose that 6y : H —> M (S ® H) is an action of S on H. Define the following linear
operator
W: HOS®A) — S®H
(@ — W) :=du(§)(x),
which can be extended to the internal tensor product (recall Theorem A.3.5) thanks to axioms
(1) and (#i) of Definition 1.7.1.1. Let Vi : H (? (S® A) — S ® H be such extension. Thanks

to axiom (iv) of Definition 1.7.1.1, Vj is surjective. Define thus W* (0 (£)(z)) := £ ® z, for all

e H and all x € S® A. The extension of W* to S ® H is the adjoint of V. We deduce that

Vi € Lsga(HR(S®A), S® H) is an adjointable operator and V% = V;!. Notice that the equation
5

0m (&) = Vi o Tt is satisfied for all £ € H by construction.
Conversely, suppose that there exists a unitary operator Vi € Lsga(H ® (S® A), S ® H) such
5

that 65 (§) = Vg o T, for all £ € H. In this case, it is straightforward to check the axioms (i), (i)
and (iv) of Definition 1.7.1.1 for the linear map oy : H — M(S ® H).
Finally, it remains to show that axiom (#i¢) of Definition 1.7.1.1 is equivalent to the condition
(ids®@Vy)o (Vy ‘d®®6 idsgsea) = Vi A@@_)d idsgsga. Some computations show that for all £ € H
1as 10 A

we have

(ids @ 6m) 0 0p (&) = (ids ® Vi) o (Vi 'd®®5 idsgsea) o T¢
ids
(A ®ZdH) O 5H(£) = (VH @ idS@S@A) O TEI,
ARid A

where we define Tf' € £5®5®A(S®S®A,H6€<2)(S®S®A)) by Tg’(x) = {6@2):6, forallze S®S®A.

We have used as well the natural identifications of Remark 1.7.1.5. These relations yield clearly the

equivalence required.
[ |

1.7.1.7 Remarks. 1. If (H,dy) is a S-equivariant Hilbert A-module, the equation (ids ® Vi) o

(Vi ® idsgsea) =Vr ® idsgsga of the admissible operator means the commutativity
ids®d AQid
of the following diagram by virtue of the natural identifications of Remark 1.7.1.5.

Vi ® idsgsea
A®ida
H@(S®5®A) S®S®H

Ve ® idsgsea
ids®s ids @ Vi

(S®H) ® (S®S®A)
lds®5



1.7. K K-theory in the quantum setting 161

2. If (H,dy) is a S-equivariant Hilbert A-module, then K 4(H) is a S-C*-algebra with the adjoint
action with respect to the admissible operator V associated to (H,dg)

0 = Ady, : Ka(H) — M(S®Ka(H))
T — AdVH(T) = VHO(T(?idS®A)OV§,

Observe that this action can be described directly by the formula
011 (Ogn) 1= 511 () ()" = O, (0)m) € Ka(M(S® H)) < M(S @ Ka(H)),
for all &,mne H.

1.7.1.8 Definition. Let S = (S, A) be a Hopf C*-algebra, (A,04) and (B, dp) (resp. graded)S-
C*-algebras. If (H,dy) is a (resp. graded) S-equivariant Hilbert B-module, a (resp. graded)
S-equivariant representation of A on H is a (resp. graded) s-homomorphism 7 : A — Lp(H) such
that

du om(a)(§) = (ids ®7)(da(a)) © 0u(§),

forallae Aand all £ € H.
In this case we say that (H,dg,7) is a (resp. graded) S-equivariant (A, B)-bimodule.

1.7.1.9 Note. Let A and B be C*-algebras. If H is a Hilbert B-module equipped with a representation
of Aon H, 7 : A — Lp(H), the pair (H,) is called an (A, B)-bimodule and sometimes the
following notation is useful

AHp,

where the right action of B on H is given by the corresponding Hilbert B-module structure and
the left action of A on H is given by the representation .

1.7.1.10 Remarks. 1. Let (H,d0m,m) be S-equivariant (A, B)-bimodule. If Vi denotes the ad-
missible operator associated to the action dg, then the S-equivariance condition for 7 of the
above definition is expressed in a equivalent way by the following equation

(ids ®@7)(0a(a)) = Vi (n(a) ® idsea) Vi,

for all a € A.

2. Let S = (S, A) be a Hopf C*-algebra, (A,54) and (B,dp) S-C*-algebras. Let (H,dp) be a
S-equivariant Hilbert A-module and (K, dx) S-equivariant Hilbert B-module. If 7 : A —
Lp(K) is a S-equivariant representation, then routine arguments show that the interior tensor
product H®K is a S-equivariant Hilbert B-module with action ¢, : HOK — M(SQHRK)

such that
0x(E®n) = (6u(§) ®idp) o 0k (n),

s

forall £ € H and all n e K.

1.7.1.11 Definition. Let S = (S, A) be a Hopf C*-algebra, (A,d4) and (B,dp) graded S-C*-
algebras. A S-equivariant Kasparov (A, B)-bimodule or a S-equivariant Kasparov triple for (A, B) is
the data ((H,dp),w, F) where (H,dy, ) is a graded S-equivariant (A4, B)-bimodule and F € L (H)
is a degree one operator such that
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i) (H,n, F) is a usual Kasparov (A4, B)-bimodule
ii) for all z € S ® A we have

(VH(F 6@) idS@B)Vﬁ — ids %) F)(st ®7T)(I) € ICS®B(S® B),
B

where Vp is the admissible operator associated to (H,dp).

The set of all S-equivariant Kasparov (A, B)-bimodules is denoted by ES(A, B).
If (H,w, F) is a usual degenerate Kasparov (A, B)-bimodule and (Vi (F g@ idsgB)Vi —idg %)
B

F)(ids®m)(x) =0 for all z € S® A, then we say (H,w, F') is a degenerate S-equivariant Kasparov
(A, B)-bimodule. The set of all degenerate S-equivariant Kasparov (A, B)-bimodules is denoted by
DS(A, B).

1.7.1.12 Definition. Let S = (S, A) be a Hopf C*-algebra, (4,54) and (B,dp) graded S-C*-
algebras. Two S-equivariant Kasparov (A, B)-bimodules (H,w, F') and (H', 7', F') are said to be
unitary equivalent if there exists an isomorphism of graded Hilbert B-modules U : H — H'’ such
that

i) U intertwines the representations, 7'(a) o U = U o 7(a), for all a € A,
ii) U intertwines the operators, F' oU = U o F,

iii) U is compatible with the admisible operators, Vi (U g@ id)Vy =idg % U.
B

In this case we write (H, 7, F) =~ (H', ', F").

1.7.1.13 Definition. Let S = (S, A) be a Hopf C*-algebra, (A,d4) and (B,dp) graded S-C*-
algebras. Two S-equivariant Kasparov (A, B)-bimodules (H,w, F) and (H', 7', F') are said to be
homotopic if there exists S-equivariant Kasparov (A, C([0,1]) ® B)-bimodule € such that

i) Eevy = (H, 7, F),
ii) €, = (H', 7', F").
In this case we write (H, 7, F) ~, (H',«', F’).

1.7.1.14 Remarks. 1. Observe that if (B,dp) is a S-C*-algebra, then C([0,1]) ® B is also a
S-C*-algebra with action §’ : C([0,1]) ® B — M (S ® C([0,1]) ® B) defined by

O'(f)(t) = dB(f(1)),
for all f € C([0,1]) ® B =~ C([0,1], B) and all t € [0, 1].

2. Given t € [0,1], evs : C([0,1]) ® B = C([0, 1], B) — B denotes the evaluation map. Hence,
given a S-equivariant Kasparov (4, C([0,1]) ® B)-bimodule £ := (E, p, G), we can construct
the pushout of & with respect to ev,. More precisely, it is a S-equivariant Kasparov (A, B)-
bimodule given by ey, := (Eev, s Pevys Ger, ), Where Ee,, is the usual pushout Hilbert module
(see Theorem A.3.5 and Theorem A.3.22 for more precisions).
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Using the analogous arguments as in the classical case, we obtain thus the corresponding
quantum Kasparov groups.

1.7.1.15 Theorem-Definition. Let S = (S,A) be a Hopf C*-algebra, (A,d4) and (B,dp) graded
S-C*-algebras. The quotient set of S-equivariant Kasparov triples for (A, B) by the homotopy
relation is an abelian group with the direct sum of S-equivariant Kasparov triples and with zero
element represented by the degenerated S-equivariant Kasparov triples.

We write
KKS(A,B) := (E5(A, B)/ ~1,®)

for such a group and we call it S-equivariant Kasparov group for (A, B).

The whole formal theory concerning the Kasparov groups can be generalized in the setting of
Hopf C*-algebras and so for any locally compact quantum group. We collect in the next theorem
the most relevant results concerning functoriality and the Kasparov product (for a detailed proof of
these facts we refer to [2006], [6], [36] and [24]).

1.7.1.16 Theorem. Let S = (S,A) be a Hopf C*-algebra.

i) If ¢ : A —> B is a S-equivariant =-homomorphism, then it defines a S-equivariant Kasparov
triple. Namely,

[30] = [(Ba ®s 0)]
In particular, we write 1 4 := [ids] € KK®(A, A).

it) if A1, As, B are S-C*-algebras and f : Ay —> As is a S-equivariant x-homomorphism, then
there exists a homomorphism of abelian groups

f*: KKS(Ay,B) — KKS(Ay, B)
(HmF)]  — f*([(H " F)):=[(HmofF)]

1) if A, B1, By are S-C*-algebras and g : By —> Bs is a S-equivariant x-homomorphism, then
there exists a homomorphism of abelian groups

gx: KKS(A,B) — KKSA,B,)
[(H, 7, F)] +— g*([(H,Tr,F)]) = [(H(?Bg,ﬂ?id,FGgDid)]

w) if A, B,C are S-C*-algebras, then there exists a bilinear map (called Kasparov product )
Cé): KKS(A,C) x KK3(C,B) — KK5S(A,B)
(&,8) — & %) &

such that

- ® 1s associative meaning that if C' is another S-C*-algebra, then
C
TRYQz=rQ [y 2),
coc c

forallze KKS(A,C), ye KK3(C,C") and z € KK°(C', B).
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- 14 is the neutral element by the left for the operation (1?7
- [f1®y = f*(y), for all x-homomorphism f: A — C and all y e KKS(C, B),
c

- x? [9] = g« (x), for all z € KK®(A,C) and all x-homomorphism g : C — B.

v) If A A’ B, B',C are C*-algebras, then the exterior tensor product of Kasparov triples induces
two group homomorphisms

¢ KK(A,B) — KK(A®C,B®C)

£ — T1S(€)=E®C
¢ KK(A,B) — KK(C®A,C®B)
& — 7€) =CRE

such that

- 79([¢]) = [¢ ®idc], for all x-homomorphism ¢ : A — B,

- 79([¢]) = [ide ® @], for all x-homomorphism ¢ : A —> B.
Consequently, there exists a bilinear map

¢ KK(AA®C)xKK(C®B,B') — KKA®B,A'®B)
g, — 79(€,G) =75 2(9),
(£,9) €9 = HE) | & ()
which is contravariantly functorial in A and B and covariantly functorial in A’ and B’.

If C := C, the bilinear map 7€ defines what we call a tensor product of Kasparov triples and
we write T(£,G) =: E®G, for all (£,G) e KK(A,A') x KK(B,B').

1.7.1.17 Remark. In particular, if G is any locally compact quantum group (for instance a compact
or a discrete quantum group), it is licit to consider the corresponding Kasparov category .# . # ¢
defined as in the classical case (recall Section 1.2.3). Hence, in the same way as before, # #C is
actually a triangulated category. The problem appears when we want to apply the general categorical
machinery to this triangulated category due to the more complicated structure of such a quantum
group. In this sense we need some technical restrictions to formulate a quantum Baum-Connes

property.
1.7.1.18 Definition. Let S = (S, A) be a Hopf C*-algebra, (4,4) and (B,dp) graded S-C*-

algebras. We say that A and B are S-equivariantly K K-equivalent if there exist elements « €
KKS(A,B) and B e KK®(B, A) such that

a®pf=14and fRQa=1p
B A

Finally, in the context of this quantum Kasparov theory we can obtain a generalization of the
classical Takesaki-Takai duality called Baaj-Skandalis duality (see Theorem 9.5.11 in [188] for a
more general statement in the context of multiplicative unitaries in the sense of Baaj-Skandalis).
This duality is useful to pass from the Kasparov category of a given compact quantum group G to
the Kasparov category corresponding to the discrete quantum group G. For this, we have firstly to
establish a quantum version of the descent homomorphism (see Section 5 in [206] or [6] for the full
details).
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1.7.1.19 Theorem-Definition. Let G be a compact quantum group, (A,64) and (B,dp) graded
G-C*-algebras. Given a G-equivariant Kasparov triple (H,w, F'), then the data

(G x H,id x 7, F ® id),
s T LB

where@xH:H@(@le),idl><7r:@b<A—>£@KB(@l><H) andF@ideL’@xB(@xH) are
T LB T T T T LB T

"

defined by functoriality; is a Kasparov triple in E(@ X A(@ x B) called descent triple.

Moreover, there exists a group homomorphism
ja: KK®(A,B) — KK (G x A,G x B),
T T

which is compatible with the Kasparov product, that is, if (C,d¢c) is another @—C*-algebm and
ae KKC®(A,C), Be KK®(C,B), then we have

Jala®pB) =jala) ® ja(B) and ja(la) =1g, 4
¢ GxC -
The homomorphism jg is called descent homomorphism with respect to G. In an analogous
way we define the descent homomorphism with respect to G, denoted by jg.

1.7.1.20 Theorem (Baaj-Skandalis duality). Let G be a compact quantum group. If (A, ) is any
G-C*-algebra, then the reduced crossed product G x A is naturally a G°°P-C*-algebra with action

a,r

Q= (ACOP ®id) o a so that we have a G-equivariant isomorphism

G x (G x A) = AQK(L*G))

that identifies the bi-dual action & with the action
a = Adja,ew; © [0 5 : AQ K(L*(G)) — M(C(G) ® A® K(L*(G)))

As a consequence, for every G-C*-algebras (A, ) and (B, ) we have a canonical isomorphism
of abelian groups A
Je : KK®(A,B) = KK®"(G x A,G x B)
a,r B,r
which is compatible with the Kasparov product, that is, if (C,7) is another G-C*-algebra and
ae KKC®(A,C), Be KK®(C,B), then we have

JG(Ot(éDﬂ) = Je(a) & Je(B) and Jg(1a) = loxa

T
r

In an analogous way we define the isomorphism of abelian groups Jg, which is the inverse of Jg.

Moreover, we have that joc = Og o Jg and jz = Og o Jg, where Og and Og are the obvious
forgetful functors.

In particular, we have the following.

- If (A, trv) is a trivial G-C*-algebra, then G X A= (@) ® A.

A~

- If (C,trv) is considered as a trivial G-C*-algebra, then G x C = ¢o(G).

tru,r
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1.7.1.21 Remark. Baaj-Skandalis duality yields in particular a canonical *-isomorphism

G x o@G) =G x (G x C)=K(IL*G)
Ar tro,r TU,T
It is advisable to give an explicit description of this identification. For this, denote by

(mx,Ux, E3) the canonical triple associated to the reduced crossed product G X o (@) following
A,r

Theorem 1.5.2.1, which is given precisely by (X, I//I\/'G ® ich(@), Q® idCO(@)).
We are going to show that the C*-algebra K(L?(G)) satisfies the universal property of G X co ((@)
Ar
On the one hand, consider the canonical left regular representations \ : co(G) — B(L3(G)) and
A : C(G) — B(L*(G)) defined by the GNS construction of hy, and hg, respectively. By definition

of the fundamental unitary Wg € M(co(@) ®C(G)) (recall Theorem 1.3.1.36 and Remark 1.3.1.38),
we have that
WE(ich(@) ® Aa))Wg = (ich(@) ® A)A(a) and (Wé)” = Awy;),

A~

for all a € ¢o(G), x € Irr(G), i,5 = 1,...,ng.
On the other hand, consider the following C*-algebra

C = C*(X(a))\(w'ﬁj) laeco(G),zelrr(G),ij=1,...,n,)  B(L*(G))

We claim that 4 = K(L?*(G)). Notice that the operators /A\(a) with a € co(@) are compact
on L*(G). Indeed, it is enough to observe that Im(X(ap,)) © Hy @ Hz, for all z € Irr(G).
Consequently, the operators X(a))\(wij) with a € co(@), z € Irr(G),i,j =1,...,n, are compact
on L?(G). Conversely, to show that K(L?(G)) < ¢ it is enough to show that £€* € €, for all
£ € L*(G). Take & := A(wf;)Q and write

€6 (Mwl Q) = EN(wY ) MNw? ;) = Ehe (w)*wy))
= Mw? )APIM (W) *wf )R = Aw? AP (wf;)*)(A(w].,)),

0.
for all y € Irr(G), k,l = 1,...,n,. To conclude, observe that the set {¢ € L?(G) | (&6% € €} is
closed, which is a routine computation. R
In order to define a non-degenerate completely positive KSGNS-faithful map F : K(L?(G) —
M(CO(@)) such that E’(S\(a)/\(wf])) =0y.a, forall a e co(@), x € Irr(G),i,j=1,...,n,, we are
going to define directly the associated KSGNS construction (recall Remark A.3.12). Define the

A~

following c¢o(G)-linear map

T: @G — L*G)®co(G)
a — T(z)=QQ®a

Define the co(G)-linear operator T* : A(Pol(G))Q® co(G) —> ¢o(G) by the formula
T*(AMNwi;))2®a) = hg(w];)a,

A~

for all z € Irr(G), all i,5 = 1,...,n, and all a € ¢y(G). Applying Schwarz inequality to the Haar
state, a routine computation shows that T* is bounded. Therefore we can extend the above formula
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to the whole L*(G )®co( ) obtaining a bounded operator T* : L?(G) ®CO(@) — co(@). Moreover,
it is clear that T and Y* defined in this way are adjoint. R
Next, we define the following faithful representation of X(L?(G)) on L?(G) ® co(G),

v K(IA(G) — L, (L*G)®c(G))

T — (): ®id,, ¢z

and the following completely positive map

~

E: K(L*G) — M(c(G))
T — ET):="*cd(T)oT

We claim that the data (L?(G) ® co( ),d,T) is the KSGNS construction for E. We only have
to prove that L?(G) ® co(G) = span{d(K (L (G)))Y(co(G))}. By construction, it is enough to show
that A(w?;)Q®a € I(K(L*(G)))Y(co(G )) for all z € Irr(G), all i, = 1,...,n, and a € CO(@).
Namely,

)\(wﬁj)Q ®a = (/\(wf]) ® idCO(@))(Q ®a) = (A(wﬁj) ® idCO(é))T(a)
= lim (\(en)A\(wf;) ®id, )T (a)) € V(K(L*(G))Y(co(G)),

r—00

where {e,}ren is an approximate unit for cO(C:‘) so that {)\(er)}reN is an approximate unit for
E

X(co(@)). To conclude, let us check the formula (X( JAWw§ ;) = 0z.ca, foralla € CO(G), z € Irr(G),
i,7 =1,...,n,. Namely,

E(a)M(w?;))(b) = T* (A @)Mw? ) (T1))) = T* (I(A(@)A(wf;)) (T (b))
= T* (I @A (w?;)) (2@ 1)) = T*(A(@)A(w?)) ®id,, ) (2®b))

= T*(Ma)A(wf,)Q®b) = T* (X(a)\/f §RL® b)

" dimg ()
B ( dimg () (ape ®idz )67 ®b>

= (apz ® 'LdH;)T* ()‘(wig)Q ® b) = (apz ® Zng)hG(wzx,j)b = ab(sm,ev

which is true for every b e co(@) and shows the formula.
In conclusion, the triple (A, Wg, E) associated to K(L?(G)) in the sense of Theorem 1.5.2.1

together with the preceding computations yield, by universal property of G X (G) that there
A,r
exists a canonical *-isomorphism

x co(G) — K(L*(G))

<
[N

such that

for all a € co(@), zelrr(G),i,5=1,...,n,.
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1.7.1.22 Theorem (Quantum Green-Julg theorem). Let G = (C(G), A) be a compact quantum
group.

i) Let (A,04) and (B,dp) be graded G-C*-algebras. If 64 is the trivial action, then there exists
a group isomorphism
KK®(A,B) ~ KK(A,G x B)

it) Let (A,04) and (B,dp) graded @—C’*—algebms. If 6p is the trivial action, then there exists a
group isomorphism R
KKC®(A,B) ~ KK(G x A, B)

1.7.1.23 Remark. The following ring isomorphism is well-known
R(G) = KK®(C,C),

where R(G) is the representation ring of G (introduced in Section 1.6.2) equipped with the tensor
product of irreducible representations as ring product and K K©(C, C) is the G-equivariant Kasparov
group for (C,C) equipped with the Kasparov product as ring product.

Observe that given any @—C*—algebra B we can write

Ko(B) = Ko(BRK(L*(G))) = KK(C, BRK(L*(G))) = KK(C,G x (G x B)) ~ KK®(C,G x B)

by combining Baaj-Skandalis duality and quantum Green-Julg theorem. Consequently, the Kasparov
product induces an R(G)-module structure on Ky(B) for any G-C*-algebra B,

and if C is any G-C*-algebra, then every element & € KK@(B,C’) induces an R(G)-module
homomorphism & : Ko(B) — K(C) by right Kasparov product with &.

It is advisable to point out two particular cases.
a) If B:= co(@), then the above identification yields Ko(co(@)) ~ R(G) and the preceding R(G)-

module structure on Ky(co(G)) is simply the action of R(G) on itself by multiplication of
irreducible representations.

b) If B := C, then we have Ky(C) =~ Z and the preceding R(G)-module structure on Ky(C) is
induced by the dimension function on irreducible representations.

More precisely, notice that, by definition, R(G) has an additive basis indexed by Irr(G). In
this way, we identify R(G) with the free abelian group Z[Irr(G)] and we define the dimension
function Z[Irr(G)] — Z to be such that x +— ng, for every z € Irr(G).

1.7.2 Quantum Baum-Connes conjecture

In this section we want to formulate a version of the Baum-Connes property for a discrete quantum
group G. In order to do so, we are going to imitate the reformulation of R. Meyer and R. Nest for
classical groups as we have explained in Section 1.2.3.
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Recall that for this we use the family F of compact subgroups of the given locally compact
group G in order to define the complementary pair of subcategories (£, .4") := ((CT),CC). Then
we define the corresponding categorical assembly map. The first issue that we find here is that we
can not translate the notion of compact subgroup in the quantum setting. For this reason, we have
to restrict our attention to the discrete case for which the compact subgroups become the finite
ones and so the family F describes actually the torsion of the considered discrete group. In this
way, the quantum formulation deals with the family F of torsion C*-algebras for G. Observe that,
a priori, the discrete quantum subgroups do not give all possible torsion; other exotic phenomena
can occur (recall Section 1.6.1).

Since torsion phenomena in the quantum setting is more complicated than in the classical case,
a quantum Baum-Connes property concerns currently only torsion—free discrete quantum groups.

As a result, if G is a compact quantum group such that G is a torsion-free discrete quantum
group, the family F is formed in this case just by the trivial quantum subgroup E (which is, by the
way, the only finite quantum subgroup of @, recall Remark 1.6.1.7). That is, F = {E}.

Hence the subcategories . and .4 in the quantum picture are described precisely as follows:

- (Quantum) Compactly Contractible objects:

N =N = CCQut. :={A€ Obj(%%@) | A~ 0in % as a trivial G-C*-algebra}

- (Quantum) Compactly Induced objects:

L= Lo = (CTgu) = {A e Obj(# HC) | A= cy(G)® B for some B € Obj(H )}

1.7.2.1 Note. Sometimes, the study of the Baum-Connes property of a discrete quantum group
requires to work in a more restricted category. Namely, the Kasparov category associated to the

Drinfeld double, % D(@), where there exists a notion of tensor product (see Remark A.3.24). In
this way, we may define the following subcategories

N yp = {A € Obj(H APO) | Ax0in #H as a trivial G-C*-algebra}

Lo p = {A€Obj(H AHPD) | Axcy(G)®@ B for some B e Obj(H 7))}

We observe that the G-C*-algebras of the form co( )®B with B € Obj(% ) are automatically
G-Y D-C*- algebras by taking the dual co-multiplication. Therefore, when G is torsion-free, the
canonical forgetful functor .# . # P ©) — # #C sends Lo _yp to Lz
1.7.2.2 Remarks. 1. Since in our framework we have F = {E}, there exists only one restriction
functor Res]E and one induction functor / ndG
Restriction functor is always a forgetful functor and, in our case, we forget completely any
action of G on the C*- algebra considered, this is why we may write Res$(A) = A, for any
A€ Obj(x G).
Induction functor concerning quantum groups is a more delicate notion as we have noticed in
Section 1.4, but in our framework the only quantum subgroup that we consider is the trivial

one, so that, as in the classical case, the induction from such a subgroup yields a @—C*-algebra
of the form Ind§(B) = co(G) ® B, for some C*-algebra B.



170 CHAPTER 1. Background

2. In order to apply the Meyer-Nest machinery, we want to show that ((CZgut.), CCout.) is a
complementary pair of localizing subcategories in JZ" %2 . To this end, the strategy consists
in constructing projective objects in & %" C with respect to an additive homological ideal. In
our situation, this ideal is simply J := ker g om(Res$) (recall Theorem 1.2.2.20 and Theorem
1.2.3.11).

Notice that these constructions (that arise naturally from the classical case developed in Section

1.2.3) are located in the Kasparov category with respect to (f}, # ¢ C. But sometimes it is interesting
and useful to work in the Kasparov category associated to the compact quantum group, that is,
in # % ©. We can easily do the translation from one category to the other using Baaj-Skandalis
duality. More precisely, we have the next result.

1.7.2.3 Proposition. Let G be a compact quantum group such that Gisa torsion-free discrete
quantum group. The Baaj-Skandalis duals of the pair ((CIgut.),CCout.) in K K€ is the pair
((CZqut. ), CCQut.) in H H#C, where

L= Ly = <C/2Quti> ={AeObj(xxC) | A with trivial action of G})
N = N = éEQut_ = {AcObj(HH®) | Gx A=0in XX as a trivial G=P-C*-algebra}

Proof. Recall that Baaj-Skandalis duality (Theorem 1.7.1.20) states a canonical equivalence of
categories

HHC =~ S

via the crossed product functor. More precisely, any G-C*-algebra (A, ) is equivalent to the
GeeP-C*-algebra given by G x A with action & := (AP ®1id) o a.
a,r

Under this duality it is clear the identification CCqy. = &?Qut,

For the identification (CZgqy:.) = <C?Qut‘> notice that given any C*-algebra B, the action of
GeoP on I ndg’(B) =cg (@) ® B is given simply by AP @ idp. If we apply Baaj-Skandalis duality,
we obtain the G-C*-algebra

G x (0@®B) =G x «G)eB
Acor@idg,r Acor r
= (G « (G x C)®B=CRK(L*G)®B=D
Acop i ro,r
with action (A ® id) o (ACOP ®idp). By virtue of Baaj-Skandalis duality (see Theorem 1.7.1.20)

we know that this action is identified to the action Adwﬁ(ﬁc"p ®idg) of G on C® K(L*(G)) ® B.

Next, recall that AC"”(') = We(id®- )W, Hence, G~ x (co(G) ® B) ~ B is a G-C*-algebra
Acor®idg,r
with trivial action.

Adw (AP @ idg) = W (We(id ® YWE @ idg) We
= (WEWe(id®  )\WEWs) Qidp = idp @1

In other words, CZgy:. = C/iQut, under Baaj-Skandalis duality. |
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It remains to show that the pair ((CZgut.), CCoue.) is actually a complementary pair of localizing

subcategories in # # . To do this, the strategy consists in imitating the classical discrete case for
which we use the adjoint approach for constructing projective objects (recall Theorem 1.2.2.20 and
Theorem 1.2.3.11). In this way, the adjointness property between the induction and the restriction
functors is the main ingredient that we need. This can be showed using the explicit description
of induced actions stated in Section 1.4 and the characterization of Theorem B.1.15 for adjoint
functors. A detailed proof can be found in Proposition 6.2 of [208].

1.7.2.4 Lemma. Let G be a compact quantum group and ﬂ <G any discrete quantum subgroup.
The restriction functor Res% and the induction functor Ind% are adjoint in the following sense,
G G ~ fi G
KK (Indﬁ(B),A) ~ KK (B,Resﬁ(A)),
for all @—C’*—algebm A and oll H-C* -algebra B.
In particular, this is true for the trivial quantum subgroup E.

1.7.2.5 Remark. First of all, observe that the preceding formula can be written under the form
KK®(A,Ind%(B)) =~ KK"(ResZ(A), B),

for all @—C*—algebra A and all ]ﬁl—C*—algebra B.

Moreover, this adjointness property can be established in a more general framework. Namely, if
G is any locally compact quantum group and H < G is a co-compact quantum subgroup (which
means that the C*-algebra ¢o(G/H) of the corresponding homogeneous space is unital), then we
can show that I ndﬁ is a left adjoint of Resg in the sense above whenever G is co-amenable. The
proof is essentially the same as the one for the above statement (under some regularity condition)
and we refer to Proposition 4.7 in [140] for a proof.

1.7.2.6 Theorem. Let G be a compact quantum group such that G is a torsion-free discrete
quantum group. If J = kergom(Resy), then

i) {CLqui.) = pa)
i1) HHC has enough J-projective objects.
Therefore, ((CZgut.y, CCqut.) s a complementary pair of localizing subcategories in HHE
Proof. By virtue of the preceding lemma, we have that
KKC®(IndS(A), B) ~ KK(A, Res&(B)),

for all C*-algebra A and all @—C’*—algebra B. In other words, the functors Res% and [ ndg are

adjoints in &% . More precisely, I ndg’ is a left adjoint functor for ResS.
In this way, we have by definition that

CCQut. = kerop; (Res%) and J = kerHom(Resg’)
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Therefore, Theorem 1.2.2.20 assures that ¢ © has enough J-projective objects and con-
sequently, by Theorem 1.2.2.15, ({(p7),CCqut.) is a complementary pair in # % ¢ with (ps) =

{(Res$)F (Obj(tx))) = (Ind§ (Obj( X))).

To conclude, observe that (CZg,:.) is the minimal localizing subcategory containing the compactly
induced objects by definition, so it contains objects of the form Ind$ (Obj(%’%’)), so we have
(Ind§ (Obj (A X))y = (CIgus.y and, by minimality, this inclusion must be an equality. This yields
the conclusion of the statement. |
1.7.2.7 Remark. Since ({(CZgut.),CCqut) is a complementary pair of localizing subcategories in

€, the fundamental lemma about complementary pairs (recall Lemma 1.2.1.26) can be applied,
so that in particular we have two triangulated functors

L:t % — (CTowdand N : . HC — CCous.
Q Q

such that for any @—C’*—algebra A€ Obj()i/,%/@) there exists a (unique up to isomorphism)
distinguished triangle of the form

S(N(A)) — L(A) 2 A — N(A),

where D is called quantum Dirac homomorphism.

The analogous remark about the Dirac-dual Dirac method as in Remark 1.2.3.12 can be applied
for the quantum case. Namely, the Dirac homomorphism corresponding to the trivial G-C*-algebra
C is denoted by D¢ € KK (L(C),C). We call D¢ Dirac element. Assume that there exists an
element nc € KKC(C,L(C)) such that D¢ ®nc = li € KKC(L(C), L(C)). We call nc dual

Dirac element. In this situation, the element y¢c :=n¢ ® Dc € KK@((C,(C), called v-element, is
L(C)

an idempotent. We can show that

v = 1([; > <CIQut,>=c%/c%/©

In this situation, we are able to establish the quantum version of the classical Baum-Connes
property. Namely,

1.7.2.8 Definition. Let G be a compact quantum group such that G is a torsion-free discrete
quantum group and fix the homological functor F : &' 4% — of b%/? defined by F(A,a) :=
K4(G x A), for all (A,a) e Obj(# #C).

The quantum Baum-Connes assembly map for G is the categorical Baum-Connes assembly map
for # #© with respect to ({CZgut.),CCqut., F'), that is, the natural transformation

nCLF — F

1.7.2.9 Definition. Let G be a compact quantum group such that G is a torsion-free discrete
quantum group.

- We say that G satisfies the (quantum) Baum-Connes property (with coefficients) if n@ is a
natural equivalence.

- We say that G satisfies the strong (quantum) Baum-Connes property if (CZgy.) = H X G,
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1.7.2.10 Remark. It is clear that the strong (quantum) Baum-Connes property implies the (quantum)
Baum-Connes property by virtue of the uniqueness of the ((CZquy.),CCqut. )-triangles. Notice, by
the way, that G always satisfies the (categorical) Baum-Connes property with coefficients in objects
of (CZgus.)-
Finally, using the universal property of the localization (Theorem 1.2.1.29) we obtain that G
satisfies the (quantum) Baum-Connes property with coefficients if and only if Ky (G x A) = (0),
o,T

for all compactly contractible object (A, a) € Obj(CCous.)-

1.7.2.11 Remark. From the strong Baum-Connes property and the t0r§ion—freeness assumption, we
get the K-amenability property automatically. Indeed, suppose that G is any torsion-free discrete
quantum group satisfying the quantum strong Baum-Connes property # .7 ¢ = Zg. Given a

compactly induced @—C*—algebra in # #C of the form A := co(@) ® C, we write
~ ~ ~ () (%) ~ ~ ~
GxA=Gx(p(G)®C) 2 KRC =~ Gx (¢v(G)®C) =G x A,

where in (#) we use Proposition 1.5.3.2 and apply Baaj-Skandalis duality to obtain the corresponding
Morita equivalence. Since the crossed product functor is compatible with countable direct sums, we

can replace A for any @—C*—algebra in #HE = Z%. Hence the canonical map GxA— GxAis
a K-equivalence for all G-C*-algebra A. In other words, G is K-amenable (recall Remark 1.3.1.41).

It is important to say that the torsion-freeness assumption is needed for the formal framework
of the theory. That is, this is the case for which the classical constructions can be imitated without
restrictions. Of course, a better understanding of the torsion phenomena in the quantum setting
should allow to develop a satisfactory theory in which a quantum Baum-Connes property for any
discrete quantum group can be stated.

Some of the typical examples of compact quantum groups presented in the next chapter have
discrete duals that fail to be torsion-free. However, since the main goal is the K-group computation
for C*-algebras defining quantum groups, the strategy to achieve this (as we’ll explain more precisely
in Chapter 4) consists in proving the strong Baum-Connes property, so that we can use suitably

Baaj-Skandalis duality and monoidal equivalences in order to show (CZgy:.y = H# A C for which we
don’t need, a priori, either the existence of the assembly map or the formal framework developed
previously, but only an appropriate definition of (CZg,.». For instance, this is the case for the
quantum automorphism group [212] and the free wreath product Section 3.7.
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CHAPTER

Construction of Compact Quantum Groups

The second chapter of this thesis is devoted to illustrate the Woronowicz’s theory with the main
examples and constructions of compact quantum groups.

In Section 2.1 we give the definition and the main related results of concrete compact quantum
groups as the free orthogonal quantum group O (n) (including the g-deformation of SU(2)), the
free unitary quantum group U™ (n) and the quantum automorphism group Qut(A,w) (including
the quantum permutation group Sj;).

The next sections describe the main construction processes in order to obtain new compact
quantum groups imitating the classical setting. Namely, in Section 2.2 we explain the construction
and the main properties of a direct product of two compact quantum groups following the work
of S. Wang [216]. In Section 2.3 we explain the construction and the main properties of a the
semi-direct product of a compact quantum group by a discrete group following the work of S. Wang
[216]. In Section 2.4 we explain the construction and the main properties of a compact bicrossed
product in the sense of P. Fima-K. Mukherjee-I. Patri [65] (which is a very concrete picture of the
more general object defined in [196] by S. Vaes and L. Vainerman). In Section 2.5 we explain the
construction and the main properties of a free product of two compact quantum groups following
the work of S. Wang [215]. In Section 2.6 we explain the construction and the main properties of a
free wreath product of a compact quantum group by S}, following the work of J. Bichon ?7?.

As we have already noticed in the introduction of the dissertation, the fundamental examples
SU,(2), OF(n), UT(n) and S5 above have been the main source of satisfactory results for the
quantum Baum-Connes property in accordance with the work of C. Voigt and his collaborators.
Likewise, the classical constructions of new groups as direct products, semi-direct products or free
products are a natural class of groups in which the Baum-Connes property is stable in accordance
with the work of J. Chabert-S. Echterhoff [35] and H. Oyono-Oyono [143].

In this sense, the present chapter should be regarded as the natural prelude for the core of the
thesis contained in Chapter 3.

175
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Typical examples

In this section we recall the definitions of the main examples of compact quantum groups that are
interesting with respect to the framework of the present dissertation. In order to have a general
perspective of each of these compact quantum groups, we collect (without proofs but with the
corresponding references) the main results known until now due to different authors throughout
the last thirty years.

A general method for defining compact quantum groups is by giving a fundamental representation
of the compact quantum group itself. In this way we obtain what we call a compact matriz quantum
group.

2.1.1 Definition. A compact matrix quantum group G is the data (C(G), A, u) where C(G) is a
unital C*-algebra, A : C(G) — C(G)®C(G) is a unital *-homomorphism and u = (u;j)i j=1,...n €
M, (C(G)) is a matrix called fundamental representation of G such that

i) C(G) is generated, as x-algebra, by the matrix coefficients of u,
ii) for all 4,5 = 1,...,n we have A(u;;) = > wir ® ukj,
k=1

iii) the matrices v and W := (u;"j)i7j:17,,_,n are invertible.

2.1.2 Remark. The analogue argument as the one given in Proposition 1.3.1.29 yields that every
compact matrix quantum group is a compact quantum group in the usual sense. The difference
between these two approaches is that in the above one we choose a concrete representation for the
quantum group and so we regard it directly as a “matrix quantum group”. In this way, the choice
of a unitary representation allows to define the corresponding quantum group by using generators
and relations and taking thus the corresponding universal (unital) C*-algebra with the natural
co-multiplication satisfying the definition above. Observe that this strategy could fail because not
every =-algebra admits a C*-enveloping algebra. However, in the examples that we are interested in,
the corresponding generators form a fundamental representation that is unitary, which assures that
the corresponding C*-enveloping algebra is well-defined.

Free orthogonal quantum group

The following definition is due to A. van Daele and S. Wang [204].

2.1.3 Definition. Fix a natural number n € N and an invertible matrix @ € GL,(C) such
that QQ € RId. The free orthogonal quantum group is the compact matrix quantum group
O0M(Q) = (A(Q), Ay, v) whose fundamental representation v = (v;;); j—1,... n satisfies the following
relations

i) v is a unitary matrix,
i) v = QuQ!.
If Q =Ide GL,(C), we write O" (Id) := O" (n).
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2.1.4 Remarks. 1. We claim that any compact matrix quantum group G = (C(G), A, w) such
that w is irreducible and w =~ w is a compact quantum subgroup of some free orthogonal
quantum group O1(Q). Indeed, given the fundamental representation w of G, which is
equivalent to its contragredient representation w by assumption, we can find an invertible
matrix Q € GL,(C) such that w = QwQ ™! is unitary. Observe that we can write

w=QuQR ' =w=QQUEHR " =(QR)w(QQ)™*

If QQ ¢ Cid, then the Quantum Schur’s lemma (recall Proposition 1.3.1.17) would say that
w is a reducible representation, which is impossible by our assumption. Hence, it must be
QQ € Cid and an easy linear algebra computation yields that this condition implies that
QQ € Rid.

Hence, by universality we can define a (surjective) #-homomorphism f : A,(Q) - C(G)
such that f(vi;) = w;j, for all 4,5 = 1,...,n. This map is clearly compatible with the
co-multiplications of each compact quantum group and so G is a compact quantum subgroup

of Ot (Q).

2. The g¢-deformation of SU(2), whose definition is due to S.L. Woronowicz [227], is a particular
example of free orthogonal quantum group. Let us be more precise.

Fix a real number ¢ € [—1,1]\{0} (called deformation parameter). The quantum SU(2)

group is the compact matrix quantum group SU,(2) := (C(SU4(2)), A, u) whose fundamental

a —qy*
%

v a is unitary meaning precisely that the following relations

representation u =

hold
a*a+ 9%y =1 a0® + 7'y = 15 ay = gya; ay* = gyta,

where «, 7y are two letters called generators of SU,(2). The co-multiplication A of SU,(2), the
co-unit € and the antipode S corresponding to the #-Hopf algebra Pol(SU,(2)) are such that

Ale)=a®a—g¢y*®yand A(y) =v®@a + a* ®7,
e(a) =1 and e(y) =0,
S(a) = a*, S(a*) = a, S(7) = =gy and S(v*) = —¢ "'y
It is important to make the following observation. Consider the unit circle
SlimfzeC ]zl =1},

which is an abelian compact group. Thus its continuous functions C(S!) is naturally a
compact quantum group with the co-multiplication given by the multiplication in the group.
Let us write T := (C(S!), Ar).

If z denotes the function on S! given by z — z, for all z € S'; then we put pr(a) :=
z and pr(y) := 0. It is clear by the definitions that the relation (p1r ® pr) 0 A = At o pr holds
on generators of SU,(2) and so by universality we can extend pr (in a unique fashion) into a
homomorphism of compact quantum groups,

pr: SU,2) — T
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Again by universality there exists a unique *-homomorphism
O : SU4(2) — C,

such that ¢ (a) = ¢ and 0¢(vy) = 0, for each ¢ € S*.

Suppose that w € B(H) ® C(SU4(2)) is a finite dimensional representation of SU4(2) on
a Hilbert space H. Since pr is a quantum homomorphism, then (id ® pr)(w) is a finite
dimensional representation of T on H. Notice that the compact quantum group T comes
from the classical compact group S', so that such representation corresponds to the following
classical representation of S,

Tw: S — B(H)
¢ — ()= (id®0)(w)

Decompose m,, as a sum of irreducibles, say H ~ P Hj, where we recall that the space
keZ

Hy = {€ € H | m,(¢)(€) = &CF for all ¢ € S} is called kth weight space of w and the

parameter k is called a weight of w whenever Hy, # 0. The weight function of w is defined by

Wew: Z — N
k' — Wy(k):= dim(Hy)

. From SU,(2) we can obtain another relevant compact quantum group: the g-deformation of

SO(3), whose definition is due to P. Podles [155], [157].

Given a real number ¢ € [—1, 1]\{0}, the quantum SO(3) group is the compact matrix quantum
group SO,4(3) := (C(S04(3)), A, u) whose fundamental representation is the following unitary

where a,y are two letters called generators of SO4(3). It is possible to describe C(SO,4(3)) as
the universal C*-algebra generated by five elements and satisfying a list of twenty relations.
We refer to [155] and [157] for more precisions. There are several properties of SOy(3) that
must be mentioned.

—_

- Wehave C(504(3)) = C(SUq (2)/Z2) . Moreover, SO,4(3) is a discrete quantum subgroup

of SU,(2), meaning that C(S04(3)) = C(SU4(2)) (recall Definition 1.4.3.2). More
precisely, C(SO4(3)) is generated by the coefficients of u?lzjq @) where ugy, (2) denotes

the fundamental representation of SU,(2).

- For ¢ = 1 we recover the classical rotation group SO(3). Moreover, SO, (3) = SO_4(3),
for all ¢ € [—1,1]\{0}. In particular, the Podles SO_;(3) is nothing but the classical
rotation group.

The main results about the free orthogonal quantum group are stated in the following theorem.
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2.1.5 Theorem. Fiz a natural number n € N and an invertible matriz Q) € GL,,(C) such that

QQ € Rid.

i) (S. Wang, [218]) Let Q" € GL,(C) such that Q'Q’ € Rid. The compact quantum groups O (Q)

and O1(Q’) are isomorphic if and only if there exists a unitary matriz U € U, (C) such that
Q =UtQU.

it) (S.L. Woronowicz, [227] or [188]) For each r € N there exists a unique (up to equivalence)
irreducible representation matriz w, € M, 1(C(SU,(2))) with weight function given by

W (k) :_{ 1, ifke{-r,2—r,...,r—2,1}

0, otherwise

for all ke Z.

FEvery finite dimensional representation of SUy(2) is completely determined, up to equivalence,
by its weight function. Moreover the following fusion rules hold

Wi = U; Wy @Ws = Wp—s| DW)r—s)+2D ... D Wrys—2 D Wrys,

for all r;s € N.

iii) (T. Banica, [9]) There exists a familiy of pairwise inequivalent irreducible representation

{z,;}ren of OT(Q) that are exactly the irreducible representations of SU4(2) such that the
following fusion rules hold

To=1;21 =0, L, @Ts = Zp_g| DLp_s|42 D .. . O Tyry5-2 D Tpys,
for all r,s € N. Every irreducible representation of O%(Q) is equivalent to ., for some r € N.

i) (T. Banica, [9] or [139]) OT(Q) is co-amenable for n = 2 and not co-amenable if n > 2.
In particular, SU,(2) is co-amenable (see also E. Bédos, J. G. Murphy and L. Tuset, [51] or
[139]).

v) (C. Voigt, [210]) OF(Q) is torsion-free and satisfies the strong (quantum) Baum-Connes
property. As a result, Ot(Q) is K-amenable.

In particular, Sm) is torsion-free and satisfies the strong (quantum) Baum-Connes property
(see also [211]).

vi) - (C. Voigt, [210]) The K -theory of O (Q) is given by
Ko(Ao(Q)) =7 and Kl(A()(Q)) =7

- (T. Masuda, Y. Nakagami and J. Watanabe, [128]; C. Voigt, [210]) The K-theory of
SU,(2) is given by

Ko(C(SU,(2))) = Z and K1(C(SU,(2))) = Z
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Free unitary quantum group

The following definition is due to A. van Daele and S. Wang [204].

2.1.6 Definition. Fix a natural number n € N and an invertible matrix @ € GL,,(C). The free
unitary quantum group is the compact matrix quantum group U™ (Q) := (4,(Q), Ay, u) whose
fundamental representation u = (u;;); j—1,... » satisfies the following relations

i) w is a unitary matrix,
i) QuQ~! is a unitary matrix.
If Q@ = Id e GL,(C), we write Ut (Id) := U™ (n).

2.1.7 Remark. We claim that any compact matrix quantum group G = (C(G), A, w) is a compact
quantum subgroup of some free unitary quantum group UT(Q). Indeed, given the fundamental
representation w of G, consider its contragredient representation w, which is always unitary
equivalent to a unitary representation (recall Remark 1.3.1.19 or Remark 1.3.1.21). In other
words, there always exists an invertible matrix Q € GL,,(C) such that QwQ ™" is unitary. Hence, by
universality we can define a (surjective) =-homomorphism f : A,(Q) — C(G) such that f(u;;) = w;j,
for all 7,57 = 1,...,n. This map is clearly compatible with the co-multiplications of each compact
quantum group and so G is a compact quantum subgroup of Ut (Q).

The main results about the free unitary quantum group are stated in the following theorem.
2.1.8 Theorem. Fiz a natural number n € N and an invertible matriz Q € GL,(C).

i) (S. Wang, [218]) Let Q" € GL,(C) and assume that @ and Q' are positive matrices. Let
(A1, ) and (N, ..., \)) the (positive) eigen values of Q and Q', respectively. The compact
quantum groups Ut (Q) and Ut (Q') are isomorphic if and only if (A1,...,An) = (N}, ..., )
or AL AT = (M, ).

it) (T. Banica, [10]) There exists a family of pairwise inequivalent irreducible representations

{zy}yensn of UT(Q) such that the following fusion rules hold

Te=1;Tq =u; xg =U; T, @Ts = Z Tab,
a,b,ceNxN
r=ac,s=cb

for all r,s € N where a, 5 € N« N are the canonical generators. Fvery irreducible representation
of Ut(Q) is equivalent to x., for some v € N = N.

iii) (T. Banica, [10]) UT(Q) is not co-amenable.

P

w) (R. Vergniour and C. Voigt, [208]) U+(Q) satisfies the strong (quantum) Baum-Connes
property. As a result, UT(Q) is K-amenable.

v) (R. Vergniouz and C. Voigt, [208]) The K -theory of Ut (Q) is given by

KO(AU(Q)) =Z and Kl(Au(Q)) Ay
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Quantum automorphisms group

The quantum permutation group of N-points and the quantum automorphisms group of M,,(C) fit
in a more general context. Namely, they are particular cases of a quantum automorphism group of
a quantum or noncommutative space. The following definition is due to S. Wang [217].

2.1.9 Definition. Fix a C*-algebra A and a continuous linear form w € A*. The quantum
automorphism group of (4,w) is a compact quantum group Qut(A,w) acting on A and preserving
w such that if G is another compact quantum group acting on A and preserving w, then there exists
a unique quantum group homomorphism G — Qut(A, w) preserving w.

If the linear form w is clear by the context, we write simply Qut(A,w) := Qut(A).

If such a quantum automorphism group exists, it is automatically unique. The main problem is
thus to establish the existence of such a quantum group. We might fail if we want the existence
in full generality, but under some assumptions on the pair (A,w) we achieve interesting results.
Namely, whenever A is finite dimensional and w is a d-form, we can perform a satisfactory theory.
Let us be more precise.

Given a C*-algebra A, fix a faithful state w on A, that is, a continuous linear form w: A — C
such that

i) w(aa*) =0, for all a € A and w(1) =1,
i) w(aa®) # 0, for all non-zero a € A,
iii) (sometimes such state is tracial, meaning that w(ab) = w(ba), for all a,b € A).

In this case, we can perform the corresponding GNS construction, which allows in particular
to equip A (and hence A ® A) with a Hilbert space structure whose inner product is such that
(z,yy = w(z*y), for all z,y € A. The multiplication of A can be regarded as a linear homomorphism
m: AQ A — A.

Fix now a positive number § > 0. We say that w is a d-form if mm* = 62id4.

If A is in addition a finite dimensional C*-algebra, it is well known that it can be expressed as a
direct sum of matrices say A = M,,(C)®...® M,, (C). Hence, the corresponding quantum auto-
morphism group can be explicitly described in terms of generators and relations via a fundamental
representation u (see and compare Theorem 5.1 in [217] and Theorem 1.1 in [13]).

2.1.10 Remarks. 1. If {e1,...,en} denotes the canonical orthonormal basis of CV, for some
N e N, then there exists a natural action of Qut(C") on CV given by

a: CVN — CO(Qut(CN)eCN
N
ej — alej):=Du;®e;,forallj=1,...,N,
i=1

where u := (u;;)i j=1,.. ~ is the fundamental representation of Qut(C").

The quantum permutation group of N-points is defined as the quantum automorphism group
of CV with the uniform probability measure on N-points as a trace, which is a d-form for
d := 4/n (see Theorem 3.1 in [217] for more details). We write

S% = Qut(CN)
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It is important to make the following observation. Consider the classical permutation group
SN, which is a finite discrete group. Thus its continuous functions C(Sy) is naturally a
compact quantum group. By abuse of notation, we write Sy := (C(Sn), Asgy)-

For every 4,7 = 1,..., N consider the following subset of Sy,
Siji={oe Sy |o(j) =1}

and denote by xs,; =: xi; its characteristic function, which can be regarded as a continuous
function on Sy. Put pg, (i) := xij, for all 4,5 = 1,..., N. It is clear by the definitions that
the relation (psy ® psy) 0 A = Ag, © ps, holds on generators of Sy and so by universality
we can extend pg, (in a unique fashion) into a homomorphism of compact quantum groups,

pSN:S]-\F/'—>SN

We can show that for N = 1,2, 3 we have Sj{, >~ Sy as compact quantum groups (because in
this case the magic unitaries defining S¥; must mutually commute). For N > 4, C(S5) is not
commutative and infinite dimensional, which prevent pg, to be a isomorphism. In this sense
we say that quantum permutations exist only for N > 4. For a proof of these facts we refer to
[217] or [16].

. If {mi;}i j=1,...n denotes the canonical orthonormal basis of matrix units of M,,(C), for some

n € N, there exists a natural action of Qut(M,,(C)) on M,,(C) given by

a: Mu(C) — C(Qut(M,(C))) ® M, (C)
My —  a(m) = D) uf}@mkl, foralli,j=1,...,n,
k=1
where u = (ul}); j1 k=1, n is the fundamental representation of Qui(M,(C)).

Actually, we can show (see Theorem 4.1 in [217] for a proof) that Qut(M,,(C)) is the quantum
automorphism group of M., (C) with the canonical (normalized) trace as a linear form w := tr.,
which is a d-form (for a well-chosen ¢ > 0, see Proposition 2.1 in [13] for the details).

. By virtue of the above remark about S]J(, = Qut(CY), all quantum automorphism groups of

C*-algebras of dimension 1,2 or 3 are classical automorphism groups. For dimension N = 4,
we have two possibilities.

a) either we consider the C*-algebra C* whose quantum automorphism group is given by
S =~ SO_1(3) thanks to the result [15] due to T. Banica and J. Bichon. Here the quantum
group SO_1(3) is a 2-cocycle twist of the classical group SO(3), so it is different from the
Podle$ g-deformation introduced in Remarks 2.1.4

b) or we consider the C*-algebra M5 (C) whose quantum automorphism group is given by
Qut(M32(C)) = SO,(3), for a unique ¢ € (0,1] by virtue of a P. M. Soltan’s result [173].

Hence, for the treatment of the quantum automorphism group we can restrict our attention
to the > 4th-dimensional case.

The main results about the quantum permutation group are stated in the following theorem.
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2.1.11 Theorem. Fiz a finite dimensional C*-algebra A with dim(A) = n = 4 and a d-form
we A*.

i) (T. Banica, [13]) For each r € N there exists a unique (up to equivalence) irreducible represen-
tation w, of Qut(A,w) such that

wo = €, wog P wy = u and w, = Wy, for allr € N

Moreover, the following (recursive) fusion rules hold
w1 @ Wy = Wyr_1 Dw, D Wy 1,

for all r e N.

—_

it) (C. Voigt, [212]) Quit(A,w) is not torsion-free. Moreover, the trivial action on C and the
canonical action of Qut(A,w) on A are the unique, up to Morita equivalence, torsion actions.

In particular, we have that

- Sj\’, is not torsion-free and its unique, up to Morita equivalence, torsion actions are the
trivial action on C and the canonical action on CV,

—

- (see also [211]) Qut(M.,,(C)) is not torsion-free and its unique, up to Morita equivalence,
torsion actions are the trivial action on C and the canonical action on M, (C).

iii) (T. Banica, [13]) S} is co-amenable if and only if N < 4.

—_

i) (C. Voigt, [212]) Qut(A,w) satisfies the strong (quantum) Baum-Connes property and it is
K-amenable.

In particular, we have that

- Sj\’, satisfies the strong (quantum) Baum-Connes property and it is K-amenable,

- (see also [211]) Qut(M,,(C)) satisfies the strong (quantum) Baum-Connes property and
it is K-amenable.

v) (C. Voigt, [212]) If we write A = M, (C)®...®&M,, (C), the K-theory of Qut(A,w) is given
by
Ko(C(Qut(A,w))) = ZU V' @721 and K,(C(Qut(A,w))) = Z,

where d := ged(ny, ..., ny).

In particular, we have that
- the K-theory of S, is given by
Ko(C(SH)) = ZN°72N+2 and K, (C(S%)) = Z
As a consequence, C(SR}) >~ C’(S;{,,) if and only if N = N'.
- (see also [211]) the K-theory of Qut(M,(C)) is given by
Ko(C(Qut(M,(C)))) = Z® Zy, and K1 (C(Qut(M,(C)))) = Z
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Quantum direct product

We introduce the direct product of two compact quantum groups and we analyze some structure
properties of this object which are useful for our purpose. We may recall the leg and Sweedler
notations from Section 1.1.

The following theorem is due to S. Wang [210].

2.2.1 Theorem-Definition. Let G = (C(G),Ag) and H = (C(H), Ag) be two compact quantum
groups.
There exists a unique unital *-homomorphism

0:Cn(G) ® Cp(H) —> Cn(G) ® Co(H) @ Cr(G) @ Cyo(H)

max max max

such that
B(a®b) = Ag(a)) ® Ar(b)1) ® Ag(a) ) ® An(b)(2),

for all a € Cp,(G) and all b e Cy, (H).
Besides, we have that

i) Fi=(Cn(G) ® Cp(H),0) is a compact quantum group,

max

it) the Haar state on F is given by hy = hg ® hm, where hg and hy are the Haar states on G

max
and H, respectively,

iii) the mazimal picture of F is given by Cpp(F) = Crr(G) ® Cp,(H),

iv) the reduced picture of F is given by C.(F) = C.(G) ® C,.(H),

v) the irreducible representations of F are described as follows: for every irreducible representation
y € Irr(F), take a representative w¥ € B(Hy) ® C(F). There exist unique irreducible represen-
tations x € Irr(G) and z € Irr(H) such that if w* € B(H;) ® C(G) and w* € B(H,) ® C(H)

are respective representatives of x and z, then we have

wY > [wg”]lg[wz]24 eB(H,® H,)® C(F),
where [uﬂ”]13 and [wz]M are the corresponding legs of w* and w?, respectively inside B(H,) ®
B(H,)® Cn(G) ® Cp(H). In this case we write w¥ := w®?).

In other words, the irreducible representations described above provide a complete set of
mutually inequivalent irreducible representations of F. For this reason we write Irr(F) =

[I’I"’I“(G)]lg [Irr(H)]24.

The compact quantum group F constructed in this way is called quantum direct product of G

and H and is denoted by G x H.
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2.2.2 Remark. The representation theory of a quantum direct product F described in the theorem
above allows to give some explicit expressions which are useful for subsequent computations.

- Let x,2’ € Irr(G) and z, 2’ € Irr(H) irreducible representations of G and H and consider the
corresponding irreducible representations of F, say vy := (x, 2),y := (2/, ') € Irr(F). Thanks
to the theorem above we know that

w’ = [w"] [w*],, and w! = [wml]13[w2,]24’
where the legs are considered inside B(H,)®B(H,)QCy(G) ® Cp,(H) and B(H, )QB(H. )®
Cn(G) ® C,,(H), respectively. -
The ﬂipmri(ap H,® H,, — H, ® H, yields the following obvious identification
WYY = Y o w? = [w‘” e wx’]13 [wz o wz']24
- The C*-algebra of the quantum discrete dual of F can be written as

co(F) = ¢o(G) ® co(H)

Indeed,
. co Co
CO(F) = @ B(Hy) = (‘B B(Hm ®Hz)
yelrr(F) (z,2)elrr(G)x Irr(H)
~ B(HI)) ® ( D B(Hz)) = ¢o(G) ® co(H)
zelrr(G) zelrr(H)

- The fundamental multiplicative unitary of F can be written as
Wr = [WG] 13 [WH] 24

Indeed, by definition we have

W(G = @ w” € M(Co(@) ® C’I”(G))

zelrr(G)
— W], = @D [w'], e Mco(G)®co(H)®C(F))
zelrr(G)
W= @ w*eMcoH)®C,(H)
zelrr(H)
— Wl = @ [0, € M(eo(C) @ co(H) ® C(F)),
zelrr(H)

where we understand the legs (13) and (24) in the space ¢ (@) ® co (]ﬁl) RCn(G) ® Cp(H).
In this way, we have

We= @B w’= @ [ww]w[wz]m

yelrr(F) (z,z)elrr(G)x Irr(H)

:( ) [wx]la)( ) [wz]%):[WG]l?’[WH]M

zelrr(G) zelrr(H)
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From now on, G = (C(G),Ag) and H = (C(H), Ag) denote compact quantum groups and
F := G x H denotes the corresponding quantum direct product as in the theorem above.

2.2.3 Proposition. The canonical injections
g : Cr(G) = Cp(F) and vy : Cr(H) — C\(FF)

are such that
(e ® i) o Ag = B0t and (L ® i) © A = O oy

In other words, G and H are discrete quantum subgroups of .

Proof. We have just to remark that © = (id ® ¥ ® id) o Ag ® Ay by definition, where % :
C(G)®C(H) — C(H) ® C(G) denotes the flip map.

Hence, the canonical inclusions tg; and ¢f; intertwine the corresponding co-multiplications by
construction. ~ ~ ~

Consequently, G and H are discrete quantum subgroups of F as explained in Proposition
1.4.3.4. |

2.2.4 Remark. Furthermore, the representation theory of F yields that G and H are divisible in F
(recall the equivalence relation defined in terms of discrete quantum subgroups in Section 1.4.3 and
see Definition 3.2.1 and Lemma 3.2.2 for more details).

Namely, take an irreducible representation y := (x, z) € Irr(F) with « € Irr(G) and z € Irr(H).
Then z = (z,eg) € [y] in Irr(H)\Irr(F) because (z,2) & (T, em) = (eg, 2) = z € Irr(H). Likewise,
we have that z = (eg, 2) € [y] in Irr(G)\Irr(F) because (z,2) @ (eg, Z) = (z,en) = x € Irr(G).

Consequently, G is divisible in F because for all s € Irr(G) we have that s & (€, 2) = (s, ex) @
(g, 2) = (s,2) € Irr(F). Likewise, H is divisible in F because for all s € Irr(H) we have that
(x,em) @ s = (x,en) @ (€6, 5) = (x, s) € Irr(F).

Quantum semi-direct product

We introduce the semi-direct product of a compact quantum group by a discrete group and analyze
some structure properties of this compact quantum group which are useful for our purpose. We
may recall the crossed product constructions from Section 1.5.1 and Section 1.5.

In order to do so, the discrete group acts on the compact quantum group by quantum auto-
morphisms. In this way, it is licit to form a natural crossed product that defines the C*-algebra of
the resulting compact quantum group. This construction is due to S. Wang [216]. For a proof of
Theorem 2.3.2 below we refer to [216] and [65].

2.3.1 Definition. Let G be a compact quantum group and I" be a discrete group. We say that I’
acts on G by quantum automorphisms if there exists a group homomorphism « : I' — Aut(G).
In that case we say that « is a (quantum) action of T on G.

2.3.2 Theorem-Definition. Let G = (C(G),A) be a compact quantum group and T be a discrete
group acting on G by quantum automorphisms with action «.
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There exists a unique unital x-homomorphism

0:T x Cp(G) —T x Cpr(G)RT x Cn(G)

such that
O(r(a)) = (r®m)(As(a)) and O(u,) = u, @,

for all a € Cp(G) and all v € T, where m : Cp(G) — T' x Cp(G) is the unital faithful =-
homomorphism and v : T — UM (T x C,,(G))) the group hémomorphism defining the crossed

product.
Besides, we have that

i) F:=(T x Cn,(G),0) is a compact quantum group,

it) the Haar state on F is given by hy := hg o E o k, where hg is the Haar state of G, k :
I' x Cn(G) » T x C.(G) is the canonical surjection and E : T x C.(G) — C.(G) is the

a,m a,r

;
canonical conditional expectation,

iti) the mazimal picture of F is given by Cpp(F) =T x Cp(G),

)

i) the reduced picture of F is given by C.(F) =T x C,(G),

v) the irreducible representations of F are described as follows: for every irreducible representation
y € Irr(IF), take a representative w¥ € B(H,)® C(F). There exist unique v € I' and x € Irr(G)
such that if w¥ € CQCH(T') and w” € B(H,) ® C(G) are respective representatives of v and x,
then we have

w 20" @v* e B(C® H;) ® C(F),

where v7 1= (Id®@u)(w?) € CRQ C(F) and v* := (id® m)(w”) € B(H,) ® C(F). In this case we
write w¥ 1= w®)
In other words, the tensor product of irreducible representations of T' by irreducible representa-

tions of G provide a complete set of mutually inequivalent irreducible representations of F. For
this reason we write Irr(F) =T @ Irr(G).

The compact quantum group F constructed in this way is called quantum semi-direct product of

G by I' and is denoted by I' x G.

2.3.3 Remark. The representation theory of a quantum semi-direct product F described in the
theorem above allows to give some explicit expressions which are useful for subsequent computations.
For instance, it is advisable to give an explicit description of F in terms of Theorem 1.3.1.36.

- First of all, since « is an action of I' on G by quantum automorphisms, then for every v € T,
we have that (id ® a,)(w®) is an irreducible unitary finite dimensional representation of
G on H, whenever x € Irr(G) (recall Proposition 1.3.1.28). Hence there exists a unique



188

CHAPTER 2. Construction of Compact Quantum Groups

class o (z) € Irr(G) such that (id ® a,)(w®) =~ w* ). Since dim(a,(r)) = dim(z) we can
assume that w*(*) e B(H,) ® C(G), for all y € T' (if this is not the case, we might change
the representative of a,(x) by an appropriate one in the orbit of ).
Hence, there exists a unique, up to a multiplicative factor in S*, unitary operator Vyz€U(Hy)
such that

(id ® ay)(w”) = (V42 ® id)w® @) (V. ®id)

Notice that it is clear that a.(z) = z, for all € Irr(G) and that o, (e) = ¢, for all y € T.
Therefore, we can choose the multiplicative factor defining V, , such that V. . = idp,, for all
xz € Irr(G) and V,, . = 1¢, for all v € I'. We keep this choice for the sequel.

Let 7,7 € T and z, 2’ € Irr(G) be irreducible representations of I' and G and consider the
corresponding irreducible representations of F, say y := (v, ),y := (7', 2’) € Irr(F). Thanks
to the theorem above we know that
wY = v’ @v* and w¥ = v @vf,

where v7 = (id@u)(uﬂ),v”*/ = (id@u)(uﬂ/) e C® C(F) and v* := (id@ﬂ')(w’”),v’f/ =
(id® ) (w*) € B(H;) ® C(F).
A straightforward computation yields the following

W' = Y QuY =0 @ ((V,Y/—l ® id)vo‘w’—l(z)(V;‘f,l ®id) © vm’),

where v®/~1(®) .= (id@moay—1)(w”) € B(H,)QC(F). Indeed, let {7, ...,&; } be an orthonor-
mal basis for H, and {m; ;}; j—1,. n, the corresponding matrix units in B(H,). Likewise, let
{ff/, . ,fﬁf ,} be an orthonormal basis for H, and {mk,l}kylzl-,--.,nx/ the corresponding matrix
units in B(H,). Using the relation between the homomorphisms 7 : Cyy, (G) — I' x Cpp (G)

and u: ' — UM x Cp(G))) defining the crossed product C(F) =T x C,,(G) we can
a,m a,m
write the following

wY @ w¥ = [v”’ (= UI]K,’ [v”l [ fu""”]23

[3 1comy@urwn)] [3icom, @ uym(why)|

13

=1 k=1

= ) le®mi; @ le @ mj,; @ uym (W) uqym(wiy)

i,5,k,l
= Z le @mi; ® le @ My @ Uqytiy T (vy—1 (wi) ) m(wiy)

ikl
= Z Ilc®1lc®@mi; ® m§€7l ® ’U,»YU,Y/TI'(Q,Y/—I (wfj))ﬂ'(wzl)

i,5,k,l
- [lc Rlc® u,yu,y/]m[ Z mi; @ my; ® 7r(047/71 (wfj))w(wﬁl)]%

1,5,k,1

= [ @], [(Vyr @id)o™ O (Vi @id) @ 0" ],
= (v“’ [ U'V,) (=) ((qu ® id)v*y? (C”)(VA;'L1 ®id) © vz/)
=07 @ (Vo1 @ id)o® (VA ®id) @ v™),
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which is the formula announced above. Consequently, the decomposition of y @ ¢’ into
direct sum of irreducible representations depends only on the corresponding decomposition
of a-1(x) @ a’. More precisely, if {xy}r=1,.. - is such a decomposition for a.-1(z) @ 2’,
then the formula above implies that the corresponding decomposition for y @y’ is given by
{(’Y‘Y’a xk)}k:l,...,r~

2.3.4 Lemma. Let G = (C(G),A) be a compact quantum group and T' be a discrete group acting
on G by quantum automorphisms with action a. Let F := T x G be the corresponding quantum
[0

semi-direct product.
i) For all v,g,h €T and all x,y, z € Irr(G), we have

hy (X]F('Y,x)*X]F((g,y) e (h,z))) _ { hg (XG(I)*XG(Oéh—l(y) @Z)); if v =gh

0, otherwise

it) For all v,g,h €T and all z,y, z € Irr(G), we have

MOT((%l’),(g,y)@(h,z)) ~ { MOT(Ivahfl(y)GBZ), if vy = gh

0, otherwise

~

i1i) The dual discrete quantum group F= (co(F), (:)) is given precisely by

co(F) = ¢o(I) ® co(G)

and © : ¢o (I@') — M(cq (IAF) ® co (I@')) such that

é((%@a) (p(g,y) ®p(h,z)) = 5'7,gh (5g®py®5h®pz) ((Vhfl,y®pz)£(a)(py®pz)(vh*fl$y®pz)) 5

24

~

for allv,9,h €T, all a € co(G) and all y, z € Irr(G).

Proof. i) The elementary properties of the character together with the definition of the Haar
state of F given by Theorem 2.3.2 allow to write the desired formula,

he (3 (3, 2) 3 ((9:9) @ (1,2)) ) = b (xe(0 © ) xw (09" @ (v @) @ v7)))
= hr (u’Y’le(Uz)*UghX]F (v g vz))
=l (U’Y’lghXIF(Ux)*X]F (v ® g vz))
= 0y-1gn.e ho (XG(W)*X«; (w1 ) g wz))
=0y -1gn,c hG (XG(I)*XG(O‘h*I (y) @ z)),

for all 4,g,h e T and all z,y, z € Irr(G) where e € I" denotes the identity element of T'.
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On the one hand, given v, g, h € T"and all z, y, z € Irr(G), the computation of Mor((fy, x),(9,y)®

(h, z)) reduces to case when v = gh thanks to the formula of (i). On the other hand,

by Remark 2.3.3 we know that, for all v € T' and all x € Irr(G), there exists a unique
(up to a multiplicative factor) unitary operator V, , € U(H,) such that (id ® ay)(w®) =
(Vye @ ido(s))w* @ (VF, @ ideg))-

Hence for all v, g,h € T and all z,y, z € Irr(G) such that v = gh, we define

P Mor(%ah—l(y) @z) — MOT((%J;L (9.y) @ (h, z))
® — P(®) = (Vi y Qidp.) o @,
which is a linear isomorphism with inverse ¢~ (®) = (Vity, ®idg,) o P, for all & €
Mor((’y, x),(g,y) @ (h, z)) Let us check that v is well-defined. Namely, we have to show that
(V(@) ®idc(m))w('y’x) = w9Y) @ w2 (¢(D) ® idory),

w9 @ wh) ((®) @ idcw))
= 0 & (Vs y @ idee) o™ O (Vs , @ ideq) ©0°) (4(®) @ idogs)
=" g ((Vh—l,y ®idg, ®idcw)v™ W @ v (V. ®idy, @ idcm))) (¥(®) @ idor))
A=) ((Vhfl’y ®idy, ®idom)v™ Y @ (@ ® idC(F)))
=17 Q@ <(Vh*1,y ®idy, @ido ) (P ® idcam)vx)
= ((Vh—l,y Qidu, ®idomw)) (P ®idom )v” © U”) = (Y(®) ®idc))w ™,
where we have used the computations of Remark 2.3.3.

The description of the C*-algebra of the quantum discrete dual of F is easy to establish. Indeed,

Cco

co(F) = @ B(Hy) = @ B(C® H.)
yelrr(F) (v,z)el' xIrr(G)
co co R
~ (@ c) ® ( P B(HI)) = ¢o(T) ® ¢o(B)
~el zelrr(G)

Let us compute the dual co-multiplication © using the identification cq (I@‘) ~ (I ® co(@)
above. Following Theorem 1.3.1.36, © is completely determined by the relation

O(S)od =dos,
for all S € B(H, ) =~ B(H,) with (v,2) € Irr(F), Mor((%a:), (9,9) © (h,z)) and all
(9,y), (h, z) € Irr(F). Thanks to the isomorphism ¢ given in (ii) we write

O(S)od =d0S =6, (Vhr,Qidy )" (®)oS
= 0ygn (Vi1 ®idpr, )A(S) (py @ p2) 0 v~ (D)

(
= br9n (0, @ Py ® 81 ®p:) ((Vir,y @ idir )A(S) (b, @) (Vi , @) o
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Next, for every (v,z) < (g,y) @ (h, z) denote by p(g y))@(h 2 ¢ B(H(4,,)e(h,-)) the corresponding

orthogonal finite dimensional projection on the dlrect sum of subrepresentations of (g,y)@(h, z)
(g:)(h,2) _

which are isomorphic to (y,x). This projection is such that > (y)

(v,@)=(9.9)0(h,2)
idm, yom., and for every k=1,... dim (Mor(( x),(g,y) @ (h, z))) consider a family of in-

tertwiners @5 € Mor((y, z), (¢, y)®(h, z)) such that <I>"‘<I>;€ =idg,, ,, and ZII’HI)"‘ pgi?) (h-2)

Hence, for all a € co(]ﬁ‘) we write the following,
6(a) o p{@)"? 2 O(a) o 0, 0F
=Y S (65 @Py © 0, @p:) (Vi y @i )A(ar)(py ®p:) (Vi , @idir,) ) 0 1B
k

— 0y n (5g®py®5h®pz)(vh 1, ®idi.)Aay) (py @ p:) (Vi 7y®ide))24opEzz))@(hz)

where a, := (6, ®id, &))a€ co(G), where - denotes the minimal central projection of ¢y(I")
on B(H.,). Next, forall yeT, ae co(G) and all (g,y), (h, 2) € Irr(F) we write the following

A~ R h,z
0(6y ®a) (p(g,y) ®p(h’2)) = Z (6 ®a)o p(g Z))e( :
(v,2)<=(9,9)@(h,2)

=Y b 0,®p, @8, 0P (Vi ®idi)A(@) (b, ®) (Vi , @i )) o p )"
(v,7)=(9,y)©(h,2)

= bygn (3, @ Py ® 1 ®p.) (Vi1 @i )A(0) (b, @ ) (Vi , @idir))

which is the formula of the statement.
[ ]

From now on, G = (C(G), A) denotes a compact quantum group, I denotes a discrete group
acting on G by quantum automorphisms with action o and F :=T" x G denotes the corresponding

«
quantum semi-direct product as in the theorem above. Remark as well that I' can be regarded as a
discrete quantum group and we write I' = (¢o(T"), Ar).

2.3.5 Proposition. There exist non-degenerate x-homomorphisms
pe : co(F) — M(co(G)) and pr : co(F) — M(co(I))

A~

such that p@(co(ﬁ‘)) = ¢o(G), pp(co(],lf‘)) =¢o(T") and
Ao pg = (pa ®pg)® and Ar o pr = (pr ® pr)6

In other words, G and T are discrete quantum subgroups of F. Asa result, if (A,d) is any
F-C*-algebra, then (A, dz) is a G-C*-algebra and (A, dr) is a I'-C*-algebra with actions

0z = (pg ®ida) o6 and or := (pr @ids) o0
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Proof. In order to define the *-homomorphisms ps and pr of the statement, consider the co-unit
homomorphisms of I" and G. Namely,

er: () — C £ CO(@) — C
[ — er(f):= f(e) a > egla):=peape,

where e € I is the identity element of I', € € Irr(G) is the trivial representation of G and p. the
corresponding central projection from ¢o(G) into H. = C (recall as well Remark 1.3.1.38).
Taking into account the decomposition cO(IF) = ¢o(T") ® ¢o(G), we put

pg i=¢er® ich(@) and pr := ich(p) Reg

It is clear that the above ps and pr are surjective *-homomorphisms on co(G) and ¢o(T)
because they are projections on the corresponding component of CO(IAF) =¢o(T) ® ¢ (@) Therefore,
Pe co(F) — M(co(G)) and pr : co(F) —> M(co(T')) are non-degenerate *-homomorphisms.

Moreover, using the explicit description of 5) given by Lemma 2.3.4, it is straightforward to
check that ps and pr intertwine the corresponding co-multiplications. Namely, for all v € T', all

a € co(G) and all (g, ), (h, z) € Irr(F) we write
(g ® P2)O(0, ® ) (P(g) @ P(1.2))
= (02 ® ) (91,01 (53 @ Py ® 3 @ p:) (Vi @ idir)A(0) (py ©p:) (Vi , ®idir)), )
~ (er ®id@er ®id) (3.1 (8 Oy @0 @ p.) (Vs @ idir.)A(@)(py @p:) (Vi , @idin.)) )
= (Ve ®p:)A(a) (p, @) (V2 ®p2) = Ala) (p, @ 2)
= Aer ®id)(8, ® a)(py ®p:) = A(p (3, ® ) (P(g.0) @ Pi1.2)))
and
(pr ® pr)O(8y ® a) (P(g.4) ® P(n.))
= (pr ® pr) (3100 (8 @y @30 @p.) (Vi1 @ idir )A() (py @) (Vi , @) )
= (id®@cs Qid®eg) (67,gh (64 ® py @6 @p2) ((Vhfl,y ®idp.)A(a)(py ® p2)(Vita , ® ide))M)
= Gy (0, @2y @1 ©p:) (Vi1 @B @) (e @ PI(ViEr  ®P0))
=0y gn (0, @ py ® ®pz)( ) (Pe ® pe ) = 0y.gn (64 ® Py @0y, ®pz)((6@ ®s@)ﬁ<a))24
= 60 (55 @P, @3, @p.) ((id@eg)(a)), = Ar(id@=5)(6, ® ) (pig) @ P12
= Ar(pr(dy ® @) (P(g.p) @ P(n.c))
|

2.3.6 Remark. Since I' is a classical group, a I'-C*-algebra is equivalent to a C*-algebra equipped
with a co-action of ¢y(T") as explained in the introduction of Section 1.4. This correspondence
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explains the abuse of language used in the preceding proposition. Indeed, the non-degenerate
#-homomorphism dr := (pr ® ida) 0 : A — M(co(T') ® A) defined above is a co-action of
(co(T), Ap) Thanks to the characterization of Proposition 1.4.1.5, the latter is equivalent to give a
family of *-homomorphisms 0}, : A — A, for all v € I satisfying 6¢% = id4 and 5;7/ = (53/ o o7 for
all v,+" € I, among other properties. Hence, the map

I — Aut(A)
3 (6) (00), (@) = 6 @)

defines an action of I' on A. By abuse of notation, we denote this action by dr and the difference
between the action and the co-action will be clear by the context.

2.3.7 Corollary. The following properties hold
i) The C*-algebra cy (I@') =) ® CO(@) is a G-C*-algebra with action é@ = (e ® idCO(]@)) SLG)
such that

65(0,®a)(p, @1 ®p.) = 0,1 (7, @1 @ p.) (Vi @P)A(@(p, @P:) (Vs , ©))

forallv,hel, allac co(@) and all y, z € Irr(G).

ii) The C*-algebra co(F) = co(T) @ co(G) is a T-C*-algebra with action Op = (pr ®id00(ﬁ)) G
such that R
Or(0y ®a)(0g ® 0p @ =) = dy,gn (5 ® 0p @ p2)(id@id®a),

forallv,g,hel, allae CO(@) and all z € Irr(G).
i) If n : co(T) ® co(@) — M(CQ(@) ® ) ® CO(@)) denotes the action of G on co(ﬁ) =
co(T) ® ¢o(G) given by the composition (12 ® idCO(@)) o (ideyry ® A), then
6a() = (% ®@id, g ()N %* ®id, @g,),
where U € L{(M(co(@) ®co(I))) is the unitary such that % (ps ® 65) = V-1, ® 6, for every
x € Irr(G) and every yeT.

Proof. For the formulas in (¢) and (i) we have just to apply Lemma 2.3.4 and Proposition 2.3.5.
Let us show that the action ©g is the conjugation of the action n by the unitary % €

Z/{(M(co(@) ® ¢o(I))) defined in the statement. Namely, for all v,h € T, a € co(@) and all
y, z € Irr(G) we write

(% ®id,,5)n(d ® a) (py ®0n ®p:) (%" ®id,, g))
= (% ®p.))(p,®35,®p.)) (A( ) 4(Py ®6n @ p2) (Z* ®p.)
n (py ® 6 @ p-) ((Vh—17y ®p-)A(a)(py ®p:) (Vi1 , ®pz)))13
= 050, ® ) (p(g.y) ®P(h,2))
which shows that O () = (% ®id, & n()(%* @id,, g))-
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2.3.8 Remark. In accordance with Remark 2.3.6, let us give the expression of (:)p as a true action
of I' on ¢p(I') ® ¢p(G) and not as a co-action of (¢o(I'), Ar) as done in the previous corollary. By
applying the characterization of Proposition 1.4.1.5 and the formula obtained in the previous

corollary, for every v,r € I and a € ¢o(G) we write
610, ®a) = Or (6, ® a)(6, ®id,, z)
= 2 ((55 ®4:® ich(@))(idCD(p) () idco(F) X a) ((S,Y () cho(IAF)) = (57—17, R a

s,t

r=st

Hence, the corresponding action of T on ¢o(T') ® ¢ (((AE})7 still denoted by (:)p, is given by
(Br), (6 ®a) = O (6, ®a) = 0, ®a,

A~

for all 7,7 € I and a € ¢o(G).

2.3.9 Remark. By applying Proposition 1.4.3.4 we know that I' and G are discrete quantum
subgroups of F if and only if there exist injections

i1 CH(T) — Cp(F) and o, : Cr(G) — C.(F)
(or it 2 CF (D) = Cpy(F) and (' : Crp(G) — Cm(IF)>

that intertwine the corresponding co-multiplications. We can give an explicit description of these
injections for a quantum semi-direct product.
The co-unit map eg : Pol(G) — C extends to a (a-invariant) character on C,,(G), which we
always denote by e : C,, (G) — C.
Recall that Cp,(F) =T x Cp(G) = C*(m(a)uy : a € Cry(G),y € T'). So, with the help of the
a,m

a-invariant character above, we can identify C* (I') with the subalgebra of C,,(F) generated by
{uy : v €'} by universal property (see Remark 3.6 in [65] for more details).
Likewise, recall that C,.(F) = I' x C,.(G) = C*(m(a)uy : a € C.(G),y € T') is equipped

with a GNS-faithful conditional expectation £ : I' x C.(G) — C,(G), which restricted to

the subalgebra generated by {u, : v € '} is just E(uy) = 0y, € C. Remember as well that
Uy = Ay Qide, gy = [/\7]1 in ' x C.(G) © L¢, ) (*(I) ® Cr(G)); so that this subalgebra is

identified canonically to C*(I') =T' x C by universal property (here trv denotes the trivial action).
tru,r

In conclusion, we consider the foll’owing canonical injections
if 1 CF(T) — Cp(F) and off : O (T) — C,(F)
By definition of the co-multiplication © of the quantum semi-direct product F, it is clear that

the canonical injections . and (" intertwine the corresponding co-multiplications. Observe that,
by construction, we have the following commutative diagrams

Con(F) —F o C(F) Con(F) —F ¢
i i i -
Ch() Cx(T) Ch ()

s
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where 7 : Cp,(F) - C.(F), 70 : C% (T') — C*(I') are the canonical surjections and ep : Pol(F) —
C, er : I' —> C are the co-unit of F and T, respectively whose extension to Cy, (F) and C* (T") are
still denoted by e and er, respectively.

Notice by the way that we have also canonical injections

i : Cr(G) = Cn(F) and ¢ : Cip(G) — Cpp (TF)

Again, it is clear, by the definition of the co-multiplication ©, that the canonical injections ¢ and
(¢ intertwine the corresponding co-multiplications. Again, we have commutative diagrams

Con (F) —— 5 €, (F) Cip (F) ——= C
i e i -
Cpn(©) ——— C1(G) Cn(G)

where 7 : Cp,(G) — C(G) is the canonical surjection and eg : Pol(G) — C is the co-unit of G
whose extension to Cy,(G) is still denoted by eg.

2.3.10 Remark. Furthermore, the representation theory of F yields that G and T are divisible in F
(recall the equivalence relation defined in terms of discrete quantum subgroups in Section 1.4.3 and
see Definition 3.2.1 and Lemma 3.2.2 for more details).

Namely, take an irreducible representation y := (v,z) € Irr(F) with v € T and x € Irr(G).
Then v = (v,¢€g) € [y] in Irr(F)/Irr(G) because (v~ 1, ec) @ (v,2) = (e,7) = z € Irr(G). Likewise,
we have that « = (e, z) € [y] in T\Irr(F) because (v,z) @ (e,T) = (v,eg) =y I

Consequently, G is divisible in F because for all s € I rr(G) we have that (y,eg) @ s =
(7,e6) @ (e, 8) = (v, s) € Irr(F). Likewise, I' is divisible in F because for all s € I we have that
s@(e,x) = (s,ec) @ (e, x) = (s,2) € Irr(F).

In order to carry out our study it is advisable to set some notations. If (4,¢) is a F-C *-algebra,

we know that (4, dz) is a @-C’*—algebra and that (A, dr) is a I-C*-algebra by virtue of the preceding
proposition. Hence we can form the corresponding reduced crossed products,

FxAc LA(L*(F)®A), G ACLA(Lz(G)(@A),F(;M Ac LoD ® A)

o,r dg,7

Let us establish adapted notations for these crossed products following the general constructions
from Theorem 1.5.1.1 and Theorem 1.5.2.1. These notations will be used in the sequel.

- There exist a non-degenerate *-homomorphism 75 : A — F x A, a unitary representation

o,r

VeM (co(ﬁ?) ®F x A) and a non-degenerate completely positive KSGNS-faithful map
,r
Es: F % A— M(A) such that

]@‘;;A =C¥ns(a)VY; cae Ay e Irr(F),i,j = 1,...,n,)
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Recall from Proposition 1.4.1.10 that the unitary representation V' € M(co (I@) QF A) is
s,r

canonically associated to a non-degenerate #-homomorphism ¢y : Cp, (F) — M (I@‘ x A) such
,T

that
v (wf]) = V;]/v

for all y € Irr(F) and all 4,5 = 1,..., 7.
There exist a non-degenerate *-homomorphism 75, : A — G x A, a unitary representation
v 3.7

Ue M(o(G)®G x A) and a non-degenerate completely positive KSGNS-faithful map
&

Es. :G x A—> M(A) such that
G

0,7

G x A=C¥ms,(a)UF

54,7 ’]
¢

cac A,z e Irr(G),i,j=1,...,ng)

Recall from Proposition 1.4.1.10 that the unitary representation U € M(co(@) QG A) is
S

canonically associated to a non-degenerate #-homomorphism ¢y : Cp,(G) — M(G x A)
such that
forall z € Irr(G) and all 4,5 = 1,...,ng,.

There exist a non-degenerate faithful *-homomorphism ¢ : A — I" x A, a group homomor-
61’*,7“

phism v : I' — U(M(T' x A)) defined by v, = A, ®idy, for all v € ' and a non-degenerate
51’*,7"
completely positive KSGNS-faithful map F : T X A — M(A) such that
r,r
I'' x A=C*o(a)vy:acA,vel)

61",7“

2.3.11 Lemma. Put € := C’*<71'5(a)Vifje-’w) ca€ Az e Irr(G)i,j = 1,...,ny. If (A)9) is a

F-C*-algebra, there exists a canonical x-isomorphism

w;@éx A5,

such that

Y(7s, (a)) = ms5(a) and Y(U};) = ‘/1(‘]31)’

forallae A, allx € Irr(G) and all i, =1,...,ng.

Proof. In order to prove the (canonical) #-isomorphism G x A =% of the statement we shall show

6@,7‘

that the C*-algebra € satisfies the universal property of G x A.
5

[
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Notice that % is actually a C*-subalgebra of FxA by construction. Hence we can restrict the
s,r

elements defining F x A to check such universal property. In particular, we define
d,r

Ve = (idco(fF) ® )\]F)( P w(e’x)) ®ida € M<CO(I@) ®F),

zelrr(G)

Where we must remark that, by construction, we have (Ve)fj = VZ(; ) for all z € Irr(G) and all
By deﬁnl‘mon of F x A, the formulas

d,r

ZV m5(0 ;(a)) and Es(ms(a)V}%,) = a 6y.c

hold for all a € A, all y € Irr(F) and all 4,5 = 1,...,n,. In particular, it holds for y := e @ x with
z € Irr(G).

It remains to justify that the restriction Fj is always KSGNS-faithful. We know that
(L*(F) ® A, id, Yr) is the KSGNS construction for Es. Consider the Hilbert A-module defined as

id

A = span{€Tr(A)} © L2(F) ® A. Observe that € —> L (), so (A ,id|, Yr) is the KSGNS
construction for the restriction Fj, whence the faithfulness required.

This discussion shows that ¢ is a C*-algebra equipped with a triple (75, V¢, Ej)) satisfying
the analogue properties of the triple (m;;,U, E(;;) associated to G x A. The universal property

Og,T
property of G x A yields the canonical #-isomorphism of the statement. ]
Sa.r

G

2.3.12 Proposition. If (A,0) is a I/F:—C’*—algebm, then G x A is a I'-C*-algebra with action
Og,T
0:T — Aut(@ x A) such that

5@,1"

0y (ms.(a)) = m5((6r)  (a)) and 8,(UY;) = du (o (wi;)),
forallyeT, allae A, allx € Irr(G) and alli,j =1,...,n,.

Proof. First of all, using the lemma above, we use systematically the canonical identifications
75, (a) = m5(a) and UF; = V) foralla € A, all z € Irr(G) and all i,j = 1,...,n,

’L] -
Fix an element v € T'. In order to define an automorphism 0, : G x A — G x A, we
OgsT 0T

shall define a non-degenerate *-homomorphism 77 : A — G x Aanda unitary representation
OgsT
U7 e M(co(G)®G X A).
Let’s put )
77 (a) := ms(61(a)), for all a € A
co

ﬁ’y = (idCO(@) ®>\G)< 6—) (ZdB(HJL) ®a7)w$) ®ZdA

zelrr(G)
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Observe that a is a quantum action so that o, (Pol(G)) = Pol(G), for all v € T' (recall
Proposition 1.3.1.28). Hence it is licit to consider the above definition of U”.
Before going on with the proof, we need some useful remarks:

1. Doing the canonical identification C(G) =~ A\¢(C(G)) in B(L*(G)) we have that
(U7);, = ay(wf)) @ida = du (as(w]))),

for all x € Irr(G) and all 4,j = 1,...,n,. Likewise, since 7 : C,,(G) — T x Cp,(G) is a

unital faithful *-homomorphism we can do the canonical identification Cy, (G) = 7(Cp,(G). As
a consequence, the relation between 7 and u coming from the definition of the crossed product

can be written on Pol(G) as u,w{ ju¥ = o, (wf;), for all x € Irr(G) and all 4,5 = 1,...,n,.

2. By construction we have that Im(ms) < La(L?(F) ® A) and Im(o) = Lao(I*(T') ® A). By
Remark 2.3.3 we recall that L?(F) = [?(I') ® L?(G). In this way, we can consider the leg (13)
of o inside L?(F) ® A and then we can compare 7s(a) and [a(a)]13 for every a € A.

Doing the canonical identification co((@) ~ Xc,(co (@)) in B(L?(G)), a straightforward compu-

tation yields naturally to 7s(a) = [0(&)]13, for all a € A.

3. By construction we have that Im(u) ¢ L4(I*(T) ® Crn(G)) and Im(v) = LA(I*(T) ® A).
Precisely, we have u, = A\, ®idg,, () and v, = A\, ®ida, for all v € I'. Thus, inside the space

2(T) ® Cin(G) ® A, it is clear that [uw]12 = [I/,Y]B, for all y e T

In order to apply the universal property of G x A and conclude the existence of the automorphism
dg,r

0 of the statement, we have to check the formula

@

M§

®(a)(T7);, =

(07) 76157 (@),

k=1
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forallae A, all x € Irr(G) and all 4,5 = 1,...,n,. Namely,
%V(a)(ﬁ"’)j = m5(0L(a)) oy (wf ;) @ida = [0(50(a))] 5]y (wf;) ®ida],,
= [ “/U(a) 1]13[u7wz Gyt ®de4]23

= [v ] [ (a ]13[wu®2df1]23[ ]12
[V’Y] s(a)wi; ®ida [“v*l]m
=

1/7] (Z Wi ® ZdA7T5<51($]"I)(a>)) [u’fl]u

Mo

13 ( Z wi g @ idA]23 [0(51(:}36) (a))]m) [“7*1]12

k=1

=§1[V7]13[ e ®idalyy v (52657 @) )] [ 1],
- Bl alits @il o1, o (R0 @),
_ :Z Uy w? iy ®idams (53 (o155 (a)))
_ iav (w?)) @ idams (5; (52?;”@)))
&

= > (07); 705 (@)
k=1

To conclude the relations of the statement we have just to apply Remark 2.3.6. ]

2.3.13 Remark. The action d of T on G x A constructed in the preceding proposition can be defined
5@,7‘
in a more direct manner. Namely, given v € I we define the automorphism 0, : Gx A—G x A
Sa
by

dg,r &

6’7 = Ad¢v(u_y),
where Ad(.) denotes the adjoint map. This defines clearly an invertible map for each v € I' (because

¢v is a #-homomorphism and elements u, are unitaries). It remains to show that the space G x A

5@,7"

is preserved.
On the one hand, we have

0 (6w () = b )y (w6 () = by (i ut) = v (0 (w,) < € x A

forall yeT, z € Irr(G), 4,5 =1,...,ng.
On the other hand, the relations of the reduced crossed product F x A following Theorem 1.5.2.1
o,r

are precisely

mo(@)ov (uyl,) = . by (vt )ms (67, (@),
k=1



200 CHAPTER 2. Construction of Compact Quantum Groups

for all y := (v,2) € Ir7(F), a € A and all 4,5 = 1,...,n,. In particular, if we take x := € this
formula becomes

7o (@)6v () = ¢V<u7>m (52(a)
< (Oy(m ) = o3 (uy)ms, (a)pv (uy) = s, (61 (a)) € G x A,

for all v € I', a € A. In particular, we have ¢y (uy)ms, (a)¢7 (uy) = 75, (5;71 (a)). Hence, Remark
2.3.6 yields that the action 0 is such that

&y (w5 ()UF) = w5 ((0r) (@) dur (s (w)),

forallyeT,allae A,allz € Irr(G) and all 4,5 = 1,...,n,

In order to finish our study it is advisable to set some notations. If (A, ) is a F-C*-algebra, the
above proposition assures that (G x A, 0) is a I'-C*-algebra. Recall as well that we have a canonical
dg,T

#-isomorphism G x A= % thanks to Lemma 2.3.11. Hence we can form the corresponding reduced
S

(G’T
crossed product,
I'x €cLs(P(D)®F)
o,r
We shall use the following adapted notations for this crossed product following the general
construction from Theorem 1.5.1.1: there exist a non-degenerate faithful *-homomorphism o : ¥ —
['x € c LaA(I*(T)®%), a group homomorphism ¢ : T' — U(M (T x %)) defined by 9., := A\, ®idy,

for all v € T and a non-degenerate completely positive KSGNS-faithful map & : T’ x 4 — M (%)
o,r

such that
r X ¢ =C*(o(c)Yy:ceC,yel)

2.3.14 Theorem (Associativity for a quantum semi-direct product). Let F = I' x G be the

[e3
quantum semi-direct product of a compact quantum group G by a discrete group I' acting by quantum
automorphisms on G with action «.
If (A,9) is a F-C*-algebra, then there exists a canonical *-isomorphism

IﬁxA;le(@le)

o,r o,r dg,T

Proof. In order to prove the canonical *-isomorphism Fx A>T x € of the statement, we shall
o,r o,r

apply the universal property of the reduced crossed product F x A. In other words, we are going
o,r

to construct a triple (p,V, E) associated to the reduced crossed product I' x ¥ satisfying the

ao,r

analogues properties of the triple (75, V, E5) associated to Fx A Namely, let’s put
s,r

-7p:A—T x € as the composition A =% 5T x €,
o,r o,r
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- VeM(F)®T X %) as the unitary V itself (%),

_ E
- E:T x € — A as the composition I' x ¢ -2 M(€) =2 M(A).
o,r o,r
Notice that it is licit to define V' as above in (*) because, by the well-known correspondence from
Proposition 1.4.1.10, giving a unitary V € M (co(F) @T X ¢) is equivalent to give a non-degenerate

o,r

#-homomorphism ¢y : Cy, (F) — M(T x €) such that V = (idco(ﬁ) ® ¢y)(Wr). Hence we take

simply
oy =idx ¢y : T x C’m(G)—>M(Fab< %),

where we use the canonical identification of Lemma 2.3.11 and that C,,(F) =T x Cn(G) by

construction. In this situation, we easily check that ¢ induces actually the unltary V itself.
Namely, we have

V=(id, &® )\F)( e@(mwy> ®ida
yelrr

co

— (ideyry @i,y 5, @ABN) (D w)@ida,
(v,z)elx Irr(G)

which can be seen as an element in M (co(F) ® L4 (I2(T) @ %)).

Notice as well that p is a non-degenerate x-homomorphism because it is a composition of
non-degenerate *-homomorphisms and E is a non-degenerate completely positive map because it is
a composition of non-degenerate completely positive maps.

To conclude we have to check the following.

i) ﬁ(a)Vy = i V?kﬁ(éy ;(@)), for all y € Irr(F), all a € A and all i,j = 1,...,n,. Indeed, it

suffices to remember that o is a non-degenerate faithful *-homomorphism and to apply the

corresponding formula on Fx A
o,r

pa)V?; = o(ms(a)) VY, = Z Vims(67 5 (a))
2 kQ Ury 6;/] zvzkp 6%]

ii) £ = Es o & is always a KSGNS-faithful map. It suffices to observe that, by all previous
constructions, we can be reduced to the more simple situation in which C < B < A are

C*-algebras with conditional expectations A L4, B E5 ¢ insuch a way that both E4 and
Ep are KSGNS-faithful. In this situation, it is straightforward to see that the composition
E:=FEpoFE,:A— C is always a KSGNS-faithful conditional expectation recall Remark
A.3.13. Namely,
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Since p : ¥ — I’ al>< % is faithful, we have that € =~ o(¢) c T’ )|>< %. Moreover, we have
r o,r

&(o(c)) = ¢, for allce? by definition of the reduced crossed product.
In other words, & : T' x € —> M(%) is a (non-degenerate) completely positive map and

also a projection from & = (%) to I' x €; that is, a conditional expectation.
0

Thanks again to the definition of the reduced crossed product, we have that Es(ws(a)) = a,
for all a € A. In this way, E5 : F x A — M(ms(A)) is also a conditional expectation and
o,r

so it is By : € — M(7s(A)).

Therefore we have the sequence of C*-algebras 75(A) € ¥ < I' x ¥ with conditional expecta-
a,r

tions T’ x ¢ % M(€) B, M (ms(A)). Since & and Es are KSGNS-faithful by assumption,
we obtain the KSGNS-faithfulness of E as required.
|

__ The preceding results are true for any I@—C*—algebra. We can apply them to the case of the
F-C*-algebra (co(F), ©), which is particularly interesting for our purpose. Recall from Lemma 2.3.4
that we have the identification co(F) = ¢o(I') ® ¢o(G) and that the dual co-multiplication © has
been explicitly described in terms of this identification (recall Lemma 2.3.4). Next, we want to
describe explicitly the action 0 of " on G x (co M® CO(@)) given by Proposition 2.3.12.

[SFS

G

Let us set some notations. We denote by (7g,Ug, Eg), (1x,Ux, ER), (7, Uy, Ey) the canonical
triples (following Theorem 1.5.2.1) associated to the reduced crossed products G x (co(D)® co(@)),

G

G X Co (G), G x (co(T) ®¢o(G)), respectively. We denote by % € U(M(co(G) ® co(T))) the unitary
A n

introduced in Corollary 2.3.7 such that % (p, ® 0y) = V-1 , ® 0, for every x € Irr(G) and every

vel.

2.3.15 Lemma. The following properties hold.

i) There exists a canonical *-isomorphism

~

G x (co(T)®co(G)) = co(T) ®G x ¢o(G)

[0}
[}
> X

which is T-equivariant, where co(T) ®G co(@) is equipped with the action p of T' such that

ey ((57‘ SN (a))Wigfj = (04 ® TA (a))pw (a“/ ('wf])))

A~

forallaeco(G), veT, ze€Irr(G), i,5 =1,...,n,, where

W= (U),4(id,, ) ® (ideo(ry ® 73)) (% * @ id,, &) € M(co(G) ® co(T) ® G x o(G))

X
A
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it) There exists a canonical I'-equivariant -isomorphism

oM ®G E co(G) = co(T) @ K(L2(G)),

where ¢o(T) QG X co(@) is equipped with the action p defined in (i), co(T') is equipped with the
A
action induced by co-multiplication Ar and K(L?*(G)) is equipped with the adjoint action of T

with respect to the unitary representation of T on L*(G) induced by «.

In particular, there exists a canonical I'-equivariant Morita equivalence

oG E o (G) .y co(I)

Proof. i) Recall that n = (X12 ® id, o(@) ) (idey(ry ® A) By Proposition 1.5.3.2 we know that
there exists a canonical #-isomorphism G x (co@) ® co(@)) ~ (M ® G X CO(@), where the
n A

latter is equipped with the triple ( r ® 73, ( )13, co(r) ® EA)' Next, if we replace
(UA)13 by the unitary W of the statement the corresponding triple is again associated to

o) ® G X CO(G) in the sense of Theorem 1.5.2.1.
A

Observe that both triple give rise to isomorphic underlying C*-algebras by means of the unitary
% . We claim that the C*-algebra described in terms of the triple (idco(r) ®mx, Wyidey () ®EA)

is identified to the reduced crossed product G x (co(T) ®co (@)) Let us check its universal
property. ¢
On the one hand, for all a € ¢o(T") ® ¢o(G) we write
w* (idCO(@) ® (idey(ry @ w3 )(a)) W
= (id o(€) ® (ideo(ry ® Wﬁ)) (% ® ich(@))
( ) ( 0@ ® (idey(r) ® WA)(G)) (UA)13
(id, &) ® (ideo(ry ® TR)) (% * ®id,, )

e (id,, &) ® (idey(ry ® 73)) (% ®1id, )

(id,, ) ® (idey(r) ® 73 ) (12 @ id,, &) (ideyry ® A) (a)
(id,, &) ® (idey(ry ® TR)) (%™ @id, )
:(idCO(@)@)(idCO(p)®7r3))<(?/®zd @) (* ®id, @)))

2) (id,,, &) ® (idey(ry ® 71)) Oz (),

—~

where in (1) we have used Proposition 1.5.3.2 and in (2) we have used that C:)@ is conjugate
of n by % thanks to Corollary 2.3.7. On the other hand, a routine computation yields the
following expression for all z € Irr(G), 4,5 =1,...,n,

= 26,0 U%),,(Vi),, € M(eo() ®C

~el’

a(G)),

[>>X
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so that forall re T, a € co(@), xz € Irr(G), i, =1,...,n, we have
(ideo(r) ® B) ((idey(r) @ 73) (3, @ )W )

= (idey(r) ® ER) (5T @4 (a) (Ui)i,j (V':m)i,j)
=0, ®a g, (V’Yﬂjm)i,j =0, ®a b, = Eg(mg(0r ®a) (Ué)m)

Hence, by universal property of G x (o) ® CO(@)) there exists a canonical *-isomorphism

Og

v : @ x (co(T) ® ¢o(G)) = ¢o(T) ® G x ¢o(G)

O>
[}
> X

such that
¥ (75(dy ®a)(UF), ;) = (6, @7z (a)) W},

forally eI, a€ CO(@), xz € Irr(G), i,j = 1,...,n,. Moreover, for all y,r € [, a € co(@),
zelIrr(G),i,j5=1,...,n, we write

F@(ér ®a) (Ué)” '0_1 T8 ((él“>v<6r ® a))¢U@ (av(w?ﬁ,j» A (577’ ® WA(“))QbW(av(wf,j))

76(0, ®a)(UZ), ™ (0, @ ma ()W 3 (34 @ 3 (@) dw (005 (w])),

which yields that p is a well-defined action of " on ¢o(T' )®@ (G) and thus the I'-equivariance

X C
A
of the statement.

We are going to establish a canonical #-isomorphism ) : CO(F)®@ X co(@) — co(TQK(LA(G)).
A

For this, remark firstly that the canonical triple (73, Ug, Ez) associated to G X Co (@) following
A

Theorem 1.5.2.1 is exactly ()\ WG ® Zd 7Q ® idCO(@))'

Moreover, it is well-known that G X CO(G) >~ IC(L*(G)) and for the latter we have the triple
A

(3\, W@, E) following Remark 1.7.1.21. In particular, we have
K(L*(G)) = C*Na)A(wf,) | a € co(G), € Irr(G),ij = 1,...,n,)

Since I' acts on G by quantum automorphlsms with action «a, then LQ(G) is equipped with
the action of T' such that - A(wf ) = /\(aw(wkl))Q for all v € T, 2’ € Irr(G), k,l =
1,. . Therefore, the corresponding action on IC( 2(G)) (recall Remark A.3.0.3) is such
that - /\( AWy ;) = /\( A (ay (w i,j)), foralla e CO(G) x e Irr(G),i,j =1,...,ny, which is
a straightforward computation.

Since ¢o(I') @ G X Co (G) has been described in (i) with the help of the unitary %, then we
A

consider now the triple (id., ) ® W, ide,(ry ® E) associated to co(I') ® K(L*(G)) where

W= (We) 1, (id, ) ® (idey(r) @ V) (Z* ®id,, &) € M(co(G) ® co(T) @ K(LA(G))
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Observe that both triple (id., ) ® X, (W@) 13 Wey(r) ® E’) and (id.,ry ® 3\7 WN/,idCO(F) ® E’)
give rise to isomorphic underlying C*-algebras by means of the unitary % . We claim that the
C*-algebra co(I') ® K(L*(G)) described in terms of the triple (ide,ry @ 71, W, ideyr) ® ER)
is identified to the reduced crossed product G x (co(T) ®co (@)) Let us check its universal

G

property.
On the one hand, for all a € co(I') ® co(G) we write
W (id. @) ® (idey(r) ® N)(a) W

— (id,, @) ® (ideyry ® V) (% ®id, g)

(W) 15 (id,, ) ® (idey(ry @ 73)(a)) (Wer)

(id,,, &) ® (idey(r) @ N) (% * ®0id, 5
2 (id. @) ® (idey(r) ® ) (% & id.&))
(id &) ® (idey(ry © X) (T12 @ il ) (iddey () ® A) (a)
(id., @) ® (idey(r) ® (% ® id, &)
— (id,y 3 ® (idey(r) ® V) (% @i, ) In(a)(Z* @ id,, z))

2) (idCO(@) ® (ideyry ® 3‘)) (:)@(a),

—

—~

where in (1) we have used the definition of We (recall Theorem 1.3.1.36) and in (2) we have
used that ©g is conjugate of n by % thanks to Corollary 2.3.7. On the other hand, a routine

computation yields the following expression for all x € Irr(G), i, =1,...,n,
szj = 257 ® (Wé)” (V':jz)w € M(CO(F) ® IC(L2(G)))7

~el’

~

so that for all r € T, a € ¢o(G), x € Irr(G), i,7 = 1,...,n, we have
(idey(r) ® B) ((idey 0y @ V) (0, ® @)W )

— (idey(ry ® ) (6 @ M) (W), , (V). )

v,

=6 Qa 51,5(‘/7*,1)1-’]- =0, ®a 0y = Eg(mg (6, ®a) (Ué) )

i,J

Hence, by property (i) and universal property of G x (cO(F) ® co(@)) there exists a canonical

[0}
o

#-isomorphism

Vi) @6 x (@) = o) ® K(L*(E)
such that R N
(6, @ 7R ()W) = (3 ® Na)) W,

forallyeT, a€co(G), x € Irr(G), 4,5 =1,...,n,.
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Finally, let us study the I'-equivariance condition. By definition, the action of T" on ¢y(I") ®
K(L?(G)) is such that for all v,r €I, a € ¢o(G), i,j = 1,...,n,

7 (6, @ M@)A (W) = 8y @ Ma)A (ay (wE)),

which allows to show the I'-equivariance of the above #-isomorphism because for all v, 7 € T',
a€co(G), zelrr(G),i,j=1,...,n, we write

(0, @3 (@)W 1 (8 @ 7z () bw (0 (W) > (350 @ A(@)) by (0 ()

~ ~

(0, @4 (@)W > (6, @ Ma)) Wi > (8, @ A(@)) g (4 (w])

Compact bicrossed product

We introduce the compact bicrossed product of a matched pair of a discrete group and a compact
group and we analyze some structure properties of this compact quantum group which are useful
for our purpose.

It is important to say that the bicrossed product construction have had different approaches
throughout the history and that we are interested in a very concrete case. More precisely, in the
fundamental work [94], G. I. Kac introduced the notion of matched pair of finite groups in order to
study the classification of extensions of finite groups. In the context of multiplictive unitaries, S.
Baaj and G. Skandalis give in [7] a generalization of the Kac’s work defining the notion of matched
pair of locally compact groups. Finally, the work of S. Vaes and L. Vainerman [196] give a very
general framework for the bicrossed product defining the notion of matched pair of locally compact
quantum groups. This allows in particular to develop a very technical theory by which we can give
a satisfactory notion of extension of locally compact quantum groups.

If we restrict our attention to a matched pair of a discrete group and a compact group (we say
compact matched pair), the resulting object is a compact quantum group and we can investigate in
a much more clear fashion the properties of its representation theory and approximation properties
as we can see in the work [65] due to P. Fima, K. Mukherjee and I. Patri. Actually, we refer to [65]
for more details about compact matched pairs and specifically for a proof of Theorem 2.4.1 below
defining the compact bicrossed product.

Let T be a discrete group and G a compact group such that the pair (T, G) is a matched pair
(see [7] or [65] for a precise definition). Then we have that

- there exists a continuous left action of I' on the topological space G, a : ' x G — G,
- there exists a continuous right action of G on the topological space I';, §: G x ' — T

- and both actions o and S are related in the following way: for every v € I and every g € G,
we have

79 = ay(9)Bg(7)
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In particular, if e € I' denotes the identity element of T, then S4(e) = e, for all g € G. Hence
#[e] = 1, where [e] € T'/G is the corresponding class in the orbit space. Observe that a, = idg
and . = idr, where e denotes either the identity element in I' or in G, respectively.

In this situation, we write (I, G, a, 8) for a compact matched pair with associated actions «
and (8 according to the statements above. For every class [y] € I'/G in the orbit space, we define
the following clopen subsets of G (see [65] for more details)

A i={geG: pBy(r) = s},

for every r,s € [y]. Consider as well its characteristic function, say 14, , =: 1, for all 7, s € [y].

We can show that (1r75) | € M4,1(C)® C(G) is a magic unitary and a unitary representation

sy
of G (again, see [65] for more details).

We shall use all these notations for the sequel.

2.4.1 Theorem-Definition. Let (TI',G,«, 3) be a compact matched pair.
There exists a unique unital x-homomorphism

0:T x C(G)—T x C(G)XT x C(G)
such that
O(r(a)) = (r®7)(Ac(a)) and O(u,) = Z uyo(ly ) @ ur,
re[]
for all a € Cp(GQ) and all v € T, where 7 : C(G) — I' x C(G) is the unital faithful -
homomorphism and v : T' — U(M(T x C(Q))) the group ho;nomorphism defining the crossed

product.
Besides, we have that

i) F:= (T x C(G),0) is a compact quantum group,
a,m
it) the Haar state on F is given by hy := hg o E o k, where hg is the Haar integral of G,
k:T x C(G) » T x C(G) is the canonical surjection and E : T x C(G) — C(G) is the

)

canonical conditional expectation,

iii) the mazimal picture of F is given by Cpp,(F) =T x C(G),

a,m

i) the reduced picture of F is given by C,.(F) =T x C(G),

a,T

The compact quantum group F constructed in this way is called compact bicrossed product of
the matched pair (T, G) and is denoted by T',, g G.
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2.4.2 Note. It is possible to give an explicit description of the representation theory of I'y i3 G in
the same spirit of Theorem 2.3.2 for the quantum semi-direct product construction. Nevertheless,
the presence of the action 8 (which is trivial in the quantum semi-direct product case) makes the
classification of the irreducible representations of I', >3 G more complicated.

Using this classification it is possible to carry out the analogous study of Section 2.3 in order
to achieve the associativity property for a compact bicrossed product. Since the classification of
irreducible representations of I'y g G given in [65] is not correct and its rectification is a work in
progress, we do not develop here the associativity property for a compact bicrossed product.

2.4.3 Remark. Since G is a classical compact group, we have an obvious injective #-homomorphism
tg : C(G) > T x C(G). Moreover, the definition of the co-multiplication © of F yields clearly
a,m

that g intertwines the corresponding co-multiplication. This shows, thanks to Proposition 1.4.3.4,
that G is a discrete quantum subgroup of F.

As in Remark 2.3.9 we define canonical injections ¢f* : C¥ (I') — C,,,(F) and o} : C*(T') — C,.(F).
However, the definition of the co-multiplication © of the compact bicrossed product F prevent ¢r;
and " from intertwining the corresponding co-multiplications. Hence, I' can not be a quantum
subgroup of F (compare with the quantum semi-direct product case, see Proposition 2.3.5 and
Remark 2.3.9). However, these injections are clearly compatible with the canonical surjections and
co-units as in Remark 2.3.9.

Quantum free product

We introduce the free product of two compact quantum groups and we analyze some structure
properties of this object which are useful for our purpose. We may recall the maximal free product
construction for C*-algebras from Theorem A.1.10.

The following theorem is due to S. Wang [215].

2.5.1 Theorem-Definition. Let G = (C(G), Ag) and H = (C(H), An) be two compact quantum
groups.
There exists a unique unital x-homomorphism

©:Ch(G) * Cp(H) — Cp(G) * Cppy(H) ® Cp, (G) + C,, (H)

such that
O(vg(a)) = (vg ®V@>(A@<G)) and ©(vg (b)) = (vg ® vi) (AH(b)),

for all a € Cp,(G) and all b € Cp,(H), where vg : C(G) — O (G) * Cyp,(H) and vy : C(H) —
Cn(G) = Cy, (H) denote the canonical inclusions.
Besides, we have that

i) F:= (Cn(G) = Cp(H), 0) is a compact quantum group,

it) the Haar state on F is given by hg = hg = hu, where hg and hy are the Haar states on G and
H, respectively,



2.5. Quantum free product 209

i11) the mazimal picture of F is given by Cy,(F) = C(G) * Cy, (H),

i) the irreducible representations of F are described as follows: for every irreducible representation
y € Irr(F), take a representative w¥ € B(H,) ® C(F). There exist a natural number n € N
and irreducible representations (i, ..., ¢, either in Irr(G) or in Irr(H) such that if w® e
B(H;) ® C(G or H) are respective representatives of (;, for alli=1,...,n, then we have

w’ =~ wh QuS @...Quw' € B(H, ®...H;,)® C(F)

in such a way thatl; € {1,...,n} withl; # l; for alli # j and if i, € Irr(G) then ¢
(and vice-versa), for alli,j =1,...,n— 1.

i1 € Irr(H)
In other words, the words with letters in Irr(G) and Irr(H) (according the above formulae)
provide a complete set of mutually inequivalent irreducible representations of F. For this reason
we write Irr(F) = Irr(G) = Irr(H).

In addition, the fusion rules are described in the following way.

a) If y,y' € Irr(F) = Irr(G) # Irr(H) are words such that y ends in Irr(G) and y' starts in
Irr(H) (or vice-versa), then
yoy =y
is an irreducible representation of .
b) If y = Cx,y = 2'¢’ € Irr(F) = Irr(G) = Irr(H) are words such that x,x’ € Irr(G) (or in
Irr(H)), then
yey = @ ek ((ad)
tczx’
where the sum runs over all non-trivial irreducible representations t € Irr(G) (or in Irr(H))
contained in x @ x’' with multiplicity.

The compact quantum group F constructed in this way is called quantum free product of G and
H and is denoted by G = H.

2.5.2 Remark. By definition of a quantum free product of G and H, it is clear that both G and H
are discrete quantum subgroups of G + H with canonical inclusions given by vg and vy, respectively
(recall Proposition 1.4.3.4).
_ Observe that both G and M are divisible in F. Let us show that, for example, G is divisible in
F (the proof for H is analogous). Take any irreducible representation of F, which is given by an
alternating word in Irr(G) and Irr(H), say
Y =Ty %49 -+ - Tjy_1 %4y,

By definition, a representative of y in Irr(G)\Irr(F) (resp. in Irr(F)/Irr(G)) is an irreducible
representation 3’ € Irr(F) such that y @y’ (resp. ¥/ @ y) contains an irreducible representation of
G (inside F). The latter is possible if and only if the tensor product y @’ (resp. ¥’ @y) reduces to
a single letter in Irr(G).

Assume that y starts in Irr(G), then it is enough to put v’ := z;, ... x;,_,2;,. The fusion rules
of a quantum free product yield that y @y’ = x;, € Irr(G).
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In this situation, given any s € Irr(G) we have to prove that s @y’ € Irr(F). Since y starts
in Irr(G), then y’ starts in Irr(H), so that the fusion rules of a quantum free product yield that
s@y = sy € Irr(F).

Assume that y starts in Irr(H) and ends in Irr(G), then it is enough to put ¢/ := z;, 24, ... 24, ;-
The fusion rules of a quantum free product yield that ' @y = z;, € Irr(G). Since y ends in Ir7(G),
then 3 ends in Irr(H) and the fusion rules of a quantum free product yield that ' @s = y's € Irr(F),
for every s € Irr(G).

Assume that y starts and ends in Irr(H), then we can not choose any representative y' of y
either in Irr(G)\Irr(F) or in Irr(F)/Irr(G) such that either y@y’ or ¥/ @y reduces to a single letter
in Irr(G). In other words, the class of [y] is formed only by y itself (notice that y ® 7 = ey = € in
Irr(F)). In this case, it is obvious that s @y’ = sy’ € Irr(F), for every s € Irr(G).

2.5.3 Definition. A free quantum group is a compact quantum group that is a free product of
free unitary and free orthogonal quantum groups

Ut(P)#...«UT(P) 01 (Q1) * ... 01 (Q)),
for some k,l € N where P; € GL,,,(C) with m; > 2 for all i = 1,...,k and Q; € GLy,(C) with

n; = 2 satisfies Qj@j =tidforall j=1,...,L

2.5.4 Remark. Observe that if in the preceding definition we take | = 0, m; = 1 and P; = id €
GL,(C), for all t = 1,..., k, then the corresponding free quantum group reduces to a classical free
group on k generators.

In this sense, the preceding definition is a generalization of the classical case. Namely, the
classical free group on n generators can be written as a free product of n copies of Z, F,, = Z=...*Z.
In the quantum setting, we need to allow different building blocks for constructing free quantum
groups.

The quantum free product construction and particularly the case of a free quantum group have
been successfully studied by R. Vergnioux and C. Voigt [208] in relation with the Baum-Connes
property and the K-theory computations. In Section 3.6 we will give an overview of the Vergnioux-
Voigt’s work concerning the Baum-Connes property. Let us state here the corresponding result
concerning the K-theory computations. Notice that the following result is a generalization of the
well-known Pimsner-Voiculescu exact sequence [151], [152] for free quantum groups.

2.5.5 Theorem (R. Vergnioux and C. Voigt, [208]). Let G :=UT(Py)* ...« U (P) * O (Q1) *
...#+01(Q)) be a free quantum group. Then G is K-amenable and for every G-C*-algebra A there
exists a siz-term exact sequence

2k+1
@ Ko(A)
r=1

Ko(A) ——= Ko(G x A)

A~ 2k+1

As a consequence, we have that the K-theory of G = Ut (Py)#...«UT(Py) Ot (Q1)*... x0T (Q))
s given by
Ko(C(G)) = Z and K,(C(G)) = 2* 7!
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Free wreath product

We introduce the wreath product of a compact quantum group by Sj\} and we analyze some structure
properties of this object that are useful for our purpose.

It is important to recall that in the classical case, a wreath product can be regarded as a
generalization of a semi-direct product that provides new and interesting examples of groups in
order to study automorphism groups. With this philosophy in mind, we want to give a quantum
version of such an object. The first definition and construction of a free wreath product was given
by J. Bichon in [22] where he defines the wreath product of a compact quantum group G by a
quantum permutation group Sy, denoted by G 1 Sj;. Recently, the work of P. Fima and L. Pittau
in [66] gives a generalization of this construction replacing S, by any quantum automorphism
group Qut(A,w), defining thus the compact quantum group G 1, Quit(A4,w).

In the context of the present thesis, the original definition of J. Bichon is enough for our purpose.
The main construction of the following theorem can be found in [22] and we refer to the work of F.
Lemeux and P. Tarrago in [120] for the corresponding representation theory and more details.

2.6.1 Theorem-Definition. Let G = (C(G),A) be a compact quantum group and fix a natural
number N € N. Given the free product G*VV, denote by vy, : C(G) — C(G*N) the canonical
faithful «-homomorphism corresponding to the k-th component, for each k = 1,...,N. Denote by
u = (Uij)ij=1,.. N the fundamental representation of S]’\L,.

There exists a unique *-homomorphism

0:C(G*N)+C(SH) /I — C(G*N) « C(SH)/T® C(G*N) « C(SH)/1,

where I is the closed two-sided ideal in C(G*N) x C(ST) generated by {vi(a)ur; — upivi(a) | a €
C(G)}ik=1,....n; such that

N N
Ovi(a)) = Z vi(aay)uir @ vk(ae)) and O(u;) = Zuik ® ukj,
k=1 k=1

forallae C(G) and alli=1,...N and for alli,j=1,...N.

Besides, we have that
i) F:= (C(G*") = C(S%)/1,0) is a compact quantum group,
it) If G is a mazimal compact quantum group, then F too,

i1i) the irreducible representations of F are described as follows: for every irreducible representation
x € Irr(G), take a representative w® € B(H,) ® C(G), denote by (w®)*) a representative of x
in the k-th component of G*N and put

r(@) = (wme((w)™))

kyij=1,...,N
Irreducible representations of F are subrepresentations of the tensor products

r(z)@...0r(z,),
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for all m € N. In other words, the irreducible representation of F are labelled by words over
Irr(G). For this reason we write Irr(F) = {Irr(G)).

In addition, the fusion rules are described in the following way. If x,y € {Irr(G)) and
w(x),w(y) € Irr(F) denotes the corresponding irreducible representations of F, then

w(z) Quw(y) = ( Z w(u,v)) @ ( Z w(u@v)),
R

where we must point out the notation.

- {Irr(G)) is equipped with an involution defined by
(ZL’l, e ,SUn) = (fn, e ,fl),

forall zq,...,x, € Irr(G).
- If u,v € {Irr(G)) are two words, we denote by (u,v) their concatenation.

- Given two words u := (x1,...,%,),v = (Y1,-..,Ym) € {Irr(G)), we denote by uDv the
following operation

U@ = @ ('Tlv'-~7xn—l72ay27"'aym)
2CTn @Y1

The compact quantum group F constructed in this way is called free wreath product of G by S3;
and is denoted by G 1, S5;.

We will see in Section 3.7.1 that a free wreath product G, Sy is never torsion-free. Consequently,
it is not clear, from a theoretical point of view, how to formulate the Baum-Connes property for it.
As we have already pointed out in the end of Section 1.7.2, one possible strategy is to consider a
suitable monoidal equivalence between G 1 Sj\’, and some compact quantum group H, for which it
is easier to establish or to formulate the Baum-Connes property. In this sense, the following result
is crucial in order to develop the study of the torsion phenomena and the Baum-Connes property
for a free wreath product as we have done in Section 3.7.

2.6.2 Theorem (F. Lemeux and P. Tarrago, [120]). Let G be a compact quantum group. If u
denotes the fundamental representation of SU,(2), let Hy be the compact quantum group generated
by uzu for all x € Irr(G). The following properties hold.

i) ]ﬁlq is a discrete quantum subgroup of G *’5’7,1(2).

i) If N > 4, there exists 0 < |q| <1 with ¢+ ¢~ = /N such that H, is monoidally equivalent to
G4 SY-

2.6.3 Remark. In order to carry out a study of the torsion phenomena and the Baum-Connes
property for a free wreath product G 1, S]\L,, it is advisable to give some explicite expressions
concerning the representation theory of G i, S5 and H,. We refer to Section 5 of [120] for more
details.

First of all, the precise description of the Lemeux-Tarrago’s compact quantum group H, :=
(C(Hy),Aq) of the preceding theorem is the following.
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- C(Hy) is generated, as =-algebra, by the matrix coefficients of representations of the form
uzu, for all x € Irr(G). In other words, H, is defined by Tannaka-Krein-Woronowicz duality
where Zep(H,) is identified with the smallest full subcategory of Zep(G * SU,(2)) containing
{uzu | x € Irr(G)} < Irr(G = SU,(2)).

- The co-multiplication A, : C(H,) — C(H,) ® C(H,) is such that

Ay (uijrrsurt) = Asy, 2) (i) Ac(Trs) Asu, 2) (ukt),
for all 4,5, k,l =1,2,all r,;s =1,...,n, and all z € Irr(G).

This means that the irreducible representations of H, are subrepresentations of the tensor
products
(ur1u) @ ... 0 (uz,u),

with 21,...,2, € Irr(G) and n € N; which decomposes as a direct sum of irreducible representations
of the form

ulzu'? oy, e Irr(G) « Irr(SU,(2)),
where [ and [,, are odd integers, for all i = 2,...,n—11; are even integers and for all i = 1,...,l,_1
2 C X, ©...Qa; is irreducible for some iy, ..., € {1,...,n}.

In this way, we have a bijection between Irr(H,) and the free monoid {Irr(G)) formed by the
words over Irr(G), so that any irreducible representation of Hj is labelled by a word in (Irr(G)).
This description of Irr(H,), together with the fusion rules of a free product of compact quantum

~

groups (see Theorem 2.5.1), allows to give an explicit description of the inclusion A : Fus(H,) —
Fus(G = SU,4(2)) given by ﬁq < G % SU4(2) of the preceding theorem.

-Ifay =... =2, = €g, then A(eg) = u?", for all n e N.

- Ifa; #eg, foralli =1,...,n, then A(z;...2,) = urquzou? ... ux,u, for all n € N.

. . . . n
- In general, if w is any word over Irr(G), we can write it under the form w = eg'wiegws . .. wreg™ ™,

where each w; does not contain eg. Denote by jw\(wz) the same expression as A(w;) from
the preceding case except that the first and last u are removed. Then, we have A(w) =
w2 LA (w)u 2 A (wg) L. u? LA (wy )u?™e1 L for all k e N.

Finally, using the above description of Irr(H,), the fusion rules of Hy are described as follows:
if 21,...,Zn, Y1, .., Ym € Irr(G), then

(1. Zn) @ W1+ - Ym) = ( Z T1...Tpo1 zyg...ym)(ﬁézmyl (1 1) O (Y2 - - - Ym)

2Cxn@Y1

2.6.4 Remark. Notice that the discrete quantum group ﬁq might not be divisible in G =lfS'Fq(Q)
in general. Namely, as we will see in Section 3.7.1, the dual of the free wreath product G i, S

is mever torsion-free, even when G is torsion-free. Hence, ]ﬁLI is never torsion-free, by monoidal
equivalence. But, if G is torsion-free, then it is well-known that G = SU,(2) is torsion-free (by
combining Theorem 2.1.5 and Theorem 3.6.1.1). If ]f-\]lq was divisible in G * SU,(2), then ]ﬁlq would

be torsion-free provided that torsion-freeness is preserved by divisible discrete quantum groups as
conjectured in the end of Section 3.2.1.
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This shortcoming makes the proof of the strong Baum-Connes property for G/ZS]\L, of Section
3.7.2 a non trivial result. Namely, if G is torsion-free and satisfies the strong Baum-Connes property,
then it is well-known that G @ (2) is torsion-free and satisfies the strong Baum-Connes property
as well (by combining Theorem 2.1.5 and Theorem 3.6.2.3). If ]ﬁlQ was divisible in G >zﬁU\q(Q),
then ]ﬁlq would satisfy automatically the strong Baum-Connes property by Theorem 3.2.2.1. Thus,

—

G 14 S7 too by monoidal equivalence (recall Theorem B.3.19).



CHAPTER

Stability properties for the Quantum Baum-Connes prop-
erty

This chapter should be regarded as the core of the thesis. Here we develop the main contributions
of the present dissertation.

In Section 3.1 we care about the compact case. Namely, we study the Baum-Connes property
for any compact quantum group and for the duals of compact Lie groups which are connected and
have torsion-free fundamental group following the work of R. Meyer and R. Nest [133].

In Section 3.2 we recall that the divisible condition of a discrete quantum subgroup is a sufficient
one to conclude that the strong Baum-Connes property passes to quantum subgroups following
the work of R. Vergnioux and C. Voigt [208] and also to conclude that the strong torsion-freeness
passes to quantum subgroups following the work of Y. Arano and K. De Commer [3]. Moreover, we
establish the analogue stability result for the usual Baum-Connes property. The K-amenability
property for a discrete quantum subgroup is analyzed.

In Section 3.3 we establish the quantum counterpart of the stability for the Baum-Connes
property for a direct product in connexion with the Kiinneth formula as studied in [37] by J.
Chabert, S. Echterhoff and H. Oyono-Oyono for classical locally compact groups. In addition, the
K-amenability property for such a construction is analyzed.

In Section 3.4 we establish the quantum counterpart of the stability for the Baum-Connes
property for a semi-direct product obtained by H. Oyono-Oyono [143] in the classical discrete case.
In Section 3.5 we observe that, under the torsion-freeness assumption, the analogue study of the
Baum-Connes property for a compact bicrossed product in the sense of P. Fima-K. Mukherjee-I.
Patri [65] reduces to the quantum semi-direct product studied earlier. In addition, the K-amenability
property for both constructions is analyzed.

In Section 3.6 we recall that the Baum-Connes property is stable under the free product
construction for quantum groups following the work of R. Vergnioux and C. Voigt [208]. Our
contribution here is the complete classification of the torsion actions for a quantum free product,

215
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which is part of a collaboration work with A. Freslon [127].

In Section 3.7 we show that the Baum-Connes property is stable under the free wreath product
construction using the well-known monoidal equivalence given by F. Lemeux and P. Tarrago in
[120] and being inspired by the pioneering work of C. Voigt in [212]. In addition the K-amenability
property for such a construction is analyzed. The whole content of Section 3.7 is a collaboration
work with A. Freslon [127].
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The Baum-Connes property for compact quan-

tum groups

The compact case is one of the first situations that we have to analyze in relation with the
Baum-Connes property. Indeed, from a topological point of view, compact groups are particularly
interesting and rich concerning the representation theory and the approximation properties.

In this sense, it is well-known that classical compact groups always satisfy the Baum-Connes
property. We can see this in different ways. On the one hand, we can prove it directly by recalling
that the corresponding classifying space for proper actions is a singleton. On the other hand, we can
apply the celebrated and strong result of Higson-Kasparov [82] to conclude that, actually, compact
groups satisfy the strong Baum-Connes property.

Let us analyze the Baum-Connes property for compact quantum groups.

3.1.1 Theorem. Let G be a compact quantum group such that Gisa torsion-free discrete quantum
group. Consider the homological functor F : # #€ — o/b"/? defined by F(A,d) := K4(G x A),
d,r

for all (A,6) € Obj(H HC).
Then G satisfies the Baum-Connes property with respect to (<Lg, NG, F).

Proof. Recall from Section 1.7.2 that, under the torsion-freeness assumption, the complementary
pair of subcategories (%5, 4G) is given by Baaj-Skandalis duality by

Lo = {AeObj(##C)| A with trivial action of G})

N ={AeObj(H HC) | Gx Ax0in A as a trivial GP-C*-algebra}

Denote by (E, N ) the canonical triangulated functors associated to this complementary pair.

Consider the homological functor F of the statement and the categorical assembly map with respect
to (L, NG, F) (recall Definition 1.2.1.30)

ﬁz]Lﬁ’—>}~7',

where by definition we have LF =FolL.

We have to prove that 7] is a natural equivalence. By universal property of localization (recall
Theorem 1.2.1.29 and Theorem 1.2.3.17) this is equivalent to say that ﬁl% = 0, which is obvious
by definition of Ag.

|

Once the Baum-Connes property for the compact case is clarified, we have to care about discrete
quantum groups, which arise as duals of compact (quantum) groups. As we have already explained
at different stages of the dissertation, the torsion phenomena is one of the main obstacles for this
study.

An important source of examples of topological groups is Lie groups. Moreover, they are in the
origins of the quantum groups theory from the physical point of view. In this sense, it is reasonable
to look at duals of compact Lie groups, which should be regarded as a particular case of discrete
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quantum groups. This is the object of study of the article [133] by R. Meyer and R. Nest. More
precisely, they give a concrete application of the abstract formulation of the Baum-Connes property
for duals of compact connected Lie groups. In particular, they are able to manage properly the
quantum torsion phenomena in this situation.

Let us present here the torsion-free version of the main theorem of [133] in order to exhibit
the strategy followed by Meyer-Nest in such a situation. Firstly, a combination of some classical
well-known results [129], [165], [180] yields the following lemma (see Proposition 2.1 of [133] for a
proof).

3.1.2 Lemma. Let G be a compact connected Lie group with torsion-free fundamental group. If
T < G denotes the maximal torus of G, then there exists N € N such that

cN ~c(GQT) in #HE

3.1.3 Theorem. Let G be a compact connected Lie group with torsion-free fundamental group.
Then G satisfies the strong Baum-Connes property. As a consequence, G satisfies the Baum-Connes
property.

Proof. Given the discrete quantum group @, consider the corresponding @—equivariant Kasparov
category # % ¢ with the usual complementary pair of localizing subcategories (£, .4") as explained
in Section 1.7.2. By definition, G satisfies the strong Baum-Connes property if and only if
L = H#HC. Since £ and A are complementary, this condition is equivalent to the condition
A = (0).

In other words, we have to see the following: given B € Obj(# % CA;) such that B ~ 0 in &%,

then B ~0in # #C.
Next, by Baaj-Skandalis duality this statement is equivalent to the following one: given

A€ Obj(H# #C) such that G x A= 0in %, then A =0 in &7 C.

Therefore, consider any G-C*-algebra A € Obj(.# # ) and denote by T < G the maximal
torus of the compact Lie group G. Apply the preceding lemma to write the following chain of
equivalences.

GrxA=0in A H < Gx (AQCN)=0in # X
< G@x (AQC(G/T)) =0in KX
< T x Res$(A) = 0in # X,
where the last one is true by virtue of the obvious Morita equivalence AQC(G/T) ~ Ind$.(Res$(A)),

so that the Green’s Imprimitivity theorem guarantees that T'x Res%(A) v Gx (AR C(G/T)).

The preceding lemma yields also the following chain of equivalences.

A=0in #HC < AQCN ~0in #HC
= A®C(G/T) =0 in # ¢
& Ind$ (Res$(A)) =0 in 24,

where the last one is true by virtue of the same Morita equivalence as above.
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These computations assure that G satisfies the strong Baum-Connes property whenever T
satisfies the strong Baum-Connes property, which is obviously true. Indeed, the maximal torus T is
isomorphic to a n-dimensional torus TV for some n € N and the classical Pontryagin duality yields

Tn ~ Z" and T" = Zn,

where T" ~ Z" satisfies the strong Baum-Connes property by virtue of the Higson-Kasparov
theorem [82] since it is amenable. |

In this section we recall that the divisible condition of a discrete quantum subgroup is a sufficient
one to conclude that the strong Baum-Connes property passes to quantum subgroups following
the work of R. Vergnioux and C. Voigt [208]. We will see that the same is true for the usual
Baum-Connes property.

The divisibility condition for a quantum discrete subgroup may be regarded as a condition of
existence of a section for the canonical quotient map. In this way, every classical discrete subgroup
H < @G is divisible. We refer to Section 4 of [208] for the full details and we state here the main
results. Notations and definitions of Section 1.4.3 concerning induced actions and discrete quantum
subgroups may be kept in mind for what follows.

3.2.1 Definition. Let H be a discrete quantum subgroup of a discrete quantum group G. We say
that I < G is divisible if there exists a H- -equivariant s-isomorphism

c0(G) = co(H) ® co(H\G)

with respect to the restricted action on the left hand side and the action given by co-multiplication
on ¢o(H) on the right hand side.

This notion can be characterized in terms of the representation theory of the quantum groups
involved. More precisely, we have the following result.

3.2.2 Lemma. Let [ be a discrete quantum subgroup of a discrete quantum group G. The following
assertions are equivalent.

i) H < G is divisible.

it) For each equivalence class o € Irr(H)\Irr(G) there exists a representation l, € « such that
$@ly is irreducible, for all s € Irr(H).
(G)

iii) For each equivalence class a € Irr(G)/Irr(H) there exists a representation ro € a such that
To @S is irreducible, for all s € Irr(H).



220 CHAPTER 3. Stability properties for the QBCc

3.2.1 Torsion property

As we have already explained, the torsion phenomena for discrete quantum groups is closely related
with the strong Baum-Connes property (see Section 1.7.2 and Chapter 5 for more precisions). The
divisibility condition is sufficient to state the strong torsion-freeness (torsion-freeness in the sense of
Arano-De Commer) of a discrete quantum subgroup from the strong torsion-freeness of the discrete
quantum group. More precisely, we have the following result due to Y. Arano and K. De Commer
(see Proposition 1.28 in [3]).

3.2.1.1 Theorem (Y. Arano and K. De Commer, [3]). Let H be a discrete quantum subgroup of
a discrete quantum group G. IfH < G is divisible and G s strong torsion-free, then H s strong
torsion-free.

It is important to observe that usual torsion-freeness (that is, torsion-freeness in the sense of
Meyer-Nest) is not preserved, in general, by discrete quantum subgroups. For instance, we have
explained in Section 2.1 that qu?%) < Sm). Moreover, while Sm) is torsion-free by [210],
S/O’ﬁ) is not torsion-free by [173] (recall the discussion in the end of Section 1.6.1).

In relation with the results obtained in [127], we can consider an other example more complicated.
Let G be a compact quantum group such that G is torsion-free. Then the dual of the free product
G = SU,(2) is torsion-free (because S/qua) is torsion-free for all ¢ € (—1,1)\{0} as it is shown
in [210] and torsion-freeness is preserved by free product as it is shown in [3]). Consider the
Lemeux-Tarrago’s discrete quantum subgroup ﬁ <G % SU,(2 4(2) which is such that H, is monoidally
equivalent to the free wreath product G SJr (see [120] or Section 2.6 for more detallb) Tt is

explained in [127] (and in Section 3.7) that the dual of G 1, S} is never torsion-free. Hence Iﬁ[q
neither (because torsion-freeness is preserved under monoidally equivalence as it is shown in [210)]

r [163]).

Tt is reasonable to expect that torsion-freeness (in the sense of Meyer-Nest) is preserved under
divisible discrete quantum subgroups. Inspired by the study carried out in Section 3.6.1, we expect
to be able to apply the techniques from [3] for proving the following stability result: given a compact
quantum group G, G is torsion-free if and only if every divisible discrete quantum subgroup H<G
is torsion-free.

3.2.2 The Baum-Connes property

In order to legitimate the Baum-Connes property formulation for a discrete quantum group @, we
need G to be torsion-free. The same is true for a discrete quantum subgroup H < G. Hence, we
must keep the preceding section in mind. For simplicity we assume that every discrete quantum
group considered in what follows is torsion-free.

Next, let us set up the adapted notations of the categorical framework of Meyer-Nest to this
situation. Consider the equivariant Kasparov categories associated to G and H, say

o xC and "

respectively. The canonical suspension functors for each of the above Kasparov categories are
denoted simply by X.
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Notice that from now on, the word homomorphism (respectively, isomorphism) will mean
homomorphism (respectively, isomorphism) in the corresponding Kasparov category; it can be either
a true homomorphism (respectively, isomorphism) between C*-algebras or any Kasparov triple
between C*-algebras (respectively, any K K-equivalence between C*-algebras).

Consider the canonical complementary pair of localizing subcategories in J# # ¢ and ¢ #H,
say

(L5, Ng) and (L, A5),
respectively. In this way, the canonical triangulated functors associated to these complementary
pairs are denoted by (L, N), (L', N'), respectively.

Consider the homological functors defining the quantum Baum-Connes assembly maps for IR G
and H. Namely,

F: #x¢ — o2 F'o 8 . b2
(A,a) +—> F(A):= K.(G x A) (B,B) +— F'(B) ::K*(Hﬁx B)

Therefore, the quantum assembly maps for G and H are given by the following natural transfor-
mations ~ ~
C.LF — Fand " :LF' — F',
where by definition we have
LF=FoLand LF' = F oL’
By the torsion-freeness assumption, the subcategory £z (resp. £5) is easily described as the

localizing subcategory of A HC (resp. H H#™) generated by the objects of the form co(@) ®C (resp.
co(H) ® C) with C any C*-algebra in the Kasparov category J& X .

In relation with the strong Baum-Connes property, the divisibility condition of a discrete
quantum subgroup guarantees that the restriction functor preserves the localizing subcategories
of compactly induced C*-algebras. More precisely, if His a divisible discrete quantum subgroup
of a discrete quantum group G then by definition we have a H- equivariant #-isomorphism as in
Definition 3.2.1

0(G) = co(H) ® co(H\G)
Both G and H are supposed to be torsion-free. Hence the description of the subcategories £
and £ yields clearly that
ResE (L) = L,

whenever H is divisible in G.
Assume that G satisfies the strong Baum-Connes property. Let B € Obj(% H H) be any

H-C*- algebra. Since % G _ = 2 by assumption, then [ ndG( ) € Zz. Since H is divisible in
G, the preceding discussion yields that Res% (I ndG( )) € 5. Next, the explicit description of
induced C*- algebras with respect to discrete quantum subgroups (see Section 1.4.3), yields that B
is a retract of Res& (IndG’(B)>. Hence B € £ as well because £y is, by definition, closed under

retracts. In other words, we have proved the following result.
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3.2.2.1 Theorem (R. Vergnioux and C. Voigt [208]). Let H be a discrete quantum subgroup of a
discrete quantum group G. Assume that G is torsion -free.

If]HI < G is divisible and G satisfies the strong Baum-Connes property, then H satisfies the
strong Baum-Connes property.

To the best knowledge of the author it is open to know if the strong Baum-Connes property is
preserved by quantum subgroups in general. As well as the usual Baum-Connes property. However,
the divisibility condition is still sufficient to state the usual Baum-Connes property for a discrete
quantum subgroup from the usual Baum-Connes property of the discrete quantum group.

3.2.2.2 Lemma. Let G, H be two compact quantum groups. If@ is torsion-free and H<Gisa
divisible torsion-free discrete quantum subgroup, then the following properties hold.

i) Res@(.,%@) c Z and Resg(,ﬂ@) < Ag. Hence, RGS%OL = L’OResg and RengN = N/OResg,
i) Indg 2 (L) © L5 and Ind@(/I/A) c Az. Hence, Ind@OL’ = LOInd@ and Ind@ON’ = NOInd(:;’,

Consequently, Res transforms the assembly map for G into the assembly map for H and IndG
transforms the assembly map for H into the assembly map for G.
Proof. i) Since ]ﬁ[ is divisible in G, then ¢o(G) = co(H) ® co(H\G) as ]ﬁI:C*-algebraS. Hence, it is
clear that ResC £(L5) © L. Take N € Az, then we have that Res$(N) = 0. Restriction by
stages yields that 0 = Res%(N) = Res]}E'A]I (Resg(N)), which means that Res%(N) € Ny

Given any A € Obj(A# * @), its corresponding (£, .43 )-triangle is transformed into a distin-
guished triangle by restriction because Res€ is a triangulated functor. We have just seen that
restriction functor preserves the subcategories 2 and .#". Hence the distinguished triangle

given by restriction is actually a (£, #5)-triangle for Res%(A). By uniqueness of these
distinguished triangles we get the relations.

ii) Take a generator Ind%(C) € 2 with C e Obj(%%). Induction by stages (see Proposition
2.7 in [140] for a proof) yields that Ind% (Indg(C)) = Indg(C), which is again a generator in
Z. Hence, we also have IndZ(%5) € 5.

Take N’ € A5. Recall that, since .25 and .44 are complementary, then we have A5 = .f]?;.
Accordingly, KAKH(L’,N’) = (0), for all L' € .Z5. By virtue of property (i) above, we can

take L' := Res%(L) for any L € Z. Hence, the adjointness property between restriction and
induction functor of Lemma 1.7.2.4, yields that

KKS(L, IndE(N')) = KK®(Res2(L), N') = (0),

for all L € £, which means that Indg(N’) € ,,2”5 =z
Given any B € Obj(# ¥ IﬁI), its corresponding (5, A5 )-triangle is transformed into a distin-
guished triangle by induction because I ndg is a triangulated functor. We have just seen that
induction functor preserves the subcategories £ and .#". Hence the distinguished triangle given
by induction is actually a (£, .4z )-triangle for I nd%(B). By uniqueness of these distinguished
triangles we get the relations.

|
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3.2.2.3 Proposition. Let G be a discrete quantum group. Assume that G is torsion -free.
G satisfies the quantum Baum-Connes property if and only if every divisible torsion-free discrete
quantum subgroup H<G satisfies the quantum Baum-Connes property.

Proof. Assume that (AG satisfies the quantum Baum-Connes property and consider a divisible discrete
quantum subgroup H < G.
By assumption, G satisfies the quanturn Baum-Connes property with coefficients. In particular,

we have a natural isomorphism 7% s K (@ X L(Indg(B))) — K, (@ X Indg(B)), for all

mdS(B)
B e Obj(t H).
Thanks to the preceding lemma [ nd% oL/ =Lol nd%7 so that we have a natural isomorphism

n?ndG(B) + (G x IndS(L'(B)) — K+ (G x Ind2(B)), for all B € Obj(# 4 7).

By virtue of the quantum Green’s Imprimitivity theorem (See Theorem 1.5.3.6 or Theorem
7.3 in [194] for a proof) we have a natural Morita equivalence G Ind%(B) ~ H x B for all
Be Obj(%jifﬁ) which yields an isomorphism between G x Ind@( ) and H x B in 4.7

Moreover, the induction functor transforms the assembly map for H into the assembly map for
G by the preceding lemma. More precisely, given B € Obj (¥ % H) if

S(N'(B)) — L'(B)->B — N'(B) (3.2.1)
is the (£, 45)-triangle for B, then

Ind@(u/)

(Ind2 (N'(B))) — IndS(L'(B)) =5 'IndS(B) — Ind (N'(B)) (3.2.2)

is the (3, A% )-triangle for Ind% (B).
Apply the triangulated functors H x - and G x - to the triangles (3.2.1) and (3.2.2), respectively
so that we get the following distinguished triangles in JZ" ¢

(G x IndS(N'(B))) — G x Indg(L’(B)) ke x Indg(B) — G x IndZ (N'(B)

Since the isomorphism between GwxI ndg(B) and H x B in J## is natural by the quantum
Green’s Imprimitivity theorem, then we get an isomorphism of distinguished triangles

A~ A~ / A~ A~
S x N(B) — > fAx /(B) — Y fxB— .~ fixN(B)
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which allows to consider the following commutative diagram,

LF'(B) i F'(B)

F(IndS(L'(B))) = F (Ind%(B))

nlndg (B)

Since 77?’ is an isomorphism for all B € Obj(# ¢ ﬁ), we conclude that the same is true for

d¢(B)
R H
ne, that is, H satisfies the quantum Baum-Connes property with coefficients.

The converse is obvious and the proof is complete. |

3.2.2.4 Remark. For classical groups it is well-known that the Baum-Connes property is preserved
by closed subgroups. It was showed by J. Chabert and S. Echterhoff in [35]. To this end they
showed that the induction homomorphism K. (H; B) — KP(G; Ind$(B)) is always bijective
(see Theorem 2.2 in [i)} for a proof) In our case, this result is encoded in the identification
Ky (H x L'(B)) = K4(G x L(IndG(B))) obtained by the property Ind% ol/=Lo Indg plus the
quantum Green’s Imprimitivity theorem.

3.2.2.5 Remark. Assume that G is any discrete quantum group not necessarily torsion-free. We
have a reasonable definition for the localizing subcategory £z of compactly induced C*-algebras
as it is explained in Section 4.1.2. This definition takes mto account the torsion phenomena of
G. Hence, the abstract conditions ResC (L) = Land I ndG(.ij) C L, where H < G is some
discrete quantum subgroup, must be checked also for all tOl"blOIl actions and not only for the trivial
torsion action of the torsion-free case, as it has been done in Lemma 3.2.2.2. An example of this
process can be found in Theorem 3.7.2.6.

3.2.3 K-amenability property

Here we care about a property of own interest, namely the K-amenability of a quantum subgroup.
More precisely we have the following result.

3.2.3.1 Theorem. Let H be a discrete quantum subgroup of a discrete quantum group G. If G is
co-K -amenable, then H is co-K-amenable.

Proof. Since H < @, then we have canonical injections between their reduced C*-algebras and also
between the maximal ones (recall Proposition 1.4.3.4). Let’s put

t : Cr(H) — Cn(G) and ¢ : Cp(H) — Cp,(G)

for such injections, which intertwine the corresponding co-multiplications.
Next, let 7 : Cin(G) — C.(G), g : Cp(H) — C,.(H) denote the canonical surjections and
G : Pol(G) — C, eg : Pol(H) — C the co-units of G and H, respectively whose extension to
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Cm(G) and C,,(H) are still denoted by eg and ey, respectively. Hence, by construction we have
the following commutative diagrams

G EG

On(G) —————C.(G) Cpn(G) —————=C
i Uy oy < (3.2.3)
Crn (H) Cr(H) Crn (H)

Since G is supposed to be co-K-amenable, then Remark 1.3.1.41 assures that there exists an
element ag € KK(C-(G),C) such that [rg] ® ag = [eg].- In order to show that H is also
Cr(G)

co-K-amenable, let us define

ag =[] CQ?G) ag € KK(C,.(H),C)

Hence, diagrams (3.2.3) above yields that [tg] ® ag = [en]. Indeed,
H)

r

(] ® om=[m] ® [ ® ac=[gom ® ag
C,-(H) Cr(H) Cr(G) Cr(G)
=[mowy] ® ac=[] ® [c] ® ag
Cr(G) Con(G) C.(G)
=[] ® [ec] = [ecouy] = [en]
Cm (G)

Therefore, Remark 1.3.1.41 yields the co-K-amenability for H.

The Baum-Connes property for a quantum direct
product

In this section we are going to study the strong Baum-Connes property for the dual of a direct
product of compact quantum groups in terms of the involved compact quantum groups. Recall
that H. Oyono-Oyono has already successfully studied the stability of the Baum-Connes property
for classical discrete groups in [143]. The locally compact case has also been studied by J. Chabert
and S. Echterhoff in [35].

It is important to remark that our study must be restricted to the strong version of the Baum-
Connes property. Indeed, we will see that the usual Baum-Connes property for a quantum direct
product is closely related to the Kiinneth formula (as pointed already out in [37] by J. Chabert, S.
Echterhoff and H. Oyono-Oyono for classical locally compact groups) so that more hypothesis are
needed in order to establish the corresponding stability property.

In order to do so, we carry the same notations of Section 2.2 on. Let F := G x H be a quantum
direct product, where G and H are two compact quantum groups.
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3.3.1 Torsion property

We have already explained that all our discrete quantum groups are supposed to be torsion-free in
order to study the corresponding quantum Baum-Connes property. For this reason it is advisable
to study in more detail the torsion phenomena of the dual of a quantum direct product F = G x H
in terms of the involved quantum groups.

First of all, the description of the irreducible representations of F = G x H allows to give a
suitable decomposition of its fusion ring so that we can study the strong torsion-freeness of Fin
terms of the strong torsion-freeness of G and H. Namely, we have

3.3.1.1 Proposition. LetF = G x H be a quantum direct product. The fusion ring of@‘ decomposes
as
Fus(F) = Fus(G) ® Fus(H)

Consequently, zf@ and H are strong torsion-free, then F is strong torsion-free.

Proof. Recall Section 2.2. The representation theory for F yields the decomposition Irr(F) =
[Irr((G})]13 [Irr(H)],,, so that Irr(F) can be regarded as the tensor product of Irr(G) and Irr(H)
as based rings (recall Section 1.6.2). Indeed, given y € Irr(F), take z € I7(G) and 2 € Irr(H) such
that y = [a:] 13[ ] If wY, w® and w* are representatives of 7, T and Z, respectively; then we have

- €F = €G @ €H
- w¥ = [wy]1 [wz] = [wjm[quzx
- d(wY = [w‘”]lg[wz]M) = d(w”)d(w?)

In conclusion, the decomposition Fus(IF) Fus( ) ® Fus( ) holds.

Finally, assume that G and H are strong torsion-free. Then they are in particular torsion-
free. By Remark 1.6.1.7, G and H can not contain finite discrete quantum subgroups. Hence,
Fus((G) and Fus(]HI) can not contain finite fusion subrings. Theorem 1.6.2.11 assures thus that
Fus(G) ® Fus(H) = F us([@‘) is torsion-free. In other words, F is strong torsion-free as we wanted
to show. |

Although this result implies in particular the torsion-freeness of F in the sense of Meyer-Nest
(whenever G and H are strong torsion-free), it is interesting to obtain the torsion-freeness in the
sense of Meyer-Nest directly from the torsion-freeness in the sense of Meyer-Nest of G and H.

3.3.1.2 Theorem (Y Arano and K. De Commer, [3]). Let F := G x H be the quantum direct
product. IfG and H are torsion -free, then F is torsion -free.

3.83.1.8 Note. The converse of the preceding statement would be true whenever the torsion-freeness
is preserved under divisible discrete quantum subgroups as conjectured in the end of Section 3.2.1.



3.3. The Baum-Connes property for a quantum direct product 227

3.3.2 The Baum-Connes property

In order to legitimate the Baum-Connes property formulation for the dual of a quantum direct
product F = G x H, we need F to be torsion-free. And, in order to legitimate the Baum-Connes
property formulation for G and H, we need these discrete quantum groups to be torsion-free. Hence,
we must keep the preceding section in mind and, for simplicity, we assume that F, G and H are all
torsion-free.

Next, let us set up the adapted notations of the categorical framework of Meyer-Nest to this
situation. Consider the equivariant Kasparov categories associated to F, G and H, say

%, € and A

respectively. The canonical suspension functors for each of the above Kasparov categories are
denoted simply by 3.

Notice that from now on, the word homomorphism (respectively, isomorphism) will mean
homomorphism (respectively, isomorphism) in the corresponding Kasparov category; it can be either
a true homomorphism (respectively, isomorphism) between C*-algebras or any Kasparov triple
between C*-algebras (respectively, any K K-equivalence between C*-algebras). .

Consider the canonical complementary pair of localizing subcategories in ¢ ¢ IAF, H #C and
H A say

(LaMp), (LoA5) and (LgAg),
respectively. In this way, the canonical triangulated functors associated to these complementary
pairs are denoted by (L, N), (L', N') and (L”, N"), respectively.

Consider the homological functors defining the guantum Baum-Connes assembly maps for ]I?‘, G
and H. Namely,

F: #x% — o2
(C,6) —> F(C):= Ky(F X 0)
T

F'o w6 — g2 F'. o L o2
(A,0) > F'(A)=K.(G x A) (B,f) — F"(B) ::K*(Hﬂx B)

Therefore, the quantum assembly maps for I@‘, G and M are given by the following natural
transformations ~ . ~
N :LF — F,n® :LF' — F" and o : LF" — F",
where by definition we have

LF=FoL LF =F oL and LF' =F"oL"

By the torsion-freeness assumption, the subcategory %4 (resp. £, £5) is easily described as
the localizing subcategory of # KT (resp. # H#C, # #™) generated by the objects of the form
co(F) ® C (resp. co(G)®C, co(H) ® C) with C any C*-algebra in the Kasparov category JH K .

Now, we are ready to start the study of the strong Baum-Connes property for a quantum direct
product. To this end, we consider the following functor

z. xS xwxt — wxt
(A.a) x (B.f) + Z(A,B):=(C:=A®B,6:=a®f),
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which is defined on homomorphisms by functoriality thanks to Theorem 1.7.1.16. Let us be more

precise in the definition of Z as a functor between ##C 5 M and # #F. For this we have
to keep in mind all the notations and results obtained in Section 2.2.

Consider an object in HHC x A say (A,a) x (B,B) € Obj(%%@) X Obj(%%ﬁ). The
tensor product A ® B is a C*-algebra equipped with the following action of F,

A® B M (co(G) ® A) @ M(co(H) ® B) = M(co(G) ® A® co(H) ® B)
= M(eo(G) @ co(Hl) ® A® B) = M(co(F) @ A® B)

By abuse of notation we denote this composition simply by a ® 5. Hence, Z is well-defined on
objects. Let us explain its definition on homomorphisms.

Let (A',a/) x (B, ) € Obj(%l/@) X Obj(f%/H) an other object in .#.#C x A1

Let X := ((H,éy),n, F) € KKG(A A and Y := (H,éop:),n',F') € KKH(B B’) be two
Kasparov triples so that X xYe KKG(A A) x KK ﬁ(B, B’) is a homomorphism between (A, B)
and (A’, B') in # € x AN

Hence the corresponding homomorphism between Z(A, B) and Z(A’, B') in &% ¥ is defined
in the following way.

Z(X,Y) = 15(X) A%B )= XY

Observe that by Theorem 1.7.1.16 we know that the Kasparov triple X ® ) defined above is an
element in KK(A® B, A’ ® B"). Next, it is easy to establish an action of F on X ® ). Indeed,

- since (A, a), (A4’,a) are @—C*—algebras and (B, ), (B’,’) are ]ﬁl—C*-algebraS, then (A ®
B,a®p), (A ®B,a/ ®p), (A ®B,a®p") are F-C*-algebras.

- Since X is @—equivariant Kasparov triple and (B, 8) is a ]ﬁ[—C*—algebra, then 75 (X) = X®B €
KKF(A® B, A’ ® B) is a F-equivariant Kasparov triple (recall Remark A.3.23).

- Since Y is ﬁl—equivariant Kasparov triple and (A’, /) is a @—C*—algebra, then Tf"(y) =
ARYe KKf(A®B,A®B')isa ]@‘—equivariant Kasparov triple (recall Remark A.3.23).

Consequently, since X ® Y defined above is a Kasparov product of two F—equlvarlant Kasparov

triples, then it is as well a F-equivariant one, so that ¥ @ Y € KK ]F(A ® B, A’ ® B'). Hence, Z is
well-defined on homomorphisms.

3.3.2.1 Lemma. The functor

Z. XS x T s T
(A,a) x (B,f) +— Z(A,B):=(C:=A®B,j:=a®0p)

is such that Z(ZLg x £5) © L5 and Z(Ng x Ng) € S5,
If (Ao, ag) € Obj(H ) is a given @-C*-algebm, the functor

WZ: A s A
(B,B) > ,Z(B):= 2(Ag, B)
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is triangulated such that 4, Z(Ng) < A%.
If (Bo, Bo) € Obj(# #™) is a given H-C*-algebra, the functor

HHC s AT
(A,a) — Zp,(A) = Z(A, By)

ZB'

0 -

is triangulated such that Zp,(ANg) < N5,

Proof. Firstly, let us show that Z(%; x £5) < %;. Namely, since all our discrete quantum groups
are supposed to be torsion-free, then we know that £, £ and 5 are the localizing subcategories

generated by the objects of the form co (G)®Cy, co(H)® Cs and ¢o(F) @ Cs in Ji/%@, H AT and
H HF | respectively where Oy, Cy, Cs € Obj(# #). Recall as well that co(F) = ¢y(G) ® co(H) by
virtue of the representation theory of F = G x H (see Section 2.2). Hence we write

Z(Co(@) ® Ci, co(H) R Cy) = 0(G) ® C1 ® co(H) ® Cy
= 9(G) ® co(H) ® C1 ® Cs = o(F) ® C5 € Obj( L),

where C5 := Cy ® Cy € Obj(# ). This shows that Z sends generators of L& x £ to generators
of %5, so Z sends generators of £z x £ to Z;. Next, since Z is compatible with countable
direct sums, it is clear that the subcategory Z(Z x ) is contained in the localizing subcategory
generated by the objects of the form Z(“generator of £z x .25”). The latter is the smallest
triangulated subcategory containing the objects of the form Z(“generator of £5 x £5”) and stable
with respect to countable direct sums. %5 is a triangulated subcategory containing the objects of
the form Z(“generator of £ x £;”) by the discussion above and stable with respect to countable
direct sums by definition. Hence, by minimality, we have that the localizing subcategory generated
by the objects of the form Z(“generator of £z x .£5”) is contained in %5, which yields the claim.

Secondly, let us show that Z(Az x A5) < A%. For this we have to notice that the restriction
functor is obviously compatible with the tensor functor Z. Given A € Obj(A4%) and B € Obj(.A45),
we can write R R ~ R

Resp(Z(A, B)) = Resh(A® B) = ResS(A) @ Rest (B) = 0,

so that Z(A, B) € Obj(A5).

Next, fix a G-C*-algebra (A, a) € Obj(# ¢ ©) and consider the functor 4, Z of the statement
(which is well defined on homomorphisms in an analogous way as Z by using Theorem 1.7.1.16).
In order to show that 4,2 is triangulated, we are going to show that 4,2 is compatible with the

suspension functors of the corresponding Kasparov categories and that 4,2 preserves mapping
cone triangles. R

For the first claim, given (B, 3) € Obj(# # ™) we have
4,Z2(3(B)) = 4,Z(Co(R) @ B) = Ao ® Co(R) ® B
&)
= Co(R) ® Ao ®B =~ E(A() ® B) = Z(AOZ(B)),

where the identification (1) is simply induced by the canonical identification Ay ® Co([0,1], B) =
Co([O, 1], 40 ® B). Let us show that 4,2 preserves mapping cone triangles. Consider a mapping

cone triangle in & # ™ say
S(B) — Cy — B-% B,
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where ¢ : B— B’ is a ]ﬁl—equivariant s-homomorphism. Apply the functor 4,2 so that we obtain
the following diagram

E(A()@B,) —>A0®C¢—>A0®B@>bA0®B/,

where Ay ® Cp = Ci4ge by virtue of Proposition 1.5.3.3. Hence the above diagram is again
a mapping cone triangle in J# #F. Moreover, if now B € Obj(.4), then ResE(AOZ(B)) =
Resf(Ao) ® Resi (B) = 0, which implies that 4,Z(B) € 44. The same argument can be applied to

the functor Zp, of the statement for a given H-C*-algebra (Bo, Bo) € Obj(%/%ﬁ) and the proof is
complete. |

3.3.2.2 Lemma. Let F = G x H be a quantum direct product of compact quantum groups such
that ¥, G and H are a torsion-free discrete quantum groups.

1) For all G-C*-algebra (A, @) and all H-C*-algebra (B, ) there exists a Kasparov triple
Y e KKF(L'(A)® L"(B), L(A® B))

such that the following diagram is commutative

Gu (A« "B —Y P x L(A® B)
Gxu @M x u” Fxu (3.3.1)
GCrxA®Hx B = Fx (A® B)

where ¥ := [ x Y and ', u”, u are the Dirac homomorphisms for A, B, A® B, respectively.
T

ii) For all G-C*-algebra (A, aq) € L and all H-C*-algebra (B, B) there exists an invertible
Kasparov triple R
A € KK (4o ® L"(B), L(Ay ® B))

such that the following diagram is commutative
4,V
Gx Ag®@H x L"(B) —————TF x L(4y® B)

Fx a4 Z(u") Fxu (3.3.2)

s

Gx Ay®H x B F x (Ao ® B)

where 4,V := F A, and u”, u are the Dirac homomorphism for B, Ay ® B, respectively.
s
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Proof. First of all, we recall that for all G—C’* algebra_ (A, ) and all H-C*-algebra (B, B) we have
a canonical #-isomorphism F x (A® B) =~ G >< A®]HI x B by Proposition 1.5.3.1.

i)

if)

o,r Byr

Given a G—C* algebra (A, a), consider the corresponding (£3, Az )-triangle, say $(N'(4)) —
L'(A) > A — N'(A). Given a H- C’* algebra (B, ), consider the corresponding (£, 45 )-
tAriangle, say X(N"(B)) — L"(B) = B —> N"(B). Consider the (%, /% )-triangle of the
F-C*-algebra Z(A® B) = A® B, say

Y(N(A® B)) — L(A® B) > A® B — N(A® B)

Let’s fix the object Z(L'(A),L"(B)) = L'(A)® L"(B) =: T € Obj(%l/ﬁ) and take the long
exact sequence associated to the above triangle with respect to the object T. Namely,

o KEF(TS(N(A® B))) - KKF(T, L(A® B)) “*
— KK*(T,A® B) > KK*(T,N(A® B)) —

Since (L'(A),L"(B)) € £ x %5, then T € % by Lemma 3.3.2.1. But, by definition of
complementary pair, we have .25 < ,/1%_. In particular, we obtain KK (T, %(N(A® B))) =
(0) = KK"(T,N(A® B)). Hence the above long exact sequence yields the isomorphism
KK]%(T,L(A(@B)) (s KKF(T A® B). Take ¢ := (u); " (Z(u',u")). Consequently, we have
uot) = Z(u',u") =u ®u”, by definition.

If we put ¥ := F < ¢ :F D: (L'(A) ® L"(B)) — F < L(A ® B), then the functoriality of

constructions and the definition of the element 1 yields straightforwardly the diagram (3.3.1)
of the statement.

Given a @—C*—algebra (Ao, a0) € Z and a ﬁ—C*—algebra (B, B), consider the corresponding
(&, AN )-triangles as above.

The same argument as in (i) by replacing L'(A) by Ag yields the existence of a Kasparov
triple 4, € KK" (A ® L"(B), L(Ay ® B)) such that diagram (3.3.2) of the statement is
commutative. Namely, put 4,9 := (u)z" (4,2 (u")).

Let us show that the Kasparov triple 4, is invertible. If we apply the triangulated (by Lemma
3.3.2.1) functor 4,Z to the (£, 45)-triangle of B, we get the following distinguished triangle
in A F

AOZ(“ )

Y(Ag® N"(B)) — Ao ® L"(B) Ag® B — Ay ® N"(B),

where Ag ® L"(B) = Z(Ao, L"(B)) € £ because Ag € £, L"(B) € £ and we apply Lemma
3.3.2.1 and Ag ® N"(B) € A because 4,Z(A5) < A4 by Lemma 3.3.2.1. In other words, the
above is a (%, 45)-triangle for A9 ® B. Hence, by uniqueness of this kind of distinguished
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triangles, we have the following isomorphism of distinguished triangles in & ¢ IAF,

" " ADZ(U//) "
Y(4o® L"(B)) Ao ® L"(B) Ay® B Ao ® N"(B))
! LAY id !
Y (N(Ap® B) L(Ay® B) Ay ® B N(Ao® B)
which yields in particular the invertibility of 4,1 as claimed.
|

3.3.2.3 Theorem. Let F =G x H be a quantum direct product of compact quantum groups such
that ¥, G and H are a torsion-free discrete quantum groups.

i) If@ and H satisfy the strong quantum Baum-Connes property, then F satisfies the quantum
Baum-Connes property with coefficients in A ® B, for every A € Obj(# # ) and B e
Obj(H# ™).

i) IfIAF satisfies the strong quantum Baum-Connes property, then G and H satisfy the strong
quantum Baum-Connes property.

i11) Iflﬁ satisfies the quantum Baum-Connes property, then G and H satisfy the quantum Baum-
Connes property with coefficients.

Proof. i) Given A € Obj(%/%/@) and B € Obj(%%ﬁ) consider the commutative diagram (3.3.1)
of the preceding lemma,

Gx L'(A)®H x L"(B) v Fx L(A® B)
Gx v @H x v Fxu (3.3.3)

lle

Fx (A®B)

where ¥ = F x ¢ with ¢ = (u); (Z(u/,u")).

Since G satisfies the strong quantum Baum-Connes property by assumption, then any Dirac

homomorphism for A is an isomorphism, that is, L'(A) >~ Ae Z. In other words, u’ €
KKC®(L'(A), A) is an invertible Kasparov triple. Accordingly, Tg,(B)(u/) e KKF(L'(A) ®
L"(B),A® L"(B)) is also an invertible Kasparov triple.

Recall that by definition we have

ZW ) =u @u" =75 D) ® rfw)e KKN(L'(A)®L"(B),A® B)
A0®L"(B)
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220" = (") e KKF(A® L"(B), A® B)

This two elements can be identified via the Kasparov multiplication Tlgll(B) (W) ® (). In
A®L"(B)

other words, the element 1) can be identified to the element 4 via this Kasparov multiplication.

The latter is invertible by (i¢) of Lemma 3.3.2.2, which yields that ¥ in diagram (3.3.3) is

invertible as well.
Next, since M satisfies the strong quantum Baum-Connes property by assumption, then any
Dirac homomorphism for B is an isomorphism, that is, L”(B) ~ Be Z5. Hence, the element

G x v @H x u” of diagram (3.3.3) is invertible. The commutativity of (3.3.3) yields that Fxu

is an isomorphism in J& ¢ ﬁ, which implies that the assembly map n§® g is invertible, that is,

F satisfies the quantum Baum-Connes property with coefficients in A ® B.

ii) We have just to recall that G and H are divisible torsion-free discrete quantum subgroups of F
as explained in Remark 2.2.4. Therefore, Theorem 3.2.2.1 yields the assertion.

iii) In this case we apply Proposition 3.2.2.3.
|

3.3.2.4 Remark. It is worth mentioning the following. The element v constructed in () of Lemma
3.3.2.2 is such that

L'(A)® L"(B) L4 L(A® B)
u/@,ull u
A®B A®B

The argument followed in (i) of the preceding theorem yields actually that both ¢ and v’ ® u”
are isomorphisms, which implies that u is also an isomorphism by the commutativity of the above
diagram. In other words, we have proved that the F-C* -algebras of the form A ® B, where A is a
G-C*- algebra and B is a H-C*- algebra, are actually in the subcategory .25, which yields of course
the conclusion given in (i) of the preceding theorem.

Taking crossed products in the preceding arguments has been done just for convenience of the
presentation in order to make appear more clearly the corresponding assembly maps.

The above theorem yields immediately the connexion of the usual quantum Baum-Connes
property for F = G x H with the Kiinneth formula as announced in the introduction. Let A be a
C*-algebra, we say that A satisfies the Kiinneth formula if for every C*-algebra B with free abelian
K-group K, (B), the canonical homomorphism K, (A4) ® Ky (B) — K(A® B) is an isomorphism.
Observe that this homomorphism is natural in A and B and it can be described in terms of the
Kasparov product. We refer to Section 23 of [24] for more details.
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3.3.2.5 Corollary. Let F =G x H be a quantum direct product of compact quantum groups such
that JF G and H are torsion -free discrete quantum groups.
For all G-C*- algebra (A, «) and all H-C*-algebra (B, B) the following diagram is commutative

o~ ’ T " K4 (7)
K*(GNL(A)@)HIXL(B)) F(A® B)
K*(G[f ®H5,< ) UE®B
K«(G x A®T x B) = F(A® B)
a,r B,r

Denote by N the class of C*-algebras satisfying the Kiinneth formula.

i) If either G satisfies the strong Baum-Connes property, i satisfies the Baum-Connes property
with coefficients in B or H satisfies the strong Baum-Connes property, G satisfies the Baum-
Connes property with coefficients in A; either Gx AorHl x B belong to the class N and

a,r B,r

either G x L'(A) (and K*(Hﬁlx L"(B)) is free abelian) or H x L"(B) (and K+(G x L'(A)) is

N
free abelian) belong to the class N, then F satisfies the Baum-Connes property with coefficients
in A® B.

it) If@ satisfies the strong Baum-Connes property, H satisfies the Baum-Connes property with
coefficients in C, either C.(G) or C,(H) belong to the class N and either G x L'(C) (and

K*(]ﬁl x L"(C)) is free abelian) or H x L"(C) (and K*(@ x L'(C)) is free abelian) belong to
B, r B,r
the class N, then F satisfies the Baum-Connes property with coefficients in C.

Proof. The commutative diagram of the statement is obtained by simply applying the functor
K (-) to diagram (3.3.1) from Lemma 3.3.2.2.

i) Let A be a G-C*-algebra and B a H-C*-algebra. Assume that

- G satisfies the strong Baum-Connes property,

- T satisfies the Baum-Connes property with coefficients in B,
-G x Ae N ,

-G x I'(A) e N and K, (H x L"(B)) is free abelian.

a,T B,r
The last condition guarantees that K (Jﬁl x B) is free abelian too because the Dirac homomor-
B,r
phism for B, L"(B) -, B, induces a group homomorphism K (Iﬁl x L"(B)) — K, (ﬁ x B)
B,r B,
by functoriality. Hence, by Kiinneth formula we have natural isomorphisms

K.«(G x L'(A) QH x L'"(B)) = K, (G x L'(A)) ® Ky (H x L"(B))
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and
Ky (Gx A®H x B) = K, (G x A) ® K«(H x B)

which allows to write the commutative diagram of the statement as follows

~ / -~ " K*(\Ij)
K4 (G x L'(A)) ® K, (H x L"(B)) LF(A® B)
S @il ey

12

K.+(G A)@K*(]ﬁlﬁx B) F(A® B)

a,r

Since G satisfies the strong Baum-Connes property, it satisfies the Baum-Connes property with
coefficients in A. H satisfies the Baum-Connes property with coefficients in B by assumption.
Hence 1§ 4 and 773 are isomorphisms. Since G satisfies the strong Baum-Connes property, the
same argument as in Theorem 3.3.2.3 shows that U is invertible, so K, () of the above diagram
is an isomorphism. We conclude that n£® p is an isomorphism by commutativity of the above
diagram, which yields the claim.

ii) This is a particular case of (4).

3.3.1 Remark. It is important to say that the Kiinneth formula is a non trivial problem studied by
several authors (see for instance [37], [168], [24] for more details) in connexion with the Baum-Connes
property and the K-theory of tensor product of C*-algebras.

Let us recall the following theorem of J. Chabert, S. Echterhoff and H. Oyono-Oyono contained
n [37): “Let G, H be two locally compact groups. If G and H satisfy the Baum-Connes property
with coefficients in C and either CF*(G) or C¥(H) belong to the class N, then G x H satisfies the
Baum-Connes property with coefficients in C”.

The above corollary is thus a generalization of the Chabert-Echterhoff-Oyono-Oyono’s result for
(torsion-free) discrete quantum groups. However, we would like to remove the strong Baum-Connes
property assumption from the statement.

If we wanted to give a more optimal result concerning the Baum-Connes property for a quantum
direct product, we would have to carry out a detailed study about the Kiinneth formula in the
equivariant quantum setting, which is out of the scope of the present dissertation. In particular, we
would like to find sufficient conditions to a crossed product to belong to the class N.

3.3.3 K-amenability property

Here we care about a property of own interest, namely the K-amenability of a quantum direct
product. More precisely we have the following result.

3.3.3.1 Theorem. Let F = G x H be a quantum direct product of compact quantum groups. Then
F is co-K-amenable if and only if G and H are co-K-amenable.
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Proof. Assume that F is co- K-amenable. This means that there exists an element ay € K K (C..(F), C)
such that
[TF] ® af = [gF] € KK(Cm(F)7C)7
C(F)

where 75 : Cp, (F) — C,.(F) is the canonical surjection and ep : Pol(F) — C is the co-unit of F
whose extension to Cy, (F) is still denoted by ef (recall Remark 1.3.1. 41).

By virtue of Proposition 2.2.3 and we know that G and M are discrete quantum subgroups of f
via the canonical injections

1+ Cr(G) — C.(F) and v : C.(H) — C,(F)
Hence, by virtue of Theorem 3.2.3.1 we conclude that G and H are co- K-amenable with elements

ag = [L&] C@(F) ar € KK(C.(G),C)

ay = [Lﬁ:ﬂ ® are€ KK(CT(H),(C)
Cr(F)
Conversely, assume that both G and H are co- K-amenable. This means that there exist elements
ag € KK(C,.(G),C) and ay € KK (C,.(H),C) such that

[t¢] ® ag=[eg] and [q] ® ap = [ex]

Cr(G) Cr(H)
where 75 : Cp, (G) = C.(G), 15 : Cyp,(H) — C,.(H) are the canonical surjections and ¢ : Pol(G) —
C, ep : Pol(H) — C are the co-units of G and H, respectively whose extensions to C,,(G) and
Cpn(H) are still denoted by g and eg, respectively (recall Remark 1.3.1.41).
By using the canonical injections (f; : Cr(G) — C,(F) and vy : Cr.(H) — C,(F), we observe
that 7/ = 7g X 7y by universal property of the maximal tensor product. We have as well that
er=cg Xeg. Um:Cpn(G) ® Cp(H) - Cpn(G) ® Cyp,(H) denotes the canonical surjection, then

by universal property of the maximal tensor product we have the following commutative diagrams

TF EF

Cr(F) C,(F) Chn(F) C
T T
% cc ®em
Con(G) ® Ci (H) Con(G) ® Cr (HD)
where 76 @ : Cin (G )®C (H) - C.(G)®C,.(H) is the tensor product of the canonical surjections
76 and 1y and eg Q ey : Cp(G) ® Cy, (H) — C is the tensor product of the co-units eg and ey

(recall Theorem A.1.11).
In this way, the canonical surjection 7 : Cy, (F) — C,(F) and the co-unit ef : Cp,(F) — C can
be written, as Kasparov bimodules, under the following form

[7r] = [~] ® [7e ® T = 7*([17c ® Tu]) € KK(Cn(F), Cr(F)),
Con (G)RCr (H)

[er] = [n] ® [ec ®en] = 7" ([ec ® en]) € KK (C(F),C),
Cim (G)QCm (H)
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By using Theorem 1.7.1.16 we define the following element

ar = ag ® ag := Tg"'(H) (ag) C@?H) 7 (ag) € KK(C,.(F),C)
and we claim that
[77] ® aF = [er] € KK(C,,(F),C),
C(F)
which yields the result. Indeed, by applying the elementary properties of the Kasparov product of
Theorem 1.7.1.16 we write the following

[r] ® aF:(W*([TGC@TH])) ® (TgT(H)(OéG) ® Tic(aH))

. (F) () C. (1)

" C,(H) C
=7 (([m ® 7)) 0%) (Th™ (o) CTQE)H) L (aH)))
™ ([(re ® idc, @) (ide,, () ® Ta) ] 2, (7S (ag) (T))T}?(aH)))

C
o ® ® ®id el
) Con (G)®Cr (H) [ COr(H) ) ( CT(H) )

I

3
*
—
<.
U

Q

= 7*([id id <) (g Sla
o (e ©ml | © (7 ®ide,) C%)TR (ac) @, 7 (am))

= 7*([id id (M) (g, Cla
m\lide:, ) ® 7] m(G%mH) (76 ® de. @) (" (@) c%)TL( H))

7 ([ide,, () ® Tl ® 7o (] ® ag) ® Tic(aH)>
Cn (G)®C:-(H) Cr(G) Cr(H)

Il
3

*
=.
u
Q

G) ® TH] ® r}?‘(H)([m]) ® TE(O‘H))
Cm (G)RC-(H) C-(H)

Il
3

*
=.
I
Q

¢) ® 7] ® [ec ®ido, @] ® Tg(aH))
Cm (G)®C,- (H) Cy-(H)

C,-(H) C,-(H)

=¥ [(ch ® T]I-]I)(EG (9] idcy,,,(H))] C’QE)H) T%(Oé]ﬁﬁ)

7 ((lee ®ide, )] ® lide®mal) ® r5(om))

i (1) C.(H)

% . . C
=" [ec ® idc,, ()] C%ﬂ) ([ide ® 7a] c??H) TL(aH)))

= * e ®id0m(H)] C,%H) (idc ®TH)*(T£C(04H)))

[ec ®idg,, (m)] cf?H) 71 ([7a] CT@()H) aH)) =" ([% ®ide,, m)] CS?H) Tic([EH]))

Il
3

[cc ®ido, ] @ lide ®en]) = " ([(ide ® en) cc @ido, )]

(
(t
(
(
(
(&
(&
:w*([(ag(@idCT(H))(idcm(G)®TH)] ® i) = ([fe®m] ® (om)
(
(
(
(
(
(
(
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The Baum-Connes property for a quantum semi-

direct product

In this section we are going to study the Baum-Connes property for the dual of a quantum semi-
direct product of a compact quantum group by a discrete group in terms of the involved (quantum)
groups. Recall that J. Chabert has already studied the Baum-Connes property for this construction
in the context of classical locally compact groups in [34]. Likewise, J. Chabert and S. Echterhoff
studied again the same property for a semi-direct product of classical locally compact groups in [35]
removing a superfluous hypothesis from the earlier work [34] (we will be more precise about this
later on). It is important to say that H. Oyono-Oyono has also studied some permanence properties
of the Baum-Connes property for classical discrete groups. Namely, he obtained in [143] that the
Baum-Connes property is stable under the semi-direct product construction with the analogous
hypothesis to the ones of the locally compact case of Chabert-Echterhoff.

Thus, we give here a generalization of this result for the dual of a quantum semi-direct product
of a compact quantum group by a discrete group as defined in Section 2.3. The strategy to reach
this result consists in doing the translation of the arguments of the articles [34], [35] into the
categorical framework of Meyer-Nest. We observe in particular that this new perspective avoids all
technical problems appeared in the classical situation with respect to the treatment of the left-hand
side of the assembly map, which yields a more conceptual proof.

In order to do so, we carry the same notations of Section 2.3 on. Let F =TI' x G be a quantum
(a7

semi-direct product, where I' is a classical discrete group and G is a compact quantum group.

3.4.1 Torsion property

We have already explained that all our discrete quantum groups are supposed to be torsion-free in
order to study the corresponding quantum Baum-Connes property. For this reason it is advisable to

study in more detail the torsion phenomena of the dual of a quantum semi-direct product F = T'x G
(o7

in terms of the involved (quantum) groups.

Let us study the torsion in the sense of Meyer-Nest. For the following result it is advisable to
keep in mind the spectral theory for compact quantum groups explained in Section 1.4.2.

3.4.1.1 Theorem. Let F =T x G be the quantum semi-direct product of G by T'. If " and G are
torsion-free, then F s torsion-free.

Proof. Let A be a unital finite dimensional C*-algebra equipped with a right torsion action of F,
say 6 : A— AQ C(F).
Let’s define
A:={yeTl |3 zelrr(G) such that K, ,y # 0},

where K, ) denotes the spectral subspace associated to the representation (v,z) =: y € Irr(F).
We claim that A is a finite subgroup of I'. Indeed, A is a subgroup of I" because given g, h € A,
let Xy € K(y,) and X € K3, 4,) be some non-zero elements for the corresponding irreducible
representations x4, xp, € Irr(G). Put y, := (g9,24),yn := (h,zp) € Irr(F). By virtue of Lemma
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1.4.2.18, there exist an irreducible representation z := (y,z) € Irr(F) and an intertwiner ® €
Mor(z,y, @ yn) such that X, ® X} # 0.
P

Besides, the proof of Lemma 1.4.2.18 shows that z is an irreducible representation of the
decomposition of y, @y, in direct sum of irreducible representations. Thanks to the fusion rules of
a quantum semi-direct product we have that w¥s @ w¥» = v9" @ (v*»—1(*s) @ v®). Next, consider
the decomposition in direct sum of irreducible representations of the tensor product ay,-1(z4) @ xp,

s
say {Tp}r=1,. r for some r € N. Hence we write w¥%s®%» = P v9" @ xy. As a result, the irreducible
k=1
representation z = (v, x) € Irr(F) found above must be of the form (gh,xy) for some k =1,...,r.

Recall that X, ® X}, € K, by definition. This shows that gh = v € A as required. Moreover, A is
o

finite because A is finite dimensional.
Thanks to the torsion-freeness of ', A is just the trivial subgroup {e}. Hence, for every y € I'rr(F),
K, # 0 implies y = (e, z) for some = € Irr(G). Consequently, the spectral decomposition for

A = Ar becomes A = @ A, = Ac and the action § takes its values on A ® 7(Cy,(G))
zelrr(G)

so that § is actually an action of G on A. Since G is torsion-free by assumption, we achieve the
conclusion. |

8.4.1.2 Note. The converse of the preceding statement would be true whenever the torsion-freeness
is preserved under divisible discrete quantum subgroups as conjectured in the end of Section 3.2.1.

3.4.2 The Baum-Connes property

In order to legitimate the Baum-Connes property formulation for the dual of a quantum semi-direct
product F =T" x G, we need F to be torsion-free. And, in order to legitimate the Baum-Connes
(0%

property formulation for I' and @, we need these discrete (quantum) groups to be torsion-free.
Hence, we must keep the preceding section in mind and, for simplicity, we assume that I/F\‘, T and G
are all torsion-free.

Next, let us set up the adapted notations to this situation of the categorical framework of
Meyer-Nest. Consider the equivariant Kasparov categories associated to F and T, say

T and AT,

respectively. The canonical suspension functors for each of the above Kasparov categories are
denoted simply by .

Notice that from now on, the word homomorphism (respectively, isomorphism) will mean
homomorphism (respectively, isomorphism) in the corresponding Kasparov category; it can be either
a true homomorphism (respectively, isomorphism) between C*-algebras or any Kasparov triple
between C*-algebras (respectively, any K K-equivalence between C*-algebras).

Consider the canonical complementary pair of localizing subcategories in # #F and & #T,
say

(g]fa‘v ‘/Kf‘) and (gl‘a JVF)v

respectively. In this way, the canonical triangulated functors associated to these complementary
pairs are denoted by (L, N) and (L', N'), respectively.
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Consider the homological functors defining the (quantum) Baum-Connes assembly maps for F
and I'. Namely,

F: A% — a2 F': AT — b2
(4.0) > F(A) = K (F x 4) (B,f) — F'(B):=K.(I x B)
,T B,r

Therefore, the (quantum) assembly maps for F and for I are given by the following natural
transformations R
' LF — F and o' : LF' — F',
where, by definition, we have
LF=FoLand LF' = F oL

By the torsion-freeness assumption, the subcategory 5 (resp. £7) is easily described as the

localizing subcategory of AT (resp. H# #T) generated by the objects of the form co (ﬁ’) ® C (resp.
co(T) ® C) with C any C*-algebra in the Kasparov category J ¢ .

Now, we are now ready to start the study of the Baum-Connes property for a quantum semi-direct
product. To this end, consider the following functor

z. ax% — T
(4.0) — Z(A4):= (€ x A,0),
@,7"

which is defined on homomorphisms by functoriality. Let us be more precise in the definition of
Z as a functor between J# %" and # %" . For this we have to keep in mind all notations and
results obtained in Section 2.3. ~ .

Given any F-C*-algebra (4,§) € Obj(# #T), we regard it either as an object in # . #© or as
an object in # # T by restricting the action ¢ as explained in Proposition 2.3.5. More precisely, we
can consider the following

(A4,6) € Obj(# # ) and (A, 6r) e Obj(A #T)

In this way, it is licit to consider the crossed product G A, which is now a I-C*-algebra with
5

action 0 by virtue of Proposition 2.3.12. )

Hence Z is well-defined on objects. Let us explain its definition on homomorphisms. Let
(B,v) € Obj(# #T) be an other I@’—C’*—algebra and consider the corresponding objects in .# . # ¢
and in # #T,

(B,vg) € Obj(# . #C), (B,vr) € Obj(# . #7) and (G x B,&') e Obj(A#A")
Vg,T
Let X := ((H,0n),n,F) € KKI%(A,B) be a homomorphism between A and B in A HE
Restricting again the corresponding action, we can regard this Kasparov triple either as an element
in KK®(A, B) or as an element in KK'(A, B). We denote both elements simply by X and we
write

X = ((H,6, )7 F)e KK(A,B) and X := ((H,épr), 7, F) e KK"(A, B)
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In this way, the descent homomorphism with the functoriality of the crossed product yield the
existence of a Kasparov triple G l>< Xe KK (G X A G x B), which is given precisely by (recall
b 5

Va,T

Theorem 1.7.1.19) ~
GD; (H%GgiBzdxﬂF@zd)
Next, it is easy to establish an action of I" on G D; X in order to get a I'-equivariant Kasparov
triple between G §IX Aand G Vl><r B. Indeed, since X is also a ['-equivariant Kasparov triple with
&r ()
action 0y r and @ix B is also a I'-C*-algebra with action ¢’, we can equip H ® G x B with the
corresponding diaggilral action, say o

c: T — Aut(H®G x B)

Ty Vg,

Y = Oy = (6H,p)vﬂ®6’v,

where Aut(H QG x B ) denotes the group of invertible bounded linear transformations of H ®G x B

Ty Vg,T Ty Vg,T
(not necessarily module homomorphisms). It turns out that this action makes G D< X a I'-equivariant

Kasparov triple, so that we have actually that G >< X e KKF(G x A, G x B). Hence Z is

cL,r vg,T
well-defined on homomorphisms. Let us precise the computations to show the I'-equivariance of
G X X. Since we have already that G X Xe KK(G x A,G x B) by Theorem 1.7.1.19, we only

&7 T

have to check the I'-equivariance propertles of this Kasparov trlple (see for instance [24] for more
details about the equivariant Kasparov K K-theory). Namely,

- First of all, observe that the linear map

§Ox > (ur) ()@ (2), (e H,2eG x B

is bounded for all v € T' because ¢/, is bounded on G x B for all v €I and we have
Vg,r

((Bmr),(€) ® (@), (4nr) (€)@ &) (a)) = (@ >7ry(<<6H,r) (©): (6n.r)., (€))% (2
Y (@ @) m () (6 ©) @) P (2 (@), 8, (m (6,©) ) (@)
= @ (@), (7 (€ &)z )

2 (@m (o)) =2 (Ecornson),

where in (1) we use the fact that X = ((H,dur),m, F) € KK (A, B), in (2) we use the

definition of the action @ of T 'on G x B and in (3) we regard G x B as a I-equivariant
V@,T V@,T

Hilbert G x B-module with its action @. Hence it extends to a bounded linear map on

Va,T
G
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H®G x B, whence the definition of 0. Moreover, this formula yields clearly that 07" = o

Ty Vg,T

for all yeT.

yh

H®G x Bisa I'-equivariant Hilbert G x B-module. Namely, for all £,n7 € H and all

Ty vg,T vg,T

x,ye@ X B we have

D@,T’

o5 (€ ®2)-y)) = 02§ ® 2y) = (dur), (§) ® &) (xy)
= (310), (&) ® 2, (@2 () = ((9rr), (&) ® &, (@) - %(v)
= oy (@) 2 (v),
and

(@, (E® a),0,(n @) = (o1r) () © ) (2), (), (0) © 2, (4)

v

— (@ (@), (((Fm.r) (), (mr) ())&, ()

@ @ (@), m (o), 6 m) 2 ()

(2) ’ ’

2@ (@), 2, (7 (€6 m) ) 2 () = €@ (@), (7 (Cm)w )

Dt (m (&) =2, (€@ rn @),

where in (1) we use the fact that X = ((H,dpr),m F) € KK (A, B), in (2) we use the
definition of the action ¢ of T'on G x B and in (3) we regard G x B as a I'-equivariant

V@,T I/@,T‘
Hilbert G x B-module with its action ¢'.

D@,T

The representation id l>< 7:G x A—> Ls B(H ®G B) is I'-equivariant. Indeed, for

6@7r vgr Ty Vg,T

allvel,ae A, xelrr(G),i,j=1,...,n, we write

idfﬂwﬂm@ﬂﬁﬂ=ﬁdfﬂOm«&)(»¢U@%w”»)
= m (7 ((6r)4 (@) ow (ar (w;))
Y (0r.r) i (w(@) (G2 (W)
= (dmr) o (7(@) (Orr) 2 (W - 2,1)
— (5H,p)7 % dl o (m(a)) W o (5H,F)7_1 % 0l
= oy o (m(a)) W 0 0y

v

=0y 0id x w(ms(a)U;%) oo
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where in (1) we use the fact that X = ((H,épr), 7, F) € KK'(A, B) and the definition of
the action ¢’ of I' on G x B. Moreover it is important to remark that for the preceding

Vg,T

computations we have taken into account the identification

Ls B(H@G x B)=M(Kg, ,(H®G w B));M(@Adlx Kgp(H)),
v Vg,r ver Ty Vg,T VH,@’T

G

given by Lemma 5.2 in [206], which yields the definition of id x 7 by functoriality of the reduced

crossed product (recall Remark 1.5.2.5). In this way, mx : Kg(H) — G Ad x Kpg(H)

~ T
Vg

denotes the non-degenerate *-homomorphism and W € M (CO(@) @G x Kg(H )) the

AdVH &

unitary representation associated to the reduced crossed product construction G x K s(H)
Adv T
H,G

following Theorem 1.5.2.1.
- We have (0,0 F @ido oyt — F @ id)id x n(x) € Kz , p(HOC x B) forallyel,

Ty r Vg
va,T

A
xe€G x A. Indeed, forallyeT,a€ A, € Irr(G), i,j =1,...,n, we write

dg,T

((770F®zdoa,Y 1 —F®zd>zd x 7 (ms(a)US5))

Ty

= (710 F @idoo, s — F @id) (e (v(a) W)

(@), ® &0 F@ido (dir) ,1®a;,l_p®id)(mc(w(a))wgg)
= (dmr), (5Hr) 1 (mie(m(a))) 04 (1 (Wi5)) — F (i (m(a)) W55

= ((6mr) F(6nr)., 1 (mx(mw(@))) = Pl (n(@) ) W5,

= (((0r), o Fo (61r) 0 = F ) (m(a) )W,

which is compact because X = ((H,dur),m F) € KK"(A,B) so that ((5}[}1")7 oFo

(6m, p) - F)ﬂ(a) is compact for all vy € I', a € A. Again we have used the identifica-
tion Lg , z(H® G B) = M(@ x  Kp(H)) and the same notations as above.
va,r Ty G A VH@,’I‘

8.4.2.1 Remark. Notice that the functor above is well defined at the level of equlvarlant Kasparov
groups. Indeed, let X := ((H,dy),n, F), X’ := (H,0m ), 7', F') € EF(A B) two F-equivariant
Kasparov triple which are homotopic by means of € := ((£,0¢),p, L) € ]E]F(A, C([0,1])®B). Remark
that X and X’ will be also homotopic with respect to the restriction actions to G andT. By the well-
known descent homomorphism, Z(€) € E(G S A,C([0,1) ®G X B) yields a homotopy between

G
Z(X) and Z(X'). If we equipped Z(X), Z(X’) and Z(€) with the diagonal actions 7 := (0g,r)® 7,
7= (0 r)®0 and T := (dgr) ® &, then a straightforward computation yields that Z(X) and
Z(X') are equivariantly homotopic by means of Z(€) e E' (G x A,C([0,1])® G x B).
5@77“ vg,T
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3.4.2.2 Lemma. The functor

z. ax% — T
(4.0) — Z(4):=(C x A.9)
(‘;,T

is triangulated such that Z(%%) ¢ <.

Proof. First of all, using Proposition 1.5.3.2 it is straightforward to see the stability of Z with
respect to the canonical suspension functors of the corresponding Kasparov categories. Indeed,

Z(2(4)) =G x 2(A) = G x (Go(R)® 4) = Co(R) @ G x 4 = £(2(4)),

for all F-C*-algebra (A,0).
Next, consider any mapping cone triangle in # . #F, say

»(B) — C, — A% B,

where ¢ : A—> Bisa I@‘—equivariant x-homomorphism. Apply the functor Z of the statement. We
obtain the following diagram

A~

S(Z(B) — Gx O, — Gx AZ9 G x B,

where Z(¢) is nothing but id x . By virtue of Proposition 1.5.3.5 we have a canonical #-isomorphism
G x Cp = Cz(,), so that the above diagram is again a mapping cone triangle in o #T. In other
T

words, the functor Z transforms mapping cone triangles into mapping cone triangles and thus it is
triangulated.
Let us show that Z (,,2”]%) c %r. Namely, since all our discrete quantum groups are supposed

to be torsion-free, then we know that .#% is the localizing subcategory of % ¢ F generated by the

objects of the form ¢ (I[A*’) ® C with C any C*-algebra in the Kasparov category ¢ % . Likewise, .1
is by definition the localizing subcategory of # . # T generated by the objects of the form I ndfe}(B)

with B any C*-algebra in the Kasparov category £ % . Recall as well that cO(I@‘) = ® CO(@)
by virtue of the representation theory of F =T'" x G (see Section 2.3). Hence we write

Z(eo®C) =G x (pF)®C) =G x (o) ®co(G)®C)

Oa,r Os,r

& G

o

o=

@5<%®®m@»®c@%m®c

6T

where in (1) we use Proposition 1.5.3.2 and in (2) we use the I'-equivariant Morita equivalence
given by Lemma 2.3.15. In other words, Z(co(F) ® C) is a I-C*-algebra in .# #T induced by the
trivial subgroup {e} < T', which yields the claim. [ |

3.4.1 Remark. Consider the following functors:

" L o and AT 2 T I
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where jz is the descent functor with respect to F and jr is the descent functor with respect to I'.
By virtue of Theorem 2.3.14, we know that for all F-C*-algebra (A,68) € Obj(# % F) there
exists an isomorphism 74 : FxA5T x (@ X A) in XX .

o,r o,r

Sa,T

Actually, we obtain a natural equivalence between the functors above. More precisely, given two
F-C*-algebras (4,6), (B,v) € Obj(# #F) and a Kasparov triple X € KK” (A, B), the following
diagram in 2% is commutative

FxXx
FxA - F x B
s,r v,r
A B
Fx(@xA) Fx(@xB)
ao,r (5@,7” T x (@ % X) alr Vg,

which is a routine computation. Hence, we have F =~ F’ o Z.

Observe that the argument used in Lemma 3.3.2.2 can be performed in a more general framework.
Indeed, the following result must be regarded as an abstraction of Lemma 3.3.2.2.

3.4.2.3 Lemma. Let (T,X), (T',%X) be two triangulated categories. Let (Lr, N7) and (L, N7)
be two complementary pairs of localizing subcategories in T and T, respectively. Denote by (L, N)
and by (L', N') respectively, the canonical triangulated functors associated the these complementary
pairs. Let F: T —> Ab and F' : T' —> Ab be two homological functors.

If Z: T — T is a triangulated functor such that F =~ F' o Z and Z(%5) < L7+, then for all
object X € Obj(T) there exists a homomorphism

¥ € Homy (2(L(X)), L'(2(X)))
such that the following diagram is commutative
LF(X) —Y  ~ LF(Z(X))

nx 77/3()()

lle

F(X)

FI(Z(X))
where U = F'(¢). If moreover Z(N7) < N7+, then 1 is an isomorphism.

Proof. Given an object X € Obj(T), consider the corresponding distinguished triangle with respect
to the complementary pair (Zr, A7), say (N (X)) — L(X) - X —> N(X). Consider the
distinguished (%5, A45)-triangle associated to the object Z(X) € Obj(T’) say

Y(N'(2(X))) — L'(Z(X)) 5 Z(X) — N'(Z(X)) (3.4.1)



246 CHAPTER 3. Stability properties for the QBCc

Let’s fix the object Z(L(X)) =: T € Obj(T’) and take the long exact sequence associated to
the above triangle with respect to the object T. Namely,
.. — Homp (T, (N'(2(X)))) — Homy(T, I'(Z(X))) 3"
— Hom+ (T, Z2(X)) - Homp(T,N'(Z(X))) — ...

Since L(X) € &5 and we have Z(%r) € £ by assumption, then T € .£5. But, by definition
of complementary pair, we have £ ¢ JV{J In particular, we obtain Hom (T, ¥ (N'(Z(X)))) =
(0) = Homy(T,N'(Z(X))). Hence the above long exact sequence yields the isomorphism

Homp(T,L'(Z2(X))) (ug* Hom1(T, 2(X)). Hence, just take ¢ := (uv')5*(Z(u)).

Next, put ¥ := F'(¢) : F'(Z(L(X))) — F'(L'(2(X))). The functoriality of constructions
and the definition of the element ¥ above yields straightforwardly the diagram of the statement.

If moreover we have Z(A7) € A7, then the functor Z transforms a (&5, A7 )-triangle for X
into a (&5, A7 )-triangle for Z(X). Since the distinguished triangles associated to a complementary

pair are unique up to a isomorphism, we have an isomorphism of distinguished triangles between
(3.4.1) and the image of ¥(N(X)) — L(X) - X — N(X) by Z,

SZWNV(X)) > Z(L(x) — M zx) Z(N(X))
i LY id i
SN(Z(X))) s D(EX)) e Z(X) N(Z(x))

Let us apply the preceding lemma to our particular situation with the triangulated functor Z
introduced in Lemma 3.4.2.2 and the homological functors F', F” introduced in the introduction
of this section. Then we obtain that for every F-C*-algebra (A, J) there exists an element v €

KKT (@ x L(A), L’(@ o A)) such that the following diagram is commutative

G

LF(4) —Y L~ LF'(G x A)
0T
~ N
nh s (3.4.2)
F(A) = L~ F(G x A)

where U := F'(v), nE is the assembly map for F with coefficients in A and néx s is the assembly
map for I' with coefficients in G x A. Precisely, if (N(A4)) — L(4) - A — N(A) is a

Sa,r
(¢4

(&5, A5)-triangle associated to A and Z(N’(@ x A)) — L’(@ X ‘A) LG x A N’(@ x A)

5@,7" 6@’7 5@,7‘ 6@,7‘
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is a (4T, A1)-triangle associated to G x A, then ¢ := (') (Z(u)). Moreover, the definition of

AT
G

the element 1) yields the following commutative diagram

G x L(A) v L'(G x A)
r 8a,T
Z(u) =G 5, u| qu (3.4.3)
Gx Am—mm———GCG x A
0T 0T

We can now conclude our study with the following theorem, generalizing the result [34] of J.
Chabert as we have discussed in the introduction.

3.4.2.4 Theorem. Let F =T x G be a quantum semi-direct product. Assume that I@‘, T and G are
«

torsion-free discrete quantum groups. Let (A,0) be a ]I?’—C'*—algebm.
F satisfies the quantum Baum-Connes property with coefficients in A if and only if I' satisfies

the Baum-Connes property with coefficients in G x A and G satisfies the quantum Baum-Connes
0,7

property with coefficients in A.

Proof. Assume that [F satisfies the quantum Baum-Connes property. Since I' and G are divisible
torsion-free discrete quantum subgroups of F thanks to Remark 2.3.10, then by Proposition 3.2.2.3
they satisfy the Baum-Connes property.

Conversely, assume that G satisfies the quantum Baum-Connes property with coefficients in
A and T satisfies the Baum-Connes property with coefficients in G 6D< A. By the torsion-freeness

@,T

assumption, the only finite subgroup of T is the trivial one, {e} < T'. It is obvious that the trivial
group {e} satisfies the Baum-Connes property. We can do the same preceding constructions with

Fiey := {e} x G = G. In particular, we have the following commutative diagram,
el

LF, Y ) (G
{e}<A) LF{Q}(G(;[AX A)
T
Fre née:A
Fioy(A) =—=F},,(G A

where Fi.; et F{’e} are the analogous functors to F' and F’ defined with respect to IF'{E} =G and
{e}, respectively. Likewise, we have W} := FY ,(¢) where ¢ € KK"(G x L(A), L'(G X A)) is the

o . Fie & A
element constructed from Lemma 3.4.2.3. In this situation we have 7, = nG. Since G satisfies
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the quantum Baum-Connes property by assumption, then ni{E} = 77% is a natural isomorphism.
Hence, Wy, is a natural isomorphism. This means in particular that G x L(A) and L'(G x A)
T 5@,7‘

are K-equivalent via the element ¢ of Lemma 3.4.2.3. Therefore the same element induces a
K-equivalence between I' x L’ ((@ X L(A)) and T x L'(G x A) by virtue of Theorem 9.3 in [132).
r r r dg,T

Observe that L(A) € %, so G x L(A) = Z(L(A)) € % thanks to Lemma 3.4.2.2. Hence we
have L’ (@ X L(A)) ~G X L(A) in 2", In other words, ' x (@ X L(A)) is K-equivalent to
r X L’(G x A) via the element ¥. That is, ¥ = F'(¢) is an isomorphism.

Og,T
To conclude, we use the commutative diagramme (3.4.2). Namely, since T' satisfies the Baum-
Connes property with coefficients in G x A by assumption, then K, (F L’((G x A)) = K x
dg,T dg,T o,r
(G x A)) via 77@ . By using the associativity for quantum semi-direct products from Theorem

Oa,T

2.3.14 we get K*(F a L(A)) = K. (F X A) via néKA oW. So LF(A) = F(A) through UE thanks

to the commutativity of diagram (3.4.2). That is, F satisfies the quantum Baum-Connes property
with coefficients in A. [ |

3.4.2.5 Remark. The argument of the preceding theorem can be applied when I" has more finite
subgroups than the trivial one. Indeed, we could do the argument with the quantum semi-direct
products given by Fp := A x G for every finite subgroup A < I'. In that case, the claim “¥ = F'(v))
o

is an isomorphism”, which is used in order to conclude using the commutative diagram (3.4.2),
can be achieved by applying Theorem 9.3 in [132]. The problem with this case is that the finite
subgroups of I" provide torsion of . Hence the theoretical framework for the quantum Baum-Connes
property fails. It is reasonable to expect that the same stability property holds for any quantum
semi-direct product (not necessarily torsion-free) once the Baum-Connes property can be formulated
properly without the torsion-freeness assumption.

Let us analyze the stability of the strong version of the Baum-Connes property.

3.4.2.6 Theorem. Let F =T x G be a quantum semi-direct product such that IAF, T and G is a

torsion-free discrete quantum groups.
If F satisfies the strong quantum Baum-Connes property, then I' satisfies the strong Baum-
Connes property and G satisfies the strong quantum Baum-Connes property.

Proof. Assume that [ satisfies the strong quantum Baum-Connes property. Since I' and G are
divisible torsion-free discrete quantum subgroups of F thanks to Remark 2.3.10, then they satisfy
the strong Baum-Connes property by virtue of Theorem 3.2.2.1.

|

3.4.2 Remark. As we have already mentioned, the original result of J. Chabert in [34] was not
optimal. The precise statement of [34] concerning the Baum-Connes property for a semi-direct
product is the following
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“Let FF =T x G be a semi-direct product of two locally compact groups equipped with a ~y-element.
Assume that

i) T has a compact-open subgroup,

it) for any compact subgroup A <T' the group F) := A x G satisfies the Baum-Connes property
with coefficients.

Then if the Baum-Connes property holds for I, it holds for G too.”

On the one hand, the hypothesis (i) about the existence of a compact-open subgroup of T" is
automatically fulfilled in the discrete case (taking the singleton of the identity element {e}). On
the other hand, the hypothesis about the existence of a y-element for F' =T x G is just a way to
use the J.-L. Tw’s result [191], which assures the injectivity of the corresponding assembly map
under the y-element assumption. In this sense, it is a superfluous hypothesis as shown later in [35].

The initial strategy of J. Chabert was defining a partial descent homomorphism following the
semi-direct product construction (see Section 2 in [34]). In this way, our commutative diagram
(3.4.2) is the analogous one to the diagram obtained in Proposition 3.10 of [34].

Notice that in the above statement, J. Chabert only obtains one implication for the Baum-
Connes property. In Theorem 3.4.2.4 we obtain an “if and only if” result. This is possible thanks
to the isomorphism of ¥ in diagram (3.4.2), which follows from Theorem 9.3 of [132] as explained in
the proof above. In Corollary 3.4 of [35], J. Chabert and S. Echterhoff also obtain both implications
for the Baum-Connes property. In fact, H. Oyono-Oyono obtained an “if and only if” result for
discrete groups in [143], which partly inspired the work [35].

3.4.3 K-amenability property

Here we care about a property of own interest, namely the K-amenability of a quantum semi-direct
product. More precisely we have the following result.theo.

3.4.3.1 Theorem. Let F =T x G be a quantum semi-direct product. Then F is co-K-amenable if

and only if T' is K-amenable and G is co-K -amenable.

Proof. Assume that F is co- K-amenable. This means that there exists an element ay € K K (C,(FF), C)
such that
[T]F] ® af = [E]F] € KK(Cm(IF),(C),
Cr(F)

where 7 : Cp,(F) — C,.(F) is the canonical surjection and ef : Pol(F) — C is the co-unit of F
whose extension to C,, (F) is still denoted by ep.

By virtue of Remark 2.3.9 we know that I" and G are discrete quantum subgroups of F via the
canonical injections

ip 2 CF(T) — Cn(F) and (; : Cr-(G) — C(F)
Hence, by virtue of Theorem 3.2.3.1 we conclude that I" and G are K-amenable with elements

ar = [of] C(%F) ap € KK(CX(T),C)

ag = [L(a] C(%F) Qf € KK(Cr(G), (C)
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Conversely, assume that I' is K-amenable and that G is co-K-amenable. By virtue of the
K-amenability characterization of J. Cuntz (see Theorem 2.1 in [44]), the surjection I'x A — I' x A
m T

induces a K K-equivalence for every I'-C*-algebra A. In particular,

I'x Cpp(G) » T x Cpp (G)

induces a K K-equivalence. Since G is co-K-amenable, then the canonical surjection
76 : O (G) = C.(G),

which is I'-equivariant, induces a I'-equivariant K K-equivalence. If jr denotes the descent homo-

morphism with respect to I', which is compatible with the Kasparov product, then it is clear that

[id x 7¢] = jr([7¢]) € KK(T x C\,(G), T x C-(G)) is an invertible element. In other words, the
T T

composition
T % Cp(G) =T x Cp(G) “2° T x C.(G)),

which is precisely 7, induces a K K-equivalence. Hence F is co-K-amenable. |

The Baum-Connes property for a compact bi-

crossed product

It is worth mentioning that a compact bicrossed product in the sense of [65] is a special case of
a more general construction called bicrossed product. This object has been studied in detail in
[196] by S. Vaes and L. I. Vainerman giving a great general notion of extension of locally compact
quantum groups. In this way, the quantum semi-direct product and the compact bicrossed product
may be regarded as part of a same class of objects. The Baum-Connes property for extensions of
locally compact groups has been successfully studied by J. Chabert and S. Echterhoff in [35] and
also by H. Oyono-Oyono in [143] for discrete groups. For this reason it is licit to think about a
permanence property of the quantum Baum-Connes property for extensions of quantum groups.
However, such a property remains out of the scope of the present dissertation because of the torsion
phenomena problems and the technical difficulties of the construction of [196].

We carry the same notations of Section 2.4 on. Let F = I', g G be a compact bicrossed
product, where (', G, a, 8) is a compact matched pair.

In order to legitimate the Baum-Connes property formulation for the dual of a compact bicrossed
product F = I', »g G, we need [F to be torsion-free. In this way, we do the following crucial
observation.

3.5.1 Proposition. Let F =T, g G be a compact bicrossed product of the matched pair (I',G).
If F is torsion-free, then the action B is trivial. Consequently, F =T x G is a quantum semi-direct
«

product with G := (C(Q), A).
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Proof. Let Gy be the connected component of the identity element e, which is always a closed
normal subgroup of G. Consequently, G/G is a finite group because G is supposed to be compact.
Its dual is therefore a finite discrete quantum subgroup of G. The latter is a discrete quantum
subgroup of F as explained in Remark 2.4.3. Since F is torsion-free by assumption, then G/Gy must
be the trivial group (recall Remark 1.6.1.7). Hence G must be connected, which forces 5 to be the
trivial action. |

As we have pointed out several times, the torsion-freeness assumption is a theoretical obstruction
for the (current) quantum Baum-Connes property formulation for discrete quantum groups. The
preceding proposition shows that this hypothesis forces the compact bicrossed product to be a
torsion-free quantum semi-direct product. Therefore, the analogous results from Section 3.4 still
hold for the dual of a torsion-free compact bicrossed product (particularly, Theorem 3.4.2.4 and
Theorem 3.4.2.6 still hold).

In this sense, the torsion case is the interesting one. The general analogous strategy used in
Section 3.4 may be applied for a compact bicrossed product provided that an associativity property
can be established (recall Note 2.4.2), which has been one of the main ingredients to reach Theorem
3.4.2.4. Tt is reasonable to expect that the same stability property holds for any compact bicrossed
product (not necessarily torsion-free) once the Baum-Connes property can be formulated without
the torsion-freeness assumption, which is the the main obstacle to achieve such a result.!

3.5.1 K-amenability property

Here we care about a property of own interest, namely the K-amenability of a compact bicrossed
product. Observe that this property is completely independent of the torsion-freeness assumption.
The analogous result to Theorem 3.4.3.1 for a quantum semi-direct product can be established.
Recall by Remark 2.4.3 that I' is not a quantum subgroup of F anymore. Moreover notice that G is
a classical compact group, so it is automatically amenable (so, K-amenable). The corresponding
statement for the compact bicrossed product is the following (compare with Theorem 3.4.3.1 and
see Remark 1.3.1.42).

3.5.1.1 Theorem. LetF =T, g G be a compact bicrossed product. Then F is co-K-amenable if
and only if I' is K-amenable.

Proof. Given the compact bicrossed product F, consider the canonical surjection 7 : Cp, (F) —
C(F), where we recall that C,,(F) =T x C(G) and C.(F) =T x C(G). Likewise, given the

discrete group I, consider the canonical surjection - : C¥ (T') — C*(I).

Assume that F is co-K-amenable. This means that the canonical surjection 75 : Cy, (F) — C,.(F)
induces a K K-equivalence, that is, the induced element [15] € KK (C,,(F), C,.(IF)) is invertible. Let
us denote by X € KK (C,(F), C,,(IF)) its inverse, so that we have

T ® X =1 and X ® J[mw]=1
[7¢] 2 Com (F) e [7e] = 1c.@m)
Since G is a classical compact group, we have the canonical (a-invariant) character on C(G)
defined precisely by
eq: C(G) — C
[ e(f) = fle)

IThis is a work in progress in collaboration with P. Fima.
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Consider thus the following (unital) *-homomorphisms

el =T x eg:COpn(F) — C}(T)
ep =T x eg: Cp(F) — CX(T)
In this situation, we have the following commutative diagram

m
€r

Cm(F) Cn(T)

ml er (3.5.1)

Cr(F) ———— C7(T)
er

Recall that Cp,(F) =T x C(G) = C*(n(f)uy : f € C(G),y € T'). So, with the help of the

a-invariant character above, we can identify C* (I') with the subalgebra of C,,(F) generated by
{uy : v €T} by universal property (see Remark 3.6 in [65] for more details). Hence, we consider the
canonical injection ¢, : C¥ (T') — C,(F), which is such that

E%n Ol = ZdC:l:L(F) (352)

Likewise, recall that C.(F) =T x C(G) = C*(n(f)u, : f € C(G),vy € TI') is equipped with a
conditional expectation E : I" x C (((l?)r —> C(G) which restricted to the subalgebra generated by
{uy : yeT}isjust E(uy) = g;p € C. Remember as well that u, = A\, ®idg(g) in T X C(G) c
L) (I2(T) @ C(G)); so that this subalgebra will be identified canonically to C*(I') = T th;r C by
universal property. Hence, we consider the canonical injection ¢, : C*(T') — C.,.(FF), which is such

that
Er O tp = idg (3.5.3)

Finally, remark that the following equation holds by construction
TF O by, = Ly OTT (3.5.4)
Given the induced element ] € KK (C} (T),C*(T')), we claim that the element

YVi=lu] ® & @ [ef']e KK(CH(T), Cp(T))
CoF)  Con(F)

is its inverse and hence I' is K-amenable. Indeed, using the equations (3.5.1), (3.5.2), (3.5.3), (3.5.4)
above and the definition of X we can write the following

Y ® [ml=lw]l ® ¥ ® [¥] ® [m]=[w] ® ¥ ® [mwoef]

CE(T) Cr(F)  Cm(F) CE (T) Cr(F)  Crn(F)
=[] ® ¥ ® [eror]=[n] @ X [7] ® [er]
Cr(F)  Cw(F) C.(F) Cn(F) Cr(F)

= [ur] C@()]F) ler] = [er o tr] = 1ox(r)

r
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[r] ® YV=[m] © [4] ® ¥ @ [f]=[wom] ® ¥ @ []

cH(T) CH(T) Cr(F)  Cm(F) Cr(F)  Cm(F)
=[rotm] ® X @ [N =[tm] ® [71] ® & ® [P]
Cr(F)  Co(F) Cu(B) " Co(F)  Co(F)
= [tm] & [er'] = [e" © tm] = 1ox (1)

Conversely, assume that I" is K-amenable, then by virtue of the K-amenability characterization
of J. Cuntz (see Theorem 2.1 in [44]), the surjection 77 : I' x C(G) - I' x C(G) induces a
a,m a,r

K K-equivalence, whence the K-amenability of F. |

3.5.1.2 Remark. It is important to notice that the preceding proof can be simplified by using
the same argument as in Theorem 3.4.3.1. Indeed, even if I' is not longer a quantum discrete
subgroup of the compact bicrossed product F, we have observed in Remarks 2.4.3 that there
exist still canonical injections (¥ : C¥ (T') — C,,(F) and f : CF (') — C,(F) compatible with
the corresponding canonical surjections and co-units as in Remark 2.3.9. This allows to define

the element ap := [t}.] ® ar e KK(C}(T'),C) provided that F is co-K-amenable with element
Cr(F)
af € KK(C,(F),C) such that [77] ® ar = [er] € KK(C,(F),C). In this way, the analogous
Cr(F)

computation as in Theorem 3.2.3.1 yields that [7r] ® ar = [er], which yields the K-amenability
CH (D)
for I' by Remark 1.3.1.41.

The Baum-Connes property for a quantum free

product

In this section we recall that the strong Baum-Connes property is stable under the free product
construction for quantum groups following the work of R. Vergnioux and C. Voigt [208]. Tt is
important to say that the strategy of R. Vergnioux and C. Voigt in [208] to achieve such a stability
property follows earlier work of G. Kasparov and G. Skandalis [99] and R. Vergnioux [206], [207].
More precisely, they apply the Dirac-dual Dirac method in a quantum version of the Bass-Serre
theory. In this sense, the Vergnioux-Voigt’s approach is very constructive and gives lot of information
in the process of proving the (strong) Baum-Connes property for a free product of (torsion-free)
discrete quantum groups.

In order to do so, we carry the same notations of Section 2.5 on. Let F := G = H be a quantum
free product, where G and H are compact quantum groups.

3.6.1 Torsion property

We have already explained that all our discrete quantum groups are supposed to be torsion-free in
order to study the corresponding quantum Baum-Connes property. For this reason it is advisable
to study in more detail the torsion phenomena of the dual of a quantum free product F = G = H in
terms of the involved quantum groups.
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It is important to say that, in the original article [208], R. Vergnioux and C. Voigt expected
that all free quantum groups must be torsion-free, but they did not give any proof. Nevertheless,
the case of the free orthogonal quantum group was already proven in [210] by C. Voigt thanks to
the invariance of the torsion-freeness under monoidal equivalence (Theorem B.3.19) and the fact

—

that SU,(2) is torsion-free, which is also shown in [210].

The general case has been recently studied by Y. Arano and K. De Commer in [3] and they
have obtained a positive answer to this problem using the approach of fusion rings and C*-tensor
categories (recall Section 1.6.2 for definitions and more details).

3.6.1.1 Theorem (Y. Arano and K. De Commer, [3]). %) Let G and H be two discrete quantum
groups and let F := G = H be the dual of the corresponding quantum free product.

If@ and H are (resp. strong) torsion-free, then F is (resp. strong) torsion-free.

it) Let n > 1 and Q € GL,(C). Then U*(Q) is strong torsion-free. As a consequence, it is
torsion-free.

Using the combinatorial methods introduced in [3] by Y. Arano and K. De Commer (recall
Section 1.6.2 for definitions and more details), we can give a more precise picture of the torsion
phenomena for a quantum free product. Namely, we can classify the torsion actions of a quantum
free product, which will be very useful in Section 3.7.1 where we will investigate the torsion
phenomena for a free wreath product. The following results have been obtained as a collaboration
with A. Freslon [127].

First of all, given a quantum free product F = G = H, it is clear that both G and H are discrete
quantum subgroups of F. In particular, we have C(G) < C(F) and C(H) < C(F), so that any
action of G (resp. Hl) can be extended to an action of F in the sense of Remarks 1.4.3.5. Thus, it is
reasonable to expect that torsion actions of the quantum free product all are induced from either
torsion actions of G or torsion actions of H. This is the goal of this section.

The definition of induced module (recall Remarks 1.6.2.3) and the construction of the free
product of fusion rings yield immediately the following result.

3.6.1.2 Lemma. Let Ry be a I1-based ring and Ry be a Is-based ring. If N is a J-based Ri-module,

then the induced module Indgi*RQ (N) is a J-based Ry * Ry-module with basis

Ji={wj |we WU, L) v and je J}y =~ W(Iy, L) ©J,
1
where W (I, I5) denotes the set of alternating words in Iy and Iy ending in Iy and the obvious
action of Ry * Ro.

By definition of induced module, it is clear that the induction of standard modules yields
standard modules. We shall show that the induction of non-standard torsion modules yields again
a non-standard one.

3.6.1.3 Definition. Let R be a I-based ring and M a J-based R-module. Given a basis element
8 € J we define the stabilizer of 8 by

Stab(B) :={ael| B ca®pB}
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The preceding definition yields the following immediate observations.
i) If M is co-finite, then Stab(B) is finite for all g € J.

ii) If M is standard, that is M =~ R, then there exists exactly one element with trivial stabilizer,
which is the one corresponding to the unit of I. Namely, by definition of based ring we have
that

Stab(l) ={ael|lca®l} = {1}

Moreover, if there was some o’ € I such that Stab(a) = {z} is a singleton, then for all a € I,
o € a® o implies « = x. In particular, 1 is such that o/ € 1® o’ = o’. So it must be
a=1=u=x.

3.6.1.4 Lemma. Let R be a fusion ring with basis I and M a fusion R-module with basis J. M
is standard if and only there exists a basis element jo € J with trivial stabilizer.

Proof. If M is a standard fusion R-module, then we have explained above that Stab(1) = {1} and
that 1 is the only basis element with trivial stabilizer.

Conversely, assume that M is a fusion R-module with basis J such that there exists a basis
element jy € J with trivial stabilizer. Recall from Remarks 1.6.2.3 that we have a bilinear form on

M such that ,
<ﬁaﬁ/> = ZA?,ﬁ : 7;’
el
for all 8,8" € J. Since Stab(jy) = {1} by assumption, which means that )"Z;f),jo #0< a =1, then
by definition we have 4
(o, joy = Ay, - 1=1

Given any « € I\{1}, set a ® jo = >, \xjr. Hence we write the following
k=1

3 Neinr o) = (@ ® o, o) = ¢ ® (o, jo) = a®@1 = a
k=1

Since (ji,joy always contains « and the coefficients A\ are non-negative integer, it must be
k = 1. In other words, we have a ® jo = j1, which is a basis element. Hence, in order to define an
isomorphism of fusion R-modules M — R, it is enough to send the basis element jj € J to the
unit 1 € I. |

3.6.1.5 Lemma. Let Ry be a fusion ring with basis Iy and Ry be a fusion ring with basis Iy. If
N is a torsion Ri-module with basis J, then the induced module M := Indgi*h(N) splits as a
Ry-module into a direct sum of N and standard modules.

In particular, Ind%’m2 (N) ~ Indgi*Rz (N') as Ry * Ry-modules if and only if N ~ N’ as
Ri-modules.

Proof. Let P be an arbitrary R;-submodule of M and let w be an alternating word in I; and I
of minimal length such that there exists a basis element j € J satisfying wj € P, which exists by
Lemma 3.6.1.2.

Assume that w # ¢ and write w = «p...«a1. Notice that we can not have oy € I; since
otherwise ai_1...a1 € @y @ wj € P because P is a Ry-module, which contradicts the minimality



256 CHAPTER 3. Stability properties for the QBCc

of w. Thus, ay € I and the definition of the ring structure on Ry * Ry together with Lemma 3.6.1.2
imply that P is standard with respect to R;. Indeed, it is enough to remark that Stab(wj) = {11},
where we recall that wj is a basis element in J Ifae Stab(wj) N I, then wj € a @ wj = awj,
where aw is now a new word and so awj is a new basis element in J. Hence, it must be w = aw,
that is, a = 1;.

If w = &, then P contains a basis element of N, which implies P = N.

In particular, if Ind%*R"' (N) — Indgi*Rz (N') is an isomorphism of R; * Rp-modules, it can
be seen as an isomorphism of R;-modules, which preserves standard modules. Hence it must send
N isomorphically to N’ and the proof is completed. |

3.6.1.6 Proposition. Let Ry be a fusion ring with basis Iy and Ro be a fusion ring with basis I5.
If M is a torsion Ry * Ra-module with basis J, then M is induced from a module over one of the
factors.

Proof. If M is standard, then we can write either M = Indj"*/2(Ry) or M = Indj*"(R,) and
the proof is completed.

Let e € J be a basis element and denote by Nf (resp. N§) the Rj-submodule (resp. Ra-
submodule) generated by the action of R; (resp. Rz) on e. The proof of Theorem 1.25 in [3] shows
that if both IN{ and N3 are standard for all e € J, then M is itself standard.

Let us assume that M is not standard and assume that e € J is such that Ny is not standard
(the case where N§ is not standard is similiar). We are going to prove that M is isomorphic to
Ind%’m2 (N7). Recall from Lemma 3.6.1.2 that the latter has the basis jlé, where J; denotes the
basis of NT.

The natural candidate for the isomorphism is the following: given any word w € W (I3, I3) and
any basis element j € Jy, it should send the basis element wj € :]\Jf to w® j. For this, we must show
that such an element w ® j is still a basis element of M. Let us prove this by induction on the
length of w := ay ... ;.

- For k =1, take a (non-trivial) word of length 1 in W (I, I), say as € I)\{12}. Assume that
as ® j is not a basis element. This means that we can take as such that j € as ® 5. Let oy
be a non-trivial element in Stab(j) » I;, which exists by Lemma 3.6.1.4 because N is not
standard. Then, for any integer [ € N, (aya2)® € I} = I3 is a non-trivial stabilizer of 7,

jCca®jcaa®)jcaaa®jc...

Consequently, we obtain infinitely many stabilizers, which contradicts the co-finiteness of
M. Thus, Stab(j) n I; = {11}, which implies that the R;-module generated by j must be
standard and the corresponding isomorphism sends j to 1; (by Lemma 3.6.1.4). In particular,
s ®j = ap is a basis element for all ag € Io\{12}.

- Assume now that for some k € N, w® j is a basis element with w = ay ... € W (I, I3) and
jeJt.

- Without loss of generality, assume that oy € Io\{12}. Put j' := ay ...a; ® j, which is a basis
element by the induction hypothesis. By the same argument as before, Stab(j') n I = {1},

so that Nf/ is standard for R;. In particular, for any ax11 € I1\{11}, ag+1 ® j’ is a basis
element and the claim is proved.
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Now, let ¢ : Indgi*m(Nf) — M be the homomorphism sending wj to w ® j, for any word
w e W(I, 1) and any j € Jf.

Since M is connected by assumption, the homomorphism ¢ is clearly surjective. Let us show
that ¢ is injective. Let w,w’ € W (I, I) with w # ' and let j, j' € Jf be basis elements with j # j’
such that p(wj) = p(w'j’), that is, w®j = w’ ®j’. In particular, we have that j' = (W' @w)®j. By
definition of the ring structure on R * Ry, we observe that w’®uw is a direct sum of non-empty words
starting and ending in I2\{1s}. In particular, there exists w” € W (I, Iz) such that j' c w” ® j.
But such an element w” ® j is a basis element, so it must be j' = w” ® j. Now, if o,/ € I1\{11}
are stabilizers of j and j', respectively, then we get for any [ € N a stabilizer of j given by

(Jo/w”oz) ®! _ (F ® o ® W ® Oz) ®l’
which contradicts the co-finiteness of M. Thus, it must be w = w’ and j = j'. The proof is then
complete. |

The preceding results have been obtained at the level of fusion modules for which we have
used the general combinatoric description of the free product of fusion rings. In order to state the
corresponding result for a quantum free product at the level of torsion actions we have to recast
the preceding proof in the setting of module C*-categories as we have illustrated in Remark 1.6.2.7.
This is, by the way, the strategy used in [3] for showing that a free product of torsion-free discrete
quantum groups is torsion-free (see Theorem 3.16 in [3] for more details).

3.6.1.7 Theorem. Let G and H be compact quantum groups. There is a one-to-one correspondence,
up to equivariant Morita equivalence, between torsion actions of G = H and torsion actions induced

from G or H.

Proof. Let (A, ) be a torsion action of G * H and consider the corresponding module C*-category
over Zep(G = H), say 5, whose objects are G * H-equivariant Hilbert A-modules.

Given any irreducible object X € Obj(#), we denote by X (resp. ) the module
C*-category generated by X and the action of Zep(G) (resp. Zep(H)).

By the proof of Proposition 3.6.1.6, there is an object X such that either %X or %’ﬁx contains
a non-standard fusion module whenever (A, d) is not trivial. Without loss of generality, let us say
that this is case for #°. By Lemma 3.10 in [3], the module C*-category is equivalent to the one
of the trivial action if its associated fusion module is standard. The same reasoning as for fusion
modules yields therefore an equivalence between 7 and the module C*-category induced from
A

To conclude, notice that by the general result of [50], there exists a torsion action (A4’,¢") of G
such that the associated module C*-category is #;*. Thus, . is equivalent to the module C*-
category associated to the induced action I ndg*H(é’ ) and again by [50] the actions are equivariantly
Morita equivalent.

Consider now two induced torsion actions which are equivariantly Morita equivalent. If they are
induced from different factors, then the fusion module of the one induced from H is a direct sum of
standard modules when restricted to G. Thus, the fusion module associated to the one induced by
G is isomorphic to a direct sum of standard module with respect to R(G). Since all its submodules
are also standard with respect to R(H), we conclude by Theorem 1.25 in [3] that the actions are
trivial.
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This leaves us with the case of two induced torsion actions from the same factor which are
equivariantly Morita equivalent. Without loss of generality, let us say that (A,0) and (A4’,0") are
two torsion actions of G such that IndS*®(5) and IndS*2(8’) are equivariantly Morita equivalent.
The same reasoning as in Lemma 3.6.1.5 shows that in both associated module C*-categories,
the module C*-subategory coming from the original action is the only one to be non-trivial over
Zep(G). The equivalence of categories must therefore restrict to an equivalence between these
subcategories and we conclude by [50]. |

3.6.2 The Baum-Connes property

In order to legitimate the Baum-Connes property formulation for the dual of a quantum free product
F = G = H, we need F to be torsion-free. And, in order to legitimate the Baum-Connes property
formulation for G and H, we need these discrete quantum groups to be torsion-free. Hence, we
must keep the preceding section in mind and we assume that F, G and H are all torsion-free.

The aim of this section is to summarize the strategy carried out by R. Vergnioux and C. Voigt
in [208]. Here we collect the main results and definitions and we refer to Section 5 and Section 6 of
[208] for the full details.

Given a locally compact quantum group G we denote by D(G) the Drinfeld quantum double
of G (see Remark A.3.24 and [140] for more details). Given two discrete quantum groups G and
]ﬁl, let us explain the notations concerning the quantum Bass-Serre theory for the quantum free
product F=G=+H.

The tree associated to I is defined by

P(X):=P(XD@i2(xWM),
where R A R
(X)) .= 2(F/G) @ *(F/H) and I2(XV)) := [2(F),

where we remark that X may represent the quantum tree associated to @, so that in the quantum
context it must be regarded as a virtual object.

Consider the one-dimensional affine space E := {(to,t1) € R? | o + t; = 1} and write CI; for
the one-dimensional Clifford algebra.

Finally, observe that the compact operators on 12(X), K(I?(X)), can be viewed as a graded
C*-algebra following the decomposition of the definition of /2(X). Recall that we use the symbol &)
for the graded tensor product.
3.6.2.1 Theorem (R. Vergnioux and C. Voigt, [208]). Let G and H be two discrete quantum groups
and let F = G + H be the dual of the corresponding quantum free product.

i) There exists a D(fﬁ\')—C*—algebm Ax < (Co(E) @ Cly)®K(1%(X)), which is KKD(]%)—equivalent
to P := Co(R) ® Bx, for some ungraded D(G)-C*-algebra Bx < Co(E) ® K(12(X)).

We define the Dirac element for F as the element
De KEP®(Ay,C)

defined as the composition of the canonical inclusion Ax — (Co(E) ® Cly)®K(I*(X)) with the
Bott periodicity isomorphism and the equivariant Morita equivalence K(1?(X)) ~ C.
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it) There exists un element € KKP® (C,C) such that v = 1¢.
i1i) There exists a dual-Dirac element for D, that is, an element n € KKP® (C, Ax) such that
D=1
77 % C

3.0.2.2 Remark. Notice that the Dirac element for F is defined with respect to the C*-algebra Ax.
But this one is K KPF)_equivalent to P, which is ungraded. By abuse of notation we still write

De KKP®(p,C)

for the Dirac element. Moreover, we can show that this element is still invertible (see Lemma 6.4
and Lemma 6.5 in [208] for more details).

A combination of the preceding results and the equivariant Poincaré duality for quantum groups
developed by R. Meyer and C. Voigt in [140] yields the stability of the Baum-Connes property for
quantum free products, which generalizes the classical case studied in [144], [193].

3.6.2.3 Theorem (R. Vergnioux and C. Vo1gt [‘) )8]). Let G and H be two discrete quantum groups

such that G and H are torsion -free. Let F =G +H be the dual of the corresponding quantum free
product.
If((} and H satisfies the strong Baum-Connes property, then F satisfies the strong Baum-Connes

property.

Next, recall the following facts:
- The strong Baum-Connes property is invariant under monoidal equivalences (Theorem B.3.19).

- Divisible discrete quantum subgroups of a discrete quantum group satisfying the strong
Baum-Connes property satisfy the strong Baum-Connes property (Theorem 3.2.2.1).

- For alln > 1, all Q € GL,(C) with QQ = +id and all q € [—1,1]\{0}, SU,(2) is monoidally
equivalent to O7(Q) (Theorem B.3.19).

- Sm) satisfies the strong Baum-Connes property, for all ¢ € [—1,1]\{0} (Theorem 2.1.5).

- Z satisfies the strong Baum-Connes property [82].

- Foralln > 1, all Q € GL,(C) with QQ = +id, (j:(\Q) c O+TQT* Z is divisible (Proposition
4.3 in [208]).
With all these properties in mind, it is not very hard to establish that duals of free unitary

quantum groups satisfy the strong Baum-Connes property (see Theorem 6.8 in [208] for more
details).

3.6.2.4 Theorem (R. Vergnioux and C. Voigt, [208]). Let n > 1 and Q € GL,(C). Then U/+_(a)
satisfy the strong Baum-Connes property.

8.6.2.5 Remark. As we_hav have pointed out in Remark 2.5 2 both G and H are dwzszble discrete
quantum subgroups of G +H. Consequently, if both G and M are torsion-free and G # H satisfies the

(resp. strong) Baum-Connes property, then both G and H satisfy the (resp. strong) Baum-Connes
property by applying (resp. Theorem 3.2.2.1) Proposition 3.2.2.3.
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3.6.3 K-amenability property

Here we care about a property of own interest, namely the K-amenability of a quantum free
product.

On the one hand, we recall Remark 1.7.2.11 where we have noticed that the torsion-freeness as-
sumption and the strong Baum-Connes property for a discrete quantum group implies automatically
the K-amenability of the discrete quantum group.

On the other hand, as explained in the introduction of this dissertation, several work of R.
Vergnioux [206], [207], P. Fima [63] and P. Fima-A. Freslon [64] have been made for studying the
K-amenability property for quantum groups acting on quantum trees using a quantum version of
the Bass-Serre theory generalizing the classical case [90] studied by P. Julg and A. Valette.

Therefore, from Remark 1.7.2.11 and the work mentioned above, we obtain the following result.

3.6.3.1 Theorem. i) Let G and H be two discrete quantum groups and let F =G+H be the
dual of the corresponding quantum free product.

a) G and H are co-amenable if and only if F is co-K-amenable.

b) If@ and H are torsion-free and satisfy the strong Baum-Connes property, then F is co-K -
amenable.

—_

it) Let n > 1 and Q € GL,(C). Then U*(Q) is K-amenable.

—_

iii) Letn > 1 and Q € GL,(C) with QQ € Rid. Then O+(Q) is K -amenable.

The Baum-Connes property for a free wreath

product

First of all, the whole content of this section together with Section 4.2 is a collaboration work with
A. Freslon [127].

In this section we are going to study the Baum-Connes property for the dual of a free wreath
product, G 4 S]f,, of a compact quantum group G by SX, (with N > 4) in terms of G and S;\r,.

The Baum-Connes property for a classical wreath product has been studied under different
perspectives during the last years. More precisely, Y. Cornulier, Y. Stalder and A. Valette have
studied the stability of the Haagerup property for the wreath product construction in [42]. They
have showed that if G and H are two countable groups with the Haagerup property, then their
wreath product G ! H has the Haagerup property too. Consequently, the celebrated result of
Higson-Kasparov [32] yields in this case that G { H satisfies the strong Baum-Connes property.

This result allows to include an extensive list of groups satisfying the strong Baum-Connes
property. For instance, this is true for the lamplighter group Z/Zs ! Z or, more generally, for a
wreath product G H, where G is any finite group and H := F,, is the free group on n generators.
However, the abstract conclusion about the Baum-Connes property for this kind of groups does not
bring any information about the explicit computation of the K-theory and the K-homology groups
of the corresponding C*-algebra. Recently, R. Flores, S. Pooya and A. Valette [67] and S. Pooya
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[160] have provided an explicit proof of the Baum-Connes property by computing both sides of the
assembly map in this two cases, respectively.

The quantum case presents a first issue : the presence of non-trivial torsion for the dual of a
free wreath product G 1 S, (even when G is torsion-free). In Section 3.7.1 we classify all torsion
actions of G U Sj{,.

As we have already mentioned, the torsion-phenomena prevents a proper theoretical formulation
of the quantum Baum-Connes property, which is the second main issue. Nevertheless, as it is
explained in full detail in Section 4.1, there exists a reasonable choice for the analogue of the
localizing subcategory of compactly induced C*-algebras in the quantum setting, taking into account
all torsion actions of the compact quantum group. This choice turns out to be the appropriated
one in order to analyze the strong Baum-Connes property for a free wreath product, as it is shown
in Section 3.7.2. A major application of these results is the explicit computation of the K-theory of
the C*-algebras associated to several free wreath products, for which we refer to Section 4.2.

We carry the same notations of Section 2.6 on. Let F := G 1, S be a free wreath product,
where G is a compact quantum group and N > 4 is a natural number. We denote by H, the
Lemeux-Tarrago’s compact quantum group which is monoidally equivalent to G 1, SJJ{, (recall
Theorem 2.6.2). We denote by A : R(H,) — R(G * SU,(2)) the corresponding inclusion described
in Remark 2.6.3.

3.7.1 Torsion property

In contrast to the compact quantum group constructions studied in preceding sections, the free

wreath product construction is never torsion-free because SJJ{, is never torsion-free, so that every
torsion action of G 1 Sy, is induced by the defining action of S¥ on C, which is a torsion one.
This section is dedicated to show in detail these affirmations. For this we should recall notations
and results from Section 1.6.2 and Section 3.6.1.

3.7.1.1 Lemma. Let G be a compact quantum group. If N is a torsion R(G)-module with basis J

and M := Ind™(©*F(SUa(2)

R(G) (N), then M contains a unique non-standard torsion R(Hy)-module.

Proof. Let j € J be a basis element of N and let w € W(ITT(G), Irr(SUq(Q))) be a word ending

in Irr(SU,(2)). Recall from Lemma 3.6.1.2 that wj € J is a basis element of M. Denote by N (wj)
the R(H,)-submodule generated by wj. Let w’ be a word of minimal length such that w’j € N(wj).

If W' = &, then for any non-trivial word w” € W(IT’I’(G), Irr(SUq(Z))), we have A(wW")®j =
A(w")j, which is a basis element, so that N(wj) = N(j) is standard.

If W’ starts in Irr(G), then for any non-trivial word w” € W(I’FT(G ,Irr(SUq(Q))), we have
AW ®w'j = Aw”)w'j, which is a basis element, so that N(wj) = N(w'j) is standard.

Therefore, let us assume that w’ = vz, ... zu"*, for some k € N. If ng > 1, we see that
w2y L LLzpu™j © u? @ w'j € N(wj) because u? € Irr(H,) by definition. This contradicts the
minimality of w’. Hence, we can assume that ng = 1.

If k > 0, then see that u™ x5 ...zpu™ € N(wj) by tensoring w’ by uZiu. This contradicts the
minimality of w’. Hence, it must be w’ = u.

Since N is by assumption a connected R(G)-module, for any basis element j’ € J, there exists
z € Irr(G) such that j' ¢ x ® j. Therefore, uj’ € x @ uj < Alz) @ uj = uru @ uj € N(uj) since
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uzw € Irr(Hy) by definition. In other words, N(uj’) = N(uj) and we obtain in this way a torsion
module, which is unique by construction and we denote it by N,. Moreover, it is non-standard
because u? is clearly a non-trivial stabilizer of uj, which is the generator of N,,. |

3.7.1.2 Theorem. Let G be a compact quantum group and N = 4 a natural number. The
equivariant Morita equivalence classes of non-trivial torsion actions of G 1 S¥; are in one-to-one
correspondence with all the equivariant Morita equivalence classes of torsion actions of G.

In particular, a free wreath product Gl S3; is never torsion-free and (CV, an) is the only, up

to equivariant Morita equivalence, non-trivial torsion action of Gl Sj; whenever G is torsion-free.

Proof. First of all, thanks to the monoidal equivalence between G 4 S]J(] and H, it is enough to

study the torsion actions of H,.

Let (A, d) be a non-trivial torsion action of Hy. Then it is clear that I ndEjSU‘I(Q) (0) is again a

torsion action of G = SU,(2). By Theorem 3.6.1.7, T ndngUq(Q)(é) is equivariantly Morita equivalent

—

to a torsion action induced from G (since SU,(2) is torsion-free). By Lemma 3.7.1.1, the restriction
of such an action to H, has exactly one non-trivial summand. Thus, this summand is equivariantly
Morita equivalent to (A4, d).

Moreover, if two torsion actions of H, are equivariantly Morita equivalent, then the same holds
for their induction to G = SU4(2), so that by Theorem 3.6.1.7 the original actions of G are also
equivariantly Morita equivalent.

In particular, G 1 S5 is never torsion-free because the trivial action of G (which is a torsion
action) gives rise to a non-trivial torsion action of the free wreath product. Let us describe explicitly
this action. R .

Consider the quantum subgroup of H, generated by u?, which is isomorphic to SO,(3). As
we have mentioned in Remarks 2.1.10, we have an isomorphism Qut(Ma2(C)) = SO,(3). Hence,
thanks to Theorem 2.1.11, the only non-trivial torsion action of SO,(3) is the canonical action of
Qut(M32(C)) on Ms(C), say aq (see as well [173]).

A o 77 /o 77 5 SU,(2)

By definition, SO4(3) < SU,(2) and since SU,(2) is torsion-free, Indgq! )
Hy (2) (org)

ial action (up to equivariantly Morita equivalence). By what we have proven before, Indy, (@
q

(crg) must be the triv-

must be a non-trivial torsion action whose induction to G * SUy(2) is trivial. Under the monoidal
equivalence between H, and G S]\L,, (Ma, ag) becomes the canonical action of SJJ{, on CV. Induc-
ing this action to G 1, Sj\r, yields a non-trivial torsion action (CV, ay), which is precisely the one
obtained from the trivial action of G. If G is torsion-free, this is the only source of torsion in the
free wreath product. n

3.7.1.3 Remark. The proof of the preceding theorem shows precisely which is the only torsion action
of a free wreath product G, Sj{,, where G is torsion-free. Namely, it is the defining action of SIJ{, on
C" induced to G 1 SF;. If o, denotes the torsion action of SO,(3) on Mz (C), then the monoidal
equivalence between H, and G 1, S]J(, yields a correspondence between these torsion actions,

Gy S5,

IndS; (aN) <—>Inqu(2) (Oéq)

504(3)
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3.7.2 The Baum-Connes property

By virtue of the preceding section, the dual of a free wreath product F = G, S}; is never torsion-free,
even if G is torsion-free. Hence, the theoretical framework developed in Section 1.7.2 for a quantum
Baum-Connes property formulation can not be applied. Let ¢ ¢ G5 ~ be the equivariant Kasparov
category associated to the compact quantum group G, S3;. Being inspired by the pioneering work
of C. Voigt in [212], we can re-define the localizing subcategory of quantum compactly induced

C*-algebras £ := 3% by taking into account the torsion phenomena of the discrete dual of the
free wreath product,

~

% = {T® B with T € Tor(F) and B € Obj(# #)}) = A H Cx5x
L = ({F x T® B with T € Tor(F) and B € Obj(# )}y = A A 5~

3.7.2.1 Definition. Let G be a compact quantum group and N > 4 a natural number. We say

that F := G l« S7; satisfies the strong Baum-Connes property if
L= A HF

Recall that, by virtue of Theorem 2.6.2, there exists a discrete quantum subgroup ]ﬁlq <
G */5711(2) such that H, is monoidally equivalent to G 1, SF;. Denote by & %" GlSY the corre-
sponding equivariant Kasparov category. Therefore, ]ﬁlq is neither torsion-free because all torsion
actions of monoidally equivalent compact quantum groups are in bijection as it is shown in
[163]. In this way, we can re-define the localizing subcategory of quantum compactly induced
C*-algebras 2y, := %q by taking into account the torsion phenomena of the discrete dual of the
Lemeux-Tarrago’s H,

s, = {S® B with S € Tor(H,) and B € Obj(# # )}y c H #™
%y, = ({H, x S® B with S & Tor(H,) and B € Obj(# H#)}) = H A B

3.7.2.2 Definition. Let G be a compact quantum group and N > 4 a natural number. Let H,
the Lemeux-Tarrago’s compact quantum group monoidally equivalent to G 1 S3;. We say that H,
satisfies the strong Baum-Connes property if

Ly = H A

By virtue of the monoidal equivalence between H, and G 2, Sj\“,, we know that the corresponding
equivariant Kasparov categories, # . # e and ¢ ¢ S JJ\rf, are equivalent (see [210] for more details).
Moreover, the choice of our localizing subcategories of quantum compactly induced C*-algebras

together with the bijective correspondence between torsion actions from [163] and Baaj-Skandalis
duality yield the following

3.7.2.3 Lemma. G, Sy satisfies the strong Baum-Connes property if and only if ]ﬁlq satisfies the
strong Baum-Connes property.
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3.7.2.4 Remark. In other words, we re-define the strong Baum-Connes property by requiring the
abstract condition £ = &% Fwhich is consistent with the torsion-free case as it is pointed out
in Remark 4.1.

However, the formal statement for the usual Baum-Connes property in the framework of Meyer-
Nest requires the definition of an other localizing subcategory .45 such that the pair (%, 45) is
complementary. The definition of such a .45 must be the the right orthogonal complement of Z%

(recall Definition 1.2.1.23). But it is not clear, a priori, that this pair is complementary in A
These difficulties have been out of the scope of the present dissertation, but we give a more precise
overview of this problem in Chapter 5.

Since ]ﬁlq is a discrete quantum subgroup of the dual of quantum free product and for the later
the strong Baum-Connes property has already been studied in Section 3.6, we will work with H,

and not with G ¢, SJJ{, itself.

3.7.2.5 Remark. Before carrying on, it is advisable to describe explicitly the generator objects of
the localizing subcategory £ .
q

Assume that G is torsion-free. Then the only, up to equivariant Morita equivalence, non-trivial
torsion action of G i, S3; is, by virtue of Theorem 3.7.1.2, the defining action of S¥ on CV induced
to G U SJJ{,. As we have pointed out in Remark 3.7.1.3, this torsion action is in correspondence
with the torsion action of H, given by (M2(C), a,). Let us describe the Baaj-Skandalis dual of
this torsion action, that is, the crossed product H, x My (C).

T

Let us define the subset J, := S < Irr(G = SU,4(2)) as the set of irreducible representations of
G # SU,(2) generated by the action of Irr(Hy) on w, that is,

Ju:=8:={yelrr(G+SU,2)) | yc h@u with h e Irr(H,)}

Then we put
Ay = Ay = PB(H,) < ¢ (G * SU,(2))
yeS

and observe that, by virtue of Theorem 3.7.1.2, we have the following decomposition
(G + 5U4(2)) = A4, ® (Deo(ly))
N

as ]ﬁlq—C*—algebraS. Again by Theorem 3.7.1.2 we observe that ]ﬁLI D; Ay must be equivariantly

Morita equivalent to (M3(C), o) (because G >1351(2) is torsion-free, so that G = SU,(2) only
admits the trivial torsion action, which restricted to an action of H, gives the corresponding torsion
action of H,). In particular, A, is equivariantly Morita equivalent to H, x Mz(C).

T

In other words, we have showed that

A~

L = ({A, ® B with B € Obj(# 7} 0 {co(Hy) ® B with B e Obj(# 4)})

again by virtue of Theorem 3.7.1.2.
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3.7.2.6 Theorem. Let G be a compact quantum group and N = 4 a natural number. If G

is torsion-free and satisfies the strong Baum-Connes property, then G . S¥; satisfies the strong
Baum-Connes property.

Proof. By virtue of Lemma 3.7.2.3 it is enough to prove that Iﬁlq satisfies the strong Baum-Connes
property.

Recall that ]ﬁLI <G >;§U\q (2) is a discrete quantum subgroup of the dual of a quantum free
product. G is torsion-free and satisfies the strong Baum-Connes property by assumption and
Sﬁq(\Q) is torsion-free and satisfies the strong Baum-Connes property by [210], [211] (recall as well
Theorem 2.1.5). Hence, G */S_IT( 2) is again torsion-free by Theorem 3.6.1.1 and satisfies the strong

Baum-Connes property by Theorem 3.6.2.3. This means that fG*SU @ J{%G*ﬁ(z)

Let B e Obj(f%ﬁQ) any ]HI -C*-algebra. We have IndG*SU‘I(Q)( B) e ZG*SU (2)° Thanks to

Remark 3.7.2.5 we know that ¢ (G = SUq( ) = Aq@)(@cO( q)> as ]ﬁlq—C’*—algebras. Hence it is clear
N

that the restriction functor preserves the localizing subcategories of compactly induced C*-algebras,

that is, ResG*SU"(2) (.,Z”G*?U\q@)) c % . In particular, Resgjsm’(2 (I dG*SU“ )(B)> € Zﬁq.

q
Finally, using the explicit descrlptlon of induced C*-algebras given in Sectlon 1.4.3 we know that

G#SU,(2) (I dG*SU £(2) (B))

B is a retract of ResH Since fﬁ is closed under retracts by definition of

localizing subcategory, then we obtaln that B e .Z , which completes the proof. |

3.7.3 K-amenability property

Here we care about a property of own interest, namely the K-amenability of a free wreath product.
In contrast to the compact quantum group constructions studied in preceding sections, here the
K-amenability property will be particularly useful for the K-theory computations in Section 4.2.

In Remark 1.7.2.11 we have noticed that the K-amenability property is automatically fulfilled
for every torsion-free discrete quantum group G satisfying the strong Baum-Connes property.
Recall that the argument used in Remark 1.7.2.11 consists in proving that the action of G on the
Baaj-Skandalis dual of the trivial torsion action is always amenable.

Following the discussion of the preceding section, an obvious generalization of this fact can be
carried out in the torsion case.

3.7.3.1 Definition. Let G be any discrete quantum group. A @—C*—agebra P is said to be proper
almost homogenous if it is equivariantly Morita equivalent to G x T', for some torsion action
kA

Te Tor(@).
3.7.8.2 Note. The terminology proper almost homogeneous has been firstly introduced in [212] by

C. Voigt and inspired by the work of R. Meyer and R. Nest in [133], where they formulate and
establish the strong Baum-Connes property for duals of classical compact connected groups.

3.7.3.3 Lemma (C. Voigt, [?l?]) Let G be any discrete quantum group. If P is a proper almost
homogenous G-C*- algebra, then G acts amenably on P.
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3.7.8.4 Remark. In addition, if G is another discrete quantum subgroup such that G and G’ are
monoidally equivalent, then P is proper almost homogenous with respect to G if and only if it is
with respect to G'.

3.7.3.5 Theorem. Let G be any discrete quantum group. Denote by HHC the corresponding
equivariant Kasparov category and put

Lo ={T®B withT e Tor(@) and B € Obj(H H )Yy < H H#C

~

L = ({G x T® B with T € Tor(G) and B € Obj(# #)}) c # A

If@ satisfies the strong Baum-Connes property, which means that £ = Ji/%/@, then G is
automatically K-amenable.

Proof. Indeed, it enough to observe that every generator of £ is a proper almost homogeneous

@—C*—algebra and so G acts amenably on generators of £z = A by Lemma 3.7.3.3. This
concludes the proof because the crossed product functor is compatible with countable direct
sums. -

3.7.3.6 Corollary. Let G be a compact quantum group and N = 4 a natural number. If@ is

torsion-free and satisfies the strong Baum-Connes property, then Gl S3; is K-amenable.



CHAPTER

An application: the K-theory for the Lemeux-Tarrago’s
ﬁq<(}*SUdm

The fourth chapter is dedicated to illustrate the general and abstract theory about the quantum
Baum-Connes formulation, as it has been presented in the present thesis, with a major application:
explicit K-theory computations. More concretely, we achieve the computation of the K-theory
groups for some free wreath products by using the results obtained in Section 3.7.

In Section 4.1 we explain the different general strategies for computing the K-theory of C*-
algebras defining compact quantum groups by using the categorical framework of Meyer-Nest for
the quantum Baum-Connes property. In other words, we describe in detail the general method
used by C. Voigt and his collaborators to this end.

In Section 4.2 we perform, inspired by the pioneering work of C. Voigt and his collaborators,
an explicit K-theory computation for some free wreath produ/cf.\ More precisely, we compute
the K-theory groups of the C*-algebra C(H,), where ]ﬁlQ < G = SU,(2) is the Lemeux-Tarrago’s
discrete quantum subgroup which is such that H, is monoidally equivalent to G 1, S]f,. This is done
in three different situations: a) when G is a free orthogonal quantum group, b) when G is a free
quantum group and ¢) when G := F,, is the classical free group on n generators. The whole content
of Section 4.2 is a collaboration work with A. Freslon [127].

267
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Strategies for K-theory computations

The work of C. Voigt and his collaborators [140], [208], [210], [211], [212] have been very fruitful
with respect to the K-theory computations of C*-algebras associated to compact quantum groups.
Let us explain the general strategy used by C. Voigt to this end.

The categorical framework adopted by R. Meyer and R. Nest in their approach for the Baum-
Connes property is also a powerful tool for the K-group computations. The notion of spectral
sequence coming from algebraic topology and algebraic geometry turns out to be a very useful
method to compute homology groups. In this way, the general idea in the Meyer-Nest’s work is to
develop an adapted homological algebra for triangulated categories with which we can establish
appropriated spectral sequences. Once we restrict ourselves to the Kasparov category, these spectral
sequences reveal a strong connexion with the K K-groups. Nevertheless, it is important to say that
using spectral sequences in full generality in this context is still a very hard problem to solve for
doing explicit computations. But in some concrete situations, spectral sequences restrict to much
more handle sequences, which allows such explicit computations.

In order to understand what follows, Section 1.2 and specially Section 1.2.4 contain the main
material that we need.

First of all, we have already explained that, for the moment, a quantum version of the Baum-
Connes property must be formulated for discrete quantum groups. Likewise, all along in this
dissertation we have stressed that the torsion phenomena in the quantum setting is one of the
main obstacles in order to formulate properly a quantum version of the Baum-Connes property.
Recall that, doing the comparison with the classical discrete case, the main problem comes from
the definition of the localizing subcategory .Z. Indeed, we must be careful in the manipulation of
the induction functor.

Although we have already noticed in the end of Section 1.7.2 that some typical examples of
compact quantum groups have discrete duals that fail to be torsion-free, the corresponding K-group
computations may avoid this shortcoming.

In this way, if G is a compact quantum group, we shall distinguish two main complementary
situations for the K-group computations of C(G): G is torsion-free and G is not torsion-free.

4.1.1 Torsion-free discrete quantum group case

The “algorithm” for the K-theory computations is the following.

i) We show that G satisfies the strong Baum-Connes property. This means that £ = 2% G,
For this we may use different techniques. For instance, Poincaré duality and Dirac-dual Dirac
method is used for the quantum free product case or the maximal torus argument is used for

—

SU,(2) (and also for duals of connected compact Lie groups).

ii) Since G is torsion-free and it satisfies the strong Baum-Connes property, we know that G
is automatically co-K-amenable as explained in Remark 1.7.2.11. This means in particular
that C,(G) is isomorphic to C(G) at the level of the K-theory, so that we do not make any
difference between these C*-algebras in the corresponding Kasparov category and we write
simply C(G).



4.1.

iii)

iv)

Strategies for K-theory computations 269

By virtue of the K-amenability characterization of J. Cuntz, which is still true in the quantum
setting (see Remark 1.3.1.41), we know that there doesn’t exist any difference between reduced

and maximal crossed product at the level of the K-theory, so that we write simply G - for
both the reduced and the maximal crossed product functor.

We consider the homological ideal J := kerHom(Res%) and we construct a J-projective
resolution of length 1 for C in ¢ #C, say

0—>P1A>POE>(C—>O

4.1.1.1 Remark. On the one hand, since G is supposed to be torsion-free, £ is described as
the localizing subcategory of A generated by the objects of tlge form cq (@)A® C with C
any C*-algebra in the Kasparov category # % . In particular, co(G) ® C = ¢y(G) € L.

On the other hand, by virtue of Theorem 1.7.2.6, we know that 3 is actually the localizing
subcategory of & ¢ G generated by J-projective objects.

In this way, the most obvious candidates for the J-projective resolution above are Py := co(@)

~

and P; := ¢o(G). Otherwise, we may take suitably modifications of these Py and P; depending
on the concrete situation.
Notice by the way that, given an irreducible representation x € Irr(G), there exists an obvious

map from co(@) to itself in # . #© induced by the co-multiplication A. More precisely, we
have the following composition

T, : co(@) 2 M(co(@) @ co(B)) 25 M(co(@) ® B(H,)) = co(@),

where the last identification is the evident Morita equivalence. Moreover, it is straight-
forward to see that the corresponding induced map at the level of the K-theory, (T,)s :

~ ~

Ko(co(G)) — Ko(co(G)), identifies with the right multiplication by T under the usual identi-
fication Ko(co(G)) = R(G). So we put rz := (T)«, for all z € Irr(G).

Likewise, the left regular representation of G, A : co(G) —> K(L2(G)), yields a map in & ¢ G
between ¢o(G) and C (notice that K(L*(G)) = C in %Ji/@). Moreover, we recall that the
R(G)-module structure on Z is induced by the dimension function. In other words, it is
straightforward to see that the corresponding induced map at the level of the K-theory, 3\* :
Ky (co(G)) — Ko(C) is given by the dimension function e, which is such that e(z) = dim(x)

~

for all « € Irr(G) under the usual identification Ko(co(G)) = R(G) and Ko(C) = Z. So we
put € := Ay, for all z € Irr(G).

These identifications are in accordance with Remark 1.7.1.23.

Observe that, by virtue of the adjointness between induction and restriction functors (recall
Lemma 1.7.2.4), we have that KK®(A, B) = (0), for all A € Obj(.# %) and for all B e .
Indeed, since G satisfy the strong Baum-Connes property by step (i), it is enough to check
this for @—C*—algebras A€ Z;. Hence, we write

KKC(IndS(B), A) = KK(B, ResS(A)) = (0),
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for all B € 7.

Observe that, thanks to the sirong Baum-Connes property, this is also true for A:=Ce
Obj(H #C).

Step (ii7) and the observation of step (iv) allow to apply Theorem 1.2.4.9. Hence, we know
that there exists a short exact sequence

LoF(2(C)) — F(5(C)) —» L1 F(571(C)),
where F 1 4 #C — o/b%/2 is the homological functor given by F(A) := K, (@ x A), for all
A€ Obj(nxC).

In the Kasparov category J& ¢ © and thanks to Bott periodicity, this sequence is precisely the
following six-terms exact sequence,

Ko(G x 67) Ko(G x )

Ko(G x Py) Ko(G % Py) Ko(C(G))

Kl((@xPo) K1<@'><P1)

K1(C(G)) ~ ~
Kl(GIX60) Kl(GD((Sl)
This may yield the computation of Ky(C(G)) and K;(C(G)) since Py and P; shall be chosen
in such a way that we know the K-groups of the crossed products G x Py and G x P;. Indeed,
recall Remark 4.1.1.1 above.

It is important to observe the following. Sometimes, it seems that working in the “compact
category” # # ¢ (doing Baaj-Skandalis duality) is more convenient. In this case, we may
modify step (¢i7) above by constructing a Z-projective resolution of length 1 for C(G) for an
appropriated homological ideal Z in .# .# €. Therefore, we obtain an analogous 6-terms exact
sequence as above by applying directly Theorem 1.2.4.9 with the K-theory functor.

4.1.2 Torsion discrete quantum group case

The “algorithm” for the K-theory computations is the following.

i)

ii)

We carry out a complete classification of the torsion for G. Let us denote by ']Tor(@) the set of
all torsion actions of G. Recall that a torsion action of G is the pair (A, ), where A is a unital
C*-algebra and ¢ is an ergodic action of G on A.

By analogy with the classical locally compact case, we may re-define the corresponding localizing
subcategory {CZqy:.) by adding the G-C*-algebras arising from the torsion phenomena studied
in step (7). More precisely, we may put

Lo = Lo = (CLour.) := ({T ® B with T € Tor(G) and B € Obj(# %)},
whose Baaj-Skandalis dual is denoted by £ := (CZqut.)-
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4.1 Remark. Observe that this definition is consistent with the definitions and constructions of
Section 1.7.2 for the torsion-free case. Indeed, assume that G is a torsion-free discrete quantum
group. In this case, the unique torsion action of G is the trivial one. Hence Tor(G) = {C} and
the above definition yields

<Cfout,> = {{C ® B with the trivial action of G on C and B € Obj(# %)})
~ ({B € Obj(# #®) | B with trivial action of G}),

which corresponds exactly to (CZgus.) = <{CO(@)®B with B € Obj(¢ ¢ )}) by Baaj-Skandalis
duality (recall Theorem 1.7.1.20 and Proposition 1.7.2.3).

We show that G satisfies the strong Baum-Connes property. This means that £ = "% G,
Notice that from a theoretical point of view, we do not have any right to speak about “quantum
Baum-Connes property” for the torsion case. Nevertheless, we can re-define the strong Baum-
Connes property for this case by requiring the abstract condition £z = %% G where L
depends now on the torsion phenomena of G as established in step (i).

For proving this, we shall have two possibilities

a) either we prove it directly using adapted techniques coming from the torsion-free case

b) or we prove it using monoidal equivalences. Indeed, we have already explained in Theorem
B.3.19 that torsion actions of monoidallly equivalent discrete quantum groups are in bijective
correspondence. In this way, if F is a discrete quantum group that is monoidally equivalent
to G, then we have

Tor(G) = Tor(F) and # #C ~ ¢ 4
If F is “well-related” with an other discrete quantum quantum group for which we know
the strong Baum-Connes property, the monoidal equivalence may yield the property for G
itself. For instance, this is the situation for the quantum automorphism group of a finite
dimensional C*-algebra [212] or for the free wreath product as it has been shown in Section
3.7.

Since £ takes into account the torsion phenomena of @, Remark 1.7.2.11 can not be applied
in a straight fashion, so that in the torsion case the K-amenability is not guaranteed a priori.
However, the notion of proper almost homogeneous G-C*-algebra (see Definition 4.5 and Lemma
4.6 in [212] for more details) allows to generalize Remark 1.7.2.11 in the torsion case as it has
been shown in Theorem 3.7.3.5.

In other words, our definition of the subcategory £ and thus the corresponding definition of
strong Baum-Connes property guarantees the K-amenability property whenever G satisfies the
strong Baum-Connes property.

Therefore, we write simply C(G) for both the reduced and the maximal C*-algebra associated

to G. Likewise, we write simply G x - for both the reduced and the maximal crossed product
functor.

We consider a homological ideal J and we construct a J-projective resolution of length 1 for
Cin # #C, say
0— P1 i’ P() & C—0



272 CHAPTER 4. An application: the K-theory for the Lemeuz-Tarrago’s ]ﬁlq <G @(2)

4.1.2.1 Remarks. 1. Notice that, because of the torsion of @, we can not do an obvious choice
of the homological ideal J. Its definition depends thus on the concrete situation in which
we are working.

2. Notice that, because of the torsion of @, we can not do an obvious choice of the J-projective
objects P and P;. However, following Remark 4.1.1.1 and the definition of the subcategory
Zp in step (74), the reasonable choice should be a suitable combination of ¢o(G) and objects

Te ']I‘or(@). For instance this is the situation for the quantum automorphism group of a
finite dimensional C*-algebra [212].

Nevertheless, remark that we must check that such combinations defining Py and P, are
actually J-projective objects (in terms of the choice of the homological ideal 7). In other
words, we have to stress that in the torsion case we don’t have a priori an analogue of
Theorem 1.7.2.6, so that we don’t have a priori that £z is generated by J-projective objects.

vi) We prove that KK@(A, B) = (0), for all Ae Obj(f%ﬁ) and for all J-contractible object B
in 0.
Notice that this step is automatically fulfilled in the torsion-free case thanks to the adjointness
between induction and restriction functors and the obvious choice of the homological ideal 7.

vii) Step (v) and step (vi) allow to apply Theorem 1.2.4.9. Hence, we know that there exists a
short exact sequence

LoF(2(C)) — F(5'(C)) —» L1 F(571(C)),
where F 1 € — o/b%/2 is the homological functor given by F(A) := K, (@ x A), for all

A€ Obj(nxC).

In the Kasparov category & 2 € and thanks to Bott periodicity, this sequence is precisely the
following 6-terms exact sequence,

Ko(G x Py) MKO(G « py) 0(G = %)

Ko(C(G))

Kl(C(G)) <—K1(G X Po) %Kl((} X Pl)
(G X (50) (G X 51)

viii) This may yield the computation of Ky(C(G)) and K;(C(G)) since Py and P; shall be chosen
in such a way that we know the K-groups of the crossed products G Py and G P;. Indeed,

recall Remark 4.1.2.1 above and observe that now we have to know in addition the K-theory
of Tor(G).

ix) It is important to observe the following. Sometimes, it seems that working in the “compact
category” # #© (doing Baaj-Skandalis duality) is more convenient. In this case, we may
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modify step (v) above by constructing a Z-projective resolution of length 1 for C(G) for an
appropriated homological ideal Z in # . # ©. Therefore, we obtain an analogous 6-terms exact
sequence as above by applying directly Theorem 1.2.4.9 with the K-theory functor.

From the preceding panorama we may conclude the following. The torsion-free case is well-
understood up to natural choices of the [J-projective resolution for C. However, the torsion case
presents deep difficulties since we have to adapt the general theoretical framework in order to give
a meaning to the “quantum Baum-Connes property”. In addition, the torsion phenomena yields
new C*-algebras for which neither there exists a natural choice for the J-projective resolution for
C nor the corresponding K-groups are known a priori.

For this reason, even if we solve the theoretical issue for a general formulation of a quantum
Baum-Connes property, the study of the torsion phenomena remains a central stage that we can
not avoid for the K-theory computations.

The general torsion-free-strategy has been successfully applied for free quantum groups [208]
and for SU,(2) [210] obtaining in particular the following K-groups

Ko(C(U*(n))) = Z and K1 (C(U*(n))) = ZBZ

Ko(C(O*(n))) = Z and K,(C(O*(n))) = Z

Likewise, the general torsion-strategy has been successfully applied in a ingenious way for a
quantum automorphism group of a finite dimensional C*-algebra [212] obtaining in particular the
following K-groups

Ko(C(S7)) = ZV"~2N+2 and K, (C(S})) = Z

The Lemeux-Tarrago's ]ﬁlQ <G @(2)

First of all, the whole content of this section is a collaboration work with A. Freslon [127]. We will
follow the same notations from Section 2.6 and Section 3.7.

The main motivation for this work has been the computation of the K-theory of the C*-algebra
defining a free wreath product G S’]f,, where G is a compact quantum group and N > 4 is a
natural number. However, the research carried out in [127] has not shed light on how to apply the
methods described in the preceding section in order to perform such a computation. To the best
knowledge of the author, the cohomological dimension of a free wreath product (see [21] for more
details) is not known yet, so that it is reasonable to expect that the K-theory of C*(G 1 Sy;) can
be computed by means of a spectral sequence (that is to say, it is not enough to construct projective
resolutions of length 1), which differs from the examples known up to the present.

Despite this setback, we can work with the Lemeux-Tarrago’s compact quantum subgroup H,,
which is monidally equivalent to the free wreath product G S;{,. The reason for this is that ]ﬁlq isa

discrete quantum subgroup of G */E'Fq (2), which is the dual of a free product of compact quantum
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groups. Hence, our strategy consists in combining the work [208] by R. Vergnioux and C. Voigt
with the work [211] by C. Voigt.

Let us be more precise. Let G be a compact quantum group such that G is torsion-free and
satisfies the strong Baum-Connes conjecture. Put F := G+ SU,(2). We shall begin by particularizing
the steps described in Section 4.1.1 and Section 4.1.2 using the results from Section 3.7.

i) The torsion for the dual of the free wreath product G S]f, is completely classified. Hence, the

torsion for Iﬁlq too by monoidal equivalence. In particular, the only, up to equivariant Morita
equivalence, torsion action of Hj, is given by (M3(C), oy) (see Remark 3.7.1.3).

ii) The dual of the free wreath product G 1, S[f, satisfies the strong Baum-Connes property. Hence,
H, too by monoidal equivalence (see Theorem 3.7.2.6). In particular, fﬁq = ¥ M where

L o= ({Hy x M5(C) ® B with B € Obj(# %)} U {co(Hy) ® B with B e Obj(# )}

iii) The dual of the free wreath product G i Sy is K-amenable. Hence, I?]IQ too by monoidal
equivalence (see Corollary 3.7.3.6). For this reason we write simply C'(H,) for both the reduced
and the maximal C*-algebra associated to H,. Likewise, we write simply H, x - for both the
reduced and the maximal crossed product functor.

iv) Since G is torsion-free by assumption and Sm) is torsion-free (recall Theorem 2.1.5), then
F=Gx SU,(2) is still torsion-free by Theorem 3.6.1.1. In this situation, let us consider the

usual homological ideal J := kergom, (Resg*SU“(z)) Assume that we have a J-projective

resolution of length 1 for C in & ¢ G*ﬁ@), say

0— P 25 P2 Cc—0

Moreover, G satisfies the strong Baum-Connes property by assumption and Sm) too (recall
Theorem 2.1.5). Hence F=G=+S U,(2) satisfies the strong Baum-Connes property by Theorem

3.6.2.3. So, by virtue of Theorem 1.2.4.9 there exists a distinguished triangle in .7 ¢ ¢*5Ua(2),
which can be written, up to J-isomorphism, under the form

P2 Py C— n(P)

v) Given the discrete quantum group I?]IQ <G */57(1(2) =T, let us restrict the preceding distin-

guished triangle to a distinguished triangle in .# %4,

I Res(80) A
&%%%JC—@@%®D (4.2.1)

q

vi) Finally, applying the homological functor F' : & ¢ He s orp?/2 given by F(B) := K, (]ﬁlq x B),
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for all B € Obj(t % ]ﬁIQ) leads to the following six-term exact sequence

Ko (B, x Rest, (P1)) —— KoM, x Resl, () ————— Ko(C(H,))
(4.2.2)

Ki(C(H,)) ~—— K (H x Res} (po)) - K (ﬁq x Res} (pl))

To sum up, our strategy consists in constructing a J-projective resolution of length/l\for Cin
H #E*#5Ua(2) and then restricting the corresponding distinguished triangle in J# . #€*5Ua(2) o a
distinguished triangle in J& ¢ ]ﬁIQ, which leads a six-term exact sequence by applying the functor
K, (H, x -), which allows to compute the K-theory of C(H,). This process is plausible because
G *’TS”?( 2) is torsion-free and satisfies the strong Baum-Connes property. Moreover, for some
choices of G we can give an explicit J-projective resolution by applying the result [208] by R
Vergnioux and C. Voigt. Namely,

a) if G := O*(n) is a free orthogonal quantum group with n > 2, then Theorem 7.1 in [208]
suggests

P = (o+(n) . SUq(Q)) @ co (o+(n) . SUq(Q)) and Py := o (O+(n) . SUq(2)>

81 := (T, — dim(u)id) ® (T, — dim(v)id) and &y := A,

where u denotes de fundamental representation of SU,(2), v the fundamental representation of

O*(n) and ) the left regular representation. Recall that the homomorphisms T,, and T, were
defined in Remark 4.1.1.1.

b) if G :=UT(P)* ...+ U (Py) * O (Q1) * ... * OT(Q,) is a free product of free unitary and

free orthogonal quantum groups, where P; € GL,,,(C) with m; > 2 for all i = 1,...,k and
Qj € GLy,;(C) with n; > 2 satisfies Qj@j = +id for all j = 1,...,1; then Theorem 7.1 in [208)]
suggests
2k+1+1 . —
Pii= @ o (G * SU,I(Q)) and Py := ¢ (G * SUq(2))
r=1

0y = (—T—)l((Tu —dim(u;)id) ® (T —dim(u;)id) ) é( —dim( vj)zd)) @ (T, — dim(u)id)

=1
and 50 = X

where u denotes de fundamental representation of SU4(2), u; the fundamental representation of
U+( ;) for every i = 1,..., k, v; the fundamental representation of O (Q;) for every j =1,...,1

and \ the left regular representation.
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c) if G:=T,, is the classical free group on n generators, then an appropriated modification of the
resolution given in [208] suggests to take

n+1

P = Poo (1F 5 SU,(2 )) and Py := g (IE‘n @(2))

r=1

81 := (T, —id) ® (T, — 2 id) and & := A
i=1
where u denotes the fundamental representation of SU,(2), a1,...,a, the canonical generators
of F,, and X the left regular representation.

It is important to remark that in this case we must check that the corresponding diagram

Py o, Py %, C defines actually a J-projective resolution of length 1 for C in J# % Fo 504 (2)

because we can not apply directly the result [208]. We will be more precise later on.

In the first stage of this process we work with G ﬂ:S;U\q (2), which is torsion-free and then we
only have to restrict the corresponding resolution to ﬁq. It seems that the torsion phenomena of
]ﬁLI does not play any role in this computation. But this is not true at all. Namely, the process of
restriction of the step (v) above implies the computation of the distinguished triangle (4.2.1), for
which the torsion phenomena of ﬁq is central. This computation is our next goal.

4.2.1 Note. This restriction strategy has already been used by C. Voigt for computing the K-theory
of the quantum automorphism group of matrices. See Theorem 5.2 in [211] for more details.

4.2.1 Preliminary computations

Given the quantum free product F := G = SU,(2), recall from Section 2.5 that ¢o(G >!:5;17(1(2)) =

@ B(H,), where Irr(G=SU,(2)) = Irr(G) = Irr(SU,(2)). Denote by u the fundamental
yelrr(GxSU4(2))

representation of SU,(2), which can be viewed as an irreducible representation of the quantum free

product, u = €g * u. Denote by p, the minimal central projection of ¢o(G @(2)) on B(H,). As
in Remark 4.1.1.1 we consider the following composition

T, : co(F) -2 M(co(® ® o)) @5 M (co(F) @ B(HL)) = co(F),

where the last identification is the canonical Morita equivalence and © denotes the co-multiplication
of the quantum free product F = G*SU,(2). This composition is a homomorphism in o #C*SU(2)
so that it is viewed as an equivariant Kasparov trlple T,e KK F(CQ(F) o (I@‘)) We can restrict
this element to a homomorphlsm in # " because H <F. By abuse of notation, the element
ResA ( w) € KK (¢ (IE‘), CO(IF)) is still denoted by T,.

More precisely, the equivariant Kasparov triple T, is defined by the Hilbert co(]’li‘) module
H:= co( ) ® H, with rlght actlon of F given simply by multiplication of the first tensor, that is,
the action dy : H — M(H@co( )) is such that 5H(a®7])( )=a-b®n, forall a,be co( ) and all

n € H,. Moreover, the #-homomorphism (id ® py) 0 © : co(F) — M(co(F) @ B(H,)) = L@ (H)
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defines an equivariant representation of cgy (I@) on H. Recall Section 1.7.1 for the general definitions
of equivariant Kasparov triples in the quantum setting.
Consider the descent homomorphism with respect to H,,

~

i, + KK (co(), co()) — K I (Hy x co(F), By x co(F))

We want to understand the image of T, under Jg,- For this, we must describe co(I@“) as a ﬁq—C*—

algebra. In other words, we are going to compute Res% (CO(IAF)). Let w € Irr(G) = Irr(SU,(2)) =
q
Irr(F) be a word with letters in Irr(G) u Irr(SU,(2)) which is

- either empty
- or starts in Irr(G).

For instance, the fundamental representation u is a plausible word w in the sense of the preceding
definition. Given any word w as above, we define the following subset of Irr(F),

Jo={y e Irr(F) | y < h@w with h e Irr(Hy,)}

Notice that Jg = Irr(H,) by definition. Given any word w as above, we define the following
C*-algebra,

A, = C®O B(H,)

yeJo

Let us give two important observations.

- Given a word w as above, we write

Co

() ®B(H) = (@ BUHW)@B(H) = @ BH,® M)
helrr(Hg) helrr(Hg)
~ @ B(H,) = @ B(H,) = A,
ych@w Yy€Jw

which implies that A, is equivariantly Morita equivalent to ¢ (]ﬁlq). Consequently, Baaj-
Skandalis duality yields the following isomorphism in % .# Ha

H, x A, =~ CQK(L*(H,)),
for all word w as above.

- Since ]ﬁlq is a discrete quantum subgroup of F=G @ (2), then we know from Proposition
1.4.3.4 that

~ CO

CO(F):( @ B(Hh))@( P B(Hy))

helrr(Hg) yelrr(F)\Irr(Hg)
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But we have Jg = Irr(Hy), so that Irr(F)\Irr(H,) = @ J., because H, is generated, by
w#
definition, by the words of the form uzu with x € Irr(G) (recall Theorem 2.6.2). Hence we

write

= (B s o (@ (Hom)) - 406 (D) 0.

yeJy wED yel, wED

o (4.2.3)
- 4,0 (DA

wHFEU

In other words, we have obtained that Res%1 (co (I@‘)) =A,® ( @ Aw). By abuse of notation
q

wWHFU
we still denote by c¢o(F) this restriction. Consequently, Baaj-Skandalis duality yields the
following isomorphism in .# ¢ 4

, x eo(F) = COK(I(H,) © (D COK(IAH,))),

wHU
which, at the level of K-theory, yields

Ko(H, x co(F)) = Z, @(@Z ) and K1 (M, x co(F)) = (0),

w#u

where Z, denotes the copy of Z corresponding to A, and Z, denotes the copy of Z cor-
responding to A, with w # u. Let us denote by e, and by e, the unit of Z, and Z,,
respectively.

The description of co(F) as a Iﬁlq-C’*-algebra given in (4.2.3) yields that the element T, €

KK

(co(ﬁ), Co (IF')) splits as a direct sum, so that we can study each summand separately. With

the same notations as above, we can compute the element jg (T%) at the level of K-theory, which
q
will be denoted in the same way by abuse of notation.

4.2.1.

1 Proposition. The element 0, := jg (Ty) acts on the basis as follows
q

1) ifw# & and w ends in Irr(G), then Oy(eyyr) = €yurtl + €uur—1,

it) if w# & and w ends in Irr(G), then 0y(ew) = ewu,

itt) if w = u, then 0y(e,) = 2ey,

w) if w =, then 0y(eg) = 2e,.

Proof. First of all, remark that given any a € B(H,) with y € Irr(F), then by construction we have

T.(a) =

(id ® p,)O(a) € (—D B(H,) ® B(H,). Therefore, we have four possibilities.

Yy zu
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i) If y € J,u» with w # ¢ ending in Irr(G), then either z € J k41 or 2 € J ue-1. Indeed,
y € J,» means that y ¢ h @ wuk, for some h € Irr(H,). Since y = 2 @ u, then it must be
either z € J,,x+1 or z € J,,»—1 because applying the fusion rules of SU,(2) we have

either z c h@wu* ' = yc howi" ' Qu = (h@wuk) ® (h@wuk“), for some h € Irr(H,)
or zc h@wu*1=yc howu* tou= (h@wuk”) ® (h@wuk), for some h e Irr(Hy)
Therefore, Oy (€y k) € Zeyyri1 @B Ze k1.

ii) If y € J, with w # J ending in Irr(G), then z € J,,,. Indeed, y € J,, means that y € h@ w,
for some h € Irr(Hy). Since y < z @ u, then it must be z € J,,, because applying the fusion
rules of SU,(2) we have

zChQuu=ych@Quu@u= (h@w)@(h@u2), for some h e Irr(H,)

Therefore, 0y (ey,) € Zeyy.

iii) If y € Jy, then z € Jy. Indeed, y € J, means that y < h @ u, for some h € Irr(H,). Since
Yy C z@u, then it is clear that it must be z € Jy = Irr(H,).

Therefore, 0, (e,) € Zeg.

iv) If y € Jg, then z € J,. Indeed, y € Jg = Irr(H,) means that y = h € Irr(H,). Since y < zQu,
then it must be z € J,, because applying the fusion rules of SU,(2) we have

zCch@Qu=ycC h@u@u:h®(h@u2), with h =y e Irr(H,)

Therefore, 0, (eg) € Ze,,.

Let us analyze the first case, so that consider a non-empty word w ending in Irr(G) and
consider an irreducible representation y € J_,x. By the above discussion, we know that T} (a) €

co
@ B(H.)® B(H,) with either z € J 11 or z € J,x-1, for all a € B(H,). Hence, in order

yczu

to study 0, = jg (T), we have to understand the image by the descent homomorphism of the

Kasparov triple associated to T, corresponding to the term associated to either wu**! or to wuF—!

in the direct sum decomposition of ¢(F) (recall the formula (4.2.3) and that each term A, is

isomorphic to ¢o(H,) ® B(H,,)). In other words, we have to understand either the module

A~

f, x (co(ﬁq) ® B(H, 1) ®Hu) e KK(]?ﬂq x co(Hy) ® B(H e ), Hy % co(H,) @B(kukﬂ)),

equipped with the right action given simply by multiplication on the first two tensors and the
representation of Hy x co(H,) ® B(H,,,+*) given by multiplication for the crossed product and

(Pour+1 ® py) © 0 for B(H,,x); or the module
H, x (co(]ﬁlq) ® B(H,p 1) ®Hu> e KK(JﬁIq x co(Hy) ® B(H,u ), Hy x co(H,) @B(kuk,l)),

equipped with the right action given simply by multiplication on the first two tensors and the
representation of H, x co(H,) ® B(H,,») given by multiplication for the crossed product and

(Pour—1 ® Dy) © O for B(H_ ).
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Let us concentrate on the first one and write it in the following way as bimodule,

By x o () ®B(H,, k) (Hq x o (Hlq) @ B(Hour1) ®Hu>ﬁqxc0(ﬁq)®5(1{ ot1)

Notice that the crossed product appearing here is isomorphic to the compact operators by
Takesaki-Takai duality, so that we can remove it.

B(H, 51 Hu>
B(kuk)< ( wukt )® B(H, 1)

Next, remark that H,,.+1 is a finite dimensional Hilbert space. Hence, B(H,,x+1) is Morita
equivalent to C by means of H_,x+1, so that we write the following

B(H,, k) (B(kuk+1) ®Hu> SB(H, ) (kukH ®  B(H,uk+1) ®H“><c

B(H,, k+1)

%B(kuk) (kuk+1 ® Hu)([),

B(H,, ,k+1)

where the representation of B(H,x) is given simply by the embedding of B(H,,x) as a corner in
B(H,+x+1 ® Hy,). Next, let us apply Morita equivalence on the left action in analogous way. We
have

lle

B(H,,k) (ku"‘“ ® Hu)(c c (kuk ® (kuk“ ® Hu))@

B(H k)

wu

C (kuk B(HQQ ) (kuk @kuk+2)>c

k

lle

wu

=C (kuk ku’“) ’
C

®
B(H,,,k)
where for the last equality we remark that B(H,,») acts by zero on Hk+2 (recall that B(H,,») is
embedded as a corner in B(H,x+1 ® Hy) = B(Hur @ Hy,yri2)).

In other words, we have obtained that the module corresponding to the term wu identifies
with 1 € Z = Ko(C) = KK(C,C) in the copy Z,,~+1, that is, with e, x+1. The same computation
works for the module corresponding to the term wu®~!. Hence, by virtue of the above discussion,
we have 0y (eg,uk) = €yyr+t1 + €yur—1, as claimed in the statement.

The same computation works for the case (i7) of the statement. For the cases (iii) and (iv) of
the statement, it is clear that e, and ey are exchanged. Moreover, the action of 0, on Zey @ Ze,,
does not depend on the compact quantum group G, so that it is enough to do the computation
when G is trivial. In that case, we have H, = SO,(3) and the result was proven in [211].

k+1

|
4.2.1.2 Lemma. For a word w # & and w # u which ends in Irr(G) we put
E, := span{e,,+ | k € N} and E, := Zeg @ Ze,
Put dy, := 0, — 2 id. The following properties hold.
t) The image of E, by dy, is 2Z(egy — ey,).
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it) The image of E,, by d,, is the free module spanned by the vectors &, := e,y r+1—age,, for allk € N,
where (an)nen @S the sequence defined recursively by ag := 2, a1 := 3 and ax4+1 1= 2a — a1,
forall k> 1.

Proof. i) Indeed, using the formulas obtained in Proposition 4.2.1.1 we write
dyleg) = (0 — 2 id)(eg) = duley) — 2em = 2e, — 2eg € 2Z(eg — €4,)
dy(ey) = (0u — 2 id)(ey) = Oulew) — 2e, = 2eg — 2¢,, € 2Z(eg — ey,)
Hence d(E,) = 2Z(eg — e,) as claimed.

ii) For this we proceed by induction showing that the image of the span of {d, (e, )}o<i<k equals
the span of {§}o<i<k-

- For kK = 0 and k = 1 we have respectively the following
dy(ew) = (0y — 2 id)(ew) = epu — 2ew = &o

dy(€wn) = (On — 2 id)(ewn) = €wuz + €w — 2€4u = €2 — €y, + dey, — 2e,, = &1 — 28

- Assume that for every 0 <! < k the span of {d,(e,,:)} equals the span of {£}.

- Then we write

dy(epyr+1) = (On — 2 id)(eyit1) = €yt + €yr — 2€yk+1
= ey btz + (Epo1 + ap—1€4) — 2(&k + arey)
= egyrte + (a1 — 2ap)en + Ep_1 — 2&
= €uuh+2 — Qg+1€w + &1 — 2k
=&kt + &1 — 26k € span{&ifo<i<ir1

Since the family {£x}ren is free, the result follows.
[ ]

After these preliminary computations, we can carry out the study of the K-theory of C(H,) for
the different choices of G as explained in the beginning of this section.
4.2.2 G :=0%(n) is a free orthogonal quantum group

If G := O*(n) is a free orthogonal quantum group with n > 2 and we put F := O" (n) = SU,(2),
then Theorem 7.1 in [208] suggests

P = co(ﬁ’) @ co(ﬁ’) and Py := cO(IAF)

01 := (T, — dim(u)id) ® (T, — dim(v)id) and §g := A,

where u denotes de fundamental representation of SU,(2), v the fundamental representation of
O™ (n) and X the left regular representation.
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Hence, the preliminary computations above yield that diagram (4.2.2) becomes now the following
six-term exact sequence

(o (@2.))” #2220 (02.) Ko(C(H,))
K1(C(H,)) 0 0

where d, := 0, — n id and 0, := jﬁq (T,). Therefore, we have to compute
Ko(C(Hy)) = coker(d, @ d,) and K, (C(H,)) = ker(d, ® d,)

In order to so, we need an analogue of Proposition 4.2.1.1 for d,. Let us denote by f, and by
f. the unit of Z,, and Z,,, respectively of the second copy of Z,, ® ( @ Zw) coming from P;.

wWHEU

4.2.2.1 Proposition. The element 0, := jg (T) acts on the basis as follows

1) for all word w, Oy(fupk) = fuvk+1 + fupk—1,
i) if w =& orw ends in Irr(SUL(2)), then 0y(fu) = fuuv,
iii) if w = u, then 0y(fu) = nfu,

Proof. The first two cases follow from the same computations as in Proposition 4.2.1.1. Let us
show the third one.

As in Proposition 4.2.1.1, remark that given any a € B(H,) with y € Irr(F), then by construction

~ Co
we have T,(a) = (id®p,)O(a) € @ B(H.)® B(H,). In particular, the only representation z
yczu

such that u ¢ z @ v is uv. Moreover, uv € J,, because uv < uvu @ v = uv @ uvu?, where we take
h :=uvu € Irr(H,). Hence, it is clear that 0,(f.) € Zf.,.

In order to study 0, = jg (T%), we have to understand the image by the descent homomorphism

q

of the Kasparov triple associated to T, corresponding to the term associated to u (recall the formula
(4.2.3)). In other words, we have to understand the following module

]ﬁlq x A, ® H, € KK(ﬁq 1% Au,}ﬁlq X Ay),

equipped with the right action given simply by multiplication on the first tensor and the represen-
tation of H, x A, given by H, x (id ® p,)O. Let us write it in the following way as bimodule,

By virtue of Remark 3.7.2.5, this yields the same K K-theory element as

Ms(C) (Mz(C)®Hv)M2(C),
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where the right action is simply multiplication on the first tensor and the representation of My (C)
is faithful.

Next, remark that Moy (C) is Morita equivalent to C by means of C2?, so that we write the
following

M2(C) (MQ((C) ®Hv)

~ C? Ms(C)® H,
M:(C) Mg(c)( M%%C) 2(0)® >c

= M,(0) ((C2 ® HU)C

(@9, (o),

By faithfulness of the representation of Mo(C), the latter Hilbert space has dimension n. In
other words, the module corresponding to the term u identifies with n € Z = Ky(C) = KK(C,C)
in the copy Z,, that is, with n f, and the proof is complete. |

4.2.2.2 Lemma. The following properties hold.
t) The kernel of d, ®d, is Z(eg + ey) ®Lfy.

it) The image of d, is spanned by the vectors i 1= e k+1 — brey, for all k € N, where w is a
word ending in Irr(SU4(2)) (possibly empty) and (b, )nen is the sequence defined recursively by
by :=n, by :=n% —1 and byp1 := nby, — by_1, for all k > 1.

Proof. i) We are going to prove that the vectors (eg + e,,) @ f,, provide a Z-basis for ker(d, ®d,).
Consider an element

T = Ayey + pufu + Z (Awvew + pofo) € Zy ® Zyy @ (@Zw> ® (@Zw)

wH#EU w#u w#u

and assume that (d, @ d,)(z) = 0.
Denote by L the maximal length of the words appearing in this sum with non-zero coefficient.

If L > 1, then a word w of length L must be either of the form w’u* or w'v*. Assume that w

is of the form w'u” and let ky be maximal so that w’u*® occurs in the element z. So either
Ao # 0 or p, # 0. If A, # 0, then

Awew/uko-H - (du @ dv)(l')

must be a linear combination of basis vectors non including e, k+1, which is impossible

because (d, ® dy)(x) = 0. If p,, # 0, then

o forurort — (du @ dy) ()

must be a linear combination of basis vectors non including f,,ko+1, which is impossible
because (d, ®d,)(x) = 0.
The same argument works when w is of the form w'v*.

If L =1 and w = v*, then we get the same contradiction. In conclusion, the sum only contains
terms associated to w = u or w = ¢J. So we write

T = Ayly + tufu + Agey + g fo
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and we compute its image by d, ® d,,

(du ®dy)(x) = du(Aueu + Ageg) + do(piufu + g f)
= Au(2eg — 2e,) + Az (264 — 2ex) + pu(n fu—n fu) + pg(fo —n fg)
= (2)\u — 2/\@)6@ + (2)\@ — 2)\u)€u + ,u@(fv -n f@)

Since (d, @ dy)(x) = 0 by assumption, the above computation implies A, = Az and ug = 0.
In other words, (e, + eg) @ f, is a Z-basis for ker(d, @ d,), which ends the proof.

ii) The analogous argument as the one of Lemma 4.2.1.2 yields the claim of the statement.
[ |

4.2.2.3 Theorem. Letn >2 and N > 4 be natural numbers. Let O (n) 1. Sy be the free wreath
product of the free orthogonal quantum group OT(n) by Syx. If H, denotes the corresponding
Lemeuz-Tarrago’s compact quantum group which is monoidally equivalent to OF(n) 1y S]J\r,, then

Ko(C(H,)) = Z® Zo and K1(C(H,)) = Z*
Proof. Thanks to Lemma 4.2.2.2, we have
K1(CH,)) =ker(d, ®dy) = ZDZ

Let us compute Ko(C(H,)) = coker(d, ® dy). Denote by m the canonical quotient map
Zu ® ( D Zw> Ty @ ( D Zw>/Im(du D d,) = coker(d, @ dy).
w#u wFu
If we consider a word of the form wu* of length at least 2 (so w # &), then we have that

T(epur) = ag—17(ew)

Namely, since w # J, then e_» € E,, and Lemma 4.2.1.2 assures that d, (E,,) is spanned by the
vectors & = ey, k+1 — age,, for all k € N. This relation yields in particular e+ — £x—1 = ax—_1€,-
Since &x—1 € Im(d,) < Im(d, ®d,) by construction, then we obtain the formula above.

If we consider a word of the form wv* for any w (possibly empty), then we have that

7€k ) = bp_17(€y)

Namely, Lemma 4.2.2.2 assures that I'm(d,) is spanned by the vectors 1 = e, r+1 — bie,,, for all
k € N. This relation yields in particular e » — nx—1 = bg_1€4. Since ni_1 € Im(d,) < Im(d, ®d,)
by construction, then we obtain the formula above.

In conclusion, coker(d, ®d,) is spanned by the vectors (e, ) with w a word of length at least 1.
But notice that 7(e,x) = by_17(eg). Hence we have to consider only the vectors m(e,,) and w(eg)
and coker(d, @ d,) has rank at most two.

Observe that e, ¢ Im(d,) by construction. Moreover, recall from Lemma 4.2.1.2 that d,(E,) =
2Z(eg — ey) < Im(d,) < Im(d, @ d,). Hence, 2m(eg) = 27 (ey,).

In other words, the vector 7(e,,) is free in coker(d, @ d,)) and it generates a copy of Z inside
coker(d, ® d,) and the vector m(eg) satisfies the relation 27w (ey) = 2 (e,) inside coker(d, @ d,),
so that it generates a copy of Zs inside coker(d, @ d,). In conclusion,

Ky(C(H,)) = coker(d, ®d,) = Z @ Zs,

generated by m(eg + e,,) and m(eg — €y,). [ |
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423 G:=U{ #...«Uf «Of ...+« O; is a free quantum group

EG:=U"(P)#*...+UT(P) *O01(Q1) * ...+ 07(Qy) is a free product of free unitary and free
orthogonal quantum groups, where P; € G L,,, (C) with m; > 2foralli = 1,...,kand Q; € GL,,(C)
with n; > 2 satisfies Qj@j = +id for all j =1,...,0 and we put F := G = SU,(2), then Theorem
7.1 in [208] suggests

2kti+1 ~
Pii= @ co(F) and Py := ¢o(F)
r=1
k !
01 = @((Tm —dim(u;)id) ® (T — dim(u;)id) ) @( — dim( vj)zd)) ® (T, — dim(u)id)
i=1 j=1
and §g := X

where u denotes de fundamental representation of SU,(2), u; the fundamental representation of
U*(P;) for every i = 1,...,k, v; the fundamental representation of O*(Q;) for every j =1,...,1
and \ the left regular representation.

Hence, the preliminary computations above yield that diagram (4.2.2) becomes now the following
six-term exact sequence

(Zu o (@ Zw))@mm A (@ Zw) — > Ky(C(H,))

WHFU wWHFU

K1(C(Hy)) 0 0
2k l
where d := @ (dy, ® dar) ® D(do,) @ d,, with
i J
dy; 1= 0y, —m; id and 0, .—jH (Ty,), foralli=1,...,k

dy; 1= 0y, —n; id and 0, —]H( ), forallj=1,...,1

J

Therefore, we have to compute
Ko (C(Hy)) = coker(d) and K1 (C(H,)) = ker(d)
and the same computations as before yield the following result.

4.2.3.1 Theorem. Let m; > 2, n; = 2 and N > 4 be natural numbers, for all i =1,...,k and
j=1,..,01. Let G:= UV (P) %...« UT(Py) * OT(Qq) * ...+ OT(Q)) be a free product of free
unitary and free orthogonal quantum groups as above. Let Gl SIJ{[ be the free wreath product of
the quantum free product G by S]\L,, If H, denotes the corresponding Lemeuz-Tarrago’s compact
quantum group which is monoidally equivalent to G 14 SX,, then

Ko(C(H,)) = Z® Zy and K1(C(H,)) = Z*++1+1
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4.2.4 G :=TF, is the classical free group on n generators

If G := F,, is the classical free group on n generators and we put F := F,, « SU,(2), then an
appropriated modification of the resolution given in [208] suggests to take

n+1 =N =R
P := @co(F) and Py := ¢o(F)
r=1

n
§:=1061 1= P(To, —id) @ (T, — 2 id) and by := A,
i=1
where u denotes the fundamental representation of SU,(2), a1, ..., a, the canonical generators of
F,, and A the left regular representation.
First of all, let us check that the complex 0 — P; 2, Py 2, C — 0 defines actually a

J-projective resolution of length 1 for C in L%/Ji/]?, where J := kergom (Resg) as usual. For this,

it is enough to check that the application of the functor K K @(co (F), - ) yields an exact sequence of
abelian groups. More precisely, we obtain the following diagram

0 —> KK (coF), @)coa@)) — KK (co(B), () — KK (¢o(F),C) — 0

that is to say,
n+1

0— PREF) -5 R(F) > 7 — 0,
r=1

n
where §' := @ (r,-1 —id) ® (ry — 2 id) (“r” denotes the right multiplication operator) and ¢ is
i=1
the map induced by the dimension function (recall Remark 4.1.1.1 and notice that u =~ @ because
SU,4(2) is a free orthogonal quantum group, see Remarks 2.1.4).

4.2.4.1 Lemma. With the same notations as above, the diagram

n+1 ,
0— @PR(F) > R(F) =57 — 0
r=1

is an exact sequence of abelian groups.

Proof. First of all, notice that ¢ is such that e(a;) = 1, for all ¢ = 1,...,n and e(u) = 2. So the
surjectivity of € is clear. Moreover, by construction it is also clear that Im(d’) < kere.

Let us show that ¢’ is injective. Denote by e* the basis element corresponding to the repre-
sentation w in the k-th copy of R(F). Denote by x a finite linear combination of such elements in
ker(d”). Moreover, consider a word w of mazimal length appearing in x with non-zero coefficient.

If it appears in the last component, then either w ends in F,, and wu appears in §’(w) or w ends
with some u* and then, taking & maximal, wu (which ends with ©**!) appears in §'(w). In both
cases, the same argument as in Lemma 4.2.2.2 yields a contradiction.

Therefore, we may assume that w appears in of the first n components and, without loss of
generality, let us assume that w appears in the first component. If w ends with some ¥, then the
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same argument as above yields a contradiction. Thus, we have w = w’v, for some v € F,, and we
may assume that ~y is of maximal length. The same argument as above implies that v must end
with a;. Then ¢'(wy) = wya]' — wy = 0, so that wy appears in §'(x), which means that z must
contain terms whose images by ¢’ simplify with w~. But by definition of free groups, such a term
must be of the form w(+a;), which contradicts the maximality of ~.

In conclusion, ¢’ is injective. It remains to show that ker(e) < I'm(d”). For this we observe that
the vectors x,, := w — dim(w) with w any word, form a basis of ker(¢). Denote by 7 the canonical
quotient map ker(g) — ker(g)/Im(¢d’). Let us consider a non-empty word.

If it is of the form wu®, then the fusion rules of SU,(2) yields the equality

wuk = (ry, — 2 id)(wuF ) — wub 2 + 20wur

(with the convention wu™! = 0) so that

Tour = (ro — 2 id) (wuF 1) — w2 + 20uF1 — dim(wu®)

oy — 2 id)(wuhY) = (zgur-2 + dim(wuT?)) + (2201 + 2dim(wuF ) — dim(wu®)
o — 2 id) (wuF ™) — ez + 2261,

=
= (

so that m(x ) € Zm(wu*~2) @ Zr(wu*~1) (since (r, — 2 id)(wuk~1) € Im(d")). Applying this
inductively, we see that m(wu”) € Zn(w).
If the word is of the form waf, then using the equality

waf —way ™t = (r,-1 —id)(wa; )
1
we see that we can increase or decrease k depending on its sign until we get m(wal) € Zm(w).
We have shown that all the basis elements have the same image by 7. Since x, = u — 2 =

(ry — 2 id)(e€) is the image of the trivial representation, its image by m is zero and the proof is
complete. ]

In this situation, we can apply the same strategy as before. Hence, the preliminary computations
above yield that diagram (4.2.2) becomes now the following six-term exact sequence

(oo (@2.))"" Lszi0 (@) — Ko(CH,)

w#u wWHuU

K1 (C(Hy)) 0 0

where d := @(da,;) @ d,, with
dg, 1= 0q; —id and 0, := j@q(Tai), foralli=1,...,n
Therefore, we have to compute
Ko(C(Hy)) = coker(d) and K1(C(H,)) = ker(d)

and the same computations as before yield the following result.
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4.2.4.2 Theorem. Let n > 1 and N > 4 be natural numbers. Let F,, Sf\', be the free wreath
product of the classical free group on n generators F,, by Sj{,. If H, denotes the corresponding
Lemeuz-Tarrago’s compact quantum group which is monoidally equivalent to F,, 1 S5;, then

Ko(C(H,)) = Z&® Zy and K,(C(H,)) = Z"**



CHAPTER

Conclusion: open questions and possible lines of attack

The fifth and last chapter of the thesis is devoted to question ourselves about the results that we
have obtained. This chapter must be regarded as a compendium of the main questions, problems and
goals that the author has encountered during the whole research period of the present dissertation.
Most of the following subjects are part of future research projects of the author.

In Section 5.1 we care about the stability of the (resp. strong) Baum-Connes property for
constructions of Chapter 3. In Section 5.2 we care about the maximal torus strategy for proving
the strong Baum-Connes property. In Section 5.3 we care about the K-theory computations of
C*-algebras associated to concrete examples of compact quantum groups guided by the results
of Chapter 3 and Chapter 4. In Section 5.4 we care about the formulation of the Baum-Connes
property for arbitrary discrete quantum groups (torsion-free or not).
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Stability of the Baum-Connes property

Notice that one of the main application of the quantum Baum-Connes property is the computation
of the K-theory of C*-algebras arising from compact quantum groups. To this end, the strong
Baum-Connes property is the first requirement that we need. For this reason it is interesting to
analyze the strong version of the Baum-Connes property for the constructions of Chapter 3. From
a theoretical point of view, the usual Baum-Connes property is the original problem to solve and it
would be also interesting to know if we can establish directly this weaker version.

- Compact groups. If G is a classical compact group, then it is automatically amenable and
so it satisfies the strong Baum-Connes property by applying the celebrated result of Higson-
Kasparov [382]. Accordingly, G satisfies the usual Baum-Connes property. In the quantum
setting, Theorem 3.1.1 gives a model of the Kasparov category J# .2 C in terms of the
complementary pair associated to G under torsion-freeness assumption.

As a matter of fact, the amenability property is one of the main differences between compact
classical groups and compact quantum groups as we have explained in Remark 1.3.1.42. In
this sense, the first question would be the following: if G is a co-K -amenable compact quantum
group such that G is torsion-free, then does G satisfy automatically the strong Baum-Connes
property ?

Recall from Remark 1.3.1.42 that if G is amenable, then G is automatically co-amenable
(and so co-K-amenable). We can thus wonder about the relation between the Baum-Connes
property for a compact quantum group and the one for its discrete dual. Observe the following
obvious implications in the classical commutative case:

If G is compact abelian = G is discrete abelian = G satisfies the strong BC property
If T is discrete abelian = T is compact abelian = T satisfies the strong BC property

As it has been shown in [133] (see as well Theorem 3.1.3), if G is a classical connected compact
group (which satisfies the strong Baum-Connes property), then the discrete quantum group
G satisfies the strong Baum-Connes property.

From these results it is reasonable to consider the following questions.

i) Given a classical compact group G (which satisfies the strong Baum-Connes property),
does its discrete dual G satisfy the strong Baum-Connes property?

ii) Given a compact co-amenable (or even co-K-amenable) quantum group G such that G
is torsion-free, does its discrete dual G satisfy the strong Baum-Connes property? Can
we remove the torsion-freeness assumption?

iii) Inspired by Remark 1.3.1.42, the preceding question can be formulated as follows: if G is
an amenable torsion-free discrete quantum group, does it satisfy the strong Baum-Connes
property? Can we remove the torsion-freeness assumption?

iv) Can we prove a quantum version of the Higson-Kasparov theorem? Namely, can we
prove that a torsion-free discrete quantum group satisfying the Haagerup property sat-
isfies directly the strong Baum-Connes property? Can we remove the torsion-freeness
assumption?
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- Quantum subgroups. On the one hand, we know from Theorem 3.2.2.1 and Proposition
3.2.2.3 that the (resp. strong) Baum-Connes property is hereditary for divisible discrete
quantum subgroups. But, to the best knowledge of the author, it is still open to know if the
(resp. strong) Baum-Connes property is preserved by arbitrary discrete quantum subgroups.
Moreover, up to the present, it has not been shown a discrete quantum group that does not
satisfy the (resp. strong) Baum-Connes property.

On the other hand, we know from [3] that strong torsion-freeness is preserved under divisible
discrete quantum subgroups. We have conjectured in the end of Section 3.2.1 that the same
stability result must hold for the torsion-freeness in the sense of Meyer-Nest. Observe that, in
general, discrete quantum groups involved in constructions of other discrete quantum groups
are discrete quantum subgroups of the resulting object. In this way, if the divisibility condition
assured the stability of torsion-freeness in the sense of Meyer-Nest, then we could simplify the
statements of Chapter 3 concerning the stability of the Baum-Connes property by removing
the assumptions of torsion-freeness of all discrete quantum groups involved.

- Quantum direct product. On the one hand, we have studied the strong Baum-property for
a quantum direct product in terms of the quantum groups involved obtaining the stability
result of Theorem 3.3.2.3.

On the other hand, we wanted to study directly the usual Baum-Connes property for a
quantum direct product in terms of the quantum groups involved. However, we have observed
that such a stability result is closely related to the Kiinneth formula (see Corollary 3.3.2.5 and
Remark 3.3.1) as in the classical case [37]. Nevertheless, the quantum counterpart contained
in this dissertation is not a totally optimal conclusion.

In this way, we open a first line of work beyond the present dissertation. Namely, it would be
interesting to establish a quantum setting for the Kinneth formula in order to find sufficient
conditions to a crossed product (by a discrete quantum group) to belong to the class N'. More
precisely, we are inspired by the work of J. Chabert, S. Echterhoff and H. Oyono-Oyono in
[37]. They develop an abstract categorical framework for the Kiinneth formula in terms of
what they call “Kiinneth functors”. If G is a locally compact group, then this approach allows
to give an equivariant version of the class N, say Ng. One of the main theorems in [37] is
the following: “Let A be a G-C*-algebra. If K x A e N, for all compact subgroup K < G,
then Ae Ng”.

It is reasonable to extend these definitions and constructions for discrete quantum groups. Can

we replace G by a discrete quantum group G (perhaps under the torsion-freeness assumption)
?

- Quantum semi-direct product and compact bicrossed product. We have studied the wusual
Baum-Connes property for a quantum semi-direct product in terms of the quantum groups
involved. In this way, Theorem 3.4.2.4 is the quantum counterpart of the result [34] by J.
Chabert. Under the torsion-freeness assumption, a compact bicrossed product becomes a quan-
tum semi-direct product as explained in Section 3.5. Hence, the corresponding Baum-Connes
property does not give any relevant information.

The strong version of the Baum-Connes property has been studied in Theorem 3.4.2.6. Notice
that it is not clear a priori (even with torsion-freeness assumption) that we can recover the

strong Baum-Connes property for F from the strong Baum-Connes property for I" and G.
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In this sense, the stability of the strong Baum-Connes property for a quantum semi-direct
product has been half-achieved. However, the classification of torsion actions of F must be
the key point in order to complete this stability result and we can tackle this classification
problem using a similar strategy as the one used for the free product construction in Section
3.6.1.

In other words, the torsion phenomena turns out to be crucial for the study of the strong
Baum-Connes property, which leads us to the problem of a Baum-Connes property formulation
without the torsion-freeness assumption. In such a situation, the compact bicrossed product
plays a much more interesting role as we have pointed out in the end of Section 3.5.

Quantum free product. As we have explained in Section 3.6, R. Vergnioux and C. Voigt have
proven in [208] that the strong Baum-Connes property is stable under the quantum free
product construction.

To this end, they adapt geometrical strategies from classical well-known results in order
to apply directly the Dirac-dual Dirac method. However, once the discrete dual of such a
quantum free product is torsion-free (which has been investigated in detail in Section 3.6.1),
it is legitimate to speak about the usual Baum-Connes property. Can we establish directly the
usual Baum-Connes property for a quantum free product in terms of the usual Baum-Connes
property of the quantum groups involved?

Free wreath product. In Theorem 3.7.2.6 we have showed that the dual of a free wreath

product G i, S, with N > 4 satisfies the strong Baum-Connes property whenever G is
torsion-free and satisfies the strong Baum-Connes property.

To this end, we have had to give a suitable definition of strong Baum-Connes property taking

into account the torsion phenomena of G i, S¥. Once we can give a proper formulation for
the usual Baum-Connes property without the torsion-freeness assumption, we could consider
the question, can we establish the usual Baum-Connes property for a free wreath product from
the usual Baum-Connes property of the quantum groups involved?

Quantum group extension. In the classical case, both a direct product and a semi-direct
product can be viewed as group extensions. Moreover, the notion of extension for locally
compact quantum groups has been established in [196] by S. Vaes and L. I. Vainerman in
terms of the bicrossed product construction.

We know thanks to the work [143] of H. Oyono-Oyono that the Baum-Connes conjecture
is stable under central extensions of discrete groups. Can we establish the stability of the
Baum-Connes porperty for a general quantum group extension?

Maximal torus strategy

If G is a compact connected Lie group with torsion-free fundamental group, then G satisfies
automatically the strong Baum-Connes property as explained in Theorem 3.1.3. Notice that the
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torsion-freeness assumption of the fundamental group is not necessary since R. Meyer and R. Nest
are able to manage the quantum torsion phenomena in this case [133].

It is important to have in mind the proof of Theorem 3.1.3. Namely, given the compact Lie
group G, we consider the corresponding maximal torus 7' < G. Hence, using Lemma 3.1.2 it turns
out that the strong Baum-Connes property for T is enough to guarantee the strong Baum-Connes
property for G. And the strong Baum-Connes property for T ~ 7" with n € N is immediate.

This strategy for duals of compact Lie groups have been imitated by C. Voigt in order to
prove the strong Baum-Connes property for SU,(2) [210], [211]. These examples bring several
observations out.

a) Given a compact quantum group G, we shall find a maximal torus T < G.

b) Given the maximal torus T, we shall carry K K-theory computations out in order to understand
the object C(G/T) in & #C.

c) If G := G, is a ¢g-deformation of a compact connected Lie group, then there always exists a
maximal torus T' < G, but the K K-theory computations for C(G,/T’) remain the main obstacle
to imitate the above arguments. For G, := SU,(2) we have to deal with the K K-theory of the
Podle$ sphere. We can find a very detailed treatment of this in Section 4 of [210]. It should be
expected that these arguments can be turned out to be general enough to be applied to any
g-deformation of a compact connected Lie group.

Observe that for g-deformations, the corresponding maximal torus corresponds to a maximal
torus in the usual sense. However, we can not expect the same for a general compact quantum
group. In this way, we have to face several issues.

i) What is the precise notion of maximal torus in the quantum setting? For this, we refer to
[17] where we can find a detailed survey about the subject. Roughly speaking, given any

compact quantum group G with G < U+ (n), we can construct a family of duals subgroups

{f‘Q < G}geu(n) that plays the role of mazimal tori of the classical case. For instance, we have
the following remarkable examples

G:=U"(n) v I'g="F,
G = 0%(n) wo Lo =F,/((QQ"),; # 0= gigj = 1),
for all @ € U(n), where F,, = {g1,...,gn is the free group on n generators.
ii) We shall deal with K K-theory computations for C(G/T'g), for every Q € U(n).

iii) We obtain a family of groups parametrized by unitaries playing the role of maximal tori but
we can not construct a unique formal maximal torus.

iv) Once we have obtained this family, we have to adapt the arguments of Theorem 3.1.3 to this
more general setting. In particular, we shall prove that the corresponding I'g satisfy the strong

Baum-Connes property to achieve the conclusion for G.

For instance, observe that the free group F,, satisfies clearly the strong Baum-Connes property
and we have stated in (i) above that the family of maximal tori for the free unitary quantum group
is given simply by the free group. In this sense, we can think about a different method from the
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the one used by R. Vergnioux and C. Voigt in [208] as explained in Section 3.6 in order to prove
the strong Baum-Connes property for U+ (n).

Observe finally that the key point of the argument of [133] is that the compact connected Lie
group G contains some subgroup 7' < G that satisfies the strong Baum-Connes property and such
that the object C(G/T) is well understood in .#.# ¢ in terms of the torsion phenomena of G. Let
G be a compact quantum group. We contemplate proving the strong Baum-Connes property for G
using the maximal torus strategy. The above observation leads us to suggest not searching for a
maximal torus, but searching for an appropriated discrete quantum subgroup H<G. Namely, i
should be such that it satisfies the strong Baum-Connes property and the object C(G/H) is well
understood in # %€ in terms of the torsion phenomena of G.

K -theory computations

One of the main application of the quantum Baum-Connes property is the computation of the
K-theory of C*-algebras arising from compact quantum groups. In this way, the stability results
obtained in Chapter 3 lead us to consider concrete examples of compact quantum groups for which
we contemplate computing the K-theory for the corresponding defining C*-algebras.

The present dissertation has already illustrated a concrete application. Namely, Chapter 4 has
been devoted to compute the K-theory of C'(H,), where H, is Lemeux-Tarrago’s compact quantum
group which is monoidal equivalent to the free wreath product G . S]f, with N > 4. We recall
that such a computation has been carried out for three different choices of G: a) when G is a free
orthogonal quantum group, b) when G is a free quantum group and ¢) when G is the classical free
group on n generators.

Other concrete and interesting examples that we can consider are the following.

i) f F:=T x G denotes the quantum semi-direct product of a compact quantum group G by

(o7
a discrete group I', we shall find concrete examples of this construction arising from known
(quantum) groups. Let us be more precise following [216].

a) Examples coming from classical groups. Let G be a compact group and consider a discrete
subgroup of G, say H < G. There always exists an action of H on G by inner automorphisms,
say «. In this way we can construct the corresponding quantum semi-direct product,

F:= H x G,

which is, in general, a genuine compact quantum group. If both G and H are finite
groups, this construction yields examples of finite quantum groups. But in this case the
corresponding [ is not torsion-free. For instance, the finite subgroups of H yield torsion for
F by Theorem 3.4.1.1. Hence, we should do a preliminary analysis of the torsion phenomena
in order to perform the corresponding K-theory computation.

b) General construction. Let G = (C(G), A) be a compact quantum group. We describe the
general construction with the following steps.
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Define the following set

X(C(G)) :=={¢: C(G) — C, #-homomorphism # 0},

which is a compact group whenever it is not empty. Suppose that for a given G,
X(CG)) # @.
- For every ¢ € X(C(G)) we define the following automorphisms of C'(G),

Ao i= (67! ®id) o A and py = (id® ¢) o A,

where ¢! denotes the inverse of ¢ in the group X (C(G)).

- It is straightforward to show that A4 and ps commute, so that we define the following
quantum automorphism of G

Qg 1= A © Pgs
for every ¢ € X (C(G)). In other words, we have just defined an action a : X (C(G)) —
Aut(G) of X(C(G)) on G by quantum automorphisms.
- In this situation we can construct the corresponding quantum semi-direct product,

F:= X(C(G)) x G

Observe that, in this general construction, the condition X (C(G)) # & is the key point
in order to obtain the compact quantum group F := X (C(G)) x G. The typical compact
quantum groups as SUy(2), OT(n) or U™ (n) (recall Section 2.1) satisfy this condition.

Besides, it is possible to describe explicitly the corresponding compact group X (C(G)) (and
even the corresponding action «) for these typical examples (see Section 4 in [216] for more
details)

X

G 1= SU_1(2) v X(C(SU_1(2))) = { < ' o ) € SU(2) | 2y =0}

G :=0"(n) v
G:=U"(n) v

(C(0*(n))) = O(n)

X
X(C(U*(n)) = Uln)

In particular, we contemplate computing the following K-theory groups,

Ko (C(O(n) x 0+(n))) = 7 and K, (C(O(n) x 0+(n))) =7

Ko (C(U(n) - U+(n))) — 7 and K, (C(U(n) ™ U+(n))) —7
ii) As we have already explained in Section 4.2, the main motivation of the collaboration work
with A. Freslon [127] has been the computation of the K-theory of the C*-algebra defining a
free wreath product G 1 S3; with N > 4. But, to the best knowledge of the author, there is
not an obvious way to apply the methodologies from the work of R. Vergnioux and C. Voigt
to the free wreath product case. However, it is an open question to know the cohomological
dimension of G i, S¥; [21]. This, together with the research carried out in [127], yields the
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expectation of computing the corresponding K-theory by means of a spectral sequence, which
differs from the examples known up to the present.

To this end, the first step should be to adapt some classical homological notions into the
framework of triangulated categories in the spirit of Section 1.2.2 and Section 1.2.4 such as the
cohomological dimension. Next, inspired by Section 5 in [134] and guided by the analysis of the

torsion phenomena of G U Sy performed in Section 3.7.1, we should carry out a study of the

functor Ext for Gl S3;. This, together with the general theory of the Universal Coefficient
Theorem, should suggest an advisable spectral sequence.

Formulation of the Baum-Connes property for ar-

bitrary quantum groups

First of all, we focus on a less ambitious problem than the one announced in the title. Namely, we
focus on the the Baum-Connes property formulation for arbitrary discrete quantum groups.

We have already pointed out several times throughout the present dissertation that the torsion-
freeness assumption of a discrete quantum group G is crucial in order to give a satisfactory
formulation of the Baum-Connes property in the quantum setting, as it has been done in Section
1.7.2.

The main issue to such a formulation is that it is not clear

a) either what should be the homological ideal J in J¢ ¢ @, which would define the localizing
subcategory A~ of (quantum) compactly contractible objects

b) or what should be the localizing subcategory £ of (quantum) compactly induced objects.

In Section 1.6.1 we have illustrated, with duals of classical compact groups, that the torsion
phenomena in the quantum setting is not restricted to the study of discrete quantum subgroups,
but other more exotic phenomena can occur. For this reason, it is not enough to take

a) either J as the homological ideal by means of the finite discrete quantum subgroups of G by
analogy with the classical case of discrete groups (recall Section 1.2.3)

b) or .Z by means of the finite discrete quantum subgroups of G by analogy with the classical case
of discrete groups (recall Section 1.2.3)

If the only torsion phenomena for G comes from finite discrete quantum subgroups, the Meyer-
Nest’s strategy can be applied verbatim as in the torsion-free case of Section 1.7.2 because the
induction and restriction functors with respect to discrete quantum subgroups are always adjoint by
Lemma 1.7.2.4, which allows the construction of J-projective objects. Otherwise, when G admits
other types of torsion, the Meyer-Nest’s strategy must be suitably modified.

Essentially, there are two main ways to tackle this problem. On the one hand, we should find
directly an advisable candidate for both % and .#” and prove that they form a complementary
pair of localizing subcategories in .# % ©. Notice that it is enough to know one of the localizing
subcategories of the pair because the other one is completely determined by taking the orthogonal
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complement by virtue of Lemma 1.2.1.26. On the other hand, we should find either a stable abelian
category or a triangulated category %" and respectively, either a stable homological functor or a
triangulated functor F : # #© — €. Moreover, this functor must admit a partially defined
adjoint functor in the sense of Definition 1.2.2.18. In this situation, the choice of the complementary
pair (&, A4) is given by Theorem 1.2.2.20.

In any case, the whole torsion phenomena for G must be taken into account for achieving a
satisfactory Baum-Connes property formulation. In this way, inspired by the pioneering work by
R. Meyer and R. Nest [133] and by C. Voigt [212], we have announced in Section 4.1.2 that there
exists an appropriated candidate for the localizing subcategory £ of compactly induced objects

when G has torsion. Indeed, this choice of £ allows to give an abstract categorical sense to the
strong Baum-Connes property for: ) the dual of a classical compact connected group [133], i) the
quantum automorphism group [212] and #i¢) the free wreath product Section 3.7.

In connexion with the above discussion, we suggest the following questions.

a) With the purpose of defining the homological ideal J and then of constructing J-projective

objects in & #C, could it be possible to choose a stable abelian or triangulated category €5 and
to construct a, respectively, stable homological or triangulated functor

Fs: 4% —,
for every torsion action (A,d) of G such that the functor
P <F§) axx®— ] %
6€Tor(G) N
6€Tor(G)
admits a partially defined adjoint functor?

b) Could it be possible to show directly that the localizing subcategory Lz suggested in Section
4.1.2 together with its orthogonal complement ﬁé‘ form a complementary pair of localizing
subcategories in HHC?

If G is a classical compact connected group, the subcategory £ is explicitly described in [133].
Can we do a similar description without the connectedness assumption?
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APPENDIX

Generalities

The goal of this appendix is just to establish some nomenclature of well-known theories as C*-
algebras, von Neumann algebras, Hilbert modules and multiplier algebras. We don’t give any proof
and we refer to the corresponding references for the details.

As we have explained in the introduction, the main object of interest in this dissertation is
C*-algebras. They are the underlying structure for compact quantum groups (in the sense of
Woronowicz) and (quantum) K K-theory. Nevertheless, the general notion of locally compact
quantum group in the sense of Kustermans-Vaes, that is currently accepted to be the most proper
one, fit in the context of von Neumann algebras and it needs a very technical theory background.
We don’t need in this dissertation to go into these details, but in order to give to the notion of
compact quantum group (in the sense of Woronowicz) an understandable perspective inside the
general theory (Section 1.3.2), it is advisable to establish some language of von Neumann algebras.
Finally, Hilbert modules are the elementary objects for the study of K K-theory so it is important
to establish the main definitions and constructions that we use in the dissertation.

Elements of C*-algebras

Standard references for the necessary material on this subject are [53], [137], [148] and [167] (see
also [29] and [154]).

Let A be a #-algebra. A C*-norm (resp. C*-semi-norm) on A is a norm (resp. semi-norm) p on
A such that p(ab) < p(a)p(b), p(a*) = p(a) and p(a*a) = p(a)?, for all a,b e A.

- If C is any C*-algebra and ¢ : A — C' is a *-homomorphism, then it is clear that the
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application
p: A — RT
a — pla):=|lg(a)]l

is a C*-semi-norm on A. It is a C*-norm whenever ¢ is injective.

- If P is a family of C*-semi-norms on A, then the subset
Ap :={a€e A | sup{p(a)} < oo}
peP

is a #-subalgebra of A and the appllicatoin

ﬁ: AP — RT
a + pla) :=sup{p(a)}
peP

is a C*-semi-norm on Ap.

A.1.1 Definition. Let A be a #-algebra. The enveloping C*-algebra of A, denoted by C*(A), is
the separated completion of A by the C*-semi-norm

Il llmae: A — RF
a —> ||a||maz :=sup{||7(a)|| | 7 is a representation of A}

whenever this supremum is finite.
A.1.2 Remarks. 1. Tt is well-known that every #-Banach algebra admits a C*-enveloping algebra.

2. If A is a =-algebra and C*(A) exists, then the enveloping C*-algebra satisfies the following
universal property. For every #-homomorphism ¢ : A — C, where C' is a C*-algebra, there
exists a unique *-homomorphism @ : C*(A) — C such that goj = ¢, where j : A — C*(A)
denotes the canonical map.

A.1.3 Definition. Let A be a C*-algebra. An approximate unit for A is a increasing sequence
{en}nen of positive elements in the closed unit ball of A such that

lim ae, = a= lim e,a,
n—-=a0 n—--o0

for all a € A.

A.1.4 Remark. Tt is well known that every C*-algebra admits an approximate unit as a generalized
sequence. If A is in addition separable, such approximate unit can be realized as a sequence. Recall
that all C*-algebras of this dissertation are supposed to be separable.

In this case, A is called sometimes o-unital and it can be shown (see [148] for a proof) that
the existence of a countable approximate unit is equivalent to the existence of a strictly positive
element, that is, an element h € A such that ¢(h) > 0, for all state ¢ € A* (a positive element
h € A is strictly positive if and only if hA is dense in A).

A.1.5 Definition. Let A be a C*-algebra and I — A an ideal. We say that I is essential if the
following condition holds,
Vae A, al =(0)=a=0
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A.1.6 Remark. If I is in addition a two-sided closed ideal, then I is itself a C*-subalgebra of A as
well as the quotient A/I. Essential ideals are important for the notion of multiplier algebra.

A.1.7 Definition. Let A, B and E three C*-algebras. We say that E is an extension of A by B
if there is a short exact sequence of C*-algebras,

0—B-5E-254—0,

meaning more precisely that ¢ is an injective *-homomorphism, p is a surjective *-homomorphism
and I'm(t) = ker(p).

We say that B is a split extension if there exists a *-homomorphism s : A — E (called section
of p) such that po s =id,. If such a section is just a completely positive linear contraction, we say
that B is a semi-split extension.

The set of all extensions of A by B is denoted by Ext(A, B).

A.1.8 Remark. It is important to recall that, by means of the Busby invariant, Ext(A, B) is an
additive commutative semi-group and, by defining an appropriate notion of equivalent extensions,
the corresponding quotient Ext(A, B) := Ext(A, B)/ ~ is an additive commutative semi-group with
neutral element.

Denote by Ext~!(A, B) the group of invertible classes in Ext(A, B). It can be shown that,
whenever A is separable, a class of extension in Ext(A, B) is invertible if and only if the extension
is semi-split. Moreover, it is a well-known result that Ext~*(A, B) ~ KK(X(A), B).

The analogous constructions and results hold when we require equivariance conditions with
respect to a group action. We refer to [24], [86] and [187] for more information about the theory of
extensions of C*-algebras and for the proof the results stated in this remark.

A.1.9 Theorem. Let A be a C*-algebra. The following properties hold.
i) The relation defined on projections of A by
D=q=Spg=q=qp
is a partial order.

it) Given two projections p,q € A we have that p = q if and only if pAp 2 qAq. In particular,
pAp = qAq if and only if p = q.

i1i) Given a projection p € A, if pAp is finite dimensional and dim(pAp) > 1, then there exists a
non zero projection q € A such that p = q.

w) If A is unital and finite dimensional, then it has a minimal non zero projection with respect to
the order >=. If p denotes such a projection, then we have pAp = Cp.

v) Ais finite dimensional if and only if A = My, (C)®...® My, (C), for some ki,...,kn,n €N.
vi) A is simple if and only if A ~ My (C), for some k € N.

Some standard constructions for C*-algebras are the following.
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A.1.10 Theorem-Definition. Let A and B two C*-algebras. There exists a unique (up to a
canonical *-isomorphism) C*-algebra P with *-homomorphisms ja : A — P and jp: B— P
such that

i) P=C*ja(A),jp(B))

it) For any C*-algebra Q with *-homomorphisms ¢4 : A — Q and ¢ : B —> Q, there exists a
(necessarily unique) x-homomorphism ¢ : P — @ such that

Yoja=¢aandpojp = ¢p

The C*-algebra P constructed in this way s called maximal free product of A and B and is
denoted by A = B. The x-homomorphisms ja and jp are called canonical inclusions.

A.1.11 Theorem-Definition. Let A and B two C*-algebras. If 1 : A — B(H) and p: B —
B(K) are two faithful representations of A and B on Hilbert spaces H and K, respectively; then
there exists a unique *-homomorphism A : A® B — B(H ® K) such that

AMa®b) = m(a) ® p(b),

forallae A and all be B.
The application
I [lmin: AOGB — RF

defines a C*-norm on A® B, called minimal norm. Moreover, || - ||min does not depend on the
choice of the faithful representations ™ and p.

The completion of A(® B with respect to the minimal norm is denoted by A® B and it is called
minimal tensor product of A and B.

Moreover, if C, D are two C*-algebras and ¢ : A —> C, ¢ : B —> D are two *-homomorphisms,
then there exists a unique %-homomorphism

Pp®Y: A®RB —CQ®D

A.1.12 Theorem-Definition. Let A and B two C*-algebras. Let || - ||g be any C*-norm on
A® B and let A®gp B the corresponding completion. If v: A®g B — B(H) is a non-degenerate

representation of AQgB on a Hilbert space H, then there exist unique non-degenerate representations
m:A—> B(H) and p: B— B(H) such that

1(a®b) = m(a)p(b),

for allae A and all be B. Moreover, m and p commute in B(H).
The application

Il llmaz: AGB — R*
x —  ||Z|lmaz = sup{||v(z)|| | 7 is a non-degenerate rep. of A® B}

defines a C*-norm on A® B, called maximal norm.
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The completion of A ® B with respect to the mazimal norm is denoted by A ® B and it is

called maximal tensor product of A and B.

Moreover, if C is a C*-algebra and ¢ : A — C, ¢ : B— C are two =-homomorphisms with
commuting ranges, then there exists a unique *-homomorphism

pxY:A® B—C

max

such that ¢ x ¥(a®b) = p(a)(b), for alla€ A and all be B.

It is advisable to establish some nomenclature about states and weights on a C*-algebras.
A.1.13 Definition. Let A be a C*-algebra. A linear form ¢ : A — C is called

- positive if ¢(aa™) = 0, for all a € A,

- normalized if ||¢|| = 1,

- faithful if ¢(aa™) # 0 for all non-zero a € A,

- tracial if ¢(ab) = ¢(ba), for all a,b e A.

- state if ¢ is positive and normalized.

A.1.14 Remark. Let A be any =-algebra. Consider a non-zero positive linear form ¢ : A — C. For
any a,b € A the following formula holds

¢(a*b) = p(b*a)
Indeed, given a,b e A we write

0<o((a+b)*(a+b) =o¢(a*a+a*b+b*a+b*D)
= ¢(a*a) + ¢(a™b) + ¢(b*a) + H(b*b)

Since ¢(a*a) > 0 and ¢(b*b) > 0, it must be 0 = Im(¢(a*b) + ¢(b*a)) = Im(d(a*b))
Im(¢(b*a)). Since this is true for all b € B, it is also true for ib. Hence we have that 0
Im(ig(a*b))+Im(igp(b*a)) = Re(¢(a*b))— Re(¢p(b*a)). In other words, we have that Im(p(a*b)) =
—Im(o(b*a)) and Re(p(a*b)) = Re(d(b*a)), whence the formula.

In particular, any positive linear form ¢ : A — C is involutive whenever A is unital.

I+

A.1.15 Proposition. Let A be a C*-algebra.
i) If $ : A —> C is a positive linear form, then ¢ satisfies the Schwarz inequality meaning that
[6(b*a)|* < ¢(a*a)p(b*D),
for all a,be A. Moreover, ||¢|| = ¢(14) whenever A is unital.

it) If o : A —> C is a positive linear form, then it is bounded.
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iii) If ¢ : A —> C is a bounded linear form, then ¢ is positive if and only if ||¢|| = lirrgc¢(en),

for every approzimate unit {e,}nen of A. In particular, a bounded linear form on a unital
C*-algebra A is positive if and only if (1) = ||9||.

i) If Bc A is a C*-subalgebra of A and ¢ : B —> C is a positive linear form, then there exists a
positive linear functional ¢ : A — C extending ¢ and such that ||9|| = ||9||.

The GNS construction is the main result that we have to recall,

A.1.16 Theorem (GNS construction for states on C*-algebras). Let A be a C*-algebra. Given a
(faithful) state ¢ : A — C there exists a (unique up to a unitary transformation) triple (Hy, Ay, 7p)
where Hy is a Hilbert space, Ay : A — Hy is a linear map with dense image and wy : A — B(Hy)
is a (faithful) representation such that

i) ¢(a*b) = (Ag(a), Ag(b)), for all a,be A,
ii) w(a)(Ap(b)) = Ay(ab), for all a,be A.

Moreover, there eists a unique norm 1 vector € Hy (called cyclic vector) such that
i) Ap(a) = 74(a)(R), for all a e A,
i) ¢(a) = (Q, m4(a)(Q)), for alla e A.

A.1.17 Definition. Let A be a C*-algebra. A function ¢ : AT — [0, +00] is called a weight if
i) ¢(a+0b) = ¢(a) + ¢(b), for all a,be AT,
ii) ¢(ra) = ro(a), for all a € AT and all r € [0, +0).
In that case, we write
- ./\/l:; :={ae AT | ¢(a) < 400} for the positive ¢-integrable elements,
- Ny :={ae A" | ¢(a*a) < +o} for the ¢-square-integrable elements,
- My := span M = span NNy for the ¢-integrable elements.
A.1.18 Definition. Let A be a C*-algebra. A weight ¢ : AT — [0, +0] is called
- faithful if ¢(a) # 0 for all non-zero a € A™,
- lower semi-continuous if the subset {a € AT | ¢(a) < A\} = A is closed for all A € RT,
- densely defined if M;g is dense in AT (or, equivalently, if Ny or Mg is dense in A).

The C*-algebraic picture of locally compact quantum groups needs the notion of KMS-weights.
We refer to [113], [148] or [184] for more details about them. We give here the definition for the
convenience of the exposition.
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A.1.19 Definition. Let A be a C*-algebra. A KMS-weight on A is a non-zero densely defined
and lower semi-continuous weight ¢ : AT — [0, +o0] for which there exists a norm continuous
one-parameter group o on A (called modular automorphism group for ¢) such that

i) oo, =¢, forall t e R,
ii) ¢(z*z) = gi)(ai/g(x)oi/g(x)*), for all z € Dom(ai/z).

The same as for states on C*-algebras, we can establish a GNS construction for weights.

A.1.20 Theorem (GNS construction for weights on C*-algebras). Let A be a C*-algebra. Given
a (faithful) weight ¢ : AT — [0, +00] there exists a (unique up to a unitary transformation) triple
(Hy, Ny, ) where Hy is a Hilbert space, Ay : Ny —> Hy is a linear map with dense image and
my : A —> B(Hy) is a (faithful) representation such that

i) ¢(a*b) = (Ay(a),Ay(b)), for all a,be Ny,
i) mp(c)(Agp(b)) = Ag(ch), for allce A and all b e Ny.

Next, some nomenclature about complete positivity is required for the construction of quantum
crossed product by a discrete quantum group (namely, the notion of conditional expectation).

A.1.21 Definition. Let A and B two C*-algebras. A linear map ¢ : A — B is called

- completely positive (c.p. for short) if for any n € N the obvious linear map ¢, : M, (4) —
M, (B) is positive. I A, B and ¢ are in addition unital, then it is called unital completely
positive (u.c.p. for short).

- completely bounded (c.b. for short) if

[[ller = sup{llen][} < o0

ne

- contractive completely positive (c.c.p. for short) if ¢ is c.p. and |[|¢||ep < 1.

A.1.22 Remark. Any =-homomorphism and any positive linear form is c.p.

The classical GNS construction can be generalized for c.p. maps with the celebrated Stinespring’s
theorem (see Theorem 1.5.3 in [29] for a proof).

A.1.23 Theorem (Stinespring). Let A be a unital C*-algebra and H a Hilbert space. If ¢ :
A — B(H) is a c.p. map, then there exists a triple (H,, 7y, V,) where H, is a Hilbert space,
m, : A— B(H,) is a representation and V, : H — H, is a bounded operator such that

p(a) = V; omp(a)o Vg,

forallae A. In particular, ||¢|| = ||V} o V|| = [le(1)]].
Moreover, if 7,(A)V,(H) is a dense subspace in H, then the triple (H,, 7y, V,) is unique up
to a unitary transformation. Such a triple is called Stinespring dilation of ¢.
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A.1.24 Definition. Let A be a C*-algebra and B < A a C*-subalgebra. A conditional expectation
from A to B is a linear map F : A — B such that
i) F is a projection, that is, E(b) = b for all b € B,
ii) F is a B-bimodule map, that is, E(bab’) = bE(a)b’ for all b,b’ € B and all a € A,
iii) F is c.c.p.
We say that F is faithful if the following condition holds

Vae AT E(a)=0 =a=0

Elements of von Neumann algebras

Standard references for the necessary material on this subject are [54], [167], [183], [184] or Chapter
4 in [137] (see also [89]).

Let H be a Hilbert space. The space B(H) of linear operator on H can be equipped with the
following convex topology. For every &,n € H ® I?(N) we define the following semi-norm on B(H),

be.n(T) := [(n, (T @id)E),

for all T € B(H). The topology on B(H) defined by the family of semi-norms {(Ef,n}g,neH(@l?(N)

is called o-weak topology or ultraweak topology. If E — B(H) is a subspace, its o-weak closure is
=0 —w

denoted by FE

A.2.1 Definition. Let H and K be two Hilbert spaces. If M < B(H) and N < B(K) are two von
Neumann algebras, a linear map ¢ : M — N is called normal if it is continuous with respect to
the o-weak topologies on M and N, respectively.

A.2.2 Definition. Let H be a Hilbert space. If M < B(H) is a von Neumann algebra, the pre-dual
of M, denoted by My, is the following closed vector subspace of the dual space of M

M, = {we M* | wis o-weakly continuous}

A.2.3 Definition. Let H be a Hilbert space. If M < B(H) is a von Neumann algebra, a function
¢: M+ —[0,+00] is called a weight if

i) ¢(a+b)=¢(a)+ ¢(b), for all a,be M,
ii) ¢(ra) =rg¢(a), for all a e M+ and all r € [0, +0).
In that case, we write

- M;f i={ae M* | ¢(a) < +o0} for the positive ¢p-integrable elements,
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- Ny :={ae M" | ¢(a*a) < +o0} for the ¢-square-integrable elements,
- My = span M(‘g = span NN, for the ¢-integrable elements.

A.2.4 Definition. Let H be a Hilbert space and M < B(H) a von Neumann algebra. A weight
¢: M+ —[0,+00] is called

- faithful if ¢(a) # 0 for all non-zero a € M¥,
- normal if the subset {a € M ™ | ¢(a) < A} = M is ultraweakly closed for all A € [0, +0),

- semi-finite if M;f is dense in M+ (or, equivalently, if NV or M, is dense in M) with respect
to the ultraweakly topology.

The same as for states on C*-algebras, we can establish a GNS construction for weights on von
Neumann algebras. The celebrated Tomita-Takesaki theory [182] provides a detailed description
of such a GNS construction which is, by the way, one of the main ingredients for the proper
development of the locally compact quantum groups theory.

A.2.5 Theorem (GNS construction for weights on von Neumann algebras). Let H be a Hilbert
space and M < B(H) a von Neumann algebra. Given a (faithful) weight ¢ : M+t — [0, +o0]
there exists a (unique up to a unitary transformation) triple (Hg, Ay, my) where Hy is o Hilbert
space, Ay : Ny —> Hy is a linear map with dense image and w7y : M — B(Hg) is a (faithful)
representation such that

i) ¢(a*b) = (Agp(a), Ay(D)), for all a,be Ny,
ii) my(c)(Agp(b)) = Ag(cb), for all ce M and all b e Ny.

Moreover, if ¢ is normal and semi-finite, then Ay is closed with respect to the ultraweakly
topology on M and the weak topology on Hg.

Elements of Hilbert modules

Standard references for the necessary material on this subject are [117], [224], [86], [24] (see also
[101] and [161]).

A.3.1 Remarks. 1. Every C*-algebra A is a Hilbert A-module with inner product given by
{a,by := a*b, for all a,be A.

2. If Ais a C*-algebra, {e, }nen is an approximate unit for A and H is a Hilbert A-module, then

it is easy to see that
lim e, = &€ = lim e,¢,
n—aoo n—oo

for all £ € H. As a consequence, H A is dense in H.
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3. Let A be a C*-algebra and H a Hilbert A-module. Put (H, H) := span{{{,n) | &,n € H}.
We can show that (H, H) is a two-sided closed ideal in A such that H(H, H) is dense in H.
If moreover (H, H) is dense in A, then we say that H is a full Hilbert A-module.

A.3.2 Definition. Let A be a C*-algebra and H a Hilbert A-module. We say that H is countably
generated if there exists a countable set {&,}nen in H such that span{,a | a € A} is dense in H.
In this case, the set {&,}nen is called set of generators for H.

A.3.3 Definition. Let A be a C*-algebra and H, K Hilbert A-modules.

- An adjointable operator between H and K is a linear map 7' : H — K for which there exists
a (necessary unique) linear map 7% : K — H such that

(T(&),n) =& T*(n)),

for all £ € H and all n e K.
In this case T* is called adjoint operator of T and the C*-algebra of all adjointable operators
between H and K is denoted by L (H, K).

- A finite rank operator between K and H is an adjointable operator between K and H of the

form
Ogp: K — H

C i 05177(() = £<777 C>7

for some given vectors £ € H and n € K.

We define the set of compact operators between K and H as the following two-sided closed
essential ideal of L4 (K, H)

Ka(K,H) :=35pan{fe, | £€ Hne K}
A.3.4 Remark. Sometimes it is useful to work with other topologies than the norm one on L4(H, K).
Namely, the strict topology which is the topology given by the following seminorms

T — ||IT(§)|] and T — [|T* ()],
with £ € H and n € K (see Chapter 1 in [117] for more details).

A.3.5 Theorem (Standard Hilbert module constructions). i) (Exterior tensor product) Let A, B
be two C*-algebras. If H is a Hilbert A-module and K a Hilbert B-module, the exterior tensor
product of H and K, denoted by H® K, is the Hilbert A® B-module defined as the completion
of H® K with respect to the A ® B-valued inner product given by

E@n.8'@n) =& ),
forall £, € H and all n,7 € K.

Moreover, there exists a injective x-homomorphism
VK ,CA(H) ®£3(K) — ,CA®B(H®K)

such that j(T®S)(E®n) =T(E)®S(n), forall T e LA(H),S€ Lp(K) and all £ € Hne K.
Moreover, j(Ka(H) @ Kp(K)) = Kagp(H ® K).
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it) (Interior tensor product) Let A, B be two C*-algebras. If H is a Hilbert A-module, K o Hilbert
B-module and ¢ : A — Lp(K) is a -homomorphism, the interior tensor product of H and
K with respect to ¢, denoted by H ® K, is the Hilbert B-module defined as the completion of

@

H © K with respect to the B-valued inner product given by

E@n, & @)= o(& MM,
for all £, € H and alln,n' € K.

Moreover, there exists a x-homomorphism

]EA(H) —>£B(H§K)

such that j(T) =T ®id, for all T € LA(H). If ¢ is injective, then so is j.
¢

The x-homomorphism j transforms compact operators into compact operators whenever ¢ :
A — Kp(K) is a -homomorphism. In this case, if ¢ is injective (resp. surjective), then so
s J.

i1i) (Pushout) Let A, B be two C*-algebras. If H is a Hilbert A-module and ¢ : A — B is a

surjective x-homomorphism, the pushout of H by ¢, denoted by H,, is the Hilbert B-module

defined as the completion of H/N,, where N, :={{ € H | ¢((§,&)) = 0}, with respect to the
B-valued inner product given by

(€] [n]) == (K& m),
forall&,me H.

Moreover, there exists a *-homomorphism

ji La(H) — Lp(H,)
T J(@):=Tp, Ty([€]) = [TE)], for allEe H

The «-homomorphism j transforms compact operators into compact operators.

A.3.6 Theorem (Kasparov’s stability theorem). Let A be a C*-algebra and H a Hilbert A-module.
If H is countably generated, then
H® HA = HA,

where Hp := PA.
i€l
As a consequence, H is countably generated if and only if Ka(H) is o-unital.

A.3.7 Definition. Let A, B be two C*-algebras and H a Hilbert B-module. A #-homomorphism
p: A— Lp(H) is called non-degenerate if ¢(A)H is dense in H.

A.3.8 Remark. We can give several equivalent conditions for the notion of non-degenerate -
homomorphism (see Proposition 2.5 in [117] for a proof). Namely, ¢ : A — Lp(H) is a non-
degenerate *-homomorphism if and only if there exists an approximate unit {e;, }nen of A such that
lim ¢(e,) = idy with respect to the strict topology.

n—oo
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A.3.9 Definition. Let A, B be two C*-algebras and H a Hilbert B-module. A completely positive
map ¢ : A — Lp(H) is called strict if there exists an approximate unit {e,}nen of A such that
{p(en)}nen is a Cauchy sequence in L (H) with respect to the strict topology.

A.3.10 Remark. Of course, non-degeneracy implies strictness and strictness is always fulfilled
whenever A is unital.

A far-reaching generalization of the classical GNS construction and Stinespring dilation was
given by G. G. Kasparov in [101] for strict completely positive maps in the framework of Hilbert
modules (see Theorem 5.6 in [117] for a proof).

A.3.11 Theorem (KSGNS construction). Let A, B be two C*-algebras and H a Hilbert B-module.
If o : A — Lp(H) is a strict completely positive map, then there exists a (unique up to a
unitary transformation) triple (H,,V,, m,) where H, is a Hilbert B-module, V,, € Lg(H, H,) is an
adjointable operator and m, : A — Lp(H,) is a representation such that

i) pla) = Viomy(a)oV,, forallae A,
ii) 7, (A) o V,(H) is dense in Hy.
We say that ¢ is KSGNS-faithful if the corresponding representation m, is faithful.

A.3.12 Remark. Let A, B be two C*-algebras and H, E Hilbert B-modules. If 7 : A — Lp(F)
is a non-degenerate representation and V € Lg(H, E) is an adjointable operator, then the map
¢: A—> Lp(H) defined by

pla) :=V*om(a)oV,forallae A

is a strict completely positive map in the sense of Definition A.3.9.

This observation with the theorem above assure that a strict completely positive map is fully
determined by its KSGNS-construction. This fact is used in the construction of reduced crossed
products by a discrete (quantum) group (see Theorem 1.5.1.1 and Theorem 1.5.2.1).

A.8.13 Remark. We can apply this construction to (strict) conditional expectations, which has been
used for the explicit construction of the reduced crossed product by a discrete (quantum) group.

Let C ¢ B < A be C*-algebras with conditional expectations A B4, B E5 ¢, Assume that
both E4 and Ep are KSGNS-faithful. We claim that the composition £ := EgoE4: A— Cisa
KSGNS-faithful conditional expectation from A to C.

Namely, given a € A suppose that E((az)*ax) = 0, for all € A. In particular, this is true for
x := yb for some y € A and be B c A and we have E((ayb)*ayb) =0, for all be B and all y € A.
In other words,

Eg(Ea((ayb)*ayb)) = Ep(Ea((b*y*a*ayd)) = Ep(b*Ea(y*a*ay)b) =0,

for all be B and all y € A. Since E4((ay)*ay) = 0 (because E is c¢.p.) and Ep is KSGNS-faithful,
it must be E4(y*a*ay) =0 for all y € A. Since FE4 is also KSGNS-faithful, we conclude that a = 0
and hence ¥ = Ep o 4 is KSGNS-faithful as claimed.

A.3.14 Definition. Let A, B two C*-algebras. We say that A and B are stably isomorphic if
KR®A=KR®B.
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A.3.15 Definition. Let A, B two C*-algebras. We say that A and B are Morita equivalent if
there exists a full Hilbert A-module H such that B = K4(H).
In this case we write A > B.

A.8.16 Remark. We can show that Morita equivalence is an equivalence relation between C*-algebras.
In addition, if our C*-algebras are supposed to be o-unital, then the notions of stably isomorphism
and Morita equivalence are the same. We refer to Chapter 7 of [117] for more details.

We can give a more algebraic approach of Morita equivalence by means of the notion of
imprimitivity bimodules. In this way, we can show that A and B are Morita equivalent if and only
if there exists and (A, B)-bimodule 4 Xp (called imprimitivity bimodule) such that the categories of
Hilbert A-modules and Hilbert B-modules are equivalent through the functor of tensor product by
AXp. We refer to [161] and [162] for more details.

In order to present the Kasparov K K-theory of Section 1.7, it is advisable to recall the notions
of graded Hilbert modules. For more details we refer to [24].

A.3.17 Definition. Let G be a locally compact group. A G-C*-algebra is a C*-algebra A with a
group homomorphism a : G — Aut(A), g — «y, such that for every a € A the map

G — A
g > ag(a)

is norm-continuous.

A.3.18 Definition. Let G be a locally compact group and A a G-C*-algebra. A G-equivariant
Hilbert A-module is a Hilbert A-module H with a continuous action

GxH — H
(-g’g) i gg,

such that
i)g-(E+n)=g-&+g-n,forallge Gand all {,ne H,

ii) g-(£-a)=(g-&)g-a,forallge G,all €€ H and all a € A,
iii) (g-&g-ny=9g-{&n), forallge G and all £,ne H.

A.83.0.8 Remark. If H is a G-equivariant Hilbert A-module as in the above definition, then £4(H)
is a G-C*-algebra with the following action

g-T:=LsgoToLg,

for all ge G and all T'e L4(H), where Ly € L4(H) denotes the operator defined by Ly(&) :=g-¢&,
for all £ € H. Observe that this action restricts to an action of G on K4 (H).

If A, B are two G-C*-algebras, we say that A and B are G-equivariantly Morita equivalent if
there exists a full G-equivariant Hilbert A-module H such that B =~ IC4(H) as G-C*-algebras. In
this case we write A Py B.
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A.3.19 Definition. Let G be a locally compact group and A a G-C*-algebra. A graded G-C*-
algebra is a G-C*-algebra A such that

i) Ais a graded C*-algebra meaning that there exist two closed self-adjoint linear subspaces of
A, A and AM | such that A = A© @AM and AW AG) <« Al+7) mod-2 for a]] 4,5 = 0, 1.

ii) g- AW € AW for all ge G and all i = 0, 1.

The elements in A® are called homogeneous of degree i, for all i = 0,1. We say that A is
trivially graded if AW = 0.

A.3.20 Definition. Let G be a locally compact group and A a graded G-C*-algebra. A graded
G-equivariant Hilbert A-module is a G-equivariant Hilbert A-module H such that

i) H is a graded Hilbert A-module meaning that there exist two linear subspaces, H ©) and HWD,
such that H = HO @ HMV  H® AU « gl+i) mod2 and (HO HG)Y < AG+7) mod2 for a]]
1,7 =0,1.

ii) g- HD e H® for all g€ G and all i = 0, 1.

The elements in H® are called homogeneous of degree i, for all i = 0,1. We say that H is
trivially graded if H() = 0.

A.3.21 Remarks. 1. If ¢ : A — B is a G-equivariant homomorphism between G-graded G-C*-
algebras, then we say that ¢ is graded if (A®) < B foralli=0,1. fT:H — Eisa
G-equivariant operator between G-graded G-equivariant Hilbert A-modules, then we say that
T is graded if T(H®) c E® for all i = 0, 1.

2. Let A be any G-C*-algebra. It is straightforward to see that giving a (resp. G-equivariant)
graduation on A in the sense of Definition A.3.19 is equivalent to give an (resp. G-equivariant)
automorphism 6 € Aut(A) such that 2 = id4. Moreover we have that

A® —f{ae A|0(a) =a} and AV = {ae A|b(a) = —a}

3. Let H be any G-equivariant Hilbert A-module. It is straightforward to see that giving a (resp.
G-equivariant) graduation on H in the sense of Definition A.3.20 is equivalent to give a (resp.
G-equivariant) operator R € L4 (H) such that

- R? = idy,
- R(€a) = R(£)0(a), for all ¢ € H and all a € A,
- (R(&), R(n)y = 0(¢€,mp), for all {,n e H.

Moreover we have that
H® ={¢e H|R(¢) =¢ and HY = (€€ H | R(§) = ¢}

4. Let H be a G-graded G-equivariant Hilbert A-module. The G-C*-algebra of its adjointable
operators L4(H) is equipped with a G-equivariant graduation induced by the automorphism
O : La(H) — La(H)
T —> 0y(T):=RoToR™!

Notice that 8y preserves compact operators. Hence, K 4(H) is also a G-graded G-C*-algebra.
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5. It is possible to obtain the graded version of the standard Hilbert module constructions of
Theorem A.3.5 in the obvious way. See [24] for more details.

6. If we replace G by any Hopf C*-algebra S := (S, A), then the preceding definitions are still
valid. We have just to adapt in the obvious way the equivariant conditions (i¢) of Definition
A.3.19 and (4i7) of Definition A.3.20. More precisely,

- A graded S-C*-algebra is a S-C*-algebra (A, §) such that A is a graded C*-algebra with
graduation automorphism 6 € Aut(A) and one of the following equivalent conditions
holds,

i) 6(AD) < M(S®AM), for all i = 0, 1.
i) (ids ® 0)6(a) = §(6(a)), for all a € A.
- Let (4,6) be a graded S-C*-algebra. A graded S-equiariant Hilbert A-module is a

S-equivariant Hilbert A-module (H, ) such that H is a graded Hilbert A-module with
graduation operator R € L4 (H) and one of the following equivalent conditions holds,

i) g (H®D) < M(S®H®), for all i =0, 1.
i) (ids ® R)dg (&) = o (R(£)), for all £ € H.

- Let (A,§) be a graded S-C*-algebra and (H,0p) a graded S-equivariant Hilbert A-
module. If Viy € Loga(H (? (S® A), S® H) denotes the admissible operator associated
to &g, then K4 (H) is a S-C*-algebra with action Ady,, (as stated in Remarks 1.7.1.7).
Moreover, the condition of grade-preserving of the action dy is equivalent to say that
the admissible operator V is of degree 0.

- If A, B are two S-C*-algebras, we say that A and B are S-equivariantly Morita equivalent
if there exists a full S-equivariant Hilbert A-module H such that B =~ K4(H) as S-C*-
algebras. In this case we write A ~ B.

In the context of the Kasparov theory, the constructions of Hilbert modules stated in Theorem
A.3.5 can be performed for Kasparov triples. It is advisable to give the precise statement.

A.3.22 Theorem (Standard Kasparov triple constructions). i) (Exterior tensor product) Let
A, B,C be graded C*-algebras. If £ := (H,w, F) is a Kasparov (A, B)-bimodule, the exterior
tensor product of € and C, denoted by E® C, is the Kasparov (A® C, B® C)-bimodule defined
as the triple

ERC:=(HRC,j(n)=1®id,j(F) = F®id),

where j : Lp(H) ® C — Lpge(H ® C) is the canonical injective «-homomorphism such that
JTRC)E®e) =T(E)RCc, for allT € Lp(H) and all £ € H,ce C.
In an analogous fashion, we define the Kasparov (C ® A,C ® B)-bimodule C ® £.

it) (Interior tensor product) Let A, B,C be graded C*-algebras. If € := (H,w, F) is a Kasparov

(A, B)-bimodule and ¢ : B —> C' is a graded x-homomorphism, the interior tensor product of
& and C with respect to ¢, denoted by € ® C, is the Kasparov (A, C)-bimodule defined as the
@

triple
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where j : Lp(H) — Lo(H ® C) is the canonical *-homomorphism such that j(T) = T ® id,
@
forallT e Lp(H).

iii) (Pushout) Let A, B,C be graded C*-algebras. If € :== (H,w, F) is a Kasparov (A, B)-bimodule
and ¢ : B— C is a surjective graded =-homomorphism, the interior tensor product of £ and
C' with respect to ¢, denoted by &, is the Kasparov (A, C)-bimodule defined as the triple

Ep = (Hgoaﬂw Fw);

where j : Lg(H) — Lc(Hy,) is the canonical x-homomorphism such that j(T)([£]) :=

T, ([&]) = [T(&)], for all T € L5(H) and all { € H.

A.3.23 Remark. The constructions of Hilbert modules stated in Theorem A.3.5 can be performed
under G-equivariance assumptions for a locally compact group G in the obvious way. Consequently,
the constructions of Kasparov triples stated in the preceding theorem can also be performed under
G-equivariance assumptions.

Moreover, if we replace G by any Hopf C*-algebra S := (S, A), then the preceding Kasparov
triple constructions are still valid with the obvious definitions.

For instance, let us describe the case for an exterior tensor product and for an interior tensor
product.

i) Let (B,dp) be (S-graded) S-equivariant C*-algebra and (C,d¢) a (P-graded) P-equivariant
C*-algebra, where S := (S,Ag) and P := (P, Ap) are given Hopf C*-algebras. If (H,dy) is
a (graded) S-equivariant Hilbert B-module and (F,dg) is a (graded) P-equivariant Hilbert
C-module, then the exterior tensor product H® F is a (graded) Hilbert B® C-module equipped
with an action of SQP, § : HQ F — M(S@P@H@E) such that

§(&,m) := (idp ® X ®idp) © (61 (£) @ dp(n)),
forall £ e H and all ne E.

ii) Let (A,d4) and (B,dp) be (S-graded) S-equivariant C*-algebras, where S := (S, A) is a
given Hopf C*-algebra. If (H,{dpy) is a (graded) S-equivariant Hilbert A-module, (K,dk) is
a (graded) S-equivariant Hilbert B-module and ¢ : A — Lp(K) is a (graded) S-equivariant
x-homomorphism, then the map

dol&m) 1= (u(©) ® id)obic(n),

for all £ € H,n € K defines a linear map d : H @ K — M(S@H@K) so that (H ® K,d4)
¢ [ [
is a (S-graded) S-equivariant Hilbert B-module.

A.3.24 Remark. It is important to say that there doesn’t exist a natural way of defining a tensor
product of S-C*-algebras in order to obtain again a S-C*-algebra. For this reason, we have to
consider two different Hopf C*-algebras in order to give a sense to the equivariance of a exterior
product of Hilbert modules.

In other words, if G denotes a locally compact quantum group, then the Kasparov category
H #C is not equipped with a natural tensor product. In [140], R. Nest and C. Voigt introduced
the braided tensor product [X] in order to solve this problem. This notion has been occasionally used
in Chapter 3. We do not explain the construction of [x] here, but for completeness of the exposition
we include here some elementary related properties. Let G be a locally compact quantum group.
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- We denote by D(G) the Drinfeld quantum double of G, which is a locally compact quantum
group given by
Co(D(G)) := Cy(G) ® C}(G)

Ap) = (ild®T®id) o (id ® Adw, ®id) o (A® A)
- A G-Y D-C*-algebra (where Y D stands for Yetter-Drinfeld) is a C*-algebra A equipped with
an action a of G and an action A of G such that

(8@ id)(id ® a)A = (Adyw, ®id)(id ® N)a

- It can be shown (see Proposition 3.2 in [140] for a proof) that the G-Y D-C*-algebras are
exactly the D(G)-C*-algebras.

- If (A, a, A) is a G-Y D-C*-algebra and (B, () is a G-C*-algebra, then the braided tensor
product AX B is the C*-subalgebra of Lagp(L*(G) ® A® B) generated by all elements of
G

the form Aj2(a)B13(b) with a € A, b e B (see Definition 3.3 in [140] for more details).

- The braided tensor product A X B becomes a G-C*-algebra in a canonical way whose action
is denoted by a X 5. In partic«iﬂar, if B is a trivial G-C*-algebra, then AXIB ~ A® B as
G-C*-algebras with o ® id. ¢

- Moreover, the braided tensor product defines a triangulated functor (see Proposition 4.8 in
[140] for a proof)
AR HHE — A A
G

- If H < G is a closed quantum subgroup and A’ is a H-Y D-C*-algebra, then Indf(4’) is a
G-Y D-C*-algebra (see Proposition 3.4 in [140] for a proof).

- If H < G is a closed quantum subgroup, A’ is a H-Y D-C*-algebra and B is a G-C*-algebra,
then there exists a natural G-equivariant isomorphism (see Theorem 3.6 in [140] for a proof)

IndS (A' Resﬁ(B)) ~ Indi(A' )X B

Elements of multiplier algebras

Standard references for the necessary material on this subject are [137], [224], [117] (see as well [24]
and [148]).

A.4.1 Definition. Let A be a C*-algebra. The multiplier algebra of A, denoted by M (A), is the
unital C*-algebra
M(A) := La(A),

where A is regarded as a Hilbert A-module.
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A.4.2 Remark. Let A and B two C*-algebras. The notion of non-degenerate x-homomorphism for
Hilbert modules (recall Definition A.3.7) can be applied to a given *-homomorphism ¢ : A — M (B).
Observe that a surjective *-homomorphism ¢ : A — B is automatically non-degenerate. In addition,
we shall equip M (B) = Lp(B) with the strict topology (recall Remark A.3.4).

It is important to say that this class of homomorphism turns out to be more flexible and so
more appropriate than the usual class of *-homomorphism between C*-algebras. For this reason,
it is common to find in the literature that a homomorphism between C*-algebras ¢ : A — B is
presupposed to be a non-degenerate *-homomorphism ¢ : A — M (B).

A.4.3 Proposition (Main properties of multiplier algebras). i) If A is a C*-algebra and H is
a Hilbert A-module, then M(Ka(H)) = L4(H).

it) Let A and B two C*-algebras. If p : A — M (B) is a non-degenerate
x-homomorphism, then ¢ extends in a unique fashion into a unital =*-homomorphism ¢ :

M(A) — M(B).
i11) If (Ai)ier is a family of C*-algebras, then
M((—BAZ-) ~ [[M(A:) and M(HAZ-) ~ [ [Mm(4)
iel i€l iel iel

i) If A and B are two C*-algebras, there always exists a unital injective
x-homomorphism
M(A)® M(B) — M(A® B)

v) If A is a C*-algebra, then M, (M(A)) = M(M,(A)), for all n € N.

vi) Let A, A', B, B’ be C*-algebras. If p : A — M(B) and ¢’ : A’ — M(B’) are two non-
degenerate x-homomorphisms, then the tensor product x-homomorphism p® ¢’ : AQ A —
M(B)® M(B') c M(B® B’) is again a non-degenerate *-homomorphism. As a consequence,
we have a unital x-homomorphism
PR M(A® A') — M(B® B').

vii) Let A and B two C*-algebras. The flip =-isomorphism ¥ : AQ B — B ® A induces a
x-isomorphism ¥ : M(A® B) — M(B® A).

viii) Let A be a C*-algebra and B < A a C*-subalgebra. If A is o-unital and B contains the
corresponding strictly positive element, then there exists a unital injective x-homomorphism
M(B) — M(A).

The following definitions are useful for the general treatment of quantum groups in the context
of Hopf C*-algebras. For more details we refer to [6] and [200].

A.4.4 Definition. Let S, A be C*-algebras. We define the following C*-subalgebra of M (S ® A)
M(SQA) :={zrec M(SQA) | 2(S®ids) c S®A and (S ®ida)r < S® A},

which contains S ® M(A).
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A.4.5 Definition. Let A be a C*-algebra and H a Hilbert A-module. We define the multiplier
algebra of H, denoted by M (H), as the following Hilbert M (A)-module

M(H):=La(A H),
which contains canonically H = K(A, H).

A.4.6 Definition. Let S, A be C*-algebra and H a Hilbert A-module. We define the following
Hilbert M (S ® A)-submodule of M (S ® H)

M(SQH):={XeM(SQH) | X(S®ids) c S®H and (SQidy)X < S® H},

which contains M (S) ® H.
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APPENDIX

Categories

In this appendix we want to collect the main definitions and results of the category theory for
two reasons: a) the current formulation of the Baum-Connes property for quantum groups fit
in a categorical framework b) quantum groups and related concepts admit a fruitful categorical
perspective (for instance, categorification of the Yang-Baxter equation or the notion of monoidal
equivalence). Hence, it is advisable to have in mind the categorical language.

Because of the well-known logical issue that appears as soon as we want to formalize the category
theory within the Zermelo-Fraenkel set theory, we must be careful in the nomenclature. Recall
that a category ¥ is said to be small if both Obj(%€) and Home( -, - ) are sets. It is said to be
large otherwise. It is said to be locally small if only Hom«( -, - ) are sets. Recall that a class is a
collection of sets that can be well-defined by a property that all of its members have. The category
of sets is denoted by Set and it is locally small. Remark that in the framework of this dissertation
we work just with locally small categories (for instance, the equivariant Kasparov category with
respect to a locally compact (quantum) group).

We don’t give any proof in this appendix and we refer to standard references for all the details,
[122], [4], [61], [139], [103].

Generalities

B.1.1 Definition. A locally small category is the data € = (Obj(€), Home( -, - ),id., o) where
i) Obj(¥) is a class called class of objects of €,
ii) for every two objects X, Y € Obj(€), Homx(X,Y) is a set called set of homomorphisms

between X and Y whose elements are represented as an arrow from X to Y, say f: X — Y.

321
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The object X is called domain (or source) of f and denoted by Dom(f) and the object Y is
called co-domain (or target) of f and denoted by Codom(f),

iii) for every object X € Obj(¥), idx : X — X is a distinguished homomorphism from X to
itself called identity of X,

iv) for every objects X,Y, Z € Obj(%¥),

o: Homg(X,Z)x Homg(Z,Y) — Homg(X,Y)
(f,9) — gof

is an operation called composition such that

- o1is associative meaning that for every homomorphisms f € Hom¢ (X, Z), g € Home(Z,Y)
and h € Home (Y, W) with objects X, Y, Z, W € Obj(%¢) we have that

ho(gof)=(hog)of
in Home (X, W).

- o has an identity meaning that for every objects X, Y € Obj(%) and every homomorphism
f e Homg(X,Y) we have that

idyof=f=foidx
An object Z € Obj(%) is called
- initial if for every object X € Obj(€) there exists exactly one homomorphism Z — X
- terminal if for every object X € Obj(%) there exists exactly one homomorphism X — Z,
- null if it is both initial and terminal.

B.1.2 Note. From now on, the word category will mean locally small category.

B.1.3 Remark. Given a category € = (Obj(¥¢), Home( -
category of € the category €°P = (Obj(€°P), Homegor( -

- 0bj(E°F) := 0bj(%6),

, + ),id.,0), we call dual or opposite
, +),1dF 0°P) where

Homegor(X,Y) := Homg (Y, X), for all X, Y € Obj(€°P),
- id% = id,
- go® f = fog, forall f e Homgor(X,Z) and all g € Homegor (Z,Y) with X, Y, Z € Obj(€°P).

B.1.4 Definition. Let 4 be a category. A category .# is a subcategory of ¥ if the following
conditions hold

i) Obj() < OBj(%),
ii) Homy(X,Y) € Homy(X,Y), for all objects X,Y € Obj(),

iii) for all object X € Obj(.) the identity homomorphism idx € Home (X, X) is an element of
HOmy (X, X),
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iv) the composition operation on Hom s ( -, - ) is the restriction of the composition operation on
Homeg( -, - ).

We say that .77 is a full subcategory of € if Hom#(X,Y) = Home(X,Y), for all objects
X,Y € Obj(). In that case we write ./ < €.

B.1.5 Definition. Let € be a category. Given two objects X, Y € Obj(%€) consider a homomor-
phism f: X — Y.

- f is called isomorphism if there exists a (necessarily unique) homomorphism g : ¥ — X
called inverse of f, such that go f = idx and f o g = idy. In that case we write f~! := and
we say that X and Y are isomorphic.

- f is called monomorphism if the following condition holds,

VY 91,92: Z — X with Ze Obj(%), fogi=fog2 = g1 =9

- f is called epimorphism if the following condition holds,

Vgi,92:Y — Z with Z€ Obj(€), g10f = g20f = g1 =92
- a section of f is a left inverse for f, that is, a homomorphism s : ¥ — X such that
sof=1idx.
- a retraction of f is a right inverse for f, that is, a homomorphism r : ¥ — X such that
f or = idy.

B.1.6 Remark. The following are straightforward observations from the definitions. Let & be a
category.

- (idx)~! = idx, for all object X € Obj(%).

- Given two objects X,Y € Obj(%¥) if f : X —> Y is an isomorphism, then its inverse
f71:Y — X is an isomorphism as well and (f~1)~! = f.

- Given three objects X, Y, Z € Obj(¥) if f € Homy(X,Z) and g € Hom«(Z,Y) are isomor-
phisms, then their composition g o f is an isomorphism as well and (go f)~! = f~tog~1.

- The relation “to be isomorphic” establish an equivalence relation on Obj (%) whenever Obj (%)
is a set.

B.1.7 Definition. Let € and 2 be two categories. A covariant (resp. contravariant) functor
F from € to 2, denoted by F : € — %, is a rule that assigns to any object X € Obj(%) an
object F(X) € Obj(Z) and to any homomorphism f € Home(X,Y) a homomorphism F(f) €
Homg(F(X),F(Y)) (resp. F(f) e Homg(F(Y),F(X))) with X,Y € Obj(%) such that

i) Flgo f) = Flg) o F(f) (resp. F(go f) = F(f) o F(g)), for all f € Hom(X,Z) and all
g€ Homg(Z,Y) with X,Y, Z € Obj(%),

ii) F(idx) = idp(x), for all object X € Obj(%).
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.8 Remark. The following are straightforward observations from the definitions. Let ¢ and 2

be two categories.

i)

ii)

iii)

iv)

-If F:% — 2 is a (covariant or contravariant) functor, then F°P : €°? — 2°P defined
exactly as F' is a (covariant or contravariant) functor between the dual categories.

- If F: ¥ — 2 is a functor, then F' preserves isomorphisms. In fact, F' transforms commutative
diagrams on ¥ into commutative diagrams on 2.

Some typical examples of functors are the following,

identity functor: the obvious rule ide : € — % that assigns to any object and to any
homomorphism the same object and the same homomorphism is a functor from € to itself
called identity functor.

constant functor: fix an object X € Obj(Z), a constant functor from ¢ to Z assigns to any
object of € the object X{; and to any homomorphism on % to the identity of X{.

forgetful functor: a functor which simply “forgets” some or all the structure of an algebraic
object is commonly called a forgetful functor or underlying functor.

homomorphism functors: if we fix an object X € Obj(%), the left homomorphism functor is
the following covariant functor

Homg (X, - ): € —  Set
Y —> Homg(X,Y)
[iY Y s fei=fo

If we fix an object Y € Obj(%), the right homomorphism functor is the following contravariant

functor
Homg(-,Y): € —  Set
X — Homg(X,Y)
f:X—X +— :ff:=.0f

B.1.9 Definition. Let ¥ and 2 be two categories. A functor F': € — & is called

- isomorphism if there exists a (necessarily unique) functor G : 2 — €, called inverse of F,
such that G o F = idy and F o G = idy. In that case we write F~! := G and we say that €
and Z are isomorphic. If € = 2, we that that F' is an automorphism.

- faithful if for every objects X,Y € Obj(%’) the map
Fittom - Homg (X, Y) — Homo(F(X), F(Y)
is injective.
- full if for every objects X,Y € Obj(%) the map
Fittom : Homeg (X, Y) — Homa(F(X), F(Y))

is surjective.
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- equivalence if F is full and faithful and for every object X’ € Obj(2) there exists an object
X € Obj(%) such that F(X) = X’ in 2. In that case we say that € and & are equivalent. If
€ = 2, we say that F is an auto-equivalence.

B.1.10 Remarks. 1. Given a full and faithful functor F' : € — 9, it is straightforward to see
that F' is an isomorphism of categories if and only if the map Fiop; : Obj(€) — Obj(2) is
bijective. As a consequence, every full and faithful functor ' : ¥ — 2 yields an isomorphism
between € and F(2), where F(2) is the image of € by F, which is a category in an obvious
fashion (actually, it is a full subcategory of 2).

2. If .7 is a subcategory of a given category %, then there exists an obvious inclusion functor.
This functor is automatically faithful, so that . is a full subcategory of ¥ if and only if the
inclusion functor is full. As a result, in order to define a full subcategory we only need to
define its class of objects.

B.1.11 Definition. Let ¥ and Z be two categories and F,G : € — 2 two functors. A natural
transformation between F' and G, denoted by n : F — G, is a collection of homomorphisms
{nx : F(X) — G(X)}xeopj(#) in Z such that the following diagram commutes

FX) 25 qx)

for all X,Y € Obj(¥) and all f € Home(X,Y).
If the collection {nx : F(X) — G(X)}xeonj#) is formed by isomorphisms, then we say that n
is a natural isomorphism. In this case we say that F' and G are naturally isomorphic and we write

Fia.

B.1.12 Remark. We can show that a functor ' : € — Z is an equivalence if and only if there
exists a functor G : 2 —> % such that Go F ~ id¢ and F o G ~ idgy.

B.1.13 Definition. Let ¢ be a category and R € Obj(%) an object. A functor F : € — Set is
called representable by R if
F ~ Homg(R, -)

B.1.14 Definition. Let € and Z be two categories and F : € — 2 a functor. A left (resp.
right) adjoint for F is a functor F© : 9 — € (resp. F7 : 2 — €) such that for every objects
X € Obj(¥¢) and Y € Obj(2) we have an isomorphism

Home (F™(Y),X) = Homg(Y, F(X)) (resp. Home (X, F7(Y)) = Homg(F(X),Y))

such that ¢ : Homg(F" (), - ) — Homg( -, F(*))
(resp. Home( - ,F7(-)) — Homg(F(-), - )) is a natural isomorphism in each variable.

In order to prove that two functors are adjoints each other, it is advisable to have another
characterization that allow manipulable formulas. Namely, we have the following result whose proof
can be found in Theorem IV.1.2 of [122].
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B.1.15 Theorem. Let € and 2 be two categories and F : € — 2 a functor. The following
assertions are equivalent,

i) F© 1 92 — € is a left adjoint for F with natural isomorphism between the homomorphisms
sets .

it) There exist a functor S : 9 — € and natural transformations n : [dg — FoS,e: SoF —
Idy such that

- the composition F' U B oS o F RS s the identity transformation of F,

- the composition S U9 G o F oS S s the identity transformation of S.
The natural transformations n and € are called unit and co-unit of the adjunction, respectively.

The correspondence above is realized by means of the following formulas
S:=F" gy =Yy pr vy (idpe(v)) and ex =Ygy ¢ (idpx))

&= 8, 0(f) = S() oy and 74 (g) i= ex o S(g),

for all X € Obj(€), Y € Obj(2), f € Homg(F~(Y),X) and g€ Homg(Y, F(X)).
Moreover, if F'©= is another left adjoint for F, then F'™ and F© are naturally isomorphic.

Of course, given any functor F : ¥ — & it is not at all guarantee the existence of its (left or
right) adjoint. Actually, the existence of such an adjoint is related to the continuity of the functor
F in the sense that it commutes with limits. This characterization is due to P. J. Freyd and we refer
to Theorem V.6.2 of [122] or Theorem 9.28 of [4] for a proof and more precisions. It is important to
remark that in the above definition we require the domain of the adjoint functor to be the whole
category &, which is the arrival category of the starting functor F. We can be more flexible and
define F'™ just on some appropriated class of objects of 2. In the context of triangulated categories
this is advisable in order to construct complementary pair of subcategories (see Definition 1.2.2.18
and Theorem 1.2.2.20).

Finally, we shall recall some standard constructions of categories, namely the product category,
the quotient category and the localization category.

B.1.16 Definition. Let ¥ and Z be two categories. The product category of ¥ and 2, denoted
by & x 2, is the category defined in the following way

- Objects of € x 2 are pairs of objects of ¢ and 2, which is indicated by Obj(€ x 2) :=
Obj(€) x Obj(2).

- Given two objects U = (X,Y),V := (X")Y') € Obj(¢ x 2), a homomorphism h €
Homy x5 (U, V) is a pair of homomorphisms (f, g) € Home (X, X') x Homg(Y,Y").

- The composition operation on Homex5( -, - ) is defined component-wise.
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B.1.17 Remarks. 1. Observe that the product category ¥ x & enjoys the following universal
property. There exist two obvious functors

P: x99 —>%andQ:¢x92—9

called projections such that given any category & with two functors T': & — € and S :
& —> 9, there exists a unique functor F' : & — € x Z such that PoFF =T and Qo F = S.

2. Given categories ¢, 2,¢’, 2’ and functors F : € — 9, F' : €' —> 2’, we can define the
product functor by component-wise

FxF x99 —% x99,
which is, by the way, compatible with the canonical projection functors.

3. We can define the product category for an arbitrary family of categories, say {%}icr, and it
is denoted by [[%;.
iel
B.1.18 Theorem-Definition. Let € be a category and Z a rule that assigns to any pair of objects
X, Y € Obj(¥) a binary relation Zxy on Home(X,Y).
The quotient category of € by the rule Z is the category denoted by € /% endowed with a functor
Q:C — C/Z#, which is a bijection on objects, such that

i) if f,g: X — Y are homomorphisms in € such that (f,g) € Zx,y for some objects X,Y €
Obj(%), then Q(f) = Q(g),

it) if €' is another category and F : € — €' is a functor such that F(f) = F(g) whenever f,g :
X — Y are homomorphisms in € such that (f,g) € Zx,y for some objects X,Y € Obj(¥),
then there exists a unique functor H : € /% — €' such that Ho Q =~ F.

There is, however, a quotient category in the sense of Verdier which is more interesting for this
dissertation. The basic idea for the Verdier quotient category is the localization process in ring
theory. Namely we want to transform a class of homomorphisms into isomorphisms in a bigger
category. To this end, we can develop a theory of calculus of fractions, which imitates the classical
ring localization. In addition, we would like to endow such a category with a triangulated structure
whenever the starting category is a triangulated one. This is a non trivial problem solved by J. L.
Verdier in [205]. For more details we refer to [138] or [69].

B.1.19 Definition. Let € be a category and S € Home( -, - ) a class of homomorphisms. The
localization of € with respect to S is the category denoted by & [S‘l] endowed with a functor
Q: ¢ — ¢ [S7] such that

i) Q(s) is an isomorphism in ¢ [S *1], for every homomorphism s in S,

ii) if ¢’ is another category and F : € — %" is a functor such that F(s) is an isomorphism in
%’ for all homomorphism s in S, then there exists a unique factorization
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Let us consider a specific localization in the context of triangulated categories following the
preceding definition. Let 7 be a triangulated category and let 4" < T be a triangulated (resp.
thick) subcategory.

A homomorphism f € Homy is called A -quasi-isomorphism if Cy € Obj(A"). In this case, the
localization of 7" with respect to the class of .4 -quasi-isomorphisms is denoted by

T[(,/V-quasi—isomorphisms) _1] =T/

B.1.20 Theorem. Let T be a triangulated category and A < T a triangulated (resp. thick)
subcategory.
The localization category T /A is a triangulated category endowed with a triangulated localization

functor Q : T —> T /AN such that
i) N < ker(Q) (resp. AN =ker(Q)),

it) if T' is another triangulated category and F : T — T’ is a triangulated functor such that
N cker(F) (resp. N =ker(F)), then there exists a unique factorization

T—>Q T/ N
Ve
F e

The category T /AN is called Verdier quotient of T by A" and the functor Q is called Verdier
localization functor.

Abelian categories

B.2.1 Definition. Let € be a category. We say that € is additive if

i) for every objects X, Y € Obj(€), the corresponding set of homomorphisms Hom«(X,Y) is an
additive abelian group such that the composition operation o is bilinear with respect to the
group additive law,

ii) there exists a distinguished object in € denoted by 0 € Obj(%’) such that Hom«(0,0) = 0. It
is called zero object,

iii) for every objects X,Y € Obj(%), there exists an object Z € Obj(%’) with homomorphisms
Xe= 2 p—
J

such that
por=idx,qoj=1tidy and top+ joq=1idy
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The object Z is called direct sum of X and Y and it is denoted by Z := X @Y. The
homomorphisms ¢ and j are called canonical injections of X @Y and the homomorphisms p
and q are called canonical projections of X ®Y .

B.2.2 Remark. If € is a pre-additive category (that is, a category % satisfying only the axiom (i) of
the above definition) and Z € Obj(%) is any object, it is straightforward to show that the following
assertions are equivalent

i) Z is initial.
ii) Z is terminal.

iii) idz = 0.

iv) Home(Z,7Z) = 0.

In particular, any initial or any terminal object in % is a null object. Hence in an additive
category, the zero object is a null object and it is unique up to isomorphism.

B.2.3 Definition. Let ¥ and Z be two additive categories and F' : ¥ — & a functor. We say
that F' is additive if for every objects X,Y € Obj(%) the map

F‘|H0m : HOT)’L%(X,Y) - Hom@(F(X)aF(Y))
is a group homomorphism.

B.2.4 Remarks. 1. If XY € Obj(€) are two objects in an additive category €, then it is
straightforward to deduce that

poj=0andqgor=0

2. If XY € Obj(¥) are two objects in an additive category %, then their direct sum object
X @Y together with the canonical injections and projections is uniquely determined up to an
isomorphism of X @Y. If all such direct sums exist, then a choice of the object X @Y for
each pair (X,Y) in & defines a bifunctor

@:CxC€—%F

whose definition on homomorphisms is the following: given objects X, X', Y, Y’ € Obj(%€) and
homomorphisms f € Home (X, X’) and g € Hom (Y, Y”), then f®g € Home (XY, X' ®Y’)
is defined by

f@g=tofop+jogog,
where (¢, p, j,q) and (/,p’,j’,¢') are the canonical homomorphisms associated to the direct
sums X @Y and X' @Y, respectively.

3. A straightforward iterated argument yields the existence of a direct sum object for any finite
collection of objects in the category. Namely, if X1, ..., X,, € Obj(%) are objects in an additive
category ¢, then their direct sum X1 @ ...® X, is defined, uniquely up to isomorphism, by
the equations

t1opr+...+pop, =tdand py oy =idx, Vk=1,...,n
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Moreover, if Y7,...,Y, € Obj(¥) are other objects in &, then we have a isomorphism of
abelian groups

n n n
Homg (DX, Vi) = B Home Xy, Yi)
k=1 k=1 k=1

4. If F: ¢ — 2 is an additive functor between additive categories, it is clear that F' transforms
the zero object in % into the zero object in 2. Moreover, F' is compatible with direct sums,
that is, F(X®Y) =~ F(X) ® F(Y), for every objects X,Y € Obj(¥). Finally, if F is in
addition an equivalence, then the corresponding inverse equivalence is always an additive
functor.

5. It is important to observe the following: given two objects X,Y € Obj(%) in an additive
category %, then their direct sum object X @Y as defined above corresponds to both a product
and a co-product of X and Y (denoted usually by X x Y and by X 1Y, respectively). In this
sense, we say that X @Y is a bi-product. In fact, we can show that in a pre-additive category
two objects have a product if and only if they have a co-product so that the corresponding
bi-product is characterized as in the definition above (see Theorem VIII.2 in [122] for a
proof). In other words, finite product and finite co-product objects are isomorphic in an
additive category.

Notice that the product and co-product can be defined for an arbitrary family of objects
{Xi}ier in €. However, they are not isomorphic in general. In this way, an additive category
always has finite bi-products by definition but not infinite ones in general.

For the appropriate development of the homological algebra on a triangulated category,
we have to require the existence of countable bi-products, that is, countable direct sums in
the terminology above. This condition is automatically fulfilled for our main example of
triangulated category: the equivariant Kasparov category with respect to a locally compact
(quantum) group.

B.2.5 Definition. Let ¢ be an additive category. Consider a homomorphism f € Home(X,Y)
with X,Y € Obj(%).

- A kernel for f is an object K € Obj(%) and a homomorphism k : K — X such that
i) fok=0,

ii) if K’ € Obj(%) is another object with a homomorphism &’ : K/ — X such that fok’ =0,
then there exists a unique homomorphism v : K/ — K such that ¥’ = ko u.

In this case we write ker(f) := (K, k). By abuse of notation we write ker(f) = K as well.
- A co-kernel for f is an object Q € Obj(%€) and a homomorphism ¢ : Y — @ such that
i) go f =0,

ii) if Q" € Obj(¥) is another object with a homomorphism ¢’ : Y — @’ such that ¢'o f = 0,
then there exists a unique homomorphism v : Q — @’ such that ¢’ = v oq.

In this case we write coker(f) := (Q, g). By abuse of notation we write coker(f) = @Q as well.

- If f has a co-kernel (@, ¢) and p has a kernel, then we define the image of f as Im(f) :=
ker(q) := (Im(f),u).
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- If f has a kernel (K, k) and k has a co-kernel, then we define the co-image of f as coim(f) :=
coker (k) := (coim(f),v).

B.2.6 Remark. If (K, k) is a kernel for a homomorphism f, then the object K is unique up to
isomorphism and the homomorphism & is necessarily a monomorphism. If (Q,q) is a co-kernel
for f, then the object @ is unique up to isomorphism and the homomorphism ¢ is necessarily an
epimorphism.

B.2.7 Definition. Let € be an additive category. We say that € is abelian if
i) every homomorphism in % has a kernel and a co-kernel,

ii) every monomorphism is a kernel for some homomorphism in ¢ and every epimorphism is a
co-kernel for some homomorphism in €.

B.2.8 Remark. Observe that the axiom (i4) in the previous definition implies that any homomorphism
in an abelian category which is both a monomorphism and an epimorphism is automatically an
isomorphism.

B.2.9 Definition. Let € be an abelian category. Given objects X,Y, Z € Obj(%) and composable
homomorphisms f € Home (X, Z) and g € Home(Z,Y), a sequence

xLz %y
is called

- exact at Z if Im(f) = ker(g). In this case we write X REAy/ N Y,

- left (resp. right) exact if it is exact at X (resp. at Y') and at Z, that is, if f is a monomorphism
(resp. g is an epimorphism) and I'm(f) = ker(g). In that case we write 0 — X Sz %y
(resp. X Lz 45y 0),

- exact if it is left and right exact. In this case we write 0 — X L7 9y S 0anditis
called short exact sequence.

B.2.10 Definition. Let ¥ and 2 be two abelian categories and F' : ¥ — & an additive functor.
We say that F' is exact if it transforms short exact sequences in % into short exact sequences in 2.

It is well known that abelian categories have enough good properties so that we can develop a
fruitful homological algebra, which is very useful in lots of different branches of mathematics. Of
course, this classical homological algebra is presupposed for this dissertation and standard references
are [225], [33], [123], [85]. On the contrary, the concept of triangulated category introduced in
Section 1.2 generalizes in a natural fashion the structure of abelian categories in such a way that
we can also develop an analogous homological algebra. We have included a detailed presentation in
Section 1.2.2 and Section 1.2.4 and it shall serve as a comparison with the classical one.

For instance, the paradigmatic example of a triangulated category is the homotopy category
related to a given additive category. This is the starting point to the development of the celebrated
derived category of A. Grothendieck and J. L. Verdier. We recall here its definition.
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B.2.11 Theorem-Definition. Let € be an additive category. The homotopy category related to
€, denoted by F(€), is the additive category defined in the following way

- objects of H(€) are chain complexes on €,

- homomorphisms of J€(€) are homotopy classes of chain complex homomorphisms.

Moreover, (%) is not an abelian category in general, but it is always a triangulated one.
Precisely,

- the suspension functor ¥ =: [1] : H(€) —> H(¥) is defined on objects by,
S(((Xa,do)) 1= (X [1], da [1]), for all (X.,ds) € Obj(H(F)),

where (X, [1])
phisms by,

= (X,), , and (do[1]), = —(d.), _,, for all n € Z; and on homomor-

n n

N(f) = f1], for all f € Hom ) (X.,Ye) with Xo,Y, € Obj(H (%))

where (f[1] )n = fn_1, for alln € Z.

- given a chain complex homomorphism f € Hom y)(Xe,Ys) with (Xe,dxs), (Ye,dye) €
Obj(H(€)), define its cone, denoted by (Cre,dse), as the following chain complex

(Cro), = (Xo), _,®(Ys),, forallneZ

- — _(dX.)TLf O
(df‘)n = ( £ 1 (dY-)n ) ,forallneZ

Hence, a mapping cone triangle is a triangle in J€(€) of the form
X, Ly, — Cp— B(X.)

The class of distinguished triangles on (%), denoted by Ayx, is given by any triangle
isomorphic to a mapping cone triangle.

C’*—tensor categories.  Categorical picture of

Quantum Groups

B.3.1 Definition. A tensor category is the data (¢,®,1,a,l,r) where
- ¥ is a category,
- ®:% x ¥ — ¥ is a functor, called tensor product on €,

- 1le 0Obj(%) is a distinguished object of the category €, called unit object,
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- a:®o(®xid) — ®o(id X ®) is a natural equivalence, called associativity constraint for ®,
- 1:®o (1 x id) — id is a natural equivalence, called left unit constraint for ®,
- r:®o (id x 1) — id) is a natural equivalence, called right unit constraint for ®;

such that

i) « satisfies the pentagon axiom meaning that the diagram

(XRY)®(ZeW)

AXQY,Z,W. XY, ZQW

(XY)®Z)@W RY®“ZeW))

axy,z @idw %ay A

(XY ®2)W —————>XR(Y®2)®W)
X, YQZ,W

is commutative for all objects X, Y, Z, W € Obj(%).
i) a, I and r satisfy the triangle axiom meaning that the diagram

ax 1y

X®1)eY X®(1I®Y)
TA% w
X®Y

is commutative for all objects X,Y € Obj(¥).
We say that € is strict if «, [ and r are identities.
B.3.2 Definition. Let % be a category. We say that € is a C*-category if

i) for any pair of objects X, Y € Obj (%), the set of the corresponding homomorphisms Home (X,Y)
is a Banach space and the composition map

Homy(Y,Z) x Homy(X,Y) — Home(X,Z)
(S7T) — SoT

is bilinear for all object Z € Obj(€) such that ||S o T|| < ||S]| - ||T]|,
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ii) there exists an antilinear contravariant functor = : ¥ — % such that

- *| obj(e) = id,
- given objects X, Y € Obj(¥) and a homomorphism T € Hom¢(X,Y'), then

T* € Homy (Y, X), T** =T, ||T*T|| = ||T||?

B.3.3 Definition. A C*-tensor category is the data (¢,*,®,1,«,l,7) where (¢, *) is a C*-
category and (¢,®,1,a,l,r) is a tensor category such that both structures are compatibles in the
following sense

(TRS)* =T*® 5%,
for all T € Home(X,Y),S € Home(X',Y') with X, X', Y, Y’ € Obj(%).

B.3.4 Remark. The functor = of a C*-category allows to define the notions of unitary, projection,
etc. for homomorphisms imitating the usual case of C*-algebras. Moreover, we observe that for
every object X € Obj(¥¢), End¢(X) is a C*-algebra.

For a more successful development of the theory, it is advisable to make also the following
assumptions in our C*-tensor categories.

i) € has finite direct sums. More precisely, given objects X1,..., X, € Obj(%¥), there exists an
object S € Obj(%) and isometries u; € Hom¢ (X, S) for each ¢ = 1,...,n such that

n
Zuiuf =ids and uu} = 6;; Vi, j=1,...,n
i=1

ii) ¢ has subobjects. More precisely, for any object X € Obj(%) and for any projection p €
End¢(X), there exists an object Y € Obj(%) and an isometry u € Hom (Y, X) such that
p = uu®*.

In particular, € has a zero object. Namely, the object defined by the zero projection.
iii) The unit object 1 is simple (or irreducible), that is, End« (1) = C.
iv) ¥ is small, that is, the class of objects is a set.

B.3.5 Definition. Let (¢, *,®,1¢,a,l,7) and (2, *,®,1g,a’,l',r") be two C*-tensor categories.
A C*-tensor functor between ¥ and & is the data (F, o, p2) where F' : ¥ — & is a functor,
o : 19 — F(1l¢) is an isomorphism and ¢3 : ® o (F x F)) — F o ® is a natural equivalence such
that

i) F is linear on homomorphisms,
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ii) for every objects X,Y, Z € Obj(€) we have

(FIX) @ F(Y)) @ F(7) —LCTOID by g (p(v) @ F(2))
2(X,Y) ®idp(z) idpx) @ 2(Y, Z)
FX®Y)QF(Z) FX)QF(Y®Z)
(pg(X@Y,Z) v (X, Y ®Z)
F(X®Y)®2) Flovys) FX®(Y®2)

iii) for every object X € Obj(%) the following diagram is commutative

l/
1,® F(X) — &) F(X)
©o @ idp(x) F(lx)
F(ly) ® F(X) F(le ® X)

- 5
p2(le,X)

iv) for every object X € Obj(%) the following diagram is commutative

F(X
FX)®1y — 0 F(X)
idr(x) ® o F(rx)
PX) @ F(le) — oy F(X @ 1¢)

We say that F' is strict if the ¢q, @2 are identities in Z.
We say that F' is unitary if for every objects X,Y € Obj(%) we have that

F(T)* = F(T*), p2(X,Y) is unitary, g is unitary,
for all T € Homg(X,Y).

B.3.6 Definition. Let (%, *,®,1¢,a,l,7) and (2, *,®,1g,d,I',r") be two C*-tensor categories.
Suppose that (F, @o, v2) and (G, ¢f, ©5) are two C*-tensor functors between € and 2. A natural
tensor transformation between (F, g, ¢2) and (G, ¢}, ¢45) is a natural transformation n: F — G
such that
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i) the following diagram is commutative

1y

> X

F(1l¢) G(1le)

ii) for every objects X,Y € Obj(€) the following diagram is commutative

®2

F(X)® F(Y) FX®Y)
n®n n
G(X)®G(Y) T FX®Y)

We say that 7 is a monoidal equivalence if 1 is a natural equivalence.

B.3.7 Definition. Two C*-tensor categories (€, *,®, 1y, a,l,r) and (Z2,*,®,19,d',',r") are
said to be (unitarily) monoidally equivalent if there exist C*-tensor (unitary) functors F : € — &
and G : 9 —> € such that

i) G o F is naturally monoidally (unitary) equivalent to id¢ in €,
ii) F oG is naturally monoidally (unitary) equivalent to idy in 2

B.3.8 Remark. It is important to make the following observation concerning the strict tensor
categories.

Roughly speaking, a tensor category is a category equipped with a “tensor product” operation.
This operation must be, at least, associative and must verify some obvious axioms with respect
a unit object (actually, It is an abstraction of the notion of monoid). However, this associativity
holds up to isomorphisms. Sometimes it is advisable to have true equalities for the tensor product
associativity.

Mac Lane has proven that “cvery C*-tensor category is unitarily monoidally equivalent to a
strict C*-tensor category” (see Theorem X 1.5.3 in [103] for a proof).

Thus, for the general development of the theory of tensor categories, we may assume that they
are strict. Nevertheless, the strictification of a tensor category insert new objects to the category
that are isomorphic to the original ones, so that a non-strictified tensor category may give a better
picture than the strictified one in some cases.

Fortunately, the main example of tensor category for the present dissertation, specifically the
category of finite dimensional unitary representations of a compact quantum group, is strict.

B.3.9 Definition. Let € be a strict C*-tensor category. Given an object X € Obj (%), an object
X € Obj(%) is called conjugate of X in ¥ if there exist homomorphisms

R:l—-X®XandR:1—>X®X
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such that the compositions

XX XX T8 X ad X WX x X TEIX
are identities in %. o B
In this case, the identities (R* ®1id) o (id ® R) = idx and (R* ®id) o (id ® R) = id are called
conjugate equations.
We say that € is rigid if any object of € admits a conjugate object.

Conjugate objects are also called dual objects in the literature and they can be defined and
studied for a general tensor category (see [(1] for the details). In the context of the present
dissertation, it is convenient to restrict ourselves to C*-tensor categories and to use the above
terminology. There exist some results of interest concerning conjugate objects that can be found in
Chapter 2 of [139], for instance. Let us state some of them.

B.3.10 Theorem (Frobenius reciprocity). Let € be a strict C*-tensor category. If X € Obj(%)
is an object with conjugate X € Obj(€), then the homomorphism

Homg(X®Y,Z) — Homgx(Y,X® Z)
T — (idx®T)o (R®idy)

is an isomorphism of vector spaces for all objects Y, Z € Obj(€), where (R, R) are some solutions
of the conjugate equations for X and X.

Moreover, if X is a simple object, then X is simple as well and the spaces Homs (1, X ® X),
Hom (1, X ® X) are one dimensional.

B.3.11 Proposition. Let ¢ be a strict C*-tensor category. If X € Obj(€) is an object that admits
a conjugate X € Obj(¢), then X is unique up to isomorphism. More precisely, if (R, R) are the
solutions of the conjugate equations for X and X and (R', R’) are the solutions for the conjugate

equations for X and Y/, then the homomorphism

T:= (idx @ R") o (R®ids) € Homg(X , X)
is invertible with inverse

S :=(idg ® R") o (R' ®idx) € Homy (X, X)

Moreover, we have

R =(T"'®id)oRand R = (id®T*)o R
In particular, if X is simple, then there exists A € C* such that
R =XRand R =\"'R

B.3.12 Proposition. Let € be a strict C*-tensor category. If X € Obj(¥) is an object with
conjugate X € Obj(€), then Endy(X) is finite dimensional.

As a consequence, every object with a conjugate decomposes into a finite direct sum of simple
objects. In other words, in a rigid C*-tensor category every object is semi-simple.
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B.3.13 Definition. Let ¢ be a strict rigid C*-tensor category. If X € Obj(%) is a simple object
with conjugate X € Obj(%), we call intrinsic dimension of X the number

di(X) := || R|| - ||R]],
where (R, R) are the solution to the conjugate equations for X and X.

B.3.1/ Remarks. 1. Notice that the intrinsic dimension of a simple object is independent of the
choice of the solutions for the corresponding conjugate equations by virtue of Proposition
B.3.11 above.

2. If X € Obj(%) is any object (not necessarily simple), then we decompose it into a finite direct
n
sum of simple objects, say X = @ X}, by virtue of Proposition B.3.12 above. In this case, we

k=1
define the intrinsic dimension of X to be

3. Observe that we always have d;(1) = 1.

Next, let us describe the categorical picture for quantum groups. To this end, we give the two
main examples of C*-tensor categories for the present dissertation. Namely, the C*-tensor category
of Hilbert spaces and the C*-tensor category of finite dimensional unitary representations of a
compact quantum group. Both of them are crucial in order to achieve the celebrated Tannaka-
Krein- Woronowicz duality. For this reason, we wish to illustrate the preceding theory with these
two examples. For the details in the computations and in the arguments we refer to [139].

The C*-tensor category of Hilbert Spaces

We denote by Hilbs the category of finite dimensional Hilbert spaces.

- Choosing a large enough set of finite dimensional Hilbert spaces to fit all constructions of
interest, we can assume that Hilb; is small.

- The usual tensor product of Hilbert spaces yields a tensor functor on Hilby.
- The unit object on Hilby is given by C.
- We can assume without loose of generality that Hilby is strict.

- Given two finite dimensional Hilbert spaces H, H' € Obj(Hilby), the homomorphisms between
them are given by the linear operators

HomHﬂbf (H, H’) = B(H, H/),

so that it is a Banach space with bilinear composition map satisfying the norm condition of
Definition B.3.2.
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We define an antilinear contravariant functor = : Hilby — Hilby to be the identity on objects
and the adjoint operator on homomorphisms. It satisfies the conditions of Definition B.3.2
and Definition B.3.3 by virtue of the well-known theory of operators on Hilbert spaces.

Hilb; is a rigid C*-tensor category. Indeed, given a finite dimensional Hilbert space H €
Obj(Hilby), fix an orthonormal basis of H, say {{1,...,&,} where n := dim(H).

The conjugate object of H is simply its dual space H. One possible pair of solutions to the
corresponding conjugate equations are given by

R: C — HQ®H R: C — HQ®H
1 — R(1):= 1&@& 1 — R(1):= 21&@51'

K2

M=

Notice that given a finite dimensional Hilbert space H € Obj(Hilby) and fixing an orthonormal

basis of H, we can always write the following direct sum decomposition H ~ @ C, where
i=1
n = dim(H). As a consequence, for every object H € Obj(Hilby) its intrinsic dimension is

given simply by the dimension of the corresponding Hilbert space,

d;(H) = dim(H)

The C*-tensor category of a C.Q.G.

Consider a compact quantum group G in the sense of Woronowicz. We denote by Zep(G) the
category of finite dimensional unitary representations of G. Zep(G) is called representation category

of G.

Assuming that the Hilbert spaces of the representations of G are those of the set considered
above to define Hilb;, we can assume that Zep(G) is small.

The tensor product of representations (recall Definition 1.3.1.11) yields a tensor functor on
RHep(G).

The unit object on Zep(G) is given by the trivial representation e.
We can assume without loose of generality that Zep(G) is strict.

Given two finite dimensional unitary representations of G, say w,v € Obj(Zep(G)), the
homomorphisms between them are given by the corresponding space of intertwiners

Homgepc)(w,v) := Mor(w,v),

so that it is a Banach space with bilinear composition map satisfying the norm condition of
Definition B.3.2 (recall Definition 1.3.1.13 and Remark 1.3.1.16)

We define an antilinear contravariant functor = : Zep(G) — Zep(G) to be the identity on
objects and the adjoint operator on homomorphisms. It satisfies the conditions of Definition
B.3.2 and Definition B.3.3 by virtue of the well-known theory of operators on Hilbert spaces
and Remark 1.3.1.16.
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- Zep(G) is a rigid C*-tensor category. Indeed, given a finite dimensional unitary repre-
sentations of G, say w € Obj(Zep(G)), suppose that the representation space of w is
H e Obj(Hilby).

The conjugate object of w is simply its contragredient representation w, which is a finite
dimensional unitary representation of G on H (recall Definition 1.3.1.18).

A straightforward computation shows that if (R, R) is the pair of solutions to the conjugate
equations for H and H from the above example, then R € Mor (e, w@w) and R € Mor(e, wow).
One possible pair of solutions to the conjugate equations for w and w are given by

Rg = (id® Q,"*) o R and Rg := (Q}/*®id) o R,

where ), is the invertible positive self-adjoint operator of Theorem 1.3.1.24 defining the
quantum dimension of w.

- Let w € Obj(Zep(G)) be an irreducible unitary representation of G. Given the solutions
(Rg, Rg) to the conjugate equations for w and w as above, a straightforward computations
yields that

di(w) = dimg(w)

The Tannaka-Krein duality for compact quantum groups in the sense of Woronowicz can be
successfully established using the language and the formalism of C*-tensor categories. We refer to
Section 2.3 of [139] for a detailed proof.

B.3.15 Definition. Let € be a C*-tensor category. A C*-tensor functor F' : ¢ — Hilby is called
fiber functor if it is faithful and exact.

Given a compact quantum group G, there exists a canonical fiber functor given simply by the
obvious forgetful functor
Zep(G) — Hilby,

which send to any finite dimensional unitary representation of G to its corresponding representation
Hilbert space.

B.3.16 Theorem (Tannaka-Krein-Woronowicz’s duality). Let € be a rigid C*-tensor category
and F : € — Hilby a unitary fiber functor. Then there exist a compact quantum group G and
a unitary monoidal equivalence E : € — Zep(G) such that F is naturally unitarily monoidally

isomorphic to the composition € £, Hep(G) — Hilby.
Besides, the =-Hopf algebra (Pol(G),A,e,S) associated to G is uniquely determined up to
isomorphism.

B.3.17 Remark. Observe that a discrete quantum group Gis completely defined by the corresponding
compact quantum group G (and wvice versa) by means of the -Hopf algebra Pol(G) (recall Theorem
1.3.1.36). Moreover, Tannaka-Krein-Woronowicz duality allows to construct discrete quantum
subgroups by means of purely algebraic and and categorical methods as we have already pointed
out in Proposition 1.4.3.4.

Namely, if (A, A8 S ) is any *-Hopf algebra, we can easily show that the category Zep(A) of its
finite dimensional unital #-representations is a C*-tensor category. Consider now a rigid C*-tensor
subcategory of Zep(A), say €. Assume the following properties.
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i) € is full,

ii) the class of representations in € is closed (up to isomorphism) under taking direct sums, tensor
product and contragredient representations,

iii) & contains the trivial representation 1 = £.

In this situation, the dual space A* gives raise to a new =-Hopf algebra, say (B, A, ¢, S) where
B is the subspace of A* spanned by the matrix coefficients of all representations in €.
Furthermore, there exists a compact quantum group G such that

1) (Bv Ase, S) = (POl(G)a Ase, S)»
ii) € is unitarily monoidally equivalent to Zep(G).

For the details of these constructions we refer to Theorem 2.3.13 of [139].

As an application of the preceding construction we observe the following (see Proposition
6.1 in [206] for more details). Given a compact quantum group G and any subset S < Irr(G)
of equivalence classes of irreducible representations of G, denote by % := (S) the smallest full
subcategory of Zep(G) containing S. If, in addition, € contains the trivial representation and
it is closed under taking tensor product and contragredient representations, then Tannaka-Krein-
Woronowicz duality and the above discussion guarantee that there is an associated C*-subalgebra
C(H) such that restricting the co-product of G to C'(H) endows it with the structure of compact
quantum group H. By definition (recall Proposition 1.4.3.4), M is a discrete quantum subgroup of

Moreover, Zep(H) naturally identifies with € and we say that H is the discrete quantum

subgroup of G generated by S. Sometimes, by abuse of language, we say as well that H is generated
by S.

By virtue of the Tannaka-Krein-Woronowicz’s duality, any compact quantum group is completely
determined by the category of its finite dimensional unitary representations. However, a rigid
C*-tensor category can also have fiber functors producing non-isomorphic compact quantum groups
(for instance, see Example 2.3.9 in [139]). In this sense, we have the following definition.

B.3.18 Definition. Two compact quantum groups G; and G are called monoidally equivalent if
RZep(Gy) and Zep(Gs) are unitarily monoidally equivalent.

This notion is important for the present dissertation. Indeed, monoidal equivalences have been
turned out to be very useful in order to obtain the Baum-Connes property for some quantum groups
and also for K-theory computations. In this sense, there are some important results that we have
to mention.

On the one hand, J. Bichon, A. De Rijdt and S. Vaes give a very explicit description of the
notion of monoidal equivalence [23]. They show the monoidal equivalence between the orthogonal
quantum groups and the one between the unitary quantum groups (using the earlier work by T.
Banica [9], [10]). They provide as well a tool to produce new examples of ergodic actions coming
from unitary fiber functors in order to study the spectral theory of compact quantum groups.

On the other hand, A. De Rijdt and N. V. Vennet obtain, in a concrete and constructive way, a
bijective correspondence between actions (not necessarily ergodic) of monoidally equivalent compact
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quantum groups on unital C*-algebras [163]. Moreover, this correspondence is such that spectral
subspaces of the actions are preserved. These results have been extended by C. Voigt [210] at
the level of the equivariant Kasparov category of discrete quantum groups, which allows to study
the Baum-Connes property and the K-theory for quantum groups. In particular, the equivariant
Morita equivalence classes of torsion actions are in one-to-one correspondence between monoidally
equivalent compact quantum groups. Recently, these results have been generalized for regular
locally compact quantum groups by S. Baaj and J. Crespo [5].

B.3.19 Theorem. i) (J. Bichon, A. De Rijdt and S. Vaes, [25]) Fiz a natural number n € N.
Let Q,P € GL,(C) be two invertible matrices such that Tr(Q*Q) = Tr((Q*Q)_l) and
Tr(P*P) = Tr((P*P)~1).

The free unitary quantum groups Ut (Q) and Ut (P) are monoidally equivalent if and only if
Tr(Q*Q) = Tr(P*P)

i) (J. Bichon, A. De Rijdt and S. Vaes, [25]) Fiz a natural number n € N. Let Q, P € GL,(C)
be two invertible matrices such that QQ = A d and PP = pld, for some A\, u € R.

The free orthogonal quantum groups O (Q) and OT (P) are monoidally equivalent if and only
if
A 1%
TrQ*Q) ~ Tr(P*P)
In particular, for any Q € GL,(C) such that QQ = +1, SU,(2) is monoidally equivalent to
Ot (Q) for a unique q € [—1,1]\{0}.

iii) (A. D. Rijdt and N. V. Vennet, [165]) Let A and B two finite dimensional C*-algebras with
dim(A) = 4 and dim(B) = 4. Let w € A* be a continuous d-form and let w' € B* be a
continuous &' -form, for some §,8" > 0.

The quantum automorphism groups Qut(A,w) and Qut(B,w’) are monoidally equivalent if and
only if 6 =§'.

As a consequence, S3; = Qut(CN) with N € N are pairwise monoidally inequivalent and every
quantum automorphism group is monoidally equivalent to SO, (3) for some q € (0,1].

i) (C Voigt, [)1()/) Let Gy and Gy be two discrete quantum groups. If Gy is monoidally equivalent
to Gg, then (Gq 1s torsion-free if and only if Gg is torsion-free.

v) (C Voigt, [210]) Let Gy and Gs be two discrete quantum groups. If Gy is monoidally equivalent
to (Grg, then H# H 1 s equivalent to % s triangulated categories.

vi) (C. Voigt, [’1(//) Let G1 and GQ be two torsion-free discrete quantum groups. If(Gl is monozdally

equivalent to Gg, then G1 satisfies the strong Baum-Connes property if and only if Gg satisfies
the strong Baum-Connes property.
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