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Dr. Agnieszka Trzcińska Heavy Ion Laboratory, University of Warsaw, Poland

mailto:Mateusz.Sitarz@fuw.edu.pl
http://en.uw.edu.pl/
https://www.fuw.edu.pl/
http://www.zfj.fuw.edu.pl/
https://www.univ-nantes.fr/
https://ed-3m.u-bretagneloire.fr/
mailto:Jerzy.Mietelski@ifj.edu.pl
mailto:Gilles.Defrance@ganil.fr
mailto:jarekz@fuw.edu.pl
mailto:koester@ill.fr
mailto:Tomasz.Matulewicz@fuw.edu.pl
mailto:haddad@arronax-nantes.fr
mailto:agniecha@slcj.uw.edu.pl




iii

“And thus the bitter task forego
Of saying the things I do not know,–
That I may detect the inmost force
Which binds the world, and guides its course;
Its germs, productive powers explore,
And rummage in empty words no more”

Johann Wolfgang von Goethe, Faust
trans. Bayard Taylor
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Research on production of new medical radioisotopes with cyclotron

Today, radioisotopes are commonly used in medicine, both in diagnosis and therapy.
However, steady development of nuclear medicine demands the application of new medical
radioisotopes. The investigation of their possible large-scale production is a first step in a
long research process before they can be used in clinical trials.

In this thesis, the production routes were studied for the formation of medically inter-
esting 43Sc, 44m,gSc, 47Sc, 97Ru, and 105Rh with the use of cyclotrons. The scandium radioiso-
topes were produced with calcium and titanium targets and proton or deuteron beams; 97Ru
was obtained through the irradiation of molybdenum with α particles; and production of
105Rh was studied with ruthenium targets and deuteron beam. Two parameters were deter-
mined experimentally: nuclear reaction cross-section, σ(E), and Thick Target Yield, TTY(E),
which were used to discuss the possibility of optimal large-scale production conditions of
discussed radioisotopes. Additionally, the conversion of σ(E) to TTY(E) was automatized
by developing a dedicated software, and an algorithm for the reconstruction of σ(E) based
on TTY(E) measurements was introduced.

Badania cyklotronowej produkcji nowych radioizotopów medycznych

Obecnie, radioizotopy są powszechnie używane w medycynie, zarówno do diagnostyki
jak i do terapii. Jednak ciągły rozwój medycyny nuklearnej wymaga zastosowania nowych
radioizotopów medycznych. Poszukiwania ich możliwej produkcji na dużą skalę to pierwszy
krok w długim procesie badań, zanim trafią one do prób klinicznych.

W tej rozprawie, zbadano drogi produkcji medycznych radioizotopów 43Sc, 44m,gSc, 47Sc,
97Ru oraz 105Rh z użyciem cyklotronów. Radioizotopy skandu zostały wyprodukowane z
użyciem tarcz wapiennych i tytanowych oraz wiązek protonów i deuteronów; 97Ru był
otrzymany przez aktywację molibdenu wiązką cząstek α; natomiast produkcja 105Rh została
zbadana z użyciem tarcz rutenowych i wiązki deuteronów. Dwa parametry zostały zmierzone:
przekrój czynny na reakcję jądrową, σ(E), oraz wydajność produkcji, TTY(E), które posłużyły
do oszacowania warunków do optymalnej produkcji badanych radioizotopów na dużą skalę.
Dodatkowo, zautomatyzowano przeliczenie σ(E) do TTY(E) za pomocą stworzonego opro-
gramowania, oraz zaproponowano algorytm rekonstrukcji σ(E) na podstawie pomiarów
TTY(E).

Recherche sur la production des nouveaux radio-isotopes médicaux par cyclotron

Aujourd’hui, les radio-isotopes sont fréquemment utilisés en médecine, pour le diagnos-
tic et la thérapie. Cependant, le développement constant de la médecine nucléaire provoque
l’application de nouveaux radio-isotopes médicaux. La recherche sur leur production possi-
ble à grande échelle est la première étape d’un long processus d’études avant de pouvoir de
les utilisé dans des essais cliniques.

Dans cette thèse, les voies de production ont été étudiées pour la formation de médi-
calement intéressants 43Sc, 44m,gSc, 47Sc, 97Ru et 105Rh en utilisant de cyclotrons. Les radio-
isotopes de scandium ont été produits avec des cibles en calcium et en titane et avec des
faisceaux de protons ou de deutérons; 97Ru a été obtenu par irradiation de molybdène avec
des particules α; et la production de 105Rh a été étudiée avec des cibles en ruthénium et avec
un faisceau de deutéron. Deux grandeurs ont été déterminés expérimentalement: la section
efficace de réaction nucléaire, σ(E), et l’efficacité de la production, TTY(E), qui ont été util-
isés pour discuter des conditions possibles de production optimale à grande échelle de ces
radio-isotopes. De plus, la conversion de σ(E) en TTY(E) a été automatisée en développant
un logiciel spécialisé, et un algorithme de reconstruction de σ(E) avec des valuers de TTY(E)
a été introduit.
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Chapter 1

Introduction

1.1 Brief history of nuclear medicine

In 20th century, Karl Popper concluded that we study the ideas of the universe based on
their manifestations in the reality and so it is relatively easy to advance in natural sciences,
where many manifestations are stable [1]. And indeed, Popper’s times flourished with amaz-
ing discoveries in physics, engineering, chemistry and biology as well as with the interesting
insight to bring their advanced methods to the medicine.

The fusion between modern physics and medicine started in 1895 when Wilhelm Roent-
gen discovered the x-ray and its application to visualize the internal structures of the hu-
man body without the necessity of surgery (Nobel Prize in 1901). Later, the phenomena of
radioactivity and the methods for its measurements were discovered by Marie Skłodowska
Curie who received two Nobel Prizes, in 1903 and 1911 (the first one jointly with Pierre Curie
and Henri Becquerel). Shortly after, Irène (the daughter of Marie and Pierre) and Frédéric
Joliot-Curie succeeded in using the radiation to induce radioactivity in previously stable
material (Nobel Prize in 1935). Then, tools were provided for the large-scale production of
radioactive materials. In 1938, Otto Hahn and Fritz Strassmann observed for the first time a
nuclear fission (Nobel Prize in 1944) which soon led to the nuclear reactors [2], while in 1939
Ernest Lawrence won the Nobel Prize for his invention of the cyclotron. At this time, John
Lawrence (the brother of Ernest) and many other researchers, started the clinical trials us-
ing dedicated radioactive substances to treat tumors [3]. The key in these studies, the tracer
principle, brought the Nobel Prize to George de Hevesy in 1943. Several years of research
passed before the emission reconstruction tomography was introduced by David Kuhl and
Roy Edwards in 1963 (summarised in [4]), which eventually gave rise to computed tomog-
raphy (CT), single-photon emission computed tomography (SPECT), and positron emission
tomography (PET), the versatile and reliable diagnostic techniques.

Today, we benefit from above-mentioned milestones in the field of nuclear medicine,
“a speciality that involves the use of radioactive isotopes in the diagnosis and treatment of
disease” [5], in particular of tumors, the second leading cause of death equally in devel-
oped and underdeveloped countries [6]. Over 40 million nuclear medicine procedures are
performed each year [7] fueled by around 50 different radioisotopes [7] produced mainly
either in around 80 dedicated nuclear reactors [8] or in over 1200 dedicated cyclotrons [9].
The use of radioisotopes often comes with complementary techniques, like in the case of the
hybrid imaging with PET/MRI [10, 11] or PET/CT [12], which substantially improve the ef-
fectiveness of these modalities. Similarly, the radioisotope-based therapy is accompanied by
various procedures (including surgery, chemotherapy or external beam therapy) to improve
the effects of the treatment [13]. More importantly, many innovative solutions were intro-
duced recently to the nuclear medicine, mainly: β+γ coincidence imaging and new detector
systems (like XEMIS or J-PET) (see Appendix B), the procedure of labelling of nanoparticles
[14] and microspheres [15], radioimmunotherapy with the use of monoclonal antibodies [16],
combination therapy (which uses multiple radioisotopes) [17], and theranostic (which is a
fusion of diagnostic and therapeutic approaches) (see Section 2.3.5). At the same time, new
methods for optimal production of other attractive radioisotopes are being constantly devel-
oped [18, 19]. In the light of the increasing cases of cancer each year [20], this evolution of
nuclear medicine is really paramount.
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1.2 Aim of this thesis

One could say that nuclear medicine is like a clock since it is based on the collective
work of several specialists from multiple disciplines. However it is a special, self-improving
clock which elements stimulate one another. For example, the development of modalities
in medicine demands the research and production of new radioisotopes. At the same time,
studies of innovative production routes encourage the use of new techniques for imaging or
therapy.

This thesis is an attempt to outline this particular relation: between the nuclear physics
behind the production of radioisotopes and modern solutions in nuclear medicine. Follow-
ing radioisotopes were selected for this purpose: 97Ru, 105Rh, and 43,44g,m,47Sc. Their cross-
sections and Thick Target Yields are studied with the use of cyclotrons located in three labo-
ratories:

• Heavy Ion Laboratory, University of Warsaw, Poland,

• GIP ARRONAX, Saint-Herblain, France,

• National Centre for Nuclear Research, Świerk, Poland.

The aim of these studies is to confirm the efficient production routes offered by the cy-
clotrons for above-mentioned (and other) medical radioisotopes. Additionally, a software
for the calculation of Thick Target Yield is developed, and an algorithm for the cross-section
reconstruction is introduced. The conclusions and tools presented in this thesis might help
other physicists working on the production of the medical radioisotopes to push the evolu-
tion of nuclear medicine even further.

The following articles have been published based on the results from this work:

• Mateusz Sitarz, Katarzyna Szkliniarz, Jerzy Jastrzębski, Jarosław Choiński, Arnaud
Guertin, Férid Haddad, Andrzej Jakubowski, Kamil Kapinos, Maciej Kisieliński, Ag-
nieszka Majkowska, Etienne Nigron, Malihe Rostampour, Anna Stolarz, Agnieszka
Trzcińska, Rafał Walczak, Jolanta Wojtkowska, Wiktor Zipper, Aleksander Bilewicz.
“Production of Sc medical radioisotopes with proton and deuteron beams”. Applied
Radiation and Isotopes 142 (2018), pp. 104–112.

• Mateusz Sitarz, Etienne Nigron, Arnaud Guertin, Férid Haddad, Tomasz Matulewicz.
“New Cross-Sections for natMo(α,x) Reactions and Medical 97Ru Production Estima-
tions with Radionuclide Yield Calculator”. Instruments 3.1 (2019), p. 7.

• Mateusz Sitarz, Jerzy Jastrzębski, Férid Haddad, Tomasz Matulewicz, Katarzyna Szk-
liniarz, Wiktor Zipper. “Can We Extract Production Cross-Sections from Thick Target
Yield Measurements? A Case Study Using Scandium Radioisotopes”. Instruments 3.2
(2019), p. 29.
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Chapter 2

Theoretical background

2.1 Nuclear Physics

2.1.1 Structure of nucleus

It was presumed in Ancient Greece that all objects consist of many, very small elements.
Today, we would rather say more precisely that the observable matter consists of atoms of
the size in the order of 10−10 m. However, their true name, atomos (gr. indivisible), is not
valid since the introduction of the atom model by Niels Bohr (Nobel Prize in 1922). We
know that atom has an internal structure, with the very dense (~1015 g/cm3) and very small
(~10−14 m) nucleus at its center, and low-mass electrons orbiting around it. The nucleus itself
is a collection of nucleons (Z protons and N neutrons) that define the atomic mass A = Z+ N
of isotope they form. On the energy scale, the masses of nuclei are about A ·mn where mn is
in the order of 1 GeV/c2. The parameter Z, called atomic number, translates to the number
of electrons that the nucleus can hold via electromagnetic interaction and therefore defines
the chemical properties of the atom.

The electrostatic repulsion of positively charged protons is countered by much stronger
nuclear force between nucleons. Nuclear force originates from the attractive, strong funda-
mental force between quarks that form each nucleon. Figure 2.1 shows the proposed po-
tentials V(r) of such interaction depending on the distance r between two nucleons (figure
taken from [21]). Every model confirms the following regions:

FIGURE 2.1: Three examples of the modern nucleon-nucleon potential
(see [21] for more details).
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• the repulsive core (r < 1 fm),

• the intermediate range part (1 fm ≤ r ≤ 2 fm), dominated by the exchange of two
mesons π or heavy mesons ρ,ω, and σ,

• the long range part (r > 2 fm), with the exchange of one meson π.

The mesons manage to transfer strong quark interaction between different nucleons (trans-
forming protons to neutrons and neutrons to protons in the process) which keeps the nucleus
together. However, this effect diminishes rapidly with distance. But if the distance between
two nucleons is small enough, they interact and reach the minimum of the potential well.

The binding energy of a nucleus is in the order of about 8 MeV per each nucleon. In a
quantum mechanical description, assuming a nucleon in a potential created by the cumula-
tive interaction with all other nucleons, the nucleon occupies certain energy levels (which are
obviously model-dependent). As nucleons are spin 1/2 fermions, they obey Pauli exclusion
principle, and so protons and neutrons populate different energy levels in their potential
wells (as shown in Figure 2.2) with different parity, angular momentum and spin. As in any
other physical system, nucleons too aim for the lowest energy possible and, if excited, they
will de-excite and reach the lowest available energy state while emitting the γ quanta of the
energy corresponding to the energy difference between levels1 (typically in the order of keV
or MeV). The γ quanta may be then absorbed by the electron of the atom (see Section 2.2.3)
in the process of the internal conversion.

FIGURE 2.2: Protons and neutrons populating the energy levels of the
116Sn potential well [22].

The potential well for protons (Figure 2.2) is less deep compared to neutrons, what is the
effect of long-range electrostatic repulsion between protons. Additionally, between certain
energy levels, a pronounced energy gap appears. It makes the nucleonic system filled to this
gap exceptionally bound (so called “magic numbers” shown in Figures 2.2 and 2.3). The
nucleus potential is studied more thoroughly within the shell model.

Another approach, the droplet model, helps to understand the total energy of nuclei.
This phenomenological model accounts for the short range of effective strong interaction
between nucleons and the long-range electrostatic repulsion between protons. The surface
effect is accounted for as well as the symmetry energy (being the consequence of the Fermi
gas model). The model explains well why the nucleon binding energy per nucleon initially

1The decay of an excited nuclear level may occur in various modes. In principle, different decay
chains (with corresponding γ quanta of different energies) may be activated. The time-resolved γ spec-
troscopy is a powerful tool to identify decaying nuclei.
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increases with atomic mass A and starts to decrease from A ≈ 60. Simply put, more nucleons
translate to increased number of strong interactions but many nucleons form a big nucleus
with considerable electrostatic repulsion. There is broad maximum of about 8 MeV which is
the approximative energy required to remove one nucleon from the nuclei (it also explains
the shift between excitation function for the evaporation of consecutive nucleus from the CN
seen in Figure 2.5).

More precise values of total binding energy of the nucleus can be obtained from the
droplet model calculations which consider nuclear interaction between nucleons inside the
nucleus volume and on the surface, electrostatic repulsion of protons, asymmetry between
protons and neutrons, and pairing effect. The surface and Coulomb factors are addition-
ally affected by the deformation of the nucleus. More advanced theoretical models, like the
Density Functional Theory, are developed to provide mass predictions for heavy nuclei.

2.1.2 Stability and radioactivity

Conditions and types of decay

The symmetry between protons and neutrons is a very important factor for the stabil-
ity of a nucleus. Similar amount of protons and neutrons (populated as in Figure 2.2) is the
configuration of the lowest potential energy that forms stable nuclei of low mass. However,
the repulsive interaction of the Coulomb force between protons gains importance for heavy
nuclei, what results in significant neutron excess in stable heavy nuclei. For example, 208Pb
has the neutron-to-proton ratio of about 3 : 2. Any deviation from the minimal energy in a
nucleus system causes the weak decay, effectively changing one proton to one neutron (or
neutron to proton). For the heaviest nuclei, electric repulsion may induce another transfor-
mation in which the entire chunks of the nucleus are ejected, usually in the form of α par-
ticles (or in some cases as the spontaneous fission). All these processes are summarized in
Table 2.1 and result in the transformation from initial nuclei (of the wave function ψi) to the
new final nuclei (ψ f ). Sometimes after the decay, excited levels of the nucleus are populated
(nucleus marked with star in Table 2.1), followed by IT – a fast emission of electromagnetic
radiation, or the internal conversion.

TABLE 2.1: Types of most common radioactive decays.

Name Decay process Intermediate process

β+ decay A
ZX Ý A

Z−1X + e+ + νe p Ý n + e+ + νe

β– decay A
ZX Ý A

Z+1X + e + ν̄e n Ý p + e + ν̄e

electron capture (EC) A
ZX Ý A

Z−1X + νe p + e Ý n + νe

α decay A
ZX Ý A−4

Z−2X + α

isomeric transition (IT) A
ZX∗ Ý A

ZX + γ nucleus de-excitation

The weak decay is a spontaneous process which has a certain probability to occur in each
unit of time. Its probability, λ [s−1], is related to the Hamiltonian V̂ of the weak interaction
and the phase space:

λ ∼
∣∣∣ 〈ψ f

∣∣∣V̂∣∣∣ψi

〉∣∣∣2 (2.1)

This probability is also related to the mean life-time, τ, of unstable isotopes (radioisotopes)
as they are expected to decay:

τ =
1
λ

(2.2)
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Alternatively, radioisotope half-life (the time after which half of unstable nuclei will decay)
is given as:

T1/2 =
ln(2)

λ
(2.3)

Half-lives vary from few nanoseconds to years (in the scale comparable to the age of Earth),
depending on the nuclide and decay type. Usually, decays (other than IT) leave the resid-
ual nucleus in the excited state, which de-excite by emitting γ rays (photons) of energies Eγ

characteristic for its energy levels (Figure 2.2) with different observed intensities Iγ (prob-
ability corrected for internal conversion). The γ emission occurs almost instantly after the
decay (up to few picoseconds). Still, some isotopes can have a metastable (isomeric) state2,
which represents the excited state of nuclei with a T1/2 comparable to half-lives of other
decays.

Over 3000 nuclides with different N and Z, stable and unstable, are categorized in the
form of chart of nuclides – a simplified version is shown in Figure 2.3. Each stable isotope
of the same element is characterized by its natural abundance – the proportion in which it
is found on Earth. The nuclei with the same Z are called isotopes, and with the same A –
isobars.

FIGURE 2.3: Simple version of chart of nuclides [23]. The stable nuclei
are marked in black and unstable in color, based on their half-lives.

Values denote the magic numbers.

Definitions of radioactivity

The decay is a quantum, statistical process, therefore it is not possible to predict when
one given nuclei will decay. However, it is possible to observe number of decays dN1 of N1
unstable nuclei in the time period dt. This value is called activity, A(t), and it is measured in
Becquerel [Bq] (the number of decays per second). Activity is related to the number of nuclei

2In these cases, ground and metastable states are distinguished by noting “g” and “m” correspond-
ingly after atomic number.
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and their probability λ of decay per second:

dN1(t)
dt

= −A(t) = −λ · N1(t) (2.4)

This equation can be solved to show the exponential decay law:

A(t) = A(t=0) · exp(−λ · t) (2.5)

Here, the parameter A(t=0) is the activity at the beginning of the decay process (for example
at the End of Bombardment, AEOB, or at the beginning of the measurement, A0, as discussed
later).

If the decay product is also unstable, the subsequent decay is expected. The activity of
each radioisotope in such decay chain is given by the Bateman equations. In particular, for
double steps decay:

N1 N2 stable product
λ1·Pdec λ2

the production rate of nuclei N2 is given as:

dN2(t)
dt

= −λ2 · N2(t) + Pdec · λ1 · N1(t) (2.6)

where Pdec denotes the probability that N1 will decay to N2. Solving the system of Equations
2.4 and 2.6 for A2(t) yields the solution for “mother-daughter” decay (this relation is also
shown in Figure 4.24):

A2(t) = A1(t=0) · λ2 · Pdec
λ2 − λ1

· (exp(−λ1 · t)− exp(−λ2 · t)) + A2(t=0) · exp(−λ2 · t) (2.7)

Additionally, for a given radioisotope, the specific activity, SA(t) [Bq/mol], is defined3:

SA(t) =
A(t)
W(t)

(2.8)

where W is the amount of all isotopes (stable and unstable) of this element in moles at time
t. Specific activity can be used in post-irradiation chemical procedures to assess the contri-
bution of isotopic impurities of produced radioisotope of interest.

2.1.3 Nuclear reactions

Types of nuclear reactions

All radioactive isotopes decay therefore most of them do not exist in our environment in
high concentration. However, as discovered by Frédéric and Irène Joliot-Curie (see Section
1.1), they can be synthetically produced by irradiating stable matter. In practice, this means
colliding a particle (projectile) with the stable nucleus (target)4 using dedicated machines
and set-ups (for example, see Section 3.1). It is a challenge because nucleus is few orders
of magnitude smaller than the whole atom (see Section 2.1.1) and projectiles usually pass
through matter without interacting with the nuclei. To assure measurable amounts of events,
high projectile flux is needed.

If the projectile manage to pass near the nuclei, three main processes may happen (shown
in Figure 2.4).

1. Scattering. This can be elastic or inelastic process in which well-known electrostatic
potential bounces the projectile off the target. In the first case, kinetic energy remains

3Another definition of specific activity found in the literature is SA = λ · NA/M, with M as molar
mass [g/mol]. This definition is a constant value for each isotope, and is not used in this work.

4Unstable targets are usually used in the extreme cases of synthesising super-heavy nuclei.
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the same before and after scattering in the center of mass system. In the latter, part of
the kinetic energy is transferred to excite the target and/or projectile nucleus.

2. Creation of compound nucleus (CN). In this process, projectile collides with target
and interacts through the nuclear force. After mixing their momenta (balance cascade),
they usually form a system with high angular momentum and excitation energy (CN).
These steps can also populate scattering channels and direct processes when emitting
particles in the same manner. Typically, CN decays after ~10−16 s. This decay is usually
composed of a sequence of emission of neutrons followed by γ de-excitations. For
heavy system, CN might decay via fission. In both cases, new elements (residual) are
produced.

3. Direct processes. These include peripheral collisions or reactions with projectiles of
sufficient energy that can eject a fragment from the target (knock-out), transfer its frag-
ment to the target (stripping), or collect nucleons from the target (pick-up).

Reactions are written in the following equivalent notations:

projectile + target→ residual + ejectile

target (projectile, ejectile) residual

FIGURE 2.4: Possible processes through the interaction of projectile
with the target nucleus.

Reaction cross-section

For the production of medical radioisotopes, the most practical route leads via the for-
mation of CN. In quantum mechanics, to estimate the probability of the reaction of interest,
the commonly used approach is the optical model. Here, the nucleus is considered as a space
with potential that affects the behaviour of the waves representing particles (similar to the
glass that refracts the light). The typical wave function of a particle with momentum h̄~k and
position~r is a complex quantity:

ψ ∼ exp
(

i ·~k ·~r
)

(2.9)

In the nuclear reaction, the wave of the incoming projectile, ψin, passes through the po-
tential V(r), and changes to outgoing projectile (ejectile), ψout, scattered at the solid angle
Ω. The quantity we can observe is the probability, or cross-section (σ), for the process of
changing ψin into ψout affected by the nuclear interaction V̂ in given phase space:

dσ

dΩ
∼
∣∣∣ 〈ψout|V̂|ψin〉

∣∣∣2 (2.10)

The total cross-section is therefore:

σ =
∫

4π

dσ

dΩ
dΩ (2.11)



2.1. Nuclear Physics 9

FIGURE 2.5: The idea of total cross-section and separate channels for
proton (p) induced reactions with evaporation of different number
neutrons (n) from CN. The grey area represents the energy range
Emax Ý E0 that favours (p,2n) reaction. Other reactions channels are

ignored for the simplicity of the graph.

FIGURE 2.6: Cross-section for production of 97Ru with α-particles on
stable molybdenum isotopes (data from [24]). The natural abundance

of molybdenum is given in Table C.1 (Appendix C).
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Cross-section has a sense of a surface with the unit of [m2], or more commonly barn5 [b].
It corresponds to the effective surface of the literal cross-section of the target as seen by the
incoming projectile for a given process – if hit, the reaction occurs.

Using Born’s approximation, it is possible to reach the conclusion that the total probabil-
ity for all reactions is given by:

σ =
π

k2 · L
2
max (2.12)

where: Lmax – maximal angular momentum transfer during the collision; k – projectile’s
wavenumber. Both these factors are related to the energy E of the projectile (in laboratory
frame of reference) and provide the excitation curve, σ(E), seen in Figure 2.5 as dashed line.
It saturates at high energy, reaching so called geometrical cross-section representing the ef-
fective area of the target. The total cross-section splits for different reaction channels. The
emission of more ejectiles from CN increases with the projectile energy. While it is difficult
to calculate cross-section theoretically, certain softwares (like EMPIRE [25] or TALYS [26],
and its evaluation TENDL [24]) help to obtain these values with semi-empirical models.

Isotopes can be formed via various nuclear reactions on various nuclei. For example,
α-particle can produce isotope of 97Ru on many naturally abundant molybdenum isotopes.
The excitation functions for these reactions are shown in Figure 2.6. To calculate the cross-
section for natMo(α,x)97Ru reaction, all contributing cross-sections are added after the mul-
tiplication by the abundance of their target isotope.

Energy threshold and Q-value

For an interaction of projectile nuclei of mass m1, and target nuclei of mass m2, the Q-
value (Q [MeV]) is defined as:

Q = m1 · c2 + m2 · c2 −∑
i

mi · c2 (2.13)

where mi denotes the mass of i-th produced nucleus. Obviously, for elastic scattering, Q = 0.
For other processes, two cases are possible:

• Q < 0 then the reaction is endo-energetic, and the final system has higher mass (that
has to be delivered in the form of kinetic energy of colliding particles),

• Q > 0 then the reaction is exo-energetic, and the final system has lower mass.

The exo-energetic reaction may occur at any energy. For the endo-energetic reaction, a
laboratory energy limit, called threshold energy (Ethr), sets the minimum energy needed for
the reaction to occur. The laboratory energy threshold can be calculated from the conserva-
tion of momentum and energy to link it with Q-value:

Ethr = |Q| ·
(

1 +
m1

m2

)
(2.14)

Detailed formulas for two nuclei in the exit channel can be found in [27].

2.1.4 Production of radionuclides using charged particles

Irradiation

Let’s consider a flux fp of charged projectiles per second impinging perpendicularly on
mono-layer solid target (foil) of the surface S consisting of Nstab stable nuclei of cross-section
σ for the interaction (Figure 2.7).

The probability Phit of hitting the target nuclei leading to a given reaction process is
therefore:

Phit =
σ · Nstab

S
(2.15)

5The cross-sections values vary usually from few millibarns to few barns. The conversion 1 b =
10−28 m2 shows how small is the area equivalent for the reactions.
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FIGURE 2.7: Flux of projectiles hitting the mono-layer target (foil) of
surface S, with Nstab stable target nuclei of cross-section σ.

FIGURE 2.8: Relative production of 24Na (T1/2 = 15.0 h) and 122Sb
(T1/2 = 2.7 d) showing the saturation of 24Na production after around

4 d of the irradiation (figure taken from [28]).
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The number R of nuclear reaction per second is then:

R = Phit · fp =
σ · Nstab

S
· fp = Nstab · σ · fs (2.16)

where fs is the number of projectiles per second per unit area. After each successful hit,
a new nuclide is produced, which decays with probability λ (a stable element will have a
probability of decay equal to 0). The number dNrad of radioactive nuclei formed in time dt is
therefore the number of nuclear reaction per second (R) diminished by the number of decays
per second:

dNrad(t)
dt

= Nstab · σ · fs − λ · Nrad (2.17)

which can be solved (assuming Nstab as constant) for Nrad(t) and recalculated (using Equa-
tion 2.4) for the activity AEOB produced after the bombardment during time tirr:

Nrad(tirr) =
Nstab · σ · fs

λ
· (1− exp(−λ · tirr)) (2.18)

AEOB(tirr) = Nstab · σ · fs · (1− exp(−λ · tirr)) (2.19)

For practical purposes, it is better to consider number of nuclei per unit area, N [m−2],
and number of projectiles per second, fp [s−1], instead of Nstab and fs [s−1 ·m−2]:

AEOB(tirr) = N · σ · fp · (1− exp(−λ · tirr)) (2.20)

This formula can be modified using the relations from the next Sections (Equations 2.24 and
2.29) to:

AEOB(tirr) = H · NA
M
· I

Zp · e
· x · σ · (1− exp(−λ · tirr)) (2.21)

where: H – target enrichment, NA – Avogadro’s constant, M – molar mass of the target, I
– projectile beam current, Zp – atomic number of the projectile, e – elementary charge, x –
range of projectile (areal density). For thick targets, where the energy loss of the traversing
charged particle is not negligible (Emax Ý E0), the convolution of energy-dependant cross-
section, σ(E), and projectile’s stopping-power, dE

/
dx , is required. Then, using Equation

2.47, AEOB becomes:

AEOB(tirr) = H · NA
M
· I

Zp · e
·

Emax∫
E0

σ(E)
dE
/

dx
dE · (1− exp(−λ · tirr)) (2.22)

Equations 2.18 and 2.21 describe the shape of the build-up of number of nuclei or activity
produced during the irradiation time. An example of activity production of 24Na and 122Sb
is shown in Figure 2.8. As irradiation time goes, more atoms of 24Na (T1/2 = 15.0 h) and 122Sb
(T1/2 = 2.7 d) are formed. However, after about 4 days, the production of 24Na reaches the
saturation – the number of newly produced radionuclides is equal to the number of decay
leading to an equilibrium. After EOB, the number of both radioisotopes drops during the
cooling time (according to Equation 2.5).

Flux of projectiles

In the case of accelerators, the flux of projectiles delivered by the machine is a beam
intensity I given in Amperes6. Fully-stripped projectile has Zp protons, each with elementary
charge e (if the projectile is not fully stripped, its total charge is lower correspondingly to its
ionisation state). It is therefore possible to calculate I based on the measurement of total

6This way of beam intensity definition originates from the current measurement from the Faraday
Cup. At high energies, the beam intensity is simply defined number of particles per second ( fp).
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charge qtot delivered during the irradiation time tirr:

I =
qtot

tirr
(2.23)

The total number of projectiles is qtot · (Zp · e)−1 hence number of particles per second, fp, is:

fp =
qtot · (Zp · e)−1

tirr
=

I
Zp · e

≈ 6.3 · 1012 · I [µA]

Zp
(2.24)

Since the value of beam current I depends on the charge of the projectile and its ionisa-
tion state, the same beam current value might not correspond to the same flux. The so-called
particle beam current, Ipar, takes this factor into account, and is defined as beam current
normalized for its charge:

Ipar =
I

Zp
(2.25)

The unit of such value is typically referred to as “particle Ampere” [“pA”], in contrast to
standard beam current unit, sometimes referred to as “electrical Ampere” [“eA” = A] for the
disambiguation.

Thickness and mass of target

In general, the number N of nuclei per unit area [cm−2] is related to the number nstab of
stable nuclei per unit mass [g−1], the thickness d [cm] of the target (foil), and its density ρ
[g/cm3]:

N = d · ρ · nstab (2.26)

The number of stable target nuclei per unit mass, nstab, is the number of this nuclei in
one mole (Avogadro’s constant, NA) divided by the molar mass M of the target:

nstab = H · NA
M

(2.27)

where H is the abundance of the target isotope (which corresponds to the nuclear reaction of
interest7) and purity of the target material. For example, in the case of the irradiation of 40Ca
in the form of compound, like 40CaCO3, we must consider M = 100 g/mol as one target
nuclei corresponds to one molecule.

The thickness of the target, d, has a linear unit but it is better to expressed it in areal
density x [g/cm2] (discussed in Section 2.3.1):

x = d · ρ (2.28)

From Equations 2.26, 2.27, 2.28, the number of nuclei per unit area can be calculated as:

N = x · H · NA
M

(2.29)

Thick Target Yield

During the production of the radioisotopes by irradiating the target material with pro-
jectiles (Figure 2.7) it is important to know the efficiency of such process for each given ra-
dioisotope and irradiation conditions. Such parameter is called Target Yield, TY (in special
case: Thick Target Yield, TTY), and intuitively it would be the amount of produced activity
[Bq] normalized to the beam intensity [A] and the irradiation time [s]:

TY ≈ AEOB
I · tirr

(2.30)

7In case of reactions induced on all stable isotopes of given element, the abundance is 1.
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However, this relation assumes that AEOB is proportional to tirr which is not correct because
part of the produced activity decays during longer irradiation, resulting in lower AEOB.
Therefore the decay factor should be considered (like in Equation 2.18):

TY =
AEOB

I · τ · (1− exp(−λ · tirr))
(2.31)

This way the sense of Equation 2.30 is preserved as for short irradiation times, the function
(1− exp(−λ · tirr)) is similar to λ · tirr, resulting in the original approximation:

TY =
AEOB

I · τ · (1− exp(−λtirr))

tirr�T1/2−−−−−→ AEOB
I · τ · λ · tirr

=
AEOB
I · tirr

(2.32)

Equation 2.31, solved for AEOB, shows the similarity to AEOB derived for thick target
(Equation 2.22):

AEOB(tirr) = TY · τ · I · (1− exp(−λ · tirr)) (2.33)

Therefore, the factor TY, for the projectile covering the energy range Emax Ý E0, is given as:

TY =
H · NA

τ ·M · Zp · e
·

Emax∫
E0

σ(E)
dE
/

dx
dE (2.34)

Usually, to produce high amount of activity, the production process involves the irradi-
ation of targets that are thick enough to reduce the initial energy Emax of the projectile up to
the threshold of the reaction of interest (Ethr). This maximizes the produced activity AEOB
as a function of the target thickness (but not considering all others parameters like thermal
constrain, cost of the material, or machining). In this case, Target Yield is called Thick Target
Yield, TTY:

TTY(Emax) =
H · NA

τ ·M · Zp · e
·

Emax∫
Ethr

σ(E)
dE
/

dx
dE (2.35)

The formal unit of TY and TTY is [(C · s)−1] = [Bq · (A · s)−1] but more commonly used
is [MBq · (µA · h)−1] = [MBq/µAh]. To automatize the calculation of TY and TTY for given
scenario, Radionuclide Yield Calculator software was prepared during this work (see Ap-
pendix A) .

Sometimes in the literature, instead of comparing the production yields (TY or TTY) of
different production routes, a saturation activity (Asat [MBq/µA]) is addressed. The satura-
tion activity is the activity of the radioisotope per 1 µA of beam current which is produced
after the “infinite” irradiation (as shown in Figure 2.8). It is given as:

Asat =
TY
τ

(2.36)

Indirect production

Sometimes the radioisotope with number of nuclei N2 and decay constant λ2 is produced
during the irradiation throught two mechanisms at once: the direct production via nuclear
reaction with cross-section σ2, and via the decay with probability Pdec of another produced
simultaneously radioisotope characterized by N1 and λ1. If both are formed from the same
target nuclei of Nstab then the scenario is following:

N1 N2 stable product

Nstab Nstab

λ1·Pdec λ2

σ1 σ2
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The production rates of these two radioisotopes are related in the system of differential
equations (see Section 2.1.2):

dN1(t)
dt = −λ1 · N1(t) + Nstab · σ1 · fs

dN2(t)
dt = −λ2 · N2(t) + Pdec · λ1 · N1(t) + Nstab · σ2 · fs

(2.37)

Such system has been solved in [29] and [30], and recalculated for AEOB of each radioisotope
produced during the irradiation time t:

AEOB,1(tirr) = Nstab · fs · σ1 · (1− exp(−λ1 · tirr))

AEOB,2(tirr) = Nstab · fs ·
(
(σ2 + Pdec ·

λ1

λ1 − λ2
· σ1) · (1− exp(−λ2 · tirr))−

− Pdec ·
λ2

λ1 − λ2
· σ1 · (1− exp(−λ1 · tirr))

) (2.38)

The recalculation to TTY1 and TTY2 (as defined in Equation 2.35) for thick targets (with not
negligible projectile energy loss) shows that the production yield of both radioisotopes affect
AEOB of “daughter” in a complicated way:

AEOB,1(tirr) = TTY1 · τ1 · I · (1− exp(−λ1 · tirr))

AEOB,2(tirr) = I ·
(
(TTY2 · τ2 + Pdec ·

1
λ1 − λ2

· TTY1) · (1− exp(−λ2 · tirr))−

− Pdec ·
λ2

λ1 − λ2
· TTY1 · τ1 · (1− exp(−λ1 · tirr))

) (2.39)

After the end of irradiation, activity AEOB,1 decays with time according to Equation 2.5 while
activity AEOB,2 follows the Equation 2.7 and therefore is also affected by AEOB,1.

Stable products

To estimate specific activity (see Equation 2.8) it is important to estimate also the pro-
duction of N0 of each stable isotope. If the production cross-section is σ0 then:

N0 = stable product

Nstab

σ0

Stable product does not decay so its amount progressively increases with time:

dN0(t)
dt

= Nstab · σ0 · fs (2.40)

N0(tirr) = H · NA
M
· I

Zp · e
·

Emax∫
E0

σ(E)
dE
/

dx
dE · tirr (2.41)

The production rate, as the factor normalized for beam current and irradiation time, could
be defined here as Thick Target Yield for stable products, TTY0(Emax) [nuclei · (µA · h)−1]
(similar to the definition in Equation 2.35):

TTY0(Emax) =
H · NA

M · Zp · e
·

Emax∫
Ethr

σ(E)
dE
/

dx
dE (2.42)
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Equation 2.42 can be used to calculate number of produced stable nuclei during the irradia-
tion time tirr and beam current I of the initial energy Emax:

N0(tirr) = TTY0(Emax) · I · tirr (2.43)

2.2 Radiation material science

2.2.1 Interaction of ions with matter

The range of nuclear forces and the size of nuclei are relatively small (see Section 2.1.1)
so most of the projectiles irradiating the target material (as in Figure 2.7) pass through it
without inducing a nuclear reaction. However, the range of electromagnetic forces (Fe) is
considerably higher and every charged projectile interacts with target’s electrons8. Some-
times this interaction is so intense that it causes the ionization9 – the electrons leave their
orbits and may induce even more ionization (see Section 2.2.2) as well as break the chemical
bonds (ultimately decomposing the target). At the same time, the track of heavy projectiles
(protons, α particles, heavy ions, . . . ) does not change much because they are several orders
of magnitude heavier than the electrons. However, they lose energy and gradually slow
down until a complete standstill, unless they leave the target material.

To quantify the change of projectiles’ energy, dE [eV], inside the fragment of target ma-
terial, dx [g/m2], we should consider the perpendicular component of electromagnetic force
Fe between projectile and electron, integrate it over interaction time to obtain the change of
momentum, recalculate it to the change of energy, and multiply it by electron density in the
medium. The solution to this simplified procedure is well-known as Bethe-Bloch formula:

− dE
dx
≈

4 · π · Z2
p · e4 · ne

me · v2
p

· ln
(

2 ·me · v2
p

Iav

)
(2.44)

where: Zp is the atomic number of the projectile, ne is the number of electrons per unit mass
[g−1], vp is the speed of projectile [m/s], and Iav is the average ionization potential [eV]. The
latter is related to the atomic number Zt of the target material:

Iav ≈ 9.1 · Zt · (1 + 1.9 · Z2/3
t ) (2.45)

The value dE
/

dx , called stopping-power, is measured in eV · (g/m2)−1, or more com-
monly in MeV · (mg/cm2)−1, and describes how energy dE is lost by the projectile when
passing through the layer of the material of thickness dx. The main behaviour of the stopping-
power is that:

− dE
dx
∼

Z2
p

v2
p

(2.46)

which reproduces the Bragg curve seen in Figure 2.9. In general, the lower the energy of
the projectile, the lower is its speed, and more time is available for the interaction, which
translates to higher energy transfer, higher stopping-power, and ultimately more ionization
(observed in Figure 2.9 as Bragg peak).

The above equations are simplified and today many corrections have been applied for
more precise estimations of dE

/
dx and Iav, including relativistic and quantum mechanics

effects [31]. The stopping-power in various materials can be calculated with the use of SRIM
software [32]. Among its many applications, SRIM allows to estimate the statistical energy
straggling of originally monoenergetic projectiles (solid line in Figure 2.9).

8The electromagnetic interaction between projectile and target’s nuclei is negligible due to the
electron screening.

9Other interactions of ions with matter may include scattering, Bremsstrahlung, different excita-
tions, and scintillation which are not discussed here due to the type of projectile and energies under
considerations.
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The distance x [g/m2] that charged projectile travels in straight line in a material (in the
energy range Emax Ý E0) is given as:

x =

Emax∫
E0

1
− dE

/
dx

dE (2.47)

This is the mean value since the range of a beam of particles shows statistical fluctuation
(that can be also simulated with SRIM).

FIGURE 2.9: Bragg curve of 62 MeV proton beam acquired in a water-
tank (figure taken from [33]). The width of the Bragg peak is related

to the energy straggling.

2.2.2 Interaction of electrons with matter

Similarly to ions, electrons also have stopping-power, however their track is not a straight
line. Projectile electron, having the same mass as electron of an atom, scatters significantly
while exciting and ionizing the medium (which is defined as mass scattering power). This
causes increase of the temperature or releasing more electrons from the atoms. In the latter
case, if the ejected electron has energy greater than the binding energy of an electron in an
the atom, it can cause secondary ionizations (Figure 2.10)). Because of that, primary electron
(projectile) deposit all its energy on much shorter effective distance than nuclei projectiles.
The characteristic distance is the radiation length, which is the mean distance over which
the energy of an electron is reduced by the factor 1/e.

In the case of anti-matter electron (positron), for example from β+ decay, it annihilates
with an electron from the medium after loosing some of the energy. At low to moderate
energies, the annihilation is done via the formation of a short-lived positronium system (τ
in the order of ~ns), and produces usually two γ quanta of the energy around 511 keV each,
emitted in the opposite directions in the center-of-mass system (this ensures the conservation
of energy and momentum). The electron-positron annihilation is very important from the
nuclear medicine point of view as it plays a key role in PET technique (see Section 2.3.3).
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FIGURE 2.10: Electron scattering and ionizing the matter (figure taken
from [31]).

2.2.3 Interaction of γ radiation with matter

Types of photon interaction with matter

The γ radiation (photon) is an electromagnetic wave of high energy (originated typically
from the nucleus), and thus it affects all electric charges inside the medium where it prop-
agates. Usually this influences the electrons, as they have considerably lower mass and are
bounded with much less energy than the nuclei. The γ induced nuclear reactions, similar to
the ones described in Section 2.1.3, are also possible but are not the subject of this work.

The main interactions of γ radiation with matter include photoelectric effect (photo-
effect), Compton effect, and nuclear pair production10. Their description also requires the
wave-particle duality approach, treating the γ quanta as a massless particle with energy Eγ

and momentum Eγ/c.
The probability of Photoelectric effect, Compton effect, and nuclear pair production de-

pends on Eγ, as shown in Figure 2.11 and discussed in next Sections. All these processes
absorb the initial γ quanta and thus are responsible for the attenuation of γ radiation beam
passing through matter.

Photoelectric effect

The photoelectric effect dominates at lower γ energies. Here, the incident photon inter-
acts with tightly bound orbital electron and converts all its energy into the binding and ki-
netic energy of the electron11. The photon disappears and the electron (called photoelectron)
is knocked off from the atom. The process is shown in Figure 2.12.

10Other processes include Rayleigh scattering which does not cause ionization, and low-probable
electronic pair production (both not discussed).

11The binding energy of a valence electron is in the order of ~eV which is negligible compared to
its ~keV kinetic energy inherited from the photon.



2.2. Radiation material science 19

FIGURE 2.11: Photon total cross sections as a function of energy show-
ing the contributions of different processes: photoelectric effect (p.e.),
Compton and Rayleigh scattering, and pair production in nuclear

(nuc.) and electron (el.) field (figure taken from [34]).

FIGURE 2.12: Photoelectric effect on atom with K, L, M orbits, leading
to the emission of an Auger electron (figure taken from [31]).
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Compton effect

The Compton effect (or Compton scattering) can be observed at low, medium, and high
energy of γ radiation. In this process, the incident photon transfers a part of its energy to
knock off the electron (of the mass me), and scatters with lower energy E′γ. The energy trans-
fer depends on the energy Eγ of initial photon and the scattering angle θ, hence the beam
of mono-energetic γ rays produces several electrons of different kinetic energies. The energy
E′γ of the scattered photon is given as

E′γ =
Eγ

1 + (1− cos(θ)) · Eγ

mec2

(2.48)

which can be derived from the energy and momentum conservation.

Pair production

When a photon with the energy exceeding 2mec2 = 1.022 MeV passes near the strong
electric field of atomic nucleus, the photon may transform into positron-electron pair. This
is known as nuclear pair production and the products inherit the energy excess from the
photon in the form of kinetic energy, following the scenario from Section 2.2.2.

2.2.4 Auger electrons

Processes discussed previously (internal conversion, electron capture, ion-atom interac-
tion, electron scattering, photoelectric effect, Compton effect) can produce the inner-shell
vacancy of an atom. Full relaxation of this vacancy creates a cascade involving X-ray and
Auger as well as Coster-Kronig transitions. The typical relaxation time of a single ionisation
event is around 10−15 s and may consist of many vacancy cascades (as shown in Figure 2.13)
resulting in emission of multiple X-ray photons and electrons. More details are given in [35].

FIGURE 2.13: Typical vacancy cascade in Xe following K shell ion-
ization with ultimate loss of all electrons of the O-shell (figure taken

from [35]).
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2.3 Nuclear medicine

2.3.1 Medical radioisotopes and their availability

Characteristics of medical radioisotopes

Among many radioactive isotopes emitting different types of radiation only few are ap-
plicable for medical purposes. Their desired properties may vary depending on their pur-
pose, but all of them exhibit some common similarities:

• should emit only the radiation required for its medical purpose – other radiation emit-
ted from the medical radioisotope will unnecessarily increase the radiation dose (Sec-
tion 2.3.4) to the patient and the personel,

• should have T1/2 which corresponds to the medical purpose and procedure,

• should easily build stable complexes with desired radiotracers (Section 2.3.2),

• should decay to stable or very long-lived isotope (otherwise the patient receives addi-
tional dose),

• should have a feasible, cost-effective, and safe production route.

Production of medical radioisotopes

As mentioned in Sections 2.1.3 and 2.1.4, radioactive isotopes can be produced in various
nuclear reactions during the irradiation of stable matter (targets) with the flux of particles.
This is achieved with the use of different machines which provide intensive flux to produce
sufficient activity of the radioisotope.

One of such machine is a nuclear reactor where fuel rods with fissile elements (such as
235U or 239Pu) produce a cloud of neutrons via the controlled consecutive fissions (chain reac-
tion). These neutrons are usually thermalized in water to the energy of tens of meV12. Placing
the target in the reactor exposes it to the neutron flux of typically 1014 s−1cm−2 which, in the
case of thermal neutrons, activates the targets via (n,γ) reactions, producing neutron-rich ra-
dioisotopes. Alternatively, a radioisotope of interest can be selected from a mass distribution
of fission products (for example, the yield of 235U+n fission fragments is shown in Figure
2.14).

FIGURE 2.14: The yield of 235U+n fission fragments as a function of
mass (figure taken from [36]). Marked masses represent the process

leading to the production of 99Mo/99mTc generator.

12Since neutrons have no electrical charge, they can enter a nucleus also at thermal energies and
induce a nuclear reaction with high cross-section. However, reactions induced by fast neutrons are
also utilized.
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Two masses (99 and 134) marked in the figure correspond to the products of the medi-
cally interesting reaction:

235U + n→ 99Mo + 134Sn + 3 · n

as 99Mo (T1/2 = 2.7 d) decays to 99mTc (T1/2 = 6.0 h) commonly used in SPECT imaging
technique (see Section 2.3.3). The first 99Mo/99mTc generator system was introduced at the
Brookhaven National Laboratory in 1957 [37]. In principle, the “mother” radioisotope loaded
onto the generator constantly produces the final radioisotope, which can be repetitively
eluted (with chromatographic techniques, distillation or phase partitioning). This solution
allows the production of the medical radioisotopes conveniently on site, without the need of
the reactor or the cyclotrons at spot.

However, most medical radioisotopes do not have a convenient generator system, and
cyclotrons are being installed near medical centers to provide the daily supply of short-lived
radioisotopes. Cyclotrons are much more compacted, easier to manage, and cheaper than
the reactors [38]. The simplified principle of operation of the cyclotron is shown in Figure
2.15 and consists of the following steps:

1. the ion source generates positively or negatively charged ions and injects them inside
the cyclotron (under vacuum),

2. ions are accelerated between two electrodes (“dees”) by the voltage and move in the
circular orbit inside the cyclotron magnetic field,

3. when the desired energy is reached, the beam is extracted (for example with the de-
flecting electrode), transported in vacuum and focalized on a production target di-
rectly13, resulting in the irradiation discussed in Section 2.1.4.

FIGURE 2.15: The simplified cyclotron principle [36].

Typical projectiles accelerated in the cyclotrons for the production of medical radioiso-
topes are not heavier than α particles. This is because the range of heavier nuclei is shorter
(compared to light projectiles in the same material), and would yield lower activity (Equa-
tion 2.22). The energy range of accelerated particles varies usually between 10 MeV and

13Depending on the facility, the target can be also placed inside the cyclotron for the irradiation.
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80 MeV, and should be adjusted in order to satisfy the nuclear reaction of interest and re-
duce the contribution of other reactions which may yield radioactive impurities (see Section
2.3.2 and Figure 2.5).

Another device to accelerate charged particles is a Linear Accelerator (LINAC). Here,
particles are accelerated with the electric field, as they pass through the hollow tubes in the
straight line. LINACs usually offer higher beam intensity compared to the cyclotrons. How-
ever, they are also more expensive, making cyclotrons more attractive for the production of
medical radioisotopes.

Recently also (γ,n) reactions are gaining popularity (despite a low cross-section associ-
ated to photonuclear reactions) due to the developments of γ beams of satisfactory inten-
sities. The modern γ facilities offers an attractive production routes of radioisotopes that
cannot be easily produced by other means (such as 225Ac, 67Cu, or 47Sc).

Targetry

Targets with specific nucleus are essential to satisfy the nuclear reaction during the irra-
diation. In particular, the isotopically enriched targets (with the increased abundance of the
isotope of interest) can be chosen in the cases where the desired radioisotope is formed on
low-abundant or radioactive isotope.

Targets used in nuclear physics experiments have different form (solid, liquid, gaseous,
elemental or as compounds) depending on the chemical properties of the element used
for reaction. Their thickness varies from from a few µg/cm2 (targets used for the funda-
mental research in nuclear physics) up to a few hundred mg/cm2 (targets used for the re-
search and/or production of the medical radioisotopes). The challenges posed to a cyclotron-
irradiated target are following:

• its thickness must correspond to the energy range favouring the reaction of interest
and reducing the production of contaminants (see Figure 2.5),

• it should have uniform thickness distribution to prevent the appearance of hot spots
during the irradiation,

• it should have high chemical purity to limit the production of unwanted radionu-
clides,

• it should be durable enough to withstand the mechanical operations (mounting and
dismounting) and the heat deposited during the irradiation (see Section 2.2.2),

• it must be adjusted to the capabilities of the set-up at given facility,

• its composition should allow a feasible post-irradiation extraction chemistry (in the
case of the production of medical radioisotopes),

• it should allow high efficiency material recovery after the irradiation (in the case of the
production of medical radioisotopes with the isotopically enriched target material).

The target design and preparation is a difficult task, and many characteristics in physics,
chemistry and engineering go into its design and preparation (summarized in details in [39]).
In the case of solid targets, the main preparation techniques include:

• mechanical reshaping – which include tablet pressing (a powder is formed into a pellet
with the use of pressing device), and metal rolling (material is reshaped using a rolling
mill),

• electrodeposition – an electrolyte containing the target material is made and allows
target material to be deposited on one of the electrodes thanks to the applied voltage,

• sedimentation – material prepared in the form of suspension is precipitated on a sub-
strate mounted at the bottom of the precipitation vessel,

• melting – the target material is melted (for example on a hot plate) and distributed on
the support.
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The targets produced in these ways might have different thicknesses (d [m]) and den-
sities, depending on the parameters used for the preparation. For example, target prepara-
tion with use of mechanical press from same amount of material (number of atoms, Nstab)
can result with pellets of various thickness (in linear units) depending on the force applied.
However, the induced activity will be almost the same due to the same amount of material
irradiated. This is why, when describing the thickness of the target, it is better to use areal
density (x [mg/cm2]), as shown in Equation 2.28.

Processing of activated targets

After the irradiation of the target, the desired radioisotope must be isolated (from the
bulk target) and purified (from co-produced radioisotopes of other elements). The separation
procedure must meet the following requirements:

• it must be very precise, as in usual irradiation only a few nanomoles of desired ra-
dioisotope are produced in a typical milligrams of bulk material,

• in the case of short-lived products – it must be relatively fast in order to save the
decreasing radioactivity,

• it should allow the feasible labelling of radiotracers (see Section 2.3.2),

• in the case of the irradiation of isotopically enriched target material – it should allow
for an efficient material recovery.

Several techniques can be employed to separate radioisotope from the target (summa-
rized in [36]). In case of solid targets, the common and often effective method is to dissolve
the target and extract the radioisotope through the selective ion exchange process. The sep-
aration is performed for example with the use of ion-exchange columns or chromatography
systems. In other cases, more sophisticated methods must be use, like a mass separation em-
ployed for example in [40] for the terbium production. The separated radioisotope can be
then sampled and used in the further processing.

2.3.2 Radiotracers

Even if the radioisotope emits the radiation of diagnostic or therapeutic relevance, it
must be guided to reach the place in the human body where it can play its medical role. Usu-
ally, this requires a biologically active molecule (biomolecule) which guides the radioisotope
to the location for imaging or tumor to kill. Biomolecule and radioisotope are connected with
the bifunctional linker and form a radiotracer14, as shown in Figure 2.16.

FIGURE 2.16: Principle of typical radiotracer, labeled with radioiso-
tope and targeting uniquely the medically relevant structure in the

human body.

The biomolecule determines the biodistribution (in vivo distribution) and physiological
behaviour of the radiotracer. It should have high affinity to the structure of interest in the
human body (for example: investigated tissue or tumor cells), which ensures the selective
concentrations and prolonged retention of the radiotracer in the region of interest. Therefore

14Radiotracers are sometimes called “radiopharmaceuticals”, however they are given in such small
concentrations that they do not elicit any pharmacological response as regular pharmaceuticals, hence
the name “radiotracers” for disambiguation [37].
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each radiotracer is dedicated for its unique purpose (the vast list of known radiotracers and
their applications can be found in multiple papers, including [41]).

The radioisotope can be attached to the biomolecule in different chemical reactions (not
discussed here) which vary depending on the nature of radioisotope, biomolecule, and se-
lected linker. In practice, these reactions are performed in an authomatic synthesis modules
(a system of storage vials, connected by tubes and valves) where each step of the reaction is
controlled by the computer.

Along with the radioisotope of interest, all other radioisotopes of the same element will
chelate the radiotracer. Therefore it is important to keep co-produced radioactive impurities
at minimum level (activity < 1%). This standard is required for a radiotracer in order to
be used safely in humans. Other requirements include: radiochemical impurity, chemical
purity, isotopic purity, specific activity, total activity, pH, and sterility. Validated radiotracers
are then used for diagnostic purposes (see Section 2.3.3), in about 95% of cases, and for
therapy (see Section 2.3.4) in the remainder [37].

2.3.3 Medical imaging with radioisotopes

SPECT

SPECT (Single-Photon Emission Computed Tomography) is a worldwide gold standard
technique used in medical imaging for quantitative in vivo measurements of radiotracer
emitting γ radiation. SPECT principles and various applications were presented in many
papers, including IAEA reports [42, 43].

Briefly, the radioactive tracer (see Section 2.3.2) is injected into the patient, and emits γ
radiation which can escape the human body. The photons are then detected with a gamma
camera, a matrix of small scintillation crystals, in one position (planar imaging) or at sev-
eral angles (SPECT). In the first case, map of activity observed on the detector corresponds
directly to the activity distribution in the patient (as collimators removes almost all photons
non-perpendicular to the detector plane). In the latter, a computer applies different tomo-
graphic reconstruction algorithms to compile a 3D distribution model based on collected
images.

Obviously, some photons will be attenuated in the human body, and others will scatter
(see Section 2.2.3), which will reduce the image quality and introduce the noise. Therefore
the photon emitted from the radioisotope should have around 100–200 keV to escape the
human body, reduce the contribution of Compton effect, and produce photoelectric effect in
crystal. Today, radioisotopes exhibiting this property, and used in SPECT, include mainly:
67Ga, 99mTc, 123I, 201Tl, used usually in MBq quantities. In particular, 99mTc produced via
the generator system has become the most widely used radionuclide in nuclear medicine,
accounting for as much as 85% of all diagnostic procedures [37].

PET

PET (Positron Emission Tomography) is another well-known diagnostic technique. It al-
lows quantitative in vivo measurements of the distribution of administered positron-emitting
radioisotopes in human body. Its principle and numerous applications were summarized re-
cently by IAEA [36, 44] and EANM [45, 46].

In short, the β+ radioactive tracer (see Section 2.3.2) is injected into the patient, and the
annihilation of the positron produces two 511 keV energy photons (see Section 2.2.2), which
are emitted in opposite directions and can escape the human body. These photons are then
detected in coincidence by parallel rings of scintillation crystals surrounding the patient15.
Two detected photons of the right energy allow to assume that the positron emitter is located
somewhere in between, defining a Line Of Response (LOR). In the first approximation, the

15J-PET group from Jagiellonian University in Cracov introduced an alternative detector based on
inexpensive plastic scintillators. The innovative arrangement of long scintillator strips in J-PET detec-
tor opens promising perspectives for the cost effective construction of the whole-body PET scanner, as
well as construction of MR and CT compatible PET inserts. J-PET tomograph and its medical applica-
tions were recently reported in [47].
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intersection of multiple LOR provides the distribution of the tracer (although in practice
many additional corrections are applied).

To satisfy the PET acquisition requirements, the radioisotope must exhibit a high proba-
bility of β+ decay of possibly the lowest average energy (because high energy would allow
the positron to travel further before annihilating hence blurring the image). Today, the most
common PET radioisotopes are: 11C, 13N, 15O, 18F, 68Ga, and 82Rb, used mostly in MBq quan-
tities. Additionally, radioisotopes that undergoes β+ and IT can be employed in coincidence
PET technique (see Appendix B).

2.3.4 Radionuclide therapy

As described in Section 2.2, the destructive nature of radiation comes with the ability to
deposit energy in the matter and ionize it. The energy deposited in the process per unit mass
of the medium is defined as radiation dose. While very high amount of radiation damages
nonliving and living matter alike, the complexity of the latter shows more subtle response
even at lower doses. Radiobiology (which is a very broad field and will not be discussed here
in details) studies these effects, and results are applied in radiotherapy (radiation therapy).

The aim of radiotherapy is to kill tumor cells or ease cancer symptoms while preserving
the healthy tissues. The radiotherapy may include radionuclide therapy or external beam
therapy, and is often accompanied by other procedures (like surgery, chemotherapy, or hy-
perthermia) to improve the overall effect of the treatment [13]. The surgery and the external
beam therapy focus on killing the primary site of cancer while the radionuclide therapy and
chemotherapy aim to kill metastases. The detailed terminology, procedures, and advance-
ments in radiotherapy were recently summarized by IAEA [48, 49] and EANM [50].

One important quantity which should be mentioned is LET (Linear Energy Transfer).
In contrast to the stopping-power (energy loss by a charged particle – Section 2.2.1), LET
focuses on the energy absorbed by the medium as the radiation traverses it. If this energy is
used, directly or indirectly, to induce double-strand DNA break then the cell is likely to enter
the apoptosis pathway, leading to its death. In the case of radionuclide therapy, to ensure that
this process happens in the tumor cells and has a therapeutic effect, two conditions must be
met:

• the radioisotope must emit a radiation with optimal LET, preferably around 100 keV/µm,
which ensures high but local dose distribution, spearing the healthy tissue around tu-
mor,

• the radiotracer must be very selective to lead the radioisotope preferably exclusively
to the tumor, where it attaches to the cell membrane or enters it.

In practice, radiotheraphy requires radioisotopes with usually longer half-lives (up to
few days) and of higher activity (order of GBq) compared to nuclear imaging. Their radia-
tion must have range adapted to the size of the tumor (or the observed metastases) and the
selectivity of the radiotracer:

• low energy Auger electrons – with the range up to tens of nanometers (in water) and
thus suitable for the radiotracers targeting the cell nucleus,

• α particles – with the typical range around 10 µm (in water) corresponding to the size
of a cell, suitable for the radiotracers docking in the cancer cells’ membrane,

• β– particles – with the range up to 12 mm (in water), employed in cases of bigger
metastases where the cross-fire effect allows to deposit the dose in deeply located can-
cer cells that could not have been reached by the radiotracers.

Today, the list of therapeutical radioisotopes include: 67Cu, 89Sr, 90Y, 131I, 149Tb, 153Sm, 177Lu,
188Re, 211At, 223Ra, and 225Ac. In particular, most commonly used radiopharmaceuticals for
radionuclide therapy are: 89Sr-chloride, 90Y-microspheres, 90Y-octreotide, 131I-iodide, 131I-
MIBG, and 153Sm-EDTMP [51]. Recently, Lutathera (177Lu-DOTATATE) is also becoming
popular in medical practice [52].
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2.3.5 Theranostics

In 1993, the study was performed to merge therapeutic function of 90Y with diagnos-
tic capabilities of 86Y [53]. Later, this approach was named “theranostics”. In general, the
theranostic pairs are the radioisotopes of the same or very similar element from a chemical
point of view so they can be bonded with the same biologically active molecule (in differ-
ent required doses). One theranostic partner is emitting γ or β+ radiation used for imaging,
while the second partner is β–, Auger or α emitter used for the cancer treatment. Both ra-
dioisotopes can be used simultaneously for monitoring the therapy course, or separately, to
provide important dosimetric and toxicological information.

So far, there are a lot of possible theranostic matched pairs, from which most are of the
different chemical element [54, 55]. This is a drawback as for example diagnostic 68Ga and
therapeutic 177La have similar yet not the same chemistry, which translates to slightly dif-
ferent labeling conditions which eventually means troubles with the automatization of the
process. Additionally, it is not clear if different elements have exactly the same biodistri-
bution so the dose predicted with imaging radioisotope might not reflect the actual dose
delivered with therapeutic agent. The solution is to use monoelement theranostic radioiso-
topes, from which one of the most promising are the one of terbium (149Tb as α emitter, 152Tb
as β+ emitter, 155Tb as γ emitter and 161Tb as β– emitter) but their effective production and
chemical separation can be difficult or challenging [40, 56–62]. An interesting theranostics
alternative are the radioisotopes of copper (64Cu as β+, β–, and Auger electron emitter, as
well as 67Cu as β– and γ emitter) discussed recently in [63–67], and the radioisotopes of
scandium (studied in this work and discussed in Section 4.3).
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Chapter 3

Experimental procedures

This chapter describes the experimental procedures, data acquisition, and data analysis adopted
in this work. The results from all conducted experiments (Chapter 4) are obtained with the use of the
methodology presented here.

3.1 Cyclotrons and irradiations

In this work, the production of medical isotopes is studied with the use of three cy-
clotrons: GE PETtrace in Heavy Ion Laboratory (HIL) in Warsaw, C70 in Accelerator for
Research in Radiochemistry and Oncology at Nantes Atlantic (ARRONAX), and C30 in Na-
tional Centre for Nuclear Research (NCNR) in Świerk. These machines are shown in Figure
3.1, and their beam parameters are given in Table 3.1 (energies and intensities shown are
upper limits).

FIGURE 3.1: Photos of the cyclotrons employed in this work: (a) GE
PETtrace in Heavy Ion Laboratory, (b) C70 in ARRONAX, (c) C30 in

National Centre for Nuclear Research.

Beams from these machines were extracted to irradiate various targets. The targets were
prepared separately for each experiment to study the σ or TTY of production routes of dif-
ferent medical radioisotopes. However, these values depend not only on the target but also
on the energy of the accelerated particles. The energy value is provided in each experiment

TABLE 3.1: Beams parameters available at the employed cyclotrons.

PETtrace HIL C70 ARRONAX C30 NCNR

proton (H+) 16.5 MeV, 80 µA 70 MeV, 375 µA 28.7 MeV, 50 nA

deuteron (D+) 8.4 MeV, 60 µA 35 MeV, 50 µA

proton (HH+) 35 MeV, 50 µA

α particle (He+2) 67.4 MeV, 70 µA

reference [68] [69] [70]
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by the cyclotron operators but it has been also verified experimentally (see Section 3.3.3).
Similarly, the beam current (see Section 2.1.4) is also provided by the online measurement
with the Faraday Cup. However, the target geometry or the focalization of the beam might
cause part of the flux not to hit the target, therefore each target was equipped with thin mon-
itor foils. The methodology described in Section 3.3.2 shows the method of the beam current
calculation based on the activation of monitor foils.

The targets were mounted on the dedicated stations (the target surface is perpendicular
to the beam), in which the energy of the accelerated projectiles was reduced by the following
factors:

• station in HIL (Figure 3.2a) – a station with helium cooling, where the energy of the
beam is degraded by 25 µm havar cyclotron window and 1 cm of air,

• NICE2 station, ARRONAX (Figure 3.2b) – a station with air cooling, installed after
50 µm kapton cyclotron window and 7 cm air,

• vacuum chamber, ARRONAX (Figure 3.2c) – a station connected directly to vacuum
of the cyclotron (no energy degradation),

• station in NCNR (Figure 3.2d) – a station installed after 90 µm Al cyclotron window
and 8 cm air.

FIGURE 3.2: Photos of the stations holding the targets during the ir-
radiations: (a) station in HIL, (b) NICE2 in ARRONAX, (c) vaccum

chamber in ARRONAX, (d) station in NCNR.

Typical irradiation of targets in this work lasted from 10 minutes to few hours with no
more than 0.5 µA beam intensity1. The targets were left for cooling for at least 1 h to allow the
decay of inessential, short lived radioisotopes (produced in the target and in the irradiation
station) hence reducing the radiation dose to the personel. Then, targets were transported to
the acquisition room to measure the induced activity with HPGe detectors.

3.2 HPGe γ spectroscopy

3.2.1 Principle of semiconductor detectors

The radiation detectors have many applications, including the quantification of radioac-
tive materials present in the irradiated target. For this particular purpose, the commonly
used detector type is a semiconductor. Detectors more effective for other purposes are: gaseous
ionization detectors and scintillators (summarized in recent IAEA handbook [36]). However,
since most radioisotopes emit characteristic γ radiation (see Section 2.1.2) of different ener-
gies with known intensities, it is possible to distinguish between several possible radioiso-
topes present in the sample. The semiconductor detector is most suitable for this task thanks
to its high energy resolution when properly cooled [71] and therefore it was used in this
study.

The idea of semiconductor detectors is to use interaction of γ radiation (Section 2.2.3)
with the semiconductor crystal, where the electrons are lifted from the valence band into the

1Even though the higher beam current was possible in certain cases, it would induce more activity
(Equations 2.21 and 2.22) which would not be possible to measure with the detectors employed in this
work (see Section 3.2.3).
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conduction band, and then transported and amplified, resulting in observable charge. The
typically cylindrical crystal is kept at around 80 K with the use of liquid nitrogen. The low
temperature prevents the elevation of electrons to the conduction band though the thermic
movement, allowing precise measurements. The crystals used in this work are HPGe (High
Purity Germanium), however other types are commercially available.

In the ideal case, γ quanta enters the crystal volume, and transfers all its energy to an
electron through the photoelectric effect2. The electron excites other electrons (Section 2.2.2),
lifting them to the conduction band. The number of electrons in the conduction band is there-
fore related to the γ quanta energy. Produced signal is amplified and reaches the analog-
digital converter, where it is registered in the analyser’s arbitrary channel, proportional to
the energy. If γ quanta of the same energy will reach the detector again, it will register an-
other count in the same channel, producing the γ peak (photopeak), and ultimately plotting
a histogram of various detected energies of γ radiation called “γ spectrum”.

It is also possible that γ radiation will interact with an electron through Compton ef-
fect, yielding signals of lower energies (depending on the scattering angle). This produces
“Compton background” for each photopeak as shown in Figure 3.3. For example, despite
that the radioactive source, 137Cs, emits only one γ line of 662 keV, multiple other energies
are measured because of the Compton scattering and the radiation background.

FIGURE 3.3: Simple example of the 137Cs γ spectrum collected with
HPGe detector: (a) photopeak of 662 keV, (b) maximum Compton

scattering at 476 keV (scattering of 662 keV photon at 180°).

Even though 137Cs always emits exactly 662 keV, its photopeak spreads to several chan-
nels which translates to the typical energy resolution of few keV (for semiconductor detec-
tors). This happens mainly because the whole process of signal formation is subjected to
statistical fluctuations. Additionally, during the signal formation (which might take up to
few microseconds), the detector is not able to process another signal. If too much γ rays are
entering the crystal, some of them are lost in the time overlap. This translates to increased
dead time of the measurement, which, in practice, should be kept below 10% of the real mea-
surement time. In this study, a pulser was employed to validate the dead time correction for
the measurement time provided by the acquisition system.

2The binding energy of electron (~eV) is negligible compared to the photon energy (keV – MeV).
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Occasionally, two γ quanta emitted in quick succession might be seen as one larger en-
ergy deposited in the detector. This coincidence results in a formation of the summation peak
– a peak on the spectrum corresponding to the sum of the energies of two characteristic γ
lines.

The γ quanta of energy Eγ ≥ 1022 keV might also produce a positron-electron pair inside
the detector. The positron annihilates with an electron (which are very abundant) and two
511 keV photons are released back to the system. This process is fast enough to be detected
in the coincidence with initial photon, producing a peak of the energy Eγ. However, when
one or two annihilation photons escape the detector, the observed peaks have the energy of
Eγ − 511 keV (single escape peak) and Eγ − 1022 keV (double escape peak), respectively.

3.2.2 Detector calibrations

Energy calibration

In order to collect experimental data and identify various radioisotopes based on their
characteristic γ lines, an energy scale in γ spectra is required. Calibration is possible based
on the measurements of the certified radiation sources which emits the γ radiation of known
energies. For example, in a particular case of the γ spectrum (Figure 3.3) of 137Cs radiation
source, the peak at the channel 1191 (where the maximum of photopeak is located) corre-
sponds to photons of 662 keV energy.

Registration of photopeaks of energies Eγ (from different calibration sources) at channels
C allows to find the channel-to-energy relationship for the given detector set-up (usually a
linear function is sufficient):

Eγ = b0 + b1 · C (3.1)

where: Eγ – energy of γ quanta [keV], C – channel number, b0 – intercept coefficient [keV],
b1 – slope coefficient [keV/channel].

FIGURE 3.4: Example of energy calibration curve provided by
TUKAN 8k software after the measurements of decays (IT) of 133Ba,
137Cs, 152Eu, and 241Am calibration sources with CANBERRA HPGe

detector at HIL (see Section 3.2.3).
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Example of the energy calibration for the HPGe detector at HIL (see Section 3.2.3) is
shown in Figure 3.4. The valid energy calibration allows for the proper identification of ra-
dioisotopes as shown in Figure C.12.

Efficiency calibration

During a typical measurement in this work, the irradiated target was placed in front
of HPGe detector. Radioisotopes inside the target emit characteristic γ radiation in full solid
angle and only part of them reaches the Ge crystal, however, some without interacting with it
(in particular, low-energy photons might be attenuated in the detector cap, and high-energy
photons tend to escape the Ge crystal if it is not thick enough). Even if they do interact, it may
be via Compton scattering which will not contribute to the signal measured in photopeak,
and will produce a Compton background instead (as shown in Figure 3.3). Therefore, each
photon of energy Eγ emitted from the source has a certain probability of being detected
in the photopeak by the detector at given geometry (source-detector distance and source
geometry). This probability is called detector efficiency, ε, and is obtained by measuring
the calibration source of known activity Acal . Once placed in fixed geometry, calibration
source emits one or several γ quanta, yielding several photopeaks in collected γ spectrum.
The number of counts, Ndec,obs, in each photopeak of different energy, Eγ, is then used to
calculate efficiency at this energy (by solving Equation 3.7 for ε) as the activity of the source
is known as well as the branching ratio associated to each γ line:

ε =
Ndec,obs · λ

Acal · Iγ ·
(
1− exp(−λ · tmes)

) (3.2)

FIGURE 3.5: Example of efficiency calibration curve (Equation 3.3) of
CANBERRA HPGe detector at HIL (see Section 3.2.3) at geometry
5.5 cm. The calibration sources include 133Ba, 137Cs, 152Eu, and 241Am.
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An example of efficiency calibration measurements at different energies is shown in Fig-
ure 3.5. To interpolate these values for every energy Eγ [keV], a fit is performed. In this work,
the following formula was used:

ε(Eγ) = 10 c0+c1·log(Eγ)+c2·log2(Eγ)+c3/Eγ
3

(3.3)

where: ci – i-th calibration coefficient. The calibration function is purely empirical and sev-
eral other functions are available which may better reflect certain energy ranges [71].

3.2.3 HPGe detectors employed in this work

The γ radiation from produced radioisotopes was measured after each experiment with
the use of the following HPGe detectors (detectors with the bigger crystal have higher ef-
ficiency particularly at high γ energies, and detectors with special windows have higher
efficiency for the detection of low-energy photons, like X-rays):

• EG&G ORTEC, model: GEM, HPGe 70.1 mm 5 69.8 mm, 60% relative efficiency (at
HIL),

• CANBERRA, model: BE2825, thickness: 25.5 mm, active area: 2800 mm2, with 0.6 mm
thick Carbon Epoxy window (at HIL),

• CANBERRA vertical detector with 20% relative efficiency (at ARRONAX),

• EG&G ORTEC, model: GMX-25190-p, 56.8 mm 5 70.0 mm, with a 0.5 mm thick Be
window (at NCNR).

CANBERRA detector at ARRONAX is shown in Figure 3.6 as an example of HPGe de-
tectors used in this work. In this set-up, two geometries are available: close one (3.6c) where
the sample is placed on top of the detector head, and far one (3.6d) located 19 cm above the
detector. The efficiency is higher at close geometry, however far geometry is used in the case
of high activity measurements in order to keep the dead time below 10%. At HIL, available
geometries varied from 5.5 cm to 86 cm.

All detectors were equipped with with low-background lead shielding to reduce the con-
tribution of the background γ radiation on the measured spectra. Additional few millimetres
of Sn-Cu (at HIL) or Cu (at ARRONAX) is used to eliminate around 97% of the Pb fluores-
cence X-ray peaks caused by the sample radiation on the lead shielding. Data were collected
and analyzed using NCNR TUKAN 8k system (at HIL), ORTEC LVis system and JF Com-
puting Services FitzPeaks Software (at ARRONAX), and CANBERRA Gamma Acquisition
& Analysis V1.4 system (at NCNR).

The detectors at HIL and at NCNR were calibrated with 133Ba, 137Cs, 152Eu, and 241Am
calibration sources made by NCNR POLATOM. Calibration sources at ARRONAX, 57Co,
60Co and 152Eu, were provided by LEA-CERCA. Nuclear data of these calibration sources
are given in Table 3.2.
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FIGURE 3.6: CANBERRA HPGe detector at ARRONAX: (a) cryostat
with the liquid nitrogen, (b) head of HPGe crystal (shielded), (c) thick
lead shielding and position for close geometry, (d) far geometry posi-

tion (behind shielding) with placed radioactive source.

TABLE 3.2: Characteristics of radioisotopes employed as calibration
sources in this work (data from [72]).

Isotope T1/2 Main γ lines [keV] (intensity)

57Co 271.7 d 14.4 (9.16%), 122.1 (85.6%), 136.5 (10.7%)
60Co 5.27 y 1173.2 (99.85%), 1332.5 (99.98%)
133Ba 10.55 y 81.0 (32.9%), 276.4 (7.16%), 302.9 (18.34%), 356.0 (62.05%),

383.8 (8.94%)
137Cs 30.08 y 661.7 (85.1%)
152Eu 13.52 y 121.8 (28.53%), 244.7 (7.55%), 964.1 (14.51%), 1085.8 (10.11%),

1112.1 (13.67%), 1408.0 (20.87%)
241Am 432.6 y 59.4 (35.9%)
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3.3 Data analysis

3.3.1 Spectra analysis

Activity calculation

If the sample of total activity A(t) is measured for the time tmes then Ndec of them will
decay (see Equation 2.4):

Ndec =

tmes∫
0

A(t)dt (3.4)

However, only fraction of them (Ndec,obs) will be registered in photopeak (see Section 3.2.2)
due to the detector efficiency ε, and intensity Iγ of the emitted γ quanta:

Ndec,obs = Ndec · ε · Iγ (3.5)

Ndec,obs is typically obtained by fitting a Gaussian function to the photopeak of interest,
and integrating it over the energy with the subtraction of background noise (this procedure
is usually done by the software provided with the acquisition system). The radioisotope also
decays during the measurement (Equation 2.5) therefore:

Ndec,obs = ε · Iγ ·
tmes∫
0

A(t)dt = ε · Iγ ·
tmes∫
0

A0 · exp(−λ · t)dt (3.6)

where A0 is the activity of the radioisotope at the beginning of the measurement. The so-
lution of this equation allows to calculate the activity at the beginning of the measurement
(A0) of the radioisotope based on Ndec,obs counts in its photopeak (of given intensity and
efficiency for detection) measured during the time tmes:

A0 =
Ndec,obs · λ

ε · Iγ ·
(
1− exp(−λ · tmes)

) (3.7)

If such measurement of A0 was performed ∆t after the irradiation, it is possible to calcu-
late activity at the EOB (AEOB) of the given radioisotope by solving Equation 2.5:

AEOB = A0 · exp(λ · ∆t) (3.8)

The uncertainty of such value is propagated from the uncertainties of Ndec,obs (value given
by software during after the Gaussian fit), and of ε at given energy. The final AEOB is then
an average from AEOB values calculated with multiple measurements at different times after
EOB. The uncertainty of final AEOB is calculated based on the standard deviation between
these measurements and their uncertainties.

In the case of radioisotopes of activity A0,2 (at the beginning of the measurement) form-
ing during the measurement via the decay of “mother” of activity A0,1 (see Section 2.1.2),
the evolution of “daughter” activity, A2(t), in Equation 3.6 is given by Equation 2.7 which
results in corrected activity:

A0,2 =
Ndec,obs · λ2

ε · Iγ ·
(
1− exp(−λ2 · tmes)

) − λ2

1− exp(−λ2 · tmes)
· A0,1·

·
( λ2

λ1 · (λ2 − λ1)
·
(
1− exp(−λ1 · tmes)

)
− 1

λ2 − λ1
·
(
1− exp(−λ2 · tmes)

)) (3.9)

where Ndec,obs is the number of counts in “daughter” photopeak, and A0,1 is known from the
same measurement and calculation based on Equation 3.7. Several such A0,2 measurements
after EOB might be used for fit of Equation 2.7 to experimental points and find AEOB,2.
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Minimum Detectable Activity

Sometimes the measured radioisotopes emits γ lines of low intensities, or the measured
radioactive source contains very low amount of radioisotope of interest. Then, if the back-
ground is not completely eliminated, the desired photopeak is not visible on a spectrum.

In these cases, it is only possible to calculate the Minimum Detectable Activity (MDA).
It is an estimation of the activity required to identify a radiation source with an amount of
statistical certainty. At 95% confidence level, it is estimated as [73]:

MDA[Bq] =

(
2.71 + 4.65 ·

√
Nbg

)
· λ[s−1]

ε · Iγ ·
(
1− exp(−λ · tmes)

) (3.10)

where: Nbg is the number of background counts in the energy region of expected photopeak,
and ε is the detector efficiency at this energy and employed geometry of the measurement.
In general, smaller MDA characterizes better detectors or better measuring set-ups (or lower
background), and translates to upper limit of undetected activity of the radioisotope.

Experimental σ and TTY

In some experiments, the measured activities AEOB are induced by the projectiles of
energy E (Section 3.3.3) impinging on thin foils. To estimate the probability of their produc-
tion, foils can be measured with HPGe detector to find AEOB of produced radioisotopes.
Then, Equation 2.21 can be solved for σ to calculate the cross-section based on the estimated
I (Section 3.3.2):

σ(E)[mb] =
AEOB[MBq] ·M[u] · Zp · e

H · NA · I[µA] · ρ[g/cm3] · d[µm] · (1− exp
(
−λ[s−1] · tirr[s]

)
) · 10−43 (3.11)

For higher beam energies, an additional foil, catcher, is installed after each foil (as shown
in Figure 4.2), and later measured in the same way. The catcher stops the recoiled nuclei after
the nuclear reaction and so collects some of the products during the irradiation. Therefore,
the activity measured in the catcher is added to activity measured in the respective foil and
then used to calculate σ.

In the case when the AEOB is induced in thick targets by projectiles of energy E, the
experimental value of TY or TTY can be obtained from equations from Section 2.1.4:

TYY(E)[MBq/µAh] =
AEOB[MBq]

I[µA] · τ[h] · (1− exp
(
−λ[s−1] · tirr[s]

)
)

(3.12)

and compared to theoretical predictions from Equation 2.35. If the radioisotopes are formed
directly and indirectly in thin or thick targets (Section 2.1.4), Equations 2.38 or 2.39 are used
instead to determine σ or TTY.

3.3.2 Beam current monitoring

The beam current is monitored with use of the monitoring foils (see Table 3.3) placed in
front of target. The energy of the projectile is degraded by roughly 1% in such foils and thus
is not detrimental for the production yield. At the same time, the activity induced in monitor
foil with well-known cross-section provides information about the beam current (flux of
particles) impinging on the target. During the target preparation, a special care is taken to
ensure the same area of monitor foil and production target is seen from the beam side so that
the same particle flux passes through both materials (in certain cases, an additional catcher
foil must be also installed).

In practice, activated monitor foil is measured in the same way as activated target, with
the use of HPGe detector (Section 3.2.3), to calculate AEOB of the monitor radioisotope. Sev-
eral monitor reactions are recommended by IAEA [74, 75], from which a suitable one must
be chosen, with sufficient cross-section value at energy corresponding to the energy and type
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TABLE 3.3: Monitor foils and recommended cross-sections employed
in this work at HIL, ARRONAX, and NCNR to calculate proton (p),

deuteron (d), and α-particle beam current.
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of the employed projectile. Monitor foils used in this work are summarized in Table 3.3 with
the recommended cross-section reference on corresponding figures in Appendix C.

After the measurements of AEOB of monitor radioisotopes, Equation 2.21 is solved for
I to calculate the beam current based on the recommended cross-sections σM for reaction
induced by the projectiles of energy E (Section 3.3.3) impinging on monitor foil:

I[µA] =
AEOB[MBq] ·M[u] · Zp · e

H · NA · σM(E)[mb] · ρ[g/cm3] · d[µm] · (1− exp
(
−λ[s−1] · tirr[s]

)
) · 10−43 (3.13)

This approach was used in each experiment to calculate the beam current I used to irradiate
the target. In the case of experiments with more than one monitor foil, or with several mon-
itor radioisotopes produced, the averaged beam current was calculated (its uncertainty was
estimated based on the uncertainty of beam current calculated from each isotope, and the
standard deviation between them). Usually, average beam current measured with the mon-
itor foils was consistent with the Faraday’s Cup measurements. If not, intensity from the
monitor foil was used in further analysis (required in particular in Equation 3.11 to calculate
σ, and in Equation 3.12 to calculate TTY).

3.3.3 Beam energy verification

As shown in [76], monitor foils can also be used to verify the beam energy irradiating
the target. If more than one monitor radioisotope is produced (either in the same foil or by
using more than one monitor foil) then the activity EOB (AEOB,i) of each i-th radioisotope
(with the decay constant of λi) is produced in corresponding foil (of thickness xi and molar
mass Mi) and with reaction cross-section (σi). This relation is given by Equation 2.21 which
can be solved for σi. For each pair of monitor radioisotopes, for example, i = 1 and i = 2, the
cross-section ratio (rσ) is defined and calculated as:

rσ =
σ1

σ2
=

AEOB,1

AEOB,2
· M1 · x2

M2 · x1
· 1− exp(−λ2 · tirr)

1− exp(−λ1 · tirr)
(3.14)

Firstly, this is independent of beam intensity I and therefore removes one possible vari-
able in case of doubts. Secondly, it can be compared with expected values of rσ(E) calculated
for every energy based on the recommended cross-section values [74, 75]. The projectile en-
ergy impinging on the monitor foil is assumed to be the value where measured and expected
cross-section ratio match.

Example of beam energy verification is shown in Figure 3.7 that comes from one of ir-
radiation of natTi and natCu foils with proton beam at HIL (see Table 3.3). The difference of
energy impinging on first and second monitor foil were 0.1 MeV which was assumed to be
negligible in this analysis. After the irradiation, rσ for the following pairs were calculated:
48V/62Zn, 62Zn/65Zn, and 62Zn/63Zn, marked as points on lower part of the plot3. Com-
pared to the expected cross-section ratio marked as solid lines, the average proton beam
energy is located at 15.3 MeV, indicated by the left vertical dashed line.

This approach is consistent with parallel analysis method shown on upper part of Fig-
ure 3.7. Here, solid lines represent the values of beam current that would have been calcu-
lated based on AEOB of employed monitor radioisotopes (Equation 3.13) for different rec-
ommended cross-section values (σM) corresponding to different projectile energies. Then,
for every energy, the standard deviation between all currents is calculated and plotted as
bold solid line STD. Since STD is calculated based on the same AEOB values, it is clear that it
points toward the same beam energy, 15.3(1)MeV.

The methodology for the energy verification described here was employed in all exper-
iments in this work to verify the beam energy provided by the cyclotron supplier. Usually,
two values matched well within the error limit. However, discrepancy were observed in the
case of targets irradiated on the PETtrace station installed at HIL (Section 3.1). The nominal

3Technically, there are three more pairs of these radioisotopes but their cross-section ratio is almost
constant throughout the investigated energy range and thus making the precise energy estimation
impossible.
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proton energy from PETtrace machine is 16.5 MeV (Table 3.1), which translates to 16.1 MeV
impinging on the target (marked as indicated by the right vertical dashed line) after passing
through havar and air. At the moment, the reason for this discrepancy is unknown but the
experimental value of 15.3(1)MeV was adopted as the proton energy irradiating the targets
at PETtrace station at HIL.

In each experiment, the beam energy is adopted and then re-calculated (as discussed in
Section 2.2.1) to the energy impinging on each subsequent element of the irradiated target
with the use of SRIM software [32]. The propagation of uncertainty of beam energy (es-
timated from cross-section ratio method or provided by the laboratory team) and energy
straggling are also simulated with SRIM.

FIGURE 3.7: Analysis of PETtrace proton beam energy (station at
HIL) with the use of activity induced in natCu and natTi monitor
foils (see Table 3.3). Upper part: values of estimated beam currents,
and the standard deviation (STD) between them assuming different
PETtrace energy. Lower part: expected (lines) and measured (points)
cross-section ratios. Both approaches indicate the proton energy of

15.3(1)MeV impinging on the monitor foil.
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Chapter 4

Projects and experiments

This chapter focuses on five uncommon or emerging medical radioisotopes: 97Ru, 105Rh, and
43,44g,m,47Sc. In particular, their innovative production is discussed based on the performed exper-
iments and the results of the analysis. The measured data included the cross-section of 97Ru and
105Rh production. In the case of 43,44g,m,47Sc radioisotopes, Thick Target Yields data was measured
and employed for the reconstruction of the excitation functions.

4.1 97Ru production with α beam

4.1.1 Introduction

The 97Ru radioisotope was first acknowledged as medically interesting in 1970 [77] and
is even studied in recent measurements [78, 79]. It has a half-life of 2.9 d allowing non-local
production and emits low-energy high-intensity γ line (216 keV, 86%) suitable for prolonged
SPECT examinations. It also introduces no additional dose from β+ as it decays only via EC.
It has a theranostic matched pair – 103Ru (T1/2 = 39.26 d) that decays to the short-lived Auger
emitter 103mRh (T1/2 = 56.12 min), a promising γ-free therapeutic agent. Ruthenium itself has
a rich chemistry associated with its various oxidation states (II, III, IV and VIII) and forms
more stable compounds compared to the SPECT-standard 99mTc [80]. Many radioactive Ru-
labeled compounds have been studied and found applications as summarized recently in
[81], in particular as the chemotherapy agents [82, 83].

Due to these interesting characteristics, many studies on production of 97Ru have been
conducted. The reactor route via 96Ru(n,γ) reaction [77] yields very low specific activity
which may limit its use for some applications such as molecular imaging. To obtain high
specific activity product, one can use charged projectile from accelerators. In the case of
cyclotron routes, the first and most used reaction is 103Rh(p,spall) with 200 MeV proton beam
and natural rhodium target, as suggested in [84]. While producing high amount of activity
of no-carrier-added 97Ru, this method requires high-energy protons and no details about
the impurity levels were reported. Another reaction route is the 103Rh(p,x) reaction using
60 MeV proton beam [85]. The 97Ru production yield is very high but accompanied by Tc
radioactive impurities which are difficult to discard even after the chemical separation step.
A feasible production is the 99Tc(p,3n) reaction suggested in [86] and studied later up to
100 MeV of proton energy [80, 87, 88] as it produces significant amounts of 97Ru with very
small amount of radioactive impurities. However, the availability of 99Tc radioactive target is
an issue. Later, experimental excitation functions were reported for natAg(p,x) up to 80 MeV
of proton energy [89] and for natPd(p,x) up to 70 MeV [90]. These two production routes
have much smaller cross-section, hence 97Ru production would require long irradiation time
and would contain a substantial amount of radioactive impurities. In the case of deuteron
beam, the available reaction 96Ru(d,x) (studied in [91] and partially in this work, see Figure
4.10) is favorable but would produce very low specific activity as the target material is an
isotope of the nuclide of interest. Some groups have also investigated more exotic projectiles:
natMo(3He,x) [92], 93Nb(7Li,3n) [93] and 89Y(12C,p3n) [78, 94]. In these cases, after chemical
separation, low level of radioactive impurities can be achieved but the availability of these
beams is scarce making these processes not suitable to launched clinical trials. Finally, the
cross-sections for α-induced reactions on Mo were reported in [95]. Additionally, natMo(α,x)
production and impurities up to 40 MeV were thoroughly studied in [79, 96].
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TABLE 4.1: Nuclear data [72] and production routes of the radioiso-
topes studied in this work (“tot” indicates production of radionuclide

directly and via decay of short-lived metastable state).

Iso-
tope

T1/2
Decay
(%)

Main γ lines
[keV] (%)

Contributing reactions
Q-value

[MeV]

97Ru 2.83 d EC (100)
215.7 (85.8),
324.5 (10.8)

94Mo(α,n)97Ru
95Mo(α,2n)97Ru
96Mo(α,3n)97Ru
97Mo(α,4n)97Ru
98Mo(α,5n)97Ru
100Mo(α,7n)97Ru

−7.9
−15.3
−24.5
−31.3
−41.6
−54.1

89gZr 78.4 h
β+ (23),
EC (77)

909.0 (100)

92Mo(α,x)89totZr
94Mo(α,x)89totZr
95Mo(α,x)89totZr
96Mo(α,x)89totZr
97Mo(α,x)89totZr
98Mo(α,x)89totZr
100Mo(α,x)89totZr
92Mo(α,x)89totNbÝ89totZr
94Mo(α,x)89totNbÝ89totZr
95Mo(α,x)89totNbÝ89totZr
96Mo(α,x)89totNbÝ89totZr
97Mo(α,x)89totNbÝ89totZr
98Mo(α,x)89totNbÝ89totZr
100Mo(α,x)89totNbÝ89totZr

−16.7
−14.0
−21.4
−30.6
−37.4
−46.0
−60.2
−21.1
−38.9
−46.2
−55.4
−62.2
−70.9
−85.1

95gTc 20.0 h EC (100) 765.8 (93.8)

92Mo(α,n)95gTc
94Mo(α,x)95gTc
95Mo(α,x)95gTc
96Mo(α,x)95gTc
97Mo(α,x)95gTc
98Mo(α,x)95gTc
100Mo(α,x)95gTc
92Mo(α,n)95RuÝ95gTc
94Mo(α,3n)95RuÝ95gTc
95Mo(α,4n)95RuÝ95gTc
96Mo(α,5n)95RuÝ95gTc
97Mo(α,6n)95RuÝ95gTc
98Mo(α,7n)95RuÝ95gTc
100Mo(α,9n)95RuÝ95gTc

−5.7
−14.9
−22.3
−31.4
−38.3
−46.9
−61.1
−9.0
−26.7
−34.1
−43.3
−50.1
−58.7
−73.0

96gTc 4.28 d EC (100)
778.2 (100),
812.6 (82),
849.9 (98),
1127.0 (15.2)

94Mo(α,x)96gTc
95Mo(α,x)96gTc
96Mo(α,x)96gTc
97Mo(α,x)96gTc
98Mo(α,x)96gTc
100Mo(α,x)96gTc

−13.3
−14.4
−23.7
−30.4
−39.0
−53.3

99Mo 65.9 h β– (100)
140.5 (89.43),
739.5 (12.13)

97Mo(α,2p)99Mo
98Mo(α,x)99Mo
100Mo(α,x)99Mo

−13.7
−14.7
−8.3
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In this work, the optimization of natMo(α,x)97Ru production route was studied at AR-
RONAX and extend the available cross-section data to higher projectile energy in coherence
with commercially available cyclotrons, which are able to deliver up to about 70 MeV α
beam. The coproduction of radioactive impurities (listed in Table 4.1) via natMo(α,x) reac-
tions was also reported, and the possible commercial production of 97Ru with the natMo
target was explored. Part of the results of these studies has also been published in [97].

4.1.2 Targets

Three experiments were performed at ARRONAX. The stacked-foils targets were irradi-
ated in vacuum with an α beam of 67.4(5)MeV for about 1 h with beam currents of 40–60 nA.
A typical stacked-foil target consisted of an Al monitor foil in front, followed by the set of
multiple natMo foils (around 10 µm thick each and natural abundance listed in Table C.1 in
Appendix C) and Al degraders (with thickness from 50 to 500 µm), arranged alternately. The
order of the foils in the stacks were planned so that each natMo foil is activated with a vari-
ous energy, all covering the energy range from 40 to 67 MeV in about 3 MeV intervals. Other
natAl foils were used as catchers of the recoil atoms (this was necessary due to the high en-
ergy of α particles), and an additional natNi foil was used as catcher for the natAl monitor
in front of the stack. A set-up used for the stacked-foils irradiation at ARRONAX is shown
in Figure 4.1 and the scheme of a target in Figure 4.2. After the preparation, the target was
installed on ARRONAX station (Figure 3.2c).

All foils with a purity of 99% for Al and 99.9% for natMo were purchased from the Good-
Fellow company. Each foil was weighed before irradiation using an precise scale (10−5 g)
and scanned for area determination, allowing the precise thickness calculation (assuming
the homogeneity over the whole surface).

FIGURE 4.1: Photo of the set-up used for the stacked-foils irradiation:
(a) holding arm, (b) stack of foils, (c) aluminum foil used for the beam

focalization, (d) one of natMo foils from the stack.

FIGURE 4.2: Stacked-foils scheme used to study natMo(α,x) cross-
sections at energies 58.7, 55.4, and 51.9 MeV. natNi foil works as

catcher for first natAl monitor.
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4.1.3 Experimental results

Irradiated stacked-foils (with corresponding catchers) were measured at ARRONAX as
discussed in Section 3.2. One of the measured γ spectrum is shown in Figure C.11 (Appendix
C). 97Ru is observed, along with radioactive species: 89gZr, 95gTc, 96gTc, and 99Mo. The con-
tributing reactions forming these radioisotopes are listed in Table 4.1 and were taken into
account when calculating the expected values based on TENDL [24]. The experimental data
are also compared with previous experiments reported in literature [79, 95, 96]. Measured
cross-section values are listed in Table C.5 (with corresponding energy uncertainties, not
visible on the graphs).

In the case of 97Ru production (Figure 4.3), the measurements are in line with the previ-
ously reported data at lower projectile energies. Compared to the experimental data, TENDL
shows similar structure but underestimates the cross-section by about 30 mb in the region
20Ý40 MeV. The subsequent fall of the excitation function and a bump seem to be shifted by
5–10 MeV with respect to the experimental data.

The 89gZr excitation function (Figure 4.4) is measured for the first time. The predictions
of TENDL shows a similar trend as the measurements but slightly shifted toward lower
projectile energies (5 MeV).

For 95gTc (Figure 4.5), the obtained cross-section values are consistent with the previously
measured data at lower projectile energies. The shape of TENDL calculations seems to be the
same as obtained in the measurements, but again a shift in energy is observed. This shift is
probably related to the code since 3 different sets of data acquired at different time, different
laboratories and overlapping energy range are consistent with each other and shows the
same shift with respect to TENDL.

The experimental data describes well the excitation function for 96totTc (Figure 4.6). Ad-
ditionally, the measurements from this work preserve the trend of the ones reported earlier
for lower projectile energies. No shift with respect to the TENDL calculations is observed,
contrary to the previous reactions.

FIGURE 4.3: Measured cross-section for natMo(α,x)97Ru reaction com-
pared with the literature data [79, 95, 96]. The coproduction of 103Ru
via 100Mo(α,n)103Ru and 100Mo(α,p)103TcÝ103Ru reactions was not
observed in the investigated energy range but the total cross-section

for 103Ru production is plotted from TENDL (red line).
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FIGURE 4.4: Measured cross-section for natMo(α,x)89gZr reaction.

FIGURE 4.5: Measured cross-section for natMo(α,x)95gTc reaction com-
pared with the literature [79, 96].
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FIGURE 4.6: Measured cumulative cross-section for natMo(α,x)96mTc
and natMo(α,x)96gTc reactions compared with the literature [79, 96].

FIGURE 4.7: Measured cross-section for natMo(α,x)99Mo reaction
compared with the literature [79, 96].
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All experimental cross-sections data for 99Mo production (Figure 4.7) are consistent. The
results from this work show a continuous rise of the excitation function up to the maximum
energy of these measurements. This is in obvious contrast to TENDL which predicts a maxi-
mum at around 30 MeV and then a decrease of the excitation function. A slight shift between
TENDL and experimental results is observed at low projectile energies.

4.1.4 Discussion

Cross-section data measured in this work are in line with the existing data at low ener-
gies for all radionuclides under investigation. These data were used to calculate production
yields of each observed radioisotope using Equation 2.35 and the RYC software (see Ap-
pendix A). The TTY curve for 97Ru is shown in Figure 4.8. These values were used to esti-
mate the possible production of 97Ru with natMo target and α particles two energies: 30 MeV
and 70 MeV, which are the most common in commercially available cyclotrons. The 97Ru
production yields are 3.5 MBq/µAh and 20 MBq/µAh respectively. Although the yield is al-
most 6 times larger at 70 MeV than at 30 MeV, the latter energy of α beam is more common in
current cyclotron facilities and is more suitable for the production of other emerging medical
radioisotopes like 211At or 43Sc. At the same time, the production route with the α beam of
the energy of 70 MeV yields more radioactive impurities and stable Ru isotopes, resulting in
lower specific activity.

FIGURE 4.8: TTY of natMo(α,x)97Ru reaction. The experimental curve
(blue) is calculated using the cross-section from this work (above

40 MeV) and the data provided in [79, 96] below 40 MeV.

Table 4.2 shows the parameters for the possible production of 50 MBq as this amount
was proven SPECT-applicable in several clinical trials [98]. The yield and the number of
produced stable Ru atoms (96Ru, 98Ru, 99Ru, 100Ru, 101Ru, 102Ru) based on the TENDL cross-
sections were also calculated in order to estimate the specific activity, SA, of 97Ru. The SA
presented here assumes 100% successful chemical extraction of Ru isotopes from Mo target
at EOB and hence is just an estimation used to compare different production routes. For the
completeness of this study, the alternative production of 97Ru with the use of 100% enriched
95Mo and 96Mo targets and α beams of 30Ý15 MeV and 67Ý15 MeV respectively.

It is worth mentioning that from the diagnostics point of view, the most dangerous im-
purity is 103Ru. It is the only other radioactive Ru element with long half-life (T1/2 = 39.26 d),
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TABLE 4.2: Estimation of 97Ru activity produced with α beam on
molybdenum targets compared with the production route with pro-
ton beam and rhodium and technetium targets. The list of radioactive
impurities is narrowed down to the most intensive long-lived ones.
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which will contribute to the patient’s dose via β– decay, high intensity γ line, and Auger
electrons from its daughter (103mRh). During the irradiation of natMo with α beam it can be
only formed via 100Mo(α,x) reactions marked as the red line in Figure 4.3. Its contribution is
negligible in the investigated energy range (67Ý40 MeV). For the estimation of thick target
yields (Table 4.2), its contribution was calculated considering measured data [79, 96] at lower
energies where the main production of 103Ru occurs.

For the completeness of this analysis, Table 4.2 shows also the production of 97Ru with
two other promising routes via 103Rh(p,x) and 99Tc(p,3n) reactions with the projectiles and
energies available in the commercial cyclotrons. The first production route offers more activ-
ity of 97Ru with the use of natural target, however the contribution of co-produced radioac-
tive impurities is higher and the specific activity is lower. Very high activity, purity, and
specific activity can be obtained with the use of the second reaction, 99Tc(p,3n), which how-
ever requires also radioactive 99Tc target. The energy window employed in this production
route should be adjusted to the amount of the available technetium material.

4.1.5 Summary

This work extended the available cross-section data of selected natMo(α,x) reactions up
to 70 MeV. The reported measurements preserve well the trend of the cross-section values
reported previously below 40 MeV and are consistent in overlapping energy ranges. A rea-
sonable agreement with TENDL predictions is observed however in certain cases the shift
of 5-10 MeV is visible with respect to the experimental data.

The production of medically interesting 97Ru was proposed with α beam and natMo
target for the projectile energy ranges of 30Ý15 MeV or 67Ý15 MeV. The only dangerous
radioisotopic impurity that could not be chemically separated would be 103Ru, produced
however in negligible amounts. Results from this work indicate that a single 1 h production
run with few µA α beam should satisfy the need of SPECT imaging for one patient. Several
doses could be produced with longer irradiations with higher beam intensities or by using
enriched 95,96Mo targets which would substantially increase the production efficiency.

Further chemical separation would be required to extract Ru element from Mo target
and separate it from formed radioactive and stable elements of Tc, Nb and Zr. This can be
done for example with either the solvent extraction or distillation methods with an efficiency
better than 80% [92]. The specific activity should also be considered in further chemical re-
search as each production route form additional stable atoms of Ru, which would chelate
the labelling compound.
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4.2 105Rh production with deuteron beam

4.2.1 Introduction

The radioisotope 105Rh (T1/2 = 35.4 h) is an emitter of soft β– particles of weighted aver-
age energy of 150 keV. The mean range of emitted particles in the water is 0.76 mm making
105Rh suitable for labelling monoclonal antibody fragments and accurately delivering the ra-
diation dose to small tumours [99]. The advantage of 105Rh is formation of kinetically inert
complexes [100, 101], which are very stable in vivo, contrary to 131I (which 8 day half-life
may be too long and labeled molecules may dehalogenate in vivo [102]). For example, pre-
clinical studies on 105Rh-EDTMP reported rapid blood clearance and selective uptake in the
bone, offering promising treatment of pain related to bone metastases [103]. Many possi-
ble complexes of 105Rh has also been summarized in [100]. Moreover, 105Rh demonstrates
low energy γ emission (of 319 keV with 19% intensity) which is appropriate for imaging the
distribution of the radionuclide in the human body and dose estimations [103].

Today, the 105Rh radioisotope can be produced with high specific activity via (n,γ) re-
action on highly enriched 104Ru target followed by the subsequent β– decay of the 105Ru.
The one day irradiation of 100 mg of 104Ru target in the reactor with the neutron flux of
4× 1014 s−1 produces around 5.3 GBq (on natural target) or 27 GBq (on 99% enriched target)
at EOB, suitable for chemical and clinical investigations [102]. The separation of 105Rh from
Ru target can be then done via RuO4 distillation [102] or based on MgO absorption [104].

The production of 105Rh via natPd(p,x) reaction was proposed in [105, 106] with the cross-
sections verified up to 80 MeV proton energy [107, 108]. The estimated yield of 105Rh pro-
duction at 16 MeV is around 2 MBq/µAh. To compare it with the reactor route, one day
of irradiation of natural target with 60 µA (equivalent of 4× 1014 s−1 flux) would produce
around 3 GBq. The produced activity is comparable to reactor route and could be doubled
with the use of a proton beam of 30 MeV. The use of deuteron beam and natPd(d,x)105Rh
reaction would also increase the activity by the factor of about 2 if the beam of the same
energy is available (cross-section reported in [109]).

In this work, an alternative production route was proposed and studied at ARRONAX.
Namely, the natRu(d,x) reactions for which the excitation function for 105Rh and other ra-
dioisotopes (listed in Table 4.3) have been measured. The possible commercial production of
105Rh with ruthenium targets is discussed. This production route was also employed in 2013
for labelling studies in Institute of Nuclear Chemistry and Technology in Warsaw, Poland
[110].

4.2.2 Targets

Two runs were performed at ARRONAX, irradiating stacked-foils targets in vacuum
with deuteron beam of energy below 18 MeV for about 1 h with beam current of 100 nA.
The methodology of target preparation was similar to the one described earlier, in previous
experiment (Section 4.1.2). The natRu of purity 99.9% was purchased from the GoodFellow
company in the form of thin ruthenium layer (0.1 µm) deposited on Al support (25 µm)1.
Additional Al foils (with thickness from 50 to 300 µm) were arranged alternately for the
energy degradation, as shown in Figure 4.9. The natural abundance of ruthenium is shown
in Table C.2 (Appendix C). After the preparation, the targets were installed at the ARRONAX
station from Figure 3.2c.

Contrary to the previous experiment, deuteron beam used here was of much lower en-
ergy. Additionally, the 25 µm Al support of each natRu worked as catcher hence additional
ones were not needed. No recoiled nuclei from the natNi monitor were observed on first
natRu foil.

Because of the 25 µm Al support, it was not possible to measure the precise thickness
of natRu deposition with the measurement of foils’ surface and mass. An attempt was made

1The only available thicker targets have a thickness above 1 mm allowing the TTY measurements
and potential large-scale production. However, 1 mm target of natRu would stop 18 MeV deuteron
beam completely therefore it could not be employed in the cross-section measurements in this work.
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TABLE 4.3: Nuclear data [72] of 105Rh, radioactive contaminants, and
their production routes studied in this work, below 18 MeV (“tot” in-
dicates production of radionuclide directly and via decay of short-

lived metastable states).

Iso-
tope

T1/2
Decay
(%)

Main γ lines
[keV] (%)

Contributing reactions
Q-value

[MeV]

105Rh 35.4 h β– (100)
306.1 (5.1),
318.9 (19.1)

104Ru(d,n)105totRh
104Ru(d,p)105RuÝ105totRh

4.8
3.4

97Ru 2.83 d EC (100)
215.7 (85.8),
324.5 (10.8)

96Ru(d,p)97Ru
96Ru(d,n)97totRhÝ97Ru
98Ru(d,x)97Ru
98Ru(d,3n)97totRhÝ97Ru
99Ru(d,x)97Ru

5.9
1.6
−3.9
−16.7
−11.4

99gRh 16.1 d
β+ (4),
EC (96)

89.8 (33.4),
353.1 (34.5),
528.2 (37.9)

98Ru(d,n)99gRh
99Ru(d,2n)99gRh
100Ru(d,3n)99gRh

2.4
−5.1
−14.8

99mRh 4.7 h
β+ (6),
EC (94)

340.8 (72.0),
617.8 (12.3),
1261.2 (11.4)

98Ru(d,n)99mRh
99Ru(d,2n)99mRh
100Ru(d,3n)99mRh

2.4
−5.1
−14.8

100gRh 20.8 h
β+ (4),
EC (96)

446.2 (12.0),
539.5 (80.6),
822.7 (21.1),
1107.2 (13.6),
1362.2 (15.4),
1553.3 (20.7),
1929.8 (11.6),
2376.0 (32.6)

99Ru(d,n)100totRh
100Ru(d,2n)100totRh
101Ru(d,3n)100totRh

3.0
−6.6
−13.4

101mRh 4.34 d
EC (92.8),
IT (7.2)

306.9 (81.0)
100Ru(d,n)101mRh
101Ru(d,2n)101mRh
102Ru(d,3n)101mRh

3.1
−3.7
−12.9

103Ru 39.2 d β– (100) 497.1 (91.0)
104Ru(d,x)103Ru
102Ru(d,p)103Ru

−2.6
4.0

105Ru 4.44 h β– (100)
316.4 (11.1),
469.3 (17.5),
724.3 (47.3)

104Ru(d,p)105Ru 3.4
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to verify it with the use of the Scanning Electron Microscope at ARRONAX. Some inhomo-
geneity regions were observed, however the scan of all irradiated foils, inch by inch, for
the measurement of precise thickness map was not possible due to the timing limitations.
Therefore the thickness provided by the supplier (with 20% uncertainty) was adopted.

FIGURE 4.9: Stacked-foils design used to study natRu(d,x) cross-
sections at energies 17.5, 14.2, 11.0, 9.0, 6.7, and 3.8 MeV. natRu is de-

posited on Al support. natNi foil is used as monitor.

4.2.3 Experimental results

Measurements and evaluations

The irradiated foils were measured at ARRONAX. 105Rh was observed along with other
radioactive species that will act as impurities: 97Ru, 99gRh, 99mRh, and 100gRh, 101mRh, 103Ru,
and 105Ru. The contributing reactions forming these radioisotopes are shown in Table 4.3
and were taken into account when calculating the expected values based on TENDL [24].
Experimental results are compared with the only one literature data [91] available for some
of the investigated reactions. The results are shown in following figures and the values are
listed in Table C.6. All measured cross-sections have almost 25% uncertainty due to two
main factors:

• 20% uncertainty of Ru thickness (inhomogeneity of deposition, see Section 4.2.2),

• 5–20% uncertainty of gaussian fit of the small photopeaks caused by low produced
activity (coming from the very thin Ru layer available, 0.1 µm).

In certain cases, no photopeak was visible even after 24 h measurement, and thus some cross-
section data were not obtained.

The 97Ru radioisotope is formed directly and indirectly via the decays of two “mother”
nuclides: 97g,mRh. However, their half-lives are relatively short (30.7 min and 46.2 min re-
spectively) and their measurement was not possible thus the cross-section reported here is
the cumulative one (Figure 4.10). These results are in the agreement with the measurements
reported in [91] and withTENDL predictions.

In the case of other observed radioisotopes: 99gRh (Figure 4.11), 99mRh (Figure 4.12),
100gRh (Figure 4.13), and 101mRh (Figure 4.14), their formation is only direct. TENDL pre-
dictions are higher by a factor of about 2 than the measured cross-section values although
experimental data seem to preserve the behaviour of TENDL excitation functions. No other
experimental data are available for the comparison.

The only available cross-section data [91] for natRu(d,x)103Ru reaction provides almost
exactly 2 times higher values than data from this work (Figure 4.15). The discrepancy may
be related to the calibration issue in [91], where 497 keV γ line was compared with 511 keV
γ line from 22Na source without accounting for 200% intensity from annihilation. Applying
this correction would place all experimental results and TENDL predictions within the error
limit.

Finally, the 105Ru radioisotope is formed uniquely on 104Ru. The measurements confirm
the shape of excitation function from TENDL which however provides around 30% lower
values above 10 MeV.
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FIGURE 4.10: Measured cross-section for natRu(d,x)97Ru reaction
compared with the literature data [91] and TENDL predictions [24].

FIGURE 4.11: Measured cross-section for natRu(d,x)99gRh reaction
compared with TENDL predictions [24].
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FIGURE 4.12: Measured cross-section for natRu(d,x)99mRh reaction
compared with TENDL predictions [24].

FIGURE 4.13: Measured cross-section for natRu(d,x)100gRh reaction
compared with TENDL predictions [24].
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FIGURE 4.14: Measured cross-section for natRu(d,x)101mRh reaction
compared with TENDL predictions [24].

FIGURE 4.15: Measured cross-section for natRu(d,x)103Ru reaction
compared with the literature data [91] and TENDL predictions [24].
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FIGURE 4.16: Measured cross-section for 104Ru(d,p)105Ru reaction
compared with TENDL predictions [24].

Analysis of 105Rh formation

The 105Rh is produced in several ways but only on 104Ru and always partially through
the 100% IT decay of isomeric state 105mRh (T1/2 = 42.9 s). The direct production of ground
state and through metastable state is not distinguished here, due to very short half-life
of the isomer, therefore all cross-section indicates the total production, 105totRh. Addition-
ally, 105totRh is formed through the decay of co-produced 105Ru (T1/2 = 4.44 h). Assuming
T1/2(

105Ru) << T1/2(
105Rh), the 105Ru can be treated as “compound nucleus”, and the

cross-section for 104Ru(d,x)105totRh reaction (σtot) is a sum of cross-section for 104Ru(d,n)105totRh
reaction (σRh) and 104Ru(d,n)105Ru reaction (σRu), as given by Equation 2.21:

AEOB,Rh = H · NA
M
· I

Zp · e
· x · (σRh + σRu)︸ ︷︷ ︸

σtot

·(1− exp(−λ · tirr)) (4.1)

where AEOB,Rh is activity EOB of 105Rh measured at least 3 d after EOB, allowing the com-
plete decay of 105Ru, and recalculated for EOB.

This approach assumes that AEOB,Rh comes from direct 105Rh formation and from “im-
mediate” 105Ru decay during and after EOB. Cross-section for 104Ru(d,x)105totRh calculated
in this way, σtot, is shown in Figure 4.17. The cross-section from TENDL presented on the plot
is also a sum of two cross-sections and shows a relatively good agreement with the measure-
ments from this work, preserving the shape of excitation function but providing about 30%
lower values above the projectile energy of 10 MeV. There is no other reported experimen-
tal data for this excitation function. Nevertheless, cross-section for 104Ru(d,p)105Ru reaction
reported in [91] is based on the measurements of 105Rh activity. In the article, there is no
remark on direct 105Rh formation hence the data presented in [91] might be in fact σtot as
discussed here. Therefore they are presented in Figure 4.17, instead of in Figure 4.16, where
they would be about 2 times above measurements obtained in this work and predictions of
TENDL.

However the methodology described above is a simplification and after EOB the 105Rh
radioisotope is formed in “mother-daughter” decay of 105Ru. Knowing the activity EOB of
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FIGURE 4.17: Measured cross-section for 104Ru(d,x)105totRh reaction
compared with the corrected data from the literature [91] and with

TENDL predictions [24].

FIGURE 4.18: Calculated cross-section for 104Ru(d,n)105totRh reaction
compared with TENDL predictions [24].
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105Ru it is then possible to calculate the activity EOB of 105Rh produced only during irradia-
tion, Adir

EOB,Rh (by solving Equation 2.7 for A2(t = 0)). This activity is formed only during the
irradiation but still some of it is produced through the decays of 105Ru which is also forming
and decaying before EOB, and therefore is given by Equation 2.38:

Adir
EOB,Rh = H · NA

M
· I

Zp · e
· x ·

(
(σRh +

λRh
λRu − λRh

· σRu) · (1− exp(−λRh · tirr))−

− λRh
λRu − λRh

· σRu · (1− exp(−λRu · tirr))
) (4.2)

where λRh,Ru are the decay constants of 105Rh and 105Ru respectively. Given the measured
σRu (five experimental points, Figure 4.16) and Adir

EOB,Rh calculated as above, the direct pro-
duction cross-section of 104Ru(d,n)105totRh was calculated (Figure 4.18). The results show
very good agreement with TENDL which indicates that 30% shift observed for cumulative
production of 105totRh (Figure 4.17) is related to shift present in 105Ru excitation function
(Figure 4.16). It is also worth mentioning that Equation 4.2 transforms to Equation 4.1 in
limit λRu → ∞ reflecting the assumption T1/2(

105Ru) << T1/2(
105Rh) which confirms the

validity of 105Rh calculations.

4.2.4 Discussion

The measured cross-sections were used to calculate production yields of each observed
radioisotope. The TTY curve for direct and indirect production of 105Rh on natural target
is shown in Figure 4.19 (the yield is 5 times higher for 99% enriched target). This yield is
calculated based on cumulative cross-section for the formation of 105Rh and 105Ru which
decays to 105Rh. All obtained yields were used to estimate the possible production of 105Rh
with natRu and enriched 104Ru targets, as shown in Table 4.4, for the same beam flux and
irradiation time as used in the case of the reactor route. For the estimation of contribution of
103Ru in enriched target, cross-section from TENDL was employed. This is because 103Rh is
produced on enriched target only via 104Ru(d,x) reactions and the experimental cross-section
from this work is for 104Ru(d,x)103Ru (Figure 4.15).

As mentioned in [102], the activation of 100 mg enriched target with the same flux of
neutrons produces around 27 GBq of 105Rh after one day of irradiation (the activities of
co-produced radioisotopes were not reported). Hence, the activation of 200 mg of enriched
104Ru would produce around 54 GBq of 105Rh. The activity produced with the use of the
deuteron beam of the same flux provides around 43 GBq with almost no contribution of ra-
dioactive impurities. Assuming the standard size of the beam of 1 cm2, the deuteron route
requires 350 mg target material to cover the energy range 17.5Ý5 MeV. If the beam intensity
of 100 µA is available, the same activity could be produced in 14Ý7 MeV energy range with
200 mg material. Further decrease of the required mass of the target would be achieved with
better focalisation of the deuteron beam. For more detailed comparison, the parameters of
given cyclotrons and reactors should be taken into account. However, it is clear that both
routes produce the similar activity of 105Rh with comparable amounts of enriched target
material.

For the reactor route, the details of SA calculations are not specified in [102] but the value
of around 3.3 kCi/mmol is expected after one day activation of enriched 104Ru followed
by 48 h cooling time and 50% chemical separation efficiency. The main factor lowering SA
discussed in the article is the contribution of Ru leftovers which would compete with 105Rh
in labelling process. In estimations presented here, it is assumed that the same fraction of
Ru would be left from 350 mg target, and the same cooling time and chemical separation
would be applied to 43 GBq of 105Rh. The specific activity in these conditions would reach
roughly 2.6 kCi/mmol though it might be lower due to concentration of other metal ions
which depends on the chemical separation method. However, it is safe to assume that 105Rh
productions with neutron or deuteron projectiles provide similar specific activity.
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FIGURE 4.19: TTY of natRu(d,x)105Rh calculated from the measured
cross-section. The yield takes into account the indirect production of

105Ru and decay to 105Rh.

TABLE 4.4: Estimation of 105Ru activity and long-lived impurities
produced with deuteron beam on ruthenium targets activated in the
same conditions as in the reactor. (*) indicates the estimation based

on TENDL cross-section.

Deuteron energy 17.5 Ý 5 MeV

Target natRu 104Ru (99%)

Thickness 350 mg/cm2 350 mg/cm2

105Rh yield 7 MBq/µAh 37 MBq/µAh

Irradiation 1 d, 60 µA 1 d, 60 µA

Activity EOB 8 GBq 43 GBq

Relative
activity
at EOB

105Ru 100 100
97Ru 25
99gRh 5
99mRh 310
100gRh 290
101mRh 90
103Ru 6 0.13 (*)
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4.2.5 Summary

This work experimentally verified and re-evaluated previous data on 105Rh formation
via 104Ru(d,n) reaction up to 17.5 MeV. Additionally, data on natRu(d,x) reactions were stud-
ied for the first time although the measurements have around 25% uncertainty and thus
should be redone in the future to get better precision.

The activation of enriched 104Ru with the same flux of neutron and deuteron beams was
also discussed. Both routes yield GBq quantities of 105Rh in one day irradiation. Deuterons
provide around 1.5 times more activity and similar specific activity but require around 2–
3 times more target material. The estimation of specific activity should be verified by the
chemical study.

4.3 Production of Sc radioisotopes with proton and deuteron
beams

4.3.1 Introduction

Interest and applications of scandium radioisotopes

Recently there is a growing interest in three scandium radioisotopes, 43Sc, 44g,mSc and
47Sc, in the nuclear medicine field (their properties are shown in Table 4.5, along with the
investigated production routes and observed coproduced radioactive impurities). They have
been proven to be an interesting alternative to currently used radioisotopes, both for therapy
and diagnostics. In spite of poorer positron tomography resolution [111] with the use of
these radioisotopes, their production using a single facility and subsequent distribution to
hospitals not possessing a cyclotron or radiopharmaceutical synthesis equipment may be
attractive.

Both positron emitters 43Sc and 44gSc are promising PET radioisotopes that can compete
with commonly used 68Ga [111–115]. The additional γ quanta from 44gSc is a disadvantage
as it introduces additional dose to the patient. However, as shown by XEMIS group [116–
118] and suggested in [119, 120], the γ photon from 44gSc can be used in coincidence with
β+ decay for imaging, lowering the required activity and thus reducing the overall dose (see
Appendix B). A metastable state, 44mSc, has relatively long T1/2, and decays mainly by a
low energy IT to the ground state, and thus can be used as long-lived in vivo 44mSc/44gSc
generator for the prolonged examinations or studies of long metabolic processes [121–124].

Meanwhile, 47Sc is a low-energyβ– emitter suitable for targeted radiotherapy and SPECT
imaging [125], which is emphasized also within IAEA Coordinated Research Project [126].
As mentioned in [127, 128], this radioisotope can form a matched pair with diagnostic scan-
dium radioisotopes. It can also be used instead of the therapeutic 177Lu as they share similar
chemistry [129].

The general interest of scandium radioisotopes was also stressed recently in [130]. It is
not only related to their convenient physical properties, but also to the feasible chemistry
that has been reported mainly for the labeling of DOTA-peptides along with the stability
and biodistribution studies [112, 113, 121–123, 131–140].

Availability of scandium radioisotopes

The production of scandium radioisotopes with the use of cyclotrons has been presented
in numerous papers with the use of proton [113, 127, 132, 133, 136–139, 141–146], deuteron
[121–124, 147] and α particle beams [147–151] with calcium and potassium targets. The reac-
tion with potassium nuclei requires α beam and generates lower activities [150]. Therefore,
typically calcium in the form of CaO or CaCO3 targets is used. CaO or CaCO3 can be later
easily dissolved for the chemical separation [113, 121, 123, 131–134, 136–140]. In this work,
these data is complemented by the TTY measurements and study of production optimiza-
tion with the use of natural and enriched CaCO3 and TiO2 targets irradiated by proton (HIL,
ARRONAX, NCNR) and deuteron (HIL) beams (see Table 3.1). All observed radioisotopes
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TABLE 4.5: Nuclear data [72] of medically interesting scandium ra-
dioisotopes, their radioactive impurities, and main production routes

with proton and deuteron beams observed in this work.

Iso-
tope

T1/2
Decay
(%)

Main γ lines [keV]
(intensity %)

Contributing
reactions

Q-value
[MeV]

43Sc 3.89 h
β+ (88),
EC (12)

373 (22.5)

43Ca(p,n)43Sc
44Ca(p,2n)43Sc
46Ti(p,α)43Sc
47Ti(p,n+α)43Sc

−3.0
−14.1
−3.1
−1.2

42Ca(d,n)43Sc 2.7

44gSc 3.97 h
β+ (94.3),
EC (5.7)

1157 (99.9)
44Ca(p,n)44gSc
48Ti(p,n+α)44gSc

−4.4
−1.4

43Ca(d,n)44gSc 4.5

44mSc 58.6 h
IT (99),
EC (1)

271 (86.7), 1002 (1.2),
1126 (1.2), 1157 (1.2)

44Ca(p,n)44mSc
48Ti(p,n+α)44mSc

−4.7
−1.4

43Ca(d,n)44mSc 4.2

46Sc 83.8 d β– (100) 159 (68.3)
48Ca(p,3n)46Sc
47Ti(p,2p)46Sc

−1.9
−1.0

47Sc 3.35 d β– (100) 159 (68.3)
48Ca(p,2n)47Sc
48Ti(p,2p)47Sc

−8.7
−1.1

46Ca(d,n)47Sc 6.3

48Sc 43.7 h β– (100)
175 (7.5), 984 (100),
1038 (97.6),
1213 (2.4), 1312 (100)

48Ca(p,n)48Sc
49Ti(p,2p)48Sc

−5.0
−1.1

48Ca(d,2n)48Sc −2.7

47Ca 4.54 d β– (100)
489 (5.9), 808 (5.9),
1297 (67.0)

48Ca(p,3n)46Sc −1.9

43K 22.3 h β– (100)
143 (2.6), 305 (90.9),
476 (4.1), 769 (1.5)

44Ca(p,2p)43K −1.2

48V 16.0 d
β+ (50),
EC (50)

944 (7.9), 984 (100),
1312 (98.2),
2240 (2.3)

48Ti(p,n)48V −4.8
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and their production channels are listed in Table 4.5. Part of this work has also been pub-
lished in [152].

As studied in above-mentioned references, 43Sc can be obtained via 40Ca(α,p) reaction2

at 30 MeV projectile energy impinging on natCa or natCaCO3 targets. These production routes
provide very high yields (up to around 210 and 90 MBq/µAh respectively) and very good
purity thanks to high natural abundance of 40Ca. The 4 h irradiation of natCaCO3 with alpha
beam of the 25 µA intensity and in the energy range 20Ý0 MeV would produce around
6 GBq 43Sc with negligible contamination of 44gSc and 47Sc at the level of 0.03%. However, α
beam is not commonly available hence the interest of proton or deuteron induced reaction
is discussed in this work.

In the case of 44gSc, its production is possible with the highly enriched 41KCl and 42CaCO3
targets via α beam bombardment. The yield reaches up to 60 MBq/µAh but radioactive im-
purities are at the level of 15% even with the optimized energy range. More attractive so-
lution is the deuteron induced reaction, 44Ca(d,2n). On enriched calcium carbonate target,
TTY is about 700 MBq/µAh at 15 MeV, followed by around 1% of radioactive impurities. In
this work, a similarly attractive solution with the use of proton beam is discussed.

Alternatively, 44gSc can be obtained from 44Ti/44gSc generator (T1/2 = 59.1 y [72]) as
pointed in [134, 135, 153, 154] and summarized recently in [155]. Currently, such genera-
tor is available in Mainz, with 185 MBq 44Ti and the possibility to extract 97% 44gSc in 20 mL
solution [153].

So far, yield of 47Sc production with the use of accelerators was studied in [156] via
48Ca(p,2n) reaction. This work verifies this data and discuss the possible cyclotron produc-
tion of 47Sc with respect to more common reactor route. The latter was presented in number
of papers for fast or slow neutron reactions [125, 127, 157–161] together with (γ,p) reactions
[162–164]. In both cases, high activity of 47Sc can be produced with the use of 46Ca or 48Ti
targets respectively. However, these routes requires dedicated facilities. At the same time, α
particle induced reaction even on enriched 44Ca targets has much too low yields for practical
application [150, 151].

4.3.2 Targets

Targets in a form of pellets were prepared from the natural or enriched target material,
CaCO3 or TiO2 (see Tables C.3 and C.4 in Appendix C). The reason to use carbonate and
oxide was the commercial availability of enriched material, required to satisfy the nuclear
reaction of interest. The details of calcium targets production at HIL were published in [165].

Briefly, targets in form of self-supporting pellet (Figure 4.20a) with thickness of up to
~300 mg/cm2 were prepared by pressing the CaCO3 or TiO2 powder placed in a die with
~40 kN. The thickness of each prepared target was calculated based on the expected beam
energy on the target (Section 3.3.3) and desired optimal energy range (Figure 2.5).

To economize, the enriched material was mixed with graphite in mass proportions vary-
ing from 10% to 25% for CaCO3 (Figure 4.20b) and 20% for TiO2. This method allows the
production of thin as well as thick targets with low amount of expensive enriched material,
while preserving the total thickness of the target, needed to ensure the required decrease in
the projectile energy. In the first approximation, graphite admixture works as “transparent
solvent” for the beam, simply lowering the TTY proportionally to carbon contribution. The
values of TTY obtained in such targets were then recalculated for hypothetical pure CaCO3
by simple multiplication. Additionally, the values were also corrected for the difference be-
tween dE

/
dx of mixed and pure target (calculated with SRIM [32]).

The use of additional graphite (thermal conductor) introduces a better heat transfer
within the irradiating target, allowing the use of higher beam currents. However, it limits
the access of the acid which is used to dissolve the target in post-irradiation processing thus
sometimes the mechanical smashing was required to access the inner parts of the activated
material. To overcome this difficulty, a new method of target preparation was introduced,
namely a separately prepared carbonate pellet was inserted into the graphite pocket and
pressed together, creating integrated target (Figure 4.20c).

2Reaction 40Ca(α,n)43TiÝ43Sc is predicted to have a considerably lower cross-section compared to
40Ca(α,p)43Sc [24].
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The homogenous mixing and the pocket approaches were verified with natCaCO3 tar-
gets. The results were consistent with the data obtained with the pure natCaCO3. All targets
were installed in the similar holder dedicated for the irradiation station employed (Figure
3.2) – an example holder for HIL PETtrace station is shown in Figure 4.20d.

FIGURE 4.20: Photo of CaCO3 targets employed in this work: (a) pure
pellet, (b) mixed with graphite, (c) in graphite pocket, (d) installed on

irradiation station at PETtrace HIL (courtesy of Anna Stolarz).

In a number of irradiations with such targets, additional natCu, natNi or natTi foils were
added in front of each target (depending on the beam energy, as discussed in Table 3.3).
The typical scheme of the target is shown in Figure 4.21. In some cases, to measure TTY at
other energies, additional natAl foils were placed to degrade the beam energy in front of the
carbonate material.

FIGURE 4.21: Typical calcium carbonate target scheme for the irradi-
ation at PETtrace station at HIL.

4.3.3 Experimental results and discussion

Production of 43Sc radioisotope

In this work, two ways of producing 43Sc on natural and enriched calcium carbonate
targets were investigated:

• TTY of 43Ca(p,n) reaction with the use of 16 MeV proton beam from PETtrace cy-
clotron at HIL and 30 MeV proton beam from C30 cyclotron at NCNR (the energy was
reduced to 17 MeV with the use of aluminium foils to simulate the PETtrace energy),

• TTY of 42Ca(d,n) reaction with the use of 8 MeV deuteron beam from PETtrace cy-
clotron at HIL.

The Thick Target Yields for various proton and deuteron bombarding energies are presented
in Tables C.7 and C.8 (Appendix C), and compared with theoretical values in Figure 4.22
(recalculated for the maximal available enrichment).

In the case of proton-induced reaction, the TTY measurements from this work corre-
spond to TTY values calculated with the use of reported cross-section data [145, 166], and
are lower that the predictions of EMPIRE and TENDL by a factor of 2 around 10 MeV projec-
tile energy. The TTY values of 43Ca(p,n) reaction are reported up to 17 MeV because 43Sc ob-
served in the targets irradiated with the protons of higher energy came also from 44Ca(p,2n)
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FIGURE 4.22: TTY of 43Sc produced by deuterons (blue) impinging
on an isotopically enriched 42CaCO3 target, and protons (black) im-
pinging on enriched 43CaCO3 (experimental data is recalculated for
95.9% enrichment for deuterons and 90% for protons). Literature data

is taken from [145, 166].

TABLE 4.6: Measured activity EOB of 43Sc and radioactive impuri-
ties produced with proton and deuteron beams on enriched calcium
carbonate targets (experimental values were recalculated for the max-

imal available enrichment).

Projectile proton deuteron

Energy range 15.2Ý0 MeV 6.8Ý0 MeV

Target (enrichment) 43CaCO3 (90%) 42CaCO3 (95.9%)

Irradiation 4 h, 1 µA 4 h, 1 µA

AEOB
43Sc 910(40)MBq 129(11)MBq

Relative
activity at
EOB

43Sc 100 100
44gSc 12.0(1.5) 0.25(16)
44mSc 0.95(12) 0.0054(19)
47Sc 0.0131(17) 0.0019(2)
48Sc 0.025(3) 0.06(2)
47Ca 3.3(5)× 10−4
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reaction. In the case of deuteron beam, two performed measurements reflects the predictions
of TENDL rather than EMPIRE, the latter giving overestimated values.

Evidently, deuterons with energies of around 7 MeV produce only half of the possible
43Sc activity in this reaction. A deuteron energy of 15 MeV would double the 43Sc production
yield. The (p,n) reaction on presently available 43CaCO3 targets (enriched to 90% with 4.44%
44Ca content) gives a much higher TTY value.

The EOB activities and produced radioactive impurities for 15.2Ý0 MeV proton energy
and 6.8Ý0 MeV deuteron energy ranges are given in Table 4.6 (the values were calculated
with the use of TTY measurements of all radioisotopic contaminants). Reasonable sam-
ple intensities and acceptable isotopic purity would be obtained in reactions induced by
15 MeV deuterons with isotopically enriched 42CaCO3 targets, and with higher beam cur-
rent. The proton irradiation of 43CaCO3, although with substantially higher efficiency than
the deuteron route, leads to samples with about 12% of 44gSc impurity with the presently
available enriched targets (see Table C.3 in Appendix C).

Production of 44g,mSc radioisotopes

In this work, the production of 44g,mSc was investigated via the 44Ca(p,n) reaction with
all three cyclotrons (Table 3.1) up to the projectile energy of 30 MeV. The target nucleus is
the most abundant Ca isotope, besides 40Ca (which irradiation by protons produces only
short lived products), and at least few times more abundant than other calcium isotopes that
could be used for the production of 44g,mSc. Hence even the natural target can be used for
the preliminary research of production of relatively pure 44gSc (see Table 4.7). Spectrum of
γ ray emitted from natCaCO3 irradiated with proton beam from PETtrace at HIL confirms
small contribution of radioactive impurities (Figure C.12 in Appendix C). In this case, the
largest impurity is 43Sc at the level of around 3%.

However, for the large-scale production, the enriched 44CaCO3 (94.8%) target is required.
TTY measurements of 44g,mSc are shown in Figure 4.23 and values are listed in Table C.7 in
Appendix C. The results presented in this work are in agreement with TTY calculated with
the use of cross-section reported in [145], and with estimations of EMPIRE and TENDL.
These yields are sufficient to produce GBq quantities in a 4 h irradiation in PETtrace cy-
clotron (see Table 4.7).

TABLE 4.7: Activity EOB of 44gSc and radioactive impurities pro-
duced with proton beam with natural and enriched CaCO3 targets.

Projectile proton proton

Energy range 15.2Ý0 MeV 15.2Ý0 MeV

Target (enrichment) natCaCO3
44CaCO3 (94.8%)

Irradiation 4 h, 1 µA 4 h, 1 µA

AEOB
44gSc 50(2)MBq 2240(80)MBq

Relative
activity at
EOB

43Sc 3.0(2) 0.0049(6)
44gSc 100 100
44mSc 0.62(3) 0.62(3)
47Sc 0.56(7) 0.0033(4)
48Sc 1.1(1) 0.0063(8)
47Ca 0.014(2) 8.4(1)× 10−5
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FIGURE 4.23: Comparison of 44gSc (black) and 44mSc (blue) TTY for
a proton beam impinging on enriched 44CaCO3 (experimental data is
recalculated for 94.8% enrichment). Literature data is taken from [136,

138, 145, 166].

Measurements of 44g,mSc production yields reported in [136, 138] were obtained with Ca
metalic targets, and were recalculated for CaCO3 taking into account the difference in molar
mass and stopping-power. The absolute values of TTY from these references were converted
to CaCO3 target equivalents, multiplying them by a factor 0.363. After such a conversion, the
metallic target data are about 30% lower than those obtained in this work. This discrepancy
is probably due to the partial flux losses of proton beam in the Wisconsin experiments.

Additionally, a high spin 44mSc isomer with a 2.4 d half-life is suitable for an in vivo
44mSc/44gSc generator. The feasibility of the production of such generator was presented
in [121–124]. Proposed reaction, 44Ca(d,n), was motivated by the higher 44mSc/44gSc cross-
section ratio in comparison with proton induced reactions on the same target. Similarly, this
ratio is even higher for the α-induced reaction, 42Ca(α,2n), due to higher momentum transfer
to CN [150]. In the case of proton induced reaction, the isomeric ratio is lower, and mainly
ground state is populated. Therefore, in the case of 44mSc/44gSc generator production with
proton beam, the equilibrium between 44mSc and 44gSc activities required for the generator
is reached 40 h after EOB. For the same beam current, deuteron and α particle routes reach
it sooner, and with higher generator activity, as shown in Figure 4.24.

However, it is not clear which route is the best for large scale production of 44mSc/44gSc
generator. The enriched 42Ca target for the α particle irradiations is about 4 times more ex-
pensive than the 44Ca for deuteron and proton induced reactions. On the other hand, to gen-
erate the same 44mSc activity a much thicker target is necessary for deuterons and protons
which compensates for the price difference but leads to a higher contribution of radioactive
impurities [123, 150]. Additionally, proton beam from the commercially available cyclotrons
can reach higher intensity than deuteron or α particle, resulting in proportionally higher
activity of 44mSc (if the cooling conditions for these samples are good).

3This factor is estimated as the ratio of Ca and CaCO3 atomic masses, 40/100, multiplied by the
ratio of the 16 MeV protons stopping-powers, 0.023/0.026, in these materials.
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FIGURE 4.24: Activity of 44gSc (solid line) and 44mSc (dashed line)
produced with protons (this work), deuterons [123], and α particle

[150] beams for 44mSc/44gSc in-vivo generator.

Production of 47Sc radioisotope

In this work, the production of 47Sc was studied in two routes: 48Ca(p,2n) on calcium
carbonate targets (irradiated in HIL, ARRONAX, and NCNR), and 48Ti(p,2p) on titanium
oxide targets (irradiated in ARRONAX and NCNR).

The first reaction requires the use of enriched target which would nevertheless lead to
the co-production of two undesired radioisotopes: 46Sc and 48Sc. As shown in Figure 4.25,
the excitation functions for 48Ca(p,xn) reactions have intersection regions and there is a rel-
atively small energy range (22.8Ý17.1 MeV) optimal for 47Sc production which has been
investigated in this work. Two sets of proton energy ranges were used to irradiate CaCO3
targets:

• EÝ17.1 MeV where E > 21 MeV,

• EÝEthr where E ≤ 15.2 MeV and Ethr = 8.9 MeV.

Measured yields were added to calculate TTY for energies E above 15.2 MeV:

TTY(E) = TTYexp(15.2) + TYTENDL(17.1→ 15.2) + TYexp(E→ 17.1) (4.3)

Here, TTYexp(15.2) and TYexp(E → 17.1) are measured yields, and TYTENDL(17.1 → 15.2)
is yield calculated from TENDL cross-section. These results are shown in Figures 4.26, 4.27,
and 4.28, as well as in Table C.7 (in Appendix C). Similar recalculation for TTY was applied
for TY measured in [156] and shown in mentioned figures. Both data sets are consistent
and confirm the predictions of TENDL and EMPIRE. The only exception is 48Sc, which yield
reported in [156] was found to be more than a factor 1.4 lower than determined in the present
work (the reason for this discrepancy is unknown).

Measured TTY indicates that with 22.8Ý17.1 MeV proton energy range impinging on
highly enriched 48CaCO3 targets, almost 0.5 GBq can be produced in one 8 h run with 1 µA
beam current (Table 4.8). The produced radioactivity will be contaminated with no more
than 0.07% of long-lived 46Sc (calculated with MDA, see Section 3.3.1) but also with 26%
of 48Sc. Unless the mass separation is available, the contribution of 48Sc can be reduced by
cooling time, thanks to the shorter half-life of 48Sc and additional production of 47Sc from
co-produced “mother” 47Ca. Assuming that 380 h cooling time is applied to the 48CaCO3
sample irradiated with a 1 µA proton beam, the 47Sc activity is 26 MBq with 1% contribution
of 48Sc. Similarly, a cooling time of 120 h leads to 210 MBq of 47Sc with 10% of 48Sc.
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FIGURE 4.25: Cross-sections for 48Ca(p,xn) reactions from TENDL
[24] and EMPIRE [25]. Red area indicates the optimal energy range

(22.8Ý17.1 MeV) for 47Sc production.

FIGURE 4.26: Comparison of 47Sc TTY for a proton beam impinging
on enriched 48CaCO3 (experimental data is recalculated for 97.1% en-

richment). Literature data is taken from [156].
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FIGURE 4.27: Comparison of 48Sc TTY for a proton beam impinging
on enriched 48CaCO3 (experimental data is recalculated for 97.1% en-

richment). Literature data is taken from [156].

FIGURE 4.28: Comparison of 47Ca TTY for a proton beam imping-
ing on enriched 48CaCO3 (experimental data is recalculated for 97.1%

enrichment). Literature data is taken from [156].
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TABLE 4.8: 47Sc and radioactive impurities produced with proton
beam on CaCO3 and TiO2 targets. Value with (*) is calculated from

Minimum Detectable Activity.

Projectile proton proton

Energy range 22.8Ý17.1 MeV 28.0Ý18.3 MeV

Target 48CaCO3 (97.1%) 48TiO2 (99.6%)

Irradiation 8 h, 1 µA 8 h, 1 µA

Activity 47Sc
at EOB: at EOB: 40 h later:

420(40)MBq 20(4)MBq 14(3)MBq

Relative
activity at
EOB

43Sc 0.25(40) 4.3(12) 0.0048(14)
44gSc 0.106(13) 170(40) 71(19)
44mSc 0.0077(9) 80(20) 66(18)
46Sc <0.07 (*) 0.033(9) 0.046(12)
47Sc 100 100 100
48Sc 26(3) 0.08(2) 0.058(15)
47Ca 13.0(1.6)
43K 9.6(1.3) × 10−4

48V 190(50) 250(60)

FIGURE 4.29: TTY of 48Ti(p,2p)47Sc reaction measured with 48TiO2
target (experimental data is recalculated for 99.6% enrichment).

Dashed line is calculated based on cross-section data from [141].
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Alternatively, a relatively cheap 48TiO2 enriched target was used to study the second
production route, via 48Ti(p,2p). Two experiments were performed, in ARRONAX and in
NCNR, to verify the TTY shown in Figure 4.29. The results are around 2 times lower than the
prediction of EMPIRE and TENDL, but they confirm the TTY calculated from cross-section
reported in [141].

Table 4.8 shows the produced activity and measured radioactive impurities. At EOB,
the strongest scandium impurity corresponds to 44gSc, at the level of 170%, produced in
seven reaction paths [167]. It can be calculated that even the 40 h cooling time after EOB
does not reduce impurities to the acceptable level while preserving the reasonable amount
of 47Sc (thus the mass separation is required to achieve sufficient purity). Meanwhile, the
high activity of 48V can be separated by the chemical means. Other radioisotopes were also
expected: products of mainly 50Ti(p,2p)49Sc and 49Ti(p,n)49V reactions, however first one
emits 0.05% intensity γ lines, while the second none at all, thus they were not observed.

4.3.4 Summary

The production of 43Sc is the most cost-effective with the use of natCa targets and α beam.
Deuteron beam provides comparably high yield with less than 1% radioactive contaminants
but the expensive enriched 42Ca target is required. The proton induced reaction on 43Ca
yields too high radioactive impurity level.

The most efficient way of direct 44gSc production leads via 44Ca(p,n) reaction at 15 MeV
projectile energy or 44Ca(d,2n) reaction also at 15 MeV on enriched targets, both with very
high yield and purity. For research purposes with lower activities, even the irradiation of
natural target with proton beam can be considered. Alternative route with the use of α beam
and enriched 42Ca targets exhibit lower yield and more contaminants. Higher energies of
proton or deuteron beam increase the yield but also increase the contribution of impurities.

The cyclotron production of 47Sc in quantities useful for the medical procedures is still
possible with the use of proton beam and enriched 48Ca and 48Ti targets. However, the mass
separation must be considered to reduce the high contribution of other observed scandium
impurities. For now, the direct production of 47Sc seems more effective with the neutron
induced reactions.
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4.4 Reconstruction of scandium production cross-sections

4.4.1 Introduction

Pervious sections described σ measurements and TTY calculations (Sections 4.1, 4.2),
or direct measurements of TTY (Section 4.3). As discussed previously, the cross-section
measurements requires the use of thin target (in which the energy loss of the projectile is
negligible as compared to the evolution of the cross-section). At the same time, the study
of production yields demands thick targets (with thickness covering the projectile energy
range for maximal up to reaction threshold). However, production of thin, homogeneous,
self-supporting targets (in the order of 1 mg/cm2) might not feasible in certain cases which
means that only TTY can be measured.

This problem is addressed by attempting to reconstruct reaction cross-section based on
the measured TTY. For this purpose, TTY data were employed for the following reactions
(see Table 4.5): 43Ca(p,n)43Sc, 44Ca(p,n)44gSc, 44Ca(p,n)44mSc, 48Ca(p,2n)47Sc, and 48Ca(p,n)48Sc.
Other yields reported in this work do not have enough experimental points required for fur-
ther analysis. Similar attempt has already been proposed in [168] for the study of 34mCl pro-
duction. This approach is verified for above-mentioned reactions while employing different,
straight-forward numerical algorithm. Part of this project has also been published recently
in [169].

4.4.2 Reconstruction methodology

TTY and σ values are related as shown in Equation 2.35. This work is an attempt to solve
this equation to obtain the energy dependence of the cross-section basing on the measured
TTY(E) values for different projectile energies E (see Table C.7 in Appendix C). These data
are supported by an assumption TTY(Ethr) = 0, where Ethr denotes the energy threshold
for this reaction.

The crucial factor is the choice of the function TTYf it(E) used to describe the TTY en-
ergy dependence. The number of parameters of the function used to fit the data should be
restricted, as the number of the experimental data points is usually limited. Therefore, a
simple shape is proposed:

TTYf it(E) = a0 +
a1 · a3

2
·
(
√

π · (a2 − Ethr)·

· erf
(

E− a2

a1

)
− a1 · exp

(
−(E− a2)

2

a1
2

)) (4.4)

which is fitted to experimental TTY data with least square method and fulfils several impor-
tant criteria. This function is monotonically increasing, as TTY(E) should be. Most impor-
tantly, its derivative is a modified q-Weibull distribution [170]:

dTTYf it(E)
dE

= max
[

0; a3 · (E− Ethr) · exp
(
−(E− a2)

2

a1
2

)]
(4.5)

which reflects the general shape of the (p,n) and (p,2n) excitation functions studied in this
work. The request TTY(Ethr) = 0 provides a condition:

a0 =
a1

2

a3
· exp

(
−(a2 − E)2

a1
2

)
(4.6)

and limits the number of TTYf it parameters to three: a1, a2 and a3. Once those parameters
are obtained, the cross-section values, σ(E) [mb], can be estimated for any energy E [MeV]
as:

σ(E) =
τ[h] · Zp · e[C] ·M[u]

NA · H
·

dTTYf it(E)
dE

[
MBq

µA · h ·MeV

]
· dE

dx

[
MeV

mg/cm2

]
· 1042 (4.7)
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In the case of this study, dE
/

dx values correspond to the energy loss in calcium carbon-
ate (provided by SRIM software [32]), M = 100 u to address the mass of CaCO3, and H is the
level of enrichment of employed material. The 95% confidence band for TTYf it(E) fit was
also calculated and propagated to the reconstructed cross-section based on the fit covariance
matrix. All calculations were done in Python programming language (version 2.7) [171].

Alternatively, [168] reconstructed cross-section after fitting the TTY curve by calculating
target yields (TY) for thicknesses corresponding to 0.1 MeV projectile energy loss each 1 MeV
and multiplied them by projectile range. This method assumes the constant stopping-power
in each layer. This simplification was not necessary in the approach described in this work.

4.4.3 Results

Figures 4.30, 4.31, 4.32, 4.33, and 4.34 show TTY data and the reconstructed cross-sections
for 43Ca(p,n)43Sc, 44Ca(p,n)44gSc, 44Ca(p,n)44mSc, 48Ca(p,2n)47Sc, and 48Ca(p,n)48Sc reactions.
The fit parameters are shown in Table C.10 while the reconstructed cross-section values are
listed in Table C.9 (Appendix). Results are compared with the experimental cross-section
data reported in [95, 133, 145, 146, 166, 172–176], with the recommended values from [177],
with the predictions of EMPIRE [25] evaporation code (version 3.2.2 Malta), and with the
TENDL cross-section library [24]. All reconstructions exhibit a similar shape to the model
predictions and measured cross-section values, indicating the relevance of modified q-Weibull
distribution in estimating the global shape of the (p,n) and (p,2n) excitation functions.

The reconstruction approach from [168] resulted in similar cross-section values (marked
as black dashed lines on cross-section plots) with visible correction near the threshold in
44mSc case (Figure 4.32) but also with the discontinuity fragments due to numerical ap-
proach. Since the mentioned paper does not provide the recommended TTYf it function, the
one described here was adopted (Equation 4.4).

FIGURE 4.30: 43Ca(p,n)43Sc reconstruction (bottom) based on TTYf it
(top). The cross-section data is taken from [95, 145, 166, 176].
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FIGURE 4.31: 44Ca(p,n)44gSc reconstruction (bottom) based on TTYf it
(top). Cross-section data is taken from [95, 133, 145, 166, 173, 176, 177].

FIGURE 4.32: 44Ca(p,n)44mSc reconstruction (bottom) based on TTYf it
(top). Cross-section data is taken from [95, 133, 146, 166].
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FIGURE 4.33: 48Ca(p,2n)47Sc reconstruction (bottom) based on TTYf it
(top). Cross-section data is taken from [146].

FIGURE 4.34: 48Ca(p,n)48Sc reconstruction (bottom) based on TTYf it
(top) with arbitrary Ethr = 3.0 MeV. Cross-section data is taken from

[146, 172, 174–176]. The results from [172, 174, 175] are averaged.
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In the case of 43Sc data (Figure 4.30) the recent experimental results [166] are significantly
lower than other measurements (by a factor of 2 around 10 MeV proton energy). The experi-
mental results on TTY are quite linear in the measured proton energy range and do not reach
the expected saturation, so the resulting excitation function is relatively flat and does not
reproduce any of previous measurements, in particular the results reported in [166] around
10 MeV proton energy, and overestimates the cross-section values around the threshold. This
reaction might require further validation, also by the extension of TTY measurements up to
30 MeV proton energy.

The general agreement is observed for 44gSc (Figure 4.31), both with the theoretical mod-
els and experimental results, although again the data in [166] are lower than measurements.
More discrepancies are observed in the case of 44mSc (Figure 4.32). The excitation function
obtained from TTY measurements does not show the peak seen in the experiments and in
model calculations and overestimates the values near the reaction threshold. The problem
with this reconstruction might be related to the offset of TTY data as only in the case of
44mSc, TTY values are below model predictions at low energies and above them at higher
energies, which causes the reconstructed excitation function to be flatter.

For 47Sc (Figure 4.33), the shape of reconstruction reflects the shape predicted by both
model calculations. While results from this work provide about 10% lower values compared
to the models, recent measurements [146] indicate similar values at low energies but about
20% higher values at maximum.

Finally, the arbitrary value of Ethr = 3.0 MeV was adopted as a parameter for 48Sc fit
(Figure 4.34) to satisfy the visible and significant TTY build-up at this energy rather than the
actual threshold (0.51 MeV). It might be explained by the fact, that the shape of the function
used for the fit does not describe adequately the behavior of the cross-section at energies
so below the Coulomb barrier. Since the cross-section values deeply below the Coulomb
barrier are very small, they do not contribute significantly to the TTY values. The extracted
cross-section values are in line with the data in [172] at lower energies, and in [146] at higher
energies.

4.4.4 Summary

The method described here is the first attempt to estimate cross-section based on TTY
measurements. This method is based on fitting a function with three free parameters to TTY
data points and using its analytical derivative to obtain cross-section. The fitting requires
the knowledge of the reaction threshold and sufficient number of experimental points to
represent the shape of TTY curve, including the saturation region. The numerical approach
presented here is simplified yet fast and easy to implement in a programming language.

The presented method was employed to obtain estimation of 43Ca(p,n)43Sc, 44Ca(p,n)44gSc,
44Ca(p,n)44mSc, 48Ca(p,2n)47Sc, and 48Ca(p,n)48Sc reaction cross-sections. The general agree-
ment between reconstruction and experimental data was observed. However, the method
would need development in the future, especially to improve the reconstruction near the
reaction threshold.
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Chapter 5

Conclusions and summary

This thesis presented possible production routes of 97Ru, 105Rh, and 43,44g,m,47Sc med-
ical radioisotopes with the use of cyclotrons. Excitation functions and Thick Target Yields
data were measured, calculated, or reconstructed for the production of above-mentioned
radioisotopes. Results were used to estimate the conditions for the large-scale activity pro-
duction and the contribution of radioactive contaminants. The results were also compared
with other reported data and various production routes.

It has been shown that, in most cases, the conditions can be optimized so that one irra-
diation with the beam from commercially available cyclotrons and targets can yield up to a
several tens radioisotopically pure patient doses. In other cases, especially when it comes to
neutron-rich isotopes (for example therapeutic 47Sc), the efficient production might require
another approaches, for example with the use of the reactors.

The conclusions from this work give a good insight into the accessibility of studied ra-
dioisotopes for the next steps of researches, namely: chemical separation and recovery of the
target material, labelling of biologically active molecules, in vitro and in vivo studies (bio-
distribution, imaging quality or therapeutic effect), pre-clinical and clinical trials, and ulti-
mately leading to the production of the effective radiopharmaceutical.

However, one should also remember that further research on discussed (as well as other)
medical radioisotopes should be justified. It is true that 105Rh can be employed for the treat-
ment of bone metastases but so can many other radioisotopes, in particular calcium ho-
mologues. In most cases, it is more convenient to use conventional 99mTc instead of 97Ru
in SPECT technique. The radioisotope of 44gSc is very attractive for β+γ coincidence PET
proof-of-concept but different candidates may be in order for the clinical practice.

In conclusion, results from this thesis prove that cyclotrons open many possibilities
for the efficient production of innovative medical radioisotopes. In the “nuclear medicine
clock”, the cyclotrons are clearly a very important gear. All the more reason to use it ratio-
nally.
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Appendix A

Radionuclide Yield Calculator

A.1 About RYC

Radionuclide Yield Calculator (RYC) is a GUI software developed during this thesis. It
is dedicated to radioisotope production with the use of the cyclotron. It calculates the yield,
activity and number of nuclei of any isotope for various production conditions based on the
provided excitation function. It was written in Python programming language (version 2.7)
[171] using the TKinter module and compiled with PyInstaller (version 3.4) [178]. It also
uses SRIM module [32] to calculate the stopping-power of the projectiles. The main features
of RYC include:

• fit different functions to the cross-section data,

• import TENDL cross-section [24],

• calculate TTY or production rate of stable nuclei,

• calculate activity at EOB and the number of produced nuclei,

• search the radioactive impurities.

RYC is available for free on the ARRONAX website (http://www.cyclotron-nantes.
fr/spip.php?article372) and is distributed under the Creative Commons Attribution-
NoDerivatives 4.0 International License1. This software was also introduced in [97].

A.2 Requirements and installation

RYC is distributed in RYC.zip archive which includes several files, taking around 60 Mb
once extracted:

• RYC.exe – main program file, executable on Windows 64-bit OS,

• Manual.pdf and Manual_short.pdf – detailed and concise versions of the RYC man-
ual (the detailed version include troubleshooting),

• LICENSE.txt – details of Creative Commons license,

• SRModule.exe (SRIM Module), SCOEF03.dat, SNUC03.dat, VERSION and SR.IN – SRIM
software files, necessary to calculate stopping-power and ultimately TTY (these files
must be kept in the same directory as RYC.exe),

After extraction of zip archive, RYC is launched by executing RYC.exe file and presents
GUI as seen in Figure A.1. The program automatically communicates with other files when
needed and this does not require the user’s intervention. In particular, the installation of
SRIM software is not required.

To use the import function in TENDL cross-section input, internet connection is required,
as RYC communicates with TENDL website. Alternatively, TENDL-archive.zip can be down-
loaded separately, extracted, and placed in the same directory as RYC.exe. It contains over

1To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send
a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://www.cyclotron-nantes.fr/spip.php?article372
http://www.cyclotron-nantes.fr/spip.php?article372
http://creativecommons.org/licenses/by-nd/4.0/
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350 000 txt files with TENDL cross-section (version 2015) on stable nuclei. Files take around
0.5 Gb but offer a solution to import cross-section to RYC without the need of the internet
connection.

A.3 Layout and use

RYC main window (Figure A.1) allows for step-by-step introduction of irradiation con-
ditions to calculate TTY for the radioisotope of interest. Additional options are provided
under File and Edit menus.

FIGURE A.1: Main window of Radionuclide Yield Calculator, used to
introduce target and product parameters, and calculate production

yield.

Cross-section inputs introduce excitation function of the nuclear reaction used to pro-
duce the isotope of interest. The user is asked to provide at least one set of cross-section
values (E [MeV] and corresponding σ [mb] per row). Up to three sets can be provided
at once. Additionally, import command places cross-section values in TENDL section if the
Projectile, Target nuclide, Product nuclide, and its State are specified (on the right).
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Selected cross-section data sets can be then plotted with plotσ command on the left graph.
The plot + fitσ command additionally fits the function declared in Fit type to the data.
The possible fit functions include: EMG distribution, GGD (generalized error version), mod-
ified q-Weibull distribution, and polynomial of degrees from 3 to 6.

Before calculating the production yield, RYC requires to define the following irradiation
parameters:

• Projectile – proton (p), deuteron (d), or α particle,

• Target nuclide – written as mass number and element symbol,

• Chemical form – metal or compound target (the stoichiometry of the latter should be
defined in the dedicated section below),

• Density – the density of the target material,

• Enrichment – the abundance of the target nuclide in target material,

• Product nuclide – written as mass number and element symbol,

• State – parameter of the produced isotope: ground (g), metastable (m), or all,

• Half-life – the half-life of the product in hours [h] or days [d].

The Calculate yield command uses the defined parameters, communicates with SRIM
Module to obtain stopping-power in the target, calculates TTY [MBq/µAh] (Equation 2.35)
for various projectile energies E [MeV] with the Simpson’s algorithm, and plots it on the
right graph. If the user marks yield withoutσ fit option, TTY will be calculated based on
one selected cross-section data set, without the fit.

Having obtained TTY, user can estimate the expected activity of radioisotope with Plan
irradiation. This command opens the separate window (Figure A.2) to provide irradiation
parameters: beam current (I), irradiation time (t), and energy range in the target material
(from max to min). The Calculate comand gives the values of activity produced at the end
of such irradiation (EOB) and the thickness of the described target required to satisfy the
declared energy range. The possible isotopic contaminants produced during such irradiation
can be listed with Check impurities command (this uses TENDL cross-section).

FIGURE A.2: RYC window used for the calculation of produced ac-
tivity and radioactive impurities.
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The same procedures can be performed for the stable nuclei by using Half-life = 0.
Then, TTY0 is calculated in the rate of produced nuclei [(µA · h)−1] (Equation 2.42) and num-
ber of produced nuclei is printed instead of activity (calculated without the decay correction,
as in Equation 2.43).

A.4 RYC verification

The validation of RYC was performed using data from the literature. Figure A.3 shows
TTY for three reactions on elemental targets: 127I(p,3n)125Xe, 64Ni(d,2n)64Cu, and 209Bi(α,2n)211At.
Red points correspond to the values calculated with RYC based on cross-section published
by IAEA [179, 180], and black lines represent the data calculated separately by IAEA based
on the same cross-section. As can be seen, for the 3 types of projectiles and for the different
target masses, a very good agreement is obtained.

FIGURE A.3: Comparison between TTY calculated with RYC (points)
and by IAEA (lines) [179, 180] based on the same cross-section values.
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Appendix B

β+γ coincidence PET

B.1 Introduction

During the recent years, we have witnessed birth and steady development of a new
extension of PET imaging (see Section 2.3.3), namely a β+γ coincidence technique [116, 119,
120, 181–187]. Compared to the classical PET, it offers better spatial resolution [116, 187, 188]
or, alternatively, provides the same image quality with less radioactivity.

In principle, β+γ coincidence PET uses a β+ source that also emits γ quanta (sometimes
called “third γ”)1. Assuming that the β+ and the third γ are emitted at the same location,
the position of the radioisotope is then obtained by the intersection of the arrival direction
of the third γ with the conventional Line Of Response, LOR (Figure B.1). The localization
via direction cone implies the Compton scattering of the third γ and detection of the scat-
tered photon in the photoelectric interaction. This favours the third γ of high energy, around
1 MeV. While it would give additional radiation dose to the patient, the precision of the β+γ
PET is supposed to allow the administration of lower activities, significantly reducing the
overall dose.

FIGURE B.1: Principle of β+γ coincidence PET (for details see [119]).

1The the third γ should be emitted from the radioisotope up to few nanoseconds after the β+ decay
to assure that the acquisition system recognizes it as a coincident event.
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TABLE B.1: Properties of radioisotopes suitable for β+γ PET (nuclear
data from [72]). The radioisotope 44gSc is discussed in Section 4.3.

Isotope T1/2 Decay (%) Main γ lines [keV] (intensity; delay)

10C 19.3 s β+ (99.9), EC (0.1) 718.4 (100%; 0.71 ns)
14O 70.6 s β+ (99.9), EC (0.1) 2312.6 (99.4%; 68 fs)
22Na 2.6 y β+ (90), EC (10) 1274.5 (99%; 3.6 ps)
34mCl 32 min β+ (54.3),

EC (1.1), IT (44.6)
146.4 keV (40.5%; IT), 1176.6 (14.1%; 136 fs),
2127.5 (42.8%; 318 fs), 3304.0 (12.3%; 136 fs)

44gSc 3.9 h β+ (94.3), EC (5.7) 1157.0 (99.9%; 2.61 ps)
48V 16.0 d β+ (49.9),

EC (50.1)
983.5 (100%; 4.04 ps), 1312.1 (97.5%; 0.76 ps)

52mMn 21 min β+ (97), EC (1),
IT (2)

1434.1 (98.3%; 0.783 ps)

55Co 17.5 h β+ (76), EC (24) 477.2 (20.2%; 37.9 ps), 931.1 (75%; 8 ps), 1408.4
(16.9%; 37.9 ps)

60Cu 24 min β+ (93), EC (7) 826.1 (22%; 0.59 ps), 1332.5 (88%; 0.735 ps)
66Ga 9.49 h β+ (56), EC (44) 1039.2 (37%; 1.68 ps), 2752 (23%; not found)
69Ge 39 h β+ (24), EC (76) 574.2 (13.3%; 1.7 ps), 872.1 (11.9%; 0.25 ps),

1107 (36%; 0.222 ps)
72As 26 h β+ (86), EC (14) 834.0 (80%; 3.35 ps)
76Br 16.2 h β+ (55.6),

EC (44.4)
559.1 (74.0%; 12.3 ps), 657.0 (15.9%; 11 ps),
1853.7 (14.7%; not found)

82gRb 1.3 min β+ (95), EC (5) 776.5 (13%; 4.45 ps)
86gY 14.7 h β+ (31.9),

EC (68.1)
443.1 (16.9%; 5 ns), 627.7 (32.6%; 0.9 ps), 703.3
(15.4%; 5 ns), 777.4 (22.4%; 0.386 ps), 1076.6
(82.5%; 1.46 ps), 1153.1 (30.5%; 1.73 ps), 1920.7
(20.8%; not found)

94mTc 52 min β+ (72), EC (28) 871.1 (94%; 2.77 ps)
110mIn 69.1 min β+ (61.2),

EC (38.8)
657.8 (97.7%; 5.42 ps)

124I 4.2 d β+ (22.7),
EC (77.3)

602.7 (62.9%, 6.2 ps), 722.7 (10.4%; 1.04 ps),
1691.0 (11.2%; 0.17 ps)
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In the study of β+γ coincidence PET with the use of XEMIS and XEMIS2 detectors [116–
118, 188], 44gSc was used as the β+γ emitter. It has a half-life suitable for medical practice
(T1/2 = 3.9 h) and emits only one, high-intensity γ-line with sufficient energy (1157 keV, 99%),
which makes 44gSc the undoubtedly most useful radioisotope for β+γ PET proof of concept
(recommended in [119, 120]). Its possible production routes were presented in Section 4.3.
However, scandium, as every other element, has certain limitations and in some cases it
might be necessary to consider other radioisotopes. They must have sufficient β+ branching
ratio, high energy and intensity of third γ, lack of additional intense γ lines, applicable T1/2
and feasible production route. Radioisotopes satisfying these criteria (or most of them) are
listed in Table B.1 and discussed in this Appendix, along with their possible production and
applications so far2.

Additionally, it is also possible to imagine an approach in which LOR is reconstructed
with two (or more) γ-rays emitted from the nucleus, forcing the reconstruction based on
three complete Compton events. There are radioisotopes that satisfy this criterion, with three
high-intensity γ lines: 94gTc (T1/2 = 4.9 h), 96Tc (T1/2 = 4.3 d), 108In (T1/2 = 58 min), 110gIn
(T1/2 = 4.9 h) and 206Bi (T1/2 = 6.2 d), the latter being already an attractive biological tracer
[189–191]. However, this imaging method would require more activity compared to the β+γ
coincidence and is not discussed further here.

There is also a similar PET technique which utilizes a rare three γ quanta emission from
the orto-positronium annihilation, investigated in [192–194] as well as by J-PET group [195,
196]. This method can be applied with all β+ radionuclides and is not discussed further here.

B.2 Medical radioisotopes for β+γ PET

B.2.1 Promising candidates for β+γ PET
48V

48V radioisotope is well-known only as a monitor for beam current measurements [179].
It emits two high-intensity γ lines and has a β+ branching ratio of only 50%. However, it has
the longest half-life (16 d) among all discussed β+γ candidates, suitable for the studies of
slow metabolic processes and for the labelling of organic compounds [197]. The prospects of
48V were recently reminded in [198] as it is already finding applications as a tracer in bio-
logical actions in plants [199], in material science [200] or in the renal artery brachytherapy
[201]. As suggested in [181] it is also a promising candidate for coincidence PET.

As summarized in [179], the cross-section for 48V production via natTi(p,x), natTi(d,x)
and natTi(3He,x) are well measured. Alternatively, favorable reportedα-induced reactions in-
clude natTi(α,x) [202–205] and natSc(α,n) [95, 206–208]. However, the most interesting seems
to be the natTi(p,x) as the major contribution comes from 48Ti(p,n) reaction suitable for the
energy of the commonly available cyclotrons and the target nuclide has high natural abun-
dance [209]. With 16 MeV beam and 1 µAh irradiation of natTi target, almost 20 MBq of 48V
can be produced. Unless the enriched 48Ti material is used, the natSc(α,n) route will produce
much less radioactive vanadium impurities (in particular, no long-lived 49V will be formed)
but the 48V production yield will also be lower, by the factor of 20 for 30 MeVα-beam (energy
commonly used for 211At or 43Sc production).

55Co
55Co has been acknowledged as “the emerging PET radionuclide” in [210] as it features

high β+ branching ratio, half-life of 17.5 hfavouring the studies of slow biological process
and feasible labeling with different complexes as well as satisfactory biodistribution [211–
215]. Numerous applications of 55Co (summarized in [210]) include: the lung cancer detec-
tion [216], the renal imaging [217] and the neuro-imaging [218–222]. These procedures can be
also performed withβ+γ coincidence PET [181] as 55Co emits one high-intensity high-energy
γ line (931 keV, 75%). Additionally, there is a theranostic matched pair with Auger-emitter
58mCo (T1/2 = 9.1 h).

2The short version of this Appendix was also published as an overview [REF].
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The production routes of 55Co have been thoroughly studied via different nuclear reac-
tions, for which the cross-section and thick target yield data are very well reported. The most
promising ones are: 56Fe(p,2n) [95, 223–228], 58Ni(p,α) [95, 213, 229–236] and 54Fe(d,n) [212,
236–244]. In each case, special care should be taken to avoid the co-production of long-lived
radioactive impurities of 56Co (T1/2 = 77.2 d) and 57Co (T1/2 = 271.7 d) as they emit high
intensity γ lines which unnecessarily increase the dose.

The first production route, 56Fe(p,2n), is feasible with natFe but the energy exiting the
target should be around 20 MeV to reduce the formation of 56Co via 56Fe(p,n). With 30 MeV
proton beam and 1 µAh irradiation, produced activity is around 100 MBq, with less than 1%
56Co. In the case of 58Ni(p,α), proton energy less than 16 MeV is recommended to avoid the
formation of 56Co and 57Co. With 1 µAh beam and thick natNi target, around 10 MBq of 55Co
can be produced, with less than 1% 57Co. The third reaction, 54Fe(d,n), requires enriched
target (to produce sufficient quantities as well as avoid the co-production of impurities)
available commercially at the levels higher than 95%, in the form of metal (54Fe) or oxide
(54Fe2O3). With the metal target and 1 µAh irradiation of 8 or 15 MeV deuteron beam, up
to 20 MBq or 40 MBq of 55Co respectively can be produced, with negligible amount of 56Co
and 57Co.

60Cu
60Cu is a short-lived (T1/2 = 24 min) β+ emitter with additional γ line making it suitable

for β+γ coincidence PET [181]. So far, it has only been used in standard PET technique along
with the labeling studies of 60Cu-ATSM for tumor hypoxia imaging [245–250]. It also has a
theranostic matched pair, 67Cu as a β– emitter for targeted radionuclide therapy.

The most commonly used production route of 60Cu is via 60Ni(p,n) or natNi(p,x) reac-
tions (used in above-mentioned papers). The corresponding cross-sections have been al-
ready well reported [95, 229, 233, 235, 251–254]. Irradiations of thick natNi targets with proton
beam of 16 MeV and 1 µA for 20 minutes, followed by 1 h post-irradiation processing time,
are sufficient to achieve up to 100 MBq, with around 4% of 61Cu (T1/2 = 3.34 h). The radioac-
tive impurity can be eliminated by using the commercially available 99% 60Ni enrichment
which would also increase the 60Cu production by the factor of 4.

Another production of 60Cu was suggested in [255] via natCo(α,3n) reaction although
the reported contribution of 61Cu radioactive impurity was too high to consider this route
in practice. More attractive alternative is natCo(3He,2n) as recommended in [256]. The mea-
sured cross-section indicates that if the 3He beam of around 30 MeV is available, a short
irradiation of 20 minutes and 1 µA followed by 1 h processing time would produce 60 MBq
of 60Cu with around 2% of 61Cu radioactive impurity.

Alternative reaction, 58Ni(α,x)60Cu, has not yet been verified for practical purposes. The
experimental cross-section [95, 257, 258] indicate the optimal beam energy range 40Ý20 MeV
to irradiate the natNi target but compared to the 60Ni(p,n) route, it produces 5 times less
activity of 60Cu and 4 times more 61Cu.

66Ga

The radioisotope of 66Ga already has multiple applications and it has been widely used
as PET radioisotope. Labelled with albumin colloids from commercially available kits de-
signed for 99mTc, 66Ga was successfully used in the imaging of the lymphatic transport
[259]. The feasible 66Ga labelling and purification was also reported for: 66Ga-DOTA-Tyr3-
octreotide and 66Ga-DOTA-biotin [260], the blood cells [261, 262] and 66Ga-deferoxamine-
folate for in vivo and in vitro imaging [263–265]. Additionally, the most abundant β+ parti-
cles (51.5%) emitted by 66Ga has a uniquely high energy (4.2 MeV), which allowed the use
of 66Ga-DOTATOC for both PET imaging and radiotherapy [266]. Finally, 66Ga emits high-
energy γ line making it appropriate for β+γ coincidence PET. However, it also emits many
low-intensity (no more than 4%) but high-energy γ lines (up to 4 MeV) and one 2752 keV
(23%) γ line that will introduce noise in the imaging and dose to the patient.

The method of choice to produce 66Ga is via 66Zn(p,n) reaction. For this reaction, sev-
eral production data were investigated (cross-section in [95, 267–274], thick target yield in
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[252, 260, 269, 270, 272, 275–277]). This reaction was also summarized and re-evaluated with
ALICE/ASH 0.1 and TALYS-1.2 codes in [278]. The natural abundance of 66Zn is quite low
but a feasible method was reported for the preparation and recovery of the enriched tar-
get [277]. Around 200 mg/cm2 of Zn target is enough for the optimal production of 66Ga
with the 15 MeV proton beam. The reported yields were around 500 MBq/µAh for 99% en-
riched target or 130 MBq/µAh for the natural one. In the latter case, the reactions on other
Zn isotopes, in particular 67Zn(p,n) and 68Zn(p,n), will form the radioactive impurities of
67Ga (T1/2 = 3.3 d) and 68Ga (T1/2 = 68 min) at the level below 1% at EOB. The optimal post-
irradiation processing of Zn targets and 66Ga separation was found to be a cation-exchange
chromatography and/or liquid-liquid extraction method [260, 277].

Alternative approach leads via 63Cu(α,n) reaction for which the excitation function was
thoroughly investigated using 63Cu targets [95, 279–289] and natCu targets [283, 290–296].
This reaction is also a monitor reaction for beam current measurements [179]. Unless the
enriched target is available, the 67Ga impurity formation on 65Cu can be reduced with lower
energy beam. For example, 17.5 MeV was reported to produce on thick natCu target is about
19 MBq/µAh (while the TTY calculated from the averaged experimental cross-section is
21 MBq/µAh) and about 0.5% of 67Ga at EOB [259]. With 30 MeV, both 66Ga yield and 67Ga
contribution increase by about a factor of 2 [284]. Although the separation of 66Ga from
irradiated Cu was developed [259, 297], the previous production with protons and Zn seems
more efficient.

72As

In the nuclear medicine, another popular PET radioisotope, 72As, can be considered in
the β+γ coincidence PET thanks to its additional γ line. It has proven its favourable physical
and chemical properties in labelling and preclinical studies [298–301]. Furthermore, it has a
therapeutic matched pair in the form of the β– emitting 77As that has been studied with the
72As in preclinical and clinical research [301, 302]. Arsenic itself, in the form of the arsenic tri-
oxide, is a popular anticancer drug [303], successfully used recently in the clinical treatment
of the acute promyelocytic leukemia [304, 305].

There are many methods for the production of 72As. The direct ones were summarized
and re-evaluated with ALICE/ASH and TALYS-1.4 in [306]. Among them, the optimal one is
72Ge(p,n) reaction, studied on metallic and oxide targets [95, 301, 307–310]. This production
route requires enriched target as irradiation of natGe produces too much radioactive impu-
rities of As. Based on reported experimental cross-section data, the calculated 72As yield in
the energy range 16Ý6 MeV is almost 300 MBq/µAh for 100% enriched 72Ge, followed by
0.2% of 71As radioactive impurity at EOB. The feasible irradiation using a medical cyclotron
and a post-irradiation separation has also been reported [301].

However, much more attention is paid to the generator 72Se/72As due to its convenient
half-life of 8.4 d. Many practical extraction methods for this generator have already been
reported [300, 311–318]. According to the literature, the best method for the production of
72Se/72As is via 70Ge(α,2n) reaction [95, 149, 311, 314, 318–322]. Different irradiation con-
ditions have been used but the available cross-section data indicates the optimal energy
40Ý25 MeV that produces around 0.9 MBq/µAh of 72Se on natGe target (poor heat conduc-
tivity of GeO2 makes it unfit for the α beam irradiations) with about 20% of radioactive
impurity 75Se that decays to stable 75As. The 6 h irradiation with 40 µA would result in
200 MBq of 72Se/72As, from which almost 100 MBq of 72As could be extracted each day dur-
ing the following week. The yield of 72Se can be also increased about 2 times if the enriched
70Ge targets are used [318] which also eliminates 75Se.

Other production method for 72Se/72As generator require the 100 MeV proton beam.
The natBr(p,x) reaction reported higher yield and introduced NaBr target but also produced
very high amount of radioactive impurity of 75Se [315]. The natAs(p,4n) reaction [323, 324]
was reported satisfactory with long irradiation of high beam intensity and lower 75Se con-
tamination compared to α production route.
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76Br

The radioisotope of 76Br emits a large number of γ rays, from which the most inten-
sive (559 keV, 74%) makes 76Br a possible β+γ candidate (as suggested in [119, 120, 184,
187]) whose coincidence PET imaging and appropriate corrections have been already inves-
tigated [184]. There are two factors limiting the possible interest in 76Br: the γ line used for
the coincidence has quite low energy and other γ lines contribute to the dose. However,
the labelling chemistry of bromine is similar to that of iodine, which is relatively well in-
vestigated [325] and might render 76Br worth considering. So far, it has been successfully
used to study dopamine receptors associated with the diagnosis of schizophrenia [326, 327],
as the amino acid tracer [328], as the monitor for corticotropin-releasing hormone [329], as
the bromo analog marker to diagnose heart disease [330], for the labelling of mouse epider-
mal growth factor [331] and to study the tumor angiogenesis by labeling a human antibody
[332]. Additionally, 76Br was used to verify the thymidine analogue, BUdR, as the tumor cell
proliferation imaging agent [333].

As summarized in [334], the most feasible method for production of 76Br is via 76Se(p,n)
reaction for which the cross-section [95, 334–336] and experimental yields [337, 338] are well
measured. The excitation function was also summarized and reevaluated in [278]. However,
the favourable cross-section requires in this case an enriched target due to the low abundance
of 76Se. The literature indicates that around 360 MBq/µA of 76Br can be produced by the
irradiation of the commercially available 97% enriched metal target with the proton beam
of energy 15Ý8 MeV. The radioactive impurity of 77Br was observed at the level below 2%
and originated from 77Se impurity in the target. Alternatively, to optimize the routine and
economic production, the Cu2

76Se powder can be prepared, yielding up to 70 MBq/µAh
after around 1 h separation (thermal chromatography in conjunction with dry distillation
with 70% separation efficiency) and almost full target recovery procedure [338]. Another
production method is 75As(3He,2n)76Br reaction with 30 MeV beam used in [330] although
no physical yield data is available, similarly to no cross-section measurements.

Meanwhile, it is also possible to produce the generator 76Kr/76Br (T1/2 = 14.8 h) that re-
quires dedicated yet simple separation set-up [339]. The first possible reaction, natBr(p,xn)76Kr,
was used in [331, 340]. The measured cross-section [339, 341–346] are relatively low and 7 h
long cooling-time is suggested to avoid the contamination of 77Kr/77Br, effectively yield-
ing about 20 MBq/µAh of extracted 76Br from NaBr target irradiated with 60 MeV beam.
Without the cooling time, the contribution of the impurity greatly exceeds the activity of
76Kr/76Br. Alternative reaction, natSe(3He,xn)76Kr, results in considerably lower yields [340].

B.2.2 Possible candidates for β+γ PET
34mCl

Compared to above-mentioned radioisotopes, 34mCl is less popular in the nuclear medicine
field. However, it was recognized as potential PET radionuclide [347, 348] and has already
been used to label dopamine D1 agonists [349, 350]. The first factor limiting its popularity
is the number of high-intensity γ lines increasing the dose. While they might be used in
coincidence for the β+γ imaging, other radioisotopes discussed here offer better physical
properties for this purpose.

The second limiting factor is the difficult production of 34mCl. The reaction on chlorine,
natCl(p,x) studied in [351] at 68 MeV, reaches very high yield but have very low specific ac-
tivity. The practical, no-carrier-added production leads via natS(α,x) which requires about
65 MeV beam according to measured and estimated cross-section [168, 352, 353]. The satu-
ration of the thick target irradiation results in radio-contaminant-free 1500 MBq/µA 34mCl
[168, 354, 355]. A feasible production chain was also developed, consisting of the 80% ef-
fective separation using heated water and HPLC pump [355]. The other α-induced reaction,
natP(α,n), was found to have much lower yield [353, 354]. Alternative production via 34S(p,x)
or 34S(d,x) reactions [354, 356] require enriched sulphur targets and face the problem of poor
thermal properties of its compounds [357]. The solution for the facilities with no α beam was
presented in [357, 358] with the deuteron beam of 8 MeV, highly enriched 36Ar target and
the average yield of 65 MBq/µA of radionuclidically pure 34mCl.
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52mMn

The recent advancements in hybrid MRI induced the interest in 52gMn radioisotope. It
was suggested as the tracer of Mn+2 ions [359] that serve as the T1 relaxation agent in the
Manganese-Enhanced Magnetic Resonance Imaging (MEMRI) [360–365]. However, in the
light of the reported risk regarding the use of the bulk manganese [366], the use of 52gMn in
conventional PET/MRI was suggested [367] to obtain analogous data with lower biological
toxicity. Many reactions for its production are reported in the literature, from which the most
commonly used is natCr(p,x)52totMn. Its feasibility, from target preparation to chemical sep-
aration, was well reported [368]. Recently also other cross-sections have been reevaluated:
52Cr(p,n), 52Cr(d,2n) and 51V(α,n) [369]. Along with the ground state 52gMn, the metastable
level 52mMn is formed, which has very high β+ branching ratio and emits only one, high-
energy and high-intensity γ line (1434 keV, 98%). Since theβ+γ coincidence imaging requires
less activity, the toxicity of manganese in PET/MRI could be further reduced with the use of
52mMn (already suggested for β+γ coincidence PET in [181]). However, it should be noted
that significant modifications might be required for PET hardware to permit the acquisition
in the presence of a strong magnetic field and radiofrequency pulses [10].

The short half-life (21 min) of 52mMn radioisotope makes its direct production doubtful,
especially since it is not possible to avoid the co-formation of 52gMn (which will be a radioac-
tive impurity for β+γ PET). However, it is possible to produce a generator, 52gFe/52mMn,
since 52gFe decays in 100% to 52mMn. However, the co-produced 52mFe (T1/2 = 46 s) decays
in 100% to 52gMn so it should be taken into account by managing the post-irradiation sepa-
ration, rapidly removing 52gMn and then waiting for 52mMn to be formed from the decays
of 52gFe.

The possible production routes for 52gFe/52mMn generator have been summarized in
[370, 371]. According to the literature, the first reasonable option is to irradiate thick natMn
target with protons of energy from 40-50 to 60-75 MeV. This procedure is routinely used
in Brookhaven Linac Isotope Producer. Up to 22 MBq/µAh of 52gFe/52mMn was reached,
with no more than 1% of 55Fe (T1/2 = 2.74 y) radioactive contaminant. Alternatively, the
natNi(p,spall) reaction can be employed with the calculated thick target yield of 450 MBq/µAh
of 52gFe/52mMn at 1000 MeV (based on cross-section data reported in [372]) and measured
2.5 MBq/µAh at 200 MeV [370] but the thorough verification of radioactive impurities is yet
required. Another production route via 52Cr(3He,3n) reaction was well developed in [373,
374] although the reported thick target yield is lower, 1.9 MBq/µAh at 45 MeV. Finally, the
cross-section for 50Cr(α,2n) reaction was also studied [95] and its yield verified [374] but the
cross-section seems too low for the practical application.

69Ge

The “unravelled potential of 69Ge” [375] is mainly related to the common interest shifted
on a different germanium isotope (namely, the 68Ge/68Ga generator, summarized in [376,
377]). However, its physical properties make it a potential PET agent, also for the β+γ co-
incidence, and its chemistry is already well developed for the purpose of the mentioned
generator. So far, it was only used to label nanoparticles for successful in vivo PET/MRI
imaging [378]. Due to its long half-life, it can be also considered for immunoPET studies and
antibody labelling.

The production of the potentially applicable amounts of 69Ge was not yet investigated
but the verified possible nuclear reactions include: 69,natGa(p,n) [95, 379–382], natGa(d,x)
[381], 66,67,68,natZn(α,x) [95, 383–386] and 69Ga(α,x) [95, 387, 388]. The proton induced re-
action seems the most cost-efficient and available for small cyclotrons: 16 MeV beam inter-
acting on a thick natGa target would produce around 110 MBq/µAh. However, no cross-
section data is available to estimate the co-production of radioactive impurity of 71Ge. The
measurement is challenging due to no γ emission but important as 71Ge is the long-lived
Auger-emitter which would contribute to the dose.
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82gRb

An interesting case, 82gRb, emits β+ radiation (branching = 95%) followed by only one
low-intensity γ line (777 keV, 15%). Still, it was introduced as the β+γ PET candidate [119,
120] but due to its very short half-life it can be considered only with the generator (for repeti-
tive, short studies). Its metastable state, 82gRb (T1/2 = 6.47 h), cannot be used as such because
it decays in 100% to 82Kr. Instead, it is already used in PET [389, 390] but due to the multiple
accompanying γ rays, 82mRb is not recommended for the coincidence imaging.

The radioisotope of 82Sr (T1/2 = 25.4 d) however decays in 100% by EC to 82gRb and
the generator 82Sr/82gRb has already gained incredible popularity. It is widely used to diag-
nose cardiovascular disease (a leading cause of death in modern industrialized countries) in
myocardial perfusion imaging [391–400]. It provides significantly better precision compared
to 201Tl SPECT [393] and presents less radiation exposure for patients compared to 99mTc
scan [398]. Many studies have also been performed on the elution system and the optimized
chemical separation [391, 392, 394, 396, 398, 401–404].

The method of choice for 82Sr/82gRb generator production is the (p,4n) reaction on 85Rb
which benefits from high natural abundance. This method was studied multiple times and
is most often employed for large-scale production [402, 403, 405–410], although, as sum-
marized in [411], significant discrepancies still exist. For the proton energy of 70-60 MeV
(with 40 MeV exiting from the thick Rb or RbCl target), the 82Sr/82gRb production yields
of 8-13 MBq/µAh were reported. The observed long-lived radioactive impurity of 85Sr was
below 1%. As the typical generator activity used for clinical studies reaches 4 GBq [394], the
typical irradiation lasts for few days and requires high beam current.

Suggested alternative productions include: natKr(α,xn) and natKr(3He,xn) [412, 413] as
well as natMo(p,spall) [414, 415]. However they have lower yields and high contribution
of the 83Sr impurity. Significantly higher activity and purity was reported with 84Sr(p,x)
reaction but it requires highly enriched strontium target [416].

86gY

The potential of 86gY lies within its theranostic matched pair [417–419], the β– emitter 90Y
available from the long-lived 90Sr/90Y generator system, which is a versatile therapy agent
(as reviewed in [420]). However, the emission of multiple intensive, dose-contributing γ rays
from 86gY and the recent development of the 90Y imaging with the bremsstrahlung photons
(summarized in [421]) might render the matched pair obsolete. Still, many radiochemical
and in vivo PET imaging studies were performed with 86gY (summarized in [422]) and its
dominating γ line (1077 keV, 83%) was recognized for theβ+γ coincidence PET [119, 120, 182,
185–187]. In fact, the coincidence imaging and appropriate corrections for this radioisotope
have been already investigated [182, 185, 186].

Several methods of 86gY production were investigated (in each, the co-produced 86mY
decays in 99% with T1/2 = 47.4 min to 86gY). As reviewed in [423], the most commonly used is
86Sr(p,n) reaction, for which the excitation function has been also re-evaluated with nuclear
codes in [278]. It requires about 14 MeV as higher energies increase the percentage of the
contaminants. The reported irradiation of around 200 mg/cm2 of the commercially available
95% enriched 86SrCO3 target yields about 150 MBq/µAh with less than 3% of radioactive
impurities [424–430]. For comparison, around 10 MBq of 86gY is enough for in vivo mice
studies [431, 432].

About 6 times higher yield with less radioactive impurities can be achieved with the
86Zr/86gY generator produced in the irradiation of natural yttrium target with the proton
energy range of 70Ý45 MeV [433]. However, this method requires high energy proton beam
and the efficient separation method (also reported). Other alternative production methods
include: 88Sr(p,3n) [434] and natSr(d,x) [435]. The cross-sections have been measured also for
the reactions: 85Rb(α,3n) [95, 436–438] and natRb(3He,x) [424]. However, these processes are
less cost-effective and are of minor interest for the large-scale production.
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94mTc

Despite the clear dominance of 99mTc in nuclear medicine for SPECT imaging, other tech-
netium radioisotope, 94mTc, is of a potential interest as a PET quantification of 99mTc-labelled
radiopharmaceuticals [439, 440] due to the same chemistry of both isotopes. It decays com-
pletely to 94Mo and emits one high-intensity high-energy γ line making it suitable for β+γ
coincidence imaging [119, 120, 181]. The feasibility of standard in vivo PET studies has been
already reported [441–443].

The method of choice for the 94mTc production is the bombardment of 94Mo with medium
energy proton beam [439, 444–448]. The commercially available enrichment of about 95% is
available in MoO3 powder form. The irradiation with the optimal energy range of 13Ý8 MeV
produces about 2 GBq/µAh 94mTc with about 8% of 94gTc impurity (the irradiation of natural
target produces additional technetium impurities at the level unattractive for practical use).
A 1 h irradiation with 4 µA beam followed by 0.5 h thermochromatographic separation with
90% efficiency results in 1300 MBq 94mTcO4

–, ready for medical application [445]. Other pu-
rification and target recovery methods were also investigated (summarized in [446]). Also,
[449] invented the feasible production on liquid natMo, providing a potential feasible au-
tomatization yet reducing the 94mTc yield. It is also possible to remove the 94gTc impurity
by producing 94Ru/94mTc generator via 92Mo(α,2n)94Ru [450, 451] with however about 10
times lower effective yield compared to 94Mo(p,n)94mTc. The direct 94mTc production with
the use of 93Nb(3He,2n) (yields: [452]), 93Nb(α,3n) (cross-section: [453, 454]) and 92Mo(α,np)
(yields: [451]) also showed too small high spin to low spin formation ratio.

110mIn

So far, the radioisotope of 110mIn has not drawn a lot of attention in the nuclear medicine
field. However, as confirmed by in vivo clinical studies, it provides 3 times better resolution
than the typical 111In SPECT [455] which opens the possibilities for the detection of small
tumors with indium-labelled radiopharmaceuticals. This might be important in the light of
an emerging radioisotope 114mIn [180], an Auger emitter with almost instant β– emissions
(from its short-lived daughter), whose therapeutic properties are expected [456]. Addition-
ally, 110mIn emits medium-energy but high-intensity γ line which could be potentially inter-
esting for β+γ coincidence PET.

Several cross-sections measurements are available, suggesting the potential 110mIn pro-
duction options (summarized recently in [457]). The studied excitation functions include
110,111,112,natCd(p,x) [457–467], 110,112Cd(d,x) [457, 468], natCd(α,x) [469], 107,109,natAg(α,x) [279,
457, 467, 470–472] and 109Ag(3He,2n) [457]. The direct production of 110mIn always leads
to the co-formation of the radioactive impurity 110gIn but the higher isomeric ratio can be
achieved with lower projectile energies. The recommended reaction, 110Cd(p,n), at 15 MeV
energy (available in commonly used machines) and with electroplated natCd target [473]
yields 160 MBq/µAh of 110mIn with around 3% of 110gIn and 6% of 111gIn radioactive im-
purities [473, 474]. The use of the enriched 110Cd would increase the yield and reduce the
activity of 111gIn.

Meanwhile, 110mIn without 110gIn contribution can be obtained with the use of genera-
tor 110Sn/110mIn although all production routes require high-energy beams. The literature
agrees that the optimal production is achieved via natIn(p,x) reaction yielding about 400
MBq/µAh of 110Sn at 75 MeV on 5 mm thick target [457, 475].

124I

A textbook medical radionuclide 124I has relatively lowβ+ branching ratio and the medium-
intensive medium-energy γ line but was still suggested as β+γ PET candidate [119, 120, 181,
183, 187] and the corrections for its coincidence imaging have also been investigated [183].
This is mainly because it is the only isotope of iodine suitable for PET that can be paired with
the strategic therapeutical 131I [417] commonly used for the treatment of hyperthyroidism
and thyroid cancer (overviewed in [476, 477]). Furthermore, 124I itself has already been used
for the imaging of tissue proliferation [478–480] and for multiple in vivo cancer imaging
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[481–483] including thyroid [484–488]. It is also considered as a potential Auger-emitter for
the radiotherapy [489].

The methods for production of 124I were thoroughly studied by many groups with the
use of protons, deuterons and α-particles (summarized in [423, 490]). As one of the “emerg-
ing isotopes”, its production cross-sections are also collected in IAEA database [180]. The
most typical 124I production method is the 124Te(p,n) reaction [491–496] suitable for popu-
lar small cyclotrons but requiring the enriched target material (which is crucial to increase
the yield and to reduce the radioactive impurities). Recent thick target yield measurements
[494] indicate that the irradiation of the commercially available 124TeO2 targets (99.9% 124Te)
with the energy range of 14Ý7 MeV produces around 21 MBq/µAh of 124I with around
0.03% of radioactive impurities of 125I and 126I, followed by the dry distillation. As inves-
tigated in [495], the synthesis of Al2Te3 target provides the yield of about 9 MBq/µAh but
allows to use the high beam currents and increases the target recovery (98%). Basically, a
few hour run with around 20 µA is enough to produce several 50 MBq batches used for the
imaging [488]. Similar yield can be achieved with 124Te(d,2n) around 15 MeV [496–500] yet
with higher contribution of radioactive impurities. The reaction 125Te(p,2n) provides up to
100 MBq/µAh but requires higher energy, 22Ý14 MeV [501, 502]. The alternative produc-
tion with α beam and natural or enriched antimony target has considerably lower yield and
complexed target processing [503–505].

B.2.3 Other β+γ radioisotopes

Online monitors

There are two very short-lived β+γ emitters suitable for in vivo PET imaging during
hadron therapy [119, 120, 181], namely: 10C (T1/2 = 19.3 s) and 14O (T1/2 = 70.6 s). They are
formed via the fragmentation of the high energy heavy ions or different nuclear reactions
induced by the high energy projectiles on 12C, 14N, 16O nuclides which are immensely abun-
dant in the organic compounds. During the charged-particle therapy, the beam energy is
much higher than the thresholds for these reactions. Therefore the beam, apart from the
delivery of the radiation dose to cancerous tumors, produces 10C and 14O allowing the vi-
sualization of the treatment (in particular the measurement of the range) with the online
acquisition system.

PET scans has already been reported for the mentioned radionuclides [506–509]. How-
ever, good time resolution is required as many 511 keV γ quanta can be expected from
co-produced 15O (10C and 14O have much lower probability for reactions) [508, 510, 511].
Also, as discussed in [512], the online PET is actually a posteriori control and the imaging of
prompt-gamma might be utilized instead, if the collimated machines are installed. Therefore,
the method with β+γ coincidence PET can be considered for online treatment monitoring in
the cases where the lower statistic is expected.

It is worth mentioning that the 10C production with 11 MeV proton beam on enriched
10B2O3 target was also introduced [513]. It is followed by the immediate flow-through chem-
istry processing for human inhalation of 10CO2 for the blood flow imaging with PET.

Calibration source
22Na is a common calibration source, used even in the recent PET research [509]. It has

a very long half-life of 2.6 years and high β+ branching ratio, making it a convenient β+

emitter for the repetitive calibrations. 22Na also emits 1274.5 keV γ line that was used as a
trigger during the calibration of liquid argon detector [514]. Being already recognized as the
β+γ PET candidate [119, 120, 181], 22Na can be therefore considered as a calibration source
for β+γ coincidence PET.

22Na sources can be bought from the different suppliers or even produced on the site
(as summarized in [515]). In the case of the common cyclotrons with the proton beam of
about 16 MeV, the most promising route is via 22Ne(p,n). The natNe gas target (with 9%
abundance of 22Ne) produces around 30 kBq with 1 µAh irradiation in 15Ý6 MeV energy
range [515]. The same production of 22Na and the design of natNe gas target was recently
well reported in [516]. Meanwhile, for cyclotrons with higher proton energy, the natAl target
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can be used instead. The irradiation with the beam energy range of 70Ý25 MeV or 600Ý400
MeV would give the yields of 6 kBq/µAh and 6 MBq/µAh respectively ([515], calculated
from cross-section in [517]). The purification of the irradiated Al target and the preparation
of 22Na source with the use of ISOLDE mass separator in CERN was described in [518].
Today, the only large-scale production is performed with the use of 70 MeV proton cyclotron
by iThemba LABS in South Africa.





95

Appendix C

Supplementary data

FIGURE C.1: Monitor cross-section: natCu(p,x)62Zn [74, 75].

FIGURE C.2: Monitor cross-section: natCu(p,x)63Zn [74, 75].
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FIGURE C.3: Monitor cross-section: natCu(p,x)65Zn [74, 75].

FIGURE C.4: Monitor cross-section: natCu(d,x)65Zn [74, 75].
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FIGURE C.5: Monitor cross-section: natTi(p,x)48V [74, 75].

FIGURE C.6: Monitor cross-section: natNi(p,x)57Ni [74, 75].
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FIGURE C.7: Monitor cross-section: natNi(d,x)56Co [74, 75].

FIGURE C.8: Monitor cross-section: natNi(d,x)58Co [74, 75].
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FIGURE C.9: Monitor cross-section: natNi(d,x)61Cu [74, 75].

FIGURE C.10: Monitor cross-section: 27Al(α,x)24Na [74, 75].
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FIGURE C.11: Spectrum of 10 µm natMo foil irradiated for 1 h with
α beam of 60.0 MeV and 60 nA. Spectrum was collected 6.7 d after
EOB with HPGe at ARRONAX (Section 3.2.3) during 2.2 h in geome-

try 19 cm (with dead time below 1%).
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FIGURE C.12: Spectrum of 75% natCaCO3 mixed with 25% graphite
target irradiated during 0.42 h with proton beam in energy range
15.2Ý3.0 MeV and intensity of 210 nA. Spectrum was collected 5.2 h
after EOB with EG&G ORTEC HPGe (Section 3.2.3) in geometry 30 cm
during 1.2 h with dead time 8.4% (courtesy of Katarzyna Szkliniarz).
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TABLE C.1: Isotopic composition [%] of natural molybdenum targets.

92Mo 94Mo 95Mo 96Mo 97Mo 98Mo 100Mo

natMo 14.53 9.15 15.84 16.67 9.60 24.39 9.82

TABLE C.2: Isotopic composition [%] of natural ruthenium targets.

96Ru 98Ru 99Ru 100Ru 101Ru 102Ru 104Ru

natRu 5.54 1.87 12.76 12.60 17.06 31.55 18.62

TABLE C.3: Isotopic composition [%] of natural and commercially
available enriched calcium carbonate targets (ISOFLEX, USA). Ma-

terials marked with (*) were employed in this work.

40Ca 42Ca 43Ca 44Ca 46Ca 48Ca

natCa (*) 96.94 0.647 0.135 2.086 0.004 0.187
42Ca (*) 29.9 68 0.4 1.5 <0.01 0.2
42Ca 3.24 95.9 0.13 0.7 <0.01 0.03
43Ca (*) 23.8 1.0 62.2 12.8 <0.01 0.2
43Ca 5.3 0.18 90 4.44 <0.01 0.08
44Ca (*) 5.03 0.1 <0.01 94.8 <0.01 <0.05
48Ca (*) 27.9 0.3 0.1 2.2 <0.1 69.2
48Ca 2.72 0.2 0.01 0.15 <0.01 97.1
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TABLE C.4: Isotopic composition [%] of natural and enriched tita-
nium dioxide targets. The isotopes with the quoted enrichment val-
ues are available from ISOFLEX, USA. Both materials were employed.

46Ti 47Ti 48Ti 49Ti 50Ti

natTi 8.25 7.44 73.72 5.41 5.18
48Ti 0.09 0.1 99.63 0.12 0.06

TABLE C.5: Observed cross-sections for natMo(α,x) reactions.

E
[MeV]

natMo(α,x) cross-section [mb]
97Ru 89gZr 95gTc 96totTc 99Mo

41.80(75) 237(20) 81(11) 73(7) 7.5(1.0)

46.03(68) 225(20) 127(14) 89(8) 10.1(1.2)

50.00(64) 199(18) 163(17) 100(9) 11.4(1.3)

51.93(62) 166(14) 170(16) 101(9) 12.8(1.3)

55.30(60) 159(13) 3.6(9) 177(17) 109(9) 13.5(1.4)

58.51(56) 176(15) 11.7(1.6) 205(17) 119(10)

59.97(55) 176(15) 18(2) 174(24) 116(10) 14.0(1.5)

63.47(53) 180(16) 30(3) 188(16) 118(10) 15.0(1.7)

66.84(50) 173(14) 40(3) 203(17) 122(10) 15.6(1.3)
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TABLE C.6: Observed cross-sections for deuteron-induced reactions
on 104,natRu and calculated values for 104Ru(d,n)105totRh direct reac-
tion (“tot” indicates production of radionuclide directly and via de-

cay of short-lived metastable states).
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TABLE C.7: TTY of radioisotopes formed during irradiation of thick
CaCO3 targets with proton beam for the production of medical scan-
dium radioisotopes (measured data are recalculated for the maxi-
mum commercially available enrichment). In some targets, not all ra-
dioisotopes were observed due to the use of enriched target material

and unobservable amounts of impurities produced.

Isotope 43Sc 44gSc 44mSc 47Sc 48Sc 47Ca

Target
43CaCO3

(90%)

44CaCO3
(94.8%)

44CaCO3
(94.8%)

48CaCO3
(97.1%)

48CaCO3
(97.1%)

48CaCO3
(97.1%)

E [MeV] Thick Target Yield [MBq/µAh]

7.6 61(6) 120(20) 0.13(50) 26(3)

9.7 109(11) 280(20) 0.40(40) 0.47(5) 38(4)

10.7 180(20) 370(40) 0.84(5) 2.1(2) 59(6)

11.3 400(40) 1.5(1)

11.9 200(20) 500(50) 1.3(2) 6.8(8) 68(7) 0.070(7)

12.8 240(20) 540(50) 2.0(2) 10(1) 73(7) 0.13(1)

14.3 260(30) 730(50) 2.7(3) 21(2) 74(7) 0.60(6)

15.2 317(14) 780(30) 3.6(1) 31(2) 79(4) 0.39(14)

17.5 410(40)

21.8 1030(50) 5.9(3) 94(6) 101(10) 7.8(5)

22.0 980(100) 7.5(8)

22.4 98(5) 101(4) 6.1(7)

22.8 940(40) 7.0(2) 105(6) 98(4) 8.1(6)

28.2 136(8) 106(5) 17(2)

28.5 1020(50) 8.0(4) 139(16) 108(4) 22(3)

TABLE C.8: TTY of radioisotopes formed during irradiation of thick
CaCO3 targets with deuteron beam for the production of medical
scandium radioisotopes (measured data are recalculated for the max-

imum commercially available enrichment).

Isotope 43Sc 44gSc 44mSc 47Sc 48Sc

Target 42CaCO3 (95.9%)

E [MeV] Thick Target Yield [MBq/µAh]

4.7 5.6(8) 0.014(6) 1.6(7)× 10−4 6.9(7)× 10−5 1.3(5)× 10−4

6.8 45(4) 0.11(7) 1.8(6)× 10−3 6.3(5)× 10−4 0.020(8)
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TABLE C.9: Reconstructed cross-section values, σ [mb], for different
proton energy E [MeV] (for details see Section 4.4).

E
43Ca(p,n)43Sc
Figure 4.30

44Ca(p,n)44gSc
Figure 4.31

44Ca(p,n)44mSc
Figure 4.32

48Ca(p,2n)47Sc
Figure 4.33

48Ca(p,n)48Sc
Figure 4.34

5 145(20) 115(6) 2.11(8) 0 552(48)

6 187(26) 314(13) 11.7(5) 0 692(66)

7 214(29) 450(20) 19.2(8) 0 761(77)

8 228(28) 534(26) 25.1(1.1) 0 744(78)

9 231(24) 572(31) 29.6(1.3) 14.2(6) 740(71)

10 225(18) 572(32) 32.9(1.4) 199(7) 674(58)

11 211(12) 543(30) 35.0(1.4) 353(14) 586(43)

12 193(10) 493(25) 36.2(1.3) 478(18) 490(29)

13 172(15) 431(19) 36.4(1.2) 576(20) 393(20)

14 148(21) 363(15) 35.9(1.0) 647(20) 304(18)

15 125(26) 297(14) 34.7(8) 698(20) 228(21)

16 140(29) 235(15) 33.1(7) 729(19) 164(22)

17 84(30) 180(16) 31.0(7) 739(18) 115(21)

18 66(30) 134(16) 28.7(8) 734(18) 78(19)

19 97(16) 26.1(1.0) 716(21) 51(15)

20 68(14) 23.4(1.1) 684(26) 32(12)

21 47(12) 20.8(1.3) 647(31) 20(9)

22 31(10) 18.2(1.4) 600(35) 12(6)

23 20(7) 15.7(1.4) 550(40) 7(4)

24 13(6) 13.5(1.4) 499(43) 4(3)

25 8(4) 11.3(1.4) 445(46) 2.0(1.6)

26 5(3) 9.5(1.4) 393(47) 1.0(9)

27 2.8(1.8) 7.8(1.3) 343(48) 0.5(5)

28 1.5(1.1) 6.4(1.2) 297(47) 0.3(3)

29 0.8(7) 5.1(1.1) 253(45) 0.12(16)

30 0.4(4) 4.0(9) 213(43) 0.05(8)
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TABLE C.10: Parameters of the TTYf it obtained with least square
method for different nuclear reactions and the χ2/dof values for each
fit. Parameter a0 is calculated from a1, a2, a3, and Ethr (for details see

Section 4.4).
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List of Abbreviations

ARRONAX Accelerator for Research in Radiochemistry
and Oncology at Nantes Atlantique

CN Compound Nucleus
CT Computed Tomography
dof degrees of freedom
EANM European Association of Nuclear Medicine
EC Electron Capture
EMG Experimentally Modified Gaussian
EOB End Of Bombardment
GGD Generalized Gaussian Distribution
GUI Graphical User Interface
HIL Heavy Ion Laboratory
HPGe Hyper-Pure Germanium
IAEA International Atomic Energy Agency
IT Isomeric Transition
LET Linear Energy Transfer
LINAC Linear Energy Accelerator
LOR Line Of Response
MDA Minimum Detectable Activity
MEMRI Manganese-Enhanced Magnetic Resonance Imaging
MRI Magnetic Resonance Imaging
NCNR National Centre for Nuclear Research
OS Operating System
PET Positron Emission Tomography
QCD Quantum Chromodynamics
RYC Radionuclide Yield Calculator
SA Specific Activity
SPECT Single-Photon Emission Computed Tomography
STD Standard Deviation
TENDL TALYS-based Evaluated Nuclear Data Library
TTY Thick Target Yield
TY Target Yield
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List of Symbols

ai i-th coefficient of TTYf it

A atomic mass number

A0 activity at the beginning of measurement [Bq]

Acal activity of calibration source [Bq]

AEOB(tirr) activity at EOB after tirr irradiation [Bq]

Ai(t) activity of radioisotope i at time t [Bq]

Asat saturation activity [Bq/A]

bi i-th coefficient (energy calibration)

ci i-th coefficient (efficiency calibration)

C number of analyser’s channel

d thickness, range of projectile [cm]

dE
/

dx stopping-power [MeV · (g/cm2)−1]

E projectile energy [MeV]

Emax maximal/initial energy of the projectile [MeV]

Ethr reaction threshold energy [MeV]

E0 energy of the projectile leaving the target [MeV]

Eγ energy of γ quanta [keV]

fp flux [s−1]

fs flux per surface unit [s−1 · cm−2]

Fe electromagnetic force [N]

H target enrichment

I beam current (intensity) [A = “eA”]

Iav average ionization potential [eV]

Ipar particle beam current [“pA”]

Iγ γ decay intensity

k wavenumber [m−1]

L angular momentum [h̄]

m mass [g]

M molar mass [g/mol]

MDA Minimum Detectable Activity [Bq]

ni number of nuclei i per unit mass [g−1]

ne number of electrons per unit mass [g−1]
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N number of neutrons

Nbg number of background counts

Ndec number of decays

Ndec,obs number of observed decays

Ni(t) number of nuclei i at moment t

Ni(tirr) number of nuclei i after tirr irradiation

Nstab number of stable nuclei in target

N number of nuclei per unit area [cm−2]

P probability

q electrical charge [C]

Q reaction Q-value [MeV]

r distance of interaction [fm]

~r position [m]

rσ(E) cross-section ratio

R rate of nuclear reactions [s−1]

S area [cm2]

SA specific activity [Bq/mol]

t time [s]

tirr irradiation time [s]

tmes time of the measurement [s]

∆t time between EOB and measurement [s]

T1/2 half-life [s]

TY Target Yield (production yield) [Bq · (A · s)−1]

TTY Thick Target Yield (production yield) [Bq · (A · s)−1]

TTYf it Thick Target Yield (fit function) [Bq · (A · s)−1]

TTY0 production rate of stable product [(A · s)−1]

vp speed of projectile [m/s]

V interaction potential [MeV]

W(t) amount of isotopes at time t [mol]

x thickness, range of projectile [g/cm2]

X isotope (ground state)

X∗ isotope (excited state)

Z atomic number

Zp atomic number of the projectile

Zt atomic number of the target material

ε(Eγ) detector efficiency

θ scattering angle [rad]

λ decay probability (decay constant) [s−1]

ρ density [g/cm3]
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σ reaction cross-section [mb = 10−27 cm2]

σM monitor reaction cross-section [mb = 10−27 cm2]

τ mean life-time [s]

χ2 Pearson’s chi-squared variable

ψ wave function

Ω solid angle [sr]
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Physical Constants

Avogadro’s constant NA = 6.022 140 86× 1023 mol−1

elementary charge e = 1.602 176 62× 10−19 C
mass of electron me = 0.510 998 946 1 MeV/c2

mass of neutron mn = 939.565 413 3 MeV/c2

mass of proton mp = 938.272 081 3 MeV/c2

Planck’s constant (reduced) h̄ = 6.582 119 514× 10−16 eV · s
speed of light c = 2.997 924 58× 108 m/s
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Kazakhstan. Seriya Fiziko-Matematicheskaya 4 (1970), p. 1.

[282] Brinkman, G.A., Helmer, J., and Lindner, L. “Nickel and copper foils as mon-
itors for cyclotron beam intensities”. In: Radiochemical and Radioanalytical Let-
ters 28 (1977), p. 9.

[283] Rizvi, I.A., Afzal Ansari, M., Gautam, R.P., Singh, R.K.Y., and Chaubey, A.K.
“Excitation Function Studies of (α,xpyn) Reactions for 63,65Cu and Pre-Equilibrium
Effect”. In: Journal of the Physical Society of Japan 56 (1987), p. 3135.

[284] Zweit, J., Sharma, H., and Downey, S. “Production of Gallium-66, a Short-
Lived, Positron Emitting Radionuclide”. In: Applied Radiation and Isotopes 38
(1987), p. 499.

[285] Bhardwaj, H.D., Gautam, A.K., and Prasad, R. “Measurement and analysis of
excitation functions for alpha-induced reactions in copper”. In: Pramana 31.2
(1988), p. 109.

[286] Mohan Rao, A.V., Mukherjee, S., and Rama Rao, J. “Alpha Particle Induced
Reactions on Copper and Tantalum”. In: Pramana 36 (1991), p. 115.

[287] Didik, V.A., Malkovich, R.Sh., Skoryatina, E.A., and Kozlovskii, V.V. “Ex-
perimental determination of the cross sections of nuclear reactions by the
method of analysis of the concentration profiles of transmutation nuclides”.
In: Atomic Energy 77.1 (1994), p. 81.

[288] Singh, N.L., Patel, B.J., Somayajulu, D.R.S., and Chintalapudi, S.N. “Analysis
of the Excitation Functions of (α,xnyp) Reactions on Natural Copper”. In:
Pramana 42.4 (1994), p. 349.

[289] Navin, A., Tripathi, V., Blumenfeld, Y., Nanal, V., Simenel, C., Casandjian,
J.M., de France, G., Raabe, R., Bazin, D., Chatterjee, A., Dasgupta, M., Kailas,
S., Lemmon, R.C., Mahata, K., Pillay, R.G., Pollacco, E.C., Ramachandran, K.,
Rejmund, M., Shrivastava, A., Sida, J.L., and Tryggestad, E. “Direct and com-
pound reactions induced by unstable helium beams near the Coulomb bar-
rier”. In: Physical Review C 70 (2004), p. 044601.

[290] Rattan, S.S., Singh, R.J., Sahakundu, S.M., Prakash, S., and Ramaniah, M.V.
“Alpha Particle Induced Reactions of 209Bi and 63,65Cu”. In: Radiochimica Acta
39 (1986), p. 61.

[291] Sonck, M., Van Hoyweghen, J., and Hermanne, A. “Determination of the ex-
ternal beam energy of a variable energy Multiparticle cyclotron”. In: Applied
Radiation and Isotopes 47 (1996), p. 445.

[292] Tárkányi, F., Szelecsényi, F., Takács, S., Hermanne, A., Sonck, M., Thiele-
mans, A., Mustafa, M.G., Shubin, Yu., and Zhuang, Y. “New Experimen-
tal Data, Compilation and Evaluation for the natCu(α,x)66Ga, natCu(α,x)67Ga
and natCu(α,x)65Zn Monitor Reactions”. In: Nuclear Instruments and Methods
in Physics Research Section B: Beam Interactions with Materials and Atoms 168
(2000), p. 144.



144 Bibliography

[293] Szelecsényi, F., Suzuki, K., Kovács, Z., Takei, M., and Okada, K. “Alpha Beam
Monitoring via natCu + Alpha Processes in the Energy Range from 40 to 60
MeV”. In: Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms 184.4 (2001), p. 589.

[294] Shahid, M., Kim, K., Kim, G., Zaman, M., and Nadeem, M. “Measurement of
excitation functions in alpha induced reactions on natCu”. In: Nuclear Instru-
ments and Methods in Physics Research Section B: Beam Interactions with Materials
and Atoms 358 (2015), p. 160.

[295] Usman, A.R., Khandaker, M.U., Haba, H., Otuka, N., Murakami, M., and
Komori, Y. “Production cross-sections of radionuclides from α-induced re-
actions on natural copper up to 50 MeV”. In: Applied Radiation and Isotopes
114 (2016), p. 104.

[296] Takács, S., Ditrói, F., Szucs, Z., Haba, H., Komori, Y., Aikawa, M., and Saito,
M. “Crosschecking of alpha particle monitor reactions up to 50 MeV”. In:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms 397 (2017), p. 33.

[297] Lahiri, S., Banerjee, S., and Das, N.R. “Simultaneous Production of Carrier-
free 65Zn and 66,67,68Ga in α-particle Activated Copper Target and their Sepa-
ration with TOA”. In: Applied Radiation and Isotopes 48.1 (1997), p. 15.

[298] Hosain, F., Emran, A., Spencer, R.P., and Clampitt, K.S. “Synthesis of radioarsenic
labeled dimethylchloroarsine for derivation of a new group of radiopharma-
ceuticals”. In: Applied Radiation and Isotopes 33.12 (1982), p. 1477.

[299] Emran, A., Hosain, F., Spencer, R.P., and Kolstad, K.S. “Synthesis and biodis-
tribution of radioarsenic labeled dimethylarsinothiols: Derivatives of penicil-
lamine and mercaptoethanol”. In: Nuclear Medicine and Biology 11.3–4 (1984),
p. 259.

[300] Ballard, B., Nortier, F.M., Birnbaum, E.R., John, K.D., Phillips, D.R., and Fass-
bender, M.E. “Radioarsenic from a portable 72Se/72As generator: a current
perspective”. In: Current Radiopharmaceuticals 5 (2012), p. 264.

[301] Ellison, P.A., Barnhart, T.E., Chen, F., Hong, H., Zhang, Y., Theuer, C.P., Cai,
W., Nickles, R.J., and DeJesus, O.T. “High Yield Production and Radiochem-
ical Isolation of Isotopically Pure Arsenic-72 and Novel Radioarsenic Label-
ing Strategies for the Development of Theranostic Radiopharmaceuticals”.
In: Bioconjugate Chemistry 27 (2016), p. 179.

[302] Nayak, T.K. and Brechbiel, M.W. “Radioimmunoimaging with Longer-Lived
Positron-Emitting Radionuclides: Potentials and Challenges”. In: Bioconju-
gate Chemistry 20 (2009), p. 825.

[303] Ravandi, F. “Arsenic trioxide: expanding roles for an ancient drug”. In: Leukemia
18 (2004), p. 1457.

[304] Miller Jr., W.H., Schipper, H.M., Lee, J.S., Singer, J., and Waxman, S. “Mecha-
nisms of action of arsenic trioxide”. In: Cancer Research 62 (2002), p. 3893.

[305] Lu, J., Chew, E.-H., and Holmgren, A. “Targeting thioredoxin reductase is a
basis for cancer therapy by arsenic trioxide”. In: Proceedings of the National
Academy of Sciences of the United States of America 104.30 (2007), p. 12288.



Bibliography 145

[306] Fuladvand, H., Bakhtiari, M., Sadeghi, M., and Amiri, M. “Pre-equilibrium
effects on proton, deuteron, and alpha induced reactions for the production of
72As as a PET imaging radioisotope”. In: Journal of Radioanalytical and Nuclear
Chemistry 298 (2013), p. 501.

[307] Basile, D., Birattari, C., Bonardi, M., Goetz, L., Sabbioni, E., and Salomone,
A. “Excitation Functions and Production of Arsenic Radioisotopes for En-
vironmental Toxicology and Biomedical Purposes”. In: Applied Radiation and
Isotopes 32 (1981), p. 403.

[308] Horiguchi, T., Kumahora, H., Inoue, H., and Yoshizawa, Y. “Excitation Func-
tions of Ge(p,xnyp) Reactions and Production of 68Ge.” In: Applied Radiation
and Isotopes 34.11 (1983), p. 1531.

[309] Spahn, I., Steyn, G.F., Nortier, F.M., Coenen, H.H., and Qaim, S.M. “Excitation
functions of natGe(p,xn)71,72,73,74As reactions up to 100 MeV with a focus on
the production of 72As for medical and 73As for environmental studies”. In:
Applied Radiation and Isotopes 65 (2007), p. 1057.

[310] Enferadi, M., Sadeghi, M., and Nadi, H. “72As, a Powerful Positron Emitter
for Immunoimaging and Receptor Mapping: Study of the Cyclotron Produc-
tion”. In: Radiochemistry 53.4 (2011), p. 346.

[311] Al-Kourashi, S.H. and Boswell, G.G.J. “An isotope generator for 72As”. In:
Applied Radiation and Isotopes 29 (1978), p. 607.

[312] Phillips, D.R., Hamilton, V.T., Nix, D.A., Taylor, W.A., Jamriska, D.J., Staroski,
R.C., Lopez, R.A., and Emran, A.M. “Chemistry and Concept for an Auto-
mated 72Se/72As Generator”. In: New Trends in Radiopharmaceutical Synthe-
sis, Quality Assurance, and Regulatory Control. Ed. by A.M. Emran. Boston:
Springer International Publishing, 1991, p. 173.

[313] Jennewein, M., Schmidt, A., Novgorodov, A. F., Qaim, S.M., and Rösch, F. “A
no-carrier-added 72Se/72As radionuclide generator based on distillation”. In:
Radiochimica Acta 92 (2004), p. 245.

[314] Jennewein, M., Qaim, S.M., Kulkarni, P.V., Mason, R.P., Hermanne, A., and
Rösch, F. “A no-carrier-added 72Se/72As radionuclide generator based on
solid phase extraction”. In: Radiochimica Acta 93 (2005), p. 579.

[315] Ballard, B., Wycoff, D., Birnbaum, E.R., John, K.D., Lenz, J.W., Jurisson, S.S.,
Cutler, C.S., Nortier, F.M., Taylor, W.A., and Fassbender, M.E. “Selenium-72
formation via natBr(p,x) induced by 100 MeV protons: Steps towards a novel
72Se/72As generator system”. In: Applied Radiation and Isotopes 70 (2012), p. 595.

[316] Chajduk, E., Doner, K., Polkowska-Motrenko, H., and Bilewicz, A. “Novel
radiochemical separation of arsenic from selenium for 72Se/72As generator”.
In: Applied Radiation and Isotopes 70.5 (2012), p. 819.

[317] Wycoff, D.E., Gott, M.D., DeGraffenreid, A.J., Morrow, R.P., Sisay, N., Em-
bree, M.F., Ballard, B., Fassbender, M.E., Cutler, C.S., Ketring, A.R., and Juris-
son, S.S. “Chromatographic separation of selenium and arsenic: a potential
72Se/72As generator”. In: Journal of Chromatography A 1340 (2014), p. 109.

[318] Feng, Y., Phipps, M.D., Phelps, T.E., Okoye, N.C., Baumeister, J.E., Wycoff,
D.E., Dorman, E.F., Lake Wooten, A., Vlasenko, V., Berendzen, A.F., Wilbur,
D.S., Hoffman, T.J., Cutler, C.S., Ketring, A.R., and Jurisson, S.S. “Evaluation
of 72Se/72As generator and production of 72Se for supplying 72As as a poten-
tial PET imaging radionuclide”. In: Applied Radiation and Isotopes 143 (2019),
p. 113.



146 Bibliography

[319] Amiel, S. “Reactions of Alpha Particles with Germanium-70 and Zinc-70”. In:
Physical Review 116 (1959), p. 415.

[320] Calboreanu, A., Salagean, O., Pencea, C., Zimmer, K.W., and Ciocanel, A.
“Formation and Decay of the Compound Nucleus in Alpha Induced Reac-
tion on 70Ge”. In: Revue Roumaine de Physique 32 (1987), p. 725.

[321] Mushtaq, A. and Qaim, S.M. “Excitation Function of α- and 3He-Particle In-
duced Nuclear Reactions on Natural Germanium: Evaluation of production
routes for 73Se”. In: Radiochimica Acta 50 (1990), p. 27.

[322] Takács, S., Takács, M.P., Ditrói, F., Aikawa, M., Haba, H., and Komori, Y. “Ac-
tivation cross sections of longer-lived radionuclides produced in germanium
by alpha particle irradiation”. In: Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms 383 (2016), p. 213.

[323] Mushtaq, A., Qaim, S.M., and Stöcklin, G. “Production of 73Se via (p,3n) and
(d,4n) Reactions on Arsenic”. In: Applied Radiation and Isotopes 39.10 (1988),
p. 1085.

[324] DeGraffenreid, A.J., Dedvedev, D.G., Phelps, T.E., Gott, M.D., Smith, S.V., Ju-
risson, S.S., and Cutler, C.S. “Cross-section measurements and production of
72Se with medium to high energy protons using arsenic containing targets”.
In: Radiochimica Acta 107.4 (2019), p. 279. DOI: 10.1515/ract-2018-2931.

[325] Maziere, B. and Loc’h, C. “Radiopharmaceuticals labelled with bromine iso-
topes”. In: Applied Radiation and Isotopes 37 (1985), p. 703.

[326] Martinot, J.L., Paillere-Martinot, M.L., Loc’h, C., Hardy, P., Poirier, M.F., Ma-
zoyer, B., Beaufils, B., Maziere, B., Allilaire, J.F., and Syrota, A. “The estimated
density of D2 striatal receptors in schizophrenia. A study with positron emis-
sion tomography and 76Br-bromolisuride”. In: British Journal of Psychiatry 158
(1991), p. 346.

[327] Martinot, J.L., Paillere-Martinot, M.L., Loc’h, C., Lecrubier, Y., Dao-Castellana,
M.H., Aubin, F., Allilaire, J.F., Mazoyer, B., Maziere, B., and Syrota, A. “Cen-
tral D2 receptors and negative symptoms of schizophrenia”. In: British Journal
of Psychiatry 164 (1994), p. 27.

[328] Hanaoka, H., Ohshima, Y., Suzuki, Y., Yamaguchi, A., Watanabe, S., Uehara,
T., Nagamori, S., Kanai, Y., Ishioka, N.S., Tsushima, Y., Endo, K., and Arano, Y.
“Development of a Widely Usable Amino Acid Tracer: 76Br-α-Methyl-Phenylalanine
for Tumor PET Imaging”. In: Journal of Nuclear Medicine 56.5 (2015), p. 791.

[329] Jagoda, E.M., Lang, L., McCullough, K., Contoreggi, C., Moon Kim, B., Ma, Y.,
Rice, K.C., Szajek, L.P., Eckelman, W.C., and Kiesewetter, D.O. “[76Br]BMK-
152, a Nonpeptide Analogue, With High Affinity and Low Nonspecific Bind-
ing for the Corticotropin-Releasing Factor Type 1 Receptor”. In: Synapse 65
(2011), p. 910.

[330] Loc’h, C., Mardon, K., Valette, H., Bruresco, C., Merlet, P., Syrota, A., and
Maziere, B. “Preparation and pharmacological characterization of [76Br]-meta-
brombenzylguanidine ([76Br]mBBG)”. In: Nuclear Medicine and Biology 21 (1994),
p. 35.

[331] Scott-Robson, S., Capala, J., Carlsson, J., Malmborg, P., and Lundqvist, H.
“Distribution and stability in the rat of a 76Br/125I-labelled polypeptide, epi-
dermal growth factor”. In: Nuclear Medicine and Biology 18 (1991), p. 241.

https://doi.org/10.1515/ract-2018-2931


Bibliography 147

[332] Rossin, R., Berndorff, D., Friebe, M., Dinkelborg, L.M., and Welch, M.J. “Small-
Animal PET of Tumor Angiogenesis Using a 76Br-Labeled Human Recombi-
nant Antibody Fragment to the ED-B Domain of Fibronectin”. In: Journal of
Nuclear Medicine 48.7 (2007), p. 1172.

[333] Gardelle, O., Roelcke, U., Vontobel, P., Crompton, N.E.A., Guenther, I., Bläuen-
stein, P., Schubiger, A.P., Blattmann, H., Ryser, J.E., Leenders, K.L., and Kaser-
Hotz, B. “[76Br]Bromodeoxyuridine PET in tumor-bearing animals”. In: Nu-
clear Medicine and Biology 28 (2001), p. 51.

[334] Hassan, H.E., Qaim, S.M., Shubin, Yu., Azzam, A., Morsy, M., and Coenen,
H.H. “Experimental studies and nuclear model calculations on proton-induced
reactions on natSe, 76Se and 77Se with particular reference to the production
of the medically interesting radionuclides 76Br and 77Br”. In: Applied Radiation
and Isotopes 60 (2004), p. 899.

[335] Kovàcs, Z., Blessing, G., Qaim, S.M., and Stöcklin, G. “Production of 75Br
via 76Se(p,2n)75Br reaction at a compact cyclotron”. In: Applied Radiation and
Isotopes 36 (1985), p. 635.

[336] El-Azony, K.M., Suzuki, K., Fukumura, T., Szelecsényi, F., and Kovács, Z. “Ex-
citation functions of proton induced reactions on natural selenium up to 62
MeV”. In: Radiochimica Acta 97 (2009), p. 71.

[337] Janssen, A.G.M., Van Den Bosch, R.L.P., De Goeij, J.J.M., and Theelen, H.M.J.
“The reactions 77Se(p,n) and 78Se(p,2n) as production routes for 77Br”. In: Ap-
plied Radiation and Isotopes 31.7 (1980), p. 405.

[338] Tolmachev, V., Lövqvist, A., Einarsson, L., Schultz, J., and Lundqvist, H. “Pro-
duction of 76Br by a low-energy cyclotron”. In: Applied Radiation and Isotopes
49.12 (1998), p. 1537.

[339] Lundqvist, H., Malmborg, P., Långstróm, B., and Suparb Na Chiengmai. “Sim-
ple Production of 77Br- and 123I- and their Use in the Labelling of [77Br]BrUdR
and [123I]IUdR”. In: Applied Radiation and Isotopes 30 (1979), p. 39.

[340] De Jong, D., Kooiman, H., and Veenboer, J.Th. “76Br and 77Br from decay of
cyclotron produced 76Kr and 77Kr”. In: Applied Radiation and Isotopes 30 (1979),
p. 786.

[341] Diksic, M., Galinier, J.-L., Marshall, H., and Yaffe, L. “79Br and 81Br(p,xn) and
(p,pxn) Excitation Functions in the Energy Range 10–85 MeV”. In: Physical
Review C 19 (1979), p. 1753.

[342] Nozaki, T., Iwamoto, M., and Itoh, Y. “Production of 77Br by Various Nuclear
Reactions”. In: Applied Radiation and Isotopes 30 (1979), p. 79.

[343] Sakamoto, K., Dohniwa, M., and Okada, K. “Excitation Function for (p,xn)
and (p,pxn) Reactions on Natural 79+81Br, 85+87Rb, 127I and 133Cs up to E(p) =
52 MeV”. In: Applied Radiation and Isotopes 36.6 (1985), p. 481.

[344] Deptula, C., Sen Han, K., Knotek, O., Mikołajewski, S., Popinenkova, L.M.,
Rurarz, E., and Zaitseva, N.G. “Excitation Function and Yields For Br-Nat(P,XN)Kr-
76, Kr-77,Kr-79 Reactions at 100 MeV Bombarding Energy”. In: Nukleonika 35
(1990), p. 79.



148 Bibliography

[345] Zaitseva, N.G., Deptula, C., Knotek, O., Kim, S.K., Mikolaevsky, S., Mikecz,
P., Rurarz, E., Khalkin, V.A., Konov, V.A., and Popinenkova, L.M. “Cross Sec-
tions for the 100 MeV Proton-Induced Nuclear Reactions and Yields of Some
Radionuclides Used in Nuclear Medicine”. In: Radiochimica Acta 54 (1991),
p. 57.

[346] de Villiers, D., Nortier, M., and Richter, W. “Experimental and theoretical ex-
citation functions for natBr(p,x) reactions”. In: Applied Radiation and Isotopes 57
(2002), p. 907.

[347] Qaim, S.M. and Stöcklin, G. “Production of some medically important short-
lived neutron-deficient radioisotopes of halogens”. In: Radiochimica Acta 34
(1983), p. 25.

[348] Helus, F., Gasper, H., Rettig, W., and Maier-Borst, W. “Cyclotron production
of 34mCl for biomedical use”. In: Journal of Radioanalytical and Nuclear Chem-
istry 94 (1985), p. 149.

[349] DeJesus, O.T., Converse, A.K., and Nickles, R.J. “Development of 34mCl-labeled
dopamine D1 agonists as PET imaging agents”. In: Journal of Labelled Com-
pounds and Radiopharmaceuticals 50 (2007), S339.

[350] Murali, D., Engle, J., Barnhart, T., Nickles, R., and DeJesus, O. “Synthesis of
34mCl labeled D1 agonists using electrophilic chlorination”. In: Journal of Nu-
clear Medicine 52.S1 (2011), p. 1508.

[351] Lagunas-Solar, M.C., Carvacho, O.F., and Cima, R.R. “Cyclotron Production
of PET Radionuclides: 34mCl (33.99 min;β+ 53%; IT 47%) with Protons on Nat-
ural Isotopic Chlorine-containing Targets”. In: Applied Radiation and Isotopes
43.11 (1992), p. 1375.

[352] Hintz, N.M. and Ramsey, N.E. “Excitation Functions to 100 MeV”. In: Physical
Review 88.1 (1952).

[353] Umbarger, C.J., Kemper, K.W., Nelson, J.W., and Plendl, H.S. “Excitation Func-
tions for the Reactions 34S(p,n)34Cl and 31P(α,n)34Cl”. In: Physical Review C 2.4
(1970), p. 1378.

[354] Zatolokin, B.V., Konstantinov, I.O., and Krasnov, N.N. “Thick Target Yields
of 34mCl and 38Cl Produced by Various Charged Particles On Phosphorus,
Sulphur and Chlorine Targets”. In: Applied Radiation and Isotopes 27 (1976),
p. 159.

[355] Takei, M., Nagatsu, K., Fukumura, T., and Suzuki, K. “Remote control pro-
duction of an aqueous solution of no-carrier-added 34mCl- via the 32S(α,pn)
nuclear reaction”. In: Applied Radiation and Isotopes 65 (2007), p. 981.

[356] Abrams, D.N., Knaus, E.E., Wiebe, L.I., Helus, F., and Maier-Borst, W. “Pro-
duction of 34mCl from a gaseous hydrogen sulfide target”. In: Applied Radia-
tion and Isotopes 35.11 (1984), p. 1045.

[357] Engle, J.W., Barnhart, T.E., DeJesus, O.T., and Nickles, R.J. “Production of
34mCl and 38Cl via the (d,α) reaction on 36Ar and natAr gas at 8.4 MeV”. In:
Applied Radiation and Isotopes 69.1 (2011), p. 75.

[358] Engle, J.W., Severin, G.W., Barnhart, T.E., Knutson, L.D., and Nickles, R.J.
“Cross sections of the 36Ar(d,α)34mCl, 40Ar(d,α)38Cl, and 40Ar(d,p)41Ar nu-
clear reactions below 8.4 MeV”. In: Applied Radiation and Isotopes 70 (2012),
p. 355.



Bibliography 149

[359] Lewis, C.M., Graves, S.A., Hernandez, R., Valdovinos, H.F., Barnhart, T.E.,
Cai, W., Meyerand, M.E., Nickles, R.J., and Suzuki, M. “52Mn Production for
PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Trans-
porter 1 (DMT1)”. In: Theranostics 5.3 (2015), p. 227.

[360] Koretsky, A.P. and Silva, A.C. “Manganese-enhanced magnetic resonance imag-
ing (MEMRI)”. In: NMR in Biomedicine 17.8 (2004), p. 527.

[361] Silva, A.C., Hee Lee, J., Aoki, I., and Koretsky, A.P. “Manganese-enhanced
magnetic resonance imaging (MEMRI): methodological and practical consid-
erations”. In: NMR in Biomedicine 17 (2004), p. 532.

[362] Wadghiri, Y.Z., Blind, J.A., Duan, X., Moreno, C., Yu, X., Joyner, A.L., and
Turnbull, D.H. “Manganese-enhanced magnetic resonance imaging(MEMRI)
of mouse brain development”. In: NMR in Biomedicine 17.8 (2004), p. 613.

[363] Silva, A.C. and Bock, N.A. “Manganese-Enhanced MRI: An Exceptional Tool
in Translational Neuroimaging”. In: Schizophrenia Bulletin 34.4 (2008), p. 595.

[364] Massaad, C.A. and Pautler, R.G. “Manganese-Enhanced Magnetic Resonance
Imaging (MEMRI)”. In: Methods in Molecular Biology 711 (2011), p. 145.

[365] Cacace, A.T., Brozoski, T., Berkowitz, B., Bauer, C., Odintsov, B., Bergkvist,
M., Castracane, J., Zhang, J., and Holt, A.G. “Manganese enhanced magnetic
resonance imaging (MEMRI): a powerful new imaging method to study tin-
nitus”. In: Hearing Research 311 (2014), p. 49.

[366] Crossgrove, J. and Zheng, W. “Manganese toxicity upon overexposure”. In:
NMR in Biomedicine 17.8 (2004), p. 544.

[367] Graves, S.A., Hernandez, R., Fonslet, J., England, C.G., Valdovinos, H.F., Elli-
son, P.A., Barnhart, T.E., Elema, D.R., Theuer, C.P., Cai, W., Nickles, R.J., and
Severin, G.W. “Novel Preparation Methods of 52Mn for ImmunoPET Imag-
ing”. In: Bioconjugate Chemistry 26.10 (2015), p. 2118.

[368] Kakavand, T., Mirzaii, M., Eslami, M., and Valizadeh, S. “Cyclotron produc-
tion of 52Mn and Monte Carlo benchmarking”. In: Journal of Radioanalytical
and Nuclear Chemistry 304 (2015), p. 669.

[369] A.A. Alharbi. “Experimental Results Evaluation and Theoretical Study for
the Production of the Radio Isotope 52Mn Using p, d and α- Projectiles on
V and Cr Targets”. In: Arab Journal of Nuclear Sciences and Applications 94.3
(2016), p. 216.

[370] Atcher, R. W., Friedman, A.M., and Huizenga, J.R. “Production of 52Fe for
Use in a Radionuclide Generator System”. In: International Journal of Nuclear
Medicine and Biology 7 (1980), p. 15.

[371] Steyn, G.F., Mills, S.J., Nortier, F.M., Simpson, B.R.S., and Meyer, B.R. “Pro-
duction of 52Fe via Proton-induced Reactions on Manganese and Nickel”. In:
Applied Radiation and Isotopes 41.30 (1990), p. 315.

[372] Titarenko, Yu.E., Batyaev, V.F., Titarenko, A.Yu., Butko, M.A., Pavlov, K.V.,
Florya, S.N., Tikhonov, R.S., Zhivun, V.M., Ignatyuk, A.V., Mashnik, S.G.,
Leray, S., Boudard, A., Cugnon, J., Mancusi, D., Yariv, Y., Nishihara, K., Mat-
suda, N., Kumawat, H., Mank, G., and Gudowski, W. “Measurement and
simulation of the cross sections for nuclide production in Nb-93 and Ni-nat
targets irradiated with 0.04- to 2.6-GeV protons”. In: Physics of Atomic Nuclei
74 (2011), p. 537.



150 Bibliography

[373] Greene, M.W., Lebowitz, E., Richards, P., and Hillman, M. “Production of 52Fe
for Medical Use”. In: Applied Radiation and Isotopes 21 (1970), p. 719.

[374] Akiha, F., Aburai, T., Nozaki, T., and Murakami, Y. “Yield of 52Fe for the Re-
actions of 3He and α on Chromium”. In: Radiochimica Acta 18.2 (1972), p. 108.

[375] Mirzadeh, S. and Lambrecht, R.M. “Radiochemistry of germanium”. In: Jour-
nal of Radioanalytical and Nuclear Chemistry 202 (1996), p. 7.

[376] Rösch, F. “Past, present and future of 68Ge/68Ga generators”. In: Applied Ra-
diation and Isotopes 76 (2013), p. 24.

[377] Velikyan, I. “68Ga-Based Radiopharmaceuticals: Production and Application
Relationship”. In: Molecules 20 (2015), p. 12913.

[378] Chakravarty, R., Valdovinos, H.F., Chen, F., Lewis, C.M., Ellison, P.A., Luo,
H., Meyerand, M.E., Nickles, R.J., and Cai, W. “Intrinsically Germanium-
69 Labeled Iron Oxide Nanoparticle: Synthesis and In Vivo Dual-modality
PET/MR Imaging”. In: Advanced Materials 26.30 (2014), p. 5119.

[379] Porile, N.T., Tanaka, S., Amano, H., Furukawa, M., Iwata, S., and Yagi, M.
“Nuclear reactions of Ga69 and Ga71 with 13-56 MeV protons”. In: Nuclear
Physics 43 (1963), p. 500.

[380] Johnson, C.H., Trail, C.C., and Galonsky, A. “Thresholds for (p,n) reactions
on 26 intermediate-weight nuclei”. In: Physical Review 136.6B (1964), B1719.

[381] Adam-Rebeles, R., Hermanne, A., Van Den Winkel, P., De Vis, L., Waegeneer,
R., Tárkányi, F., Takács, S., and Takács, M.P. “68Ge/68Ga production revisited:
excitation curves, target preparation and chemical separation – purification”.
In: Radiochimica Acta 101.8 (2013), p. 481.

[382] Hermanne, A., Adam-Rebeles, R., Tárkányi, F., Takács, S., and Ditrói, F. “Pro-
ton and deuteron induced reactions on natGa: Experimental and calculated
excitation functions”. In: Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms 359 (2015), p. 145.

[383] Stelson, P.H. and McGowan, F.K. “Cross Sections for (α,n) Reactions for Medium-
Weight Nuclei”. In: Physical Review 133.4B (1964), B911.

[384] Abu Issa, N.N., Antropov, A.E., Gusev, V.P., Zarubin P.P., Kolozhvari, A.A.,
and Smirnov, A.V. “The excitation function analysis of alpha-particles pro-
duction on nuclei Zn-64,66,68 with energy 14.8–24.4 MeV”. In: 39 Conf. Nucl.
Spectrosc. Nucl. Struct., Tashkent, USSR (1989), p. 350.

[385] Nagame, Y., Nakahara, H., and Furukawa, M. “Excitation Functions forα and
3He Particles Induced Reactions on Zinc”. In: Radiochimica Acta 46 (1989), p. 5.

[386] Aikawa, M., Saito, M., Ebata, S., Komori, Y., and Haba, H. “Activation cross
sections of α-induced reactions on natZn for Ge and Ga production”. In: Nu-
clear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms 427 (2018), p. 91.

[387] Rizvi, I.A., Bhardwaj, M.K., Afzal Ansari, M., and Chaubey, A.K. “Nonequi-
librium Effects in alpha-particle-induced reactions on gallium isotopes”. In:
Canadian Journal of Physics 67 (1989), p. 870.

[388] Ismail, M. “Measurement and Analysis of the Excitation Function for Alpha-
Induced Reactions on Ga and Sb Isotopes”. In: Physical Review C 41.1 (1990),
p. 87.



Bibliography 151

[389] Lambrecht, R.M., Gallagher, B.M., Wolf, A.P., and Bennett, G.W. “Cyclotron
isotopes and radiopharmaceuticals–XXIX. 81,82mRb for positron emission to-
mography”. In: Applied Radiation and Isotopes 31.6 (1980), p. 343.

[390] Rowshanfarzad, P., Reza Jalilian, A., Kiyomarsi, M., Sabet, M., Reza Karim-
ian, A., Moradkhani, S., and Mirzaii, M. “Production, quality control and
initial imaging studies of [82mRb]RbCl for PET studies”. In: Nukleonika 51.4
(2006), p. 209.

[391] Yano, Y., Chu, P., Budinger, T.F., Grant, P.M., Ogard, A.E., Barnes, J.W., O’Brien,
H.A.Jr., and Hoop, B.Jr. “Rubidium-82 Generators for Imaging Studies”. In:
Journal of Nuclear Medicine 18 (1977), p. 46.

[392] Kensett, M.J., Horlock, P.L., Waters, S.L., and Bateman, D.M. “Experience
with a 82Sr/82Rb generator for clinical use”. In: Applied Radiation and Isotopes
38.3 (1987), p. 227.

[393] Go, R.T., Marwick, T.H., Maclntyre, W.J., Saha, G.B., Neumann, D.R., Under-
wood, D.A., and Simpfendorfer, C.C. “A Prospective Comparison of Rubidium-
82 PET and Thallium-201 SPECT Myocardial Perfusion Imaging Utilizing a
Single Dipyridamole Stress in the Diagnosis of Coronary Artery Disease”. In:
Journal of Nuclear Medicine 31.12 (1990), p. 1899.

[394] Saha, G.B., Go, R.T., Macintyre, W.J., Marwick, T.H., Beachler, A., King, J.L.,
and Neumann, D.R. “Use of the 82Sr/82Rb Generator in Clinical PET Studie”.
In: Nuclear Medicine and Biology 17.8 (1990), p. 763.

[395] Di Carli, M.F., Dorbala, S., Meserve, J., El Fakhri, G., Sitek, A., and Moore,
S.C. “Clinical Myocardial Perfusion PET/CT”. In: Journal of Nuclear Medicine
48.5 (2007), p. 783.

[396] Klein, R., Adler, A., Beanlands, R.S., and deKemp, R.A. “Precision-controlled
elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron
emission tomography”. In: Physics in Medicine and Biology 52 (2007), p. 659.

[397] Merhige, M.E., Breen, W.J., Shelton, V., Houston, T., D’Arcy, B.J., and Perna,
A.F. “Impact of myocardial perfusion imaging with PET and 82Rb on down-
stream invasive procedure utilization, costs, and outcomes in coronary dis-
ease management”. In: Journal of Nuclear Medicine 48.7 (2007), p. 1069.

[398] Yoshinaga, K., Klein, R., and Tamaki, N. “Generator-produced rubidium-82
positron emission tomography myocardial perfusion imaging – From basic
aspects to clinical applications”. In: Journal of Cardiology 55 (2010), p. 163.

[399] Dhar, R. and Ananthasubramaniam, K. “Rubidium-82 Cardiac Positron Emis-
sion Tomography Imaging: An Overview for the General Cardiologist”. In:
Cardiology in Review 19.5 (2011), p. 255.

[400] Scholtens, A. and Barneveld, P.C. “Rubidium-82 myocardial perfusion PET/CT”.
In: Tijdschrift voor Nucleaire Geneeskunde 39 (2017), p. 1817.

[401] Grant, P.M., Erdal, B.R., and O’Brien, H.A.Jr. “A 82Sr-82Rb isotope generator
for use in nuclear medicine”. In: Journal of Nuclear Medicine 16.4 (1975), p. 300.

[402] Mausner, L.F., Prach, T., and Srivastava, S.C. “Production of 82Sr by proton
irradiation of RbCl”. In: Applied Radiation and Isotopes 38 (1987), p. 181.

[403] Cackette, M.R., Ruth, T.J., and Vincent, J.S. “82Sr Production from Metallic Rb
Targets and Development of an 82Rb Generator System”. In: Applied Radiation
and Isotopes 44.6 (1993), p. 917.



152 Bibliography

[404] Bilewicz, A., Barto, B., Misiak, R., and Petelenz, B. “Separation of 82Sr from
rubidium target for preparation of 82Sr/82Rb generator”. In: Journal of Radio-
analytical and Nuclear Chemistry 268.3 (2005), p. 485.

[405] Huszár, I., Youfeng, H., Jegge, J., and Weinreich, R. “Development of a pro-
duction process for 82Sr”. In: Journal of Labelled Compounds and Radiopharma-
ceuticals 26 (1989), p. 168.

[406] Deptula, C., Khalkin, V.A., Sen Han, K., Knotek, O., Konov, V.A., Mikecz,
P., Poponenkova, L.M., Rurarz, E., and Zaitseva, N.G. “Excitation functions
and yields for medically generator Sr82-Rb82, Xe123-I123 and Bi201-Pb201-Tl201

obtained with 100 MeV protons”. In: Nukleonika 35 (1990), p. 3.

[407] Lagunas-Solar, M.C. “Radionuclide production with > 70-MeV proton accel-
erators: current and future prospects”. In: Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms 69 (1992),
p. 452.

[408] Gilabert, E., Lavielle, B., Neumann, S., Gloris, M., Michel, R., Schiekel, Th.,
Sudbrock, F., and Herpers, U. “Cross sections for the proton-induced pro-
duction of krypton isotopes from Rb, Sr, Y, and Zr for energies up to 1600
MeV”. In: Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms 145 (1998), p. 293.

[409] Ido, T., Hermanne, A., Ditrói, F., Szűcs, Z., Mahunka, I., and Tárkányi, F. “Ex-
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