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Abstract

The rising interest in smart connected environments (e.g., smart buildings, cities, fac-
tories) and the evolution of sensors, data management/communication technologies
have paved the way for interesting and useful applications that help users in their
every day tasks (e.g. increasing comfort, reducing energy consumption). However,
various improvements are still required. For instance, how to enhance the repre-
sentation of such complex, dynamic, and heterogeneous environments. Moreover,
how to facilitate the interaction between users and their connected environments,
and how to provide tools for environment monitoring and management.

In this thesis, we focus on four main challenges: (i) representing a diverse set of
components and elements related to the environment and its sensor network; (ii)
providing a query language that handles user/connected environment interactions
(e.g., environment definition, data management, event definition); (iii) coping with
the dynamicity of the environment and its evolution over time; and (iv) proposing a
generic event detection mechanism for improved environment monitoring.

To do so, we first present an ontology-based data model that represents hybrid
environments/sensor networks. Thus covering diverse sensors (e.g., static, mo-
bile), environments (e.g., infrastructures, devices), and data (e.g., scalar, multime-
dia). Then, we introduce a query language that one might use for various tasks (e.g.,
defining the connected environment, information retrieval, event definition, data
management). Furthermore, to keep up with the environment changes we provide
a query optimizer that allows the submitted queries to cope with the dynamicity of
the environment prior to their execution. Finally, we propose an event detection core
that takes event definitions as input and detects the targeted events.

We group the aforementioned modules in one global framework for event detec-
tion in connected environments. Our proposal is generic, extensible, and could be
used with different connected environments such as buildings, cities. . .



Résumé

L’intérêt croissant pour les environnements connectés (bâtiments, villes, usines in-
telligents) et l’évolution des réseaux de capteurs, technologies de gestion/commu-
nication de données ont ouvert la voie à des applications intéressantes et utiles qui
aident les utilisateurs dans leurs tâches quotidiennes (augmenter le productivité
dans une usine, réduire la consommation d’énergie). Cependant, diverses amélio-
rations sont encore nécessaires. Par exemple, comment améliorer la représentation
de ces environnements complexes, dynamiques et hétérogènes. En outre, comment
faciliter l’interaction entre les utilisateurs et leurs environnements connectés et com-
ment fournir des outils de surveillance et de gestion de tels environnements.

Dans cette thèse, nous nous concentrons sur quatre défis principaux: (i) représen-
ter un ensemble diversifié de composants et d’éléments liés à l’environnement et
à son réseau de capteurs; (ii) fournir un langage de requête qui gère les interac-
tions utilisateur/environnement connecté (pour la définition de l’environnement, la
gestion de données, la définition d’événements); (iii) faire face à la dynamique de
l’environnement et à son évolution dans le temps; et (iv) proposer un mécanisme
générique de détection d’événements pour mieux surveiller l’environnement.

Pour ce faire, nous présentons d’abord un modèle de données basé sur une ontolo-
gie qui représente des environnements et réseaux de capteurs hybrides. Couvrant
ainsi divers capteurs (statique, mobile), environnements (infrastructures, équippe-
ments) et données (scalaires, multimédia). Ensuite, nous introduisons un langage
de requête que l’on pourrait utiliser pour diverses tâches (définir l’environnement
connecté, la recherche d’informations, la définition d’événements, la gestion de don-
nées). De plus, afin de suivre les changements d’environnement, nous fournissons
un optimiseur de requêtes qui permet aux requêtes soumises de gérer la dynamique
de l’environnement avant leur exécution. Enfin, nous proposons un noyau de dé-
tection d’événement qui prend en entrée les définitions d’événement et détecte les
événements ciblés.

Nous regroupons les modules susmentionnés dans un framework global pour la
détection d’événements dans des environnements connectés. Notre proposition est
générique, extensible, et pourrait être utilisée avec différents environnements con-
nectés tels que des bâtiments, des villes. . .

Le manuscrit est organisé comme suit:

Chapitre 1

Introduction

Dans ce chapitre, nous introduisons les facteurs qui ont contribué à la prolifération
des environnements connectés pendant nos jours. Nous évoquons des facteurs tech-
nologiques (par exemple, les avancées dans le domaine du traiement avancé des
données, la modélisation des données, la miniaturization des capteurs), ainsi que
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des facteurs économiques et environnementaux. Ensuite, nous nous concentrons sur
les objectifs de cette thèse: modéliser et interroger de tels environnements, gérer leur
dynamicité et détecter des événements spécifiques se produisant dans leurs locaux.
Nous présentons un scénario d’environnement connecté dans un centre commercial
intelligent qui illustre la motivation de ce travail et les défis à venir. Ensuite, nous
présentons brièvement notre framework proposé pour la détection d’événements
dans des environnements connectés (EDCE), dans lequel chaque module répond à
un objectif spécifique et répond à un ensemble de besoins et de défis:

• Premier Module: Un modèle ontologique pour enrichir la représentation d’un
environnement connecté et son réseau de capteurs. L’ontologie proposée, notée
HSSN, propose une description de divers types de capteurs, environnements/-
platformes de déploiement, et de données.

• Deuxième Module: Un language de requêtes dédié aux environnements con-
nectés, noté EQL-CE. Ce language permet de considérer tous les composants
d’un environnement connecté (c’est à dire, l’environnement, le réseau de cap-
teurs, les événements ciblés, et le domaine d’application). De plus ce language
fournit des requêtes pour définir les composant susmentionnés, rechercher des
informations, gérer les données, et définir les événements à détecter.

• Troisième Module: Un optimiseur de requêtes qui permet de détecter et réécrire
les requêtes qui ne pourront plus fournir des résultats, à cause des change-
ments et de la dynamique de l’environnement.

• Quatrième Module: Un détecteur d’événements, noté eVM, qui prend en en-
trée les définitions d’événements ciblés et les données fournies par le réseau
de capteurs pour détecter les événements.

Finalement, nous répertorions les publications liées à ce rapport avant d’introduire
les chapitres suivants.

Chapitre 2

Un Modèle de Données pour les Environnements Connectés

Dans ce chapitre, nous décrivons un modèle d’information basé sur une ontologie.
Nous présentons une étude comparative des travaux existants sur la modélisation
des réseaux/données de capteurs. Ensuite, nous introduisons notre prosition (HSSN
[68]) dans laquelle nous enrichissons la représentation de l’environnement et la mod-
élisation du réseau de capteurs avec divers types de capteurs (des nœuds simples,
mobiles, statiques, équippements multi-capteurs, capteurs scalaires, multimédia);
(ii) plates-formes de déploiement (infrastructures physiques, plates-formes et dis-
positifs électroniques); et (iii) des données détectées (scalaires, multimédia). Pour
se faire, nous étendons l’ontologie SSN [44], qui est largement utilisée dans l’état de
l’art, sans compromettre la possibilité de réutilisation du modèle de données dans
différents contextes. Enfin, nous évaluons la performance, la clarté, la cohérence et
la précision de nos ajouts.
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Chapitre 3

Un Language de Requêtage pour Environnements Connectés

Dans ce chapitre, nous décrivons le langage de requêtes que les utilisateurs peuvent
utiliser comme moyen d’interaction avec leurs environnements connectés. Nous
passons en revue les travaux existants sur les langages de requêtes et proposons
EQL-CE (un langage de requête d’événement adapté aux environnements connec-
tés [67]). Nous ne traitons pas tous les défis liés à la proposition d’un langage de
requêtes pour les environnements connectés, mais nous nous concentrons princi-
palement sur les éléments suivants:

• Couvrir tous les composants de l’environnement connecté et pas seulement les
événements.

• Couvrir divers types de requête courantes (par exemple, pour la définition de
l’environnement, la recherche d’information, insertion de données, la défini-
tion d’événements).

• Couvrir divers types de données (par exemple, des données scalaires, multi-
média).

• Consdérer la distribution spatiale des capteurs dans l’espace et les distribu-
tions temporelles des observations des capteurs dans le temps.

• Gérer la dynamique de l’environnement connecté, et s’adapter aux change-
ments et évolution de l’environnement dans le temps.

• Fournir une syntaxe réutilisable, qui ne dépend pas des facteurs techniques
(par exemple, l’infrastructure de stockage de données).

Nous proposons trois couches pour le langage (c’est-à-dire une couche conceptuelle,
logique et physique). Nous détaillons la syntaxe de chaque composant de l’environnement
connecté et des différents types de requêtes. Enfin, nous présentons un exemple
d’illustration et un protocole expérimental pour évaluer le langage.

Chapitre 4

Gérer la Dynamique de l’Environnement

Dans ce chapitre, nous nous concentrons sur un besoin spécifique concernant le
language de requêtes: gérer la dynamique de l’environnement. Nous soulignons
divers facteurs qui contribuent à la dynamique de l’environnement (la mobilité/fi-
abilité des capteurs, la compatibilité entre les différentes plate-formes, la volatilité
des données, les données/attributs manquants). Ensuite, nous traitons deux dé-
fis principaux: (i) la mobilité/la fiabilité des capteurs; et (ii) les données/attributs
manquants. Nous proposons un module d’optimisation de requêtes qui complète le
langage de requêtes d’événement EQL-CE qui a été détaillé dans le chapitre précé-
dent. Pour se faire, l’optimiseur analyse les requêtes d’événements, avant de les
envoyer au détecteur, pour voir si une requête contient des éléments "obsolètes",
c’est à dire des éléments qui ne peuvent plus servir leurs fonctions dans la requête
(par exemple, un capteur qui n’éxiste plus, qui à bougé, qui est tombé en panne).
Par la suite, l’optimiseur réécrit les requêtes qui sont devenues "obsolètes" en rai-
son de la dynamicité de l’environnement (c’est à dire, des requêtes qui ne sont plus
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capables de retourner des résultats à cause des changements qui ont eu lieu dans
l’environnement). Nous définissons formellement l’envirnnement connecté, les re-
quêtes d’événements, les requêtes obsolètes, et les capteurs. Puis, nous détaillons
deux algorithmes pour la détection et la réécriture des requêtes obsolètes. Enfin,
nous évaluons les complexités des algorithmes et proposons un protocole expéri-
mental pour mesurer la précision et la performances des deux processus (la détec-
tion et la réécriture des requêtes "obsolètes").

Chapitre 5

Un Framework Générique pour la Détection des Événements

Dans ce chapitre, nous décrivons le module de détection d’événements, noté eVM,
qui prend en entrée des définitions d’événements (requêtes d’événements EQL-CE)
et des objets de données (par exemple, des données détectées par les capteurs dans
un environnement connecté) afin de détecter les événements ciblés. Tout d’abord,
nous passons en revue divers travaux de détection d’événements. Nous présentons
aussi une étude comparative de différents techniques de clustering pour pouvoir
choisir une technique à utiliser dans le processus de détection d’événements. Suite
à l’étude de l’éxistant, nous choisissons de baser le détecteur sur une technique con-
ceptuelle de clustering: "Formal Concept Analysis" (FCA), et détaillons les principes
et le fonctionnement global de cette technique. Ensuite, nous présentons un frame-
work de détection d’événements générique reposant sur FCA. Nous détaillons le
processus de détection d’événements de l’entrée (requête d’événement EQL-CE) à
la sortie (les événements détectés). Finalement, nous présentons l’expérimentation
et les résultats dans différents domaines d’application.

Chapitre 6

Conclusion et Travaux Futurs

Ce chapitre conclut le rapport en récapitulant tous les chapitres susmentionnés et
en détaillant les prochaines étapes, extensions futures, et de nouvelles orientations
possibles pour la suite de ce travail de recherche.
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Chapter 1

Introduction

"Faith is taking the first step even when you don’t see
the whole staircase."

— Martin Luther King, Jr.

1.1 Connected Environments

Recent years have witnessed a widespread interest in smart connected environ-
ments. Typically defined as infrastructures that host sensor networks capable of
providing valuable data for various applications (e.g., home automation, energy
management), the connected objects and environments are impacting numerous ap-
plication domains. From smart homes and buildings to cities, vehicle networks, and
electrical grids, they have become a novel trend that is revolutionizing how people
interact with their personal surroundings, how they accomplish their daily tasks in
the workplace, and how they handle their health, security, and safety. Connected
environment markets are currently booming and projected to continue their growth
for the years to come. Figure 1.1 shows the distribution of investments in smart
buildings by region. The investment growth in such connected environments is sig-
nificant (from 7.42 billion dollars in 2017 to a projected 31.74 billion dollars in 2022).1

FIGURE 1.1: Smart Buildings Market, By Region (USD Billion)

1Source: MarketsandMarkets Analysis - Link: https://www.marketsandmarkets.com/Market-
Reports/smart-building-market-1169.html

https://www.marketsandmarkets.com/Market-Reports/smart-building-market-1169.html
https://www.marketsandmarkets.com/Market-Reports/smart-building-market-1169.html
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Moreover, Figure 1.2 highlights the increasing investments in smart cities from
2016 to 2023. An estimated total of 79.5 billion dollars were invested in smart cities
in 2018. The chart2 shows that the continuous growth in smart city investments is
reaching a projected total of 219.6 billion dollars in 2023. Finally, both figures show
that the increasing interest in the aforementioned connected environments is global
since North America, Europe, Asian Pacific (APAC), the Middle East (MEA), Africa,
and Latin America are all contributors to the investments.

FIGURE 1.2: Smart Cities Market, By Region (USD Billion)

1.1.1 Driving Factors

The wide-spreading investments in connected environments and their integration in
different fields have been driven and motivated by various factors. We present next
the different categories of driving factors.

1.1.1.1 Technological Factors

Data Processing & Modeling Techniques. Recent advances in Information and
Communication Technologies (ICT), Big Data, and Data Mining techniques have
made it easier to tackle challenges related to managing (i) big data volumes; (ii)
heterogeneous data (e.g., such data is collected/sensed in connected environments);
(iii) continuous data streams; (iv) data pre-processing (e.g., cleaning, normalization);
and (v) knowledge extraction from raw data (e.g., sensor data).
Moreover, advances in data modeling have enriched the descriptions of connected
environments, sensor networks, different types of sensors, sensed data/observa-
tions, communication protocols, and platforms for sensor deployment. This pro-
vided an expressive, semantic, and rich representation of connected environments
that could benefit high level applications.
All of the above, allowed the aforementioned environments to impact different ap-
plication domains (e.g., energy management, home automation) and provide vari-
ous applications for users (e.g., energy consumption predictions in smart buildings,
increasing production efficiency in factories). These applications require advanced
data processing and modeling techniques (e.g., clustering, classification, anomaly
detection, semantic models, ontologies) to provide their intended services for every
day users.

2Source: MarketsandMarkets Analysis - Link: https://www.marketsandmarkets.com/Market-
Reports/iot-smart-cities-market-215714954.html

https://www.marketsandmarkets.com/Market-Reports/iot-smart-cities-market-215714954.html
https://www.marketsandmarkets.com/Market-Reports/iot-smart-cities-market-215714954.html
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Sensing & Miniaturization. Recent advances in micro-electro-mechanical systems
(MEMS) technology, wireless communications, and digital electronics have enabled
the development of low-cost, low-power, multi-functional sensor nodes that are
small in size [3]. One could deploy such sensors in different environments (e.g.,
buildings, cities) and/or embed them on various machines, devices, and electronic
platforms (e.g., mobile phones). The advanced capabilities of new sensors (e.g.,
sensing various properties, transmitting data, storing observations), their increased
autonomy (e.g., longer life cycles, more battery power, more fault/breakdown resis-
tance), and their miniaturization have allowed sensor networks to be widely adopted
for environment monitoring. This has greatly benefited the proliferation of con-
nected environments. Figure 1.3 shows the increasing number of sensors deployed
in Commercial Real Estate (CRE) over the past years. The study projects a Com-
pound Annual Growth Rate (CAGR) of 78.8% from 2015 to 2020.

FIGURE 1.3: Sensor Usage in Commercial Real Estate (CRE), millions

1.1.1.2 Other Factors

Besides the technological advances, other factors have also helped the proliferation
of connected environments (e.g., environmental, economic, political). For instance,
due to the high impact that energy consumption by buildings has at the global scale,
energy-efficient buildings (i.e., that reduce CO2 emissions and energy consumption)
are now needed more than ever. By 2020, there will be 7.5 billion people in the world
and consumption will increase by 75% compared to the year 2000, equally split be-
tween developing and developed countries. This means an increase of 37.5% in
energy consumption every 10 years. These factors have driven research on sustain-
ability in energy production, distribution, storage, and consumption [72, 90]. From a
political standpoint, Europe has set the European 20-20-20 objectives. This entails (i)
decreasing gas emissions with greenhouse effect (GHG) by 20%; (ii) decreasing the
energy consumption by 20%; and (iii) increasing the production of renewable energy
by 20% . These objectives have been set since studies [76] show that buildings are re-
sponsible for 40% of total European Union energy consumption and generate 36% of
GHG. This highlights the need to achieve energy-efficient buildings (and thereafter
cities) to reduce their CO2 emissions and their energy consumption. Moreover, this
affects the quality of life and work of all citizens/building occupants. Thus, there is
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a need to address and balance environmental (i.e., eco-friendly and green environ-
ments), economic (i.e., lowering energy costs), and occupant comfort requirements
(i.e., healthy, comfortable, and safe working/living environments).

1.2 Thesis Context

This thesis considers connected environments from a modeling and management
perspective. We are interested in aiding connected environment users (e.g., smart
home owner, smart building manager, smart city occupants) in setting up and man-
aging their own environments. The general, or global, goal is to provide a frame-
work that allows the user the definition and management of a connected environ-
ment without having to deal with the low-level technical aspects (e.g., data stor-
age, infrastructure evolution, changing technical constraints/needs). Thus, allow-
ing users to focus on high level applications related to defining his/her needs and
requirements, interacting with the system, defining and managing data, and event
detection. Moreover, since the environment is dynamic and could change over time,
we need to ensure that the provided tools evolve and keep up with the changes. Fi-
nally, we aim to provide the user with means that allow him/her the definition of
specific happenings, events, or patterns that he/she would like to track, detect, and
find within the premises of his environment.

1.2.1 Thesis Objectives

Specifically, the objectives of this thesis can be summarized as follows:

• Designing a generic data model that could be reused to describe various con-
nected environments (e.g., buildings, homes, cities). This entails covering the
environment and its sensor network. In addition, the data model should con-
sider event modeling in various application domains.

• Providing users with a means for interaction with their connected environ-
ments. This entails having one interface from which the user can formulate
his/her demands and requirements (e.g., defining components, managing data,
detecting events).

• Ensuring that the interaction between the user and environment is not static
and is capable of coping with the dynamicity and evolution of the connected
environment over time.

• Providing the user with a generic way of defining events based on his/her
specifications, and a common mechanism for event detection that could be
reused for different events and in various environments/contexts.

1.2.2 Motivating Scenario

To illustrate the motivations behind the objectives of this thesis, we provide here a
connected environment example. Figure 1.4 shows a smart mall (shopping center)
where clients spend time shopping, eating, watching movies and so on. The figure
details the infrastructure of the environment, the location map, locations, and the
spatial setup. From a sensor network standpoint, the figure shows various sensors
(e.g., noise, temperature) deployed in the entire mall. These sensors can provide
valuable data that could be exploited for high level applications such as reducing
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energy consumption, increasing client comfort/safety, and improving the overall
shopping experience in the mall. For the aforementioned purposes, a mall manager
is interested in managing the environment and detecting specific events that occur
within its premises. To achieve this, various needs should be considered:

FIGURE 1.4: Motivating Scenario Overview

Need 1. Retrieve diverse, rich, and precise observations/events from the mall.

Need 2. Define and manage all components (i.e., objects or entities), data, and
datatypes in the mall.

Need 3. Cope with the dynamicity of the mall and its evolution over time.

Need 4. Define and detect events of interest that happen in the mall.

To address the aforementioned needs, the mall manager must have tools that allow
him/her to (i) model the entire connected environment (e.g., the mall); (ii) query the
environment for definition, data retrieval, and management purposes while consid-
ering constraints related to dynamicity and evolution; and (iii) define/detect events
of interest. However, when considering all of the above, several challenges emerge:

Challenge 1. How to represent a diverse set of elements related to the environ-
ment and sensor network (e.g., sensors, platforms, data)?

Challenge 2. How to provide one reusable query language that addresses various
tasks (e.g., component definition, data retrieval, event definition, data manage-
ment) for all connected environment components (i.e., related to the environment,
sensor network, events, and application domain)?

Challenge 3. How to allow the query language to cope with the dynamicity of the
connected environment and its evolution over time?

Challenge 4. How to provide a mechanism for event detection that could be com-
mon for the detection of different events?

Several other challenges exist when considering the topic of connected environments
(e.g., stream data processing, data volatility, real-time event detection). However,
we focus here on the aforementioned needs and challenges (which will be further
detailed separately in the following chapters). We present next our proposed frame-
work and detail how each module addresses a specific challenge.
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1.3 Proposal

We present here a brief overview of our proposal for Event Detection in Connected
Environments, denoted EDCE. The framework addresses the needs and challenges
in Section 1.2. Figure 1.5 shows an overview of its main modules. Briefly, the system
interrogation module represents the interface (a query language) that one could use
to interact with the connected environment. The data model module describes the
connected environment components and their ties/relations. The event Virtual Ma-
chine module is a pluggable event detector that takes event definitions and sensed
data as input, and outputs the targeted events. Finally, the query optimizer aids the
query language (system interrogation module) in coping with the dynamicity and
evolution of the environment.

FIGURE 1.5: EDCE Global Framework

1.3.1 Connected Environment Data Model

This module proposes a representation of the entire connected environment by con-
sidering four main parts (cf. Figure 1.6).

• Part 1 - The environment modeling: is an essential part of the global connected
environment model. It covers the representation of the physical real world in-
frastructure (e.g., a building, city, grid, home, factory) and all its underlying
components (e.g., location map, individual locations, embedded/nested envi-
ronments). Moreover, the environment could contain devices, machines, and
equipment that host sensors. The description of the environment components
as well as their ties and interactions are considered in this part of the connected
environment data model.

• Part 2 - The sensor network modeling: is the second part of the data model.
Each connected environment hosts one or more sensor networks. The pur-
pose of sensors is the gathering of useful data by monitoring the environment
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(where the sensor network is deployed) for high level applications. We repre-
sent various sensor types (e.g., nodes, devices, mobile, static) and sensed data
(e.g., scalar, multimedia) in this part of the connected environment data model.

• Part 3 - The event modeling: is dedicated to the representation of event defi-
nitions. The latter are crucial for the detection of occurring events in the con-
nected environment.

• Part 4 - The application domain modeling: is a pluggable part in the connected
environment data model. We use it to enrich the description of the environ-
ment (e.g., a smart hospital differs from a smart mall in terms of its constituent
components and the buildings’ constraints/configurations). Similarly, the ap-
plication domain also affects the events (e.g., a body temperature overheating
event for a patient is defined differently than a room overheating event in a
building).

For parts 1 and 2, we propose an extension of several ontologies and mainly the SSN
ontology, denoted HSSN (Hybrid Semantic Sensor Network). We discuss our pro-
posal in Chapter 2. The interconnection of the four parts and the overall data model
for connected environments is presented in Chapter 3. Finally, we detail furthermore
the event modeling in Chapter 5 (cf. Need 1). This study is published [68] in the pro-
ceedings of the 23rd International Database Applications & Engineering Symposium
(IDEAS 2019):

- Elio Mansour, Richard Chbeir, Philippe Arnould: HSSN: an ontology for hybrid se-
mantic sensor networks. IDEAS 2019: 8:1-8:10

1.3.2 System Interrogation

The user creates and interacts with the connected environment through the sys-
tem interrogation interface. In this module, we propose an Event Query Language
specifically designed for connected environments, denoted EQL-CE. One uses the
language to define a connected environment and all its components (e.g., environ-
ment, sensor network, events, and application domain). Then, EQL-CE queries
could be used to generate instances of each component and manage the data. Finally,
the user could compose event queries to define the targeted events of interest that
he/she would like to detect. This entails detailing the event defining features and
the sensors that could provide data for the detection of the aforementioned events.
The proposed language operates at three different levels. At the top layer (i.e., con-
ceptual level), the connected environment entities and relations are organized in the
form of a graph. At the middle layer (i.e., logical level), the user composes queries
that are written in a re-usable syntax. The bottom layer (i.e., physical level), handles
the parsing of the logical queries into domain specific languages (e.g., SQL, SPARQL)
and executes them. Every created component, or component instances as well as all
the modifications are saved in the storage space. The details of the query language
are presented in Chapter 3 (cf. Need 2). The EQL-CE framework is published [67] in
the proceedings of the 23rd International Database Applications & Engineering Sym-
posium (IDEAS 2019). Moreover, another paper concerning the syntax and queries
of EQL-CE is accepted (to appear) in the proceedings of 15th ACM Symposium on
QoS and Security for Wireless and Mobile Networks (Q2SWinet ’19):

- Elio Mansour, Richard Chbeir, Philippe Arnould: EQL-CE: an event query language
for connected environments. IDEAS 2019: 7:1-7:10
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- Elio Mansour, Richard Chbeir, and Philippe Arnould. 2019. EQL-CE: An Event
Query Language for Connected Environment Management. In 15th ACM Sympo-
sium on QoS and Security for Wireless and Mobile Networks (Q2SWinet ’19) - Ac-
cepted

1.3.3 Query Optimizer

Connected environments rely on sensor network data. The latter is provided by
sensors (i.e., data sources). However, various issues might emerge due to the dy-
namicity of the environment. Sensors could breakdown, mobile sensors could leave
or change locations, new sensors could enter the network, and the data required for
specific event definitions might be lost. Therefore, we propose the query optimizer
module to manage queries that became obsolete in time due the aforementioned
issues. Chapter 4 details the proposed query optimizer module and focuses on ad-
dressing obsolete queries via query rewriting (cf. Need 3). We propose two main
algorithms: the first automatically detects obsolete queries (i.e., queries that need
rewriting) and the second performs the rewriting by replacing missing/unavailable
query elements (e.g., sensors, data) by adequate successors. To do so, we detail how
one can measure the similarity between sensors, and sensed data/event features.

1.3.4 Event Virtual Machine

This module represents a pluggable event detector that takes data objects (e.g., sen-
sor observations) and event definitions (e.g., event queries) as input and detects
what we called feature-centric events at the output. Feature-centric events, as the
label indicates, are events that focus on one or more key features. For instance,
time-centric events are any event that happened around a specific time interval,
geo-centric events are events that occur in a specific location (or set of targeted lo-
cations), and temperature-centric events refer to any event related to temperature
that occurred at any time and location. This pluggable module was designed to be
reused in different application domains (i.e., with various data objects and event
definitions at the input end). Chapter 5 details the entire event detection process (cf.
Need 4), and how eVM is applied for sensor event detection in connected environ-
ments. Furthermore, the conducted experiments highlight the re-usability of eVM
in other application domains (e.g. social event detection, conflict event detection),
with different data objects (e.g., images, videos on social networks, conflict stories
from news channels and papers) and event definitions (e.g., social, conflict events)
as input. A detailed view of the framework is presented in Figure 1.6 to illustrate
the inner composition of each module. The eVM framework is published [66] in the
Transactions on Large Scale Data and Knowledge-Centered Systems XXXIX (special
issue on Database and Expert Systems Applications). Moreover, the re-usability of
the detector was demonstrated in another paper where the detector was used to
detect social events. This paper is published [69] in the proceedings of 28th Interna-
tional Conference on Database and Expert Systems Applications (DEXA 2017):

- Elio Mansour, Richard Chbeir, Philippe Arnould: eVM: An Event Virtual Machine
Framework. T. Large-Scale Data- and Knowledge-Centered Systems 39: 130-168
(2018)

- Elio Mansour, Gilbert Tekli, Philippe Arnould, Richard Chbeir, Yudith Cardinale: F-
SED: Feature-Centric Social Event Detection. DEXA (2) 2017: 409-426
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FIGURE 1.6: Detailed EDCE Framework View

1.4 Report Organization

The remainder of the thesis is organized as follows:

Chapter 2 describes our ontology-based information model. We review related
work on sensor network/data modeling. Then, we introduce the Hybrid Semantic
Sensor Network (HSSN [68]) ontology where we enrich the environment and sensor
network modeling with diverse types of (i) sensors (e.g., static, mobile, simple nodes,
multi-sensor devices, scalar, multimedia); (ii) deployment platforms (e.g., physical
infrastructures, electronic platforms and devices); and (iii) sensed data (e.g., scalar,
multimedia sensor observation). We do so by extending the widely used SSN [44]
ontology without compromising the re-usability of the data model in different con-
texts. Finally, we evaluate the performance, clarity, consistency, and accuracy of our
additions.

Chapter 3 describes the event query language that one uses to interact with the
entire framework. We review existing works on query languages and propose EQL-
CE (an event query language adapted to connected environments [67]). We do not
address all challenges related to proposing a query language for connected environ-
ments but mainly focus on the following: (i) covering all connected environment
components and not only events; (ii) covering common query types; (iii) covering
various datatypes; (iv) considering spatial distribution of sensors over the space,
and temporal distributions of sensor observations over time; (v) handling the con-
nected environment dynamicity; and (vi) providing a re-usable syntax. We propose
a three layered framework for the language (i.e., conceptual, logical, and physical
layers). We detail the syntax of each connected environment component and the
various query types. Finally, we detail an illustration example and the experimental
protocol for the evaluation of the language.
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Chapter 4 focuses on one specific need regarding the language: coping with the
dynamicity of the environment. We point out various factors that contribute to the
dynamicity of the environment (e.g., sensor mobility/reliability, platform compat-
ibility, data volatility, missing data/features). Then, we focus on two main chal-
lenges: (i) sensor mobility & reliability; and (ii) missing data/features. We propose
a query optimizer module that complements the previously detailed event query
language EQL-CE. The optimizer rewrites event queries that became obsolete due
to the dynamicity of the environment. We detail two algorithms for obsolete query
detection and rewriting. Finally, we evaluate the algorithms’ complexities and pro-
pose an experimental protocol to assess the accuracy, and performance of the both
processes (obsolete query detection and rewriting).

Chapter 5 describes an event detector module that takes event definitions (EQL-
CE event queries) and data objects (e.g., sensed data) as input in order to detect the
targeted events. First, we review various event detection works. Then, we present
a generic event detection framework that relies on Formal Concept Analysis, a clus-
tering technique denoted FCA. We detail the process of event detection from the
incoming input query to the detected event at the output. Finally, we present the
experimentation and results.

Chapter 6 concludes the report with a recap of all the aforementioned chapters and
discusses in details the next steps and potential future research directions.
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Chapter 2

A Data Model For Hybrid
Connected Environments

"Our greatest weakness lies in giving up. The most
certain way to succeed is always to try just one more
time."

— Thomas A. Edison

Recent advances in sensor technology, have allowed sensor networks to impact a
large spectrum of domains (e.g., health, environment). These networks generate het-
erogeneous data, that is hard to represent, share, and integrate. Therefore, semantic
web techniques, such as ontology-based data models, have been widely adopted for
information representation in sensor network modeling.

However, some existing works do not fully address the following challenges: (i)
representing different sensor types (e.g., mobile sensors), in order to enrich the net-
work with different data and ensure better coverage; (ii) representing a variety of
platforms (e.g., environments, devices) for sensor deployment, therefore, integrat-
ing new components (e.g., mobile phones); (iii) representing the diverse data (i.e.,
scalar, multimedia) needed for various applications (e.g., event detection); and (iv)
proposing a generic model to allow re-usability in various application domains.

In this chapter, we propose the Hybrid Semantic Sensor Network ontology. HSSN
extends the Semantic Sensor Network ontology. SSN is already re-usable (widely
used in different contexts), and considers various platforms. Our proposal extends
the representation of sensors, the sensed data/properties, and deployment environ-
ments. We evaluate the consistency of our ontology structure, the clarity of the used
nomenclature, the accuracy of our additions, and their impact on performance.
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2.1 Introduction

The convergence of Internet, communications, and information technologies cou-
pled with recent advances in engineering have paved the way for Wireless Sensor
Networks (WSNs) to impact more and more application domains [92] such as envi-
ronmental sensing, inventory monitoring, habitat management, military, and medi-
cal fields. Also, the evolution of sensor technology has impacted mobile phones and
other devices. Various sensors (e.g., gyroscope, camera, microphone, ambient light,
GPS, compass) are nowadays embedded in smart phones. Useful information can be
inferred from mobile phone sensor data for various purposes (e.g., detecting traffic
congestion through GPS data, monitoring pollution levels in a city). Therefore, al-
lowing mobile sensors or any mobile device with sensing capabilities to seamlessly
integrate wireless sensor networks is very beneficial from a knowledge extraction
point of view.

Nonetheless, these networks would produce huge amounts of heterogeneous data,
that have to be collected, processed, analyzed, and visualized in order to provide
various services and overall decision making aid for network managers. Repre-
senting, sharing, and integrating the aforementioned data, which lack semantics
[103], is a challenging task. In order to address this challenge, semantic web tech-
niques, such as ontology-based data models, have been adopted for their infor-
mation representation. However, the existing works on sensor network modeling
[6, 10, 15, 32, 40, 79, 84] are restrictive due to the following issues:

• Lack of platform diversity: existing approaches [10, 15, 32, 40] do not consider
equipment with embedded sensors (e.g., smart phones, drones, machines) as
platforms, in addition to traditional platforms (e.g., buildings, cities, offices)
where sensors are deployed. The platform representation is limited to simple
platforms, and does not support complex/nested platforms. Extending the
representation, by both considering and detailing the representation of various
types of platforms, allows better expressiveness of components in the network,
nested platforms, and dynamic, collaborative sensing activities (e.g., crowd-
sensing).

• Lack of sensor diversity: these works [32, 79] do not represent different sensor
types. This entails modeling (i) mobile sensors capable of moving in the envi-
ronment as well as static (immobile) ones; (ii) simple sensor nodes that make
observations and send them to a base station as well as multi-sensor devices ca-
pable of sensing, storing, managing, and communication data; and (iii) sensors
capable of sensing scalar as well as multimedia properties. Providing a more
detailed and diverse sensor representation that considers various attributes
(e.g., mobility) improves network coverage, and allows sensor tracking and
dynamic sensing.

• Lack of data diversity: most works [10, 15, 40] cover scalar environment prop-
erties (i.e., mainly focus on scalar data such as temperature, motion, and ne-
glecting multimedia data such as sounds, images, and videos). Since several
devices are capable of sensing both types, and data diversity is required for
different application purposes (e.g., event detection), it is important to cover
scalar and multimedia data in the representation. This enriches the represen-
tation of the environment and the descriptions of the events that are detected
within its premises.
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• Lack of re-usability: these approaches [40, 79] are heavily linked to a specific
application domain. The sensor network modeling should remain generic and
re-usable in different contexts. Moreover, having domain specific knowledge
could increase the semantic complexity/computation costs of the data model.

Then, there is a need for an appropriate semantic representation of sensor net-
works that adds meaning to the heterogeneous sensor data, and ensures data link-
ability. Also, such a representation should be generic and diverse (concerning plat-
forms, sensors, and data). Finally, the proposal should be light, performance-wise,
and able to avoid the semantic complexity that could heavily impact performance in
some cases. This benefits specific applications (e.g., critical event detection) where
responsiveness and light processing costs are critical.

To answer these challenges, we present here an extension of the widely used Se-
mantic Sensor Network ontology (SOSA/SSN) [44] called HSSN. It allows the repre-
sentation of hybrid sensor networks, i.e., networks containing mobile/static sensors,
scalar/multimedia properties, and infrastructures/devices as platforms where sen-
sors are deployed. We chose to extend SSN since it is already re-usable in various
contexts and allows the representation of different platforms. Nonetheless, sensor
and data diversity are not fully developed. Our proposal adds diverse data, sensors,
and details the description of various platform types. In addition, HSSN does not
contain domain specific knowledge and can be easily aligned with other ontology
models (e.g., a mobile phone [47], smart building ontology [94]).

The rest of this chapter is organized as follows. Section 2.2 illustrates a scenario
that motivates our proposal. Section 2.3 reviews related work regarding mobility,
platforms, and sensed data. Section 2.4 details the HSSN ontology. Section 2.5 de-
scribes the implementation and an illustration example. Section 2.6 details the exper-
imental setup and results. Finally, Section 2.7 concludes the chapter and discusses
future research directions.

2.2 Motivating Scenario

To highlight the utility of our proposal, we choose the following scenario. Consider
a smart mall/shopping center, where clients shop, eat, watch movies, and interact
with others through various activities (cf. Figure 2.1). In order to optimize client
comfort, health, security, and overall visiting experience, the smart mall relies on a
set of sensors (s1-s9) to monitor the environment. Video surveillance cameras (s1-s6)
monitor security related events. Humidity and CO2 sensors (s7 and s8 respectively)
make observations that help the HVAC system (Heating, Ventilation, and Air Con-
ditioning) regulate the indoor air quality. Finally, s9 is an indoor temperature sensor.
The data produced by this sensor is used to keep the mall cool/warm for optimal
comfort. Although the mall’s sensor network generates the required data for these
applications, many improvements still need to be integrated:

Need 1. Monitor temperature/air quality readings by zone: since areas might
have different requirements (e.g., cool temperature for food storage in the gro-
cery store, normal temperature in Shop 1). This requires temperature (using s9)
and air quality readings (using s7, s8 combined) from each zone. The current mall
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FIGURE 2.1: Smart Mall Example

setup does not allow this since only the hallway is monitored by temperature and
air quality sensors.

Need 2. Provide better temperature/air quality readings: relying on measures
from a multitude of sensors (instead of only one) allows a more precise monitoring
of the environment (e.g., calculate average values). This requires a collaboration
between multiple temperature/air quality sensors (similar to s9, s8, and s7), each
providing measures. In the current setup, this is not possible since there is only
one temperature and one air quality sensor in the mall.

Need 3. Keep track of client density in the mall: it is useful to know the number of
occupants in each zone since this affects heating and ventilation for instance. Also,
clients are useful for tracking suspicious/interesting behaviours in the mall (e.g.,
groups of people moving together, same person visiting the same places multiple
times). The cameras (s1-s6) are used by security agents to monitor security related
events. They cannot be used to track each client’s location. Therefore, a more
advanced solution is needed to achieve this need.

Need 4. Cover all areas of the mall: this is critical for the security and safety of
the clients, since some zones are unmonitored (e.g., Shop 2). This means that
any event that happens in these areas is not detected. In the current setup, the 9
deployed sensors cannot cover the entire mall space. Many uncovered areas exist
(e.g., no temperature monitoring in the movie theater, no video surveillance in
Shop 2).

Need 5. Provide a rich documentation of every critical event: the events that occur
in the mall are detected based on the sensed data. Therefore, in order to increase
the understanding of these events (e.g., when reporting incidents, or providing
evidences), event descriptions should be enriched by a variety of sensed multi-
media and scalar properties (e.g., video, audio, image, temperature, humidity).
Currently, if the mall managers wanted to report an attack incident (e.g., gunshot)
they cannot provide a rich description of the event. They can only rely on video
surveillance footage (from s1 − s6). There is no variety of sensed properties that
could enrich the description of such an event (e.g., noise levels to confirm the gun-
shot, motion data to describe how people ran away). In order to answer this need,
a bigger variety of data should be sensed.

Need 6. Adapt to changing event detection needs over time (i.e., detect various
new events in the future): sometimes new/spontaneous events need to be de-
tected, the mall should be able to sense the required data and detect these events.
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However, the current setup is static. The sensor configuration/deployment and
sensed data cannot be easily modified. This doesn’t allow the detection of new
events.

In order to address these issues, the mall managers would need to add more sen-
sors to cover all zones. This ensures full coverage of the mall (Need 4), and allows
multiple observations from each zone for aggregation (Needs 1-2). In addition, they
could replace the cameras with more advanced ones that enable image processing
for tracking purposes (Need 3). However, this increases the equipment, mainte-
nance, and implementation costs without addressing Needs 5 and 6. A more ap-
propriate solution would be to allow integrating visitors’ mobile phones (since they
embed sensors) as mobile sensors in the mall’s network, while avoiding excessive
resource consumption from the devices (e.g., draining a phone’s battery). This pro-
vides the following benefits:

Benefit 1. Sensor mobility provides observations from different areas of the mall
(based on visitor movements). Multiple sensors can therefore collaborate in order
to calculate more reliable air quality/temperature measures by zones (Needs 1
and 2).

Benefit 2. Mall visitors can easily be tracked using their connected mobile phones
(Need 3). Location information can also be used to calculate the number of occu-
pants of each zone. This helps discovering crowded areas (where air quality/tem-
perature monitoring is most critical) and uncovered areas (Need 4).

Benefit 3. The network becomes hybrid with the usage of various sensors from
different devices in addition to the static mall sensors. This helps cover a wider ar-
ray of observed properties (Need 5), i.e., multimedia properties (e.g., audio, video,
images) and scalar properties (e.g., temperature, movement, humidity).

Benefit 4. These devices allow more adaptability and flexibility when it comes to
the changing event detection needs (Need 6). They provide a diversity of hard-
ware (e.g., sensors) and software (e.g., applications, services) that can be adapted
to the detection needs.

However, when adding mobility, diverse data, and devices to the network, the
following challenges emerge:

Challenge 1. How to expressively describe locations in the mall?

Challenge 2. How to consider ad-hoc devices in the network?
How to query them based on their capabilities (e.g., without draining their batter-
ies, based on the services they provide or their processing power)?
How to represent the services that they provide?

Challenge 3. How to track locations and coverage areas of mobile sensors?

Challenge 4. How to collect scalar/multimedia observations from sensors?

Other challenges also exist when modeling sensor networks (e.g., how to represent
temporal data, how to address data volatility, how to model inter-platform ties/in-
teractions). However, we address here the aforementioned four challenges from a
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data modeling perspective by proposing an extension of the semantic sensor net-
work ontology that includes mobility, platform, and data related concepts. More
precisely, we model mobile sensors, devices, their coverage areas, and locations. We
also detail the description of various platform types such as infrastructures where
sensors are deployed, and the various (scalar/multimedia) data they produce.

2.3 Related Work

In this section, we study the features of existing sensor and semantic-based sen-
sor network modeling. We also review some works about sensor mobility, mobile
phone sensing, crowd-sensing, deployment platforms, and semantic representation
of multimedia data. We compare these works based on the following criteria:

Criterion 1. Sensor Diversity: Integrating mobile sensing devices in the sensor net-
work is beneficial for coverage of large areas, and giving users an active role in
monitoring their own environments (crowd-sensing). Also, in addition to simple
sensor nodes, it is beneficial to have multi-sensor devices capable of sensing, pro-
cessing, communicating, and storing data. Moreover, these devices are capable of
providing various services to the users. Finally, the network is enriched with more
data and datatypes when equipped with sensors capable of sensing scalar and/or
multimedia data. Therefore, for the aforementioned reasons, we propose sensor
diversity as a comparison criterion for existing works. This criterion indicates
{YES, NO, PARTIAL} if different types of sensors exist in the sensor network
(e.g., mobile/static sensors, simple sensor nodes/multi-sensor devices, scalar/-
multimedia sensors).

Criterion 2. Platform Diversity: Allowing different platforms enables deploying
sensors in various environments/infrastructures, embedding them in various de-
vices, or even having nested platforms (e.g., devices in buildings). It is also bene-
ficial to detail the description of the different platforms. When modeling physical
world environments (i.e., infrastructures) such as cities and buildings, it would
be interesting to model spatial elements and locations since this enables location-
based tasks (e.g., monitoring zones of interest, the impact of neighbouring areas).
However, when modeling devices other elements are more interesting. For in-
stance modeling the hardware, software, and the provided services helps query
devices based on their capabilities (e.g., querying mobile phones without draining
their batteries). This criterion states {YES, NO, PARTIAL} if the approach allows
sensor deployments on different platforms and if the description of the latter is
detailed.

Criterion 3. Data Diversity: This diversity enriches the representation of the net-
work, and benefits various application purposes such as event detection where a
combination of scalar (e.g., temperature, humidity) and multimedia (e.g., audio,
video) data might be necessary for the detection of specific events. Therefore, we
consider data diversity as an important criterion when modeling sensor networks.
This criterion denotes {YES, NO, PARTIAL} the approach’s ability to handle var-
ious data/properties (e.g., scalar, multimedia, both).

Criterion 4. Re-usability: A re-usable approach does not contain domain specific
knowledge and therefore is compatible with different application purposes. There-
fore, we consider the importance of re-usability when comparing existing works.
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This criterion indicates {YES, NO, PARTIAL} if the approach is re-usable in vari-
ous contexts.

Many works [6, 10, 15, 19, 31, 32, 33, 34, 40, 44, 65, 70, 71, 79, 85] have evolved around
knowledge representation for sensors and sensor networks. In the following, we
detail each work separately (the purpose or name of the model is highlighted in
bold font). Finally, we evaluate them based on the aforementioned criteria.

2.3.1 Sensor Diversity

Adaptiveness In WSN. In [10], the authors tackle the wireless sensor network
adaptivity problem by proposing a two-phase solution. In the first phase, nodes
in the network are organized as clusters and execute an algorithm in order to cali-
brate the sensed data. The data and state of each sensor in the cluster are reported to
the cluster head node. Then, the latter executes an ontology-driven algorithm to de-
termine the future state of the network. The sensor node ontology designed by the
authors focuses mainly on features that describe the sensor nodes, their functional-
ity (for sensed data calibration), and their state such as CPU, memory, and power
supply current states (in order to determine the future state of the WSN).

Sensor Network Data. In [34], the authors propose an ontology with the main
focus of searching distributed and heterogeneous sensor data. They provide a two-
layer ontology that uses the IEEE Suggested Upper Merged Ontology (SUMO) alig-
ned with two sub-ontologies: (i) the sensor data ontology (SDO); and (ii) the sensor
hierarchy ontology (SHO). To enable interoperability, the authors propose the EPO
(Extension Plug-ins Ontologies) module. It allows developers to integrate domain-
specific ontologies with the universal ontology. Each plug-in ontology should imple-
ment the knowledge representation for a particular domain of sensor data/networks
and establish the connection with the SUMO ontology.

Sensor-Mission Assignment. In [40], the authors emphasize on sensor to task as-
signments in sensor networks. Their work approaches the sensor-mission assign-
ment problem from a Semantic Web perspective. The core of their contribution is
a set of ontologies describing missions, tasks, sensors, and deployment platforms.
Semantic reasoning is then applied on used ontologies to recommend the deploy-
ment of specific sensors over recommended platforms in order to better execute the
required tasks.

SSN/SOSA. In [44], the authors propose SOSA/SSN3, a set of ontologies both pub-
lished as a W3C (World Wide Web Consortium) recommendation and as an OGC
(Open Geospatial Consortium) implementation standard. This set includes a light-
weight core module called SOSA (Sensor, Observation, Sampler, and Actuator) and a
more expressive extension module called SSN (Semantic Sensor Network). Together
they describe systems of sensors and actuators, observations, the used procedures,
the subjects and their properties being observed or acted upon, samples and the pro-
cess of sampling, and so forth. A sensing overview of the ontologies is presented in
Figure 2.2. The authors define sensors as physical objects that observe, transform
incoming stimuli (related to certain properties) into observations, thus producing
an output (a digital value of the observation). To do so, sensors implement sensing

3https://www.w3.org/TR/vocab-ssn/
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FIGURE 2.2: The SOSA/SSN ontologies: A sensing overview

methods that describe how the sensor observes. Sensors are deployed on a platform
via a certain deployment process. Platforms could be real world infrastructures (e.g.,
building) or electronic devices (e.g., mobile phones). However, the representation of
the different platform types is not detailed. Finally, SOSA/SSN propose simple sen-
sor node representation, as well as (sensing) systems/devices. However, the authors
do not propose any mobility-related concepts, to represent mobile sensors/devices,
nor multimedia data/properties.

MSSN-Onto. In [6], the authors propose an extension of SSN, denoted MSSN (Mul-
timedia SSN), where they detail the technical aspects of multimedia data (e.g., video,
audio segments, frequencies) and introduce domain specific knowledge related to
event detection. They introduce the following new key concepts: (i) multimedia
sensor; (ii) event; (iii) atomic event; and (iv) complex event. They consider that
a multimedia sensor is a sensor capable of producing audio, video, or/and image
data/observations. The authors also provide technical descriptions related to the
multimedia data based on various metadata standards (e.g., MPEG-7, EXIF). How-
ever, the relation between sensors, observable properties, produced scalar or multi-
media observations, and their respective metadata lacks clarity. Moreover, the au-
thors do not detail the representation of different types of platforms. Finally, MSSN
does not consider sensor mobility, i.e., they authors consider that sensors do not
change locations.

SensorML. In [19], the authors propose an XML schema for defining the geomet-
ric, dynamic, and observational characteristics of a sensor. The purpose of the sensor
description is to (i) provide general sensor information in support of data discovery;
(ii) support the processing and analysis of the sensor measurements; (iii) support the
geo-location of the measured data; (iv) provide performance characteristics (e.g. ac-
curacy, threshold, etc.); and (v) archive fundamental properties and assumptions re-
garding sensors. SensorML provides a functional model for sensors, does not detail
the description of hardware, and separates the sensor from its associated platform(s)
and target(s). Although, SensorML could be used to represent different sensors, it
does not detail hardware related concepts, nor the impact of different sensors (e.g.,
mobile sensors) on the environment (e.g., impact of mobility on locations and cov-
erage areas).
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2.3.2 Platform Diversity

SOSA/SSN. In the SSN ontology [44], the authors state that sensors are deployed
on platforms. The concept sosa:Platform defines the latter as entities that could
host other entities, particularly sensors, actuators, samplers, and other platforms.
The authors provide some platform examples (vehicle, ship, satellite, aircraft, cell-
phone, human). SSN also introduces the concept System, that can integrate various
sensors, actuators, and samplers. Therefore, it provides a foundation for sensor de-
ployment on various platforms (e.g., traditional deployment on platforms, embed-
ding sensors in systems and devices).

MSSN-Onto. In [6], the authors extend the SOSA/SSN ontologies in order to en-
rich the data description by integrating multimedia sensor observations. Therefore,
MSSN benefits from the already existent sosa:Platform concept. The authors do
not present any extensions regarding platforms, and limited their additions to data
and event related concepts/properties.

Noise Pollution Monitoring. In [65], the authors use mobile phones as sensors
in order to monitor noise pollution in cities. They do not represent various sensor
types, but only consider embedded sensors on mobile phones. In addition, the au-
thors mainly focus on cities as platforms where sensors are deployed. They also
describe some spatial constraints of the environment (i.e., the city) in order to map
each noise pollution observation to a specific location.

Wildfire Monitoring. In [32], the authors rely on traditional deployment of sensor
nodes in the wilderness to detect fire events. They use temperature, relative humid-
ity, and barometric pressure observations from the wilderness (the platform where
the sensors were deployed). They combine the sensed data with GPS information to
localize the detected fire events.

S3N. In [85], the authors propose the Semantic Smart Sensor Ontology to represent
smart sensors, their different computation and communication profiles, and how
different algorithms may be selected and loaded, potentially at run-time. This work
focus on the sensing process and different functionality of the smart sensors. The
latter have not been detailed nor exploited as platforms that could potentially host
other platforms (nested platforms, different types of platforms).

2.3.3 Data Diversity

Ear-Phone. In [79], the authors monitor noise pollution in an urban, by sensing
noise levels using occupants’ mobile phones. The noise data is combined with geo-
locations in order to generate a noise pollution map of the area. Since this approach’s
purpose is to monitor noise pollution, it integrates audio data without considering
other multimedia data (e.g., video, image). Also, the authors focus more on gener-
ating the noise level map instead of representing the multimedia contents.

Sensor Image Interpretation. In [33], the authors represent images for object recog-
nition purposes. They rely on images observed by sensors and propose a recognition
method based on an ontology which has been developed by experts of the domain.
In order to give objects a semantic meaning, the authors develop a matching process
between an object and the concepts of the aforementioned ontology.
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Object-based Image Retrieval. In [71], the authors only represent images, since
they propose an approach for object-based image retrieval. The images they wish to
represent do not come from sensors. However, they propose an ontology where the
detail image describing features (e.g., size, shape, position, colors). The authors do
not address other scalar or multimedia data.

Sense & Sens’ability. In [15], the authors address the issue of processing the huge
amounts of sensed data that originate from sensor networks. More specifically, they
focus on the heterogeneity of the data. Hence, they provide a semantic model for
heterogeneous sensor data representation. Even though they target the represen-
tation of various types of sensor data, the authors do not detail the description of
scalar/multimedia data. Their contribution evolves around adding semantics (i.e.,
by creating an ontology) to the description instead of using non semantic data mod-
els (e.g., they compare their work with sensor data representation using XML).

MSSN-Onto/SOSA/SSN. The authors in [6] represent multimedia data in sen-
sor networks. For each multimedia observation value, the authors associate data
descriptors (denoted media descriptors), and data segments (denoted media seg-
ments). Their proposed ontology, MSSN, complements the SOSA/SSN ontology
[44] since the latter does not cover multimedia contents nor multimedia sensors.

2.3.4 Re-usability

Noise Pollution Monitoring. In [65], the authors propose a noise pollution mon-
itoring solution in a city using mobile phones to sense noise. The authors enrich
the sensed information by allowing users to add contextual information to their sen-
sor observations. The approach is task-centric and needs to take into consideration
additional concepts/properties for it to be re-used in different contexts.

P-Sense. In [70], the authors present P-Sense (Pollution-Sense): a system for air
pollution monitoring and control. The latter combines the use of everyday mobile
devices, such as smart phones, GPS technology and location-based services, and
sensors to collect air pollution data at various granularities of a city. Unfortunately,
P-Sense is limited to observations that contribute in detecting pollution levels.

Air Quality Monitoring. In [31], the authors propose a device, the Mobile Sens-
ing Box (MSB), that can be mounted on public transportation means such as buses,
and another device, the Personal Sensing Device (PSD), that can be mounted in peo-
ple’s cars. These devices only monitor scalar environmental properties related to air
pollution in a city.

MSSN-Onto. In [6], the authors propose a multimedia wireless sensor network on-
tology for event detection purposes (the authors include concepts related to atomic,
complex events, and event detection/composition).

SOSA/SSN. The SSN ontology [44] remains generic and re-usable in various con-
texts since it is extensible and does not contain any concepts that link it to any spe-
cific application.
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2.3.5 Discussion

Table 2.1 shows that none of the aforementioned works fully considers the entire list
of criteria.

Sensor Diversity. These models do not integrate sensor diversity in their repre-
sentation of sensor networks. Considering mobility adds challenges related to prop-
erly locating/tracking mobile sensors, and updating their coverage areas when they
move. Nonetheless, integrating mobility improves coverage and dynamic sens-
ing. SSN considers simple sensor nodes and multi-sensor devices. MSSN adds to
that scalar and multimedia sensors. However, none of them considers mobile sen-
sors. Moreover, the other works either rely on static or mobile sensors. None of
the compared studies fully integrates (i.e., representing scalar/multimedia, simple
nodes/multi-sensor devices, and static/mobile sensors).

Platform Diversity. SSN and MSSN (since it extends SSN), have the ability to con-
sider various types of platforms and nested platforms at once. However, they do not
provide additional representation of each platform type. A physical, real world en-
vironment, is not distinguished from a machine or device that acts as a platform (by
hosting sensors). This denies the ability to query an infrastructure based on spatial
constraints, or an electronic platform based on its hardware, software, or services.
Other works, do not consider different types of platforms.

Data Diversity. SSN lacks multimedia data in its representation of the sensor net-
work. This lead to the proposal of the MSSN ontology which integrates multimedia
and scalar data. This is very useful for a variety of applications (e.g., complex event
detection) where both data types are needed. Although this provides data diver-
sity, we do not choose to extend MSSN for the following reasons: (i) the mapping
between multimedia properties, sensors, and observation values lacks clarity; (ii)
MSSN does not consider mobility, i.e., sensor locations do not change and the au-
thors state that the location of a sensor is equivalent to its coverage area (this state-
ment is no longer true when considering mobile sensors); and (iii) MSSN is heav-
ily linked to one application domain (event detection) and contains event related
knowledge. Therefore, key concepts from MSSN need to be integrated in order to
model multimedia data in our proposal. The other compared works only represent
the data that is required for the objectives of their study.

Re-usability. The SSN ontology [44] is a culmination of much of the related work
on semantic sensor networks and is the most widely used [87]. In addition, SSN is
extensible, facilitates alignments with other standards, and allows the integration of
new concepts. Therefore, we propose to extend SSN (since it is already re-usable),
in order represent in details diverse sensors (e.g., static, mobile), platforms (e.g.,
infrastructures, devices), and sensed data / properties (e.g., scalar, multimedia).

TABLE 2.1: Sensor Network Modeling - Related Work Comparison

Criteria SSN MSSN Others
[44] [6] [33, 65, 70, 71, 79] [10, 15, 19, 31, 32, 34, 40, 85]

Sensor Diversity PARTIAL PARTIAL NO NO
Platform Diversity YES YES NO NO

Data Diversity NO YES PARTIAL (audio or image) NO
Re-usability YES PARTIAL NO NO



22 Chapter 2. A Data Model For Hybrid Connected Environments

2.4 HSSN Ontology

In this section, we detail our proposed extension of the SSN ontology, and mainly
our additions related to: (i) sensor diversity; (ii) platform diversity; and (iii) data
diversity. The following prefixes sosa:, ssn:, mssn:, time:, and hssn: refer to the
SOSA [44], SSN [44], MSSN [6], TIME [51], and HSSN [68] ontologies respectively.
We extend SSN/SOSA, integrate multimedia related concepts and properties from
MSSN, and enrich some concepts with temporal concepts from TIME. We begin first
by describing sensor-related concepts.

2.4.1 Sensor Diversity

2.4.1.1 Sensor Mobility

Figure 2.3 illustrates the sensor types added in HSSN. The concept Sensor already
exists in SOSA/SSN, where mobility is not extensively developed. Therefore, we
add two child concepts of sosa:Sensor: (i) hssn:MobileSensor, describing any sen-
sor that has the ability to move or change location; and (ii) hssn:StaticSensor, a
sensor that does not change location in time. Mobile sensors are basically sensors
that are embedded on a mobile platform (e.g., smart phone sensors, sensors de-
ployed on drones, vehicules, or any mobile equipment/machine). This allows the
sensor network to have diverse sensor types (cf. Criterion 1 - Section 2.3).

FIGURE 2.3: HSSN Sensor View

2.4.1.2 Sensor Tracking

Every sensor has a mssn:Location. To consider mobility, one should be able to lo-
cate any sensor at all times. The object property hssn:isCurrentlyLocatedAt maps
each sensor to its current mssn:Location (cf. Challenge 3 in Section 2.2). This is
specifically important for tracking mobile sensors, since static sensors do not change
locations (cf. Figure 2.4). A hssn:hasPastLocation property is added to retrieve
the previous positions of any sensor, and also a hssn:hasLocationTime (cf. Figure
2.5) property is added to map these positions to time instants or intervals in order to
track sensors (temporal entities are extracted from TIME ontology [51]).

2.4.1.3 Coverage Area

Each sosa:Sensor, mobile or static, has a hssn:CoverageArea (cf. Figure 2.6), a
geographical zone described by a specific geometric shape. The sensing activity
of a sosa:Sensor is operational within the premise of its coverage area (i.e., any
happening outside of this zone is not detected by the sosa:Sensor). In order to
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FIGURE 2.4: Sensor/Location Mapping

FIGURE 2.5: Previous Location/Time Mapping

represent coverage areas, we consider the following: (i) a hssn:CoverageArea is
bound to the sensor’s current mssn:Location; and (ii) the geographical spread of a
hssn:CoverageArea is affected by the sensing range and sensing angles (horizontal
and vertical orientation) of the concerned sosa:Sensor. We represent the coverage
area as a sector of space (Figure 2.7 and 2.8 show the horizontal/vertical slices of the
space respectively) where S is the focal point (the sensor’s current mssn:Location),
α, β ∈ [0; 2π] are the angles that define the horizontal/vertical rotational spread of
the coverage area respectively, and the distance SA = SB is the sensing range that
defines the extent of the coverage area. The angles and range depend of the sensor’s
capability properties. For instance, a temperature sensor has α = β = 2π, but a
surveillance camera has α = π

4 , β = π
6 if the camera lens is limited to a 45◦ hori-

zontal angle, and a 30◦ vertical angle. Similarly, the sensing range varies from one
sensor to another (e.g., 10, 20, 50 meters).

The composition of a hssn:CoverageArea is explained in Figure 2.9. The hssn:Se-
nsingLocation is equivalent to the sensor’s mssn:Location, and the angles and
range of the hssn:CoverageArea are equivalent to the sensor’s angles and range (i.e.,
hssn:HorizontalAngle, hssn:VerticalAngle, and hssn:Range respectively) prop-
erties that we added in HSSN as part of a system’s properties. Since static sensors
are immobile, it is easy to know their coverage areas using the sensor’s location, and
its sensing range and angles. In contrast, knowing the coverage areas of mobile sen-
sors is more challenging, since these areas move when the sensors move. In order to
keep track of these changes, the object property hssn:currentlyCovers maps each
sosa:Sensor to its current hssn:CoverageArea (cf. Figure 2.10). Also, the property
hssn:hasPastCoverageArea maps mobile sensors to their respective sets of previous
coverage areas (cf. Challenge 3 in Section 2.2). Finally, hssn:hasCoverageTime is the
property that maps previous coverage areas to temporal entities (i.e., time instant or
interval from TIME ontology [51]) for tracking purposes (cf. Figure 2.11).
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FIGURE 2.6: Coverage Area

FIGURE 2.7: Horizontal Spread FIGURE 2.8: Vertical Spread

FIGURE 2.9: Coverage Area Composition

FIGURE 2.10: Sen-
sor/Coverage Area

FIGURE 2.11: Cover-
age Area/Time
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2.4.2 Platform Diversity

2.4.2.1 Infrastructure Representation

In SSN [44], sensors are deployed on platforms. In Figure 2.12, we define the fol-
lowing child concepts of sosa:Platform: (i) hssn:Infrastructure, a physical en-
vironment having locations where sensors could be deployed (cf. Challenge 1 in
Section 2.2); and (ii) hssn:Device, an electronic equipment where sensors could be
embedded (cf. Challenge 2 in Section 2.2). This allows different types of deploy-
ments such as the traditional deployment in environments (e.g., buildings, malls) or
nested deployment of multi-purpose devices that in turn embed sensors (e.g., mo-
bile phones). This provides platform diversity (Criterion 2 cf. Section 2.3). Every
hssn:Infrastructure describes a specific physical environment where sensors are
deployed. Therefore, infrastructures can host platforms such as other infrastruc-
tures (e.g., cities host buildings) and devices (e.g., buildings host mobile phones).
However, devices can embed systems of sensors, actuators, and samplers but cannot
host infrastructures (e.g., buildings). Each hssn:Infrastructure is described by a
mssn:Location Map which contains (hssn:isComposedOf property) a set of mssn:Lo-
cation (cf. Figure 2.13). For example, a building is an hssn:Infrastructure that has
a mssn:LocationMap. The latter describes the spatial relations between individual
mssn:Locations in the building such as floors, offices, etc. HSSN uses topological,
distance, and directional relations to describe the spatial ties that exist between indi-
vidual mssn:Locations. We integrate the aforementioned location-related concepts
in order to locate sensors, and better understand the spatial constraints/setup of the
hssn:Infrastructure.

FIGURE 2.12: Platform Representation

FIGURE 2.13: Infrastructures

2.4.2.2 Device Representation

A hssn:Device is another type of sosa:Platform where sensors are deployed. It is
introduced in HSSN to represent mobile phones and other sensing equipment. A
hssn:Device has sub-concepts for storage, communication, processing, and power
supply, in addition to the ability of embedding sensors (using the hssn:deployEntity
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FIGURE 2.14: Device Components

FIGURE 2.15: Service Components

concept cf. Figure 2.14). These concepts describe the hssn:Hardware of a device (rep-
resented by the hssn:Device concept). The hssn:Software is also represented. A
hssn:Device could be used for various purposes (e.g., representing mobile phones
for mobile phone sensing, machines with mounted sensors for fault detection in an
Industry 4.0 scenario). The hardware and software representation allows complex
queries such as assigning sensing tasks to devices based on their processing capabil-
ities, or battery status (cf. Challenge 2 in Section 2.2). Finally, each hssn:Device can
provide a set of services. Figure 2.15 illustrates our service modeling, inspired by
the Web Service Modeling Ontology (WSMO) [82]. We created generic concepts that
can be aligned with WSMO. We do not aim to detail the service description to allow
alignments with any other service ontology. We limit the service modeling to the fol-
lowing concepts: Service hssn:Metadata describes the properties of a hssn:Service.
The hssn:Input represents the set of variables and constraints required for correct
service execution, while the hssn:Output is the set of generated results. The func-
tionality of a hssn:Service is described by the hssn:Capability concept which is
mapped to a specific hssn:UserGoal or objective (i.e., a user desire satisfied by the
service). Users communicate with a service through hssn:UserInteractionInterf-
aces (similar to the idea of choreography in WSMO). Finally, services communicate
with each other via the hssn:ServiceInteractionInterface (similar to service or-
chestration in WSMO). Finally, the infrastructure and device detailing also improves
sensor diversity by allowing the representation of simple sensor nodes in infrastruc-
tures, multi-sensor systems, and multi-sensor devices.

2.4.3 Data Diversity

Audio, image, and video data can be sensed by mobile or static sensors (e.g., surveil-
lance cameras, mobile phones). Also, in order to detect complex events (e.g., gun-
shot) a combination of multimedia and scalar observations is needed. Therefore, we
aim to integrate concepts related to multimedia properties (cf. Criterion 3 in Section
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FIGURE 2.16: Observable Properties

2.3). In MSSN [6], multimedia data/properties are integrated in SSN. We distin-
guish MSSN scalar (e.g., temperature, motion) from multimedia (e.g., noise, video)
concepts. Moreover, we group them into two categories as illustrated in Figure 2.16.
Also, we introduce in Figure 2.17 the hssn:mediaSenses and hssn:scalarSenses re-
lationships to map sensors to their corresponding scalar and/or multimedia observ-
able properties (cf. Challenge 4 in Section 2.2). This highlights the sensor diversity in
HSSN since static/mobile sensors can detect scalar and/or multimedia properties.
The authors in [6] also describe technical aspects/metadata of multimedia objects
such as annotations, audio (e.g., frequencies), motion (e.g., trajectories), visual (e.g.,
color histograms). However, these concepts are not clearly mapped in MSSN. We use
and organize these concepts in HSSN to describe sensor observation values in the
following way. A hssn:MediaValue is composed of the mssn:MultimediaData con-
cept, referring to the audio, video, or image objects/files and the mssn:MediaDescri-
ptor concepts, describing the metadata of the multimedia objects (e.g., frequencies,
colors). hssn:ScalarValues are textual (e.g., temperatures, humidity levels). Finally, we
map observation values to their related properties using the hssn:hasMediaValue
and hssn:hasScalarValue relationships. Sensors can now be correctly mapped to
observable properties and observation values (cf. Challenge 4 in Section 2.2) and
each observation can also be linked to its corresponding metadata.

In conclusion, new concepts and properties are introduced in HSSN in order to
address the challenges presented in Section 2.2. Our proposal details the represen-
tation of infrastructures (a type of platforms) by adding location maps, individual
locations, and spatial relations. This allows to expressively describe locations (cf.
Challenge 1). In HSSN we describe devices as platforms that host sensors. We detail
device hardware, software, and provided services. In addition, we add properties
that help locate, track, and query these devices (cf. Challenge 2). HSSN also pro-
vides a description of sensor coverage areas and properties that map both locations
and coverage areas to mobile/static sensors at any time (cf. Challenge 3). Finally,
we address data heterogeneity by detailing multimedia data objects, their metadata,
and scalar data. We also map them to their respective sensors (cf. Challenge 4).
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FIGURE 2.17: Sensors/Properties

2.5 Implementation & Illustration Example

2.5.1 HSSN Implementation

We implemented the HSSN ontology using Protege 5.2.04. Appendix A presents
implementation details regarding the added concepts (Table A.3), the added object
properties (Table A.2), and the contributing ontologies (Table A.1). We focus here on
some interesting HSSN assertions using Description Logic language (cf. Table 2.2).
These assertions formalize key constraints in the ontology. For instance, assertion 3
highlights the fact that a sensor can cover different areas but can only be located in
one location at any point in time. Assertions 11 and 12 show that Infrastructures
can host other platforms but devices cannot (devices can only host sensors, and
other hardware/software). Finally, assertions 13-17 distinguish multimedia prop-
erties from scalar properties. Further details regarding each concept and property
can be found on the HSSN documentation web page5. Also, the ontology files are
available online6 for download.

TABLE 2.2: Interesting HSSN Assertions

# Assertion
1 MobileSensor u StaticSensor v ⊥
2 MobileSensor t StaticSensor v Sensor
3 Sensor v (= 1 isCurrentlyLocatedAt.Location) u (∃ currentlyCovers.CoverageArea)

4

CoverageArea v ( ∃ includes.Location )
u ( ∃ isCurrentlyCoveredBy.Sensor )
u ( isPreviouslyCoveredBy.MobileSensor )
u ( = 1 isCenteredAround.SensingLocation )
u ( = 1 isDelimitedBy.SensingRange )
u ( = 1 hasHorizontalSpreadDe f inedBy.HorizontalSensingAngle )
u ( = 1 hasVerticalSpreadDe f inedBy.VerticalSensingAngle )
u ( ∃ hasCoverageTime.TemporalEntity )

5 Location ≡ SensingLocation
6 Range ≡ SensingRange
7 HorizontalAngle ≡ HorizontalSensingAngle
9 VerticalAngle ≡ VerticalSensingAngle
10 In f rastructure t Device v Plat f orm
11 In f rastructure v Plat f orm u hosts.Plat f orm
12 Device v Plat f orm u (¬ hosts.Plat f orm)
13 MultimediaProperty t ScalarProperty v ObservableProperty
14 MultimediaProperty v ( hasMultimediaValue.MultimediaValue) u ( isMultimediaSensedBy.Sensor)
15 MediaConcerned v MultimediaProperty
16 Audio t Video t Image v MediaConcerned
17 ScalarProperty v ( hasScalarValue.ScalarValue) u ( isScalarSensedBy.Sensor)

4https://protege.stanford.edu/
5http://spider.sigappfr.org/HSSNdoc/index-en.html
6http://spider.sigappfr.org/research-projects/hybrid-ssn-ontology/ (External Links)

https://protege.stanford.edu/
http://spider.sigappfr.org/HSSNdoc/index-en.html
http://spider.sigappfr.org/research-projects/hybrid-ssn-ontology/
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In the following, we detail the SPARQL queries used during the experimentation.
Then, we describe the experimental setup, before discussing the obtained results
from an accuracy, clarity, performance, and consistency standpoint.

2.5.2 Illustration Example

The challenges mentioned in Section 2.2 can be addressed by answering SPARQL
queries related to platforms, sensors, and data in HSSN.

Platform Diversity. In order to expressively describe locations (Challenge 1) in
the mall infrastructure, a detailed representation of location maps and locations is
needed (Query 1). Also, covered and uncovered areas should be easily found (Query
2). In order to consider ad-hoc devices in the network (Challenge 2), one should be
able to query devices, their hardware (e.g., embedded sensors), software, and ser-
vices. Query 3 shows how to locate a mobile device by querying its embedded sen-
sor. Similarly, one could query a device based on other characteristics (e.g., battery
status, processing power).

Query 1: Knowing the spatial description of infrastructures

SELECT distinct ?infrastructure ?locationmap ?location
WHERE
{

?infrastructure isDescribedBy ?locationmap.
?locationmap isComposedOf ?location.

}

Query 2: Knowing covered locations

SELECT distinct ?location ?coveragearea
WHERE
{

?location isIncludedIn ?coveragearea.
}

Query 3: Locating mobile devices

SELECT distinct ?location ?dev
WHERE
{

?location currentlyLocates ?sensor.
?sensor isEmbeddedOn ?du.
?du hasExpansionCard ?hd.
?hd isRelatedToDevice ?dev.

}

Sensor Diversity. Knowing where each sensor is currently located is important
for various reasons (e.g., assigning tasks to specific sensors, monitoring certain ar-
eas). Also, one might need to track one or more sensors at all times (Challenge 3).
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Therefore, it is pivotal to know the current locations for all sensors, as well as pre-
vious ones. Similarly, the sensors’ coverage areas should be easily retrievable (e.g.,
in order to discover unmonitored areas in the environment). The following queries
retrieve the current (Query 4), and previous (Query 5) locations/coverage areas of
the available sensors.

Query 4: Finding current sensor locations/coverage areas

SELECT distinct ?location ?sensor ?coveragearea
WHERE
{

?location currentlyLocates ?sensor.
?sensor currentlyCovers ?coveragearea.

}

Query 5: Finding previous sensor locations

SELECT distinct ?location ?sensor
WHERE
{

?location hasPreviouslyLocated ?sensor
}

Data Diversity. In order to consider data diversity (Challenge 4), on should be able
to distinguish scalar/multimedia data and correctly map them to sensors. Query 6
selects all scalar properties that are observable by any sensor. In addition, the query
retrieves all made observations regarding each scalar property. Similarly, Query 7
has the same functionality but targets multimedia instead of scalar data.

Query 6: Mapping sensors to their scalar properties and observations

SELECT distinct ?sensor ?property ?observation
WHERE
{

?sensor scalarSenses ?property.
?property isScalarValueOf ?observation.

}

Query 7: Mapping sensors to their multimedia properties and observations

SELECT distinct ?sensor ?property ?observation
WHERE
{

?sensor mediaSenses ?property.
?property isMediaValueOf ?observation.

}
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2.6 HSSN Experimental Setup

Here, we did not aim to experiment SOSA/SSN [44] concepts and properties. We
evaluated the impact of our newly added HSSN concepts and properties (e.g., con-
cerning static/mobile sensors, infrastructures/devices, multimedia/scalar data).
Our objectives were the following:

1. Accuracy Evaluation: Checks if the added concepts and properties answer the
challenges mentioned in Section 2.2. This is a query-based evaluation that
highlights the impact of our extensions and their contribution towards over-
coming the aforementioned challenges.

2. Clarity Evaluation: Checks if the labels used to describe the added concepts and
properties are clear and unambiguous to domain stakeholders. The aim is to
evaluate the compatibility and clarity of our provided description with respect
to the sensor network domain.

3. Performance Evaluation: Measures the impact of our additions on performance
(i.e., query run time). The aim is to evaluate the feasibility, performance-wise,
of integrating HSSN in sensor network applications.

4. Consistency Evaluation: Checks if the added concepts and properties generate
inconsistencies (e.g., anti-patterns) within the structure of the ontology. The
aim is to evaluate the soundness of the ontology graph.

2.6.1 Accuracy Evaluation

We created a population of individuals and ran the aforementioned queries (de-
scribed in the illustration example). Then, we compared the obtained and expected
results. We created two infrastructures, each described by a location map contain-
ing 500 locations. Then, 1000 sensors were deployed (500 mobile, 500 static, 500
scalar, 500 media). Each sensor is located in one location, covers one coverage area,
observes one property, and produces one observation value.

2.6.1.1 Platform Results

We ran queries 1, 2, and 3. The returned results match perfectly the expected ones.
Infrastructures were correctly assigned to their location maps and included loca-
tions. This allowed the identification of distinct spaces/areas. Query 2 correctly
returned the set of distinct locations included in each coverage area. This allowed
the identification of non covered locations. Query 3 allowed the identification of
device hardware related to the embedded sensors. Also, the mobile devices were
correctly located in the location map.

2.6.1.2 Mobility Results

We ran queries 4 and 5 on the population of individuals and for each case the re-
turned results matched exactly the expected ones. Sensors were correctly assigned
to their current/previous locations and coverage areas.
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2.6.1.3 Data Results

We ran queries 6 and 7 and obtained an exact matching between the actual and
expected results. Thus, scalar/multimedia properties were correctly distinguished.
Also, sensors were correctly assigned to the scalar or multimedia observations that
they produced.

Discussion. The test results showed that locating any type of sensor (i.e., simple
node/multi-sensor device, static/mobile sensors, and scalar/multimedia sensors),
and knowing their coverage areas is possible at any point in time. Hence, allowing
tasks such as tracking mobile sensors, and detecting uncovered areas. Also, the re-
sults showed that the detailing of infrastructure and device descriptions (platform
diversity) allowed a better knowledge of the environment space (also important for
locating sensors). Multi-sensor devices were also detailed by describing their hard-
ware and software which proved useful when querying devices based on their ca-
pabilities (e.g., we ran an additional query that returns sensors/devices with good
battery status). From a data diversity standpoint, the results showed that sensors
that sense multimedia/scalar properties were correctly distinguished and their ob-
servations were accurately retrieved. To conclude, the query results confirmed that
the added extensions (i.e., regarding sensor, platform, and data diversity) accurately
answer the challenges mentioned in Section 2.2.

2.6.2 Clarity Evaluation

We created two evaluation forms: the first7 for evaluating the ambiguity of the labels
used to describe the HSSN concepts, and the second8 for evaluating the ambiguity of
the labels used to describe inter-concept relations (i.e., the object properties). We sent
the two forms to 50 sensor network and ontology experts (25 networking experts,
and 25 computer scientists).

2.6.2.1 Clarity Results

Results in Figure 2.18 and 2.19 show that terms considered clear by computer scien-
tists are sometimes found ambiguous by network experts and vice-versa. Figure 2.18
shows that a few terms do not meet the acceptable ambiguity level (e.g., ComUnit,
DeployUnit), while others (e.g., MediaProperty, MediaValue) need some clarifica-
tion. Therefore, we considered the experts’ suggestions in the final version of the
ontology and made the adjustments described in Table 2.3. Moreover, we added
synonyms for some labels to increase the clarity by considering nomenclatures from
different domains. We also adjusted several property labels in order to be coher-
ent with the new concept labels. Finally, Figure 2.19 shows that in most cases, both
categories of experts assigned correctly the inter-concept relationships. Networking
experts have low success on the first two questions since the latter are outside of
their domain of expertise (regarding inheritance between concepts).

Discussion. The clarity evaluation allowed the identification and correction of am-
biguous/unclear labels that we used to describe our added concepts/properties. In
the version currently available online, all labels achieve an acceptable level of clarity

7Link: https://goo.gl/forms/blc8pKLLqtNtjXHI2
8Link: https://goo.gl/forms/KNNY3XsmGp0ptM2N2
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FIGURE 2.18: Concept Evaluation

FIGURE 2.19: Property Evaluation

TABLE 2.3: HSSN Concept Label Modifications

New Label Initial Label
ExpansionCard DeployUnit
PowerSupply PowerUnit

NetworkInterface ComUnit
Memory StorageUnit
Processor ProcessingUnit

Multimedia Media

(based on the stakeholders’ feedback). This reinforces the re-usability of HSSN since
it is unambiguous and easily understood.

2.6.3 Performance Evaluation

In order to evaluate the performance of HSSN, we measured the query run-time
by running each of the previously mentioned queries 10 times and calculating the
average execution time. We varied the size of the population (100 sensors, 1000
sensors, and 10000 sensors) in order to test various scenarios related to mobility,
platforms, and data. The tests were conducted on a machine equipped with an Intel
i7 - 2.6 GHz processor, and 16 GB of RAM.

2.6.3.1 Mobility Impact

In this test, we varied the percentage of mobile sensors in the network (0, 30, 50, 70,
and 100 %). Then, we retrieved the current/previous sensor locations (cf. Figure
2.20 and 2.21). We measured the run-time for queries 4 and 5. In Figure 2.20, we
noticed that increasing the number of mobile devices increases the time required to
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retrieve current sensor locations. This is due to the fact that locating a device (Query
3) was a more complex task than locating a static sensor since we needed to locate
the sensor, the card where it is deployed, the related hardware, and then the device
that has this specific hardware. We noticed the same pattern for all three cases (100,
1000, 10000 sensors). Finally, the progression from 0% to 100% mobile devices had a
quasi-linear impact on query run-time. Similarly, Figure 2.21 details the query run-
time for retrieving previous different sensor locations. Since mobile sensors have
a larger list of previous locations in comparison with static sensors, increasing the
mobility percentage (0, 50, 100 %) increases the query run-time. This progression
was also quasi-linear for all three cases (100, 1000, 10000 sensors).

FIGURE 2.20: Mobility impact on current location retrieval

FIGURE 2.21: Mobility impact on previous location retrieval

2.6.3.2 Platform Impact

In this test, we varied the sensor distribution on the platform locations. We tested
three different scenarios (i) each sensor is located in one location; (ii) all sensors are
located in one location; and (iii) half of the sensors are located in a location and the
other half in another. We measured the run-time of the query that retrieves sensor
locations. Figure 2.22 shows how sensor distribution on locations affected the time
needed to map sensors to their current locations. When all sensors were located in
one location, the required time to perform this task was minimal. Then, as we began
to decrease sensor densities, the query took more time. Finally, the worst case was
when every location contained only one sensor.

2.6.3.3 Data Impact

Here, we checked the impact of scalar/multimedia data on the run-time of queries
6 and 7 (cf. Figure 2.23). For data diversity impact on performance (cf. Figure 2.23),
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FIGURE 2.22: Platform impact on current location retrieval

FIGURE 2.23: Data impact on observation retrieval

we noticed that the evolution of the graph is slightly exponential (which was not
the case for the previously discussed performance results). This is due to the fact
that sensor observations have complex structures that hold not only the observation
values but also a set of metadata describing each sensed data. Moreover, in all cases
(100, 1000, 10000 sensors) the query run-time was similar when considering scalar
and multimedia data. This is due to the fact that we were measuring the time re-
quired to retrieve the data and not the time needed to capture/sense it. Multimedia
observations (data objects and metadata) require more time to retrieve than scalar
observations (textual data and metadata).

Discussion. The performance evaluation showed that the added concepts and pro-
perties do not heavily impact the query run time, which remains quasi-linear in most
cases. This highlights the feasibility of using of HSSN in sensor applications (from a
performance point of view).

2.6.4 Consistency Evaluation

In [93], consistency is defined as a criterion that verifies if the ontology allows con-
tradictions. The descriptions in the ontology should be consistent.

Consistency Results. To evaluate consistency, we adopted the following SPARQL
queries that search for anti-patterns, a strong indicator of inconsistencies, in the on-
tology. Query 8 detects concepts with no parent, and Query 9 detects abnormally
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disjointed concepts in the ontology. Finally, to conclude the inconsistency evalua-
tion, we ran Protege’s HermiT 1.3.8.413 reasoner, and found no inconsistencies be-
tween the asserted class hierarchy and inferred one.

Query 8: Searching for concepts with no parent

SELECT ?a WHERE
{

?a subClassOf owl:Nothing.
}

Query 9: Searching for abnormally disjointed concepts

SELECT distinct ?A ?B1 ?B2 ?C1
WHERE
{

?B1 subClassOf ?A.
?B2 subClassOf ?A.
?C1 subClassOf ?B1.
?C1 disjointWith ?B2.

}

Discussion. We found no inconsistencies in the HSSN ontology structure. The only
concept subsuming nothing is owl:Nothing (Query 8). Query 9 results indicate that
there are no concepts that have abnormal disjoint relations with their relatives. This
denotes the soundness of the integration of newly added concepts mainly with the
SOSA/SSN core. This highlights the soundness of the graph structure, which proves
critical when considering future alignments between HSSN and other ontologies
(e.g., that describe smart buildings, events).

2.7 Summary

Many works adopted ontologies for better semantic representation of sensor net-
works. These approaches do not fully consider diversity in terms of sensors, data,
platforms. Moreover, some works contain domain specific knowledge and are not
re-usable for application purposes. In this chapter, we propose an extension of the
Semantic Sensor Network ontology (SSN) [44], since it is already re-usable in vari-
ous contexts. Our proposed ontology, denoted HSSN [44], adds to SOSA/SSN sen-
sor mobility, and multimedia data related concepts in order to have a representation
of hybrid sensor networks. HSSN also extends the platform representation of SOSA
in order to fully consider platform diversity. We implemented HSSN, evaluated the
consistency, accuracy of our additions, and their impact on performance.
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Chapter 3

An Event Query Language For
Connected Environments

"The chief virtue that language can have is clearness,
and nothing detracts from it so much as the use of
unfamiliar words."

— Hippocrates

Nowadays, connected environments impact various application domains (e.g., en-
ergy management, environment monitoring) by offering users a wide array of ap-
plications that help them in their every day lives (e.g., reducing energy wastes in
buildings, monitoring air or noise pollution levels in a city). Although these ap-
plications seem different, they all rely on an environment, its sensor network, and
sensed data in order to detect and handle specific events (e.g., energy waste, traffic
congestion, high level of noise, bad air quality). The differences lie in the definition
of the targeted events (e.g., high noise different from traffic congestion event), the
application domain (e.g., environmental, energy), the sensors/data required for the
detection of the events, and the chosen technique for event detection.

Event Query Languages (EQL) have been proposed in connected environments to
allow users the definition of targeted events. However, existing languages are lim-
ited to the definition of event patterns and suffer from the following drawbacks: (i)
no consideration of environment, sensor network, and application domain related
components; (ii) lack of provided query types (functionality) required for the defini-
tion/management of the entire connected environment; (iii) lack of considered data
and datatypes (e.g., scalar, multimedia) needed for the definition of specific events;
(iv) lack of considered functionality when expressing spatial/temporal constraints;
and (v) difficulty in coping with the dynamicity of the environments.

To address the aforementioned limitations, we propose here an EQL specifically
designed for connected environments, denoted EQL-CE. We detail its framework,
the used language, syntax, and queries. EQL-CE is re-usable and generic. It allows
the definition of various connected environment components, offers various query
types for data management, and considers various datatypes. We also introduce a
query optimizer that handles the dynamicity of the environment and spatial/tem-
poral constraints. We finally illustrate the EQL and conclude the chapter.
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3.1 Introduction

Recent advances in the fields of Information & Communication Technologies (ICT),
Big Data, Sensing Technologies, and the Internet of Things (IoT) have paved the
way for the rise of smart connected environments. These environments are defined
as infrastructures that host a network of sensors capable of providing data that can
be later mined and processed using advanced techniques, for high level applica-
tions. Hence, Sensor Networks (SN) are currently impacting numerous domains
(e.g., medical, industrial, environmental, cities, buildings). This allowed a plethora
of sensor-based applications such as monitoring a patient’s health [104], improving
manufacturing processes in smart factories [63, 102], detecting fires in the wilder-
ness [110], monitoring pollution levels or helping drivers avoid traffic congestion in
a city [60], and reducing the energy footprint or optimizing occupants’ comfort in
buildings [1, 22, 59, 101, 108, 111].

The aforementioned applications have different objectives. However, in order to
achieve their goals, they all need to define and detect specific key events while rely-
ing on the sensed data (e.g., abnormal heart rates from wearable sensors, machinery
faults from sensors mounted on machines, fires from fire sensors, bad air quality
from CO2 sensors, traffic congestion from GPS enabled sensors mounted on vehi-
cles, energy wastes or room overheating from indoor sensors deployed in build-
ings). Therefore, these applications share the following needs: (i) representing the
infrastructure and the sensor network of the connected environment; (ii) defining
and detecting the targeted events; and (iii) protecting the security of the sensed data
and the privacy of the users in the environment (e.g., protecting patients’ medical
records). In the aforementioned works, the authors do not emphasize on the en-
vironment’s representation and define events statically. They also propose event
detection mechanisms that perfectly fit the description of the targeted events. This
is constraining since these works are not re-usable in different contexts.

To overcome this issue, Event Query Languages (EQL) have been proposed in
many works [5, 88] as a means for event definition prior to detection. EQL allow
users to express how the targeted events are defined (i.e., event describing features,
patterns). However, existing languages [7, 8, 14, 21, 26, 35, 42] focus mainly on the
event descriptions and do not consider other environment components (e.g., infras-
tructure, sensor network, application domain). They share the following limitations:

• Lack of considered components: existing works heavily focus on events. It is
important that the EQL allows the definition/management of the entire con-
nected environment. This includes components related to the environment
itself, its sensor network, the targeted events, and the application domain. For
instance, one might need to manage the infrastructure (e.g., locations, spatial
ties), the sensor network (e.g., sensors, observations, properties), and addi-
tional descriptions related to the application domain (e.g., industrial, environ-
mental).

• Lack of considered functionality: existing languages offer few query type, i.e.,
mainly queries that define event patterns. It is important that the EQL (i) al-
lows the definition of components (e.g., buildings, sensors, data, events); (ii)
allows the manipulation of component instances (e.g., inserting new instances,
updating, deleting, selecting them); and (iii) protects the security/privacy of
data/users.
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• Lack of considered datatypes: some events (e.g., intrusion in a building) require
a combination of scalar (e.g., motion) and multimedia (video, noise) data. It is
important to integrate the diverse data and datatypes needed for the definition
of such specific events (e.g., for scalar, multimedia sensor observations).

• Lack of spatial/temporal distribution functions: since the sensors’ locations im-
pact event detection, the EQL should allow users to define spatial distribu-
tions of the sensors over the environment in order to better detect the targeted
events. This entails specifying where each sensor should be located or how
they should be distributed over the space (e.g., nearest sensors to a point of in-
terest, sensors within a range of a point of interest, sensors that fit a mathemat-
ical distribution around a point of interest). Similarly, since sensors provide
observations at specific rates, one could end up with either: (i) big volumes
of unnecessary data (if the rate is too quick); or (ii) undetected events (if the
rate is too slow). Therefore, it is important that the EQL allows the adjustment
of the temporal distribution of sensor observations based on events’ needs/re-
quirements. This entails specifying which sensor observations/sensing rates
are considered for a specific event, or selecting a temporal distribution of these
observations (e.g., the closest observations to a certain point in time, all obser-
vations within a temporal range, distributed sensing rates).

• Difficulty in coping with the dynamicity of the environment: in a dynamic envi-
ronment, sensors might breakdown, mobile sensors could enter/leave the net-
work or change locations at any time. Since events rely on sensors and their
observations, event queries need to cope with such changes. The EQL should
be able to keep track of environment changes/states, in order to address obso-
lete queries. This entails replacing missing sensors by others capable of pro-
viding the required data or replacing missing observations with others that fit
the event definition in the queries.

• Lack of re-usability: some works rely on data model based syntax (e.g., SQL-
based, SPARQL-based languages). It is important that the EQL remains generic
and independent from any technological constraints or underlying infrastruc-
ture to ensure re-usability in different contexts.

Many other challenges emerge when considering an EQL for connected environ-
ments (e.g., handling big volumes of data, continuous heterogeneous data streams).
However, in this work, we focus mainly on the aforementioned limitations. Hence,
we propose here an EQL specifically designed for connected environments and par-
titioned into three layers: (i) the conceptual layer where one could represent the
connected environment in the form of an entity/relation graph; (ii) the logical layer
where high level generic queries are composed using the Extended Backus-Naur
Form (EBNF) syntax; and (iii) the physical layer where the queries will be parsed
and executed. Our proposal, denoted EQL-CE, covers various connected environ-
ment elements (i.e., related to the environment, sensor network, events, and applica-
tion domain). It also provides common query types for the definition of components
and the management of their instances. and integrates various datatypes. Finally, we
propose a query optimizer module that will handle spatial/temporal distributions
and query re-writing in order to redefine components that need to evolve when han-
dling the environment’s dynamicity (the optimizer will be fully detailed in the next
chapter).
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The remainder of this chapter is organized as follows. Section 3.2 presents a sce-
nario that motivates our proposal. Section 3.3 evaluates existing approaches. EBNF
preliminaries and background are presented in Section 3.4. Section 3.5 presents the
EQL-CE framework and details its syntax. An illustration example and experimen-
tal protocol are presented in Section 3.6. Finally, Section 3.7 concludes this chapter
and discusses future research directions.

3.2 Motivating Scenario

In order to motivate our proposal, consider the following scenario that illustrates a
smart mall. This is a simplified example that illustrates the setup, the needs, and
motivations behind our proposal. Of course, it does not summarize all needs found
in a connected environment/event detection application scenario. Figure 3.1 de-
tails the infrastructure’s location map, and individual locations (i.e., shops and open
areas). The mall is equipped with a hybrid sensor network having static/mobile
sensors, single sensor nodes/multi-sensor devices capable of monitoring the envi-
ronment and producing scalar/multimedia observations (e.g., temperature, video).
A manager uses an Event Query Language (EQL) in order to define/detect inter-
esting events that occur within the mall’s premises. Although this seems enough to
manage the smart mall, many improvements can still be integrated:

FIGURE 3.1: The Smart Mall

Need 1. Modeling the environment and its sensor network. Before defining and
detecting events, a mall manager needs to represent the smart mall using the EQL.
This includes defining the infrastructure (i.e., the mall), the locations (e.g., shops),
and their spatial relations. Then, the manager needs to define the sensor network
that is hosted in the mall. This entails modeling the available sensors (e.g., temper-
ature, humidity), their deployment locations, the data they sense and so on. Once
all component structures are defined, the mall manager needs to use the EQL to
create instances of each component (e.g., temperature sensor in food court). This
is currently not possible since the EQL used in the example only defines events.

Need 2. Querying the connected environment. In addition to event definition and
detection, the mall manager might need to query the connected environment for
other data management purposes (e.g., retrieving specific sensor readings, locat-
ing mobile devices). The EQL should provide common/basic querying function-
ality. This entails queries for defining the connected environment components
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(e.g., environment, sensor network, events, and application domain). Moreover,
one might need other query types for data manipulation (e.g., selecting sensors,
retrieving sensor observations, detecting events).

Need 3. Handling various datatypes. This entails covering scalar and multimedia
sensor observations (e.g., textual temperature values, video surveillance footage).
The mall manager needs to define different events (e.g., intrusion detection, in-
door temperature overheating). To do so, the EQL should be able to integrate
different formats of data and their respective datatypes.

Need 4. Measuring the average temperature in the grocery store (for food storage
concerns). The mall manager uses the existing EQL to define the targeted event
(i.e., the average temperature in the grocery store). The EQL allows the manager to
consider all sensors within the area of interest. However, Figure 3.2 shows that the
sensors are not evenly distributed in the store (most are located in the upper left
corner). Hence, considering all sensors and calculating the average temperature
will produce a biased measure that does not reflect the reality of the situation. This
can be solved by allowing the manager to define a specific distribution of sensors
over the space (e.g., even distribution, only considering sensors within a range of
the center of the store). The current setup is limited since it does not allow the
definition of spatial distributions of sensors.

Need 5. Minimize data overload/missed events. Currently, the manager can use
the EQL to define one sensing rate for all sensors or sensor types (e.g., tempera-
ture, humidity). This is constraining since (i) a quick sensing rate overloads the
system with big volumes of unwanted/unnecessary data; and (ii) a slow sens-
ing rate could lead to missing events that began and ended in a short time lapse.
Therefore, the temporal distribution of sensor observations (i.e., a start time, a
specific rate, a stop time) should be based on the event definition and therefore
considered/handled in the event queries (e.g., selecting the closest observations
to a time of interest, considering different sensing rates from various sensors at
once). The EQL used by the mall manager does not allow such customization of
temporal constraints (cf. Figure 3.3).

FIGURE 3.2: Spatial Distribution FIGURE 3.3: Temporal Distribution

Need 6. Detecting a fire event in Shop 1. The mall manager defines this fire event
using the EQL. His/Her definition relies on the smoke, humidity, and CO2 sen-
sors located in Shop 1. However, what if the smoke sensor broke down ? Or what
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if the mobile device that the query depends on, left the shop ? Then, the previ-
ously defined event query will become obsolete since there are no more smoke
observations coming from shop 1, and there is no way of changing the event def-
inition. Hence, query re-writing is necessary in order to update the definition:
(i) by replacing the smoke sensor by another capable of providing the same data
(e.g., mobile device 1 - cf. Figure 3.4 - left); or (ii) by replacing the event describ-
ing feature smoke by another (e.g., temperature from mobile device 1 if no other
sensors can provide smoke observations - cf. Figure 3.4 - right). The current EQL
is limited since it does not allow such re-writing.

FIGURE 3.4: Need For Query Re-writing

Existing EQL mainly focus on event definition, and do not handle other connected
environment components. To address needs 1 and 2, one might use another lan-
guage that integrates different functionality and handles the environment/sensor
network changes. However, in this case, the manager will have to use various lan-
guages with different syntax. A more appropriate solution might be to extend the
capabilities of the EQL to provide a means for defining the structure of various com-
ponents related to the environment, sensor network, targeted events, and applica-
tion domain (cf. Need 1). Moreover, the EQL should not be limited to defining
components. Its functionality should extend to managing instances of these compo-
nents, ensuring basic/common querying tasks, and protecting the security/privacy
of the data/users (cf. Need 2). Also, the language should be capable of integrating
a variety of data and datatypes that allow the management of both scalar and mul-
timedia data (cf. Need 3). In addition, customizing the sensors’ spatial distribution
over the infrastructure/environment based on event requirements is required (cf.
Need 4). This benefits the event detection since it provides the user with the ability
to customize the setup in the way that he/she believes is optimal. The same is also
applied for temporal distribution of sensor observations. The EQL should allow the
user to select specific observations, or a set of distributed observations in time (e.g.,
considering different sensing rates, temporal distance to a point in time) when defin-
ing the event (cf. Need 5). The EQL should also allow re-writing queries (cf. Need 6)
to handle the dynamicity of the connected environment. This is especially beneficial
when faults or sensor breakdowns/mobility can render some event definitions ob-
solete. Finally, this should be done using a generic, technology independent syntax
that could be parsed into various data model-based languages to ensure re-usability.
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However, when considering various components, functionality, datatypes (e.g.,
scalar, multimedia), data distributions (e.g., spatial, temporal), and query re-writing
the following challenges emerge:

Challenge 1. How to model components and inter-component relations? How to
establish ties between the different connected environment elements (i.e., environ-
ment, sensor network, events, and application domain)?

Challenge 2. How to define different query types to cover all the required func-
tionality?

Challenge 3. How to define the structure of both scalar and multimedia data?

Challenge 4. How to integrate variables that specify spatial/temporal distribu-
tions in the query syntax ? How to propose different distribution queries types?

Challenge 5. How to detect obsolete event definitions? How to redefine these
events by replacing missing sensors/data? How to measure similarities between
sensors and data in order to replace missing query elements by others that are
similar?

Challenge 6. How to establish a generic/re-usable syntax that is independent from
the underlying infrastructure?

Therefore, we propose here a high-level generic event query language, denoted
EQL-CE, that covers all connected environment components, provides basic, com-
mon query types to consider various functionality, and integrates different datatypes.
We also propose a query optimizer that handles query re-writing and spatial, tem-
poral distribution functions. In this chapter, we present the framework and syntax
of our proposed language. We detail query re-writing in the following chapter.

3.3 Related Work

In this section, we review existing works on Event Query Languages. We propose
the following criteria based on the challenges and needs discussed in Section 3.2:

Criterion 1. Component Coverage: This criterion denotes {YES, NO} if the EQL is
capable of covering the entire connected environment. This includes environment,
sensor network, application domain, and event related components (cf. Need 1).

Criterion 2. Basic Querying: This criterion states {YES, NO} if the EQL allows
common query types for component definition, and component instance manipu-
lation (cf. Need 2).

Criterion 3. Data Diversity: This criterion specifies {YES, NO} if the EQL is ca-
pable of integrating various datatypes related to the scalar/multimedia sensed
properties/sensor observations (cf. Need 3).

Criterion 4. Spatial/Temporal Distributions: This criterion indicates {YES, NO} if
the EQL allows (i) spatial distribution queries (e.g., selecting sensors that are dis-
tributed based on a mathematical law, within a specific range, or near a point of
interest); and (ii) temporal distribution queries (e.g., selecting sensor observations
that are closest to a point in time that have various sensing rates). This is impor-
tant for the definition of specific events where such level of detail is required (cf.
Needs 4 and 5).
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Criterion 5. Handing Environment Dynamicity: This criterion points out {YES, NO}
if the EQL provides the means to modify the structure of previously defined com-
ponents (e.g., events) in order to cope with the environment’s dynamicity. This
is useful in a dynamic setup, where sensor mobility causes gain/loss of data in
certain areas of the environment (cf. Need 6).

Criterion 6. Re-usability: This criterion designates {YES, NO} if the EQL is generic
and technology independent in order to re-use it in various setups with different
underlying infrastructures (e.g., traditional database, ontology). It is beneficial to
have a high level, generic, and declarative EQL that can be parsed into data-model
specific languages (instances). This facilitates its integration in various contexts,
therefore we consider re-usability as an additional need.

We group the existing works into three main categories: (i) conceptual languages
(e.g., Event-Condition-Action languages) ; (ii) logical languages; and physical lan-
guages (e.g., SQL/SPARQL-based languages). We compare in the following some
works [7, 8, 9, 13, 14, 21, 24, 26, 35, 41, 42, 58, 75] from each category (we do not
detail here every existing event query language for the sake of brevity).

3.3.1 Conceptual Languages

This category of languages includes Event Condition Action (ECA) languages that
allow the declaration of three event attributes: (i) an event name or label; (ii) a set of
conditions (i.e., the pattern) that best define the event; and (iii) the set of actions that
should be triggered once the event is detected.

SNOOP. In [26], the authors propose an intuitive event query language denoted
SNOOP. They follow the ECA model when defining event structures. They integrate
operators for inter-condition relations (e.g., conjunction, dis-junction, and sequence)
and represent repetitive events through the usage of the periodic and aperiodic op-
erators. The syntax and an example are described below. In this example, we define
an event, its pattern, and the triggered action once the event is detected.

SNOOP Syntax

ON (<event_label >)
CONDITION <constraints >
ACTION <action_label >

SNOOP Query

ON (empty_room)
CONDITION no_face_detected
ACTION turn_off_lights

CeDR. In [14], the authors propose a language denoted CeDR. In comparison with
SNOOP, CeDR adds a WHERE clause for filtering statements and has a wider range
of operators. Therefore, CeDR is considered more expressive in terms of event pat-
tern description. CeDR also includes an event lifetime operator and a detection win-
dow operator. The syntax and an example are illustrated below.

SaSE. In [42], the authors propose an event query language for data streams called
SaSE. They include the WITHIN and RETURN statements to respectively declare
sliding time windows and the required output. SaSE also allows event pattern oper-
ators (similar to CeDR) in a WHERE clause. The syntax consists of an event pattern,
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CeDR Syntax

EVENT <event_label >
EVENT_PATTERN <pattern >
WHERE <constraints >

CeDR Query

EVENT empty_room
EVENT_PATTERN face AND vibration
WHERE no_face AND low_vibration

a set of conditions for result filtering, a specific time window to detect events based
on temporal constraints, and finally the expected result. We also provide an exam-
ple of an empty room event where no faces are detected during a time window of 30
minutes.

SaSE Syntax

EVENT <Pattern >
WHERE <Constraints >
WITHIN <Time_Sliding_Window >
RETURN <Output_Data >

SaSE Query

EVENT face
WHERE no_face_detected
WITHIN last_30_min
RETURN empty_room

3.3.2 Logical Languages

This category of languages includes works that define events in logic style formulas
(math-like notations).

ETALIS. In [8], the authors propose an EQL that describes events as rules. It pro-
vides a set of temporal relations and composition operators to define the event pat-
terns. The syntax of the rules is independent of any underlying data model. The
syntax of ETALIS is written in a fortran style function. The following operators
are proposed for event pattern definition: SEQ, AND, PAR, OR, DURING, STARTS,
EQUALS, FINISHES and MEET. The event pattern is defined as a set of triples (i.e.,
operand, operator, operand). The following illustrates a fire event as a sequence of
three other events.

ETALIS Syntax

<Event_Name > ← {( CONDITION | EVENT , OPERATOR , CONDITION | EVENT)}

ETALIS Query

fire ← {(temperature > 30◦) SEQ (CO2 > 30%) SEQ (smoke)}

XChangeEQ. In [21], another logical language is provided. The authors allow the
following features in its queries: (i) data-related operations such as variable bind-
ings and conditions containing arithmetic operations; (ii) event composition opera-
tors such as conjunction, dis-junction, and order; (iii) temporal and causal relations
between events in the queries; and (iv) event accumulation, for instance aggregating
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data from previous events to discover new ones. The XChangeEQ syntax contains
a DETECT statement which points the the targeted event and precises a function
(and a variable) to be used in order to detect the aforementioned event. The ON
part defines the event pattern, the where clause filters the results based on specific
constraints. Finally, the END keyword terminates the statement. In the following,
we illustrate again the empty room event in XChangeEQ.

XChangeEQ Syntax

DETECT <event_label >
ON <event_Structure >
WHERE <constraints >
END

XChangeEQ Query

DETECT empty_room
ON face
WHERE no_face_detected
END

3.3.3 Physical Languages

This category of languages includes data model specific works. We detail here lan-
guages that were specifically designed for either relational database or linked data
management systems. Therefore, the following EQL are either inspired from or di-
rectly extend SQL/SPARQL.

ESPER. In [35], an implementation for event detection in database systems is pre-
sented. The authors proposed an SQL-like syntax for event processing. Therefore,
known operators such as CREATE, SELECT, INSERT, UPDATE, and DELETE are
available for event definition and detection. ESPER also includes temporal opera-
tors and a specific statement for event definition (i.e., the pattern). In addition to
the aforementioned advantages, this language has a fast learning curve since it is
highly similar to traditional SQL. The following describes the syntax for the SELECT
statement. The pattern keyword defines the event and the right arrow denotes the
’followed by’ operator.

ESPER Syntax

SELECT *
FROM PATTERN [
<event_pattern >]

ESPER Query

SELECT *
FROM PATTERN [
face_detected → no_face_detected]

CQL. In [9], the authors propose a language that can be used for event defini-
tion/retrieval. CQL extends SQL by emphasizing on continuous data streams and
queries. The authors add temporal operators, sliding windows, and window param-
eters to better handle continuous data. They do so by providing mappings among
streams and relations (i.e., from relations to relations, from streams to relations, and
from relations to streams). From these mappings a precise and general interpretation
for continuous queries is defined. The following describes the syntax for defining a
new event (i.e., by creating its respective table).



3.3. Related Work 47

CQL Syntax

CREATE TABLE <event_label > (
<property1 > <datatype > [PRIMARY KEY],
<property2 > <datatype >,
<property3 > <datatype > ) ;

CQL Query

CREATE TABLE fire (
id int PRIMARY KEY ,
temperature float ,
smoke boolean ) ;

C-SPARQL. In [13], the authors extend SPARQL to consider stream data in the
queries. To do so, they integrate sliding time windows. Supporting streams in RDF
format guarantees interoperability and opens up important applications, in which
reasoners can deal with knowledge that evolves over time. The following describes
the syntax, and an example of a C-SPARQL event definition as a stream. The Range
and Step values are needed to configure the sliding window.

C-SPARQL Syntax

REGISTER STREAM <event_label > AS
CONSTRUCT {
( ?<property > <ontology_IRI >:<object_property > ?<property > )}
FROM STREAM <URI >
[RANGE <value1 > STEP <value2 >]
WHERE {<condition >}

C-SPARQL Query

REGISTER STREAM empty_Shop1 AS
CONSTRUCT {
( ?face <ontology_IRI >: not_Detected_In ?shop )}
FROM STREAM <www.uri/of/ontology/sensornetwork.trdf >
[RANGE 30 MIN STEP 5 MIN]
WHERE ?shop ontology:label "Shop1"

SPARQLStream. In [24], the authors extend SPARQL to consider data streams. They
introduce temporal windows that could be configured with a start and end param-
eters, as well as an optional step parameter that represents a number of temporal
units (e.g., hours, minutes, days). In comparison with C-SPARQL, SPARQLStream
only focuses on time-based windows. The following describes the syntax, and an
example of a SPARQLStream query that returns windspeed every minute for the last
ten minutes.

SPARQLStream Syntax

conceptmap -def <Concept_Name > uri -as <URI >
described -by attributemap -def <Attributes_Definitions >
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SPARQLStream Query

SELECT RSTREAM ?windspeed
FROM STREAM <windStream >
[FROM NOW - 10 MINUTES TO NOW STEP 1 MINUTE]

T-SPARQL. In [41], the authors present an extension of SPARQL to integrate tem-
poral features (e.g., annotating triples with time stamps) for better querying of RDF
triples over time. The language is equipped with the basic temporal constructs and
works with an extended set of the temporal datatypes, functions and operators al-
ready present in SPARQL. The following provides the syntax, and an example of a
SELECT statement in T-SPARQL.

T-SPARQL Syntax

SELECT ?<property >
FROM <event_label >
WHERE {<condition >.
FILTER (<time >).}

T-SPARQL Query

SELECT ?temperature
FROM overheating_event
WHERE { ?temperature > 30◦.
FILTER ("2010 -01 -01"^^xs:date).}

SPARQL-ST. In [75], the authors extend SPARQL by adding operators for spa-
tial/temporal queries. This covers the definition and manipulation of spatial shapes
and temporal entities. In addition to normal SPARQL variables (denoted with a
? prefix), SPARQL-ST introduces a spatial variable type (denoted with a % prefix)
and a temporal variable type (denoted with a # prefix). The following illustrates the
usage of the spatial and temporal variable types.

SPARQL-ST Syntax

SELECT ?<p>, %<s>, #<t>
FROM <event_label >
WHERE {
?<p> <condition > #<t>.
SPATIAL FILTER
(<function >(%<s>))}

SPARQL-ST Query

SELECT ?sensor , ?o, %s, #t
FROM empty_room
WHERE {
?sensor ontology:produced ?o #t.
SPATIAL FILTER
(?o inside(%s))}

SPARQL-MM. In [58], the authors also extend SPARQL to consider multimedia
data, and media fragments. This language aims to improve semantic multimedia
data retrieval. The extension includes media specific concepts and functions in or-
der to unify the access to Linked Media. The following illustrates the syntax for
retrieving multimedia data segments and ordering them based on a custom multi-
media function (e.g., their duration). The data discussed in this example can be used
in specific event definitions (e.g., the empty room event could rely on video footage
to detect faces).
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SPARQL-MM Syntax

SELECT ?<mm >
WHERE {
?<mm > <condition >.}
ORDER BY <function >

SPARQL-MM Query

SELECT ?video
WHERE {
?video ontology:is_A "Video".}
ORDER BY ontology:duration (?video)

EP-SPARQL. In [7], the authors integrate event processing operators, most notably
the sequence operator, into the SPARQL syntax. This work allows the definition of
simple and complex event patterns in a linked data management system. The work
provides the syntax and formal semantics of the language and devises an effective
execution model for the proposed formalism. To illustrate this language’s capability
of defining composite events, we provide the following example which shows how
a fire event can be defined as the sequence of two events: high temperature, and
appearance of smoke.

EP-SPARQL Syntax

CONSTRUCT {?<event >} WHERE
{<event_1 > <operator > <event_2 >}

EP-SPARQL Query

CONSTRUCT {?fire} WHERE
{overheating SEQ smoke}

3.3.4 Discussion

Conceptual languages are intuitive, practical, and allow various composition opera-
tors for event definition. Their syntax is also independent from specific data models
(e.g., SQL or SPARQL). However, they all suffer from the same limitations. None of
them covers the environment or sensor network definition in their queries (cf. Crite-
rion 1). They mainly focus on the definition and retrieval of events while neglecting
other tasks such as updating definitions or inserting data (cf. Criterion 2). They also
do not consider spatial/temporal distributions (cf. Criterion 4). Logical languages
are re-usable in different contexts since their syntax, a logical rule-based notation, is
independent of specific data models (cf. Criterion 6). They also cover the majority
of temporal and composition operators. However, they do not cover spatial/tem-
poral distributions (cf. Criterion 4). These languages have not fully detailed query
re-writing (cf. Criterion 5), and they mainly focus on the events. They cannot be
used to define and manage the environment and sensor network components (cf.
Criteria 1-2). Physical languages are all user friendly since they extend known lan-
guages. They cover definition and manipulation queries for various components or
entities (cf. Criterion 2). They also provide a basis for spatial/temporal operators
and query re-writing (cf. Criterion 5). However, distribution queries are not consid-
ered (cf. Criterion 4) and their high reliance on a specific data model syntax (SQL
or SPARQL) limits their re-usability in different systems (cf. Criterion 6). For in-
stance, EP-SPARQL cannot be used in a relational database infrastructure. Table 3.1
recapitulates the comparison between the aforementioned languages.
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TABLE 3.1: Event Query Languages - Related Work Comparison

Criteria Component
Coverage

Basic
Querying

Data
Diversity

Spatial/
Temporal

Distributions

Handling
Environment
Dynamicity

Re-
usability

Conceptual
Languages

SNOOP
[26] NO NO NO NO NO YES

CeDR
[14] NO NO NO NO NO YES

SaSE
[42] NO NO NO NO NO YES

Logical
Languages

ETALIS
[8] NO NO NO NO NO YES

XChangeEQ
[21] NO NO NO NO NO YES

Physical
Languages

ESPER
[35] YES YES NO NO NO NO

CQL
[9] YES YES NO NO NO NO

C-SPARQL
[13] YES YES NO NO NO NO

SPARQLStream
[24] YES YES NO NO NO NO

T-SPARQL
[41] YES YES NO NO NO NO

SPARQL-ST
[75] YES YES NO NO NO NO

SPARQL-MM
[58] YES YES YES NO NO NO

EP-SPARQL
[7] YES YES NO NO NO NO

3.4 Background & Preliminaries

A syntactic metalanguage is useful whenever a clear formal description and defini-
tion is required. EBNF is defined by the International Organization for Standardiza-
tion (ISO 149779). It proposes a notation for defining the syntax of a language using
rules. Each rule names part of the language (called a non-terminal symbol) and
then defines its possible forms. A terminal symbol is an atom that cannot be split
into smaller components of the language. EBNF extends the original BNF to avoid
lengthier rules by adding notations for options and repetitions. Furthermore, EBNF
includes mechanisms for enhancements, defining the number of repetitions, exclud-
ing alternatives, and adding comments. The following resumes the main character-
istics of EBNF:

• Terminal symbols of the language are quoted so that any character, including
one used in EBNF, can be defined as a terminal symbol of the language being
defined.

• Each rule has an explicit final character so that there is never any ambiguity
about where a rule ends.

• The [ ] symbols indicate optional rules/statements.

• The { } symbols indicate repetition.

• The ( ) symbols group items together. It is an obvious convenience to use the
brackets symbols in their ordinary mathematical sense.

Table 3.2 details the main EBNF notations and their usage.

9https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
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TABLE 3.2: EBNF Notations

Usage Notation
Definition =

Concatenation ,
Termination ;
Alternation |

Option [ ... ]
Repetition { ... }
Grouping ( ... )

Terminal String ...
Terminal String ’ ... ’

Comment (* ... *)
Special Sequence ? ... ?

Exception -

EBNF provides all the required tools for our syntax. Moreover, it allows the con-
ception of technology independent queries (i.e., queries that do not depend from any
data model specific syntax). This highlights the ability to re-use (cf. Criterion 6) the
language since EBNF can be parsed into various data model specific instances, such
as SQL or SPARQL, depending on the underlying infrastructure [56, 106]. Finally,
any component from the connected environment (i.e., related to the environment,
sensor network, event, and application domain modeling) can be expressed/defined
using EBNF.

To conclude, we propose in the following section the Event Query Language for
Connected Environments (EQL-CE). Our proposal has three layers (conceptual, log-
ical, and physical). It uses EBNF to allow re-usability, and covers various compo-
nents, query types, and datatypes. Finally, we introduce our proposed query opti-
mizer that addresses spatial/temporal distributions, and the dynamicity of the en-
vironment.

3.5 EQL-CE Proposal

In this section, we detail our proposed language. We start by presenting the EQL-CE
framework [67]. Then, we focus on the syntax, and how to define various connected
environment components.

3.5.1 The EQL-CE Framework

We structure our proposal into three layers: (i) the conceptual layer provides an
overview of the connected environment’s components and their relations in the form
of a graph; (ii) the logical layer allows the construction of generic queries written in
EBNF (Extended Backus-Naur Form) syntax; and (iii) the physical layer parses the
EBNF queries into a data model-specific language (e.g., SQL, SPARQL) and executes
the parsed queries. A simplified overview of EQL-CE is presented in Figure 3.5. In
the following we detail each layer separately.

3.5.1.1 Conceptual Layer

Here, we detail the top layer of EQL-CE. The conceptual layer provides a clear and
easy to exploit conceptual view of the connected environment. Therefore, we use a
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FIGURE 3.5: EQL-CE Overview

FIGURE 3.6: EQL-CE Conceptual Layer

graph to represent the various elements (i.e., components and properties). The latter
are split into the following categories (cf. Figure 3.6):

Core Modeling. This part contains the basic elements that always exist in a con-
nected environment. For a clear organization, we group the elements into the fol-
lowing two parts:

• Sensor Network modeling, where we represent (i) sensor networks; (ii) vari-
ous sensor types (e.g., static, mobile); (iii) the different types of properties (i.e.,
scalar, multimedia) observed by sensors; and (iv) the observation values pro-
duced by sensors (i.e., textual values, multimedia objects and their respective
metadata).

• Environment modeling, where we represent (i) platforms (i.e., infrastructure,
devices) that host sensors or sensor networks; (ii) physical infrastructures, such
as buildings, and their detailed description (i.e., location maps, spatial rela-
tions); (iii) devices, such as mobile phones, and their detailed description (i.e.,
hardware, software, provided services).

Many other components can still be added to the core part. The full description of
the environment and sensor network can be inspired from the HSSN10 ontology [68].

Event Modeling. This part contains the representation of events that one might
wish to detect in a connected environment. Here, the application domain should
also be considered since it affects the definition of specific events. For instance a

10http://spider.sigappfr.org/research-projects/hybrid-ssn-ontology/

http://spider.sigappfr.org/research-projects/hybrid-ssn-ontology/
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body overheating (medical) event cannot be defined the same way as a room over-
heating (environmental) event. Hence, the application domain dictates the type of
an event, its describing features, its pattern, and the required data for its detection.
Therefore, we do not detail the event modeling, we keep it generic and restrict it to
the following components: (i) event that defines an event and its type; (ii) dimen-
sions to mathematically represent the event features (provided by the Application
Domain) in a n-dimensional space (we formalize and detail the generic event defi-
nition in Chapter 5); and (iii) event data to represent sensor observations that con-
tributed in each event. This allows us to have a generic event definition that applies
to various events from different application domains. All context specific details are
defined in the application domain and then imported in the event definition via the
mediator.

Application Domain Modeling. This part represents the application domain (e.g.,
medical, energy, military). Since these elements differ from one field to another, this
part is pluggable into the conceptual model. It contains basic components/proper-
ties denoted concepts and relations respectively. Instances of the concept compo-
nent can be used to define any domain specific entities, and instances of the relation
property can be used to interconnect the concepts (e.g., Figure 3.6 shows an Event
Feature concept that helps define event dimensions). This allows the customization
of environment descriptions and event definitions based on specific contexts. For
instance, one might wish to represent medical equipment and health related con-
straints when modeling a hospital environment. These elements are not the same
when describing a shopping center. Similarly, what describes medical related events
is different from normal every day events that happen in a mall. To conclude, this
part of the data model complements the event description on one side, and enriches
the environment representation on the other.

The Mediator. This part of the conceptual model only contains properties that en-
sure the interconnection of the previously mentioned parts (i.e., the core, event, and
application domain). For instance, a platform hosts a sensor network, the observa-
tion values produced by the sensors provide event data, the event dimensions are
defined by event features, and the concept field enriches the description of an in-
frastructure based on the application domain. In addition, the mediator can also be
used to plug in an external data model and align it with the existing elements.

3.5.1.2 Logical Layer

The middle layer of EQL-CE, denoted the logical layer, allows users to compose/de-
sign their queries. The process starts by choosing a specific query type. To cover a
wider set of functionality (cf. Criterion 2), we provide three main groups of queries:

• The Component Definition Language defines the structure of components. Var-
ious query types are included in this group (e.g., CREATE, ALTER, RENAME,
DROP).

• The Component Manipulation Language handles component instances. Here
we propose the various query types that allow data management in a con-
nected environment (e.g., SELECT, INSERT, UPDATE, and DELETE).
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• Component Access Control (e.g., GRANT, REVOKE). These queries manage
access rights to component data. We detail access control tasks in a dedicated
future work.

FIGURE 3.7: EQL-CE Logical Layer

The process of composing a query is described in Figure 3.7. First, the user chooses
the query type (e.g., CREATE, INSERT, DELETE). Then, the user starts filling the
mandatory statements (e.g., what to CREATE, what to SELECT, from which compo-
nent). Once this is done, the user can add optional statements for filtering, ordering,
calling external functions. Finally, the query is written using an Extended Backus-
Naur Form syntax, denoted EBNF [107]. We use EBNF since it allows the conception
of technology independent queries (i.e., queries that do not depend from any data
model specific syntax). This highlights the ability to re-use (cf. Criterion 6) EQL-CE
in different setups, since EBNF can later be parsed, in the physical layer, to a spe-
cific data model instance, such as SQL or SPARQL, depending on the underlying
infrastructure [56, 89, 106]. Any component from the conceptual model (i.e., related
to the environment, sensor network, event, and application domain modeling) can
be defined, manipulated, and protected using these queries (cf. Criterion 1). Finally,
the EBNF query is sent to the physical layer.

3.5.1.3 Physical Layer & Query Optimizer

The bottom layer of EQL-CE (cf. Figure 3.8) saves the received EBNF queries in a
dedicated storage unit for future use. Then, it parses the aforementioned queries
into a specific syntax depending on the underlying data model (e.g., SQL, SPARQL).
Finally, the parsed query is saved and sent to the query run engine where it is ex-
ecuted. If needed, external functions, methods, or even algorithms are called (e.g.,
string comparison functions, mathematical libraries). All the above describes how
EQL-CE can be re-used in various contexts, since it is independent from any tech-
nological infrastructure (cf. Challenge 6). Using the EBNF queries, one can define
the data model and all its various related components (cf. Challenge 1). In addition,
EQL-CE allows users to handle instances of each component for data retrieval, mod-
ification, deletion, security/privacy, and event detection by providing a plethora of
functionality (cf. Challenge 2). However, when defining specific events, one might
need to manage the spatial distribution of sensors over a location (cf. Need 4). For
instance, consider k-nearest sensors to a specific location, or all sensors within a
range R of a point in space. Also, one might consider mathematical distributions
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FIGURE 3.8: EQL-CE Physical Layer

of sensors over a zone (e.g., even distribution). Similarly, one might need to man-
age the temporal distribution of sensor observations for specific events (cf. Need
5). For example, selecting the k-most recent sensor observations, or all observations
that were produced during a specific time lapse. Also, one might need to select ob-
servations based on specific sensing rates. To do so, the query optimizer allows the
integration of spatial/temporal distribution functions in the queries (cf. Challenge
4). Finally, in dynamic connected environments sensors might suffer from break-
downs, mobile sensors could enter/leave the network, or even change locations.
This is challenging since event definitions rely on sensors and their provided obser-
vations. Hence, some previously defined events might become obsolete over time.
Therefore, in some cases, queries need to be re-written or updated in order to handle
the dynamicity of the environment, and keep up with its evolution (cf. Criterion 5
and Challenge 5). This is also possible via the query optimizer. We leave the details
of query re-writing to the next Chapter.

3.5.2 The EQL-CE Syntax

Here, we detail the syntax that describes the structure of the various connected en-
vironment components. To avoid redundancies, we state here that each component
has a unique identifier.

3.5.2.1 Environment Component Syntax

Sensors and sensor networks are hosted on platforms. Each platform has a unique
identifier and a type (cf. Syntax 1).

Syntax 1: Defining the structure of a Platform

CREATE PLATFORM ( [ ID ] <platform_id >
[ , [ TYPE ] <type > = ’infrastructure ’ | ’device ’ ] ) ;

We define two types of platforms: (i) infrastructures; and (ii) devices. Infrastructures
represent physical, real world environments (e.g., office, building, forest). Each in-
frastructure has a location map to describe spatial features, and a set of hosted plat-
forms such as other infrastructures or devices (cf. Syntax 2). A location map has a



56 Chapter 3. An Event Query Language For Connected Environments

set of distinct locations (cf. Syntax 3), and each location has a description that details
its geometric shape, coordinates in space, and a set of spatial relations with other
locations (cf. Syntax 4). We also allow users to define external spatial relations (from
the application domain) and use them for inter-location ties.

Syntax 2: Defining the structure of an Infrastructure

CREATE INFRASTRUCTURE ( [ ID ] <infrastructure_id >
[ , [ LOCATION MAP ] <location_map_id > ]
[ , { [ PLATFORM ] <platform_id > } ] ) ;

Syntax 3: Defining the structure of a Location Map

CREATE LOCATION MAP ( [ ID ] <location_map_id >
[ , { [ LOCATION ] <location_id > } ] ) ;

Syntax 4: Defining the structure of a Location

CREATE LOCATION ( [ ID ] <location_id >
[ , [ DESCRIPTION ] <description_id > ] [ , { ( [ RELATION ]
<relation > , [ LOCATION ] <location_id > ) } ] ) ;

<relation > = ’contains ’|’covers ’|’crosses ’|’equals ’|’includes ’|
’touches ’|’isAbove ’|’isBelow ’|’isCloseTo ’|’overlaps ’|’isRightOf ’|
’isDisjointWith ’|’isFraFrom ’|’isLeftOf ’| <spatial_relation_id > ;

Devices (cf. Syntax 5) are also considered platforms since they are capable of host-
ing sensors. We describe their hardware, software, and provided services in Syn-
tax 6. The descriptions for hardware might include information about the device’s
power supply, memory, processor, network interface, and expansion cards where
sensors are embedded. The description of software might include details about the
operating system. And finally, the services descriptions might specify the provided
functionality, and input/output.

Syntax 5: Defining the structure of a Device

CREATE DEVICE ( [ ID ] <device_id >
[ , { [ HARDWARE ] <hw_id > } ] [ , { [ SOFTWARE ] <sw_id > } ]
[ , { [ SERVICE ] <service_id > } ] ) ;
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Syntax 6: Defining the components of a device

CREATE HARDWARE ( [ ID ] <hw_id >
[ , [ DESCRIPTION ] <description_id > ] ) ;

CREATE SOFTWARE ( [ ID ] <sw_id >
[ , [ DESCRIPTION ] <description_id > ] ) ;

CREATE SERVICE ( [ ID ] <service_id >
[ , [ DESCRIPTION ] <description_id > ] ) ;

3.5.2.2 Sensor Network Component Syntax

When considering the sensor network, many components can be defined. For the
sake of brevity, we choose here to detail the structure of observable properties in
the environment (cf. Syntax 7), sensor observations (cf. Syntax 8), and sensors (cf.
Syntax 9). Various properties can be monitored in a connected environment (e.g.,
temperature, noise, humidity). Some are scalar (i.e., textual) and others multimedia
(i.e., audio, video, images). And each property is linked to a set of sensor observa-
tions. Each observation, has a description (e.g., unit of measurement), data value
(if scalar) or a data object/file (if multimedia) alongside a datatype. Finally, each
observation is mapped to a set of metadata tag/value pairs.

Syntax 7: Defining the structure of a Property

CREATE PROPERTY ( [ ID ] <property_id >
[ , [ TYPE ] <type > = ’scalar ’ | ’audio ’ | ’image’ | ’video’ ]
[ , { [ [ SCALAR | MEDIA ] OBSERVATION ] <observation_id > } ] ) ;

Syntax 8: Defining the structure of an Observation

CREATE [ SCALAR | MEDIA ] OBSERVATION ( [ ID ] <observation_id >
[ , [ DESCRIPTION ] <description_id > ]
[ , ( [ DATA VALUE ] <value_id > | [ DATA OBJECT ] <object_id > ,

[ DATATYPE ] <datatype_id > ) ]
[ , { ( [ METADATA TAG ] <tag > : [ METADATA VALUE ] <value > ) } ]
) ;

Finally, we define static or mobile sensors. Each having (i) a description; (ii) a loca-
tion history record containing a set of location/time interval pairs; (iii) a coverage
area history record containing a set of coverage area/time interval pairs; (iv) a set of
sensed properties/produced observations; and (v) the platform in which the sensor
is embedded/hosted. We should mention that the location/coverage area records
must contain at all times a current value for the sensor location and coverage area
(i.e., a location/coverage area with an ongoing time interval).
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Syntax 9: Defining the structure of a Sensor

CREATE SENSOR ( [ ID ] <sensor_id >
[ , [ TYPE ] <type > = ’static ’ | ’mobile ’ ]
( [ , WITH

[ , { [ DESCRIPTION ] <description_id > } ]
[ , [ LOCATION HISTORY ] <location_history > =
{ ( [ LOCATION ] <location_id > , [ TIME INTERVAL ] <ti> ) } ]
[ , [ COVERAGE HISTORY ] <coverage_history > =
{ ( [ COVERAGE AREA ] <area_id > , [ TIME INTERVAL ] <ti> ) } ]

] )
( [ , SENSING { [ PROPERTY ] <property_id > } ] )
( [ , PRODUCING { [ OBSERVATION ] <observation_id > } ] )
( [ , HOSTED ON [ PLATFORM ] <platform_id > ] ) ) ;

3.5.2.3 Event Component Syntax

We define an event (cf. Syntax 10) by assigning to it what we called an event space,
an n-dimensional space where each dimension represents an event describing fea-
ture. In addition, since the events are detected based on sensor data, we map a set of
contributing sensors to each event definition. When defining the event, one might
choose a specific set of sensors, or any available ones that fit the event needs.

Syntax 10: Defining the structure of an Event

CREATE EVENT ( [ ID ] <event_id >
[ , [ EVENT SPACE ] <event_space_id > ]
[ , USING { [ SENSOR ] <sensor_id > } ] ) ;

The event space (cf. Syntax 11) contains a set of features each having some related
conditions (e.g., temperature feature with a condition greater than 35◦C). Finally, all
observations belonging to an event are found within its space.

Syntax 11: Defining the structure of an Event Space

CREATE EVENT SPACE ( [ ID ] <event_space_id >
[ , { ( [ FEATURE ] <feature_id >
[ , [ CONDITION ] <condition_id > ] ) } ]
[ , { [ OBSERVATION ] <observation_id > } ] ) ;

3.5.2.4 Application Domain Component Syntax

Since event features are better defined by an expert. We leave the feature syntax (cf.
Syntax 12) to the application domain part. A feature is represented as a dimension
in the event space. Therefore, each feature has a specific datatype for its values, a
function that measures the distance between two instances belonging to the same
feature, a default value, and a description. We provide a set of basic features, and
leave the definition of advanced/complex features to domain experts.
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Syntax 12: Defining the structure of a Feature

CREATE FEATURE ( [ ID ] <feature_id >
[ , [ DATATYPE ] <datatype > = ’integer ’ | ’float’ | ’boolean ’ |
’date’ | ’time’ | ’date time’ | ’character ’ | ’string ’ ]
[ , [ DISTANCE MEASURE ] <distance_measure_id > ]
[ , [ DEFAULT VALUE ] <value > ]
[ , [ DESCRIPTION ] <description_id > ] ) ;

The application domain experts also define the constraints related to each feature.
Syntax 13 defines a condition as a set of statements each having operands and an
operator. We provide various operators and allow users to import external opera-
tors/functions.

Syntax 13: Defining the structure of a Condition (Part 1)

CREATE CONDITION ( [ ID ] <condition_id >
[ , { STATEMENT <statement_id > } ] ) ;

CREATE STATEMENT ( [ ID ] <statement_id > ,
( [ OPERAND ] <operand_id >,

[ OPERATOR ] <op >
[ , [ OPERAND ] <operand_id > ] ) ) ;

CREATE OPERAND ( [ ID ] <operand_id > ,
( [ TYPE ] <type > = ’Time’|’Space’|’Other ’ ,

[ VALUE ] <val > ) ) ;

<val > = <string > | [ LOCATION ] <location_id > |
[ TIMESTAMP ] <ts > | [ TIME INTERVAL ] <ti> ;

<op> = [ COMPARISON ] <cop > | [ TEMPORAL ] <top > |
[ SPATIAL ] <sop > | FUNCTION <function_id >

<cop > = ’=’ | ’<=’ | ’>=’ | ’<’ | ’>’ | ’not’ ;

Syntax 13: Defining the structure of a Condition (Part 2)

<top > = ’hasBegining ’|’hasEnd ’|’inside ’|’intervalAfter ’|
’intervalBefore ’|’intervalContains ’|’intervalDisjoint ’|
’intervalDuring ’|’intervalEquals ’|’intervalFinishedBy ’|
’intervalFinishes ’|’intervalIn ’|’intervalMeets ’|
’intervalMetBy ’|’intervalOverlappedBy ’|
’intervalOverlaps ’|’intervalStartedBy ’|’intervalStarts ’|
[ TEMPORAL RELATION ] <temporal_relation_id > ;

<sop > = ’contains ’|’covers ’|’crosses ’|’equals ’|’includes ’|
’isAbove ’|’isBelow ’|’isCloseTo ’|’isDisjointWith ’|
’isFraFrom ’|’isLeftOf ’|’isRightOf ’|’overlaps ’|
’touches ’|[ SPATIAL RELATION ] <spatial_relation_id > ;

[ FUNCTION ] <function_id > ;
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Finally, since the application domain description differs from one context to another,
one needs a generic definition of application domain components and relationships
that could be instantiated in any context. Therefore, we define a component named
Concept (cf. Syntax 14), and an inter-concept relationship, denoted Relation (cf. Syn-
tax 15). Relations can also be used between environment, sensor network, or event
components.

Syntax 14: Defining the structure of a Concept

CREATE CONCEPT ( [ ID ] <concept_id >
[ , { ELEMENT <element_id > } ] ) ;

ELEMENT [ ID ] <element_id > = COMPONENT <component_id > |
ATTRIBUTE ( <name >, <datatype > ) ;

Syntax 15: Defining the structure of a Relation

CREATE [ <name > ] RELATION ( [ ID ] <relation_id >
[ , { ( CONCEPT SOURCE <concept_id > ,

CONCEPT TARGET <concept_id > ) } ]
[ , { ( COMPONENT SOURCE <component_id > ,

COMPONENT TARGET <component_id > ) } ] ) ;

To conclude, one can define the structure of various connected environment compo-
nents (cf. Criterion 1).

3.5.3 Query Composition

In addition to component definition, users could rename, drop, or even alter the
structure of previously defined components. Moreover, one could manage instances
of each component through selection, update, insertion, and deletion queries (cf.
Criterion 2). In the following, we provide the structure (skeleton) of component
definition and management queries. We leave the component access control queries
for a dedicated future work.

3.5.3.1 Component Definition Language

The example below shows the skeleton (or mandatory parts) of a CREATE statement
in EBNF. As illustrated in the previous subsection, one can create any component of
the connected environment by defining its elements.

CREATE query skeleton

CREATE COMPONENT ( [ ID ] <component_id >
{ [ , [ ELEMENT ] <element_id > ] } ) ;

ELEMENT [ ID ] <element_id > = COMPONENT <component_id > |
ATTRIBUTE ( <label > = <value > ) ;
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One could also rename a previously defined component using the RENAME query
which we illustrate below.

RENAME query skeleton

RENAME COMPONENT ( <label > [ TO ] <new_label > ) ;

Also, one could remove a component definition from the connected environment
using the DROP statement. The CASCADE keyword could be used to remove the
component from any other definition.

DROP query skeleton

DROP COMPONENT ( <label > [ CASCADE ] ) ;

Finally, one could ALTER the definition of a component in various ways: (i) by
adding (ADD keyword) new elements to its definition; (ii) by removing (REMOVE
keyword) existing elements from its definition; or (iii) by modifying (MODIFY key-
word) existing elements either by renaming them or changing their definition (con-
tent).

ALTER query skeleton

ALTER COMPONENT ( [ ID ] <component_id > , ADD | REMOVE (
{ [ , [ ELEMENT ] <element_id > ] } ) ) ;

ALTER COMPONENT ( [ ID ] <component_id > , MODIFY (
{ [ , [ ELEMENT ] [ <label > ] <element_id > [ BY ]

[ ELEMENT ] [ <new_label > ] <new_element_id >
] } ) ) ;

We provide here a few query examples to illustrate the usage of the RENAME,
DROP, and ALTER statements.

Query examples

RENAME COMPONENT ( ’SENSOR ’ TO ’SENS’ ) ;

DROP COMPONENT ( ’SENSOR ’ ) ;

ALTER INFRASTRUCTURE ( [ ID ] <infrastructure_id > ,
ADD | REMOVE ( [ , [ LOCATION MAP ] <location_map_id > ]

[ , { [ PLATFORM ] <platform_id > } ] ) ) ;

ALTER INFRASTRUCTURE ( [ ID ] <infrastructure_id > ,
MODIFY ( [ , [ LOCATION MAP ] [ <name > ] <location_map_id > ]

[ , { [ PLATFORM ] [ <name > ] <platform_id > } ] ) ) ;
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3.5.3.2 Component Manipulation Language

The example below shows how one might INSERT an instance of a previously de-
fined component. This is done by assigning a specific value (instance) for each of
the component’s elements. More examples on the INSERT query are provided in the
following section.

INSERT query skeleton

INSERT COMPONENT ( [ ID <component_id > ] <value >
{ [ , [ ELEMENT <element_id > ] <value > ] } ) ;

Once instances are created, one might need to retrieve specific data. The skeleton
of the SELECT query is provided below. Additional statements could also be added
after the WHERE clause (e.g., Filter By).

SELECT query skeleton

SELECT * | { [ ELEMENT ] <element_id > }
FROM COMPONENT
[ WHERE { [ CONDITION ] <condition_id > } ] ;

One might need to remove specific instances from the connected environment (e.g.,
sensors that no longer exist). The DELETE query is illustrated below.

DELETE query skeleton

DELETE COMPONENT [ CASCADE ]
WHERE { [ CONDITION ] <condition_id > } ;

Finally, since the environment is dynamic and ever changing, one might need to
change some instances over time. The UPDATE query below shows how this could
be done in EQL-CE.

UPDATE Query Skeleton

UPDATE COMPONENT
CHANGE { [ ELEMENT ] <element_id > <new_value > }
[ WHERE { [ CONDITION ] <condition_id > } ] ;

Before concluding this section, we provide a few examples of SELECT, DELETE, and
UPDATE queries. We leave the INSERT query for the following section where it is
thoroughly detailed.



3.6. Illustration & Experimental Setup 63

Query examples

(* SELECT all platforms of type device *)
SELECT <platform_id >
FROM PLATFORM
WHERE <platform_type > = ’device ’ ;

(* DELETE all platforms of type device *)
DELETE PLATFORM
WHERE <platform_type > = ’device ’ ;

(* UPDATE a platform - Change type to device *)
UPDATE PLATFORM
CHANGE <platform_type > = ’device ’
WHERE <platform_id > = ’Platform_1 ’ ;

3.6 Illustration & Experimental Setup

In this section, we rely on the component definitions provided in Section 3.5 to create
instances and illustrate the usage of EQL-CE in the Smart Mall connected environ-
ment. Then, we detail our experimental protocol for the evaluation of EQL-CE.

3.6.1 Illustration Example

We illustrate here how connected environment components are instantiated using
the EQL-CE proposal. For the sake of brevity, we consider a snippet of the Smart
Mall example, with less locations and sensors to avoid redundancies, in Figure 3.9.

3.6.1.1 Environment Related Queries

The mall is a platform of type infrastructure. It has a location map containing five
locations (the Hallway, Movie Theater, Grocery Store, Coffee Shop, and Shop 1). The
locations and location map are instantiated in queries 1 and 2 respectively. Each
location instance specifies the relation between the location and its neighbours.

FIGURE 3.9: EQL-CE Illustration Example
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Query 1: Inserting the Locations

INSERT LOCATION ( ’Movie_Theater ’ ,
{ ( ’touches ’ , ’Hallway ’ ) , ( ’isRightOf ’ , ’Coffee_Shop ’ ) ,
( ’touches ’ , ’Coffee_Shop ’ ) } ) ;

INSERT LOCATION ( ’Coffee_Shop ’ ,
{ ( ’touches ’ , ’Hallway ’ ) , ( ’isLeftOf ’ , ’Movie_Theater ’ ) ,
( ’touches ’ , ’Movie_Theater ’ ) } ) ;

INSERT LOCATION ( ’Shop_1 ’ ,
{ ( ’touches ’ , ’Hallway ’ ) , ( ’isLeftOf ’ , ’Grocery_Store ’ ) ,
( ’touches ’ , ’Grocery_Store ’ ) } ) ;

INSERT LOCATION ( ’Grocery_Store ’ ,
{ ( ’touches ’ , ’Hallway ’ ) , ( ’isRightOf ’ , ’Shop_1 ’ ) ,
( ’touches ’ , ’Shop_1 ’ ) , ( ’isAcrossOf ’, ’Movie_Theater ’) } ) ;

INSERT LOCATION ( ’Hallway ’ ) ;

Query 2: Inserting the Location Map

INSERT LOCATION MAP ( ’Mall_Location_Map ’ , { ’Movie_Theater ’,
’Coffee_Shop ’, ’Shop_1 ’, ’Grocery_Store ’, ’Hallway ’ } ) ;

The smart mall infrastructure hosts a mobile device dev1. The device instance is
shown in Query 3. We do not detail the representation of the hardware, software,
or services. We only specify that a temperature sensor (’s_6’) is embedded on the
device.

Query 3: Inserting the Device and its elements

INSERT DEVICE ( ’dev_1 ’ , { ’dev_1_Hardware ’ } ,
{ ’dev_1_Software ’ } , { ’dev_1_Service ’ } ) ;

INSERT HARDWARE ( ’dev_1_Hardware ’ , { ’s_6’ } ) ;

INSERT SOFTWARE ( ’dev_1_Software ’ ) ;

INSERT SERVICE ( ’dev_1_Service ’ ) ;

Since all infrastructure elements have been instantiated, one can now insert the in-
frastructure instance (cf. Query 4).

Query 4: Inserting the Mall Infrastructure

INSERT INFRASTRUCTURE ( ’Mall_Infrastructure ’ ,
’Mall_Location_Map ’ , { ’dev_1’ } ) ;

The mall infrastructure and mobile device host sensors. Therefore, they are also
considered platforms. Queries 5 and 6 insert the two platform instances.
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Query 5: Inserting the Mall Platform

INSERT PLATFORM ( ’Mall_Platform ’ , <type > = ’infrastructure ’ ) ;

Query 6: Inserting the Device Platform

INSERT PLATFORM ( ’dev_1 ’ , <type > = ’device ’ ) ;

3.6.1.2 Sensor Network Queries

In regards to the sensor network related queries, we begin by instantiating the two
properties that are currently monitored in the example: (i) the scalar property tem-
perature; and (ii) the multimedia property video. This is shown in queries 7 and 8
respectively.

Query 7: Inserting the temperature property

INSERT PROPERTY ( ’temperature_property ’ , <type > = ’scalar ’ ) ;

Query 8: Inserting the video property

INSERT PROPERTY ( ’video_property ’ , <type > = ’video ’ ) ;

These properties are monitored by various sensors. Six temperature sensors exist in
the smart mall. s1, s2, ands3 are deployed in the movie theater, s4 in the grocery store,
s5 in Shop 1, and s6 is the only mobile sensor deployed on dev1 which is currently
located in the Coffee Shop. A surveillance camera cam1 is deployed in Shop 1. Query
9 instantiates all the aforementioned sensors. Note that the mobile sensor s6 has a
previous/current location/coverage area.

Query 9: Inserting all sensors (Part 1)

INSERT SENSOR ( ’s_1’ , <type > = ’static ’ ,
WITH (

<location_history > = { ( ’Movie_Theater ’ ,
’19 -04 -2019 11:44:27 ; now’ ) } ,

<coverage_history > = { ( ’Movie_Theater ’ ,
’19 -04 -2019 11:44:57 ; now’ ) } ) ,

SENSING ( { ’temperature_property ’ } ] ) ,
HOSTED ON ( ’Mall_Platform ’ ) ) ;
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Query 9: Inserting all sensors (Part 2)

INSERT SENSOR ( ’s_2’ , <type > = ’static ’ ,
WITH (

<location_history > = { ( ’Movie_Theater ’ ,
’19 -04 -2019 11:54:27 ; now’ ) } ,

<coverage_history > = { ( ’Movie_Theater ’ ,
’19 -04 -2019 11:55:27 ; now’ ) } ) ,

SENSING ( { ’temperature_property ’ } ] ) ,
HOSTED ON ( ’Mall_Platform ’ ) ) ;

INSERT SENSOR ( ’s_3’ , <type > = ’static ’ ,
WITH (

<location_history > = { ( ’Movie_Theater ’ ,
’19 -04 -2019 11:42:27 ; now’ ) } ,

<coverage_history > = { ( ’Movie_Theater ’ ,
’19 -04 -2019 11:43:27 ; now’ ) } ) ,

SENSING ( { ’temperature_property ’ } ] ) ,
HOSTED ON ( ’Mall_Platform ’ ) ) ;

INSERT SENSOR ( ’s_4’ , <type > = ’static ’ ,
WITH (

<location_history > = { ( ’Grocery_Store ’ ,
’19 -04 -2019 11:44:27 ; now’ ) } ,

<coverage_history > = { ( ’Grocery_Store ’ ,
’19 -04 -2019 11:44:57 ; now’ ) } ) ,

SENSING ( { ’temperature_property ’ } ] ) ,
HOSTED ON ( ’Mall_Platform ’ ) ) ;

INSERT SENSOR ( ’s_5’ , <type > = ’static ’ ,
WITH (

<location_history > = { ( ’Shop_1 ’ ,
’19 -04 -2019 11:54:27 ; now’ ) } ,

<coverage_history > = { ( ’Shop_1 ’ ,
’19 -04 -2019 11:55:27 ; now’ ) } ) ,

SENSING ( { ’temperature_property ’ } ] ) ,
HOSTED ON ( ’Mall_Platform ’ ) ) ;

INSERT SENSOR ( ’s_6’ , <type > = ’mobile ’ ,
WITH
( <location_history > = {

( ’Coffee_Shop ’ , ’19 -04 -2019 11:42:27 ; now’ )
( ’Shop_1 ’ , ’19 -04 -2019 10:43:27 ; 19 -04 -2019 11:23:20 ’ ) } ,

<coverage_history > = {
( ’Coffee_Shop ’ , ’19 -04 -2019 11:43:27 ; now’ ) ,
( ’Shop_1 ’ , ’19 -04 -2019 10:43:27 ; 19 -04 -2019 11:23:20 ’ ) }

) ,
SENSING ( { ’temperature_property ’ } ] ) ,
HOSTED ON ( ’dev_1 ’ ) ) ;

INSERT SENSOR ( ’cam_1 ’ , <type > = ’static ’ ,
WITH (

<location_history > = { ( ’Shop_1 ’ ,
’19 -04 -2019 11:25:14 ; now’ ) } ,

<coverage_history > = { ( ’Shop_1 ’ ,
’19 -04 -2019 11:25:14 ; now’ ) } ) ,

SENSING ( { ’video_property ’ } ) ,
HOSTED ON ( ’Mall_Platform ’ ) ) ;

When the network becomes operational, sensors will start producing observations.



3.6. Illustration & Experimental Setup 67

The latter are sent to a middle-ware that will generate an insert query in order to
push the observations into the data model according to the observation syntax (cf.
Section 3.5). Then, the middle-ware will update both sensors and properties by map-
ping them to their related observations. Query 10 shows an insert query generated
by the middle-ware for a temperature observation having a float value of ’20.3’ and
two associated metadata for time and location of capture. Similarly Query 11 shows
another temperature observation taken from the Coffee Shop. Query 12 instantiates
a video observation taken from the surveillance camera in Shop 1. This observa-
tion includes the video recording file, temporal, location, and video length related
metadata.

Query 10: Inserting a temperature observation taken in Shop 1

INSERT SCALAR OBSERVATION ( ’temperature_observation_1 ’,
( ’20.3’ , ’float’ ) ,
{ ( ’timestamp ’ : ’19 -04 -2019 11:34:54 ’ ) ,

( ’location ’ : ’Shop_1 ’ ) } ) ;

Query 11: Inserting a temperature observation taken in the Coffee Shop

INSERT SCALAR OBSERVATION ( ’temperature_observation_2 ’,
( ’19.3’ , ’float’ ) ,
{ ( ’timestamp ’ : ’19 -04 -2019 11:44:27 ’ ) ,

( ’location ’ : ’Coffee_Shop ’ ) } ) ;

Query 12: Inserting a video observation taken in Shop 1

INSERT MEDIA OBSERVATION ( ’video_observation ’,
( ’recording.mpeg’ , ’video ’ ) ,
{ ( ’timestamp ’ : ’19 -04 -2019 11:35:14 ’ ) ,

( ’location ’ : ’Shop_1 ’ ) ,
( ’duration ’ : ’123 s’ ) } ) ;

3.6.1.3 Event Queries

In order to give an example of how an event can be instantiated we define next an
intrusion event in Shop 1. The mall manager relies on video sensor cam1 for the
detection of this event. He/She defines the event as a face detected by cam1 in the
Shop after 8 PM. Three features define this event: (i) time with a condition after 8 PM;
(ii) location with a restriction to Shop 1; and (iii) a detected face with a Boolean value
equals true. In this example, the manager uses our provided basic features for time,
location, and detected face (cf. Query 13) where we only define the feature as an
identifier assigned to a datatype. The manager also creates the required conditions
for each feature (cf. Query 14). However, one can use the application domain queries
to define more complex/advanced features/conditions if needed. Finally, query 15
details the event space, and query 16 instantiates the event.
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Query 13: Inserting features for the intrusion event

INSERT FEATURE ( ’time_f ’ , ’date -time’ ) ;

INSERT FEATURE ( ’location_f ’ , ’string ’ ) ;

INSERT FEATURE ( ’face_f ’ , ’Boolean ’ ) ;

Query 14: Inserting conditions for the intrusion event features

INSERT CONDITION ( ’condition_1 ’ , { ’statement_1 ’ } ) ;
INSERT STATEMENT ( ’statement_1 ’ ,

( cam_1.Observation.timestamp , After(’ 8 PM ’) ) ) ;

INSERT CONDITION ( ’condition_2 ’ , { ’statement_2 ’ } ) ;
INSERT STATEMENT ( ’statement_2 ’ ,

( cam_1.Location , Equals(’ Movie_Theater ’) ) ) ;

INSERT CONDITION ( ’condition_3 ’ , { ’statement_3 ’ } ) ;
INSERT STATEMENT ( ’statement_3 ’ ,

( cam_1.Observation , face_detect(’ true ’) ) ) ;

Query 15: Inserting an event space for the intrusion event

INSERT EVENT SPACE (’event_space_1 ’ ,
{ ( ’time_f ’ , ’condition_1 ’ ) ,

( ’location_f ’ , ’condition_2 ’ ) ,
( ’face_f ’ , ’condition_3 ’ ) } ) ;

Query 16: Inserting the event definition

INSERT EVENT ( ’intrusion_in_shop_1 ’ , ’event_space_1 ’ ,
USING { ’cam_1 ’ } ) ;

3.6.2 Experimental Protocol

We are currently implementing the EQL-CE query run engine and its query opti-
mizer (cf. Chapter 4) as part of an online platform for event detection in connected
environments. Since the development is still ongoing, we propose here the experi-
mental protocol that we will use to evaluate the query language once the develop-
ment is completed. We propose the following experiments.

3.6.2.1 Query Cost Evaluation

Providing the user with the ability to define the entire connected environment al-
lows him/her to manage all the components from scratch (e.g., locations, spatial ties,
sensor capabilities, datatypes, event features). This is beneficial since the user has to-
tal control over the environment, and the ability to customize everything based on
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his/her preferences. However, this might be costly in terms of the number of ’steps’
(i.e., queries) required to achieve a specific task/objective. In this experiment, we set
a list of objectives (e.g., defining a platform, a sensor, a location map) and quantify
the required query batch size and the total cost of achieving the task.

3.6.2.2 Re-usability Evaluation

To ensure re-usability, EQL-CE provides a logical layer where generic queries are
composed for all components and functionality. These queries rely on EBNF, a meta-
language that is independent from any data model syntax. Then, these queries are
parsed to any language (e.g., SQL, SPARQL) based on the underlying infrastructure.
This helps cope with technological changes over time (if the infrastructure changes
the language is not affected). In this test we evaluate the physical layer’s ability
to parse EBNF into various other languages (e.g., SQL, SPARQL). We re-iterate this
experiment for each query type (i.e., SELECT, INSERT, UPDATE, DELETE, CREATE,
ALTER, RENAME, DROP) and available component (e.g., sensor, platform, location
map, observation).

3.6.2.3 Performance Evaluation

In this test, we measure the run-time, and the resource consumption (CPU/RAM)
when executing EQL-CE queries. This evaluation is two-fold. First, we aim to mea-
sure the impact of the query parsing algorithm on performance. Then, we would like
to do the same for query execution. We set various use cases where we measure run-
time and resource consumption (e.g., parsing and executing simple queries, complex
queries, and batch queries required for specific tasks).

3.7 Summary

Many challenges emerge when proposing a EQL adapted to connected environ-
ments. In this work, we addressed the issues of re-usability, data diversity, and
covering various components/query types. To do so, we proposed EQL-CE: a three
layered event query language for connected environments. We detailed its concep-
tual, logical, and physical layers. EQL-CE users compose EBNF queries, that can be
later parsed into SQL, SPARQL, or other languages (re-usability). Our proposal cov-
ers various connected environment components (environments, sensor networks,
events, and application domains) and query types (definition, manipulation, access
control, event detection). We also proposed a query optimizer that allows query
re-writing and the integration of spatial/temporal distribution functions.
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Chapter 4

Handling Connected Environment
Dynamicity

"Everything changes and, somewhere along the line, I’m
changing with it."

— Eric Burdon

When considering an Event Query Language for Connected Environments, vari-
ous challenges emerge (e.g., data volume, velocity, variety, sensor mobility, reliabil-
ity). In this chapter, we focus on one particular challenge: coping with the dynamic-
ity of the Connected Environment.

In EQL-CE, one could define events by detailing their pattern (event describing
features and constraints), and relying on specific sensors that will provide the re-
quired sensed data (sensor observations). However, in connected environments that
host hybrid sensor networks, various issues could challenge event definition and
detection such as breakdowns, sensor mobility, and lack of adequate sensor distri-
bution over the space. Due to sensors entering/leaving the network, changing loca-
tions, and breaking down, the aforementioned event queries could become obsolete
over time (i.e., the data sources or the data itself will no longer be available).

To overcome these challenges, event queries should be updated or re-written in
order to cope with the dynamicity of the environment. Therefore, we propose here
a query optimizer that automatically discovers obsolete queries, and re-writes them
by replacing the missing data sources (i.e., sensors) and data (i.e., sensor observa-
tions, event describing features). To do so, one needs to measure the similarity be-
tween sensors in order to find adequate substitutes. Moreover, a similarity measure
is required for missing event features/sensed data replacement as well.

In the previous chapter, we proposed an Event Query Language (EQL) specifically
designed for Connected Environments. Our proposal, denoted EQL-CE, is part of a
framework that includes the query optimizer. The purpose of this chapter is to detail
how query re-writing can be utilized within the query optimizer module in order to
cope with the dynamicity of the environment. We detail here the query re-writing
process, the proposed similarity measures, and present an illustration example that
shows how the algorithm works. Finally, we discuss experiments and complexity
evaluation.
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4.1 Introduction

As previously mentioned, a Connected Environment is composed of various com-
ponents (e.g., infrastructures, locations, sensors, observations, events). It is a hybrid
and dynamic setup where one can find a diversity of sensors (e.g., static, mobile),
platforms (e.g., infrastructures, devices, machines), and data (e.g., scalar, multime-
dia sensor observations). This diversity is both beneficial and challenging, since it
introduces various issues related to:

• Sensor mobility & reliability. The connected environment contains both static
and mobile sensors. This presents some challenges regarding the reliability
of sensors in general, and in the case of mobile sensors, coping with mobility.
More specifically, sensors might become unavailable over time since break-
downs and faults can occur, and mobile sensors could enter/leave the net-
work, or change locations within the premises of the connected environment.
The unavailable sensors could render some queries obsolete (i.e., the queries
will need updating in order to return significant results).

• Platform compatibility. Since a diversity of platforms can be considered in
a connected environment (e.g., infrastructures, devices, machines), issues re-
garding inter-operability between various platforms emerge. Each platform
has a structure, and a specific configuration. This could lead to mismatching
components in the connected environment. Bridging the differences between
these platforms should also be considered in the query language.

• Data management. Since both scalar and multimedia data exist in a connected
environment, any query language should address the diversity from various
aspects (e.g., missing data/features, data cleaning and normalization, and data
volatility). Also, since sensors are data producers (sources), the diversity of
sensors could impact the availability of data (e.g., a mobile sensor that leaves
the network can no longer provide data for queries).

In this work, we focus on two main challenges: (i) sensor mobility and reliability;
and (ii) missing data/features. Since sensors are the data sources that provide useful
observations in the connected environment, data might become missing, lacking, or
even mismatching due to mobility, faults, and breakdowns. To highlight the rele-
vance of these two challenges, we consider event-related queries in EQL-CE. Event
queries are used to define events, by detailing their features, constraints, and re-
quired sensors/data. For instance, a room overheating event could be defined by
the feature temperature with a condition of more than 30◦C using a temperature
sensor s1. However, if the sensor leaves the environment, it can no longer serve this
query. More importantly, the observations provided by this sensor become missing
and the event, as currently defined, will not be detected anymore. Therefore, there
is a need for continuously checking and updating obsolete queries (such as the one
given in the aforementioned example) in order to ensure significant results when a
user queries the environment for events. This entails checking the current status of
the environment to verify if sensors (data sources), and their produced observations
(data) are still available, since event queries rely on the aforementioned elements.

In the previous chapter, we compared various Event Query Languages (cf. Table
3.1) and found that none of the existing works [7, 8, 9, 13, 14, 21, 26, 35, 41, 42, 58, 75]
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could cope with the dynamicity of the environment in order to overcome challenges
related to sensor mobility, sensor reliability, and missing data.

To overcome this issue, we propose a query optimizer equipped with a module
that re-writes obsolete queries in order to cope with the dynamicity of the connected
environment. We suggest a two step process: first, a query analyzer checks if any
re-writing is needed; and then, a query re-writer applies our proposed algorithm in
order to update obsolete queries. The query rewriting algorithm replaces unavail-
able sensors (data sources) by available and similar substitutes. This ensures that the
required data for query execution is not missing. To do so, we present a sensor simi-
larity measure that quantifies the level of similarity between any two given sensors.
If no similar sensors are available, the algorithm attempts to replace the data needed
for a specific event query by other obtainable/available data without compromising
the event definition. To do so, we also propose a way to measure inter-data simi-
larity. In this chapter, we detail the structure of our query optimizer, the re-writing
algorithm, and all its required functions.

The remainder of this chapter is organized as follows. Section 4.2 illustrates a
scenario that motivates our proposal. Section 4.3 presents a background study on
query re-writing. Section 4.4 provides a formalism that defines some the key terms.
Section 4.5 details our proposed query optimizer, its modules, and all the related
algorithms and functions. Then, Section 4.6 illustrates how query re-writing works
and discusses some experiments. Finally, Section 4.7 summarizes the chapter.

4.2 Motivating Scenario

We consider again the Smart Mall example (cf. Figure 4.1) in order to illustrate the
importance of coping with the dynamicity of a connected environment. We remind
the reader that the smart mall is equipped with a hybrid sensor network (i.e., com-
posed of diverse sensors, platforms, and data). A manager uses an EQL to query
the environment for data management, and event definition/detection purposes. To

FIGURE 4.1: The Smart Mall

focus on the various needs behind coping with the dynamicity of the smart mall,
we consider an event query that defines a fire event. This event is defined by three
features: (i) temperature with a condition high; (ii) CO2 with a condition high; and (iii)
smoke with a condition existence of smoke = true. The mall manager is interested in
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detecting this event in Shop 1. Moreover, the manager needs to assign sensors to
this event query. Four mobile sensors capable of observing various properties, and
three static sensors for smoke, humidity, and CO2 are available in Shop 1 (cf. Figure
4.2). When considering the aforementioned query the following needs emerge:

FIGURE 4.2: Fire event in Shop 1

Need 1. Coping with sensor breakdowns. For the fire event query, the manager
chooses to rely on Mobile Sensor 1 for temperature readings, the static CO2 sensor,
and the static smoke sensor. However, if the smoke sensor breaks down (cf. Figure
4.3) the query will return a null result because one of the data sources (i.e., the
smoke sensor) is no longer available. Therefore, the sensor and subsequently the

FIGURE 4.3: Smoke sensor breakdown

data needed for the query cannot be retrieved. The EQL should be capable of
coping with this issue. A potential solution could be to replace the smoke sensor
by another capable of providing the same observations in Shop 1.

Need 2. Coping with sensor distributions. In order to manage the issue discussed
in Need 1, the manager redefines the fire event by relying on Mobile Sensor 1 for
both temperature and smoke readings (since this sensor is capable of providing
smoke observations). The static CO2 sensor is still used (cf. Figure 4.4). Since
Mobile Sensor 1 is located in the upper left corner of the store, its provided obser-
vations are not indicative to the state of the entire shop (the static smoke sensor
was located at the center of the shop). Therefore, it would be better to consider a
more appropriate solution such as selecting various distributed sensors that could
provide smoke observations.
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FIGURE 4.4: Mobile Sensor 1 replaces the smoke sensor

Need 3. Coping with mobility. To address the sensor distribution issue mentioned
in Need 2, the manager redefines the fire event query by assigning all mobile sen-
sors, since they are evenly distributed in the shop, to produce smoke observations
(cf. Figure 4.5). However, since the event now partially relies on mobile sensors,

FIGURE 4.5: Assigning all mobile sensors to smoke observation

it is possible that these sensors could move around, leave the shop, or even the
entire environment. In this case, the query will remain obsolete. The EQL should
be capable of coping with mobility related issues.

Need 4. Coping with mismatching features/data. Another issue could be that
some (or all) mobile sensors are incapable of providing smoke observations (if
they are not equipped with smoke sensors). In this case, no sensors could provide
well distributed smoke observations, or any smoke observations at all. The EQL
should also be capable of addressing such issues. An appropriate solution could
be to replace the feature smoke by another that is available in Shop 1, similar to
smoke, and does not compromise the fire event definition. Figure 4.6 shows how
humidity for instance could replace smoke in the event definition.

FIGURE 4.6: Replacing smoke by humidity
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However, when considering the aforementioned needs, the following challenges
emerge:

Challenge 1. How to discover if a query is obsolete? How to know if query re-
writing is required?

Challenge 2. How to replace sensors with others that are similar, available, and
capable of contributing to a specific query? How to measure similarity between
sensors?

Challenge 3. How to replace mismatching/missing data or features when sensor
substitution is not possible? How to measure the similarity between event fea-
tures?

Challenge 4. How to re-write queries when the underlying schema (i.e., the con-
nected environment itself) is changing over time? Similarly, how to re-write queries
when the existing sensors and features/data change?

Therefore, we propose a query optimizer that automatically detects and re-writes
obsolete event queries. Since events rely on features/data (e.g., temperature, smoke)
and data sources (i.e., sensors), the optimizer checks if all the required elements for
a query are still available in the current state of the connected environment. If so, no
re-writing is needed. However, if any required sensor/data are unavailable/missing
our proposed algorithm re-writes the query. First, the algorithm attempts to replace
missing sensors with others that are similar. If this is not possible, the missing fea-
ture/data is replaced without damaging the definition of the event.

4.3 Related Work On Query Rewriting

Query rewriting is a phase of query processing. It refers to the application of a num-
ber of transformations to a query (original query q) in order to produce an equiva-
lent and optimized one (a new query q′). In this section, we recall the application
domains that are impacted by query rewriting works. Then, we present the pur-
poses and motivations behind such works. Finally, we detail the techniques used in
the literature.

4.3.1 Usage Of Query Rewriting

Query rewriting or reformulation has been an interesting research topic for many
years. Existing works [29, 36, 37, 64, 73, 91] target different application domains
(e.g., information retrieval in search engines [64, 91] database management systems
[29, 73], knowledge base management systems [36, 37]). Search engine queries are
often considered and handled as strings. This alleviates the complexity of their refor-
mulation. However, rewriting database or knowledge base queries is a more com-
plex task. This is due to the set of constraints that the rewriting process should
consider: (i) respecting a specific syntax; (ii) adapting to the structure of the query
components (e.g., tables in a database, concepts in an ontology); and (iii) considering
the relationships that tie query components together (e.g. inter-table relations in a
database, object properties in an ontology).
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4.3.2 Purposes Of Query Rewriting

Query rewriting can be utilized for different purposes (e.g., improving result accu-
racy, improving performance) [50, 54, 77]. To address the challenges mentioned in
Section 4.2, we focus on rewriting techniques that improve result accuracy. This is
due to the fact that missing sensors and data could lead to null, or inaccurate re-
sults (cf. Challenges 2 and 3). Performance related issues/optimizations will be
addressed in a future dedicated work. When detail in the following three objectives
of query rewriting for better result accuracy:

4.3.2.1 Reducing The Gap Between Users & Data

In the context of information retrieval systems, a gap exists between the stored doc-
uments/data, and user queries [48]. This is due to many reasons, most notably the
challenge of accurately describing and expressing a user’s intent when composing
a query. One of the various objectives of query rewriting is to reduce this gap by
adjusting a given query and improving the accuracy of the query result. This entails
rewriting specific query parts to better reflect the user’s intent, filter unnecessary
statements that could damage results, and/or complement, replace existing state-
ments to enrich and improve the query answer.

4.3.2.2 Increasing Result Recall

If a user submits a very selective or fine grained query, he/she might end up with
an empty or null query answer. In this case, rewriting strategies such as relaxation
and expansion are used to to retrieve a larger set of relevant results (i.e., increasing
recall), thus avoiding null/empty answer sets. Query expansion [11, 25, 46] rewrites
the original query in order to add relevant results to the original result set, even if the
new additions do not have an exact match with the original query terms. It broad-
ens (expands) the query by introducing additional tokens or keywords. To do so, one
needs to know where and how to get the additional relevant tokens/keywords. This
could be achieved by enriching the original query with abbreviations and synonyms
of the existing terms (e.g., by checking dictionaries, or via supervised/unsupervised
machine learning). Moreover, once the query is rewritten (i.e., expanded), one needs
to evaluate the relevance of the new result set w.r.t. the initial one. To do so, re-
sults are given scores based on machine learning ranking models, or specific scores
by comparing the new results with the original ones. Query relaxation [49, 91] is
another strategy. It consists of removing or substituting query tokens. Ignoring or
substituting fine grained tokens with more generalized ones, makes the query less
restrictive and increases recall (achieves a wider set of relevant results). More specif-
ically, query relaxation rewrites the query by only removing/generalizing tokens
that aren’t necessary for communicating the user’s intent. Query relaxation can be
achieved in various ways:

• Stop word removal: eliminating stop words that do not affect the meaning or
objective of the query.

• Specificity: using lexical databases, TF-IDF techniques (term frequency–inverse
document frequency) to assess how essential is every word of the query, hence
unnecessary words could be eliminated.

• Syntactic analysis: removing optional/unnecessary query statements based on
the query syntax (neglecting semantics).
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• Semantic analysis: relying on inter-word semantic dependencies/ties instead
of keyword frequency or query syntax, to determine the words that could be
dropped without damaging the query meaning. Semantic similarity measures
could be used to discover the ties between query words.

4.3.2.3 Increasing Result Precision

If a user submits a very generic (non specific) query, he/she might end up with
a huge amount of irrelevant results in the query answer. In this case, rewriting
strategies such as segmentation and scoping are used to to retrieve a smaller set
of relevant results (i.e., increasing precision), thus avoiding null/empty answer sets.
Query segmentation [16, 17, 43, 96] attempts to divide the query into a sequence
of semantic units, each of which consists of one or more tokens/words. Then, the
most significant part of the query is considered. Although this provides a smaller
query answer set, it filters out irrelevant results and keeps the most precise ones.
Query segmentation requires (i) a correct segmentation of the query (e.g., "hybrid
sensor network" could be segmented into "hybrid sensor" and "network" or "hybrid"
and "sensor network"); (ii) choosing the most important segment in the query (e.g.,
"hybrid" or "sensor network"); and (iii) only keeping answers related to the most
relevant segment. Query scoping [74, 98] rewrites queries by taking advantage of
data structures. Documents and data often have an explicit structure that mirrors
how users search for them. For instance, when querying for a temperature sensor,
the word ’sensor’ is interpreted as a device that senses data, and ’temperature’ is
considered as the property (natural phenomena) that could be observed by a sensor.
Query scoping is done in two steps. First, each query word is tagged with a label
that reflects its category (e.g., sensor to sensing device). This is not straightforward
since the categories need to be distinguished correctly (using machine learning, clas-
sification techniques). Then, once the class attributes are established and the query
words are tagged, the essence of the query can be captured by relying on the most
relevant terms and their tags. The remaining terms are dropped.

Recap. Query rewriting strategies that increase recall tend to augment the result
set size by adding more, potentially less relevant, terms. This helps avoid the issue
of queries that return no, or few, results. In contrast, strategies that target precision
decrease the query result set by filtering all unnecessary answers. This helps avoid
the issue of queries that return huge amounts of heterogeneous results. In both cases,
the accuracy is increased by better reflecting the user’s intent when querying the
data.

4.3.3 Existing Approaches

We review here some existing approaches from the literature. Some works [25, 37, 43,
64, 91] provide automatic query rewriting (i.e., do not include the user in the process)
while others [29, 38, 49] propose cooperative solutions by integrating the user and
his/her preferences in the rewriting process. In both methods, existing approaches
rely on one or multiple rewriting techniques (e.g., expansion, relaxation, segmenta-
tion, scoping). Moreover, the following works target all the aforementioned applica-
tion domains (e.g., rewriting for search engines, database management systems, and
knowledge base management systems).
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Automatic Query Expansion. In [25], the authors are interested in automatic query
expansion. They present a computationally simple, and theoretically justified method
for assigning scores to candidate expansion terms. The suggested ranking method
is based on the differences between the distribution of terms in relevant documents,
and the distribution of terms in all documents. Then, the authors conduct a series of
experiments that highlight the utility of relying on ranking models based on distri-
bution analysis when automatically expanding queries.

Query Rewriting For SPARQL. In [37], the authors propose a flexible query pro-
cessing approach for SPARQL. It is based on query rewriting using query approx-
imation and relaxation operators. Query Approximation consists of applying edit
operators (such as deletion, insertion and substitution) to transform a well-defined
regular expression into a new one. Query Relaxation relies on a fragment of RDF
Schema (RDFS) entailment rules. The relaxation operators provide users with alter-
native answers instead of an empty result.

Efficient Query Segmentation. In [43], the authors revisit the query segmentation
problem to propose a novel technique for query segmentation that is easy to imple-
ment, fast, and accurate. The use n-gram frequencies and Wikipedia titles that are
stored in a hash table. They finally evaluate the performance and accuracy of the
segmentation process over 50000 human-annotated queries.

Medical Information Retrieval. In [64], the authors use query rewriting to address
long medical queries submitted to search engines. Often users are uncertain about
their exact questions and unfamiliar with medical terminology. Therefore, they nor-
mally submit long queries, describing their symptoms and situation in plain English,
and this does not provide accurate and complete query answers. The authors pro-
pose a medical search engine that automatically rewrites long queries into moderate-
length queries by selectively dropping unimportant terms (i.e., words).

Query Rewriting For E-Commerce. In [91], the authors propose a query rewrit-
ing technique that targets search engine queries for E-Commerce. Particularly, the
authors are interested in queries that return null results. Therefore, they adopt a re-
laxation strategy for their query rewriting proposal. Their proposal ensures that the
retrieved items are as close to the user’s original goal as possible.

Query Rewriting For SQL. In [29], the authors propose a cooperative rewriting
of SQL queries for database management systems. Their solution, denoted CSQL,
consists of query relaxation, generalization, specialization, and association on data
patterns. Query relaxation can be explicitly specified by the user or implicitly per-
formed by the system. The implicit and explicit relaxations can also be combined
and performed interactively by both the system and the user.

Cooperative Query Relaxation. In [38], the authors propose a cooperative process
for query rewriting. First, they rely on relaxation to automatically (i) generalize
query terms; (ii) modify query terms; and/or (iii) break restrictive joins. Then, the
authors model the user preferences as rules/constraints and adjust the rewriting
based on the latter.
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Generalized & Interactive Selection. In [49], the authors address the issue of se-
lection in interactive applications where users select items of interest on graphical
interfaces. Then, the authors motivate the need for generalized selections (e.g., re-
gions, or attribute ranges instead of individual items). They propose an interactive
selection process that relies on query relaxation to achieve their objectives. Finally,
they apply their method for information visualization, and graphics editing appli-
cations while enabling generalized selection over both static and dynamic interface
objects.

4.3.4 Handling Connected Environment Dynamicity

Since query rewriting is used for different purposes, and various techniques exist,
we highlight here our requirements and objectives in order to put this background
study into our context (i.e., handling the dynamicity of a connected environment).
Our objective is to rewrite (event related) obsolete queries. Due to the dynamicity
of the environment, more precisely due to sensor mobility, breakdowns, and loss of
data, a query might lose the sensors and data that it relies on. This restricts the query
answer (i.e., either the query is not processed due to missing elements, or no results
are found). Therefore, we look at rewriting techniques that increase recall in order
to avoid null answers when querying for events in a connected environment.

We propose a solution that is inspired from query expansion and relaxation in
order to replace missing sensors (i.e., data sources) and sensor observations (i.e.,
data/features) in obsolete queries. First, we aim to replace (substitute) unavailable
sensors by similar and available ones. It is an exact rewriting (a straightforward sub-
stitution of sensors) that does not expand nor relax the query by respectively adding
or retracting specific terms/keywords. Then, if the algorithm is incapable of find-
ing adequate substitutes for specific sensors, we propose an approximate rewriting
that substitutes unavailable sensed data/features. For this phase, we use semantic
similarity measures, similar to semantic analysis in query relaxation, in order to find
semantic "synonyms" (similar to query expansion) for obsolete data/features.

4.4 Preliminaries & Definitions

Before detailing our proposal for query rewriting, we provide here some prelimi-
naries and formal definitions of key terms. We do not formalize every element of
the environment, and limit the definitions to terms that are related to the connected
environment, event queries, sensors, and sensor data.

4.4.1 The Connected Environment

Various components c exist in a connected environment CE. These components
could be related to the environment itself, the sensor network, the events, or the
application domain. Definition 1 defines a connected environment CE.

Definition 1. A Connected Environment, denoted CE, is defined as the set of its con-
stituent components:

CE =
n⋃

i=0

ci ∀i ∈N (4.1)

Where:
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• ci is a component instance that belongs to CE

Remark. Component instances could be related to HSSN concepts (e.g., hssn:Infra-
structure, hssn:MobileSensor, hssn:StaticSensor, hssn:ScalarProperty). More-
over, instances could be related to event and application domain components. �

4.4.2 Sensors & Sensor Data

Sensors are deployed at specific locations in the environment. Regardless of their
type (e.g., static, mobile), each sensor has a location, a set of properties, and covers
a specific area of the space. Moreover, sensors are the data providers that produce
observations related to various event features. They do so by calling and executing
specific functions. Definition 2 details the sensor description.

Definition 2. A Sensor s is defined as a 7 tuple:

s = (id, F, O, L, C, FUNCT, PROP) (4.2)

Where:

• id is a unique identifier

• F =
⋃k

i=0 fi ∀i ∈N is a set of features observed by s

• O =
⋃l

i=0 oi ∀i ∈N is a set of observations produced by s

• L =
⋃m

i=0 previousLocationi ∪ currentLocation ∀i ∈ N details the location history
of s

• C =
⋃n

i=0 previousCoveragei ∪ currentCoverage ∀i ∈ N details the coverage area
history of s

• FUNCT = {isActive, sensingFunction} is the set of functions provided by s

• PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus} is the
set of properties that describe the state of s

Remark. The function isActive indicates ({TRUE, FALSE}) if the sensor is opera-
tional. The sensingFunction is the process that allows the sensor to make observa-
tions for a specific feature f ∈ F. The properties p ∈ PROP indicate the remain-
ing/free battery, processor, and memory percentages. Finally, the networkStatus de-
notes ({YES, NO}) the sensor’s capability to transmit/receive data. �

4.4.3 Event Queries

Event queries are used in CE in order to define, and later detect, targeted events.
Since these queries might become obsolete due to the dynamicity of the environ-
ment, we formally define them in Definition 3 before addressing their rewriting.

Definition 3. An Event Query q is defined as follows:

q = 〈id, context〉 (4.3)

Where:

• id is a unique identifier
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• context = (F, C, S) is the event query context where:

– F =
⋃n

i=0 fi ∀i ∈N is the set of features that describe the event

– C =
⋃m

i=0 ci ∀i ∈ N is the set of conditions associated to the event features
where ∀ i ∈N, c ∈ C, f ∈ q.F : ci −→ fi

– S =
⋃l

i=0 si ∀i ∈ N is the set of sensors that provide observations for the
detection of the event defined in q where:

∀ s ∈ S ∃ f ∈ s.F | f ∈ q.F

Remark. In an event query, each sensor s ∈ S is considered to be already known
and defined (cf. Definition 2). Moreover, each sensor provides observations o ∈ s.O
that are related to at least one event describing feature f ∈ q.F. This means that
the features provided by the sensor should be included in the ones required by the
query: ∀ s ∈ S, s.F ⊆ q.F. �

4.4.4 Obsolete Event Queries

Obsolete event queries are defined as event queries that have suffered from sensor
mobility and/or breakdowns (and thereafter loss of data for event features). We
formally define them as follows:

Definition 4. An Obsolete Event Query oq is defined as an Event Query q (cf. Definition
3)

oq = 〈id, context〉 (4.4)

Where at least one of the following conditions is satisfied:

• Condition 1: ∃ s ∈ S | s.isActive = FALSE

• Condition 2: ∃ s ∈ S | distance(s.L.currentLocation, oq.context.F.location) < τ

• Condition 3: ∃ s ∈ S | oq.context.F.location /∈ s.C.currentCoverage

Remark. Condition 1 checks if any sensor is inactive. Condition 2 checks if the dis-
tance in meters (using the distance function) between the current sensor location and
the location requested in the query exceeds an acceptable threshold τ. Condition 3
checks if any sensor no longer covers the location requested in the query context. �

4.5 Query Re-writing Proposal

In this section, we present a query optimizer that allows query rewriting in order
to help EQL-CE cope with the dynamicity of the connected environment. We start
by detailing the optimizer module, its interaction with the entire framework, and its
inner composition. Then, we detail our proposed algorithm.

4.5.1 Query Optimizer Module

Our global framework (cf. Figure 1.5) shows how the event query language is used
to define and manage a connected environment. The queries are composed, parsed
and sent for execution. However, in some cases sensor mobility/breakdown could
lead to missing or mismatching data. Therefore, some queries become obsolete. The
query optimizer aims to detect and rewrite such queries to ensure that the user does
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not end up with null results when querying the connected environment for events.
We envision two main rewriting strategies: (i) for single queries submitted by a user;
and (ii) for batch queries that automatically run periodically. We detail here the pro-
cess for the first case (i.e., rewriting a submitted query q that became obsolete). The

FIGURE 4.7: EDCE Global Framework

query optimizer is an extensible module, that could integrate various optimization
engines. Currently, it is equipped with a query rewriting engine and various spa-
tial/temporal distribution functions that could be integrated in EQL-CE queries (cf.
Needs 4 and 5 in Section 3.2). Future additions to the query optimizer could in-
clude a query performance booster for improved execution run-time and resource
consumption (to be discussed in a separate dedicated work). We currently provide
three rewriting options for the user:

• Manual Rewriting: The user can rewrite a specific query using the ALTER or
UPDATE queries provided by EQL-CE. Although this option is available, it
is not recommended since the user is normally unaware of latest state of the
connected environment (i.e., the user will rewrite the query without taking
into account the latest changes that occurred in the environment).

• Collaborative Rewriting: The user can rewrite a specific query using the AL-
TER or UPDATE queries provided by EQL-CE with an assistance provided by
the system. This entails guiding the user when changing a query by notifying
him/her of the current state of the connected environment. Therefore, the user
will receive a list of the currently available components that he/she can use
when rewriting the query.

• Automatic Rewriting: The query rewriting engine automatically handles the
detection and rewriting of obsolete queries. No user intervention is required.

In this study, we focus on the rewriting engine (automatic rewriting). We present
first the query analyzer (i.e., the module that automatically detects obsolete event
queries). Then, we detail the query re-writer (i.e., the module that executes our
proposed algorithm for query rewriting). Figure 4.8 illustrates the inner composition
of the query rewriting engine found in the optimizer module.
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FIGURE 4.8: Query Rewriting Engine

4.5.2 Query Analyzer

The query analyzer takes as input any incoming event query q as defined in Sec-
tion 4.4. These queries could be either submitted individually by the user, or batch
queries that are automatically sent for execution periodically. The analyzer checks
the current state of the sensors that any incoming query q relies on. The sensor
checker queries the connected environment in order to retrieve the state of the sen-
sors found in q (this step can be executed once for a single query, or periodically
for batch queries). If all sensors are still currently available, no query rewriting is
needed and the query is sent for execution (i.e., the event definition can be used as
described in q by the event detector in order to detect the targeted event). However,
if any sensor is no longer available (e.g., currently broken, unavailable, changed
location, left the network) then the event query q is sent to the query re-writer in
order to replace its missing/unavailable data and sensors. Algorithm 1 details how
the query analyzer detects obsolete queries. The check function takes the query q
and the connected environment CE as input. It verifies the current state of all sen-
sors found in the event query. For each of the aforementioned sensors, the algo-
rithm checks if the sensor is running, and available by calling its isActive function
(cf. Definition 2 in Section 4.4). The algorithm also compares the sensor’s location
in the query q with its actual current location in CE by calculating the distance in
meters between the two locations and verifying against a system configured thresh-
old τ (line 9). Finally, the algorithm compares the sensor’s coverage area in the
query q with its current coverage area in CE by measuring the overlap percent-
age between the two areas and verifying against a threshold n. This threshold is
a predefined system parameter that could be later modified if necessary. A sensor
is saved in the unavailable sensors list US if it is currently inactive, too far from
the location mentioned in q, or does not currently cover an acceptable percentage
of the area mentioned in q. At the end of the checking phase, if US is empty no
rewriting is needed. If not, the query q and the list US are sent to the re-writer.
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Algorithm 1: check Method - Query Analyzer
/* Begin Input / Output declaration */
Input : q, CE // q is an event query, CE is a connected environment
Output: US // US is the list of unavailable sensors in q
/* Begin system parameters declaration */
Parameters: τ, n /* τ is a proximity threshold, n is an acceptable overlapping

percentage */
/* Begin Variable declaration */
Variables : s, queryL, currentL, queryCA, currentCA, c1, c2, c3
/* Begin algorithm */

1 foreach sensor ∈ q.S do
2 queryL← s.L.currentLocation
3 currentL← CE.S.s.L.currentLocation
4 queryCA← s.C.currentCoverageArea
5 currentCA← CE.S.s.C.currentCoverageArea
6 c1← s.FUNCT.isActive // Get the state of s
7 c2← distance(queryL, currentL) // Distance in meters between two locations
8 c3← over(queryCA, currentCA) // Overlap percentage between two areas
9 if (c1 == False | c2 > τ | c3 < n) then

/* If s is currently inactive, no longer located in the same location (or
nearby), or no longer covers (mostly) the same area */

10 US← s
11 end
12 Return US

4.5.3 Query Re-writer

Once the query analyzer confirms that an event query q needs rewriting, the re-
writer takes the query q, the connected environment CE, and the list of unavailable
sensors US as input in order to output a rewritten query q′. The query rewriting pro-
cess is described in Algorithm 2 which is split into two main parts: (i) exact rewriting
(lines 1-12); and (ii) approximate rewriting (lines 13-29). The following details each
part separately:

• Exact Rewriting: replacing unavailable sensors. First, the algorithm attempts
to replace each missing sensor in q by another that is similar, and compatible
with the query context. Since this does not alter the definition or meaning of
the event, we denote this part of the algorithm ’exact rewriting’. We call the
replacing sensor a ’substitute’. To achieve this, the getSimilarSensor function
(line 2) compares the missing sensor with others that could replace it (candi-
dates). Using our proposed sensor similarity measure, the algorithm elects
the successor. If no candidate is ’similar enough’ (i.e., the similarity measure
does not exceed an acceptance threshold), the original sensor is flagged as ’ir-
replaceable’ and stored in the IS list (dedicated to ’irreplaceable’ sensors). At
the end of this phase, if IS is empty (i.e., all unavailable sensors were replaced)
the algorithm breaks. Otherwise, the algorithm goes into phase two (described
below).

• Approximate Rewriting: replacing missing features. If the query q contains
at least one ’irreplaceable’ sensors, the algorithm goes into its second phase:
feature replacement. Here, the algorithm attempts to replace the features pro-
vided by the ’irreplaceable’ sensors with others that are available and similar.
To do so, the features that are no longer covered by any sensor are stored in the
missing features list MF, and each missing feature is replaced by another sim-
ilar one using the getSimilarFeature function (line 20). We denote this phase
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as approximate rewriting since the substitute features are not exact matches
of the original ones. Finally, if no adequate replacement if found for a spe-
cific feature, the latter is flagged as ’irreplaceable’. The rewritten query q′ is
outputted.

Algorithm 2: Event Query Re-Writing
/* Begin Input / Output declaration */
Input : q, CE, US /* q is an event query, CE is a connected environment, US is

the list of unavailable sensors in q */
Output: q′ // q′ is the rewritten event query
/* Begin Variable declaration */
Variables: IS, FEATURES, MF, IF, sensor, sensor′, f , f eature, f eature′

/* Begin algorithm */
1 foreach sensor ∈ US do
2 sensor′ ← getSimilarSensor(sensor, q.context, CE)
3 if (sensor′ ! = EMPTY) then
4 q.S.sensor ← sensor′

5 else
6 IS← sensor // List of irreplaceable sensors
7 end
8 end
9 if (IS.size == 0) then

10 q′ ← q
11 break
12 else
13 foreach sensor ∈ IS do
14 foreach f ∈ sensor.F do
15 FEATURES← f /* List of all features provided by the missing

sensors */
16 end
17 end
18 MF = getMissingFeatures(q.context.F, FEATURES)

/* List of all missing features, i.e., no longer covered by any sensor */
19 foreach f eature ∈ MF do
20 f eature′ ← getSimilarFeature( f eature, q.context, CE)
21 end
22 if ( f eature′! = EMPTY) then
23 q.context.F. f eature← f eature′

24 else
25 IF ← f eature // List of irreplaceable features
26 end
27 end
28 q′ ← q
29 Return q′

4.5.3.1 Measuring Sensor Similarity

In order to find the successor of a missing or unavailable sensor, one should be able
to measure inter-sensor similarity. Therefore, we propose a sensor similarity mea-
sure (cf. Algorithm 3) that takes into account four main sensor attributes:

• Capability: Denotes the successor sensor’s ability to provide or sense the same
required observable properties (fully or partially) as the original sensor.

• Reliability: Denotes the successor sensor’s ability to execute the required task
(i.e., having a good battery status, memory, processor).
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• Spatial closeness: Denotes the presence of the successor sensor close to the lo-
cation required for the sensing task (i.e., close to the original sensor’s location),
and its ability to cover a ’similar-enough’ area of space.

• Temporal closeness: Denotes the successor sensor’s capability to produce fresh
(recent) observations in comparison with the original sensor.

Algorithm 3: getSimilarSensor Method (cf. Algorithm 2 - Line 2)
/* Begin Input / Output declaration */
Input : s, q.context, CE /* s is a sensor, q.context is the query context, CE is a

connected environment */
Output: simS // simS is the most similar sensor to s
/* Begin System Parameters declaration */
Parameters: w1, w3, w3, w4 // Weights assigned to each score
/* Begin Variable declaration */
Variables : sim, cap, rel, spa, tem, i, j, S, ID, SIM, m, s′

/* Begin algorithm */
1 S← getCompatibleSensors(q.context, CE) /* Retrieves all sensors from CE that comply

with the query context */
2 i = 0
3 foreach s′ ∈ S do
4 cap← capabilityScore(s, s′)
5 rel ← reliabilityScore(s′)
6 spa← spatialScore(s, s′)
7 tem← temporalScore(s, s′)
8 sim = w1 × cap + w2 × rel + w3 × spa + w4 × tem
9 ID[i]← s′.ID

10 SIM[i]← sim
11 i ++

12 end
13 m = MAX(SIM)
14 if (m == 0) then
15 return EMPTY
16 break
17 else
18 j← getPosition(m) /* getPosition is the is the function that return the first

position for a value in a list */
19

20 simS← ID[j]
21 return simS;
22 end

Algorithm 3 details the sensor similarity measure function that takes the missing
sensor, the query context, and the connected environment as input and outputs the
most similar sensor (i.e., a successor if found). To do so, we rely on a sensor sim-
ilarity measure in order to select the most similar sensor. To avoid comparing the
original sensor with all others found in CE, we filter the candidates list to sensors
that comply with the query context using the getCompatibleSensors function (line 1).
This boosts the performance by minimizing the number of sensor comparisons. The
process continues by calculating, for each compatible sensor, an individual score for
each aforementioned attribute (lines 4-7). Then, we calculate an overall similarity
score (line 8) as the weighted sum of all individual scores. The weights are system
parameters that allow emphasis on a specific attribute (or set of attributes) when cal-
culating the similarity score. For instance, if any temperature observation is needed
regardless of any spatial restrictions, one might decrease the weight associated to
spatial closeness (w3 = 0) and increase the one related to the sensor’s capability
(w1 = 1). Each compatible candidate sensor will have an overall similarity score
w.r.t the original (missing/unavailable) sensor. The process ends by choosing the
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most similar sensor (i.e., having the maximal similarity score). If the maximal score
is zero, then no similar sensors were found. In this case the returned output is empty.
This means that the original sensor is ’irreplaceable’. In the following, we detail the
five functions used in Algorithm 3. We start with the getCompatibleSensors function
(Algorithm 4).

Since it is meaningless, and costly to compare the original sensor to others that
are not compatible with the query requirements (e.g., too far away, do not cover the
required area), a filtering process is required prior to similarity comparison. This
function takes the query context as input, focuses on the spatial feature, and filters
out any sensor that is not close enough to the requested location in q or that does
not cover this location. The output is a list of candidate sensors that comply with
the query context. Only this list is considered in the similarity calculations when
searching for a successor for an unavailable sensor.

Algorithm 4: getCompatibleSensors Method (cf. Algorithm 3 - Line 1)
/* Begin Input / Output declaration */
Input : q.context, CE /* q.context is the query context, and CE is the connected

environment */
Output: S // S is the set of compatible sensors
/* Begin System Parameters declaration */
Parameters: τ
/* Begin Variable declaration */
Variables : loc, s
/* Begin algorithm */

1 loc← q.context.F.location
2 foreach s ∈ CE.S do
3 if (distance(s.L.currentLocation, loc) < τ ‖ loc ∈ s.C.currentCoverage) then
4 S← s
5 end
6 return S

Algorithm 5 details how the capability similarity score is calculated. The origi-
nal sensor and a candidate (compatible) sensor are compared. The set of features
observed by each sensor are analyzed in order to count the number of common fea-
tures (line 2). If this number exceeds an acceptable threshold n, then the score is
given a specific value (e.g., 1). If not enough common features are found, the at-
tributed score is the value divided by a degradingFactor. The acceptable number of
common features n, the optimal score value, and the factor of degradation of the
score degradingFactor are configurable system parameters.

Algorithm 5: capabilityScore Method (cf. Algorithm 3 - Line 4)
/* Begin Input / Output declaration */
Input : s, s′ // s, s′ are two a sensor
Output: score // score is the capability similarity score
/* Begin System Parameters declaration */
Parameters: n, value, degradingFactor
/* Begin algorithm */

1 score = 0
2 if (commonFeaturesCount(s.F, s′.F) > n) then
3 score = value
4 else
5 score = value

degradingFactor
6 end
7 return score
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Algorithm 6 details how the reliability similarity score is calculated. The candidate
(compatible) sensor’s properties are analyzed. Each property (e.g., battery, memory,
processor) is verified against an acceptance threshold τ (line 4). Then, the property
is given an individual reliability score of value if the property level is accepted (line
5). If not, value is divided by a degradingFactor (line 7). The final reliability score for
a candidate sensor is the average of all individual property scores (line 10).

Algorithm 6: reliabilityScore Method (cf. Algorithm 3 - Line 5)
/* Begin Input / Output declaration */
Input : s′ // s′ is a sensor
Output: score // score is the availability similarity score
/* Begin System Parameters declaration */
Parameters: T, value, degradingFactor
/* The acceptable threshold τ ∈ T in respect to each property p ∈ PROP, the

optimal score value, and the factor of degradation of the score degradingFactor
are system parameters that the admin can configure */

/* Begin Variables declaration */
Variables : τ, p
/* Begin algorithm */

1 score = 0
2 foreach p ∈ s′.PROP do
3 τ ← getRelatedThreshold(T) /* Gets the threshold value related to the current

property */
4 if (p > τ) then
5 score = score + value
6 else
7 score = score + value

degradingFactor
8 end
9 end

10 return score
‖s′ .PROP‖

Algorithm 7 details how the spatial similarity score is calculated. The function
takes the original and candidate sensors as input. It compares their locations and
coverage areas. Location closeness is evaluated based on the metric distance be-
tween the two sensors (line 6). Coverage area similarity is evaluated based on the
overlap percentage of the two coverage areas (line 7). Finally, spatial similarity is
given a score of value if the distance between the two sensors is less than a thresh-
old τ and the overlap percentage between the two coverage areas is greater than a
threshold p (line 11). If the distance is greater than τ and the overlap percentage
is less than p (line 14), the spatial similarity score is zero. Otherwise, the score is
value divided by a degradingFactor. The acceptable distance in meters τ, the per-
centage of overlapping p, the optimal score value, and the factor of degradation
degradingFactor are system parameters.

Algorithm 8 details how the temporal similarity score is calculated. The algo-
rithm takes as input the original, and candidate sensors. Then the getLatest function
retrieves the most recent observation produced by each sensor (line 2 and 3). Fi-
nally, the tdist function returns the temporal distance in seconds between two sensor
observations. If the temporal distance is less than a threshold τ, the score is as-
signed a value (line 6). If not, the temporal similarity score is value divided by a
degradingFactor. The acceptable temporal distance in seconds τ, the optimal score
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value, and the score degradation factor, degradingFactor, are system parameters.

Algorithm 7: spatialScore Method (cf. Algorithm 3 - Line 6)
/* Begin Input / Output declaration */
Input : s, s′ // s, s′ are two sensors
Output: score // score is the spatial similarity score
/* Begin System Parameters declaration */
Parameters: τ, p, value, degradingFactor
/* Begin Variable declaration */
Variables : cl1, cl2, cc1, cc2, d, o
/* Begin algorithm */

1 score = 0
2 cl1 = s′.L.currentLocation
3 cl2 = s.L.currentLocation
4 cc1 = s′.C.currentCoverage
5 cc2 = s.C.currentCoverage
6 d = dist(cl1, cl2) // dist returns the distance in meters between two locations
7 o = over(cc1, cc2) // over returns the overlap percentage between two areas
8 if (d < τ && o > p) then
9 score = value

10 else
11 if ((d < τ && o < p) ‖ (d > τ && o > p)) then
12 score = value

degradingFactor
13 else
14 score = 0
15 end
16 end
17 return score

Algorithm 8: temporalScore Method (cf. Algorithm 3 - Line 7)
/* Begin Input / Output declaration */
Input : s, s′ // s, s′ are two sensors
Output: score // score is the temporal similarity score
/* Begin System Parameters declaration */
Parameters: τ, value, degradingFactor
/* Begin Variable declaration */
Variables : o1, o2
/* Begin algorithm */

1 score = 0
2 o1 = getLatest(s′.O.o)
3 o2 = getLatest(s.O.o)
4 if (tdist(o1, o2) < τ) then
5 score = value
6 else
7 score = value

degradingFactor
8 end
9 return score

4.5.3.2 Measuring Feature Similarity

When replacing an unavailable sensor, one might end up with no adequate suc-
cessor. In such cases, the sensor originally used in the event query q is flagged as
irreplaceable (cf. Algorithm 2 - line 6). However, the aforementioned irreplaceable
sensors provide observations for specific event features (e.g., temperature, humid-
ity, noise). Hence, the data needed for the detection of the event is still lacking. To
address this issue, the algorithm attempts to replace the feature itself by another
similar one (e.g., humidity instead of temperature in case the temperature sensor is
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irreplaceable). This requires comparing features by measuring their semantic simi-
larity in order to choose a successor feature.

Algorithm 9: getSimilarFeature Method (cf. Algorithm 2 - Line 20)
/* Begin Input / Output declaration */
Input : f , CE, q.context /* f is a feature, CE is the connected environment, and

q.context is the query context */
Output: f ′ // f ′ is the most similar feature
/* Begin System Parameters declaration */
Parameters: KB, ss f , τ
/* The knowledge base having various features KB, the semantic similarity

function ss f, and the acceptable threshold τ are system parameters that the
admin can configure */

/* Begin Variable declaration */
Variables : FEATURES, f eature, score, max, id, loc, S, s
/* Begin algorithm */

1 S← getCompatibleSensors(q.context, CE) /* Retrieves all sensors from CE that comply
with the query context */

2 foreach s ∈ S do
3 FEATURES← s.F /* Retrieves all features from CE that are provided by

sensors from S */
4 end
5 max = 0
6 foreach f eature ∈ FEATURES do
7 score = ss f ( f eature, f , KB)
8 if (score > max) then
9 max = score

10 id = f eature.ID
11 end
12 if (max > τ) then
13 f ′ ← getFeatureByID(id) // Retrieves the successor feature
14 q.Context.C ← adaptCondition( f , f ′) /* Adjusts the conditions related to the

successor feature */
15 return f ′

16 else
17 return EMPTY
18 end

Algorithm 9 describes how our rewriting algorithm compares/substitutes fea-
tures. The getSimilarFeature function takes the query context, the connected en-
vironment, and a feature (the lacking feature f ) as input. The aim is to output a
successor feature f ′. To do so, we rely on a sensor feature/observation knowledge
base KB where features, and inter feature ties are semantically described (e.g., an
ontology). We also call an external semantic similarity function ss f (e.g., such as the
ones in [86]). We choose an external function that calculates the semantic similar-
ity between a feature on one hand and 1 to n combined features on the other (e.g.,
noise combined with vibration could replace motion). Moreover, ss f considers the
features and their dependencies within the knowledge base KB when calculating the
similarity score. The process of replacing a feature is the following:

1. Step 1: Filtering the replacing candidate features. It is highly costly to com-
pute the similarity between a missing feature f and all features found in KB.
To alleviate this issue, we call the getCompatibleSensors function that returns
the set of sensors that currently comply with the query context (cf. Algorithm
3). These sensors are the only ones capable of providing adequate candidate
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features (s.F cf. Definition 2). Line 3 shows how all candidate features (pro-
vided by compatible sensors) are stored in a list FEATURES. These features
will be compared with the original missing feature f .

2. Step 2: Choosing the most similar (successor) feature. For each candidate fea-
ture found in FEATURES, the ss f function will calculate the semantic similar-
ity score by considering the features and their dependencies within the knowl-
edge base KB (lines 6-11).

3. Step 3: Verifying against a similarity threshold. Before outputting the succes-
sor feature, we compare its similarity score (which is the maximum value) with
a similarity threshold τ. If the score exceeds τ, the successor feature f ′ is out-
putted. If not, the function return an empty result. This means that the original
feature f is ’irreplaceable’.

In the rare case, of rewriting a query without being able to replace all unavailable
sensors, and all missing features, the query cannot have a deterministic answer. We
detail probabilistic and fuzzy query answers in a separate future work.

4.5.4 Complexity Evaluation

Since the implementation is still ongoing, we cannot yet conduct experiments. Mean-
while, we present here an a ’priori’ evaluation of the complexity of Algorithms 1
and 2. As the name suggests, we analyze the algorithms prior to running them on
a specific system. Therefore, this is a theoretical analysis. The efficiency of the al-
gorithms is measured under the assumption that all other factors, (e.g., processor
speed) are constant and have no effect on the implementation. Complexity analysis
is performed on two parameters: (i) time complexity gives an indication as to how
long an algorithm takes to complete with respect to the input size; and (ii) space
complexity gives an indication as to how much memory is required to execute the
algorithm with respect to the input size. We calculate here how the time (or space)
taken by the algorithms increases as we augment the input size. We rely on ’BigO’
(O) notation to present an overview of the worst case scenario (upper bound), and
the ’Big Omega’ (Ω) notation to measure the best case scenario (lower bound). We
recall here each notation:

• BigO: If an algorithm is described by a function f (n), the BigO of f (n) is a func-
tion g(n) that bounds it (i.e., after a certain value g(n) would always exceed
f (n). The common notations of the BigO are the following: (i) O(1) describes
an algorithm that will always execute in the same time (or space) regardless
of the size of the input; (ii) O(n) describes an algorithm whose performance
grows linearly and in direct proportion to the size of the input; (iii) O(n2) rep-
resents an algorithm whose performance is directly proportional to the square
of the size of the input. This is common with algorithms that involve nested
iterations (deeper nested iterations will result in O(n3), O(n4), etc); and (iv)
O(2n) denotes an algorithm whose growth doubles with each addition to the
input. The growth curve of an O(2n) function is exponential.

• BigΩ: This notation provides us with the best case scenario of running an al-
gorithm (i.e., the minimum amount of resources (time or space) an algorithm
would take to run). If an algorithm is described by a function f (n). BigΩ of
f (n) is a function g(n) that bounds the lower end of f (n) (i.e., after a certain
value f (n) would always exceed g(n)).



92 Chapter 4. Handling Connected Environment Dynamicity

Algorithm 1 Evaluation. The check method inputs an array of query sensors. The
purpose is to check the availability of each one of them. The input size is N = ‖q.S‖
(cf. Definition 3). The algorithm begins with a f oreach loop that scrolls through the
array. For each iteration, the availability of a sensor is evaluated based on its current
state in the connected environment CE. Besides variable/value assignments, two
functions are called in the loop: (i) distance that returns the distance between two
locations (line 7); and (ii) over (line 8) that returns the overlap between two coverage
areas without having to run nested loops (e.g., using hash maps, spatial algebra
operators). All statements in the loop are executed once (i.e., of complexity O(1)).

Therefore, in a worst case scenario the BigO of Algorithm 1 is O(N). In contrast,
the best case scenario is when N = ‖q.S‖ = 1. This means that the input query
only requires one sensor. In this case, the BigΩ of Algorithm 1 is Ω(1). This shows
that, in theory, the complexity in time (or space) of Algorithm 1 is linear and directly
proportional to the input size.

Algorithm 2 Evaluation. Algorithm 2 is more complex to evaluate since it nests
various functions (e.g., getSimilarSensor, getCompatibleSensors, getSimilarFeature).
Moreover, the overall complexity is affected by the external semantic similarity func-
tion ss f and the knowledge base KB used in the getSimilarFeature function. The
algorithm is a sequence of two main parts (i.e., sensor replacement, feature replace-
ment). When all unavailable query sensors are replaceable, the algorithm breaks and
the second part is not executed.

The sensor replacement process is detailed in a f oreach loop (lines 1-11) that scrolls
through a list of all the unavailable sensors in order to replace them. The size of this
list is N = ‖US‖. We start by detailing the nesting hierarchy of this loop.

• The f oreach loop calls the getSimilarSensor function (Algorithm 2 - line 2) N
times (N = ‖US‖). The getSimilarSensor function calls the functions/loops
below:

– The getCompatibleSensors function contains a f oreach loop that iterates
M times (M = ‖CE.S‖) as shown in Algorithm 4 - line 2.

– A f oreach loop (Algorithm 3 - lines 3-12) that iterates L times (L = ‖S‖).

The remaining statements within this loop have constant complexities, which are
negligible in comparison to the complexity brought by the two nested loops. There-
fore, the overall complexity of the first part of Algorithm 2 (i.e., sensor replacement)
is O(N × (M + L)).

The feature replacement process is represented in lines 12-29 of Algorithm 2. We
detail the different parts of this process and the subsequent loops:

• Lines 12-18: Here we implement two nested loops to find the features that
need replacement. We scroll through the list of irreplaceable sensors in the
upper level loop (P = ‖IS‖ iterations). Then, for each sensor we retrieve the
provided features (F iterations). Then in line 18 a the missing features are
stored in an array list. The overall complexity of this part is O(P× F).
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• Lines 19-21: Here we call the getSimilarFeature function to replace the miss-
ing features. This process’s complexity is affected by the external ss f function
called in Algorithm 9 - line 7). Since the function might change, we denote its
complexity as Oss f . The overall complexity of this part can be summarized by
the complexity brought by its deepest nested loop. Therefore, the complexity
of lines 19-21 is O(A× (B + C + D×Oss f )) where:

– A is the number of iteration of the f oreach loop in Algorithm 2 - line 19.

– B is the number of iterations of the f oreach loop (cf. getCompatibleSensor
in Algorithm 9 - line 1).

– C is the number of iteration of the f oreach loop in Algorithm 9 - line 2.

– D is the number of iteration of the f oreach loop in Algorithm 9 - line 6.

– Oss f is the complexity of the semantic similarity function (cf. Algorithm 9
- line 7).

To recapitulate, the sensor replacement part has a BigO notation of O(N× (M + L)),
and the feature replacement part has a BigO notation of O(P × F + A × (B + C +
D×Oss f )). However, the overall complexity can be simplified by only considering
the highest nested loops (since they make the others negligible). Therefore, we can
say that the BigO notation of Algorithm 2 is O(A× D ×Oss f ). This represents the
worst case scenario. The best case scenario is when the algorithm breaks at line 11
(if all sensors are replaceable). In this case, the BigΩ notation is Ω(N × (M + L)).

Discussion. In summary, Algorithm 1 has a linear worst case scenario while Algo-
rithm 2 has a polynomial worst case complexity of degree n | n ≥ 3 depending on
the complexity of the semantic similarity function ss f . However, event queries rely
on a finite number of sensors/features (that in most cases is not excessive). There-
fore, although Algorithm 2 has nested loops, the number of iterations should not
be, in theory, very costly. To verify this, we need to run the previously mentioned
experiments and compare the results as soon as the implementation is completed.

4.6 Illustration and Experimental Protocol

4.6.1 Illustration Example

In this section, we present an example that illustrates how the query rewriting en-
gine works. We recall the same example of Section 4.2 (cf. Figure 4.9) and rewrite the
fire event query in Shop 1. We detail the setup, how unavailable sensors are replaced,
and how missing features are substituted. The second part of this section discusses
the ongoing experiments.

4.6.1.1 Example Setup

The connected environment CE is the entire Smart Mall. However, the mall manager
is interested in monitoring a fire event in Shop 1. The shop contains three static sen-
sors (s1, s2, s3), and four mobile devices (MD1, MD2, MD3, MD4) with various sens-
ing capabilities. We detail the representation of the aforementioned sensors based
on Definition 2 (cf. Section 4.4).

s = (id, F, O, L, C, FUNCT, PROP)
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FIGURE 4.9: Rewriting the fire event in Shop 1

• The static sensor s1 is defined with:

– id = 1

– F = {Temperature}
– O = {o1, o2, o3}
– L = {(Shop1, TI1)}
– C = {(Shop1, TI1)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

• The static sensor s2 is defined with:

– id = 2

– F = {Smoke}
– O = {o4, o5, o6}
– L = {(Shop1, TI2)}
– C = {(Shop1, TI2)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

• The static sensor s3 is defined with:

– id = 3

– F = {CO2}
– O = {o7, o8, o9}
– L = {(Shop1, TI3)}
– C = {(Shop1, TI3)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

• The mobile device MD1 is equipped with the following temperature sensor:

– id = 4

– F = {Temperature}
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– O = {o10, o11}
– L = {(Co f f eShop, TI4), (Shop1, TI5)}
– C = {(Co f f eShop, TI4), (Shop1, TI5)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

• The mobile device MD2 is equipped with the following temperature, and CO2
sensors:
Temperature Sensor:

– id = 5

– F = {Temperature}
– O = {o12}
– L = {(MovieTheater, TI6), (Shop1, TI7)}
– C = {(MovieTheater, TI6), (Shop1, TI7)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

Co2 Sensor:

– id = 6

– F = {CO2}
– O = {o13}
– L = {(MovieTheater, TI6), (Shop1, TI7)}
– C = {(MovieTheater, TI6), (Shop1, TI7)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

• The mobile device MD3 is equipped with the following temperature, and smoke
sensors:
Temperature Sensor:

– id = 7

– F = {Temperature}
– O = {o14}
– L = {(FoodCourt, TI8), (Shop1, TI9)}
– C = {(FoodCourt, TI8), (Shop1, TI9)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

Smoke Sensor:

– id = 8

– F = {Smoke}
– O = {o15}
– L = {(FoodCourt, TI8), (Shop1, TI9)}
– C = {(FoodCourt, TI8), (Shop1, TI9)}
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– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

• The mobile device MD4 is equipped with the following temperature, and hu-
midity sensors:
Temperature Sensor:

– id = 9
– F = {Temperature}
– O = {o16}
– L = {(Shop1, TI10)}
– C = {(Shop1, TI10)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

Humidity Sensor:

– id = 10
– F = {Humidity}
– O = {o17}
– L = {(Shop1, TI10)}
– C = {(Shop1, TI10)}
– FUNCT = {isActive, sensingFunction}
– PROP = {batteryStatus, processorStatus, memoryStatus, networkStatus}

The mall manager defines the fire event query denoted q as presented in Definition 3:

q =
〈
q f ire, context f ire

〉
Where:

• q f ire is a unique identifier.

• context = (F, C, S) is the event query context where:

– F = {Time, Location, Temperature, CO2, Smoke} is the set of features that
best describe the event.

– C = {Any, Shop1, High, High, True} is the set of conditions associated to
the event features where: Any −→ Time, Shop1 −→ Location, High −→
Temperature, High −→ CO2, True −→ Smoke.

– S = {∅, ∅, s1, s3, s2} is the set of sensors that provide observations for the
detection of the event defined in q where:

s1.F = {Temperature}, s3.F = {CO2}, s2.F = {Smoke}

The event definition relies on the static sensors. It needs to detect at anytime the
fire event in Shop 1. In order to illustrate a query rewriting scenario, consider the
following issues: (i) the temperature sensor s1 and the smoke sensor s2 broke down;
and (ii) the mobile device MD3 left the shop. The aforementioned issues render the
query obsolete since it relies on sensors s1, and s2. In the following, we present how
the query analyzer discovers the obsolete query q. Then, we detail how the query
rewriting algorithm overcomes this issue by producing a new query q′.
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4.6.1.2 Discovering The Obsolete Query

When q is submitted to the event detector, it is first analyzed in the query optimizer.
The check method (cf. Algorithm 1), verifies if q relies on any currently missing or
unavailable sensors. In this case, the query analyzer will check s1, s2, and s3 in order
to make sure that each sensor is currently active (i.e., no breakdowns), and still lo-
cated near/covering the location targeted by the query (i.e., Shop 1). All unavailable
or missing sensors will be stored in the US (unavailable sensors) list. When check-
ing the fire event query, the temperature sensor s1, and the smoke sensor s2 will be
flagged as unavailable (because their isActive property will return false due to the
breakdown). Therefore, the query q will be sent to the query re-writer to overcome
the lack of sensors/data.

4.6.1.3 Query Rewriting

The query re-writer attempts to replace the unavailable sensors with semantically
similar ones (cf. Algorithm 2). For the fire event query, the algorithm will seek sub-
stitutes for sensors s1 and s2 using the getSimilarSensor function (cf. Algorithm 3).

Replacing s1. This sensor provides temperature observations, therefore the capa-
bility score is the highest for all mobile devices (since they all provide temperature
observations). However, since MD3 left the shop, it has a lower spatial score than
MD1, MD2, and MD4. All other attributes (i.e., reliability and temporal closeness)
are equal for the available three devices. Therefore, devices MD1, MD2, and MD4
are chosen to replace the static temperature sensor s1 (all three are assigned to the
query for optimal spatial distribution).

Replacing s2. This sensor provides smoke observations. Hence, the capability
score would have been the highest for MD3 (since it is the only device or sensor
capable of providing smoke observations). However, the latter left the shop and no
longer covers it. Therefore, all of the remaining sensors do not exceed the acceptable
similarity threshold. As a result, s2 is flagged as ’irreplaceable’, and the rewriting
algorithm will now attempt to replace the smoke feature with another similar and
available one.

Replacing The Smoke Feature. When replacing a feature, the first step is to se-
lect the available sensors that comply with the query context (that could produce a
substitute feature). The getCompatibleSensors function provides this list of sensors
that could contribute in this process. In the case of our example, the compatible
sensors are: S = {s3, MD1, MD2, MD4}. These sensors provide observations for the
the following features: F = {CO2, Temperature, Humidity }. In the following, we
compare these features to smoke in order to find an adequate replacement. To do
so, the getSimilarFeature method (cf. Algorithm 9) uses a semantic similarity func-
tion ss f to compare the feature smoke to humidity, temperature, and CO2 within a
knowledge base KB. The similarity scores are based on the features and their de-
pendencies. Also, the best substitute could be a feature or a combination of features.
Once the substitute(s) is (are) chosen, the conditions (constraints related to it) are
adapted and new sensor to feature mapping is established in the rewritten query q′.
In this example, humidity could replace the feature smoke. Therefore, the rewritten
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query q′ is defined as follows:

q′ =
〈
q f ire, context f ire

〉
Where:

• q f ire is a unique identifier.

• context = (F′, C′, S′) is the event query context where:

– F′ = {Time, Location, Temperature, CO2, Humidity} is the set of features
that best describe the event.

– C′ = {Any, Shop1, High, High, Low} is the set of conditions associated to
the event features where: Any −→ Time, Shop1 −→ Location, High −→
Temperature, High −→ CO2, Low −→ Humidity.

– S′ = {∅, ∅, (MD1, MD2, MD4), s3, MD4} is the set of sensors that provide
observations for the detection of the event defined in q where:

MD1.F = MD2.F = {Temperature}, s3.F = {CO2},
MD4.F = {Temperature, Humidity}

4.6.2 Experimental Protocol

4.6.2.1 Implementation

Before detailing the experimentation, we briefly present the ongoing implementa-
tion work. We are currently implementing the query optimizer. We are develop-
ing an online platform for event detection in connected environments11. The archi-
tecture of this web-based platform reflects the entire framework presented in this
manuscript. Users will be able to define/manage their own connected environ-
ments, and detect targeted events of interest using the event query language for
connected environments (EQL-CE). Their event queries will be sent to the query
optimizer module prior to execution for query analysis and rewriting (if needed).
Finally, an event detector will use the provided event queries (definitions) to find
occurrences of the aforementioned events.

4.6.2.2 Evaluation Objectives

The objectives of the experimentation are two-fold. First, we aim to evaluate the
performance of Algorithms 1 and 2. This entails measuring the execution run-time,
and the resource (RAM/CPU) consumption. The other objective, is accuracy eval-
uation. We aim to measure the accuracy of the sensor/feature substitution. This
includes verifying the selected substitute sensor or feature based on the similarity
measures. However, since the implementation is still ongoing, we cannot yet exper-
iment with real queries and data in order to measure the accuracy of our query anal-
ysis and rewriting as well as the impact on performance. Therefore, we propose next
an experimental protocol describing different performance/accuracy related exper-
iments.

11Link: http://spider.sigappfr.org/research-projects/event-detection-in-connected-
environment/

http://spider.sigappfr.org/research-projects/event-detection-in-connected-environment/
http://spider.sigappfr.org/research-projects/event-detection-in-connected-environment/
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4.6.2.3 Experimentation

Performance Experiments. We aim to run obsolete queries through the optimizer
in order to measure the execution run-time, and resource consumption of the query
analysis, and rewriting algorithms. For Algorithm 1 we consider the following ex-
periments:

• Experiment 1: Sensor number impact. The check method takes an event query
q as input and verifies the availability of all its sensors (q.S). In this test, we
gradually increase the overall number of sensors q.S (from 1 to n) while stabi-
lizing the number of unavailable sensors in q.S. This test highlights how the
number of sensors in a query q impacts the performance of Algorithm 1.

• Experiment 2: Sensor unavailability impact. In contrast with Experiment 1, we
stabilize here the overall number of sensors (q.S) in an event query (q) while
gradually increasing the percentage of unavailable sensors within q.S. The use
cases will range from the best case scenario (no unavailable sensors) to the
worst case scenario (all sensors are unavailable). This test highlights how the
unavailability of sensors impacts the behaviour of Algorithm 1.

• Experiment 3: Sensor mobility/breakdown impact. Algorithm 1 flags a sen-
sor as unavailable if it is inactive, has moved away, or no longer covers the
area requested in q. We stabilize here the number of unavailable sensors, and
test three different use cases: (i) all unavailable sensors are inactive; (ii) all un-
available sensors have moved away; and (iii) all unavailable sensors no longer
cover the requested area. This allows to compare how sensor mobility and
breakdowns impact the performance separately.

The query rewriting algorithm takes a list of unavailable sensors as input and at-
tempts to find substitutes for each one. If a substitute is not found, the algorithm
tries to replace the feature provided by the ’irreplaceable’ sensor instead. Hence, the
algorithm is split into two parts: exact rewriting (sensor replacement), and approx-
imate rewriting (feature replacement). Therefore, we propose the following experi-
ments to evaluate the performance of Algorithm 2:

• Experiment 4: Input size impact. We vary the input size (list of unavailable
sensors) from one (best case scenario) to n (worst case scenario) in order to
measure the impact on the algorithm’s performance. We repeat this experi-
ment in different use cases:

– Use Case 1: We consider here that all sensors are replaceable. This means
that the second phase of the algorithm (feature replacement) will not be
executed. This represents a best (input size = 1) to a moderate (input size
= n) case scenario.

– Use Case 2: We consider here that all sensors are irreplaceable. The sec-
ond phase of the algorithm (feature replacement) will be executed. This
represents a moderate (input size = 1) to a worst (input size = n) case
scenario.

– Use Case 3: We consider a random configuration where the list of unavail-
able sensors (input of Algorithm 2) contains replaceable and irreplaceable
sensors. This scenario will trigger first the exact rewriting phase of Algo-
rithm 2 (i.e., substituting the replaceable sensors). Then, the approximate
rewriting phase where the algorithm attempts to replace missing features
with adequate substitutes.
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• Experiment 5: Input distribution impact. In this test, we stabilize the input size
and gradually increase the percentage of irreplaceable sensors. This allows
to measure the impact of the input distribution (replaceable and irreplaceable
sensors) on the performance.

• Experiment 6: Feature similarity impact. When replacing a feature with an-
other, the algorithm uses an external function (denoted ss f in Algorithm 9)
that calculates the inter-feature similarity. Therefore, the performance is highly
affected by the complexity of ss f . Since, various functions exist, this test com-
pares the impact of different functions on the overall performance of our rewrit-
ing algorithm.

Accuracy Experiments. In our framework, an event is defined using an EQL-CE
event query q. Then, the latter is used by an event detector that detects the actual
event. However, the state of the connected environment CE changes due to its dy-
namicity (i.e., CE −→ CE′), and q could become obsolete due to missing/unavail-
able sensors or data in CE′. Therefore, query rewriting (i.e., q −→ q′) should allow
the user to overcome this issue without changing the meaning of the event. In or-
der to test the accuracy of the query rewriting process, we propose the following
experiments:

• Experiment 7: Rewriting accuracy. In this test, we compare the original query
q to its rewriting q′ from an event detection standpoint. To do so, we con-
sider/simulate both states of the connected environment (i.e., CE and CE′).
We provide the event detector with the event definition found in q in order to
detect the event in CE, and then use the same event detector with q′ in CE′.
Finally, we measure the Normalized Mutual Information (NMI) and F-Score
between the two results. These metrics measure the similarity between the two
results, and their accuracy respectively. Regardless if the event is detected or
not, the results should match in order to ensure that the query intent remained
the same after the rewriting. We repeat the same exercise with different event
queries.

• Experiment 8: Exact rewriting accuracy (sensor similarity evaluation). In this
test, we evaluate the accuracy of the exact rewriting process (replacing sen-
sors). To do so, we consider that the input (list of unavailable sensors) only
contains replaceable sensors and run Experiment 7. Then, we evaluate the im-
pact of sensor substitution, and our proposed similarity measure, on accuracy.

• Experiment 9: Approximate rewriting accuracy (feature similarity evaluation).
In this test, we evaluate the accuracy of the approximate rewriting process
(replacing features). To do so, we consider that the input (list of unavailable
sensors) only contains irreplaceable sensors and run Experiment 7. However,
when replacing features with other similar ones (cf. Algorithm 9), we use an
external semantic similarity function denoted ss f . Since various functions exist
in the related work [86], we test different functions in order to compare them.

4.6.2.4 Preliminary Evaluation

We present here a preliminary evaluation of the query analyzer (cf. Algorithm 1).
The aim of this evaluation is two-fold: (i) test the performance of the check method
in terms of run-time; and (ii) test the accuracy of the obsolete query detection. We
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ran the experiments on a MacBook Pro equipped with an Intel 2.8 GHz Core i7 (quad
core) processor and 16 GB of RAM. We present first the performance test.

Performance Test. In this experiment, we considered an event query and varied
the number of sensors that it relies on. This is a simulated environment where we
generate sensors and link them to the query before running the check method. For
each iteration, we increased the overall number of sensors and ran the check method
- query analyzer (cf. Algorithm 1) and measured the run-time. Figure 4.10 shows
that when increasing the number of sensors from 1024 to 16384 the query analyzer
run-time maintains a linear evolution and the overall time required to process the
worst case scenario (16384 sensors) does not exceed 6 ms. We should note, that
normally an event query does not rely on a huge number of sensors, and when we
measured the run-time for queries relying on 50 sensors or less the execution time
was negligible. This indicates that the detection of obsolete queries is a light task
that is scalable and capable of handling complex queries.

FIGURE 4.10: Query analyzer Run-time

Accuracy Test. In this experiment, we considered 10 event queries each relying on
10 sensors. We developed separate functions that simulate sensor breakdowns (ran-
domly deactivating sensors), and sensor mobility (randomly modifying the current
location/coverage area of sensors). Once sensors breakdown or change locations/-
coverage areas, some event queries become obsolete. Therefore, to test the accuracy
of the obsolete query detection we created four use cases:

• Use Case 1. All sensors were active and none changed locations.

• Use Case 2. We randomly deactivated 25% of the sensors (to simulate sensor
breakdown). None of the sensors changed locations.

• Use Case 3. All sensors were active, and we randomly changed the locations
of 25% of the sensors.

• Use Case 4. We randomly deactivated 50% of the sensors, and changed the
location of 50% of the sensors.

In each of the aforementioned use cases, the query analyzer managed to detect the
obsolete queries (for every use case the result matched the ground truth).
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4.7 Summary

In this chapter, we propose a query optimizer that complements our previously
proposed Event Query Language for Connected Environments (EQL-CE). The opti-
mizer is equipped with a query rewriting engine that addresses queries that become
obsolete due to the dynamicity of the connected environment. We focus on two
main issues regarding dynamicity: (i) sensor mobility/breakdowns; and (ii) missing
data/features. We propose two algorithms, the first automatically discovers obso-
lete queries, and the second rewrites them. Algorithm 1 checks the availability of
sensors in a given event query by verifying their current locations, coverage areas,
and status. Algorithm 2 attempts to replace unavailable sensors by other similar
ones. To do so, we compare similarities using our proposed sensor similarity mea-
sure. In case a sensor is ’irreplaceable’, the algorithm replaces the missing features
(provided by the ’irreplaceable’ sensors) using an external semantic similarity mea-
sure and a feature knowledge base. We evaluate the complexity of both algorithms,
detail an experimental protocol to test with real data/queries once the implementa-
tion is over, and finally present some preliminary results.
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Chapter 5

A Generic Event Detection
Framework

"Logic will get you from A to B. Imagination will take
you everywhere."

— Albert Einstein

We have already discussed the language that one could use to define a connected
environment and all its components. Using EQL-CE queries one could define the
environment itself, the deployed hybrid sensor network (based on the HSSN data
model), the application domain, and the targeted events. In this chapter, we propose
a generic framework for event detection in connected environments, and discuss
how event definitions (provided by event queries) can be used to actually detect the
aforementioned events.

Many existing applications guide connected environment users in their daily ac-
tivities (e.g., navigation through traffic in s smart city, managing home comfort in
s smart home). Although these applications are different in terms of purpose and
application domain, they all detect events and propose actions and decision making
aid to users. However, there is no usage of a common backbone for event detection
that can be instantiated, re-used, and reconfigured in different use cases.

We propose here eVM, a generic event Virtual Machine that detects events in dif-
ferent contexts based on event definitions (queries) provided by the user. This allows
domain experts to model, define, and detect their targeted events. eVM simulta-
neously considers the various features of the defined events (e.g., temporal, geo-
graphical), and uses the latter to detect different feature-centric events (e.g., time-
centric, location-centric). Our proposed event detector uses different components
(e.g., event queries, an event detection core). We detail here the event detection
modules. Finally, we show that eVM is re-usable in different contexts and that the
performance of our prototype is quasi-linear in most cases. Our experimental results
showed that the detection accuracy is improved when, besides spatio-temporal in-
formation, other features are considered.
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5.1 Introduction

Recent technological advances have allowed the integration of connected environ-
ments in various domains (e.g., homes, buildings, cities, factories), and the proposal
of various event-based applications that help users in their daily tasks. For instance,
smart homes/buildings [22, 108] allow users to manage energy consumption [1].
Moreover, these connected environments allow occupants to live in a more healthy
[111], sophisticated [101], and comfortable [59] environment. Smart cities now of-
fer traffic navigation aid [109] that help users avoid traffic congestion and accidents.
Smart factories also benefit from connected environment applications [60] for pro-
duction optimization and better machine maintenance scheduling. This is done by
relying on sensors to detect breakdowns and faults. Patients are currently rely-
ing on sensed data from wearable sensors in order to improve health monitoring
[45, 55, 104]. The provided applications detect medical events such as cardiac arrest,
strokes, and bad gait (i.e., a person’s manner of walking).

All of the aforementioned works are different (in terms of application domains,
purposes, and objectives). However, they share common principles: (i) they need to
detect a set of events; and (ii) they need to extract data and apply at least one data
mining technique (e.g., clustering, classification). The main differences are two fold:
1) the targeted events and therefore their definitions/features; and 2) the choice of
data mining/event detection technique.

Even-though all these works detect events, there is no usage of a common back-
bone for event detection that can be instantiated in different contexts/application
domains. This is restrictive and costly since existing solutions suffer of the following
issues: (i) the absence of an evolutionary approach capable of coping with needs that
change over time; (ii) the absence of extensibility regarding the integration of new
plug ins/complementary systems to an existing event detection approach; (iii) the
difficulty of integrating different event-related modifications in the development;
(iv) the impossibility of reusing the same framework to detect other events in various
domains/contexts; and (v) the lack of expert input, i.e., providing a module where
one can provide his/her own input on how to define the corresponding events prior
to detection. Moreover, when dealing with huge amounts of heterogeneous sensed
data, some technical aspects should be considered: (vi) multi-modality (the ability to
consider various features and datatypes at once in the processing); (vii) incremental
processing (i.e., allowing a continuous integration of new data in the set of already
processed data); (viii) multi-source processing (considering various data providers
at once); and (ix) human intervention should be limited to an acceptable level be-
cause of the amounts of data that need to be processed when detecting events. Thus,
there is a need to design a generic event detection approach, considering expert in-
put, and event features, to provide a more reusable event detector.

To answer these needs, we propose eVM: a re-usable solution for automatic and
generic detection of "feature-centric" events (e.g., time-centric events, geo-centric
events, temperature-centric events). Our framework integrates several components:
1) The Event Query Language (EQL-CE) in order to define the targeted events and
several event describing features. Based on the latter, our approach detects the cor-
responding feature-centric events. This allows the framework to be generic and re-
usable in different event detection contexts/domains while allowing domain experts
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to provide their input; 2) An easy to integrate API for the event detection core. This
makes eVM evolutionary, extensible, and easy to integrate with other modules/sys-
tems and programming languages; and 3) access to the global framework’s storage
space where various repositories are available for storing event related data (e.g.,
data objects, event definitions, detected feature-centric events). Moreover, eVM’s
clustering technique simultaneously considers the various features, objects (observa-
tions) sensed by various sensors (several data producers) on different dates/times.
eVM is based on an adaptation of FCA (Formal Concept Analysis) [39, 105], a back-
bone that provides a multi-modal, incremental, and multi-source clustering tech-
nique that handles high dimensional data, and requires low human intervention.

In order to validate our approach, we implemented eVM as a desktop-based ap-
plication in order to evaluate the approach in different real case scenarios. Our ex-
perimental results show that the event detection accuracy is improved when addi-
tional features (i.e., other than time and geo-location) are taken into consideration.
In addition, our performance results show quasi-linear behavior in most cases.

The rest of the chapter is organized as follows. Sections 5.2 and 5.3 review exist-
ing works on event detection and clustering techniques respectively. Then, Section
5.4 introduces some preliminaries on FCA. Section 5.5 details the eVM approach.
The implementation and evaluation are discussed in Section 5.6. Finally, Section 5.7
summarizes the chapter.

5.2 Event Detection Background & Related Work

In this section, we review event definitions, types, and features before detailing some
sensor-based event detection works in different areas (e.g., building/city manage-
ment, environment monitoring, industry, medical). Since, in most cases, events are
detected based on incoming raw data, without prior knowledge on the occurring
events, various approaches use unsupervised clustering techniques. Since there are
no commonly adopted criteria, we propose the following set of criteria to compare
the referenced works:

Criterion 1. Re-Usability: This criterion examines the possibility {YES, NO } of us-
ing the same approach as an event detection backbone for different targeted events
in different contexts/domains (cf. Section 5.1 - limitation (iv)).

Criterion 2. Domain Expertise: This criterion measures the possibility {YES, NO}
of taking into account input from domain experts in the event definition process
(cf. Section 5.1 - limitation (v)).

Criterion 3. Evolution: This criterion examines {YES, NO} if an event detection
approach can evolve and adapt to the changing event definition/detection needs
over time (cf. Section 5.1 - limitation (i)).

Criterion 4. Extensibility: This criterion measures {YES, NO} the capability of in-
tegrating new plug-ins/external modules in an existent event detection approach
(cf. Section 5.1 - limitation (ii)).

Criterion 5. Ease of Integration: This criterion denotes {YES, NO} an approach’s
capability of integrating event-related modifications in the development (cf. Sec-
tion 5.1 - limitation (iii)).
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In addition to the aforementioned criteria, we also consider other technical require-
ments/criteria such as:

Criterion 6. Multi-modality: This criterion states {YES, NO} if multiple event fea-
tures having different datatypes are considered (e.g., scalar and multimedia obser-
vations regarding various environment properties) in addition to time (instants, or
intervals) and locations (GPS coordinates or textual location description) for im-
proved event detection (cf. Section 5.1 - limitation (vi)).

Criterion 7. Multi-source: This criterion indicates {YES, NO} if multiple sensors
(i.e., data sources) could be considered at once. This is important since multiple
data sources can provide valuable event related data (cf. Section 5.1 - limitation
(viii)).

Criterion 8. Incremental (continuous) processing: This criterion considers the possi-
bility {YES, NO} of processing incoming data without having to repeat the entire
processing, because data producers could provide event related data on different
dates/times (cf. Section 5.1 - limitation (vii)).

Criterion 9. Level of human intervention: This criterion measures {HIGH, MODE-
RATE, LOW} how frequently users participate in the event detection process;
since huge amounts of data is produced, it is important that user interventions
become less frequent; we consider low intervention if users provide data input
and initial configuration; moderate if users also intervene in result correction/op-
timization; and high intervention when users participate in the whole process (cf.
Section 5.1 - limitation (ix)).

In the following, we begin by defining events, before detailing research works from
various domains in which event detection has had noticeable impact (e.g., environ-
mental monitoring, industry & manufacturing, building/city management, medical
monitoring).

5.2.1 Basic Definition Of An Event

In the literature, many works [2, 4] define events as a happening that takes place
at a particular time and location. Thus, emphasizing the importance of two main
event features: (i) temporal; and (ii) spatial. All events are associated with these
two features, since they answer the most common inquiries i.e., where and when.
Nonetheless, additional event features are useful to describe the context and seman-
tics of an event (e.g., temperature, movement, noise). The additional ’contextual’
features differ from an event to another.

Events are categorized into different types, regardless of their contexts: (i) atomic
or primitive events are the simplest events that can occur in a system. They cannot
be decomposed into any smaller entity; (ii) composite or complex events are high
level derived events, and are defined by combining constituent events. The latter
can be atomic, or/and composite [2]. In the case of sensor events, atomic events are
considered as observations (e.g., high temperature, high CO2, existence of smoke).
Moreover, composite events are considered as a combination of various elementary
and/or composite events (e.g., a fire event is a combination of high temperature,
high CO2, and smoke).
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In our proposal, we currently consider atomic events, nonetheless the framework
is re-usable and extensible, and can easily integrate a module for event composition
that allows the detection of composite events.

5.2.2 Event Detection Applications

Ever since sensor data modeling was extensively detailed (e.g., through ontology-
based models such as the Semantic Sensor Network (SSN) [30]), sensor-based event
detection started covering a larger spectrum of application domains [28]. From envi-
ronmental monitoring (e.g., detecting fire hazards in forests, level of air pollution in
a city), to building/city management (e.g., detecting energy wastes in smart build-
ings, detecting traffic congestion in a city), industrial processes (e.g., detecting events
that disrupt production flow in a factory, detecting faults and machine maintenance
issues), and medical event detection (e.g., monitoring a patient’s heart condition)
in various sensor networks. In all the aforementioned works, event detection re-
quires a sensing (data collection) phase. During this phase, data is collected from
the sensors that produce observations related to certain properties (e.g., tempera-
ture, movement, humidity). Moreover, events are usually composed of sensor-based
’contextual’ features (e.g., temperature, humidity, CO2) alongside spatio-temporal
features since every sensor observation is mapped to an instant in time and a spe-
cific location. Many works [2, 62] agree that sensor observations are considered as
atomic events (e.g., temperature rise event), therefore works regarding sensor data
fusion [12] could target the composite events. In the following, we detail some event
detection works in sensor networks, based on the application domains.

5.2.2.1 Environmental Monitoring

In environmental monitoring scenarios, the sensor network contains more nodes
(compared to personal medical sensing), and the spatio-temporal data acquisition
intervals are wider. For example, to detect high air pollution events in a city, a huge
number of air quality sensors should be deployed.

Wildfire Detection. In [32], the authors detect wildfire events in the wild by col-
lecting sensor data such as temperature, relative humidity, and barometric pressure.
In addition, they integrate spatial features by using a GPS unit in order to localize
the detected events. Information is communicated using a wireless sensor network.

Forest Fire Detection. In [110], the authors propose an approach for real-time for-
est fire detection. They rely on spatio-temporal information and fire event context
features such as relative humidity, temperature, smoke, and wind speed. They pro-
duce a report of abnormal atomic events (e.g., high temperature, smoke rising), and
a real time forest fire danger rate from the collected data. Then they use a neural
network to detect the fire events.

Air Pollution Detection. In [61], the authors use crowd-sensing in order to de-
tect and monitor air quality related events in a city. In addition to time and geo-
localization, air quality events share features that are related to the context of air
quality (e.g., carbon monoxide (CO), air pressure, nitrogen dioxide (NO2), and tem-
perature). They also develop an android mobile phone application to display results
to end users.
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5.2.2.2 Building/City Management

The following approaches serve building, home, or even city management in various
ways (e.g., increasing comfort, safety, and reducing energy consumption).

Reducing Energy Consumption. In [1], the authors address the issue of energy
savings in buildings by tackling the HVAC system (heating ventilation and air con-
ditioning). These systems typically run on fixed schedules and do not consider
building occupancy information. The authors present a presence sensor platform
that can be used for accurate occupancy detection at the level of individual offices.
The targeted event in this case is basically the absence of people (i.e., building oc-
cupants). Finally, their experiments show that considerable energy savings could
be achieved by detecting the aforementioned event and adjusting the HVAC system
adequately. Similarly, the authors in [59] tackle the same energy savings problem
by relying on occupancy detection in buildings. The difference in this case is that
instead of adjusting the HVAC, they adjust the lighting levels.

Building Access Control. In [101], the authors show interest in building security,
and specifically access control. Instead of traditional pin codes and access cards,
they propose a voice-based access control system. An individual’s voice cannot be
stolen, lost, forgotten, guessed, or impersonated with accuracy. Therefore, the au-
thors propose and implement a system where a user speaks into a microphone in
order to gain access to the building (or specific offices within it).

Air Quality Monitoring. In [111], the authors focus on indoor air quality because
it leads to various illness issues. When reliable information about both the indoor
and outdoor air quality is made available, a climate control system can provide the
most appropriate amount of ventilation, ensuring safe and comfortable living con-
ditions. Therefore, the authors develop the ’electronic nose’, an array of sensors that
monitor air quality. Finally, once they detect bad air quality, the ventilation system
is activated to address the issue.

Avoiding Machinery Faults. In [60], the authors are interested in the monitoring
of industrial equipment for optimized productivity. They detect various machine
related events through a wide array of sensor data (e.g., speeds, vibrations). The
overall objective is to closely monitor and synchronize the physical factory floor and
the cyber computational space in an Industry 4.0 context. Moreover, by utilizing
advanced information analytics, networked machines will be able to perform more
efficiently, collaboratively and resiliently.

5.2.2.3 Medical Monitoring

In medical monitoring scenarios, the sensor network contains a few nodes (e.g.,
some wearable sensors). The ’connected environment’ here is reduced to the body
(or part of body) of the patient. In the following we provide three examples.

Abnormal Gait Detection. In [45], the authors use lightweight, wearable sensors
to monitor patients’ gait (i.e., the manner of walking). People who suffer from
strokes or spinal cord injuries, tend to have abnormal gaits. During medical treat-
ment, it is beneficial to detect gait events when they occur (e.g., initial foot contact).



5.2. Event Detection Background & Related Work 109

The authors propose two different ways for detecting such events, one using ac-
celerometer data, and another using foot switch data (i.e., data from pressure/force
sensor). In both cases, the event features are spatio-temporal, and sensor-related (i.e.,
accelerometer, pressure, force). The authors test both cases on normal, slow, and al-
tered walking subjects and achieve near real time accurate detection of abnormal
gait events.

Walk Pattern Detection. In [55], the authors declare that a variety of measurements
are required for gait analysis (e.g., stride, step lengths, cadence, gait velocity). In
order to acquire such measurements, the system needs to know when and where
each foot leaves and touches the ground again. Therefore, the authors take interest
in detecting the following events: (i) foot end contact (EC); and (ii) initial contact
(IC). Thus, the authors propose an approach for IC and EC event detection using
linear accelerometers and angular velocity transducers. They then use the event
detection results to analyze gait patterns of healthy and injured individuals.

Heart Arrhythmia Detection. In [104], the authors propose a wireless smart sensor
for heart monitoring. The aim is to detect life threatening events such as cardiac
arrhythmia for patients with heart related issues. The sensor monitors heart rate and
ECG (electrocardiogram) signals to detect the aforementioned events in real time.

5.2.2.4 Discussion

Table 5.1 summarizes the evaluation of event detection approaches based on the
aforementioned criteria. We split these approaches based on their application do-
mains. Nonetheless, they all share two common characteristics: (i) they rely on a
data acquisition networks (constituted of one or more sensors); and (ii) although
they target different events, spatio-temporal event features are used by all methods.
When considering the latter features, the chosen granularity can vary based on the
application (e.g., for the spatial feature: we consider cities for environmental moni-
toring and the specific indoor location of a patient in a fall detection system). What
differentiates the event definition from one approach to another are the specific (con-
text related) features (e.g., temperature, movement, humidity). No current approach
allows domain experts to contribute in event definition, i.e., the same event (e.g., ab-
normal gait) has variant definitions in different approaches. These works are not
re-usable in different domains and contexts. When considering the other criteria we
find that the level of human intervention varies from an approach to another. Finally
even though these approaches are incremental, in most cases they are not extensible.

TABLE 5.1: Event Detection Works - Related Work Comparison

Criterion
Event Detection Application Categories

Environmental Building/City/Industry Medical
[32, 61, 110] [1, 59, 101, 60, 111] [45, 55, 104]

Re-Usability NO NO NO
Domain Specific Expertise NO NO NO

Evolution NO NO NO
Extensibility NO NO NO

Ease of Integration NO YES NO
Multi-Modality YES PARTIAL12 YES
Multi-Source NO YES NO

Incremental Processing YES YES YES
Level of Human Intervention MODERATE MODERATE MODERATE
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5.3 Clustering Related Work

Many works in different areas (e.g., information retrieval, event detection, image
searching and annotation), have evolved around clustering techniques since their
introduction in 1975 when John Henry Holland wrote a book on genetic algorithms
entitled “Adaptation in Natural and Artificial Systems” [52]. Unsupervised cluster-
ing is considered since in most cases, we detect events from raw data without prior
knowledge on the occurring events. The data are organized by groups (clusters) that
represent each a specific event. Clustering techniques are commonly grouped into
four categories [97]:

5.3.1 Prototype-Based Clustering

A cluster is a set of objects that are closest (most similar) to the prototype that de-
fines the cluster than to the prototype of any other cluster. A prototype can be the
centroid or the medoid depending on the nature of the data (continuous attributes
or categorical attributes). For continuous data, a centroid represents the object with
the average (mean) values of all objects (points) in the cluster. As for categorical at-
tributes, since a centroid is not meaningful, the prototype is often a medoid, the most
representative point of the cluster. For many types of data, the prototype can be re-
garded as the most central point. Therefore, prototype-based clustering is commonly
referred to as center-based clustering. For example, K-means [53] is a prototype-
based clustering technique that groups objects based on a specified similarity mea-
sure (e.g., Euclidean distance, Manhattan distance, cosine similarity, Jaccard mea-
sure) and creates a set of K clusters represented each by a centroid. K-medoids [57]
is another example of this clustering category. Instead of calculating means, actual
points from the data are picked as representatives (prototypes) of the clusters. Points
are associated to the clusters where they are most similar to the prototype. An itera-
tive swapping process between prototypes and non prototype points is done as long
as the quality of the clustering is improved.

These methods have low complexities for both time and space. But the algorithms
attempt to find a predefined number of clusters (K): the final number of clusters
should be known prior to clustering. In addition, for K-means, in order to start the
clustering, the user has to choose initial cluster centers (centroids). This is a key step,
if these centroids are chosen randomly clustering results can be poor.

5.3.2 Density-Based Clustering

A cluster is represented as a dense region surrounded by a low density region. Ob-
jects in the low density zones are considered as noise while others in high density
regions belong to the group limited by the region. For example, DB-Scan [80] pro-
duces a partitional clustering based on density measures. This method studies the
neighborhood of each point, and partitions data into dense regions separated by not-
so-dense regions. To do so, density at a point p is estimated by counting the points
within a circle of center p and radius ε. Therefore, a dense region is a circle of radius
ε containing a minimal number of points.

12We use Partial to indicate that not all the works are multi-modal
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On one hand, DB-Scan determines automatically the number of clusters, is rela-
tively resistant to noise, and can handle clusters of arbitrary sizes and shapes. On the
other hand, since clustering is affected by the specified radius, DB-Scan loses accu-
racy when the clusters have widely varying densities. Also, with high-dimensional
data, defining the densities becomes more difficult and more expensive (in term of
computation time and space). Finally, points in the low-density areas are considered
as noise which means that not all input data will be present in the clusters.

5.3.3 Graph-Based Clustering

Data is organized in graphs/hierarchies where nodes are objects and connections
among objects are represented as links connecting the nodes. Therefore, a clus-
ter is defined as a connected component, a group of objects that are connected to
one another but have no connections to objects from outside the group. For exam-
ple, Agglomerative Hierarchical clustering is a graph-based clustering method [18].
First, each point is considered as a singleton cluster. Then repeatedly, the closest
two clusters (based on similarity/dissimilarity matrices) are merged until a single
all-encompassing cluster remains. Hierarchical clustering can also be divisive, this
method is symmetrical to the agglomerative technique. In the divisive algorithm,
all points are initially assigned to a single cluster and then based on similarity/dis-
similarity measures the splitting into different clusters begins, until each point is
assigned to a distinct cluster.

The added value of this method is that clusters are nested in a dendrogram (hier-
archical structure) which offers a first level of semantic reasoning by exploiting the
hierarchy and the inter-cluster relations. In contrast, the method has a high com-
plexity in both time and space. All cluster merges are final, for high dimensional
data such as photos, this is considered as a limitation. Since high dimensional data
is more complicated, error correction if data is wrongly assigned to a certain cluster
is a major issue.

5.3.4 Conceptual Clustering (Shared-property)

A cluster is a set of objects that share some properties. For successful clustering, an
algorithm would require a very specific definition of a cluster. This means that prior
to the clustering, the shared properties that identify a cluster should be defined in
order to generate a concept describing a cluster. The process of generating such clus-
ters is called conceptual clustering. Formal Concept Analysis (FCA) is a conceptual,
hierarchical clustering method [23, 78]. It analyses data based on object/attribute
relationships, extracts concepts, and finally orders them in a lattice.

The advantage of having a lattice of formally defined Concepts is that it assures
a more advanced level of semantic reasoning. In addition, FCA automatically gen-
erates a brief description for each cluster. Nonetheless, time and space complexities
could cause concerns in some worst case scenarios where every data object forms a
formal concept. In this case, exponential complexities become major technical diffi-
culties.
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5.3.5 Discussion

Table 5.2 shows a comparative summary of clustering techniques with respect to
our technical (clustering-related) criteria (cf. Section 5.2). Prototype-based meth-
ods require excessive human intervention and the number of clusters prior to the
processing. This is a major limitation in an event detection scenario where the to-
tal number of events is unknown prior to detection. In addition, these approaches
are not multi-modal, multi-source nor incremental. Density-based methods detect
automatically the number of final clusters, thus reducing human intervention but
they are not multi-modal nor multi-source. These methods do not consider different
types of data at once. In addition, clustering high dimensional data is complicated
when relying on density measures. Graph-based (Hierarchical) clustering offers bet-
ter semantic reasoning compared to the first two techniques. It enables a first level of
semantic-based processing by exploiting the hierarchy and inter-cluster relations. In
addition, Hierarchical Clustering is accurate but remains highly expensive compu-
tation wise. Finally, Conceptual Clustering presents two main advantages. Firstly,
incremental algorithms exist and offer lower complexities for time and space. Sec-
ondly, these techniques (e.g., FCA) offer two levels of semantic reasoning: (i) han-
dling formal concepts as nodes, and (ii) generating an ordered lattice of concepts
(nodes). Finally, FCA is multi-modal, dynamic, and multi-source.

TABLE 5.2: Clustering Technique Comparison

Criterion Clustering Technique
Prototype-based

[53, 57]
Density-based

[80]
Graph-based

[18]
Conceptual

[23, 78]
Multi-Modality No No No Yes

Multi-Source No No No Yes
Incremental Processing No No No Yes

Level of Human Intervention High Moderate Moderate Low
Predefined Cluster Number13 Yes No No No

5.4 FCA Preliminaries & Definitions

After studying various clustering techniques [18, 23, 53, 80], we chose Formal Con-
cept Analysis (FCA) [39, 105] as the backbone for our approach. FCA is incremental
and extensible (criteria 8 and 4). It examines data through object/attribute relation-
ships, extracts formal concepts and orders the latter hierarchically in a Concept Lat-
tice which is generated through a four step process [27]:

Step 1. Defining a Formal Context (Definition 5) from the input data, based on
object/attribute relations represented in a cross-table.

Definition 5. A Formal Context: is a triplet 〈X, Y, I〉 where:

• X is a non-empty set of objects

• Y is a non-empty set of attributes

• I is a binary relation between X and Y mapping objects from X to attributes from Y,
i.e., I ⊆ X × Y.

13This criterion states if the final number of clusters is required prior to clustering.
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Remark. Table 5.3 shows an example, where sensor observations are objects and fea-
tures (time, space, temperature) are attributes. The cross-joins represent the map-
ping of observations to their respective attributes (e.g., o1 is a temperature observa-
tion that was taken in Shop 1 by sensor s1 during time interval ti1). �

TABLE 5.3: Formal Context example

Features
Time Location Sensor Contextual

ti1 ti2 ti3 Shop 1 Coffee Shop Bank s1 s2 s3 Temperature CO2 Smoke

O
bs

er
va

ti
on

s

o1 X X X X
o2 X X X X
o3 X X X X
o4 X X X X
o5 X X X X

Step 2. Adopting Concept Forming Operators to extract Formal Concepts (Defi-
nition 6). FCA has two concept forming operators:

• ↑: 2X → 2Y (Operator mapping objects to attributes)

• ↓: 2Y → 2X (Operator mapping attributes to objects).

For example, from the cross-table shown in Table 5.3, we have {o3}↑ = {ti2, Bank, s3,
CO2} and {Smoke}↓ = {o4}.

Definition 6. A Formal Concept in 〈X, Y, I〉 is a pair 〈Ai, Bi〉 of Ai ⊆ X and Bi ⊆ Y
such that: A↑i = Bi ∧ B↓i = Ai.

Remark. Consider the set of observations A1 = {o1, o2} and the set of attributes B1 =

{ ti1, Shop1, s1, Temperature}. A↑1 = {ti1, Shop1, s1, Temperature} and B↓1 = {o1, o2}.
Thus, since A↑1 = B1 and B↓1 = A1, the pair 〈A1, B1〉 is a Formal Concept. �

Step 3. Extracting a Subconcept/Superconcept Ordering relation for Formal Con-
cept (cf. Definition 6) ordering by defining the most general concept and the most
specific concept for each pair. The ordering relation is denoted ≤. For example,
from Table 5.3, let A1 = {o4}, B1 = {ti3, Co f f eeShop, s2, Smoke}, A2 = {o4, o5},
and B2 = {ti3, Co f f eeShop, s3}. According to Definition 6, 〈A1, B1〉 and 〈A2, B2〉 are
formal concepts. In addition, A1 ⊆ A2 therefore, 〈A1, B1〉 6 〈A2, B2〉. This means
that formal concept 〈A1, B1〉 is a subconcept of formal concept 〈A2, B2〉 (which is the
superconcept).

Step 4. Generating the Concept Lattice, which represents the concepts from the
most general one (top) to the most specific (bottom). The lattice is defined as the
ordered set of all formal concepts extracted from the data (based on ≤). A Concept
Lattice denoted by β(X, Y, I)6 is the set of all formal concepts of 〈X, Y, I〉 ordered
by the subconcept/superconcept ordering relation 6where:

β(X, Y, I) = {〈A, B〉 ∈ 2X × 2Y|A↑ = B, B↓ = A}

β(X, Y, I)6 associated with a subconcept/superconcept ordering relation is called
a concept (Galois) lattice. For the example shown in Table 5.3, Fig. 5.1 illustrates
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the Concept Lattice14. The top node is the concept regrouping all objects having no
attributes in common. As we go down in the hierarchy, we notice that concepts have
less objects and more shared attributes (a logic OR and AND are applied to objects
and attributes respectively when scrolling down towards the bottom node). The
bottom node is the most specific, thus regrouping all attributes having zero objects
in common. The next section formally describes our eVM approach and how the
aforementioned FCA steps are integrated and adapted for the clustering of sensor
observations.

FIGURE 5.1: The Concept/Galois Lattice

5.5 Event Detection Framework

In this section, we detail the eVM framework. Firstly, we provide an overview of
our proposal. Then, we focus more on the clustering technique used in our event
detection process and detail each module separately.

5.5.1 Approach Overview

As previously discussed in section 5.2, existing approaches heavily rely on time and
location when defining the targeted events. In order to tackle specific events, ad-
ditional context related information (e.g., temperature, CO2, smoke, humidity) are
added. Nonetheless, existing works, such as [1, 32, 45], provide a static event def-
inition that does not allow modifications (adding, removing event features). Since
event definition and detection needs change over time, or from one context/domain
to another, we provide a generic and extensible event definition in eVM.

5.5.1.1 A Generic Event Definition

We model events as 2D+ spaces (having at least two dimensions: temporal and spa-
tial). Depending on the targeted events, one can specify/create additional dimen-
sions, representing the contextual event features based on sensor observations (e.g.,
temperature, movement, noise, humidity) and various levels of granularity for each
feature (e.g., year-month-week-day-hour-minute-second for time, country-region-
city-street-building-floor-room for location). Micro granularity can also be consid-
ered depending on the application purpose (e.g., time: minutes-seconds for short

14The node numbering in the figure does not imply any particular sequence or order
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events, location: human body-part of a body for medical applications). This way of
defining events is dynamic, extensible, and allows domain expert input. Moreover,
the event’s space mathematically represents the event query context as defined in
Chapter 4 (cf. Definition 2). Nonetheless, it does not consider yet digital events,
where the location dimension should be handled differently (e.g., server attacks that
could happen on multiple nodes in the same time).

5.5.1.2 Translating Event Queries

Depending on the event detection needs, domain experts can create, insert, update
and delete datatypes, event features, granularity, and event definitions using EQL-
CE. Every time an event query is submitted, a common Event Query Compiler (cf.
Fig. 5.2) executes the submitted query, thus creating an instance of event detection.
Finally, using the defined instance, a common Event Detector mechanism is trig-
gered. This process queries event related data, stored in specific repositories (found
in the storage space), and starts detecting events based on the provided event model
(i.e., event definition query). The Event Detector integrates FCA as the backbone
clustering technique, to provide a multi-modal, dynamic, and incremental approach
(the API components are later detailed in Fig.5.3). This makes the eVM framework
re-usable in different contexts, evolutionary, and easy to integrate with any API
friendly programming language. In this chapter, we detail the Event Detection part
of this framework.

FIGURE 5.2: eVM Overview

5.5.2 The eVM Framework

In order to organize a set of event-related data objects (e.g., sensor observations) ac-
cording to feature-centric events, the eVM process is split into four main steps: (i)
Event definition & data pre-processing (executed by the Event Query Parser, Event
Query Executor, and Pre-Processor modules); (ii) Attribute extraction (executed by
the Attribute Extractor module); (iii) lattice construction (executed by the Event Can-
didates Lattice Builder module); and (iv) event detection (carried out by the Feature-
Centric Event Detector and Rule Selector modules). In the following, we detail each
processing step and module.
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FIGURE 5.3: eVM API Components

5.5.2.1 Event Definition & Data Pre-processing

When the Event Query Compiler receives an incoming event query q (submitted by
the user via EQL-CE), the parser checks the syntax of the submitted query. Then,
the Event Query Executor extracts the query context (cf. Definition 3) to output the
2D+ event space. The aforementioned space is a formal mathematical representa-
tion of the event definition where each dimension of the space represents an event
feature. In EQL-CE, features are defined by an identifier, a type, a distance measure,
a default value, and a description field (cf. Syntax 12 - Section 3.5). Feature related
information are extracted and used when creating the dimension that represents a
feature. The feature description is a 4-tuple f : 〈label, G, gran, interval〉 where:

• label is the feature’s label.

• G is the set of granularity associated with the feature.

• gran is a function that converts any granularity value to another (related to the
same feature).

• interval is a Boolean indicating if the feature is generated as an interval (true),
or not (false).

For example, the following shows the description field of five (fire) event features
each having a label, a set of granularity, an indication about interval construction,
and a conversion function:

• Time f : 〈′Time′, {Year, Month, Week, Day, Hour}, 1, ConvertTime〉

• Geo f : 〈′Geo′, {Country, Region, City, Street}, 0, ConvertGeo〉

• Temp f : 〈′Temp′, {value, seto f values, mean, max, min}, 1, ConvertTemp〉

• CO2 f : 〈′CO′2, {value, seto f values, mean, max, min}, 1, ConvertCO2〉

• Smoke f : 〈′Smoke′, {singlevalue, seto f values}, 0, ConvertSmoke〉
For example, time, geo, temperature, CO2, and smoke features could be used to
define a fire event that can be detected from sensor data in a connected environment.
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Moreover, in order to formally represent a feature as a dimension in a 2D+ space,
a data type is required for all data elements that belong to the dimension/feature.
We denote this datatype adt (attribute data type) and define it as follows:

adt : 〈label, f , t, range, dist〉 where :

• label is the attribute data type’s label.

• f is the event feature mapped to the attribute data type.

• t denotes the primitive data type of the attribute | t = f .datatype.

• range is the domain of the attribute values.

• dist is the function that returns the distance between any two values of the
same attribute datatype | dist = f .distance_measure.

To continue with the fire event example, the following describes five attribute data
types each having a label, an associated event feature, a primitive datatype, a range,
and a distance function (e.g., time difference for temporal attributes, spatial distance
for geographical attributes, temperature, CO2, and smoke differences between vari-
ous sensor readings for instance):

• Timeadt : 〈′TimeAttribute′, Time f eature, Date, Any, TimeDi f f erence〉

• Geoadt : 〈′GeoAttribute′, Geo f eature, String, Any, SpatialDistance〉

• Tempadt : 〈′TempAttribute′, Temp f eature, Float, Any, TempDi f f erence〉

• CO2adt : 〈′CO2Attribute′, CO2 f eature, Float, Any, CO2Di f f erence〉

• Smokeadt : 〈′SmokeAttribute′, Smoke f eature, Boolean, Any, SmokeDi f f erence〉

Each time an attribute data type is created, it is saved in the ADT list for future use.

Finally, each dimension can now be created by assigning to it an identifier id, a
start value o, and an attribute data type adt (which links the dimension to its event
feature as described in the event query). A dimension d is formally defined as fol-
lows:

d : 〈id, adt, o〉 where :

• id is the unique identifier of the dimension.

• adt is the attribute datatype that maps a dimension to its feature.

• o is the origin point of a dimension | o = adt. f .de f ault_value

For example, the following describes five event space dimensions, each having an
identifier, an origin value, and an attribute data type (and therefore an associated
event feature). These event dimensions help define the event space of a fire event:

• Time : 〈1, Timeadt, 30/12/20171 : 30pm〉

• Geo : 〈2, Geoadt, Paris〉

• Temp : 〈3, Tempadt, 20 (degrees Celsius) 〉

• CO2 : 〈4, CO2adt, 250PPM (Parts Per Million) 〉

• Smoke : 〈5, Smokeadt, False〉
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Finally, an event space can be defined by an identifier, the set of all its dimensions
(D), and the set of all its sensor observations/data objects (SO):

eSpace : 〈id, D, SO〉 where :

• id is the unique identifier of the event space.

• D is a set of dimensions that constitute the space (such the ||D|| ≥ 2).

• SO is the set of data objects that belong to the event space (the list of objects
is empty at the space creation, after the detection process all data objects are
inserted into their respective spaces).

For example, f ire : 〈1, (Time, Geo, Temp, CO2, Smoke), SO〉 defines the fire event.

Once the event definition (space) is established from the event query, the Pre-
processor module requests event related data from the storage unit (i.e., from the
object repository). The purpose of this step is to select the sensor observations (taken
from the connected environment) that could contribute to the event space. To do so,
we analyze the attributes of each data object/sensor observation (cf. Definition 7).
An attribute is defined as a value associated with an attribute data type. We define
a data type function denoted dt, that returns the attribute data type of a value based
on the data object attributes.

Definition 7. A Data Object is defined as a 2-tuple, so : 〈id, V〉, where:

• id is the unique identifier of a data object

• V is a set of attribute values according to a given ADT, such that ∀ai ∈ ADT ∃vi ∈
V | dt(vi) = ai. �

Remark. In the context of sensor event detection, the input data objects are consid-
ered as sensor observations. However, in other application scenarios such as social
event detection the data objects could be images or videos shared on social media
platforms. Therefore, to ensure that the event detector is reusable in different context
we keep the formal definitions as generic as possible.

The Pre-processor will extract objects (i.e., sensor observations) having attributes
(i.e., values/metadata) related to the features found in the event space. For instance,
if one targets overheating events having temporal, spatial, and temperature features,
the Pre-processor extracts from the data object repository (cf. Fig.5.3) all objects hav-
ing the following attributes: (i) a temporal; (ii) a geo-location; and (iii) a temperature
observation value. Finally, the selected data objects are sent to the Attribute Extrac-
tor module.

5.5.2.2 Attribute Extraction

In this step, the event definition (provided by the incoming event space eSpace) is
essential for knowing which data object attributes should be extracted and included
in the rest of the processing. The attribute extraction objective is to examine the di-
mensions that constitute eSpace and select the list of attribute data types needed for
event detection. The Attribute Extractor module (cf. Fig.5.4) initiates a cleaning pro-
cess via the Converter sub-module in order to have the same units for data object
attributes (e.g., having all temperature values in Celsius). The cleaned data objects



5.5. Event Detection Framework 119

FIGURE 5.4: The Attribute Extractor module

are stored in the data objects repository (cf. Fig.5.3). Finally, from every data object,
the Extractor sub-module extracts the needed attributes (based on the event defini-
tion). Both data objects and their attributes will be used in the following steps for
lattice construction.

5.5.2.3 Lattice Construction

In this step, an event agent processes the previously extracted attributes, and data
objects into lattice attributes and objects, in order to generate one output: the lattice.
The Feature-centric Event Lattice Builder is the FCA backbone. It integrates the four
step process of FCA clustering described in Section 5.4. To do so, we define lattice
attribute types in Definition 8. These types will be used when defining the lattice
attributes (cf. Definition 9). Lattice attributes, as defined here, ensure that any given
object/attribute can be represented in the FCA formal context. Therefore, any object
(i.e., sensor observation) having attributes can be properly integrated in the clustered
data set. This allows the event detection process of eVM to be generic and applicable
in various contexts. Finally, for object/lattice attribute mapping, we define a binary
cross rule denoted BXR (cf. Definition 10). This process is repeated for each event
detection run.

Definition 8. lat is a lattice attribute type representing an interval [a, b[ where lat :
〈a, b, T〉, where:

• a is the lower boundary value

• b is the upper boundary value

• T is a value representing the period having a primitive data type of either integer or
float, such that:

– dt(a) = dt(b) ∈ ADT and

– b = a + T. �

Definition 9. A lattice attribute, denoted la, is defined as a 4-tuple la : 〈 f , eSpace, lat, y〉
where:
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• f ∈ F is the event feature mapped to lattice attribute la

• eSpace is the event space in which the detection will take place

• lat (cf. Definition 8) is the lattice attribute type

• y is a granularity | y ∈ f.description.G and

lat.T =

{
y if f .description.interval = True
0 Otherwise

lat.a = soi.vj, where:

– soi ∈ eSpace.SO and

– (vj ∈ soi.V) ∧ (dt(vj).f = f). �

For example, from the fire event example, we can find the following lattice at-
tributes:

• Time intervals

• Geo locations

• Temperature intervals

• CO2 intervals

• Smoke existence (or not)

Definition 10. A binary cross rule, denoted as BXR, is defined as a function that maps a
shared object x to its respective lattice attribute y where x.vi ∈ x.V:

BXR =


1 if (y.lat.T = 0∧ y.lat.a = x.vi)∨

(y.lat.T 6= 0∧ x.vi ∈ [y.lat.a, y.lat.b[)
0 Otherwise

�

Then, the Feature-centric Event Lattice Builder constructs the FED (Feature-centric
Event Detection) formal context, denoted f f c (cf. Definition 11). Once the f f c is
created, formal concepts are extracted and a lattice (cf. Figure 5.6) is generated.
This process is described in steps 2-4 of Section 5.4. This lattice is called an Event
Candidate Lattice, where each node is a potential feature-centric event. Figure 5.5
illustrates the inner composition of the Event Candidates Lattice Builder module.

Definition 11. A FED Formal Context, denoted ffc, is defined as a 6-tuple:

f f c : 〈eSpace, F, fLAG, X, Y, I〉 where

• eSpace is the event space in which the detection takes place

• F is the set of one event features

• fLAG is the function that generates the lattice attributes, described in Algorithm 10

• X = eSpace.SO is the set of shared objects
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• Y =
⋃|X.V|−1

i=0 {lai} is the set of lattice attributes | X.V =
⋃
∀so∈X{so.V} is the union

of all attribute values from the shared objects in eSpace

• I is a BXR(x,y) where x ∈ X ∧ y ∈ Y. �

FIGURE 5.5: The Event Candidates Lattice Builder module

To follow up with the fire event example, Table 5.4 illustrates how lattice at-
tributes (columns) are mapped to incoming sensor observations (rows) using the
binary cross rule in the FED formal context.

TABLE 5.4: Fire Event Formal Context Example

Time Geo Sensor Temperature CO2 Smoke
TI1 TI2 Loc1 Loc2 S1 S2 S3 High Low High Low Yes No

O1 X X X X
O2 X X X X
O3 X X X X
O4 X X X X
O5 X X X X
O6 X X X X

The example in Table 5.4 shows six sensor observations (objects), mapped to their
respective attributes. For instance, observation 1 has a timestamp value inside time
interval 1, therefore it is mapped to the lattice attribute TI1. This observation is taken
from a sensor S1 deployed in Loc1 and has a temperature reading that is included in
the High range. Moreover, the other five observations are also mapped to their cor-
responding attributes using the binary cross rule. This represents the (FED) formal
context in this scenario.
In Algorithm 10, we detail the lattice attribute generation process. This starts by
extracting all object attribute values (lines 5-11). If the value is mapped to a feature
that is generated as an interval (e.g., time), the algorithm calls the Create-Intervals
function (lines 19-23). If not (e.g., smoke), the algorithm generates a lattice attribute
type having a null period and creates the corresponding lattice attribute (lines 13-
18). This step allows the creation of generic lattice attributes from various features,
thus providing multi-modality (cf. Criterion 6). Algorithm 11 details the Create-
Intervals function. This process extracts all values related to the same feature (lines
4-9), orders them (line 10), selects a minimum and a maximum value (lines 11-12),
and creates periodic intervals starting from the minimum to the maximum value
(lines 14-22). The period is calculated based on the chosen feature granularity (line
15). Finally, the result is added the the output of Algorithm 10.
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Algorithm 10: Lattice Attribute Generation (cf. Definition 9 - fLAG)
1 Input: eSpace
2 Output: RES // List of all lattice attributes
3 VAL = new List() // Shared Objects attribute values list
4 PD = new List() // Processed event features list
5 foreach so ∈ eSpace.SO do
6 foreach v ∈ so.V // This loop extracts all object

attribute values from all objects in
eSpace and stores them in the VAL list

7 do
8 if (v /∈ VAL) then
9 VAL←v

10 end
11 end
12 foreach v ∈ VAL do
13 if (not dt(v).f.Interval) // If the value is not generated

as an interval14 then
15 lat← LAT(v, lat.a + lat.T, 0)
16 la← LA(dt(v).f, eSpace, lat, dt(v).f.description.g) // Create la with lat.T=0
17

18 RES← la
19 else
20 if (dt(v).f /∈ PD) then
21 RES← (Create-Intervals(VAL,v,PD, eSpace)) // Call

Create-Intervals
function

22

23 end
24 end
25 return RES

Algorithm 11: Create-Intervals
1 Input: VAL, v, PD, eSpace // Input provided by Algorithm 10, line 21
2 Output: LAI // Generated lattice attributes intervals
3 int i = 0
4 TEMP = new List() // Temporary object attribute list
5 foreach val ∈ VAL do
6 if (dt(val).f == dt(v).f) // Extract all object attribute

values having the same feature
as v and store them in TEMP

7 then
8 TEMP← val
9 end

10 Orderascending(TEMP) // Order TEMP ascending
11 min← TEMP.get(0) // min is the first element of TEMP
12 max← TEMP.get(|TEMP| − 1) // max is the last element of TEMP
13 lat← LAT()
14 while (lat.b < max) do
15 lat← LAT(min, lat.a + (i+1) × lat.T, dt(v).f.g)
16 if (lat.b > max) // This loop

creates
intervals of
period lat.T =
f.g (feature
granularity)

17 then
18 lat.b←max
19 la← LA(dt(v).f, eSpace, lat, dt(v).f.g)
20 LAI← la
21 i++
22 end
23 PD← dt(v).f // Add feature to the list of processed features
24 return LAI

Once the formal concepts are extracted from the fire event FED formal context
using the FCA operators the lattice is generated as shown in Figure 5.6 (where nodes
are potential fire events).
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FIGURE 5.6: Fire Event Lattice

5.5.2.4 Event Detection

The Feature-centric Event Detector module uses the previously generated lattice, an
event detection rule (an operator that checks the lattice nodes in order to find the tar-
geted events), and the features in order to detect feature-centric events (cf. Definition
12). We define a default event detection rule, as a set of lattice attributes that com-
ply with the two conditions mentioned in Definition 12. The rule is extensible, thus
allowing the integration of multiple event features (e.g., time, geo-location, temper-
ature), each represented by the corresponding lattice attribute. Figure 5.7a shows a
generic representation of the rule as a set of features and applied conditions. Key fea-
tures are used in order to target the related feature-centric events. For example, the
rule illustrated in Figure 5.7b detects an overheating event. The mandatory features
are time, and geo-location. Additional features are added (i.e., sensor, temperature).
Since the key feature is sensor, the detection rule will search for any temperature
event detected by sensor s1 regardless of the time, and location. Figure 5.7c detects
the same event. However, this time location and sensor features are considered as
key. This means that the detection rule will search for any temperature event that
happened in Shop1 regardless of time. These rules reflect the targeted events’ defi-
nitions and are extensible. Features can be added/removed (e.g., temperature, CO2
levels, smoke) for specific event detection needs.

The lattice15 (cf. Figure 5.6) shows that the atomic event high temperature (cf. Fig-
ure 5.7b) is represented by node 10 having (O1, {S1, TI1, Loc1, High}). The atomic
event high CO2 is found in node 0 having (O2, {S2, TI1, Loc1, High}), and the smoke
event is found in node 7 having (O3, {TI1, Loc1, S1, Yes}). Moreover, the composite
event fire is the combination of the aforementioned primitive events. Therefore, it
is found in their ancestor node 2 ({O1, O2, O3}, {TI1, Loc1}). This node represents
the combination of the three events in the same time span and location. Therefore,

15The node numbering in the lattice is only used to refer to the nodes (the numbers are not sequential
nor do they imply any particular ordering).
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(A) Generic detection rule (B) Sensor-centric (C) Sensor/Geo-centric

FIGURE 5.7: Default detection rule

traversing the lattice towards the same spatio-temporal parent node reveals the com-
posite event.

As a conclusion, the lattice could be used to detect the atomic events that interest a
connected environment manager. Also, it could be further exploited for complex or
composite event detection. Finally, for testing purposes, developers can change/add
detection rules using the Rule Selector module. Since the lattice is not affected by the
rule change, only the event detection step is repeated based on the new detection
rule.

Definition 12. A feature-centric Event, denoted fce, is a Formal Concept defined as a 4-
tuple f ce : 〈 f f c, centralF, A, B〉, where:

• ffc is a FED Formal Context (Definition 11)

• centralF is the set of selected key features |centralF ⊆ f f c.F

• A is a set of data objects | A ⊆ ffc.X

• B is a set of lattice attributes | B ⊆ ffc.Y where ∀bi, bj ∈ B ∧ i 6= j:

– Condition 1: bi. f 6= bj. f

– Condition 2: if bi. f .label = c f .label|∀c f ∈ centralF, then
dist(bi.lat.a, soj.vk)=0 | ∀soj ∈ A ∧ ∀vk ∈ soj.V,
dt(bi.lat.a) = dt(soj.vk). �

Finally, Figure 5.8 details the interaction between the Rule Selector module and
the Feature-centric Event Detector module. A detection rule change can be requested
through the Event Query Language. One can create a new rule, select, or update an
existing one. Based on the user’s choice, the Rule Validator sub-module checks the
syntax of the newly created or updated rule prior to storage. If one decides to select
an existing rule, the Rule Selector sub-module returns the chosen rule. In both cases,
the event detection is repeated using the chosen rule and new results are generated.

The following illustrates the syntax of a detection rule. The optional KEY nota-
tion indicates if a feature should be considered as centric (i.e., a key feature).
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FIGURE 5.8: The Rule Selector module

Defining the structure of a detection rule

CREATE DETECTION RULE ( [ ID ] <dr_id >
[ , {

( [ FEATURE ] <feature_id > [KEY],
[ CONDITION ] <condition_id > )

}
] ) ;

5.6 Experimentation & Results

5.6.1 Evaluation Objectives

We implemented the event detection modules as a java library that could be eas-
ily integrated in the online platform that we are developing for event detection in
connected environments. The global objectives were to evaluate the feasibility of
applying eVM for sensor event detection, and the re-usability of the event detector
in different contexts (e.g. social, conflict event detection). Therefore, we detected
events in three different application domains/contexts: (i) sensor event detection
in a smart building; (ii) social event detection on social media platforms; and (iii)
armed conflict event detection from news data. These different contexts provide a
variety of features each (sensor, social, and armed conflict related features), and dif-
ferent data objects (sensor observations in the building, multimedia data shared on
social media, published multimedia data, such as videos and news stories related
to wars/armed conflicts). More particularly, we aimed to validate the components
related to the Event Detection part of the eVM framework (Event Detector modules
cf. Fig.5.3). In order to do so, we measured, for each application (sensor, social,
and conflict event detection), the event detection accuracy (with the integration and
adaptation of FCA). We also evaluated the algorithm’s performance based on execu-
tion time and memory consumption. The objectives of the experimentation were the
following: (i) show that the approach is re-usable (Criterion 1) by detecting feature-
centric events in different contexts (e.g., sensor events, social events, conflict events);
(ii) measure the impact of domain specific expertise (Criterion 2) on the detection ac-
curacy (regarding the choice of event features and granularity in the event definition
phase) while reducing human intervention (Criterion 9); (iii) demonstrate that eVM
is multi-modal (Criterion 6) and multi-source (Criterion 7) by measuring the im-
pact of adding various features on the performance from various data sources; and
(iv) proving that eVM is accurate when given (through the event queries) optimal
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features/granularity, and event definition. We do not aim at comparing accuracy re-
sults with other works since the objective is to provide a re-usable, easy to integrate,
accurate backbone for event detection, that can be adjusted/configured by users (i.e.,
by defining events, detection rules, features, granularity). We do not present here the
evaluation results related to (i) the incremental processing (even though FCA is in-
cremental [99]); (ii) evolution; (iii) extensibility; and (iv) ease of integration. This will
be presented in a future work.

5.6.1.1 Evaluation Scenarios

We evaluated the detection accuracy and the performance of the event detector in
eVM. The performance tests were conducted on a machine equipped with an Intel
i7 2.60 GHZ processor and 16 GB of RAM. The aim was to test the performance of
our eVM Event Detector algorithm. To evaluate the re-usability of our approach, we
detected re-iterated the aforementioned performance and accuracy experiments in
three different contexts/scenarios:

• Application scenario 1: Sensor Event detection. In this scenario, we generated
an environment where sensors are deployed. We modeled a smart building
having different sensors. We generated 8400 observations during a one week
span in the entire building. Then, we ran the event detector to find interest-
ing feature-centric events. In this section, we detail the generated dataset, the
experimental setup, and the accuracy results. We leave the performance eval-
uation for the other two scenarios (social event detection, and conflict event
detection) where we used datasets that contain huge amounts of real data (i.e.,
the input size is considerably larger and tests the performance in a more com-
plex setup).

• Application scenario 2: Social Event Detection. In this scenario, we use a
publicly available dataset that contains real social data (e.g., images, videos)
crawled from Flickr (a social media platform) in order to detect social feature-
centric events (e.g., birthday, wedding). We test the detector with an input size
of 60434 data objects, i.e., the event related data that need to be clustered into
feature-centric events, were considered to be photos and videos taken/shared
during the social events by participants. We detail the dataset, experimental
setup, and accuracy/performance evaluation.

• Application scenario 3: Conflict Event Detection. In this scenario, we use a
publicly available dataset that contains real armed conflict data. In this case,
the targeted events were defined based on time, geo-location, and a set of con-
textual features such as the actors (i.e., aggressor, defender), the news source
that covered the conflict, the conflict type (e.g., protest, war, planned attack),
and finally the number of casualties. The data objects are considered news sto-
ries regarding the targeted conflict events. We detail the dataset, experimental
setup, and accuracy/performance evaluation.

5.6.2 Sensor Event Detection

In the following, we detail the experimental protocol and generated dataset. Then,
we discuss the event detection accuracy use cases, tests, and results. Finally, we end
this section with a discussion that analyzes the obtained results.
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5.6.2.1 Experimental Setup & Dataset

Connected Environment. We simulated a smart building connected environment
that hosts a sensor network. The sensed data are used for monitoring and man-
agement purposes. The Location map of the building is composed of three floors
each containing a specific set of locations. Therefore, when defining and detecting
events we considered two main granularity levels for the spatial feature (i.e., floor,
and location).

Sensor Network. Sensors were deployed in each location in the building. For this
example, we considered mainly five observable properties (temperature, humidity,
CO2, smoke, and noise). We considered a total 8400 sensor observations accumu-
lated over a period of one week. Therefore, we considered week and day as the
two main granularity levels for time. Each observation has an identifier and five at-
tributes: (i) a timestamp; (ii) a geo-location; (iii) a sensor; (iv) a observable property
(e.g., temperature, humidity, CO2, smoke, noise); and an observation value. We only
considered granularity levels for time and geo-location (i.e., the granularity is fixed
for sensor, observable property, and observation value attributes).

Targeted Events. The purpose is to detect various atomic events. For instance,
room overheating (high temperature), bad air quality (high CO2), uncomfortable
working environment (high humidity), safety hazards (high smoke levels), noise
pollution (high noise). The events are heterogeneous in terms of the number of ob-
servations that constitute them (from 1 to hundreds per event) and are well dis-
tributed over the location map (i.e., events occur in every location in the building).

5.6.2.2 Accuracy Evaluation

We chose to consider the following criteria for clustering quality evaluation. We cal-
culated the F-score, based on the Recall (R) and Precision (PR), and the Normalized
Mutual Information (NMI). These criteria are commonly adopted in information re-
trieval and event detection. A high F-score indicates a high quality of observation to
event assignment while NMI was used to measure the information overlap between
our clustering result and the ground truth data. Therefore, a high NMI indicates
accurate clustering result.

Use Cases. Since we considered the time, geo-location, sensor, observable prop-
erty, and observation as the five features that define our targeted events, we identi-
fied all possible combinations of the detection rule (cf. Table reftab:DR). In order to
test granularity impacts, Table 5.5 sums up the different granularity combinations.
When applying detection rules to granularity combinations, we get 124 use cases.
We measured for each one the NMI and F-Score.

TABLE 5.5: Granularity Combinations - Sensor Event Detection

Combination Number Granularity (Time/Geo)
1 Week / Floor
2 Week / Location
3 Day / Floor
4 Day / Location
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TABLE 5.6: Detection Rule Combinations - Sensor Event Detection

Combination Number Number of Features Considered Features in the Detection Rule
1 5 Time, Geo, Sensor, Property, Value
2

4

Time, Geo, Sensor, Property
3 Time, Geo, Sensor, Value
4 Time, Geo, Property, Value
5 Time, Sensor, Property, Value
6 Geo, Sensor, Property, Value
7

3

Time, Geo, Sensor
8 Time, Geo, Property
9 Time, Geo, Value
10 Time, Sensor, Property
11 Time, Sensor, Value
12 Time, Property, Value
13 Geo, Sensor, Property
14 Geo, Sensor, Value
15 Geo, Property, Value
16 Sensor, Property, Value
17

2

Time, Geo
18 Time, Sensor
19 Time, Property
20 Time, Value
21 Geo, Sensor
22 Geo, Property
23 Geo, Value
24 Sensor, Property
25 Sensor, Value
26 Property, Value
27

1

Time
28 Geo
29 Sensor
30 Property
31 Value

Results & Discussion Results shown in Table 5.7, highlight the following:
Detection Rule/Features Impact: Detection rule 1 (i.e., based on time, geo, sensor, prop-
erty, and value features) generates the highest NMI and F-score (NMI: 0.9994 and
F-Score: 0.9987). It also exceeds all other detection rules in every granularity com-
bination. However, detection rule 3 generates the same accuracy as detection rule 1
that relies on all features. This is due to the fact that in our generated dataset, each
sensor observes only one property. This means that the sensor implies the observed
property. Therefore, removing the feature property from detection rule 3 does not
damage accuracy. To further test this, we considered an additional use case where
sensors could observe more than one property. In this case, detection rule 1 sur-
passes detection rule 3. In contrast, when removing the value feature (e.g., detection
rule 2) the accuracy decreases. This is explained by the fact that the property has
various values (e.g., high, low, and moderate temperatures). Therefore, not consid-
ering the value in the detection rule leads to the lack of distinction between different
events (e.g., overheating and under-heating events). To sum up the features im-
pact, considering more features in the detection rule improves the accuracy. The
aforementioned observations underline that eVM can cope with various features
in the detection task. Thus, improving the event detection accuracy. Moreover, this
highlights eVM’s multi-modality, which allows the integration of additional features
(having different datatypes) and the accurate detection of feature-centric events (in
this case we the set of central features were sensor, property, and value).
Granularity Impact: The results improve, when the clustering is based on granularity
closer to the ones used in the ground truth. For example, in the case of granular-
ity (week, floor), the F-Score achieved based on time and geo features is 0.1446, but
for the detection rule that considers only the sensor feature the F-Score is higher:
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0.2295. This is because the granularity for time and geo are the most general (week
and floor). Therefore, the impact factor of granularity is more important than that
of the number of features considered in the detection rule. Some rules can exceed
others for specific granularity combinations. For instance, the accuracy results of de-
tection rule 17 for granularity combination day/location exceed the accuracy results
of detection rule 1 for granularity combination week/floor. The best result can be
achieved by considering the maximal number of features having correct granularity.
This indicates that the granularity should not be fixed for all scenarios. When given
the best granularity, our approach detects the feature-centric events very accurately.

5.6.3 Social Event Detection

5.6.3.1 ReSEED Dataset

To evaluate the detection results, we used the ReSEED Dataset, generated during
the Social Event Detection of MediaEval 2013 [81]. It contains real photos crawled
from Flickr, that were captured during real social events which are heterogeneous in
size (cf. Figure 5.9) and in topics (e.g., birthdays, weddings). The dataset contains
437370 photos assigned to 21169 events. In our evaluation, we used three event
features: time, location, and social, since ReSEED photos have time, geo-location,
and social attributes. In ReSEED, 98.3% of photos contain capture time information,
while only 45.9% of the photos have a location. We had to select photos having these
attributes from the dataset. This left us with 60434 photos from the entire dataset. In

FIGURE 5.9: ReSEED Photo distribution

ReSEED, the ground truth used for result verification assigns photos to social events.
Since, our approach is focused on feature-centric events (in this experimentation,
user-centric events), we modified the ground truth to split the social events into
their corresponding user-centric events. Since the splitting is based on the event
features, we need to specify the feature granularity during the process. The latter
are not specified in ReSEED, therefore we chose the lowest granularity values: day
for time, street for geo-location, and photo creator name for social. The ground truth
re-factoring process is described in Figure 5.10. First, we extracted the photos of
each event in the ground truth. Second, we used the time stamps of photo capture
to group photos by day. Third, we split the resulting clusters into distinct groups
based on street values. Finally, the result was further split based on distinct photo
creators.
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TABLE 5.7: Accuracy Results - Sensor Event Detection

Combination Detection Rule Measure
Granularity

Month Day
Floor Location Floor Location

1 Time, Geo, Sensor, Property, Value NMI 0.6447 0.6555 0.9969 0.9994
F-Score 0.2470 0.2665 0.9919 0.9987

2 Time, Geo, Sensor, Property NMI 0.6009 0.6126 0.9731 0.9758
F-Score 0.2295 0.2492 0.9508 0.9579

3 Time, Geo, Sensor, Value NMI 0.6447 0.6555 0.9969 0.9994
F-Score 0.2470 0.2665 0.9919 0.9987

4 Time, Geo, Property, Value NMI 0.6447 0.6555 0.9969 0.9994
F-Score 0.2470 0.2665 0.9919 0.9987

5 Time, Sensor, Property, Value NMI 0.6447 0.6447 0.9969 0.9969
F-Score 0.2470 0.2470 0.9919 0.9919

6 Geo, Sensor, Property, Value NMI 0.6447 0.6555 0.6447 0.6555
F-Score 0.2470 0.2665 0.2470 0.2665

7 Time, Geo, Sensor NMI 0.6009 0.6126 0.9731 0.9758
F-Score 0.2295 0.2492 0.9508 0.9579

8 Time, Geo, Property NMI 0.6009 0.6126 0.9731 0.9758
F-Score 0.2295 0.2492 0.9508 0.9579

9 Time, Geo, Value NMI 0.4936 0.6445 0.9165 0.9962
F-Score 0.1563 0.2470 0.7438 0.9903

10 Time, Sensor, Property NMI 0.6009 0.6009 0.9731 0.9731
F-Score 0.2295 0.2295 0.9508 0.9508

11 Time, Sensor, Value NMI 0.6447 0.6447 0.9969 0.9969
F-Score 0.2470 0.2470 0.9919 0.9919

12 Time, Property, Value NMI 0.6447 0.6447 0.9969 0.9969
F-Score 0.2470 0.2470 0.9919 0.9919

13 Geo, Sensor, Property NMI 0.6009 0.6126 0.6009 0.6126
F-Score 0.2595 0.2492 0.2595 0.2492

14 Geo, Sensor, Value NMI 0.6447 0.6555 0.6447 0.6555
F-Score 0.2470 0.2665 0.2470 0.2665

15 Geo, Property, Value NMI 0.6447 0.6555 0.6447 0.6555
F-Score 0.2470 0.2665 0.2470 0.2665

16 Sensor, Property, Value NMI 0.6447 0.6447 0.6447 0.6447
F-Score 0.2470 0.2470 0.2470 0.2470

17 Time, Geo NMI 0.4394 0.6008 0.8887 0.9724
F-Score 0.1446 0.2295 0.7057 0.9491

18 Time, Sensor NMI 0.6009 0.6009 0.9731 0.9731
F-Score 0.2295 0.2295 0.9508 0.9508

19 Time, Property NMI 0.6009 0.6009 0.9731 0.9731
F-Score 0.2295 0.2295 0.9508 0.9508

20 Time, Value NMI 0.0882 0.0882 0.7216 0.7216
F-Score 0.0548 0.0548 0.3291 0.3291

21 Geo, Sensor NMI 0.6009 0.6126 0.6009 0.6126
F-Score 0.2295 0.2492 0.2295 0.2492

22 Geo, Property NMI 0.6009 0.6126 0.6009 0.6126
F-Score 0.2295 0.2492 0.2295 0.2492

23 Geo, Value NMI 0.4936 0.6445 0.4936 0.6445
F-Score 0.1563 0.2470 0.1563 0.2470

24 Sensor, Property NMI 0.6009 0.6009 0.6009 0.6009
F-Score 0.2295 0.2295 0.2295 0.2295

25 Sensor, Value NMI 0.6447 0.6447 0.6447 0.6447
F-Score 0.2470 0.2470 0.2470 0.2470

26 Property, Value NMI 0.6447 0.6447 0.6447 0.6447
F-Score 0.2470 0.2470 0.2470 0.2470

27 Time NMI 0.0000 0.0000 0.6828 0.6828
F-Score 0.0505 0.0505 0.3071 0.3071

28 Geo NMI 0.4394 0.6008 0.4394 0.6008
F-Score 0.1446 0.2295 0.1446 0.2295

29 Sensor NMI 0.6009 0.6009 0.6009 0.6009
F-Score 0.2295 0.2295 0.2295 0.2295

30 Property NMI 0.6009 0.6009 0.6009 0.6009
F-Score 0.2295 0.2295 0.2295 0.2295

31 Value NMI 0.0882 0.0882 0.0882 0.0882
F-Score 0.0548 0.0548 0.0548 0.0548
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FIGURE 5.10: Re-factoring ground truth

5.6.3.2 Performance Evaluation

We considered two criteria for this task: (i) total execution time and (ii) memory
overhead.

Use Cases. The performance is highly affected by the number of photos, gener-
ated attributes, and clusters. We noticed that granularity day for time and street for
geo-location generate more clusters and attributes than any other granularity com-
bination. Therefore, we used day and street to test the prototype’s performance in
three worst case scenarios:

• Case 1: We selected the biggest event (1400 photos) as input. We varied the
number of photos progressively from 1 to 1400. Since all photos are related to
one event, the number of detected clusters should be one.

• Case 2: We extracted 400 events each having exactly one photo. We varied the
number of photos from 100, 200, 300 to 400. The number of generated clusters
for each iteration should be 100, 200, 300, and 400 respectively.

• Case 3: The goal is to test with as many photos as possible related to different
events. We varied the number of photos from 15000, 30000, 45000 to 60434.
Since thousands of events contain only one or two photos per event (worst
case scenario), this case will generate the most clusters.

Results & Discussion. In Cases 1 and 2 (Figures 5.11.a and 5.11.b), where the num-
ber of photos does not exceed 1400 and 400 respectively, the total execution time
is quasi-linear. However, in Case 3 (Figure 5.11.c), we clustered the entire dataset
(60434 photos). The total execution time tends to be exponential, in accordance with
the time complexity of FCA. When considering RAM usage, we noticed a linear
evolution for the three cases (Figures 5.11.d, 5.11.e, and 5.11.f). RAM consumption
is significantly higher in Case 2, where we generated 400 clusters, than in Case 1,
where we generated one cluster. In Case 3, RAM consumption is the highest be-
cause both the number of photos at the input, and the number of generated clusters
(detected events) were the highest. Other tests were conducted, Figure 5.12 (left)
shows that low granularity (e.g., day) consume more execution time than high ones
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(e.g., year). This is due to the generation of more lattice attributes and clusters. In
addition, Figure 5.12 (right), shows that considering more features in the processing
is also more time consuming. Nonetheless, the evolution from one to three features
remains quasi-linear, making the process extensible.

FIGURE 5.11: Performance Results

FIGURE 5.12: Granularity and Extensibility Impact

5.6.3.3 Accuracy Evaluation

We chose to consider the criteria proposed by MediaEval for clustering quality eval-
uation. We calculated the F-score, based on the Recall (R) and Precision (PR), and
the Normalized Mutual Information (NMI) using ReSEED’s evaluation tool. These
criteria are commonly adopted in information retrieval and social event detection. A
high F-score indicates a high quality of photo to user-centric event assignment while
NMI will be used to measure the information overlap between our clustering re-
sult and the ground truth data. Therefore, a high NMI indicates accurate clustering
result.

Use Cases. Since we considered the time, geo, and social features, we identified all
possible combinations of the detection rule (see Table 5.8). In order to test granularity
impacts, Table 5.9 sums up the different granularity combinations. When applying
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detection rules to granularity combinations, we get 63 use cases. We measured for
each one the NMI and F-Score.

TABLE 5.8: Detection Rule Combinations - Social Event Detection

Combination
Number

of
Features

Features
Considered in

the Detection Rule
1 3 Time, Geo, Social
2

2
Time, Geo

3 Time, Social
4 Geo, Social
5 1 Time
6 1 Geo
7 1 Social

TABLE 5.9: Granularity Combinations - Social Event Detection

Combination Granularity: Time / Geo
1 Year / Country
2 Year / City
3 Year / Street
4 Month / Country
5 Month / City
6 Month / Street
7 Day / Country
8 Day / City
9 Day / Street

Results & Discussion. Results shown in Table 5.10, highlight the following:

Detection Rule/Features Impact: The detection rule based on time, geo, and social
features generates the highest NMI and F-score (NMI: 0.9999 and F-Score: 0.9995).
It also exceeds all other detection rules (e.g., the one including solely time and geo
features) in every granularity combination. This underlines that eVM can cope with
various features such as the social feature in the detection task. Moreover, it high-
lights eVM’s multi-modality, which allows the integration of additional features
(having different datatypes) and the accurate detection of user-centric events.

Granularity Impact: The results improve, when the clustering is based on granular-
ity closer to the ones used in the ground truth. For example, in the case of granularity
(year, country), the F-Score achieved based on time and geo features is 0.1911, but for
the detection rule that considers only the social feature the F-Score is higher: 0.5376.
This is because the granularity for time and geo are the most general (year and coun-
try). Therefore, the impact factor of granularity is more important than that of the
number of features considered in the detection rule. Some rules can exceed others
for specific granularity combinations (e.g., {Time, Geo} exceeds {Time, Social} and
{Geo, Social} for granularity Year/Month/Day-Street while {Time, Social} exceeds
the other two rules for Year/Month/Day-Country). The best result can be achieved
by considering the maximal number of features having correct granularity. This in-
dicates that the granularity should not be fixed for all scenarios. When given the
best granularity, our approach detects the user-centric events very accurately.
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5.6.4 Conflict Event Detection

5.6.4.1 ACLED Dataset

The aforementioned experiments targeted feature-centric social events which have
features such as time, location, social (e.g., participants), and topics (e.g., birthday,
marriage). In the following experiments, we targeted feature-centric conflict events.
The latter, have different features (e.g., time, location, aggressor, defender, press
news source, conflict type, casualties). This allowed to have a different event def-
inition, as well as test the accuracy of the detection process in different contexts. For
this purpose, we used the ACLED16 (Armed Conflict Location & Event Data Project)
Dataset. It is a dis-aggregated conflict collection, analysis and crisis mapping project.
ACLED collects the dates, actors, types of violence, locations, and fatalities of all re-
ported political violence and protest events across Africa, South Asia, South East
Asia and the Middle East. Political violence and protest include events that occur
within civil wars and periods of instability, public protest and regime breakdown.
The dataset contains event records that span over years. We selected 49000 events,
from the African subset, that date from April 1998 till January 2018. For each event,
we generated shared objects having twelve attributes each (a object owner (press
news source), a latitude, a longitude, a country, a region, a city, a street, a datetime,
a conflict type, two actors, and the number of casualties). In total, we tested the
accuracy of the detection process, the impact of the number of included features
on the performance based on an input of 50000 shared objects related to the events
mentioned above.

5.6.4.2 Performance Evaluation

To give a detailed view of the algorithm’s performance, we measured the impact of:
(i) the number of objects at the input; and (ii) the number of included features on the
execution time.

Use Cases. The performance is affected by the input size, i.e., the number of ob-
jects to be processed, and the number of event features included in the clustering.
Therefore, we experimented the following cases:

• Case 1: We ran the detection module five times and measured the execution
time of each run. Every iteration has the following configuration: (i) all seven
features are considered in the clustering; and (ii) the granularity choices for
time and geo-location are day and street respectively. The only variable is the
input size. The first run processes 10000 objects, the second 20000, the third
run 30000, then we considered 40000 in the fourth run, and finally 50000 in the
last run.

• Case 2: We ran the detection module seven times and measured the execution
time of each run. Every iteration has the following configuration: (i) the input
size is the same, 50000 objects (the entire dataset); (ii) the granularity choices
for time and geo-location are day and street respectively. In the first run, we
only consider one feature (time) in the clustering. Then, for each iteration, we
include one additional feature (e.g., time and geo-location in the second run).
The last run includes all seven features (time, geo-location, press news source,
actor 1, actor 2, conflict type, and casualties).

16https://www.acleddata.com
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Results & Discussion. Figure 5.13 shows the impact of augmenting the size of the
input on the algorithm’s execution time (Case 1). We notice that the evolution of ex-
ecution time is quasi-linear. Figure 5.14 shows the impact of including more features
in the processing on the execution time (Case 2). The evolution is also quasi-linear
in a worst case scenario from a granularity and input size point of view. We also an-
alyzed the execution time of each step of the event detector (i.e., attribute extraction,
lattice construction, event detection cf. Section 5.5). The highest cost in terms of exe-
cution time is related to the event detection step (not FCA computation), which con-
sists of scrolling through the nodes of the lattice in order to select nodes that comply
with the chosen feature-centric event definition. Results can be optimized by look-
ing into better ways of scrolling through the lattice (graph analysis techniques). This
will be conducted in a future work.

FIGURE 5.13: Case 1
Results

FIGURE 5.14: Case 2
Results

5.6.4.3 Accuracy Evaluation

We used the same metrics (F-Score & NMI) for accuracy evaluation. We tested the
same granularity combinations shown in Table 5.9 for time and geo-location fea-
tures. We did not vary the granularity of the five other features (press news source,
actor 1, actor 2, conflict type, and casualties) found in the ACLED dataset. Finally,
we used the same tool (provided by the ReSEED work) for F-Score and NMI calcu-
lation. Accuracy results are detailed in Table 5.12.

Use Cases. We limited the detection rule combinations to three features: (i) time;
(ii) geo-location; and (iii) press news source (chosen as central feature in this exper-
imentation). This could be extended to include the actors of events (e.g., to detect
the group most involved in armed conflicts), the number of casualties (e.g., to detect
the deadliest conflict events), and the conflict types (e.g., to compare occurrence of
protests between countries). The detection rule combinations are detailed in Table
5.11.

TABLE 5.11: Detection Rule Combinations - Conflict Event Detection

Combination Number of features Considered features
1 3 Time, Geo, Press News Source
2

2
Time, Geo

3 Time, Press News Source
4 Geo, Press News Source
5 1 Time
6 1 Geo
7 1 Press News Source

Results & Discussion. Table 5.12 highlights the following:
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Detection Rule/Features Impact: The detection rule 1 (based on time, geo-location,
and press news source features) generates the highest NMI and F-score (NMI: 0.9949
and F-Score: 0.9631). It also exceeds all other detection rules (e.g., the one including
solely time and geo-location features) in every granularity combination. This under-
lines that eVM can provide the appropriate way to conduct the clustering and inte-
grate various datatypes related to a multitude of features due to its multi-modality.
However, accuracy can still be improved, few objects were assigned to the wrong
clusters. These errors can be minimized by including more features in the detection
rule (i.e., the actors, conflict type, and casualties).

Granularity Impact: We notice here (as we also did for the ReSEED dataset) that
when the clustering is closer in terms of granularity to the ground truth, accuracy im-
proves. For example, in the case of granularity {year, country}, the F-Score achieved
based on time and geo-location features is 0.0254, but for the detection rule that
considers only the press news source feature the F-Score is higher: 0.1938. This is be-
cause the granularity for time and geo are the most general (year and country). Some
rules can exceed others for specific granularity combinations. The best result can be
achieved by considering the maximal number of features having correct granularity.
Finally, these results prove that eVM is re-usable since event detection accuracy was
high in different event detection contexts.



138 Chapter 5. A Generic Event Detection Framework

T
A

B
L

E
5.12:A

ccuracy
R

esults
-C

onflictEventD
etection

D
etection
R

ule
M

easure
G

ranularities
Year

M
onth

D
ay

C
ountry

R
egion

C
ity

Street
C

ountry
R

egion
C

ity
Street

C
ountry

R
egion

C
ity

Street

1
F-Score

0.3194
0.6181

0.6737
0.732

0.5012
0.7598

0.7873
0.8195

0.8439
0.9454

0.9528
0.9631

N
M

I
0.8234

0.9287
0.9392

0.9515
0.9011

0.9604
0.9645

0.9701
0.9764

0.9923
0.9933

0.9949

2
F-Score

0.0254
0.3366

0.4385
0.5465

0.1789
0.6257

0.6771
0.7374

0.7252
0.921

0.9325
0.9477

N
M

I
0.6652

0.8668
0.8885

0.9144
0.8263

0.9382
0.9461

0.9567
0.9598

0.9889
0.9904

0.9928

3
F-Score

0.2564
0.2564

0.2564
0.2564

0.429
0.429

0.429
0.429

0.8269
0.8269

0.8269
0.8269

N
M

I
0.7892

0.7892
0.7892

0.7892
0.886

0.886
0.886

0.886
0.9742

0.9742
0.9742

0.9742

4
F-Score

0.232
0.5028

0.5751
0.6522

0.232
0.5028

0.5751
0.6522

0.232
0.5028

0.5751
0.6522

N
M

I
0.7509

0.897
0.9133

0.9327
0.7509

0.897
0.9133

0.9327
0.7509

0.897
0.9133

0.9327

5
F-Score

0.001
0.001

0.001
0.001

0.0116
0.0116

0.0116
0.0116

0.291
0.291

0.291
0.291

N
M

I
0.4261

0.4261
0.4261

0.4261
0.6671

0.6671
0.6671

0.6671
0.8941

0.8941
0.8941

0.8941

6
F-Score

0.0015
0.0865

0.1809
0.311

0.0015
0.0865

0.1809
0.311

0.0015
0.0865

0.1809
0.311

N
M

I
0.4209

0.7434
0.7858

0.836
0.4209

0.7434
0.7858

0.836
0.4209

0.7434
0.7858

0.836

7
F-Score

0.1938
0.1938

0.1938
0.1938

0.1938
0.1938

0.1938
0.1938

0.1938
0.1938

0.1938
0.1938

N
M

I
0.6913

0.6913
0.6913

0.6913
0.6913

0.6913
0.6913

0.6913
0.6913

0.6913
0.6913

0.6913



5.7. Summary 139

5.7 Summary

Event Detection is an essential part of many applications/services from various ap-
plication domains (e.g., home/building management, energy management, naviga-
tion systems, industry and manufacturing, medical). All these approaches are task-
centric, and designed for a specific application domain/purpose. However, these
works do not share a common re-usable backbone for event detection that can be
instantiated/used in different contexts. In this chapter, we propose a generic frame-
work, the event virtual machine (eVM), for feature-centric event detection. Our ap-
proach uses event queries to target specific events, thus creating a specific instance
for each use case using the same framework. The detection part is based on For-
mal Concept Analysis (FCA), an incremental and dynamic clustering technique. We
developed a prototype for testing purposes. The results show that our approach
achieved high accuracy in most cases, especially when additional features (in addi-
tion to time and location) are considered. Results also proved that eVM is re-usable
and multi-modal.
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Chapter 6

Conclusion & Future Work

"Education is the most powerful weapon which you can
use to change the world."

— Nelson Mandela

6.1 Report Recap

The study presented in this thesis focuses mainly on event detection in connected
environments.

In Chapter 1 we give the reader an insight on why connected environments are
considered a topic of interest nowadays. Then, we focus on this thesis’s objectives
of modeling and querying such environments as well as coping with their dynam-
icity, and detecting specific events that occur within their premises. We present a
smart mall connected environment scenario that illustrates the motivation behind
this work and the challenges that lie ahead. Then, we briefly present our proposed
framework for Event Detection in Connected Environments (EDCE) where each
module answers a specific objective and addresses a set of needs and challenges.
Finally, we list the publications related to this report before introducing the follow-
ing chapters.

In Chapter 2 we present an ontology-based data model for Hybrid Semantic Sen-
sor Networks (HSSN) where we address two major components of the connected en-
vironment data model: (i) the environment description; and (ii) the sensor network
modeling. We review related works on the topic, before proposing an extension of
the SSN ontology to include a wider set of divers sensors (e.g., static, mobile, simple
nodes, multi-sensor devices, scalar sensors, multimedia sensors). Moreover, HSSN
enriches the description of different platform types (e.g., infrastructures, devices),
and sensed data (e.g., scalar, multimedia sensor observations). The extension does
not add domain specific knowledge to the ontology to ensure it could be reused in
various application domains. Then, we evaluate the accuracy of our additions, their
clarity, consistency, and the overall impact on performance.

In Chapter 3 we detail the query language that one uses to interact with a con-
nected environment. We propose an event query language specifically designed
for connected environments, denoted EQL-CE. After presenting the motivations be-
hind this contribution and some related works, we propose a three layered frame-
work for the language that (i) considers all parts of the connected environment data
model (i.e., the environment, sensor network, events, and application domain); (ii)
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provides various query types (e.g., for component definition, instance/data man-
agement); and (iii) covers various datatypes in the queries. Moreover, one could
optimize the queries by enriching them with spatial or/and temporal distribution
functions and constraints. Finally, the EQL-CE syntax is generic, written in EBNF,
and could be parsed to several domain specific languages (e.g., SQL, SPARQL).

In Chapter 4 we focus on one specific need of EQL-CE: coping with the connected
environment dynamicity. We motivate our proposal by showing how event defi-
nition queries could become obsolete over time due to sensor mobility and break-
downs as well as loss of data/features. Then, we propose a way to automatically
detecting obsolete queries and rewriting them in order to ensure they evolve with
the environment. When rewriting an obsolete query, we aim to replace unavail-
able data sources (i.e., sensors) and data/features with other similar ones. To do
so, we propose similarity measures that take into account various attributes (e.g.,
spatial, temporal, property similarity). Finally, we analyze the complexity of both
algorithms and propose an experimental protocol for their evaluation (in terms of
accuracy and performance).

In Chapter 5 we propose an event detector, denoted eVM (event Virtual Machine).
This module requires an event query (event definition) and sensed data to detect tar-
geted feature-centric events. We start by reviewing related work on event detection,
and presenting some background on Formal Concept Analysis (FCA), the clustering
technique that the detector relies on. Then, we detail the event detection process
before extensively testing the detector in different contexts (e.g., sensor, social, and
conflict event detection). We evaluate the event detction accuracy and performance.

6.2 Future Research Directions

Various improvements still need to be considered for this work. We detail future
research directions for each contribution separately.

6.2.1 A Data Model For Hybrid Connected Environments

Completeness Evaluation. We would like to continue the ongoing evaluation of
the completeness of the HSSN ontology through comparisons with mobility, sen-
sor, and environment taxonomies. This evaluation will potentially help us discover
missing concepts or properties that could complement HSSN.

6.2.2 An Event Query Language For Connected Environments

EQL-CE Implementation. We are developing an online simulator to allow users
to run tests on a connected environment (e.g., the smart mall). Currently, we have
to finish the development on two simultaneous projects: (i) the EQL-CE parsing
engine that converts EBNF queries to specific data model specific syntax (e.g., SQL,
SPARQL); and (ii) integrating the parsed queries with a query execution engine.
The implementation has the highest priority from all future work, since it allows the
evaluation of EQL-CE and thereafter the end to end evaluation of the entire EDCE
framework.
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EQL-CE Evaluation. Once the development is complete, we aim to evaluate the
accuracy of the parsing and query execution functions. Moreover, we need to eval-
uate the performance in terms of query run-time and resource consumption (e.g.,
RAM, CPU usage). Finally, we need to quantify the cost (in terms of number of
steps/queries) required for various objectives (e.g., defining a platform, an entire
environment, deploying sensors).

Developing Distribution Queries. We would like to develop the query optimizer
by integrating advanced spatial/temporal distribution functions to the queries for
specific event definitions. The objective here is to provide the user with three query
types:

• Range queries that allow users to select all sensors within a specific range of a
point in space or all sensor observations within a specific range of a point in
time.

• Nearest Neighbour queries that allow users to select the k nearest sensors/sen-
sor observations to a specific spatial/temporal entity.

• Distribution queries that allow users to import an external mathematical distri-
bution function and apply on the spatial distribution of sensors or the tempo-
ral distribution of sensor observations (e.g., selecting evenly distributed sen-
sors over a specific location/area, selecting evenly distributed sensing rates for
various sensor observations).

6.2.3 Handling Connected Environment Dynamicity

Experimentation & Evaluation. We need to finish the implementation of the two
main algorithms proposed in Chapter 4 (i.e., Algorithms 1 and 2) in order to later
evaluate the accuracy and performance of the query rewriting engine. We would like
to evaluate our query re-writing engine and test it in various scenarios by running
the experiments described in Section 4.6.

6.2.4 A Generic Event Detection Framework

Optimizing Detection Results. The experimentation results show that the chosen
granularity for any given feature impacts the detection accuracy. Therefore, we are
investigating the detection of optimal granularity combinations based on the event
definitions and input data distribution. Furthermore, even when granularity combi-
nations are optimal for the detection task, some data objects are associated to wrong
clusters. This is due to their temporal or spatial closeness to more than one clus-
ter. Therefore, automatically considering temporal/spatial distances between clus-
ters could help improve the detection accuracy. To do so, matrix-based intersection
models [95], that include spatial and temporal cluster attributes could potentially
help reduce the number of wrong data object to cluster associations. Moreover, in-
tegrating data cleaning, and noise handling techniques at the pre-processing phase
could also alleviate the issue.

Composite Event Detection. In the eVM description (cf. Chapter 5), we show
how the FCA lattice could be exploited and traversed to go beyond the detection
of feature-centric atomic events and reach the composite high level events. For this
purpose, we aim to develop a composite event detection module. We are currently
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investigating Relational Concept Analysis (RCA) [83] to explore the relations be-
tween lattice nodes in order to find the parent composite event of any given set of
atomic feature-centric events.
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Appendix A

HSSN Implementation Details

Table A.1 lists the contributing ontologies used in our proposal. Moreover, Tables
A.2 and A.3 detail the added HSSN object properties and concepts respectively.

TABLE A.1: Concept/Object Property Summary

Ontology Added Concepts Count Added Object Properties Count
SOSA [44] 14 21
SSN [44] 6 15

SSN-Systems [44] 23 8
HSSN [68] 35 54
MSSN [6] 51 20
TIME [51] 6 23
FOAF [20] 1 0

VOAF [100] 1 0
Total 137 141

TABLE A.2: HSSN added Properties

Object Property Domain Range Inverse Property
centers SensingLocation CoverageArea isCenteredAround

composes Location LocationMap isComposedOf
currentlyCovers Sensor CoverageArea isCurrentlyCoveredBy
currentlyLocates Location Sensor isCurrentlyLocatedAt

definesHorizontalSpreadOf HorizontalSensingAngle CoverageArea hasHorizontalSpreadDefinedBy
definesVerticalSpreadOf VerticalSensingAngle CoverageArea hasVerticalSpreadDefinedBy

delimits SensingRange CoverageArea isDelimitedBy
describes LocationMap Infrastructure isDescribedBy

hasCapability Service Capability ∅
hasCoverageTime CoverageArea TemporalEntity ∅

hasEmbeddedSystem ExpansionCard System isEmbeddedOn
hasExpansionCard Hardware ExpansionCard isExpansionCardOf

hasHardware Device Hardware isRelatedToDevice
hasInterfaces Service Interface ∅

hasLocationTime Location TemporalEntity ∅
hasMemory Hardware Memory ∅
hasMetadata Service Metadata ∅

hasMultimediaValue MultimediaProperty MultimediaValue isMultimediaValueOf
hasNetworkInterface Hardware NetworkInterface ∅
hasPastCoverageArea MobileSensor CoverageArea isPreviouslyCoveredBy

hasPastLocation MobileSensor Location hasPreviouslyLocated
hasPowerSupply Hardware PowerSupply ∅

hasProcessor Hardware Processor ∅
hasScalarValue ScalarProperty ScalarValue isScalarValueOf
hasSensingTime ObservationValue TemporalEntity ∅

hasSoftware Device Software ∅
hasSubMap LocationMap LocationMap ∅
hasVariables Service Variables ∅

includes CoverageArea Location isIncludedIn
isMultimediaSensedBy MultimediaProperty Sensor mediaSenses

isProducedBy ObservationValue Observation produces
isProvidedBy Service Device provides

isRequestedBy Capability UserGoal ∅
isScalarSensedBy ScalarProperty Sensor scalarSenses
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TABLE A.3: HSSN added Concepts

Concept Description
Capability The functionality provided by a Service is described by its Capability
Coverage Area A Coverage Area is a geographical zone that includes a set of Locations within

the range of at least one sensor
Device A Device is an electronic equipment capable of one or more computing functions

and supporting the installation of firmware or third-party software
Expansion Card The Expansion Card is a plugin (additional) card. Systems (e.g., sensors) are de-

ployed on the Expansion Card of a Device
Hardware A Hardware is a component of a Device responsible of specific functionality
HorizontalAngle HorizontalAngle defines the trigonometric horizontal spread of a system’s capa-

bility
HorizontalSensingAngle The maximal horizontal sensing angle provided by the sensor
Infrastructure An infrastructure is a real world physical infrastructure or environment where a

sensor network might be deployed
Input Input is the set of variables and constraints required at the input end of a service

in order to achieve a correct execution of the service’s functionality (capability)
Interface The interface represents how a service can be contacted by / connected to other

entities such as service requesters or other services
Memory The set of all memories of a Device
Metadata Metadata represent the properties that describe a Service
MobileSensor A Mobile Sensor is a sensor that has the ability to move around, and change

position in time
MultimediaProperty A Property of type multimedia
MultimediaValue An ObservationValue of type Multimedia
NetworkInterface The Network Interface is part of the Hardware responsible for communication
ObservationValue Specifies the actual concrete value generated due to an Observation
Output Output is the set of variables and effects generated by a service after a correct

execution of the service’s functionality (capability)
PowerSupply Power Supply is the Hardware responsible for providing power in order to allow

the Device optimal functioning
Processor The Processor is the Hardware responsible for the processing of data in the De-

vices
Range The range is the maximal distance (in meters) that delimits a system’s operational

capability. i.e., The maximal distance that delimits a sensor’s sensing capability,
an actuator’s actuation capability, a sampler’s sampling capability

ScalarProperty A Property of type Scalar
ScalarValue An ObservationValue of type Scalar
SensingLocation The SensingLocation is the location of the sensor that covers this CoverageArea
SensingRange The maximal sensing distance provided by the sensor
Service A Service represents entities capable of providing some value (or a set of values)

relative to a given domain
ServiceInteractionInterface A ServiceInteractionInterface is used to connect a Service to other Services for

composite Service orchestration
Software The set of all operating systems, applications and programs running on a Device
StaticSensor A Static Sensor is a sensor that does not move, or change position after its deploy-

ment
Textual Datatype Category of a ScalarValue
UserGoal Goals describe user desires. They provide the means to specify user objectives
UserInteractionInterface The UserInteractionInterface is used by users who request services to allow them

the exchange of requests/information/variables with a service
Variables Variables represent the variables that are used / generated by a service
VerticalAngle VerticalAngle defines the trigonometric vertical spread of a system’s capability
VerticalSensingAngle The maximal vertical sensing angle provided by the sensor
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