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Abstract

This thesis proposes theoretical and numerical contributions to use

Entropy-regularized Optimal Transport (EOT) for machine learning.

We introduce Sinkhorn Divergences (SD), a class of discrepancies be-

tween probability measures based on EOT which interpolates between

two other well-known discrepancies: Optimal Transport (OT) and

Maximum Mean Discrepancies (MMD). We develop an efficient nu-

merical method to use SD for density fitting tasks, showing that a

suitable choice of regularization can improve performance over exist-

ing methods. We derive a sample complexity theorem for SD which

proves that choosing a large enough regularization parameter allows

to break the curse of dimensionality from OT, and recover asymptotic

rates similar to MMD. We propose and analyze stochastic optimization

solvers for EOT, which yield online methods that can cope with arbi-

trary measures and are well suited to large scale problems, contrarily

to existing discrete batch solvers.

Résumé

Le Transport Optimal régularisé par l’Entropie (TOE) permet de

définir les Divergences de Sinkhorn (DS), une nouvelle classe de dis-

tance entre mesures de probabilités basées sur le TOE. Celles-ci per-

mettent d’interpoler entre deux autres distances connues: le Transport

Optimal (TO) et l’Ecart Moyen Maximal (EMM). Les DS peuvent être

utilisées pour apprendre des modèles probabilistes avec de meilleures

performances que les algorithmes existants pour une régularisation

adéquate. Ceci est justifié par un théorème sur l’approximation des

SD par des échantillons, prouvant qu’une régularisation suffisante per-

met de se débarrasser de la malédiction de la dimension du TO, et

l’on retrouve à l’infini le taux de convergence des EMM. Enfin, nous

présentons de nouveaux algorithmes de résolution pour le TOE basés

sur l’optimisation stochastique ‘en-ligne’ qui, contrairement à l’état de

l’art, ne se restreignent pas aux mesures discrètes et s’adaptent bien

aux problèmes de grande dimension.
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Résumé de la Thèse

Comparer des distributions de probabilité est un problème essentiel en apprentis-

sage statistique, tant dans le cadre supervisé et non-supervisé. L’objet de cette thèse

est l’étude d’une classe de distances entre distributions de probabilités, appelées Diver-

gences de Sinkhorn, qui sont basées sur le Transport Optimal avec régularisation en-

tropique. Elle comporte à la fois des contributions théoriques concernant ses propriétés

statistiques, mais également des contributions numériques incluant des algorithmes pour

calculer les divergences de Sinkhorn et les utiliser dans des tâches d’apprentissage statis-

tique.

Apprentissage Supervisé. Dans le cadre de l’apprentissage supervisé, on dispose

d’un jeu de données étiquetées e.g (xi, yi)i=1...n ou xi est une observation dans un cer-

tain ensemble X (e.g. l’intensité des pixels d’une image) et yi est l’étiquette associée

(e.g. le fait que cette image représente une pomme). Un problème récurrent en ap-

prentissage supervisé est l’apprentissage d’une règle de classification à partir d’un jeu

de données, qui prend en entrée une nouvelle observation x et prédit l’étiquette associée

y en sortie. Prenons l’exemple de la classification par plus-proche-voisin : étant donnée

une nouvelle observation x, on regarde l’observation la plus proche dans le jeu de don-

nées xiú et l’on renvoie y = yiú . Cette règle de classification fait l’hypothèse que si deux

observation sont proches, elles doivent dont avoir la même étiquette. Définir une notion

de distance pertinente pour les objets en question est donc primordial. En pratique,

de nombreuses données peuvent être représentées sous forme d’histogrammes dans une

autre espace X Õ: une observation x œ X est identifiée à un histogramme –
def.
=

qn
i=1 αi”ai ,

où (ai)i œ X Õ and
qn

i=1 αi = 1. Comme les histogrammes, une fois normalisés, sont

simplement des mesures de probabilités discrètes, une distance entre mesures de proba-

bilités est une distance pertinente pour ces objets. Pour donner une idée de l’étendue de

ce mode de représentation des données, citons la comparaison de‘bag-of-visual-words’

en vision (Rubner et al., 2000), le traitement de couleurs et de formes en computer

graphics (Solomon et al., 2015), ‘bag-of-words’ pour le traitement du langage (Kusner

et al., 2015). Un autre moyen d’utiliser des histogrammes en apprentissage supervisé est

d’associer les étiquettes à des histogrammes dans la classification multi-classes (Frogner

et al., 2015).

1



2 RESUME DE LA THESE

Apprentissage Non-Supervisé. Dans le cadre de l’apprentissage non-supervisé, le

jeu de données contient uniquement les observations (xi)i=1...n dans l’espace des don-

nées X . Une manière d’extraire de l’information des données dans ce cas est de faire

du ‘density fitting’, c’est à dire apprendre la distribution de probabilité des données.

Le but est d’approcher la distribution inconnue induite par le jeu de données à l’aide

d’une distribution paramétrique. Cela revient à trouver les paramètres qui minimisent

une certaine notion de distance entre les deux distributions (celle inconnue des données

et celle du modèle paramétrique). Choisir la bonne notion de distance entre mesures est

une question clé pour ce problème. Un domaine de recherche populaire en apprentissage

supervisé, qui a émergé ces dernières années, est l’apprentissage de modèles générat-

ifs (Goodfellow et al., 2014) capables de générer de nouveaux échantillons ressemblant à

ceux du jeu de données. Les distributions induites par les modèles génératifs sont souvent

supposées être de petite dimension dans un espace ambiant de très grande dimension,

et n’ont donc pas de densité par rapport à une mesure de référence. Le paradigme clas-

sique du Maximum de Vraisemblance ne peut donc pas être utilisé pour de tels modèles.

Cependant, il est facile de tirer des échantillons selon ces modèles, et l’utilisation d’une

distance entre mesures qui est robuste à l’échantillonnage est essentielle.

Distances entre mesures. Les notions les plus communes pour comparer des mesures

de probabilités sont les Ï≠divergences (Csiszár, 1975), les Maximum Mean Discrepan-

cies (MMD) (Gretton et al., 2006) et le Transport Optimal (TO) (Kantorovich, 1942).

Les Ï≠divergences ont l’avantage d’être facilement calculables , mais ne métrisent pas

la convergence faible. A la fois les MMD et le TO ont cette faculté, mais ils présen-

tent des caractéristiques bien distinctes. Les MMD peuvent être efficacement estimées à

partir d’échantillons des mesures, à la fois d’un point de vue statistique car l’estimation

est robuste (on parle de bonne ‘sample complexity’) mais également d’un point de vue

numérique puisqu’ils peuvent être calculés en forme close. Le TO, en revanche, ne

présente aucun de des deux avantages, mais il a la capacité de s’adapter à la géométrie

du problème. Ces bonnes propriétés géométriques peuvent en outre être renforcées à

l’aide de contraintes structurelles (Alvarez-Melis et al., 2017) ce qui permet par exem-

ple de prendre en compte les étiquettes des observations dans un cadre supervisé. De

plus, résoudre le problème de TO donne une correspondance entre les deux mesures,

et se révèle performant pour des problèmes d’adaptation de domaine (Courty et al.,

2014). Nous proposons ici une alternative qui unifie ces deux notions de distance entre

mesures, appelée Divergences de Sinkhorn. Celles-ci sont basées sur la régularisation en-

tropique du TO. Nous prouvons qu’elles interpolent entre les MMD (avec un paramètre

de régularisation infini) et le Transport Optimal (sans régularisation). En particulier,

les Divergences de Sinkhorn préservent les bonnes propriétés géométriques du TO, et

donnent également une correspondance entre les mesures. En revanche, contrairement

au TO – mais de manière similaire aux MMD – elles bénéficient de bonnes propriétés
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numériques et d’algorithmes de calcul rapides.

Nous allons à présent détailler les différents points mentionnés ci dessus, en formal-

isant les concepts clés et soulignant les contributions principales de la thèse.

Chapitre 1: Régularisation Entropique du Transport Opti-

mal

Ce chapitre introductif est à la fois une revue des outils habituellement utilisés en

apprentissage statistique pour comparer des distributions de probabilité, et une présen-

tation de certaines propriétés essentielles du transport optimal régularisé (contenant à

la fois des résultats nouveaux, et d’autres déjà connus dans la littérature). Il servira de

base pour les travaux développés aux chapitres suivants.

Etat de l’art. En apprentissage statistique, les premières notions de distance qui ont

été introduites pour comparer deux distributions de probabilités sont les Ï-divergences

(Csiszár, 1975), qui peuvent être vues comme une moyenne pondérée (par Ï) de l’odds-

ration entre deux mesures. Etant donnée une fonction Ï convexe, semi-continue in-

férieurement telle que Ï(1) = 0, le Ï-divergence DÏ entre deux mesures de probabilité

– et — est définie par:

DÏ(–|—)
def.
=

⁄

X
Ï

1d–(x)

d—(x)

2

d—(x).

à un terme correctif près (potentiellement infini) si – n’est pas absolument continue

par rapport à —. La simplicité calculatoire des Ï≠divergences les a rendues populaires

– la plus connue étant la divergence de Kullback-Leibler Ï(x) = x log(x). Cependant,

elles souffrent de l’inconvénient majeur de ne pas métriser la convergence faible (ou

convergence en loi). On dit d’une suite de mesures –n qu’elle converge faiblement vers

– (noté –n Ô –) si et seulement si
s

f(x)d–n(x) æ s

f(x)d–(x) pour toute fonction

continue bornée f . Une distance L métrise la convergence faible si et seulement si

L(–n, –) æ 0 … –n Ô –. Le fait de métriser la convergence faible est crucial pour

les distances entre mesures, puisque cela assure que la distance reste stable à de petites

perturbations du support des mesures. Par exemple, considérons le cas sur R où – = ”0

une masse de Dirac en 0 et –n = ”1/n une masse de Dirac en 1/n. Alors DÏ(–n|–) est

constante pour tout n, alors qu’il semble naturel de dire que lorsque n tend vers l’infini,

–n se rapproche de –. Ceci illustre bien le problème que posent les Ï-divergences

en grande dimension, lorsque les mesures de probabilité sont supportées sur des sous-

variétés de petite dimension par exemple.

Les deux principales classes de distances métrisant la convergence faible entre mesures

sont les Maximum Mean Discrepancies (MMD)(Gretton et al., 2006) et les dis-

tances issues du Transport Optimal (TO) (Santambrogio, 2015). Les MMD sont un

cas particulier des Integral Probability Metrics (Müller, 1997). Etant donné un Espace
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de Hilbert à Noyau Reproduisant (RKHS) H avec noyau k; la MMD entre deux mesures

de probabilité – et — est définie comme suit:

MMD2
k(–, —)

def.
=

A

sup
{f |||f ||H61}

|E–(f(X)) ≠ E—(f(Y ))|
B2

= E–¢–[k(X, X Õ)] + E—¢— [k(Y, Y Õ)] ≠ 2E–¢—[k(X, Y )]. (0.1)

Si le noyau k est universel (i.e. le RKHS est dense dans l’espace des fonctions continues),

elles sont définies positives, et sous des hypothèses techniques supplémentaires (satis-

faites par certains noyaux usuels), elles métrisent la convergences faible (Sriperumbudur

et al., 2010). Cette famille de distances présente l’avantage d’être aisément calculable

à partir d’échantillons des mesures – tant du point de vue statistique que numérique

(Gretton et al., 2006). Les distances issues du TO, quant-à elles, se comportent parti-

culièrement bien dans les problèmes intrinsèquement géométriques (e.g. le traitement

d’images ou de formes). Elles se basent sur le choix d’une fonction de coût c qui reflète

la géométrie de l’espace des données et sont définies par :

Wc(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊X
c(x, y)dfi(x, y), (P)

où l’ensemble des contraintes est composé des distributions de probabilités jointes ayant

pour marginales –, —. Un choix classique est c = dp, où d est la distance naturelle

sur X . Dans ce cas, Wc métrise la convergence faible lorsque p > 1 (Santambrogio,

2015). Cependant, les distances issues du TO souffrent à la fois d’une coût numérique

important – dans le cas discret, résoudre le problème de TO revient à résoudre un

programme linéaire – mais aussi du fléau de la dimension puisque leur approximation

à l’aide d’échantillons des mesures se dégrade rapidement en grande dimension (Weed

and Bach, 2017).

La régularisation entropique du Transport Optimal a récemment émergé

comme une solution à la complexité algorithmique prohibitive du TO (Cuturi, 2013).

Le problème régularisé est défini par :

Wc,Á(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊X
c(x, y)dfi(x, y) + ÁH(fi|– ¢ —), (PÁ)

où

H(fi|– ¢ —)
def.
=

⁄

X ◊X
log

3

dfi(x, y)

d–(x)d—(y)

4

dfi(x, y). (0.2)

est l’entropie relative du plan de transport fi par rapport à la mesure produit – ¢ —. Il

admet une formulation duale équivalente qui est non contrainte (contrairement au TO



5

non-régularisé) :

Wc,Á(–, —) = max
uœC(X )
vœC(X )

⁄

X
u(x)d–(x) +

⁄

X
v(y)d—(y)

≠ Á

⁄

X ◊X
e

u(x)+v(y)≠c(x,y)
Á d–(x)d—(y) + Á. (DÁ)

Dans le cas de mesures discrètes finies, le fait d’optimiser successivement par rapport à

chacune des variables duales donne un algorithme rapide (convergence linéaire et com-

plexité quadratique), appelé algorithme de Sinkhorn (Sinkhorn, 1967). En outre, la

distance induite par le transport régularisé se révèle performante dans des problèmes

d’apprentissage statistique comme le remarque Cuturi (2013), dans son article ayant ou-

vert la voie à l’utilisation du transport régularisé dans la communauté de l’apprentissage

statistique.

Contributions. L’objectif principal de cette thèse et de démontrer théoriquement

et numériquement que les avantages de la régularisation entropique du TO s’étendent

au delà d’un avantage numérique dans le cadre des mesures discrètes finies. Dans ce

chapitre, nous passons en revue les bases nécessaires pour aborder les contributions prin-

cipales contenues dans les chapitres suivants. Cependant, cette collection de résultats

contient également quelques contributions originales concernant le transport régularisé

:

(i) Régularisation du TO à l’aide de l’entropie relative par rapport à la

mesure produit des marginales: L’article pionner de Cuturi (2013) traite du

cas de mesures discrètes et utilise l’entropie H(fi)
def.
=

q

i,j log (fiij) fiij comme régu-

larisation. Nous suggérons d’utiliser plutôt l’entropie relative par rapport à la

mesure produit des marginales définie dans l’équation (0.10), puisqu’elle permet

de réécrire le problème dual comme un problème de maximisation d’une espérance

:

Wc,Á(–, —) = max
uœC(X )
vœC(X )

E–¢—

Ë

fXY
Á (u, v)

È

+ Á,

où fxy
Á (u, v)

def.
= u(x) + v(y) ≠ Áe

u(x)+v(y)≠c(x,y)
Á et X, Y sont distribuées selon –

et — respectivement. Cette formulation est essentielle pour montrer les propriétés

statistiques tu TO régularisé dans le Chapitre 3 et permet également de développer

de nouveaux algorithme de résolution dans le Chapitre 4.

(ii) Formulation Semi-Duale: Lorsque l’une des mesures est une somme pondérée

de n masses de Dirac masses, la variable duale associée est un vecteur de dimension

n. Supposons (sans perte de généralité puisque de problème est symétrique) que
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c’est le cas de la seconde mesure : —
def.
=

qn
i=1 βi”xi . On peut alors exploiter la

concavité jointe du problème dual, en utilisant la condition d’optimalité sur la

première variable pour en déduire la formulation Semi-Duale du TO régularisé :

Wc,Á(–, —) = max
vœRn

⁄

X
≠Á log

A

n
ÿ

i=1

e
vi≠c(x,yi)

Á βi

B

d–(x) +
n

ÿ

i=1

viβi. (SÁ)

On obtient alors un problème d’optimisation sur R
d, pouvant également être réécrit

comme le maximum d’une espérance. Cette formulation est exploitée dans le

Chapitre 4, où l’on résout le problème semi-dual par des méthodes d’optimisation

stochastique.

(iii) Généralisation de la preuve d’existence de solutions pour le problème

dual (DÁ): Une preuve d’existence des potentiels duaux existe déjà dans le cas

discret (Franklin and Lorenz, 1989), et pour le problème de Schrödinger (Chen

et al., 2016) qui a de nombreuses similarités avec le problème de TO régularisé.

En utilisant la même technique de preuve, i.e. en prouvant que les potentiels duaux

sont des points fixes d’une contraction pour la métrique de Hilbert, on étend la

preuve à des mesures de probabilités quelconques, avec un coût borné.

(iv) Extension du TO régularisé: Cette introduction détaillée à la régularisation

entropique du TO est également l’occasion de généraliser certains résultats à des

régulariseurs autres que l’entropie, en remplaccant H(fi|–¢—) par DÏ(fi|–¢—) dans

(PÁ), où DÏ est une Ï≠divergence quelconque. De plus, ces formulations peuvent

être étendues dans certains cas au transport non-équilibré (‘unbalanced OT’) qui

étend la notion de TO à des mesures de Radon positives de masse quelconque

(Liero et al., 2018),(Chizat et al., 2018) (e.g. régularisation, formulation comme

maximum d’une espérance).

Chapitre 2: Apprentissage Non-Supervisé avec les Diver-

gences de Sinkhorn

Ce chapitre est basé sur (Genevay et al., 2018).

Les problèmes d’apprentissage non-supervisés reviennent souvent à approcher un jeu

de données par un modèle paramétrique, c’est à dire estimer les paramètres d’un modèle

de manière à ce qu’il minimise une certaine distance entre le modèle et les données.

Formellement, étant donné un jeu de données provenant d’une distribution inconnue —,

on souhaite apprendre une mesure paramétrique –◊ú telle que

◊ú œ argmin
◊

L(–◊, —)
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oùL est une certaine notion de distance entre les mesures. La distribution des données —

est inconnue, et n’est accessible que via un nombre fini d’échantillons (y1, . . . , yN ) œ X N

qui constituent le jeu de données. L’approche standard pour les mesures à densité

est l’Estimation par Maximum de Vraisemblance (EMV), ce qui revient à prendre

L(–◊, —) = ≠ q

j log d–◊
dx (yj), où d–

dx est la densité de –◊ par rapport à une mesure

de référence. Cependant, cette approche ne fonctionne pas pour les modèles génératifs,

qui sont obtenus comme le pushforward d’une distribution ’ dans un espace de petite

dimension à travers une fonction non-linéaire g◊ à valeurs dans un espace de grande di-

mension (e.g. un réseau de neurones). Obtenir des échantillons de ces modèles génératifs

est relativement simple : une échantillon x de –◊ est obtenue en tirant un échantillon z

de ’ puis en prenant x = g◊(x). Cependant, leur densité est en général singulière dans

le sens où elle est en supportée sur une sous-variété de petite dimension de l’espace des

données X , rendant l’EMV inutilisable.

Etat de l’art. De nombreuses méthodes ont été développées pour apprendre les

modèles génératifs. Les approches pionnières incluent les auto-encodeurs variationnels

(VAE) (Kingma and Welling, 2013) et les réseaux génératifs adversaires (GAN) (Good-

fellow et al., 2014) qui ont ensuite induit de nombreuses variations, dont une combinaison

des deux approches (Larsen et al., 2016). L’approche adversaire des GAN peut être vue

comme un jeu à deux joueurs dans lequel le joueur un optimise son paramètre ◊ pour

tromper le joueur deux dont le but est de distinguer entre les échantillons du mod-

èle paramétrique –◊ et ceux de la distribution du jeu de données — en optimisant un

discriminateur paramétrique Dw. Formellement, ceci revient à minimiser le dual de la

divergence de Jensen-Shannon (exprimée comme le maximum sur une classe de fonc-

tions paramétriques Dw) entre –◊ et —. Cette approche min-max peut être étendue à

n’importe quelle Ï≠divergences (Nowozin et al., 2016). Une autre approche consiste

à minimiser la MMD entre la distribution des données et le modèle. Il a été mon-

tré dans des travaux récents (Li et al., 2015; Dziugaite et al., 2015) que l’efficacité de

l’approche MMD dépendait du choix d’un noyau approprié, ce qui est en soi une tâche

complexe. Le distance de Wasserstein, connue depuis longtemps pour être un outil de

choix dans la comparaison de mesures à géométrie complexe et dont le support est dis-

joint, a récemment émergé comme une bonne alternative. Bien que l’idée d’utiliser la

distance de Wasserstein pour l’inférence de modèles génératifs ait déjà été considérée il

y a plus de dix ans (Bassetti et al., 2006), cela restait purement de l’ordre théorique

jusqu’à ce que plusieurs travaux récents l’implémentent de manière plus ou moins di-

recte : sur un espace discret à l’aide de la régularisation entropique (Montavon et al.,

2016), via des méthodes bayésiennes dites ‘ABC’ (Bernton et al., 2017) ou encore en

paramétrisant le potentiel dual par un réseau de neurone en considérant la distance de

1-Wasserstein (Arjovsky et al., 2017).
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Contributions. Les contributions principales de ce chapitre incluent un résultat théorique

sur une nouvelle notion de distance basée sur le TO, et un schéma numérique simple

pour l’apprentissage non-supervisé à l’aide de cette distance.

(i) Divergences de Sinkhorn: Nous introduisons les Divergences de Sinkhorn,

basées sur la régularisation entropique du TO:

SDc,Á(–, —)
def.
= Wc,Á(–, —) ≠ 1

2
Wc,Á(–, –) ≠ 1

2
Wc,Á(—, —), (0.3)

où Wc,Á est la distance induite par le TO avec régularisation entropique. Ceci

corrige le biais introduit par l’entropie afin de garantir que SDÁ(–, –) = 0. Nous

avons conjecturé, d’après des simulations numériques que cette normalisations per-

mettait d’obtenir une quantité définie positive. Celà a été prouvé récemment dans

Feydy et al. (2019), tout comme le fait que les Divergences de Sinkhorn métrisent

la convergence faible sous certaines hypothèses sur la fonction de coût.

(ii) Propriété d’interpolation: Nous prouvons que lorsque le paramètre de régu-

larisation Á = 0, on retrouve le TO classique, et lorsque Á = +Œ on obtient une

MMD de noyau ≠c (i.e. moins la fonction de coût du TO):

Theorem 1. Soit la Divergence de Sinkhorn définie en (0.11), alors son comporte-

ment asymptotique en Á est le suivant:

quand Á æ 0, SDc,Á(–, —) æ Wc(–, —), (0.4)

quand Á æ +Œ, SDc,Á(–, —) æ 1

2
MMD2

≠c(–, —). (0.5)

Pour définir un MMD à proprement parler, il faut que ≠c induise un noyau défini

positif. C’est le cas lorsque c = || · ||p2 for 0 < p < 2, et le MMD associé s’appelle

l’Energy Distance (Sejdinovic et al., 2013). Cette propriété d’interpolation est

étudiée plus en détail dans le Chapitre 3, ou nous prouvons que la ‘sample com-

plexity’ des Divergences de Sinkhorn interpole également entre le TO et les MMD,

ce qui casse le fléau de la dimension induit par le TO lorsque Á est assez grand. Ce

phénomène est déjà visible ici empiriquement.

(iii) Apprentissage de modèles génératifs avec la Divergence de Sinkhorn:

On considère le problème d’apprentissage de mesure paramétrique, en utilisant

une Divergence de Sinkhorn comme notion de distance entre les mesures :

◊ú œ argmin
◊

SDc,Á(–◊, —).

Le problème est résolu grâce à deux simplifications : (i) approximer SDÁ(–◊, —)

avec des mini-batch de taille m, ce qui donne SDÁ(–̂◊m, —̂m), afin d’utiliser une



9

méthode de gradient stochastique ; (ii) approximer SDÁ(–̂◊m, —̂m) par L-étapes de

l’algorithme de Sinkhorn (Cuturi, 2013) afin d’obtenir une distance algorithmique

SD
(L)
Á (–̂◊m, —̂m) différentiable automatiquement (à l’aide de librairies spécifiques).

Les résultats numériques, à la fois sur des données simulées et réelles, montrent

que les Divergences de Sinkhorn permettent de mieux capturer la géométrie du

problème que l’Energy Distance, qui tend à ignorer les zones dans lesquelles il y a

peu d’observations.

(iv) Apprendre la fonction de coût de manière adversaire: De manière simi-

laire à ce qui a été fait pour la fonction de noyau dans (Dziugaite et al., 2015),

nous proposons d’apprendre la fonction de coût c de manière adversaire. Ceci est

essentiel dans les applications pour lesquelles il n’y a pas de distance naturelle sur

l’espace des données, par exemple lorsque l’on traite d’images de grande dimension.

Il s’agit alors de paramétriser la fonction de coût de la manière suivante

cÏ(x, y)
def.
= ||fÏ(x) ≠ fÏ(y)||p where fÏ : X æ R

dÕ
,

où fÏ peut être vu comme un extracteur de features qui réduit X à un espace de

plus faible dimension R
dÕ

. Cette fonction de coût doit rendre les Divergences de

Sinkhorn grandes afin de pouvoir bien distinguer entre le modèle –◊ et la vraie

distribution —. Il faut alors résoudre un problème de min-max :

min
◊

max
Ï

SDcÏ,Á(–◊, —).

Peu après la soumission de ce travail, nous avons eu connaissance d’un travail simul-

tané (Salimans et al., 2018) proposant une méthode d’estimation des modèles génératifs

très proche de la notre. Une distinction principale est le fait qu’ils ne back-propagent pas

le gradient à travers les itérations de Sinkhorn, invoquant le théorème de l’enveloppe.

Chapitre 3: Sample Complexity des Divergences de Sinkhorn

Ce chapitre est basé sur (Genevay et al., 2019).

Les résultats numériques obtenus dans le Chapitre 2 renforcent les premières observa-

tion effectuées dans (Cuturi, 2013): la régularisation entropique du TO casse le fléau de

la dimension lorsque le paramètre de régularisation est suffisamment grand. L’objectif

de ce chapitre est de prouver cette conjecture empirique, en établissant un résultat de

sample complexity pour les Divergences de Sinkhorn. Nous donnons également le taux

de convergence du TO régularisé vers le TO classique, montrant qu’il existe bien un

trade-off entre une estimation fidèle au TO classique et une bonne sample complexity.
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Etat de l’art. Le principal résultat théorique du Chapitre 2 (cf Théorème 5) dit que

les Divergences de Sinkhorn, basées sur le TO régularisé, interpolent entre le TO et les

MMD. Ces deux métriques populaires pour comparer des distributions de probabilité

diffèrent sur un aspect essentiel : leur sample complexity. La définition de sample

complexity d’une distance entre mesures que l’on choisit ici correspond au taux de

convergence de la distance évaluée sur des échantillons des mesures (samples) vers la

vraie distance entre les mesures, en fonction de la taille de l’échantillon. Cette notion est

cruciale en apprentissage statistique car une mauvaise sample complexity va entrainer

un surapprentissage et une forte variance des gradients lorsque l’on utilise cette distance

pour estimer des paramètres. Il est connu que les MMD ont une sample complexity

indépendante de la dimension, de l’ordre de 1Ô
n

(Gretton et al., 2006) où n est la

taille de l’échantillon. D’autre part, il est également connu que le TO non-régularisé

souffre du fléau de la dimension (Dudley, 1969): étant donnée une mesure de probabilité

– œ M(Rd) et son estimation empirique –̂n, on a E[Wp(–, –̂n)] = O(n≠1/d). La sample

complexity est donc exponentielle en d, la dimension de l’espace ambiant. Bien qu’il ait

été récemment prouvé que ce résultat peut être raffiné à la dimension intrinsèque des

données (Weed and Bach, 2017), la sample complexity du TO est un frein majeur à son

utilisation dans des problèmes de grande dimension en apprentissage statistique.

Une solution réside encore une fois dans la régularisation entropique. Empirique-

ment, il a été observé que les Divergences de Sinkhorn (0.11) ont tendance à moins

sur-apprendre que le TO classique, puisque l’ajout d’une régularisation modérée per-

met d’améliorer la performance sur des tâches simples (Cuturi, 2013). La propriété

d’interpolation du Théorème 5 suggère également que pour des grandes valeurs du

paramètres de régularisation, les Divergences de Sinkhorn ont un comportement simi-

laire aux MMD. Cependant, en dehors d’un récent théorème central limite dans le cas de

mesures discrètes à support fini (Bigot et al., 2017), la convergence des Divergences de

Sinkhorn empiriques, et plus généralement leur sample complexity, reste une question

ouverte.

Contributions. Ce chapitre contient la principale contribution théorique de cette

thèse, sous la forme de trois théorèmes exhibant des propriétés théoriques des Diver-

gences de Sinkhorn.

(i) Vitesse de convergence du TO régularisé vers le TO classique : Sur un

domaine borné de R
d, étant donnée une fonction de coût Lipschitz c, le Théorème 6

quantifie la vitesse de convergence de la valeur du transport régularisé vers celle

du transport classique, en fonction du paramètre de régularisation Á.

Theorem 2. Soit – et — deux mesures de probabilité sur X et Y sous-ensembles

bornées de R
d tels que |X | et |Y| 6 D et c une fonction de coût L-Lipschitz par
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rapport à x et y. On a

0 6 WÁ(–, —) ≠ W (–, —) 6 2Ád log
1

e2·L·DÔ
d·Á

2

(0.6)

≥
Áæ0

2Ád log(1/Á). (0.7)

(ii) Les potentiels duaux sont uniformément bornés dans un espace de Sobolev

(RKHS) : Nous prouvons ensuite que les maximiseurs du problème dual (DÁ) sont

bornés en norme de Sobolev indépendamment des mesures:

Theorem 3. Soient X et Y deux sous-ensembles bornés de R
d et une fonction de

coût c CŒ, alors les potentiels duaux optimaux (u, v) (i.e. une paire de maximiseurs

de (DÁ)) sont uniformément bornés dans l’espace de Sobolev Hs(Rd) et leur norme

satisfait

||u||Hs = O

3

1 +
1

Ás≠1

4

and ||v||Hs = O

3

1 +
1

Ás≠1

4

,

avec des constantes dépendant uniquement de |X | (ou |Y| pour v), d, et
.

.

.c(k)
.

.

.

Œ
pour k = 0, . . . , s. En particulier, on a le comportement asymptotique suivant en

Á: ||u||Hs = O(1) quand Á æ +Œ et ||u||Hs = O( 1
Ás≠1 ) quand Á æ 0.

Or, Hs(Rd) est un RKHS pour s > d/2. Cela permet de réécrire les Divergences

de Sinkhorn comme un problème de maximisation d’une espérance dans une boule

d’un RKHS et donc de justifier l’utilisation de kernel-SGD pour le transport régu-

larisé présentée dans le Chapitre 4 (voir contribution (iii)).

(iii) Sample complexity des Divergences de Sinkhorn : Comme conséquence de

cette reformulation (maximisation d’espérance sur une boule de RKHS), nous dé-

duisons un résultat de sample complexity. Nous nous concentrons sur l’influence

de la taille des échantillons et du paramètre de régularisation sur le taux de conver-

gence des Divergences de Sinkhorn empiriques (i.e. calculées à partir d’échantillons

des mesures) vers les ‘vraies’ Divergences de Sinkhorn entre ces mesures. Nous

montrons que les Divergences de Sinkhorn bénéficient de la même sample com-

plexity que les MMD, de l’ordre de 1Ô
n

mais avec une constante dépendant de

l’inverse du paramètre de régularisation.

Theorem 4. Soit la Divergence de Sinkhorn entre deux mesures – et — sur X et

Y deux sous-espaces bornés de R
d, avec un coût CŒ, L-Lipschitz c. On a

E|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| = O

A

e
Ÿ
ÁÔ
n

3

1 +
1

ÁÂd/2Ê

4

B

,

où Ÿ = 2L|X | + ÎcÎŒ et les constantes dépendent uniquement de |X |, |Y|, d, et
.

.

.c(k)
.

.

.

Œ
pour k = 0 . . . Âd/2Ê. En particulier, on a le comportement asymptotique
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suivant en Á:

E|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| = O

A

e
Ÿ
Á

ÁÂd/2ÊÔn

B

quand Á æ 0

E|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| = O

3

1Ô
n

4

quand Á æ +Œ.

La sample complexity se dégrade lorsque l’on souhaite se rapprocher du transport

classique (avec un petit Á) et il y a donc un tradeoff entre une bonne approxi-

mation du transport (faible régularisation) et une bonne sample complexity (forte

régularisation).

Chapitre 4: Optimisation Stochastique pour le Transport

Optimale à Grande Echelle

Ce chapitre est basé sur (Genevay et al., 2016).

En exploitant la formulation duale du TO régularisé comme maximisation d’une

espérance, présentée au Chapitre 1 (voir (i) dans contributions), nous proposons un

ensemble d’algorithmes d’optimisation stochastiques pour le résoudre. Contrairement

aux méthodes existantes, qui s’appliquent uniquement aux mesures discrètes finies, nos

algorithmes peuvent s’appliquer à tous types de mesures, avec pour seule condition de

pouvoir tirer des points selon ces mesures.

Etat de l’art. La méthode classique pour calculer les distances de TO consiste à

résoudre le problème de Kantorovitch (Kantorovich, 1942) (introduit au Chapitre 1) qui

se résume à un programme linéaire de grande taille, dans le cas de mesures discrètes

(i.e. somme de n Diracs pondérés). Ce programme linéaire peut être résolu à l’aide

d’algorithmes de network flow avec une complexité de l’ordre de (n3 log(n)), qui peut être

raffinée dans le cas de problèmes d’assignement où les deux mesures sont de même taille,

avec des poids uniformes (Burkard et al., 2009). La régularisation entropique, présentée

au Chapitre 1, s’est révélée efficace pour approximer les distances de TO avec un faible

coût algorithmique en appliquant l’algorithme de Sinkhorn (Sinkhorn, 1964). Chaque

itération de cet algorithme se résumé à une multiplication matrice-vecteur, résultant en

une complexité algorithmique en O(n2). Ces opérations sont aisément parallélisables,

peuvent s’effectuer sur GPU, et bénéficient d’une implémentation linéaire en temps

sur des grilles de l’espace (Solomon et al., 2015). La régularisation entropique peut

également être étendue pour résoudre d’autres problèmes mettant en jeu le TO, comme

le calcul de barycentres de Wasserstein ou le transport optimal multi-marges (Benamou

et al., 2015).

Cependant, cette méthode est purement discrète et ne s’applique pas à des mesures



13

continues. La seule classe de méthodes plus générales est celle des solvers dits ‘semi-

discrets’ (Aurenhammer et al., 1998), qui peuvent être implémentés efficacement à l’aide

de librairies de géométrie algorithmique (Mérigot, 2011). Ils permettent de calculer la

distance entre une mesure continue et une mesure discrète, mais seulement dans le

cas d’un coût Euclidien et en petite dimension. Enfin, soulignons qu’il n’existe pas

actuellement de méthode permettant de calculer le TO entre deux mesures continues,

problème que nous traitons dans ce chapitre.

Contributions. Ce chapitre présente une nouvelle classe d’algorithmes d’optimisation

stochastique en ligne pour résoudre le TO dans le cadre de mesures discrètes de grande

taille (i.e. avec un très grand nombre de points), ou de mesures quelconques en grande di-

mension. Les méthodes d’optimisation stochastique peuvent gérer tous types de mesures,

tant que l’on peut générer des points selon celles-ci. Cela permet de se débarrasser de

la nécessité de discrétiser les mesures, ce qui introduit un biais important en grande

dimension, tout en bénéficiant de garanties de convergences des algorithmes. Ces méth-

odes sont toutes basées sur l’observation clé que le dual (DÁ) et semi-dual (SÁ) peuvent

se réécrire comme la maximisation d’une espérance. Lorsque — =
qm

j=1 βj”yj est une

mesure discrète, le problème semi-dual (SÁ) devient

WÁ(–, —) = max
vœRm

E–

Ë

gX
Á (v)

È

, (0.8)

où X ≥ – et

gx
Á (v) =

m
ÿ

j=1

vjβj +

Y

]

[

≠Á log(
qm

j=1 exp(
vj≠c(x,yj)

Á )βj) si Á > 0,

minj (c(x, yj) ≠ vj) si Á = 0.

Nous exploitons cette formulation dans les cadres discret et semi-discret, alors que le

cadre continu exploite la formulation duale (DÁ) :

(i) Comparaison de deux mesures discrètes finies: Quand – =
qn

i=1 αi”xj

et — =
qm

j=1 βj”yj , la formulation semi-duale du problème de TO régularisé (SÁ)

devient la maximisation d’une somme de n fonctions. Celle-ci peut être résolue effi-

cacement grâce à des méthodes de gradient stochastique avec réduction de variance

– nous utilisons Stochastic Averaged Gradients (SAG) dans nos expériences.

Les itérées de SAG sont données par la formule suivante

v(k+1) = v(k) +
C

n

n
ÿ

i=1

z
(k)
i ,
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où un indice i(k) est choisi au hasard dans {1 . . . n} et

z
(k)
i =

Y

]

[

Ògxi
Á (v(k)) si i = i(k)

z
(k≠1)
i sinon.

A chaque itération un indice i(k) est choisi au hasard dans {1 . . . n} pour calculer

Òg
x

i(k)
Á (v(k)), le gradient correspondant à l’échantillon xi(k) à l’estime courante v(k).

SAG garde en mémoire une copie de ce gradient et calcule une moyenne de tous les

gradients en mémoire pour fournir une approximation du ‘vrai’ gradient ÒĒ–[gX
Á ].

Comparativement à Sinkhorn, qui peut être vue comme une méthode batch (chaque

itération prend en compte TOUS les points connus), SAG est une algorithme en

ligne. Ceci permet de réduire la complexité de chaque itération à O(m), avec un

taux de convergence enO(1/k) (car l’objectif n’est pas fortement convexe). Il y

a donc un tradeoff entre la complexité algorithmique des itérations et le taux de

convergence, qu’il faut considérer lorsque l’on compare les deux algorithmes. SAG

est donc plus efficace pour les problèmes où m est très grand, c’est à dire pour les

problèmes traitant des mesures discrètes avec un très grand nombre de points.

(ii) Comparaison d’une mesure discrète finie et d’une mesure de probabilité

quelconque: On résout le problème semi-dual (SÁ) sous forme d’espérance défini

en (0.16) grâce à l’algorithme de Descente de Gradient Stochastique (SGD)

algorithm. L’idée de SGD est assez intuitive : à chaque itération, un échantillon

xk est tiré selon – et son gradient Ògxk
Á est calculé à l’itérée courante v(k) pour

servir de proxy au ‘vrai’ ÒḠÁ. Les itérations sont données par :

v(k+1) = v(k) +
CÔ
k

Òvgxk
Á (v(k)) where xk ≥ –.

Puisque des échantillons de – sont tirés en ligne, i.e. sans discrétisation préalable,

cette méthode évite le biais de discrétisation qui apparait lors de l’utilisation de

solveurs discrets. SGD a un taux de convergence en O(1/
Ô

k) et une complexité

algorithmique en O(m) par itération. Cette méthode semi-discrète en ligne a été

utilisée avec succès pour la synthèse de texture en traitement d’images (Galerne

et al., 2018), et pour le calcul de barycentres de Wasserstein (Staib et al., 2017).

(iii) Comparaison de deux mesures de probabilité quelconques: Lorsqu’aucune

des deux mesure n’est une mesure discrète finie, nous avons recours à la formulation

duale du TO régularisé :

WÁ(–, —) = max
uœC(X )
vœC(Y)

E–¢—

Ë

fXY
Á (u, v)

È

+ Á,
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où fxy
Á (u, v)

def.
= u(x) + v(y) ≠ Áe

u(x)+v(y)≠c(x,y)
Á . Nous résolvons ce problème à l’aide

d’une descente de gradient stochastique sur un Espace de Hilbert à

Noyau Reproduisant (RKHS), en utilisant la propriété fondamentale d’un

RKHS H avec noyau k: u œ H … u(x) = Èu, k(x, ·)Í. Le Théorème 7 du Chapitre 3,

qui indique que les potentiels duaux sont dans une boule d’un RKHS, permet de

prouver la convergence de cette méthode. Nous utilisons également une approx-

imation du noyau (via incomplete Cholesky decomposition (Wu et al., 2006) ou

Random Fourier features (Rahimi and Recht, 2007)) pour réduire significativement

le temps de calcul, passant d’une complexité quadratique à linéaire en le nombre

d’itérations. C’est actuellement la seule méthode connue pour résoudre le problème

de TO régularisé entre deux mesures de probabilité quelconques.
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Outline of the Thesis

Comparing probability distributions is a fundamental component of many machine

learning problems, both supercontractvised and unsupervised. The main matter of this

thesis is to study the behavior of a class of discrepancies between probability distri-

butions, called Sinkhorn Divergences, which are based on entropy-regularized Optimal

Transport. We provide both theoretical contributions, regarding their statistical prop-

erties, and numerical ones, including solvers to compute Sinkhorn Divergences and use

them in machine learning tasks.

Supervised Machine Learning. In supervised machine learning, we are provided

with a labeled dataset e.g (xi, yi)i=1...n where xi is the observation in some input space

X (e.g. pixel intensities of an image) and yi is the associated label (e.g. the fact that

this image represents an apple). A recurrent issue in supervised learning is to learn a

classification rule from the data, that takes a new observation x as an input and predicts

the associated label y as the output. For instance in nearest-neighbor classification,

when provided with a new observation x, one looks for the closest observation xiú in the

dataset and sets y = yiú . This classification rule assumes that if observations are close,

they should have the same label. Defining a meaningful notion of distance on the data

space X is thus crucial. In practice, a lot of data can be represented as histograms on

some other space X Õ: a data point x œ X is identified to a histogram –
def.
=

qn
i=1 αi”ai ,

where (ai)i œ X Õ and
qn

i=1 αi = 1. Since normalized histograms are no more than finite

discrete probability distributions, a distance on probability distributions serves as a

relevant distance on these data spaces. As a set of representative examples, let us quote:

bag-of-visual-words comparison in computer vision (Rubner et al., 2000), color and

shape processing in computer graphics (Solomon et al., 2015), bag-of-words for natural

language processing (Kusner et al., 2015). Another use of histograms in supervised

learning is to associate labels to histograms in multi-label classification (Frogner et al.,

2015).

Unsupervised Machine Learning. On the other hand, in unsupervised machine-

learning, the dataset only consists in observations (xi)i=1...n in the data space X . One

way to extract information from the data in an unsupervised setting is to perform

17
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density fitting. The goal is to fit the unknown distribution induced by the dataset with

a parametric distribution. This amounts to finding the parameters that minimize some

notion of distance between these two distributions (the unknown one from the dataset,

and the one from the parametric model). Choosing the right notion of discrepancy

between measures here is one of the key issues of the problem. A popular research area

in unsupervised learning which emerged in recent years is learning generative models

(Goodfellow et al., 2014) which can generate new samples resembling the ones in the

dataset. The distributions induced by generative models are often assumed to have

intrinsic low dimension, and thus do not have a density with respect to a reference

measure. The usual Maximum Likelihood Estimation framework can therefore not be

used for such models. However, these models are easy to sample from, and thus resorting

to a discrepancy on measures which can be robustly computed from samples (from the

generative model and the dataset) is essential.

Discrepancies on measures. The most popular frameworks that are used to com-

pare probability distributions are Ï≠divergences (Csiszár, 1975), Maximum Mean Dis-

crepancies (MMD) (Gretton et al., 2006) and Optimal Transport (OT) (Kantorovich,

1942). The former are appreciated for their computational simplicity, but they suffer

from the major shortcoming of not metrizing weak-convergence. Both MMD and OT

have the ability to metrize weak-convergence, but they enjoy different characteristics.

MMD can be efficiently estimated from samples of the measures, both statistically since

the estimates are robust with a small number or samples (we say it has a good sam-

ple complexity) and also numerically, as they are computed in closed form. OT on the

other hand, presents none of these advantages, but has the ability to lift a ground metric

from the dataspace X to the set of probability measures on this space and thus take

into account the underlying geometry of the data. Its good geometric properties can

be strengthened by enforcing structure constraints (Alvarez-Melis et al., 2017) which

allows for instance to take into account the class labels in supervised learning. Besides,

solving OT also gives a mapping from one measure to the other, which has been suc-

cessfully used in domain adaptation (Courty et al., 2014). As a unifying alternative to

these discrepancies, we introduce Sinkhorn Divergences, based on entropy-regularized

Optimal Transport. We prove they interpolate between MMD (with infinitely strong

regularization) and OT (with no regularization). In particular, Sinkhorn Divergences

preserve the good geometric properties of OT, and also provide a mapping from one

measure to the other. However unlike OT – but similarly to MMD – they benefit from

good statistical properties and efficient computation.

We now get into more details regarding the technical aspects of our work, formalizing

key concepts and outlining the main contributions of this thesis.



19

Chapter 1: Entropy-regularized Optimal Transport

This introductory chapter is both a review of existing tools commonly used in ma-

chine learning to compare probability distributions, and a presentation of key properties

of regularized optimal transport (containing both new results and existing ones from the

literature), which serves as a basis for the work presented in subsequent chapters.

Previous Works. In machine learning, the first discrepancies that were introduced to

compare two probability distributions are Ï-divergences (Csiszár, 1975), which can be

seen as a weighted average (by Ï) of the odds-ratio between the two measures. Consider

Ï a convex, lower semi-continuous function such that Ï(1) = 0, the Ï-divergence DÏ

between two probability measures – and — is defined by:

DÏ(–|—)
def.
=

⁄

X
Ï

1d–(x)

d—(x)

2

d—(x).

up to a corrective (possibly infinite) term if – is not absolutely continuous with respect

to —. The computational simplicity of Ï≠divergences made them quite popular – the

most widely used being the Kullback-Leibler divergence for Ï(x) = x log(x). However,

they suffer from the major drawback of not metrizing weak-convergence (or conver-

gence in law). A measure –n weakly converges to – (denoted –n Ô –) if and only

if
s

f(x)d–n(x) æ s

f(x)d–(x) for all continuous bounded functions f ; and a loss L
metrizes weak-convergence if and only if L(–n, –) æ 0 … –n Ô –. The metrization

of weak-convergence is instrumental for discrepancies on measure, as it ensures that

the losses remain stable under small perturbations of the support of the measures. As

an example, consider the case on R where – = ”0 a Dirac mass in 0 and –n = ”1/n a

Dirac mass in 1/n. Then DÏ(–n|–) is a constant for all n, although it seems natural

to say that when n goes to infinity, –n gets closer to –. This failure case in R becomes

very problematic in higher dimension, when comparing probability distributions that

are supported on low-dimensional manifolds for instance.

The two main classes of discrepancies that satisfy this requirement are Maximum

Mean Discrepancies (MMD)(Gretton et al., 2006) and Optimal Transport (OT)

(Santambrogio, 2015) based losses. MMD are a special instance of Integral Probability

Metrics (Müller, 1997). Given a Reproducing Kernel Hilbert Space (RKHS) H with

kernel k; MMD between two probability measures – and — are defined as follows:

MMD2
k(–, —)

def.
=

A

sup
{f |||f ||H61}

|E–(f(X)) ≠ E—(f(Y ))|
B2

= E–¢–[k(X, X Õ)] + E—¢— [k(Y, Y Õ)] ≠ 2E–¢—[k(X, Y )]. (0.9)

If the kernel k is universal (i.e. its RKHS is dense in the space of continuous func-

tions), they are positive definite, and under some further technical assumptions, they
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metrize weak-convergence (Sriperumbudur et al., 2010). This family of losses presents

the advantage of being efficiently computed from samples – both in a computational

and statistical sense (Gretton et al., 2006). OT-based losses on the other hand behave

particularly well in problems that are intrinsically geometric (e.g. shapes or image pro-

cessing). They rely on the choice of a ground cost c which reflects the geometry of the

input space in the following way:

Wc(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊X
c(x, y)dfi(x, y), (P)

where the feasible set is composed of joint probability distributions with fixed marginals

–, —. A typical choice is c = dp, where d is the natural distance on X , for which Wc

metrizes weak-convergence when p > 1 (Santambrogio, 2015). However, these losses

suffer from a computational burden – solving OT requires solving a linear program in

the discrete case – and a curse of dimensionality, meaning their approximation from

sampled measures degrades quickly in high dimension (Weed and Bach, 2017).

Entropy-regularized OT has recently emerged as a solution to the computational

issue of OT (Cuturi, 2013). The regularized problem reads:

Wc,Á(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊X
c(x, y)dfi(x, y) + ÁH(fi|– ¢ —), (PÁ)

where

H(fi|– ¢ —)
def.
=

⁄

X ◊X
log

3

dfi(x, y)

d–(x)d—(y)

4

dfi(x, y). (0.10)

is the relative entropy of the transport plan fi with respect to the product measure –¢—.

It has an equivalent dual formulation, which is unconstrained (contrarily to standard

OT):

Wc,Á(–, —) = max
uœC(X )
vœC(X )

⁄

X
u(x)d–(x) +

⁄

X
v(y)d—(y)

≠ Á

⁄

X ◊X
e

u(x)+v(y)≠c(x,y)
Á d–(x)d—(y) + Á. (DÁ)

In the case of finite discrete measures, iteratively optimizing over each dual variables

yields a fast converging algorithm, called Sinkhorn’s algorithm (Sinkhorn, 1967). Be-

sides, the resulting distance happens to perform well in various machine learning tasks

as proved in the seminal paper by Cuturi (2013), which opened the way to the use of

entropy-regularized OT in the community.

Contributions. The main objective of this thesis is to prove theoretically and numer-

ically that the benefits of entropy-regularized OT extend far beyond this fast algorithm
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for finite discrete measures, and in this chapter we review the bases that will be required

for our main contributions presented in subsequent chapters. However, this collection

of results also includes some original contributions on regularized OT which consist in

(i) Regularization of OT using relative entropy with respect to the product

measure of the marginals: The seminal paper by Cuturi (2013) deals with

the discrete case and uses entropy H(fi)
def.
=

q

i,j log (fiij) fiij as a regularizer. We

suggest instead to use the entropy with respect to the product of marginals defined

in equation (0.10), as it allows to formulate the dual problem as the maximization

of an expectation :

Wc,Á(–, —) = max
uœC(X )
vœC(X )

E–¢—

Ë

fXY
Á (u, v)

È

+ Á,

where fxy
Á (u, v)

def.
= u(x)+v(y)≠Áe

u(x)+v(y)≠c(x,y)
Á and X, Y are distributed according

to – and — respectively. This formulation is key to deriving statistical properties

of entropy-regularized OT in Chapter 3 and new solvers in Chapter 4.

(ii) Semi-Dual formulation: When one of the measures is a weighted sum of n dirac

masses, the associated dual variable is a n dimensional vector. Assume (without

loss of generality, since the problem is symmetric) that it is the case of the second

measure: —
def.
=

qn
i=1 βi”xi . We exploit the joint convexity of the dual problem,

by using the optimality condition over the first dual variable to derive a so-called

Semi-Dual formulation of entropy-regularized OT:

Wc,Á(–, —) = max
vœRn

⁄

X
≠Á log

A

n
ÿ

i=1

e
vi≠c(x,yi)

Á βi

B

d–(x) +
n

ÿ

i=1

viβi. (SÁ)

This problem is an optimization problem over R
d, which can also be rewritten as

the maximum of an expectation. We make use of this formulation in Chapter 4,

resorting to stochastic optimization to solve this problem.

(iii) Generalization of previous proofs of existence of solutions to the dual

problem (DÁ): A proof of existence of dual potentials already exist in the discrete

case (Franklin and Lorenz, 1989), and for Schrödinger’s problem (Chen et al.,

2016) which shares strong links with regularized OT. Relying on the same proof

technique, i.e. proving that dual potentials are fixed point of contractions for the

Hilbert metric, we extend the proof to any arbitrary probability measures, and a

bounded cost function.

(iv) Extension of entropy-regularized OT: This thorough introduction to entropy-

regularized OT is also an opportunity to generalize some of our results to regu-

larizers other than entropy, replacing H(fi|– ¢ —) by DÏ(fi|– ¢ —) in (PÁ), where
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DÏ is any Ï≠divergence. Besides, we also extend these formulations to unbal-

anced transport, which extends the notion of OT to positive Radon measures with

arbitrary mass (Liero et al., 2018),(Chizat et al., 2018) whenever possible (e.g.

regularization, formulation as an expectation).

Chapter 2: Learning with Sinkhorn Divergences

This chapter is based on (Genevay et al., 2018).

Unsupervised machine learning often boils down to fitting a parametric model to

a dataset, i.e. estimating the parameters of a chosen model that fits observed data in

some meaningful way. Formally, given a dataset of samples with unknown distribution

—, we want to learn a parametric measure –◊ú such that

◊ú œ argmin
◊

L(–◊, —)

where L is some loss on measures. Note that — is unknown, and can only be accessed via

a finite number of samples (y1, . . . , yN ) œ X N constituting the dataset. The standard

approach for models with a density is Maximum Likelihood Estimation (MLE), setting

L(–◊, —) = ≠ q

j log d–◊
dx (yj), where d–

dx is the density of –◊ with respect to a fixed

reference measure. However this approach does not work for generative models, obtained

as the mapping of a low dimensional reference measure ’ through a non-linear parametric

pushforward function g◊ with values in a high dimensional space (e.g. a neural network).

These models are easy to sample from: a sample x from –◊ is obtained by drawing a

sample z from ’ and taking x = g◊(x). However, their density is singular in the sense

that it is typically supported on a low-dimensional “manifold" of the data space X , thus

making the MLE unusable.

Previous Works. To fit generative models, several likelihood-free alternatives ex-

ist. Pioneer approaches include variational autoencoders (VAE) (Kingma and Welling,

2013) and generative adversarial networks (GAN) (Goodfellow et al., 2014) which lead

to numerous variations including combinations of both ideas (Larsen et al., 2016). The

adversarial GAN approach can be viewed as a two-player game where player one opti-

mizes its parameter ◊ to fool player two whose goal is to discriminate between samples

from the model measure –◊ and samples from the true measure — by optimizing a para-

metric discriminator Dw. Formally, this is equivalent to minimizing the dual of the

Jensen-Shannon divergence (expressed as the maximum over a class of parametric func-

tions Dw) between –◊ and —. This min-max approach can be extended to any given

Ï≠divergences (Nowozin et al., 2016). Another approach is to minimize the MMD be-

tween the distribution of the data and the model. It was shown in relevant work (Li

et al., 2015; Dziugaite et al., 2015) that the effectiveness of the MMD in that setting
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hinges on the ability to find a relevant kernel function, which is nontrivial. The Wasser-

stein distance, long known to be a powerful tool to compare probability distributions

with non-overlapping supports, a has recently emerged as a serious contender. Although

the use of Wasserstein metrics for inference in generative models was considered over ten

years ago in (Bassetti et al., 2006), that development remained exclusively theoretical

until a recent wave of papers managed to implement that idea more or less faithfully us-

ing several workarounds: entropic regularization over a discrete space (Montavon et al.,

2016), approximate Bayesian computations (Bernton et al., 2017) and a neural network

parameterization of the dual potential arising from the dual OT problem when consid-

ering the 1-Wasserstein distance (Arjovsky et al., 2017). As opposed to this dual way

to compute gradients of the fitting energy, we advocate for the use of a primal formula-

tion, which is numerically stable, because it does not involve differentiating the (dual)

solution of an OT sub-problem, as also pointed out in (Bousquet et al., 2017).

Contributions. The main contributions of this chapter include a theoretical contri-

bution regarding a new OT-based loss for generative models, and a simple numerical

scheme to learn under this loss.

(i) Sinkhorn Divergence: We introduce the Sinkhorn Divergence, based on regu-

larized optimal transport with an entropy penalty:

SDc,Á(–, —)
def.
= Wc,Á(–, —) ≠ 1

2
Wc,Á(–, –) ≠ 1

2
Wc,Á(—, —), (0.11)

where Wc,Á is the loss induced by entropy-regularized OT. This corrects the bias

introduced by entropy to ensure that SDÁ(–, –) = 0. We conjectured in the

early stages of our work on Sinkhorn Divergence, based on empirical evidence,

this normalization of regularized OT enforces positive-definiteness. It was recently

proved in subsequent work by Feydy et al. (2019) along with the fact that Sinkhorn

Divergences metrize the weak-convergence of measures under some assumptions on

the cost.

(ii) Interpolation property: We prove that when the smoothing parameter Á = 0

we recover pure OT loss whereas letting Á = +Œ leads to MMD with kernel ≠c

(i.e. minus the ground cost of OT):

Theorem 5. Consider the Sinkhorn Divergence defined in (0.11), then it has the

following asymptotic behavior in Á:

as Á æ 0, SDc,Á(–, —) æ Wc(–, —), (0.12)

as Á æ +Œ, SDc,Á(–, —) æ 1

2
MMD2

≠c(–, —). (0.13)
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Note that to define a proper MMD, ≠c needs to induce a positive definite kernel.

This is the case when c = || · ||p2 for 0 < p < 2, and the associated MMD yields the

Energy Distance (Sejdinovic et al., 2013). This interpolation property is further

studied in Chapter 3, where we prove that the sample complexity of Sinkhorn

Divergences also interpolates between that of OT and MMD, alleviating the curse

of dimensionality brought by OT when Á is sufficiently large. It is also supported

by empirical evidence in this chapter.

(iii) Learning generative models under a Sinkhorn Divergence: We consider

the density fitting problem with a Sinkhorn Divergence as a loss:

◊ú œ argmin
◊

SDc,Á(–◊, —).

We solve the inference problem by making two key simplifications: (i) approximate

SDÁ(–◊, —) by a size-m mini-batch sampling SDÁ(–̂◊m, —̂m) to make it amenable

to stochastic gradient descent ; (ii) approximate SDÁ(–̂◊m, —̂m) by L-steps of the

Sinkhorn algorithm (Cuturi, 2013) to obtain an algorithmic loss SD
(L)
Á (–̂◊m, —̂m)

which is amenable to automatic differentiation. Numerical experiments, both on

simulated and real data, show that Sinkhorn Divergences are able to capture the

geometry of the data in a more powerful way than the Energy Distance, which

tends to ignore extreme points.

(iv) Adversarially learning the cost function: Similarly to what is done for ker-

nel functions in (Dziugaite et al., 2015), we propose to learn the cost function c

adversarially. This is crucial for applications in which there is no natural distance

between samples, like in computer vision where there is no universal meaningful

metric between images. We parametrize the cost function in the following way:

cÏ(x, y)
def.
= ||fÏ(x) ≠ fÏ(y)||p where fÏ : X æ R

dÕ
,

where fÏ can be seen as a feature extractor that reduces the dimensionality of X
through a mapping onto R

dÕ
. This cost function should make the discrepancy large,

to be able to discriminate well between the model –◊ and the true distribution —,

we then solve the min-max problem:

min
◊

max
Ï

SDcÏ,Á(–◊, —).

Shortly after the submission of this work, we came across the recent work by (Salimans

et al., 2018) which shares several ideas with our method. One distinction lies in the fact

that they do not back-propagate errors across the Sinkhorn iterations, but rather use an

estimate of the optimal transport matrix to compute an upper-bound on the Sinkhorn
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Divergence, as was done for instance in (Cuturi and Doucet, 2014).

Chapter 3: Sample Complexity of Sinkhorn Divergences

This chapter is based on (Genevay et al., 2019).

The numerical experiments in Chapter 2 further support what was first observed in

(Cuturi, 2013): entropy-regularized OT breaks the curse-of-dimensionality from which

OT suffers when the regularization parameter is large enough. The goal of this chapter

is to make this more formal through a sample complexity theorem. We also provide a

convergence rate of entropy-regularized transport to standard transport, proving that

there is a tradeoff between a faithful estimation of OT and good sample complexity.

Previous Works. The central theoretical contribution of Chapter 2 (see Theorem 5)

states that Sinkhorn Divergences, based on regularized OT, interpolate between OT and

MMD. These two metrics, which emerged as popular candidates to compare probability

measures, differ on a fundamental aspect: their sample complexity. The definition of

sample complexity of a loss function that we choose here is the convergence rate of the

loss evaluated on empirical measures to the loss evaluated on the “true" measures, as

a function of the number of samples. This notion is crucial in machine learning, as

bad sample complexity induces overfitting and high gradient variance when using these

divergences for parameter estimation. In that context, it is well known that the sample

complexity of MMD is independent of the dimension, scaling as 1Ô
n

(Gretton et al.,

2006) where n is the number of samples. In contrast, it is well known that standard

OT suffers from the curse of dimensionality (Dudley, 1969): considering a probability

measure – œ M(Rd) and its empirical estimation –̂n, we have E[Wp(–, –̂n)] = O(n≠1/d).

Its sample complexity is thus exponential in the dimension of the ambient space d.

Although it was recently proved that this result can be refined to d being the intrinsic

dimension of data (Weed and Bach, 2017), the sample complexity of OT is now the

major bottleneck for the use of OT in high-dimensional machine learning problems.

A solution to this shortcoming comes, once again, from entropic-regularization.

Sinkhorn Divergences (0.11), have been empirically observed to be less prone to over-

fitting, as a certain amount of regularization can improve performance in simple learning

tasks (Cuturi, 2013). The interpolation property in Theorem 5 also suggests that for

large regularizations, Sinkhorn Divergences should behave similarly to MMD. However,

aside from a recent central limit theorem in the case of measures supported on finite

discrete spaces (Bigot et al., 2017), the convergence of empirical Sinkhorn Divergences,

and more generally their sample complexity, remains an open question.

Contributions. This chapter contains the main theoretical contributions of this the-

sis, in the form of three theorems exhibiting theoretical properties of Sinkhorn Diver-
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gences.

(i) Bound on the speed of convergence of regularized OT to standard OT:

On a bounded domain of R
d and with a Lipschitz cost-function c, Theorem 6 quan-

tifies the speed of convergence of the value of regularized OT to that of standard

OT with respect to the regularization parameter Á

Theorem 6. Let – and — be probability measures on X and Y bounded subsets of

R
d such that |X | and |Y| 6 D and assume that c is L-Lipschitz w.r.t. x and y. It

holds

0 6 WÁ(–, —) ≠ W (–, —) 6 2Ád log
1

e2·L·DÔ
d·Á

2

(0.14)

≥
Áæ0

2Ád log(1/Á). (0.15)

(ii) The dual potentials lie in a Sobolev (RKHS) ball We then prove that

optimizers of the dual regularized optimal transport problem (DÁ) lie in a Sobolev

ball which is independent of the measures:

Theorem 7. When X and Y are two bounded sets of R
d and the cost c is CŒ,

then optimal Sinkhorn potentials (u, v) (i.e. a pair of maximizers of (DÁ)) are

uniformly bounded in the Sobolev space Hs(Rd) and their norms satisfy

||u||Hs = O

3

1 +
1

Ás≠1

4

and ||v||Hs = O

3

1 +
1

Ás≠1

4

,

with constants that only depend on |X | (or |Y| for v), d, and
.

.

.c(k)
.

.

.

Œ
for k =

0, . . . , s. In particular, we get the following asymptotic behavior in Á: ||u||Hs = O(1)

as Á æ +Œ and ||u||Hs = O( 1
Ás≠1 ) as Á æ 0.

This allows us to rewrite the Sinkhorn Divergence as an expectation maximization

problem in a RKHS ball and thus justify the use of kernel-SGD for regularized OT

as advocated in Chapter 4 (see contribution (iii)).

(iii) Sample complexity of Sinkhorn Divergences: As a consequence of this refor-

mulation (maximization over a RKHS ball), we derive a sample complexity result.

We focus on the influence of the sample size and the regularization parameter on

the convergence rate of the empirical Sinkhorn Divergence (i.e., computed from

samples of two continuous measures) to the continuous Sinkhorn Divergence. We

show that the Sinkhorn Divergence benefits from the same sample complexity as

MMD, scaling in 1Ô
n

but with a constant that depends on the inverse of the regu-

larization parameter:

Theorem 8. Consider the Sinkhorn Divergence between two measures – and — on
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X and Y two bounded subsets of R
d, with a CŒ, L-Lipschitz cost c. One has

E|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| = O

A

e
Ÿ
ÁÔ
n

3

1 +
1

ÁÂd/2Ê

4

B

,

where Ÿ = 2L|X | + ÎcÎŒ and constants only depend on |X |, |Y|, d, and
.

.

.c(k)
.

.

.

Œ
for k = 0 . . . Âd/2Ê. In particular, we get the following asymptotic behavior in Á:

E|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| = O

A

e
Ÿ
Á

ÁÂd/2ÊÔn

B

as Á æ 0

E|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| = O

3

1Ô
n

4

as Á æ +Œ.

Sample complexity worsens when getting closer to standard OT and there is there-

fore a tradeoff between a good approximation of OT (small regularization parame-

ter) and fast convergence in terms of sample size (larger regularization parameter).

Chapter 4: Stochastic Optimization for Large-Scale Opti-

mal Transport

This chapter is based on(Genevay et al., 2016).

Taking advantage of the formulation of dual regularized OT as the maximization

of an expectation presented in Chapter 1 (see (i) in contributions), we propose a class

of provably convergent stochastic optimization solvers. Contrarily to existing methods,

which only apply to discrete measures, ours can handle both discrete and continuous

distributions, with the sole requirement that one can sample from them.

Previous Works. The prevalent way to compute OT distances is by solving the so-

called Kantorovitch problem (Kantorovich, 1942) (introduced in Chapter 1) which boils

down to a large-scale linear program when dealing with discrete distributions (i.e., fi-

nite weighted sums of Dirac masses). This linear program can be solved using network

flow solvers with (n3 log(n)) computational complexity (n being the number of points

in the measure), which can be further refined to assignment problems when comparing

measures of the same size with uniform weights (Burkard et al., 2009). Regularized ap-

proaches that solve the OT with an entropic penalization, as introduced in Chapter 1,

have been shown to be efficient to approximate OT solutions at a low computational cost

by applying Sinkhorn’s algorithm (Sinkhorn, 1964). Its main computational advantage

over competing solvers is that each iteration boils down to matrix-vector multiplica-

tions, which results in a O(n2) complexity. These operations can be easily parallelized,

stream extremely well on GPU, and enjoy linear-time implementation on regular grids

or triangulated domains (Solomon et al., 2015). It can also be easily extended to solve
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other problems involving optimal-transport, such as the computation of Wasserstein

barycenters or multimarginal optimal transport (Benamou et al., 2015).

This method is however purely discrete and cannot cope with continuous densities.

The only known class of methods that overcome this limitation are so-called semi-discrete

solvers (Aurenhammer et al., 1998), that can be implemented efficiently using computa-

tional geometry primitives (Mérigot, 2011). They compute distance between a discrete

distribution and a continuous density, but are restricted to the Euclidean squared cost,

and can only be implemented in low dimensions. Lastly, let us point out that there is

currently no method that can compute OT distances between two continuous densities,

which is thus an open problem we tackle in this chapter.

Contributions. This chapter introduces a new class of online stochastic optimization

algorithms to deal with large-scale (discrete measures with a very large number of points)

and/or high dimensional OT problems. They can handle arbitrary distributions (discrete

or continuous) as long as one is able to draw samples from them. This alleviates the

need to discretize these densities, which introduces an important bias in high dimension,

while giving access to provably convergent methods. These algorithms rely on one key

idea which is that the dual (DÁ) and semi-dual (SÁ) OT problems can be re-cast as

the maximization of an expectation. When — =
qm

j=1 βj”yj is a discrete measure, the

semi-dual problem (SÁ) in expectation form is

WÁ(–, —) = max
vœRm

E–

Ë

gX
Á (v)

È

, (0.16)

where X ≥ – and

gx
Á (v) =

m
ÿ

j=1

vjβj +

Y

]

[

≠Á log(
qm

j=1 exp(
vj≠c(x,yj)

Á )βj) if Á > 0,

minj (c(x, yj) ≠ vj) if Á = 0.

We exploit this formulation in the discrete-discrete and semi-discrete setups, and rely

on the standard dual (DÁ) when neither measures are discrete:

(i) Comparing two finite discrete measures: When – =
qn

i=1 αi”xj and — =
qm

j=1 βj”yj , the semi-dual regularized OT problem (SÁ) becomes the maximiza-

tion of a sum of n functions. This can be efficiently solved thanks to stochastic

gradient methods with variance reduction – we use Stochastic Averaged Gra-

dients (SAG) in our experiments. The iterates of SAG can be summarized by the

following formula

v(k+1) = v(k) +
C

n

n
ÿ

i=1

z
(k)
i ,
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where an index i(k) is selected at random in {1 . . . n} and

z
(k)
i =

Y

]

[

Ògxi
Á (v(k)) if i = i(k)

z
(k≠1)
i otherwise.

At each iteration an index i(k) is selected at random in {1 . . . n} to compute

Òg
x

i(k)
Á (v(k)), the gradient corresponding to the sample xi(k) at the current es-

timate v(k). SAG keeps in memory a copy of that gradient and computes an

average of all gradients stored so far which provides a better proxy of full gradient

ÒĒ–[gX
Á ]. Compared to Sinkhorn, which can be viewed as a batch method, SAG is

an online algorithm which reduces the complexity of each iteration to O(m), with

a O(1/k) convergence rate (since our objective is not strongly convex). There is

thus a tradeoff in iteration complexity vs. convergence rate to consider when using

Sinkhorn or SAG. The latter is thus more efficient for problems with a very large

m – i.e. discrete measures with a very large number of points.

(ii) Comparing a finite discrete measure to an arbitrary probability mea-

sure: We solve the semi-dual problem (SÁ) in expectation form defined in (0.16)

thanks to the Stochastic Gradient Descent (SGD) algorithm. The idea of SGD

is fairly intuitive : at each iteration, a sample xk is drawn from – and its gradient

Ògxk
Á is computed at the current iterate v(k) to serve as a proxy for the full gradient

ÒḠÁ. The iterations are given by:

v(k+1) = v(k) +
CÔ
k

Òvgxk
Á (v(k)) where xk ≥ –.

Since samples from – are drawn online, i.e. without prior discretization, this

method avoids the discretization bias introduced when using a discrete solvers. It

has a O(1/
Ô

k) convergence rate along with a O(m) complexity per iteration. This

online semi-discrete algorithm has been successfully applied to texture synthesis

in image processing (Galerne et al., 2018), and to the computation of Wasserstein

Barycenters (Staib et al., 2017).

(iii) Comparing two arbitrary probability measures: When neither measures are

finite discrete ones, we resort to the dual formulation

WÁ(–, —) = max
uœC(X )
vœC(Y)

E–¢—

Ë

fXY
Á (u, v)

È

+ Á,

where fxy
Á (u, v)

def.
= u(x) + v(y) ≠ Áe

u(x)+v(y)≠c(x,y)
Á . We propose a stochastic gradi-

ent descent over a Reproducing Kernel Hilbert Space (RKHS), by using

the fundamental property of a RKHS H with kernel k: u œ H … u(x) = Èu, k(x, ·)Í.
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Theorem 7 from Chapter 3, stating that the dual potentials are in a RKHS ball,

allows to prove the convergence of this method. We also introduce an approximate

feature approach (via incomplete Cholesky decomposition (Wu et al., 2006) or

Random Fourier features (Rahimi and Recht, 2007)) to significantly reduce com-

putational time, going from quadratic to linear in the number of iterations. This

is currently the only known method to solve entropy-regularized OT between ar-

bitrary measures.
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Notations

Ambient space. For a metric space X , we denote by :

• C(X ) the space of continuous functions on X ,

• Cb(X ) the space of continuous bounded functions on X ,

• CŒ(X ) the space of continuous functions, infinitely differentiable with continuous

derivatives on X ,

• M+(X ) the set of positive Radon measures on X ,

• M1
+(X ) the set of positive Radon probability measures (i.e. of mass 1) on X .

When X is a bounded subset of R
d, we denote by |X | its diameter, defined by |X | def.

=

maxx,xÕœX ||x ≠ xÕ||.

Measures. We use upper-cases to denote random variables (e.g. X). We denote by

X ≥ – the fact that a random variable X follows a distribution – œ M1
+(X ). We

write E–(f(X))
def.
=

s

X f(x)d–(x), the expectation of the random variable f(X), for any

measurable function f on X . The Dirac measure at point x is ”x. We denote by –̂n the

empirical measure obtained from n i.i.d. samples (x1, . . . xn) of –, i.e. –̂n
def.
= 1

n

qn
i=1 ”xi .

Let – œ M1
+(X ), — œ M1

+(Y), we define

Π(–, —)
def.
= {fi œ M1

+(X ◊ Y) | ’(A, B) µ X ◊ Y, fi(A ◊ Y) = –(A), fi(X ◊ B) = —(B)},

the set of joint probability measures on X ◊ Y with marginals – and —. For some

continuous map g : Z æ X , we denote g˘ : M1
+(Z) æ M1

+(X ) the associated push-

forward operator, which is a linear map between distributions. This corresponds to

defining, for ’ œ M1
+(Z) and B µ X , (g˘’)(B) = ’(g≠1(B)) ; or equivalently, that

s

X Ïd(g˘’) =
s

Z Ï ¶ gd’ for continuous functions Ï on X . A random sample x from g˘’

can be obtained as x = g(z) where z is a random sample from ’, i.e. g˘’ is the law of

g(Z), where Z ≥ ’.

Vectors and matrices. We use bold lower-case for vectors (e.g. a) and bold upper-

case for matrices (e.g. A). For a matrix A, A€ denotes its transpose. Element-wise

multiplication of vectors is denoted by §. For two vectors (or matrices) Èu, vÍ def.
=

q

i uivi

is the canonical inner product (the Frobenius dot-product for matrices). We denote

1n = (1, . . . , 1)€ œ R
n and 0n = (0, . . . , 0)€ œ R

n. The probability simplex of n bins is

Σn =
)

α œ R
n
+ ;

q

i αi = 1
*

.

Others. We use the notation Ï(x) = O(1 + xk) to say that Ï : R ‘æ R is bounded by

a polynomial of order k in x with positive coefficients.
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Chapter 1

Entropy-regularized Optimal

Transport

This chapter is a collection of fundamental results on discrepancies between probability mea-

sures, with a focus on entropy-regularized optimal transport. Many problems in machine learning

boil down to comparing probability measures, thus the question of the right notion of discrepancy

between these measures is itself a crucial matter.

We start by a review of three popular candidates: Ï-divergences, Maximum Mean Discrepan-

cies (MMD) and Optimal Transport (OT). While Ï-divergences are appreciated for their simplic-

ity, they do not metrize weak convergence. This shortcoming is overcome by MMDs, defined as

Integral Probability Metrics on the ball of Reproducing Kernel Hilbert Spaces (RKHS), which can

also be efficiently estimated through samples. As for OT, its ability to capture the geometry of the

data makes it an interesting candidate but the fact that it suffers from a curse of dimensionality

and its computational burden make it impractical.

The recent introduction of Entropy-regularized OT (EOT) has alleviated both shortcomings of

OT (statistical and computational). We detail here the three formulations of EOT: primal, dual

and semi-dual along with basic results which are the common base to the remainder of this thesis.

Our thorough introduction, both theoretical and algorithmic, includes original contributions:

(i) the regularization of OT using relative entropy with respect to the product measure of the

marginals, which allows to have a dual formulation as an expectation useful to derive

statistical properties in Chapter 3 and new solvers in Chapter 4,

(ii) the semi-dual formulation and some key properties, which are exploited in Chapter 4,

(iii) a generalization of the proof of existence of solutions to the dual problem,

(iv) an extension of our results to regularizers other than entropy and unbalanced OT.

33
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1 Introduction

Comparing probability distributions is a fundamental issue arising in many machine

learning problems, both supervised and unsupervised. In unsupervised machine-learning,

one of the most popular research areas which emerged in recent years is learning genera-

tive models (Goodfellow et al., 2014). The goal is to fit the distribution of a parametric

generative model to the unknown distribution induced by the dataset, to then be able to

generate new samples which resemble the ones in the dataset. Choosing the right loss to

be minimized between these two distributions is one of the key issues of the problem. On

the supervised side of things, when one wants to learn a classifier for instance, choosing a

meaningful distance on the data space is crucial. Many types of data can be represented

as histograms, for instance: bag-of-visual-words comparison in computer vision (Rubner

et al., 2000), color and shape processing in computer graphics (Solomon et al., 2015),

bag-of-words for natural language processing (Kusner et al., 2015) and multi-label clas-

sification (Frogner et al., 2015). Normalized histograms are no more than finite discrete

probability distributions, thus a good distance to compare histograms requires a good

distance on measures.

Previous Works. In machine learning, the first candidates were Ï-divergences, which

can be seen as a weighted average (by Ï) of the odds-ratio between the two mea-

sures (Csiszár, 1975). Their computational simplicity made them very popular, although

they suffer from the major drawback of being oblivious to geometry, and they do not

metrize weak-convergence. The latter is solved by Integral Probability Metrics (IPMs)

(Müller, 1997), of which Maximum Mean Discrepancies (Gretton et al., 2006) are the

most popular instance in machine learning applications as they can be computed ef-

ficiently in closed form with samples of the two measures. Another class of losses are

Optimal Transport (OT) based losses – of which the Wasserstein Distance is a particular

case. They behave particularly well in problems that are intrinsically geometric (e.g.

shapes or image processing). However, they are expensive to compute and suffer from a

curse of dimensionality, meaning their approximation from sampled measures degrades

quickly in high dimension. A solution to the computational issue was introduced in

Cuturi (2013), thanks to the regularization of the original OT problem with entropy. It

allows to derive an efficient solver for finite discrete measures, and the resulting distance

happens to perform well in various machine learning tasks as proved in this seminal

paper.

Contributions. The object of this thesis is to showcase that the benefits of entropy-

regularized OT extend far beyond fast algorithms for finite discrete measures. Before

giving both theoretical and empirical evidence that it solves both the computational

(Chapters 2 and 4) and statistical (Chapter 3) burdens of OT, we exhibit in this re-
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view chapter the basics of regularized OT which are exploited in the remainder of this

thesis: primal, dual, semi-dual formulations, existence of solutions, convergence of the

regularized problem. We also provide a detailed account on Sinkhorn’s algorithm, the

state-of-the-art solver for discrete entropy-regularized OT. This chapter is different from

the subsequent ones, as it is a collection of existing results, including some original con-

tributions on regularized OT. They consist in (i) the regularization of OT using relative

entropy with respect to the product measure of the marginal (instead of entropy with

respect to the uniform measure in (Cuturi, 2013)), which allows us to formulate the

dual problem as the maximization of an expectation – useful to derive statistical prop-

erties in Chapter 3 and new solvers in Chapter 4, (ii) the semi-dual formulation and its

key properties, which are exploited in Chapter 4, (iii) and to a lesser extent a proof of

existence of solutions to the dual problem for arbitrary measures, building on Franklin

and Lorenz (1989), which provides a proof in the discrete setting and Chen et al. (2016)

which provides a proof in the continuous case for Schrödinger’s problem, which shares

strong links with OT. These contributions were originally given in (Genevay et al., 2016)

and (Genevay et al., 2019) (on which Chapters 4 and 3 are respectively based), but it

seems more natural to add them to the collection of the results used in subsequent

chapters, to provide a unified and thorough introduction to regularized OT. Eventually,

another contribution of this chapter is (iv) the extension of our results for regularizers

other than entropy, and links with unbalanced transport (Chizat et al., 2018) whenever

possible, which was not previously done in published work.

2 Distances Between Probability Measures

and Weak-Convergence

This section introduces three types of discrepancies between measures, which are

not all distances strictly-speaking, but they all define some sort of closeness between

probability measures. We review Ï≠divergences, Maximum Mean Discrepancy(MMD)

(which comes from the larger class of Integral Probability Metrics) and Optimal Trans-

port (OT) distances of which the Wasserstein Distance is a special instance, as these

are all popular losses in machine learning problems.

2.1 ϕ-divergences

The simplest tool to compare two measures are Ï-divergences. Roughly speaking,

they compare d–
d— (x) to 1 trough the following formulation:

Definition 1. (Ï-divergence)(Csiszár, 1975) Let Ï be a convex, lower semi-continuous

function such that Ï(1) = 0.
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Table 1.1 – Examples of Ï-divergences

Kullback-Leibler DKL(–|—) =
s

X log(d–
d— (x))d—(x) ¡ Ï(x) = x log(x)

Jensen-Shannon DJS(–|—) = DKL(–|1
2(– + —)) ¡ Ï(x) = x log(x)

+DKL(—|1
2(– + —))) ≠(1 + x) log 1+x

2

Hellinger DH2(–|—) =
s

X (
Ô

d– ≠ Ô
d—)2 ¡ Ï(x) = (

Ô
x ≠ 1)2

Total Variation DT V (–|—) = supAœB(X ) |–(A) ≠ —(A)| ¡ Ï(x) = 1
2 |x ≠ 1|

The Ï-divergence DÏ between two probability measures – and — œ M1
+ is defined by:

DÏ(–|—)
def.
=

⁄

X
Ï

3

d–

d—
(x)

4

d—(x) + ÏŒ–‹(X ),

where and ÏŒ
def.
= limxæ+Œ

Ï(x)
x and –‹(X ) denotes the mass of the part of – that is

not absolutely continuous with respect to — in the Radon-Nikodym decomposition of –,

i.e. – = d–
d— (x)— + –‹.

Besides, DÏ is jointly convex in both variables and if Ï is strictly convex at 1 then DÏ

is non-negative i.e.

DÏ(–|—) > 0 and DÏ(–|—) = 0 … – = —.

The best-known Ï-divergence is the so-called Kullback-Leibler divergence (see Ta-

ble 1.1 for examples), which is widely used in machine learning problems (see Chapter 2

for an overview of learning with Ï-divergences). However, it is equal to +Œ if both mea-

sures do not share the same support, which causes discontinuity issues. For instance,

consider the case on R where – = ”0 a Dirac mass in 0 and –n = ”1/n a Dirac mass in

1/n. Then DKL(–n|–) = +Œ for all n, although it would seem natural to say that when

n goes to infinity, –n gets closer to –. As for DT V (which is a norm) and DH2 (which

is the square of a distance), they are both finite constants for all n, when considering

this same case. This issue is simply an illustration of the fact that Ï-divergences do not

metrize weak-convergence.

Definition 2. (Weak-convergence) We say that a sequence of measures (–n)n weakly

converges to – (or converges in law) if

⁄

X
f(x)d–n(x) æ

⁄

X
f(x)d–(x) ’f œ Cb(X ), (2.1)

where Cb(X ) denotes the set of continuous bounded functions on X .
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We say that a discrepancy d metrizes the weak-convergence of measures if

d(–n, –) æ 0 … –n Ô –,

where Ô denotes weak-convergence (or convergence in law, for Xn Ô X where Xn ≥ –n

and X ≥ –).

Remark 1. As pointed out in Sec. 5.1 of (Ambrosio et al., 2006), it is sufficient to check

(2.1) on any subset Ω of bounded continuous functions whose linear envelope span(Ω)

is uniformly dense (i.e. dense in the uniform topology induced by the infinity norm) in

Cb(X ).

The fact that Ï≠divergences do not metrize weak convergence is a major issue and

makes them poor candidates for learning problems, in spite of their appreciated com-

putational simplicity. We discuss this in details in Chapter 2, where focus on finding a

good notion of distance between measures to fit a (generative) parametric model to a

dataset. For now, let us introduce another class of distances between measures which

can metrize weak convergence under some assumptions.

2.2 Integral Probability Metrics and Maximum Mean discrepancy

The notion of Integral Probability Metrics (IPMs) was introduced by (Müller, 1997)

as a class of maximization problems on certain sets of functions, regrouping some well

known distances:

Definition 3. (Integral probability metrics) (Müller, 1997) Consider two probability

distributions – and — on a space X . Given a set of measurable functions F , the integral

probability metric dF is defined as

dF (–, —)
def.
= sup

fœF
|E–(f(X)) ≠ E—(f(Y ))|. (2.2)

Let us now give a sufficient condition on F so that the associated IPM metrizes weak

convergence:

Proposition 1. If span(F) is uniformly dense in Cb(X ), then dF metrizes weak con-

vergence.

Proof. dF metrize weak convergence if and only if dF (–n, –) æ 0 … –n Ô –. Using the

definition of dF (2.2) and the definition of weak convergence (2.1) we can rewrite this

as:
sup
fœF

-

-

-

⁄

X
f(x)d–n(x)≠

⁄

X
f(x)d–(x)

-

-

- æ 0

…
-

-

-

⁄

X
f(x)d–n(x) ≠

⁄

X
f(x)d–(x)

-

-

- æ 0 ’f œ Cb(X ).
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Table 1.2 – Examples of Integral Probability Metrics

Total Variation F = {f |||f ||Œ 6 1} functions upper-bounded by 1

Maximum Mean discrepancy F = {f |||f ||H 6 1} unit ball of the RKHS H

Wasserstein-1 F = {f |||f ||Lip 6 1} functions with Lipschitz

constant smaller than 1

Besides,

sup
fœF

-

-

-

⁄

X
f(x)d–n(x)≠

⁄

X
f(x)d–(x)

-

-

- æ 0

…
-

-

-

⁄

X
f(x)d–n(x) ≠

⁄

X
f(x)d–(x)

-

-

- æ 0 ’f œ F .

Remark 1 yields the desired conclusion.

We give some examples of well-known IPMs in Table 1.2. The Wasserstein-1 dis-

tance, which is the IPM for the set of 1-Lipschitz functions can be reformulated using

Kantorovich-Rubinstein duality as:

W1(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊X
||x ≠ y||2dfi(x, y),

where Π(–, —) is the set of probability distributions over the product set X ◊ X with

marginals – and —. This formulation is known as an optimal transport problem between

– and — with cost function c(x, y) = ||x ≠ y||2. It is well known that W1 metrizes weak

convergence of measures. We will get back to a more general definition of Wasserstein

distance with other cost functions in the following section, since it extends beyond the

frame of IPMs. As for TV , which is both a Ï≠divergence and an IPM, it does not metrize

weak convergence: convergence in TV implies weak-convergence but not the other way

around. We now focus on Maximum Mean Discrepancy for a while. Maximum Mean

Discrepancies are IPMs on the unit ball of a Reproducing Kernel Hilbert Space (RKHS),

where the norm is the one induced by its kernel function k. The fact that MMDs metrize

weak convergence requires some conditions on the kernel k. Let us start by introducing

these concepts in more detail:

Definition 4. (Reproducing Kernel Hilbert Space) Consider a Hilbert space H
of real-valued functions on a space X . Let Lx be the evaluation operator, such that

Lx(f)
def.
= f(x). Then H is a Reproducing Kernel Hilbert Space if and only if Lx is

continuous.

From this definition, the role of the reproducing kernel in the reproducing kernel

Hilbert space is not obvious. We first give the definition of a reproducing kernel.
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Definition 5. (Reproducing Kernel) Consider a Hilbert space H of real-valued func-

tions on a space X . A function k : X ◊ X æ R is a reproducing kernel of H if it

verifies:

1. ’x œ X , k(x, ·) œ H,

2. ’f œ H, f(x) = Èf, k(x, ·)ÍH.

Proposition 2. A function k : X ◊ X æ R is a reproducing kernel if and only if it is

positive definite, i.e for all (x1, . . . , xn) œ X n, (a1, . . . , an) œ R
n,

n
ÿ

i=1

n
ÿ

j=1

aiajK(xi, xj) > 0.

We can now state a theorem giving an equivalent definition for RKHS.

Theorem 9. A Hilbert space H of real-valued functions on a space X is a Reproducing

Kernel Hilbert Space if and only if it has a reproducing kernel. Besides, this reproducing

kernel is unique.

Thanks to this theorem, it is possible to define the RKHS associated to any positive

definite kernel k.

Remark 2. The proof of any RKHS having a reproducing kernel is made thanks to

Riesz representer theorem. Since the evaluation function is linear and continuous, there

exists a function kx œ H such that f(x) = Èf, kxÍH. Defining the bilinear function

k : X ◊ X æ R by k(x, y) = kx(y) we clearly have that k is a reproducing kernel of H.

The reproducing property of RKHS allows to derive a much simpler expression for

their associated IPM, which becomes a closed form formula.

Proposition 3. (Maximum Mean discrepancy) (Gretton et al., 2006) Consider

two probability measures – and — œ M1
+(X ). Then, denoting by MMDk the Maximum

Mean Discrepancy on the Reproducing Kernel Hilbert Space H with kernel k, we have

that

MMD2
k(–, —)

def.
=

A

sup
{f |||f ||H61}

|E–(f(X)) ≠ E—(f(Y ))|
B2

= E–¢–[k(X, X Õ)] + E—¢— [k(Y, Y Õ)] ≠ 2E–¢—[k(X, Y )]. (2.3)

Proof. Using the fact that any function f in the RKHS satisfies f(x) = Èf, k(x, ·)ÍH, we

can rewrite MMD as follows:

sup
f |||f ||H61

|E–(f(X)) ≠ E—(f(Y ))| = sup
f |||f ||H61

|E–(Èf, k(X, ·)ÍH) ≠ E—(Èf, k(Y, ·)ÍH)|

= sup
f |||f ||H61

|Èf, E–k(X, ·) ≠ E—k(Y, ·)ÍH|

6 ||E–k(X, ·) ≠ E—k(Y, ·)||H,
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and this upper bound is reached for f = E–k(X, ·) ≠ E—k(Y, ·).

When – and — are finite discrete measures, i.e. –
def.
=

qn
i=1 αi”xi and —

def.
=

qn
i=1 βi”yi ,

(2.3) becomes

n
ÿ

i,j=1

k(xi, xj)αiαj +
n

ÿ

i,j=1

k(yi, yj)βiβj ≠ 2
n

ÿ

i,j=1

k(xi, yj)αiβj .

Thus, MMD can be efficiently estimated with samples from – and —. We discuss this

in Chapter 3 when we compare sample complexity for MMD, Wasserstein distance, and

entropy-regularized optimal transport.

We now give some conditions on k to ensure that MMDk metrizes weak convergence

Theorem 10. (MMD and weak convergence) (Sriperumbudur et al., 2010) Con-

sider Maximum Mean Discrepancy with kernel k between two measures – and — on some

space X , as defined in (2.3).

(i) Let X be a compact space. If the kernel k is universal (i.e. its associated RKHS is

dense in the space of continuous functions), then MMDk metrizes weak conver-

gence on M1
+(X ).

(ii) Let X = R
d and k(x, y) = Ÿ(x ≠ y) where Ÿ is a bounded strictly positive-definite

function. If ÷l œ N such that:

⁄

Rd

1

Ÿ̂(Ê)(1 + ||Ê||2)l
dÊ < Œ,

then MMDk metrizes weak convergence on M1
+(X ) .

The most widely used kernel is the Gaussian kernel k(x, y) = exp(≠||x≠y||2
‡2 ), which

is a universal kernel. According to Theorem 10 it metrizes weak convergence on a

compact set, but it does not verify the required hypotheses on R
d. They are however

characteristic, meaning that MMDk(–, —) = 0 ¡ – = —. An example of kernels that

verify the hypotheses of Theorem 10 on R
d are the so-called Matern kernels, whose

associated RKHS are Sobolev spaces. We further discuss the use of various kernels for

learning problems in Chapter 2 and for function estimation in Chapters 3 and 4.

2.3 Optimal Transport

We consider two probability measures – œ M1
+(X ) and — on M1

+(Y). The Kan-

torovich formulation (Kantorovich, 1942) of Optimal Transport (OT) between – and —

is defined by:

Wc(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊Y
c(x, y)dfi(x, y), (P)
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Figure 1.1 – Illustration of optimal transport between two measures – and — in the
continuous case (left) and discrete case (right). In the continuous case, the transport
plan is a probability distribution on X ◊ Y while in the discrete case it is a matrix. For
the latter, each entry fiij corresponds to how much mass is moved from i to j.

where the feasible set is composed of probability distributions over the product space

X ◊ Y with fixed marginals –, —:

Π(–, —)
def.
=

Ó

fi œ M1
+(X ◊ Y) ; P1˘fi = –, P2˘fi = —

Ô

,

where P1˘fi (resp. P2˘fi) is the marginal distribution of fi for the first (resp. second)

variable, using the projection maps P1(x, y) = x; P2(x, y) = y along with the push-

forward operator ˘.

An optimizer fi is called the transport plan between – and —, and quantifies how

mass is optimally moved from – to —, see Figure 1.1. The cost function c represents

the cost to move a unit of mass from x to y, and Wc(–, —) represents the total cost of

moving all mass from – to —.

Remark 3 (p-Wasserstein distance). When X = Y is endowed with a distance dX ,

choosing c(x, y) = dX (x, y)p where p > 1 yields the p-th power of the p-Wasserstein

distance. It defines an actual distance between probability measures, which metrizes the

weak-convergence.

For other cost functions c, Wc(–, —) is not necessarily a distance, since it does not

always satisfy the triangle inequality but it still symmetric and positive under natural

assumptions on the cost function (e.g. c(x, y) = 0 … x = y, c(x, y) > 0).

Optimal transport is a powerful tool to capture the underlying geometry of the

measures, by relying on the cost function c which encodes the geometry of the space X ,

and they have the ability to make meaningful comparisons even when the supports of

the measures do not overlap (which is not the case for Kullback-Leibler divergence for



42 CHAPTER 1. ENTROPY-REGULARIZED OPTIMAL TRANSPORT

instance). Besides, the transport plan fi gives a mapping between measures which can

be used for instance in domain adaptation (Courty et al., 2014). More structure can

be enforced with extensions of OT (Alvarez-Melis et al., 2017), which can for instance

take into account labels of the data in supervised learning. However, OT suffers from a

computational and statistical burden:

• Computing OT is costly: Solving OT when dealing with discrete distributions

(i.e., finite weighted sums of Dirac masses) amounts to solving a large-scale linear

program. This can be done using network flow solvers, which can be further refined

to assignment problems when comparing measures of the same size with uniform

weights (Burkard et al., 2009). The computational complexity is O(n3log(n))

where n is the number of points in the discrete measure (see also the monograph

on Computational OT by Peyré et al. (2017) for a detailed review of OT solvers).

• OT suffers from a curse of dimensionality: considering a probability measure

– œ M1
+(Rd) and its empirical estimation –̂n, we have E[Wp(–, –̂n)] = O(n≠1/d)

(see (Weed and Bach, 2017) for refined convergence rates depending on the support

of –). Thus the error made when approximating the Wasserstein distance from

samples grows exponentially fast with the dimension of the ambient space.

These two issues have caused OT to be neglected in machine learning applications for a

long time in favor of simpler Ï≠divergences or MMD.

Let us conclude this section on OT with a recent extension introduced in (Chizat

et al., 2018), (Liero et al., 2018). While OT is restricted to positive measures of mass 1,

Unbalanced Optimal Transport can compare any two arbitrary positive measures. The

marginal constraints are relaxed, as they are replaced with Ï-divergences:

Definition 6. (Unbalanced Optimal Transport) Consider two positive measures

– œ M+(X ) and — œ M+(Y). Unbalanced Optimal Transport is defined as the following

minimization problem

min
fiœM+(X ◊Y)

⁄

X ◊Y
c(x, y)dfi(x, y) + DÂ1(P1˘fi|–) + DÂ2(P2˘fi|—), (2.4)

where Â1 and Â2 are positive, lower-semi-continuous functions such that Â1(1) = 0 and

Â2(1) = 0.

Note that there is no constraint on the transport plan besides positivity: it is not

required to have marginals equal to – and — nor to have mass 1. For specific choices

of c, Â1, Â2, unbalanced OT defines a distance on M+(X ). This extension is popular in

several applications due to the fact that it can compare any arbitrary positive measures.

Whenever possible, we extend our results on regularized OT to the unbalanced case.
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3 Regularized Optimal Transport

We introduce regularized optimal transport, which consists in regularizing the orig-

inal problem by penalizing it with the Ï-divergence of the transport plan with respect

to the product measure:

W Ï
c,Á(–, —)

def.
= min

fiœΠ(–,—)

⁄

X ◊Y
c(x, y)dfi(x, y) + Á

⁄

X ◊Y
Ï

3

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y),

(PÁ,Ï)

where Ï is a convex function with domain R
+.

Entropic regularization, which is the main focus of this thesis, corresponds to the

case Ï(w) = w log(w) ≠ w + 1 (or alternatively Ï(w) = w log(w)) but one may choose

the squared penalty Ï(w) = w2

2 + ÿR+(w), where ÿ denotes the convex indicator func-

tion. However, most of the properties we derive for regularized optimal transport – in

particular fast numerical solvers and improved sample complexity – are specific to the

entropic regularization.

3.1 Dual Formulation

An advantage to consider regularized OT is to get an unconstrained dual problem.

The dual of standard OT reads:

Wc(–, —) = sup
(u,v)œU(c)

⁄

X
u(x)d–(x) +

⁄

Y
v(x)d—(y), (D)

where the constraint set U(c) is defined by

U(c)
def.
= {(u, v) œ C(X ) ◊ C(Y)|u(x) + v(y) 6 c(x, y), ’(x, y) œ X ◊ Y}.

while the dual of regularized OT is given by an unconstrained maximization problem:

Proposition 4. Consider OT between two probability measures – and — with a convex

regularizer Ï with domain R
+. Then strong duality holds and (PÁ,Ï) is equivalent to the

following dual formulation:

W Ï
c,Á(–, —) = sup

u,vœC(X )◊C(Y)

⁄

X
u(x)d–(x) +

⁄

Y
v(x)d—(y)

≠Á

⁄

X ◊Y
Ïú(

u(x) + v(y) ≠ c(x, y)

Á
)d–(x)d—(y), (DÁ,Ï)

where Ïú is the Legendre transform of Ï defined by Ïú(p)
def.
= supw wp ≠ Ï(w).

Remark 4. (Strong Duality) Before getting into details on the derivation of the dual prob-

lem, note that strong duality holds, thanks to the application of Fenchel-Rockafellar the-

orem to the dual problem, which also guarantees existence of a primal solution to (PÁ,Ï)
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(see (Chizat, 2017), Prop. 3.5.6 for technical details). The existence of maximizers for

the dual problem (DÁ,Ï) is not guaranteed in general, and we give a proof of existence

in the case of entropic regularization in Sec. 4.1 of this Chapter.

Proof. The primal problem reads

min
fi

⁄

X ◊Y
c(x, y)dfi(x, y) + Á

⁄

X ◊Y
Ï

3

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y))

under the constraint that P1˘fi = –, P2˘fi = — Introducing the Lagrange multipliers u

and v associated to these constraints, the Lagrangian reads

L(fi, u, v) =

⁄

X ◊Y
c(x, y)dfi(x, y) + Á

⁄

X ◊Y
Ï

3

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y)

+

⁄

X
u(x)

3

d–(x) ≠
⁄

Y
dfi(x, y)

4

+

⁄

Y
v(y)

3

d—(y) ≠
⁄

X
dfi(x, y)

4

The dual Lagrange function is given by g(u, v) = minfi L(fi, u, v) and thus rearranging

terms we get

g(u, v) =

⁄

X
u(x)d–(x) +

⁄

Y
v(x)d—(y)

+Á min
fi

3⁄

X ◊Y

3

Ï

3

dfi(x, y)

d–(x)d—(y)

4

≠ u(x) + v(y) ≠ c(x, y)

Á

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y)

4

=

⁄

X
u(x)d–(x) +

⁄

Y
v(x)d—(y) ≠ Á

⁄

X ◊Y
Ïú

3

u(x) + v(y) ≠ c(x, y)

Á

4

d–(x)d—(y),

where Ïú the Legendre transform of Ï is given by

Ïú(p) = sup
w

wp ≠ Ï(w) = ≠ inf
w

Ï(w) ≠ wp.

Remark 5. (Primal-Dual Relationship) The primal-dual relationship is given by

fi = argminfi Ï
! dfi(x, y)

d–(x)d—(y)

" ≠ u(x) + v(y) ≠ c(x, y)

Á

dfi(x, y)

d–(x)d—(y)

… dfi(x, y) = (ÏÕ)≠1(
u(x) + v(y) ≠ c(x, y)

Á
)d–(x)d—(y),

when (ÏÕ) is invertible.

The smoothing effect of regularization is clear when looking at the dual of standard

OT , since the constraint on the dual problem is replaced by a smooth penalization. The

term
s

X ◊Y Ïú(u(x)+v(y)≠c(x,y)
Á )d–(x)d—(y) penalizes large positive values of u(x)+v(y)≠

c(x, y). Ideally, to get a regularized problem that stays true to standard OT, we want Ïú

to go quickly to large positive values when u(x)+v(y)≠c(x, y) grows. A good choice for
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such a function is Ïú(w) = ew, which actually corresponds to the entropic regularization

(see section 4 for more details). A weaker penalization can also be considered using

Ïú(w) = max(w, 0)2/2, which corresponds to the quadratic regularization.

3.2 The Case of Unbalanced OT

Unbalanced OT can also be regularized with a Ï≠divergence, which gives the fol-

lowing problem:

min
fiœM+(X ◊Y)

⁄

X ◊Y
c(x, y)dfi(x, y) + DÂ1(P1˘fi|–) + DÂ2(P2˘fi|—)

+ Á

⁄

X ◊Y
Ï

3

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y).

As previously done with balanced OT, we can compute the dual of this problem:

Proposition 5. The dual of regularized unbalanced OT with a convex regularizer Ï with

domain R
+ is given by

sup
uœC(X ),vœC(Y)

≠
⁄

X
Âú

1(≠u(x))d–(x) ≠
⁄

Y
Âú

2(≠v(y))d—(y)

≠ Á

⁄

X ◊Y
Ïú

3

u(x) + v(y) ≠ c(x, y)

Á

4

d–(x)d—(y).

Proof. The proof is essentially similar to the derivation of the regularized dual in Propo-

sition 4 except the problem is unconstrained. The primal problem reads

min
fiœM+(X ◊Y)

⁄

X ◊Y
c(x, y)dfi(x, y) +

⁄

X
Â1

3

P1˘fi(x)

d–(x)

4

d–(x) +

⁄

Y
Â2

3

P2˘fi(y)

d—(y)

4

d—(y)

+ Á

⁄

X ◊Y
Ï

3

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y)).

We introduce slack variables a and b such that a = P1˘fi and b = P2˘fi. This gives the

following constrained problem:

min
fiœM+(X ◊Y)

(a,b)œM+(X )◊M+(Y)

⁄

X ◊Y
c(x, y)dfi(x, y) +

⁄

X
Â1

3

da(x)

d–(x)

4

d–(x) +

⁄

Y
Â2

3

db(y)

d—(y)

4

d—(y)

+ Á

⁄

X ◊Y
Ï

3

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y)),

subject to a = P1˘fi and b = P2˘fi. Introducing the Lagrange multipliers u and v
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associated to the constraints, the Lagrangian reads

L(fi, a, b, u, v) =

⁄

X ◊Y
c(x, y)dfi(x, y) +

⁄

X
Â1

3

da(x)

d–(x)

4

d–(x) +

⁄

Y
Â2

3

db(y)

d—(y)

4

d—(y)

+

⁄

X
u(x)

3

da(x) ≠
⁄

Y
dfi(x, y)

4

+

⁄

Y
v(y)

3

db(y) ≠
⁄

X
dfi(x, y)

4

+ Á

⁄

X ◊Y
Ï

3

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y)).

The dual Lagrange function is given by g(u, v) = minfi,a,b L(fi, a, b, u, v), and since the

problem is separable we get three distinct minimization problems for each variable:

g(u, v) = min
a

Ë

⁄

X
u(x)da(x) + Â1

3

da(x)

d–(x)

4

d–(x)
È

+ min
b

Ë

⁄

Y
v(y)db(y) + Â2

3

db(x)

d—(y)

4

d—(x)
È

+ min
fi

Ë

⁄

X ◊Y
(c(x, y) ≠ u(x)≠v(y))dfi(x, y)

+ Á

⁄

X ◊Y
Ï

3

dfi(x, y)

d–(x)d—(y)

4

d–(x)d—(y))
È

.

The three minimization problems are actually the expression of the Legendre transform

for Â1,Â2, and Ï and so the dual function can be rewritten as:

g(u, v) = ≠
⁄

X
Âú

1(≠u(x))d–(x) ≠
⁄

Y
Âú

2(≠v(y))d—(y)

≠ Á

⁄

X ◊Y
Ïú

3

u(x) + v(y) ≠ c(x, y)

Á

4

d–(x)d—(y),

where fú is the Legendre transform of f defined by fú(p) = supw wp ≠ f(w).

3.3 Dual Expectation Formulation

Another benefit of the regularization introduced above is the fact that is can be

rewritten as the maximization of an expectation with respect to the product measure

– ¢ —

Proposition 6. The dual of regularized OT (DÁ,Ï) has the following equivalent formu-

lation:

W Ï
c,Á(–, —) = sup

u,vœC(X )◊C(Y)
E–¢— [fXY

Á (u, v)],

where fxy
Á

def.
= u(x) + v(y) ≠ Ïú(u(x)+v(y)≠c(x,y)

Á ).

Since many machine learning problems (e.g. risk minimization) are formulated as the

maximization of an expectation, this formulation of the dual of regularized OT allows

us to apply well-known techniques from machine learning to study statistical properties
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of regularized OT in Chapter 3 and use stochastic optimization to solve it in Chapter 4.

Note that the formulation as an expectation of the dual problem is only available for

Á > 0. Indeed, the dual of standard OT has a constraint (u + v ≠ c 6 0) whose indicator

function cannot be put inside the expectation.

Remark 6. (Generalization to Unbalanced OT) Recall the dual of regularized unbalanced

OT with regularizer Ï:

sup
u,v

≠
⁄

X
Âú

1(≠u(x))d–(x) ≠
⁄

Y
Âú

2(≠v(y))d—(y)

≠Á

⁄

X ◊Y
Ïú(

u(x) + v(y) ≠ c(x, y)

Á
)d–(x)d—(y).

Thus, it can also be cast as the maximization of an expectation with respect to the

product measure – ¢ —

sup
uœC(X ),vœC(Y)

E–¢—

5

Âú
1(≠u(X)) ≠ Âú

2(≠v(Y )) + Ïú(
u(X) + v(Y ) ≠ c(X, Y )

Á
)

6

.

4 Entropy-Regularized Optimal Transport

Entropic regularization is the main focus of this thesis, as it presents several specific

properties:

• closed-form primal-dual relationship, allowing to recover the transport plan fi after

solving the simpler (unconstrained) dual problem,

• a fast numerical solver for finite discrete measures, Sinkhorn’s algorithm (see

Sec. 4.2),

• a discrepancy between measures interpolating between standard OT and MMD

(see Chapter 2),

• an improved sample complexity compared to OT, breaking the curse of dimen-

sionality for a regularization parameter large enough (see Chapter 3),

• reformulation of the dual as the maximization of an expectation in a Reproducing

Kernel Hilbert Space (RKHS) ball of finite radius, allowing to solve the dual

problem with a kernel version of stochastic gradient descent (see Chapter 3 and

Chapter 4),

• semi-dual formulation (SÁ), allowing to solve semi-discrete OT with online descent

algorithms (see Chapter 4).

Let us rewrite the primal and dual problems (PÁ,Ï) and (DÁ,Ï) derived in Proposi-

tion 4 with the entropic regularization:
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Proposition 7. Consider OT between two probability measures – and — with entropic

regularization:

Wc,Á(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊Y
c(x, y)dfi(x, y) + ÁH(fi|– ¢ —), (PÁ)

where

H(fi|– ¢ —)
def.
=

⁄

X ◊Y

3

log

3

dfi(x, y)

d–(x)d—(y)

4

≠ 1

4

dfi(x, y) + 1 (4.1)

is the relative entropy of the transport plan fi with respect to the product measure – ¢ —.

It is equivalent to this dual formulation:

Wc,Á(–, —) = max
uœC(X ),vœC(Y)

⁄

X
u(x)d–(x) +

⁄

Y
v(y)d—(y)

≠ Á

⁄

X ◊Y
e

u(x)+v(y)≠c(x,y)
Á d–(x)d—(y) + Á (DÁ)

= max
uœC(X),vœC(Y )

E–¢—

Ë

fXY
Á (u, v)

È

+ Á (4.2)

where fxy
Á (u, v) = u(x) + v(y) ≠ Áe

u(x)+v(y)≠c(x,y)
Á .

Besides, the primal-dual relationship is given by

dfi(x, y) = exp

3

u(x) + v(y) ≠ c(x, y)

Á

4

d–(x)d—(y).

Proof. This is a direct application of Proposition 4, using Ï(w) = w log w ≠ w + 1, in

which case Ïú(p)
def.
= supw wp ≠ Ï(w) = ep + 1. Note that the sup is a max is this case,

and we prove the existence of optimizers in Sec. 4.1 below.

Remark 7. (Equivalent formulation of (PÁ)) The transport plan fi is constrained to be a

probability measure which imposes
s

X ◊Y dfi(x, y) = 1, so the primal problem (PÁ) can

be simplified to:

min
fiœΠ(–,—)

⁄

X ◊Y
c(x, y)dfi(x, y) + Á

⁄

X ◊Y
log

3

dfi(x, y)

d–(x)d—(y)

4

. (PÁ)

However when computing the dual directly from this formulation, we get a primal-dual

relationship that is less elegant:

dfi(x, y) = e
u(x)+v(y)≠c(x,y)≠1

Á d–(x)d—(y),

which is why we prefer to formally state Proposition 7 with H defined in (4.1).

Remark 8. (Dual Potentials and Exponential Scalings) As commonly done in the litera-

ture on OT, we refer to the variables of the dual problem (u, v) as the dual (Kantorovitch)

potentials. We will also often use the so-called exponential scalings of the dual variables

(a, b) defined by a
def.
= e

u
Á and b

def.
= e

v
Á .
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Entropic regularization of optimal transport was first introduced with the follow-

ing formulation of entropy: H(fi)
def.
=

s

X ◊Y log
1

dfi(x,y)
dxdy

2

dfi(x, y) (Cuturi, 2013). The

resulting dual problem is slightly different:

max
uœC(X ),vœC(Y)

⁄

X
u(x)d–(x) +

⁄

Y
v(y)d—(y) ≠ Á

⁄

X ◊Y
e

u(x)+v(y)≠c(x,y)
Á dxdy + Á.

Here, the third term in the dual is an integral with respect to the Lebesgue measure,

while with relative entropy, the integral is taken with respect to the product measure

–¢—. The formulation with simple entropy yields an unconstrained dual problem which

can be solved efficiently (see Proposition. 10 for details) but it can not be formulated as

the maximization of an expectation which, as already mentioned, is crucial for the results

presented in Chapters 3 and 4. Thus we only use relative-entropy as a regularizer, as it

keeps all the benefits brought by simple entropy with the added benefit of the expectation

formulation.

4.1 Solving the Regularized Dual Problem

As most of the methods we develop in this thesis rely on the dual formulation of

entropy-regularized OT, we give a proof of existence of a solution to this problem, for

a general setting. We discuss further the regularity of the dual potentials in Chapter 3.

This section is dedicated to proving the following existence theorem:

Theorem 11. (Existence of a dual solution) Consider the dual of entropy-regularized

OT, with marginals –, — œ M1
+(X )◊M1

+(Y) supported on two subsets of R
d, and with a

cost function c bounded on X ◊ Y. Let LŒ(–)
def.
= {f : X æ R|÷C > 0 such that f(x) 6

C –-a.e.}. Then the dual problem has solutions (uú, vú) œ LŒ(–) ◊ LŒ(—) which are

unique –≠ and —≠a.e. up to an additive constant.

It is straightforward to see that for any solution (uú, vú) to the dual problem, the

pair (uú + k, vú ≠ k) for k œ R is also a solution to the dual problem. Besides, modifying

the values of uú and vú outside of the support of the measures does not have any effect

on the value of the problem.

The proof of existence of a solution to the dual problem essentially amounts to

rewriting the optimality condition as a fixed point equation, and proving that a fixed

point exists. To do so, we show that the operator in the fixed point equation is a

contraction for a certain metric, called the Hilbert metric. This proof is based on the

same idea from that of the existence of a solution to Schrodinger’s system (which shares

strong links with regularized OT) in (Chen et al., 2016), inspired from the original proof

of (Franklin and Lorenz, 1989) which deals with discrete regularized OT. We prove the

existence of potentials in a general framework, as we consider arbitrary measures – and

— and any bounded regular cost function c.
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The dual problem is unconstrained, and it is jointly concave in both variables. Thus,

we can fix one and optimize over the other, and the first order condition for u gives:

u(x) = ≠Á log

3⁄

Y
e

v(y)≠c(x,y)
Á d—(y)

4

for a.e. x œ X , (4.3)

and similarly for v:

v(y) = ≠Á log

3⁄

X
e

u(x)≠c(x,y)
Á d–(x)

4

for a.e. y œ Y. (4.4)

Remark 9. Although the optimality conditions (4.3) and (4.4) only fix the value of

the optimal potentials (uú, vú) on the supports of – and — respectively, they allow to

extrapolate the values of the potentials outside of this support.

4.1.1 Hilbert Metric

We start with a few definitions and properties of the Hilbert metric, which will be

useful later on. Proof of these results can be found in (Bushell, 1973).

Definition 7. (Hilbert metric) Consider K a closed solid cone on a real Banach space

B i.e. K satisfies the 4 following properties:

1. the interior of K is not empty,

2. K + K ™ K,

3. –K ™ K’– > 0,

4. K fl ≠K = {0}.

We use the partial order induced by the cone, meaning x 6 y … y ≠ x œ K, and define

the following quantities

M(a, b)
def.
= inf{⁄|a 6 ⁄b} and m(a, b)

def.
= sup{⁄|a 6 ⁄b} for a, b œ K+ def.

= K \ {0}.

Then the Hilbert metric dH on K is given by

dH(a, b)
def.
= log

M(a, b)

m(a, b)
. (4.5)

Note that the Hilbert metric is projective, meaning that it is invariant by multipli-

cation by a positive factor: dH(a, b) = dH(–a, b) = dH(a, –b), ’ – > 0.

The Hilbert metric is a pseudo-metric on the interior of the cone K̊, and a metric on

the restriction of K̊ to the unit sphere:

Theorem 12. (K̊, dH) is a pseudo-metric space and (K̊ fl S(0, 1), dH) is a metric space,

where S(0, 1) is the unit sphere in B
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To use Banach’s fixed point theorem on (K̊ fl B(0, 1), dH), we need to introduce the

notion of contraction ratio:

Definition 8. We say that an operator E is a positive map in the cone if E(K+) µ K+.

For a positive map E, we denote its projective diameter by

∆(E)
def.
= sup{dH(E(a), E(b)) | a, b œ K+},

and its contraction ratio

Ÿ(E)
def.
= inf{⁄ | dH(E(a), E(b)) 6 ⁄dH(x, y)’x, y œ K+}.

In the case where the mapping is linear, we have a relation between the contraction

ratio and the projective diameter.

Proposition 8. Consider a linear positive map E on K, then

Ÿ(E) 6 tanh

3

1

4
∆(E)

4

,

and ∆(E) 6 2 supa{dH(E(a), 1)) | a œ K+}.

Since | tanh(x)| < 1 for |x| < +Œ, this means that if the projective diameter of a

positive mapping is finite, then it is a contraction. The proof of the first inequality is

given in (Bushell, 1973) while the second is a direct application of the triangle inequality.

4.1.2 Fixed Point Theorem

Now let us rewrite the optimality condition as a fixed point equation. We consider

the exponential scalings (a, b) of the dual variables (u, v). At optimality we have that

a(x) =

3⁄

Y
b(y)e

≠c(x,y)
Á d—(y)

4≠1

and b(y) =

3⁄

X
a(x)e

≠c(x,y)
Á d–(x)

4≠1

. (4.6)

We define the operators ÏÁ,– and ÏÁ,— such that

ÏÁ,–(f)
def.
=

⁄

X
f(x)e

≠c(x,y)
Á d–(x) and ÏÁ,—(f)

def.
=

⁄

Y
f(y)e

≠c(x,y)
Á d—(y), (4.7)

and we denote by E the operator such that E(a)
def.
= 1/a.

Proposition 9. The optimal exponential scalings (aú, vú) satisfy the following fixed-

point equations:

aú = Φ(aú) where Φ
def.
= E ¶ ÏÁ,— ¶ E ¶ ÏÁ,–, (4.8)

and

bú = Φ̃(bú) where Φ̃
def.
= E ¶ ÏÁ,– ¶ E ¶ ÏÁ,—. (4.9)
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To prove the existence of solutions to (4.6) we first need to prove the following lemma

Lemma 1. Consider the operators Φ defined in (4.8) and Φ̃ defined in (4.9), and let

LŒ
+ (X )

def.
= {a œ LŒ(X ) | a(x) > 0, ’x œ X }. Then Φ and Φ̃ are contractions on LŒ

+ (X )

with contraction ratio ∆(Φ) 6 tanh

3

1
4 log(e

2ÎcÎŒ
Á )

4

< 1.

Proof. (Lemma 1) We consider the space of positive bounded functions LŒ
+ (–)

def.
= {f œ

LŒ(–)|f(x) > 0’x œ X } and LŒ
+ (—). It is easy to check that it is a cone with non-

empty interior and we can thus endow LŒ
+ (–) and LŒ(—) with Hilbert’s metric. We also

have that E , ÏÁ,– and ÏÁ,— are positive maps mapping LŒ
+ to itself, LŒ

+ (–) to LŒ
+ (—)

and LŒ
+ (—) to LŒ

+ (–) respectively. To be able to use Banach’s fixed point theorem, we

restrict LŒ
+ (–) and LŒ

+ (—) to the unit sphere, which is not a restriction per se as for any

function a that verifies the fixed point equation, a/ ÎaÎŒ also verifies it.

To compute the contraction ratio of the composition Φ, we can simply compute the

contraction ratio of each of the composing functions and multiply them to get the whole

contraction ratio.

The inversion operator E is an isometry for Hilbert’s metric:

dH(E(a), E(b)) =
inf{⁄|1/a 6 ⁄1/b}
sup{⁄|1/a 6 ⁄1/b} =

inf{⁄|a 6 ⁄b}
sup{⁄|b 6 ⁄a} = dH(b, a) = dH(a, b).

We are left with computing the contraction ratio of ÏÁ,– and ÏÁ,—. Since they are both

linear maps, we can instead consider the quantity supa{dH(ÏÁ(a), 1) | a œ K+} thanks to

proposition 8. We focus on ÏÁ,– as ÏÁ,— behaves the same way. We have that ’a œ LŒ(–)

e
≠ÎcÎŒ

Á

⁄

X
a(x)e

≠c(x,y)
Á d–(x) 6

⁄

X
a(x)e

≠c(x,y)
Á d–(x) 6 e

ÎcÎŒ
Á

⁄

X
f(x)d–(x),

and thus

∆(ÏÁ,–) 6 2 sup
a

3

log
sup ÏÁ,–(a)

inf ÏÁ,–(a)

4

6 2 log

3

e
2ÎcÎŒ

Á

4

< Œ.

Combining all contraction ratios, we get ∆(Φ) 6 tanh

3

1
4 log

3

e
2ÎcÎŒ

Á

44

< 1 and

thus Φ is a contraction for the Hilbert metric.

Proof. (Theorem 11) Thanks to Lemma 1 and Proposition 9, we can conclude with

Banach’s fixed point theorem that Φ and Φ̃ admit a unique fixed point in (LŒ
+ (X ) fl

S(0, 1)) and complete the proof of Theorem 11. This implies the existence of unique

exponential scalings (aú, bú) on the unit sphere, but any other pair (kaú, bú/k) for k œ R
ú

satisfies the optimality conditions. Since dual potentials are essentially the log of these

exponential scalings, we therefore have unicity of the potential scalings, up to an additive

constant, instead of a multiplicative constant for the exponential scalings.

The optimal dual potentials can be constructed as fixed points of a contractive map,
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Figure 1.2 – Influence of the regularization parameter Á on the transport plan fi computed
with Sinkhorn’s algorithm. Regularization tends to spread the transport plan, leading
to a smoother solution.

which yields an algorithm to compute the potentials along with a speed of convergence

for the iterates.

Corollary 1. Let (a(¸), b(¸)) = (Φ(¸)(1), Φ̃(¸)(1)) where Φ(¸) is the ¸-fold composition of

Φ defined in (4.8). Then

dH(a(¸), aú) = O

A

tanh

3

1

4
log(e

2ÎcÎŒ
Á

42¸
B

.

Proof. This is a direct corollary of Banach’s fixed point theorem, with the contracting

ratio of the operator Φ being tanh

3

1
4 log(e

2ÎcÎŒ
Á

42

.

4.2 Sinkhorn’s Algorithm

Since the dual problem is concave in each variable, a natural way to solve it is to

iteratively optimize over each variable. In the discrete case, the first order conditions

for each of the variables read:

ui = ≠Á log

Q

a

m
ÿ

j=1

e
vj ≠c(xi,yj )

Á βj

R

b and vj = ≠Á log

A

n
ÿ

i=1

e
ui≠c(xi,yj )

Á αi

B

, (4.10)

or, using the exponential scalings of the dual variables a
def.
= e

u

Á and b
def.
= e

v

Á :

ai =
1

qm
j=1 bje

≠c(xi,yj )

Á βj

and bj =
1

qn
i=1 aie

≠c(xi,yj )

Á αi.
(4.11)

The algorithm corresponding to these alternating maximizations is usually called

Sinkhorn’s algorithm in the literature, although the denomination IPFP (Iterative Pro-

jection Fitting Procedure) can also be found. The latter can be understood as a primal

resolution of the problem, consisting in iteratively projecting over each marginal con-
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straint for the Kullback-Leibler divergence, but both approaches correspond to the same

algorithm. Introducing the exponential scaling of the dual variables a
def.
= e

u

Á and b
def.
= e

v

Á

as well as the exponential scaling of the cost matrix K such that Kij = e≠ c(xi,yj )

Á we can

write the iterations with matrix-vector multiplications:

Proposition 10. (Sinkhorn Iterations) Consider optimal transport between two fi-

nite discrete measures –
def.
=

qn
i=1 αi”xi and —

def.
=

qm
j=1 βj”yj with cost function c. Let

Kij = e≠ c(xi,yj )

Á . Then iterations given by

a(¸+1) =
1

K(b(¸) § β)
and b(¸+1) =

1

KT (a(¸+1) § α)
(4.12)

converge to (aú, bú) the exponential scaling of a solution of the dual problem DÁ.

The optimal transport plan is recovered via the following formula

πú = diag(aú § α)K diag(bú § β),

where diag(a) is the diagonal matrix with vector a on the diagonal and 0 elsewhere.

The complexity of each iteration is O(n2) if both marginals have the same number

of points n. This is a major improvement compared to O(n3log(n)) needed to solve the

linear program induced by standard discrete OT.

Proposition 11. (Convergence rate of Sinkhorn Iterations)(Franklin and Lorenz,

1989) Let a(¸) the ¸-th iterate of Sinkhorn’s algorithm, aú the optimal exponential scaling,

and π(¸) def.
= diag(a(¸))K diag(b(¸)). Then

dH(a(¸), aú) = O(⁄(K)2¸) and dH(a(¸), aú) 6
dH(π(¸)

1, α)

1 ≠ ⁄(K)
, (4.13)

where

⁄(K) =



÷(K) ≠ 1


÷(K) ≠ 1
< 1 ; ÷(K) = max

i,j,k,l

KikKjl

KjkKil
,

and the same rates hold for the other iterate b(¸).

Proof of convergence of the algorithm is a special case of the proof of existence of

the dual potentials, using the Hilbert metric dH on R
n. Inequality (4.13) gives a useful

insight on how to monitor convergence of the algorithm in practice, as the marginal

constraint violation is an upper bound on the convergence of the exponential scalings.

The convergence rate of this algorithm is illustrated in this manner in Figure 1.4. The

negative influence of Á on the convergence rate is quite clear in the figure, although the

asymptotic rate given in (4.13) is not often sharp in practice.

Remark 10. (Stabilizing Sinkhorn) The algorithm suffers from numerical instability

when Á gets too small as some coefficients of the matrix K explode. This issue can
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Figure 1.3 – Evolution of the transport plan with the number of iterations for Sinkhorn’s
algorithm. The algorithm is initialized with b = 1n which corresponds to the initial
transport plan π(0) being the product of marginals.

Figure 1.4 – Influence of the regularization parameter Á on the speed of convergence
of Sinkhorn’s algorithm. Convergence of the algorithm is monitored by looking at the
constraint violation on the first marginal ||fi(¸)1 ≠ α||1. The convergence rate worsens
dramatically when descreasing Á, and there is thus a tradeoff between getting a fast
approximation of OT, or an accurate one.
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be solved by writing iterations in the log domain, i.e. on the dual variables (u, v) in-

stead of the exponential scalings (a, b), and by replacing the matrix K at each iteration

using K̃
(¸)
ij

def.
= exp(u

(¸)
i + v

(¸)
j ≠ Cij) which is numerically more stable. Besides, we can

seen in figure 1.4 that convergence becomes slower for small Á. For some applications,

getting close to standard optimal transport is important, and thus one might resort to

Á-scaling. This heuristic consists in starting with a large regularization parameter Á and

then rerunning the algorithm with slowly decreasing the value of the parameter with a

warm start, reusing the values of a and b obtained with a larger regularization. More

details can be found in (Schmitzer, 2016) (sec.3).

4.3 Semi-Dual Formulation

The equations (4.3) and (4.4) giving u a a function of v and conversely can be seen

as smoothed versions of the c-transform which links the dual potentials in standard OT.

The c-transform of a function v is given by

vc(x)
def.
= min

yœY
c(x, y) ≠ v(y). (4.14)

In the regularized case, we introduce the c, Á-transform:

vc,Á(x)
def.
= ≠Á log

3⁄

Y
e

v(y)≠c(x,y)
Á d—(y)

4

. (4.15)

Note that these smoothed c≠transforms actually depend on — but we omit it in the

notation. We can now derive a semi-dual formulation, which is a maximization problem

over v only:

Proposition 12. Consider OT between two probability measures – and — with entropic

regularization. Then (PÁ) is equivalent to the following semi-dual formulation:

Wc,Á(–, —) = max
vœC(Y)

⁄

X
vc,Á(x)d–(x) +

⁄

Y
v(y)d—(y), (SÁ)

where vc,Á is the c, Á-transform of v defined in (4.15).

Proof. Replacing u by vc,Á in the dual, we get

Wc,Á(–, —) =

⁄

X
vc,Á(x)d–(x) +

⁄

Y
v(y)d—(y) ≠ Á

⁄

X ◊Y
e

vc,Á(x)+v(y)≠c(x,y)
Á d–(x)d—(y) + Á.

Let us focus on the third term, which corresponds to the smooth constraint. We have

that e
vc,Á

Á =

3

s

Y e
v(y)≠c(x,y)

Á d—(y)

4≠1

by definition of the c, Á-transform. And thus the

terms inside the integral cancel out, leaving just
s

X d–(x) which il equal to 1 since – is

a measure of mass 1.
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Figure 1.5 – Plot of vc,Á, the c, Á-transform of a discrete vector v for various values of
Á for Euclidean (left) and squared Euclidean (right) cost function c. The blue markers
are plotted at (yi, vi) and their diameter is proportional to βi.

4.3.1 Case of a Discrete Measure

The semi-dual formulation is mostly interesting in the case where one of the mea-

sures is discrete. For instance, if — is a discrete measure —
def.
=

qn
i=1 βi”yi , the asso-

ciated dual potential v is a vector in R
n and its c, Á-transform is given by vc,Á(x) =

≠Á log

3

qn
i=1 e

vi≠c(x,yi)

Á βi

4

. Thus the semi-dual problem becomes

Wc,Á(–, —) = max
vœRn

⁄

X
≠Á log

A

n
ÿ

i=1

e
vi≠c(x,yi)

Á βi

B

d–(x) +
n

ÿ

i=1

viβi. (SÁ)

A modified version of the well-known log-sum-exp appears in the smooth c, Á-transform

in lieu of the max in the c-transform. Here we have a dependence on β, while the log-

sum-exp is usually defined by LSE(w1, . . . , wn)
def.
= log (

qn
i=1 ewi) while the LSE appears

for instance in logistic-regression and is known to be a smooth, convex approximation

of the max function. The approximation gets better as the deviations in the wi get

larger. Thus when Á gets small, the values of vi≠c(x,yi)
Á get larger and their deviations

increase as well, making the c, Á-transform a sharper approximation of the c-transform.

This is illustrated by figure 1.5 which displays the c, Á-transform of a discrete vector v

for various values of Á for a cost function c that is the Euclidean or squared Euclidean

norm .

4.3.2 Semi-Dual Expectation Formulation

The semi-dual problem can also be formulated as the maximization of an expectation,

with respect to one of the marginals:

Wc,Á(–, —) = max
vœRn

E–[gX
Á (v)], (SÁ)

where

gx
Á (v)

def.
= ≠Á log

A

n
ÿ

i=1

e
vi≠c(x,yi)

Á —i

B

+
n

ÿ

i=1

viβi. (4.16)
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Note that the semi-dual expectation formulation is still valid at the limit when Á = 0,

contrarily to the dual expectation formulation (4.2). Indeed, using the c-transform from

standard OT, we have that

Wc(–, —) = max
vœRn

E–[gX
0 (v)],

where gx
0 (v)

def.
= maxjœ1...n vj ≠ c(x, yj) +

qn
i=1 viβi.

4.3.3 Some Analytic Properties of the Semi-Dual Functional

Since the potential v is a n-dimensional vector when — is a discrete measure with

n diracs, and we can compute the gradient and Hessian of gÁ, deriving some useful

properties of the semi-dual function.

Proposition 13. Consider the semi-dual functional gÁ defined in (4.16). When Á > 0

its gradient is defined by

Òvgx
Á (v) = β ≠ ‰Á(x),

and the hessian is given by

ˆ2
vgx

Á (v) =
1

Á

1

‰Á(x)‰Á(x)T ≠ diag(‰Á(x))
2

,

where

‰Á(x)i =
exp(vi≠c(x,yi)

Á )
qJ

j=1 exp(
vj≠c(x,yj)

Á )
.

Besides,

0 ∞ ˆ2
vgx

Á (v) ∞ 1

Á
,

and thus gx
Á is a convex function with a Lipschitz gradient.

When Á = 0 (standard OT) g0 is not smooth and a subgradient is given by

Òvg0(v, x) = β ≠ ‰(x),

where

‰(x)i = 1i=jı(x) with jı(x) œ argminiœ{1...n} c(x, yi) ≠ vi.

Note that since the lower bound on the eigenvalues of the Hessian is 0 the semi-

dual functional is convex but not strongly convex as strong convexity requires a strictly

positive lower-bound on eigenvalues of the Hessian.

Remark 11. (Laguerre Diagrams) Laguerre diagrams are extensions of Voronoi diagrams

where each cell j with center yj has a specific weight vj . They partition the space X
with n cells (Lj(v))j=1,...,n in the following way:

Lj(v)
def.
= {x œ X | ’iÕ ”= i, c(x, yi) ≠ vi 6 c(x, yÕ

i) ≠ vÕ
i}.
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Figure 1.6 – Illustration taken from (Peyré et al., 2017) of the Laguerre cells and their
smooth counterpart in 2D, with quadratic cost. The colors indicate the (smoothed)
indicator function of the Laguerre cells ‰Á. The red marks are at locations yi and their
size is proportional to vj . The black lines are the level sets of the c, Á≠transform of v.

The function ‰ appearing in the gradient of the semi-dual is an indicator function

corresponding to the Laguerre diagram of the space. More specifically, ‰(x)i = 1 if and

only if x belongs to cell i of the Laguerre diagram with distance c and weights v. Its

regularized counterpart ‰Á is a smoothed version of the indicator function. Both are

represented in Figure 1.6 taken from (Peyré et al., 2017). . The connection between

Laguerre cells and semi-discrete OT is presented in (Mérigot, 2011), and we refer to

Chapter 4, Sec. 4 for more details.

4.4 Convergence of Entropy-Regularized OT to Standard OT

When using regularized OT as a proxy for OT in various applications, the question

of convergence when Á æ 0 naturally arises. For some applications, we are interested in

the value of OT, and we thus want to understand how Wc,Á(–, —) approximates Wc(–, —).

For others however, we are interested in the transport plan, and we are thus interested

in the convergence of the optimizer fiÁ (or the optimizers (uÁ, vÁ) for the dual problem,

to recover fiÁ with the primal-dual relationship.

The convergence of Wc,Á(–, —) to Wc(–, —) is well known, for instance see Chapter 3,

Sec. 3 where we derive convergence rates. However convergence of the optimizers is a

more delicate issue. For the primal problem (PÁ), we have the following theorem from

(Carlier et al., 2017) which proves Γ≠convergence of the regularized problem to the

unregularized one in the case of a euclidean cost in R
d. Γ≠convergence is a powerful

property implying both convergence of the value of the problem and convergence of the

minimizers.

Theorem 13. (Convergence of Entropy-Regularized OT) (Carlier et al., 2017)

Consider the primal problem of entropy-regularized optimal transport (PÁ) on R
d with
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cost function c(x, y) = ||x ≠ y||p, and denote by fiÁ its unique minimizer. We have

lim
Áæ0

Wc,Á(–, —) = Wc(–, —) and fiÁ Ô fi,

where fi is the minimizer of the unregularized primal (P) and Ô denotes convergence

with respect to the weak topology.

For the dual problem (DÁ), proof of convergence of the regularized minimizers is

given in (Cominetti and Martin, 1994) in the case of discrete measures.

For the semi-dual problem (SÁ), we proposed in (Genevay et al., 2016) a proof of

convergence of the minimizer vÁ in the case where one measure is discrete which is

precisely the case where the semi-dual formulation presents an interest.

Proposition 14. (Convergence of the semi-dual regularized problem) We as-

sume that ’y œ Y, c(·, y) œ L1(–), that — =
qm

j=1 βj”yj , and we fix x0 œ X . For all

Á > 0, let vÁ be the unique solution of (SÁ) such that vÁ(x0) = 0. Then (vÁ)Á is bounded

and all its converging sub-sequences for Á æ 0 are solutions of (S0).

We first prove a useful lemma.

Lemma 2. If ’y, x ‘æ c(x, y) œ L1(–) then gÁ converges pointwise to g0.

Proof. Let wj(x)
def.
= vj ≠ c(x, yj) and jú def.

= argmaxj wj(x).

On the one hand, since ’j, wj(x) 6 wjú(x) we get

Á log

Q

a

m
ÿ

j=1

e
wj (x)

Á —j

R

b = Á log

Q

ae
wjú (x)

Á

m
ÿ

j=1

e
wj (x)≠wjú (x)

Á —j

R

b 6 wjú(x)+Á log

Q

a

m
ÿ

j=1

—j

R

b = wjú(x).

On the other hand, since log is increasing and all terms in the sum are non negative

we have

Á log

Q

a

m
ÿ

j=1

e
wj (x)

Á —j

R

b > Á log

3

e
wjú (x)

Á —jú

4

= wjú(x) + Á log(—jú)
Áæ0≠æ wjú(x).

Hence Á log

3

qm
j=1 e

wj (x)

Á —j

4

Áæ0≠æ wjú(x) and Á log

3

qm
j=1 e

wj (x)

Á —j

4

6 wjú(x).

Since we assumed x ‘æ c(x, yj) œ L1(–), then wjú œ L1(–) and by dominated conver-

gence we get that gÁ(v)
Áæ0≠æ g0(v).

Proof. (Proof of Proposition 14) First, let us prove that (vÁ)Á has a converging sub-

sequence, where vÁ
def.
= (vÁ(y1), . . . , vÁ(yn)). The dual optimal condition gives that

vÁ(yi) = ≠Á log

3

s

X e
uÁ(x)≠c(x,yi)

Á d–(x)

4

. We denote by ṽÁ the c-transform of uÁ such

that ṽÁ(yi) = minxœX c(x, yi) ≠ uÁ(x). From standard results on optimal transport

(see (Santambrogio, 2015), p.11) we know that |ṽÁ(yi) ≠ ṽÁ(yj)| 6 Ê(||yi ≠ yj ||), where



4. ENTROPY-REGULARIZED OPTIMAL TRANSPORT 61

Ê is the modulus of continuity of the cost c. Besides, using once again the soft-max

argument we can bound |vÁ(y) ≠ ṽÁ(y)| by some constant C. Thus we get that:

|vÁ(yi) ≠ vÁ(yj)| 6 |vÁ(yi) ≠ ṽÁ(yi)| + |ṽÁ(yi) ≠ ṽÁ(yj)| + |ṽÁ(yj) ≠ vÁ(yj)|
6 C + Ê(||yi ≠ yj ||) + C.

Besides, the regularized potentials are unique up to an additive constant. Hence we can

set without loss of generality vÁ(y0) = 0. So from the previous inequality yields:

vÁ(yi) 6 2C + Ê(||yi ≠ y0||).

So vÁ is bounded on R
m and thus we can extract a subsequence which converges to a

certain limit that we denote by v̄.

Let vú œ argmaxv g0. To prove that v̄ is optimal, it suffices to prove that g0(vú) 6

g0(v̄).

By optimality of vÁ, we have

gÁ(vú) 6 gÁ(vÁ).

The term on the left-hand side of the inequality converges to g0(vú) since gÁ converges

pointwise to g0. We still need to prove that the right-hand term converges to g0(v̄).

By the Mean Value Theorem, there exists ṽÁ
def.
= (1 ≠ tÁ)vÁ + tÁv̄ for some tÁ œ [0, 1]

such that

|gÁ(vÁ) ≠ gÁ(v̄)| 6 ||ÒgÁ(ṽÁ)||||vÁ ≠ v̄||

The gradient of gÁ reads

ÒvgÁ(v) = — ≠ fi(v),

where fii(v) =

s

X
e

vi≠c(x,yi)
Á —id–(x)

s

X

qm

j=1
e

vj ≠c(x,yj )

Á —jd–(x)

.

It is the difference of two elements in the simplex thus it is bounded by a constant

C independently of Á.

Using this bound in (4.4) yields

gÁ(v̄) ≠ C||vÁ ≠ v̄|| 6 gÁ(vÁ) 6 gÁ(v̄) + C||vÁ ≠ v̄||.

By pointwise convergence of gÁ we know that gÁ(v̄) æ g0(v̄), and since v̄ is a limit

point of vÁ we can conclude that the left and right-hand terms of the inequality converge

to g0(v̄). Thus we get gÁ(vÁ) æ g0(v̄).
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Chapter 2

Learning with Sinkhorn

Divergences

Optimal Transport (OT) metrics and their ability to handle measures with non-overlapping

supports have emerged as a promising tool to learn a parametric distribution – for instance a

generative model – from a dataset. Yet, training generative models using OT raises formidable

computational and statistical challenges, because of (i) the computational burden of evaluating

OT losses, (ii) their instability and lack of smoothness, (iii) the difficulty to estimate them, as

well as their gradients, in high dimension because of the curse of dimensionality from which they

suffer.

In this chapter we introduce Sinkhorn Divergences, based on entropy-regularized OT, which

generates a family of losses interpolating between Wasserstein (OT) (when the regularization

parameter Á = 0) and Maximum Mean Discrepancy (MMD) losses (when Á = Œ). Aside from

the interpolation in terms of cost, which we demonstrate, we also observe empirically that they

allow to find a sweet spot leveraging the geometry of OT on the one hand, and the favorable high-

dimensional sample complexity of MMD on the other hand (this is formally proved in Chapter 3,

Theorem 18).

We use this new discrepancy between measures to train large scale generative models, with an

OT-based loss which does not suffer from its usual computational and statistical shortcomings.

This is achieved thanks to: (a) entropic-regularization, which turns the original OT loss into

the differentiable and more robust Sinkhorn Divergence, that can be computed efficiently using

Sinkhorn fixed point iterations; (b) algorithmic (automatic) differentiation, allowing to get stable

gradients of these iterations with seamless GPU execution. We further propose an algorithm to

learn a cost function on the data space in an adversarial way, similar to what has been done for

kernels with MMD.

This chapter is based on (Genevay et al., 2018), with the addition of some background on

the training of generative models, more details on the adversarial learning of the cost functions,

and an extensive comparison of various losses on simple models.

63
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1 Introduction

Several important statistical problems boil down to fitting a parametric model to a

dataset, i.e. estimating the parameters of a chosen model that fits observed data in some

meaningful way. While the standard approach for models with a density is Maximum

Likelihood Estimation (MLE), this approach is often flawed in machine learning tasks

where the sought after distribution is obtained in a generative fashion. These generative

models are obtained as the mapping of a low dimensional reference measure through

a non-linear function with values in a high dimensional space (e.g. a neural network).

These models are easy to sample from, but their density is singular in the sense that it

only has positive probability on a low-dimensional “manifold" of the observation space

and is zero elsewhere, thus making the usual MLE unusable.

Previous works. For purely generative models, several likelihood-free workarounds

exist. Major approaches include variational autoencoders (VAE) (Kingma and Welling,

2013), generative adversarial networks (GAN) (Goodfellow et al., 2014) and numerous

variations around these two ideas (Larsen et al., 2016). The adversarial GAN approach

computes the best achievable classification accuracy (in which the training and gener-

ated datapoints have opposite labels) for a given class of classifiers as a proxy for the

distance between two distributions: If accuracy is high distributions are well separated,

if accuracy is low they are difficult to tell apart and lie thus at a very close distance. An-

other approach consists in minimizing a metric between distributions: the maximal mean

discrepancy (Gretton et al., 2006), parametrized by a positive-definite kernel function.

It was shown in ensuing works that the effectiveness of the MMD to learn generative

models (Li et al., 2015; Dziugaite et al., 2015) hinges on the ability to find a relevant

kernel, which is a highly nontrivial choice. The Wasserstein or earth mover’s distance,

which also allows to compare distributions with non-overlapping supports, has recently

emerged as a serious contender to train generative models. While it was long disre-

garded because of its computational burden—in its original form solving OT amounts

to solving an expensive network flow problem when comparing discrete measures in met-

ric spaces—recent works have shown that this cost can be largely mitigated by settling

for cheaper approximations obtained through strongly convex regularizers, in particular

entropy, as detailed in Chapter 1 of this thesis. The benefits of this regularization has

opened the path to many applications of the Wasserstein distance in supervised learn-

ing problems (Courty et al., 2014; Frogner et al., 2015; Huang et al., 2016; Rolet et al.,

2016). Although the use of Wasserstein metrics for inference in generative models was

considered over ten years ago in (Bassetti et al., 2006), that development remained ex-

clusively theoretical until a recent wave of papers managed to implement that idea more

or less faithfully: using entropic regularization over a discrete space (Montavon et al.,

2016), with approximate Bayesian computations (Bernton et al., 2017), and considering
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a neural network parameterization of the dual potential in the dual OT problem defining

1-Wasserstein distance (Arjovsky et al., 2017). As opposed to this dual way to compute

gradients of the fitting energy, we advocate for the use of a primal formulation, which is

numerically stable, because it does not involve differentiating the (dual) solution of an

OT sub-problem, as also pointed out in (Bousquet et al., 2017). Additionally, introduc-

ing entropic regularization in the formulation of optimal transport allows to interpolate

between a pure OT loss and a Maximum Mean Discrepancy loss, thus bridging the gap

between these two approaches often presented as opposed points of view. Shortly after

the submission of this work, we came across the recent work by (Salimans et al., 2018)

which shares several ideas with our method. One distinction lies in the fact that they do

not back-propagate errors across the Sinkhorn iterations, but rather use an estimate of

the optimal transport matrix to compute an upper-bound on the Sinkhorn divergence,

as was done for instance in (Cuturi and Doucet, 2014).

Contributions. The main contributions of this chapter are twofold : (i) a theoretical

contribution regarding a new OT-based loss on measures, (ii) a simple numerical scheme

to learn generative models under this loss. (i) We introduce the Sinkhorn Divergence,

based on regularized optimal transport with an entropy penalty, and we prove that

when the smoothing parameter Á = 0 we recover pure OT loss whereas letting Á = +Œ
leads to MMD. The addition of entropy is important to reduce sample complexity and

gradient bias, and thus allows us to take advantage of the good geometrical properties

of OT without its drawbacks in high-dimensions. (ii) We propose a computationally

tractable and stable approach to learn with that Sinkhorn Divergence, which enables

inference for any differentiable generative model. It operates by approximating Sinkhorn

Divergences with minibatches and L iterations of Sinkhorn’s algorithm. As routinely

done in standard deep-learning architecture frameworks, the training is then achieved

using stochastic gradient descent and automatic differentiation. This provides accurate

and stable approximation of the loss and its gradient, at a reasonable extra computa-

tional cost, and streams nicely on GPU hardware. When dealing with complex data,

we propose to learn the cost function for OT in an adversarial way, similarly to what is

done for kernels with MMD in (Li et al., 2017).

Subsequent to this work, Sinkhorn Divergences have successfully been used in a

deterministic setting for shape registration (Feydy and Trouvé, 2018), which consists in

finding a diffeomorphism matching a deformed image to a target. Sinkhorn Divergences

perform better than MMD for this task, as they take the global geometry of the problem

into account where MMD is more local and has trouble dealing with parts of the shape

that are further away.

The GAN rush. This work was carried out in the early stages of what can be called

the GAN rush. The interest on GANs has kept growing since the seminal work by
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(Goodfellow et al., 2014), and it has clearly exploded in the past couple of years, with a

large part of the machine learning community now studying generative models. There

are various motivations behind the interest in generative models, but the one that is the

most popular is realistic image generation. Thus, although it is a crucial issue, evaluation

and comparison of generative models has long been neglected by the community, where

most papers simply relied on the quality of generated images to assess their performance

with little to no insight on how well they fit the underlying distribution of the data.

This resulted in a multitude of papers proposing network architectures, regularization

techniques, new losses and other heuristics whose superiority over existing methods is

difficult to evaluate. These methods all generate nice images, so their efficiency in terms

of computer graphics is clear, but from a statistical point of view, quantifying how

well a model fits the unknown distribution of the data remains an open question.The

choice of an evaluation metric for GANs is indeed a complex matter, which we quickly

discuss in Sec. 4, and a recent survey on GANs (Lucic et al., 2018) suggests a few

metrics which should be used for this purpose, with a focus on image-generation tasks.

Conducting a large-scale empirical study to compare several state-of-the art GAN models

(not including regularized OT- and MMD-based GANs) with their metrics, the authors

found out that “most models can reach similar scores with enough hyperparameter

optimization and random restarts”. Thus in practice, a good network architecture was

enough for their assessed models to perform well in terms of image generation, and the

loss function itself did not have much effect on the performance. In the GAN rush, we

adopted a different position on the subject, distancing ourselves from image generation

and rather trying to answer the following question : what is a robust loss to learn a

(possibly high-dimensional) singular distribution from samples? It is this question that

should be kept in mind through this chapter and the following – which gives statistical

properties of Sinkhorn Divergences, reinforcing the interpolation theorem presented here.

Thus, we consider images generation merely as an application of our density fitting

scheme, not a the main goal. For a better overview of the performance of Sinkhorn

Divergences in image generation, the reader should refer to (Salimans et al., 2018).

2 Density Fitting

We consider a data set of n (usually very large) observations (y1, . . . , yn) œ X n

generated from an unknown distribution — and we want to learn a generative model

that produces samples that are similar to that dataset. Samples x = g◊(z) from the

generative model are defined by taking as input a sample z œ Z from some reference

measure ’ (typically a uniform or a Gaussian measure in a low-dimensional space Z)

and mapping it through a differentiable function g◊ : Z æ X . Formally, this corresponds

to defining the generative model measure –◊ from which x is drawn as –◊ = g◊#’. The

goal is to find ◊ which minimizes a certain loss L between the model measure –◊ and
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the unknown measure of the data —:

◊ œ argmin
◊

L(–◊, —). (2.1)

Maximum likelihood estimation (MLE) is obtained with L(–◊, —) = ≠ q

j log d–◊
dx (yj),

where d–
dx is the density of –◊ with respect to a fixed reference measure (a typical choice is

dx being the Lebesgue measure in X = R
d). This MLE loss can be seen as a discretized

version of the relative entropy (a.k.a. the Kullback-Leibler divergence) as it converges to

DKL(–|—) when N æ Œ. A major issue with this approach is that in general generative

models defined this way (when Z has a much smaller dimensionality than X ) have

singular distributions (i.e. supported on a low-dimensional manifold), without density

with respect to a fixed measure, and therefore MLE cannot be considered.

2.1 Learning with ϕ-divergences

The first idea that emerged in the literature of Generative Adversarial Networks

(Goodfellow et al., 2014) was to use the Jensen-Shannon divergence, a special instance

of the class of Ï≠divergences (see Chapter 1, sec. 2.1 for a thorough introduction), to

solve the density fitting problem. Subsequent work by (Nowozin et al., 2016) considers

a more general framework to learn a generative model with Ï≠divergences, which we

describe in this section. The density fitting problem they consider is

min
◊

DÏ(–◊ | —)
def.
=

⁄

X
Ï

3

d–◊(x)

d—(x)

4

d—(x), (2.2)

where –◊ and — are absolutely continuous with respect to a reference measure dx and

d–◊, d— are their respective densities (see Chapter 1, sec. 2.1 for a more general definition

in the case of measure that are not absolutely continuous); and is Ï a convex, lower-

semicontinuous function on R
+ satisfying Ï(1) = 0. However, Ï-divergences are hard

to estimate through samples, in particular because of the fact that they do not metrize

weak convergence (again, see Chapter 1, sec. 2.1 for more details).

To alleviate this shortcoming, (Nguyen et al., 2010) suggests using the following

lower bound leveraging the dual definition of Ï-divergences:

Proposition 15. (Lower bound on Ï-divergences)

DÏ(– | —) = sup
T :X æR

E–(T (X)) ≠ E—(ÏúT (Y )) > sup
T œT

E–(T (X)) ≠ E—(ÏúT (Y )),

where Ïú(t) = supu tu ≠ Ï(u) is the Legendre transform of Ï, the set {T : X æ R} is

the set of measurable functions from X to R and T is an arbitrary class of measurable

functions.

Parametrizing T by a variable w, i.e. setting T def.
= {Tw | w œ W} and using the
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previous lower bound (2.2) yields the following saddle point problem:

min
◊

max
w

E—(Tw(X)) ≠ E–◊
(Ïú(Tw(X)). (2.3)

The formulation of the original GANs is derived from the above, using f(u) = u log u +

(u + 1) log(u + 1) (a slight modification of the Jensen-Shannon divergence given in

Table 1.1, Chapter 1) and Tw = log Dw, where Dw is a neural network called the

discriminator. Then (2.3) becomes

min
◊

max
w

E—[log Dw(X)] ≠ E–◊
[log(1 ≠ Dw(X))]

… min
◊

max
w

E—[log Dw(X)] ≠ Eζ [log(1 ≠ Dw(gθ(Z)))],

using the definition of –θ as the pushforward of ’ through gθ. From a game-theory

point of view, the general GAN formulation can be seen as finding the equilibrium in

a two-player game where player one optimizes its parameter ◊ to fool the discriminator

Dw, whose parameter w is optimized by the player two whose goal is to distinguish

between samples from the model measure –θ and samples from the true measure —.

2.2 Maximum Mean Discrepancy and Optimal Transport

A more robust way to compare measures with disjoint support, is to consider losses

which metrize the weak convergence of measures (see Chapter 1, Sec. 2.1 for a precise

definition). Intuitively, these losses enables the comparison of singular measures by

taking into account spatial displacement of the measures. For instance, they avoid the

typical failure case of Ï-divergences by satisfying L(”x, ”xÕ) æ 0 as x æ xÕ where Ï-

divergences would be equal to a constant. A classical framework for such a loss function

L are Integral Probability Metrics (IPMs) which are thoroughly described in Chapter 1,

Sec. 2.2. Given a set of measurable functions F , the IPM dF is defined as

dF (–, —)
def.
= sup

fœF
|Eα(f(X)) ≠ Eβ(f(Y ))|.

Popular IPMs include the 1-Wasserstein distance (with F = {f ; ||Òf ||Œ 6 1} the set

of 1-Lipschitz functions) and Maximum Mean Discrepancies (with F = {f ; ||f ||H 6 1}
where H is a Reproducing Kernel Hilbert Space). Recall from Chapter 1, Proposition 3

that on a RKHS with kernel k, MMD can be rewritten as follows (Gretton et al., 2006):

MMD2
k(–, —) = Eα¢α[k(X, X Õ)] + Eβ¢β[k(Y, Y Õ)] ≠ 2Eα¢β[k(X, Y )]. (2.4)

A different approach, for which we advocate, is to consider Optimal Transport (OT)

metrics. The OT metric between two probability distributions (–, —) œ M1
+(X ) ◊
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M1
+(X ) is defined as the solution of the (possibly infinite dimensional) linear program:

Wc(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊X
c(x, y)dfi(x, y), (2.5)

where the set of admissible couplings Π(–, —) is composed of joint probability distri-

butions over the product space X ◊ X with imposed marginals (–, —). Formula (2.5)

corresponds to the celebrated Kantorovitch formulation (Kantorovich, 1942) of OT (see

Chapter 1, sec.2.3 for more details). Here c(x, y) is the “ground cost” to move a unit of

mass from x to y, and we shall make no assumptions (except for regularity) on its form.

When X is equipped with a distance dX , a typical choice is to set c(x, y) = dX (x, y)p

where p > 0 is some exponent, in which case for p > 1 W
1/p
c is the so-called p-

Wasserstein distance between probability measures. Two majors obstacles to the use

of the Wasserstein-distance for inference, as for many machine learning applications, are

its high computational complexity and the curse of dimensionality from which it suffers.

2.3 Regularized OT and Variants of the Regularized OT Loss

As detailed in Chapter 1, Sec. 3 one can resort to regularized optimal transport to

alleviate the computational burden of OT. Its primal formulation is given by:

min
fiœΠ(–,—)

⁄

c(x, y)dfi(x, y) + Á

⁄

log

3

dfi(x, y)

d–(x)d—(y)

4

dfi(x, y). (PÁ)

The primal problem (PÁ) has a equivalent dual formulation (see Chapter 1, Proposi-

tion 7) which consists in solving

max
(u,v)œC(X )◊C(Y)

⁄

X
u(x)d–(x) +

⁄

Y
v(y)d—(y) ≠ Á

⁄

X ◊Y
e

u(x)+v(y)≠c(x,y)
Á d–(x)d—(y) + Á.

(DÁ)

The optimizer fiÁ of the primal formulation can be recovered from optimizers of the dual

problem (uÁ, vÁ) via the following formula: dfiÁ(x, y) = e
uÁ(x)+vÁ(y)≠c(x,y)

Á d–(x)d—(y). In

practice, state-of-the-art algorithms (including Sinkhorn, the one we use here, already

detailed in Chapter 1, Sec. 4.2) solve the dual problem and use the primal-dual rela-

tionship to recover the solution of the primal.

Note that introducing this regularization also breaks the curse of dimensionality for

Á large enough, making the estimation of regularized OT more robust to sampling noise,

and this is the main matter of Chapter 3.

These problems yield four different costs, which all converge to the value of unregu-

larized OT when Á æ 0 :

• Primal cost with entropy:

L(–, —)
def.
=

⁄

X ◊Y
c(x, y)dfiÁ(x, y) + Á

⁄

log

3

dfiÁ(x, y)

d–(x)d—(y)

4

dfiÁ(x, y).
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This loss is the value of the primal of the regularized problem. Theoretical results

are known for this cost, which is extensively studied in Chapter 3. In particular,

we have a convergence rate for its approximation from samples, based on the

regularization parameter Á.

• Dual cost with entropy:

L(–, —) =

⁄

X
uÁ(x)d–(x) +

⁄

Y
vÁ(y)d—(y) ≠ Á

⁄

X ◊Y
e

uÁ(x)+vÁ(y)≠c(x,y)
Á d–(x)d—(y) + Á.

Since strong duality holds for regularized OT, this loss is equal to the primal

with entropy. This is actually this formulation that is used to prove the sample-

complexity results from Chapter 3. However in practice, when one uses an algo-

rithm to approximate (uÁ, vÁ), the primal and dual problems with entropy yield

different values.

• Primal cost without entropy:

L(–, —)
def.
=

⁄

X ◊Y
c(x, y)dfiÁ(x, y).

This loss is arguably the most widely used in practice. It is this version that is used

in (Cuturi, 2013), which first showed the benefits of regularized OT for machine

learning. It has recently been studied in (Luise et al., 2018) under the name Sharp

Sinkhorn – to avoid confusion with the primal loss with entropy. This paper gives

an algorithm to compute the gradient of this loss, which can further be used in

supervised learning problems.

• Dual cost without entropy:

L(–, —) =

⁄

X
uÁ(x)d–(x) +

⁄

Y
vÁ(y)d—(y).

The primal-dual relationship is dfiÁ = e
uÁ(x)+vÁ(y)≠c(x,y)

Á d–(x)d—(y). The probabil-

ity constraint on fiÁ thus implies
s

X ◊Y e
uÁ(x)+vÁ(y)≠c(x,y)

Á d–(x)d—(y) = 1. So the

dual cost without entropy is equal to the dual cost with entropy, which once again

might not be the case when considering approximations of (uÁ, vÁ).

2.4 Sinkhorn Divergences : an Interpolation Between OT and MMD

We denote by Wc,Á the primal without entropy variant of the regularized OT loss:

Wc,Á(–, —)
def.
=

⁄

c(x, y)dfiÁ(x, y), (2.6)
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where fiÁ is the optimal coupling for the regularized OT problem (PÁ), and by HÁ the

additional term that comes from the entropic regularization:

HÁ(–, —)
def.
= Á

⁄

log(
dfiÁ(x, y)

d–(x)d—(y)
)dfiÁ(x, y), (2.7)

so that the primal loss with entropy is

W H
c,Á(–, —)

def.
= Wc,Á(–, —) + HÁ(–, —). (2.8)

To correct for the fact that Wc,Á(–, –) ”= 0 and W H
c,Á(–, –) ”= 0, we introduce the following

normalization, which we call Sinkhorn Divergence:

Definition 9. (Sinkhorn Divergence) The Sinkhorn Divergence between two proba-

bility measures –, — is defined as:

SDc,Á(–, —)
def.
= Wc,Á(–, —) ≠ 1

2
Wc,Á(–, –) ≠ 1

2
Wc,Á(—, —), (2.9)

where Wc,Á is the primal cost without entropy defined in (2.6). Alternatively, we define:

SDH
c,Á(–, —)

def.
= W H

c,Á(–, —) ≠ 1

2
W H

c,Á(–, –) ≠ 1

2
W H

c,Á(—, —), (2.10)

where W H
c,Á is the primal cost with entropy defined in (2.8)

Far from simply correcting the bias of Wc,Á(–, –), the Sinkhorn Divergence also

appears as an interpolating discrepancy between OT and MMD.

Theorem 14. (Asymptotics of Sinkhorn Divergence with Respect to Á) The

Sinkhorn Divergence has the following asymptotic behavior in Á:

(i) as Á æ 0, SDc,Á(–, —) æ Wc(–, —),

(ii) as Á æ +Œ, SDc,Á(–, —) æ 1
2MMD2

≠c(–, —).

When ≠c is a positive definite kernel, MMD≠c is the MMD with the kernel that is

minus the cost used in the optimal transport problem.

Besides, if c œ C1(X ◊ Y) and X and Y are bounded domains of R
d, the asymptotics

also hold for SDH
c,Á.

Remark 12. This theorem is a generalization of (Ramdas et al., 2017, §3.3) for continuous

measures, and to the cost with entropy.

Proof. Let us start by proving the property for SDc,Á.

(i) The first part of the assumption comes from the fact that fiÁ Ô fi (see Chapter 1,

Sec. 4.4 or (Carlier et al., 2017)).
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(ii) Letting Á go to infinity in the regularized OT problem amounts to finding the

coupling with minimum entropy in the constraint set. The problem becomes

min
fiœΠ(–,—)

⁄

log

3

dfi(x, y)

d–(x)d—(y)

4

dfi(x, y),

where Π(–, —) is the set of couplings with marginals – and —. Introducing Lagrange

multipliers u and v for these constraints, the dual problem becomes maxu,v
s

u(x)d–(x)+
s

v(y)d—(y) ≠ s

exp(u(x) + v(y))d–(x)d—(y) and the primal-dual relation is given

by dfi(x, y) = exp(u(x) + v(y))d–(x)d—(y). Solving the dual gives u = v = 0 and

thus the optimal coupling is simply the product of the marginals i.e. fi = – ¢ —.

This gives

Wc,+Œ(–, —) =

⁄

X ◊Y
c(x, y)d–(x)d—(y).

The proof of this assumption for SDH
c,Á requires some more assumptions to control

the entropy, and is based on results from Chapter 3.

(i) The asympotics for Á æ 0 are a direct consequence of Theorem 16 which proves

that

W H
c,Á(–, —) ≠ Wc(–, —) ≥

Áæ0
2Ád log(1/Á).

(ii) We want to prove that W H
c,Á(–, —) æ

Áæ+Œ
s

X ◊Y c(x, y)d–(x)d—(y). Since strong

duality holds for regularized OT, we have

W H
c,Á(–, —) =

⁄

X
uÁ(x)d–(x)+

⁄

Y
vÁ(y)d—(y)≠Á

⁄

X ◊Y
e

uÁ(x)+vÁ(y)≠c(x,y)
Á d–(x)d—(y)+Á,

where uÁ and vÁ are the dual potentials solving (DÁ). We know from Chapter 3,

Proposition 17 that if the cost function c is C1 and X and Y are bounded, then uÁ

and vÁ are Lipschitz with the same constant as c, and thus they are bounded in LŒ

norm on X and Y independently of Á. This implies that uÁ(x) + vÁ(y) ≠ c(x, y) =

O(1) when Á æ +Œ. Using the Taylor expansion of the exponential when Á æ +Œ
we get:

W H
c,Á(–, —) =

⁄

X
uÁ(x)d–(x) +

⁄

Y
vÁ(y)d—(y)

≠ Á

⁄

X ◊Y

3

1 +
uÁ(x) + vÁ(y) ≠ c(x, y)

Á
+ O

3

1

Á2

44

d–(x)d—(y) + Á,

which simplifies to

W H
c,Á(–, —) =

⁄

X ◊Y

3

c(x, y) + O

3

1

Á

44

d–(x)d—(y).

Since we have
s

X ◊Y O
1

1
Á

2

d–(x)d—(y) æ 0 when Á æ +Œ, we get the desired
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conclusion.

We proved that SDc,Á æ MMD≠c when Á æ +Œ. However, by definition of MMD,

≠c has to be a positive definite kernel for MMD≠c to be well defined. The following

proposition proves that some powers of the Euclidean distance yield a valid cost, and

define as special instance of MMD also known as Energy Distance.

Proposition 16. (Energy Distance)(Sejdinovic et al., 2013) Consider the Euclidean

distance ||.||2 on R
d. Then,

kp(x, y)
def.
= ||x||p2 + ||y||p2 ≠ ||x ≠ y||p2

is a positive definite kernel for 0 < p < 1. And it induces the following MMD, called

Energy Distance :

EDp(–, —)
def.
= MMD2

kp
(–, —) = 2E–¢—[||X ≠ Y ||p2] ≠ E–¢–[||X ≠ X Õ||p2] ≠ E—¢— [||Y ≠ Y Õ||p2].

Recent work by (Feydy et al., 2019) also proves that this normalization of regularized

OT enforces positive-definiteness for SDH
c,Á, which we conjectured in the early stages

of our work on Sinkhorn Divergence, based on empirical evidence, and that Sinkhorn

divergences metrize the weak-convergence of measures.

Theorem 15. (Positivity of Sinkhorn Divergence)(Feydy et al., 2019) Let X be

a compact metric space with a Lipschitz cost function c, that induces, for Á > 0, a

positive universal kernel kÁ(x, y)
def.
= exp(≠c(x, y)/Á). Then, SDH

c,Á defines a symmetric

positive definite, smooth loss function that is convex in each of its input variables. It also

metrizes the convergence in law (or weak-convergence of measures): for all probability

Radon measures – and — œ M+
1 (X ),

0 = SDH
c,Á(—, —) 6 SDc,Á(–, —),

– = — … SDH
c,Á(–, —) = 0,

–n Ô – … SDH
c,Á(–n, –) æ 0.

Remark 13. In particular, these results hold for measures with bounded support on

a Euclidean space X = R
d endowed with ground cost functions c(x, y) = ||x ≠ y||2 or

c(x, y) = ||x ≠ y||22 which induce Laplacian and Gaussian kernels respectively. Note that

their proof only holds for Sinkhorn Divergence based on the primal cost with entropy

SDH
Á , positive-definiteness of SDÁ remains an open problem.
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Discussion on OT vs. MMD. As proved in Theorem 1, the Sinkhorn Divergence

interpolates between a pure OT loss for Á = 0 and MMD losses for Á = +Œ. As such,

when Á æ +Œ, our loss takes advantage of the good properties of MMD losses, and in

particular a favorable sample complexity of O(1/
Ô

n) (decay rate of the approximation

of the true loss with a mini-batch of size n) which is the object of Chapter 3 of this

thesis. In contrast, the unregularized OT loss suffers from a sample complexity of

O(1/n1/d), see (Weed and Bach, 2017) for a recent account on this point. Using MMD

to train generative models has been shown to be successful in (Dziugaite et al., 2015;

Li et al., 2015). The improved Wasserstein GAN approach (Gulrajani et al., 2017)

(which penalizes the squared norm of the gradient of the dual potential) is similar to

an MMD in the sense that both are IPMs. By tuning the Á parameter, our method is

able to take the best of both worlds, to blend the non-flat geometry of OT with the

high-dimensional rigidity of MMD losses. Additionally, the Sinkhorn Divergence, as is

the case for the original OT problem, can be defined with any cost c, whereas MMD

losses are only meaningful when used with positive definite kernels k. We discuss the

geometric properties of these losses further in Section 4, where we compare them on

various fitting tasks.

3 Sinkhorn AutoDiff Algorithm

We now consider density fitting with Sinkhorn Divergence as a loss:

min
◊

EÁ(◊) where EÁ(◊)
def.
= SDc,Á(–◊, —).

Computing an approximation of Ò◊SDc,Á(–◊, —) is itself a difficult problem. When

Á = 0, and when c = ||x ≠ y|| (the case of the 1-Wasserstein distance) a workaround is

to use, instead of differentiating the “primal” formula (2.5), the optimum of the “dual”

formula, resulting in ÒSD0(–◊, —) =
s

Z Ò[h ¶ g◊](z)d’(z), where h is an optimal dual

continuous potential for – = –◊. This is the problem tackled in (Arjovsky et al., 2017)

which uses a deep-network expansion to approximate the continuous dual potential h.

While the dual formalism is appealing (in particular because it involves only integration

over Z and not the product space Z ◊ X ), the resulting gradient formula requires

differentiating the dual potential, which tends to be difficult to compute and unstable.

A very similar conclusion is reached by (Bousquet et al., 2017) (see in particular their

Proposition 3).

We propose a different route, by making two key simplifications: (i) approximate

SDc,Á(–◊, —) by a size-m mini-batch sampling SDc,Á(–̂◊m, —̂m) to make it amenable

to stochastic gradient descent ; (ii) approximate SDc,Á(–̂◊m, —̂m) by L-steps of the

Sinkhorn algorithm (Cuturi, 2013) to obtain an algorithmic loss SD
(L)
c,Á (–̂◊m, —̂m) which

is amenable to automatic differentiation.
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(z1, . . . , zn) ∼ ζ

Generative model

gθ
c(xi, yj)i,j

C

= gθ#ζ(x1, . . . , xn) ∼ αθ

zi

Dataset

(y1, . . . , ym) ∼ β

Sinkhorn’s Algorithm

L  
Sinkhorn steps

a =
1

e−C/εb

b =
1

e−C/εa

yi

c(xi, xj)i,j

c(yi, yj)i,j

SDc,ε(α̂θ, β̂) = Wc,ε(α̂θ, β̂)
(

Wc,ε(α̂θ, α̂θ)+Wc,ε(β̂, β̂)
)

−
1

2

xi
π
(L) = diag(a(L)) e−C/ε diag(b(L))

W (L)
c,ε = 〈C,π(L)〉

Figure 2.1 – Flow diagram for the computation of the proxy of the Sinkhorn Divergence

estimated from samples SD
(L)
c,Á (–̂◊m, —̂m). Samples from the generative model –◊ are ob-

tained by applying the push-forward function g◊ to samples of the initial low-dimensional
measure ’ (blue block). These samples are combined with real data (red block) to com-
pute a pairwise distance matrix C, which is in turn used in the Sinkhorn iterations.
The resulting loss is the one on which automatic differentiation is applied to perform
parameter learning. The display shows a simple 2-layer neural network g◊ : z ‘æ x, but
this applies to any generative model.

3.1 Mini-batch Sampling Loss

We approximate SDc,Á(–◊, —) by an estimation with empirical measures SDc,Á(–̂◊m, —̂m)

which leads to consider:

min
◊

SDc,Á(–̂◊m, —̂m) (3.1)

and

I

–̂◊m
def.
= 1

m

qm
i=1 ”xi ,

—̂m
def.
= 1

m

qm
i=1 ”yj ,

Y

]

[

(zi)
m
i=1

i.i.d≥ ’,

’ i, xi
def.
= g◊(zi).

As m increases, E(SDc,Á(–̂◊m, —̂m)) approaches SDc,Á(–◊, —), and convergence of min-

imizers is studied in (Bernton et al., 2017).

At a given iterate of this stochastic gradient descent scheme (see pseudo-code 2),

one draws a mini-batch (zi)
m
i=1

i.i.d≥ ’ and a subset of m observations from the dataset,

and aims at computing the gradient of SDc,Á(–̂◊m, —̂m). In the case where both input

measures are discrete (sums of Dirac masses), couplings fi can be treated as matrices

π œ R
m◊n, namely fi =

q

i,j πi,j”(xi,yj) œ M1
+(X ◊ X ).
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3.2 Sinkhorn Iterates

One major advantage of regularizing the optimal transport problem is that it be-

comes solvable efficiently using Sinkhorn’s algorithm (Sinkhorn, 1964) (when dealing

with discrete measures) and leads to a differentiable loss function (as first noticed in (Cu-

turi, 2013; Cuturi and Doucet, 2014)). Sinkhorn’s algorithm is presented in details in

Chapter 1, Sec. 4.2 but we give a quick reminder here in the specific case of empirical

measures. Recall that the entropic regularization is equivalent to restricting the search

space in (PÁ) to couplings having the so-called scaling form

πi,j = aiKi,jbj where Ki,j
def.
= e≠Ci,j/Á where C

def.
=

1

c(g◊(zi), yj)
2

ij
.

Note that K depends implicitly on ◊ (because matrix C does), and contains therefore

all of the geometric information related to the ability of ◊ to sample points near the

dataset. The main computational burden of the procedure, detailed in Algorithm 1 are

the matrix-vector multiplication, which stream extremely well on GPU architectures,

and therefore nicely add to a typical deep network architecture with L additional layer

of linear operations (K can be interpreted as a localized linear filtering) and entry-wise

non-linear operations (here divisions).

For a given budget L of iterations, the primal cost is then obtained by using π(L) def.
=

diag(a(L))K diag(b(L)) as a proxy for the optimal transport coupling, and thus

W (L)
c,Á (–̂◊m, —̂m)

def.
= ÈC, π(L)Í =

m
ÿ

i=1

m
ÿ

j=1

Ci,ja
(L)
i b

(L)
j Ki,j (3.2)

where it is once again important to remind that K, C, a(L), b(L) depend on ◊. As L æ
+Œ, one can show that the π(L) computed by Sinkhorn’s iterates approaches a solution

to (PÁ), with linear convergence rate (deteriorating as Á æ 0), so that W
(L)
c,Á (–̂◊m, —̂m)

is a smooth proxy for Wc,Á(–◊, —) which can be differentiated in a fast and stable way,

while converging to Wc,Á(–◊, —) when (m, L) æ +Œ. It is important to realize that for

large scale and high dimensional learning applications, empirical considerations (Cuturi,

2013; Kusner et al., 2015; Frogner et al., 2015) suggest that, unlike relevant applications

of the same scheme in graphics (Solomon et al., 2015), a relatively strong regularization

– a large Á – leads to faster convergence, but also better generalization so that the value

for L can be set quite low. This is further backed-up by recent theoretical results –

detailed in Chapter 3 – showing that the curse of dimensionality of OT is broken by

using regularized OT with a large enough Á.
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Algorithm 1 Regularized Primal Loss without Entropy W
(L)
cÏ,Á(xm

1 , ym
1 )

Input: Ï, (xi)
m
i=1, (yj)m

j=1, Á

Output: W

Ci,j
def.
= ||fÏ(xi) ≠ fÏ(yj)||p ’ (i, j) (compute the cost matrix C)

Ki,j
def.
= e≠ Ci,j

Á

b Ω 1m,

for ¸ = 1, 2, . . . , L do (L steps of Sinkhorn’s algorithm)

a Ω 1m
Kb

; b Ω 1m

K€a

end for

π Ω diag(a)K diag(b)

return WcÏ,Á = Èπ, CÍ (see (3.2))

3.3 Learning the Cost Function Adversarially

Aside from the regularization parameter, a key element of the Sinkhorn Divergence

is the choice of the ground cost c on the data space. In some cases, using a simple

metric such as the ¸2 norm is sufficient to compare two data points, but when dealing

with high-dimensional objects, choosing c is more critical. In such cases, we propose to

learn the cost c with the following parametrization

cÏ(x, y)
def.
= ||fÏ(x) ≠ fÏ(y)||p where fÏ : X æ R

dÕ
,

where fÏ can for instance be modeled by a neural network – see numerical experiments

below, and can be seen as a feature extractor that reduces the dimensionality of X
through a mapping onto R

dÕ
.

The procedure to learn the cost function here is the same as learning a parametric

kernel in an MMD model, as done in (Li et al., 2017). The idea, as suggested in

(Fukumizu et al., 2009) for MMD, is to learn a cost function (or kernel in their case)

that will allow the Sinkhorn Divergence (or MMD in their case) to discriminate well

between samples generated by the model distribution –◊ and samples from the data set.

In their setting, which is two-sample test, they want to set a threshold · such that if the

MMD evaluated on samples verifies MMDk(–̂◊, —̂) < · they accept the hypothesis that

–◊ = —. Thus their kernel function should maximize the value of the discrepancy, so that

the equality hypothesis is not wrongfully accepted. Similarly in our case, we want the

parameter of the cost function Ï to maximize the Sinkhorn Divergence in order to get

a strong signal when –◊ ”= —. The optimization problem becomes a min-max problem

over (◊, Ï) instead of a simple minimization problem over ◊

min
◊

max
Ï

SDcÏ,Á(–◊, —),
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where in practice SDcÏ,Á is approximated by minibatches and Sinkhorn, as mentioned

above. We will give details on the optimization algorithm used for this min-max problem

below.

3.4 The Optimization Procedure in Practice

Let us first describe the optimization procedure when the cost function c is fixed.

The original problem we want to solve is

min
◊

SDc,Á(–◊, —).

Since –◊ and — are only available through finite samples, the idea is to use Stochastic

Gradient Descent (SGD). At each step we draw a minibatch (xi, yi)i=1...m ≥ –◊ ¢ — and

approximate Ò◊SDc,Á(–◊, —) by Ò◊SDc,Á(–̂◊m, —̂m). In practice, Ò◊SDc,Á(–̂◊m, —̂m) is

further approximated by Ò◊SD
(L)
Á (–̂◊m, —̂m) where the latter is computed by backprop-

agation through the computational graph of SD
(L)
Á (–̂◊m, —̂m).

Our approximation scheme is summarized in Figure 2.1. Samples from the generative

model –◊ are obtained by applying the push-forward function g◊ to samples of the initial

low-dimensional measure ’ (blue block). These samples are combined with real data

(red block) to compute a pairwise distance matrix C. This matrix, as in MMD-GAN’s

approach (Li et al., 2015) is all we need to compute the loss. In the purple block of the

figure a finite number of Sinkhorn steps (consisting of matrix-vector multiplications) are

used to approximate the Sinkhorn Divergence. These Sinkhorn steps are used to evaluate

(forward pass) and compute the gradient (backward pass) of our proxy SD
(L)
Á (–̂◊m, —̂m).

Note that the procedure AutoDiff◊ corresponds to classical reverse mode automatic

differentiation of L steps of the Sinkhorn iteration, and has therefore naturally the same

complexity as Sinkhorn, i.e. O(Lm2) operations, with an extra storage cost required to

run the backward iteration with no additional computational overhead.

When combining this with the adversarial learning of the cost function, the min-

max optimization procedure is the same as (Arjovsky et al., 2017),(Li et al., 2017) and

consists in alternating nc optimization steps to train the cost function fÏ (or the dual

network in (Arjovsky et al., 2017)) and an optimization step to train the generator g◊.

Following advice from these papers, we clip the weights Ï to ensure a bounded gradient

in the maximization and use RMSProp as an optimizer.

A discussion on biased gradients. Convergence of SGD relies on unbiased estimates

of the gradient : when optimizing a function F , SGD approximates ÒF (◊(¸)) with a

proxy Òf¸(◊
(¸)) at iteration (¸), where E(Òf¸(◊)) = ÒF (◊). In the case where the

gradient and the expectation can be inverted, a differentiable unbiased estimator of F

yields an unbiased gradient estimate. The question of biased gradient estimates for

MMD- and Wasserstein-GAN was first raised in (Bellemare et al., 2017). Subsequently,
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(BiÒkowski et al., 2018) demonstrated that IPM gradients always have a downward bias.

Consider an IPM dF (–, —)
def.
= supfœF |E–(f(X)) ≠ E—(f(Y ))|. For a fixed function f ,

1
n

qn
i=1 f(xi) ≠ 1

n

qn
j=1 f(yj) is an unbiased estimator of E–(f(X)) ≠ E—(f(Y )) (where

(xi)i and (yj)j are sampled according to – and — respectively. But when the optimal

dual function f is unknown, and thus approximated by another function f̂ as in MMD-

of W-GAN, then 1
n

qn
i=1 f̂(xi) ≠ 1

n

qn
j=1 f̂(yj) is a biased estimator of dF (–, —). Thus

the gradient estimates are also biased. Although Sinkhorn Divergence does not fall in

the framework of IPMs, it also suffers from biased gradients. The empirical Sinkhorn

Divergence, which consists in computing the Sinkhorn Divergence between the empirical

measures –̂m, —̂m, is a biased estimator of the Sinkhorn Divergence. Thus, our gradient

estimates are biased but the algorithm still does well in practice (see Section 4).

Algorithm 2 SGD with Auto-diff

Input: ◊0, Ï0, (yj)n
j=1 (the real data), m (batch size), L (fixed number of Sinkhorn

iterations), Á (regularization parameter), · (learning rate)

Output: ◊ (parameters of the generative model), Ï (parameters of the cost function)

◊ Ω ◊0, Ï Ω Ï0,

for k = 1, 2, . . . do

for t = 1, 2, . . . , nc do (inner loop to update cost function)

Sample (yj)m
j=1 from the dataset

Sample (zi)
m
i=1

i.i.d≥ ’, (xi)
m
i=1

def.
= g◊(zm

1 )

SD
(L)
Ï,Á (xm

1 , ym
1 )

def.
=

1

2W
(L)
Ï,Á (xm

1 , ym
1 ) ≠ W

(L)
Ï,Á (xm

1 , xm
1 ) ≠ W

(L)
Ï,Á (ym

1 , ym
1 )

2

(compute Sinkhorn Divergence with Algo. 1)

gradÏ Ω AutoDiffÏ

1

SD
(L)
Ï,Á (xm

1 , ym
1 )

2

(gradient evaluation with autodiff)

Ï Ω Ï + ·RMSProp(gradÏ). (gradient step with RMSprop)

Ï Ω clip(Ï, ≠c, c)

end for

Sample (yj)m
j=1 from the dataset

Sample (zi)
m
i=1

i.i.d≥ ’, (xi)
m
i=1

def.
= g◊(zm

1 )

SD
(L)
Ï,Á (xm

1 , ym
1 )

def.
=

1

2W
(L)
Ï,Á (xm

1 , ym
1 ) ≠ W

(L)
Ï,Á (xm

1 , xm
1 ) ≠ W

(L)
Ï,Á (ym

1 , ym
1 )

2

(compute Sinkhorn Divergence with Algo. 1)

grad◊ Ω AutoDiff◊

1

SD
(L)
Ï,Á (xm

1 , ym
1 )

2

(gradient evaluation with autodiff)

◊ Ω ◊ ≠ ·RMSProp(grad◊). (gradient step with RMSprop)

◊ Ω clip(◊, ≠c, c)

end for

4 Applications

We start by comparing EDp (MMD induced by Euclidean cost, see (16)), WÁ and

SDc,Á on a simple fitting task on synthetic data in 2D and 3D. We then consider two
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popular problems in machine learning to illustrate the versatility of our method. The

first one relies on fitting labeled data with uniform distributions supported on ellipses

(note that this could be any parametric shape but ellipses here were a good fit). The

second problem consists in tuning a neural network to generate images, first with a fixed

cost (on MNIST dataset) and then with a parametric cost (on CIFAR10 dataset). In

both cases, we used simple initializations (see details below) and the algorithm yielded

similar results when rerun, meaning that the results displayed are representative of the

performance of the algorithm and that the procedure is quite stable.

4.1 Benchmark on Synthetic Problems

Since evaluating the performance of generative models is a complicated issue on

real data (see discussion in Sec. 4.3), we construct a synthetic framework to get a

reliable comparison of different losses. Although our method is meant to be used in high

dimensions, we apply it here to two simple problems to be able to visualize the results:

• Deterministic setting : fitting a point cloud in 2D,

• Probabilistic setting: fitting an ellipse in 3D.

In the deterministic setting, we fit a finite discrete measure, to give us a better idea of

the geometry of the costs without the sampling noise. We then see how our observations

carry out in a probabilistic setting, with sampling and stochastic gradient descent as

described in Algorithm 2.

Both problems require the use of losses that are smooth for the weak convergence:

for the first one, the model measure is singular, as it is supported on points, while for

the second, the model measure measure has a bounded support which changes during

the optimization procedure.

Deterministic setting: Fitting a point cloud in 2D. Given a dataset (y1, . . . , yn)

of points in 2D, we want to fit the empirical measure —
def.
= 1

n

qn
i=1 ”yi . The parametric

measure that we consider is thus –◊
def.
= 1

n

qn
i=1 ”◊i

, where the parameters ◊i are the

positions of the Dirac masses. To get rid of the sampling noise and better observe the

geometry of the losses, we use a full gradient descent to estimate ◊ (or, in other words,

we use minibatches of size m = n, to stick to the scheme of Algorithm 2). The results

are given in Figure 2.2. We use a cost c = || · ||1.5
2 to ensure fair comparison with EDp

which is well defined for p < 2 only. We use L = 5 iterations to to Sinkhorn’s algorithm.

We can see that Wc,Á successfully captures the extreme points, but yields parameters

that collapse to a mean values in the dense area. The Energy Distance, on the other

hand, fails to capture the extreme points but the points in the dense region are well

distributed. Sinkhorn Divergences get the best of both worlds by successfully capturing

both the extreme points and the dense area for Á = 1, but when Á gets larger, we recover

the behavior of Energy Distance and the extreme points are not recovered anymore.
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SDc,ε − ε = 102, c = || · ||1.52SDc,ε − ε = 1, c = || · ||1.52

Wc,ε − ε = 1, c = || · ||1.52
EDp − p = 1.5Initial Setting

Figure 2.2 – Comparison of SDc,Á to Wc,Á and EDp on a deterministic task: fitting a
point cloud in 2D. The orange circles represent the target distribution —, and the blue
crosses the fitted distribution –◊ú . The top left image represents the initial distribution
–◊0 .

Probabilistic setting: fitting an ellipse in 3D. We consider a parametric measure

–◊ that generates points uniformly inside an ellipse. The ellipse parametrized by a

3 ◊ 3 matrix A (the square root of its covariance matrix) and a center Ê œ R
3, so that

◊ = (A, Ê). The reference measure ’ is a uniform on the unit ball of dimension 3, and

a point is sampled from –◊ thanks to g◊(z) = Az + Ê. We generate n = 200 datapoints

from –◊0 , where ◊0 = (A0, Ê0), and thus the distribution of the data, denoted by — in the

previous sections, is known and equal to –◊0 . This allows us to evaluate the performance

of the loss by looking at the inferred parameters ◊ú for each loss and comparing them

to ◊0.

To illustrate the effect of the normalization introduced by Sinkhorn Divergences, and

the interpolation property, we consider the following losses:

• Sinkhorn Divergences: SDc,Á for c = || · ||p2 and p œ {1.5, 2}

• Entropy-Regularized OT: Wc,Á (primal cost without entropy) for c = || · ||p2 and

p œ {1.5, 2}

• Energy Distance: EDp for p œ {1.5, 2}

The choice c = || · ||p2 with p = 2 is called the quadratic cost and is used “by default” for

OT, as the associated distance (the 2-Wasserstein distance) is well studied in literature

and known to have good properties (see (Santambrogio, 2015) for details). However, by

Proposition 16 it doesn’t induce a positive definite kernel, thus the associated Energy
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SDc,ε − ε = 1, c = || · ||22Wc,ε − ε = 1, c = || · ||22

Figure 2.3 – Comparison of SDc,Á to Wc,Á on a synthetic benchmark : fitting data
generated uniformly inside an ellipse. The blue dots represent the points generated
from the reference ellipse with covariance A0 and center Ê0, while the green ellipse is
drawn with the inferred parameters Aú, Êú for each loss (see Table 2.1).

Distance is not positive definite. We thus resort to another cost function c = || · ||p2 with

p = 1.5.

The results of the fitting procedure are given in Figures 2.3 and 2.4. When comparing

SDc,Á to Wc,Á the benefits of the normalization are clear (Figure 2.3). While Wc,Á yields

good performance for small values of Á, when for larger values the fitted ellipse collapses

to the mean of the values along one axis, before collapsing to a centroid for even larger

values. On the other hand, the results obtained with SDc,Á are robust to the value of Á.

Since Sinkhorn’s algorithm converges much faster for larger values of Á (the convergence

rates can be found in Chapter 1, Sec. 4.2), using SDc,Á with larger Á allows a consequent

computational speedup in the inference procedure, which more than compensates for

the added time to compute the normalizing factors.

For p = 2, we observe that the Energy Distance yields a degenerate ellipse (Fig-

ure 2.4, top-left). As this is the limit case of SDc,Á for Á æ +Œ, we also observe this

behavior for the Sinkhorn Divergence with large values of Á (Figure 2.4, bottom-left).

However for smaller values, the fitting is correct (Figure 2.3, right). Now for p = 1.5,

we can fairly compare Sinkhorn Divergences (Figure 2.4, bottom-right) and the Energy

Distance (Figure 2.4, top-right), since the latter is positive definite. From a visual point

of view, both losses yield satisfactory results, as ellipses don’t collapse to a single point

when Á grows. To get a better insight, we consider the values of the inferred parame-

ters. We observe that the best results are for Á = 1. To ensure the robustness of this

observation, we run the inference procedure multiple times for each loss, and use the

same dataset Di for all losses in each trial run i.
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EDp − p = 1.5EDp − p = 2

SDc,ε − ε = 103, c = || · ||22 SDc,ε − ε = 103, c = || · ||1.52

Figure 2.4 – Comparison of SDc,Á and EDp on a synthetic benchmark (same setting as
Figure 2.3. In the case where the ellipse is not visible, it has collapses to its centroid
Êú, with Aú very close to 0 (see Table 2.1 for numerical values).

4.2 Data Clustering with Ellipses

As already mentioned a strength of the Wasserstein distance is its ability to fit a sin-

gular probability distribution to an empirical measure (data). That singular probability

may be supported on a subset of the space on a lower dimensional manifold, or simply

have a degenerate density that becomes null for some subsets of the original space. To

illustrate this principle, we consider in what follows a simple 3D example that can easily

be visualized.

We use the Iris dataset (3 classes, 50 observations each in 4 dimensions) projected

in 3D using PCA. This defines the dataset (y1, . . . , yn) in R
3, with n = 150. If we

were to find a probability distribution –◊ bound to be itself an empirical measure of K

atoms (in that case parameter ◊ would contain exactly the locations of those K points

in addition to their weight), then minimizing the 2-Wasserstein distance of –◊ to —

would be strictly equivalent to the K-means problem (Canas and Rosasco, 2012). In

that sense, quantization can be regarded as the most elementary example of Wasserstein

loss minimization of families of singular probability distributions.

The model we consider is instead composed of K = 3 ellipses with uniform density.

As in the previous benchmark section, each ellipse is parametrized by a 3 ◊ 3 matrix Ak

(the square root of its covariance matrix) and a center Êk œ R
3, so that ◊ = (Ak, Êk)k.
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loss EDp EDp SDc,Á

p, Á 2,- 1.5,- 2,103

Aú
≠0.09 ≠0.04 0.05
0.06 0.03 0.05

≠0.09 ≠0.17 ≠0.11

3.12 1.74 2.08
2.25 2.83 2.09
2.30 1.74 3.07

1.56 2.23 2.69
1.44 2.31 2.72
1.40 2.22 2.86

Êú (0.68, 1.78 , 2.72 ) ( 0.63 , 1.75 , 2.75) (0.74 , 1.81 , 2.76)

loss SDc,Á SDc,Á ground truth
p, Á 1.5,103 2, 1

Aú
2.95 2.08 2.05
2.05 3.17 1.95
2.12 2.15 3.00

2.90 1.96 2.13
2.02 3.03 2.10
2.06 1.95 3.03

3 2 2
2 3 2
2 2 3

Êú (0.73 ,1.83, 2.76) (0.94 , 1.96 , 2.90) (1,2,3)

Table 2.1 – Comparison of the inferred parameters Aú, Êú for the losses displayes in
Figures 2.3 and 2.4, the gound truth A0, Ê0 (parameters used to generate the dataset)
is in bold, on the right.

Gaussian MMD - σ = 10 Gaussian MMD - σ = 1 Gaussian MMD - σ = 10−2

Figure 2.5 – Ellipses after convergence of the stochastic gradient descent, with Gaussian
MMD.

Therefore, our results can not be directly compared to that of clustering algorithms, in

the sense that we do automatically recover, within such ellipses, entire areas of interest

(and not voronoi cells). We assume in this illustration that each ellipse has equal mass

1/K. To recover these ellipses through a push forward, we use a uniform ground density

’ over 3 centered unit balls, translated and dilated for each ellipse using the push-forward

defined by g◊(z) = Akz + Êk if z is in the k-th ball. Note that the model can be adapted

otherwise (density decaying when moving away from the center, mass proportional to

the size of the ellipse) with simple modifications in either the ground density ’ or the

pushforward g◊, but we found this uniform model to be a good fit for this dataset.

4.2.0.1 Numerical Illustration. The ellipse matrices (Ak)k are all initialized with

the identity matrix (which corresponds to the unit ball) and centers (Êk)k are initialized

with the K-means algorithm. We fixed a maximal budget of Sinkhorn iterations L = 5

to be competitive with MMD time-wise, with a minibatch size m = 300 for both algo-
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EDp − p = 1 EDp − p = 1.5 EDp − p = 1.9

Figure 2.6 – Ellipses after convergence of the stochastic gradient descent, with Energy
Distance for varying p. Top row displays cases where the algorithm is stuck in a local
minimum which does not correspond to the classes, while the bottom row displays
successful cases. When p gets close to 2, the performance decays.

rithms. We display the results of the clustering algorithm for each losses, with varying

parameters: MMD with a Gaussian kernel with varying bandwidth ‡ in Figure 2.5, the

Energy Distance with varying distance || · ||p2 in Figure 2.6, and Sinkhorn Divergences

with varying Á and cost function c = || · ||p2 in Figure 2.7.

• The Gaussian kernel yields poor results for all tested ‡. When the bandwidth is

large, the ellipses only fit a small number of points in the center of the classes,

while with a small bandwidth the ellipses get too big, trying to fit all the points.

In between, the algorithm gets stuck in local minima, and can not grasp the right

class structure even after several re-runs.

• The Energy Distance, on the other hand, performs much better for the right choice

of p (p œ 1, 1.5 in the plots). However, when getting close to p = 2 (p œ 1.9, 2 in

the plots), the ellipses just capture the centers of the clusters. This suggests that

c = || · ||p2 for p < 2 might be a good ground metric for this problem.

• Based on the performance of different distances from the Energy Distance, we

assess the performance of Sinkhorn Divergences for various values of p. When using

a medium regularization (Á = 1), the performance is robust to the cost function

used. However as seen in the benchmark, using a large Á entails a behavior close to

MMD and thus require using cost functions with p < 2. On the other hand, in the

interest of keeping a low computational budget (which depends on the number of
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SDc,ε − ε = 1, c = || · ||22 SDc,ε − ε = 1, c = || · ||1.52 SDc,ε − ε = 100, c = || · ||1.52

Figure 2.7 – Ellipses after convergence of the stochastic gradient descent, with Sinkhorn
Divergence for varying Á and p. Top row displays cases where the algorithm is stuck in a
local minimum which does not correspond to the classes, while the bottom row displays
successful cases. We give a budget of L = 5 Sinkhorn Iterations to compute SDc,Á to
have a fast algorithm, which prevents from using small Á.

Sinkhorn iterations L), smaller regularizations should not be used as they require

a lot more Sinkhorn iterations to converge.

Both the Energy Distance and Sinkhorn Divergences can get stuck in local minima.

In this experiment, we observe that p = 1.5 yields the most reliable results, meaning

that the geometry of the dataset is correctly recovered 90% of the time with EDp and

SDc,Á when Á is large enough. We found that Sinkhorn Divergences with Á = 100

were less prone to fall in local minima than Á = 1 in our setting, and thus gave better

performance in average which might be due to the improved sample complexity (see

Chapter 3, Theorem 18 where we show how Á affects the sample complexity of Sinkhorn

Divergences).

Since the Iris data is labeled, we can asses the fit of the model by checking the class

repartition in each ellipse, as summarized in table 2.2. Each entry (i, j) corresponds to

the number of points from class j that are inside ellipse i (recall there are 50 points per

class). As the Energy Distance is the limit case of Sinkhorn Divergence for Á æ +Œ,

it can be used to chose the right exponent for the cost function c = || · ||p2, which here is

p = 1.5. Then the parameter Á gives one more degree of freedom, which can be chosen

via cross-validation. In this setting, the advantage of Sinkhorn Divergences over the

Energy Distance is not clear: the performance for the blue class is best for Á = 1, with a

high coverage and small variance, but it is unstable for the green and red classes, often
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loss EDp SDc,Á SDc,Á SDc,Á

p, Á 1.5,- 1.5,102 1.5,10 1.5,1

mean
29.4 0 0

0 30.8 4.7
0 4.3 33.6

29.9 0 0
0 30.1 3.8
0 3.1 34.0

30.7 0 0
0 31.6 4.4
0 3.5 34.9

36.2 0 0
0 29.5 27.9
0 18.5 31.5

sd
9.1 0 0
0 8.69 7.33
0 5.82 7.84

9.79 0 0
0 8.52 6.44
0 4.75 7.63

8.55 0 0
0 7.07 7.94
0 5.21 8.35

3.09 0 0
0 5.53 15.8
0 11 5.65

Table 2.2 – Evaluation of the fit after convergence of the algorithm : entry (i, j) corre-
sponds to the number of points from class j that are inside ellipse i (1= blue class, 2 =
red class, 3 = green class). We take the average for each loss over 100 runs and give the
standard deviation.

mixing up both classes. When Á = 100, the fit for the green and red classes improves

but it degrades for the blue class – the performance is not significantly different from

the Energy Distance.

4.3 Tuning a Generative Neural Network

Image generating models such as GAN (Goodfellow et al., 2014) or VAE (Kingma

and Welling, 2013) have become popular in recent years. The goal is to train a neural

network g◊ which generates images g◊(z) that resemble a certain data set (yj)j , given

a random input z in a latent space Z. Both methods require a second network for

the training of the generative network (an adversarial network in the case of GANs, an

encoding network in the case of VAEs). Depending on the complexity of the data, our

method can rely on the generative network alone by directly comparing its output with

the data in Wasserstein distance.

4.3.1 With a Fixed Cost c.

This section fits a generative model where the pushforward g◊ is a multilayer percep-

tron. We begin with experiments on the MNIST dataset, which is a standard benchmark

for this type of networks. Since the dataset is relatively simple, learning the cost is su-

perfluous here and we use the ground cost c(x, y) = ||x≠y||2, which is sufficient for these

low resolution images and also the baseline in (Kingma and Welling, 2013). We use as

g◊ a multilayer perceptron with 2 fully connected layers and the latent space is the unit

square Z = [0, 1]2 over which we put a uniform distribution. Learning is performed

in mini-batches over the MNIST dataset, with the Adam optimizer (Kingma and Ba,

2014).

Figure 2.8 displays the manifold of images g◊(z) generated by the optimized network

after the learning procedure for different values of the hyperparameters (Á, m, L). This

manifold is obtained by computing g◊(zi
1, zj

2) for equi-spaced (zi
1, zj

2) œ [0, 1]2, and then
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(a) Á = 1, m = 200,
L = 10

(b) Á = 10−1, m = 200,
L = 100

(c) Á = 10−1, m = 10,
L = 300

Figure 2.8 – Influence of the hyperparameters on the manifold of generated digits.

plotting the resulting digit at location (i, j) in the larger picture. This shows that the

regularization parameter Á can be chosen quite large, which in turn leads to a fast

convergence of Sinkhorn iterations. Indeed, using Á = 1 with only L = 10 Sinkhorn

iterations (image (a)) yields a result similar to using Á = 0.1 with L = 100 iterations

(image (b)). Regarding the size m of the mini-batches, a too small m value (e.g. m = 10)

leads to poor results, and we observe that m = 200 is sufficient to learn accurately the

manifold.

(a) MMD (b) Á = 100 (c) Á = 1

Figure 2.9 – Samples from the generator trained on CIFAR 10 for MMD and Sinkhorn
Divergence

4.3.2 Learning the Cost.

With higher-resolution datasets, such as classical benchmarks CIFAR10 or CelebA,

using the ¸2 metric between images yields very poor results. It tends to generate images

which are basically a blur of similar images. The alternative, already outlined in Algo-

rithm 1 relies on learning another network which encodes meaningful feature vectors for

the images, between which the Euclidean distance can be computed.

We compare our loss with different values for the regularization parameter Á to the

results obtained with an MMD loss with a Gaussian kernel, as this is the one used
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MMD (Gaussian) Á = 100 Á = 10 Á = 1

4.56 ± 0.07 4.81 ± 0.05 4.79 ± 0.13 4.43 ± 0.07

Table 2.3 – Inception Scores on CIFAR10. We use the experimental setting of (Li et al.,
2017), and use their optimized parameters for MMD, which is computed with a Gaussian
kernel.

in (Li et al., 2017). We based the experiments on their code, and thus used their

optimized parameters for MMD to carry out a fair comparison. Both the generator and

discriminator networks follow the DCGAN architecture (Radford et al., 2015). We use

small batches of 100 images.

Generative models are very hard to evaluate and there is no consensus on which

metric should be used to assess their quality. We use the inception score introduced

in (Salimans et al., 2016) as it is widespread, and also the reference in (Dziugaite et al.,

2015) against which we compare our approach. The inception score is based on two

key aspects of data generation: realism and diversity. Using a pre-trained classifier, the

algorithm computed the conditional class probability of the samples: this should have

high entropy, meaning the classifier recognizes the object in the generated image. On

the other hand, the distribution of the classes should have low entropy, so that all classes

are well represented. However, the inception score does not account for the failure cases

of mode collapse (generating only one image per class) or overfitting (generating only

copies of images from the dataset). The Frechet Inception Distance has since been

introduced as an alternative (Heusel et al., 2017), and seems to be preferred by the

community. It roughly consists in embedding the true data and the generated data to a

feature space (via a pre-trained network) and comparing the resulting distributions in

terms of mean and variance. It is robust to mode collapse, but not to overfitting. See

the recent survey paper by (Lucic et al., 2018) for a good insight on metrics to evaluate

GANs.

Table 2.3 summarizes the inception scores on CIFAR10 for MMD and Sinkhorn

Divergence with varying Á. The scores are evaluated on 20000 random images. Figure 2.9

displays a few of the associated samples (generated with the same seed). Although there

is no striking difference in visual quality, the model with a Sinkhorn Divergence and a

large regularization is the one with the best score. The decaying scores of models which

have a loss closer to the true OT loss can be explained by two main factors : (i) the

number of iterations required for the convergence of Sinkhorn with such Á might exceed

the total iteration budget that we give the algorithm to compute the loss (to ensure

reasonable training time of the model), (ii) it reflects the fact that sample complexity

worsens when we get closer to OT metrics, and increasing the batch size might be

beneficial in that case. We give theoretical grounds for the latter in Chapter 3.
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Chapter 3

Sample Complexity of Sinkhorn

Divergences

Optimal Transport (OT) and Maximum Mean Discrepancies (MMD) are now routinely used

in machine learning to compare probability measures. We focus in this chapter on Sinkhorn

Divergences (SDs), a regularized variant of OT distances which can interpolate, depending on

the regularization strength Á, between OT (Á = 0) and MMD (Á = Œ). Although the tradeoff

induced by the regularization is now well understood computationally (OT, SDs and MMD require

respectively O(n3 log n), O(n2) and O(n2) operations given a sample size n), much less is known

in terms of their sample complexity, namely the gap between these quantities, when evaluated

using finite samples vs. their respective densities. Indeed, while the sample complexity of OT

and MMD stand at two extremes, O(1/n1/d) for OT in dimension d and O(1/
Ô

n) for MMD,

that for SDs has only been studied empirically. In this chapter, we

(i) derive a bound on the approximation error made with SDs when approximating OT as a

function of the regularizer Á,

(ii) prove that the optimizers of regularized OT are bounded in a Sobolev (RKHS) ball indepen-

dent of the two measures,

(iii) provide the first sample complexity bound for SDs, obtained by reformulating SDs as a

maximization problem in a RKHS. We thus obtain a scaling in 1/
Ô

n (as in MMD), with

a constant that depends however on Á, making the bridge between OT and MMD complete.

This chapter is based on (Genevay et al., 2019).

91
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1 Introduction

OT has been long neglected in data sciences for two main reasons, which could

be loosely described as computational and statistical. Following the seminal work by

(Cuturi, 2013), we have showed in Chapters 1 and 2 how entropic regularization of OT

alleviates this computational burden. In Chapter 2, we further mentioned that entropy-

regularized OT seems to break the curse-of-dimensionality from which OT suffers based

on empirical evidence, and the goal of this chapter is to make it more formal through a

sample complexity result.

Previous Works. The central theoretical contribution of Chapter 2 (see Theorem 14)

states that Sinkhorn Divergences, based on regularized OT, interpolate between OT and

MMD. These two metrics, which emerged as popular candidates to compare probability

measures, differ on a fundamental aspect: their sample complexity. The definition of

sample complexity of a loss function that we choose here is the convergence rate of the

loss evaluated on empirical measures to the loss evaluated on the “true" measures, as

a function of the number of samples. This notion is crucial in machine learning, as

bad sample complexity implies overfitting and high gradient variance when using these

divergences for parameter estimation. In that context, it is well known that the sample

complexity of MMD is independent of the dimension, scaling as 1Ô
n

(Gretton et al.,

2006) where n is the number of samples. In contrast, it is well known that standard

OT suffers from the curse of dimensionality (Dudley, 1969): Its sample complexity is

exponential in the dimension of the ambient space. Although it was recently proved that

this result can be refined to consider the implicit dimension of data (Weed and Bach,

2017), the sample complexity of OT appears now to be the major bottleneck for the use

of OT in high-dimensional machine learning problems.

A remedy to this problem may lie, again, in regularization. The discrepancies defined

through regularized OT, known as Sinkhorn Divergences, seem to be less prone to over-

fitting. Indeed, a certain amount of regularization tends to improve performance in

simple learning tasks (Cuturi, 2013). The interpolation theorem from Chapter 2 also

suggests that for large regularizations, Sinkhorn Divergences behave like MMD.

The asymptotic behavior of empirical estimates of the Wasserstein distance has been

widely studied, from convergence rates to distributional limits. In particular we refer

to (Del Barrio and Loubes, 2017), which recently proved a central limit theorem for

empirical OT in general dimension, for a thorough historical review of the subject.

However, aside from a recent central limit theorem in the case of measures supported

on finite discrete spaces (Bigot et al., 2017), the convergence of empirical Sinkhorn

Divergences, and more generally their sample complexity, remains an open question.
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Contributions. This chapter provides three main contributions, which all exhibit

theoretical properties of Sinkhorn Divergences. Our first result is a bound on the speed

of convergence of regularized OT to standard OT as a function of the regularization

parameter, in the case of continuous measures. The second theorem proves that the

optimizers of the regularized optimal transport problem lie in a Sobolev ball which is

independent of the measures. This allows us to rewrite the Sinkhorn Divergence as the

maximization of an expectation over a RKHS ball and thus justify the use of kernel-

SGD for regularized OT as advocated in Chapter 4, Sec. 5.1. As a consequence of this

reformulation, we provide as our third contribution a sample complexity result. We focus

on how the sample size and the regularization parameter affect the convergence of the

empirical Sinkhorn Divergence (i.e., computed from samples of two continuous measures)

to the continuous Sinkhorn Divergence. We show that the Sinkhorn Divergence benefits

from the same sample complexity as MMD, scaling in 1Ô
n

but with a constant that

depends on the inverse of the regularization parameter. Thus sample complexity worsens

when getting closer to standard OT, and there is therefore a tradeoff between a good

approximation of OT (small regularization parameter) and fast convergence in terms

of sample size (larger regularization parameter). We conclude this chapter with a few

numerical experiments to asses the dependence of the sample complexity on Á and d in

simple cases.

2 Reminders on Sinkhorn Divergences

We consider entropy-regularized optimal transport between two probability measures

– œ M1
+(X ) and — on M1

+(Y), as introduced in Chapter 1, Sec. 4, where X and Y
are two bounded subsets of R

d. The optimal transport problem is regularized with

the relative entropy of the transport plan with respect to the product measure – ¢ —

following (Genevay et al., 2016):

WÁ(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊Y
c(x, y)dfi(x, y) + ÁH(fi | – ¢ —), (PÁ)

where H(fi | – ¢ —)
def.
=

⁄

X ◊Y
log

3

dfi(x, y)

d–(x)d—(y)

4

dfi(x, y), (2.1)

and the feasible set Π(–, —) is composed of probability distributions over the product

space X ◊ Y with fixed marginals –, —. The cost function c, which represents the cost

to move a unit of mass from x to y is assumed to be CŒ through this chapter (more

specifically, we need it to be C d
2

+1). Choosing the relative entropy as a regularizer allows

to express the dual formulation of regularized OT as the maximization of an expectation
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problem (Proposition 4 in Chapter 1):

WÁ(–, —) = max
uœC(X ),vœC(Y)

⁄

X
u(x)d–(x) +

⁄

Y
v(y)d—(y)

≠ Á

⁄

X ◊Y
e

u(x)+v(y)≠c(x,y)
Á d–(x)d—(y) + Á

= max
uœC(X),vœC(Y )

E–¢—

Ë

fXY
Á (u, v)

È

+ Á,

where fxy
Á (u, v) = u(x) + v(y) ≠ Áe

u(x)+v(y)≠c(x,y)
Á .

This reformulation as the maximum of an expectation is crucial to obtain sample

complexity results. The existence of optimal dual potentials (u, v) is proved in Chapter 1,

Sec. 4.1. They are unique –≠ and —≠a.e. up to an additive constant.

To correct for the fact that WÁ(–, –) ”= 0, we introduced Sinkhorn Divergences in

Chapter 2. They are a natural normalization of that quantity defined as

SDÁ(–, —) = WÁ(–, —) ≠ 1

2
(WÁ(–, –) + WÁ(—, —)). (2.2)

This normalization ensures that SDÁ(–, –) = 0, but also has a noticeable asymptotic

behavior as proved in Theorem 14 of Chapter 2. Indeed, when Á æ 0 one recovers

the original (unregularized) OT problem, while choosing Á æ +Œ yields the squared

maximum mean discrepancy (see Chapter 1, Sec.2.2 for a detailed introduction on the

matter) associated to the kernel k = ≠c/2, where MMD is defined by:

MMD2
k(–, —) = E–¢–[k(X, X Õ)] + E—¢— [k(Y, Y Õ)] ≠ 2E–¢—[k(X, Y )].

Besides, under some assumptions on the cost function, Sinkhorn Divergences are positive

definite and metrize weak convergence of measures (Feydy et al., 2019). In the context

of this chapter, we study in detail the sample complexity of WÁ(–, —), which immediately

extends to that of SDÁ(–, —) by linearity.

Remark 14. Sinkhorn Divergences can be defined with WÁ being either the primal cost

of (PÁ) or the primal cost without the entropic term (see Definition 9 in Chapter 2 for

more details). While the interpolation theorem in Chapter 2 holds for both definitions,

the sample complexity theorem that we prove here is only valid when WÁ is the primal

cost of (PÁ).

3 Approximating Optimal Transport with Sinkhorn Di-

vergences

In the present section, we are interested in bounding the error made when approxi-

mating W (–, —) with WÁ(–, —).
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Theorem 16. Let – and — be probability measures on X and Y subsets of R
d such that

|X | and |Y| 6 D and assume that c is L-Lipschitz w.r.t. x and y. It holds

0 6 WÁ(–, —) ≠ W (–, —) 6 2Ád log
1

e2·L·DÔ
d·Á

2

(3.1)

≥Áæ0 2Ád log(1/Á). (3.2)

Proof. For a probability measure fi on X ◊Y, we denote by C(fi) =
s

c dfi the associated

transport cost and by H(fi) its relative entropy with respect to the product measure

– ¢ — as defined in (2.1). Choosing fi0 a minimizer of minfiœΠ(–,—) C(fi), we will build

our upper bounds using a family of transport plans with finite entropy that approximate

fi0. The simplest approach consists in considering block approximation. In contrast to

the work of Carlier et al. (2017), who also considered this technique, our focus here is

on quantitative bounds.

Definition 10 (Block approximation). For a resolution ∆ > 0, we consider the block

partition of R
d in hypercubes of side ∆ defined as

{Q∆
k = [k1 · ∆, (k1 + 1) · ∆[ ◊ . . . [kd · ∆, (kd + 1) · ∆[ ; k = (k1, . . . , kd) œ Z

d}.

To simplify notations, we introduce Q∆
ij

def.
= Q∆

i ◊ Q∆
j , α∆

i
def.
= –(Q∆

i ), β∆
j

def.
= —(Q∆

j ).

The block approximation of fi0 of resolution ∆ is the measure fi∆ œ Π(–, —) characterized

by

fi∆|Q∆
ij

=
fi0(Q∆

ij)

α∆
i · β∆

j

(–|Q∆
i

¢ —|Q∆
j

)

for all (i, j) œ (Zd)2, with the convention 0/0 = 0.

fi∆ is nonnegative by construction. Observe also that for any Borel set B µ R
d, one

has

fi∆(B ◊ R
d) =

ÿ

(i,j)œ(Zd)2

fi0(Q∆
ij)

α∆
i · β∆

j

· –(B fl Q∆
i ) · β∆

j =
ÿ

iœZd

–(B fl Q∆
i ) = –(B),

which proves, using the symmetric result in —, that fi∆ belongs to Π(–, —). As a con-

sequence, for any Á > 0 one has WÁ(–, —) 6 C(fi∆) + ÁH(fi∆). Recalling also that

the relative entropy H is nonnegative over the set of probability measures, we have the

bound

0 6 WÁ(–, —) ≠ W (–, —) 6 (C(fi∆) ≠ C(fi0)) + ÁH(fi∆).

We can now bound the terms in the right-hand side, and choose a value for ∆ that

minimizes these bounds.

The bound on C(fi∆) ≠ C(fi0) relies on the Lipschitz regularity of the cost function.
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Using the fact that fi∆(Q∆
ij) = fi0(Q∆

ij) for all i, j, it holds

C(fi∆) ≠ C(fi0) =
ÿ

(i,j)œ(Zd)2

fi0(Q∆
ij)

1

sup
x,yœQ∆

ij

c(x, y) ≠ inf
x,yœQ∆

ij

c(x, y)
2

6 2L∆
Ô

d,

where L is the Lipschitz constant of the cost (separately in x and y) and ∆
Ô

d is the

diameter of each set Q∆
i .

As for the bound on H(fi∆), using the fact that fi0(Q∆
ij) 6 1 we get

H(fi∆) =
ÿ

(i,j)œ(Zd)2

log

A

fi0(Q∆
ij)

α∆
i · β∆

j

B

fi0(Q∆
ij)

6
ÿ

(i,j)œ(Zd)2

1

log(1/α∆
i ) + log(1/β∆

j )
2

fi0(Q∆
ij)

= ≠H∆(–) ≠ H∆(—),

where we have defined H∆(–) =
q

iœZd α∆
i log(α∆

i ) and similarly for —. Note that in

case – is a discrete measure with finite support, H∆(–) is equal to (minus) the discrete

entropy of – as long as ∆ is smaller than the minimum separation between atoms of

–. However, if – is not discrete then H∆(–) blows up to ≠Œ as ∆ goes to 0 and

we need to control how fast it does so. Considering –∆ the block approximation of

– with constant density α∆
i /∆d on each block Q∆

i and (minus) its differential entropy

HLd(–∆) =
s

Rd –∆(x) log –∆(x)dx, it holds H∆(–) = HLd(–∆)≠d · log(1/∆). Moreover,

using the convexity of HLd , this can be compared with the differential entropy of the

uniform probability on a hypercube containing X of size 2D. Thus it holds HLd(–∆) >

≠d log(2D) and thus H∆(–) > ≠d · log(2D/∆).

Summing up, we have for all ∆ > 0

WÁ(–, —) ≠ W (–, —) 6 2L∆
Ô

d + 2Ád · log(2D/∆).

The above bound is convex in ∆, minimized with ∆ = 2
Ô

d · Á/L. This yields

WÁ(–, —) ≠ W (–, —) 6 4Ád + 2Ád log

3

L · DÔ
d · Á

4

.

4 Properties of Sinkhorn Potentials

We prove in this section that Sinkhorn potentials are bounded in the Sobolev space

Hs(Rd) regardless of the marginals – and —. For s > d
2 , Hs(Rd) is a reproducing kernel

Hilbert space (RKHS): This property will be crucial to establish sample complexity

results later on, using standard tools from RKHS theory.
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Definition 11. The Sobolev space Hs(X ), for s œ N
ú, is the space of functions Ï : X ™

R
d æ R such that for every multi-index k with |k| 6 s the mixed partial derivative Ï(k)

exists and belongs to L2(X ). It is endowed with the following inner-product

ÈÏ, ÂÍHs(X ) =
ÿ

|k|6s

⁄

X
Ï(k)(x)Â(k)(x)dx. (4.1)

Theorem 17. When X and Y are two bounded sets of R
d and the cost c is CŒ, then

the Sinkhorn potentials (u, v) are uniformly bounded in the Sobolev space Hs(Rd) and

their norms satisfy

||u||Hs = O

3

1 +
1

Ás≠1

4

and ||v||Hs = O

3

1 +
1

Ás≠1

4

,

with constants that only depend on |X | (or |Y| for v),d, and
.

.

.c(k)
.

.

.

Œ
for k = 0, . . . , s.

In particular, we get the following asymptotic behavior in Á: ||u||Hs = O(1) as Á æ +Œ
and ||u||Hs = O( 1

Ás≠1 ) as Á æ 0.

To prove this theorem, we first need to state some regularity properties of the

Sinkhorn potentials.

Proposition 17. If X and Y are two bounded sets of R
d and the cost c is CŒ, then

• u(x) œ [miny v(y) ≠ c(x, y), maxy v(y) ≠ c(x, y)] for all x œ X

• u is L-Lipschitz, where L is the Lipschitz constant of c

• u œ CŒ(X ) and
.

.

.u(k)
.

.

.

Œ
= O(1 + 1

Ák≠1 )

and the same results also stand for v (inverting u and v in the first item, and replacing

X by Y).

Proof. The proofs of all three claims exploit the optimality condition of the dual prob-

lem:

exp

3≠u(x)

Á

4

=

⁄

exp

3

v(y) ≠ c(x, y)

Á

4

—(y)dy. (4.2)

Since — is a probability measure, e
≠u(x)

Á is a convex combination of Ï : x ‘æ e
v(x)≠c(x,y)

Á

and thus e
≠u(x)

Á œ [miny Ï(y), maxy Ï(y)]. We get the desired bounds by taking the

logarithm. The two other points use the following lemmas:

Lemma 3. The derivatives of the potentials are given by the following recurrence

u(n)(x) =

⁄

gn(x, y)“Á(x, y)—(y)dy, (4.3)

where

gn+1(x, y) = gÕ
n(x, y) +

uÕ(x) ≠ cÕ(x, y)

Á
gn(x, y),
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g1(x, y) = cÕ(x, y) and “Á(x, y) = exp(u(x)+v(y)≠c(x,y)
Á ).

Lemma 4. The sequence of auxiliary functions (gk)k=0... verifies
.

.

.u(k)
.

.

.

Œ
6 ÎgkÎŒ.

Besides, for all j = 0, . . . , k, for all k = 0, . . . , n≠2,
.

.

.g
(j)
n≠k

.

.

.

Œ
is bounded by a polynomial

in 1
Á of order n ≠ k + j ≠ 1.

From the primal constraint, we have that
s

Y “Á(x, y)—(y)dy = 1. Thus thanks to

Lemma 3 we immediately get that
.

.

.u(n)
.

.

.

Œ
6 ÎgnÎŒ. For n = 1, since g1 = cÕ we get

that ÎuÕÎŒ = ÎcÕÎŒ = L and this proves the second point of Proposition 17. The third

point is a direct application of Lemma 4, and we prove both lemmas below.

Proof. (Lemma 3) For better clarity, we carry out the computations in dimension 1

but all the arguments are valid in higher dimension and we will clarify delicate points

throughout the proof. Differentiating under the integral is justified with the usual

domination theorem, bounding the integrand thanks to the Lipschitz assumption on c,

and this bound is integrable thanks to the marginal constraint. Differentiating both

sides of the optimality condition (4.2) and rearranging yields

uÕ(x) =

⁄

cÕ(x, y)“Á(x, y)—(y)dy. (4.4)

Notice that “Õ
Á(x, y) = uÕ(x)≠cÕ(x,y)

Á “Á(x, y). Thus by immediate recurrence (differentiat-

ing both sides of the equality again) we get that

u(n)(x) =

⁄

gn(x, y)“Á(x, y)—(y)dy, (4.5)

where gn+1(x, y) = gÕ
n(x, y) + uÕ(x)≠cÕ(x,y)

Á gn(x, y) and g1(x, y) = cÕ(x, y)

To extend this first lemma to the d-dimensional case, we need to consider the se-

quence of indexes ‡ = (‡1, ‡2, . . . ) œ {1, . . . , d}N which corresponds to the axis along

which we successively differentiate. Using the same reasoning as above, it is straightfor-

ward to check that
ˆku

ˆx‡1 . . . ˆx‡k

=

⁄

g‡,k“Á—(y)dy,

where g‡,1 = ˆc
ˆx‡1

and g‡,k+1 =
ˆg‡,k+1

ˆx‡k+1
+ 1

Á

3

ˆu
ˆx‡k+1

≠ ˆc
ˆx‡k+1

4

g‡,k+1.

Proof. (Lemma 4) The proof is made by recurrence on the following property :

Pn : For all j = 0, . . . , k, for all k = 0, . . . , n ≠ 2,
.

.

.g
(j)
n≠k

.

.

.

Œ
is bounded by a polynomial

in 1
Á of order n ≠ k + j ≠ 1.
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Let us initialize the recurrence with n = 2

g2 = gÕ
1 +

uÕ ≠ cÕ

Á
g1 (4.6)

Îg2ÎŒ 6
.

.gÕ
1

.

.

Œ +
ÎuÕÎŒ + ÎcÕÎŒ

Á
Îg1ÎŒ . (4.7)

Recall that ÎuÕÎŒ = Îg1ÎŒ = ÎcÕÎŒ. Let C = maxk

.

.

.c(k)
.

.

.

Œ
, we get that Îg2ÎŒ 6

C + C+C
Á C which is of the required form.

Now assume that Pn is true for some n > 2. This means we have bounds on g
(i)
n≠k, for

k = 0, . . . , n ≠ 2 and i = 0, . . . , k. To prove the property at rank n + 1 we want bounds

on g
(i)
n+1≠k, for k = 0, . . . , n ≠ 1 and i = 0, . . . , k. The only new quantity that we need to

bound are g
(k)
n+1≠k, k = 0, . . . , n ≠ 1. Let us start by bounding g

(n≠1)
2 which corresponds

to k = n ≠ 1 and we will do a backward recurrence on k. By applying Leibniz formula

for the successive derivatives of a product of functions, we get

g2 = gÕ
1 +

uÕ ≠ cÕ

Á
g1, (4.8)

g
(n≠1)
2 = g

(n)
1 +

n≠1
ÿ

p=0

A

n ≠ 1

p

B

u(p+1) ≠ c(p+1)

Á
g

(n≠1≠p)
1 , (4.9)

.

.

.g
(n≠1)
2

.

.

.

Œ
6

.

.

.g
(n)
1

.

.

.

Œ
+

n≠1
ÿ

p=0

A

n ≠ 1

p

B

.

.

.u(p+1)
.

.

.

Œ
+

.

.

.c(p+1)
.

.

.

Œ
Á

.

.

.g
(n≠1≠p)
1

.

.

.

Œ
(4.10)

6 C +
n≠1
ÿ

p=0

A

n ≠ 1

p

B

Îgp+1ÎŒ + C

Á
C. (4.11)

Thanks to Pn we have that ÎgpÎŒ 6
qp

i=0 ai,p
1
Ái , p = 1, . . . , n so the highest order term

in Á in the above inequality is 1
Án . Thus we get

.

.

.g
(n≠1)
2

.

.

.

Œ
6

qn+1
i=0 ai,2,n≠1

1
Ái which is of

the expected order

Now assume g
(j)
n+1≠j are bounded with the appropriate polynomials for j < k 6 n≠1.

Let us bound g
(k)
n+1≠k

.

.

.g
(k)
n+1≠k

.

.

.

Œ
6

.

.

.g
(k+1)
n≠k

.

.

.

Œ
+

k
ÿ

p=0

A

k

p

B

.

.

.u(p+1)
.

.

.

Œ
+

.

.

.c(p+1)
.

.

.

Œ
Á

.

.

.g
(k≠p)
n≠k

.

.

.

Œ
(4.12)

6

.

.

.g
(k+1)
n≠k

.

.

.

Œ
+

k
ÿ

p=0

A

k

p

B

Îgp+1ÎŒ + C

Á

.

.

.g
(k≠p)
n≠k .

.

.

.

Œ
(4.13)

The first term
.

.

.g
(k+1)
n≠k

.

.

.

Œ
is bounded with a polynomial of order 1

Án+1 by recurrence

assumption. Regarding the terms in the sum, they also have all been bounded and

Îgp+1ÎŒ

.

.

.g
(k≠p)
n≠k

.

.

.

Œ
6

A p
ÿ

i=0

ai,p+1
1

Ái

B An≠p
ÿ

i=0

ai,n≠k,k≠p
1

Ái

B

6

n
ÿ

i=0

ãi
1

Ái
,
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so
.

.

.g
(k)
n+1≠k

.

.

.

Œ
6

qn+1
i=0 ai,n+1≠k,k

1
Ái . To extend the result in R

d, the recurrence is made

on the the following property

.

.

.g
(j)
‡,n≠k

.

.

.

Œ
6

n≠k+|j|≠1
ÿ

i=0

ai,n≠k,j,‡
1

Ái
, (4.14)

’j | |j| = 0, . . . , k ’k = 0, . . . , n ≠ 2 ’‡ œ {1, . . . , d}N, where j is a multi-index

since we are dealing with multi-variate functions, and g‡,n≠k is defined at the end of

the previous proof. The computations can be carried out in the same way as above,

using the multivariate version of Leibniz formula in (4.9) since we are now dealing with

multi-indexes.

Combining the bounds of the derivatives of the potentials with the definition of the

norm in Hs, is enough to complete the proof of Theorem 17.

Proof. (Theorem 17) The norm of u in Hs(X ) is

||u||Hs =

Q

a

ÿ

|k|6s

⁄

X
(u(k))2

R

b

1
2

6 |X |
Q

a

ÿ

|k|6s

.

.

.u(k)
.

.

.

2

Œ

R

b

1
2

.

From Proposition 17 we have that ’k,
.

.

.u(k)
.

.

.

Œ
= O(1 + 1

Ák≠1 ) and thus we get that

||u||Hs = O(1 + 1
Ás≠1 ). We just proved the bound in Hs(X ) but we actually want to

have a bound on Hs(Rd). This is immediate thanks to the Sobolev extension theorem

(Calderón, 1961) which guarantees that ||u||Hs(Rd) 6 C||u||Hs(X ) under the assumption

that X is a bounded Lipschitz domain.

This result, aside from proving useful in the next section to obtain sample complexity

results on the Sinkhorn Divergence, also proves that kernel-SGD can be used to solve

continuous regularized OT. This idea, which we develop in Chapter 4, Sec. 5.1, consists

in assuming the potentials are in the ball of a certain RKHS, to write them as a linear

combination of kernel functions and then perform stochastic gradient descent on these

coefficients. Knowing the potentials are in a ball of a RKHS is enough to guarantee

convergence of kernel-SGD (see Theorem 23).

5 Approximating Sinkhorn Divergence from Samples

In practice, measures – and — are only known through a finite number of samples.

Thus, what can be actually computed is the Sinkhorn Divergence between the empirical

measures –̂n
def.
= 1

n

qn
i=1 ”Xi and —̂n

def.
= 1

n

qn
i=1 ”Yi , where (X1, . . . , Xn) and (Y1, . . . , Yn)

are i.i.d. random variables distributed according to – and — respectively. This yields
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the empirical Sinkhorn Divergence:

WÁ(–̂n, —̂n) = max
u,v

1

n

n
ÿ

i=1

u(Xi) +
1

n

n
ÿ

i=1

v(Yi) ≠ Á
1

n2

n
ÿ

i=1

n
ÿ

j=1

exp

3

u(Xi) + v(Yj) ≠ c(Xi, Yj)

Á

4

+ Á

where (Xi, Yi)
n
i=1 are i.i.d random variables distributed according to – ¢ —. On actual

samples, these quantities can be computed using Sinkhorn’s algorithm (Cuturi, 2013).

Our goal is to quantify the error that is made by approximating –, — by their em-

pirical counterparts –̂n, —̂n, that is bounding |WÁ(–, —) ≠ WÁ(–̂n, —̂n)|.

Theorem 18. Consider the Sinkhorn Divergence between two measures – and — on X
and Y two bounded subsets of R

d, with a CŒ, L-Lipschitz cost c. One has

E–¢—

-

-WÁ(–, —) ≠ WÁ(–̂n, —̂n)
-

- = O

A

e
Ÿ
ÁÔ
n

3

1 +
1

ÁÂd/2Ê

4

B

,

where Ÿ = 2L|X | + ÎcÎŒ and constants only depend on |X |,|Y|,d, and
.

.

.c(k)
.

.

.

Œ
for

k = 0 . . . Âd/2Ê. In particular, we get the following asymptotic behavior in Á:

E–¢—

-

-WÁ(–, —) ≠ WÁ(–̂n, —̂n)
-

- = O

A

e
Ÿ
Á

ÁÂd/2ÊÔn

B

as Á æ 0,

E–¢—

-

-WÁ(–, —) ≠ WÁ(–̂n, —̂n)
-

- = O

3

1Ô
n

4

as Á æ +Œ.

An interesting feature from this theorem is the fact when Á is large enough, the

convergence rate does not depend on Á anymore. This means that at some point, in-

creasing Á will not substantially improve convergence. However, for small values of Á the

dependence is critical.

We prove this result in the rest of this section. The main idea is to exploit standard

results from PAC-learning in RKHS. Our theorem is an application of the following

result from Bartlett and Mendelson (2002) ( combining Theorem 12,4) and Lemma 22

in their paper):

Proposition 18. (Bartlett-Mendelson ’02) Consider – a probability distribution, ¸ a

B-Lipschitz loss and G a given class of functions. Then

E–

C

sup
gœG

E–¸(g, X) ≠ 1

n

n
ÿ

i=1

¸(g, Xi)

D

6 2BE–R(G(Xn
1 )),

where R(G(Xn
1 )) is the Rademacher complexity of class G defined by R(G(Xn

1 )) =

supgœG E‡
1
n

qn
i=1 ‡ig(Xi) where (‡i)i are iid Rademacher random variables. Besides,

when G is a ball of radius ⁄ in a RKHS with kernel k the Rademacher complexity is
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bounded by

R(Gλ(Xn
1 )) 6

⁄

n

ˆ

ı

ı

Ù

n
ÿ

i=1

k(Xi, Xi).

Our problem falls in this framework thanks to the following lemma:

Lemma 5. Let Hs
λ

def.
= {u œ Hs(Rd) | ||u||Hs(Rd) 6 ⁄}, then there exists ⁄ such that:

-

-Wε(–, —) ≠ Wε(–̂n, —̂n)
-

- 6 sup
(u,v)œ(Hs

⁄
)2

-

-

-EαF X
ε,β(u, v) ≠ 1

n

n
ÿ

i=1

F Xi
ε,β(u, v)

-

-

-

+ sup
(u,v)œ(Hs

⁄
)2

-

-

-EβGY
ε,α̂n

(u, v) ≠ 1

n

n
ÿ

i=1

GYi
ε,α̂n

(u, v)
-

-

-

where F x
ε,β(u, v)

def.
= u(x) +

⁄

Y
v(y)d—(y) ≠ Á

⁄

Y
e

u(x)+v(y)≠c(x,y)
Á d—(y) =

⁄

Y
fxy

ε (u, v)d—(y),

and Gy
ε,α̂n

(u, v)
def.
=

1

n

n
ÿ

i=1

u(xi) + v(y) ≠ Á
1

n

n
ÿ

i=1

e
u(xi)+v(y)≠c(xi,y)

Á =
1

n

n
ÿ

i=1

fxiy
ε (u, v).

Proof. We start by breaking down the quantity by introducing the auxiliary term

Wε(–̂n, —):

|Wε(–, —)≠Wε(–̂n, —̂n)| 6|Wε(–, —) ≠ Wε(–̂n, —)| + |Wε(–̂n, —) ≠ Wε(–̂n, —̂n)| (5.1)

Let us denote (uú, vú) the maximizers of Wε(–, —) , (ū, v̄) the maximizers of Wε(–̂n, —)

and (û, v̂) the maximizers of Wε(–̂n, —̂n). Notice that

Wε(–, —) =EαF X
ε,β(uú, vú),

Wε(–̂n, —) =
1

n

n
ÿ

i=1

F Xi
ε,β(ū, v̄) = EβGY

ε,α̂n
(ū, v̄),

Wε(–̂n, —̂n) =
1

n

n
ÿ

i=1

GYi
ε,α̂n

(û, v̂)

By optimality of the maximizers, we have

Wε(–, —) ≠ Wε(–̂n, —) 6EαF X
ε,β(uú, vú) ≠ 1

n

n
ÿ

i=1

F Xi
ε,β(uú, vú),

Wε(–, —) ≠ Wε(–̂n, —) >EαF X
ε,β(ū, v̄) ≠ 1

n

n
ÿ

i=1

F Xi
ε,β(ū, v̄),

and so

|Wε(–, —) ≠ Wε(–̂n, —)| 6 sup
u,v

|EαF X
ε,β(u, v) ≠ 1

n

n
ÿ

i=1

F Xi
ε,β(u, v)|.
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Similarly, we get

|WÁ(–̂n, —) ≠ WÁ(–̂n, —̂n)| 6 sup
u,v

|E—GY
Á,–̂n

(u, v) ≠ 1

n

n
ÿ

i=1

GYi
Á,–̂n

(u, v)|.

Besides, from Theorem 17, we know that the all the dual potentials are bounded in

Hs(Rd) by a constant ⁄ which doesn’t depend on the measures, thus the sup(u,v) can be

restricted to sup(u,v)œ(Hs
⁄

)2 .

To apply Proposition 18 to Sinkhorn Divergences we need to prove that (a) the

optimal potentials are in a RKHS and (b) our loss functions FÁ,— and GÁ,–̂n are Lipschitz

in the potentials.

The first point has already been proved in the previous section. The RKHS we are

considering is Hs(Rd) with s = Âd
2Ê + 1. It remains to prove that FÁ,— and GÁ,–̂n are

Lipschitz in (u, v) on a certain subspace that contains the optimal potentials. Since

F x
Á,—(u, v) =

s

Y fxy
Á (u, v)d—(y) and Gy

Á,–̂n
(u, v) = 1

n

qn
i=1 fxiy

Á (u, v), it suffices to prove

that fxy
Á (u, v) is Lipschitz.

Figure 3.1 – SDÁ(–̂n, –̂Õ
n) as a function of n in log-log space : Influence of Á for fixed d

on two uniform distributions on the hypercube with quadratic cost.

Figure 3.2 – SDÁ(–̂n, –̂Õ
n) as a function of n in log-log space : Influence of d for fixed Á

on two uniform distributions on the hypercube with quadratic cost.

Lemma 6. Let A = {(u, v) | u ü v 6 2L|X | + ÎcÎŒ}. We have:

(i) the pairs of optimal potentials (uú, vú) such that uú(0) = 0 belong to A,

(ii) fÁ is B-Lipschitz in (u, v) on A with B 6 1 + exp(2
L|X |+ÎcÎŒ

Á ).
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Proof. Let us prove that we can restrict ourselves to a subspace on which fÁ is Lipschitz

in (u, v),

fÁ(u, v, x, y) = u(x) + v(y) ≠ Á exp

3

u(x) + v(y) ≠ c(x, y)

Á

4

,

ÒfÁ(u, v) = 1 ≠ exp

3

u + v ≠ c

Á

4

.

To ensure that fÁ is Lipschitz, we simply need to ensure that the quantity inside the

exponential is upper bounded at optimality and then restrict the function to all (u, v)

that satisfy that bound.

Recall the bounds on the optimal potentials from Proposition 17. We have that

’x œ X , y œ Y,

u(x) 6 L|x| and v(y) 6 max
x

u(x) ≠ c(x, y).

Since we assumed X to be a bounded set, denoting by |X | the diameter of the space we

get that at optimality ’x œ X , y œ Y

u(x) + v(y) 6 2L|X | + ÎcÎŒ .

Let us denote A = {(u, v) œ (Hs(Rd))2 | u ü v 6 2L|X | + ÎcÎŒ}, we have that

’(u, v) œ A,

|ÒfÁ(u, v)| 6 1 + exp(2
L|X | + ÎcÎŒ

Á
).

We now have all the required elements to prove our sample complexity result on the

Sinkhorn loss, by applying Proposition 18.

Proof. (Theorem 18) Since FÁ,— and GÁ,–̂n are Lipschitz and we are optimizing over

Hs(Rd) which is a RKHS, we can apply Proposition 18 to bound the right hand side

in Lemma 5. We start by applying the proposition to the second term, taking the

expectation over —. We get:

E—|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| 6 sup
(u,v)œ(Hs

⁄
)2

|E–F X
Á,—(u, v) ≠ 1

n

n
ÿ

i=1

F Xi
Á,—(u, v)|

+
2B⁄

n
E—

ˆ

ı

ı

Ù

n
ÿ

i=1

k(Yi, Yi),

where B 6 1 + exp(2
L|X |+ÎcÎŒ

Á ) (Lemma 6), ⁄ = O(max(1, 1
Ád/2 )) (Theorem 17).

We can further bound


qn
i=1 k(Yi, Yi) by



n maxxœX k(x, x) where k is the kernel

associated to Hs(Rd) (usually called Matern or Sobolev kernel) and thus maxxœX k(x, x) =

k(0, 0)
def.
= K which does not depend on n or Á.
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Applying Proposition 18 to the first term, taking the expectation over –. We get:

E–¢—|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| 6 2
2B⁄

Ô
KÔ

n
.

Thus we get the convergence rate in 1Ô
n

with different asymptotic behaviors in Á when

it is large or small.

Using similar arguments, we can also derive a concentration result:

Corollary 2. With probability at least 1 ≠ ”,

|WÁ(–, —) ≠ WÁ(–̂n, —̂n)| 6 4B
⁄KÔ

n
+ C

Û

2 log 1
δ

n
,

where B, ⁄, K are defined in the proof above, and C = Ÿ + Á exp(κ
ε
) with Ÿ = 2L|X | +

ÎcÎŒ.

Proof. We apply the bounded differences inequality (McDiarmid, 1989) to

g : (x1, . . . , xn) ‘æ sup
u,vœHs

⁄

(EfXY
ε ≠ 1

n
fXi,Yi

ε ).

From Lemma 6 we get that ’x, y, fxy
ε (u, v) 6 Ÿ + Áeκ/ε def.

= C, and thus, changing one of

the variables in g changes the value of the function by at most 2C/n. Thus the bounded

differences inequality gives

P (|g(X1, . . . , Xn) ≠ Eg(X1, . . . , Xn)| > t) 6 2 exp

A

t2n

2C2

B

.

Choosing t = C

Ú

2 log 1
”

n yields that with probability at least 1 ≠ ”

g(X1, . . . , Xn) 6 Eg(X1, . . . , Xn) + C

Û

2 log 1
δ

n
,

and from Theorem 18 we already have

Eg(X1, . . . , Xn) = E sup
u,vœHs

⁄

(EfXY
ε ≠ 1

n
fXi,Yi

ε ) 6
2B⁄KÔ

n
.
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Figure 3.3 – SDÁ(–̂n, –̂Õ
n) as a function of n in log-log space - cost c(x, y) = ||x ≠ y||1

with uniform distributions (two leftmost figures) and quadratic cost c(x, y) = ||x ≠ y||22
with standard normal distributions (right figure).

6 Experiments

We conclude with some numerical experiments on the sample complexity of Sinkhorn

Divergences. As there are no explicit formulas for WÁ in general, we consider SDÁ(–̂n, –̂Õ
n)

where –̂n
def.
= 1

n

qn
i=1 ”Xi, –̂Õ

n
def.
= 1

n

qn
i=1 ”XiÕ and (X1, . . . , Xn) and (X Õ

1, . . . , X Õ
n) are

two independent n-samples from –. Note that we use in this section the normalized

Sinkhorn Divergence as defined in (2.2), since we know that SDÁ(–, –) = 0 and thus

SDÁ(–̂n, –̂Õ
n) æ 0 as n æ +Œ .

Each of the experiments is run 300 times, and we plot the average of SDÁ(–̂n, –̂Õ
n)

as a function of n in log-log space, with shaded standard deviation bars.

First, we consider the uniform distribution over a hypercube with the standard

quadratic cost c(x, y) = ||x ≠ y||22, which falls within our framework, as we are dealing

with a CŒ cost on a bounded domain. Figure 3.1 shows the influence of the dimension

d on the convergence, while Figure 3.2 shows the influence of the regularization Á on the

convergence for a given dimension. The influence of Á on the convergence rate increases

with the dimension: the curves are almost parallel for all values of Á in dimension 2 but

they get further apart as dimension increases. As expected from our bound, there is a

cutoff which happens here at Á = 1. All values of Á > 1 have similar convergence rates,

and the dependence on 1
Á becomes clear for smaller values. The same cutoff appears

when looking at the influence of the dimension on the convergence rate for a fixed Á.

The curves are parallel for all dimensions for Á > 1 but they have very different slopes

for smaller Á.

We relax next some of the assumptions needed in our theorem to see how the

Sinkhorn Divergence behaves empirically. First we relax the regularity assumption on

the cost, using c(x, y) = ||x ≠ y||1. As seen on the two left images in figure 3.3 the

behavior is very similar to the quadratic cost but with a more pronounced influence of

Á, even for small dimensions. The fact that the convergence rate gets slower as Á gets

smaller is already very clear in dimension 2, which wasn’t the case for the quadratic

cost. The influence of the dimension for a given value of Á is not any different however.
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We also relax the bounded domain assumption, considering a standard normal dis-

tribution over R
d with a quadratic cost. While the influence of Á on the convergence

rate is still obvious, the influence of the dimension is less clear. There is also a higher

variance, which can be expected as the concentration bound from Corollary 2 depends

on the diameter of the domain.

For all curves, we observe that d and Á impact variance, with much smaller variance

for small values of Á and high dimensions. From the concentration bound, the depen-

dency on Á coming from the uniform bound on fÁ is of the form Á exp(Ÿ/Á), suggesting

higher variance for small values of Á. This could indicate that our uniform bound on

fÁ is not tight, and we should consider other methods to get tighter bounds in further

work.
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Chapter 4

Stochastic Optimization for

Large-Scale Optimal Transport

Entropy-regularized Optimal Transport (OT) has alleviated the computational burden of OT,

for many applications. However, its state of the art solver, Sinkhorn’s algorithm, only copes with

discrete measures and its iteration complexity scales as O(n2) (where n is the number of points in

the discrete measures). We thus propose a new class of online stochastic optimization algorithms

to cope with large-scale OT problems. They can handle arbitrary distributions (discrete or con-

tinuous) as long as one is able to draw samples from them. This alleviates the need to discretize

these densities, while giving access to provably convergent methods without discretization error.

These algorithms rely on one key idea which is that the dual OT problem can be re-cast as the

maximization of an expectation.

We exploit this formulation in three different setups: (i) when comparing a discrete distribu-

tion to another, we show that incremental stochastic optimization schemes can beat Sinkhorn’s

algorithm, the current state-of-the-art finite dimensional OT solver; (ii) when comparing a dis-

crete distribution to a continuous density, a semi-discrete reformulation of the dual program

is amenable to averaged stochastic gradient descent (SGD), leading to better performance than

approximately solving the problem by discretization ; (iii) when dealing with two continuous den-

sities, we propose a stochastic gradient descent over a reproducing kernel Hilbert space (RKHS)

and introduce an approximate feature approach (via incomplete Cholesky decomposition or Ran-

dom Fourier Features) to significantly alleviate computational time. This is currently the only

known method to solve this problem, apart from computing OT on finite samples. We backup

these claims on a set of discrete, semi-discrete and continuous benchmark problems.

Most of the content in this chapter comes from (Genevay et al., 2016), but the section on

continuous transport is revised in the light of recent results from Genevay et al. (2019). Knowing

that dual potentials are uniformly bounded in a RKHS, we can state a stronger version of the

convergence theorem for kernel-SGD. The numerical experiments are also improved, in particular

thanks to the addition of the approximate features approach.

109
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1 Introduction

Throughout this thesis, we have already advocated that OT is the natural choice to

solve a large variety of problems which require comparing probability measures or data

in the form of histograms, in particular because it takes into account the underlying

geometry of the problem. However, this comes at the price of an enormous computa-

tional overhead, compared to geometrically-oblivious distances such as the Euclidean

or ‰2 distances or the Kullback-Leibler divergence. This is especially true because cur-

rent OT solvers require to sample beforehand the distributions on a pre-defined set of

points, or on a grid. This is both inefficient (in term of storage and speed) and counter-

intuitive. Indeed, most high-dimensional computational scenarios naturally represent

distributions as objects from which one can sample, not as density functions to be dis-

cretized. Our goal is to alleviate these shortcomings. We propose a class of provably

convergent stochastic optimization schemes that can handle both discrete and continu-

ous distributions through sampling.

Previous works. The prevalent way to compute OT distances is by solving the so-

called Kantorovitch problem (Kantorovich, 1942) (see Chapter 1, Sec. 2.3 for a short

primer on the basics of OT formulations), which boils down to a large-scale linear

program when dealing with discrete distributions (i.e., finite weighted sums of Dirac

masses). This linear program can be solved using network flow solvers, which can be

further refined to assignment problems when comparing measures of the same size with

uniform weights (Burkard et al., 2009). Recently, regularized approaches that solve the

OT with an entropic penalization (Cuturi, 2013) have been shown to be extremely effi-

cient to approximate OT solutions at a very low computational cost. These regularized

approaches have supported recent applications of OT to computer graphics (Solomon

et al., 2015) and machine learning (Frogner et al., 2015). These methods apply the

celebrated Sinkhorn algorithm (Sinkhorn, 1964), and can be extended to solve a variety

of transportation-related problems such as the computation of barycenters for the opti-

mal transport metric or multimarginal optimal transport (Benamou et al., 2015). Their

chief computational advantage over competing solvers is that each iteration boils down

to matrix-vector multiplications, which can be easily parallelized, streams extremely

well on GPU, and enjoys linear-time implementation on regular grids or triangulated

domains (Solomon et al., 2015).

These methods are however purely discrete and cannot cope with continuous densi-

ties. The only known class of methods that can overcome this limitation are so-called

semi-discrete solvers (Aurenhammer et al., 1998), that can be implemented efficiently

using computational geometry primitives (Mérigot, 2011). They can compute distance

between a discrete distribution and a continuous density. Nonetheless, they are re-

stricted to the Euclidean squared cost, and can only be implemented in low dimensions
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(2-D and 3-D). Solving these semi-discrete problems efficiently could have a significant

impact for applications to density fitting with an OT loss (Bassetti et al., 2006) for

machine learning applications, see (Montavon et al., 2016). Lastly, let us point out that

there is currently no method that can compute OT distances between two continuous

densities, which is thus an open problem we tackle in this chapter.

Contributions. This chapter introduces stochastic optimization methods to compute

large-scale optimal transport in all three possible settings: discrete OT, to compare a

discrete vs. another discrete measure; semi-discrete OT, to compare a discrete vs. a con-

tinuous measure; and continuous OT, to compare a continuous vs. another continuous

measure. These methods can be used to solve classical OT problems, but they en-

joy faster convergence properties when considering their entropic-regularized versions.

We show that the discrete regularized OT problem can be tackled using incremen-

tal algorithms, and we consider in particular the stochastic averaged gradient (SAG)

method (Schmidt et al., 2016). Each iteration of that algorithm requires n operations

(n being the size of the supports of the input distributions), which makes it scale better

in large-scale problems than the state-of-the-art Sinkhorn algorithm, while still enjoy-

ing a convergence rate of O(1/k), k being the number of iterations. We show that

the semi-discrete OT problem can be solved using averaged stochastic gradient descent

(SGD), whose convergence rate is O(1/
Ô

k). This approach is numerically advantageous

over the brute force approach consisting in sampling first the continuous density to

solve next a discrete OT problem. Following the publication of this work, this online

semi-discrete algorithm has been successfully applied to texture synthesis in image pro-

cessing (Galerne et al., 2018), and to the computation of Wasserstein Barycenters (Staib

et al., 2017). Lastly, for continuous optimal transport, we propose a novel method which

makes use of an expansion of the dual variables in a reproducing kernel Hilbert space

(RKHS). This allows us for the first time to compute with a converging algorithm OT

distances between two arbitrary densities, thanks to the fact that the dual potentials

are known to be in a RKHS ball(see Chapter 3 for details). We also provide an ap-

proach using approximate features (via incomplete Cholesky decomposition (Wu et al.,

2006) or Random Fourier features (Rahimi and Recht, 2007)) to significantly alleviate

computational time (going from quadratic to linear in the number of iterations). More

recently, (Seguy et al., 2017) exploited our dual formulation as an expectation with a

neural network parametrization of the dual variables rather than a RKHS expansion.

This gives interesting results on the tasks they consider, although they do not derive

convergence rates for their approach.
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2 Optimal Transport: Primal, Dual and Semi-dual For-

mulations

We consider the optimal transport problem between two measures – œ M1
+(X ) and

— œ M1
+(Y), defined on metric spaces X and Y. No particular assumption is made on

the form of – and —, we only assume that they both can be sampled from to be able to

apply our algorithms.

2.1 Primal, Dual and Semi-dual Formulations.

In this section, we recall the different formulations of entropy-regularized optimal

transport which will be exploited in the remainder of the chapter. We refer the reader

to Chapter 1 for more details on their derivation and specific properties.

As previously, we consider the Kantorovich formulation (Kantorovich, 1942) of OT

with entropic regularization (Cuturi, 2013) between two probability measures – œ
M1

+(X ) and — œ M1
+(Y) :

WÁ(–, —)
def.
= min

fiœΠ(–,—)

⁄

X ◊Y
c(x, y)dfi(x, y) + Á

⁄

X ◊Y
log

3

dfi(x, y)

d–(x)d—(y)

4

dfi(x, y), (PÁ)

where the constraint set Π(–, —) is the set of couplings on X ◊ Y with marginals – and

—.

When Á > 0, problem (PÁ) is strictly convex, so that the optimal fi is unique, and

algebraic properties of the entropy H result in computations that can be tackled using

Sinkhorn’s algorithm which is extensively described in Chapter 1, Sec. 4.2.

Recall from Chapter 1, Proposition 7, that entropy-regularized OT between two

probability measures – and — has an equivalent dual formulation:

WÁ(–, —) = max
uœC(X ),vœC(Y)

⁄

X
u(x)d–(x) +

⁄

Y
v(y)d—(y)

≠ Á

⁄

X ◊Y
e

u(x)+v(y)≠c(x,y)
Á d–(x)d—(y) + Á, (DÁ)

and the primal-dual relationship is given by

dfi(x, y) = exp(
u(x) + v(y) ≠ c(x, y)

Á
)d–(x)d—(y).

A nice feature of entropy-regularized OT, which we already highlighted, is the fact

that it yields an unconstrained dual problem, contrarily to standard OT. The third term

in the dual Á
s

X ◊Y e
u(x)+v(y)≠c(x,y)

Á d–(x)d—(y) is a smooth approximation of the indicator

of the constraint set Uc set that appears in the dual of standard OT:

Uc
def.
= {(u, v) œ C(X ) ◊ C(Y) ; ’(x, y) œ X ◊ Y, u(x) + v(y) 6 c(x, y)} .
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For any v œ C(Y), recall the definition of c-transform and its “smoothed” approxi-

mation, already introduced in Chapter 1, Sec. 4.3:

’x œ X , vc,Á(x)
def.
=

Y

]

[

min
yœY

c(x, y) ≠ v(y) if Á = 0,

≠Á log
1

s

Y exp(v(y)≠c(x,y)
Á )d—(y)

2

if Á > 0.
(2.1)

This allows us to introduce another equivalent formulation for entropy-regularized OT,

as done in Proposition 12 in Chapter 1, which we call the semi-dual:

W c
Á (–, —) = max

vœC(Y)

⁄

X
vc,Á(x)d–(x) +

⁄

Y
v(y)d—(y). (SÁ)

The other dual potential u solving (DÁ) is recovered from an optimal v solving (SÁ) as

u = vc,Á.

We refer to (DÁ) as the “semi-dual” problem, because in the special case Á = 0, (SÁ)

boils down to the so-called semi-discrete OT problem (Aurenhammer et al., 1998). Both

dual problems are concave maximization problems. The optimal dual variables (u, v) –

known as Kantorovitch potentials – are not unique, since for any solution (u, v) of (DÁ),

(u + ⁄, v ≠ ⁄) is also a solution for any ⁄ œ R. When Á > 0, they can be shown to be

unique up to this scalar translation. The proof is given in Section 4.1 of Chapter 1. We

also refer to Chapter 1, Sec. 4.4 for a discussion (and proofs) of the convergence of the

solutions of (PÁ), (DÁ) and (SÁ) towards those of (P0), (D0) and (S0) as Á æ 0.

A key advantage of (SÁ) over (DÁ) is that, when — is a discrete density (but not

necessarily –), then (SÁ) is a finite-dimensional concave maximization problem, which

can thus be solved using stochastic programming techniques, as highlighted in Section 4.

By contrast, when both – and — are continuous densities, these dual problems are in-

trinsically infinite dimensional, and we propose in Section 5.1 more advanced techniques

based on RKHSs.

2.2 Stochastic Optimization Formulations

The fundamental property needed to apply stochastic programming is that both dual

problems (DÁ) and (SÁ) can be rephrased as maximizing expectations:

Proposition 19. The dual of entropy-regularized OT between two probability measures

– and — can be rewritten as the maximization of an expectation over – ¢ —:

W c
Á (–, —) = max

u,vœC(X )◊C(Y)
E–¢— [fXY

Á (u, v)] + Á,

where

fxy
Á

def.
= u(x) + v(y) ≠ Á exp

u(x)+v(y)≠c(x,y)
Á for Á > 0. (2.2)

and when —
def.
=

qm
j=1 βj”yj is discrete, the potential v is a m-dimensional vector (vj)j
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and the semi-dual is the maximization of an expectation over –:

W c
Á (–, —) = max

vœRm
E–[gX

Á (v)],

where

gx
Á (v) =

m
ÿ

j=1

vjβj +

Y

]

[

≠Á log(
qm

j=1 exp(
vj≠c(x,yj)

Á )βj) if Á > 0,

minj (c(x, yj) ≠ vj) if Á = 0,
(2.3)

This reformulation is at the heart of the methods detailed in the remainder of this

article. Note that the dual problem (DÁ) cannot be cast as an unconstrained expectation

maximization problem when Á = 0, because of the constraint on the potentials which

arises in that case.

When — is discrete, since the potential v is a m-dimensional vector (vj)j={1...m} we

can compute the gradient and Hessian of gx
Á . This was already done in Proposition 13

in Chapter 1 but we rewrite their expressions here for convenience.

Proposition 20. Consider the semi-dual functional gx
Á defined in (2.3).

When Á > 0 its gradient is defined by

Òvgx
Á (v) = β ≠ ‰Á(x, v), (2.4)

and the Hessian is given by

ˆ2
vgx

Á (v) =
1

Á

1

‰Á(x)‰Á(x)T ≠ diag(‰Á(x; v))
2

, where ‰Á(x, v)i =
exp(vi≠c(x,yi)

Á )
qm

j=1 exp(
vj≠c(x,yj)

Á )
.

Besides, 0 ∞ ˆ2
vgx

Á (v) ∞ 1
Á and thus gx

Á is a convex function with a Lipschitz gradient.

When Á = 0 (standard OT) g0 is not smooth and a subgradient is given by

Òvgx
0 (v) = β ≠ ‰(x, v), (2.5)

where ‰(x, v)i = 1i=jú(x) with jú(x) = argminiœ{1...m} c(x, yi) ≠ vi.

Note that since the lower bound on the eigenvalues of the Hessian is 0 the semi-

dual functional is convex but not strongly convex as strong convexity requires a strictly

positive lower-bound on eigenvalues of the Hessian. We insist on the lack of strong

convexity of the semi-dual problem, as it impacts the convergence properties of the

stochastic algorithms (stochastic averaged gradient and stochastic gradient descent) used

below.
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3 Discrete Optimal Transport

We assume in this section that both – and — are discrete measures, i.e. finite sums

of Diracs, of the form – =
qn

i=1 αi”xi and — =
qm

j=1 βj”yj , where (xi)i µ X and

(yj)j µ Y, and the histogram vector weights are α œ Σn and β œ Σm where Σn denotes

the simplex in R
n. These discrete measures may come from the evaluation of continuous

densities on a grid, counting features in a structured object, or be empirical measures

based on samples. This setting is relevant for several applications, including all known

applications of the earth mover’s distance. We show in this section that our stochastic

formulation can prove extremely efficient to compare measures with a large number of

points.

3.1 Discrete Optimization and Sinkhorn

In this setup, the primal (PÁ), dual (DÁ) and semi-dual (SÁ) problems can be rewrit-

ten as finite-dimensional optimization problems involving the cost matrix c œ R
n◊m
+

defined by ci,j = c(xi, yj):

WÁ(–, —)

= min
πœR

n◊m
+

Ó

q

i,j ci,jπi,j + Á
q

i,j

1

log
πi,j

αiβj
≠ 1

2

πi,j | π1m = α, π€
1n = β

Ô

, (P̄Á)

= max
uœRn,vœRm

qn
i=1 uiαi +

qm
j=1 vjβj ≠ Á

q

i,j exp
1

ui+vj≠ci,j

Á

2

αiβj , (for Á > 0) (D̄Á)

= max
vœRm

ḠÁ(v) where ḠÁ(v)
def.
=

qn
i=1 gxi

Á (v)αi, (S̄Á)

and gx
Á is defined in (2.3).

The state-of-the-art method to solve the discrete regularized OT (i.e. when Á > 0) is

Sinkhorn’s algorithm (Cuturi, 2013, Alg.1), which has linear convergence rate (Franklin

and Lorenz, 1989). It corresponds to a block coordinate maximization, successively

optimizing (D̄Á) with respect to either u or v (see Sec. 4.2, Chapter 1 for a thorough

presentation). Each iteration of this algorithm is however costly, because it requires a

matrix-vector multiplication. Indeed, this corresponds to a “batch” method where all

the samples (xi)i and (yj)j are used at each iteration, which has thus complexity O(N2)

where N = max(n, m). The prohibitive cost of iterations is a common drawback of

batch methods, which thus scale poorly with the size of the problem. Online methods

are often preferred when provided with a large number of samples, which is why we

resort to stochastic optimization in this context.

3.2 Incremental Discrete Optimization with SAG when ε > 0.

Stochastic gradient descent (SGD) can be used to minimize the finite sum that

appears in in S̄Á. An index k is drawn from distribution α at each iteration, and the



116 CHAPTER 4. STOCHASTIC OPTIMIZATION FOR LARGE SCALE OT

gradient of that term gxk
Á (·) can be used as a proxy for the full gradient in a standard

gradient ascent step to maximize ḠÁ.

Algorithm 3 SAG for Discrete OT

Input: step size C œ R+

Output: dual potential v œ R
m

v Ω 0m (dual potential)

DG Ω 0m (proxy of the full gradient ÒḠÁ)

’i, zi Ω 0m (vector of partial gradients Ògxk
Á )

for k = 1, 2, . . . do

Sample i œ {1, 2, . . . , n} uniform.

DG Ω DG ≠ zi (remove contribution of sample xi from proxy of ÒḠÁ)

zi Ω αiÒvgxi
Á (v) (update gradient of sample xi)

DG Ω d + zi (update proxy of ÒḠÁ with contribution of sample xi)

v Ω v + Cd (gradient ascent step)

end for

When Á > 0, the finite sum appearing in (S̄Á) suggests to use incremental gradient

methods – rather than purely stochastic ones – which are known to converge faster than

SGD. We propose to use the stochastic averaged gradient (SAG) (Schmidt et al., 2016).

The iterates of SAG can be summarized by the following formula

v(k+1) = v(k) +
C

n

n
ÿ

i=1

z
(k)
i ,

where an index i(k) is selected at random in {1 . . . n} and

z
(k)
i =

Y

]

[

Ògxi
Á (v(k)) if i = i(k),

z
(k≠1)
i otherwise.

At each iteration an index ik is selected at random in {1 . . . n} to compute Òg
xik
Á (v(k)),

the gradient corresponding to the sample xi(k) at the current estimate v(k). However,

SAG doesn’t use this as a proxy for the full gradient ÒḠÁ, but rather keeps in memory

a copy of that gradient and computes an average of all gradients stored so far which

provides a better proxy of the gradient corresponding to the entire sum. Another dif-

ference is that SAG applies a fixed length update, which gives a better convergence rate

than SGD:

Proposition 21. Consider vú
Á a minimizer of ḠÁ, and v(k) that k≠th iterate of SAG

defined in (3.2). Then:

|ḠÁ(vú
Á) ≠ ḠÁ(vk)| = O(1/k).
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Figure 4.1 – We compute all 595 pairwise word mover’s distances (Kusner et al., 2015)
between 35 very large corpora of text, each represented as a cloud of n = 20, 000
word embeddings. We compare the Sinkhorn algorithm with SAG, tuned with different
stepsizes. Each pass corresponds to a n◊n matrix-vector product. We used minibatches
of size 200 for SAG. Left plot: convergence of the gradient ¸1 norm (average and ±
standard deviation error bars). A stepsize of 3/L achieves a substantial speed-up of
¥ 2.5, as illustrated in the boxplots in the center plot. Convergence to vú (the best dual
variable across all variables after 4, 000 passes) in ¸2 norm is given in the right plot, up
to 2, 000 ¥ 211 steps.

This proposition is a direct application of the convergence rate of SAG for non-

strongly convex functions. However, this improvement is made at the expense of storing

the gradient for each of the n points. This expense can be mitigated by considering

mini-batches instead of individual points. Note that the SAG algorithm is adaptive to

strong-convexity and will be linearly convergent around the optimum. The pseudo-code

for SAG is provided in Algorithm 3, and we defer more details on SGD for Section 4, in

which it will be shown to play a crucial role. Note that the choice of the step-size (C

in the algorithm) depends on the Lipschitz constant of all these terms, which is upper

bounded by L = maxi αi/Á. We discuss this in the following section.

3.3 Numerical Illustrations on Bags of Word-Embeddings.

Comparing texts using the Wasserstein distance on their representations as clouds

of word embeddings has been recently shown to yield state-of-the-art accuracy for text

classification (Kusner et al., 2015). The authors of the latter have however highlighted

that this accuracy comes at a large computational cost. We test our stochastic approach

to discrete OT in this scenario, using the complete works of 35 authors 1. We use

Glove word embeddings (Pennington et al., 2014) to represent words, namely X =

Y = R
300. We discard all most frequent 1, 000 words that appear at the top of the

1The list of authors we consider is: Keats, Cervantes, Shelley, Woolf, Nietzsche, Plutarch, Franklin,

Coleridge, Maupassant, Napoleon, Austen, Bible, Lincoln, Paine, Delafontaine, Dante, Voltaire, Moore,

Hume, Burroughs, Jefferson, Dickens, Kant, Aristotle, Doyle, Hawthorne, Plato, Stevenson, Twain,

Irving, Emerson, Poe, Wilde, Milton, Shakespeare.
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Figure 4.2 – Comparisons between the Sinkhorn algorithm and SAG, tuned with differ-
ent stepsizes, using different regularization strengths. The setting is identical to that
used in Figure 1. Note that to prevent numerical overflow when using very small reg-
ularizations, the metric is thresholded such that rescaled costs c(x, yj)/Á are not bigger
than log(10200).

file glove.840B.300d provided on the authors’ website. We sample N = 20, 000 words

(found within the remaining huge dictionary of relatively rare words) from each authors’

complete work. Each author is thus represented as a cloud of 20, 000 points in R
300.

The cost function c between the word embeddings is the squared-Euclidean distance, re-

scaled so that it has a unit empirical median on 2, 000 points sampled randomly among

all vector embeddings. We set Á to 0.01 (other values are considered in Figure 4.2). We

compute all (35◊34/2 = 595) pairwise regularized Wasserstein distances using both the

Sinkhorn algorithm and SAG. Following the recommendations in (Schmidt et al., 2016),

SAG’s stepsize is tested for 3 different settings, 1/L, 3/L and 5/L. The convergence of

each algorithm is measured by computing the ¸1 norm of the gradient of the full sum

(which also corresponds to the marginal violation of the primal transport solution that

can be recovered with these dual variables(Cuturi, 2013)), as well as the ¸2 norm of the

deviation to the optimal scaling found after 4, 000 passes for any of the three methods.

Results are presented in Fig. 4.1 and suggest that SAG can be more than twice faster

than Sinkhorn on average for all tolerance thresholds. Note that SAG retains exactly

the same parallel properties as Sinkhorn: all of these computations can be streamlined

on GPUs. We used 4 Tesla K80 cards to compute both SAG and Sinkhorn results. For

each computation, all 4, 000 passes take less than 3 minutes (far less are needed if the

goal is only to approximate the Wasserstein distance itself, as proposed in (Kusner et al.,
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2015)).

4 Semi-Discrete Optimal Transport

In this section, we assume that – is an arbitrary measure (in particular, it needs not

to be discrete) and that — =
qm

j=1 βj”yj is a discrete measure. This corresponds to the

semi-discrete OT problem (Aurenhammer et al., 1998; Mérigot, 2011). The semi-dual

problem (SÁ) is then a finite-dimensional maximization problem, written in expectation

form as

WÁ(–, —) = max
vœRm

GÁ(v) where GÁ(v)
def.
= E–

Ë

gX
Á (v)

È

,

and gx
Á is defined in (2.3).

4.1 Stochastic Semi-discrete Optimization with SGD

Since the expectation is taken over an arbitrary measure, neither Sinkhorn algorithm

nor incremental algorithms such as SAG can be used directly. An alternative is to

approximate – by an empirical measure –̂N
def.
= 1

N

qN
i=1 ”xi where (xi)i=1,...,N are i.i.d

samples from –, and computing WÁ(–̂N , —) using the discrete methods (Sinkhorn or

SAG) detailed in Section 3. However this introduces a discretization noise in the solution

as the discrete problem is now different from the original one and thus has a different

solution. SGD on the other hand does not require – to be discrete and is thus perfectly

adapted to this semi-discrete setting. The idea of SGD is fairly intuitive : at each

iteration, a sample xk is drawn from – and the gradient Ògxk
Á is computed at the

current iterate v(k) to serve as a proxy for the full gradient ÒGÁ. The iterates are given

by:

v(k+1) = v(k) +
CÔ
k

Òvgxk
Á (v(k+1)) where xk ≥ –. (4.1)

The convergence rate is given for the average of the iterates, as it is known to converge

faster (Polyak and Juditsky, 1992):

Proposition 22. Consider vú
Á a minimizer of GÁ, and v(k) the iterates of SGD defined

in (4.1). Let v̄(k) def.
= 1

k

qk
i=1 v(k) the average of these iterates. Then

|GÁ(vú
Á) ≠ GÁ(v̄(k))| = O(1/

Ô
k).

The algorithm, including the averaging step, is detailed in Algorithm 4.

Recall from Proposition 20 that the gradient of gx
Á (or subgradient, when Á = 0) is

given by

Òvgx
Á (v) = β ≠ ‰Á(x, v), where ‰Á(x, v)i =

Y

_

_

]

_

_

[

exp(
vi≠c(x,yi)

Á
)

qm

j=1
exp(

vj ≠c(x,yj )

Á
)

if Á > 0,

1i=jú(x) if Á = 0,
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and jú(x) = argminiœ{1...n} c(x, yi) ≠ vi. The function in the gradient, ‰Á(x, v) is a

smoothed version of the indicator of Laguerre cells with weight vector v which naturally

appear in semi-discrete Optimal Transport (see rem. 11 in sec 4.3.3 of Chapter 1 for a

detailed explanation and some illustrations). In particular, (Mérigot, 2011) considers

the unregularized dual problem, maxvœRm G0(v), where

G0(v)
def.
=

m
ÿ

j=1

vjβj+

⁄

X
(min

k
c(x, yk)≠vk)d–(x) =

m
ÿ

j=1

A

vjβj +

⁄

Lagj(v)
c(x, yj) ≠ vjd–(x)

B

,

and Lagj(v) is the cell with center yj in the Laguerre diagram with weights v. The

problem is solved using gradient descent, where the gradient is given by

(ÒG0(v))j = βj ≠
⁄

Lagj(v)
d–(x).

In our stochastic gradient descent approach, for the unregularized case, we are thus

replacing the integral over the Laguerre cell, which is very costly to compute, by a

simple max search.

Algorithm 4 Averaged SGD for Semi-Discrete OT

Input: step size C œ R+

Output: dual potential v̄ œ R
m

v Ω 0m (iterates for SGD)

v̄ Ω v (dual potential obtained by averaging)

for k = 1, 2, . . . do

Sample xk from –

v Ω v + CÔ
k
Òvgxk

Á (v) (gradient ascent step using v)

v̄ Ω 1
k v + k≠1

k v̄ (averaging step to get faster convergence of v)

end for

4.2 Numerical Illustrations on Synthetic Data

Simulations are performed in X = Y = R
3. Here – is a Gaussian mixture (continuous

density) and — = 1
m

qm
j=1 ”yj with m = 10 and (xj)j are i.i.d. samples from another

Gaussian mixture. Each mixture is composed of three Gaussians whose means are drawn

randomly in [0, 1]3, and their correlation matrices are constructed as Σ = 0.01(RT +

R) + 3I3 where R is 3 ◊ 3 with random entries in [0, 1]. In the following, we denote vú
Á

a solution of (SÁ), which is approximated by running SGD for 107 iterations, 100 times

more than those plotted, to ensure reliable convergence curves. Both plots are averaged

over 50 runs, lighter lines show the variability in a single run.

Figure 4.3 (a) shows the evolution of ||vk ≠vú
0||2/||vú

0||2 as a function of k. It highlights

the influence of the regularization parameters Á on the iterates of SGD. While the
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(a) SGD (b) SGD vs. SAG

Figure 4.3 – (a) Plot of ||vk ≠vú
0||2/||vú

0||2 as a function of k, for SGD and different values
of Á (Á = 0 being un-regularized). (b) Plot of ||vk ≠ vú

Á||2/||vú
Á||2 as a function of k, for

SGD and SAG with different number N of samples, for regularized OT using Á = 10≠2.

regularized iterates converge faster, they do not converge to the correct unregularized

solution. This figure also illustrates the convergence theorem of solution of (SÁ) toward

those (S0) when Á æ 0.. Figure 4.3 (b) shows the evolution of ||vk ≠ vú
Á||2/||vú

Á||2 as a

function of k, for a fixed regularization parameter value Á = 10≠2. It compares SGD to

SAG using different numbers N of samples for the empirical measures –̂N . While SGD

converges to the true solution of the semi-discrete problem, the solution computed by

SAG is biased because of the approximation error which comes from the discretization

of –. This error decreases when the sample size N is increased, as the approximation of

– by –̂N becomes more accurate.

5 Continuous Optimal Transport Using RKHS

In the case where neither – nor — are discrete, problem (SÁ) is infinite-dimensional,

so it cannot be solved directly using SGD. We propose in this section to solve the ini-

tial dual problem (DÁ), using expansions of the dual variables in a reproducing kernel

Hilbert spaces (RKHS). Comparing two probability distributions thanks to a maximiza-

tion problem over a RKHS reminds of the definition of Maximum Mean Discrepancy

(MMD)(Sriperumbudur et al., 2012), which is described in details in Chapter 1, Sec 2.2.

However, unlike the MMD, problem (DÁ) involves two different dual functions u and

v, one for each measure. Contrarily to the semi-discrete setting, we can only solve the

regularized problem here (i.e. Á > 0), since (DÁ) cannot be cast as an expectation

maximization problem when Á = 0.

5.1 Kernel SGD

We consider two RKHS H and G defined on X and on Y, with kernels Ÿ associated

with norms Î ·ÎH and Î ·ÎG . Note that we could consider two distinct kernels Ÿ and ¸ for
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each RKHS but since we know from Chapter 3, Sec. 4 that both potentials are in similar

RKHS (they might be defined on different spaces, but have the same regularity) it is

more natural to use the same kernel function Ÿ. Recall the two fundamental properties

of RKHS:

(a) if u œ H, then u(x) = Èu, Ÿ(·, x)ÍH,

(b) Ÿ(x, xÕ) = ÈŸ(·, x), Ÿ(·, xÕ)ÍH.

The dual problem (DÁ) is conveniently re-written in Proposition (19) as the maximiza-

tion of the expectation of fXY
Á (u, v) with respect to the random variables (X, Y ) ≥ –¢—,

where

fxy
Á (u, v)

def.
= u(x) + v(y) ≠ Á exp

u(x)+v(y)≠c(x,y)
Á . (5.1)

The SGD algorithm applied to this infinite-dimensional problem reads, starting with

u0 = 0 and v0 = 0,

Y

]

[

u(k) def.
= u(k≠1) + CÔ

k
Òufxk,yk

Á (u(k≠1), v(k≠1))

v(k) def.
= v(k≠1) + CÔ

k
Òvfxk,yk

Á (u(k≠1), v(k≠1)),
(5.2)

where (xk, yk) are i.i.d. samples from – ¢ — and u and v are functions over X and

Y respectively. Following Kivinen et al. (2002), we solve this problem with stochastic

gradient descent over a RKHS. This amounts to restricting the minimization space to

functions that are expansions of kernel functions (property (b) of RKHS stated above).

We show that these (u(k), v(k)) iterates can be expressed as finite sums of kernel functions,

with a simple recursion formula.

Algorithm 5 Kernel SGD for continuous OT

Input: step size C, kernel Ÿ

Output: (w(k), xk, yk)k=1,...

for k = 1, 2, . . . do

Sample xk from –

Sample yk from —

u(k≠1)(xk)
def.
=

qk≠1
i=1 w(i)Ÿ(xk, xi)

v(k≠1)(yk)
def.
=

qk≠1
i=1 w(i)Ÿ(yk, yi)

w(k) def.
= CÔ

k

1

1 ≠ exp
1

u(k≠1)(xk)+v(k≠1)(yk)≠c(xk,yk)
Á

2 2

end for

Proposition 23. The iterates of kernel-SGD in a RKHS H with kernel Ÿ are given by

Y

]

[

u(k) def.
=

qk
i=1 w(i)Ÿ(·, xi)

v(k) def.
=

qk
i=1 w(i)Ÿ(·, yi)),

(5.3)
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where

w(i) def.
=

CÔ
i

A

1 ≠ exp

A

u(i≠1)(xi) + v(i≠1)(yi) ≠ c(xi, yi)

Á

BB

,

and (xi, yi)i=1...k are i.i.d samples from – ¢ —.

Proof. Replacing u(x) and v(y) by their scalar product formulation in their respective

RKHS, fxy
Á (u, v) can be rewritten

fxy
Á (u, v) = Èu, Ÿ(x, ·)ÍH + Èv, Ÿ(y, ·)ÍG ≠ Á exp

1Èu, Ÿ(x, ·)ÍH + Èv, Ÿ(y, ·)ÍG ≠ c(x, y)

Á

2

.

The partial derivatives with respect to u and v are thus given by

ˆfxy
Á

ˆu
(u, v) = Ÿ(x, ·)

3

1 ≠ exp

3Èu, Ÿ(x, ·)Í + Èv, Ÿ(y, ·)Í ≠ c(x, y)

Á

44

,

ˆfxy
Á

ˆv
(u, v) = Ÿ(y, ·)

3

1 ≠ exp

3Èu, Ÿ(x, ·)Í + Èv, Ÿ(y, ·)Í ≠ c(x, y)

Á

44

.

Plugging this formula in the SGD iteration (5.2) yields : u(k) = u(k≠1) +w(k)Ÿ(·, xk) and

v(k) = v(k≠1) + w(k)Ÿ(·, yk), where w(k) def.
=

1

1 ≠ exp(u(k≠1)(xk)+v(k≠1)(yk)≠c(xk,yk)
Á )

2

. As

we start from (u(0), v(0)) = (0, 0), the parameters (w(i))i<k are not updated at iteration

k, we get the announced formula.

Algorithm 5 describes our kernel SGD approach, in which both potentials u and v

are approximated by a linear combination of kernel functions. After nit iterations, the

algorithm returns the samples (xk, yk)k=1...nit
and the iterates (w(k))k=1...nit

which are

stored at each iteration. The dual potentials (u, v) can then be evaluated at any point

(x, y) œ X ◊ Y with the following formula

u(x) =
nit
ÿ

i=1

w(i)Ÿ(x, xi) and v(y) =
nit
ÿ

i=1

w(i)Ÿ(y, yi).

The main cost at each iteration k lies in the computation of the terms u(k≠1)(xk)
def.
=

qk≠1
i=1 w(i)Ÿ(xk, xi) and v(k≠1)(yk)

def.
=

qk≠1
i=1 w(i)Ÿ(yk, yi) which imply a quadratic com-

plexity O(k2). Thus the complexity of each iteration increases over time. Several meth-

ods exist to alleviate the running time complexity of kernel algorithms, e.g. random

Fourier features (Rahimi and Recht, 2007) or incremental incomplete Cholesky decom-

position (Wu et al., 2006) whose implementation we detail below.

Proposition 24. (Convergence of Kernel SGD) When – and — are supported on

bounded subspaces of R
d, then if Ÿ is the Matern kernel, or any universal kernel, the

iterates (u(k), v(k)) defined in proposition 23 converge to a solution of (DÁ).

Proof. To obtain convergence of kernel SGD, we need to make sure that the poten-
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tials can be approximated by a linear combination of kernel functions. Theorem 17 in

Chapter 3 tells us that if the cost function is smooth enough, the dual variables are

also smooth and to belong to a ball with radius independent of – and — in the Sobolev

space Hs(Rd). Since Hs(Rd) is a RKHS for s > d/2, its functions can be expressed as a

linear combination of the associated kernel, which is called Matérn kernel. Otherwise,

universal kernels can by definition approximate any smooth function (Steinwart and

Christmann, 2008).

The choice of the kernel function is instrumental in kernel methods to obtain good

performance. Since the dual potentials (u, v) are in Hs(Rd) (under smoothness assump-

tions on the cost) which is a RKHS for s > d/2, its associated kernel - called Matérn

kernel - is a natural choice. However, their complex definition in dimension larger than

1 makes them impractical. We thus resort to universal kernels, which can by definition

approximate any smooth function. In Euclidean spaces X = Y = R
d, where d > 0, a

natural choice of universal kernel is the Gaussian kernel Ÿ(x, xÕ) = exp(≠||x ≠ xÕ||2/‡2).

Tuning its bandwidth ‡ is crucial to obtain a good convergence of the algorithm, as we

will point out in the numerical experiments below.

Finally, let us note that, while entropic regularization of the primal problem (PÁ)

was necessary to be able to apply semi-discrete methods in Sections 3 and 4, this is not

the case here. Indeed, since the kernel SGD algorithm is applied to the dual (DÁ), it is

possible to replace KL(fi|–¢—) appearing in (PÁ) by other regularizing divergences. An

example of another regularizer would be a ‰2 divergence
s

X ◊Y( dfi
d–d— (x, y))2d–(x)d—(y)

(with positivity constraints on fi). See Chapter 1, Sec. 3 for details on regularizing OT

with Ï-divergences. However, note that convergence of the iterates is only proved for

entropic regularization, as a result of the boundedness of the potentials in Sobolev norm

proved in Chapter 3.

5.2 Speeding up Iterations with Kernel Approximation

The main drawback of kernel-SGD is the fact that as the computational time grows

quadratically with the number of samples (or equivalently, the number of iterations). We

explore here approximate feature expansion methods, which replace the kernel function

by the scalar product between two approximate feature functions in low dimension.

5.2.1 Incomplete Cholesky Decomposition

An fundamental property of RKHS is the fact that the kernel function Ÿ can be

rewritten as a scalar product of feature maps Ï : X æ F where F is the (possibly in-

finite dimensional) feature space. The idea behind incomplete Cholesky decomposition

is to introduce an approximate feature function Ï̃ that maps data points to a finite

dimensional vector, through a kernel matrix computed on a small number of samples.
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Algorithm 6 Kernel SGD for continuous OT with incomplete Cholesky decomposition

Input: step size C, kernel Ÿ, feature space dimension I
Output: (wu, wv)k=1,...

Sample (XI , YI)
def.
= (xi, yi)i=1...I from – ¢ —

KX
def.
= Ÿ(XI , XI) ; KY

def.
= Ÿ(YI , YI)

Compute (KX)≠ 1
2

def.
= pinv(Chol(KX)) (pseudo-inverse of Cholesky root of KX)

(KY )≠ 1
2

def.
= pinv(Chol(KY )).

for k = 1, 2, . . . do
Sample (xk, yk) from – ¢ —

Ï̃x
k

def.
= (KX)≠ 1

2 Ÿ(XI , xk) ; Ẫ
y
k

def.
= (KY )≠ 1

2 Ÿ(YI , yk) (approximate features)

⁄(k) def.
= exp

3

(Ï̃x
k)T W u

k≠1+(Ẫy
k

)T W v
k≠1≠c(xk,yk)

Á

4

w
(k)
u = w

(k≠1)
u + CuÔ

k
(1 ≠ ⁄(k))Ï̃x

k ; w
(k)
v = w

(k≠1)
v + CvÔ

k
(1 ≠ ⁄(k))Ẫy

k

end for

Consider KI the kernel matrix computed on a sample I = (x1, . . . , xI) of i.i.d. realiza-

tions of –, such that (KI)ij = Ÿ(xi, xj). Following (Bach, 2013), we use this sample to

compute the following approximate feature function:

Ï̃(x)
def.
= K

≠ 1
2

I (Ÿ(xi, x))iœI œ R
I , (5.4)

where K
≠ 1

2
I is the inverse of the Cholesky decomposition of KI . One can easily check

that for any pair (xi, xj) in the dataset I, Ï̃(xi)
T Ï̃(xj) = Ÿ(xi, xj) Thus, for any pair of

points (x, xÕ) we can approximate the kernel by Ÿ(x, xÕ) ƒ Ï̃(x)T Ï̃(xÕ). The functional

whose expectation has to be maximized over (u, v) reads

fxy
Á (u, v) = u(x) + v(y) ≠ Á exp

3

u(x) + v(y) ≠ c(x, y)

Á

4

.

In the RKHS, considering a sample (xi, yi)i=1...n, we can express u and v as linear

combinations of kernel functions u(x) =
qn

i=1 aiŸ(xi, x) and v(y) =
qn

i=1 biŸ(yi, y).

Replacing the kernel by the scalar product of approximate features, we can rewrite

u(x) =
qn

i=1 aiÏ̃(xi)
T Ï̃(x) and v(y) =

qn
i=1 biẪ(yi)

T Ẫ(y) where Ï̃ (resp. Ẫ) is con-

structed from the kernel matrix of i.i.d. samples (x1, . . . , xn) (resp.(y1, . . . , yn)) from

distribution – (resp. —). Plugging these expressions back in fxy
Á (u, v), the problem boils

down to optimizing over (a, b) œ R
n

f̃xy
Á (a, b) =

n
ÿ

i=1

aiÏ̃(xi)
T Ï̃(x) +

n
ÿ

i=1

biẪ(yi)
T Ẫ(y)

≠ Á exp

A

qn
i=1 aiÏ̃(xi)

T Ï(x) +
qn

i=1 biẪ(yi)
T Ẫ(y) ≠ c(x, y)

Á

B

.
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We introduce a change of variables (wu, wv)
def.
= (

qn
i=1 aiÏ̃(xi),

qn
i=1 biẪ(yi)) which

yields

f̃xy
Á (wu, wv) = Ï̃(x)T wu + Ẫ(y)T wv + exp

A

Ï̃(x)T wu + Ẫ(y)T wv ≠ c(x, y)

Á

B

.

SGD can now be used to compute iterates of (wu, wv) which are two vectors of size I,

whereas (a, b) were vectors of size n, the size of the sample growing with each iteration of

the algorithm. The algorithm for kernel SGD with incomplete Cholesky decomposition

is outlined below. The algorithm outputs the pair of vectors (wu, wv) from which we

recover the dual variables via

u(x) = wT
u Ï̃(y) and u(x) = wT

v Ẫ(y).

5.2.2 Random Fourier Features

Random Fourier Features (RFF) are another popular approximation of the feature

map in the case where the kernel function is translation invariant i.e. Ÿ(x, y) = Ÿ(y ≠x).

Proposition 25. (Rahimi and Recht, 2007) Consider a translation invariant kernel

Ÿ, and let p denote its Fourier transform. Let (Ê1, . . . , ÊD) a D≠sample from p and

(b1, . . . , bD) a D≠sample from U [0, 2fi]. We define the approximate feature map z : X ‘æ
R

D by

z(x) =

Ú

2

D
[cos(ÊT

1 x + b1), . . . , cos(ÊT
Dx + bD)],

Then z(x)T z(y) is an good approximation of k(x ≠ y) with high probability :

P[sup
x,y

|z(x)T z(y) ≠ k(x ≠ y)| > Á] = O(exp
≠DÁ

4(d + 2)
).

Results from (Rahimi and Recht, 2009) imply that O(n) random features are needed

to obtain a O(1/
Ô

n) bound on the error when learning with RFF in a general setting.

However, these bounds are refined in (Rudi and Rosasco, 2017) and (Carratino et al.,

2018) to O(
Ô

n) random features for kernel ridge regression and supervised learning

with a squared loss, respectively. Contrarily to the incomplete Cholesky decomposition,

which could be used for any positive definite kernel Ÿ, Random Fourier Features require

to have an explicit formula for the Fourier transform of Ÿ which restricts the possibilities.

For a Gaussian kernel with bandwidth ‡, its Fourier transform is a Gaussian with

bandwidth 1/‡2. Thus the frequencies Ê are drawn according to a N (0, 1/‡2). The

details of the implementation of kernel SGD with RFF are given in algorithm 7. The

procedure is the same as the one used for kernel SGD with incomplete Cholesky, namely

using the kernel expansion for u and v and then making a change of variable to reduce

the dimensionality of the problem. The approximate feature functions Ï̃ and Ẫ from
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Algorithm 7 Kernel SGD for continuous OT with Random Fourier Features

Input: C, kernel Ÿ, Fourier transform of the kernel p, dimension of feature space D
Output: (wu, wv)k=1,...

Sample (Ê1, . . . , ÊD) from p
Sample (b1, . . . , bD) from U [0, 2fi]
Def z(x) :

return
Ò

2
D [cos(ÊT

1 x + b1), . . . , cos(ÊT
Dx + bD)]

for k = 1, 2, . . . do
Sample (xk, yk) from – ¢ —

z
(k)
x = z(xk) ; z

(k)
y = z(yk)

⁄(k) def.
= exp

3

(z
(k)
x )T w

(k≠1)
u +(z

(k)
y )T w

(k≠1)
v ≠c(xk,yk)

Á

4

w
(k)
u = w

(k≠1)
u + CuÔ

k
(1 ≠ ⁄(k))z

(k)
x ; w

(k)
v = w

(k≠1)
v + CvÔ

k
(1 ≠ ⁄(k))z

(k)
y

end for

Cholesky decomposition are replaced by z, the feature map obtained with RFF (note

that contrarily to the Cholesky method, we use the same feature map for expansions of

u and v). The algorithm outputs the pair of vectors (wu, wv) from which we recover

the dual variables via

u(x) = wT
u z(x) and v(y) = wT

v z(y).

5.3 Comparison of the Three Algorithms on Synthetic Data

We consider optimal transport in 1D between a Gaussian – and a Gaussian mix-

ture — whose densities are represented in Figure 4.4 (a). Since there is no exist-

ing benchmark for continuous transport, we use as a proxy for — an empirical distri-

bution —̂N
def.
= 1

N

qN
i=1 ”yi with N = 103 and we compute the solution of the semi-

discrete problem WÁ(–, —̂N ) with SGD. SGD yields a N≠dimensional vector v from

which we can compute u at any point of the space thanks to the optimality condition

u(x) = ≠Á(log 1
N

qN
i=1 e

vi≠c(x,yi)

Á ).

We first exhibit the convergence of the classic method (without speedup by approx-

imate features) by studying the convergence of the potential u. The iterates u(k) are

plotted on a grid for different values of k in Figure 4.4 (c), to emphasize the conver-

gence to the proxy ûú. We can see that the iterates computed with the RKHS converge

faster where – has more mass. This makes sense, since convergence estimates are for

E[fXY
Á (u(k), v(k))] and thus the value of u(k) has more influence where – has more mass.

Figure 4.4 (b) represents the plot of ||u(k) ≠ ûú||2/||ûú||2 where u(k) (resp. ûú) is the

evaluation of u(k) (resp. ûú) on a sample (xi)i=1...N Õ drawn from –. This gives more

emphasis to the norm on points where – has more mass, for the reason given before.

We then compare the classic method to both speedup methods in terms of CPU time.

We choose a Gaussian kernel as it is simple to implement in all three cases although it is
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Figure 4.4 – Numerical illustration of the performance of classic kernel-SGD (without
features approximation) (a) Plot of d–

dx and d—
dx . (b) Plot of ||u(k) ≠ ûú||2/||ûú||2 as a

function of k with SGD in the RKHS, for regularized OT using Á = 10≠1. (c) Plot of
the iterates u(k) for k = 103, 104, 105 and the proxy for the true potential ûú, evaluated
on a grid where – has non negligible mass.

Figure 4.5 – Comparison of the three kernel-SGD algorithms (without speedup, with in-
complete Cholesky decomposition, and with Random Fourier Features) for the Gaussian
kernel. Computational time is quadratic in the number of iterations for classic kernel-
SGD, but becomes linear with an approximate features approach. Increasing the quality
of feature approximation (parameter I for Cholesky, D for RFF) does not significantly
impact computational time.
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Figure 4.6 – Comparison of convergence of kernel-SGD with different methods, to
solve regularized OT using Á = 10≠1for different methods. The curves represent
||uk ≠ ûú||2/||ûú||2 as a function of k. Random Fourier Features with D > 20 give similar
performance to the classic kernel-SGD method in under 3 minutes against over 6 hours
for the classic method (for 106 iterations).

fairly sensitive to the bandwidth parameter ‡. The computation time as a function of the

iteration number is given in Figure 4.5, As mentioned previously, the main cost of classic

kernel-SGD lies in the computation of the iterates u(k≠1)(xk)
def.
=

qk≠1
i=1 w(i)Ÿ(xk, xi)

and v(k≠1)(yk)
def.
=

qk≠1
i=1 w(i)Ÿ(yk, yi). Thus, the iterations become more costly over

time, making this algorithm impractical for applications. On the other hand, for both

speedup methods, the computation time of u(k≠1)(xk) is the same for each iteration.

The incomplete Cholesky decomposition requires some preprocessing to compute the

inverse of the Cholesky root of the kernel matrix on a sample denoted by (KX)≠ 1
2 , after

which the main cost of each iteration is computing the feature vector of xk, denoted

Ï̃x
k

def.
= (KX)≠ 1

2 Ÿ(XI , xk) and then its scalar product with w
(k≠1)
u to get u(k≠1)(xk). For

the Random Fourier Features, the preprocessing is minimal, as is simply consists in

drawing a D-sample from the probability distribution p corresponding to the Fourier

transform of the kernel, and another D-sample from the uniform on [0, 2fi] to define the

approximate feature function z. Then the main cost of each iteration also resides in

the computation of the feature vector z(xk)
def.
=

Ò

2
D [cos(ÊT

1 x + b1), . . . , cos(ÊT
Dx + bD)],

before computing its scalar product with w
(k≠1)
u to get u(k≠1)(xk). Thus, aside from pre-

processing, the difference in iteration time between Cholesky decomposition and RFF

lies in the computation of the feature vector. In our implementation, RFF are slightly

more efficient, even for larger feature size D.

We are now interested in how the major speedup gained with approximate features
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impacts the quality of the solution. The curves in Figure 4.6 plot the convergence of

u(k) to ûú for each of the methods, with the same learning rate C and bandwidth ‡. For

the Cholesky decomposition, the parameter I controls the quality of the approximation.

Note that numerically, we are limited to small values of I (no more than 15) because the

eigenvalues of the kernel matrix decay exponentially fast with its dimension and thus

its Cholesky root quickly become non-invertible. For the Random Fourier Features,

the quality of the approximation is controlled by D, for which we have no particular

restriction. From the CPU-time experiment, we see that taking larger values of I and D

doesn’t impact the computation time very much, but it clearly improves convergence up

to a certain point after which there is no more improvement. We can see that Random

Fourier Features yield a better approximation than incomplete Cholesky decomposition

even for small D. In terms of performance, RFF with feature vectors of size D =

20, 50, 100 give similar results, while D = 5 is too small to get a good approximation. In

terms of computational time, RFF with D = 20 takes less than 3 minutes to perform 106

iterations, while D = 100 takes around 5 minutes, without any significant improvement.

In comparison, to reach the same level of precision (which requires the same number of

iterations), classic kernel-SGD takes over 6 hours!
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Entropy-regularized OT was historically introduced in (Cuturi, 2013) as a computa-

tional tool to solve discrete OT efficiently thanks to Sinkhorn’s algorithm, and it opened

the door to a rich line of research which aims at better understanding its computational

and theoretical scope. The contributions of this thesis to this topic can be organized

in two main axes. The first one consists in exploiting the properties of entropic regu-

larization to make OT-based losses efficient in machine-learning problems. The second

one concerns the interpolation property of entropy-regularized OT, bridging the gap

between standard OT and MMD.

Making OT-based Losses Tractable for Machine Learning. Using the entropic

regularization with respect to the product measure of the marginals (Genevay et al.,

2016) enables us to address both the computational and the statistical issues from which

standard OT suffers, by reformulating entropy-regularized OT as the maximization of

an expectation (Chapter 1, Sec. 3).

The Statistical Issue: We prove that the dual optimizers of entropy-regularized OT

lie in a ball of a Reproducing Kernel Hilbert Space (Chapter 3, Sec. 4). Combined

with the formulation as an expectation, this enables us to use techniques from error

bounding in learning theory to get a sample complexity result for entropy-regularized

OT. We prove that for a large enough regularization, entropy-regularized OT does not

suffer from a curse of dimensionality (Chapter 3, Sec. 5).

The Computational Issue: Sinkhorn’s algorithm was a major breakthrough for com-

putational OT, but it is limited to discrete measures, and does not scale well when these

measures have a very large number of points. The formulation as an expectation allows

us to use stochastic optimization solvers, which only require samples from the measures

and operate in an online manner (Chapter 4). These algorithms can tackle cases where

Sinkhorn is not a suitable choice to solve entropy-regularized OT: discrete problems with

a very large number of points, or problems involving continuous measures. For problems

involving two continuous measures, we can exploit the fact that the dual optimizers of

entropy-regularized OT lie in a ball of a Reproducing Kernel Hilbert Space to derive a

provably convergent kernel-SGD solver (Chapter 4, Sec. 5.1).

Minimizing OT-based Losses: We make use of the GPU-friendly structure of Sinkhorn’s

131
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algorithm to propose a minimization scheme for OT based-losses (Chapter 2, Sec. 3). We

use stochastic gradient over an approximate loss computed with Sinkhorn’s algorithm

and compute the gradient with automatic differentiation. We use this method to learn a

parametric distribution from samples, and prove that it scales well to high-dimensional

problems such as generative models of images (Chapter 2, Sec. 4.3) where it can improve

on state-of-the-art methods.

Interpolating Between OT and MMD with Sinkhorn Divergences. When

comparing one measure to itself, the loss induced by entropy-regularized OT is not

equal to zero. To solve this issue, we introduced Sinkhorn Divergences, which are based

on entropy-regularized OT with corrective terms. This new family of losses interpolates

between OT when the regularization parameter goes to zero and MMD when the regu-

larization parameter goes to infinity (Chapter 2, Sec. 2.4). The interpolation property

is also true in terms of sample complexity, which gives theoretical grounds to empirical

evidence suggesting that using a regularizer that is not too small is better in practice.

Indeed, when the regularization parameter is large enough we recover sample complexity

rates from MMD, thus breaking the curse of dimensionality from OT. However, when

taking a small regularization, sample complexity degrades quickly in high dimension

(Chapter 3, Sec. 5). This theoretical result further advocates for the use of Sinkhorn

Divergences with regularization parameters that are not too small. Aside from yielding

better performance for machine learning tasks, a large regularization parameter ensures

a faster convergence of Sinkhorn’s algorithm and is thus also beneficial in terms of com-

putational time. In practice, the regularization parameter in Sinkhorn Divergences gives

an additional degree of freedom to the loss function which can be cross-validated to get

the best of both OT and MMD in learning tasks (Chapter 2, Sec. 4).

Perspectives for Further Work.

Let us start by mentioning direct extensions of results from this thesis. The first idea

to explore is the extension of the sample complexity result from Chapter 3, Theorem 18,

to non-smooth cost functions and metric spaces that are not bounded subsets of R
d.

Another improvement would consist in tightening the upper-bound on the convergence

rate in this theorem to combine it with Theorem 16, which gives a convergence rate on

the approximation of OT with regularized OT. Thus we would get a heuristic on the

choice of the regularization parameter depending on the number of available samples

when one wants to approximate standard OT with regularized OT computed on samples.

Another issue linked to this chapter, but which extends beyond the techniques that we

used, is to derive convergence rates with respect to the number of samples for the

regularized transport plan, i.e. the optimizer of the primal problem, as it is a crucial

feature for some machine learning problems (e.g. domain adaptation (Courty et al.,
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2016)).

In Chapter 4, Sec. 5.1 we develop an algorithm to compute regularized OT between

any two arbitrary measures using kernel-SGD on the dual problem. We only apply

our algorithm to a simple 1D problem as a proof of concept, as we did not have any

baseline to assess convergence of entropy-regularized OT for continuous measures in

high dimension. However, following (Seguy et al., 2017) which uses our scheme with

a neural-network parametrization of the dual variables instead of a RKHS expansion,

we could use the results directly to perform learning tasks that involve OT between

continuous measures. The applications they consider are domain adaptation and image

generation. Besides, all stochastic algorithms presented in Chapter 4 could be extended

to the case of regularized unbalanced OT (Chizat et al., 2018), as it can also be cast as

the maximization of an expectation (see Chapter 1, Remark 6).

The introduction of Sinkhorn Divergences opens the door to several extensions or

generalizations. For instance, one might consider unbalanced Sinkhorn Divergences

defined with regularized unbalanced OT and see if the interpolation property, positive

definiteness and sample complexity results still hold. Another thing would be to extend

the sample complexity and positive definiteness results to Sinkhorn Divergences defined

without the added entropy in the cost function (see Definition 9 and Remarks 13 and 14),

and more generally to understand the potential benefits and drawbacks of using the

entropy or not when considering the cost in Sinkhorn Divergences. Eventually, using

regularizers other than the relative entropy as introduced in Chapter 1, Sec. 3 is a track

worth exploring, although the entropy is central to most of our analysis and only the

online algorithm from Chapter 4, Sec. 4 for continuous measures directly applies.

Wasserstein barycenters, which are used to represent the mean of a set of empirical

probability measures (Agueh and Carlier, 2011) represent a rich line of research in

OT although we did not explore it in this thesis. They can be computed efficiently

with entropic regularization (Cuturi and Doucet, 2014), and the online semi-discrete

solver developed in Chapter 4, Sec. 4 is well suited to aggregate streaming data (Staib

et al., 2017). Given the good numerical results obtained for the Wasserstein barycenter

problem with entropy, they could also benefit from the corrective terms in Sinkhorn

Divergences.

Taking a step back from entropy-regularized OT, an open issue which is central to

Chapter 2 is the evaluation of generative models (see Sec. 4.3). Comparing the outcomes

of learning procedures with various losses is a burning issue and the lack of good eval-

uation metrics makes it impossible to make a definitive ranking of the different losses

appearing in the literature. The recent paper by (Lucic et al., 2018) introduces some

evaluation metrics suggesting that losses are all equivalent for high dimensional problems

such as image generation, making the architecture of the network the most important

factor. It is then crucial to understand how the architecture influences smoothness,

generalization properties or interpolation in the latent space for instance. Besides,
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even though different losses yield similar results for the inference of generative mod-

els, entropy-regularized OT can still act as robust metrics to evaluate models after the

inference procedure.

Eventually, we conclude this thesis with a final question : are there ways to break the

curse of dimensionality for the Wasserstein distance? Sinkhorn Divergences provide a

robust loss for a large enough regularization as seen in Chapter 3, but they do not solve

the curse of dimensionality when one wants to compute standard OT from samples. The

existence of robust empirical estimators of the Wasserstein distance in high dimension

still remains an open question.
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ABSTRACT 

This thesis proposes theoretical and numerical contributions to use Entropy-regularized Optimal 

Transport (EOT) for machine learning. We introduce Sinkhorn Divergences (SD), a class of 

discrepancies between probability measures based on EOT which interpolates between two 

other well-known discrepancies: Optimal Transport (OT) and Maximum Mean Discrepancies 
(MMD). We develop an efficient numerical method to use SD for density fitting tasks, showing 

that a suitable choice of regularization can improve performance over existing methods. We 

derive a sample complexity theorem for SD which proves that choosing a large enough 

regularization parameter allows to break the curse of dimensionality from OT, and recover 

asymptotic rates similar to MMD. We propose and analyze stochastic optimization solvers for 
EOT, which yield online methods that can cope with arbitrary measures and are well suited to 

large scale problems, contrarily to existing discrete batch solvers.  

MOTS CLÉS 

Apprentissage Statistique, Transport Optimal  

RÉSUMÉ 

Le Transport Optimal régularisé par l’Entropie (TOE) permet de définir les Divergences de 

Sinkhorn (DS), une nouvelle classe de distance entre mesures de probabilités basées sur le TOE. 

Celles-ci permettent d’interpoler entre deux autres distances connues: le Transport Optimal 

(TO) et l’Ecart Moyen Maxi- mal (EMM). Les DS peuvent être utilisées pour apprendre des 
modèles probabilistes avec de meilleures performances que les algorithmes existants pour une 

régularisation adéquate. Ceci est justifié par un théorème sur l’approximation des SD par des 

échantillons, prouvant qu’une régularisation suffisante permet de se débarrasser de la 

malédiction de la dimension du TO, et l’on retrouve à l’infini le taux de convergence des EMM. 

Enfin, nous présentons de nouveaux algorithmes de résolution pour le TOE basés sur 
l’optimisation stochastique ‘en-ligne’ qui, contrairement à l’état de l’art, ne se restreignent 

pas aux mesures discrètes et s’adaptent bien aux problèmes de grande dimension. 

KEYWORDS 

Machine Learning, Optimal Transport  
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