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Résumé

Un système de surveillance environnementale collecte et analyse continuellement
les flux de données générés par les capteurs environnementaux. L’objectif du pro-
cessus de surveillance est de filtrer les informations utiles et fiables et d’inférer de
nouvelles connaissances qui aident l’exploitant à prendre rapidement les bonnes
décisions. L’ensemble de ce processus, de la collecte à l’analyse des données, soulève
deux problèmes majeurs : le volume de données et la qualité des données.

D’une part, le débit des flux de données générés n’a pas cessé d’augmenter sur
les dernières années, engendrant un volume important de données continuellement
envoyées au système de surveillance. Le taux d’arrivée des données est très élevé
par rapport aux capacités de traitement et de stockage disponibles du système
de surveillance. Ainsi, un stockage permanent et exhaustif des données est très
coûteux, voire parfois impossible. D’autre part, dans un monde réel tel que les
environnements des capteurs, les données sont souvent de mauvaise qualité, elles
contiennent des valeurs bruitées, erronées et manquantes, ce qui peut conduire à
des résultats défectueux et erronés.

Dans cette thèse, nous proposons une solution appelée filtrage natif, pour traiter
les problèmes de qualité et de volume de données. Dès la réception des données des
flux, la qualité des données sera évaluée et améliorée en temps réel en se basant
sur un modèle de gestion de la qualité des données que nous proposons également
dans cette thèse. Une fois qualifiées, les données seront résumées en utilisant
des algorithmes d’échantillonnage. En particulier, nous nous sommes intéressés à
l’analyse de l’algorithme Chain-sample que nous comparons à d’autres algorithmes
de référence comme l’échantillonnage probabiliste, l’échantillonnage déterministe
et l’échantillonnage pondéré. Nous proposons aussi deux nouvelles versions de
l’algorithme Chain-sample améliorant sensiblement son temps d’exécution.

L’analyse des données du flux est également abordée dans cette thèse. Nous nous
intéressons particulièrement à la détection des anomalies. Deux algorithmes sont
étudiés : Moran scatterplot pour la détection des anomalies spatiales et CUSUMpour
la détection des anomalies temporelles. Nous avons conçu une méthode améliorant
l’estimation de l’instant de début et de fin de l’anomalie détectée dans CUSUM.
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Nos travaux ont été validés par des simulations et aussi par des expérimentations
sur deux jeux de données réels et différents : Les données issues des capteurs dans
le réseau de distribution de l’eau potable fournies dans le cadre du projet Waves et
les données relatives au système de vélo en libre-service (Velib).

Mots-clés : Flux de données, Algorithmes d’échantillonnage, Qualité des don-
nées, Analyse des données, Cloud computing.
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Abstract

An environmental monitoring system continuously collects and analyzes the data
streams generated by environmental sensors. The goal of the monitoring process is
to filter out useful and reliable information and to infer new knowledge that helps
the network operator to make quickly the right decisions. This whole process, from
the data collection to the data analysis, will lead to two keys problems: data volume
and data quality.

On the one hand, the throughput of the data streams generated has not stopped
increasing over the last years, generating a large volume of data continuously sent to
the monitoring system. The data arrival rate is very high compared to the available
processing and storage capacities of the monitoring system. Thus, permanent and
exhaustive storage of data is very expensive, sometimes impossible. On the other
hand, in a real world such as sensor environments, the data are often dirty, they
contain noisy, erroneous and missing values, which can lead to faulty and defective
results.

In this thesis, we propose a solution called native filtering, to deal with the
problems of quality and data volume. Upon receipt of the data streams, the quality
of the data will be evaluated and improved in real-time based on a data quality
management model that we also propose in this thesis. Once qualified, the data will
be summarized using sampling algorithms. In particular, we focus on the analysis
of the Chain-sample algorithm that we compare against other reference algorithms
such as probabilistic sampling, deterministic sampling, and weighted sampling.
We also propose two new versions of the Chain-sample algorithm that significantly
improve its execution time.

Data streams analysis is also discussed in this thesis. We are particularly inter-
ested in anomaly detection. Two algorithms are studied: Moran scatterplot for the
detection of spatial anomalies and CUSUM for the detection of temporal anomalies.
We have designed a method that improves the estimation of the start time and end
time of the anomaly detected in CUSUM.

Our work was validated by simulations and also by experimentation on two real
and different data sets: The data issued from sensors in the water distribution

vii



network provided as part of the Waves project and the data relative to the bike
sharing system (Velib).

keywords: Data streams, Sampling algorithms, Data quality, Data analysis,
Cloud computing.
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Introduction

Context and motivation

A n environmental monitoring process consists of a continuous collection, analysis
and reporting of observations or measurements of environmental characteris-

tics. Different environmental components can be described and qualified (soil, air,
water...) using different types of sensors. These latter perform regular measures
that are sent to a central system to be analyzed using specific diagnostic tools. The
final objective is to discover and infer new knowledge about the environment, in
order to help the administrator to make the good decisions. A main purpose of the
monitoring system is to detect the anomalies, also called "events". Different data
mining techniques are applied to the collected data in order to infer in real-time
aggregated statistics useful for anomalies detection and forecasting purposes. This
process helps the administrator to supervise the observed system and to take quickly
the right decisions. The whole process, from the data collection to data analysis,
leads to two major problems: the management of the data volume and the quality of
this data.

On the one hand, a sensor generates the data in the form of a stream that
consists of a large volume of data sent to the monitoring system continuously. The
arrival rate of the data is very high compared to the available processing and
storage capacities. The monitoring system is thus faced with a large amount of
data for which permanent and exhaustive storage is very expensive and sometimes
impossible. That’s why we need to process the data stream in one pass, without
storing it. However, for a particular stream, it is not always possible to predict in
advance all the processing to be performed. On the other hand, in a real-world
such as sensor environment, the data are often dirty, they contain noisy, erroneous,
duplicate, and/or missing values. This is due to many factors: local interference,
malicious nodes, network congestion, limited sensor accuracy, harsh environment,
sensor failure or malfunction, calibration error, and insufficient sensor battery. As
in any data analysis process, the conclusions and decisions based on these data may

1



INTRODUCTION

be faulty or erroneous if the data are of poor quality.
Our goal in this thesis is to treat the chain, from the data collection to the

anomalies (events) detection of data streams generated by sensors.
As a first step, we propose the native filtering of data streams as a solution

to overcome the two problems related to the data collection: the huge volume of
generated data and their poor quality. This solution consists of filtering the data
qualitatively (evaluating and improving the quality of the received data), and then,
quantitatively (summarizing the data), as shown in Figure 0.1.

Figure 0.1 – Native filtering of data streams.

Qualitative filter
One solution to overcome the problem of poor quality of the data is to use sen-

sors with high precision to neglect the potential errors that could occur. Another
alternative is to deploy redundant sensors to cover sensor failure. However, these
approaches are very expensive. In this thesis, we propose an approach that consists
of using methods and algorithms to first evaluate the quality of the data and then to
improve it in order to obtain reliable and effective results.

Several research studies have focused on the management of data quality in
sensor networks. [Jeffery et al., 2006] introduced the so-called Extensible Sensor
Stream Processing (ESP) system to clean sensors data. The system detects erroneous
data, replaces missing data, and deletes duplicate data. [Lim et al., 2009] proposed
to evaluate the accuracy of the data by calculating the difference between the exper-
imental distribution and the theoretical distribution of the data. A data cleaning
system based on machine learning algorithms has been proposed by [Ramirez et al.,
2011]. It calculates the difference between the received data and the predicted data
to evaluate the accuracy of the data. In [Klein et al., 2007], the authors proposed
a model for evaluating and storing the information about the accuracy and com-
pleteness of the data. We present in Chapter 4 a state of the art of the existing
approaches for the qualification of sensors data. Then, we introduce the model we
propose to evaluate and to improve the quality of the data in the context of sensor
networks.

Quantitative filter
Data streams are volatile, once expired, they are no longer available for analysis.

This makes it impossible to evaluate any undefined query before the arrival of the
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data, while new requirements may appear after the arrival of the stream. In this
case, the data stream management system cannot answer the new queries. One
solution to overcome this problem is to store an extract of the stream in a compact
structure, called summary.

The challenge is to decide which data to store in order to maintain a represen-
tative summary of the entire stream. One of the structures used to preserve the
stream history is the general summary [Midas et al., 2010]. It is a data structure
updated whenever new data arrive. Its particularity lies in its ability to carry out
analysis tasks on the data of the stream and to give an approximate answer to any
query and for any investigated period of time. These characteristics distinguish
the general summary from other data streams summaries called "synopsis" such
as Sketches. The Sketch is a very compact data stream summary used to answer
specific queries about data stream. We can mention the Count-Min sketch [Cormode
and Muthukrishnan, 2005] used to estimate the frequency of an element, and the
sketch of Flajolet-Martin [Flajolet and Martin, 1985] which estimates the number of
distinct elements in a data stream.

The effectiveness of a general summary is measured in terms of the accuracy
of the provided response, the memory space to store it, and the time to update it
[Midas et al., 2010]. The challenge is to decide what to store in this summary and
how to ensure that the summary can meet the requirements of the application while
respecting the available resources of the system.

Sampling methods can be used to construct a general summary of data streams.
Two categories of these techniques are provided in the literature: probabilistic meth-
ods and deterministic methods. Probabilistic methods also called stochastic methods
are characterized by the fact that each element has a probability of inclusion in the
sample. The composition of the obtained sample is thus random. Simple Random
Sampling (SRS) and Stratified sampling are two examples of random sampling. For
deterministic methods, there is no randomness in the composition of the sample: for
example, selecting all the elements having even indexes. The choice of the appro-
priate sampling method depends, of course, on the application and the purpose of
the sampling. We first present in Chapter 1 the state of the art of sampling meth-
ods. Then, we focus in Chapter 2 on the study of the Chain-sample, a probabilistic
sampling algorithm well adapted to the context of data streams.

Anomalies detection
Native filtering (qualitative and quantitative), presented above, is a pre-processing

step that prepares the data to be analyzed and exploited. In the data analysis phase,
we are particularly interested in anomalies detection in data streams. This prob-
lem is addressed in several applications domains such as fraud detection for credit
cards, intrusion detection in networks, image processing, etc. In sensor networks,
anomalies detection can be used for many tasks such as fault diagnosis, intrusion
detection, and applications monitoring [Chandola et al., 2009].

In sensor networks, there are two different types of anomalies: temporal and
spatial. Indeed, sensor data has two characteristics: temporal and spatial correlation.
Temporal correlation is due to the continuity of the observed measure. It implies
that, for a single data stream, the data value at a given moment is often related
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to the values measured at close moments. Spatial correlation consists in a strong
relation between the values measured at the same time by nearby sensors. These
two types of anomalies are studied in this thesis in Chapters 5 and 6 respectively.

Anomalies detection techniques in a temporal context can be classified into two
categories: parametric and non-parametric methods. Parametric methods assume
that the data follow a known probability distribution. Anomalies are defined as
data having a low probability to belong to this distribution. On the contrary, non-
parametric techniques do not make any assumption about data distribution. In
this kind of methods, no a priori knowledge about data is needed. In sensor net-
works, non-parametric methods are frequently used. Indeed, in such environments,
the data distribution can often change due to sensor resource constraints. The
main non-parametric approaches used to detect anomalies in sensor networks are
rule-based approaches, control chart methods (i.e. CUmulative SUM (CUSUM),
Exponential Weighted Moving Average (EWMA)), clustering and support vector
machine approaches. In this thesis, we study in detail the CUSUM algorithm in
Chapter 5.

Several algorithms have been developed to detect anomalies in a spatial context.
Among these algorithms, we mention the quantitative algorithms and the graphi-
cal algorithms. Quantitative methods perform statistical tests to distinguish the
anomalies from the rest of the data, while the graphical algorithms are based on
visualization. They present for each spatial point the distribution of its neighbors
and identify the anomalies as isolated points, in specific regions. We are interested
in Chapter 5 in Moran scatterplot, a data visualization method that exploits the
spatial correlation.

Contributions and organization of the manuscript

As shown in Figure 0.2, this thesis deals with two main issues: native filtering
and data stream analysis, and consists of four parts. We discuss the quantitative
and qualitative filtering of data streams in the first two parts entitled "Data streams
summarization" and "Managing data quality in streaming sensors networks" respec-
tively. The implementation of the native filters solution is presented in the fourth
part entitled "Data streams native filtering". The detection of anomalies in data
streams is discussed in the third part entitled "Data streams anomalies detection".

We present in Chapter 1 the state of the art of different sampling algorithms used
in data streams environments. We propose to classify these algorithms according to
the following metrics: the number of passes over the data, the memory consumption,
the skewing ability, and the resources consumption of the algorithm.

In Chapter 2, we study in detail the Chain-sample algorithm. We identify a partic-
ular weakness of this algorithm caused by the problem of collisions and redundancy
of the items in the sample when the sampling rate is high. In order to overcome this
problem, we modify the Chain-sample algorithm to improve the quality of the sample
by eliminating the redundancy. We also propose two techniques to significantly
reduce the execution time of the algorithm, even for a high sampling rate.

We address in Chapter 3 the impact of data sampling on events detection. Several
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Figure 0.2 – Links between the chapters of the thesis.

sampling algorithms are performed on data streams: Deterministic sampling, Chain-
sample, Simple Random Sampling (SRS) and Weighted Random Sampling (WRS).
First, we adapt the SRS algorithm to the stream context by adapting it to the sliding
window model. Then, we compare the performance of these algorithms in terms of
execution time and accuracy of the queries answers. Thereafter, we study the impact
of the sampling process on anomalies detection. In this context, the comparison of
the algorithms is based on their response time in case of anomaly and the relevance
of the detected anomalies.

We discuss in Chapter 4 the data quality aspects in dynamic environments,
especially, in sensor networks. At first, we present the general definitions of data
quality dimensions. Then, we detail the different dimensions of sensor data quality,
and we provide our definitions for the accuracy and confidence dimensions. We also
propose a new model for managing data quality in sensor networks. Compared to
existing approaches, our model takes into account the errors caused by sensor faults.

In Chapter 5, we study in depth the CUSUM algorithm which allows detecting
the temporal anomalies in a data stream issued from a single source. In particular,
we analyze the choice of the parameters of the algorithm in order to achieve two
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objectives. (1) Minimize the false positives: when the process is under control, the
CUSUM algorithm should not detect any change, (2) detect quickly any deviation of
the process. We also propose a method which determines with a good precision, the
start and end time of the deviation of the process parameters.

In Chapter 6, we are interested in spatial anomalies detection methods, especially,
in Moran scatterplot, a graphical algorithm based on visualization that exploits the
similarity between spatial neighbors in order to detect spatial anomalies. At first,
we propose an improved version of Moran scatterplot, in which, we enhance the
definition of the weight matrix involved in the calculation of the distance between
an observed value and its neighboring observations. We propose to calculate the
weights based on several parameters related to the spatial points characteristics
which qualify the correlation between them.

We present in Chapter 7 the native filters module which provides two features:
real-time data streams qualification and sampling. Upon receipt of data streams
from multiple sensors, the qualitative filter evaluates and improves the data quality
based on the architecture presented in Chapter 4. Once the data are qualified, the
quantitative filter proceeds to summarize the data using sampling algorithms. Sev-
eral simultaneous data streams can be processed by the native filters module which
in turn adapts to the characteristics of each stream. The integration of the native
filters module into the WAVES project platform is also discussed in this chapter.
We also evaluate in Chapter 7 the native filters solution in terms of the required
computing resources. We present a benchmark of the Information Technology (IT)
resources requirements while examining two network architectures for data process-
ing: local computing and Cloud computing, and two infrastructures for data streams
summaries storage: database and Hadoop. The considered computing resources are
the execution time of the data streams qualification and sampling processes, and
the memory storage required for storing the data streams summaries. We finally
discuss in this chapter the migration benefit of the native filters solution to the
Cloud computing environment.

Application domains

All the propositions presented in this thesis are tested and validated against real
datasets issued from these application domains:

A. WAVES dataset

This thesis is part of the FUI 17 WAVES project, which aims to design and to
develop a monitoring platform for the supervision of water distribution networks.
The increase of the water stress in many parts of the world and the awareness of
the value of fresh water as a scarce source require a reduction in the water losses
along the production chain, from the natural water resources to the consumers.
According to the Cador report 1 on the state of the heritage in France, the losses and
leakage represent 30% of the total volume of water flowing into the water distribution

1http://www.economie.eaufrance.fr/IMG/pdf/Patrimoine_des_canalisations_d_AEP_France.pdf
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network.
In order to supervise and to manage the water distribution network, many

flowmeters have been deployed by the water operators. They periodically measure
and send to the central monitoring system the instantaneous values of different
water-related observables such as flow, pressure, and chlore. A large geographical
area is divided into several sectors with several flowmeters deployed on the periphery
of each sector. All these information are aggregated and analyzed by the monitoring
system, which infers, in particular, the water consumption of the considered sector.
The water consumption of each sector is indeed a key parameter for the detection
of leaks. The volume of the water consumed by a given sector is calculated in real-
time as an algebraic sum of the flows sent by its associated flowmeters. Each of
these deployed flowmeters has two categories of attributes: spatial attributes and
non-spatial attributes. The spatial attributes depict the geographical location of
the flowmeter: latitude and longitude, while the non-spatial attributes include the
name, ID, and the record observations of the flowmeter, and the diameter of the
flowmeter.

The first dataset we are going to explore in this thesis is issued from the deployed
flowmeters. The flow measurements for a given flowmeter are very variable. Indeed,
they depend on the other flowmeters supplying the associated sector. For example, a
given source associated with a particular flowmeter may suddenly stop supplying
water to a sector. The latter will be delivered by its other associated peripheral
sources.

The data recorded by the flowmeters are structured data streams and have both
spatial and temporal characteristics. Each record observation is composed of two
fields: the timestamp designating the recording date of the measure, and the value
of the measure. These data are regularly generated by the sensors with a frequency
of one observation every 15 minutes. Figure 0.3 shows the volume of the consumed
water of a specific sector during five working days in January 2014. It is inferred in
real-time as an algebraic sum of the flows delivered by its associated flowmeters, in
m3. One can notice a periodicity in the water consumption, related to the human
activity. As it is a working day, we can notice two main peaks of consumption: an
important peak in the morning and a second less important around 7 pm.

Figure 0.3 – Volume of the water consumed by the sector, over time.
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B. Velib dataset

The second dataset we explored in this thesis is relative to the Parisian bike
sharing system (Velib). These data are of two types: static data and dynamic data.
The static data describe the Velib stations and they consist of two categories of
attributes: spatial attributes and non-spatial attributes. The spatial attributes
depict the geographical location of the station: latitude and longitude, while the
non-spatial attributes include the ID of the station and its capacity (total number of
docks). The dynamic data are of two kinds: occupancy data and trip data. Occupancy
data are provided in real time. They represent the states of the stations in terms of
the number of bikes present in each station for each timestamp t. This parameter
is varying during the day and is closely dependent on users activity. Trip data
depict the data corresponding to the trips of Velib’ users. A trip is characterized
by a departure and arrival timestamp, and a departure and arrival station. Trip
data can be divided into two main categories: the working days and the weekends.
Indeed, two days of the same category are very similar. In this thesis, we focus on
the working days and we choose to analyze 24 hours trips: trips that took place on
Thursday, October, the 31th, 2013. This duration includes 121.709 trips, involving
1226 Velib stations.
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1.1. INTRODUCTION

1.1 Introduction

Data streams are large sets of data generated continuously and at a rapid rate
in comparison to the available processing and storage capacities of the system that
receives them. Thus, these streams cannot be fully stored. That is why we have
to process them in one pass without storing them exhaustively. However, for a
particular stream, it is not always possible to predict in advance all the processing
to be performed. It is, therefore, necessary to save some of these data for future
treatments. These stored data constitute the "summaries". Several techniques can
be used for the construction of data streams summaries, among them the sampling
algorithms.

In this chapter, we present a study of these algorithms. Firstly, we introduce
the basic concepts of data streams, windowing models, as well as the data streams
applications. Next, we detail the different sampling algorithms used in streaming
environments, and we propose to qualify them according to the following metrics:
the number of passes, memory consumption, skewing ability and complexity.

This chapter is organized as follows. We present in Section 1.2 the basic con-
cepts of data streams. We discuss several applications domains of data streams in
Section 1.3. Section 1.4 is dedicated to data streams management systems. In Sec-
tion 1.5, we present a detailed study of the sampling algorithms used in streaming
environments. We end the chapter with a discussion.

1.2 Data streams basic concepts

1.2.1 Definition

A data stream is an infinite sequence of tuples generated continuously and rapidly
with respect to the available processing and storage capacities. Golab et al. [Golab
and Özsu, 2003b] define a data stream as follows:

"A data stream is a real-time, continuous, ordered (implicitly by arrival time or
explicitly by timestamp) sequence of items. It is impossible to control the order in
which items arrive, nor is it feasible to locally store a stream in its entirety."

Several other definitions of data streams have been presented in the literature.
Their common characteristic is that they all rely on the main features of these
streams, namely [Gabsi, 2011]:

• Continuous. The tuples arrive continuously and sequentially.

• Fast. The data arrive at a high speed compared to the processing and storage
capacities available in the system that receives them.

• Ordered. The order of the data is often defined by timestamp which can be either
implicit (data arrival time), or explicit by a timestamp contained in the data.

14



1.2. DATA STREAMS BASIC CONCEPTS

• Unlimited volume. The size of the data stream is potentially unbounded and
can be very large. The exhaustive storage of all the received data is not possible.
For instance, one gigabyte of records per hour is generated by AT&T (the largest
provider of local and long distance voice and xDSL services in the United States)
[Chakravarthy and Jiang, 2009].

• Push-type. The sources of the data are not controllable. They are programmed to
send regular measurements. The input rate can vary widely from a data stream
to another. Also, some data streams have irregular input rates, while others
are highly bursty such as the HTTP traffic streams [Crovella and Bestavros,
1997] and the local Ethernet traffic streams [Leland et al., 1993].

• Volatile. Once the data are processed, they will be discarded, and there is no
possibility to treat them another time unless they have been stored in memory.
The latter is very small compared to the data stream size. Therefore, an
immediate treatment of the data is required and has to be fast enough to
achieve the response time requirement.

• Uncertainty of the data. Some data of the stream may be missing, duplicated,
or prone to errors. This is due to external factors such as network congestion,
hardware problem in measurement instrument, etc. (cf. Chapter 4).

1.2.2 Data streams structure

The form and type of the data belonging to a stream depend on the application
that led to the creation of the data. Two types of data can be distinguished: quan-
titative data and qualitative data. The quantitative data includes the data whose
representation is in the numerical form. They usually come from measurements.
The qualitative data concern the data represented by specific values from a discrete
set of possible values. For example, the weight of the human is a qualitative data
that can be represented by the labels low, medium, high. Notice that the binary data
are also considered as two-mode qualitative data (0/1, ON/OFF). Depending on the
form of the data, the data stream can be represented by three types. In structured
data streams, the tuples arrive as records that respect a specific relationship schema
including the fields names of the tuples and the associated values. These tuples
arrive in an ordered manner which is often determined by the timestamp of the
tuple. An example of structured data stream tuples generated by a flowmeter is
given in the Table 1.1. The data of a semi-structured stream are heterogeneous
sets of weakly structured data, they arrive in the form of XML tags or RDF. An
RDF data stream is an ordered sequence of pairs where each pair consists of a
triple RDF and a timestamp. In unstructured data streams, the data have different
structures. Currently, more than 85% of all business information are unstructured
data [Blumberg and Atre, 2003]. These data include e-mails, surveys, Web pages,
PowerPoint presentations, chats, etc. WebCQ [Liu et al., 2000] is a data stream
management system for managing unstructured data streams. Its purpose is to
monitor the pages on the Web in order to detect and to report the interesting changes
that occur to the users.

Given that the types of data that can be handled by the data mining algorithms
are restrained, a data pre-processing step is often necessary before proceeding to
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Table 1.1 – Structured data stream tuples generated by a water operator.

Timestamp Sensor ID Consumption m3

... ... ...
2014/12/31 00:00 Q 400G 196,19
2014/12/31 01:00 Q 400G 187,91
2014/12/31 02:00 Q 400G 188,24
2014/12/31 03:00 Q 400G 188,60

... ... ...

the data analysis phase. Data pre-processing aims at converting the raw data
to a standard format adapted to the data mining algorithms. This step is also
an opportunity to clean up the data by replacing missing data and regenerating
the aberrant data. Finally, the standardization of the data is also necessary to
bring all the data to the same definition domain to be able to compare their values
independently of their original units.

1.2.3 Time modeling and windowing models

Data streams are infinite. They must be processed in an online manner, and
the Data Stream Management System (DSMS) must provide fast responses to
the continuous requests while respecting the data stream arrival rate. Thus, the
windowing models were introduced in the formulation of the continuous requests
in the DSMS. The data windowing models are based on the principle of cutting
the stream into successive portions, and they are used to limit the amount of data
to be processed. With the use of the windows, at any time, a finite set of tuples
of the stream can be defined and used to respond to the query and produce the
corresponding results. The windowing models can be classified according to the
time modeling fashion. The temporal aspect of a data stream can be modeled in two
manners: the physical time, also called temporal time, and the logical time, also
called sequential time. The physical time is expressed in terms of date while the
logical time is expressed in terms of the number of elements. One can notice that,
with the logical time model, it is possible to know in advance the number of elements
in the window. This number is unknown for the physical window model when the
stream rate is variable. Alternatively, each of these two types of windows can be
defined by its two boundaries. According to the start and end dates of the window,
we can distinguish:

• Fixed window. When using the fixed window model, the stream is partitioned
into non-overlapping windows and the data are preserved only for that part of
the stream within the current window. The boundaries of this type of window
are accurate and absolute.

• Sliding window. With the sliding window model, the boundaries of the window
change over time, each time an item is added to the window, the oldest element
will come out. The queries are periodically performed on the data included in
the last window. There are three variants of the sliding window: the purely
sliding window with which the offset between the successive windows is less
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than the window size, the jumping window where the offset between successive
windows is equal to the window size and the hopping window with an offset
greater than the window size. A sliding window can be tuple-based (the most
recent n elements) or time-based (elements received within the last δ minutes).

• Landmark window. The start date of this window is fixed, while the end date is
relative. The size of the window increases gradually as new elements of the
stream arrive. For instance, a window between a specific date and the actual
date is of type landmark.

Table 1.2 – Windowing models of data streams.

Windowing model Dates Example

Physical fixed Sequential From the 19th element to the 56th element

Logical fixed Temporal From 01/01/2018 to 30/01/2018

Physical sliding Sequential The last 10 elements

Logical sliding Temporal The last 10 days

Physical landmark Sequential From the 30th element to the last received
element

Logical landmark Temporal From 12/03/2018 to present

(a) Purely sliding window of size
n = 3

(b) Jumping sliding window of size
n = 3

(c) Hopping sliding window of size
n = 3 and offset o = 4

(d) Landmark sliding window of ini-
tial size n = 3

Figure 1.1 – Windowing models of data streams.
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1.3 Data streams application domains

The field of data streams is a subject of growing interest in the industrial commu-
nity. This interest is reflected by the growing number of applications and industrial
systems that continuously generate data streams [Golab and Özsu, 2003a, Golab
and Özsu, 2003b]. These applications are heterogeneous and quite diverse, although
their main purpose is the supervision and the control of the data. A typical applica-
tion of data streams is to study the impact of the weather on the traffic networks.
Such a study is useful for analyzing and predicting the traffic density as a function
of the weather conditions [Gietl and Klemm, 2009]. The analysis of weather data is
also used to predict the weather conditions. Indeed, several weather indicators, such
as the temperature, humidity, air pressure, wind speed, etc, are indicative of the
weather. Through the classification and learning of these data, several models can
be derived and used to predict the future weather conditions [Bartok et al., 2010].
Social networks also provide more and more data streams that can be exploited in
many areas. For instance, TwitterMonitor is a real-time system that allows the
detection and the analysis of emerging topics on Twitter. The results are provided to
the users who in turn interact with the system to rank the detected trends according
to different criteria [Mathioudakis and Koudas, 2010]. Data streams can be found
in other applications as well, such as website logs [Gilbert et al., 2001] and medical
remote monitoring [Sachpazidis, 2002, Brettlecker and Schuldt, 2007]. We discuss
in the following various other applications:

1.3.1 Sensor networks

Wireless Sensor Networks (WSN) are a special type of ad hoc networks. They
use compact and autonomous devices, called sensor nodes. These nodes collect and
transmit their observations autonomously to other nodes or to the central server
directly. Sensor networks are used in many applications fields to monitor and to
supervise the environment [Liu et al., 2003, Gürgen, 2007]. They are also used in
the domain of the electrical energy monitoring [Abdessalem et al., 2007]. Currently,
several electrical energy providers are using smart sensors. These latter send in a
continuous manner their observations about the users’ electricity consumption to
the information systems of the electricity suppliers to which they are linked. The
recorded data are in the form of streams. The analysis of these data streams makes
it possible to detect several anomalies such as the over-consumption of the energy
or the failure in a household appliance. PQStream is a data stream management
system designed to process and to manage the streams data generated by the
Turkish Electricity Transmission System [Küçük et al., 2015]. The system includes
a module for continuous data processing, where several data mining methods such as
classification and clustering are applied to the data, a database to store the obtained
data analysis results, and a Graphical User Interface (GUI).
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1.3.2 Financial analysis

The financial analysis is one of the major application of data streams. Previously,
the analysis of financial data was intended to assess the probability of a financial
crisis of a company. Nowadays, the analysis of these data involves a wide variety
of users, including the commercial providers, banks, investors, credit agencies, the
stock market, among others. In this context, several data mining operations can be
applied to financial data, such as fuzzy logic techniques, machine learning, neural
networks, and genetic algorithms [Kovalerchuk and Vityaev, 2000]. The purpose of
these operations is to study the impact of one market on another one, monitor the
conformity and consistency of the trading operations and improve their performance,
and last but not least, trigger warning signs of changing trends [Kovalerchuk and
Vityaev, 2000]. For instance, Tradebot [TRA, 1999] is a search engine that allows
for quantitative analysis of financial data and trading performance, and the design
of strategies and implementation of scientific experiments to evolve the theory of
commerce, and ultimately, work with traders to improve the trading system.

1.3.3 Network traffic analysis

Several real-time systems for the analysis of network traffic have been designed.
They aim to infer statistics from the network traffic and to detect critical conditions
such as congestion and denial of service attacks. GigaScope [Cranor et al., 2002]
allows to monitor Internet traffic with an SQL interface. Tribeca [Sullivan and
Heybey, 1998] is a stream-oriented DBMS designed to monitor and analyze the
network traffic performance. Tribeca has a query language that can be written and
compiled by the users to process the data streams coming from the network traffic.
Gilbert et al. [Gilbert et al., 2001] proposed QuickSAND to summarize the network
traffic data using the sketches. In this context, one can search for instance for the
clients who consumed the most bandwidth of the network. The analysis of Web
traffic has also several interesting applications and serves several purposes [Csernel,
2008]:

– Rank the n most accessed pages during a specific period of time in order to
optimize the loading time of these pages.

– Analyze the behavior of the visitors of a particular page or website and identify
and determine the distinct users among them.

– Analyze the traffic generated by the social networks.

1.4 Data streams management

Traditional DataBase Management Systems (DBMSs) allow permanent storage
and efficient management of the data by exploiting their structure. A query language
is used to query the data and retrieve information. However, due to the emergence
of data streams, new challenges related to data processing have appeared. These
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issues are mainly due to the infinite volume of the stream and its very high arrival
rate. These new constraints make the use of the DBMSs inadequate. As a result, the
traditional data storage and analysis systems need to be revised to allow processing
of data streams. Hence, the emergence of data streams management systems. We
detail in the following the main constraints related to the processing of data streams.

1.4.1 Data streams management system characteristics

A DSMS is supposed to meet the constraints of data streams and the needs of the
applications that generate these data by having characteristics related to both the
functionality and the performance [Gabsi, 2011].

• Processing continuous queries. In database applications, the queries are eval-
uated in a finite environment on persistent data. In such applications, the data
does not change as long as the current query is not answered. On the contrary,
in streaming applications, data keep growing and the whole environment is
fully scalable. As a result, the queries are persistent, they must be executed
continuously on volatile data. Also, it is important that the DSMS has a highly
optimized engine to handle the volume of data.

• Data availability. The DSMS must ensure the availability of the data at all
times. It is also supposed to deal with the system failures and must take into
account the eventual arrival delay of the data. Due to the eventual long delays
in the arrival of data, the operations may be blocked. To avoid such situation,
a maximum delay time (time out) can be specified. Thus, queries that can be
blocking are processed in a timely manner even if the data is not complete.

• Infinity of the data. The DSMS must be able to handle the huge volume of the
data stream. The use of the load shedding techniques [Tatbul et al., 2003]
and the summaries structures are possible solutions to reduce the load on the
system.

• Resistance to stream imperfections. The system must handle the imperfec-
tions of the data. In the real world, the data often contain noisy, erroneous,
duplicate and missing values. The DSMS has to deal with these issues.

1.4.2 Data streams management systems

Several DSMSs have been developed in the recent years. These systems are
distinguished by the query reformulation languages, the procedures used to rep-
resent the streams, and the type of application they are designed for. Thus, some
DSMSs have a generalist vocation, such as Aurora [Abadi et al., 2003], TruViso
[TRU, 2004], Medusa [Cetintemel, 2003], Borealis [Abadi et al., 2005], TelegraphCQ
[Chandrasekaran et al., 2003], and StreamBase [Tatbul et al., 2003], while others
are intended for a particular type of application, such as GigaScope [Cranor et al.,
2002], NiagaraCQ [Chen et al., 2000], OpenCQ [Liu et al., 1999], StatStream [Zhu
and Shasha, 2002] and Tradebot [TRA, 1999].
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One of the well-known DSMSs is STREAM (STanford stREam datA Manager)
[Arasu et al., 2016]. Akhtar et al. [Akhtar, 2011] evaluated the performance of the
STREAM system and noted several advantages of it, namely, that it is user friendly
since it allows the users to interact with the system through a graphical interface,
and that it is very suitable for the applications that require high precision since it
gives accurate results for the aggregation queries. We present in the following the
STREAM system.

STREAM: STanford stREam datA Manager
STREAM [Arasu et al., 2016] is a general DSMS developed in C ++ language

at the Stanford University. The users can register their queries and receive the
corresponding results as a streaming HTTP response in XML format using a Web-
based GUI through direct HTTP. This DSMS is based on the Continuous Query
Language (CQL) declarative language derived from SQL, in order to formulate
continuous queries on relations (static data) and data streams (dynamic data). The
semantic of continuous queries on relations and data streams relies on abstract
relational semantics. This semantic is based on two types of data, streams and
relations defined as follows [Arasu et al., 2016]:

– A stream S is an unbounded set of pairs
〈
s, τ
〉
, where s is a tuple and τ is the

logical arrival time of tuple s on stream S.

– A relationR is a time-varying set of tuples, where R(τ ) is a relation representing
the set of tuples at time τ .

This semantic uses three blocks of operators:

– A relational query language, which we can see as a set of relation-to-relation
operators.

– A window specification language. It can be seen as a set of stream-to-relation
operators to convert the streams into relations. These operators are based
on the sliding window model and are expressed using a window specification
language derived from SQL-99. The sliding window can be of three types: a
tuple-based sliding window, a time-based sliding window, and a partitioned
sliding window.

– A set of relation-to-stream operators: Istream which is applied to a relation
R whenever a tuple s is inserted into the relation at time τ , Dstream applied
to a relation R whenever a tuple s is deleted from the relation at time τ , and
Rstream applied to a relation to send all the tuples s belonging to a relation R
at the time τ .

An example of a CQL continues query on a data stream flow_meter is as follows:

SELECT Istream(timestamp, consumption) FROM flowmeter [ROWS 96]
WHERE flowmeter.consumption > 500
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This query answers the following question: In the last 96 observations, what are the
instants during which the quantity of the water consumed by the flow_meter has
exceeded the value of 500m3.

1.5 Sampling algorithms

In streaming environments, the data arrive continuously, often at a high rate, and
the system that receives the data may not have a sufficient memory to store them
exhaustively. Thus, data stream processing implies reducing the size of the data by
maintaining and storing a summary of the data in the memory. Sampling algorithms
are used to construct a data stream summary. An effective summary of a data stream
must have the ability to respond, in an approximate manner, to any query whenever
the time period investigated. The purpose of the sampling algorithms is to provide
information concerning a large set of data from a representative sample extracted
from it. Data streams sampling algorithms are based on the traditional sampling
techniques. These techniques require accessing all the data in order to construct the
sample, also called summary. However, in streaming context, this condition is not
guaranteed because of the infinite size of the stream. Thus, the sampling algorithms
have to be adapted to the streaming context using the windowing models presented
in Section 1.2.3.

In the following, we present in detail the different sampling algorithms proposed
in the literature to construct a data stream summary.

a. Simple Random Sampling (SRS). The SRS algorithm [Cochran, 1977] is
the most used sampling algorithm. It is simple and gives a random sample. It
consists of sampling the data in a random manner, where each item of the data
has the same probability p of being selected. Data sampling can be with or
without replacement. With the SRS with replacement, the sample may contain
duplicate elements since each item of the data may be selected twice or more.
Whereas, with the SRS without replacement, each item can be selected only
once which makes this type of sampling more accurate and convenient.

b. Systematic Sampling. Let n be the sample size and N the size of the data,
Systematic sampling algorithm divides the data into n groups, each one of size
k = N/n. Then, it chooses a random number j ∈ [1, k] and adds the following
elements to the sample: j, j + k, j + 2k, j + 3k... [Cochran, 1977]. Systematic
sampling algorithm has several advantages, the sample is easy to be built, it
is faster and more accurate than Simple Random Sampling algorithm since
the sampled elements are spread over the entire data [Cochran, 1977]. One
drawback of this algorithm is its lack of randomness in the sample. It fact, the
sampled elements are periodically selected which can impact the quality of
the sample. If the original dataset presents a periodicity close to the value k,
the sample cannot represent the original dataset, and it will be biased in such
case.

c. Stratified Sampling. Stratified sampling algorithm [Cochran, 1977] is a
Simple Random Sampling where the original data is divided into homogeneous
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subgroups, called strata, according to one or more predefined criteria. A sample
will then be extracted from each subgroup by applying the Simple Random
Sampling algorithm. Through stratification of the data, the stratified sampling
algorithm reduces the sampling error and ensures a high level of represen-
tativity of the sample compared to the Simple Random Sampling algorithm.
The more the groups are heterogeneous with each other and homogeneous
internally, the more the sampling accuracy is high. The use of this type of
sampling is beneficial in several cases, for example, when it is desired to high-
light a specific subgroup within the data and ensure its presence in the sample.
Stratified sampling is also used to represent the smallest, extreme or rare
subgroups of the data in the sample. Since each element of the original data
must be associated with a subgroup beforehand the sampling, the construction
of the sample using the Stratified sampling algorithm will be more expensive
than that with the Simple Random Sampling algorithm. The choice of the
sample size within each stratum and the choice of the number of strata are the
principal issues encountered with the Stratified sampling algorithm.

d. Weighted Random Sampling (WRS) without replacement. A general
summary must be representative of the entire stream. In some cases, this
condition is not satisfied. In fact, some data may be over-represented or under-
represented in the sample. Subsequently, the statistical inferences and con-
clusions drawn from this sample will be unreliable. This problem is known as
"non response" in the survey theory. In such a situation, a correction of the
sample is suggested to overcome the lack of representativeness of the sampled
data. One of the correction solutions is the weighting of the survey. In contrast
to the SRS where all the data have the same probability of being included in
the sample, the WRS samples each item with a probability that depends on its
associated weight [Efraimidis, 2015].
Efraimidis et al. [Efraimidis, 2015] introduced two types of WRS: WRS-N-P
and WRS-N-W. Their difference lies in the way of calculating the sampling
probability of the data. WRS-N-P is the WRS without replacement with defined
probabilities. The sampling probability of each item ek is proportional to the
relative weight wk of the item, and is calculated as follows:

pk =
α× wk∑k
i=1wi

(1.1)

where α is the size of the sample.
WRS-N-W is theWRSwithout replacement with defined weights. The sampling
probability of each item ek is proportional to its relative weight wk with respect
to the weights of all not sampled items. The sampling probability pk of the item
ek is therefore calculated as follows:

pk =
wk∑

i∈v−S wi

where S represents the sample.
A-Chao [Chao, 1982, Efraimidis, 2015] is a reservoir-based WRS algorithm
without replacement and with defined probabilities. It proceeds as follows to
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construct and to maintain a sample of fixed size k: the first k items of the stream
are added to sample with a probability p = 1. For each new incoming item, A-
Chao adds it to the sample with the probability given by the equation 1.1 while
deleting randomly another item from the sample. The acceptance/rejection
algorithm [Olken and Rotem, 1992] samples each item of the data with a
probability proportional to its weight. The weights are associated in a random
manner to the items. To construct a random sample of size k = 1, the algorithm
generates a random number j ∈ [1, n] and samples the item with index j with
a probability equal to wj

wmax
where wmax is the maximum weight among all the

items. If the item j is not sampled, the process will be repeated until an item
is selected. A-Res presented in [Efraimidis and Spirakis, 2006] is a reservoir-
based WRS algorithm without replacement. It maintains a sample of fixed size
k. Firstly, it adds the first k items to the sample with a probability p = 1. Then,
for each sampled item, a key is calculated as follows:

keyi = ui
1/wi

where ui is a random value ∈ [0, 1]. After that, for each new incoming item e,
calculate its key and find the smallest key l in the sample. If the key of the
item e is greater than l, replace the item having the smallest key in the sample
by the item e. The main concern with these three algorithms is the lack of
a policy for the definition and the updating of the weights. The weights are
generated in a random manner and only once.

e. Reservoir sampling. The goal of the Reservoir sampling algorithm [Vitter,
1985] is to maintain a uniform random sample of a fixed size k from the entire
data stream, without requiring a priori knowledge of the stream size. Firstly,
the algorithm adds the first k received elements of the stream to the reservoir
(sample), each with a probability equal to 1. After that, with the arrival of new
elements, the algorithm adds each element e to the sample with a probability
p = k/i, where i is the index of e, while deleting a random element from the
sample. This algorithm is simple and suitable for the streaming environment
as it is executed in one pass. The main concern with the reservoir sampling
algorithm is that the sample becomes irrelevant over time. In fact, the more
recent the elements, the less likely they are to be included in the sample.

f. Backing sampling. Backing sampling [Gibbons et al., 1997, Gibbons et al.,
2002] is a uniform random sampling algorithm based on the Reservoir sampling
algorithm [Vitter, 1985]. It was designed to overcome the problems of expired
data in a sliding window, which are not handled by the reservoir sampling
algorithm. The algorithm starts by adding the first k received elements of
the stream to the reservoir with a probability equal to 1. Then, the algorithm
skips a random number of elements and add the next element to the reservoir
with a probability equal to the sampling rate. Another random number of
items are skipped, and so forth. The aim of backing sample algorithm is to
maintain a sample containing only the unexpired elements of the stream. For
this purpose, two bounds are defined: the upper bound K representing the
maximal size of the reservoir, and the lower bound L representing the minimal
size of the reservoir. When an element expires, the algorithm removes it from
the sample if it was present. Successive deletions of the expired elements lead
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to the decrease of the size of the reservoir. Therefore, at each time the size of
reservoir becomes smaller than the lower bound, the sampling process will be
reinitialized and a new reservoir containing k elements will be reconstructed.

g. Concise sampling. Gibbons et al. [Gibbons and Matias, 1998] proposed the
Concise sampling algorithm to construct and to maintain a concise representa-
tion of the data, where each element that occurs several times in the original
data will be represented in the sample as a pair

〈
value, count

〉
, where value is

the value of the item, and count in the number of occurrence of this item in the
original data. If an item occurs only once, it will be represented as a singleton
value. The concise sampling algorithm defines a footprint for the sample which
represents the size of the sample to be stored in the memory. This size is defined
as the number of the items in the sample and the corresponding count value.
At first, all the received items are added to the sample with a probability p = 1.
As new items arrive, the count value of each item in the sample will be updated,
and the new incoming items will be added randomly to the concise sample. If
the size of the sample exceeds the predefined footprint, the algorithm proceeds
to reduce the size of the sample either by deleting singleton items in a random
manner, or by decreasing randomly the count values of the items in the sample.

h. Chain-sample. The main difficulty in sampling over a sliding window is the
expiration of elements. In fact, expired elements must be replaced in the sample
in case they are present. Assuming that recent data are more important than
older data, Chain-sample [Babcock et al., 2002] maintains a sample of fixed size
k = 1 over a logical sliding window. For a sample of size k > 1, the algorithm is
repeated k times. At the first stage, the algorithm selects an element ei from
the first window with a probabilityMin(i, n)/n, where i is the index of ei in the
stream and n is the size of the window. Then, a random replacement element r
is selected from the group of elements with indexes going from i + 1 to i + n
and it will replace ei when this latter expires. When r arrives at the current
window, it will be stored and a random replacement element is chosen from
the elements going from r + 1 to r + n, and so on. Chain-sample algorithm has
the disadvantage of generating a sample containing duplicates elements in
case k > 1.

i. Priority sampling. In addition to the Chain-sample algorithm, Babcock et
al. [Babcock et al., 2002] proposed the Priority sampling algorithm to construct
and to maintain a uniform sample over time-based sliding windows. The key
idea of the Priority sampling algorithm is to assign a random priority p ∈ [0, 1]
for each incoming item of the stream and to select the item having the highest
priority in the window.

j. Random Pairing (RP) sampling. The RP sampling algorithm [Gemulla
et al., 2006, Gemulla, 2008] builds and maintains a uniform sample of fixed
size over a sliding window. RP retains three measures on each window: c1
which represents the number of expired items that are included in the sample,
c2 which counts the number of expired items that are not included in the sample,
and d which depicts the number of all expired items: d = c1 + c2. At each time
a sampled item expires, RP removes it from the sample. When a new item
arrives in the window, it can be added to the sample depending on the value of
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d. If d = 0 (the expired element in the window is not included in the sample),
the addition of the new item to the sample follows the Reservoir sampling
algorithm [Vitter, 1985]. On the contrary, if d > 0, the new item will be added
to the sample with a probability equal to c1

c1+c2
. Following this step, the values

of c1, c2 and d are updated.

k. StreamSamp. StreamSamp [Csernel, 2008] is a progressive sampling algo-
rithm based on the Simple Random Sampling algorithm. As soon as they are
received, the items of the stream are sampled with a fixed sampling rate p.
When the predefined sample size k is reached, StreamSamp associates the
order 0 to the sample and stores it, and constructs a second sample of the same
size k, and so on. As the size of the stream increases, the number of samples of
order 0 also increases. When this number exceeds a given bound, StreamSamp
proceeds to fuse the two old samples of order 0 into one sample of size k by
performing a Simple Random Sampling of rate p = 0.5. The new obtained
sample is of order 1, and so on.

l. Distance-based Sampling for Streaming data (DSS). DSS [Dash and Ng,
2006] maintains a sample of a fixed size k and updates it each time a new
element is added to the stream. The algorithm manages the insertions into the
sample so that the difference between the sample and the stream is minimal.
This difference is defined by

∑
A∈I |f(A, S0)−f(A, S)| where I denotes the set of

frequent item sets. Initially, the first k items are added to the sample S0 with a
probability equal to 1. DSS uses the notion of ranking to manage the insertions
in the sample. The element with the highest ranking is the one that its deletion
from the sample engenders an important increase of the difference between
S0 and S. On the contrary, the element with the lowest ranking denoted LRT ,
is the element of the sample whose presence or absence from the sample will
almost not affect the difference between S0 and S. Initially, two tables for
the ranking of the elements contained in both S0 and S are initialized. The
classification of the elements in each of the two tables is calculated from the
equation:

Dist = Dist(S0 − t, S)

where t is the element.
When a new element t is added to the stream, two distances will be calculated:
Dwithoutt = Dist(S0, S + t) and Dwitht = Dist(S0 + t− LRT, S + t). If Dwithoutt >
Dwitht, the presence of t in S0 is favored, and it will replace LRT in the sample. If
Dwitht > Dwithoutt, the element will be skipped. DSS is very expensive, each time
a new element is added to the stream, the distance Dist has to be calculated
and the set of frequent item sets of the entire stream must be again computed.

Performance metrics
The quality of a summary depends on the sampling algorithm used to construct

it. We propose in the following to evaluate the effectiveness of a data stream sampling
algorithm according to the following metrics:
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• Number of passes over the data. One of themain constraints that a data stream
sampling algorithm must satisfy is the single pass on the data. In fact, since
it is impossible to store all incoming data for further processing, the data
stream has to be treated on the fly and without prior storing the entire data
[Muthukrishnan et al., 2005]. Hence, it is important to make sure that the
sampling algorithm makes only one pass over the data to sample them. The
complexity of the sampling algorithm to deal with each item of the stream is of
O(1), independent of the size of the whole stream.

•Memory consumption. Data stream is by definition infinite. Most sampling
algorithms use a continuous increasing sample size. The sample size is often
proportional to stream size. It depends on the sampling rate which is set accord-
ing to the required accuracy. With a high sampling rate, very few information
about the original dataset will be lost. However, this requires more resources,
in particular, memory usage to store the sample. Some other sampling algo-
rithms (such as Reservoir sampling [Vitter, 1985] and StreamSamp [Csernel
et al., 2006]) use a fixed bounded memory independent of the stream size. In
this case, the sample is always updated to replace old elements.

• Skewing ability. The skewing ability is the possibility to give more chance for
some particular items to be selected and added to the sample. It can be based
on the content of the item or its timestamp. For example, a water network
explorer can execute the following query to check if a high water consumption
has occurred in a given period of time.

SELECT timestamp, consumption
FROM flowmeter
WHERE consumption > 500
AND timestamp > ’01/01/2017’
AND timestamp <= ’07/01/2017’;

Therefore, it is compulsory to force the selection of this data (if it is present
among the data) during the sampling process, by giving it a greater weight
compared to other data (note that a sampling algorithm without a skewing
ability, implicitly associates a weight for all data). Missing such data because
of the sampling will engender a false answer to the considered query, and
an important information to the network explorer will be consequently lost.
Besides, the skewing of the data must comply with a certain well-defined policy.
This latter will define how to associate the weights, and how to calculate and
update them over time according to the objective of the application.

• Resources consumption. The sampling algorithm has to be fast enough to deal
with the high rate of the current data streams. Therefore, a low complexity
is required to reduce the execution time and the CPU charge of the sampling
algorithm. This criterion is particularly important when implementing the
sampling algorithm on devices with limited resources such as sensors. In fact, in
WSN, the sensors are devices with limited resources in terms of battery power,
CPU, memory, and network bandwidth. Because of the memory limitations,
the WSN devices cannot store a lot of information. However, each node must
compute, process and send its observations to other nodes or to the central
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system. Therefore, reducing the resources requirements is indispensable [Jain
and Chang, 2004]. Implementing low complexity sampling processes on WSN
devices is a solution to conserve the energy consumption and the CPU usage
and to deal with the memory and time constraints [de Aquino et al., 2007].

1.6 Discussion

In this chapter, we presented the basic concepts of data streams. We focused on
the sampling algorithms used for the construction of general summaries in streaming
environments. A brief comparison of these algorithms is presented in Table 1.3. Four
metrics are considered to study the effectiveness of the sampling algorithms: number
of passes over the stream, skewing ability, memory and resource consumption. The
choice of the sampling algorithm is closely dependent on the constraints of the
targeted application. Based on the needs and the preferences of the user regarding
the age of the data and the period of time addressed, the fixed, sliding or landmark
windowing model will be adopted. The choice of a weighted sampling algorithm
depends on the user’s preferences regarding the sample’s content. When the user
prefers to give more importance to certain data than others, and therefore, to force
their sampling, weighted sampling algorithms are recommended. Finally, depending
on the memory and resources consumption constraints, it can be preferred to use a
sampling algorithm that provides a bounded/unbounded sample size.

We identify several research challenges that will shape our work in the next
chapters. Specifically, we will study in details in Chapter 2 the choice of the sliding
window size and the sample size since they have both an important impact on the
computational resources required by the sampling algorithm.
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Table 1.3 – Weaknesses of data streams sampling algorithms.

Sampling Algorithm Weak Points

Simple Random [Cochran, 1977]
Unbounded sample size
No policy for old data replacement
No skewing ability

Systematic [Cochran, 1977]
Unbounded sample size
Biased sample in case of periodic-
ity in the data stream
No skewing ability

Stratified [Cochran, 1977]
Unbounded sample size
How to choose the sample size?
No skewing ability

Weighted Random [Efraimidis and
Spirakis, 2006, Efraimidis, 2015]

Unbounded sample size
No policy for the determination
and revision of the weights

Reservoir [McLeod and Bellhouse,
1983, Vitter, 1985]

Recent elements have less chance
of being sampled
No skewing ability

Distance-based [Dash and Ng, 2006]

Very expensive in terms of execu-
tion time
Performs several passes over the
data
No skewing ability

Concise [Gibbons and Matias, 1998] No skewing ability

Backing [Gibbons et al.,
1997, Gibbons et al., 2002]

Performs several passes over the
data No skewing ability

Chain [Babcock et al., 2002] Redundant data in the sample
No skewing ability

Priority [Babcock et al., 2002] No policy for the determination
and revision of the weights

Random Pairing [Gemulla et al.,
2006, Gemulla, 2008] No skewing ability

StreamSamp [Csernel, 2008] No policy for the determination
and revision of the weights
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2.1. INTRODUCTION

2.1 Introduction

Online analysis of data streams is a major challenge because of the ever-increasing
rate of data streams coming from heterogeneous sources and belonging to different
application fields. To reduce the volume of a given data stream, several sampling
methods have been designed by the research community. When sampling over a slid-
ing window, themain difficulty is how tomaintain and update online a representative
sample of the window over time.

We study in this chapter the Chain-sample algorithm. The purpose of this
algorithm is to select, randomly, and at any time, a fixed proportion of the data
among the most recent elements of the stream contained in the last sliding window.
We show in this chapter that the Chain-sample algorithm has some drawbacks
mainly due to the collision problem. The collision occurs when the same element is
selected to be included in the sample more than once during the execution of the
algorithm. We propose two approaches to overcome this weakness and to improve
the Chain-sample algorithm. The first one is called "Inverting the selection for high
sampling rates" strategy and the second one is inspired by the "Divide-to-Conquer"
strategy. Various experiments are carried out to show the effectiveness of these two
improvements, in particular, their impact on the execution time of the algorithm.

This chapter is organized as follows. We discuss in Section 2.2 the Chain-sample
algorithm and its weakness. We present in Section 2.3 a new version of the algorithm,
called Chain+, for which we conduct an in-depth study. We propose in Section 2.4
two improved versions of the Chain+ sampling algorithm, and we validate our
improvements by simulation. We end the chapter with a conclusion.

2.2 The traditional Chain-sample algorithm

2.2.1 Motivation

In several fields of data streams applications, the data are time-sensitive, the
most recent data are more important and relevant for the application than the
historical data of the stream. Examples of such applications include the network
supervision [Cormode, 2013], sensors networks [Carney et al., 2002], social media
[Osborne et al., 2014], network traffic management [Babu et al., 2001], and others.
In order to promote the recent data of the stream, the range of the queries can be
restricted to a sliding window. Therefore, to obtain an approximate response to a
query, only the data in the last sliding window of the stream will be evaluated.

When sampling over a sliding window, the principal challenge is to maintain
online a representative sample of the window over time. Actually, the sample must
be continuously updated by taking off and replacing the expired elements. The
Chain-sample algorithm introduced by Babcock et al. in [Babcock et al., 2002]
assumes that the recent data are more important than older data, and maintains
a sample of fixed size k over a tuple-based sliding window of size n. In comparison
with the other data streams sampling algorithms, the Chain-sample algorithm has
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the following advantages:
• It performs a single pass on the data stream, which makes it suitable for
streaming environments.
• By using the sliding window model, the Chain-sample algorithm focuses on
the recent elements of the stream while ignoring the old elements.
• No prior knowledge about the stream is required.
• It provides a random and uniform sample selected from the n most recent
elements of the stream.
• It uses a small and bounded memory.

2.2.2 Algorithm description

Assuming that the recent data of the stream aremore important than the historical
data, the purpose of the Chain-sample algorithm [Babcock et al., 2002] is to provide,
at any time, a uniform random sample of exactly k elements from the most recent n
elements of the stream. It uses a tuple-based sliding window to give more importance
to the recent elements of the stream. We assume that the stream is composed of
elements with an ever increasing index, to provide a sample of size k, the Chain-
sample algorithm maintains k independent samples over each window. Each sample
is constructed as follows: In the first window of n elements, each item is selected
with a probability equals min(i,n)

n
, as soon as it arrives, where i is the index of the

item in the window. Once chosen, a successor’s index j for the ith item is chosen
randomly among the items with indexes ∈ [i+ 1, i+ n]. When the item with index j
arrives at the window, it will be saved in the memory and a random successor for it
will be chosen with the same method as for the item i. When the item with index i
expires, it will be removed from the sample and replaced by its successor j. These
steps are detailed in Algorithm 1.
Figure 2.1 illustrates an example of selecting k = 1 element from a sliding window
of size n = 4 using the Chain-sample algorithm.

2.2.3 Collision problem

When the sample size k is greater than 1, the Chain-sample algorithm builds k
independent samples, each of size k′ = 1. It proceeds then to merge the k samples to
construct the final sample of the window. This process gives rise to the collision and
redundancy problems. Indeed, following this process, the current and also future
samples of the upcoming windows will contain each a number of duplicated elements
r, 0 ≤ r ≤ k. This will lead over time to the degradation of the quality of the samples.
We refer to this scheme as a Chain-sample algorithm with replacement. We define
the quality of the sample of a window as follows:

Definition 1. The quality of a sample is defined as the ratio between the number of
distinct sampled elements and the total number of sampled elements.

Initially, the collision problem starts on the first window of the stream, from
which the Chain-sample algorithm selects k elements in an independent manner.
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Figure 2.1 – Sampling k = 1 item over a sliding window of size n = 4, using the Chain-sample
algorithm.

Algorithm 1. Chain-sample algorithm with replacement over a purely sliding
window
1: procedure ChainSampling(k, n) . k is the sample size, n is the window size

Initialization: Sw is the sample for the window w, at the beginning S1 = ∅
2: repeat
3: for i ∈ [1, n] do
4: Add ei to Sw with a probability p = min(i,n)

n

5: Select a random successor’s index r to replace ei, r ∈ [i+ 1, i+ n]
6: end for
7: until selecting k items
8: while a new item ei is received, (i > n) do
9: w ← w + 1 . move the window by one step

10: j ← i− n . j is the index of the expired element
11: Add the items of Sw−1 to Sw
12: if ej ∈ Sw−1 then
13: Remove the item ej from Sw
14: Add the replacement ez of ej to Sw
15: Select a random index y ∈ [z+1, z+ n], ey will be the replacement of ez
16: end if
17: end while
18: return Sw
19: end procedure

The collision problem remains in the future windows of the stream since two or more
items can choose the same successor item. In order to construct a sample free of
redundancy, the selected k elements on each window must be distinct. However, this
prerequisite is not always satisfied since it relies narrowly on two parameters: the
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size of the sample k and the size of the window n.
Figure 2.2 depicts the experimental collision rate obtained with the traditional

version of the Chain-sample algorithm as well as the theoretical probability of
collision Pcollision for selecting k items among n items using the SRS algorithm with
replacement. Several sampling rates k/n are considered and the size of the window
is fixed to 10 items.
The theoretical probability of collision Pcollision is given by the following equation:

Pcollision = 1− PSelecting k distinct items

= 1− n!

nk(n− k)!

Figure 2.2 – Collision rate.

As shown in Figure 2.2, 25% of the sampled elements are duplicated when the
sampling rate is equal to 50%, which has a significant impact on the quality of the
sample. Also, one can notice that the collision rate with the traditional version of the
Chain-sample algorithm is lower than that of the SRS algorithm with replacement.
This can be explained by the fact that, with the Chain-sample algorithm the suc-
cessors of the k elements are not selected from the same window. For each selected
item with index i, its successor belongs to the window [i+ 1, i+ n]. The k windows of
size n can partially overlap, but they are distinct which reduces the risk of collisions.

2.3 Chain+: A free redundancy Chain-sample
algorithm

2.3.1 Construction of the samples

The quality of the samples built on the windows of the stream depends on two fac-
tors: the quality of the basic sample and the procedure for selecting the replacements.
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These two factors are independent of each other. In fact, whether the elements of
the basic sample are distinct or not, the redundancy problem occurs when selecting
the replacements since two or more elements can choose the same successor. In
order to build and to maintain a sample of size equal to k, we propose to force the
Chain-sample algorithm to select and to preserve a sample of k distinct elements
on each window of the stream. Therefore, we modify the building procedure of the
basic sample as well as the selection procedure of the replacements. We give in the
following the definition of the basic sample.

Definition 2. The basic sample is the sample built on the first window of the stream.

To build a sample of size k, the Chain+ sampling algorithm constructs a single
sample of size k on the first window of the stream instead of building k independent
samples each of size k′ = 1. Each element of index i in the first window is chosen with
a probability equals min(i,n)

n
and if and only if it is not already present in the basic

sample. Otherwise, another element will be chosen with the same probability, and so
on. This process will be repeated until choosing k distinct elements. This alteration
guarantees that the sampled elements in the basic sample are distinct, however, it
does not ensure that the future samples will be free of redundancies. To adjust this
problem, we propose to maintain a list of replacements over time. This list contains
only the indexes of the replacements associated with the sampled elements on each
window. Thus, before picking a replacement, the Chain+ sampling algorithm checks
whether the replacement is present in the list. If it is the case, another replacement
will be randomly selected. Since the size of the stream is infinite, and as it is not
necessary to store the indexes of all the replacements from the beginning of the
stream, the list of replacements is periodically updated as follows: for each new
element ei of the stream, all the replacements with indexes smaller than i are fired.
The detailed pseudo code of the Chain+ sampling algorithm is presented in Algo-
rithm 2.

2.3.2 Memory usage for a single chain-sample

We recall that when an item is sampled, a random successor will be associated
with it. When this successor arrives at the current window, it will be stored in the
memory and a successor will be selected for it, and so on, thus, building a chain
of elements, called chain-sample. The size of a single chain-sample is defined as
follows:

Definition 3. The size of a single chain-sample is given by the sampled element plus
the number of successors associated with that element.

Assuming that the element with index i is the oldest element in the sample of the
current window, the size of the chain-sample of the item i is given by the following
equation [Babcock et al., 2002]:
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Algorithm 2. Chain+ sampling algorithm: Chain-sample algorithm without re-
placement over a purely sliding window
1: procedure Chain+Sampling(k, n) . k is the sample size, n is the window size

Initialization: Sw is the sample for the window w, at the beginning S1 = ∅
2: repeat
3: for i ∈ [1, n] do
4: if ei /∈ Sw then
5: Add ei to Sw with a probability p = min(i,n)

n

6: repeat
7: Select a random successor’s index r to replace ei, r ∈ [i+1, i+n]
8: Add r to the list of replacements Rep
9: until selecting a successor that does not exist in Rep

10: end if
11: end for
12: until selecting k distinct items in Sw
13: while a new item ei is received, (i > n) do
14: w ← w + 1 . move the window by one step
15: j ← i− n . j is the index of the expired element
16: Add the items of Sw−1 to Sw
17: if ej ∈ Sw−1 then
18: Remove the item ej from Sw
19: Add the replacement ez of ej to Sw
20: repeat
21: Select a random index y ∈ [z + 1, z + n], ey will be the replacement

of ez
22: until selecting a successor that does not exist in Rep
23: Add the successor’s index y to the list of replacements Rep
24: end if
25: end while
26: return Sw
27: end procedure

T [1] = 1

T [i+ 1] = 1 +
1

n

i∑
j=1

T [j]

According to [Babcock et al., 2002], the size of the window has no impact on
the size of the chain-sample. In order to verify this result, we study the size of the
chain-sample over time. We choose k = 1 and we consider different values of n. For
each window size n, the average size of the chain-sample is calculated as a mean
over 10 iterations. The results are plotted in Figure 2.3. They confirm the theoretical
result regarding the independence between the window size n and the size of a
chain-sample.

Other theoretical results about the length of a chain-sample were stated by
[Babcock et al., 2002]. They are about the expected bound and high probability
upper bound of the length of a single chain-sample. To check these results, we
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Figure 2.3 – Impact of the window size on the chain-sample length.

examine the variation of the length of a single chain-sample over time, and we fix
the size of the window to 1000 items. Figure 2.4 depicts the obtained results. One
can easily notice that the average length size of a chain-sample exceeds sometimes
the theoretical upper bound e = 2.72, nevertheless, it is almost always below the
high probability upper bound log(n).

Figure 2.4 – Variation of the chain-sample length over time.

2.3.3 Trade-off between the execution time, sampling rate and
window size

As explained before, when performing the Chain-sample algorithm, if the sample
size k is higher than 1, two or more chain-samples can include the same items with
the same indexes. Therefore, the so obtained k samples may include many redundant
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items. To obtain exactly k distinct samples, the indexes of the k samples must be
different. One solution to overcome this problem is to check if the successor is already
chosen by another chain-sample while selecting it randomly. If it is the case, one
has to choose randomly another successor. Despite the fact that this solution does
not affect the memory consumption of the algorithm, however, it adds a significant
overhead in terms of execution time which increases dramatically when the sample
size is close to the size of the window.

Figure 2.5 illustrates the impact of the window size n on the execution time of the
Chain+ sampling algorithm according to the window size. According to this Figure,
one can notice that the window size has no impact on the execution time when the
sampling rate is ≤ 0.5. However, for a sampling rate > 0.5, the window size has a
noteworthy impact on the execution time which increases with the increase of the
window size. Figure 2.6 depicts the impact of the sampling rate k/n on the execution
time of the Chain+ sampling algorithm. Several window sizes n are considered. The
obtained results show that when the window size is high (≥ 1000), the sampling rate
has a considerable impact on the execution time which increases with the increase
of k/n.

Figure 2.5 – Impact of the window size on the execution time of the Chain+ sampling
algorithm, for different sampling rates k/n.

2.3.4 Comparison of the Chain+ sampling against the Simple
Random Sampling algorithm

The SRS algorithm is the most used sampling algorithm. It consists of selecting
each element with the same probability p = k/n. It is simple and gives an unbiased
sample. However, in its basic version, it does not use the sliding window model.
In order to compare the performance of the SRS algorithm to that of the Chain+
sampling algorithm, we adapt SRS algorithm to the sliding window context as
follows:
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Figure 2.6 – Impact of the sampling rate on the execution time of the Chain+ sampling
algorithm, for different windows sizes n.

For each received item of the stream:
• Update the current sample by removing the expired elements.
• Add the new received item to the current sample with a probability p = k/n.

The detailed pseudo code of the SRS algorithm without replacement over a purely
sliding window is given in Algorithm 3.

Algorithm 3. Simple Random Sampling without replacement over a purely sliding
window
1: procedure SRS(k, n) . k is the sample size, n is the window size
2: Initialization: Sw is the sample for the window w, at the beginning S1 = ∅
3: while a new item ei is received do
4: if i ≤ n then . in the first window
5: Add ei to Sw with a probability p = k/n
6: else
7: w ← w + 1 . move the window by one step
8: j ← i− n . j is the index of the expired element
9: Add the items of Sw−1 to Sw

10: if ej ∈ Sw−1 then
11: Remove the item ej from Sw
12: end if
13: Add ei to the current sample Sw with a probability p = k/n
14: end if
15: end while
16: return Sw
17: end procedure

We compare the performance of the SRS algorithm to that of the Chain+ sampling
algorithm in terms of execution time. We consider several sampling rates k/n and we
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choose a window size n equal to 10. The results are plotted in Figure 2.7. According to
this figure, the Chain+ sampling algorithm has a slightly longer execution time than
the SRS algorithm as an additional treatment is performed to avoid the redundancy
in the sample and to guarantee exactly k distinct items in the sample of each window.
Moreover, we notice that for both Chain+ sampling and SRS algorithms, the execution
time grows for higher sampling rate, which can be explained by the additional time
to store more items in the current sample.

Figure 2.7 – Execution time of the Simple Random Sampling and Chain+ sampling algo-
rithms, for different sampling rates k/n.

The principal advantage of the Chain+ sampling algorithm is that it provides
an accurate sample (a sample with an exact size). In fact, the Chain+ algorithm
provides at any time a sample of fixed size k among the n most recent elements
of the stream, whereas the SRS algorithm gives a sample of variable size ∈ [0, n].
Figure 2.8 shows the experimental variation of the sample size when using the
SRS algorithm. One can notice that this variation follows the theoretical binomial
distribution B(x, n) given by:

P (X = x) =

(
n

x

)
px(1− p)n−x

where p is the sampling rate, k/n in our case.
Indeed, the size of the sample for a specific window can be seen as the number of

successes (number of selected items to add to the sample) in n independent identical
Bernoulli trials with probability p. As a conclusion, the Chain+ sampling algorithm
is slightly slower than the SRS algorithm but it provides a more accurate sample.
There is distinctly a trade-off between the quality of the sample and the cost of the
used sampling algorithm expressed in terms of execution time.
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Figure 2.8 – Distribution of the sample size of the Simple Random Sampling algorithm
without replacement.

2.4 Enhancing the Chain+ sampling algorithm

2.4.1 Inverting the selection for high sampling rates strategy

Our goal in this section is to improve the performance of the Chain+ sampling
algorithm in terms of execution time. As we discussed earlier, the execution time of
the Chain+ sampling algorithm increases when the sample size k is close to the size
of the window n. This is due to the collision problem that gets worse when k/n is
close to 1. According to Figure 2.5, when the sampling rate is less than or equal to 0.5,
the size of the window slightly impacts the execution time of the algorithm. However,
when k/n is greater than 0.5, there is a clear trade-off between the execution time
and the window size n: the execution time becomes longer for a bigger window size.
This represents the key idea of the "Inverting the selection for high sampling rates"
strategy.

The main concept of this strategy is to reverse the role of the Chain+ sampling
algorithm when the sampling rate exceeds 0.5. In such case, and as presented in
Algorithm 4, the Chain+ sampling algorithm selects and removes the items that
have to be excluded from the sample, and stores the remaining items. Since we are
not interested in the contents or the values of the items to be removed, only the
indexes of these items (and not the items themselves) are stored in the chain-sample.
The other steps of the algorithm remain the same. Following the application of
this strategy, and for a given sampling rate p = k/n, we estimate reducing the
execution time of the Chain+ sampling algorithm to be approximately equal to that
of p′ = 1− p = k/n− 0.5. Since p > 0.5, p′ is smaller than p and the execution time of
the Chain+ sampling with p′ is lower than the execution time of Chain+ sampling
with p, as we have less collisions.

Figure 2.9 illustrates an example of selecting k = 6 items from a window of size
n = 10 using the "Inverting the selection for high sampling rates" strategy.
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Figure 2.9 – Sampling k = 6 items over a sliding window of size n = 10 with the Chain+
sampling algorithm using the "Inverting the selection for high sampling rates" strategy.

Algorithm 4. Chain+ sampling algorithm using the "Inverting the selection for
high sampling rates" strategy
1: procedure InvertedChain+Sampling(k, n) . k is the sample size, n is the

window size
2: if k/n ≤ 0.5 then
3: function Chain+Sampling(k, n)
4: Chain+Sampling(k, n)
5: end function
6: return S
7: end if
8: if k/n > 0.5 then
9: k′ ← n− k

10: function Chain+Sampling(k, n)
11: Chain+Sampling(k′, n)
12: end function
13: return S
14: end if
15: end procedure

2.4.2 Divide-to-Conquer strategy

As we discussed in Section 2.3.3, the execution time of the Chain+ sampling
algorithm increases widely when the window size n is large and the sampling rate
k/n is high. This is due to the collision problem. To overcome such situation, we
propose in this section another improvement of the Chain+ sampling algorithm
inspired by the "Divide-to-Conquer" strategy.
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Let us consider the following principal query:
Select at random exactly k distinct items
among the n most recent items of the stream;

The key idea of the "Divide-to-Conquer" strategy is to divide the principal query
into several sub-queries which will be performed on smaller adjacent windows.
Indeed, we are susceptible to have fewer collisions with a sliding window of small
size. Therefore, for a given constant c ∈ [2, k], the principal query is divided into c
sub-queries performed on c adjacent small windows each of size n′ = n/c. Let i be
the index of the most recent received item in the stream, the principal query selects
randomly k items in the interval [i − n + 1, i] such that the jth sub-query selects
randomly k′ = k/c distinct items in the interval:

[i− n+
(j − 1)× n

c+ 1
+ 1, i− n+

j × n
c

]

The initial window of size n is so split into c adjacent windows of each of size
n′ = n/c. Particularly, the cth sub-query concerns the items ∈ [i− n/c+ 1, i] which
depict the most recent small window.

Given the parameters of the principal query: window size n, sample size k, and
splitting factor c, the Chain+ sampling algorithm maintains c independent samples,
each of size k′ = k/c. Each sample will be extracted from one of the c small adjacent
windows of size n′ = n/c so that to form at the end k = k′× c samples. In other words,
using the definition of chain-sample introduced in Section 2.3.2, k′ chain-samples
will be maintained and updated for each small window of size n′.
To answer the principal query at time i, the following instructions are executed:
• Consider the c adjacent small windows.
• For each small window and for each chain-sample, select the oldest sample

belonging to this chain-sample with an index included in the considered small
window.

Therefore, the principal query will be replaced by the following one:

Select at random exactly k/c distinct items
among the n/c most recent items of the stream;

To address the larger window issued from the principal query (k samples among
the last n items of the stream); we propose to store, at any time, all the samples that
did not expire (samples contained in the large window of size n), i.e. samples with
indexes in [i− n+ 1, i]. In addition, samples issued from each chain-sample must be
stored separately.

Notice that each small window can contain more than one item belonging to a
given chain-sample. This can be explained by the fact that with the Chain-sample
algorithm, even with only one chain-sample (k = 1), the selected items can have
successive indexes as the successor of a sampled item i is totally random in the
interval [i+1, i+n′]. Thus, a given small window can contain some samples belonging
to the future sliding window. While executing each sub-query, we assume that the
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considered small window is the current (most recent) sliding window. That is why
we select the oldest sample from each small window. A given small window randomly
chosen in the past contains certainly at least k′ samples because it can be considered
as a past sliding window. However, the last small window contains exactly k′ samples
as it is really the most recent sliding window.

An additional advantage of our proposed "Divide-to-Conquer" strategy is that it
guarantees a uniform (but random) distribution of the samples in the big window of
size n. This is achieved for each execution thanks to the introduction of the small
windows, as it can be noticed in Figure 2.10. Using the standard Chain-sample
algorithm, the uniform distribution is only achieved in average and is not guaranteed
for each execution.

An example of sampling k = 5 elements from a window of size n = 10 using the
"Divide-to-Conquer" strategy is presented in Figure 2.10. In this example, we choose
the biggest splitting factor c = k = 5. Thus, the principal window of size n = 10 is
divided into 5 sub-windows, each of size k′ = 2.

Figure 2.10 – Sampling k = 5 items over a sliding window of size n = 10 with the Chain+
sampling algorithm using the "Divide-to-Conquer" strategy.

2.4.3 Experimentations

Our goal in this section is to evaluate the efficiency of the two new enhanced
versions of the Chain+ sampling algorithm: "Inverting the selection for high sampling
rates" and "Divide-to-Conquer" strategies. The specifications of our machine are
RAM: 4 GB, System Disk: 120 GB and Processor: 2.7 GHz Intel Core i5.

We study in Figure 2.11 the impact of the "Inverting the selection for high sam-
pling rates" strategy on the execution time of the Chain+ sampling algorithm. We
choose a window size n = 1000 items and we consider several sampling rates k/n.
Recall that with the use of this strategy, the process of the Chain+ sampling algo-
rithm is inverted only when the sampling rate is greater than 0.5. Therefore, the
execution time with and without the application of this strategy remains the same
when the sampling rate is ≤ 0.5.

When the sampling rate is > 0.5, the execution time of this strategy is sharply
smaller than that of the Chain+ sampling algorithm. We can also notice that the
execution time for a high sampling rate k/n is not the same as that for a sampling
rate equal to 1− k/n. For instance, the execution time for k/n = 0.8 is higher than
that for k/n = 0.2. This can be explained by the fact that for a sampling rate equal
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to 0.2, only the selected items (20%) are stored. However, for a sampling rate equal
to 0.8, not only the indexes of the removed items (20%) are stored, but also the kept
items (80%) since they represent the targeted sample for the current window. This
adds a small overhead in terms of execution time and memory consumption of the
algorithm.

Figure 2.11 – Impact of the "Inverting the selection for high sampling rates" strategy on the
execution time of the Chain+ sampling algorithm.

We evaluate in Table 2.1 the efficiency of the "Divide-to-Conquer" strategy by
comparing the execution time of the Chain+ sampling algorithm with and without
using this strategy. We choose a fixed sampling rate k/n = 0.5 and different window
sizes n, and we use the highest splitting factor c = k. So, the Chain+ sampling
algorithm is performed with the parameters k′ = 1 and n′ = 2 to randomly select half
of the elements present in the last sliding window of size n. Two main conclusions
can be inferred from this table. At first, one can notice that the execution time
decreases distinctly when applying the "Divide-to-Conquer" strategy. For instance,
for a window size equal to 1000 items, the execution time decreases to less than
the half. Secondly, one can see that, even with the use of the "Divide-to-Conquer"
strategy, the window size still has a significant impact on the execution time of the
Chain+ sampling algorithm which increases with the increase of n. This can be
explained by the fact that all the selected items in the last sliding window are stored
in the memory.

2.5 Conclusion

In this chapter, we studied in depth the Chain-sample algorithm. We identified a
particular weakness of this algorithm caused by the collisions problem. The collision
occurs when the same element is selected to be included in the current sample
more than once during the execution of the algorithm. This problem leads to the
degradation of the quality of the samples over time and worsens with the increase
of the sampling rate k/n. In order to overcome this problem, we presented a new
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Table 2.1 – Execution time reduction of Chain+ sampling algorithm using the "Divide-to-
Conquer" strategy, for a sampling rate k/n = 0.5, a splitting factor c = k, and for different
window sizes n

k, n

Chain+ version without the
"Divide-to-Conquer" strategy

with the
"Divide-to-Conquer" strategy

k = 5, n = 10 19, 81 sec 18, 79 sec

k = 250, n = 500 33, 43 sec 19, 96 sec

k = 500, n = 1000 52, 85 sec 21, 63 sec

k = 1500, n = 3000 60, 15 sec 40, 96 sec

version of the algorithm, called Chain+, which is intended to ensure that the sample
on each window contains exactly k distinct items. Because of this alteration, the
execution time of the Chain+ sampling algorithm has increased amply, especially,
when the sample size k is close to the window size n.

To overcome this problem and to reduce the execution time of the algorithm,
we proposed two strategies. The first one is called "Inverting the selection for
high sampling rates" strategy, and the second approach is inspired by the "Divide-
to-Conquer" strategy. With the "Inverting the selection for high sampling rates"
strategy, the role of the Chain-sample algorithm is reversed: it identifies the elements
that should not be added to the sample. Thus, all the items that do not belong to
the sample will be stored. The results of the experiments clearly showed that the
execution time needed to sample the data is considerably reduced. The principal
idea of the second approach called "Divide-to-Conquer" is to divide the main window
into several small and adjacent sub-windows and to execute the Chain+ sampling
algorithm with the parameters k′ = k/c and n′ = n/c such that c is a constant
∈ [2, k]. The experiments showed that the execution time becomes much shorter
using this strategy. In addition to reducing the execution time, this "Divide-to-
Conquer" strategy ensures a uniform and random sample distribution in the large
window.

Other experiments were carried out to study the size of the chain-sample (the
number of elements and indexes of successors stored in memory) according to the
window size n. The obtained results showed that there is no direct relationship
between n and the average length of the chain-sample, which confirms the theoretical
result. Our experiments also showed that the experimental length of the chain-
sample exceeds sometimes the theoretical upper bound e = 2.72, but is almost always
lower than the high probability upper bound log(n).

The size of the sample and the sampling algorithm have a noticeable effect on
the accuracy of the estimation drawn from the sampled data, so that they can be
specified to achieve a certain level of accuracy while respecting a bounded memory
and a reasonable execution time. For instance, Provost et al. [Provost et al., 1999]
presented a progressive sampling algorithm based on the SRS algorithm. Their key
idea is to build a sample of small size and increase it gradually until the accuracy
of the sample is no longer improved. The choice of the sampling algorithm and
sampling rate, and their impact on the accuracy of the statistical estimations will be
discussed in detail in the next chapter.
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3.1. INTRODUCTION

3.1 Introduction

As we have seen in the previous chapters, data streams sampling is intended
to build a sample on which the future data analysis tasks will be performed. The
effectiveness of the sample depends on several parameters: the used sampling
algorithm, the chosen sampling rate k/n, and the window size n if the sliding window
model is adopted.

Our goal in this chapter is to answer the following question:

Problem 1. Given a stream of items, what is the most relevant sampling technique
to use in our context? What are the right parameters k and n to choose?

To answer this question, we will study in this chapter the impact of sampling in
terms of (1) the similarity between the aggregation queries results on the original
data and the sampled data, and (2) the result of anomalies detection of the sampled
data, measured in terms of the true positive rate called recall.

Several studies have been dedicated to examine the impact of data sampling. Mai
et al. [Mai et al., 2006] presented an in-depth study of the effect of data sampling on
anomalies detection of traffic measurements coming from high-speed IP-backbone
networks. Several sampling methods were applied to sample the IP packet traces.
The authors assessed the impact of sampling on port scans detection, volume anomaly
detection, and data characteristics, namely, the variance. The impact of IP packets
sampling was also addressed in [Brauckhoff et al., 2006, Pescapé et al., 2010, Zhang
et al., 2016]. In [Xu et al., 2015], the authors studied the impact of sampling on the
analysis of tweets generated on social networks. This analysis includes the study of
tweets volume, tweets distribution, and user influence measured by his comments
and retweet activities.

This chapter is organized as follows. We discuss in Section 3.2 the sampling
accuracy defined as the accuracy of the aggregation queries performed on sampled
data. Three data streams sampling algorithms are considered: Chain-sample,
Deterministic sampling and Simple Random Sampling (SRS). At first, we adapt
the Deterministic sampling and SRS algorithms to the sliding window concept by
maintaining a sample of the most recent elements of the stream. After that, we
compare the performance of the three algorithms by studying the impact of sampling
rate and sliding window size on sampling accuracy and execution time. We study in
Section 3.3 the impact of data sampling on the anomalies detection results using
Exponentially Weighted Moving Average (EWMA) control chart algorithm. We end
the chapter with a conclusion.

3.2 Sampling impact on the queries estimation
accuracy

When building a data stream sample, many issues are encountered if the sliding
window model is adopted. They concern particularly:
• The preservation of a sample of fixed size over each window.
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• The replacement methodology of the expired items in the sample.
Therefore, our problem can be defined as follows:

Problem 2. Given a data stream, how to maintain, at every time, a sample of fixed
size k items over a tuple-based sliding window of size n?

To answer this question, we provide in the following a study of different ap-
proaches based on three sampling algorithms: Simple Random Sampling (SRS),
Deterministic sampling and Chain+ Sampling.

3.2.1 Chain+ sampling algorithm

We recall that the main purpose of the Chain-sample algorithm [Babcock et al.,
2002] is to provide, at any time, a sample of fixed size k from the most recent n
elements of the stream. Assuming that the stream is composed of elements with
an ever-increasing index, the Chain-sample algorithm maintains k independent
samples over each tuple-based sliding window of the stream in order to provide a
sample of size k. Each sample is constructed as follows: In the first window of the
stream, each item is selected with a probability equals min(i,n)

n
, as soon as it arrives,

where i is the index of the item in the window and n is the window size. Once
chosen, a successor’s index j for the ith item is chosen randomly among the items
with indexes ∈ [i+1, i+n]. When the item with index j arrives at the window, it will
be saved in the memory and a random successor for it will be chosen with the same
method as for the item i. When the item with index i expires, it will be removed from
the sample and replaced by its successor j. In its basic version, the Chain-sample
algorithm suffers from a major issue: the redundancy in the sample caused by the
collision problem occurring when the sample size k is greater than 1. We introduced
in Section 2.3 a new version of this algorithm, called Chain+ sampling algorithm,
designed to deal with the collision and redundancy problems. An enhanced version
of the Chain+ version, called "Inverting the selection for high sampling rates", was
also proposed in Section 2.4.1. Its goal is to enhance the execution time of the Chain+
version. It is this strategy of the Chain+ sampling algorithm that will be used in the
incoming experiments of this section.

3.2.2 A bounded-space SRS algorithm without replacement over
a purely sliding window

We recall that the Simple Random Sampling (SRS) is a probabilistic method and
the simplest way to build a random sample. With the SRS algorithm, each element
of the original data has the same chance of being sampled. Nevertheless, in its basic
version, the SRS algorithm does not use the data streams sliding window model, and
if adapted to this context as presented in Section 2.3.4, it gives a sample of a random
size k ∈ [0, n] where n the window size. The SRS without replacement algorithm
can be easily adapted to our context. It will be executed as follows to build and to
maintain a sample of fixed size k on a tuple-based sliding window of size n of the
stream: In the first window of size n of the stream, SRS selects each item with a
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probability equals p = k/n. This step will be repeated until exactly k distinct items
are selected. In the upcoming windows, when a sample item i expires (becomes
outside the current window), it will be excluded from the sample, and a random
replacement r for it will be chosen among the items ∈ [i + 1, i + n] by performing
a random sampling with a probability equals p = k/n on the items of the current
window, while beginning with the most recent item. This step will be repeated until
a replacement item is selected. The latter will be added to the sample.

The detailed pseudo code of the SRS algorithm without replacement over a purely
sliding window is given by Algorithm 5.

Algorithm 5. A bounded space Simple Random Sampling without replacement over
a purely sliding window
1: procedure SRSPurelyWindow(k, n). k is the sample size, n is the window size
2: Initialization: Sw is the sample for the window w, at the beginning S1 = ∅
3: repeat
4: for i ∈ [1, n] do
5: Add ei to Sw with a probability p = k/n
6: end for
7: until selecting k distinct items in Sw
8: while a new item ei is received, (i > n) do
9: w ← w + 1 . move the window by one step

10: j ← i− n . j is the index of the expired element
11: Add the items of Sw−1 to Sw
12: if ej ∈ Sw−1 then
13: Remove the item ej from Sw
14: repeat
15: for each item e in the current window w, starting with the most

recent item do
16: if the size of Sw is < k then
17: Add ei to Sw with a probability p = k/n
18: end if
19: end for
20: until selecting an item that does not exist in Sw
21: end if
22: end while
23: return Sw
24: end procedure

3.2.3 Deterministic sampling algorithm

The easiest manner to construct a data stream sample is to use the Deterministic
sampling algorithm. It is is a non-probabilistic technique with which the sample is
built without randomness. It consists of selecting one item every 1/p items of the
stream. We assume that the stream consists of items with an always-increasing
index. To meet our need of having, at any time, a sample of exactly k distinct items
among the n most recent items of the stream, the Deterministic sampling algorithm
is designed as follows:
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1. Select each incoming item of the stream if its index equals x× n/k where x is a
positive integer.

2. When an item i expires (becomes outside the current window), it will be removed
from the sample if it is present in it.

Algorithm 6. Deterministic sampling over a sliding window
1: procedure DeterministicSampling(k, n). k is the sample size, n is the window

size
2: Initialization: Sw is the sample for the window w, at the beginning S1 = ∅
3: while a new item ei is received do
4: i← i+ 1 . i is the index of e
5: w ← w + 1 . move the window by one step
6: if i = x× n/k where x > 0 then
7: Add ei to Sw
8: end if
9: j ← i− n . j is index of the expired element

10: Add the items of Sw−1 to Sw
11: if ej ∈ Sw−1 then
12: Remove ej from Sw
13: end if
14: end while
15: return Sw
16: end procedure

3.2.4 Experimentations

This section is intended to compare the performance of the SRS, Deterministic
sampling and Chain-sample algorithms in terms of execution time and sampling ac-
curacy. We recall that for the Chain+ sampling algorithm, we will use the "Inverting
the selection for high sampling rates" strategy proposed in Chapter 2.

3.2.4.1 Dataset

We use the dataset presented in the introduction of the report (WAVES dataset).
We recall that dataset consists of data streams issued from flowmeters delivering
water to a big French city. The duration of each stream is of 21months, from January
2013 to September 2014. The data are periodically generated by the sensors with a
frequency of one observation each 15 minutes. Each recorded observation comprises
two fields: the timestamp designating the recording time of the measure, and the
attribute value representing the delivered water volume in m3. The volume of the
water consumed by a given sector is an algebraic sum of the flows delivered by its
associated flowmeters. All the experiments in this section will be performed on
the summed data rather than the flowmeters data themselves. We recall that the
specifications of our machine are RAM: 4 GB, System Disk: 120 GB and Processor:
2.7 GHz Intel Core i5.
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3.2.4.2 Execution time

We evaluate in Figure 3.1 the computational resources of the three algorithms in
terms of execution time needed to summarize a given stream, for different sampling
rates. The size of the window n is fixed to 10. Regarding the Chain-sample algorithm,
we use the "Inverting the selection for high sampling rates" version. It is the improved
version of the Chain+ algorithm that reduces the execution time for high sampling
rates. The results show that the Deterministic sampling algorithm has the smallest
execution time compared to SRS and Chain algorithms, as it is the simplest sampling
algorithm. Regarding SRS, the redundancy in the sample occurs when the sampling
rate k/n is > 0.1. This happens when the same item is selected many times to
be added to the sample on the same sliding window. This problem becomes more
severe when k is close to the size of the window n. To avoid this duplication, and
to provide exactly k distinct items in each sample, the selection procedure must be
repeated until selecting an item that is not already present in the current sample.
This condition adds a considerable overhead in terms of execution time, especially
when the sampling rate is high (k is close to n). The difference in the execution time
for SRS and Chain algorithms increases with the increase of the sampling rate k/n.
This difference becomes clearer when k/n is greater than 0.5. This is due to the use
of the "Inverting the selection for high sampling rates" strategy which reduces the
collision rate to be equal to that of a sampling rate of 1− k/n when k/n exceeds 0.5,
and thus, reduces the execution time of the Chain-sample algorithm.

Figure 3.1 – Execution time of the Deterministic, Simple Random and Chain+ sampling
algorithms over a purely sliding window, for different sampling rates k/n.

3.2.4.3 Sampling accuracy

When evaluating a query on the most recent data of the stream, we only have a
set of samples built on the windows of this stream. Thus, the response to the query
can be provided by estimation. We study in this section the impact of the sampling
on the quality of the estimation and we limit the analysis to the MEAN aggregation

54



3.2. SAMPLING IMPACT ON THE QUERIES ESTIMATION ACCURACY

query. Our choice of this query is motivated by the fact that it is a statistic that
allows us to measure the average water consumption of users over a certain period of
time, which will allow us to study and analyze the users’ behavior and its evolution
over time.

Let m be the true mean calculated from the original data in a given window. The
empirical mean X of the window sample is an unbiased estimator of m, calculated
as follows:

X =
1

k

k∑
i=1

ei

where k is the size of the sample, and ei is the value of the item of index i in the
sample. The accuracy of the mean estimation is quantified by the relative error
given by:

error =

∣∣∣∣m−Xm

∣∣∣∣× 100%

There are two parameters that affect the sampling accuracy: the sampling rate
k/n and the window size n. Actually, we can achieve a sampling rate pwhile sampling
with different sample sizes k and window sizes n, such that:

p =
k

n
=
x× k′

x× n′

where x is a positive integer.
We study in Figure 3.2 the impact of the sampling rate k/n and the window size

n on the mean estimation error of the Chain+ sampling algorithm. One can notice
that the window size n has a notable impact on the mean estimation error. Indeed,
for a given sampling rate k/n, the error decreases with the increase of n. Also, for a
given window size n, the error decreases with the increase of k/n. These results can
be explained by the law of large numbers which states that the sample mean tends
towards the true mean as the number of trials (sample size in our case) increases
[Gravetter and Forzano, 2018] which improves the accuracy and representativity of
the sample.

We study in Figure 3.3 the impact of the collision problem of Chain-sample
algorithm on the accuracy of the estimation. We compare the mean estimation
error for the two versions of the Chain-sample algorithm: the traditional version
and Chain+ version. For that, we compute the mean of the sample constructed on
each window of the stream, and we compare it to the real value of the mean on this
period of time. The results show that the estimation error with the traditional Chain
algorithm is much higher than that with Chain+. This is due to the redundancy
problem causing the degradation of the quality of the samples.

According to Figure 0.3, we can notice a periodicity in the water consumption,
related to the human activity. We study in Figure 3.4 the impact of the data periodic-
ity on the accuracy of the estimation. The data are sampled using the Chain-sample,
SRS and Deterministic sampling algorithms with a very small sampling rate. In
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Figure 3.2 – Impact of the sampling rate and window size on the mean estimation error of
the Chain+ sampling algorithm, for different sampling rates k/n

Figure 3.3 – Impact of the collision problem on themean estimation error of the Chain-sample
algorithm, for different sampling rates k/n.

fact, in degraded environments such Wireless Sensor Networks (WSN), the sensors
are devices with limited resources in terms of battery power, CPU, memory, and
bandwidth [Jain and Chang, 2004]. Because of the memory limitations, WSN de-
vices cannot store a lot of information. However, each node must compute, process
and transmit its data to other nodes or to the central system. Implementing the
sampling process on WSN devices and using a low sampling rate can be a solution
to deal with the memory and time constraints.

Figure 3.4 depicts the sampling accuracy for SRS, Chain and Deterministic
sampling algorithms in such degraded environments. As shown in this figure, the
Deterministic sampling algorithm has the highest estimation error, and SRS and
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Chain-sample algorithms give both similar results. This can be explained by the fact
that when the period of the data is smaller than the sampling rate, the sampled data
with the Deterministic sampling algorithm will be unrepresentative of the window as
a whole. In our case, the selected data often belong to a peak of water consumption,
leading to a high error of the mean estimation. On the contrary, the Chain-sample
and the SRS algorithms are more representative because the elements are selected
randomly in an independent manner of the data periodicity. One can notice that the
size of the window has an impact on the sampling accuracy of the three sampling
algorithms. The decrease of the error for a high window size can be explained by
the law of large numbers.

Figure 3.4 – Mean estimation error of the Deterministic, Simple Random and Chain+
sampling algorithms for a sampling rate of 1 observation per 12 hours, for different window
sizes.

3.3 Sampling impact on the anomalies detection

3.3.1 Problem definition

Anomalies detection of the water consumption is a primordial step to supervise
the water distribution network since it is a key parameter for the detection of water
leaks. Indeed, following this step, the analysis of the detected anomalies will be
performed by the monitoring system, which helps the network explorer to detect the
potential leaks and make the right decisions. These anomalies are manifested by
a large increase in the water consumption volume during a certain period of time.
Yet, because of the sampling process, many data related to the water consumption
are lost. In this section, we study the sampling impact on the anomalies detection
phase when this later is performed on the data stream summary instead of the
original data. Note that the analysis of these anomalies and the determination of
their potential causes (leaks, special events, etc.) is out of the scope of this thesis.
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Since the water consumption volume of a given sector is given by the algebraic
sum of the flows delivered by its associated flowmeters, the anomalies detection of a
particular sector has to be performed on the summed data rather than the flowmeters
data. To evaluate the sampling impact on the anomalies detection results, two cases
are considered, as shown in Figure 3.5:
• Without sampling: the sum of the flowmeters of a given sector is performed,
and the anomalies are therefore detected.
• With sampling: the flow of each flowmeter is sampled. Thereafter, the sum of
the water consumption of the sector is calculated as the algebraic sum of the
sampled flows of its associated flowmeters. Finally, the anomalies are detected.

Figure 3.5 – Experiments’ strategy.

We choose to sample the flow of each flowmeter using four sampling algorithms:
Deterministic sampling, SRS, Chain-sample andWeighted Random Sampling (WRS).

As our ultimate goal is to detect the anomalies in the water distribution network
manifested by very high water consumption, it is necessary to ensure that the data
involving important delivered water volume are sampled. Missing such information
due to the sampling process will result in a false response to the queries, and
an important information to the network explorer will be lost. Therefore, it is
indispensable to force the sampling of these data by giving them higher chance
to be sampled. This is accomplished by the use of a weighted sampling algorithm.
Notice that the use of such algorithm was not considered in the previous section
since it is not appropriate for the mean estimation of the data. Indeed, because of
the weighting, some data will contribute more than others to the mean estimation
making this latter biased.

In contrary to the previous section, the jumping sliding window model will be
used in this section. Recall that with the jumping window model the offset between
two successive windows is equal to the window size. This choice is motivated by the
fact that the sum of the flowmeters’ has to be performed at different moments and
each value from the data stream has to be included only once in the sum. Jumping
windows are therefore well adapted to this context.

Several algorithms can be used to detect the anomalies. In this section, we choose
to use the EWMA control chart algorithm since it is well adapted to our objective of
detecting shifts of the process mean. Note that the anomalies detection algorithms
will be discussed in more details in Chapter 5.
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3.3.2 EWMA control chart algorithm

The EWMA control chart proposed by [Roberts, 1959] is designed for monitoring
a process over time and detecting a change in the process from the in-control state
to the out-of-control state. To monitor the process, EWMA maintains a weighted
moving average (EWMA statistic) which gives a high priority for recent items. The
weights for the observations are periodically updated and become smaller as the
observations become older. EWMA control chart is widely used for anomalies and
intrusion detection in the network [Bošnjak and Cisar, 2010, Čisar and Čisar, 2011].
EWMA statistic at time t is computed as follows:

ewmat = λ× et + (1− λ)× ewmat−1

where:
• et is the observation at time t.
• ewmat is the EWMA statistic at time t.
• λ is the weighting factor ∈]0, 1]: The choice of λ determines the impact of
the previous value of the moving average on the calculation of the current
EWMA statistic. For λ = 1, only the current observation (et)is involved in the
calculation. When λ is small, the previous value of the moving average has
more influence on the calculation than the current observation.

EWMA control chart reports an out-of-control alarm at time t when EWMA
statistic exceeds the Upper Control Limit (UCL) or is lower than the Lower Control
Limit (LCL). UCL and LCL are computed as follows:

UCL = ewma0 + l × σ0 ×
√

λ

2− λ

LCL = ewma0 − l × σ0 ×
√

λ

2− λ

where:
• ewma0 is the mean of the training data, and represents the target mean value.
• σ0 is the standard deviation of the training data.
• l is a positive coefficient.
ewma0 and σ0 are calculated from the training data. For this purpose, a learning

window containing a small proportion of the data to be monitored is used to calculate
ewma0 and σ0.

3.3.3 A bounded-space SRS algorithm without replacement over
a jumping sliding window

The construction of a sample on a jumping sliding window using the SRS algorithm
returns to building a new sample on each window of the stream while discarding the
sample built on the previous window. The SRS algorithm can be adapted as follows
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to construct a sample of fixed size k on a jumping sliding window of size n: In each
window of the stream, the sample of the previous window is firstly discarded. Then,
in the current window, select each item with a probability equals p = k/n. This step
will be repeated until selecting exactly k distinct items. These steps are detailed in
Algorithm 7.

Algorithm 7. A bounded space Simple Random Sampling without replacement over
a jumping sliding window
1: procedure SRSJumpingWindow(k, n). k is the sample size, n is the window size
2: Initialization: Sw is the sample for the window w, at the beginning S1 = ∅
3: while a new item ei is received do
4: i← i+ 1 . i is the index of e
5: if i = x× n then . when the wth window is filled
6: w ← w + 1 . move the window by one step
7: Sw = ∅
8: repeat
9: for i ∈ [i− n+ 1, n] do . for each item e in the current window w

10: Add ei to Sw with a probability p = k/n
11: end for
12: until selecting k distinct items in Sw
13: end if
14: end while
15: return Sw
16: end procedure

3.3.4 A bounded-space WRS algorithm without replacement over
a jumping sliding window

The aim of the Weighted Random Sampling (WRS) algorithm is to construct a
sample in which the inclusion probability of each item is determined by its weight
with respect to the weights of the other items in the current window. There are
several ways to define the weights, as presented in Section 1.5. The main concern
with these methods is that they all generate the weights in a random manner.
Nevertheless, one may be interested in sampling some items of the stream according
to their values, timestamp, or other characteristics. Since our objective in this section
is to detect the anomalies in the water distribution network manifested by very high
water consumption, it is necessary to ensure that the data involving important
delivered water volume are sampled. Therefore, it is indispensable to force the
sampling of these data. This is done by giving them greater weights compared to
their neighbors in the current tuple-based sliding window. The ability to sample the
data according to their weights can be provided by the WRS algorithm with which
the inclusion probability of each item can be proportional to its value. Thus, the
smaller the value of the item, the lower is its probability of being sampled.

We propose in this section a WRS algorithm without replacement to construct a
data stream sample over a jumping window. The expected performances of such an
algorithm are:
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• Sample each item according to its value with respect to the other items values
in the current window.
• Provide a uniform sample of fixed size.
Thus, we propose to sample each item ei in the window w with a probability equal

to:

pei =
ei

maxn(e)

where maxn(e) is the maximal value in the window of size n.
In order to guarantee a uniform distribution of the sampled items in each window,

we are inspired by the "Divide-to-Conquer" strategy presented in Section 2.4.2. Note
that with the probabilistic algorithms (SRS and WRS), the sampled data of the
flowmeters of a given sector do not have certainly the same timestamps. Thanks
to the uniformity of the sample, the sampled data will have closer indexes, which
avoids the addition of data having very distant timestamps. Recall that the Divide-
to-Conquer strategy consists of splitting the main query into sub-queries made on
smaller adjacent windows. Therefore, given the initial parameters window size
n and sample size k, the WRS algorithm will be performed with the parameters
n′ = n/k and k′ = 1. Thus, each sample will be extracted from one of the k small
adjacent windows of size n′ = n/k so that to form at the end k samples.

To construct a sample of exactly k items from each jumping window, the WRS
algorithm will be executed as follows:

• Split the initial window of size n into k adjacent windows of size n′ = n/k.

• For each small window select randomly k′ = 1 item ei included in the considered
small window, with a probability equal to p = ei

maxn′ (e)
, where max′n(e) is the

maximal value in the small window.

Figure 3.6 shows an example of the flowmeters sum when sampling k = 5 items
over a jumping sliding window of size n = 10 using the WRS algorithm. For each
flowmeter, the jumping sliding window is split into k = 5 successive small window
each of size n′ = 2 and k′ = 1 item is then selected from each small window of size
n′ = 2.

3.3.5 Experimentations

Our objective in this section is to detect the water consumption volume anomalies
of a sector. Recall that the volume of the water consumed by a given sector can
be simply inferred in real-time as an algebraic sum of the flows delivered by its
associated flowmeters. We use the dataset presented in the introduction of the report
(WAVES dataset) and also used in the previous section (Section 3.2.4.1). The chosen
sector consists of 4 flowmeters. As the considered anomalies engender an increase
of the mean of the data, we only focus on the control limit UCL. Two scenarios are
considered and compared in terms of the true positives rate, recall, calculated as
follows:
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Figure 3.6 – Sum of the sampled flowmeters of a sector when sampling k = 5 items over a
jumping sliding window of size n = 10 using WRS algorithm.

Recall =
TP

TP + FN
=
Number of detected anomalies points

Total number of anomalies points

The increase of the water consumption of a given sector can be manifested in
two ways: (1) the water consumption increases significantly at the scale of a single
flowmeter. This increase is visible in both the data of the flowmeter in question and
in the water consumption sum of the sector and (2) the water consumption of all the
flowmeters of the sector increases slightly. These two scenarios are considered in
the experiments.

For the first scenario, to inject the anomalies in the data, we chose one flowmeter
and we inject in it at 3 random moments 3 anomalies. At a random instant t and we
replaced et by µ0 + 5σ0, for 20 successive values corresponding to 5 hours beginning
from the instant t. µ0 and σ0 are the mean and standard deviation of the flowmeter
data calculated during the training phase of EWMA. We repeated this mechanism 3
times to inject 3 errors. We obtained a total number of 60 injected anomalies points.
For the second scenario, for each one of the 4 flowmeters of the sector, we inject at
the same moments t considered in the first scenario 3 different anomalies. For each
instant t, we replaced et by (µ0 + 5σ0)/4, for 20 successive values beginning from the
instant t. We obtain the same total number of 60 injected anomalies points. The
data with the injected anomalies are plotted in Figure 3.7.

EWMA statistic at each time t, EWMA(t), of the original data (without sampling)
are plotted in Figure 3.8. We use the first seven days of the dataset to compute the
parameters of EWMA control chart: the target mean value ewma0, the standard
deviation σ0, and the Upper Control Limit (UCL).

The obtained results for the first scenario are plotted in Figure 3.9. Several
conclusions can be drawn from this figure. At first, one can notice that even without
sampling, many injected anomalies points are missed since the recall value is equal
to 56.66. In fact, according to [Lucas and Saccucci, 1990], with the used parameters
(λ = 0.25 and L = 3), the Average Run Length (ARL) needed by EWMA algorithm
to detect a process mean shift of σ is equals 11 successive anomalies points that
exceed µ0 + σ0. Since EWMA is applied to the sector’s summed data and not to the
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Figure 3.7 – Volume of the water consumed by the sector, over time, with and without
anomalies.

Figure 3.8 – EWMA control chart.

flowmeters data themselves, the magnitude of a shift injected in the flowmeter data
decreases after the sum and may not exceed µ0 + σ0.

Moreover, we note that for a very small sampling rate, no sampling method could
detect the anomalies in the data. Also, we see that whatever the sampling rate,
the WRS algorithm has a higher performance compared to the other algorithms.
Moreover, as the sampling rate increases, the performance of the three algorithms
increases to be close to the results obtained without sampling. Finally, we can notice
that the Chain-sample algorithm gives very similar results to the SRS algorithm in
terms of detected anomalies as these algorithms are both probabilistic and provide
random samples.

The obtained results of the first and second scenarios are depicted by Figure 3.10.
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One can notice that the performances of the SRS and WRS algorithms vary slightly
between the two scenarios. Notice that with the Deterministic sampling algorithm,
the obtained results are the same regardless of the considered scenario. This is
explained by the fact that for a specific sampling rate k/n and a specific window size
n, the same data are always sampled whatever the scenario.

Figure 3.9 – Impact of the sampling rate on the anomaly detection performance according
to the sampling algorithm, for the first scenario.

Figure 3.10 – Comparison of the sampling impact on the anomaly detection performance
when using the Simple Random andWeighted Random Sampling algorithms for both scenarii
S1 and S2.
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3.4 Conclusion

Data streams represent a challenge to the data processing operations such as
query execution and information retrieval. They pose many constraints in terms of
memory space and execution time for the computation process. This is mainly due
to the huge volume of the data and their high arrival rate. Generating approximate
answers by using a small proportion of the data stream is acceptable for many
applications.

In the first part of this chapter, we discussed three data streams sampling algo-
rithms. Their goal is to maintain a representative, fixed-size sample of the most
recent elements of the stream. At first, SRS and Deterministic sampling algorithms
were adapted to the context of the sliding window. Secondly, the performance of these
algorithms was compared to that of Chain-sample algorithm. The results of the ex-
periments show that Chain-sample gives better results than SRS and Deterministic
sampling in terms of execution time and sampling accuracy respectively.

The second part of this chapter was dedicated to studying the impact of data
sampling on the anomalies detection results using EWMA algorithm. First, we
explained the WRS algorithm that samples the data according to their values with
respect to the values of their neighbors in the current window. Then, we sample
the data using the three algorithms: Deterministic sampling, SRS and WRS. The
obtained results showed that the WRS algorithm outperforms both Deterministic
sampling and SRS algorithms in terms of the true positives rate.
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4.1 Introduction

Data quality plays an important role in the analysis of environmental data. An
environmental monitoring process consists of regularly collecting and analyzing
the data streams coming from sensors. It aims to infer new knowledge about the
environment, allowing the network explorer to supervise the network and make the
right decisions. Different data mining techniques are then applied to the collected
data in order to derive useful statistics for the detection and prediction of the
anomalies.
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The data analysis results are closely dependent on the quality of the collected data.
In the real world, the data are often dirty, they are noisy, erroneous, and contain
duplicate and missing values. As in the data analysis process, the conclusions and
decisions are based on the data, this leads to faulty and defective results if the data
have poor quality.

This chapter is organized as follows. We present in Section 4.2 the basic concepts
of data quality. We discuss in Section 4.3 several quality dimensions for sensors data,
and we provide our definitions for the accuracy and confidence dimensions. We also
propose a new model for data quality management in sensor networks. Compared
to existing approaches, our model takes into account the errors caused by sensor
defects in the evaluation and improvement processes of data quality. We debate in
Section 4.4 the existing research studies related to data quality in streaming sensor
networks. We end the chapter with a conclusion.

4.2 Data quality basic concepts

The amount of data we produce and consume every day is growing exponentially
in the modern world. For instance, about 12TB of tweets on Twitter and 25TB of
log data on Facebook are generated every day. Further, 30 billion RFID tags and 4.6
billion camera phones are used all over the world today. In addition, in 2011, there
were 2 billion people connected to the web [Zaslavsky et al., 2013]. The data can
be used and analyzed to improve the performance of systems and decision support
applications as well as for risk assessment.

Karr et al. [Karr et al., 2006] define the data quality as follows:
"Data quality is the capability of data to be used effectively, economically and

rapidly to inform and evaluate decisions."
The interest in data quality comes from the fact that the decisions are based on

the data. The decisions can have very serious consequences when the data are of
poor quality. Improving the data quality is about improving the quality of decisions.

For instance, in the medical sector, some drugs can be taken off the market
due to faulty side effects reported by the clients. A decimal point misplaced in the
prescription of medicine was responsible for the death of a pediatric child [Belkin,
1997]. The healthcare organization states it pays about 4 million dollars per year
following the claims of patients who became ineligible due to medical malpractice
often due to inaccurate patient data [Madnick et al., 2005]. In the commercial sector,
poor data quality can have quite negative economic impacts on both organizations
and customers. Dirty data are reported to cost US industry billions of dollars each
year [Fan, 2015]. For business companies, poor data quality impacts customers and
employees satisfaction. Also, poor data quality requires more time and resources to
be processed and cleaned, which increases their operating costs.

In the recent years, data quality management has attracted the attention of
businesses and academic communities. This is manifested by the growing number
of publications related to data quality during the last twenty years, as shown in
Figure 4.1 [Moges, 2014].
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The quality of the data does not only concern their accuracy but extends to
many other dimensions such as completeness, objectivity, timeliness, representation,
security, etc [Wang, 1998]. Nowadays, there are no standard methods for assessing
data quality. This latter is defined as "fitness for use" [Neely, 2005]. Data quality
dimensions and their evaluation, as well as their improvement methods, depend on
the requirements and the needs of the users and applications. The data that may be
considered good in one case may not be in another case. Therefore, the quality of
the data depends on the context relating the use of the data rather than the data
themselves.

Figure 4.1 – "Journal and conference proceedings from ISI Web of Knowledge searched by a
query title and business economics domain using the key words information quality or data
quality, data quality and metadata, and data management" (From [Moges, 2014]).

Nowadays, the field of data quality management is a part of several application
domains and different research topics, such as the e-government, healthcare, life
sciences and Web data [Batini and Scannapieco, 2010]. The need for data quality
management has led to the definition of different methodologies for data quality
management. These methodologies concern quality dimensions, models, techniques,
tools, and methodologies adapted to new types of data and information systems.

The dimensions are quantitative indicators defined and calculated based on the
characteristics of the data, and at the base of which, the data quality is evaluated.
The improvement techniques are a set of activities based on algorithms and proce-
dures used to improve the quality of the data. In database management systems, the
data is modeled and manipulated using a query language specific to the information
system being used. These systems need to be expanded to represent and manage
data quality issues, including dimensions [Klein et al., 2007]. Methodologies are a
set of guidelines and techniques that define the procedure for managing data quality.
Total Data Quality Management (TDQM), Total Information Quality Management
(TIQM), Data Quality Assessment (DQA) and Information Quality Measurement
(IQM) are examples of methodologies [Batini and Scannapieco, 2010]. The tools and
frameworks are a set of tools and graphical interfaces made available to the user to
allow him to manage the quality of the data.

71



4.2. DATA QUALITY BASIC CONCEPTS

Total Data Quality Management Program
The need of companies for a complete data quality management application has

led to the definition of different methodologies for data quality management, among
them the TDQM Program methodology [Wang, 1998]. TDQM consists of four phases,
as shown in Figure 4.2. The first step is the definition of the data quality dimensions
to be evaluated, analyzed and improved. The second step is the measurement of these
dimensions following which a set of metrics (quantitative values) are produced. The
analysis phase makes it possible to identify the sources and causes of the detected
quality problems. Finally, several actions are taken during the improvement phase
in order to enhance the data quality.

Define

Measure

Analyze

Improve

Figure 4.2 – TDQM methodology.

Data quality dimensions, empirical approach
The first step in managing data quality is the identification and definition of the

dimensions on which the quality of the data will be evaluated. In fact, although
the quality of the data is defined according to the context of its use, it is very
difficult to measure the data quality without referring to a specific set of attributes
or dimensions. The identification of the quality dimensions to be assessed and
improved depends on the needs of the customers [Wang and Strong, 1996], while the
assessment and improvement methods depend on the nature and characteristics of
the data.

In the literature, the data quality dimensions can be defined according to three
main approaches: theoretical, empirical and intuitive [Batini and Scannapieco,
2010]. We detail in the following the empirical approach.

In [Strong et al., 1997] and [Wang and Strong, 1996], a set of data quality
dimensions in static environments was defined by interviewing data consumers.
Four data quality categories have been proposed: intrinsic dimensions, contextual
dimensions, representational dimensions and accessibility dimensions. Each one of
these categories is divided into several dimensions as shown in Figure 4.3.

Intrinsic data quality dimensions measure the quality of the data value itself.
Believability and Reputation dimensions represent the degree to which the user
considers the data as correct and trustworthy. The estimation of the trust degree
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requires verifying the provenance of the data (from which source it was generated)
and the changes that it undergoes. For instance, Wikipedia’s information has a poor
reputation compared to those in the IEEE database. The third data dimension in
the intrinsic category is accuracy. Accuracy qualifies the difference between the
value stored in the database and the real value that the data aims to represent. The
last dimension is data objectivity. It represents the degree to which the data are
equitable and unbiased.

Contextual data quality category considers the context in which the data will be
used. Relevancy dimension also known as helpfulness and domain decision describes
the satisfaction degree of the user’s needs and tasks. For instance, for the search
engines, the pages returned following a user request are relevant if they contain the
answer. Timeliness dimension also known as freshness represents the age of the
data and it can be exploited in several ways.

[Wand and Wang, 1996, Redman, 1997] define the timeliness as the rapidity with
which the data are updated in the relational table. [Wand and Wang, 1996, Liu
and Chi, 2002] consider the timeliness as the ability of the data age to meet the
application’s needs. According to [Naumann, 2002], the timeliness represents the
average of the data age in the warehouse. In this case, the age of the data does not
mean the data antiquity regarding the current time, but rather the age of the last
update. [Jarke et al., 1999] defines the timeliness dimension as the data volatility. It
is the frequency with which the data values vary over time. For instance, the weather
conditions have a high volatility since their values change frequently. Completeness
dimension measures the size of the data, it is given by the ratio of the number of
real-world data and the size of the tuples registered in the database.

Representational data quality category is used to capture the quality of the data
representation. The first dimension is Interpretability. It represents the degree
to which the data is clear, simple and appropriate for the user. It concerns the
availability of the documentation required for an interpretation of the data. The
second dimension is Ease of understanding. It depicts the degree to which the
semantic relation between the different information is understandable by the user.
The third dimension is Representational consistency, also known as homogeneity
and value consistency. It represents the degree to which the data are compatible
with the previous data. The last dimension is the Concise representation, known
as structural consistency and format precision. It is the degree to which the data
structure is suitable to the data itself.

The fourth and last data quality category is accessibility. It is related to the
accessibility of the data and their security level. The first dimension is Accessibility,
also known as availability. It is a technical criterion related to the connection
between the user and the source of the data, it measures the probability that a
user query is answered within a specific time range. The second dimension is the
Access security dimension, known as privacy. It incorporates technical security
aspects such as data encryption/decryption, user login, anonymization of the user
and authentication of the data source.
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Figure 4.3 – Data quality dimensions, empirical approach [Strong et al., 1997].

4.3 Data quality management in sensor networks

In this section, we extend the data quality dimensions for sensors data. We choose
the most important quality dimensions in view of their impact on the data analysis
results: precision, accuracy and completeness. These dimensions will be discussed in
the following. Notice that the fact that data are generated in the form of streams does
not change the definition of these dimensions, but adds several complexity degrees
to the data quality evaluation and improvement algorithms. These complexities are
mainly caused by the infinite data stream size and its variable rate.

4.3.1 Data quality dimensions in sensor networks

In real-world such as sensors environments, data are often dirty, they contain
noisy, erroneous, duplicated and missing values. This is due to many factors: local
interferences, malicious nodes, network congestion, limited sensor precision, harsh
environment, sensor breakdown, sensor malfunction, miscalibration and insufficient
battery power of the sensor. As in the data analysis process, the conclusions and
decisions are based on the data, this leads to defective and faulty results.

One solution to overcome this problem is to use sensors with high precision to
could assume that the arising errors are small, and to deploy redundant sensors
to cover the breakdown of a given sensor. Nevertheless, this approach is very
expensive as it requires very high costs for the sensors. That is why we opted for a
software-based solution where we evaluate and improve data quality using several
complementary methods.

4.3.1.1 Precision dimension

Data precision is ameasure of random noise [Smith, 2013]. It depicts how close are
the data values to each other. The potential causes of noisy data are the fluctuations
and interferences in the environment, the low battery of the sensor, the hardware
failure and the poor calibration of the sensor [Ni et al., 2009]. As a result, the data
can be influenced by random errors also called noise, which makes them slightly
deviate from the true values. Random errors are always present in the data and
cannot be controlled. They impact the variability of the data around the average
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without affecting it. Thus, the data values will be scattered and dispersed around
the true values. Keeping the noise in the data can have a very serious impact on the
data analysis and queries results. Therefore, it is necessary to detect and to remove
these errors [Elnahrawy and Nath, 2003, Tan et al., 2005] in order to extract the
relevant information from the data.

The commonly statistical measure used to detect the noise is the variance [Ni
et al., 2009, Sharma et al., 2010, Abuaitah andWang, 2015]. Actually, a high variance
is a sign of noisy data. However, evaluating the variance of the data without relating
it to the mean is useless. Indeed, a set of data having a standard deviation σ = 5
and a mean µ = 6 does not have the same interpretation as a set of data having
σ = 5 and µ = 100. That is why the Coefficient of Variation (CV ) [Smith, 2013] is
more efficient than the standard deviation to detect the noise. CV is defined as the
ratio of the standard deviation σ to the mean µ [Lohninger, 2010]. A lower value of
CV implies a good data precision [Smith, 2013]. According to the value of CV , data
precision can be considered as:
• Good: In this case, the data is kept and no improvement will be applied.
• Medium: In this case, the data have to be denoised.
• Bad: In this case, the data have to be deleted as it contains much more noise
than useful information.

When the data is to be denoised, smoothing algorithms can be applied. In fact,
the smoothing process reduces the data variance, and therefore, attenuates the
contribution of the noise in the data.

4.3.1.2 Accuracy dimension

The accuracy dimension describes how close are the readings to the real obser-
vations. It represents the difference between the observation’s value and the true
value which the sensor reading aims to represent. Due to instrumental, physical
and human limitations, malfunction and miscalibrating of the sensor, the observa-
tions values can deviate significantly from the true values. These deviated values
called errors are abnormal compared to other data and they affect the average of the
data. Actually, a deviant value compared to other data or to the expected value is
considered as abnormal.

As shown in Figure 4.4, abnormal data may represent an anomaly in the sensor
or an anomaly in the environment. In the first case, it is a false measure called
error or fault and must be removed and replaced to avoid its influence on the data
analysis process. In the second case, it is a real measure called event that describes
a real-world phenomenon which must be exploited. The detection and the removal of
erroneous data help the network explorer to improve the data accuracy. Therefore,
in order to ensure a good data accuracy, we propose to separate the true data from
the erroneous ones caused by sensors faults, so that only the true data will be kept.

One way to separate errors and events is to model the events that may occur in the
environment by defining their characteristics. Thus, the features of the abnormal
data will be compared to those of the predefined events in order to classify the
abnormal data into errors and events. However, in a variable dynamic environment
such as sensor networks, it is not always possible to predict the events that can occur.

75



4.3. DATA QUALITY MANAGEMENT IN SENSOR NETWORKS

An alternative solution is to define the errors, also called sensors faults, and classify
the data based on the characteristics of these errors. We adopt this solution in the
following, and we study on the basis of a literature review the various types of errors
that can occur in sensor networks.

Abnormal data

Error at sensor level Event in the environment

Figure 4.4 – Types of abnormal data.

Taxonomy of data faults
In the following, we discuss the faults encountered in sensor networks. The faults

can be examined from two points of views: data-centric view and system-centric view
[Ni et al., 2009]. The data-centric view uses the features of the data (mean, variance,
etc) to describe the faults, while the system-centric view consists on monitoring the
hardware aspects of the sensors and how they affect the data features [Ni et al.,
2009].

Since some faults, such as the outliers, have unknown causes, it will be easier
to model the fault based on the data features rather than the hardware aspect [Ni
et al., 2009]. Table 4.1 describes the faults that can occur in sensors environments
from a data-centric view.

Table 4.1 – Taxonomy of sensor data faults from a data-centric view [Ni et al., 2009].

Fault Form of
occurrence Potential cause(s) Impact on

Outlier Single point Unknown Gradient

Spikes Successive points
Low battery
Battery failure
Sensor failure
Connection failure

Gradient

Stuck-at x Successive points
Low battery
Dead sensor
Sensor ADC malfun-
ction

Variance

• Outliers: A sudden and temporary increase or decrease in the sensor values is
manifested by the appearance of outliers [Ni et al., 2009, Abuaitah and Wang,
2015], also called Short faults in [Ramanathan et al., 2006, Sharma et al.,
2010]. An outlier is an isolated observation that deviates significantly from
the other observations.
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Several real-world deployments of sensor networks reported the presence of
such an error in the data. One can cite [Szewczyk et al., 2004, Ramanathan
et al., 2006, Ingelrest et al., 2010]. An example of such error is given by
Figure 4.5. The detection of outliers can be based on a set of rules that need to
be satisfied by each data instance. These rules are defined according to the
application domain.

Figure 4.5 – Examples of outliers faults in the raw humidity readings in the NIMS deploy-
ment [Kaiser et al., 2005].

• Spikes: Spikes errors are popular in sensor networks. A spike error consists of
a set of points that deviate significantly from the expected ones. Notice that an
outlier can be considered as a single-sample spike [Sharma et al., 2010]. This
type of fault is characterized by a sudden and large increase of the gradient
[Ni et al., 2009, Abuaitah and Wang, 2015].

• Stuck-at: A stuck-at x error occurs when the sensor is stuck on an incorrect
value x. During such a situation, a set of successive values will have the same
value x ± ε. The error may last for a long time, and the sensor may or not
return to its normal behavior [Ni et al., 2009]. This type of error is also called
"CONSTANT" in [Sharma et al., 2010, Ramanathan et al., 2006]. According to
[Sharma et al., 2010], this type of error affects about 20%− 25% of the data of
the INTEL Lab and 15%− 35% of the data in NAMOS data set. An example of
such error is given by Figure 4.6.
Stuck-at data are not always errors. This is the case of Clipping situation [Ni
et al., 2009]. The data that exhibit a Clipping fault still hold some real and
important information, and should not be discarded. Clipping errors occur
when the environment data are outside the maximum sensitivity range of the
sensor. In this case, we observe consecutive data having the maximum value
of the sensor sensitivity range. The sensor is thereby saturated, and the data
exhibiting this fault have a very small variance [Ni et al., 2009].
The detection of stuck-at errors will be discussed in Chapter 5.

The accuracy dimension for each sensor reading takes the following values:

Accuracy =

{
0, if the value is erroneous.
1, if the value is not erroneous.
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Figure 4.6 – Stuck-at faults in the chlorophyll concentrations from two buoys in the NAMOS
deployment at Lake Fulmor monitoring the marine environment [Dhariwal et al., 2006].

Sensor reliability dimension: Based on the accuracy dimension, we define the
sensor reliability dimension. The sensor reliability degree, denoted by cumulativeError,
depicts the percentage of the cumulated erroneous values registered by the sensor.
At each instant t (in hour), the cumulativeError degree is calculated as follows:

cumulativeErrort = [
Number of erroneous datat
Number of received datat

]× 100%

4.3.1.3 Completeness dimension

The loss of data has serious consequences for the environmental monitoring
system and leads to reduced information, and so, to erroneous and distorted results.
One solution to deal with this problem is to use a reliable transmission protocol
[Pang et al., 2008], which requires data retransmission in case of failure. However,
this will be costly in terms of battery consumption. Another way to avoid data loss
is to deploy multiple sensors in the same region to be monitored. This approach is
not only expensive in terms of hardware, but it will also create a problem of data
redundancy. In fact, it requires an effective policy to merge the data and will increase
the data preprocessing duration before their analysis. We can thus conclude that
the most efficient way to deal with the problem of missing data is to estimate and
regenerate them using statistical methods.

The completeness dimension at each instant t (in hour) is measured in terms of
the cumulativeMissing degree calculated as follows:

cumulativeMissingt = [
Number of missing datat

t× streamRate
]× 100%

where streamRate is related to the data frequency of the considered stream.
Several approaches have been proposed in the literature to address the problem

of missing data. One can cite the imputation by regression [Cool, 2000], hot-deck
imputation [Iannacchione, 1982], Expectation Maximization (EM) [McLachlan and
Krishnan, 2007], maximum likelihood [Little and Rubin, 2014] and multiple im-
putations [Rubin, 2004]. However, due to the constraints related to data streams
environments as well as the temporal and spatial characteristics of sensors data, the
use of these methods becomes unsuitable. Thus, new methods have been developed.
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[Gruenwald et al., 2007] proposed to use the spatial correlation between sensors
to impute missing data for a specific sensor. The proposed solution, so-called Fresh-
ness Association Rule Mining (FARM), uses the association rule mining to find the
relationships between the sensors while taking into consideration the freshness of
the data. The more recent the data, the higher is its weight during the estimation.
For a given sensor having missing values, the imputation of missing data is done
by weighting the average of the values of its related sensors. Pan et al. [Pan et al.,
2010] designed a K-nearest neighbor algorithm to estimate missing data in sensor
networks. The algorithm uses a linear regression model based on the temporal and
spatial correlations of the sensors to impute missing data. [Li and Parker, 2008]
developed a fuzzy adaptive neural network that uses both temporal and spatial
correlation of the data to estimate the missing values. For a given sensor having
missing data, Window Association Rule Mining (WARM) [Le Gruenwald, 2005] uses
the association rule mining to find its related sensors, and the values reported by the
related sensors in the last sliding window are used to estimate the missing values.

4.3.1.4 Confidence dimension

We define the confidence dimension to be the degree of trustiness that we give to
a particular sensor reading after evaluating and improving (if necessary) its quality.
The confidence degree depends on the originality of the data. Actually, when a value
is missing or erroneous, it has to be regenerated in order to enhance its quality.
In this case, its confidence degree is equal to x% which represents the proportion
of consecutive missing or erroneous values around it. x is calculated relatively to
given time period (24 hours as an example). Therefore, the confidence degree of each
sensor reading takes the following values:

Confidence =

{
x%, if the value is regenerated.
100%, if the value is original.

4.3.2 Sensor data quality management, a new approach

Based on the previous study, we propose the following new strategy to manage
sensors data quality. Our solution is shown by Figure 4.7, it is based on the TDQM
methodology. Recall that this methodology consists of a series of iterations to manage
the data quality. These iterations are the definition of data quality dimensions, the
measure of these dimensions, the analysis and the identification of the causes of
poor data quality, and finally, the improvement of the data quality.

After the data acquisition from each sensor, the system assesses the precision,
accuracy, sensor reliability and completeness dimensions. Based on the obtained
measurement, it detects noisy data, detects erroneous data, and finally, detects
missing and duplicated data. Thereafter, it proceeds to smooth noisy data using
smoothing algorithms, to remove duplicated data, and finally, to remove and to
regenerate erroneous data and missing data. Afterward, for each data, the confi-
dence dimension is evaluated. Finally, the information related to the data quality
dimensions will be attached to the data and propagated to the user.
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Figure 4.7 – Sensors data quality management approach based on TDQM methodology.

4.4 Data quality in streaming sensor networks, related
works

In this section, we discuss the existing approaches to manage data quality in
streaming sensor networks.

A sensor data cleaning framework called Extensible Sensor stream Processing
(ESP) has been proposed in [Jeffery et al., 2006] to clean sensor data. The framework
uses continuous query language (CQL) as a declarative language to clean the data
based on the user’s rules. CQL is a cleaning process that aims to detect outliers
data, replace missing data and remove duplicate data. The detection of erroneous
data is achieved through two steps. First, the framework ESP considers that the
data is erroneous if it is largely higher than the expected value defined by the user.
This expected value depends, of course, of the application domain. Second, ESP uses
the spatial correlation between the data. It compares each sensor value with the
ones recorded by its neighboring sensors. If the difference between the value and
the mean is two times higher than the standard deviation, the data is considered
as erroneous. For the missing data problem, ESP replaces each missing value by
interpolation. Although this work is interesting, it remains incomplete. In fact, a
deviated data can be an erroneous data or an event. The outlier detection process of
ESP does not make this differentiation. Also, no detection and removal of noisy data
were performed.

Two sensor data cleaning approaches were proposed in [Zhuang and Chen, 2006].
These approaches only consider the accuracy quality dimension and are intended to
detect, delete and/or correct the erroneous data. These errors can be of two types:
simple short outlier and simple long outlier. The first approach uses wavelets to
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correct erroneous data, while the second approach is based on similarity comparison
based on the neighboring dynamic time warping (DTW) distance to detect and to
delete erroneous data.

Bettencourt et al. [Bettencourt et al., 2007] proposed a statistical method for
detecting errors and events and for replacing missing data in a wireless sensor
network deployed at Sevilleta National Wildlife Refuge. Under the assumption
that the spatio-temporal correlation degree between sensors is high, the method
requires learning statistical distributions of differences between the readings of a
given sensor over time, and between the readings of a given sensor and the readings
of its neighbors. On the basis of the learned statistics, the likelihood probability for
each new sensor reading is calculated and the classification of the observation as
error or event is made. The main concern with this approach is that it does not take
into account the erroneous data caused by sensor faults.

The origin of the data was used to assess the accuracy dimension of both sensors
and data in [Lim et al., 2009]. The proposed framework computes the sensor and
data confidence degrees and updates them over time. A filtering process is performed
based on a confidence interval defined by the user. The objective is to select only the
data having a confidence degree belonging to the confidence interval. For the compu-
tation of data item confidence degree, two similarity measures are used: the value
similarity and the provenance similarity. To evaluate the similarity, the authors
assume that the theoretical data distribution follows the normal distribution. The
confidence degree is then calculated using the difference between the experimental
and the theoretical distribution. The provenance similarity is based on the fact that
if several sensors record the same value, this increases the confidence degree of
this value. However, in many real use cases, no a priori knowledge about the data
distribution can be defined. Moreover, the framework does not present any way to
improve the data accuracy.

A data fusion system based on data quality in a distributed context was proposed
by [Hermans et al., 2009, Hermans, 2009]. The system uses a set of heuristics to
evaluate the data quality dimensions, namely, accuracy, precision, completeness and
timeliness dimensions. The network is organized in clusters, and in each cluster, a
sensor node is chosen as a cluster head. Each sensor node evaluates its data quality
and sends the results to its cluster head which will merge the received data while
taking into account their qualities.

A data cleaning system based on machine learning algorithms was proposed
in [Ramirez et al., 2011]. The system aims to evaluate the accuracy dimension of
the data generated from the environmental sensor network Jornada Experimental
Range (JER). For every sensor, each value is predicted using three machine learning
algorithms. If the recorded value is far from that predicted, the value is declared
as an error and will be replaced by the expected value or by the average of the
erroneous value and the expected value or by interpolation. According to the author,
this approach is very expensive and so it will be implemented as a post-processing
phase. This needs to save all the recorded values, which is not suitable for the
streaming environment constraints. This work presents several weaknesses. Firstly,
as with previous works, no distinction between the different types of outliers has been
taken into account, a value very different from that predicted may simply represent
a real event and so should not be replaced. Also, the completeness dimension was not
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addressed, while it is quite important in sensors environments as the transmission
conditions are very variable and the data are very likely to be missed.

According to [Gutiérrez Rodriguez, 2010, Rodriguez and Servigne, 2012], sen-
sors data quality depends on the quality of the data sources and the quality of the
treatment that the data have undergone. [Gutiérrez Rodriguez, 2010, Rodriguez
and Servigne, 2012] developed MoSDaQ prototype: an environmental phenomena
monitoring system for volcanic data analysis. The system includes three data man-
agement layers, in the acquisition layer, the sensors’ observations are recorded. In
the processing layer, the data are analyzed, they are filtered, reduced or aggregated.
Finally, the discovery layer allows the user to exploit the data in real-time. The data
quality characteristics will be provided to the user via a graphical user interface.
The evaluation criteria for the data quality are the accuracy, the completeness, and
the time-related aspect. To evaluate the accuracy dimension, no differentiation
between errors and real data has been taken into account.

[Li et al., 2012] defined three quality dimensions for real-world data. These
dimensions are the currency, availability, and validity. The currency dimension
represents the utility of the data in relation to its time. The more recent the data,
the more is considered reliable and representative of the real world. The data is
considered available to users as long as it is not expired and can respond to user
requests. The percentage of time that data is reliable and not expired is represented
by the availability dimension. Finally, the validity dimension evaluates the accuracy
of the data and is evaluated by a set of static and dynamic rules. This metric depends
largely on the field of application and the considered scenario. For instance, "The
temperature in Vienna should be between 0 and 35 degrees in May" is a static rule.
However, the violation of these rules can be due either to real data representing
a particular phenomenon in the environment which needs to be exploited, or an
erroneous data caused by a sensor defect. This differentiation is not taken into
account in the definition of the validity dimension proposed in this work.

In [Islam et al., 2014], the authors studied the impact of missing and incorrect
data on the classification of data issued from sensor networks. They proposed a
strategy to improve the data quality based on two dimensions: completeness and
accuracy. The strategy consists of identifying and removing erroneous data and
then imputing the deleted erroneous data and missing data. The adopted method
for the identification of incorrect data is based on the so-called Co-appearance based
Analysis for Incorrect Records and Attribute-values Detection (CAIRAD ) technique
(see [Rahman et al., 2012] for more details) and does not consider the impact of
sensor hardware faults on the data correctness.

In order to improve the data reliability and to reduce the energy consumption
of sensors, Lei et al. [Lei et al., 2016] proposed to clean sensors data. The key
point of the proposed strategy is the outliers detection and their classification into
errors and events. At first, the observations of a given sensor are predicted using
a linear regression model. Secondly, each observation is considered abnormal if
the difference between its value and the predicted one exceeds a certain predefined
threshold. Finally, the classification of each detected abnormal observation into error
and event is based on the Euclidean distance between the observation value and that
of the nearest neighbor of the sensor. The abnormal observation is considered as
erroneous if the Euclidean distance exceeds a certain predefined threshold. [Tasnim
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et al., 2017] proposed a framework for cleaning sensor data. It aims to evaluate
the credibility dimension of the data. The credibility of the data measures the
number of times a sensor has recorded the value correctly in relation to the number
of observations recorded by the sensor during a certain period of time. For a given
sensor, the difference between each recorded value and the predicted one is calculated.
The predicted value is the average value of the readings of the spatial neighbors of
the sensor. If the difference exceeds a certain threshold, the recorded value will be
considered as erroneous. However, the deviation of a sensor reading from the spatial
neighbors’ values may represent a real phenomenon occurring in the environment
and not an error. This differentiation was not taken into account by these two works.

[Cheng et al., 2018] presented a new approach for cleaning sensor data. They
proposed to evaluate the data quality based on four dimensions: data volume,
accuracy, completeness, and timeliness. Based on correlation level between these
dimensions, several strategies for data cleaning are executed. The proposed approach
does not consider the erroneous data caused by sensor faults in the evaluation of the
accuracy dimension. A sensor reading is considered erroneous only if the difference
between its value and the real value exceeds a certain threshold.

Few works have elaborated the quality of the sensors data in streaming context.
In [Klein et al., 2007], the authors proposed amodel to evaluate and store information
about data accuracy and completeness dimensions. These information are recorded
over jumping windows instead of each item in order to reduce the storage size.
According to the authors, a data is considered as inaccurate only when it has a value
exceeding the highest sensor range. Data accuracy is evaluated according to the
precision of the sensor and does not consider the errors caused by sensors defects.
Moreover, no improvement of data quality was proposed. The previous work [Klein
et al., 2007] was extended by [Klein and Lehner, 2009, Olbrich, 2010]. [Klein and
Lehner, 2009] studied the impact of several data stream operators on the quality of
the data. Data stream operators are part of data manipulation and aim to manage
the data by applying modifying, generating, reducing and merging actions. [Olbrich,
2010] provided the information collected about the quality of the data to the user.
SQL functions are implemented in order to control the quality of the data on each
window and to return to the user only the data having a quality degree that meets his
requirements. However, just like the initial work, no data quality improvement was
proposed. The rules used to evaluate the accuracy of the data do not differentiate
between errors and real readings.

Errors identification in the raw data is a very important issue, it separates the
erroneous data and the true data, and thus, ensures a good data accuracy. In the
most of the studies presented above, the identification of erroneous data was always
linked to the precision of the sensor (do not confuse with the precision dimension
related to noise) and without making any difference between the real data and the
erroneous ones caused by sensor faults. Also, few approaches addressed at the same
time the three dimensions: precision, accuracy and completeness, and few studies
plan to enhance the quality of sensors data.
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4.5 Conclusion

In this chapter, we described the basic concepts of data quality management and
we focus on the data quality dimensions in sensor networks. In order to avoid faulty
decision due to dirty data, data quality must be guaranteed. There are two ap-
proaches to handle and to improve data quality deficiencies in sensors environments:

• Hardware-based approach: It consists of the use of sensors with high precision
and assuming that the arising errors are small, and the use of redundant
sensors to cover the breakdown of a sensor. This approach is very expensive as
it requires very high costs for sensors.

• Software-based approach: To prevent high costs while guaranteeing a good
data quality, data quality information have to be recorded and processed and
the data quality has to be improved. Therefore, it is necessary to evaluate
and to improve the quality of the data before exploring them. This is the key
function of a sensor data quality management system.

In the literature, there are several software-based approaches for data quality
management in sensor networks. However, in the most of them, errors identification
in the data was not taken into consideration. Errors identification is a very important
step since it separates erroneous data and real data, and thus, guarantees a good
data accuracy. A part of the proposed system in Section 4.3.2 is implemented and
will be presented in Chapter 7. We discuss in the next chapter the detection of
erroneous data of type stuck-at.
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5.1 Introduction

Assessing and improving the quality of the data in sensor networks poses signifi-
cant challenges. Indeed, the data recorded and sent by the sensors are often dirty,
they contain noisy, erroneous, duplicate and missing values. This may be due to
many reasons, such as a sensor malfunction, an uncalibrated sensor, a low sensor
battery, or caused by external factors such as the weather conditions, interference,
etc.

In this chapter, we study the anomalies detection in the time series emitted
by sensors. In particular, we discuss the slow and gradual changes in the process
variability as they illustrate deviations in the calibration of the sensor, the so-called
stuck-at error. For that, we present in this chapter an in-depth analysis and an
improvement of the reactivity of CUmulative SUM (CUSUM) algorithm since it is
well adapted to the detection of small deviations. Firstly, we discuss the choice of
CUSUM parameters in order to optimize its results according to the compromise
between the false positives and the Average Run Length (ARL) required by the
algorithm to detect a deviation of the process mean. A study of the variability of
the Run Length (RL) is provided by simulation. Secondly, we present an efficient
method for estimating the start time and end time of the process mean deviation in
order to improve the reactivity of CUSUM algorithm. Finally, we adapt CUSUM to
detect a deviation of the process variability. All these improvements are validated
by simulation and against real data streams.

This chapter is organized as follows: In Section 5.2, we discuss several anomalies
detection methods. In Section 5.3, we study by simulation the choice of the parame-
ters of CUSUM algorithm as well as the RL variability. In Section 5.4, we propose
an efficient method for the estimation of the start and end times of the process
mean deviation. The efficiency of the proposed approach is discussed in Section 5.5.
The adaptation of CUSUM algorithm to detect the stuck-at errors is presented in
Section 5.6. We end the chapter with a conclusion.

5.2 Anomalies detection algorithms

Data streams have significantly increased with the development of the Internet
of Things (IoT) and the emergence of connected objects. Large and heterogeneous
collections of data are continuously generated by these objects at a high rate. They
are issued from the activity of different organizations belonging to various domains
such as healthcare, financial services, social networks, logistics and transport, and
public administration. Detecting online a change of the process parameters in data
streams is an important issue as it can have several interpretations depending on the
application domain. In [Chabchoub et al., 2014], the authors showed that an abrupt
increase in the number of destination ports in IP traffic is an efficient criterion to
detect port scan attacks. In [Manonmani and Suganya, 2010], an analysis of data
streams issued from a multi-temporal satellite is provided. It aims to detect land
use and land cover changes. Such changes can be explained by human activities,
natural conditions and development activities.
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Dunning et al. [Dunning and Friedman, 2014] define the anomalies detection as
follows:

"Anomaly detection is based on the fundamental concept of modeling what is
normal in order to discover what is not."

Several anomalies detection methods have been designed by the statistics re-
search community. According to [Basseville et al., 1993], these methods can be
classified into two categories. First, we distinguish univariate change detection
techniques. In this category, one can cite the control chart methods including She-
whart, Exponential Weighted Moving Average (EWMA) [Roberts, 1959], GEOMetric
Moving Average (GEOMMA) [Roberts, 1959], CUSUM algorithm, and Bayes-type
algorithms. The second category concerns univariate change detection algorithms.
They are adapted to more complex changes such as non-additive changes in multidi-
mensional signals. Among these methods, one can mention the time-series modeling
and forecasting models such as Autoregressive Moving Average (ARMA) and Au-
toregressive Integrated Moving Average (ARIMA) models, and the likelihood ratio.
Several criteria can be considered to compare all these methods. The comparison
can be based on the tolerance to false positives (false alarms), the response time of
the algorithm (Run Length to detect the change), or the adaptation to progressive
(or small) changes. The choice of the suitable change detection method depends on
the application field and the specificity of the targeted error or change.

Control charts are one of the main used tools used in Statistical Process Control
(SPC). SPC is a set of techniques and tools for monitoring the quality of a process. The
statistical control chart concept was first introduced by Walter A. Shewhart of the
Bell Telephone Laboratories in 1924. Control chart algorithms are particularly used
to monitor the process stability over time by detecting a change in its parameters.
The type of the control chart depends on the number of process characteristics to be
monitored. Basically, there are two types of control charts. The first one is called
univariate control chart, it is a chart of one quality characteristic. The second type,
called multivariate control chart, is a chart that represents more than one quality
characteristic.

Control charts algorithms raise an alarm when the process presents a suspicious
deviation from a standard behavior. This deviation is defined based on two given
thresholds called control limits. In general, the chart contains three elements, the
plotted data corresponding to the process itself, the control limits and a central line
(process average). By comparing the plotted data to these control limits, we can
deduce a decision about whether the process is stable (in control) or is unstable (out
of control). A control chart consists of two phases. In phase I, called learning phase,
the in-control process parameters are estimated and are used to define the control
limits. In phase II, the control chart detects the changes in the process parameters.
As long as the process remains in control, the data points fall within the control
limits. If a data point falls outside the control limits, we consider that the process is
out of control. An investigation is needed to find and eliminate the cause(s) of the
occurred change. The main performance measure of a control chart is the ARL. RL
is the number of observations required by the control chart algorithm to raise an
alarm. When the process is in-control, the RL refers to false positives rate, and in
the case of change, it qualifies the response time (reactivity) of the algorithm.

One of the most common control chart algorithms used to control the process

89



5.2. ANOMALIES DETECTION ALGORITHMS

average is the Shewhart. Shewhart evaluates the state of the process based only
on the information concerning the last observations of the process while ignoring
the information provided by the past observations. It is efficient for the detection of
large shifts, as it has a shorter response time than CUSUM in this case. However,
Shewhart control chart is insensitive to small changes. CUSUM chart overcomes
this problem by using the current observed data and the historical observed data.
It cumulates the impact of small deviations over time which enables it to detect
small shifts in the process mean. CUSUM algorithm was initially proposed by Page
in 1954 [Page, 1954] and used to detect a shift in the process parameters. It aims
to monitor the variation of the average of a process, and has the ability to detect
small shifts (less than 1.5σ, where σ is the standard deviation) from the expected
average (see [Montgomery, 2007] for more details). CUSUM control chart has been
addressed in several research studies, such as [Ewan, 1963], [Bissell, 1969], [Goel
and Wu, 1973], [Reynolds, 1975] and [Lucas and Crosier, 1982a]. In [Van Phuong
et al., 2006], the authors propose to use CUSUM to detect attacks in sensor networks
such as wormholes, sinkholes, hello flooding, and jamming. [Peng et al., 2007] use
CUSUM algorithm to detect the denial-of-service attacks in the network. Reynolds
et al. [Reynolds and Stoumbos, 2010] discuss the problem of CUSUM robustness to
non-normality when monitoring the process mean and variance.

Another control chart designed to detect a change in the process mean is the
EWMA introduced by [Roberts, 1959]. It is based on a weighted average that is
updated for each received item of the stream. This moving average takes into
account the current item and all the observed data. More importance (higher
weight) is assigned to recent data. EWMA control chart has been addressed in many
research studies, in particular, in the Statistical Process Control (SPC) domain.
[Chabchoub et al., 2014] used EWMA to design an algorithm for on-line port scan
attacks detection. They, first applied the sliding HyperLogLog algorithm to infer
relevant statistics from the IP traffic data and then detected the malicious IP traffic
data using EWMA control chart algorithm. Several research studies addressed
the problem of process parameters estimation when phase I of the control chart
contains data with anomalies. These data influence the in-control process estimated
parameters, such as the mean and the standard deviation, and thus, makes the
phase II less reliable to detect the occurred changes in the process parameters.
[Zwetsloot et al., 2014] studied the effectiveness of several parameters estimation
methods of the in-control process when phase I contains anomalies. [Zwetsloot et al.,
2015] proposed to apply EWMA control chart in phase I in order to detect and to
delete contaminated data so that the in-control process parameters estimation be
robust. Saleh et al. [Saleh et al., 2015] studied the performance of EWMA control
chart in terms of the mean and Standard Deviation of the ARL (SDARL).

Anomaly detection using the ARIMA model has been proposed by [Chen et al.,
2005, Pena et al., 2013]. [Yu et al., 2016] introduced an improved version of ARIMA
model for anomaly detection in wireless sensor networks. The complexity of detecting
anomalies in multivariate time series has been addressed by [Tsay et al., 2000,
Galeano et al., 2006]. Kalman filtering is another common method for anomalies
detection in data streams. [Soule et al., 2005] proposed a method for the detection
of traffic anomalies based on the Kalman Filter. At first, the matrix of traffic data
is predicted. After that, the actual traffic matrix is estimated based on the recent
traffic data. The difference between the actual traffic matrix and the predicted one
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is computed and examined in order to detect the traffic anomalies. [Knorn and
Leith, 2008] used a framework based on the Kalman Filter to monitor the software
appliance. A mathematical model based on the Kalman Filter was proposed by
[Manandhar et al., 2014] to detect attacks and faults on the smart-grid system. At
first, the Kalman filter, combined with a mathematical model, estimates the state
of the variables using the sensors readings. After that, the residual between the
measured data and estimated ones is calculated, and the statistical test χ2 is applied
to check whether the residual corresponds to anomalies or not.

5.3 An analysis of CUSUM algorithm

5.3.1 Algorithm description

Applied on a data stream, CUSUM algorithm takes into account all the past
values of the stream by calculating the cumulative sum of the deviations from the
target value which is defined as the mean of the observables in the training window,
µ0. It is implicitly assumed that the observed process (St)t≥0 is in control (has a
standard behavior) during the training window. The cumulative sum control chart
Ct, initially set to 0, (C0 = 0), is calculated as follows:

Ct =
t∑

j=1

(sj − µ0); t ≥ 1

which is equivalent to:

Ct = (st − µ0) +
t−1∑
j=1

(sj − µ0)

= (st − µ0) + Ct−1; t > 1

In order to quantify and detect small variations, CUSUM defines two statistics
C+
t and C−t . C+

t accumulates for relatively high values of the observed process, the
distance to (µ0 + K); K being a given threshold that will be discussed later. For
small values of the observed process, the cumulative distance to (µ0 −K) is handled
by C−t .

C+
t = max[0, st − µ0 −K + C+

t−1]

C−t = max[0, µ0 − st −K + C−t−1]

The threshold K is also called the allowance value. It depends on the mean shift
that we want to detect. If either C+

t or C−t exceeds the decision threshold H, the
process is considered as out-of-control and an alarm will be reported. The process
is declared as in-control when the cumulative sum is again under the threshold H.
K and H are often related to the standard deviation σ0 calculated in the training
window:
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K = kσ0; H = hσ0

After the detection of an anomaly, the cumulative sums C+
t and C−t are reinitial-

ized to 0.
In an improved version of CUSUM called FIR CUSUM (for Fast Initial Response)

[Lucas and Crosier, 1982b], a headstart is introduced to improve the response time
of the algorithm. When the process is out-of-control at the start-up, or when it is
restarted after an adjustment, the standard CUSUMmay be slow in detecting a shift
in the process mean that is present immediately after the start-up of the adjustment.
To overcome this problem, the headstart consists of setting the starting values C+

t

and C−t equal to some nonzero value, typically H/2.

5.3.2 Choice of the parameters

The performance of the CUSUM algorithm is closely dependent on the choice of
the two key parameters h and k. Two objectives must be achieved when setting these
parameters. On the one hand, one must minimize the false positives. In other words,
when the process is in-control, ideally, the CUSUM algorithm should not detect any
change. On the other hand, any mean shift has to be detected as soon as possible.
There is clearly a trade-off between these two objectives. According to [Montgomery,
2007], it is recommended to take k = 0.5 and h = 4 or 5. A complete theoretical study
of the performance of CUSUM is provided by Siegmund in [Siegmund, 2013]. It is
based on an approximation of the ARL properties.

ARLδ is defined as the expected number of items required by CUSUM to detect a
deviation when the process has a mean deviation of δ. The approximation given by
[Siegmund, 2013] is simple compared to other approaches based on approximating
transitions from the in-control to the out-of-control state with a Markov chain (see
[Brook and Evans, 1972]). We choose to focus on positive shifts (the problem is
completely analog for negative shifts) so we consider a one-sided CUSUM where
only C+

i is handled. In this case, Siegmund’s approximation of ARL is:

ARL =
exp(−2(δ − k)h′) + 2(δ − k)h′ − 1

2(δ − k)2

where δ is the mean process shift, in the units of σ0, and h′ = h+ 1.166. In this
equation, the observed process is assumed to be normally distributed.

We first plotted in Figure 5.1 the variation of ARL0 based on this equation. Recall
that ARL0 should be high to minimize false positives. According to this Figure, h
must be taken at least equal to 3 to have an ARL0 higher than 100, when k is close
to 0.5.

The second step is to minimize ARLδ to detect the deviation as soon as possible
and to achieve a good reactivity. According to Figure 5.2, the ARL decreases when h
decreases, that is why h should be small to have a better reactivity in case of a mean
shift. For h ∈ [3, 5], ARL1 is between 5 and 11 which corresponds to a reasonable
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Figure 5.1 – ARL0(k, h): Impact of k and the control limit h on ARL0.

response time or reactivity. This result is confirmed by Figure 5.4 which shows that
CUSUM has a small ARLδ for large shifts (δ ≥ 1).

In Figures 5.3 and 5.5, we focused on very small shifts detection (δ ∈ [0, 1]). When
the mean deviation δ is small, ARLδ becomes high, close to ARL0. One can conclude
that the shift δ has to be at least equal to 0.5 to guarantee an order of magnitude of
difference between ARL0 and ARLδ (ARL0 ∼ 100 and ARLδ ∼ 10).

Figure 5.2 – ARL1(k, h): Impact of k and the control limit h on ARL1.

The main conclusions that we can draw from this section are the following:
• The value of h must be at least 3 to have an ARL0 greater than 100 when k is
close to 0.5.
• The value of ARL decreases with the decrease of h, therefore, the value of h

must be small to have a better reactivity in the case of process mean deviation.
• The deviation δ must be at least 0.5 to guarantee an order of magnitude of
difference between ARL0 and ARLδ (ARL0 ∼ 100 and ARLδ ∼ 10).
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Figure 5.3 – Impact of the control limit h on ARLδ.

Figure 5.4 – Impact of the shift δ on ARL, h ∈ [3, 5].

5.3.3 Variability of the Run Length (RL)

An important criterion used to evaluate the reactivity of a control chart algorithm
is the ARL. We recall that it represents the expected number of observations needed
before an out-of-control alarm is detected. ARL has two interpretations. ARL0

is defined as the average number of in-control data needed by the control chart
algorithm to signal a false alarm. ARLδ is the average number of out-of-control data
required to detect the error after a process mean changed. ARL0 has to be as large
as possible, and ARLδ has to be small in order to detect the shift quickly. The Run
Length is a random variable. To our knowledge, only its average was theoretically
studied. No theoretical results about the variability of Run Length are provided in
the literature. In this section, we address this problem using simulations.

We report in Table 5.1 the average and the standard deviation of the RL, respec-
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Figure 5.5 – Impact of small shifts δ on ARL, h ∈ [3, 5].

tively ARL and SDRL, for different values of shift δ. According to the recommen-
dation of [Montgomery, 2007], we choose k = 0.5 and h = 4 in order to have a good
ARL for a shift of 1σ in the process mean.

In order to simulate ARL0, a sample of size 1000 is generated under an in-control
situation. CUSUM chart is then applied to the samples until an out-of-control signal
is triggered. The number of observations when the signal is triggered is the in-control
Run Length RL0. We repeat this simulation 150 times so we can get the average
value: ARL0. The considered process follows the standard normal distribution. To
simulate the ARLδ, we performed the same experiments with an injected shift of
δ in the process mean. We can notice that the average and the standard deviation
of the RL decrease with the increase of the shift δ. Moreover, the false positives
detected by CUSUM closely depend on the execution, as they are calculated using
RL0 which has a high standard deviation compared to its average ARL0. Therefore
the Run Length to obtain a false positive can be significantly lower than ARL0. One
can conclude that for a single execution, the CUSUM can lead quickly to a false
positive.

Table 5.1 – Simulated Run Lengths (RL), for different shift sizes.

Shift δ
0 0.25 0.5 1 2 3

Theoretical ARL 370 74.2 26.6 8.34 3.34 2.19
Simulated ARL 328 73.59 25.82 8.02 3.38 2.74

SDRL 220 8.38 1.92 1.77 1.41 1.31

5.4 Enhancing the reactivity of CUSUM algorithm

Recall that to detect positive mean shifts, CUSUM is based on the following
cumulative statistic:
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C+
t = max[0, st − µ0 −K + C+

t−1]

In the standard version of CUSUM, the deviation from the expected average is
declared after performing enough iteration to deeply impact Ct. However, it is not
possible to know the exact start time of the small shift. In fact, the change detection
occurs after real change start time and no estimation of this latter is provided in
the literature. Moreover, the observed process is considered as in-control (end of the
deviation) when Ct is less than the detection thresholdH. As Ct is a cumulative sum,
it sometimes takes a long time (many iterations) to achieve this condition. Thus,
the end of deviation is declared a long time after the real return to the standard
behavior.

To overcome these problems, we propose the following improvements:

• Add an estimation of the start time of the change.

• Improve the precision of the end time of the change.

5.4.1 Detecting the anomaly start time

The first improvement of CUSUM is related to the start time of the anomaly.
In the literature, the change is simply declared when it is detected. Let us take
K = σ0/2, and st a process normally distributed: S ∼ N (µ0, σ

2
0) .

When the process st is in-control, (st − µ0 −K) has the same probability of being
positive or negative for symmetry reasons. When st has a mean positive shift (of
σ0 as an example), (st − µ0 −K) becomes very likely to be positive. Therefore, Ct is
very likely to be increasing (Ct > Ct−1). This is the key idea behind our improvement.
When the process is out-of-control, the value of Ct is very likely to increase as long
as the deviations persist.

When an error is detected (Ct > H), the start time of this anomaly can be
estimated by the moment where Ct became strictly increasing. This moment can
be inferred even if it is former to the detection of the error. For this purpose, we
introduce a Start Time counter (ST ), that we update each time we calculate Ct. If an
error is declared at time t, its start time is estimated as: error start time = t−ST +1.

Initially, ST is set to 0, then, it is updated as follows:

• ST ← ST + 1 if the value of Ct increases.

• ST ← ST − 1 if the value of Ct decreases.

• ST is reset to 0 if the end of the error is detected.

In the case of an in-control process, ST has a random distribution with a null
mean. The counter ST is used to estimate the size of each anomaly, in other words,
the process out-of-control duration.
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5.4.2 Detecting the anomaly end time

As far as we know, the real end time estimation of the anomaly for CUSUM
algorithm was not addressed before. In the standard version of CUSUM, the end
of the anomaly is declared when Ct becomes lower than the threshold H. Being
a cumulated sum, Ct needs many steps (or iterations) to attain its normal values
(< H) after the end of the error. To improve the reactivity of the CUSUM algorithm,
we introduce an End Time counter (ET ), to be able to detect the end of the anomaly
quickly.

The key idea of this improvement is that when Ct becomes constant or decreasing,
the current deviation is very likely to be stopped. The condition C−t ≤ C−t−1 is always
achieved before C−t < H as in case of error C−t−1 > H. The counter ET is updated
each time we calculate Ct. It depicts the number of successive decreases of Ct.

Initially, ET is set to 0, then, it is updated as follows:

• ET ← ET + 1 if Ct decreases.

• ET ← 0 otherwise.

The end of the anomaly is declared when ET exceeds a given threshold ET0. Just
like σ0 and µ0, this latter is inferred from the training window. It is the average
number of successive decreases in the training window (when the process is in-
control).

The detailed pseudo code of the anomaly detection using the improved CUSUM
algorithm is given by Algorithm 8.

5.5 Detecting mean change

5.5.1 Efficiency metrics

In this section, we evaluate the performance of CUSUM algorithm for the anoma-
lies detection. In information retrieval domain, the performance metrics used to
evaluate the performance of a change detector are precision, recall and specificity.
These metrics are based on the True Positives (TP ), False Positives (FP ), True
Negatives (TN ) and False Negatives (FN ). The errors committed by CUSUM can
either be false positives (the process is considered as out-of-control while it is not
true) or false negatives (no alarm is signaled whereas the process is out-of-control).
• True Positive (TP): it represents the state where an actual data point is an
error, and it is detected by the algorithm as an error.
• False Negative (FN): it represents the state where an actual data point is an
error, and it is not detected by the algorithm as an error.
• False Positive (FP): also called false alarm, represents the state where an
actual point is not an error, but it is detected by the algorithm as an error.
• True Negative (TN): also called correct rejection, represents the state where an

actual point is not an error, and it is not detected by the algorithm as an error.
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Algorithm 8. Anomaly detection with the enhanced version of CUSUM algorithm
1: procedure AnomalyDetection(K = σ0/2, H = 4σ0)
2: C0 ← 0
3: ST ← 0
4: ET ← 0
5: errorInProgress← false
6: for each incoming item st, t > 0 do
7: Ct= max[0, st − µ0 −K + Ct−1]
8: if (Ct > Ct−1) then
9: ST ← ST + 1

10: ET ← 0
11: if (Ct > H) then
12: errorStartT ime← t− ST + 1
13: return errorStartT ime
14: errorInProgress← true
15: end if
16: end if
17: if (Ct < Ct−1) then
18: ST ← ST − 1
19: ET ← ET + 1
20: if (errorInProgress == true) then
21: if (ET > ET0) then
22: errorEndT ime← t− 1
23: return errorEndT ime
24: errorInProgress← false
25: Ct ← 0
26: ST ← 0
27: end if
28: end if
29: end if
30: end for
31: end procedure

Precisionmetric is the proportion of true alarms compared to all the alarms raised
by CUSUM. Recall metric, also called sensitivity, depicts the true positive rate: the
probability that CUSUM algorithm identifies a truly erroneous point. Specificity
metric represents the true negative rate: the proportion of points considered truly
as non-erroneous by CUSUM compared to the total number of non-erroneous points
present in the dataset.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Specificity =
TN

TN + FP
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5.5.2 Experimentations

The objective of this section is to validate our proposed improvements of CUSUM
algorithm to detect a negative shift of the mean among normally distributed simu-
lated data. Let us take a process (St)t≥0 that follows the standard normal distribution:
S ∼ N (0, 1) . We first considered 1000 observations of S, then we injected at random
moments 10 deviations (also called errors). The purpose of the experiments is to
apply CUSUM to detect these deviations and to use our improvements to estimate
the start time and the end time of each detected deviation. The errors have a random
length taken in [1, 50]. The cumulative errors length equals 239 points or observa-
tions. As the targeted change is a mean shift, for each error, we replaced the original
points by new observations issued from a shifted process S ′ ∼ N (−1, 1) . Notice that
the variance of the process remains unchanged.

As only negative shift is considered in this section, we only focus on the cumulative
parameter C−t , that we simply denote by C in the following parts.

C−t = max[0, µ0 − st −K + C−t−1]

k is set to 0.5 and the threshold h is taken equal to 4, according to the recommen-
dations given in Section 5.3.2.

The variation of C over time, together with the detection threshold H are plotted
in Figure 5.6. We can notice that C is very variable over time and presents several
peaks that are mainly caused by the injected errors. CUSUM reports errors each
time the value of C exceeds the control limit H. We obtained a total number of 8
alarms corresponding to the 8 detected errors. Two errors are missed because they
have very small durations.

Figure 5.6 – Variation of Ct over time.

Figure 5.7 depicts the variation of the counter ST over time. Recall that ST
is used to estimate the start time of the error. It is incremented by one with the
increase of C and decremented C decreases. Figure 5.7 shows that when the process
is in-control, the value of ST has a null average and very small standard deviation.
The presence of an error induces a notable increase of ST .
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Figure 5.7 – Variation of ST counter over time.

The variation of the counter ET over time is shown in Figure 5.8. ET counter
enables to estimate the end time of the error. It counts the number of successive
decreases of C. We can see that ET has small variations with a mean of 0.22 and
a standard deviation of 0.57. The end of the error is declared when ET exceeds its
average value ET0 calculated in the training window. In our case, ET0 equals to 0.25.

Figure 5.8 – Variation of ET counter over time.

The evaluation of the proposed improvements is given in Table 5.2. The 1000
considered points of the process are first classified into actual error and actual not
error. Then we add a second classification according to the detection results of the
improved CUSUM. The same experiments are performed with the standard version
of CUSUM and FIR CUSUM. Recall that FIR CUSUM is an improved version of
CUSUM. With the classic version of CUSUM algorithm, the values C+

t and C−t are
reset to zero after the detection of a change. The objective of FIR CUSUM is to
improve the performance of CUSUM by setting the values C+

t and C−t equal to some
nonzero value, typically H/2. The obtained results are presented in Table 5.2. One
can notice that our proposed algorithm outperforms both standard and FIR CUSUM.
It significantly decreased both false negatives and false positives.
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Table 5.2 – Obtained results for mean change detection.

CUSUM version Actual
Detected as anomaly not anomaly

Standard anomaly 189 50
not anomaly 203 558

FIR CUSUM anomaly 174 65
not anomaly 196 565

Improved anomaly 221 18
not anomaly 23 738

The three efficiency metrics (precision, recall, and specificity) of the standard
CUSUM, FIR CUSUM and the improved version of CUSUM are given in Table 5.3.
All these metrics are enhanced using our improved version of CUSUM. The proposed
improvements give very good results as the three efficiency metrics are above 0.9.

Table 5.3 – Performance metrics of CUSUM.

CUSUM version Precision Recall Specificity

Standard 0.48 0.79 0.73

FIR CUSUM 0.47 0.72 0.74

Improved 0.90 0.92 0.96

5.6 Application to stuck-at error: Detecting variation
change

In this section, we apply the improved CUSUM algorithm on a real data stream
issued from water flowmeters, to detect the so-called stuck-at errors. During the data
analysis process, the conclusions and decisions are based on the data. If the data
are dirty, this will lead to defective and faulty results. Improving the data quality is
thus inevitable to obtain reliable results. One of the data quality measures is the
accuracy. It represents the difference between the observation’s value and the true
value which the sensor aims to represent. Due to the instrumental, physical and
human limitations, malfunction and miscalibration of the sensor, the observations
values of the sensor can deviate significantly from the true ones. These deviated
values are called faults.

The stuck-at error, also called CONSTANT in [Ramanathan et al., 2006, Sharma
et al., 2010], is a type of sensor errors. A stuck-at x error occurs when the sensor is
stuck on an incorrect value x. The low battery of the sensor, a dead sensor, or the
malfunction of the sensor, may cause this error. During such a situation, a set of
successive observations will have the same value x± ε. The error may last a long
time, and the sensor may or not return to its normal behavior. [Sharma et al., 2010]
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showed that CONSTANT errors are present in the sensors data of the INTEL Lab
and in NAMOS data set. This kind of error concerns about 20% of their data.

The variance is the characteristic to be modeled in order to detect this type of
error, during which, the variance of the data drops significantly [Ni et al., 2009].
However, the variance modeling requires the use of a temporal window with a specific
size, which is not a trivial task. If the size of the window is very large, the error
can be missed. On the contrary, if the size of the window is very small, this can
engender false positive detections. Nair et al. [Nair, 2009] calculates the absolute
value of differences between successive values to detect stuck-at errors. Thus, at
each instant t, the difference d between the value at the instant t and that at the
instant t− 1 is calculated. If d is less than a certain threshold for a certain number
of successive values, the data at these instants will be considered as stuck-at errors.
The determination of the threshold and the number of successive points from which
the data are considered stuck-at represent the main challenges of this method.

In this section, we propose to use CUSUM algorithm to detect the stuck-at errors,
and we use the improved version of the algorithm presented in Section 5.4. As the
change concerns the variance of the observed process, we choose to apply CUSUM
on the variations vt of the observed values: vt = |st − st−1|. (Vt)t≥0 is a positive time
series with an average of µ0 and a standard deviation σ0 during the training window.
As the stuck-at error engenders a decrease of µ0, we only focus here on the cumulative
statistic C−t , for a one-sided CUSUM.

The dataset duration considered in this section is of 10 days in January 2014,
with a total number of 960 observations. To inject a stuck-at error in the time
series, we chose random instant t and we replaced st by a random variable uniformly
distributed in [st − µ0 + σ0, st + µ0 − σ0], for a random number of successive values
beginning from the instant t. Hence the mean of the process vt = |st − st−1| drops
from µ0 to µ0 − σ0. The shift that we want to detect is about −σ0. We repeated this
mechanism 10 times to inject 10 errors. The errors have a random length taken in
[1, 50]. We obtained a total number of 263 injected erroneous points.

Figure 5.9 shows the considered dataset st with the injected errors. The variations
of st denoted as vt = |st − st−1| are plotted in Figure 5.10. One can easily notice a
periodicity in the water consumption with a difference between the working and not
working days. Moreover, during the injected errors, the variations of st denoted as
vt = |st − st−1| drop significantly. Recall that we performed CUSUM on vt.

The variation of Ct over time is given by Figure 5.11. 8 alarms were reported
by CUSUM when Ct exceeds the threshold H. They correspond to real injected
errors. CUSUM missed two errors as they have very small durations (of only 1 and
4 points), compared to ARL1. In fact, according to Section 5.3.2, ARL1 equals 8.38
(when k = 0.5, δ = σ and h = 4). It means that we need in average 8 observations to
could detect this change.

Using the same efficiency metric presented in Section 5.5.1, we recap in Tables 5.4
and 5.5 the obtained results of the variation change detection, after applying the
improved and the standard version of CUSUM algorithm.

Just like in the previous subsection (Section 5.5.2), we checked, based on these
values that the proposed improvements enhance the three efficiency metrics: the
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Figure 5.9 – Injection of variation change errors.

Figure 5.10 – Variation vt of st after the injection of errors.

Figure 5.11 – Variation of Ct over time.
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Table 5.4 – Obtained results for stuck-at errors detection.

CUSUM version Actual
Detected as stuck-at error not stuck-at error

Standard stuck-at error 134 129
not stuck-at error 121 576

Improved stuck-at error 255 8
not stuck-at error 68 629

precision, the recall and the specificity of the CUSUM algorithm (see Table 5.5).
Moreover, these results show that the CUSUM algorithm performs good results even
if the considered data set does not verify the normal distribution.

Table 5.5 – Performance metrics of CUSUM.

CUSUM version Precision Recall Specificity

Standard 0.52 0.50 0.82

Improved 0.78 0.97 0.90

5.7 Conclusion

The performance of the CUSUM algorithm is closely dependent on the choice of
two key parameters: h and k. Two objectives must be achieved when defining these
two parameters. On the one hand, it is necessary to minimize the false positives:
when the process is under control, CUSUM algorithm should not detect a change. On
the other hand, any deviation from the mean should be detected as soon as possible.
In this chapter, we studied at first the choice of the two parameters h and k, then,
we studied the Run Length (RLδ) variability for a deviation δ ∈ [0, 3].

Secondly, we proposed an efficient method for the estimation of the start time
and end time of the process mean deviation. In fact, the deviation is declared after
performing a number of iterations sufficient to have a significant impact on Ct. Thus,
the deviation is declared after the exact start time of the actual change. In the
standard version of CUSUM algorithm, it is not possible to know the exact start
time of the deviation, and no estimation of this time is provided in the literature.
Furthermore, the observed process is considered under control (end of the deviation)
when Ct is below threshold H. Since Ct is a cumulative sum, CUSUM needs many
iterations to reach this condition. Thus, the end of the deviation is declared long
after the actual return of the process to the normal behavior.

To improve the reactivity of CUSUM algorithm, we proposed these two improve-
ments:
• Add an estimation of the start time of the deviation.
• Improve the accuracy of the end time estimation of the deviation.
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We compared the performance of the proposed new version of CUSUM algorithm
to that of the standard version of CUSUM and another version called FIR CUSUM.
The results of the experiments showed that the new version outperforms the other
two versions of the algorithm.

Thereafter, we adapted the CUSUM algorithm to detect the so-called stuck-at
errors. A stuck-at x error occurs when a set of successive values have the same
value x± ε. We tested the performance of the standard version and the proposed
new version of the CUSUM algorithm to detect the stuck-at errors. The results
showed that the enhanced version of CUSUM algorithm improves the three efficiency
metrics precision, recall and specificity of the detection.

Notice that, the detected stuck-at errors may be due to a sensor defect or to a
real phenomenon. The intervention of the network explorer and his knowledge
of the environment make the differentiation possible. Several factors about the
environment are to be evaluated, in our use case, the profile of the sector (residential,
agriculture, industrial, etc.) and the length of the stuck-at series.
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The scientific contribution and the obtained results presented in this chapter have
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Fricker. "Using spatial outliers detection to assess balancing mechanisms in bike
sharing systems". In the 32th IEEE International Conference on Advanced Informa-
tion Networking and Applications (AINA), IEEE, 2018.

6.1 Introduction

Anomalies, also called outliers, are deviant observations compared to a standard
behavior. The identification of outliers has many practical applications in many
areas, such as intrusion detection, fraud detection, and fault detection. Outliers
detection is also an important task in the data analysis process, it aims to detect the
anomalies and leads to the identification of unusual phenomena and the discovery
of new knowledge concerning the monitored environment.
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Our goal in this chapter is the anomalies detection in a spatial context, where
an object is considered as an outlier if the values of its non-spatial attributes are
significantly different from those of other objects in its surrounding. Spatial outliers
detection is useful in many applications, such as abnormal road traffic patterns de-
tection, identification of outbreaks of disease, detection of tornadoes and hurricanes,
and identification of soil pollution in urban areas.

Our use case in this chapter is the Parisian bike sharing system (Velib). Our work
is motivated by the problem of heterogeneity in bikes stations. In fact, some stations
are often almost empty, without enough available bikes or almost full causing users
dissatisfaction. In this context, we define outliers as stations with a lack of resources
while the other stations in the neighborhood are globally balanced. First, we use an
adapted version of Moran scatterplot to explore and characterize the neighborhood
of such stations. The results show a local heterogeneity in Velib station: in a small
area, bikes availability is often very variable, depending on the station. This local
heterogeneity motivates us to propose a new incentive method which encourages
users to improve bikes’ distribution among the Velib stations. This mechanism is
based on a local small change in users trips. In this ecological regulation, users are
redirected to another station in the neighborhood of their source or destination to
locally reduce stations heterogeneity.

This chapter is organized as follows. We highlight in Section 6.2 the problem we
are going to deal with in this chapter. We present in Section 6.3 the dataset used
in this work and we discuss the main problem of Velib system. In Section 6.4, we
describe the so-called Moran scatterplot technique and the proposed adaption to
Velib context. We also detail in this section the experiments carried out to illustrate
the heterogeneity of Velib system. In Section 6.5, we present and validate our new
solution to balance the Velib system and to improve bikes distribution among the
stations. We end the chapter with a conclusion.

6.2 Motivation

Outliers are defined as a set of observations that are inconsistent with the remain-
der observations. Outliers identification has practical applications in many areas,
such as intrusion detection, fraud detection, fault detection and medical informatics
[Chandola et al., 2009]. Outliers detection is also an important task in the data
analysis process. It aims to detect abnormal patterns and leads to the identification
of unusual phenomena, and new knowledge about the monitored environment. To
isolate outliers it is necessary to first characterize the normal observations, which
can be provided by the past values of the same object or by the current values is-
sued from other objects in the neighborhood. In this latter case, the outlier is said
spatial. In a spatial context, each data is defined with two categories of attributes:
spatial attributes and non-spatial attributes. Spatial attributes include the shape,
position, and other topological characteristics of the sensor, and they are used to
define the neighborhood of the spatial object. Non-spatial attributes include the
ID, manufacturer, age, and sensor measure (called behavioral attribute). A spa-
tial outlier represents a local instability and is only compared to the surrounding
dataset [Shekhar et al., 2011]. This is based on the rule: "Everything is related
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to everything else, but nearby things are more related than distant things" [Tobler,
1970]. Spatial outliers detection serve in many applications, such as the detection
of abnormal highway traffic patterns [Shekhar et al., 2001], the identification of
disease outbreaks [Wong et al., 2002], the detection of tornadoes and hurricanes [Lu
and Liang, 2004] and the identification of urban soils pollution [Zhang et al., 2008].

Several algorithms have been developed to detect the outliers in a spatial context.
These algorithms can be classified into two categories: graphical-based algorithms,
and quantitative-based algorithms. Graphical-based algorithms use visualization.
They present, for each spatial point, the distribution of its neighbors and identify
outliers as points in specific regions. This category includes Variogram Cloud, Pocket
Plot, Scatterplot, and Moran scatterplot methods. Quantitative-based algorithms
perform statistical tests to distinguish the outliers from the rest of the data. These
methods include z algorithm, iterative r, iterative z and median algorithm.

Scatterplot represents the data in a two-dimensional space where the X-axis
represents the values of the non-spatial attribute (the observable) of each object and
the Y-axis represents the mean value of the observable of the neighbors of this object.
A regression line is used to identify outliers points [Haining, 1993]. Variogram
Cloud [Haslett et al., 1991] is a scatterplot between the spatial distance (X-axis) and
the difference of the observable values (Y-axis) for each pair of points in the data.
Outliers points are identified as pairs of points having a small spatial distance and
a big difference for the observables measurements.

The Z statistic approach [Shekhar et al., 2003] is one of themost known quantitative-
based algorithms for spatial outliers detection. For each spatial object x, Sx denotes
the difference between the attribute value of x and the average attribute value of its
spatial neighbors. Spatial outliers are simply identified using a threshold based on
µs and σs which respectively represent the mean and the standard deviation of the
attribute value of S over all the spatial objects.

In [Lu et al., 2003], the authors propose two iterative algorithms (iterative r and
iterative z) for the detection of spatial outliers. These algorithms detect the outliers
on several iterations. Each iteration detects a single outlier and modifies its value
in order to reduce its negative impact on its neighbors in the next iteration

We apply in this chapter the spatial outliers problem to a particular case study:
the evaluation of a balancing mechanism in Bike Sharing Systems (BSS). Nowadays,
public authorities are more and more encouraging this ecological mean of transport
by expanding the BSS to the suburbs and building new bike paths. Since its launch
in 2007, Velib (the Bike Sharing System -BSS- in Paris) has emerged in the Parisian
landscape and has been a model for similar systems in many international cities.
Velib provides a significant proportion of people travels as it daily ensures about
110, 000 trips. It involves about 1800 stations with an average distance of 300 meters.

A major problem in the Velib system and in BSS, in general, is the problem
of empty stations and full stations caused by the asymmetric attendance to the
stations. According to the annual satisfaction survey of Velib, only 50% of users are
satisfied with the availability of bikes and docks in the stations [vel, 2014]. Despite
the performed regulation (moved bikes using trucks), users often find themselves in
front of stations that are totally full or empty.

In most cities, operators provide open access to real-time status reports on their
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bike stations. Several studies show the interest of using these data (Froelich et al.
[Froehlich et al., 2009] and Borgnat et al. [Borgnat et al., 2011], Vogel and Mattfeld
[Vogel et al., 2011]). Their main objective is to understand and characterize the
behavior of the users in order to help in designing and planning policy in urban
transportation. Among these studies, one can cite the partition of the BSS stations
into several classes using different clustering algorithms (see [Chabchoub and C.,
2014] and [Etienne and Latifa, 2014] for more details). Other studies, performed a
classification of the flows of trips as analysis of the trips in the Velo’s system in Lyon
proposed by Borgnat et al. in [Borgnat et al., 2011].

6.3 Dataset description and problem definition

In order to promote innovation and collaboration with scientists, different kinds
of data relative to the Velib system are "Open Data" available for the research
community. We performed all the experiments presented in this chapter from this
dataset which has been presented in the introduction of the report (Velib dataset).

We recall that this dataset consists of two types of data. First, we have the
static data describing the Velib stations. They consist of spatial attributes: the
geo-coordinates of the station (latitude and longitude), and non-spatial attributes:
Id of the station and its capacity (total number of docks). Then, the dynamic data are
of two kinds: First, the number of bikes present in each station for each timestamp t
are provided in real-time. This parameter is varying during the day and is closely
dependent on users activity. Second, Velib users data trips are also available (one
file for the trips during a month). A trip is characterized by a departure and arrival
timestamp, and a departure and arrival station. The analysis of several months of
trips showed a very strong periodicity: trips can be divided into two main categories:
the working days and the weekends. Two days of the same category are very similar.
We focus in this chapter on the working days and we choose to analyze 24 hours
trips: trips that took place on Thursday, October, the 31th, 2013. This duration
includes 121.709 trips, involving 1226 Velib stations. 1.03% of the trips are related to
maintenance (bikes taken for repair) and 1.48% are trips of regulation (bikes moved
by trucks).

According to many research studies ([Chabchoub and Fricker, 2014], [Fricker and
Gast, 2014] and [Etienne and Latifa, 2014]), the Velib system has some weaknesses
caused by the strong attractivity of some stations that can be explained by their
location near a railway station or a monument or a business area. Such stations are
very often almost empty (no available bike) or completely full (no available dock to
put a bike). Despite the performed regulation (bikes moved by trucks), the system is
still unbalanced. This unbalanced distribution of bikes among the different stations
causes users dissatisfaction.The unbalanced stations are referred to as problematic
stations. More precisely, we introduce the following definition: a station is said
problematic at a timestamp t if its occupancy rate is under 10% or more than 90%.

The occupancy rate of the station, at a timestamp t, is defined as follows:

occupancy rate t =
Number of bikes present at t

Capacity of the station
× 100%
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6.4 Spatial outliers detection with an improved Moran
scatterplot

The objective of this section is to estimate the number of isolated problematic
stations at a given timestamp t, which motivates the incentive method detailed in
the following section. A good understanding of the current use of the Velib’ system
and the real needs of the users is mandatory to improve the performance of this
system and to plan its future expansion and evolution. An isolated problematic
station satisfies both following conditions: First, it is almost empty or almost full at
timestamp t. Second, its occupancy rate is significantly different from the average
occupancy of the neighboring stations at the same timestamp t. Thus the isolated
problematic stations are among the spatial outliers. In this section, we consider the
system at a fixed timestamp t. In order to detect spatial outliers, we opted to use
Moran scatterplot [Anselin, 1993] that we adapted to the specificities of our context.

6.4.1 Moran scatterplot

Moran scatterplot [Anselin, 1993] illustrates the similarity between an observed
value and its neighboring observations. It measures the global spatial autocor-
relation over a geographical area, the well-known Moran’s I. Let us denote by
Z = {zi : 1 ≤ i ≤ n} the set of the different values of the considered observable at
a fixed given time t, in n different locations. For each location, the neighborhood
is defined based on the geographical distance. Moran scatterplot visualizes the
relationship between the values zi and their neighborhood average Wi.Z, where W
is a weight matrix that defines a local neighborhood around each location. The
observations Z (x-axis) and W.Z (y-axis) are represented by their standardized
values.

Moran scatterplot contains four quadrants, corresponding to four types of spatial
correlation. The upper-right and lower-left quadrants consist of the locations with
positive spatial correlation: association between similar values. In the upper-right
quadrant, the high values are surrounded by high neighbors values, while in the
lower-left quadrant, the low values are surrounded by low neighbors values. The
upper-left and lower-right quadrants incorporate the locations with negative spatial
correlation: association between dissimilar values. The upper-left quadrant contains
low values surrounded by high neighbors values, while the lower-right quadrant
contains high values surrounded by low neighbors values. The objects located in
these two quadrants are considered as spatial outliers and can be identified by the
statistical test function:

Zi ×
∑
j

wijZj < 0

W is the contiguity matrix of weights. It indicates the spatial relationship
between every couple of objects. W is also called the row-normalized neighborhood
matrix. It is based on a threshold d of the geographical distance: i and j are
considered as neighbors if and only if 0 ≤ dij ≤ d, where dij is the distance between i
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and j. Moreover, all the neighbors of i are equivalent and have the same impact on
the calculation of the neighborhood average Wi.Z.

Thus, the contiguity matrix W is given by:

wij =

{
1

Number of neighbors of i
, if 0 ≤ dij ≤ d

0, otherwise. (6.1)

To apply Moran scatterplot to the context of Velib, one has to estimate the crucial
parameter d, which represents the highest distance between two neighboring Velib
stations. The choice of d has to achieve the following trade-off: On the one hand,
this distance has to be small enough to let the users slightly change their trips at a
local scale, and on the other hand, it has to be high to make sure that most stations
have a reasonable number of neighboring stations. Velib stations are generally close
to each other and concentrated in the center of Paris and near attractive locations
whereas they are distant in the suburbs.

To address this problem, we plotted in Figure 6.1 the distribution of the number
of neighbors for all the Velib stations. We tested different values for the threshold
distance d (300, 400 and 500 meters). According to Figure 6.1, a distance of 400
meters is reasonable as, in this case, a given Velib station has on average about 5
neighboring stations. Moreover, with d = 400, only 4.4% of the stations do not have
any neighboring station.

Figure 6.1 – Distribution of the number of neighbors.

However, when detecting spatial outliers, the assumption that all the neighbors
have the same impact on the neighborhood average may lead to missing some true
spatial outliers. In the dataset described in Section 6.3, there are 1226 stations. As
plotted in Figure 6.2, the capacity of the stations is highly variable between 8 and 114
bikes, with an average of about 31 bikes. As Velib stations have different capacities,
we defined the occupancy rate in order to compare normalized bikes availability in
these stations. The key idea is that two neighboring stations should have almost
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the same occupancy rate if they have similar capacities. That is why the capacity of
the station has to be taken into account when calculating neighborhood occupancy
average.

Figure 6.2 – Distribution stations capacity.

6.4.2 Improvement of Moran scatterplot using Gower’s coefficient

We will replace W with a new weight matrix W̃ also based on the degree of
similarity between the station i and the corresponding neighboring stations. This
new matrix will take into account the distance and also the difference of capacities
between a station and its neighbors. The set Ni of neighbors of station i is defined
as previously by the stations with a maximal distance d from station i.

In order to measure the similarity degree between two spatial objects, the Eu-
clidean distance is most often used. However, in our case, the use of this distance is
inappropriate since the location and capacity attributes are measured on different
scales. Hence, we propose to use the Gower’s coefficient [Gower, 1971] to calculate
the similarity between two stations. Gower’s coefficient is a similarity measure
which computes the distance between two instances on each attribute k, and then
aggregates all of them to finally calculate the similarity degree.

Gower’s similarity degree GOWERij between two stations i and j is defined by:

GOWERij =

∑n
k=1Wijk × Sijk∑n

k=1Wijk

(6.2)

where

• Wijk is the weight associated to the attribute k,

• Sijk is the similarity between two stations i and j for the kth attribute, given by

Sijk = 1− |xik − xjk|
rk
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where xik is the observable attribute k in station i and rk is a standardization
for the attribute k since each attribute is of different unit.

In the context of Velib stations, we calculate the similarity Sij of the location SDij

and capacity SCij between two stations i and j by:

SDij = 1− dij
d

SCij = 1− |Capacityi − Capacityj|
Capacitymax − Capacitymin

where

• dij is the distance between the two stations and d is the maximal distance.

• Capacitymax andCapacitymin are respectively the maximal andminimal stations
capacities in the neighborhood of station i.

In this definition, Wijk = Wij previously defined by equation (7.2.2.1).
We propose in the following to modify the construction of the contiguity ma-

trix of weights by incorporating the spatial and non-spatial attributes and in a
weighted manner in the calculation of the weights associated with neighbors. For
each neighboring station j, its new weight GOWERij regarding the station i is given
by equation (6.2).

The normalization of the contiguity matrix of weights is done per line, so for
each station i, the weight of each neighboring station j is divided by the sum of the
weights of all the neighboring stations of i.

Thus, the new contiguity matrix W̃ is given by:

w̃ij =

{
GOWERij, if 0 ≤ dij ≤ d
0, otherwise.

We applied the improved version of Moran scatterplot to detect the isolated
problematic stations. Recall that these stations are defined as spatial outliers with
a critical occupancy rate. We used the same dataset described in Section 6.3.

Moran scatterplot representation for the occupancy data of the stations at a fixed
timestamp: 10 : 00 am is given in Figure 6.3. At this time of day, we can expect that
the system is highly unbalanced, as in general in a working day a lot of trips take
place in the morning around 8 : 00 am. The spatial outliers stations (almost 300
stations) are located in the upper-left and lower-right quadrants. One can notice that
there are fewer points in these quadrants compared to the locations with positive
correlation.

The number of detected isolated problematic stations at 10 : 00 am, depending on
the allowed distance, is given in Table 6.1. Recall that isolated problematic stations
are defined as spatial outliers with critical occupancy rate. According to this table,
there are about 50 isolated problematic stations at 10 : 00 am. The allowed distance
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Figure 6.3 – Improved Moran scatterplot based on occupancy data of Velib system on
Thursday 10/31/2013 10 : 00 am.

does not have a considerable impact on the number of outliers and the isolated
problematic stations. Moreover, with a local change of their trips, Velib users can
enhance the occupancy rate of about 300 stations (spatial outliers), which represents
24.48% of Velib stations.

Table 6.1 – Number of detected outliers stations with the improved Moran scatterplot.

Allowed distance Outliers Outliers with critical occupancy rate
300 297 53
400 334 52
500 339 54

6.5 Enhancing resources distribution in Velib system

Our objective is to improve resources’ availability in the Velib system by reducing
the number of problematic stations. For this purpose, we propose and test in
this section a new incentive method, based on a natural and ecological regulation
performed by Velib users. The main idea behind the proposed method is to balance
the global system by performing small changes in the trips in small local areas.
A preliminary study is provided in the previous section to check the existence of
several isolated problematic stations. In other words, the aim of this part is show
that around a given problematic station (in a distance smaller than 500 meters),
there are many balanced stations (with an occupancy rate around 50%), which make
it possible for Velib users to balance this problematic station by slightly changing
their trips (with an award, extra-time for example).

Using the dataset described in Section 6.3, we plot in Figure 6.4 the evolution
of the number of current trips during the day (on Thursday 10/31/2013), in order
to understand the usage of the Velib system. One can easily identify two peaks at
about 8 : 00 am and 6 : 00 pm. They clearly correspond to the trips to the offices and
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the return home after work, as it is a working day.

Figure 6.4 – Number of trips over time.

Users trips unbalance the Velib system by making some stations problematic
(almost empty or almost full). Based on the thresholds of station occupancy intro-
duced before (10% and 90%), the current number of problematic stations is given
in Figure 6.5. Despite the performed bike regulation using tracks, the number of
problematic stations during the day remains high. The problematic stations are
mainly composed of almost empty stations.

Figure 6.5 – Number of problematic stations.

We propose in this section an incentive method that encourages Velib users
to improve the homogeneity of the stations in terms of occupancy rate by slightly
changing their trips. In the trips dataset, let us denote by A the station where the
trip begins and by B where the trip ends. The neighborhood of the station is defined
by a distance less than 400 meters. The key idea is to change the trips as follows:
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For each trip, in terms of occupancy rate,

• station A will be replaced by the busiest station in the neighborhood of A,

• station B will be replaced by the emptiest station in the neighborhood of B.

The proposed method is inspired by Velib + which consists of offering users of
Velib an extra time (that can be cumulated) when they park their bike in a station
having a high altitude. The main difference is that Velib+ regulation is static: Velib+
stations are well known and never change over time, whereas our preferred busiest
and emptiest stations dynamically change. They vary during the time depending on
their occupancy rate and the occupancy rate of their neighboring stations.

Figure 6.6 presents the impact of the proposed incentive method on the number of
problematic stations. The results show a clear decrease in the number of problematic
stations throughout the day. The average number of problematic stations drops from
164 in real trips to only 27 by slightly modifying each trip. Starting from a relatively
high number of problematic stations (almost 150), users are able to balance almost
all these stations within three hours. No new trips are either added or lost. The
modification is done with exactly the same number of trips. The real trips are only
locally modified. The obtained results confirm our intuition that resources global
availability in the Velib system can be significantly improved by acting locally. This
improvement would allow accepting new trips, where originally users are rejected
due to a lack of bikes.

Figure 6.6 – Number of problematic stations in the day.

The performance of the proposed incentive method can also be measured by
the number of spatial outliers in the Velib system. They consist of stations with
an occupancy rate significantly different from the average occupancy rate in their
neighborhood. These outliers stations are depicted in Section 6.4 using Moran
scatterplot. The comparison of the number of spatial outliers stations between the
original and modified behaviors is given in Figure 6.7. With the improved user
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behavior, the number of spatial outliers drops significantly, which enhances stations
homogeneity in the Velib system.

Figure 6.7 – Detected spatial outliers.

In Figures 6.6 and 6.7, all users trips are modified according to the proposed
method. It is not a realistic scenario as in real life, many users will not accept to
change their departure or arrival station even if they are encouraged by a financial
motivation or an extra offered time. To simulate a real-world situation, we plotted in
Figure 6.8 the average number of problematic stations in the day under a variable
collaboration rate of the users. One can see that, if only 20% of users accept to change
their trips, the number of problematic stations will decrease by half. The decrease
in the number of problematic stations is fast (faster than a linear decrease) which is
an excellent result as we cannot expect that the majority of users will collaborate.

Figure 6.8 – Average number of problematic stations in the day after the users collaboartion.

The number of problematic stations during the day is a good indicator to evaluate
the quality of the service offered to Velib users. However, it cannot entirely qualify
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service availability. For a given station, the service is considered as interrupted if
there is no bike or no dock in this station. In this case, the station is said invalid
or out of service. Note that this concerns just one resource: bikes or free docks.
To have a complete information, we plotted in Figure 6.9 the average duration of
stations invalidity during each one-hour interval of the day, before and after the
proposed improvement. One can notice that the mean duration of station invalidity
has largely decreased, and likewise, the mean cumulative invalidity duration during
the day has been widely improved (cf. Figure 6.10). According to Figure 6.10, at
the end of the day, the mean invalidity duration of a Velib station drops from 141
minutes to only 22 minutes using our proposed improvement.

Figure 6.9 – Mean duration of stations invalidity.

Figure 6.10 – Mean cumulative duration of stations invalidity.
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6.6 Conclusion

We studied in this chapter the anomalies detection in a spatial context. Our use
case was the Parisian bike sharing system (Velib). A Velib station is considered as a
spatial outlier if it is almost empty or almost full while the surrounding stations are
globally balanced. This is due to the problem of heterogeneity in Velib system causing
resources unavailability and users dissatisfaction. To identify spatial outliers in this
context, we used Moran scatterplot. In order to calculate the occupancy distance
between two stations, we introduced a similarity weight that takes into account the
geographical distance between the stations as well as the difference between their
capacities. This degree of similarity is calculated using a robust distance metric
called Gower’s coefficient. Thereafter, we proposed and tested a new algorithm that
locally improves the resources distribution (bikes and docks) in the stations, and
we experimentally validated its efficiency. The results showed that the proposed
algorithm improves the homogeneity of the Velib system by reducing the number
of outlier stations and the duration of unavailability of the stations during the day,
which ultimately leads to the improvement of the users’ satisfaction degree.

In our future work, we aim to detect spatial anomalies in the context of WAVES.
We will use Moran scatterplot to study the spatial correlation between several sectors
in order to detect the anomalies. In fact, some sectors belonging to the same area
(housing area or industrial area) are supposed to present a strong similarity, which
can be explained by the periodicity of human activities. First, clustering methods
will be applied in order to discover the profile of each cluster. Then, with Moran
scatterplot, the anomalies will be identified as sectors with a notable deviation from
the standard behavior of their cluster.
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7.1 Introduction

We recall that our work is a part of the FUI 17 WAVES project. This project
is motivated by the water leakage problem in the water distribution network. To
supervise the network, several flowmeters are deployed in a large geographical area.
They send many observables related to the water in this area to the monitoring
system. This latter proceeds then to detect and to analyze the abnormal data. Its
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objective is to filter useful information and to infer new knowledge in order to help
the environment explorer to make right decisions to repair the leaks if they exist. As
we discussed in the previous chapters, this whole process, from the data collection
to the data analysis leads to two key problems: data volume and data quality. One
solution to overcome these problems is to summarize and to clean the received data.

In this thesis, we are responsible for the native filters module of the WAVES
platform. This module provides two features: real-time data qualification and data
summarization. Thus, the native filters module is composed of two sub-modules:
qualitative filter and quantitative filter. Upon receipt of the data streams from
several sensors, the qualitative filter sub-module evaluates and improves the quality
of the data based on the architecture presented in Chapter 4. In particular, it
improves both quality dimensions: accuracy and completeness. It detects, deletes
and replaces the outliers, estimates missing and deleted data and deletes duplicated
data. It also adds several quality statistics to the raw data. Once qualified, the
data are summarized by the quantitative filter sub-module. This later implements
the following sampling methods: Chain-sample, Deterministic sampling, Simple
Random Sampling and Reservoir sampling. The native filters module processes
several streams at the same time and adapts to the characteristics of each stream.
Several configurations are possible to allow the user a flexible manipulation of the
module to meet his needs.

This chapter is organized as follows. In Section 7.2, we present the context and
the global architecture of the WAVES platform, as well as the native filters module.
In Section 7.3, we study at first the computational resources of the native filters
solution, secondly, we discuss its migration to the Cloud computing environment.
We end the chapter with a conclusion.

7.2 Implementing data streams sampling and
qualification modules in WAVES platform

7.2.1 WAVES FUI project

This thesis is part of the FUI 17 WAVES project, which aims to design and to
develop a monitoring platform for the supervision of water distribution networks.
The goal is to develop a relevant solution for the realization of a decision support
system for the network operators and explorers. For example, one may be interested
in detecting abnormal phenomena (micro-variations of certain parameters that have
an impact in terms of risk, variation or non-nominal frequency, etc.) as soon as
possible, thus, allowing to save considerable amounts of potable water. The remote-
monitoring of the water consumption, the numerous communicating sensors recently
deployed in the water network, as well as the data coming from social networks,
generate new data streams that will make it possible to diagnose leaks, breakdowns
or accidents quickly and accurately.

The input data of the decision-making system are heterogeneous (different raw
formats such as CSV, XML, RSS, or JSON) since they come from different sources
(sensors, social networks, customer complaints, static descriptions of the network
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and sensors, etc.). In order to be able to process and to reason optimally these data,
semantic web tools such as Resource Description Framework (RDF), Web Ontology
Language (OWL), or SPARQL can be used. The objective is to design and develop
a platform that "semantises" static and dynamic data from several heterogeneous
sources, filters them, summarizes them and proposes reasoning tools. This platform
will provide a decision support solution for operators to pilot networks in real-time
and enrich their knowledge base through reasoning (inference). For example, based
on the system decision, the network operators may take action in a site before a
phenomenon gets worse, start maintenance of a drifting sensor, or diagnose a sensor
that no longer communicates.

Since the considered data streams are permanent and arriving at a high speed,
they produce a hugemass of data, impossible to store entirely in due time. Erroneous,
inaccurate or inconsistent data cause considerable damage in the case of supervision
and detection of abnormal phenomena in water transport and distribution networks.
It is, therefore, necessary to filter these data on the fly and to store only those that
are relevant by producing summaries. This is the purpose of data streams native
filtering.

Once filtered, it is essential to reason in a context of streaming. Semantic data
streams must be interconnected and correlated to extract relevant information that
can, in turn, take the form of new data streams. This mechanism of inference and
exploitation of the filtered semantic data must support the scalability in terms of
the stream rate and the volume of the data to be processed. It is very important to
take into account the heterogeneity of flows in terms of arrival rate and regularity.

Reasoning on a semantic stream represents a challenge for the conception a
semantic data stream processing platform. It is important to ensure the accuracy,
integrity, authenticity, reliability, and consistency of this extracted information even
after being filtered, summarized, or interconnected with other streams.

The global architecture of the WAVES platform is presented in Figure 7.1.

Figure 7.1 – WAVES platform architecture (from FUI17 WAVES Annexe technique).
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7.2.2 Native filters module

The native filters module takes as input several data streams, issued from flowme-
ters, in their native format (CSV, XML, etc.) and gives in output new data streams
of the same format. Each sensor reading consists of two fields: a timestamp t desig-
nating the registration date of the reading, and a value corresponding to the water
consumption volume at time t. Those readings are regularly sent in real-time as
soon as they are generated,

This native filters module consists of two sub-modules: qualitative filter and
quantitative filter. The qualitative filter sub-module cleans the data by removing
the errors and duplicated data and replacing missing and erroneous data. The
quantitative filter sub-module is responsible for reducing the large volume of data
by using several sampling algorithms. The architecture of the native filters module
is given by Figure 7.2.

Figure 7.2 – Native filters architecture.

7.2.2.1 Qualitative filter sub-module

In the qualitative filter sub-module, the data quality measures are considered as
metadata and are propagated with streaming data at the output of the sub-module.
The propagation of the data quality measures consists of enriching each data with a
data quality vector containing the data quality measures. Thus, the information
related to the data quality dimensions will be added to the data stream at the output
of the qualitative filter module. Notice that the quality of the data is estimated and
enhanced continuously with the arrival of streaming data.

Different flowmeters can have different rates. Thus, the quality measures have
not to be recorded and enhanced at the same time for all the received streams. It is,
therefore, necessary that the qualitative filter sub-module adapts to the characteris-
tics of each stream, especially, its frequency denoted by streamRate. For each flowme-
ter, the streamRate value is calculated automatically based on the first data arriving
from this flowmeter. The size of these data is defined by the timeIntervalTraining
parameter.

The data quality dimensions to be evaluated and enhanced are the completeness,
accuracy, sensor reliability, and confidence dimensions. Notice that the evaluation
and improvement of the precision dimension are out of the scope of our work in this
thesis.
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Completeness dimension: Data completeness is affected by network conges-
tion and sensor failure. It depends mainly on the frequency for recording data in the
environment and the frequency for communicating the recorded data to the data
center or the server. Therefore, based on the known stream arrival rate, the amount
of missing data at each instant t (in hour) can be computed as follows:

cumulativeMissingt = [

∑t
t0
Number of missing data

(t− t0)× streamRate
]× 100%

In order to avoid taking into account very old values of the stream, cumulativeMissing
can be initialized every day as an example. In this case, t0 refers to the beginning
of the current day (t = 0h). The initialization period is an input of the algorithm
and can be configured by the user. The streamRate parameter is related to the data
frequency of the considered flowmeter (in items/hour).

Accuracy dimension: The accuracy dimension measures the correctness of the
data. As discussed in Chapter 4, this dimension is affected by the erroneous data
recorded by the sensor. Sensors errors can be of several types (outliers, spikes, and
stuck-at). We are interested in this work into the detection of outliers and spikes.
These errors are detected using a static rule that can be defined according to the
application domain. In the context of water distribution network we define the static
rule as follows:

Any reading value that exceeds the maximum theoretical flow value (called
debitMax) that a flowmeter can emit will be considered as erroneous of type outlier.
The debitMax value is calculated using the Hazen-Williams formula. Indeed, the
Hazen William equation determines the maximum transportable flow rate through
a given pipe according to the physical properties of the pipe and the pressure drop
caused by the friction of the used material.

The debitMax value is calculated according to the Hazen-Williams formula as
follows:

debitMax = 0.28× ((DH/L)0.54)× (C ×D)2.63 m3/sec

where:
• DH is the altitude difference between the two extremities of the pipe, inmeters.
• L is the length of the pipe, in meters.
• C is the friction coefficient of the used material.
• D is the diameter of the pipe, in meters.
For each sensor reading, the accuracy degree also called currentError, takes the

following values:

currentError =

{
0, if the sensor reading > debitMax.
1, otherwise.

Notice that, for each flowmeter, the value of the maximal flow (called debitMax) is
stocked as a static value in the configuration file of the qualitative filter sub-module.
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Sensor reliability dimension: The sensor reliability dimension is measured
by the cumulativeError degree which depicts the percentage of cumulated erroneous
values. Just like the cumulativeMissing, the cumulativeError degree is initialized
after a certain duration called initializeParameter. This parameter is configurable
in the configuration file of the sub-module. At each instant t, the cumulativeError
degree is calculated as follows:

cumulativeErrort = [

∑t
t0
Number of erroneous data∑t
t0
Number of received data

]× 100%

Confidence dimension: The confidence degree of each sensor reading is set to
100% if the value is original (not regenerated), otherwise, it is set to the proportion of
consecutivemissing or erroneous values around the considered value. The confidence
degree is calculated as follows:

confidence = [1− m

interpolationAllowedDuration× streamRate
]× 100%

wherem is the number of consecutivemissing values, interpolationAllowedDuration
(in hours) is the maximum missing data period allowed to replace the data.

We can notice that at the output of the qualitative filter sub-module, each sensor
reading can have one of these three statuses:
• The reading is original if the confidence degree is equal to 100%.
• The reading was missing and replaced if the confidence degree is < 100% and
currentError equals 0.
• The reading was erroneous and replaced if the currentError value is equal to
1.

Once the data quality dimensions are evaluated, the qualitative filter sub-module
proceeds to enhance the data quality by deleting erroneous data, removing dupli-
cated data and replacing missing data. In fact, deleted erroneous data are con-
sidered as missing data. The regeneration of missing data depends on their du-
ration. When the duration of successive missing data is less than or equal to the
interpolationAllowedDuration value, the linear interpolation will be used to impute
missing data. The interpolation can not be performed for an important number
of consecutive missing or erroneous data. Therefore, if the duration of successive
missing data exceeds the interpolationAllowedDuration value, missing data will not
be regenerated.

7.2.2.2 Quantitative filter sub-module

When the data is qualified, the quantitative filter sub-module proceeds to sum-
marize them. Sampled data can be either stored in the native format of the input
data (csv, XML, etc.), or sent to the next modules of the WAVES platform to undergo
further processing such as semantization. Four sampling methods can be used to
summarize the data: Deterministic sampling, Simple Random Sampling, Chain-
sample and Reservoir sampling. Different sampling parameters can be applied. The

128



7.3. INFORMATION TECHNOLOGY INFRASTRUCTURE FOR DATA
STREAMS NATIVE FILTERING

parameter associated with each sampling method is defined in the configuration file
of the sub-module as follows:
• For the Deterministic sampling, the sampling parameter is called jump, it is
an integer ∈ [1, x], where x is a positive integer.
• For the Simple Random Sampling and Chain-sample, the sampling parameter
is called percentage, it is an integer ∈ [1, 100].
• For the Reservoir sampling, the sampling parameter is called reservoirSize, it
is an integer ∈ [1, Sizemax] such that reservoirSize is the size of the summary.

The choice of the sampling parameter is critical, it depends on the use case
(application domain), the requirements of the application, the nature of the data,
and the level of precision required by the application.

7.3 Information technology infrastructure for data
streams native filtering

In order to deal with the huge volume and bad quality of data streams generated
by environmental sensors, we presented in this thesis a solution called native filters.
It consists of cleaning and summarizing the received data streams. The implemen-
tation of this solution was presented in Section 7.2. In the following, we evaluate
the efficiency of this solution as a function of the computational resources that it
requires. We present a benchmark of the computational resources requirements
while examining different infrastructures. Our consideration of the computational
resources covers the running time to process (cleaning and summarization) the
input data and the amount of memory needed to store the output data (data streams
summaries).

7.3.1 Resources consumption in native filters

7.3.1.1 Dataset description

We use the dataset presented in section WAVES dataset. These data are issued
from flowmeters delivering water to a big French city. We recall that the duration of
each stream if of 21 months, with approximately 60000 recorded observations. These
data are generated regularly by the sensors with a frequency of one observation
each 15 minutes. Each recorded observation contains two fields: the timestamp
designating the recording date of the measure, and the attribute value representing
the delivered water volume in m3.

For the sampling process, without loss of generality, we choose a sampling rate
equal to 50%. Thus, the sampling parameters are:
• Number of elements to sample k = 5 and window size n = 10 for both SRS and
Chain-sample.
• n/k = 2 for Deterministic sampling.
• k = 30000 for Reservoir sampling.
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7.3.1.2 Execution time

We study in this section the execution time of the native filtering processes:
data cleaning and summary construction, according to the number of received data
streams.

Two server units are considered. The local machine server and Rackspace Cloud
server. Rackspace Cloud is a set of Cloud services provided to the users with
costs calculated based on the utility of the American company Rackspace. The
services include Cloud Platforms, Cloud Storage, and virtual private servers. We
use Rackspace server as a service. The chosen Cloud server specifications are:
RAM: 2 GB, vCPUs: 2, System Disk: 40 GB SSD and Bandwidth: 400 Mb/s. The
specifications of our machine are: RAM: 4 GB, System Disk: 120 GB and Processor:
2.7 GHz Intel Core i5.

The execution time of the sampling process includes the time of reading, sampling
and writing the data in the summary, and is dependent on the following factors:
• Number of received observations for each stream, which depends on the stream
rate or frequency of the sensor.
• Number of streams received simultaneously.
• The sampling rate.
• The size of the window.
• The sampling algorithm.
We display in Figures 7.3 and 7.4 the execution time taken by each one of the

sampling algorithms previously discussed to construct the summaries for the received
data streams. We notice that the execution time increases linearly with the increase
of the number of streams to be processed, and it can be described using the following
linear equation:

Execution time = a×Number of streams+ b

where b is a fixed duration related to the initialization of the quantitative filter
responsible for the sampling process.

Figures 7.3 and 7.4 show that Chain-sample has the highest execution time
compared to the other sampling algorithms. This is due to the collisions problem.
We recall that the window size has a high impact on the execution time taken by
Chain-sample. This time increases as the window size increases, as we have seen in
Chapter 2.

Figure 7.5 depicts the execution time of the cleaning process using the local server
and the Cloud server. According to this figure, the cleaning time is not linearly
dependent on the number of streams to be processed. Actually, for a single stream,
this time depends on several parameters: the number of received observations, the
amount and the distribution of missing and outliers data. As these parameters vary
widely from a stream to another, the cleaning time cannot be predicted in advance.

Increasing the availability of a system involves maximizing the percentage of
time during which the system is operational. In order to protect the system against
unexpected overloads and in order to avoid the system failures resulting from the
number of data streams received, load balancing can be used to ensure high avail-
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Figure 7.3 – Execution time of the sampling process according to the number of streams,
using the local server.

Figure 7.4 – Execution time of the sampling process according to the number of streams,
using the Cloud server.

ability. It consists of using a set of servers in which the incoming streams are evenly
distributed to help reduce the load on a single server.

In order to predict the needed number of servers to ensure high availability,
we calculate the number of observations that a server can process in 15 minutes
(corresponding to the sampling frequency of the sensor), knowing that each received
observation corresponds to a single stream. We denote by this number as the
computing capacity per server. Regarding the sampling process, this number is
presented in Table 7.1 depending on the used sampling algorithm. According to this
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Figure 7.5 – Execution time of the cleaning process according to the number of streams.

table, the number of servers needed to ensure high availability can be calculated
using Equation 7.1. The obtained values using the Cloud server are shown in
Figure 7.6. Notice that the number of servers is always rounded.

Table 7.1 – Number of observations that can be treated in 15 minutes, using the Cloud
server.

SRS Deterministic Reservoir Chain
Local server 1M 900K 1.3M 700K
Cloud server 2M 1.5M 3M 1M

Number of servers =
Number of received streams

Computing capacity per server
(7.1)

Notice that the sampling rate varies widely by application. For instance, a
WSN of 90 measurement points were implemented to detect forest fires [lib, 2010].
Each measurement point is connected to 4 sensors with a sampling frequency of 1
sample per 5 minutes. Using the observations shown above, we can deduce that this
network requires 0.1% of the local server’s capacity for native filtering, thus, very
low utilization rate and profit-to-cost ratio. High availability worsens this situation
since even less utilization rate will be achieved. Native filtering for low-rate sensor
networks is very costly in traditional computing environments.

In [Küçük et al., 2015], the sampling frequency of the sensor for electrical energy
monitoring is 3200 samples per second. The number of sensors/streams is not known,
but we can deduce that for every sensor 1 local server is needed. In such a case, a
large data center is required to handle the native filtering processes. Additional
costs including certified personnel, site licenses and disaster recovery are added to
the overall cost making it a substantial investment. Native filtering for high-rate
sensor networks is very costly in traditional computing environments.
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Figure 7.6 – Number of servers needed to ensure high availability, using the Cloud server.

7.3.1.3 Data storage models

Querying the summary requires its permanent storage on the disk. Without
ensuring high availability, several choices can be made for the preservation of the
summary, among them, the Database Management System (DBMS) and Hadoop
Distributed File System (HDFS). The size of the summary (number of elements) to
be stored can be represented as a function of the number of elements k to sample on
each window, the size of the window n, the size of the received dataDS, the amount of
excess/lack of sampled elements δ, the step n/k and the number of received streams
x. Assuming that the sampling rate k/n is the same for all the received streams, the
summary size is given in Table 7.2 according to the used sampling algorithm.

According to Table 7.2, the size of the summary provided by SRS algorithm is
not exactly proportional to the size of the stream. There is always some excess or
lacked elements in the summary. This is due to the randomness in SRS. The size of
the sample over a window of size n is a random variable that can be theoretically
modeled by the binomial distribution, as explained in Chapter 2. The size of the
sample over a window is variable ∈ [0, n] with an average of k (with a sampling rate
of k/n).

With the Chain-sample algorithm, since the windows are sliding, a sampled
element belongs to a minimum of 1 sample corresponding to one window, and a
maximum of n samples corresponding to n successive windows. Hence, the size of
the summary Sf is always ≤ k ×W whereW is the number of sliding windows. In
addition to the number of sampled elements over each window, k, the size of the
summary depends also on another parameter that we call het. This value depicts the
heterogeneity between two successive sliding windows. It represents the number of
new sampled elements in the current window, compared to the window just before.
It can be also considered as the difference of the samples related to two successive
sliding windows. It is a variable ∈ [0, 1]. The higher the heterogeneity value, the
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higher the size of the summary.

Table 7.2 – Storage requirements of data streams summaries according to the sampling
algorithm.

Sampling algorithm Summary size Summary size (number of rows)
Chain-sample Unlimited x × (((DS - n) × het) + k)
Reservoir Limited x × k

SRS Unlimited x× ( k
n
×DS + δ)

Deterministic Unlimited x × k
n
× DS

Using a Database Management System
The use of a DBMS offers many advantages concerning the manipulation of the

summary. Firstly, in a database management system, searching and accessing the
data is easier and user-friendly because of the predefined queries. Secondly, the
DBMS has a high-security system by using the encryption and the biometric security
measures. Last but not least, the DBMS deals with the concurrent access of the
data by using the locks.

We show in Figure 7.7 the relational schema considered to model a data stream
summary. Because of the growing and infinite size of the stream, the summary size
often increases as the data arrive. Very few sampling algorithms such as Reservoir
sampling [Vitter, 1985] construct a fixed size summary independent of the size of the
stream. In this case, the summary is always updated to replace the old elements.

Figure 7.7 – Relational model of the summary.

Estimating the size of the database involves the examination of the size of each
table. For this purpose, the physical storage requirements for each row must be
calculated. The sum of tables’ sizes represents the total size of the database. A
database is a collection of several pages spread across one or more physical files. A
page is the smallest data storage unit in Microsoft SQL Server. It is of size 8 KB
and used to store the data rows of the database tables. Notice that 8 KB correspond
to 8192 bytes, however, 96 bytes are allocated to the header page. Thus, 8096 bytes
can be stored in the page [Patton and Ogle, 2001].
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The size of the table summary is dependent on the row’s length in the table and
the number of observations (each observation corresponds to one row) chosen by
the sampling algorithm to be added to the summary. The storage space of the table
summary is calculated as follows [Laird et al., 2001]:

Storage requirements (bytes) per stream

= Number of pages× 8096

=
Total number of rows

Number of rows per page
× 8096

(7.2)

The number of pages required to store the rows of the table summary is calculated
as the total number of rows of the table divided by the number of rows that one page
can store. Actually, 8096 bytes can be stored in one page. To calculate the number of
rows that one page can store, we need to calculate the length of each row in bytes.
Each row is composed of one float value (value) and two integer values (measureID
and streamID) and a timestamp. Given that the size to store an integer value or a
float value of 4 digits is 4 bytes and the size to store a timestamp is 8 bytes, the total
size of each row will be equal to 4 + 4 + 8 + 4 = 20 bytes.

Therefore, one page can store approximately 404 rows. Consequently, the number
of pages required to store 1440 records per month (number of records obtained using
a sampling rate equal to 50% with Deterministic or Reservoir algorithms) for a single
stream is 3.56 pages. Therefore, the storage requirement of the table summary is
3.56× 8059 = 0.000026 GB per month. By multiplying this number by 21, we obtain
the storage requirements of the summary for 1 year and 9 months, which is equal to
0.00056 GB for a single stream, and to 0.038 GB for the 68 streams corresponding to
the 68 flowmeters.

Using Hadoop
Hadoop Distributed File System (HDFS) is another choice that can be taken to

store the summary of a data stream. Unlike the traditional database management
systems that do not have the capacity to handle large amounts of data, Hadoop is
a scalable storage platform that stores and distributes very large amounts of data
across multiple servers running in parallel. Several storage techniques can be used
in Hadoop: Apache Avro, Apache Parquet, Apache HBase and Apache Kudu.

We study the storage space requirements for a data stream summary in HBase.
Our choice is motivated by several reasons. HBase is suitable for streams environ-
ment. It allows writing data very fast with a very low latency in a real-time manner.
The data can be read randomly, thus reducing the response time to requests, while
giving the possibility of modifying the stored data. The representation of the table
summary and the structure of each row in this table are shown in Figure 7.8.

In order to calculate the storage size needed, we have to calculate the size of each
row. For a single stream, the required storage size of the summary in HBase is given
by:

storage size = R× S × r
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Figure 7.8 – Representation of a row in an HBase table as a multidimensional map.

where R is the number of rows, S is the row size and r is the replication factor.
The replication factor provides fault tolerance. If a copy of the data is not accessible,
then, the corrupted data can be read from another copy. The default replication
factor is equal to 3. HBase is a column-oriented database. It stores the data in a
key-value format. So, each value is stored with a fully qualified row key. The size of
a row is calculated as the sum of the fixed part and the variable part of the row. The
size of the fixed part is equal to:

KeyLength+V alueLength+RowLength+CFLength+Timestamp+KeyV alue =
4 + 4 + 2 + 1 + 8 + 1 = 20 bytes.

The size of the variable part is calculated as the sum of the bytes array sizes
of Row, ColumnFamily, ColumnQualifier and V alue values. Assuming that all the
received data have the same structure as the data with RowKey = 0001, the size (in
bytes) of each column value of each row is calculated as follows:

• Second column (streamID): 20 + 4 + 11 + 8 + 5 = 48 bytes.

• Third column (Timestamp): 20 + 4 + 11 + 9 + 19 = 63 bytes.

• Fourth column (Value): 20 + 4 + 11 + 5 + 5 = 45 bytes.

Thus, the size of each row is equal to 156 bytes, and so, the space required to store
a data stream summary over a period of 21 months is equal to 0, 0043 × 3 = 0, 013
GB (using a sampling rate equal to 50% and Deterministic or Reservoir sampling),
and thus, equal to 0.884 GB if 68 streams are received. Recall that the value 3 is the
replication factor. One can notice that the space required to store a summary of x
data streams in HBase is 23.35 times more than that in DBMS.
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Data compression can speed up the read/write operations and save the storage
space in HBase. There are several compression solutions such as Snappy, ZLIB, LZO
and LZF with which around 40% of compression ratio is achieved [Shriparv, 2014].
However, this mechanism increases the processing time and the CPU utilization
because of the decompression.

7.3.2 Moving to the Cloud computing

In this section, we discuss the migration of data streams native filtering process
to the Cloud computing environment.

7.3.2.1 Cloud computing basic concepts

Cloud computing definition
Cloud computing, known as on-demand service is an Internet-based computing

where IT resources and Software applications are provided to computers and mobile
devices on-demand. Its main concept is: "Why would you buy anything when you
can rent it ?". Thus, instead of investing in infrastructure, users and businesses
may find it useful to rent the infrastructure and the needed software to run their
applications. In this environment, there are service providers that facilitate, manage
and render the services to the users and businesses who in their turn will pay the
costs of the leased services. Cloud computing provides two basic functions as services:
computing and storage. With this technology, the users and businesses can access
programs, storage and application development platforms through the Internet and
via the services offered by the Cloud computing providers [Armbrust et al., 2010].

The adoption of the Cloud environment has several benefits. It allows users
and businesses to save time and costs. In fact, companies that manage their own
platforms by themselves must buy and maintain their hardware and software infras-
tructures. This requires human resources with professional knowledge and special
skills to take care of the platforms. With the use of Cloud computing, the cost of
storage has dropped dramatically and the efforts of the infrastructure installation,
configuration, and maintenance have been overlooked. In addition, the estimation
and planning of the required resources, as well as the use of excessive storage and
computation capacities solely to manage maximum workloads are no longer required
as the resources can be flexibly adjusted as needed.

Types of Cloud services

• Software as a Service (SaaS): It represents the capability provided to the Cloud
users to use and to run the applications on the Cloud. These applications are
accessible by the users through a web interface.

• Platform as a Service (PaaS): It is a development platform that enables the
users of the Cloud to develop services and applications directly on the Cloud.
An example of PaaS is Google AppEngine.
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• Infrastructure as a Service (IaaS): It consists of providing the users of the
Cloud several computing, storage and network resources using which the users
can run their own applications or software.

Cloud deployment models
Cloud deployment models can be categorized into four types: public Cloud, private

Cloud, hybrid Cloud and community Cloud [Mell et al., 2011, Nepal et al., 2015].

• Public: The public Cloud is the popular Cloud deployment model. With the
public Cloud, the service provider is the owner of the Cloud and anyone can
access its services through web interfaces. The access to the services is paid
and only for the duration during which the services are used. Many popular
Clouds adopt the public deployment mode, such as Amazon EC2, S3 and Google
App Engine.

• Private: The private Cloud can be compared to the Intranet, it is owned by the
company in which only the authorized users can access the services provided.
Unlike the public Cloud where the resources and applications are managed
by the Cloud provider, the services in the private Cloud are managed by the
organization itself. The main benefit of this model is the security aspect, in
particular, the confidentiality of the data, that is enhanced as only the users in
the organization have access to the Cloud.

• Hybrid: The hybrid Cloud is a composition of several Clouds whose infrastruc-
tures are distinct. It is the mix of public and private Clouds. Notice that the
fact of using two types of Cloud (public and private) at the same time cannot
be considered a hybrid Cloud. In fact, the Clouds must be used in conjunction
with each other. For instance, an organization can use a public Cloud that
processes the data and sends it to a private Cloud for storage. In such a case,
the Cloud is considered hybrid.

• Community: A Cloud of type community is a collaborative Cloud computing
solution targeted to a limited subset of individuals or organizations. This
shared Cloud is governed and managed commonly by all the participating
organizations or by a third-party. This type of Cloud is usually used by organi-
zations working on joint projects or research and requiring a shared platform
for managing and executing their projects.

7.3.2.2 Cloud computing criteria: decision factors

Migrating the native filtering processes to the Cloud depend on the value of
the additional features provided by Cloud computing in comparison to the expense
resulting from this move. The decision factors influencing the adoption of the Cloud
computing environment are the following:

• Data security: Cloud computing can save time and costs, but it is more im-
portant to trust the system. One of the biggest obstructions in the Cloud
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computing is the data security. In fact, the data of the users are dispersed
across multiple machines and storage devices such as servers and computers
and various mobile devices such as wireless sensor networks and smart phones.
This makes the security of the data in the Cloud computing quite serious. In
order to ensure the reliability of the Cloud and the trust of the users regarding
this environment, it is necessary to protect and ensure the security of the data
stored in the Cloud.
The trust in a Cloud environment depends on the deployment model and on
the data protection and prevention techniques that are used. In a public Cloud
deployment, the control of the data access is delegated to the organization
owning the infrastructure who is responsible to define a security policy. Data
security is the combination of the integrity, anonymity and confidentiality of the
data in the Cloud. Data integrity preservation intends to protect the data from
unauthorized deletion, modification or fabrication. It is achieved using database
constraints and transactions accomplished by a database management system.
When the private data of the users are stored in the Cloud, the confidentiality
of these data becomes essential to increase the reliability of the Cloud. Data
confidentiality can be provided by authentication and access control policies,
data encryption, and data storage distribution [Avizienis et al., 2004].

• Lock-in: Lock-in is one of the principal constraints of the Cloud environment. It
concerns the cost of services mobility between different Clouds [Willcocks et al.,
2013]. The difficulty of extracting and moving the data and the services from a
Cloud to another one is preventing some organizations from adopting Cloud
computing. This risk should be considered when subscribing to the Cloud
services. In fact, there are no APIs for the data and processes in the Cloud
computing, which limits the portability of the data and applications between
different Clouds. Thus, if a company wants to change its Cloud supplier or
if this latter goes bankrupt, the transfer of the data of the company from
the current Cloud to another one will be a complex task and it will require a
significant fee [Leavitt, 2009].

• Platform control: Businesses are generally wary of the Cloud environment. In
fact, unlike the Cloud providers who can concept and change their platforms
when and how they want and without the consent of the customers, companies
are unable to change the technology of their platforms when they need. In
addition, the conception of the Cloud platforms does not depend on business-
specific IT and business practices, which will limit the appeal of the Cloud
computing.

• Price: The cost dimension is based on several factors. It is defined according to
the service provided, the rental period of the service, the quality of the service,
the cost of maintenance, the age of the resources and the investment cost of
the service provider [Al-Roomi et al., 2013].

• Service responsiveness: It consists of a graphical interface provided by the
provider of Cloud computing to users. It helps manage issues and demands
raised by Cloud users. This criterion includes the support reactiveness, the
processing time of the customer’s request and the acknowledgment time of the
customer request [SLA, 2014].
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• Traffic: This criterion is very important for real-time applications. Traditional
real-time data processing systems assume that the network is predictable.
They assume that the processing time of the data and the delivery time of the
results are predictable [García-Valls et al., 2014].

• Service monitoring, verification and validation: This feature consists of mon-
itoring and managing the processes within a cloud infrastructure. The goal
is to ensure that the Cloud services are performing optimally. It is the use of
manual or automated IT monitoring and management techniques to ensure
that a cloud infrastructure or platform performs optimally.

• Business domain: This criterion refers to companies adopting the Cloud comput-
ing solution. It is the strategy used by the company to manage its resources and
to offer the market the best services and products that its competitors. A good
business model of an enterprise is supposed to define the customers and their
needs and appreciated services, as well as the strategy to be adopted to earn
money while offering the customers the services and products at appropriate
costs [Afuah and Tucci, 2001].

• Data management: The availability of the data stored in the Cloud represents
the degree to which the data can be easily and quickly used by the customers.
Data must be available to the clients, on demand, even if the Cloud is down, as
is the case during a network failure.

• Disaster recovery: Cloud disaster recovery is important features of the Cloud
computing environment. It allows to backup and to restore the data of the
users in disaster cases. It consists of storing several electronic copies of the
users’ data stored in the Cloud.

• Data localization: Data localization consists of storing the data on a device
which is physically present within the borders of the country where the data
was generated.

7.3.2.3 Potential network topologies

Three Information Technologies (ITs) infrastructures can be used to execute the
data streams native filters solution: local computing architecture, Cloud computing
architecture, and Fog computing architecture.

• Network 1: Local computing: With this Information Technology (IT) model,
the computing are executed on local servers and the data are stored in the
traditional data centers. In this case, the stored data and applications are
accessed by the authorized users via a remote server.

• Network 2: Cloud computing: With this network architecture, two choices
can be adopted: The single Cloud and the multi-Clouds. In the single Cloud
architecture, an organization adopting the Cloud computing environment uses
a single Cloud service provider to serve all its needs. This Cloud can be
public, private, hybrid, etc. With this topology, the organization can vary
the magnitude of the resources rented on the Cloud (server limit, number of
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servers, etc.) according to its needs. The multi-Clouds architecture allows an
organization to use different Clouds from different service providers for its
projects. These Clouds can be of different types (public, private, hybrid, etc.).
According to a recent Microsoft study, 79% [Hos, 2016] of the organizations
using the Cloud environment adopt this network architecture.

• Network 3: Fog computing: With such topology, the data is forwarded
to a fog computing server. Fog computing is a distributed infrastructure in
which certain application processes or services are managed at the edge of the
network by a smart device, but others are managed in the Cloud computing. It
represents a layer between the Cloud and the hardware. Its primary goal is
to reduce the amount of data which needs to be transported, processed, and
stored in the Cloud.

7.3.2.4 Decision

In this section, we compare, based on a literature review, the three potential net-
work topologies introduced in Section 7.3.2.3 against the decision factors introduced
in Section 7.3.2.2.

The data validation algorithms used in Network 1 can still be used in the other
two networks. In all three networks, the algorithms can run on the client’s servers to
ensure its results but can be equally hosted at another Cloud Service Provider (CSP).
Similarly, for the service verification, the monitoring algorithms can be implemented
on the client’s servers or a third-party CSP.

Network 1 does not provide responsive scalability and requires over-provisioning
to provide high availability and scalability. Over-provisioning is very expensive and
decreases the utilization rate and Return On Investment (ROI). Therefore, Network
1 is considered inferior to Network 2 and Network 3 ’s high availability, scalability
and payment on demand.

Disaster recovery requires redundant locations which can be very expensive for
most clients. Network 1 requires extra investment to ensure disaster recovery, while
the remaining networks natively provide this feature.

Data availability is related to the network’s downtime which in turn related to
the networks’ defense against cyber-attacks, hardware failures, human errors, etc.
Extremely low downtime is very expensive to achieve in traditional technologies,
thus Network 1 cannot provide data availability with limited investment. Networks
2 and 3 natively provide this feature. If the CSP’s Service Level Agreements (SLAs)
are not very tight, and multi-Cloud solutions (multiple CSP) can provide this feature
with a reasonable investment.

Network 1 natively provides the data localization feature. Data localization is not
provided by all Cloud technologies. They require special SLAs to be able to provide
data localization. However, dedicated servers such as the Fog computing technology
(Network 3) can enforce the data localization feature.

The data security and anonymity against third-party users is provided byNetwork
1 since the data streams communicate directly with the sampling and cleaning
processes at the client’s premises. Third-parties can only access the data streams
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summaries through the interface provided by the client. Network 1 is thus considered
to be most secure for data storage. In Network 2, the data streams are processed
at the CSP, thus data anonymity is ensured except against CSP. The fog servers in
Network 3 can anonymize the data streams summaries before being sent to the CSP.
In this case, the data anonymity remains ensured.

Network 1 cannot handle unpredicted traffic without over-provisioning which is
very expensive and remain limited against peaks in traffic. The other two networks
natively support traffic peaks with very limited investment. Full Data control
can only be achieved by Network 1. Although Cloud computing literature provides
mechanisms to ensure data control, it is left for the reader to evaluate the feasibility
of these mechanisms. Both networks 2 and 3 are compatible with Big Data Analytics
Software-as-a-Service (BDaaS) provided by CSPs. In Network 1, the summary has
to be accessed by the CSP or uploaded, and this creates redundant and unnecessary
traffic.

This discussion is shown in Table 7.3.

7.4 Conclusion

In the first part of this chapter, we have presented the data streams native filters
module which corresponds to the "Filtres natifs" module of the WAVES platform
global architecture (cf. Figure 7.1). This module has been developed and integrated
in the platform within the WAVES project. The purpose of this module is to filter the
received data streams in a qualitative and quantitative manner in order to enhance
the quality of the data and reduce its volume. The native filters module consists of
two processes: qualitative filter and quantitative filter. Upon receipt of the data from
several streams continuously, the qualitative filter sub-module evaluates the quality
of the data in terms of accuracy, completeness, and sensor reliability, and enhances
the quality of the data in terms of accuracy and completeness by detecting, removing
and replacing outliers and estimating missing data. After that, it adds several
quality statistics to the data. Once qualified, the quantitative filter sub-module
proceeds to summarize the data using sampling algorithms.

In the second part of this chapter, we studied the computational resources of the
sampling and qualification processes, mainly the execution time and the storage
space requirements are studied, and several computing servers and data storage
models are considered. In this chapter, we also discussed the migration of the data
streams native filters solution to the Cloud computing. The migration decision
depends on several factors as discussed. Notice that the sampling process and
cleaning process can be executed each on a different architecture. Actually, different
options can be chosen to execute these processes: local computing and Cloud storage,
Cloud computing and Cloud storage, local computing and local storage, and finally,
Cloud computing and local storage.

142



7.4. CONCLUSION

Table 7.3 – Decision table based on the Cloud computing criteria.

Criteria

Network topology
Network 1 Network 2 Network 3

Data verification
Data validation
Data monitoring

Yes Yes Yes

Service verification
Service validation
Service monitoring

Yes Yes Yes

Service responsiveness
Scalable No Yes Yes

Disaster recovery No Yes Yes

Data availability No Yes Yes

Data localization Yes Can be Can be

Data anonymity Yes No Yes

Traffic predictability No Yes Yes

Full data control Yes Can be Can be

Price N/A N/A N/A

BDaaS compatible? No Yes Yes
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Conclusion and Perspectives

The contributions of this thesis are multiple. Our goal in this thesis was to treat
the chain, from the data collection to the data analysis of the streams generated
by sensors. We have proposed the data streams native filtering as a solution to
overcome the two problems related to data collection: the huge volume of the data
generated by the sensors, and their poor quality. In the data analysis phase, we
were interested in detecting the anomalies in the data.

In detail, we introduced in Chapter 1, the basic concepts of data streams, window-
ing models, and application domains. We detailed the different sampling algorithms
used to construct a data stream summary and we focus particularly on their draw-
backs.

We studied in Chapter 2, in depth, the sampling algorithm Chain-sample. The
purpose of this algorithm is to select, randomly, at any time, a fixed proportion
among the most recent elements of the stream contained in the last sliding window.
Through a series of experiments, we have shown that this algorithm has several
drawbacks essentially due to the collision and redundancy problems. To overcome
these weaknesses, we proposed two approaches, the first is called "Inverting the selec-
tion for high sampling rates" and the second is inspired by the "Divide-to-Conquer"
strategy. Various experiments have been carried out to show the effectiveness of
these two improvements, in particular, their impact on the execution time of the
algorithm.

We discussed in Chapter 3 the impact of the sampling process on the events
detection. In the first part of this chapter, we discussed three data streams sampling
algorithms. Their purpose is to keep a representative, fixed-size sample of the
most recent elements of the stream over time. At first, the SRS and Deterministic
sampling algorithms were adapted to the context of the sliding window. Secondly,
the performance of these algorithms has been compared to that of the Chain-sample
algorithm. The results of the experiments showed that Chain-sample gives better
results than SRS and Deterministic algorithms in terms of execution time and
sampling accuracy. The second part of this chapter was devoted to studying the
impact of data sampling on anomaly detection results using EWMA algorithm. First,
we developed a new version of the Weighted Random Sampling algorithm (WRS) that
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samples the data based on their values with respect to the values of their neighbors
in the current sliding window. Then, we sampled the data using the three algorithms:
Deterministic sampling, SRS, and WRS. The obtained results showed that WRS
algorithm performs better results than both Deterministic and SRS algorithms in
terms of the true positive rate.

We illustrated in Chapter 4 the data quality aspects of sensor networks. We
introduced the basic concepts of data quality. Then, we discussed the existing
research studies related to data quality in sensor networks. Finally, we proposed a
complete system for managing the quality of sensors data. This system addresses the
evaluation and the improvement of data quality. For this purpose, four data quality
dimensions are considered: precision, accuracy, confidence, and completeness.

We investigated in Chapter 5 the change detection in the time series emitted
by sensors. In particular, we discussed the slow and gradual changes as they
illustrate deviations in the sensor’s calibration. We presented an in-depth analysis
of CUSUM algorithm since it is well adapted to the detection of small deviations,
and we proposed an improvement that provides a more precise description of the
detected anomalies. First, we discussed the choice of CUSUM parameters in order
to optimize its results. Secondly, we presented an efficient method for estimating
the start and end times of the deviation detected by CUSUM. Finally, we adapted
CUSUM to detect a deviation of the process variability. We applied this new version
to the detection of the so-called stuck-at errors. All these improvements have been
validated by simulation and against real data streams.

We focused in Chapter 6 on the spatial anomalies detection methods, more par-
ticularly, Moran scatterplot, a data visualization technique for graphically isolating
spatial anomalies. This method calculates the distance between the points with
respect to the considered observable while taking into account their spatial corre-
lation degree (which closely depends on their geographical distance). At first, we
proposed a new version of Moran scatterplot, in which we improved the calculation
of the matrix of weights. This matrix is involved in the calculation of the distance.
We calculated the weights based on several parameters that qualify the correlation
between the spatial points. For this purpose, we used a robust distance metric called
the Gower’s coefficient to explore and to characterize the neighborhood of the spatial
points. Then we applied the new version of Moran scatterplot to a new use case:
the Parisian bicycle sharing system (Velib). Indeed, in this new context, there is
clearly a strong spatial correlation since bikes availability in a given station is often
similar to its neighboring stations. In this context, we defined the spatial anomaly
as the station that is significantly different from its neighborhood: it is almost empty
or full while its neighboring stations are globally balanced. The identification of
these outlier stations allowed us to propose and then to evaluate a new method
that encourages Velib users to better distribute the bicycles among the stations. We
showed that this proposed method improves significantly resources availability, and
consequently, the users satisfaction.

We presented in Chapter 7 the native filters module that we developed and
integrated into the project WAVES platform. This module provides two features:
real-time data qualification and data summarization. It is composed of two sub-
modules: qualitative filter and quantitative filter. Upon receipt of the data, the
qualitative filter evaluates and improves the quality of the data based on the ar-
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chitecture presented in Chapter 4. Once qualified, the data will be summarized by
the quantitative filter which in turn implements several sampling algorithms. We
also evaluated in Chapter 7 the effectiveness of the native filters module according
to the required computing resources. We presented a benchmark of the computing
resources requirements for this solution while considering different infrastructures
(local server vs. cloud server for data processing, and database vs. Hadoop for data
storage). The computing resources cover the processing time of the input data and
the amount of memory required to store the output data.

Many research axes related to data quality, data sampling, and anomalies detec-
tion issues have been identified and will be explored in our future work. Our future
perspectives are summarized as follows:

a. Adaptive sampling: In the sampling algorithms considered in this thesis,
the sampling rate is constant during the execution of the algorithm. In some
use cases, it is useful to adapt dynamically the sampling rate to some vary-
ing conditions such as the available computational resources as proposed in
[Schinkel and Chen, 2006]. We want to propose a sampling algorithm that
adapts the sampling rate to data variance. The significant change in data
variance can be detected using CUSUM as explained in Chapter 5 or another
change detection method. For instance, in the case of the water distribution
network supervision, the data related to the water consumption of the users
in a residential area have very small variability during the night. It would be
pertinent in that case to sample these data with a very low sampling rate. On
the contrary, the water consumption data during the day may require a higher
sampling rate given their high variability.

b. Missing data recovery: The loss of data has serious consequences for the
environmental monitoring systems and can engender missing important events.
In the water network monitoring case, the information recorded by the sensors
represents the instantaneous rate of the delivered water. The loss of some data
may lead to erroneous and distorted results about water consumption. That
is why it is important to recover missed data, when possible. In the native
filters module that we developed, we replaced missed data using temporal
interpolation on a single time series. One perspective would be to explore other
approaches such as exploiting periodicity in the time series. Spatial correlation
between data sensors can be also exploited to recover missed data.

c. Precision data quality dimension: As we presented in Chapter 4, the pre-
cision degree of the data is represented by the noise level in these data. This
degree is calculated according to the Coefficient of Variation denoted by CV .
According to the CV value and to the predefined thresholds, the data preci-
sion can be considered as Good, Medium, or Bad. When the data precision
is Medium, the data have to be denoised using smoothing algorithms. One
perspective would be to compare several smoothing techniques such as Mov-
ing Average, Median Average, and Savitzky-Golay algorithms, define the CV
thresholds, and finally, implement these features in the native filters module.

d. Anomalies detection: In this thesis, we detected anomalies in two different
application domains: water distribution network and bike sharing systems. In
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both cases, the performed analysis is based on dynamic and static data collected
from these systems. In our future work, we will enrich this kind of data with
other sources of information such as social networks or weather conditions.
Correlating information collected from different heterogeneous sources leads
to the inference of new knowledge. It enables to predict the future evolution
of the system with a good precision and to improve the reactivity of anomaly
detection process. In this context, semantic web technologies can be used to
deal with the heterogeneity of data sources.

e. Distribution of service: We studied in Chapter ?? the execution of data
streams native filters module in the context of the cloud. Indeed, Cloud comput-
ing provides efficiency, flexibility and cost savings. Traditionally, data analysis
tasks are conducted separately by different organizations. However, these
tasks include many common steps such as information retrieval, data cleaning,
data visualization and data storage. Building separate systems to analyze the
data is very expensive and requires specific skills.
Big Data Analytics Software-as-a-Service is an emerging category of services
for massive data processing in the Cloud computing. The offered services are
the traditional data analysis tasks. These tasks are grouped and provided
to the customer for a single fee and upon request [Zheng et al., 2013]. With
the use of Big Data Analytics Software-as-a-Service, the cost of storage drops
significantly and the efforts to install, configure and maintain the data analysis
systems are saved. Moreover, the estimation and the planning of the required
resources are no longer necessary as the resources can be flexibly adjusted as
needed. For instance, Google BigQuery [Goo, 2011] is an example of such a
platform that performs real-time Big Data analysis in the cloud environment.
We can also mention Spark, an Apache project for streaming processing in the
cloud, and Elastic MapReduce (Hadoop) for Big data analytics in the cloud
[Hashem et al., 2015]. We are orienting our future work towards the use of
such solutions.
The Cloud computing environment presents several challenges, particularly,
the data security. In order to ensure the reliability of the cloud and the trust of
the users regarding this environment, it is necessary to protect and to ensure
the security of the data stored in the cloud. Our future work tends to focus on
this subject.
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