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Abstract

Speaker diarization involves the detection of speakers within an audio stream and the
intervals during which each speaker is active, i.e. the determination of ‘who spoken when’.
The task is closely linked to that of speaker recognition or detection, which involves the
comparison of two, presumably single-speaker speech segments and the determination of
whether or not they were uttered by the same speaker. Even if many practical applications
require their combination, the two tasks are traditionally tackled independently from
each other. The work presented in this thesis takes a similar approach, but also considers
an application where speaker diarization and speaker recognition solutions are fused at
their heart.

Both speaker diarization and recognition rely upon speaker modelling techniques,
the most advanced of which exploit developments in deep learning. These techniques
typically require training and optimisation using massive quantities of domain-matched
training data. When such modelling techniques are applied to domain-mismatched
data, performance can degrade substantially. When domain-matched data is scarce, or
not available in sufficient quantities, then alternative, domain-robust speaker modelling
techniques are needed. The work presented in this thesis exploits an approach to speaker
modelling involving binary keys (BKs). BK modelling is inherently efficient and can
operate without the need for external training data. Instead, it operates using test
data alone. Novel contributions include: (i) a new approach to BK extraction based on
multi-resolution spectral analysis; (ii) an approach to speaker change detection using
BKs; (iii) the application of spectral clustering methods to BK speaker modelling; (iv)
new fusion techniques that combine the benefits of both BK and deep learning based
solutions to speaker diarization. All contributions lead to substantial improvements
over baseline techniques and led to excellent results in 3 internationally competitive
evaluations, including 2 best-ranked systems.

Other contributions include the combination of speaker diarization within a speaker
detection task. The work relates to security applications and EURECOM’s participation
in the ANR ODESSA project. The new task, coined low latency speaker spotting (LLSS),
involves the rapid detection of known speakers within multi-speaker audio streams. It
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involves the re-thinking of online diarization and the manner by which diarization and
detection sub-systems should best be combined. Novel contributions include: (i) a
formal definition of the new LLSS task; (ii) protocols to support LLSS research using a
publicly available database; (iii) LLSS solutions which combine online diarization with
speaker detection; (iv) metrics for the assessment of LLSS performance as a function of
speaker latency; (v) a selective cluster enrichment technique which fuses diarization and
detection sub-systems at their heart. This work shows that the optimisation of speaker
diarization solutions should not be performed using the traditional diarization error rate,
but instead with metrics that better reflect the eventual application. Speaker diarization
is an enabling technology and is almost never an application in its own right.
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Chapter 1

Introduction

Data quantities at the disposal of researchers have been increasing massively during
the past two decades. This is due to a variety of factors that include steady hardware
developments and improved, almost-ubiquitous connectivity, enabling for the continuous
capture and storage of all sorts of information. The benefits of this data to society lie in
what can be learned from it. Research in this area has led to the birth of a new field of
research known as data science and renewed efforts to develop the mathematical tools
required for efficient and domain robust pattern recognition. Much of the research in
this area involves machine and deep learning (DL).

This thesis concerns speech data, which is not an exception in terms of its increased
abundance in recent years. Following the explotion in the ubiquity of handheld devices
equipped with microphones, speech is now acquired more easily than ever, and by means
that are non-intrusive to the user experience. The increasing number of always-listening
connected devices through the internet of things also contributes to continuous speech
acquisition that is of benefit in a great number of applications. In parallel, wireless,
ubiquitous connectivity enables for cloud-based systems to perform all kinds of increasingly
demanding processing operations remotely rather than locally, bringing handheld device
hardware requirements to a bare minimum. These advances in hardware and connectivity
provide, today more than ever, an ideal environment for the real usability of speech
processing technologies.

The development of tools capable of processing and exploiting the content of conver-
sational speech is motivated by the fundamental importance of speech in society: speech
constitutes one of the most natural means of human interaction, and the information
conveyed in speech is especially rich and diverse. Perhaps the most obvious example of
speech processing tasks is that of automatic speech recognition (ASR). Estimating the
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A AB BC CD D CE E

Figure 1.1: The task of SD attempts to segment an audio stream into speaker homogeneous
intervals and to group together same-speaker segments with a common speaker label
(each color and letter represents a different speaker).

words uttered in an audio stream may be of importance to many different applications, for
example, the indexing and cataloging of spoken content. These applications among many
others can be a component of natural language understanding, and the development of
human-machine interaction and artificial intelligence. Less obvious applications that,
nonetheless, represent established fields of research are those comprising the estimation
of behavioral content, such as intent or emotion. Last but not least, speech signals also
communicate the speaker identity. Human-to-human communication naturally exploits
this information: our brain is capable of estimating age and gender, and differentiates
among speaker identities when listening to even very short amounts of speech. Estimation
of the same information by machines is considerably more challenging. Application
related to voice biometrics, namely the estimation of speaker identities in speech data,
is the main focus of this dissertation for two particular applications: first and foremost
that of speaker diarization (SD) [1, 2] and, second, the integration of diarization with
speaker recognition [3, 4].

Speaker diarization is commonly referred to as the task of determining ‘who spoke when’
in a multi-speaker audio stream, a conceptual example of which is illustrated in Figure 1.1.
As an enabling technology, SD aims to enrich the transcription of audio datasets with
speaker labels. These can be useful for numerous tasks including information indexing,
tools for the hearing impaired, enriched interaction with always-listening devices, or
applications that involve the tracking of certain speakers. The datasets used in the study
of SD reflect to some extent the expected acoustic domains of these use cases. Telephony
databases comprising conversations mostly between two speakers are useful for security
and commercial applications, e.g. the (re)detection and tracking of known fraudsters, or
the verification of user identities in call-center applications. SD in applications involving
broadcast news radio and television content bring more significant challenges related to
variations in acoustic variability. SD in meeting domain application typically bring even
more challenging problems related to unstructured, spontaneous conversational speech.

The speaker labelling task is more often than not performed without any a priori
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information about the audio content, e.g. the nature of the speech content and/or presence
of acoustic nuisances such as music, clapping, background conversations or noise. In
addition, the number of speakers is often unknown, and the length of the speech segments
related to the conversations can go from brief interventions, to overlapping interruptions,
and even single-speaker monologues.

The complexity of the SD task normally leads to a similarly complex SD system
pipelines which typically include a number of independent modules such as voice activity
detection (VAD), feature extraction, speaker segmentation and modelling, clustering,
and resegmentation. Research as regards some of these modules often draws from other
more established fields, e.g. speaker recognition, in which DL based approaches have
recently overtaken the previous state-of-the-art [5]. The most substantial improvements
in performance reported in the literature typically leverage vast amounts of training
data [6,7,8] often result in inefficient SD solutions that work only well in matched-domain
conditions.

1.1 Domain robust and efficient speaker diarization

What may be an asset for training data-dependent techniques, i.e., the capability to
leverage massive quantities of in-domain labelled data, may also be a drawback in the
context of unseen domains. Domain-variability and mismatch is a very common and
complex issue in the deployment of real systems and SD is no exception. The performance
of state-of-the-art solutions is usually reported for selected acoustic scenarios related
to narrow use cases for which training data is abundant. However, for many other
use cases matched training data is scarce, leading to degraded performance. Even if
domain-matched training data were to become available, typical SD solutions then
require retraining or adaptation and re-optimisation. This can be highly computationally
demanding and inefficient.

The focus of the work exposed in the first part of this thesis is thus motivated by
the need for domain-robust, efficient SD solutions that function reliably even without
domain-dependent training data. The principal contributions of the work presented
involve an approach to improve both efficiency and domain robustness. The solution lies
in the form of binary key (BK) speaker modelling [9]. While originally proposed for the
task of speaker recognition, BK-based approaches to SD have also been proposed [10, 11]
and result in an unsupervised, easily tunable, and computationally light solution. BK-
based SD does not need to leverage external training data but rather exploits acoustic
information extracted from the audio data itself. Under such a scenario there are no
mismatch problems (there is no external training data), making BK-based solutions
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also particularly well suited to rapid deployment in cases where hand-labelled resources
may be scarce. Even so, BK-based solutions tend not to perform as well as competing
alternatives. This thesis shows how BK-based solutions can be improved to match and
even out-perform the very best alternative techniques.

1.2 Low-latency speaker spotting

A second line of research is also pursued in this thesis. It relates to a practical application
of SD. As an enabling technology, it is arguable that research in SD lacks a focus on any
specific application whereas, in practice, solutions must necessarily be optimised with
the final application in mind. Instead, SD is often tuned to optimise a diarization-based
metric that all but ignores how the SD algorithm should be tuned for a specific application.
Such metrics tend to promote the consistent labelling of dominant speakers while not
penalising mistakes related to occasional, less dominant speakers. Diarization, is thus
effectively optimised as an application in its own right.

The optimisation of SD for a specific application (here related to security) is one of
the research goals of the Online Diarization Enhanced by recent Speaker identification and
Sequential learning Approaches (ODESSA) project, a French-Swiss research collaboration
funded by the French Agence National de la Recherche (ANR) and the Fonds National
Suisse de la recherche scientifique (FNS). In particular, ODESSA puts the focus on
real use cases related to security and low-latency text-independent automatic speaker
verification (ASV) in the context of multi-speaker audio streams, e.g. the rapid detection
of blacklisted, known speakers under surveillance. ASV involves the comparison of speaker
identities in a pair of utterances, i.e. determining whether they were uttered by the same
or different speaker(s). While nowadays a relatively mature technology in the case of
controlled, long-utterance scenarios, ASV performance still degrades when constrained to
operate short-utterances, or when evaluated with audio segments containing more than a
single speaker. Online SD is then an obvious means of improving ASV performance. To
the best of the author’s knowledge, the proposed scenario, which requires the integration
and joint assessment of online SD and ASV systems, as illustrated in Figure 1.2, has
never been considered before. This new task, coined low-latency speaker spotting (LLSS),
constitutes the second major contribution of this thesis.

1.3 Contributions and thesis outline

The structure of this thesis is illustrated in Figure 1.3. It is divided into two main
parts, each of which spans one of the main themes: domain-robust, efficient BK-based
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Figure 1.2: Illustrated here is the use case that motivates the second line of research
pursued during this thesis. Online SD is applied over an incoming audio stream to
estimate the speaker identities at time t = td. Audio in the resulting speaker clusters are
turned into speakers-discriminative representations by means of speaker modelling, and
compared in real time with the speaker model of a previously enrolled individual. An
adequate integration of these SD and recognition systems should allow for the low-latency
speaker detection of a target speaker.

approaches to SD, and LLSS. Contributions reported in Part I include a number of
enhancements to a BK-based approach to SD that delivers state-of-the-art performance.
This technique offers an efficient and domain-independent approach to SD that avoids the
use of external training data. As such, it can be applied readily to unseen scenarios or to
new data domains without the need for heavy computational processing or adaptation.
This characteristic does, nonetheless, place strict constraints upon the lines of research
in that new developments must also remain training data independent. The thesis
reports numerous enhancement to various modules of the baseline system that respect
this constraint. The aim of the work is to reduce the gap between BK-based and more
traditional approaches to SD. The contributions include novel enhancements to feature
extraction, speaker change detection, clustering, and fusion techniques. On account of
the timing between the development of the work presented here and the revitalisation of
research in SD, experiments are reported in the context of recent evaluations and related,
standard datasets. These include broadcast news datasets [12, 13] and more unusual
scenarios in the form of a multi-domain dataset [14]. These frameworks allowed for the
contributions presented in this thesis to be evaluated against the competitive solutions
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Figure 1.3: The outline of the content in this manuscript.

of leading international research teams in the field.

Systems were submitted to three international SD evaluations achieving 1st place in
two of them:

• 1st position in the Albayzin 2016 Speaker Diarization Evaluation

• 1st position in the Albayzin 2018 Speaker Diarization Challenge (open-set track)

• 2nd position in the Albayzin 2018 Speaker Diarization Challenge (closed-set track)

Contributions in Part II of this thesis all relate to LLSS. The thesis introduces the
first framework for the integration of an online SD system with speaker verification. A
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solution for online diarization, a notoriously challenging problem [15,16,17], is based on
an i-vector framework and performed by means of a greedy, online sequential clustering
algorithm. Different baseline detection systems are proposed and tested with performance
metrics traditionally used in speaker recognition, but modified to consider latency with
regard to speaker content rather than absolute latencies. This task is coined as low-
latency speaker spotting. To the best of the author’s knowledge this is an entirely new
task which provides a framework for low-latency speaker verification rather than online
diarization. Contributions include a formal definition and new protocols to support its
exploration using an existing, public dataset. In addition to reporting the very first
solutions, other contributions include an approach to better guide the online clustering
algorithm. This work in particular serves as one example of how SD research must reflect
the final application. Consideration of the full application pipeline and the fusion of SD
with speaker recognition leads to a hybrid system. This only serves to show further the
importance of the eventual application in the case of SD research.

In addition to these two parts, Chapter 2 presents a review of the state-of-the-art in
SD and modelling. Conclusions spanning the contributions in both parts are presented
in Chapter 10. The following outlines the structure and contributions in each chapter.

Part I. Domain robust and efficient SD

The first part of this thesis focuses on the problem of domain-robustness and efficiency.
Both requirements are met with a so-called binary (BK) approach to SD. Contributions
in Part I relate to improvements to various aspects of the BK SD pipeline. These all aim
to reduce the gap between training-dependent and training-independent solutions to SD.

Chapter 3

Chapter 3 presents a review of the original BK algorithm for the task of speaker
recognition, as well as its adaptation through later work to SD. The application of BK
modelling to the two applications leads to differences in the training methods for the
binary key background model (KBM). The emphasis is on explaining how traditional
acoustic features are transformed into the binary domain in order to derive segmental level,
speaker-discriminative representations. In addition, metrics used to evaluate similarities
in the BK space are discussed, as well as recent improvements to the original algorithm
proposed by other authors. The baseline SD system used in this thesis then is defined.
It is to this baseline system that subsequent enhancements are applied.
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Chapter 4

The work in Chapter 4 presents the first application of multi-resolution spectral analysis
to BK speaker modelling. Recent works in speech processing tasks have shown benefits
in performance achieved by means of constant Q transform spectral analysis. Here it
is applied for the first time to the task of SD. Contributions include (i) an analysis
of its impact on the speaker-discriminative capacity of BK-based solutions to both
speaker recognition and SD and (ii) optimisations to front-end processing. Results show
substantial improvements, which led to the proposed system with infinite impulse response,
constant-Q (IIR-CQT) Mel-frequency cepstral coefficients (ICMC) being awarded 1st
place in the Albayzin 2016 Speaker Diarization Evaluation.

Part of the work presented in this chapter was published in:

• J. Patino, H. Delgado, N. Evans, and X. Anguera, "EURECOM submission to
the Albayzin 2016 Speaker Diarization Evaluation," in Proc. IberSPEECH, Lisbon,
Portugal, October 2016

which shows that the proposed system delivers a relative improvement of 14% DER over
the baseline.

Chapter 5

Following the focus on front-end processing in Chapter 4, Chapter 5 describes a new,
explicit speaker change detection (SCD) mechanism based entirely on BK speaker
modelling. This is an alternative to the straight-forward homogeneous segmentation
approach of the baseline SD system. Other contributions include the comparison of two
methods to KBM composition: the baseline method is compared to a novel algorithm
that emphasizes the relevance of local, contextual information in the surroundings of
a hypothesised speaker change point. The proposed system is compared to a Bayesian
Information Criterion (BIC) solution. In keeping with other, similar work reported in
the literature, this work was performed on the ETAPE database.

Part of the work presented in this chapter was published in:

• J. Patino, H. Delgado, and N. Evans, "Speaker Change Detection Using Binary
Key Modelling with Contextual Information," in Proc. International Conference
on Statistical Language and Speech Processing, Le Mans, France, October 2017

which shows that the novel, local-context KBM composition method leads to a relative
increase in average segment coverage of 17.4% compared to the baseline.
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Chapter 6

Chapter 6 switches focus to clustering. Contributions include the first application of
spectral clustering (SC) to the BK-based SD system. SC is based on the eigenvector
decomposition of an affinity matrix. The work shows how it can be tailored to the
needs of BK-based diarization so that: (i) it can be applied as a means of unsupervised
dimensionality reduction in the form of chunked eigenvectors upon which partitional
clustering is explored, (ii) it can be exploited in order to determine the number of speakers
with an eigengap-based criterion which may be coupled with the AHC algorithm, and
(iii) it allows for the reliable detection of single-speaker sessions. All these experiments
were performed in the context of the first DIHARD challenge, which was based upon
a new multi-domain SD dataset composed of audio recordings collected in challenging
scenarios such as court rooms or clinical interviews concerting pathological disorders.
This work shows that BK-based SD solutions compare favourably to DL-based solutions,
while vastly outperforming those in terms of computational efficiency.

Part of the work presented in this chapter was published in:

• J. Patino, H. Delgado, and N. Evans, "The EURECOM subsmission to the first
DIHARD challenge," in Proc. INTERSPEECH, Hyderabad, India, September 2018

which shows that the application of SC-derived methods to BK-based SD lead to relative
improvements in the order of 40% DER over the baseline.

Chapter 7

Despite its appeal in terms of domain robustness and computational efficiency, compared
to results obtained by DL based approaches, the BK-based system falls slightly short.
In contrast to the BK-based system, DL-based approaches leverage large quantities of
external training data, the use of which can deliver better performance in the case that
training data matches the domain of the test/evaluation data. Since the BK-based SD
system does not use external training data, it is domain-independent, meaning that it
can be applied readily in new data domains without costly adaptation or retraining.
At the same time, it remains highly computationally efficient. Even if BK and DL-
based systems are designed with different operational criteria in mind, it is of interest
to determine their complementarity; are they using the same cues and can they be
combined to improve performance? The work reported in Chapter 7 explores two system
combination techniques in order to merge different BK systems and/or their outputs.
The work was performed with the BK-based system and two different neural embedding-
based approaches. Results of this work, undertaken in collaboration with partners
from the ODESSA project, are reported in the context of the Albayzin 2018 Speaker
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Diarization Challenge, the training conditions of which (open- and closed-set) provided
an ideal scenario for the exploration of different system fusion approaches. The ODESSA
submission employing a similarity-matrix level approach to SD fusion was awarded 1st
position for the open-set condition. The submission to the closed-set condition based
on a hypothesis-level fusion was awarded 2nd position. These results show that the
BK-based SD system, in addition to its computational efficiency and domain robustness,
is complementary to neural embedding systems.

Part of the work presented in this chapter was published in:

• J. Patino, H. Delgado, R. Yin, H. Bredin, C. Barras and N. Evans, "ODESSA
at the Albayzin Speaker Diarization Challenge 2018," in Proc. IberSPEECH,
Barcelona, Spain, November 2018

which shows that compared to the performance of single systems the combination of BK-
based speaker-discriminative representations and neural embeddings delivers a relative
improvement of 8% DER by means of a similarity-matrix level approach to fusion, and
13% DER when fusion is applied at the hypothesis-level.

Part II. Low-latency speaker spotting

The second part of this thesis explores SD in terms of a real application, namely
speaker detection task referred to as low-latency speaker spotting (LLSS). The low-latency
requirements calls for the joint application of online SD and speaker detection methods,
which are explored within a new evaluation framework.

Chapter 8

Chapter 8 introduces the newly coined task of low-latency speaker spotting (LLSS). It
provides a formal definition of the task, i.e. the detection, as soon as possible, of known
speakers within multi-speaker audio streams. The differences with regard to traditional
SD and recognition are described. New metrics that consider latency are proposed and
protocols for the assessment of the task using a publicly available dataset are presented.
The LLSS solution combines an online diarization system based upon the sequential
clustering of i-vectors with different speaker recognition systems based on GMM-UBM,
i-vectors, and neural embeddings techniques. This work, also undertaken in collaboration
with partners of the ODESSA project, highlights the challenging nature of the task
and the need to consider SD in the context of the final application; it is an enabling
technology and rarely an application in its own right.
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1.3. Contributions and thesis outline

Part of the work presented in this chapter was published in:

• J. Patino, R. Yin, H. Delgado, H. Bredin, A. Komaty, G. Wisniewski, C. Barras,
N. Evans, and S. Marcel, "Low-latency speaker spotting with online diarization
and detection," in Proc. Speaker Odyssey, Les Sables d’Olonne, France, June 2018

which presents the LLSS task and the results obtained by the first proposed solution.

Chapter 9

The work presented in Chapter 9 breaks with the strategy of separate SD and speaker
detection systems. It takes a first step to move beyond the traditional definition of SD
and more towards an application-related, joint optimisation. It presents a new approach
to incorporate known speaker models into the heart of the online clustering algorithm.
Further contributions include a so-called selective cluster enrichment (SCE) process
which guides the online LLSS clustering algorithm towards purer target-model related
clusters in a manner that prioritizes ASV performance over SD performance.

Part of the work presented in this chapter was published in:

• J. Patino, H. Delgado, and N. Evans, "Enhanced low-latency speaker spotting using
selective cluster enrichment," in Proc. International Conference of the Biometrics
Special Interest Group (BIOSIG), Darmstadt, Germany, October 2018

which shows the benefit of the cluster enrichment approach with a relative increase of
9% EER for speaker latencies of 15s over the baseline.
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Chapter 2

Literature review

This chapter provides an overview of the literature of relevance to the work developed in
this thesis. Alternatives to the processing modules that compose a traditional speaker
diarization (SD) pipeline are presented. These include acoustic feature extraction, voice
activity detection, speaker segmentation, speaker modelling clustering and resegmentation
methods. Finally, SD and speaker recognition evaluation methods are introduced. Further,
detailed read can be found in widely cited survey articles for SD [1, 2] and speaker
recognition [3, 4].

2.1 Acoustic feature extraction

Feature extraction is a basic processing step in pattern recognition applications. This step
is traditionally performed by means of handcrafted techniques that attempt to emphasize
information that is relevant to a final application, providing with a computationally
lighter, and hopefully more discriminative data representation. Feature extraction related
to voice biometrics, which concern the work in this thesis, should generate, in an ideal
scenario, features which, quoting [18] and [3], (i) maximize & minimize, respectively
between- & intra-speaker variabilities, (ii) provide robustness to noise and distortion,
as well as physiological factors such as aging or health, (iii) can be easily both found
and captured from natural speech content, and (iv) cannot be easily impersonated.
However, a perfect feature extraction that satisfies all these requisites does not yet
exist. In practice, state-of-the-art performance in voice biometrics has mostly been
developed by using acoustic features widely popular in speech procesing tasks, which
are the Mel-frequency Cepstral coefficients (MFCCs) [19]. Alternatives are based on
different approaches such as linear prediction [20] in the form of linear predictive cepstral
coefficients (LPCCs) [21], linear spectral frequencies (LSFs) [21] or perceptual linear
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prediction (PLP) coefficients [22]. However, MFCCs remain the option of choice for
a large parte of the voice biometrics community. MFCCs are motivated by human
hearing perception, and fall within the category of short-term spectral features, as they
are extracted from speech frames that contain between 20 and 30 ms of raw speech
data. Following the notation introduced in [3] for a physical interpretation of speech
features, short-term spectral features correspond with descriptors of the spectral envelope,
acoustically related to the timbre of the voice and the resonances generated by the human
vocal tract.

In continuing with the physical interpretation of acoustic features, different front-ends
for SD have been developed by leveraging prosodic and spectro-temporal information as
an alternative to MFCCs. Prosodic features are extracted from speech that is framed
in lengths that span from hundreds to thousands of miliseconds, and put the focus on
speech information such as the pitch or the energy of the signal. In [23] the authors prove
that prosodic features can be of benefit to diarization performance when combined with
MFCCs, but not as a stand-alone front-end. Another example of prosodic features is that
of [24] where the use of jitter and shimmer, speech quality measures used to detect voice
pathologies [25] and speaking styles [26], generated a slight improvement in diarization
performance but, once again, when coupled with MFCCs.

Higher in the abstraction level, so-called high-level features allow to capture content
that include phones, words, or articulatory speech features. Whilst these kind of features
have led to some benefit when used in speaker recognition [27, 28], their study is not
common in SD. However recent work such as that in [29] present promising results by
leveraging higher level speaker traits such as age, gender, or voice likability.

Finally, deep neural networks (DNNs) are also employed for feature extraction
by means of bottleneck features. While initially integrated in speaker recognition
systems [30, 31], works in the literature have recently proposed their use in speaker
clustering [32] and diarization [33,34,35].

2.2 Voice activity detection

Voice activity detection (VAD), also referred to as speech activity detection (SAD),
performs the task of segmenting an audio stream into speech and non-speech content.
Non-speech content refers to silence, background noises coming from the environment, e.g.
clatter, clapping, laughter or music. This kind of content is considered non-informative
for the tasks related to voice biometrics. In speaker recognition, non-speech content
is assumed to affect the robustness of the solutions. The same applies for SD where,
however, a following clustering step may be widely affected by nuisances in the form of
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non-speech.

A precise VAD is consequently of great importance for the SD task and its performance.
The value of detecting speech content and not miss-classifying it as non-speech is obvious
as (i) performance is decremented by default in an unrecoverable manner, and (ii) the
missed-speech data will force whichever speaker modelling technique next in the SD
pipeline to operate on fewer speech data. This leads to diminished robustness and a
clustering more prone to errors. A similar logic applies to the incorrect classification of
non-speech as speech data. Non-speech audio segments will contaminate the clustering
process by misguiding the merging/splitting steps involved, and deteriorating results.

In terms of algorithms, two main kind of approaches are considered when it comes
to VAD. A first one is that based on energy levels present in the signal. These kind
of algorithms are considerably accurate when it comes to controlled scenarios in which
energy levels in the signal are maintained within consistent ranges. This is a somewhat
acceptable constraint in some speaker recognition scenarios such as telephony [3], where
speakers are expected to be continuously close to the microphone and background
noises are limited in variety. Such a limitation cannot, however, cannot be guaranteed
in SD audio files, which are characterised by being considerably lengthier than their
speaker recognition counterparts in a variety of domains, e.g. broadcast news, meeting
environments. A much wider variability is thus present, limiting their applicability in
the field.

Most approaches to VAD are consequently not energy-based. On the contrary, thanks
to the relatively easy labelling task of this 2-class problem, large amounts of training
date are readily available, motivating the success of model-based approaches to VAD,
i.e. a model is previously trained on background data in order to discern between
speech and non-speech content. Traditional methods have relied on Gaussian mixture
models (GMMs) [36, 37], with proposed modifications allowing them to adapt iteratively
over test data [38]. These GMM models are usually trained to represent speech and
non-speech acoustic classes, although in the presence of richer labelling in the training
data which includes sub-classes of non-speech, e.g. music or noise, extra classes may also
be considered. The relationship to the acoustic features is assigned by means of Viterbi
decoding [39].

Model-based VAD methods do however suffer when facing domain mismatches.
Robustness against such mismatches has become increasingly available thanks to many
modern methods developed to leverage developments in deep learning (DL), achieving
state-of-the-art performance. Many different architectures have been proposed, including
variations of feed-forward DNNs [40], convolutional neural networks (CNNs) [41,42], or
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long-short term memory (LSTM) neural networks [43,44]. A VAD system following the
approach introduced in [44] is used in some of the work reported in Chapters 7, 8 and 9.

2.3 Segmentation and speaker change detection

Following the pipeline of the traditional SD system comes the speaker segmentation and/or
speaker change detection (SCD) module. Given that SD operates upon multi-speaker
audio streams, it seems reasonable to perform some sort of pre-clustering processing that
allows to separate speech segments from different speakers into homogeneous segments.
Considering that a whole chapter of this thesis relates about this task (see Chapter 5)
this section is deliberately brief in the justification and implications of SCD. However, a
few methods of interest for the read of Chapter 5 are discussed here.

Approaches to SCD may be divided with regard to their dependence to external
training data. The simplest approaches to SCD rely on implicit methods to segmentation.
Examples of such approaches would be a VAD-based segmentation in which the output
of the VAD system is assumed to separate speech segments into single-speaker speech
fragments. Such an approach may be an option in conversational speech guided by a
very clear structure in which interruptions between speakers do not happen, and speech
turns are respected. A second implicit approach to SCD is that of segmenting the speech
segments derived from the VAD system into shorter, homogeneous speech segments with
a certain overlap. This approach relies on sufficiently short speech segments to have
been uttered by a single speaker. Whilst errors are very likely to occur by operating this
way, it is hoped that a following clustering and/or resegmentation step(s) will correct
them. More elaborated training-independent methods perform an explicit SCD relying
on the computation of distance metrics. These measure the similarity between the
speech content contained in two adjacent sliding windows. Speaker change points are
hypothesised when the resulting score surpasses a certain empirically optimised threshold.
A few examples follow:

Bayesian information criterion (BIC): The BIC was originally introduced in [45]
as a metric to estimate the representativity of a model over the data on which it has
been trained, by means of a likelihood criterion that is penalised by complexity. Given a
set of N data points X , and being M a model fitted to represent X , then the BIC of M
is defined as:

BIC(M) = log(L(X ,M))− λ1
2#(M)log(N) (2.1)

where log(L(X ,M)) is the log-likelihood of the data X given the model M, λ is a data-
dependent penalty term, and #(M) denotes the number of parameters in the model
M.
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The use of BIC for SCD was proposed in [46], where the task is regarded as an
hypothesis test regarding the content of the adjacent sliding windows (herein represented
by Xi and Xj) being analysed. In this context, the hypothesis H0 denotes both speech
segments belong to a unique speaker and there is not a change point between Xi and Xj .
Alternatively, H1 indicates both speech segments belong to different speakers, indicating
a possible change between speakers. A speaker change point is thus hypothesised using
the increment ∆BIC between BIC(H1) and BIC(H0) so that:

∆BIC = BIC(H1)−BIC(H0) = R(i, j)− λP (2.2)

where R(i, j) denotes the difference between the log-likelihoods of the two hypothesis
and P is the complexity penalty term. Full details may be found in [46].

A common approach is using GMMs to model the hypothesised speech segments,
turning Equation 2.2 into:

∆BIC = log(L(X ,M))− (log(L(Xi,Mi) + log(L(Xj ,Mj))− λ∆#(i, j)log(N) (2.3)

where BIC(H1) corresponds to the log-likelihood of X being modelled by M , BIC(H0)
with the summed log-likelihoods of two different GMMs Mi and Mj fitted to their
respective window contents Xi and Xj , and ∆#(i, j) with the difference in number of
free parameters between M and Mi +Mj . This algorithm was used as baseline for the
SCD work reported in Chapter 5.

Generalised likelihood ratio (GLR): GLR is another popular alternative to metric-
based SCD used in the literature [47,48,49] defined as:

GLR(H0
H1

) = L(X ,M)
L(Xi,Mi) + L(Xj ,Mj)

(2.4)

which, following the notation used for the BIC, denotes a simpler hypothesis test that is
not penalised by complexity.

Symmetric Kullback-Leibler (KL2): Used for speaker segmentation ( [50]), the KL2
may be used for a similar hypothesis as in the previous two methods. It is defined as,

DKL2(P ‖ Q) = DKL(P ‖ Q) +DKL(Q ‖ P ), (2.5)

It is a symmetrized version of the standard KL Divergence (KL). Considering two
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distributions P and Q, the KL divergence is defined as:

DKL(P ‖ Q) = 1
2

(
tr
(
Σ−1
Q ΣP

)
+ (µQ − µP )TΣ−1

Q (µQ − µP )− k + ln
(det ΣQ

det ΣP

))
(2.6)

where ΣP , µP , ΣQ and µQ represent the covariance matrices and mean vectors of the
distributions P and Q which model data of dimension k.

Alternatively, a different set of approaches to SCD are these which use training data
to segment the audio content. The mechanic here is similar to that of the training-
independent methods: the content in adjacent windows is represented in a speaker
discriminative fashion by means of some previously trained model capable of discriminat-
ing between speakers. The leveraging of training data leads to expectedly more robust
SCD hypothesis given the right match between training and testing domains. Traditional
approaches have used GMMs [51], or have leveraged techniques in speaker modelling
such as a universal background model (UBM) [52], or the i-vector paradigm [53, 54].
The recent developments in DL have also reached this field, allowing for the surge of
different methods based on neural networks. The authors in [55] tested a confidence
labelling approach in order to get a DNN to classify speech windows as likely to contain
a speaker change or not, operating directly on MFCCs. Alternatively, the authors in [56]
employed a CNN and a similar labelling approach to perform SCD while operating
upon spectrograms. In [57] speech segments are projected into a space modelled by
means of the triplet-loss paradigm [58] using an LSTM. In this resulting space the new
representations are separable by means of the Euclidean distance, in a technique later
developed in [59].

2.4 Speaker modelling

Next in the SD pipeline is one of the most important modules, that which involves speaker
modelling. Following the VAD and segmentation modules, the system should now operate
upon ideally speaker-homogeneous speech segments to obtain speaker-discriminative
representations. This section focuses on the techniques that have led the development
in speaker modelling for both speaker recognition and diarization over the last years
in the literature. In particular, and due to their relevance to some works reported in
this thesis, it reviews the traditional Gaussian mixture model-Universal Background
Model (GMM-UBM) paradigm, followed by i-vector based methods, and concludes with
approaches based on neural networks and DL.
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GMM-UBM

GMMs are generative models commonly employed in speaker recognition and diarization
since their proposal in [60] followed by developments by the same authors in [61, 62],
thanks to their capacity to fit the variability in a speech signal. GMMs are defined by a
fixed number of Gaussian components K combined by means of a weighting factor. A
GMM model λ may thus be characterised following its probability density function for a
given observation x so that:

p(x|λ) =
K∑
k=1

wkN (x|µk,Σk) (2.7)

where wk is the prior probability used as a mixing weight of each Gaussian component
so that

∑K
k=1wk = 1, and µk and Σk are, respectively, the mean and covariance matrix

of each k Gaussian component. Consequently, given a set of N acoustic feature vectors
X = x1, ..., contained in a speech segment, its log-likelihood given a GMM model λ is:

log(p(X|λ)) =
N∑
n=1

log(p(on|λ)) (2.8)

Fitting GMMs to the acoustic observations is usually done by means of the Expectation
Maximization (EM) algorithm [63], which is a reliable option when an abundant amount
of data is available. That is, however, not always the case when dealing with audio
segments in speaker recognition and diarization. A way to overcome such a constraint is
the use of a Universal Background Model (UBM) [64]. The UBM needs to be trained in
a large amount of training data that comprises an equally large number of speakers to
generate a large GMM (with K usually ranging between 512 and 4096 components). Its
objective is to provide with a generic, speaker-independent statistical speaker template
that may be used as reference for comparison with speaker-specific models adapted from
the UBM itself. However, when given a set of unseen acoustic features of a limited
length in a speaker recognition or diarization scenario, and a previously trained UBM
model, Maximum A Posteriori (MAP) adaptation have been proven [62] more reliable to
estimate speaker-dependent GMMs with regard to that of EM. Finally, speaker verification
comparisons are done by log-likelihood ratios between the two possible hypothesis H0

(the test utterance is more similar to the speaker-dependent GMM) and H1 (the test
utterance is closer to the UBM and the verification should thus be rejected).

Whilst most of the development on GMM based approaches to speaker modelling
have been focused on speaker recognition, the use of GMMs has also been active in the
past for SD with approaches based on Hidden Markov Models (HMM), which are used
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to model the transition probabilities between speakers modelled by GMMs. Examples of
such systems would be [65] or [66]. Alternatively, and following the development of the
GMM-UBM paradigm towards the joint-factor analysis and i-vector scenes introduced in
the next section, the concatenated means of speaker-dependent GMMs, or supervectors
were also employed for speaker recognition [67,68,69] and diarization [70].

i-vectors

i-vectors have provided state-of-the-art performance in applications related to speaker
modelling until very recently. These were proposed as a development of the joint-factor
analysis (JFA) [71,72] approaches that followed the development of supervectors. The
premise upon which the theory of supervectors builds is that, given a set of speaker-
dependent GMM models with K components fitted to acoustic features of dimension
D, a compact, fixed-length and discriminative representation can be derived from the
concatenation of the mean vectors and (diagonal) covariance matrices of each Gaussian
component. JFA was proposed as a mean to decompose the high-dimensional space in
which supervectors live into smaller-dimensional subspaces. Following this argument,
an acoustic sample in the form of a sequence of acoustic features can be represented by
a supervector M , which is divisible as a linear combination of speaker s and channel c
dependent supervectors so that:

M = s+ c (2.9)

These two subspaces may be compressed to a compact form representable through the
following two equations:

s = m+ V · y + F · z (2.10)

c = U · x (2.11)

in which m represents a speaker-independent supervector similar to that derivable from
the concatenation of the UBM. V and U are two low-rank matrices that comprise the,
respectively, speaker and channel subspaces, and, finally, a KD ×KD matrix F which
plays a similar role to that of MAP adaptation in the GMM-UBM paradigm by capturing
the residual speaker variabilities not represented by V .

The concept of the i-vectors [73,74] was proposed in an attempt to incorporate the
speaker and channel variations into a single total variability low-dimensional subspace,
providing a simpler, yet powerful discriminative analysis of the acoustic space. Similarly to
the JFA proposition, the i-vector paradigm formulates the space in which a supervectorM
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lives as:
M = m+ T · w (2.12)

where m is once again the speaker-independent supervector, and T is the low-rank
total variability matrix (comprising the variability in the V , F and U subspaces). T
is usually learned using the EM algorithm, and w is a low-dimensional random vector
with a Gaussian, normal distributed prior N (0, I), whose components are referred to
as total factors. i-vectors, given a test utterance X are thus derived as the posterior
expectations of w. A detailed discussion about i-vectors and their implementation may
be found in [75]. The i-vector approach does then act as a front-end extractor for a
given utterance, but it does not apply any explicit session compensation technique or
scoring. In consequence, several techniques were developed to enhance the robustness of
i-vectors, like whitening length normalization [76]. Whitening consists of a normalization
of the i-vector space, so that their covariance matrix is transformed into the identity
matrix. Length-normalization reduces the mismatch between training and testing i-
vectors through a projection into a unit sphere. For scoring, even though metrics such as
the cosine distance may be used, probabilistic linear discriminant analysis (PLDA) [77] is
usually employed. PLDA is a powerful generative framework that performs both session
compensation and score computation, which led to improved state-of-the-art performance
at the time of its publication.

Speaker diarization has greatly benefited from the increased speaker discriminability of
JFA [78,79] and i-vectors. In [80] the authors proposed the unsupervised dimensionality
reduction of i-vectors by means of principal component analysis (PCA) leading to
significant increases in performance. The work in [81] proposed unsupervised means of
calibration and the inclusion of PLDA in the pipeline, followed by work in [82] where
i-vectors continued to define state-of-the-art in SD.

Another interesting line of research is that related to PLDA adaptation for the
in-session content of SD datasets. Given the supervised character of PLDA training,
domain mismatches between training and test sets may lead to degraded performance.
In counterbalancing such limitations some lines of research have been proposed using
unsupervised methodologies. Variational Bayesian (VB) methods for unsupervised PLDA
adaptation were introduced in [83] and applied to an i-vector based diarization in [84].
Further developments were presented in [85, 86,87], allowing for a significant increase in
performance. An alternative line to unsupervised PLDA adaptation is that proposed
initially in [88] and followed by [89], in which PLDA model parameters are adjusted in
an iterative fashion following multiple passes of a SD system in a self-trained approach.
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Deep learning: speaker embeddings

The development of DL techniques is currently boosting an increase in performance
in speaker modelling for both speaker recognition and diarization, and based on the
leveraging of very large amounts of training data. Whilst the i-vector and GMM-UBM
paradigms could be trained unsupervisedly (albeit not the PLDA model), this is not the
case for DL. Algorithms providing with state-of-the-art performances based on DL are
largely based in classification tasks.

First attempts to incorporate DNNs in the speaker verification paradigm were timid
and attempted to substitute and/or enhance necessary modules of the i-vector paradigm
by discriminatively trained DNNs. The work in [90] introduced the use of a DNN trained
in an automatic speech recognition (ASR) task to replace the standard GMMs that
form a UBM to produce frame alignments and the collection of sufficient statistics, in
an approach close to that of [91]. An alternative line of research [92] incorporated a
time-delay neural network (TDNN) [93,94] for similar purposes. These enhancements
were tested in SD in [95] with positive results.

The fundamental leap in performance did however arrive following methodologies
based on DNNs trained to discriminate explicitly between speakers in a training set.
These neural networks trained in classification tasks gave place to the development of
the concept of speaker embedding. A clear definition is that given in [6](in one of their
first use in SD): speaker embedding are features taken from the hidden layer neuron
activations of DNNs when those are learned as classifiers to recognize over thousands
of speaker identities in a training set. Although learned through identification, speaker
embeddings are shown to be effective for speaker verification. Additionally, they are
capable of characterising speakers unseen in the training set. While the work in [6]
was based on a feed-forward DNN, multiple other network topologies have been used
satisfactorily. The work in [96] used LSTMs to generate d-vectors, which were used
to report state-of-the-art performance in SD in [8]. Authors in [57] used LSTMs too,
but trained by means of the triplet-loss paradigm, a similar approach of which was
applied to SD in [97]. [98] incorporated the aforementioned TDNNs in combination with
a statistical pooling layer, in an approach that derived in the so-called x-vectors [5].
X-vectors currently constitute the most recent version of reproducible (as per that of [96]
trained on non-public data) state-of-the-art in text-independent speaker verification.
X-vectors were also successfully tested in SD in [7] and [99].
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2.5 Clustering

At this stage of the SD pipeline speaker-discriminative representations are readily available
to be clustered into a SD hypothesis. The right functioning of the clustering algorithm is
critical for the good performance of the system, and many different methods have been
proposed in the literature. All these algorithms try to deal with the highly unstructured
presentation of the data in SD, and the commonly added difficulty of not knowing the
number of speakers present in a session.

Hierarchical clustering

Hierarchical methods to clustering rely on some sort of initialisation of speaker clusters,
i.e. random initialisation, segment-level initialisation, or speaker segmentation based
initialisation, and operate upon iterative, nested operations of merging and separation
of clusters. A thorough analysis of the differences in hierarchical approaches is given
in [100], and its main to variants are introduced as follows:

Divisive hierarchical clustering: A first, less common approach is that of divisive
hierarchical clustering (DHC) which develops a top-down, general-to-specific approach to
speaker clustering. A single (or alternatively a small number) of clusters is used as seed
for the clustering process, which is iteratively split into smaller speaker clusters until a
stopping criterion is met and the diarization output is fixed. Examples of such systems
are [101,102,103].

Agglomerative hierarchical clustering: Bottom-up agglomerative hierarchical clus-
tering (AHC) approaches are more commonly used nowadays in SD systems. They operate
in an opposite manner to that of DHC, and apply a specific-to-general methodology which
allows initial clusters to be ideally purer from the initial iteration. A cluster-to-cluster
similarity matrix is computed at each pass of the AHC algorithm to decide which clusters
to merge before continuing with the iterative process. This approach to clustering is
straight-forward, and the merging stops when similarity between clusters falls within an
empirically optimised threshold, determining the final number of speakers in a session.
Applications of AHC to SD are thus abundant, and continue to provide with state-of-the-
art performance in some acoustic domains [99]. Whilst easy to put in practice, it may be
argued that AHC incurs in what is a greedy sort of decision-making by not necessarily
allowing for re-assignment of segment-to-cluster relationship at every iteration. This
may be solved though by means of a simple segment-to-cluster re-assignment operation
at the beginning of every clustering step. Such an approach is used in [104] and [105].
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A slightly different approach to AHC worth mentioning is that applied to SD via the
information bottleneck (IB) approach [106,107] in [108], which operates upon acoustic
features directly by using a non-parametric framework derived from the Rate-Distortion
theory [109].

Bayesian analysis

Another branch of research worth noting here is that which explores Bayesian analysis for
the task of SD. A first application of variational Bayes to SD was proposed in [110], and
further developed in [111,112] by leveraging the use of eigenvoice priors for VB inference.
In parallel, non-parametric Bayesian diarization solutions were also being proposed by
combining hierarchical Dirichlet processes (HDP) [113] with HMMs [114], and applied
to SD in [115]. In combination of these two lines of work, the authors in [116] recently
reported an enhanced version of that in [111] in that it incorporates the HMMs of [115] to
model speaker transitions. The resulting work has achieved state-of-the-art performance
in SD performance in various domains [116,117].

Other approaches

A variety of other clustering methods have been proposed in the literature. In [118]
integer linear programming (ILP) proposes an approach that replaces AHC by a global
clustering process. ILP attempts to minimize the number of clusters and their dispersion
by means of optimising a single objective function. K-means has been proven reliable
in [80] in contexts where the number of speakers is known, albeit these are not always of
interest. Spectral clustering (SC) has also been applied [8,119,120], motivating part of
the presented in Chapter 6. Mean-shift [121] based methodologies were also applied upon
SD solutions as mean to clustering in [122] following their development in [123,124].

All of the clustering methods exposed in this section are offline clustering algorithms.
These operate upon an entire, finalised set of data observations. Offline clustering
is, however, simpler than its online counterpart. This is due to offline methods being
capable of linking temporally separated speaker representations from the first iteration of a
hierarchical algorithm, which online methods cannot replicate. While a fully-fledged offline
diarization could potentially be operated at time t with every new observation as proposed
in [15], applications in need of online diarization do also tend to require the low-latencies
associated to it. Under such constraint, the full recomputation of offline clustering
approaches may be too computationally expensive. However, interesting methodologies
have been proposed in the literature that perform fully online SD [16,17,125]. When the
number of speakers in the conversations of a dataset are known the problem becomes
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relatively easier [126], and developments have been proposed in the form of online adaptive
modelling [127], or the use of semi-supervised approaches that leverage some sort of
cluster initialisation [128]. State-of-the-art performance in SD using online clustering
has, however, recently been achieved in controlled domain constraints [8], which provides
scope for future research and growth for this kind of clustering algorithms.

2.6 Resegmentation

A last, optional module in the pipeline of SD is that refining the boundaries generated by
the clustering algorithm and/or including short segments which may have been removed
for more robust clustering performance [129]. A traditional approach to resegmentation
is that of an ergodic HMM in which speakers modelled by means of GMMs are used as
HMM state distributions. Viterbi alignment is then computed to obtain the final result.
Alternatives to resegmentation have however gained importance in recent years thanks
to enhancements proposed in the literature. The VB inference methodologies such as
that of [116] introduced above, have been extensively used as a resegmentation method
following a first clustering solution derived from i-vectors/speaker embeddings, yielding
positive increases in performance [7, 99, 130]. Neural networks have similarly allowed for
refined boundaries definition. In [131], an initial IB diarization system is applied only to
generate speaker pseudo-labels which may be used to train an artificial neural network
(ANN) capable of enhancing the speaker-discriminative capacity of acoustic features. A
similar approach is that successfully used in [132] by means of LSTM networks.

2.7 Evaluation and metrics

2.7.1 Speaker diarization

The most common metric in evaluating diarization performance is the diarization error
rate (DER). This scoring method, originally proposed in the context of the National
Institute of Standards and Technology (NIST) Rich Transcription (RT) evaluations [133],
is thus used in the experimental results reported in this thesis.

The DER considers errors derived from VAD, segmentation and clustering stages of
the SD pipeline, and is defined as:

DER = Espk + EFA + Emiss + EOV (2.13)

where Espk corresponds to the speaker error rate, or percentage of speech time
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assigned to an incorrect speaker, EFA relates to the error generated by the VAD system
by labelling non-speech content as speech. Emiss represents the opposite mistake by the
VAD system: speech time being wrongfully discarded as non-speech. Finally EOV is the
percentage of error motivated by the insufficient annotation of overlapping speech. Given
rich reference annotations in which two or more speakers interact at the same time, a
SD system should ideally be able to label all the involved speaker identities.

In order to account for possible imprecisions in the human annotation of the diarization
references, a collar of forgiveness is usually applied. In consequence, diarization hypothesis
boundaries within the 0.25s surrounding the boundaries of the diarization references
are considered as correct. Unless stated otherwise (such as in the results reported in
Chapter 6), this criterion is also applied throughout this thesis.

2.7.2 Speaker recognition

In the assessment of automatic speaker verification (ASV) two different kind of errors
are mainly considered, often used in biometric authentication applications. They can be
defined as [4]:

• False accept/alarm (FA): the erroneous acceptance of an impostor speaker with
regard to a, different, claimed identity.

• False reject/missed detection (FR/MD): the rejection of a legitimate speaker with
regard to to its previously enrolled speech.

These are often referred to as rates (FAR and FRR/MDR) when divided by the total
amount of impostor/legitimate attempts in a test set. Given a test utterance and a
claimed identity which constituting a trial, an ASV system generates a single scalar score.
In a practical scenario trials scores exceeding a certain threshold θ will be accepted and
the rest will be rejected. The optimisation of the threshold θ does thus have implications
in the amount of FA or MD present in a list of trials, of importance with regard to
the final application of the ASV systems. An exceedingly low threshold results in a
high number of FA, whilst the contrary results in a high number of MD. In order to
provide with an application-independent, generic interpretation of the performance of
an ASV system, the equal error rate (EER) is often used. The EER is defined as the
working point in which the threshold θ generates a FAR = FRR/MDR. The EER is thus
used in some speaker recognition experimental results presented in this thesis such as
those of Chapter 4 in which the final application is not considered. In addressing the
relationship between ASV performance and final application needs, the NIST speaker
recognition evaluations (SRE) [134] use a detection cost function (DCF) as primary
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metric. The DCF introduces associated costs/penalties to the FAR and MDR/FRR,
Cmiss and Cfalsealarm [134], and provides a priori target speaker probabilities. The DCF
or Cdet is thus defined:

Cdet(θ) = Cmiss × Ptarget ×MDR(θ) + Cfa × (1− Ptarget)× FAR(θ) (2.14)

In consequence, in the context of our work related to security-based applications the Cdet
is also considered in Chapters 8 and 9.

2.8 Summary

This chapter provides with a brief literature review of the traditional and more modern,
state-of-the-art methods employed in the different modules that compose a SD pipeline.
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Domain robust and efficient
speaker diarization
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Part I of this thesis focuses on BK modelling and the quest for efficient, domain-
robust solutions to speaker diarization (SD). Contributions relate to the enhancement
of a baseline system through modifications to front-end processing, speaker change
detection, clustering and system combination. Chapter 3 reviews the BK speaker
modelling technique. Chapter 4 presents the first application of multi-resolution spectral
analysis-based feature extraction to BK speaker modelling. It exploits the constant Q
transform. Chapter 5 introduces the use of BK modelling for speaker change detection
(SCD). Contributions include a novel method to binary key background model (KBM)
composition. Chapter 6 puts the focus on clustering and reports the first application
of spectral clustering (SC) to BK-based SD. Chapter 7 reports efforts to combine BK-
based and deep learning based solutions to SD. Combination is achieved through two
different fusion approaches; either using a similarity matrix, at the system level, or by
hypothesis-level fusion.
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Chapter 3

Binary key speaker modelling: a
review

This chapter provides a review of the binary key (BK) speaker modelling technique. The
material puts into context the developments proposed in this part I of the thesis which
are outlined in Chapter 1. The presentation is organised as follows. The introduction
presented in Section 3.1 highlights the motivations of the original BK method and
its principal characteristics. Section 3.2 introduces the binary key background model
(KBM) which plays a fundamental role in the application of the BK technique to both
speaker recognition and diarization. Section 3.3 describes the process by which acoustic
features are transformed into the binary domain. Section 3.4 describes the process to
obtain segment level representations based upon BK speaker modelling. These segmental,
speaker-discriminative representations need appropriate metrics for their comparison
and application that exploit their computational simplicity in the binary domain. These
are introduced in Section 3.5. Section 3.6 offers a brief review of the advancements
and modifications brought by other authors to the original BK method in speaker
recognition, diarization, and other related applications. Section 3.7 presents the BK
speaker diarization (SD)system that serves as a baseline for the rest of work presented in
part I of the thesis. A summary is presented in Section 3.8.

3.1 Introduction

The traditional approaches to state-of-the-art voice biometrics rely on complex statistical
analysis and large amounts of background data to learn from. Motivated by the need
to compensate for the numerous sources of variability present in audio channels and
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Figure 3.2: KBM composition method for speaker recognition tasks. Speaker specificities
act as anchor models to bridge the speaker-independent space modelled in the UBM to a
speaker-dependent equivalent in the KBM.

recordings, these algorithms have evolved in performance but also in requirements.
Typically, they demand high computational capacity in addition to specific hardware, i.e.
GPUs [135], needed to process massive amounts of labeled data from which deep neural
networks learned via supervised learning. Even with huge computational resources, the
adaptation of such algorithms to perform reliably in unseen domains remains difficult
and time-consuming.The difficulty arises from the need to collect and label sufficient data
that is representative of the new domains. Both the labelling of data and the adaptation
of existing models are costly and time-consuming. Data scarcity characterises many
practical applications of voice biometrics, e.g. those including languages from developing
countries [136]. For voice based human-machine interaction to be used at a global scale,
techniques that are easily adapted to new scenarios or can dispense with training data
can offer an advantage.

BK speaker modelling was introduced in [137] as an alternative to traditional statistical
modelling techniques in the context of voice biometrics. Originally proposed for the task
of speaker recognition [9], BK speaker modelling was proposed as a means of addressing
these limitations. It offered an approach to discriminate between speakers that, whilst
being computationally inexpensive, reduces the demand for background training data
for some applications, meaning it can be readily and easily adapted to new domains.
An overview of the BK speaker modelling approach is illustrated in Figure 3.1. First,
(left of Fig. 3.1), acoustic features are projected to a binary space. This transformation
is performed using a binary Key Background Model (KBM). Binary features are then
aggregated to generate speaker-discriminative segmental representations in the form of
Cumulative Vectors (CVs) composed of float values, or Binary Keys (BKs) in the form of
binary values. The different steps in this process are described in detail in the following,
along side variations in processing for speaker recognition and SD.
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3.2 Binary key background model

The transformation of acoustic features into a speaker-dependent binary space is depen-
dent on the binary Key Background Model (KBM). The KBM plays a role similar to
that of the UBM in more traditional approaches to ASV (see Chapter 2). The UBM is
a GMM representation of the average speaker acoustic space and is learned from large
quantities of training data. This space is typically learned in an unsupervised manner
using the EM algorithm. Each Gaussian component λi of the GMM of dimension M
models a region of the acoustic space defined by a mean vector µi, a covariances matrix
Σi, and a weighting factor pi. Similarly, a KBM of dimension N is defined by Gaussian
components λi that represent the acoustic space not so much in an average sense, but
more in a speaker-discriminant sense. The following sections describes approaches to
KBM learning. Section 3.2.1 focuses on speaker recognition whereas Section 3.2.2 has a
focus on SD.

3.2.1 Speaker recognition

The original work in [137] introduced a procedure for KBM learning that is based upon
the concept of anchor models [138,139]. The procedure is illustrated in Figure 3.2. It
operates upon a GMM-UBM of dimension M , trained using background data. A number
n of speech samples collected from different speakers, defined as speaker specificities (left
of Fig. 3.2), are used to learn a set of speaker-dependent GMMs using MAP adaptation
of the UBM (center of Fig. 3.2). The KBM is composed by the concatenation of these
n speaker-dependent GMMs, and is thus of dimension N = n ×M (right of Fig. 3.2).
The selection of the speaker specificities that generate the final KBM is important to
the resulting ASV performance, with [9] emphasizing the importance of gender balance
among the chosen specificities.

3.2.2 Speaker diarization

The procedure for learning the KBM for the task of SD is fundamentally different to that
adopted for ASV. In contrast to most approaches to SD which employ external training
data, the work in [140] proposed a procedure that exploits the KBM without needing any.
Instead, the KBM is learned using speech present in the test session itself. The process
is illustrated in Figure 3.3. First, the acoustic space of the test session is sampled with
sliding and overlapping windows (top of Fig. 3.3). A multivariate Gaussian distribution
λi ∼ N (µi, Σi) is then fitted to the acoustic features fλi

present in the ith step of the
sliding window, thereby producing a pool of G in-domain Gaussian distributions, where
the dimension G is related to the length of the audio session for a given window shift. The
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Gaussian pool

Initialize KBM

Feature extraction

  

Increase KBM

false

KBM

true

Acoustic features

Figure 3.3: KBM composition method for SD tasks. Feature vectors within a sliding
window fλi

are fitted to a Gaussian λi. The set of Gaussians over all windows are added
to the pool. The best-fitting Gaussian, judged by the vector of likelihoods VL(i), is
selected to initialize the KBM. An iterative process in which the distance between the
Gaussian elements in the KBM λ∈KBM and the remaining elements λ/∈KBM is computed
so that the most dissimilar Gaussian element not already in the KBM is added until the
desired KBM size is reached.
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likelihood of the features L(fλi
) given the corresponding model, Lλi

, is then calculated
according to:

Lλi
= L(fλi

|λi) = L(fλi
|N (µi, Σi)), (3.1)

in order to determine a vector of likelihoods VL(i) = {L(fλ1 |λ1),L(fλ2 |λ2), . . . ,L(fλG
|λG)}.

Next, a subset of N < G Gaussian components from the Gaussian pool are selected
to compose the KBM. The selection algorithm is based upon a minimum redundancy,
maximum relevance criterion [141]. The selection process starts (center of Fig. 3.3) by
identifying the Gaussian component λm with the highest likelihood in VL(i) according
to:

m = arg max
i

VL(i). (3.2)

An iterative process is then applied to complete the KBM (bottom of Fig. 3.3). Each
iteration begins with the computation of the distance between the components of the
pool that belong to the KBM λ∈KBM and components remaining in the Gaussian pool,
λ/∈KBM. The distance measure between distributions proposed in [140] is the Symmetric
Kullback-Leibler Divergence (KL2)(Chapter 2), defined as:

DKL2(P ‖ Q) = DKL(P ‖ Q) +DKL(Q ‖ P ), (3.3)

which offers a symmetrized alternative over the standard KL Divergence (KL). Given
two distributions P and Q, the KL divergence is defined as:

DKL(P ‖ Q) = 1
2

(
tr
(
Σ−1
Q ΣP

)
+ (µQ − µP )TΣ−1

Q (µQ − µP )− k + ln
(det ΣQ

det ΣP

))
(3.4)

where ΣP , µP , ΣQ and µQ are, respectively, the covariance matrices and mean vectors of
the distributions P and Q, and where k is the dimension of the data. To conclude the
iteration, the Gaussian component with the highest distance DKL, λm, is added to the
KBM. Similarly to that of Equation 3.5, here m is simply determined as:

m = arg max
i

DKL2. (3.5)

The KBM is complete when N elements of the Gaussian pool have been selected.
Naturally, the KBM dimension N should be session-dependent. N should be large
enough to cover all the variability in the Gaussian pool, but also small enough so as
to avoid selection of redundant Gaussian components . In practice, the parameter N
is empirically optimised. As is common in the literature, and as is also the case of this
thesis, results are reported as a function of N .
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Figure 3.4: Process of feature binarization. Acoustic features are mapped to the Gaussian
elements in a KBM in a per frame basis by calculating their likelihoods. Top M
Gaussian elements per feature are activated and turned to 1 in the final binary feature
representation.

3.3 Feature binarization

As represented in Figure 3.4, once a KBM is trained it is possible to perform the conversion
of the acoustic features to the newly represented speaker-dependent domain. In order
to do so, let all the feature frames present in a piece of audio be FT = {f1, f2, . . . , ft}.
As introduced in [137], the likelihood of an acoustic frame fi ∈ FT belonging to the N
Gaussian elements of the KBM is calculated. For a Gaussian element of the KBM λn, a
single likelihood would be

Lfi
= L(fi|λn) = L(fi|N (µn, Σn)). (3.6)

For the complete set of KBM Gaussians a vector of likelihoods per acoustic frame is
obtained so that

VLfi
= {L(fi|λ1),L(fi|λ2), . . . ,L(fi|λN )}. (3.7)

In order to obtain a binary representation bi of the feature fi, the vector of likelihoods
VLfi

is quantized. The top-M elements with the highest likelihoods in the vector VLfi
are

activated and set to 1, whereas all the other elements in binary vector are set to 0. As
explored in [9], the choice of M has an impact on performance: a too restrictive number
of activations will lead to highlighting Gaussian elements common to all of the features,
and erroneously included in the KBM. On the other hand, a number of activations that
is too high will eventually lead to speaker-discriminative differences being lost, effectively
degrading the performance of a binary key-based system.
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Figure 3.5: Extraction of segmental level representations.

3.4 Segmental representations

Speaker recognition systems generally need a certain amount of speech data so that they
operate upon sufficiently discriminative segment level representations. Typically, at least
a few seconds. Binary key speaker modelling is not an exception to this requirement.
Binary features also need to be processed in some manner to provide robust segmental
representations. In order to generate these representations, accumulative and further
quantizing steps need to be applied to produce, respectively, Cumulative Vectors (CVs)
and Binary Keys (BKs). This process is depicted in Figure 3.5.

A CV is defined as a vector of floats with the same dimensionality as the KBM
(and consequently the dimension of the features represented in the binary domain). To
obtain a single CV, and following the process illustrated in Figure 3.5, binary features
(a) are accumulated element-wise at the utterance level (b). In order to provide length-
independent representations, the resulting vectors are also normalized over the total
sum of activations in a utterance, thereby giving the CV (c). CVs represent a vector of
weights that relate the relationship of the Gaussian elements in the KBM to the speech
content in a utterance.

Segmental level binary representations are obtained as a further quantization step
applied to CVs. In the process transforming the acoustic features to the binary domain
(Section 3.3), the top-M elements corresponding to the highest likelihood with regard to
the elements in the KBM are set to 1. Similarly, here, the top-K elements with the most
activations in a CV are set to 1 to generate the final BKs.
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3.5 Similarity metrics for binary key speaker modelling

With BK speaker modelling having been designed with computational efficiency in mind,
metrics that allow for fast computation and comparison of CVs and BKs are necessary.
The work in [105] proposed the use of the cosine similarity as a means of comparing CVs.
Given two CVs to compare, CVa and CVb, it is defined as:

S(CVa, CVb) = CVa · CVb
‖CVa‖ ‖CVb‖

(3.8)

The cosine similarity focuses on the angular difference between two CVs. Values in
the cosine distance for CVs, given that CVs values are limited between 0 and 1 after
their length normalization, are also bounded between 0 and 1. CVs that are aligned in
the same direction, will score a high cosine similarity close to 1. Nearly orthogonal pairs
would result in a cosine similarity close to 0.

For BKs, different metrics have been employed for different applications. Their pure
binary format allows a number of distance measures to be borrowed from information
theory applications. For speaker recognition, the length-normalized Hamming weight of
the logic AND comparison can be applied [9]. In that case, the similarity between two
BKs, BKa and BKb, can be defined as

S(BKa, BKb) = 1
N

N∑
i=1

(BKa[i] ∧BKb[i]) (3.9)

where ∧ specifies the bit-wise AND operator and N is the BK dimension.

For the task of SD, the work in [10] proposes the use of the Jaccard similarity, defined
as

S(BKa, BKb) =
∑N
i=1(BKa[i] ∧BKb[i])∑N
i=1(BKa[i] ∨BKb[i])

(3.10)

where ∨ is now the bit-wise OR. This operator serves as an additional measure to
dissimilarity between pairs of BKs, by exploiting the in-session training of the KBM and
the locality of the representations.

3.6 Recent improvements and use cases

Since its introduction, improvements in BK speaker modelling have been explored not
only in the speaker recognition and diarization tasks, but in a number of other related
applications.
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3.6.1 Recent improvements for speaker recognition

A line of developments made in its usage for speaker recognition have explored en-
hancements in the process of composing the KBM. In [141], the KBM is composed in a
two-stage process that merges the methods for KBM composition explored in speaker
recognition [137] and SD [140]. In a first stage, a primary KBM is composed following
the anchor model methodology described in Section 3.2.1, by replicating the UBM into
several MAP-adapted speaker specificities. Second, the definitive KBM is obtained by ap-
plying the same minimum redundancy, maximum relevance-based algorithm described in
Section 3.2.2. This step aims to selecting only the most discriminative specificities. Other
attempts to improve the discriminability in the KBM composition explored temporal [142]
and neighbooring [143] relationships among specificities.

In a different direction, the work in [141] reported the use of session compensation
techniques such as nuisance attribute projection (NAP) [68,69]. Originally applied to
GMM-UBM derived supervectors, NAP is a kernel independent technique that tries to
minimize channel variability effects, and can thus be applied to BK speaker modelling in
the context of speaker recognition, be it in the form of CVs [144] or BKs [141].

Finally, metrics related to the comparison of BKs were proposed, including the
successful application of PLDA (see Chapter 2) to BK scoring [142], or BK-specific
metrics, such as Intersection and Symmetric Difference (ISDS) [145].

3.6.2 Recent improvements for speaker diarization

Following its initial implementation for SD [140], enhancements were reported, mainly
by Delgado [105]. This work focused on reducing execution time in exchange for a small
decrease in performance. These enhancements were obtained not only by improvements
to the process of BK/CV extraction, but also to the optimization of different modules in
the SD pipeline.

For the process of KBM composition for SD, [146] explored the use of alternative
metrics to the KL2 divergence to discriminate among the Gaussian components in the
Gaussian pool. Despite the KL2 divergence having been used largely for voice biometrics,
the different operations necessary to compute it, which include traces, determinants
and inversions, make it computationally expensive. The authors explored the use of the
cosine distance, defined between two Gaussian components λa and λb as:

Dcos(λa, λb) = 1− Scos(µa, µb), (3.11)

where Scos(a, b) is the cosine similarity, defined as in Equation 3.8, and µa and µb are
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Figure 3.6: An example of the elbow criterion for number of cluster estimation. applied
over the curve of within-class sum-of-squares per number of clusters. The point with
longest distance to the straight line is considered the elbow.

the mean vectors representing the Gaussian components. This solution proved to offer a
lightweight yet similarly effective alternative to the task of KBM composition.

Improvements were also explored for the problem of the stopping criterion in an
AHC process, of particular relevance to the SD problem. The first SD system based on
binary keys [140] explored a T-test Ts-based metric [147]. Integer Linear Programming
(ILP) [118], was also tested as a possible alternative [148]. Despite the promising results
reported in both [140] and [148], these also showed the significant margin for improvement
in the system given an appropriate AHC stopping criterion. Later work by the same
authors [149] continued this exploration using an elbow criterion, illustrated in Figure 3.6.
This mechanism is based on the value of the Within-Cluster Sum of Squares (WCSS)
of a set of given clusters, which is usually employed as an objective function in other
clustering algorithms such as k-means. The method proposed in [149] is based judging
the evolution of the WCSS value as the iterative steps of a bottom-up AHC process take
place (dark blue line in Figure 3.6, bottom-up process goes from right to left). During
the AHC, meaningful merges, i.e. merges of same-speaker clusters, are expected in the
first steps of a bottom-up approach (bottom right WCSS values on Fig. 3.6). This is due
to initial cluster partitions being presumably pure in terms of speaker content, generating
a small WCSS. Only when the AHC process starts merging clusters whose respective
content is more sparsely distributed in the speaker space (possibly meaning different
speakers are present in a single cluster), the WCSS value starts increasing (left values of
the WCSS in Fig. 3.6). The elbow criterion proposed in [149] offers a trade-off between
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intra-cluster and inter-clusters distributions based on detecting the abrupt increase of
the WCSS value in the AHC. When the AHC process is finished, the chosen number
of cluster (circled in red in Fig. 3.6) is selected as the point in the WCSS curve with
the longest distance to the straight line linking the initial and final values of the WCSS
curve(red solid line in Fig. 3.6).

Similar to the focus on session compensation introduced in Section 3.6.1, the work
reported in [146] explored the application of NAP for the task of SD using CVs. NAP relies
on the availability of a suitable labeled dataset to learn the necessary transformations
for Intra-Session and Intra-Speaker Variability (ISISV) compensation to be effective.
Different to the use of NAP for BK-based speaker recognition, in which the KBM is trained
using external training data, and in which NAP can be used in a more standard manner,
BK-based SD produces utterance level CVs or BKs related to the in-session trained
KBM, making between-session comparisons (and thus compensation) unfeasible. In order
to overcome this limitation, NAP transformations are learned and applied on a session
basis. To do so, a two-stage process starts from an initial uncompensated diarization pass.
The generated diarization hypothesis is then used to learn the appropriate in-session
transformations that attempt to minimize ISISV.

3.6.3 Other applications

As evidence of its versatility and capacity for acoustic modelling, BKs have been used
in other tasks related to speech recognition. The work in [150] explored the use of BK
modelling for the task of voice activity detection in an attempt to integrate it in a BK
SD pipeline. The work in [151,152] reported the BK use to model and identify emotions
in audio streams. Finally, the BK modeling technique has recently been applied in the
context of template protection and cryptography for privacy preservation in the context
of cancelable biometric systems [153]. In [154], BK modelling is used for the task of
cohort selection for speaker recognition in encrypted domains, motivated by the heavy
computational times of other techniques in such scenarios.

3.7 Baseline system for speaker diarization

Being mainly motivated by the search for improvements to training-independent SD
technologies this thesis explores improvements in a number of elements of the binary
key-based SD paradigm by focusing upon different elements in its pipeline. In doing
so, the solution reported by Delgado [105] and the enhancements explored there, briefly
described in Section 3.6.2, were used as a baseline. Following the notation and modules
introduced in Chapter 1 and Chapter 2, the SD baseline represented in Figure 3.7 can
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Figure 3.7: Baseline SD pipeline as considered in this manuscript.

be described as follows:

Feature extraction: Standard MFCCs are extracted over a sliding window of 25ms
with a 10ms shift. 19 coefficients are employed without energy coefficient or derivatives.

Voice activity detection: No particular enhancement was pursued in this regard
despite the primary results on BK-based SAD [150]. Unless stated otherwise, during the
course of this thesis the SAD module relies either upon oracle ground-truth annotations
or employs an externally generated SAD hypothesis1

Segmentation: Speech content is split into chunks of 3s with a shift of 1s, hence with
an overlap of 2s.

Segment/cluster representation: In order to obtain speaker discriminative segment
level representations a number of steps are applied as described in the previous sections
(Section 3.2.2, Section 3.3 and Section 3.4) of this chapter. Namely:

Gaussian pool generation: As described in Section 3.2.2, a Gaussian pool
of dimension G is generated by fitting single-dimensional multivariate normal
distributions to the content of a sliding window. The window spans 2s of speech,
with an adaptive shift between windows that ensures a minimum amount of
Gaussians. This is done to provide an adequate representation of the acoustic space
in files of limited length. Alternatively, for files of sufficient speech content, the
shift between sliding windows is limited to 0.5s to provide sufficient resolution of
the complete acoustic space.

KBM training: The KBM of dimension N is composed following the procedure
described in Section 3.2.2. In contrast to the original implementation, it follows the
method proposed in [146] where cosine similarity is used to discriminate between

1Different external SAD systems were used depending on the experiment. Details of the used
configurations are given at the respective experiment setups.
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Figure 3.8: Bottom-up AHC algorithm used as baseline across this thesis.

Gaussian elements. Whereas all previous work determined N as a fixed value
optimized over an entire dataset, in this thesis it was alternatively chosen to
according to the length of the speech content. Defined as a percentage of the size
of the Gaussian pool G, an adaptive KBM size allows for a better fitting to the
variations in terms of session length that may exist within a dataset.

Feature binarization: For the process of acoustic to binary feature transformation
described in Section 3.3, the top M = 5 Gaussians with the highest likelihoods
are set to 1, while the remainder elements are set to 0. This number is selected
accordingly to the results reported in [9].

CV and BK extraction: For CV extraction the segment-level binary features are
accumulated element-wise and then normalized over the sum of the total activations.
For BKs the top-K elements with the highest activation in the respective CVs are
set to 1. This parameter K is set as percentage so that the top-K = 20%N , where
N is the size of the KBM, elements of a BK are 1.

Clustering:

The AHC algorithm is represented in Figure 3.8. First, to initialize the process,
speech features are split into Ninit contiguous segments of equal size. From each one of
these segments an initial CV/BK is estimated to represent the initial clusters. Then,
the bottom-up iterative AHC algorithm is applied to the segment and cluster CVs. At
each iteration, segment-level CVs/BKs are compared to the cluster CVs/BKs by means
of the cosine/Jaccard similarity and assigned to the closest cluster. Cluster CVs/BKs
are then compared among themselves using the same cosine/Jaccard similarity, with the
closest pair of clusters being merged and re-estimated as a single cluster, thus reducing
the number of clusters by one per iteration. This process is repeated until a single cluster
remains. A clustering selection algorithm is then applied. It is based upon the elbow
criterion reported in [149].

48



3.8. Summary

Resegmentation: In order to provide a refined diarization hypothesis, a resegmentation
is performed. 128-component GMMs are trained on the content of each hypothesized
cluster. Then, features are compared to the models, and the resulting likelihoods are
smoothed over a sliding window of 1s. Finally, each feature frame is assigned to the GMM
model with the highest likelihood, thereby generating the final diarization hypothesis.

3.8 Summary

This chapter provides with a detailed review of the binary key speaker modelling technique.
By representing speech segments in the form of binary representations, BK modelling is a
fast and reliable alternative to other more state-of-the-art speaker modelling techniques.
While relying on the use of a KBM, and being proposed initially for the task of speaker
recognition, it has been for the challenging problem of SD where most of the recent
advancements have been reported. This is motivated by the capacity of the KBM to be
trained without the use of any external training data, a rather uncommon characteristic
with respect to most of today’s deep learning based solutions. Data independence makes
it an inherently robust approach to SD, even in the case of within-dataset variations. By
leveraging recent developments in BK-based SD, this chapter also defines a baseline SD.
Despite having achieved reasonable results in the reported literature without using any
external training data, baseline performance may be improved by enhancing different
elements of the pipeline. These explored improvements motivate the work included in
this first part of this thesis, and they are explained in detail in the following chapters.
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Chapter 4

Multi-resolution spectral analysis
for speaker diarization

Spectral analysis is one of the fundamental tools upon which acoustic features are
built and used in speech processing tasks. Traditional approaches to spectral analysis
are used to draw fixed-resolution representations of the acoustic space. While this is
proven to be valid for many tasks, our particular interest in binary key (BK) speaker
modelling for speaker diarization (SD) motivates exploring alternatives that represent
the spectrum differently. In this chapter, acoustic features that exploit multi-resolution
spectral analysis and their impact to BK speaker modelling are assessed in comparison to
traditional methods. The analysis and results contributed of the EURECOM’s submission
to the Albayzin 2016 Speaker Diarization Evaluation [155]. Section 4.1 discusses the
importance of feature extraction (FE) to BK speaker modelling. It also introduces
improvements in multi-resolution spectral analysis that motivate this work. Section 4.2
gives a theoretical background to traditional spectral analysis and to the multi-resolution
approaches explored. The strengths and limitations of the different spectral analysis
techniques are assessed following the analysis reported in Section 4.3. Section 4.4 describes
the Albayzin 2016 database and the experimental setup. Section 4.5 reports the results
obtained. A summary of the work and findings is presented in Section 4.6.

4.1 Introduction

Feature extraction (FE) is a step common to most machine learning applications. In
voice biometrics, audio signals are treated to generate hand-crafted acoustic feature
vectors that highlight information relevant to the final application, e.g. characteristics
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of the vocal tract. Despite recent attempts reported in the literature to design features
automatically, i.e. without exploiting human knowledge, using so-called end-to-end
systems [156], results show that these techniques are still not mature. At least until they
are, hand-crafted FE continues to be a fundamental stage.

Acoustic features are usually derived from spectral analysis and short-time Fourier
Transform (STFT). Nonetheless, alternatives motivated by multi-resolution time-frequency
analysis employed in music processing, and particularly the constant Q transform
(CQT) [157, 158, 159], have provided scope for research in numerous speaker-identity
related tasks. The CQT provides a higher frequency resolution at lower frequencies.
These frequencies normally portray higher harmonic densities, and thus a higher resolu-
tion around them may benefit the analysis of voiced speech content [160]. At the same
time, the CQT provides high time resolution at higher frequencies, allowing for rapid
change detection in such ranges. Results in the literature have reported the successful
application of CQT-derived features to speaker anti-spoofing [161, 162] and utterance
verification [160].

On a different line, the use of BKs for SD has been subject to a number of improve-
ments in recent years (see Section 3.6.2). These explored enhancements to the different
blocks that compose the traditional pipeline (Section 3.7), such as alternatives to KBM
composition or clustering selection alternatives, all seeking to improve upon the original
implementation proposed in [10]. In doing so, all of these works relied on traditional
acoustic feature extraction (MFCCs), without analysing the relationship between acoustic
features and the BK speaker modelling technique.

Traditionally, SD algorithms use models trained specifically for speaker recognition
with large amounts of background data. The leveraging of this data can help to mitigate
the effects of within-speaker variability. In contrast, BK speaker modelling for SD (see
Section 3.2.2), does not rely on any external training data. It uses exclusively the
speech content available in the test session, also in the form of acoustic features, to
generate speaker-discriminative representations. The influence of the acoustic features is
particularly important in especially in the case of two fundamental processing stages. First,
to compose the KBM, a Gaussian pool is filled with Gaussian distributions which are fitted
directly to the in-session acoustic features using a sliding window (approach described in
Section 3.2.2). Components in this Gaussian pool are iteratively chosen to compose a
KBM that minimizes redundancy while maximizing speaker discriminability. The success
of this process is strictly related to the acoustic features and their discriminative capacity.
Second, the acoustic features are compared to the components in the KBM by calculating
their individual likelihoods, in order to project them into the binary domain via a top-M
selection. This straight-forward operation upon only in-session acoustic features ensures
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Figure 4.1: Traditional feature extraction pipeline for speech processing. The spectral
analysis block is the subject to study in this chapter. Short-Time Fourier Transform
(STFT) is usually employed and is characterised by representing the spectrum at a
constant resolution. By contrast, Infinite Impulse Response - Constant Q (IIR-CQT)
spectral analysis provides with a multi-resolution time-frequency alternative.

that BK speaker modelling is robust to domain variation, simply because it makes no
use of out-of-session, external data. However at the same time, it makes of within-session
acoustic features variability a major problem for BK-based SD, which could arguably be
mitigated via enhanced spectral analysis.

The promising results in other related applications, and the strong relationship
between BK speaker modelling and acoustic features motivate the main contributions
of the work reported in this chapter. An analysis of the impact of the time-frequency
resolution research used in FE upon the BK speaker modelling technique is reported.
The work considered the very first assessment of CQT-inspired features paired with
traditional Mel-cepstral analysis, introduced in [160], for SD and BK speaker modelling.

The work reported in this chapter relates to EURECOM’s participation in the
Albayzin 2016 Speaker Diarization Evaluation [12]. The Albayzin evaluation series
promotes research on a number of speech processing tasks, such as audio segmentation,
SD, text-to-speech, language recognition and spoken term detection. It is organised
by the Spanish Thematic Network on Speech Technologies. The evaluation provided
an ideal opportunity to assess and compare the benefit of the BK approach, and the
multi-resolution spectral analysis when pitched against competing systems proposed by
other leading research laboratories worldwide.

4.2 Spectral analysis

A typical pipeline for FE in speech processing tasks is presented in Figure 4.1. This
chapter explores the influence of spectral analysis (dark grey box in Fig. 4.1) and, more
specifically, the dependence upon spectral resolution, upon BK speaker modelling while
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the remainder of the pipeline remains unchanged. This section, describes the differences
between the two spectral analysis methods employed in this work, namely the Short Time
Fourier Transform (STFT) and the Infinite Impulse Response-Constant Q Transform
(IIR-CQT).

4.2.1 Short-time Fourier transform

The STFT is a basic spectral analysis tool widely applied in audio processing for a
number of applications related to speech and music. Given pseudo-stationary segments of
an audio signal to which the Fourier transform can be applied, STFT analysis can be used
to derive an estimation of its spectrum. The time-frequency resolution with which the
STFT represents the spectrum is determined by the length in samples of the employed
window Ns. This length establishes the number of bins Nk ≈ Ns in which the spectrum is
represented (where the number of bins is usually increased to the next power of 2 which is
greater than the number of samples Ns in order that the STFT can be estimated using the
Fast Fourier Transform (FFT)). In general, a bin k ∈ {1, . . . , Nk}, has center frequency
fk = k · fs

Nk
, where fs is the sampling frequency. Bins are positioned linearly in frequency

separated by ∆f = fs

Nk
Hz. STFT-derived spectra thus have fixed frequency resolution.

Conceptually, this is also equivalent to a filter bank with a varying Q factor. The Q factor
can be defined as a measure of filter selectivity or quality factor for a certain frequency fk.
In the case of the STFT, Qk = fk/∆f . This fixed frequency resolution assumes the equal
importance of the different frequencies of the spectrum in the resulting spectral analysis,
i.e. they are analysed with equivalent precision. For voiced speech signals, relevant
information located within the lower range of frequencies is emphasized by means of the
application of Mel-scaling (following spectral analysis as visible in Fig. 4.1). However,
these differences are not reflected in the frequency resolution of the STFT itself, thus
possibly biasing the result of Mel-scaling. An alternative default spectra representation
that captures changes in low frequencies without sacrificing time resolution might thus
be desirable. These limitations in spectra representation consequently motivate the
exploration of spectral analysis beyond its fixed resolution as introduced in the following
sections.

4.2.2 Multi-resolution time-frequency spectral analysis

Alternatives to traditional spectral analysis have been widely explored in the literature
in the context of music processing [163, 164], where the density of the harmonics is
not linearly distributed along the spectrum. Multi-resolution spectral analysis has
not attracted research interest in voice biometrics until recently. The constant Q
transform [157] was recently explored in the context of speaker anti-spoofing [161,162].
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Meaningful contributions were also reported in the literature in other related tasks such
as text-dependent speaker recognition [160].

Constant Q transform

Originally introduced by Youngberg and Boll [157] followed by the work of Brown [158],
the constant Q transform (CQT) offers a multi-resolution time-frequency alternative to
more traditional spectral analysis. The CQT has non-linear spectral resolution where
the Q factor, introduced in Section 4.2.1, is set to:

Q = fk
∆fk

. (4.1)

In contrast to the linear scale of the STFT, where Q ∝ fk, here the Q factor is fixed to a
constant value. With constant Q, the spectral representation mimics that of the Q factor
of the human hearing system, which is known to be pseudo-constant for frequencies
between 500Hz and 20kHz [165]. In the CQT, this is possible thanks to the variable
bandwidth of the different bins ∆fk, which are now also dependent on fk. The central
frequencies fk are thus distributed geometrically instead of linearly as in the STFT.
In consequence, consecutive bins at lower frequencies are closer together than bins at
higher frequencies. The result is a spectro-temporal decomposition with a higher spectral
resolution at lower frequencies and a higher temporal resolution at higher frequencies.
In this result, however, the geometric spacing of the central frequencies employed to
model the spectrum in the CQT means that further undesired processing is needed to
decorrelate the output before the application of traditional Cepstral analysis [161,166],
is common in voice biometrics.

Infinite impulse response - constant Q transform

Direct evaluation of the CQT implementation as in [158] is very time consuming. In
consequence, developments in CQT analysis have resulted in implementations that
attempt to minimize these computational needs, e.g. the authors in [167] proposed
an efficient implementation that leverages the Fast Fourier Transform (FFT), as per
implementation used in [158]. In another work [168], different authors proposed a
bounded-Q transform (BQT) that combines the FFT with a multirate filterbank. The
work explored in this chapter follows another FFT-based approach to CQT modelling
reported in [159], that formulates the computation of the CQT as the task of designing
an Infinite Impulse Response (IIR) filterbank.

The work in [159] proposes an alternative method to calculate the CQT that is
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computationally simpler than that in [167], while being flexible regarding constant Q
design criteria. To achieve the time-frequency multi-resolution that characterises the
CQT, the filters in the filterbank have different impulse responses for different frequencies.
These filters are applied directly to the FFT and, consequently, represent the spectrum
on a linear scale, as per the geometrical scale obtained by the conventional CQT [158].
Following the notation in [159], the kth filter in the filterbank is defined as a first order
IIR filter:

Yk[n] = X[n]− zkX[n− 1] + pkYk[n− 1] (4.2)

where X[n] is the DFT of the signal, with pole pk and zero zk. Such filters must be
calculated for every k = {1, . . . , Nk} where Nk is the number of bins in the DFT. In this
sense the computational cost of the method proposed in [159] would still not deliver
any improvement in terms of computational cost over that in [167]. Some assumptions
are proposed in [159] to improve efficiency. Choosing a different filter response of the
IIR filterbank for every frequency bin can be considered as applying an Linear Time
Variant (LTV) system to the DFT of a frame. The desired response of the LTV for
a given frequency bin is the impulse response of the correspondent filter. If the LTV
system changes slowly over time, its Steady State Response (SSR) can be implemented
by means of a single Time Varying (TV) IIR filter. This simplification, acceptable in the
case of constant Q-motivated spectral analysis (where, by using varying windowing to
obtain a constant Q, time windows for two consecutive frequency bins are expected to
be highly related), considerably reduces the number of computations. In consequence,
the CQT-derived spectrum of the DFT of a frame X[n] can be formulated similarly to
that defined in Equation 4.2. It differs in that the poles are now defined as a variable
dependent on the frequency p = p[n] and can be defined as:

Y [n] = X[n]−X[n− 1] + p[n]Y [n− 1]. (4.3)

The pole variable p[n] must therefore be computed only once, thereby simplifying the
process. But this simplification does not come free of cost, as it implies a decreased
precision in maintaining a constant value of Q along the spectrum, which is the ultimate
goal of CQT spectral analysis. To counter this discrepancy the authors in [159] introduced
a compensation technique that allows for the Q factor to remain almost perfectly constant.
The design of these compensated IIR filters is not a subject of study in this thesis and is
therefore left as further reading. Full details are presented in the original work [159].

In conclusion, the IIR-CQT provides an alternative to CQT computation [167]
that is computationally efficient and operates using a linear scale by leveraging the
FFT computation, while maintaining a constant Q factor. The use of a linear scale
improves on processing efficiency by avoiding to resample the spectrum from geometric to
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linear [161, 166]. This allows for further ceptral analysis to be applied in straightforward
manner.

From spectral to cepstral analysis

As described in Section 4.1, the analysis proposed in this chapter is motivated by the work
in [160] in which the use of the IIR-CQT was proposed for utterance and text-dependent
speaker verification. Thanks to the linear scale produced by the IIR-CQT the usual
steps that follow spectral analysis can then be applied as before. These are illustrated in
Figure 4.1, i.e. Mel-scaling, log computation, and decorrelation by means of the DCT
for cepstral analysis (see Chapter 2). The features that result from this processing were
named Infinite impulse response Constant Q Mel-frequency Cepstral coefficients (ICMC)
in [160] and are tested in the following sections.

4.3 Proposed analysis

To assess the influence of alternatives to the STFT to BK speaker modelling, two spectral
analysis techniques alternatives are considered. The baseline system uses traditional
MFCC features derived from conventional STFT spectral analysis. Results for this
system are compared to those for an identical system that uses CQT spectral analysis.
and constitute our baseline. The research hypothesis is that the higher resolution at
lower frequencies could give ICMCs an advantage over MFCCs upon their application
to BK speaker modelling. On the other hand, it could be argued that the resolution
achieved by ICMCs in lower frequencies could be similarly replicated by means of MFCCs
extracted using a very high but constant resolution. Only then could it be affirmed that a
constant-Q-derived mapping of the spectrum is the cause to the increase in performance
reported in literature [160,161,166].

This analysis can be achieved in a rather straight-forward manner by generating
spectra representations using time frames of different lengths. As described above, the
length of the time window Ns used to frame the speech signal usually defines the number
of bins into which the spectrum is divided. We consider Nk = Ns for the sake of direct
comparison between the proposed methods, and do not perform zero-padding. Normally,
MFCCs are extracted from pseudo-stationary frames of speech whose length is in the
order of 25ms. In an audio file with a sample frequency of 16kHz, like that used in [160],
the resulting number of bins is Nk = 25ms × 16kHz = 400 (normally rounded up to
512 bins). ICMCs, as in [160], are extracted from a speech window that generates a
number of bins Nk = 2048. In time, that is equivalent to an unusually large window of
128ms, in which the pseudo-stationary quality of the speech is questionable. However,
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(a)

(b)

Figure 4.2: Spectrograms of a 3s speech segment extracted from an audio file in the
Albayzin 2016 database [12]. Spectrograms computed using a window length of 25ms
and Nk = 400 bins for the (a) STFT and (b) IIR-CQT.

such a window length allows for frequency resolution to be very high. The extent to
which the constant-Q factor influences performance, is unknown. MFCCs extracted
with windows of Nk = 2048 bins could provide with a similarly high resolution at low
frequencies without the need for the further processing necessary to obtain the IIR-CQT.
We are interested in analysing the effectiveness of the constant-Q spectral analysis of
ICMCs against the STFT of traditional MFCCs in an unbiased comparison that is not
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(a)

(b)

Figure 4.3: Spectrograms of a 3s speech segment extracted from an audio file in the
Albayzin 2016 database [12]. Spectrograms computed using a window length of 128ms
and Nk = 2048 bins for the (a) STFT and (b) IIR-CQT.

conditioned by resolution.

The comparison is performed with MFCC and ICMC features extracted from time
windows of both 25ms and 128ms with, respectively, low and high frequency resolutions.
Spectrograms derived using 25ms windows and both STFT and IIR-CQT spectral analysis
are illustrated in Figure 4.2. Figure 4.3 illustrates the same, except for 128ms windows.
The baseline system uses MFCC features extracted from a spectral analysis based on
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Nk = 400 bins and a STFT decomposition (Fig. 4.2a). Similarly for the ICMCs, 400
bins are derived using the IIR-CQT (Fig. 4.2b). For a 128ms window length, MFCCs
are extracted with Nk = 2048 linearly spaced bins, providing a much higher resolution,
that is fixed along the spectrum (Fig. 4.3a). For ICMCs, IIR-CQT generates a similarly
high resolution at low frequencies, that shifts towards a high time resolution at higher
frequencies (Fig. 4.3b). Upon first sight, the expected differences in terms of time-
frequency resolutions are only evident between the standard implementations of STFT
(25ms window length in Fig. 4.2a) and IIR-CQT (128ms window length in Fig. 4.3b [160]).
When extracted using equivalent configurations, both STFT and IIR-CQT spectrograms
are clearly similar to each other, to the point where it is hard to tell if there is any
difference at all, despite the possible effect of the IIR-CQT. The fact that high resolutive
spectrograms derived from both STFT (Fig. 4.3a) and IIR-CQT 4.3b) are so similar
arises the question as to the contribution of the ICMCs with regard to MFCC features
as reported in [160]. The relevance of these visually imperceptible differences is put to
test in experiments that explore their impact in terms of BK speaker modelling.

4.4 Experimental setup

In this section, the approach to compare the relative benefit of STFT and IIR-CQT
spectral analysis for BK speaker modelling is described. Section 4.4.1 describes the
database provided for the Albayzin 2016 Speaker Diarization Evaluation that was used
in the experiments reported here. In Section 4.4.2 further details are given for feature
extraction. Section 4.4.3 describes the configuration used for the BK speaker modelling
module. The relative speaker discriminability of STFT- and IIR-CQT-derived CVs
using BK speaker modelling is assessed in two experiments: Section 4.4.4 describes
the configuration of a controlled speaker recognition experiment, whereas Section 4.4.5
explains that of a SD experiment. Note that, for all experiments in which a VAD system
is required, oracle annotations are used.

4.4.1 Database

The dataset employed was provided in the context of the Albayzin 2016 Speaker Diariza-
tion Evaluation. Audio files from various origins constitute the different data subsets for
training, development, and testing. The training set, obtained from the Catalan broadcast
news database from the 3/24 TV channel, was already used for the 2014 Albayzin Audio
Segmentation Evaluation. It was recorded by the TALP Research Centre from the UPC in
2009 under the Tecnoparla project [169]. The database contains approximately 87 hours
of recordings of which speech in Catalan language constitutes approximately a 92%. They
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are labelled at the music and noise segmental level annotation which imply, respectively,
a 20% and a 40% of the time. Finally, overlap is present in two different ways. 40%
of speech time is overlapped with noise meanwhile 15% is overlapped with music. The
development and test sets are composed of files donated by the Corporacion Aragonesa
de Radio y Television (CARTV). A total of approximately twenty hours selected from the
Aragon Radio database are split into two groups. One contains four hours of data and
comprises the development set, whereas the test set is composed of the remaining sixteen
hours of data. Regarding its content, this second dataset is composed of approximately
85% speech in Spanish language, 62% music and 30% noise, where overlap is distributed
as follows: 35% of the audio contains music along with speech; 13% overlaps speech with
noise; a 22% contains speech alone. All data is supplied in PCM format, mono-channel,
little endian encoding 16 bit-per-sample and with a 16 kHz sampling rate. It is interesting
to note that training set is provided in a different language than development and test
sets. As BK speaker modelling allows for an in-session modelling of the acoustic space,
the technique is able to overcome this limitation for data-dependent speaker modelling
algorithms. In consequence, results are reported on the development and test set without
any use of the training set.

4.4.2 Feature extraction

Features employed in the experiments reported below were extracted using frame lengths of
25ms (Nk = 400 bins for both STFT and IIR-CQT) and 128ms (Nk = 2048 bins). MFCCs
use a standard STFT implementation whereas ICMCs use the CQT implementation
reported in [160]1 and an empirically optimised Q-factor of Q = 96 [160,161]. Besides
those differences, they share the following common configuration parameters: 19 static
cepstral coefficients are extracted with a pre-emphasis factor of 0.97, using a frame shift
of 10ms, and a 20-channel Mel-scaled filterbank.

4.4.3 BK speaker modelling configuration

The details of the BK speaker modelling configuration follow the notation used in
Section 3.7. For the KBM training a 2s window with a shift of 0.5s is used to train the
initial Gaussian pool with a minimum number of Gaussians G = 1792. As regards to the
final KBM size, it is selected as a percentage of the initial pool size. In this way, the
model size is chosen adaptively with regard to the audio file duration. The relative KBM
size N is swept across different percentages that go from α = 5% to α = 100% of the
initial Gaussians sampled from the audio, in order to find the best configurations. In
this work, results are reported in terms of cumulative vectors (CVs). The computation

1Code to replicate these features is available for download at: http://audio.eurecom.fr/content/software
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of CVs from input data is performed using segments of 3s. The number of top Gaussians
per frame M = 5 is set to 1 for feature binarization.

4.4.4 In-session speaker recognition

A first experiment in the form of a controlled speaker recognition scenario is proposed,
in order to measure the impact of the different spectral analysis variations in the final
speaker discriminative capacity of the CVs. The similarity matrix of the CVs extracted
for each session in the development dataset is calculated, and the resulting scores are
pooled. Given a cosine distance metric the scores range between 0 and 1 so the scores are
already normalized and comparable across sessions. It is important to note though, that
cross-session comparisons between CVs are not possible in this experiment due to the use
of session-dependent KBMs. By using the oracle session annotations, trials are labelled
as target (CVs belonging to the same speaker) or non-target (CVs belonging to different
speakers). Speaker recognition performance is reported in terms of the equal error rate
(EER, see Chapter 2) expressed as a function of the KBM size N , which depends on the
percentage α of the number of components G in the complete Gaussian pool.

Two scenarios are analysed. First, segment CVs are compared against each other in a
short-utterance versus short-utterance speaker recognition experiment (CVs are extracted
from 3s speech segment). Second, segment CVs are compared to speaker cluster CVs.
Cluster CVs are extracted in an oracle manner from the full pool of speech data available
for each given speaker in a session. This second scenario intends to simulate the behavior
of the CVs in a long-utterance (cluster speaker CVs) vs short-utterance (segment CVs)
speaker recognition scenario. The results from this experiment should allow to visualize
the influence of the different spectral analysis alternatives and configurations without
the influence of the complete pipeline of a SD system.

4.4.5 Speaker diarization experiment

Performance is also measured by means of a fully fledged SD pipeline similar to that
established as the baseline as described in Section 3.7. Segment level CVs are clustered
through a bottom-up AHC algorithm with segment-to-cluster reassignment allowed at
each iteration. As for clustering initialisation, Ninit = 25 initial clusters are derived
from speech chunks of equal size. This number is related to the maximum number of
speakers found in the audio files of the development set (16 speakers at most, hence
setting Ninit = 25 to allow for the AHC algorithm to converge). Performance is reported
in terms of the diarization error rate (DER, see Chapter 2), evaluated with a standard
forgiveness collar of 0.25s. The DER is first calculated for solutions in which the number
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of speakers is obtained automatically by means of an elbow criterion [149]. Results for
the solutions with the number of speakers that generate the lowest DER chosen per
session in an oracle manner are also reported.

4.5 Results

This section reports the results for the two different experiments described above. They
serve to compare the relative benefit of features derived from both STFT (MFCCs) and
IIR-CQT (ICMCs). Section 4.5.1 discusses the results in terms of speaker recognition
whereas Section 4.5.2 describes results for SD. All results reported correspond to ex-
periments performed on the development set of the Albayzin 2016 Speaker Diarization
Evaluation dataset. Section 4.5.2 also includes results on the test set for our final
submission to the challenge.

4.5.1 Speaker recognition

Results obtained for the speaker recognition experiment are illustrated in Figure 4.4. The
EER is plotted as a function of the varying size of the KBM α, defined as a percentage
of the size G of the Gaussian pool.

Figure 4.4a shows the EER obtained for segment CVs extracted from segments of 3s
of speech (short-short condition). Use of MFCCs (solid blue line) extracted over 25ms
constitute the baseline which delivers an EER in the order of 8.5% for a KBM size of
α = 10%. When ICMCs (dashed orange line) are extracted over 25ms, the performance
achieved is not better than that of MFCCs for most of the KBM sizes. For a KBM size
of α = 15% performance is similar to that of the MFCCs is reached.

Use of MFCCs extracted over 128ms (dotted yellow line) deliver a slight improvement
over their 25ms counterpart. On the other hand, ICMCs extracted using 128ms-long
frames (dash-dot purple line) improve upon both the performance of the baseline and
MFCCs extracted over the same 128-ms-long frames. For a KBM size of α = 15% the
EER is 8.3%. It is important to note that while the use of ICMCs extracted over 128ms
frames reportedly delivers the best performance out of the evaluated front-ends when
comparing pairs of CVs extracted over 3s of speech data. However, this comparison,
i.e. short CV vs. short CV, is never performed within our SD pipeline, which operates
on a segment-to-cluster approach to AHC in which clusters are initialised using larger
amounts of speech. We are consequently more interested in such a scenario and results
for it are presented in the next paragraph.

63



Chapter 4. Multi-resolution feature extraction for speaker diarization

(a)

(b)

Figure 4.4: Performance is measured in terms of equal error rate (EER,%) for different
KBM sizes (α). Results in (a) are for comparisons between CVs extracted from 3s speech
excerpts, while in (b) CVs extracted in 3s are compared against CVs modelled on all the
available speech in the oracle speaker clusters.

Figure 4.4b portrays a comparison between CVs, similar to the way they are processed
in our SD pipeline. CVs modelled on 3s speech segments are compared against the speaker-
wise CVs contained within a session (short-long condition), which are extracted using
the oracle annotations. The use of oracle annotations allow us to simulate a perfect
initialisation of the clusters that are available when the AHC algorithm starts operating.
MFCCs extracted over 25ms (solid blue line) reach their optimal performance for KBM
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(a)

(b)

Figure 4.5: Diarization performance in terms of diarization error rate (DER) as a function
of the KBM size (α). Systems used in (a) and (b) differ in the method employed to
determine the number of speakers per session. In (a) they are determined by means of
the baseline method based on an the elbow criterion, while in (b) the number of speakers
is determined in an oracle manner.

sizes between α = 55% and α = 75%, with an EER = 5.6%. Here, ICMCs extracted
over 25ms of speech (dashed orange line), offer a consistent improvement of roughly
0.2% EER over that of MFCCs. When features are extracted over 128ms of speech,
both MFCCs (yellow dotted line) and ICMCs (dash-dot purple line) deliver results in
which the differences are even more evident as with regard to using features extracted
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over 25ms frames. MFCCs bring the EER to around 5.1% for KBM sizes over α = 90%.
ICMCs give an slightly lower EERs of below 5% for similarly sized KBMs. The difference
between MFCCs and ICMCs is small but consistent when CVs are modelled over amounts
of speech of sufficient length. Segment-level CVs are a challenging representation as
they are extracted over small amounts of speech data, however, the robustness of the
cluster-level CVs allows for clearer, more consistent improvements.

The results in these two experiments allow to draw some interesting conclusions
related to questions posed in Section 4.3, as to assessing the effect of the resolution
separately from that of the constant or variable character of the Q factor. First, BK
speaker modelling benefits from features extracted using frame lengths that are longer
than those typically used in speech processing, e.g. features extracted from 128ms frame
lengths perform better than those extracted from 25ms-long frames. In short-short
(Fig. 4.4a) and short-long conditions (Fig. 4.4b), MFCCs and ICMCs extracted from
128ms of audio outperform features extracted from 25ms. This allows us to affirm that
the higher frequency resolution is of benefit to BK speaker modelling for both variable Q
(that of STFT) and constant Q transforms (that of IIR-CQT). At the same time, it is also
shown that frequency resolution is not the only factor responsible for this improvement.
The constant Q mapping of the spectrum of the ICMCs, characterised by a higher time
resolution for higher frequencies w.r.t MFCCs extracted by equivalent frame lengths,
provides with a 12% relative increase in performance over the 25ms MFCC baseline
as w.r.t the 9% achieved by 128ms MFCCs. This justifies the usage of ICMCs for BK
speaker modelling over that of MFCCs, particularly in the case of frame lengths that
allow for higher resolutions.

4.5.2 Speaker diarization

In this section, two different SD experiments are reported. These vary in terms of
the method which was employed to determine the number of speakers per session over
the development set. The objective of these experiments is to assess the effect of the
different alternatives to spectral analysis in the context of a complete SD pipeline. Some
preliminary conclusions can be drawn from the results presented in Section 4.5.2 as to
the effect of the different spectral analysis techniques to BK speaker modelling. However,
it is of our interest in this thesis to evaluate the impact of such front-ends within a SD
system.

Results in SD are reported in terms of DER in Figure 4.5. Following the presentation
format of the previous results in Section 4.5.1, the DER is plotted as a function of the
KBM size α. The DER is calculated with a standard 0.25s forgiveness collar.
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Automatic speaker number estimation

Results presented in Figure 4.5a are obtained by estimating the number of speakers
automatically. This is done by means of a WCSS-dependent elbow criterion [149], a
component of the baseline pipeline defined in Section 3.7. When extracted from frames of
25ms, ICMCs (dashed orange line) reduce the DER by a relative average of 7% compared
to MFCCs (solid blue line) for almost all KBM sizes. On the other hand, using 128ms
frame lengths, performance is increased for both approaches, with ICMCs offering a
consistently better result, with a bigger difference between ICMCs (dash-dot purple line)
and MFCCs (dotted yellow line) for larger KBM sizes. These results confirm the findings
observed in Section 4.5.1, where the extraction of features from frames of length 128ms
deliver consistent performance benefits to in BK speaker modelling. In this case, SD
performance, despite its more complex system pipeline, is improved by a consistent 2%
DER for most KBM sizes. In particular, for larger KBM sizes for α > 90%, the DER
decreases by over 5% DER corresponding to a relative improvement of nearly 30%.

Oracle speaker number estimation

In order to evaluate the AHC algorithm without the influence of the method used to
estimate the number of speakers, results for a second set of experiments in SD are
reported in Figure 4.5b. Here, the number of speakers per session is estimated in an
oracle manner, by selecting the number of clusters that yield the minimum DER per
session. This is, of course, unfeasible in a real scenario, but facilitates the assessment
of the proposed spectral analysis solutions in the context of a controlled AHC process.
Results for 25ms frame lengths are reported also here for MFCCs (solid blue line) and
ICMCs (dashed orange line). Despite the inconsistent tendency generated by the varying
size of the KBM, ICMC features lead to a lower DER than that obtained using MFCCs
for most KBM sizes. For results obtained using frame lengths of 128ms, ICMCs (dash-dot
purple line) and MFCCs (dotted yellow line) experiments report similar performances
that outperform that of the 25ms frame lengths. Nonetheless, ICMCs produce a minimum
overall DER of under 7% for KBM sizes of α = 30.

These two experiments confirm the tendencies observed in Section 4.5.1 despite the
inclusion of the AHC processs. On the other hand, it is interesting to observe that the
optimum KBM sizes do not align for automatically estimated (Fig. 4.5a) and oracle
(Fig. 4.5b) speaker numbers. While the reason behind this difference in behavior is not
explored in this thesis, it would be of interest to explore in future research. Figure 4.5b
shows that the best achievable performance is reached using small KBM sizes with
10 < α < 30. Comparatively smaller KBMs allow to derive segmental representations
that are also of smaller dimension, allowing for lighter computations of datasets. This
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EURECOM [155] Team 2 [170] Team 3 [171] Team 4 [172]
DER (SER)

(%)
Development 11.9 (9.4) - 16.2 (11.7) 27.0 (18.4)

Test 18.2 (13.9) 18.3 (14.0) 25.7 (17.0) 32.6 (20.0)

Table 4.1: Results of the Albayzin 2016 Speaker Diarization Evaluation for all 4 partici-
pants, in both development and test sets. Please note that Team 2 and our submission
used oracle annotations for VAD, while Team 3 and Team 4 employed an automatic
approach. An exact comparison between both approaches is not possible, but to make
for a more fair comparison, speaker error rate (SER)(DER excluding VAD-derived errors)
is also reported.

motivates the search for better stopping criterion mechanisms for AHC that allow to
correctly estimate the number of speakers for such KBM sizes.

Results in the Albayzin 2016 Speaker Diarization Challenge

The work and enhancements explored in this chapter were tested against other SD systems
in the unseen test set (belonging to the same domain as the development set) of the
Albayzin 2016 Speaker Diarization Evaluation dataset. This context allowed to evaluate
the performance of a BK SD system using ICMC features against other SD pipelines,
with all details of the EURECOM submission available in [155]. The results are presented
in Table 4.1, for both development and test sets for our submission (EURECOM2) and
the 3 other participants. It is important to note that while our submission and that of
Team 2 [170] employed oracle VAD annotations, Team 3 [171] and Team 4 [172] used an
automatic VAD system. To be able to compare for each system in a consistent manner
while excluding errors derived from VAD systems, speaker error rate (SER) is reported
together with the DER (which still does not make for a direct comparison, as automatic
VAD may also increase SER). Details of the other competing systems are as follows:

• Team 2 [170]: A Bayesian information criterion (BIC) blind speaker segmentation
followed by an AHC approach based on i-vectors.

• Team 3 [171]: BIC segmentation followed by an online clustering of i-vectors
using PLDA scoring.

• Team 4 [172]: BIC segmentation followed by clustering based on GMMs and
Viterbi alignment.

2Please note that the performance reported here differs slightly from that achievable in the development
set as reported in this chapter. This is due to small improvements having been applied in the overall
structure of the system, which nonetheless respect the trends reported in [155] and here. Results are
reported as in [155] for comparison with results for other participants.

68



4.6. Summary

It is interesting to observe that Team 2 and Team 3 systems are based on i-vectors, a
technique heavily dependent on external training data. Team 4 follows an approach similar
to that reported in this thesis in that no external training data is needed. The variation
in approaches allows us to make some observations. First, that the use of external
training data is not always beneficial. When confronting a closed-set training condition
(like that for which results are reported), the lack of extensive in-domain training data
can be a burden when suitable domain adaptation techniques are not applied or are
simply not feasible. Unless the data requirements to make those data-hungry techniques
perform in a reasonable manner are used, BK speaker modelling offers a robust and
computationally light approach. Second, the superior performance of our BK speaker
modelling and ICMC-based approach to that of Team 4 highlight the benefit of employing
a KBM to model the local acoustic content over that of traditional GMM-HMM and
Viterbi based methods. The results in Table 4.1 show that our system achieved the
best performance on test set of this evaluation, justifying the further development of
techniques and improvements applicable within its training-data independent nature.

4.6 Summary

The work presented in this chapter proposes an alternative to traditional spectral analysis
as a method to improve the discriminability of BK-based speaker representations. Acoustic
features are traditionally extracted in the form of Mel-frequency Cepstral Coefficients
(MFCCs), which rely on spectral analysis based on the short-time Fourier transform
(SFTF). In this chapter, an alternative multi-resolution spectral analysis tool is explored
based on the constant Q transform (CQT), which has shown benefits in performance
in other speech processing related tasks. In particular, the infinite-impulse response,
constant Q transform (IIR-CQT) Mel-frequency cepstral (ICMC) coefficients, recently
developed by other authors [160], are assessed in their first time application to BK-based
speaker modelling. Results are reported in terms of speaker recognition and SD for
various front-end optimisation experiments. These results highlight the positive impact
of multi-resolution spectral analysis on the discriminability of BK speaker modelling: an
ICMC-based front-end led to a relative improvement in DER of 14% over the MFCC-
based baseline. These substantial improvements led to a competitive performance of the
resulting, enhanced BK-based SD system in the submission made to the Albayzin 2016
Speaker Diarization Evaluation, in which it obtained 1st place.
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Chapter 5

Speaker change detection with
contextual information

Speaker change detection (SCD) can be of benefit to a number of different speech
processing tasks such as speaker diarization (SD), recognition and detection. Current
solutions rely either on highly localized data or on training with large quantities of
background data. While efficient, the former may tend to over-segment. While more
stable, the latter are less efficient and need adaptation to mis-matching data. Building on
previous work in speaker recognition and diarization, this chapter reports a new binary
key modelling approach to SCD which aims to strike a balance between efficiency and
segmentation accuracy. The BK approach benefits from training using a controllable
degree of contextual data, rather than relying on external background data, and is
efficient in terms of computation and speaker discrimination. Parts of the work and
analysis reported here were published in [173].

The chapter is organised as follows. Section 5.1 describes an introduction to the
problem and related work. Section 5.2 discusses the role of the binary key background
model (KBM) in the SCD process and its capacity as a context model. Section 5.3
elaborates on the methodology employed to perform SCD over BK-based segmental
representations. Section 5.4 describes the experimental setup including databases, system
configuration and evaluation metrics. Section 5.5 reports experimental results and
discussion. A summary is presented in Section 5.6.
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SCD SCD SCDSCD

Figure 5.1: High level representation of the purpose of a SCD algorithm. Given an
audio stream containing multiple speakers (each represented in a different colour), and
after applying a voice activity detector, it will attempt to detect the boundaries between
homogeneous speaker segments.

5.1 Introduction and related work

Speaker change detection (SCD), illustrated in Figure 5.1, also known as speaker turn
detection and, more simply, speaker segmentation, aims to segment an audio stream
into speaker-homogeneous segments (differently coloured segments in Fig. 5.1). Usually
proceeded by a voice activity detector (VAD), SCD is often a critical pre-processing step
or enabling technology; it is usually applied before other tasks such as speaker recognition
or diarization.

The literature shows two general approaches. On the one hand, metric-based ap-
proaches aim to determine speaker-change points by computing distances between two
adjacent, sliding windows. Peaks in the resulting distance curve are thresholded in order
to identify speaker changes. The Bayesian information criterion (BIC) [46] and Gaussian
divergence (GD) [174] are some of the most popular metric-based approaches. On the
other hand, model-based approaches generally use off-line training using potentially
large quantities of external data. An example of model-based approaches is the use of
Gaussian mixture models (GMMs) [51], and universal background models (UBMs) [52].
More recent model-based techniques are based on the i-vector paradigm [53,54] or deep
learning (DL) [55,56,57,175].

Despite significant research effort, SCD remains challenging, with high error rates
being common, particularly for short speaker turns. Since they can operate upon only
small quantities of data within the local context, metric-based approaches are more
efficient and domain-independent, though they tend to produce a substantial number of
false alarms. This over-segmentation stems from the intra-speaker variability in short
speech segments. Model-based approaches, while more stable than purely metric-based
approaches, depend on external training data and hence may not generalise well in the
face of out-of-domain data.
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The work reported in this chapter has sought to combine the merits of metric- and
model-based approaches. The use of external data is avoided in order to promote domain-
independence. Instead, the approach to SCD reported here uses variable quantities of
contextual information for modelling, i.e. intervals of the audio recording itself. These
intervals range from the whole recording to shorter intervals surrounding a hypothesized
speaker change point.

The novelty of the approach lies in the use of an efficient and discriminative approach
to context modelling binary keys (BKs) and cumulative vectors (CVs). The use of BK
modelling for SCD is of interest in the general objectives to enhancements to the BK-based
SD pipeline. In all recent work in BK-based SD by other authors [11,149] and ours [155],
segmentation consists in a straightforward partition of the audio stream into what are
probably non-heterogeneous speaker segments. In this case, speaker segmentation is only
done implicitly at best; none of the past work has investigated the discriminability of the
BK approach for the task of explicit SCD.

The novel contribution of the work presented in this chapter includes two BK-based
approaches to explicit SCD, which differ in the methods to the composition of the binary
key background model (KBM). The proposed methods to compose the KBM support
the flexible use of contextual acoustic information and are both compared to a classic
metric-based approach that uses the Bayesian information criterion (BIC). They are also
compared to DL based state-of-the-art approaches to SCD. Finally, the impact of SCD
in the context of our SD pipeline is also assessed.

5.2 The KBM as a context model

In spite of their underlying differences, both metric- and model-based algorithms usually
follow similar processing steps to perform SCD. A sliding window is used to process an
audio stream and detect speaker changes within its content. Both approaches utilize
exclusively the content within that sliding window. In this sense they are likely to
be suboptimal: they neglect the acoustic information present in the remainder of the
test session being analysed, i.e. the context that surrounds the sliding window. BK
speaker modelling is characterised by the use of a KBM that captures the acoustic
variability in the in-session data so that it remains independent from external training
data. This context-modelling capacity of the KBM motivates our investigation of the
use of BK speaker modelling as a solution to SCD. By means of the KBM composition,
BK modelling allows SCD decisions to be made in a local sense, in a similar fashion to
metric-based approaches, while considering variable amounts of the contextual in-session
data, similar to model-based methods, in so that it leverages data not contained within
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Figure 5.2: Global-context KBM obtained through the selection of Gaussians from a
global pool.
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Figure 5.3: Local-context KBM constructed using all Gaussians estimated from within a
local context.

the sliding window.

The extent to which the KBM is composed to cover the acoustic space in a meaningful
way is the fundamental factor that determines the speaker discriminative capacity of
BK speaker modelling. As introduced in Section 3.2.2, the KBM is composed by a
selection of Gaussian components fitted to the test data itself. Once composed, the
KBM represents the acoustic context of an audio file, and enables the estimation of
segmental-level representations in the form of cumulative vectors (CVs) or binary keys
(BKs).

In this chapter we explore two fundamental factors of importance to the usability
of BK-modelling to SCD. First, the extent to which variable amounts of in-session
contextual speech data, leveraged by means of a KBM, is beneficial to the task of SCD
when comparing adjacent CVs or BKs; second, alternatives to KBM composition that
are introduced in the next section.
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5.2.1 KBM composition methods

We propose to evaluate the effect of the KBM as an agent for context modelling in SCD
by means of two different composition methods. They are illustrated in Figures 5.2
and 5.3, and described in the following:

• Global-context KBM: an approach whereby the KBM is learned with data from
the entire test sequence (Fig. 5.2). This approach follows the baseline algorithm
described in Section 3.2.2 to choose the most discriminative and least redundant
Gaussian components from within the Gaussian pool. Using a global-context
approach to model the acoustic space allows the KBM, and hence the segment level
CVs/BKs, to leverage acoustic cues that may lie far away from a potential speaker
change point in a temporal sense but may be relevant from a speaker-discriminative
perspective.

• Local-context KBM: an approach whereby the KBM is alternatively learned
from a shorter context window centred on the hypothesised speaker change point
(Fig. 5.3). Unlike the global-context approach, the local-context approach uses all
the Gaussians contained in the defined context (no selection process is performed).
This approach to KBM learning enables the flexible use of the acoustic context
information that surrounds the hypothesised speaker change point.

5.3 BK-based speaker change detection

This section describes the use of CVs or BKs in SCD and provides a visual example of
the speaker discriminative capacity of BKs.

SCD is performed using data from two non-overlapping windows, one either side of
hypothesized speaker change points. CVs or BKs are extracted for each window and are
compared using the cosine (Eq. 3.8) or the Jaccard distance (Eq. 3.10). This procedure
is applied sequentially to obtain a curve of window distances at regular intervals. An
example is illustrated in Figure 5.4 for a 2s speech segment. Local peaks in the curve
represent speaker change candidates. Speaker change decisions are then obtained by
thresholding the distance curve using an empirically optimised threshold θ.

By way of illustrating the speaker-discriminability of the BK approach, Figure 5.5
depicts a sequence of BKs extracted from an arbitrary speech fragment in the order of
2.5 minutes duration. Each column of the matrix is a BK computed from a 1s window
with a 0.1s shift using a KBM of size N = 320. Speaker labels towards the top of the
plot indicate the speaker which is active during each apparent segment. The vertical axis
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Figure 5.4: Speaker change detection process applied over an audio segment of 2s of
speech from the ETAPE dataset by comparing adjacent CVs using the cosine distance.
The resulting distance curve is smoothed to minimize the effect of outliers. Peak values
of the smoothed curve that overpass the detection threshold θ are detected as speaker
change points.

indicates the sorted KBM Gaussian indexes whereas the horizontal axis indicates time.
The intra-speaker consistency of BKs is immediately evident, as are the inter-speaker
differences which indicate speaker changes or turns.

5.4 Experimental setup

Experiments were designed to assess the efficacy of BK-based approaches to SCD and to
compare the two KBM composition methods. This section describes the chosen database
in Section 5.4.1. The configuration of baseline and BK-based approaches to SCD is
described in Sections 5.4.2 and 5.4.3 respectively. The evaluation metrics are detailed in
Section 5.4.4.

5.4.1 Database

The work reported here was performed with the ETAPE database [176] which contains
audio recordings of a set of French TV and radio shows. It is composed of 3 partitions
(18h for training, 5.5h for development and 5.5h for test). Temporal speaker identity
annotations are provided only on 2 subsets of the training and development sets (with 18
out of 61 overlapping speakers). These annotations were generated in two steps. First,

76



5.4. Experimental setup

0 20 40 60 80 100 120 140

Time (s)

320

270

220

170

120

70

20

K
B

M
 G

a
u

s
s
ia

n
 i
n

d
e
x

SPK4 SPK3 SPK4 SPK3 SPK2SPK1 SPK2 SPK3

Figure 5.5: A matrix of BKs from an arbitrary 2.5-minute speech fragment from the
ETAPE database. Each column of the matrix is an individual BK with N=320 elements
extracted according to the procedure illustrated in Figure 3.5 and described in Section 3.4.
Distinguishable BK patterns indicate distinct speakers whereas abrupt differences along
the temporal domain indicate speaker change points.

automatic forced alignment was applied to the manual speech transcriptions upon which,
in a second stage, trained phoneticians manually adjusted the boundaries. Annotations
for the test set are coarser and not usable for the SCD task as, reported in the works
in the literature to which we wanted to compare our results [55,57,59]. In keeping up
with these results, the development set of the TV subset of the database was used for
the experiments reported here.

5.4.2 Baseline SCD system

Acoustic features comprise 19 static Mel-frequency cepstral coefficients (MFCCs) which
are extracted from pre-emphasised audio signals using an analysis window of 25ms with
a time shift of 10ms using a 20-channel Mel-scaled filterbank. No dynamic features are
used.

The baseline SCD approach is a standard BIC segmentation algorithm [46]. It is
applied with two windows of 1s duration either side of a hypothesised speaker change
point. The resulting BIC distance curve is smoothed by replacing each point with the
average estimated over a 1s context. Local maxima are identified by enforcing a minimum
distance of 0.5s between consecutive peaks. Within any 0.5s interval, only the highest
peak is retained before speaker change points are selected by thresholding. This is a
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standard approach similar to those reported in [177,178,179].

5.4.3 Binary key SCD system

Acoustic features are the same as for the baseline SCD system. Candidate Gaussians
for the KBM pool are learned from windows of 2s duration with a time shift of 1s. The
number of components in the final KBM is chosen adaptively according to a percentage
α of the number in the initial pool. Reported below are a set of experiments used to
optimise α. The number of top Gaussians M used for CV/BK extraction is set to 5 and
the number of bits K that are set to 1 is set to 20% of the number of KBM components N .

Two BKs are extracted every 0.1s with sliding windows of 1s duration positioned
either side of the hypothesized change point. The distance between each pair of CVs/BKs
is calculated using the cosine/Jaccard similarity, and the distance curve is smoothed in
the same way as for the baseline system. Speaker change points are again selected by
thresholding.

5.4.4 Evaluation metrics

SCD performance is evaluated using the approach used in [57], namely through estimates
of segment coverage and purity. Coverage is defined as:

coverage(R,H) =
∑
r∈Rmaxh∈H|r ∩ h|∑

r∈R |r|
(5.1)

where |r| is the duration of segment r within the set of reference segments R, and where
r ∩ h is the intersection of segments r and segments h within the set of hypothesis
segments H. Purity is analogously defined with R and H in Eq. 5.1 being interchanged.

An over-segmented hypothesis (too many speaker changes) implies a high segment
purity at the expense of low coverage (hypothesised segments cover a low percentage
of reference segments). In contrast, an under-segmented hypothesis (too few speaker
changes) implies the opposite, namely high coverage, but low purity. Purity and coverage
are hence a classical trade-off, with the optimal algorithm configuration depending on
the subsequent task.

In order to concentrate on the assessment of SCD alone, ground-truth annotations
are used for voice activity detection (VAD). It is noted that the use of ground-truth
VAD as a hypothesis with a single speaker delivers a ceiling coverage of 100% and a floor
purity of 83%. These values can be taken as a performance reference.
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Figure 5.6: SCD performance measured in terms of segment purity and coverage using
CVs and a global-context KBM, obtained by varying the decision threshold θ. Profiles
are shown for different values of the KBM size (α).

5.5 Results

In this section, experimental results are presented for BK-based SCD using the two
possible segmental representations derived from the technique, namely CVs (Section 5.5.1)
and BKs (Section 5.5.2). These are extracted using the two proposed KBM composition
methods. A comparison between the two variants is presented in Section 5.5.3. Finally,
results that evaluate the impact of SCD upon a BK-based SD pipeline are presented in
Section 5.5.4.

5.5.1 SCD using cumulative vectors

Figure 5.6 and Figure 5.7 show plots of purity and coverage for global- and local-context
KBMs, respectively. Each profile shows the trade-off between the two metrics as the
distance threshold θ is varied. Profiles are shown for KBMs whose size α is set to 20, 40,
60, 80 and 100 of the total number of original Gaussians. In both cases, the performance
of the BIC baseline system is illustrated with a solid blue line.

Using CVs and a global-context KBM approach (Fig. 5.6), both purity and coverage
increase for all sizes of the KBM over that of the baseline. While large values of α,
which determines the percentage of final Gaussians selected to compose the KBM, give
better performance as it increases, there is little improvement above α = 60%. Despite
this saturation, the maximum performance gain is achieved for α = 90%. The trends is
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Figure 5.7: SCD performance measured in terms of segment purity and coverage using
CVs and a local-context KBM, obtained by varying the decision threshold θ. Profiles are
shown for different values of the KBM size (α).

similar when using CVs extracted from a local-context KBM (Fig. 5.7). Regardless of the
small difference in performance for different values of α, differences with regard to the
baseline are more significant as the KBM size increases. Although gains are somewhat
inconsistent as compared to the global-KBM approach, they yield a slightly bigger overall
increase in performance.

An alternative visualization of the results is presented in Figures 5.10 and 5.11, which
plot the average relative increase in segment coverage and purity, respectively, over that
of the baseline system. In the case of CV-based approaches to SCD (solid blue line for
global-context KBM and arrow-marked, orange line for local-context KBM in Fig. 5.10),
the average relative increase in coverage increases from around 6% for smaller KBMs
(α ∼ 20%) to nearly 10% for KBMs that cover the complete acoustic space (α = 100%).
However, average relative increases in purity values (Fig. 5.11, same colors and markers)
are more modest than those in coverage. Global- and local-context based approaches to
KBM composition using CVs benefit purity in a similar tone. For small sizes of KBM
the average relative purity improvement obtained is in the order of a 2%. Alternatively
when the KBM is allowed to accumulate larger amounts of context, the local-context
KBM marginally outperforms the global-context KBM.
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Figure 5.8: SCD performance measured in terms of segment purity and coverage using
BKs and a global-context KBM, obtained by varying the decision threshold θ. Profiles
are shown for different values of the KBM size (α).

5.5.2 SCD using binary keys

In similar fashion to results presented in Section 5.5.1, Figure 5.8 and Figure 5.9 represent
purity and coverage for global- and local-context based KBMs, respectively, but now
using BKs instead of CVs. The BK approach with global-context KBMs (Figure 5.8)
gives universally better performance than the baseline, even if the trend is somewhat
inconsistent. Larger KBMs then give better performance, e.g. for α greater than 40%.
The optimal α is 60%. Larger values of α do not necessarily give better performance.
The BK approach with local-context KBMs (Figure 5.9) also outperforms the baseline.
While the trend is consistent for lower values of coverage, across the range the optimal α
varies between 60% and 100%.

The results presented in Figure 5.10 and Figure 5.11 provide a clear visualization
of the gains when using BKs. A global-context KBM gives an average relative increase
in segment coverage of 17.4% for α = 60%, while a local-context KBM brings the
improvement to 18.3%. Similarly, maximum gains in average relative purity of 4.5% are
achieved for KBM sizes of α = 60%, while local-context KBM derived BKs achieve a
more consistent performance gain at α values ranging between 70% and 90%.
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Figure 5.9: SCD performance measured in terms of segment purity and coverage using
BKs and a local-context KBM, obtained by varying the decision threshold θ. Profiles are
shown for different values of the KBM size (α).

5.5.3 Comparison between BK-based SCD systems

Results for both CV- and BK-based SCD exhibit significant differences. CVs and BKs
were tested in different KBM composition conditions and with different KBM sizes.
Nonetheless, the extraction of the segmental representations remained independent of the
KBM composition method. That is, for a KBM size of α = 70% using a global-context
approach, a unique KBM is employed to derive CVs and BKs. The same same approach
is followed when using local-context KBMs. Performance differences between CVs and
BKs, despite the use of identical KBMs for both BK & CV representations, give rise to
some intriguing questions.

Why do CVs not benefit from larger KBM sizes like BKs? Figure 5.10 and
Figure 5.11 show that the gain derived from increasing KBM sizes saturates much sooner,
and in a less significant manner, for CVs than BKs. BK behavior w.r.t the KBM size is,
on the one hand, intuitive when considering the KBM composition mechanism: larger
KBMs can leverage more contextual information. The extent to which this is beneficial
is limited to the amount of non-redundant information available in an acoustic space
that the KBM composition method manages to capture, establishing an upper bound
to the KBM size in its benefit to performance. Larger KBM sizes are likely to capture
redundant acoustic content and degrade performance. Why, then, does this not apply
also to CVs? The difference in performance may stem from two factors: one is the
difference in the process of CV and BK composition; the other is the distance measures
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Purity (%) 84 88 92 96

Coverage (%)

BIC 96.48 79.54 60.92 37.90

CVs
Global KBM (α = 100%) 98.46 87.80 69.75 43.91
Local KBM (α = 90%) 98.04 85.90 70.78 44.25

BKs
Global KBM (α = 60%) 98.88 91.71 78.46 48.99
Local KBM (α = 70%) 98.99 92.86 77.45 51.51

Table 5.1: Coverage obtained by employing global- and local-context KBM composition
methods for CVs and BKs in the task of SCD. KBM size (α)is chosen for each system to
maximize the gain in coverage following that reported in Figure 5.10.

employed to detect speaker change points. On the one hand, the difference between the
generation of CVs and BKs is a quantization step. To compose a BK, a given CV’s top-K
activated KBM elements are set to 1 while the remaining positions are set to 0. Results
indicate that this quantization step allows BKs to be more discriminative than CVs,
thereby resulting in better SCD performance. BKs are compared by means of a Jaccard
distance, as per the cosine distance of the CVs. Whilst the cosine distance emphasises the
angular difference between two CVs, the Jaccard distance (see Section 3.5) performs a
more aggressive distance measurement (similar to a sort quantization) whereby only very
different BKs result in high distances. It is important to remember that CVs and BKs
are extracted over speech segments that are extremely short, i.e. 1s long. In addition,
the sliding window of 0.1s employed also implies the speech content in adjacent windows
is very similar. Such a short amount of speech and high overlapping may easily derive
in noisy speaker representations. The use of bolder means of quantization in both the
segment extraction (that of BKs over CVs) and distance scoring (that of Jaccard vs.
cosine distance) may thus be fundamental to the final BK-based SCD performance.

What is the best approach to use the KBM as a context model for SCD?
While performance using BKs clearly outperforms the baseline and CVs in both coverage
and purity (again, Fig. 5.10 and Fig. 5.11), the question remains as to which approach to
KBM composition brings the most benefit when using BKs. It is of interest to compare
the two proposed methods not only in terms of performance, where the differences are
small, but also in terms of efficiency and practical application. Even if the local-context
approach slightly outperforms the global-context method for BKs, each approach can be
better suited for different applications. On one hand, in the case of offline processing
(when the entire input stream is available in advance), the global-context approach is
more efficient since the KBM is fixed for the entire process, hence frame-wise likelihoods
can be computed only once and then reused for subsequent operations. However, in
the local-context approach, the KBM changes over time (using Gaussian components
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Figure 5.10: Average increase in segment coverage (%) for the different KBM composition
methods and segment representations over that of the baseline.

estimated from the context window). This implies the recomputation of frame-wise
likelihoods every time the window is shifted, therefore implying an extra computation
cost. On the other hand, in online processing scenarios, the global-context approach
cannot be used since the complete input stream is required in advance to train the KBM.
However, the local-context approach is well suited to online applications since it utilises
only local information. In the latter case, system latency would be proportional to the
amount of contextual data considered.

Table 5.1 illustrates the variation in coverage against purity which could be of
importance to specific post-SCD application, such as SD or recognition. The best
performing systems are compared in terms of α and performance is compared to that
obtained with the baseline system. The BK approach gives higher coverage at all
operating points, especially for those with higher purity. This is important as it validates
the viability of our approach to SCD independently of the optimization of the KBM size
(defined as a percentage by means of α) as reported here. These improvements, which
are similar to results achieved with DL-based solutions in the same dataset [57] and fall
only slightly behind those of more advanced approaches [59], despite the fact that our
approach does not use any external training data.

5.5.4 Speaker diarization using a BK-based SCD

A last experiment is considered to assess the impact of SCD variations upon the baseline
SD pipeline as defined in Section 3.7. Different methods to speech segmentation, and
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Figure 5.11: Average increase in segment purity (%) for the different KBM composition
methods and segment representations over that of the baseline.

implicit and explicit SCD are considered. These approaches to SCD are illustrated in
Figure 5.12 (by means of their application upon an example speech signal in Fig. 5.12a)
and are defined as follows:

Voice activity detection (VAD): This method (Fig. 5.12b) does not perform any
segmentation other than those between speech and non-speech segments.

1-second: Upon this method, homogeneous 1s-long speech segments are applied on top
of the VAD-derived segmentation (Fig. 5.12c). This is the speech segmentation approach
defined in Section 3.7 for the baseline BK-based SD system.

Binary key (BK): Here, a binary key-based SCD is used in the SD pipeline (Fig. 5.12d).
It employs a local-context KBM with an optimal KBM size fixed to α = 70%, and with
the threshold θ set to derive a segment purity of 94%. This purity value is considered in
keeping with related literature [57,59].

Combined: This approach to speaker segmentation merges the 1-second segmentation
and the BK-based split (Fig. 5.12e), in an attempt to leverage both methods at the same
time.

Results are presented in Table 5.2 in terms of the diarization error rate (DER, in
% using a standard forgiveness collar of 0.25s). Following our findings reported in
Chapter 4 [155], we explore the use of MFCCs using frame lengths of different sizes,
specifically 25 and 128ms (alternative front-ends in terms of spectral analysis like those
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(a) Speech signal

1 2 3

(b) VAD based segmentation

1 2 3 4 5 6 7 8

(c) 1-second based segmentation

3 4 5

SCD SCD

1 2

(d) BK based segmentation

6 8 9

SCD SCD

1 52 3 4 7

(e) Combined 1-second and BK segmentation

Figure 5.12: Illustrative example of different SCD approaches applied to the pipeline of
the BK-based SD baseline.

of Chapter 4 were not tested here as they are considered beyond the scope of this
SCD-influence analysis). Results are also presented with and without a GMM-based
resegmentation.

The 2nd and 3rd rows of Table 5.2 illustrate performance obtained using MFCCs
extracted from 25ms-long speech frames. A VAD-derived segmentation (4th column of
Tab. 5.2) indicates a floor of performance of 31.95% and 27.9% for a system without and
with final resegmentation, respectively. This approach delivers the worst performance,
which is expected considering the completely speaker-independent segmentation gener-
ated by the VAD system. The baseline segmentation system based on 1-second splitting
of the speech data (5th column of Table 5.2) gives performance closer to that reported
in [55](21.12%) with DERs of 24.01% and 23.3% for systems with and without reseg-
mentation. A homogeneous 1s splitting of the audio data seems sufficiently fine-grained
to generate some sort of implicit speaker segmentation, thereby leading to improved
performance. The performance of the proposed BK-based approach to SCD is illustrated
in the 6th column of Table 5.2. It delivers DERs of 22.11% (8% relative improvement
over a 1-s segmentation) and 20.01% (15% relative improvement over the 1-s baseline).
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VAD 1-second BK Combined

Fr
am

e
le
ng

th 25ms
w/o reseg. 31.95 24.01 22.11 25.2

w/ reseg. 27.9 23.3 20.01 23.04

128ms
w/o reseg. 33.49 18.79 22.52 21.37

w/ reseg. 30.23 17.84 20.68 19.6

Table 5.2: Results in terms of DER for the different SCD methods applied to the BK-
based SD pipeline. It is measured for different frame lengths used in feature extraction,
and including/excluding the final resegmentation step.

These results verify the benefit of our approach to SCD upon a fully fledged SD system
when using 25ms frame lengths. It is interesting to note how the difference between
the two approaches is more substantial when resegmentation is applied than when it is
not. Purer, longer segments are derived from a BK-based SCD approach which probably
avoid speaker change points missed by the 1-second approach to segmentation. This
allows for purer initialization of the GMM-based resegmentation algorithm. Results for
the last method that combines 1-second segmentation and BK-based SCD are presented
in the 7th column of Table 5.2. Ideally, this approach could exploit the best of both
BK-based SCD and 1-second approaches to segmentation by implicitly and explicitly
determining boundaries for speaker-homogeneous speech segments. However, results show
performance does not seem to benefit, with 25.5% and 23.04% DERs for systems with
and without resegmentation, both similar to that of the 1-second segmentation. These
results suggest that the 1-second long segmentation does not benefit from additional
SCD-derived boundaries, as they probably generate excessively short segments. It can
also be argued that a purely BK-based SCD suffers from the over-segmentation used in a
1-second approach, as it effectively dilutes the purpose sought by the BK-based SCD in
terms of maximising segment coverage for a given purity.

Following, rows 4th and 5th of Table 5.2 present results obtained when using MFCCs
extracted using frame lengths of 128ms. Results in Chapter 4 highlight the benefit of
using longer frame lengths for feature extraction for BK-based SD, and are consequently
used here for the sakes of verification. Performance using a VAD approach decreases
with regard to the result obtained using a 25ms configuration, reaching DERs of 33.49%
and 30.32%, with and without resegmentation respectively. Under this feature extraction
configuration, a 1-second segmentation delivers a substantial increase in performance,
with DERs of 18.79% and 17.84%. These results are in contrast to the trend observed in
the 25ms frame feature extraction configuration. By using a 128ms frame length the BK-
based segmentation does not deliver any improvement w.r.t the 1-second segmentation,
performing at a similar level than that of the 25ms configuration (22.52% and 20.68%).
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The combination of both techniques does not deliver any improvement either, resulting
in DERS of 21.37% and 19.6%. The results derived from using a 1-second segmentation
approach and 128ms frame lengths verify the impact of frame length for BK-based SD
performance. This impact is so important as to outperform the possible benefit of purer,
longer speaker-homogeneous speech segments. As to the reason behind it, results indicate
that the coupling of a 1-second segmentation with 128ms frame feature extraction benefits
the feature binarization and segment extraction process (see, respectively, Sections 3.3
and 3.4), generating more speaker-discriminative representations.

Results presented in this section show the benefit of the BK-based approach to SCD
over a 1-second homogeneous segmentation when a 25ms frame length is employed in
the extraction of MFCCs. However, for frame lengths of 128ms the tendency is reversed
and a system independent of explicit SCD, such as that of a 1-second segmentation,
obtains better results. This finding corroborates those reported in literature [55, 59].
Future work should explore a better leveraging of the explicit SCD methods that could
be complementary to the 1-second segmentation.

5.6 Summary

This chapter introduces a binary key (BK) solution to speaker change detection (SCD).
The algorithm uses traditional acoustic features and a configurable quantity of contex-
tual information captured through a binary key background model (KBM). Speaker-
discriminative CVs and BKs are then extracted from the comparison of acoustic features
to the KBM. The binarization of acoustic features resembles a form of quantization which
helps to reduce noise and hence improve the robustness of subsequent SCD. The latter is
performed by thresholding the distance between CVs/BKs extracted from two adjacent
windows either side of hypothesized speaker change points. While not requiring the use
of external data, two variants of KBM composition are shown to outperform a baseline
approach based on the classical BIC. Results obtained using a standard dataset show
average relative improvements which compare favourably to results reported recently
for more computationally demanding solutions based on DL. The impact of the explicit
SCD process is also measured in terms of benefits to the SD solution reported in this
thesis. Results highlight the challenge of the task to better integrate SCD decisions in
the BK-based diarization pipeline which could be explored in future research.
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Chapter 6

Leveraging spectral clustering for
training-independent speaker
diarization

The first DIHARD challenge aimed to promote speaker diarization (SD) research and
to foster progress in domain robustness, by proposing challenging SD scenarios that are
new to the research community. This chapter reports EURECOM’s submission to the
DIHARD challenge and the work undertaken to tackle the challenging dataset. This
work was published in [180]. EURECOM’s DIHARD submission was based upon our
low-resource, domain-robust binary key approach to speaker modelling. Contributions
include the first application of spectral clustering (SC) to BK-derived cumulative vectors
(CVs) as an alternative to agglomerative hierarchical clustering (AHC), as well as its
use for estimating the number of speakers and a mechanism to detect single-speaker
trials. Experimental results obtained using the standard DIHARD database show that
the contributions reported in this chapter deliver relative improvements of 39% in terms
of the diarization error rate over the baseline algorithm. An absolute DER of 29% on the
evaluation set compares favourably with those of competing systems, especially given
that the binary key system is highly efficient, running 63 times faster than real-time.

The remainder of this chapter is organised as follows. Context and motivations to the
work are given in Section 6.1. The difficulties steaming from domain variability to SD, as
well as the implications of domain variability as concerns the DIHARD challenge, together
with a brief description of the dataset, are given in Section 6.2. Section 6.3 describes
preliminary work done to assess the limitations of our baseline system that motivated
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the contributions reported in this chapter. Section 6.4 describes the investigation of SC
and its application to a SD system based on BK speaker modelling. Experiments and
results are described, respectively, in Sections 6.5 and 6.6. A summary of the work and
findings reported in this chapter is given in Section 6.7.

6.1 Context and motivation

While SD research attracted significant interest in the past, the field has somewhat
stagnated in recent times. This is perhaps due to the lack of significant datasets that
explore domains beyond certain categories. For meeting-based conversation, the once
popular NIST Rich Transcription evaluations [181] is now seemingly discontinued. More
recent databases such as those used for the ETAPE [176], REPERE [182], AMI [183],
or the Albayzin [12, 13] evaluations are either modest in size and/or put their focus
exclusively on specific domains, e.g. broadcast news, meetings or televised chat shows.
As a result, each database and evaluation has a somewhat limited audience.

The DIHARD initiative [14] was born to re-energise the research effort. The availability
of a large dataset supporting a broader range of application scenarios, e.g. including
medical interviews, conversations involving children, even monologues, rejuvenated
research interest fostered progress in domain-robust SD; the DIHARD dataset contains
no training data and represents the broadest domain variation captured in a single SD
dataset to date.

There are two distinct approaches to address such a challenge. The first entails the
optimisation of systems using a large quantity of training data that spans adequately
the domain variation captured in the DIHARD data. The second is an inherently
domain-neutral approach that requires no background training data, or rather acquires
background data from acoustic streams at runtime. A hybrid approach might aim to
exploit the benefit of background training data, but with the facility to adapt to a specific
domain at runtime.

Given our interest in this thesis in low-resource and computationally efficient, prac-
ticable SD technology, our efforts to address the first DIHARD challenge explored the
second approach. Past work showed the merit of the binary key approach to SD [11,155]
that does not require any background training data. Thanks to this independence
from training data, it is ideally suited to domain-robust diarization. However, while its
principal merit relates to computational efficiency, rather than raw performance, it is not
necessarily expected to be competitive with the best-performing submissions to the first
DIHARD challenge. The difficulty of the proposed domains motivated the exploration of
improvements to our SD pipeline that do not imply learning from external data and can

90



6.2. The first DIHARD challenge

be tuned within a development set. Results show nonetheless that, with the introduction
of three modifications, it remains competitive with even the best submissions, while still
offering advantages in terms of computational efficiency.

Explored improvements that also have no need for external training involved in
the work reported in this chapter include front-end processing, alternatives to AHC
clustering, approaches to estimate the number of speakers, and a dedicated mechanism
to detect single-speaker trials. For the front-end, infinite impulse response - constant
Q Mel-frequency cepstral coefficients (ICMCs), whose use upon BK speaker modelling
is analysed in Chapter 4 [155], were also tested using this new dataset. Clustering
alternatives to AHC as well as clustering selection improvements are based upon SC.
A established method in its application to SD [8, 119, 120], SC is applied here for the
first time to a SD system based on BK modelling. Finally, and also based on a method
derived from SC, we investigated an approach to single-speaker detection as a means of
overcoming significant impact upon performance introduced by the under-clustering of
single-speaker trials.

6.2 The first DIHARD challenge

The performance of state-of-the-art SD solutions is reasonably high in some domains.
One is telephony, where clustering is applied to DNN-based embeddings (see Chapter 2),
e.g. using datasets such as the NIST-based CALLHOME dataset [184], formed of con-
versational telephone speech [7, 8, 185]. Alternatives, such as approaches based upon
Variational Bayesian inference have achieved similar results [116]. At the time of writing,
state-of-the-art results within the telephony domain falls in the 8-10% DER range. The
relatively good performance here may be associated to a number of factors. To name a
few, telephony conversation are rather structured with regard to speaker turns, while
participants in the conversation speak near to their respective microphones. Also, the
number of speakers is commonly limited to 2, and the amount of overlapping speech is
often relatively small.

A different scenario in which research in SD has been active, but where performance
is not so high, is that of broadcast radio and TV content. There have been multiple
evaluations in this domain over the years, such as the ETAPE [176] and REPERE [186]
campaigns mentioned above, or the more recent Albayzin evaluations [12, 13]. Work
reported in the literature that uses DNN-based embeddings [6] as well as i-vectors [170],
or our approach to diarization based on BK speaker modelling [11,155] have achieved
performances that typically range between 15-20% DER. Despite the usually controlled
conversational scenario of broadcast content, diarization performance in this domain is
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usually worse, with a number of factors being responsible. Among them, there is usually
greater variation in the number of speakers per session, and there are often other acoustic
sources, i.e. music and noises.

Another domain is that of speech recorded in meeting rooms. Relevant datasets
include the NIST Rich Transcript (RT) evaluations [187, 188, 189], or the Augmented
Meeting Interaction (AMI) dataset [183]. When SD is performed using speech data from
a single-distant microphone (SDM), results reported in the literature typical DERs lie in
the 20-25% [190,191] range. The meeting domain is characterised by a varying, unknown
number of speakers, highly unstructured conversations, and poorer recording conditions,
making of it among the most challenging use cases for SD.

The above discussion is testament to the impact of domain variability (in the form of
unstructured speech content, additional noises and nuisances, and variable number of
speakers) upon the performance of today’s SD systems. When the domain is known a
priori, then SD systems can be generally tuned to be reliable. However, as variability
increases performance decreases. The DIHARD challenge was the first significant initiative
to promote the study of domain robustness in SD.

The dataset provided in conjunction with the first DIHARD challenge [14] is a
composition of different data subsets. Together, they represent domains in which the
application of SD could be of benefit as a pre-processing technique, i.e. as a precursor for
speech or speaker recognition, including domains that have not been broadly explored
previously through the work & campaigns described above. A brief description of the
different data subsets is given below:

• Child language acquisition recordings (SEEDLINGS): Recordings from
the Study of Environmental Effects on Developing Linguistic Skills (SEEDLingS)
dataset. These include home-recordings involving children between 6 to 18 months
of age that are learning to speak and people interacting with them.

• Supreme Court oral arguments (SCOTUS): Oral arguments from the 2001
term of the U.S. Supreme Court. Channels recorded from table-mounted micro-
phones were summed and recorded in a single channel.

• Map tasks (DCIEM): Recordings of subjects involved in map tasks gathered
from the DCIEM Map Task Corpus. In this scenario, a ‘leader’ sits across the table
from a ‘follower’. The latter must follow oral instructions of the leader to find his
path across a paper map.

• Clinical interviews (ADOS): Recordings of Autism Diagnostic Observation
Schedule (ADOS) interviews organised at the Center for Autism Research at the
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Children’s Hospital of Philadelphia in the United States. Audio was collected from
a video camara mounted on a wall nearly 4 meters away from the interview.

• Radio interviews (YP): Interviews made in a student-run radio program of the
late 1970s, YouthPoint (YP) at the University of Pennsylvania in the United States.

• Sociolinguistic interviews (SLX): Field recordings conducted during the 1960s
and 1970s across the Americas and the United Kingdom belonging to the SLX
Corpus of Classic Sociolinguistic Interviews.

• Meeting speech (RT04S): Recordings of multi-party meetings collected from the
2004 Spring NIST Rich Transcription (RT-04S) dev and eval partitions. These were
recorded at multiple locations with a different microphone setup. For DIHARD,
a single channel was distributed for each meeting, corresponding to the RT-04S
single distant microphone (SDM) condition.

• Audiobooks (LIBRIVOX): A rather unsual scenario for SD where single-speaker,
amateur recordings of audiobooks selected from LibriVox are provided.

• YouTube videos (VAST): Content from online videos collected from the Video
Annotation for Speech Technologies (VAST) project. The recording conditions,
thematics and languages (English and Mandarin) are heterogeneous within the
partition.

6.3 An analysis of our baseline

Given the diverse conditions in the DIHARD dataset, a first analysis of our system was
necessary to determine our baseline performance and our optimal performance goal by
means of controlled experiments. This section describes the preliminary work done using
our SD pipeline based on BK speaker modelling. In Section 6.3.1 our baseline system is
briefly defined. Section 6.3.2 reports experiments and results using the baseline system.
Finally, the weaknesses identified in the system that provided scope for research and the
contributions reported in this chapter are discussed in Section 6.3.3.

6.3.1 The baseline system

The pipeline of the baseline system for the DIHARD challenge is that reported in
Section 3.7. Baseline configuration details were borrowed from our previous and successful
participation in the Albayzin 2016 challenge reported in Chapter 4. The following provides
a brief reminder following the pipeline illustrated in Figure 3.7 of Chapter 3:
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• Features: Acoustic features (MFCCs) are extracted from the raw audio signal by
means of a sliding window.

• Voice activity detection: Oracle annotations were used to remove silence from
the audio session.

• Segmentation: Remaining speech is split in overlapping segments of 3s of length
with a 1s shift between segments.

• KBM training: A pool of G session-dependent Gaussian components is learned
from the in-session acoustic content, and a KBM is derived using the discriminative
process described in Section 3.2.2. The dimension of the KBM N is determined
as a percentage α of the Gaussian pool size G. Following our work reported in
Chapter 4, α = 85% was set used for the baseline system.

• Segment/cluster representation: Feature binarization as explained in Sec-
tion 3.3 is applied in order to derive speaker-discriminative cumulative vectors
(CVs) as described in Section 3.4.

• Clustering: This stage is composed of two parts. First, a bottom-up AHC
algorithm is applied, which is illustrated in Fig. 3.8 and described in Section 3.7.
Follows a clustering selection mechanism using an elbow criterion linked to the
within-class sum of squares (WCSS) of the AHC-derived solutions [149].

• Resegmentation: A final resegmentation step based on GMMs and frame-level
reassignment is applied to refine the hypothesized segment boundaries.

Leveraging recent front-end improvements

In work reported in Chapter 4 of this thesis, front-end improvements (motivated by
recent success in the application of multi-resolution spectral analysis for voice biometrics
applications [160, 161]) are applied and measured for the first time to BK speaker
modelling, in the form of Infinite Impulse Response-Constant Q (IIR-CQT) Mel-frequency
cepstral coefficients (ICMC) [160]. Performance using CVs increases in terms of equal error
rate (EER, measuring speaker recognition) and diarization error rate (DER, measuring
SD) when tested using a dataset formed of TV content [155]. The promising results of
our previous work encouraged incorporating ICMCs to our baseline system analysis, so
that their benefit with regard to MFCCs could be measured in the context of diverse SD
domains included in the first DIHARD challenge.
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Figure 6.1: Comparison of MFCC and ICMC features for different KBM sizes when
using an oracle selection of clustering solutions (those which minimise DER) on the
development set of the DIHARD dataset.

6.3.2 Experiments and results

Baseline performance was measured by means of two different SD experiments on the
development partition of the DIHARD dataset. Results were compared using different
methods to determine the number of speakers and, at the same time, comparing MFCC
and ICMC-based front-ends. First, the baseline system was applied as is following our
Albayzin 2016 best configuration [155]. In the second experiment, DER was obtained by
selecting, in an oracle manner, the clustering solution generated by our baseline AHC
algorithm that maximizes performance on a per-session basis.

Elbow-based speaker estimation

In this experiment, the full baseline pipeline was applied to the DIHARD development
set, using an elbow criterion [149] to determine the number of speakers. MFCCs achieved
a DER of 44.5% while ICMCs reached a 44.8%. While performance was poor, the
differences between front-ends were small and non-conclusive as to determine which
features to use in our approach to the DIHARD dataset.

Oracle speaker estimation

Figure 6.1 illustrates the DER1 profiles of our baseline system when the number of
speakers is estimated in an oracle manner as a function of the KBM size α. Curves
are plotted for MFCC and ICMC based front-ends. The best performance is achieved
for MFCCs with a KBM fixed at α = 30% with a DER of 19.7%. The tendency for

1Note DER is calculated without any forgiveness collar as was indicated for the DIHARD evaluation.
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MFCC features is nonetheless almost constant, and similar levels of performance are
achieved with both small and large KBM sizes. On the other hand, results based on
ICMC features achieve better performance at 19.3% DER with a KBM of size α = 10%.
The use of larger KBM sizes for ICMC features degrades the performance.

6.3.3 Identifying the baseline strengths & weaknesses

The comparison of the results for the two experiments reported above (automatic vs.
oracle estimation of the number of speakers and front-end comparison) showed a small,
even negligible difference between MFCCs and ICMCs when an automatic criterion is
used to determine the number of speakers per session. Nonetheless, the oracle speaker
estimation experiment showed ICMCs to provide a slight improvement over MFCCs. At
the same time, the importance of the final size of the KBM is different for both front-
ends. MFCC-based KBMs do not seem to be affected by bigger KBM sizes, suggesting
the composition algorithm (Section 3.2.2) might not be working appropriately in this
challenging dataset. However, the same KBM composition algorithm seems to work
better for an ICMC-based front-end. Smaller KBMs sizes are capable of capturing more
discriminative acoustic information when using ICMCs, hence benefiting performance.
The small but positive difference in the oracle baseline performance, where the variability
in the trend of the KBM size suggests the discriminative KBM composition process is
working better for ICMCs than for MFCCs, and the knowledge gained from our work
reported in Chapter 4, suggests ICMC features could potentially lead to better overall
performance. The ICMC front-end was consequently chosen for our DIHARD work.

On a different line, the results obtained by selecting the number of speakers in an
oracle manner brought error rates to DERs below 20%, which is less than half that
of the fully automatic baseline. This large difference in results suggests that, while
the applied AHC algorithm is capable of generating diarization hypotheses that offer
much more reasonable performance, the clustering selection algorithm was consistently
choosing a sub-optimal number of clusters. This evidence highlighted the importance of
appropriately determining the right number of clusters as a possible path to improving
the performance. Keeping into account the overall objective of the work reported in
this part of this thesis, i.e. remaining independent of external training data, motivated
the study of alternative methods to more reliable and domain-robust approaches to
clustering and to the estimation of the number of clusters/speakers. In particular, the
work reported in the remainder of this chapter illustrates efforts to adapt and leverage
spectral clustering (SC) [192] in its first application to BK-based SD.
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6.4 Spectral clustering

This section relates to the enhancements to BK-based SD explored using SC. An intro-
duction to SC and its possible benefit to our work in the DIHARD challenge is given in
Section 6.4.1. Its application to BK speaker modelling is detailed in Section 6.4.2. Last,
its use as a single-speaker session detection module is proposed in Section 6.4.3.

6.4.1 Introduction and motivation

Clustering, i.e. the partitioning into dissimilar groups of similar items, is an extremely
challenging problem that has been explored in literature for decades [193]. Common
approaches to clustering can be divided into two branches: partitional and hierarchical.
Most approaches to clustering in SD fall within the second category. Hierarchical
clustering algorithms perform an iterative, nested, agglomerative (bottom-up) or divisive
(top-down) process upon data points, e.g. segment/cluster level speaker representations,
acoustic features, etc. in the case of SD. The reason why hierarchical clustering is more
widely applied to SD than that of partitional clustering may relate to the easier estimation
of the normally unknown number of speakers by clustering derived from the former rather
than by the latter. The nested character of hierarchical approaches enables for the design
of simpler mechanisms to stop the clustering process, thanks to the explicit relationship
that exists between clusters merged/divided by successive iterations of the AHC algorithm.
Such methods usually depend on the tuning of a threshold θ on development data to
determine the stopping criterion of the AHC process, whereby the number of speakers per
session is determined implicitly. On the other hand, partitional approaches to clustering
operate differently. Partitional methods generate a clustering hypothesis by estimating a
division of the data into k̃ clusters by operating in a non-hierarchical, and non-nested
fashion. These partitional methods are powerful clustering tools which, however, require
the development of heuristics that allow for the explicit estimation of the number of
speakers for their application to SD.

A partitional method explored in the recent years in its application to SD is that
of SC [192]. SC formulation starts off by simple premise: same/different-class data
points result in high/low similarities when compared to form an affinity-matrix. When
operating upon perfectly separable data points, SC affirms that the eigendecomposition
of a symmetric affinity-matrix leads to a set of orthogonal eigenvectors. At the same
time, the number of non-zero eigenvalues indicates the dimensionality of the canonical
decomposition of the complete data space. For the case of SD then, perfectly separable,
speaker-discriminative representations would lead to an orthogonal representation of the
speaker space in which the representative dimensionality would correspond to the number
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of speakers. However, it is known that the speaker-discriminative representations used in
SD are far from independent. In such a scenario, the estimation of the necessary number of
classes that represent a discriminative speaker space becomes problematic. In estimating
the number of speakers by means of SC, multiple approaches in the literature have
leveraged the information that lies in the relationship between eigenvalues [119, 120,194].
In particular, SC has proven to be a reliable solution to clustering when using highly
training-dependent speaker embeddings leading to, at the time of its publication in [8],
state-of-the-art performance in the SD of telephony data.

Motivated by the results of the BK-based baseline SD system in Section 6.3.3,
in which the AHC algorithm seemed incapable of estimating the optimal number of
speaker clusters, the remainder of the work in this chapter explores the use of SC in
its first application to the training-independent BK-based SD. The extent to which
BK-based speaker representations in the form of cumulative vectors (CVs) are sufficiently
discriminative to result in a space of reduced dimensionality rightly related to the actual
speaker space is studied. The relationships between eigenvectors and eigenvalues are
assessed and applied to the BK-based SD pipeline by: (i) substituting the AHC algorithm,
(ii) proposing the coupling of the number of speakers estimation based on SC with the
AHC algorithm, and (iii) developing an eigenvalue-based solution to the detection of
single-speaker sessions.

6.4.2 Spectral clustering and BK speaker modelling

Spectral clustering is a popular clustering technique in the literature. Out of the
implementations that exist within the so-called spectral methods [195], we explored in this
work the approach proposed by Ng et al. [192]. The general idea of this implementation
is to perform clustering using the eigenvectors corresponding to the top eigenvalues
estimated from an affinity-matrix derived from the similarities between data points
being clustered. The process can be summarised in three stages (following the notation
proposed in [195]):

Pre-processing

Normalization and smoothing operations are applied to the affinity-matrix to carefully
increase its homogeneity. A number of further refinements also applied prior to the
eigendecomposition, in an attempt to highlight leading to improved SD performance [8,119,
120]. They are based on the temporal locality of speech data. Contiguous speech segments
uttered by the same speaker should have similar speaker-discriminative representations
and hence similar values in the affinity-matrix.
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In the case of BK-based speaker modelling the affinity-matrix is defined as follows.
Given a test audio file, it is represented by a sequence of M CVs of the KBM dimension
N , that compose a matrix J of dimension M -by-N . The M -by-M affinity matrix K is
determined using the cosine similarity so that:

K = 1−Dcos(J, JT ) (6.1)

The pre-processing steps applied to the affinity matrix K are illustrated in Figure 6.2
which shows an example of the process computed for DIHARD development set file
DH_0028.wav (with the original affinity matrix K presented in Fig. 6.2a). They include
the following operations:

• Gaussian blurring [196]: Applied with standard deviation σ, the goal of this
low-pass filter is to smooth the affinity matrix to reduce inconsistencies resulting
from noisy representations, and filter out high-frequency components (Fig. 6.2b).
The application of this technique may result counter-intuitive when thought of in
an oracle manner: perfectly discriminative speaker representations could transition
rapidly from one speaker to another within the course of a conversation, and it
would not be desirable for a diarization system to diminish the changes in the
affinity matrix generated by these transitions. Its use here, however, relates more
to its common role in the task of edge detection [197]. Speaker-discriminative
representations are admitedly not perfect and instead typically exhibit a noise
component, which degrades the clarity of the edges derived from transitions between
speakers.

• Row-wise thresholding: Similarities below the p-percentile are discarded and
set to 0 on a row basis to discard similarities that are very low. These are assumed
to belong to comparisons between CVs that represent different speakers (Fig. 6.2c).

• Symmetrization: This operation restores the symmetry lost in the previous step,
which is important for the process of eigenvector decomposition that will be applied
to the final affinity matrix (Fig. 6.2d). When applied to the affinity matrix K, it
results in a matrix where2:

Yij = max(Xij , Xji) (6.2)

• Diffusion: This normalization step was introduced in [8], which draw inspiration
from the concept of Diffusion Maps [198](Fig. 6.2e). The intention behind its
use is similar to that of the Gaussian blur in the first step, i.e. highlighting the

2Note we use a X and Y from hereon as input and output of the operation, respectively
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(a) Original affinity matrix (b) Gaussian blur

(c) Row-wise thresholding (d) Symmetrization

(e) Diffusion (f) Row-wise max normalization

Figure 6.2: Affinity-matrix of cosine similarities between CVs for the file D_0028.wav.
Refinement operations are applied to the result of the comparison between the BK-based
representations (a) to smooth and enhance patterns, presumably representing to speaker
identities, visible in the similarity space.
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differences in the speaker patterns of the now-enhanced affinity matrix. This is
achieved through a simple multiplication between transposed affinity matrices as
follows:

Y = XXT (6.3)

• Row-wise max normalization: A final re-scaling step that brings all activations
in the affinity matrix to a more homogeneous level(Fig. 6.2f) before its eigendecom-
position. The operation is applied for every row k of the affinity matrix, so that:

Yij = Xij

maxk(Xik)
(6.4)

Spectral mapping

Eigenvalue decomposition is performed upon the enhanced affinity-matrix, returning
eigenvectors and their respective eigenvalues. The motivation of this operation, introduced
in Section 6.4.1, is that data observations, i.e. the pair-wise similarities between the CVs,
live in a high-dimensional space of size M . Given perfectly separable observations, M
may be approximated by means of a subspace of singular vectors of dimension k ≤M ,
where k is the oracle number of classes, e.g. speakers in an audio session. As the real
number of speakers k is unknown in practice, techniques are necessary that estimate
a number of clusters k̃ ∼ k. A possible approach [199] relates to leveraging the ratios
between consecutive, sorted in descending order eigenvalues λ1 > λ2 > ... > λn. This
ratio may be referred to as the eigengap, and the value m which maximises it is used to
estimate the number of clusters k̃ so that:

k̃ = arg max
1≤m≤n

λm
λm+1

(6.5)

Grouping

Following the decomposition into eigenvectors and the estimation of the number of
speakers k̃, clustering can be done directly in the spectral domain. An M -by-k̃ matrix of
eigenvectors is used as a k̃-dimensional representation of the M input CVs. In this work,
and as means of alternative to the AHC algorithm, we explore the direct application of
K-means clustering using the squared Euclidean distance. Besides, the results of the BK-
based baseline system, presented in Section 6.3.2, showed a very large gap in performance
between what the baseline AHC algorithm could potentially achieve (assessed through an
experiment with an oracle estimation of the number of speakers) and what the automatic
clustering selection mechanism could generate. In a second set of experiments presented
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Figure 6.3: The eigengap resulting of the subtraction between the two first eigenvalues
λ1 − λ2 is used as a measure to detect 1-speaker sessions. Sessions in the DIHARD
development set are organized by number of speakers. A majority of the 1-speaker
sessions in the development set are separable under our thresholding criterion.

in this work, the leveraging of SC is then also proposed as a stand-alone number of
speakers estimator. The SC-based estimated number of speakers k̃ may then be coupled
with the fully-fledged AHC process, where it substitutes the baseline stopping criterion
method.

6.4.3 Single-speaker detection

The problem of single-speaker SD is not widely explored in the literature. However, the
DIHARD challenge raises this important issue by providing a LIBRIVOX audiobook
domain containing only single speakers, in addition to a few other single-speaker files
belonging to different domains. It is therefore important to accurately detect such audio
streams, which otherwise can impact significantly on diarization performance. Mistakes
in terms of number of speakers estimation are one of the most likely sources of error in SD
systems. However, the impact of under-clustering single-speaker sessions are particularly
meaningful, as they result in an excessive degradation to the performance with regard to
the real impact on the overall performance of a SD system.

In consequence, we designed a mechanism for single-speaker detection that could
continue leveraging the information derived from SC. To do so, we tackle the problem of
single-speaker session detection using the gap between the first two biggest eigenvalues λ1

and λ2. The system performs single-speaker detection from pre-clustering according to
the thresholding of the eigengap between the two largest eigenvalues. However, differently
to the method to number of speaker estimation defined in Equation 6.5, the eigengap for
single-speaker detection, illustrated in Figure 6.3, is considered as the subtraction between
the eigenvalues, so that when λ1−λ2 exceeds a threshold θ, then the number of clusters is
forced to 1. Figure 6.3 presents the λ1 − λ2 score (Y-axis) for the DIHARD development
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set files sorted by the number of speakers in a session (X-axis). Also illustrated is the
empirically optimised single-speaker threshold θ. It is evident that, whilst not perfect,
1-speaker sessions are mostly separable by means of the threshold θ from the speech
files containing more speakers. These detected files will result in 0% DER, and have a
positive impact in the overall performance.

6.5 Experimental setup

This section elaborates on the dataset in Section 6.5.1, and feature extraction in Sec-
tion 6.5.2. A description of the KBM and CV extraction configuration is given in
Section 6.5.3, while clustering parameters are described in Section 6.5.4. Metric details
are presented in Section 6.5.5.

6.5.1 Dataset

All experimental work reported in this chapter was performed with the standard DIHARD
database [14,200,201]. The development set contains 164 audio documents from 9 different
domains. The test set contains 172 audio documents from domains that comprise those of
the development set and extra unseen scenarios, e.g. restaurant conversations. All results
correspond to the use of ground-truth VAD annotations, i.e. track 1 of the DIHARD
challenge.

6.5.2 Feature extraction

Baseline acoustic features are MFCCs comprising 19 static coefficients computed from
windows of 25ms with 10ms overlap and with a filterbank of 20 channels. ICMC features
use longer windows of 128ms, also with 10ms overlap.

6.5.3 KBM and cumulative vector parameters

The KBM is determined from a pool of Gaussians, each estimated using windows of
between 0.5 to 2 seconds duration set dynamically so as to ensure a minimum of G = 1024
components. The size of the KBM N after Gaussian selection is set to an empirically
optimised percentage of the number in the original pool. For the baseline system α = 85%
is considered following our work in [155]. As a result from the analysis presented in
Section 6.3 (and illustrated in Fig. 6.1) α is finally set to α = 10% for the remainder of
the experiments.Segment CVs are estimated using 3s windows with 2s overlap. The top
number of Gaussians per frame is set to M = 5.
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6.5.4 Clustering parameters

AHC clustering is initialised with Ninit = 25 clusters. Based on the distribution of the
number of speakers per document on the development set, the maximum number of
output clusters is set to 10.

For SC and the operations described in Section 6.4.2, some parameters are optimised
using the development set. First, with regard to the refinement operations the standard
deviation σ used in the Gaussian blur operation is set to σ = 1. The percentile p = 40 is
determined to be the most effective for row-wise thresholding. Second, only eigenvalues
larger than a threshold δ = 2.1 are used to compute eigengaps that are used to decide the
number of clusters. This is done to mitigate the effect of the so-called noise eigenvalues
that are meaningless in the eigenspace obtained from the affinity matrix. If not limited,
these values may produce anomalously large eigengaps, resulting in excessive clusters.
Finally, the single-speaker detection threshold is set to θ = 410. While this threshold,
illustrated in Figure 6.3, includes some false alarms from files that have more than 1
speaker in the development set, this value offered the best trade-off between detection
and performance.

6.5.5 Evaluation

System performance is was officially assessed using two different metrics. The primary
metric was the standard diarization error rate (DER) with no forgiveness collar. Intervals
containing overlapping speech regions were also scored. On the other hand, a secondary
metric derived from frame-wise mutual information (MI) [14]. MI considers system
evaluation from the stand-point of clustering evaluation. Both diarization reference and
hypothesis thus compared as to score the mutual information in bits between the two
labelings.

6.6 Results

Results presented in Table 6.1 show diarization performance measured in terms of
the DER for both development and evaluation sets. Experiments using the baseline
configuration (lines 1-2) as described in Section 6.3.2 use the same configuration as in
prior work [155], with a relative KBM size of α = 85%, whilst comparing two different
front-ends. Performance is very poor and non-conclusive, and only showing a good result
on domain D2 of court recordings. However, the analysis elaborated in Section 6.3.2
motivates the choice of the front-end for the subsequent experiments. Figure 6.1 shows
ICMC features lead the baseline AHC algorithm to a better performance when an oracle
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stopping criterion is used. At the same time, ICMC features show optimum performance
for a KBM size of α = 10%. Consequently, ICMC coefficents and α = 10 are used in the
remainder experiments (lines 3-5).

The results in the following sections explore the enhancements proposed in Sec-
tion 6.3.3. Following the difference between the oracle and automatic estimation of the
number of speakers presented in Section 6.3.2, it was decided to put the focus on the
clustering stage of the BK-based SD system, as well as the approach to estimate the
number of speakers. In particular, the results derived from exploring SC as a complete
clustering approach are in Section 6.6.1. The results of using SC as a number of speakers
estimator is described in Section 6.6.2. Section 6.6.3 describes results using the single-
speaker detector approach. Finally, Section 6.6.4 presents some conclusions about the
final system and its performance.

6.6.1 Spectral clustering upon CVs

Results in line 3 of Table 6.1 are obtained when using SC in place of AHC and elbow
cluster selection. Prior to its use, refinement operations as described in Section 6.4.2
are applied to the affinity matrix derived from the M CVs of a session. This system
significantly outperforms the BK-based baseline SD system by applying a K-means
clustering upon the truncated eigenvectors of dimension k̃. The number of partitions
k̃ is estimated as explained in Section 6.4.2. The use of SC upon CVs leads to a 29%
relative reduction in DER over the baseline for the evaluation set. The first set of results
including SC-derived information after the baseline analysis verifies the intuition that lies
behind the application to our problem of SC: the process of eigendecomposition of the
affinity matrix is capable of retrieving eigenvectors that are capable, upon truncation, of
representing the speaker identities in the session. These results are proof of validity of
the application of SC to a BK-based SD pipeline, constituting a domain-robust clustering
alternative to AHC.

6.6.2 Spectral clustering as a number-of-speakers estimator

The performance of the baseline system reported in Section 6.3.2 highlighted not only the
poor performance of the elbow criterion as number-of-speakers estimator for the DIHARD
dataset, but also the much better performance generated by AHC if an optimum clustering
solution could be retrieved. Given that the approach to SC applied here estimates the
number of speakers k̃ through an independent step in the clustering process, we could
leverage this information and use the estimated number of speakers k̃ as a stopping
criterion for the AHC algorithm. The results obtained are reported in line 4 of Table 6.1.
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Performance improves again, this time giving a relative improvement of 37% over the
baseline system. This approach verifies the robustness of the AHC solution used in
the baseline system, highlighting the fundamental importance of estimating reliable the
number of speakers in a SD pipeline. The reason as to why this approach outperforms
that of the previous experiment (line 3 of Tab. 6.1) may be related to a more robust
initialisation of the AHC algorithm. The system explained in Section 6.6.1 performs
k-means directly upon truncated eigenvectors derived from CVs modelled on segments
of 3s of speech data. However, here, initial clusters in the form of CVs are extracted
from speech contents that are much larger, thereby possibly leading to less errors in the
clustering process.

6.6.3 Evaluation of the single-speaker detector

After improving the BK-based SD system performance by means of combining the baseline
AHC algorithm with a number-of-speakers estimator based on SC, we now evaluate
the effect of the single-speaker session detector proposed in Section 6.4.3. The result,
presented in line 5 of Table 6.1, achieves a slight increase in the development set, but
translates to a benefit of over 1% DER with regard to the previous best performance on
the evaluation set. Its effectiveness allows us to achieve a relative improvement of almost
40% over the baseline performance.

6.6.4 Domain-based performance

Table 6.1 also shows granular results for each of the 9 domains D1-D9 (consult Section 6.2
for domain details) contained in the development set. The results presented in this section
show improvements in diarization performance for most domains through application
of system enhancements derived from SC in its first application to BK-based SD. The
exception is D2 (SCOTUS, composed of recordings at court sessions), for which the
baseline system performs best. This is attributed to the tendency of the SC selection
algorithm to underestimate the number of clusters. However, the decrease in performance
in this domain is small when compared to the gains achieved in other domains such
as D3 or D5. At the same time, errors in some domains remain high, i.e. D1 and
D7. D1 corresponds to the SEEDLINGS domain that comprises children at very early
stages of their oral communication development. It is clear that SD technologies are
not completely ready for this kind of task and that further work is required in order to
tackle these domains more reliably. On the other hand, D7 consists of meeting domains
from the NIST RT evaluations, widely acknowledged as difficult in the literature [191].
Of particular note are improvements for D8. Documents corresponding to this domain
contain only a single-speaker where the novel single-speaker detection mechanism is
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Evaluation set DER MI
Team A [99] 23.73 8.44
Team B [202] 24.56 8.47
Team C [117] 25.07 8.46
Team D [86] 26.02 8.35
Team E [203] 26.90 8.34
Team F 27.61 8.33
Team G 28.52 8.32
EURECOM [180] 29.33 8.33
Team I [204] 32.76 8.29
Team J [205] 33.15 8.39
Team K 33.79 8.14
Team L 36.73 8.18
Team M 37.46 8.04

Table 6.2: Comparison in performance of the evaluation set for the best submission of
each team in the final classification. Results are reported in terms of the two official
metrics of the challenge, i.e. diarization error rate (DER, primary metric) and mutual
information (MI, secondary metric). The submission reported in this chapter obtained a
mid-table result and compares favourably to the best performing systems considering the
extensive amounts of training data and computing time required for the training phase
of most other approaches.

especially effective in reducing the error rate.

6.6.5 Results in the official DIHARD classification

Results for the DIHARD challenge are presented in Table 6.2. These correspond to
performance on the evaluation set, and have been filtered to show only the best submissions
of each respective team. Performance is presented in form of the DER and MI which
were used, respectively, as primary and secondary metrics. Results in the remainder of
this section are, however, discussed exclusively with regard to the DER.

Direct comparisons are difficult across systems on account of differences not only
in the SD pipeline used by each competitor, but also differences in the training data
employed. However, the results reported by the top performing systems make for an
interesting analysis. Team A [99] obtained a final DER of 23.7% achieved using a final
Variational Bayesian (VB) resegmentation step without which the DER would be 25.5%
DER. Team B [202] used speech denoising that provided a rough improvement of 0.7%
DER on the development set. Assuming that a similar effect applied to the evaluation
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set, its performance without denoising would degrade to a DER of 25.2%. Team C [117]
achieved a DER of 25.07% DER after merging data and pseudo-labels derived from the
evaluation set with the development data for training, without which they would have
achieved a DER of 25.3 %. These results point to the existence of an apparent lower
bound of performance in the evaluation set of around 25-26% DER when additional,
speaker modelling independent, finely tuned processing steps are not included in the SD
pipeline. In contrast, a 29.3% DER is achieved by the BK-based SD submission presented
here which, to the best of the author’s knowledge, was the only submission from all
competing systems that does not use any external training data. The independence of
training data does, however, not come free of cost as the performance for EURECOM’s
system is a 3-4% worse in terms of DER than that achieved by competitors.

6.7 Summary

This chapter reports the improvements applied to the BK-based SD system in the context
of EURECOM’s participation [180] to the first DIHARD challenge in domain-robust
SD. While the baseline system is shown to perform poorly, the enhancements reported
in this chapter lead to substantial improvements. These enhancements include features
extracted using a perceptually motivated, variable spectro-temporal decomposition.
While they were already discussed in Chapter 4 in the context of broadcast news, here
their contribution to BK speaker modelling is verified in the context of the challenging
multi-domain DIHARD dataset. Additional enhancements are a robust approach to
cluster selection based upon spectral clustering and a mechanism designed to detect
single-speaker segments. When combined, these enhancements bring a relative reduction
in the diarization error rate of almost 40% over the baseline system. Performance,
although lower than that of top-ranked systems, still compares favourably. This is
especially so given that the proposed system requires no background data and is highly
efficient, with execution times in order of 63 times faster than real time when running on
a consumer-grade desktop computer.

With respect to the goal of domain-robustness, the proposed system based on BK mod-
elling is a ready-to-run or off-the-shelf solution to SD. The estimates of SD performance
reported in this chapter are likely to be reasonably reliable measures of performance if
the same system were to be tested using data collected in other domains; the system is
not dependent on optimisation using domain-specific background data beyond that in
the development set and is instead tuned automatically at runtime. This is seen as a
significant advantage over competing systems. This quality of the BK-based approach
should be of appeal to practical applications of SD technology which is, after all, often
an enabling technology rather than the final application.
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Chapter 7

System combination

While stand-alone BK-based diarization has proven to be an efficient, domain-robust,
competitive alternative to state-of-the-art systems, its performance stands a step behind
some competing techniques. BKs are a fundamentally different approach especially with
regards to solutions based on neural embeddings. Such different solutions may then be
complementary. The Albayzin 2018 Speaker Diarization Challenge provided an ideal
opportunity to investigate this research hypothesis. It was explored in the context of the
ANR ODESSA joint submission.

This chapter presents and compares different state-of-the-art neural embeddings
systems using the Albayzin 2018 Speaker Diarization Challenge dataset. The comple-
mentarity of a BK-based speaker diarization (SD) system is then assessed by means of
different approaches to SD system combination in the context of closed-set and open-set
training conditions. The remainder of this chapter is structured as follows. Section 7.2
details the processing blocks which compose the different diarization solutions. Section 7.3
introduces the problem of SD combination and the two particular techniques explored in
the work reported here. Sections 7.4 and 7.5 report the experimental setup and systems
with results. Finally, Section 7.6 provides a summary of the work and core findings.

7.1 Motivation and context

The previous chapters of this thesis explore enhancements that were applied to different
processing modules that constitute the baseline SD system (defined in Section 3.7). These
enhancements all bring substantial improvements to performance. In some cases, despite
the advantages of the BK-based system, and depending on the scenario, it can still fall
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slightly behind the very latest deep-learning solutions based on speaker embeddings
(shown by results reported in Chapter 6).This tends to be the case when large amounts
of matched, external training data are available.

However, the fundamentally different approach to SD embodied by BK speaker
modelling raises the question of whether BK-based and neural network-based diarization
systems can be complementary. The response is not obvious since, thanks to training
based on extensive external data, neural network-based embeddings are expected to be
more discriminative than BK-derived representations. Their combination with BK-based
approaches might then not be beneficial. However, since BK-based solutions leverage the
modelling of the in-session acoustic space, the combination may still help as an aid to
clustering. The work presented in this chapter aims to determine whether or not the two
technologies can be successfully combined.

The answer to this question falls within the problem of system combination/fusion. In
contrast to other problems, the fusion of SD systems and/or their outputs is a especially
challenging task due to the variability in both their fundamental operation and their
outputs. This is probably one reason for why SD system fusion has not attracted
significant interest in the research community. Notable exceptions include [206, 207]
which provide a starting point for the work reported here.

The context of the research reported here relates to the ANR ODESSA submission
to the Albayzin Speaker Diarization Challenge 2018, results of which were published
in [208]. Albayzin evaluations cover a range of speech processing tasks that include
search on speech, audio segmentation, speech-to-text transcription, and SD. While the
2016 edition allowed us to perform some work upon the feature extraction stage of our
baseline system (reported in Chapter 4), the 2018 edition [13] includes newly collected
and transcribed audio content from the RTVE2018 database [209], composed of TV
shows covering a wide range of topics from the Spanish public TV network. Further
details of the dataset can be found in [13,209]. Two training conditions were proposed.
First, a closed-set condition permits the use of only provided training data. Interestingly,
the audio files in the provided set are composed by content of TV shows that, while
belonging to the broadcast news/programs domain, differ significantly from that in the
development and test set. The closed-set condition thus presents a significant challenge
to domain-dependent neural embeddings. The open-set condition permits the use of
any kind of data. Here, neural embeddings are expected to deliver better performance
since they can benefit from external training data. This is in contrast to the BK-based
approach.

Two different SD fusion approaches were tested according to the training condition
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Figure 7.1: Diarization pipeline adopted by the proposed individual systems. Final
systems were composed as combinations of the proposed modules.

and whether or not the systems under fusion provide synchronous outputs at different
stages if the system pipelines. For the open-set condition, a common temporal resolution
across systems is enforced and fusion is performed at the segment-level during clustering,
allowing to jointly optimise the resulting system in an approach similar to that employed
in [99]. For the closed-set condition, on the other hand, an arbitrary time resolution was
used. This choice was made in order to mitigate the expectedly poorer performance of
neural embeddings trained with limited data (and consequently respecting the systems
independent and optimal configurations). Systems are combined at the diarization
hypothesis level following a label merging approach inspired from [206].

7.2 Baseline system modules

This section introduces variations considered for each of the processing modules used
to compose the diarization systems before their combination. The definition of the SD
systems is presented as a composition of building blocks rather than complete pipelines
as the fusion experiments included systems that vary by as little as a single module,
e.g. two complete pipelines might differ only in a segmentation or clustering approach.
These blocks, illustrated in Figure 7.1, include feature extraction, voice activity detection,
segmentation, segment and cluster representation, clustering and resegmentation, and
are defined in the following sections.

7.2.1 Feature extraction

Two different acoustic frontends were used (1st module of Fig. 7.1). They include (i) a
standard Mel-frequency cepstral coefficient (MFCC) [19] front-end and (ii) an infinite im-
pulse response - constant Q (IIR-CQT), Mel-frequency cepstral (ICMC) coefficient [160]
front-end. The latter was used following the results reported in Chapter 4 [155] which
proved beneficial to the BK-based SD system.
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7.2.2 Voice activity detection and segmentation

All systems share a common voice activity detection (VAD) module (2nd block of
Fig. 7.1). VAD is modelled as a supervised binary classification task (speech vs. non-
speech), and addressed as a frame-wise sequence labelling task using a bi-directional long
short-term memory (LSTM) network operating on MFCC features, following the work
in [44]. As for segmentation (3rd module of Figure 7.1), two systems were explored: (i) a
straightforward uniform segmentation which splits speech content into 1 second segments
and (ii) segmentation via the detection of speaker change points. The speaker change
detection (SCD) module is that proposed in [59]. Similarly to the VAD module, SCD is
also modelled here as a supervised binary sequence labelling task (change vs. non-change)
by means of a bi-directional LSTM similar to that of the VAD module. Both VAD and
SCD systems were provided by LIMSI.

7.2.3 Segment/cluster representation

This section describes the speaker modelling techniques used for segment and cluster
level representations (4th module of Fig. 7.1).

Binary key speaker modelling: BK speaker modelling is used as a segment/cluster
representation in the form of cumulative vectors (CVs) as introduced in Section 3.4.

Triplet-loss neural embedding: This neural embedding architecture is the one intro-
duced by LIMSI for speaker recognition in [57], further improved in [210]. The embedding
space is generated by training based on the triplet loss paradigm [58] using a bi-directional
LSTM recurrent neural network (RNN). In the generated Euclidean space, two sequences
xi and xj of the same/different speaker(s) are expected to be close/far to/from each
other according to their angular distance. These neural representations were provided by
LIMSI.

x-vectors: This method [211] uses a deep neural network (DNN) which maps variable
length utterances to fixed-dimensional embeddings. The network consists of three main
blocks. The first is a set of layers which implements a time-delay neural network
(TDNN) [212] which operates at the frame level. The second is a statistics pooling layer
that collects statistics (mean and variance) at the utterance level. Finally a number of
fully connected layers are followed by the output layer which has as many neurons as
the number of speakers in the training dataset. The output layer neurons use soft-max
activations. All other layers use ReLu activations. The network is trained to discriminate
between speakers in the training set. Once trained, it is used to extract utterance-level
embeddings for utterances from unseen speakers. The embedding is just the output of
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one of the fully connected layers after the statistics pooling layer.

7.2.4 Clustering

Two different approaches to clustering (5th block of Fig. 7.1) are used and described
here.

Agglomerative hierarchical clustering (AHC): The AHC algorithm is that de-
scribed in the baseline system and detailed in Section 3.7.

Affinity propagation: As proposed for its application to speaker embeddings in [132],
an affinity propagation (AP) algorithm [213] is the second clustering method. In contrast
to other approaches, AP does not require a prior choice of the number of clusters. All
speech segments are potential cluster centres (exemplars). Taking as input the pair-wise
similarities between all pairs of speech segments, AP will select a set of exemplars and
then associate all other speech segments to one of them. In our case, the similarity
between the ith and jth speech segments is the negative angular distance between their
embeddings.

7.2.5 Resegmentation

A GMM-based resegmentation process is performed to refine the time boundaries of the
segments generated in the clustering step. It uses the approach defined in Section 3.7.

7.3 Fusion

The process of combining outputs derived from different systems is common practice
in the closely related task of speaker recognition. Many submissions to the NIST SRE
evaluations follow such approaches to combine a host of different classifiers [214, 215].
Speaker recognition trials involve a claimed identity, a test audio sample and a score.
Fusion techniques are typically applied at the score level and can lead to substantial
improvements in performance.

The problem of fusion of SD systems is considerably more complex. The difficulty
steams from the temporal aspect inherent to SD. A SD pipeline, as illustrated in Figure 7.1,
is commonly composed by several processing modules. Each one of these may operate
differently but, more importantly in terms of fusion, they may produce unsynchronous
outputs, e.g. different approaches to voice activity detection (VAD) could lead to different
speech/non-speech boundaries. The same is true for other components, e.g. segmentation.
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One solution to this problem is straight-forward: different modules and system can be
configured to provide perfectly aligned labels. Outputs could then be fused at the score
level following techniques based on the linear combination of systems similar to the
approaches used for speaker recognition [216].

However, this strategy is not always convenient. While pre-computed VAD or
segmentation inputs may be shared between different systems, enforcing such shared
modules across individual system may lead to their suboptimal performance. One system
could, for example, be optimised to operate upon a sequential segmentation, while another
may employe a SCD-based mechanism. An alternative approach in this case is to perform
fusion at the hypothesis level, e.g. upon speaker labels.

In regard of these scenarios, and depending on the level of integration existing between
the individual SD systems, two approaches to fusion were explored. The first operates
at the similarity-matrix level and is suited to the combination of SD tightly integrated
systems producing aligned speaker labels. The second, inspired by the work in [206],
operates at the hypothesis level, is applied to systems with arbitrary alignments.

7.3.1 Fusion at similarity-matrix level

Systems sharing the same VAD and segmentation boundaries can be combined at the
similarity level as their segment-level representations are completely synchronised. In [99]
fusion is performed by the weighted sum of the similarity matrices, i.e. the matrix resulting
of the pair-wise comparison of all the segment/cluster level representations in a session,
of two segment-aligned systems before linkage agglomerative clustering. In consequence,
the fusion of the similarity matrices is considered only once per session. The approach
to similarity-matrix level fusion proposed performs in a similar fashion, but different
in that it performs fusion at every segment-to-cluster and cluster-to-cluster operation
done in the AHC algorithm. Another difference lies in the method employed to estimate
the number of speakers per session. The work in [99] operates upon an empirically
optimised threshold to determine the stopping criterion of the AHC algorithm. In the
approach proposed here, similarities matrices are also combined in the computation of
the within-class sum of squares (WCSS) of each of the clustering solutions derived by the
AHC algorithm. WCSS is then used in an unsupervised clustering selection method based
on the elbow criterion (described in Section 3.6.2 and illustrated in Figure 3.6). In this
way, the clustering process exploits information provided by each different system. These
individual systems are weighted using a parameter α which is empirically optimised to
minimise the DER for the development set. Given twoM -cluster-to-N -segment similarity
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matrices M1 and M2, a fused similarity matrix M is calculated as:

M = αM1 + (1− α)M2 (7.1)

An example of this approach to fusion is illustrated in Figure 7.2.

7.3.2 Fusion at the hypothesis level

The combination of systems with totally independent (and non-aligned) SD pipelines
is generally possible only at hypothesis level. In this work we explored hypothesis-
level combination using the approach described in [206]. Given a set of diarization
hypotheses, every frame-level decision can be merged to assign a new frame-level cluster
label represented by means of the concatenation of all labels of the individual hypotheses.
An example of this strategy is illustrated in Figure 7.3. This process results in a large
set of hypothesised speaker clusters, generally greater than the number in any single
system hypothesis. Clusters containing less than 15 seconds are discarded. The remaining
speaker clusters are modelled then by means of Gaussian mixture models (GMMs) fitted
to their respective acoustic features. A final feature level reassignment is then applied
using the GMMs derived from the hypothesis-level fusion to obtain the final diarization
hypothesis, following the approach to resegmentation defined in Section 3.7.

7.4 Experimental setup

This section gives details of the training data and the configuration of the different
modules used in the combination of the different systems.

7.4.1 Training data

For the closed-set condition, training data consists of the 3/24 channel database [12] of
around 87 hours of TV broadcast programmes in the Catalan language.

For the open-set condition, two popular datasets were used:

SRE-data: It includes several datasets released over the years in the context of the
NIST speaker recognition evaluations (SRE) [134], namely SRE 2004, 2005, 2006, 2008
and 2010, Switchboard, and Mixer 6. This dataset contains mostly telephone speech
sampled at 8 kHz (whereby test data derived from models trained on SRE-data was
previously down-sampled to 8 kHz).

VoxCeleb: The VoxCeleb1 dataset [217] consists of videos containing more than 100,000
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utterances for 1,251 celebrities extracted from YouTube videos. The speakers represent a
wide range of different ethnicities, accents, professions and ages, and a large range of
acoustic environments. This dataset is sampled at 16 kHz.

7.4.2 Development data

Systems were tuned on approximately 15 hours of audio available at the 12 sessions that
compose the partition dev2 of the RTVE2018 database, provided with human-annotated
transcriptions. These sessions belong to the Spanish TV shows “La noche en 24h” and
“Millenium”, each of roughly 1h duration and containing speech from an average of 14
speakers per session. For further details please refer to [209].

7.4.3 Modules configuration

Feature extraction: MFCCs are extracted with different numbers of coefficients
depending on the subsequent segment representation: 23 static coefficients for x-vector,
and 19 plus energy augmented with their first and second derivatives for triplet-loss
neural embeddings. The BK-based system uses 19 static ICMC features [160]. Finally,
the resegmentation stage uses 19 static MFCC features.

Segmentation: When a 1-second homogeneous segmentation is applied, segment level
representations are extracted from 3-second long speech segments. This is done by means
of including the preceding and following 1-second speech segments to the 1s segmentation
window. Alternatively, when an explicit SCD-based segmentation is applied, segment
level representations are extracted from the length derived by the SCD system.

Segment representation: For BK speaker modelling, the cumulative vector (CV)
dimension is set to α = 40% (after optimisation on the development set). Gaussians
are learned on a sliding window of 2 seconds to conform a pool with a minimum size
set of 1024. The x-vector system uses the configuration employed in the Kaldi recipe
for the SRE 2016 task1. Data augmentation by means of additive and convolutive
noise is performed for training. The dimension of the embeddings is 512, which was
later reduced to 170 using linear discriminant analysis (LDA). While probabilistic linear
discriminant analysis (PLDA) [218] is normally used as a scoring tool for x-vectors, the
limited amounts of in-domain data for PLDA training led to inconsistent performance.
Alternatively, the LDA-reduced representation of x-vectors are compared by means of
the cosine distance. For triplet-loss embeddings, trained at LIMSI, and because of the
lack of global identities in the Albayzin dataset, triplets are only sampled from intra-files

1https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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for the closed-set condition. Thanks to the consistent speaker labels used in Voxceleb,
triplets are also sampled from inter-files for the open-set condition.

Clustering: AHC is initialised to a number Ninit = 30 clusters higher than the number
of expected speakers based on the development data. The parameters of AP clustering
such as the preference and damping factor were tuned by LIMSI on the development set
with the chocolate toolkit2.

Resegmentation: It is performed with GMMs with 128 diagonal-covariance matrices.
Likelihoods are smoothed using sliding windows of 1s.

7.5 Results

Table 7.1 summarises the results obtained on the development and evaluation sets of the
RTVE2018 database. Systems are formed from the combination of the modules presented
above. Note that systems are also referred to here as submissions following the naming
convention in the context of the Albayzin 2018 Speaker Diarization Challenge. All
systems share the same VAD module, implying that the speech/non-speech segmentation
is identical for each system. Its error rate was 1.9%, composed of a missed speech rate of
0.3% and false rate of 1.6% . Results are presented for closed- and open-set conditions.
The DER is used for assessment and uses a 0.25s standard forgiveness collar. Results
are presented separately for closed- and open-set conditions in Sections 7.5.1 and 7.5.2
respectively. Performance is also compared to that of other participants, and conclusions
are drawn with regard to the influence of the combination methods in Section 7.5.3.

7.5.1 Closed-set condition

Individual systems

The first system C1c is that which employs CVs derived from BK speaker modelling. It
uses ICMC features, 1-second uniform segmentation (following the results reported in
Chapter 5), and AHC clustering. Alternatively, a stand-alone neural based approach
is used in C2c, comprising MFCC features, a bi-directional LSTM-based SCD, triplet-
loss neural embedding representation (EMB) and AP clustering. The DERs on the
development set were 12.3% and 14.1%, for systems C1c & C2c, respectively. The
performance is worse on the evaluation set, decreasing to DERs of 30.1% and 37.6%.

2https://chocolate.readthedocs.io/
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Hypothesis-level fusion

In the closed-set condition, and because of the segmentation mismatch of the best
performing single systems, combination could not be performed at the similarity-matrix
level. Hence, the combination was applied at the hypothesis level following the approach
described in Section 7.3.2. The label combination procedure followed by a GMM-based
resegmentation led to a lower DER than those of the two individual systems. The
resulting system Pc is the fusion at the diarization hypothesis level of systems C1c and
C2c. The combined hypothesis decreases the DER to 10.17% for the development set and
to 26.7% DER for the evaluation set. These results correspond to a relative improvement
of 18% on the development set and 12% on the evaluation set with regard to the best
individual system C1c.

7.5.2 Open-set condition

Individual systems

In the open-set condition, systems based on neural embeddings are expected to perform
better; they exploit large amounts of external training data. The SRE and Voxceleb
databases were used for this purpose. System C1o used MFCC features, a 1-second
uniform segmentation, x-vectors trained on SRE data and AHC clustering. Alternatively,
system C2o is based upon triplet-loss neural embeddings. It resembles the closed-set
C2c system, but where the training data was replaced with the Voxceleb data. The
DERs for the development set are 9.29% (C1o) and 11.46% (C2o). For the evaluation
set, performance decreases for C1o to 20.3% DER and C2o to 36.8% DER.

Similarity-matrix fusion

For the open-set condition the impact of combining neural embeddings-based systems
with BK-based CVs was assessed through a similarity-matrix level fusion, possible thanks
to their shared segmentation and VAD modules. The BK system is that defined above as
C1c (we may use here the system as we do in the closed-set condition as BK modelling
does not depend on any external training data). Two different system combinations were
tested.

A first combination is that of system Pp (3rd system of open-set in Tab. 7.1) which
included the BK-based diarization and the x-vector-based system C1o. The fine tuning
of the weighting factor α allowed for a tight integration in both the AHC algorithm and
the number-of-speakers estimation method. The effect of α with regard to the DER is
illustrated in Figure 7.4 (solid blue line). The contribution of the x-vector system C1o is
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Figure 7.4: Diarization error rate (DER) for the development set of the RTVE 2018
Albayzin database as a function of the weighting factors α and β used for system
combination at similarity-matrix level. α was used as a weighting factor to generate the
system Pp which combines x-vectors and BK-based CVs. β was used to measure the
inclusion of triplet-loss embeddings to the system Pp, leading to the system combination
Po.

weighted by α, whereas the BK-based system is weighted by 1-α. Following the notation
used in Equation 7.1 this fusion configuration results in fused similarity matrices MPp

calculated according to:

MPp = αMC1o + (1− α)MC1c . (7.2)

The optimal weight α = 0.98 translates into a final system in which the x-vector system
C1o contribution dominates. However, the inclusion of the BK-based CVs still increases
performance. The DER is reduced from the 9.3 for system C1o on the development set to
7.7%, a relative improvement of 18%. For the evaluation set the system combination Pp
delivers a DER of 18.7%, from the 20.3% obtained for the system C1o alone. While the
improvement is smaller than that for the development set, it still constitutes a relative
improvement of 8%.

The second approach to combination in the open-set aims to evaluate the benefit of
a triplet-loss embeddings based system to the previously optimised fusion of x-vectors
and CVs, fused system Pp. The motivation was not only related to the combination
of neural embeddings and BK-based diarization, but also to the final joint-submission
of the ODESSA partners in the open-set condition. In order to include the triplet-loss
neural embeddings in the new system combination, its baseline segmentation based on
a bi-directional LSTM and used on system C2o needed to be adapted to the 1-second
homogeneous segmentation used by the other systems included in Po. This was necessary
in order to provide the alignment required for fusion at the similarity-matrix level. The
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resulting system, labelled C3o in Table 7.1, suffered a degradation in performance with
regard to C2o. The DER decreased from 11.4% to a 26.68% for the development set and
from 36.76% to 50.51% for the evaluation merely by the segmentation change applied
to the system. Despite this decrease in performance it was decided to explore the
extent to which a very lightly-weighted inclusion of a third system could be beneficial.
Therefore the same approach to combination used for system Pp was applied here, this
time as a function of a second weighting factor β. The resulting system is referred to as
Po. Following the notation in Equation 7.1, the similarity matrices MPo were derived
according to:

MPo = βMPp + (1− β)MC3o . (7.3)

Optimisation results for β are illustrated in Figure 7.4 (dashed red line). Similarly as
for system Pp, optimal performance is achieved for a weight of β = 0.98. Performance
for the development set increased from 7.7% DER to a 7.2%, bringing a 7% relative
improvement, which is acceptable considering the poorer performance delivered by C3o
when using a suboptimal segmentation. The trend here, however, shows that the potential
benefit of the inclusion of such a system was nonetheless more doubtful with regard
to the standalone performance of Pp. Slightly smaller values of β would lead to large
degradation in DER. Results for the evaluation confirmed the suboptimality of this fusion
technique due to the inclusion of C3o leading to a DER of 25.99%.

7.5.3 Conclusions and results in the challenge

The official results of the Albayzin 2018 Speaker Diarization Challenge for the evaluation
set are presented in Table 7.2 for 3 different scenarios: Table 7.2a presents the results on
the closed-set condition for the submitted primary systems whereas Table 7.2b shows
the equivalent for the open-set condition. Table 7.2c illustrates the results of the best
system submitted by each participant in the challenge.

Closed-set training is a scenario in which a BK-based SD system benefits from
its independence from external training data. In particular, the language mismatch
between training (in the Catalan language) and testing (in the Spanish language) data
subsets reinforces the relevance of the training-independent BK-based approach, even
as to raise the question of which system is complementing which. In fact, the BK-
based standalone system C1c outperformed the triplet-loss embeddings system C2c used
for combination. As with regard to system combination, hypothesis-level fusion [206]
allowed for separate systems may be tuned independently to their optimum performance
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Team DER
CP1 [219] 17.27
Ours (Pc) 26.67
CP3 [220] 26.70
CP4 [221] 32.20
CP5 [222] 34.66
CP6 [223] 39.09

(a)

Team DER
Ours (Po) 25.99
OP2 [223] 28.65
OP3 [224] 32.20
OP4 [225] 34.66

(b)

Team DER
CP1 [219] 17.27

Ours (C1o) 20.28
CX3 [220] 25.46
OX4 [223] 28.18
CX5 [222] 28.74
OX6 [224] 30.80
OX7 [225] 30.96

Ours (Pp) 18.71

(c)

Table 7.2: Official results for the evaluation set of the Albayzin 2018 Speaker Diarization
Challenge in terms of DER (%). (a) and (b) report the results of the primary submissions
on the closed- and open-set conditions, respectively. (c) presents the results obtained by
the best systems per participant (primary or contrastive). Team name notation for other
participants denotes its training condition (C is for closed-set and O is for open-set) and
system (P for primary and X for contrastive).

before their combination. Results for the closed-set condition (Tab. 7.2a) highlight the
complementary character of the approaches by obtaining a 2nd best place for the fused
system Pc.

Results for the open-set condition shown in Tab. 7.2b show the benefit of using a
similarity-matrix level approach to fusion. Our submission Po including state-of-the-art
x-vectors, CVs and triplet-loss embeddings (C1o, C1c and C3o in Tab. 7.1), obtained the
best result with a DER of 25.99% and the 1st place on the open-set condition.

Despite this result, performance of Po was impacted by the poor performance of
system C3o for the evaluation set. The potential of the fusion of a BK-based and x-vectors
SD systems is nonetheless illustrated in the last row of Table 7.2c for system Pp. The
inclusion of BK-based representations helps increase the robustness of a state-of-the-art
x-vector system as is C1o, which has a stand-alone performance of 20.28% DER. The
resulting system Pp leads to a final DER of 18.71%, and an 8% relative improvement,
achieving the 2nd best performance for all submissions to the challenge (Tab. 7.2c).

This improvement in performance provided by the BK-based SD system in this scenario
demonstrates its capacity to complement state-of-the-art speaker embeddings in both
hypothesis-level and similarity-matrix-level approaches to SD fusion. The work presented
in this chapter suggests that different SD solutions might be capturing complementary
information and points towards the benefit of SD system fusion. Since the BK-based
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system is also training-data independent and may be deployed without any significant
pre-optimisation, training or further adaptation, it is also a natural choice for system
fusion whatever the scenario or data domain.

7.6 Summary

The work presented in this chapter shows that BK-based approaches to SD can be
complementary to other techniques, specifically training-dependent speaker embeddings
based on deep learning (DL). This was demonstrated by experiments that considered
different approaches to SD system combination, work performed through the collaborative
ANR ODESSA project and its submission to the Albayzin 2018 Speaker Diarization
Challenge. Fusion strategies include a similarity-matrix level approach to fusion which
supports the combination of segment-time-aligned SD systems. This method enables
a tight integration between the different speaker representations employed at the cost
of forced synchrony between SD pipelines. Alternatively, and drawing from an existing
approach to SD system fusion [206], asynchronous systems, which allows for greater
flexibility in their respective optimisation, can be fused using a label-merging technique
which operates at the hypothesis level.

The fusion of BK- and DL-based SD systems leads to better SD performance. Sub-
missions to the closed-set training condition of the Albayzins 2018 Speaker Diarization
Challenge based upon a hypothesis-level fusion obtained 2nd position. On the other
hand, when DL-based methods leverage large amounts of training data in the context of
the open-set training condition, the combination with BK-based approaches by means of
similarity-level fusion obtained 1st place. These results add further weight to the benefit
of BK-based approach to SD which still remains training- and domain-independent;
it provides an efficient means to enhance the performance of other techniques. When
training-data is scarce, or not sufficiently well matched, however, BK-based solutions
may still outperform more sophisticated techniques, e.g. those based on DL.
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Low-latency speaker spotting
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Part II of this concerns the use of speaker diarization within a real application.
Motivated by the security and surveillance-related objectives of the ODESSA project, the
work considers a new problem referred to as low-latency speaker spotting (LLSS). It wishes
the detection, as soon as possible, of blacklisted individuals in multi-speaker audio streams.
Chapter 8 presents the first formal definition of this task, and other contributions which
allow for the integration of online SD with speaker detection. Additional contributions
include protocols which support LLSS research using a publicly available database, and
an initial solution using different ASV techniques. Chapter 9 proposes a modified LLSS
system pipeline that frames diarization and speaker detection solutions at their heart.
It leverages speaker models to guide the online diarization process by a novel selective
cluster enrichment (SCE) process.
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Chapter 8

Speaker diarization: integration
within a real application

This chapter introduces a new task termed low-latency speaker spotting (LLSS). Related
to security and intelligence applications, the task involves the detection, as soon as
possible, of known speakers within multi-speaker audio streams. The chapter describes
differences to the established fields of speaker diarization (SD) and automatic speaker
verification and proposes a new protocol and metrics to support exploration of LLSS.
These can be used together with an existing, publicly available database to assess the
performance of LLSS solutions also proposed in the chapter. They combine online
diarization and speaker detection systems. Diarization systems include a naive, over-
segmentation approach and fully-fledged online diarization using segmental i-vectors.
Speaker detection is performed using Gaussian mixture models, i-vectors or neural speaker
embeddings. Metrics reflect different approaches to characterise latency in addition to
detection performance. The relative performance of each solution is dependent on latency.
When higher latency is admissible, i-vector solutions perform well; embeddings excel
when latency must be kept to a minimum. With a need to improve the reliability of
online diarization and detection, the proposed LLSS framework provides a vehicle to fuel
future research in both areas. This collaborative work, published in [226], was undertaken
within the context of the ODESSA project. The contributions of other ODESSA partners
is gratefully acknowledged.

The remainder of the chapter is organised as follows: an introduction and a discussion
of the motivations are given in Section 8.1. Related work is described in Section 8.2. A
formulation of the LLSS task and metrics are given in Section 8.3. A first approach to
LLSS is described in Section 8.4. Section 8.5 introduces the proposed protocol for LLSS
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assessment. Experimental results are presented in Section 8.6. A final summary of the
work is given in Section 8.7.

8.1 Introduction

An automatic speaker verification (ASV) system is usually tasked with determining
whether or not an audio sequence contains a given speaker [4, 227]. Almost all work
in the area, e.g. [228, 229, 230, 231], involves offline processing. This chapter reports
work to develop a somewhat different system. In our task the ASV system is required
to determine whether or not an audio sequence contains a given speaker as quickly as
possible. We refer to this task as low-latency speaker spotting (LLSS).

The motivation relates to the needs of the security and intelligence services. These
involve the rapid and efficient detection of known, target speakers from high volume audio
streams. In such cases, rapid detection is needed in order to facilitate rapid reaction or
response to potentially hostile intent; the first step subsequent to detection involves an
agent listening immediately to the audio stream. While it is not the focus of our work,
the LLSS task also relates to civilian and consumer applications involving voice-based
personal assistants and speaker-dependent, but text-independent wake-up systems.

For the security/intelligence application, the cost of missing target speakers is high
and the available resources to support human listening are limited. In this sense the
appropriate metric for the assessment of solutions is similar to that used in the majority of
related research [232,233], namely the cost of detection (Cdet) with the usual parameters.
Here though, the emphasis on low-latency necessitates a two-dimensional metric which
combines the cost of detection with the detection lag or latency.

The minimisation of latency has implications on the manner in which an audio
sequence is processed. The LLSS task implies processing at a segmental level. While
shorter segments will allow for detection with shorter latency, the associated reduction
in data will naturally degrade reliability [234], inferring the need to strike a balance
between latency and reliability. Furthermore, in our application there is also potential for
multiple, competing speakers. Here too, then, there are differences between the existing
research and the LLSS task. Solutions will likely combine ASV technology with some
form of online segmentation or SD.
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Figure 8.1: Low-latency speaker spotting (LLSS) systems aim to detect target speakers
with the lowest possible latency.

8.2 Related work

The topics of SD and automatic speaker verification are closely related to the LLSS
task. Speaker diarization [2] involves the clustering of speech recordings into speaker-
homogeneous segments. In contrast to the LLSS task, SD is typically performed offline
and with no prior information (e.g. number of speakers or speaker models). A number
of online diarization [235, 236, 237, 238, 239] and speaker tracking [240] solutions have
been reported. These use online speaker clustering algorithms [241,242]. Only speaker
tracking systems assume prior knowledge of target speakers but they do not consider
latency.

Ideally, speaker recognition should be possible by using small amounts of speech.
Unfortunately, with current technology, this is only possible if the text employed for
enrolment and testing phases is constrained. This task is known in the literature as text-
dependent speaker recognition [243,244], and is often associated with specific applications,
e.g. user-friendly human-robot interaction [216]. On-going research focused on keyword-
spotting offers solutions that do not require more than a mere few seconds of speaker
content [245], resulting in extremely low latencies.

However, text-related constraints are not suitable for certain scenarios, like surveil-
lance, which motivate the majority of text-independent ASV research [227]. The text-
independent ASV task tends to involve either single-speaker or two-speaker recordings.
Research within the scope of the Speakers in the Wild (SITW) [246] initiative considers
multi-speaker scenarios which necessitate some form of diarization as a precursor to ASV.
Published research addresses only offline processing and the lack of speaker segmentation
references means that the SITW database is ill-suited to the exploration of LLSS.

None of the prior work addresses all aspects of the LLSS task. Existing databases do
not support the joint evaluation and optimisation of SD and text-independent recognition,

133



Chapter 8. Speaker diarization: integration within a real application

online

speaker

diarization

cluster #1

cluster #nt

cluster #2

scoring

scoring

scoring

max

score s1
t

score snt
t

score s2
t

score st

audio
stream

up to
time t

enrollment
target

speech

target model

speaker detection

scoring

Figure 8.2: Common architecture to proposed LLSS solutions

nor the development of online, low-latency solutions. In addition, while existing databases
can be adapted, there are no common protocols to support LLSS research.

8.3 Low-latency speaker spotting

This section provides a formal definition of the low-latency speaker spotting (LLSS)
task1 and outlines two different approaches to evaluate the latency achieved by potential
solutions.

8.3.1 Task definition

The low latency speaker spotting (LLSS) task aims at determining whether or not an
audio sequence contains a given speaker with the shortest possible delay. Figure 8.1
illustrates the sequence of an audio stream (e.g. an intercepted telephone conversation)
during which a known, target speaker (for which example speech data is available) is
active during the indicated segments. The target is active from time t∗ but is detected
only at time tθ. The goal of the LLSS task is to detect the activity of the target speaker
as soon as possible, i.e. to minimise the detection latency tθ − t∗.

Note that this is different from explicitly providing the speaker starting time t∗. If
this value is needed in the context of a specific application, further automatic or manual
processing may occur in order to refine t∗ estimates once the target speaker has been
detected. For a monitoring system, the audio stream may have been buffered and a
security agent may listen to the stream after rewinding the audio by a few seconds,
according to the typical detection latency; for a real-time human-robot interaction
application, spotting the various users as quickly as possible is the main goal, regardless
of the precise value of t∗.

1The particular contribution to this work of Hervé Bredin & Claude Barras is gratefully acknowledged.
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An LLSS system may typically rely on regular log-likelihood ratio estimates (example
blue profile in Figure 8.1) according to:

Λ(t) = ln f(at0|H1)− ln f(at0|H0) (8.1)

where at0 is the audio from time t = 0 to time t and f() is a conditional probability
density given hypothesis H1 or H0, namely that the target speaker is either active in the
audio stream at some point up to time t or not.

Given a detection threshold θ, the LLSS decision Γ at time t would then be:

Γ(t) = 1

(
max
τ∈[0,t]

Λ(τ)− θ
)

(8.2)

where 1 is the Heaviside function (returning 0 and 1 for negative and positive values,
respectively). Note that the decision is irreversible once the threshold has been reached,
even if Λ may later decrease. An ideal log-likelihood ratio estimator should thus return
Λ(t) < θ for t < t∗ and Λ(t) ≥ θ for t ≥ t∗. In practice, Λ(t) need not be produced
periodically, but can be produced at arbitrary instances, leading to piecewise constant
functions Λ : R+ 7→ R.

8.3.2 Absolute vs. speaker latency

An ideal LLSS system would trigger an alarm as soon as the target speaker starts
speaking. In practice, this is not feasible as a certain amount of speech from the target
speaker is needed before they can be recognised or ‘spotted’. For instance, in Figure 8.1,
the alarm is triggered at tθ ≈ 150s while the target speaker starts speaking at t∗ ≈ 100s,
leading to an absolute latency δ of approximately 50s.

In practice, the absolute latency δ will be influenced by the detection threshold θ.
Low values of θ may lead to the alarm being triggered too early, before the target speaker
starts speaking. For the sakes of evaluation (specifically the need to maintain a constant
number of trials and to assign a latency to each), those trials are not marked as false
alarms. Instead, their latency is bound to 02. High values of θ may lead to the alarm
not being triggered at all. In between, latency will likely increase monotonically with θ.

2Note that low values of θ would also lead to a high number of false alarms, making the system useless
in practice. Such operating points lack practical interest.
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More precisely, the absolute latency is defined as:

δθ = max(tθ − t∗, 0) (8.3)

where t∗ is again the time at which the target starts speaking for the first time and tθ is
the time at which the alarm is first triggered.

In the case that the alarm is never triggered, tθ is set to the time T ∗ in the audio
stream at which the target speaker ceases to be active, giving:

tθ =

min
{
t ∈ R+|Λ(t) > θ

}
if ∃t ∈ R+, Λ(t) > θ

T ∗ otherwise
(8.4)

However, this definition may lead to arbitrarily high latency in the case, for example,
that the first (possibly short) utterance of the target speaker is missed and the second
utterance occurs long after. A more meaningful, alternative metric is the speaker latency,
defined as the actual duration of speech uttered by the target speaker in the [t∗, tθ] time
range.

8.3.3 Detection under variable or fixed latency

For a given detection threshold θ, the value of either the absolute or the speaker
latency δθ as defined in Eq. (8.3) will depend on the actual trial. If one does not
constrain the maximal latency and lets the system use whichever latency gives the best
detection performance (i.e. equivalent to Γ(t) with t → ∞), then this is referred to
as a variable latency scenario. Detection performance and detection latency are then
two complementary (but possibly contradictory) metrics. The average detection latency
increases monotonically with θ, while the detection cost reaches its minimum value for a
specific value of θ. Therefore, one may rely on curves displaying the detection cost as a
function of δ to compare the performance of different systems.

However, averaging the latency across trials may in fact hide very different behaviours.
Depending on the final application, we might prefer to evaluate the detection performance
of a LLSS system at a given application-driven latency δ. In this fixed latency scenario,
the system is expected to trigger an alarm during the [0, t∗+ δ] time range. The detection
performance of such a system may then be calculated using corresponding scores according
to:

λδ = max
t∈[0,t∗+δ]

Λ(t) (8.5)
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Depending on the value of the detection threshold θ, the system will trigger an alarm
if λδ ≥ θ whereas no alarm will be triggered if λδ < θ. Standard speaker recognition
metrics then apply. They include the false alarm rate FARδ(θ), the missed detection
rate MDRδ(θ), the equal error rate EERδ, and the detection cost Cδdet(θ) given by:

Cδdet(θ) = Cmiss × Ptarget ×MDRδ(θ) + (8.6)

Cfalse alarm × (1− Ptarget)× FARδ(θ)

8.4 LLSS solutions

This section describes a number of different solutions to the LLSS task. They share a
common architecture depicted in Figure 8.2 which combines online SD with different
approaches to speaker detection. At any time t, online SD provides a set of nt speaker
clusters {cti}1≤i≤nt . Speaker detection is then applied to compare the speech segments in
each cluster cti against a set of pre-trained target speaker models, thereby giving scores
(or likelihood-ratios) sti. A final score at time t is defined as the maximum score over
all clusters: st = max1≤i≤nt s

t
i. The remainder of this section describes the two different

online SD systems and three speaker detection systems explored in this work.

8.4.1 Online speaker diarization

Two different approaches to online SD are compared. Both rely on an LSTM-based voice
activity detector (VAD) [59].

Segmental diarization: the first online diarization module does not perform any
clustering: it relies simply on a segmental approach of a 3s sliding window with a 1s shift,
and creates a new cluster at each step. Note that only speech content, often shorter than
the complete 3s, is considered. This approach is denoted as segmental diarization in the
rest of the chapter.

Automatic diarization: the second automatic system is based on i-vectors [231] and
online sequential clustering using the same sliding window, a cosine similarity measure
and an empirically optimized threshold to assign segments to existing clusters, or to
create new ones. Should the score of a new segment produced from its comparison against
the set of existing clusters fall below the threshold, then it will be assigned to a new
cluster. Otherwise, it will be assigned to the cluster among the existing set corresponding
to the highest score. Speaker clusters are represented by i-vectors extracted from the
averaged sufficient statistics of their respective segments. The system uses 19 MFCC
coefficients as a front-end, a universal background model (UBM) of 256 components and
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a T matrix of rank 100, both learned from training data. i-vectors are length-normalised
and whitened. All parameters were empirically optimised on the development set with
according to the standard diarization error rate (DER) metric.

Oracle diarization: the performance of both online diarization systems is compared to
that of an oracle diarization system in order to observe the impact of diarization errors
on LLSS performance. The oracle system simulates the behaviour of an error-less, but
still online system; it uses data from time zero to time t.

8.4.2 Speaker detection

The performance of three different approaches to speaker detection were explored. The
systems considered are described in the following.

GMM-UBM: the first system is a standard, 256-component Gaussian mixture model
with universal background model (GMM-UBM) [228], with a conventional MFCC frontend
(the same as that used for diarization), maximum a posteriori model adaptation and
log-likelihood ratio scoring.

i-vector: the second is an i-vector system [231] with a T matrix of dimension 100 and
PLDA scoring [81] between target and test i-vectors, that uses a 100-dimensional speaker
space and was trained on the same data as the UBM and the total-variability matrix.
The front-end features are the same as that of the GMM-UBM system and the diarization
system.

Neural embedding: the final system is based on the neural speaker embedding approach
introduced in [57] and further improved in [210]. These were developed at LIMSI.
Briefly, an LSTM-based neural network is trained to project speech sequences into a
192-dimensional space, using the triplet loss paradigm. Implementation details are
identical to the ones used in [247]. The target (resp. cluster) model is the sum of all
embeddings extracted from a 3s sliding window with a 1s shift over the enrollment data
(resp. cluster). Resulting vectors are compared using the cosine distance.

8.5 LLSS assessment

None of the existing databases employed in either SD or speaker detection/verification
are suited to the exploitation of the LLSS task. This section describes the steps taken to
adapt an existing database for this purpose.
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Figure 8.3: Distribution of target speech duration per trial for the designed test subset.

Set # speakers # models # target # non-target
Train 127 - - -
Dev. 22 121 9430 64451
Eval. 24 164 12250 102560

Table 8.1: LLSS protocol details: number of speakers, number of enrolled models, and
number of target and non-target trials.

8.5.1 Database

The evaluation of LLSS solutions requires a large database of multi-speaker audio
recordings and ground-truth speaker and segment level annotations. While several multi-
speaker databases exist (e.g. the SITW database [246]), the Augmented Multi-party
Interaction (AMI) meeting corpus [248] is widely used, publicly available and is provided
with the necessary speaker and segment annotations. Consequently, it was adopted for
all experimental work reported in this chapter.

The AMI database contains a set of audio meetings containing sessions of approxi-
mately 40 minutes and recorded across 3 different sites under different conditions and
scenarios. As a consequence, speakers groups are disjoint in terms of site, while meetings
collected at each site contain independent speaker groups with around 4 speakers each.
There are approximately 4 meeting recordings for each group.

8.5.2 Protocols

Despite the use of a standard database, it was necessary to design new protocols to
support the development and evaluation of LLSS solutions. Nonetheless, the standard
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full-corpus3 training, development and evaluation partitions are still respected. All
experiments were performed using data corresponding to the mix-headset condition of
the AMI meeting corpus.

Training data is used exclusively for background modelling. Speaker disjoint develop-
ment and evaluation sets are both partitioned into enrolment and test subsets. Enrolment
data is used to train target speaker models.

The single session which contains the greatest amount of speech from a given target
speaker is used for enrolment. The speech from the target speaker is divided into N
60-second, overlap-free speech segment splits. A subset of these N splits is randomly
selected as the data for the M different models generated for the target speaker. Since
N varies across target speakers (due to varying quantities of data per speaker), M is set
to the median of every N for each target speaker.

Testing content is generated from all the non-enrolment content for each given speaker
and through sub-session splits of 1-minute duration. Each split contains speech from 1
to 4 speakers. While not ideal, under strict data constraints, the splitting of audio files
serves to increase the number of trials and variability.

A single LLSS trial is similar in nature to a classical ASV trial; it involves an enrolled
target model, a test sub-session, and a trial class (target/non-target). Target trials for a
given speaker are defined by using all the test sub-sessions in which the target speaker is
active. This leads to a distribution of target trials illustrated in Figure 8.3. The target
speaker content per trial exceeds only rarely 30 seconds duration. Remaining sub-sessions
correspond to non-target trials. The protocol described above results in the number of
speakers, models, target and non-target trials illustrated in Table 8.1.

8.6 Experimental results

The performance of the proposed LLSS solutions is analysed in two different manners.
The first analysis is in terms of fixed and variable speaker latency using detection
metrics described in Section 8.3.3. Second, we analyse diarization influences upon LLSS
performance.

8.6.1 LLSS performance: fixed latency

Plots in Figure 8.4 depict the evolution in EER for the evaluation set as a function
of fixed speaker latency (latter part of Section 8.3.3). Separate plots are shown for

3http://groups.inf.ed.ac.uk/ami/corpus
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(a) (b)

(c) (d)

Figure 8.4: Influence of the detection latency on the detection performance on the
evaluation set.
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Figure 8.5: Detection performance as a function of the average speaker latency for the
best performing automatic systems for the evaluation set. Factors to calculate the Cdet
are those usual of NIST speaker recognition evaluations (SRE) [134], with a Cmiss = 10,
Cfa = 1, and Ptarget = 0.01.

GMM-UBM (Fig. 8.4a), i-vector (Fig. 8.4b) and neural embeddings (Fig. 8.4c) speaker
detection solutions following either oracle (solid blue line), automatic (dashed orange
line) or segmental (thin-dashed yellow line) diarization systems. Finally, Figure 8.4d
compares the EER against fixed speaker latency for the best combination of diarization
and detection approaches.

No matter what the detection system the best performance is observed with oracle
diarization. The performance observed for automatic and segmental diarization systems
is dependent upon the detection system. For the GMM system, automatic diarization
fares poorly whereas for the neural embedding solution, results for automatic diarization
are closer to those obtained with oracle diarization.

While segmental diarization gives reasonable performance in the case of the GMM and
i-vector detection systems, performance is poor for the neural embedding detection system.
Discrepancies between performance for oracle, automatic and segmental diarization
systems are, however, dependent to some degree on the fixed speaker latency, especially
for the neural embedding detection system. While differences in performance for oracle
and segmental diarization are pronounced for lower fixed latencies, these diminish almost
entirely for higher fixed latencies. This diminished effect is however expectable when
considering the distribution of amount of target speech in the target trials illustrated in
Figure 8.3, which shows that a majority amount for less than 15 seconds of target speech.
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Of particular interest is how latency impacts upon the performance of each LLSS
solutions and then, which system performs best. A summary of the three first plots of
Figure 8.4 for the two practical approaches to diarization (segmental or automatic only
- the performance of the oracle system is discounted) is illustrated in the Fig. 8.4d. It
shows that the neural embedding detector outperforms the GMM and i-vector systems
by a significant margin for the lowest fixed latency of 3s. For higher fixed latencies,
however, the GMM and i-vector systems outperform neural embeddings, albeit by a
smaller margin; there is little to choose between them.

8.6.2 LLSS performance: variable latency

An illustration of system performance in terms of Cdet is depicted in Fig. 8.5 for variable
speaker latency (earlier part of Section 8.3.3). Plots are again illustrated for each detection
system and for the best corresponding diarization system (segmental or automatic). Oracle
diarization based systems are also plotted for both neural embeddings and i-vectors.
Cdet values are determined according to the usual costs adopted by the NIST speaker
recognition evaluations (SRE) [134], i.e. Cmiss = 10, Cfa = 1, and Ptarget = 0.01. Profiles
in Fig. 8.5 show a similar picture as that for fixed speaker latencies. Oracle diarization-
based systems outperform their automatic counterparts, with i-vectors standing slightly
behind in performance against neural embeddings for average latencies lower than 2
seconds, but outperforming them for increasing amounts. Alternatively, the automatic
online diarization system and neural embeddings detector shows here too a better
performance for lower latencies. Segmental and automatic diarization systems with
GMM and i-vector detection systems show lower Cdet between approximately 3s and 10s,
but differences are marginal.

In an alternative interpretation, for a given detection cost, the neural embeddings
system provides shorter speaker detection latencies than GMM and i-vector systems.
Obviously, selecting the system with minimal Cdet is not necessarily a sensible strategy
for a LLSS task; instead one needs to strike a balance between performance and latency
constraints, e.g. selecting the lowest average latency for an admissible cost.

8.6.3 Diarization influences

A first observation on diarization influence is that regarding performance obtained by
systems using an oracle online SD clustering algorithm. Looking at all three different
detection systems (Figures 8.4a, 8.4b, and 8.4c). The superior performance of this
approach over that of automatic and segmental approaches validates the primary premise
explored here: correct segmentation and accumulation of homogeneous speaker content
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enhances the performance in speaker recognition tasks, even for very low amounts of
speech as the ones reported here.

However, performance decreases as soon as an automatic approach is applied to online
diarization. Discrepancies in performance between segmental and automatic diarization
hypotheses were initially rather puzzling. For the GMM detection system, automatic
diarization performs poorly. In contrast, for the neural embedding system, automatic
diarization leads to performance that is closer to that of oracle diarization.

The automatic diarization system uses a form of greedy sequential clustering. When
performed in an online fashion, all such systems have potential to introduce errors into the
diarization hypothesis, errors from which the system can never recover. Impure clusters
that contain data from more than one speaker are likely to remain impure as online
diarization proceeds. Online diarization performance is illustrated in Table 8.2 for the
evaluation partition of the AMI database. Note that DERs are naturally higher than those
typically reported in the literature - those reported here relate to an online task. Even so,
the purity of clusters it produces is reasonable, with over 70% of clusters corresponding to
data from the dominant speaker. Coverage, which refers to the percentage of encountered
speaker data that is assigned to the corresponding speaker model, exceeds an encouraging
80%.

It is evident that the proposed LLSS systems have different capacities to accom-
modate errors in the diarization hypothesis. This is mostly due to the different data
demands and normalisation strategies employed by each detection solution. Referring to
Figure 8.4c, the neural embedding system copes well with data impurities. The GMM
and i-vector detection systems cope less well with the same data impurities (the gap
between performance for oracle and automatic diarization is greater), however the i-vector
system outperforms the neural embedding system for higher latencies by a slight but
consistent margin.

In contrast to the automatic diarization system, the segmental approach does not
accumulate speaker data through clustering. Diarization performance for the segmental
approach is also shown in Table 8.2. While results show a very high DER of 95%, they
show that, as expected, purity is higher, while coverage is naturally very low. Thus,
while speaker models will be comparatively poorly trained using only short segments of
speech, they may yet give better performance in the case that they are trained, more
often than not, using data from a single speaker. This is to be expected for such short
segments since the chances of them bridging speaker turns is low. As a result, it is not
necessarily surprising that the segmental diarization system performs well under some
conditions. Eventually, and by pure chance, the detection system will be presented with
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Diarization system DER Purity Coverage
Segmental 95.83 88.69 5.73
Automatic 34.24 75.48 81.52

Table 8.2: Online diarization performance in the form of DER (%), cluster purity (%)
and coverage (%), obtained with the i-vector automatic online diarization system on
evaluation sets, evaluated using a using a standard collar of 250ms.

a pure target speaker segment that will produce a high detection score.

It is clear from the analyses presented above that the dependence of detection systems
upon diarization is more complex than may first appear. While the slight difference
between automatic and segmental approaches may seem discouraging, the fact that an
oracle SD approach significantly outperforms all other approaches guarantees that an
improved online clustering algorithm may lead to benefit in performance. At the same
time, the small gain between the automatic and segmental approaches reported here must
be biased by the automatic online clustering algorithm employed for diarization. Similarly,
the use of a database that was not explicitly designed for this task is acknowledged as
being suboptimal. The protocols presented in Table 8.1 present a only modest speaker
variability. These drawbacks, unavoidable in the absence of a purposely-designed dataset,
do not overshadow the proposed framework of evaluation for LLSS tasks with the joint
operation of online diarization and speaker verification.

Future work should further study the dependence of diarization optimisation towards
speaker detection systems, and examine more carefully the robustness to each detection
solution to speaker cluster impurities. This may help to better tune the combination of
online diarization and speaker detection, thus improving the reliability of LLSS solutions.
Results presented in this chapter may suggest that the optimisation of diarization
systems with respect to the DER may not be sensible when diarization is only an
enabling technology, instead of the final application. Finally, an ideal scenario would be
that of collecting and designing a new database designed specifically for research in LLSS.
It should naturally contain larger number of speakers and greater speaker variability.

8.7 Summary

This chapter describes a new task termed low-latency speaker spotting (LLSS). The
LLSS task is motivated by security and intelligence applications, but has application
elsewhere, e.g. voice-based personal assistants, speaker-dependent, but text-independent
wake-up systems, and to support further research in short-duration speaker recognition.
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The LLSS task calls for the recognition of known, target speakers as quickly as possible
after they become active in an audio stream.

Results show that reliable online diarization is key to minimising latency and LLSS
performance overall. Differences in results obtained with oracle segmentation and
segmental diarization demonstrate the challenge of automatic, online diarization; it can
be difficult to outperform a simple segmental approach. Results also show differences in
how speaker detection approaches cope with speaker model impurities. Together, these
findings show that effective solutions to the LLSS task require a careful combination and
joint optimisation of online SD and speaker detection algorithms. They also question
the sense of optimising SD, online or otherwise, in isolation when diarization is only an
enabling technology, instead of the end application.

Future work should investigate the differences in the behaviour of the proposed speaker
detection techniques in detail. It may also investigate strategies to cope with overlapping
speech from competing speakers and study more closely combined, joint optimisation of
the feature extraction, online diarization and automatic speaker verification components.
Emerging end-to-end approaches thus offer another avenue for future work.
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Selective cluster enrichment

Introduced in Chapter 8, low-latency speaker spotting (LLSS) calls for the rapid detection
of known speakers within multi-speaker audio streams. While the previous work showed
the potential to develop efficient LLSS solutions by combining speaker diarization and
speaker detection within an online processing framework, it failed to move significantly
beyond the traditional definition of diarization. This chapter shows that the latter needs
rethinking and that a diarization sub-system tailored to the end application, rather than
to the minimisation of the diarization error rate, can improve LLSS performance. The
work presented here introduces a selective cluster enrichment (SCE) algorithm used to
guide the diarization system to better model segments within a multi-speaker audio
stream and hence detect more reliably a given target speaker. The LLSS solution reported
in this chapter shows that target speakers can be detected with a 15.86% equal error
rate after having been active in online-processed multi-speaker audio streams for only
15 seconds, achieving 10% relative improvement over the results reported in Chapter 8.
The work and results reported here were published in [249].

The remainder of this chapter is organised as follows. Section 9.1 describes motivations
in the context of the LLSS framework reported in Chapter 8 [226]. Section 9.2 describes
the new SCE procedure. Experiments are reported in Section 9.3. A summary is given
in Section 9.4.

9.1 Introduction

Our first attempt to develop an efficient LLSS solution [226] took the first steps to
unite the optimisation of speaker detection and speaker diarization technologies within
a common online framework. While that work showed the potential, it failed to move
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significantly beyond the traditional definition of diarization. This work aims to redefine
the diarization problem such that the solution is more closely married to the core LLSS
task. The approach exploits the use of the target speaker model (the one which is
pre-trained for the speaker detection task) to guide diarization to cluster more reliably
matching segments in the incoming audio stream. The process is referred to as SCE.

9.2 Selective cluster enrichment

This section describes the adaptation of a diarization sub-system to the operation of a
subsequent speaker detection sub-system.

Speaker diarization systems typically entail some form of segmentation and clustering
process in order to determine the number of speakers within a multi-speaker audio stream
and who speaks when. Generally, diarization is performed offline, meaning a diarization
algorithm has access to the full audio stream before deriving a diarization hypothesis. In
contrast, online diarization can be performed by processing an audio stream in segmental
or sequential fashion and by updating the current diarization hypothesis to account for
new speech data as it is encountered.

Be them offline or online, speaker diarization systems are usually evaluated using the
classical DER which combines measures of background noise mistaken for speech, speech
mistaken for background noise and speech assigned to the wrong speaker. In practice,
one must strike a balance between under and over clustering. When the number of
clusters is too high, i.e. greater than the number of speakers, then resulting clusters may
have high purity – they are not contaminated excessively by the data of other speakers –
by resulting models tend to be poorly trained using insufficient data [100]. In contrast,
when the number of clusters is too few, models are comparatively well trained using more
data, but purity decreases – inhomogeneous clusters are trained using data from multiple
speakers. Somewhere in between, the balance between data quantity and impurity helps
to minimise the DER or, as is the goal of the work reported in this chapter, to optimise
a more application-inspired metric.

The research hypothesis under investigation in the work reported here is that there
is potential to guide the clustering process in a way that better balances data quantity
and purity in order to improve the reliabilty of a subsequent speaker detection algorithm.
This idea is explored within the context of a LLSS task which seeks to detect a particular
target speaker for which a model is already trained and available. It seems logical in this
case that the diarization process should at least make use of the target speaker model.

The original LLSS approach uses an online speaker diarization process that produces
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an evolving diarization hypothesis comprising n clusters ct1 ... ctn. Newly arriving data is
assigned to the closest cluster in the current diarization hypothesis. The set of clusters
are then scored against the target speaker models giving a set of scores st1 ... stn. The
maximum score among them is then compared to threshold θ in order to derive the
detection decision Γ(t).

The proposed modification is illustrated in Figure 9.1. The idea is to consider the
target speaker model in the assignment of newly arriving data to one of the clusters in
the current diarization hypothesis. The closest matching cluster is derived as before. In
contrast to the original approach, though, the newly trained cluster for time t is replaced
by the previous cluster for time t− 1 if the new cluster score stn is less than the previous
cluster score st−1

n . The result is that the closest matching cluster is enriched with newly
arriving data only if it improves the match between the cluster and the target speaker
model. According to the max operation to the right of Figure 9.1, the set of scores
st1 ... s

t
n will then be monotonically increasing with t. As before, the largest of these

scores is then compared to threshold θ in order to derive the detection decision Γ(t).

Even if the use of the target model at the heart of the diarization process is entirely
intuitive, the motivation for the specific way in which it is used is far less intuitive. We
attempt now to explain why its use in this way should lead to better LLSS performance.
Selective cluster enrichment will have one of two effects. In the case that the closest
cluster to newly arriving data match well the target model, then the process will serve
only to purify the cluster, increase still further the match with the target model and
improve LLSS performance. Other clusters that do not match well the target model can
still only be enriched or adapted towards the target speaker model. In the case that
the audio stream does not contain speech from the target speaker, then clusters will be
either poorly trained using very little data, in which case diarization performance will
deteriorate, or they will be adapted successfully towards the target, thereby degrading
LLSS performance (since the speakers do not match). The hypothesis is that, even
if clusters are inadvertently adapted to the target model, they will rarely be adapted
sufficiently well such that the likelihood exceeds the detection threshold. In this case, the
benefit of purifying matching clusters will outweigh the penalty of inadvertently adapting
non-matching clusters. Accordingly, SCE should help to improve LLSS performance.
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Chapter 9. Selective cluster enrichment

Figure 9.3: Detection performance as a function of the average speaker latency for the
best performing automatic systems on the evaluation set. The application of the proposed
SCE approach benefits the i-vector automatic system for very low values of speaker
latency.

9.3 Experimental work

This section describes experiments designed to evaluate LLSS performance and the
benefit of SCE.

9.3.1 General setup

The database used for all experimental work reported here, as well as the protocol tested
is exactly the same as that used in the original LLSS work in Chapter 8 [226]. Differences
are present in that of the speaker detection systems employed. In Chapter 8 performance
is reported for GMM-UBM, i-vector, and neural embeddings systems. Results for the
latter are not reported here since this work was undertaken independently to ODESSA
partners LIMSI who provided the neural embeddings solely used for work reported in
Chapter 8.

9.3.2 Results

Results in Table 9.1 illustrate LLSS performance for the baseline and proposed solution,
for both oracle and automatic diarization and for both GMM-UBM and i-vector speaker
detection algorithms. Performance is expressed in terms of the equal error rate (EER)
for various fixed speaker latencies: 3, 5, 10 and 15 seconds. Similarly, performance as
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GMM-UBM i-vector
Latency 3 5 10 15 3 5 10 15

Baseline
Oracle 26.9 17 15.99 15.69 27.49 16.94 15.56 15.24
Segmental 32.2 21.2 18.1 17.4 32.8 21.8 17.09 17.04
Automatic 36.56 26.3 23.28 22.53 32.41 20.2 18.06 17.31

Proposed Oracle 27.77 17.81 16.32 15.87 29.34 18.33 15.95 15.33
Automatic 34.32 23.86 20.98 20.22 31.08 19.27 16.61 15.82

Table 9.1: LLSS performance illustrated in terms of EER for different fixed speaker
latencies.

a function of the Cdet (defined as in previous chapter and using the same NIST SRE
parameters), is illustrated in Figure 9.3 for variable amounts of average speaker latency.
On account of non-target models being poorly trained, results show that performance
universally degrades for oracle diarization. However, results in Table 9.1 universally
improve in the case of automatic diarization. This is due to improvements to target
model purity stemming from SCE. While it is not the goal of this work to compare
GMM-UBM and i-vector algorithms, it is reassuring that SCE improves the performance
of both.

Similar tendencies are observed in terms of variable speaker latency, for which results
are shown in Figure 9.3. The Cdet obtained by an i-vector based oracle diarization
(solid blue line) represents the best achievable performance. Results for an automatic
diarization i-vector system (dotted yellow line) and a GMM-UBM segmental approach
(dashed orange line) constitute the baseline performance as reported in Chapter 8. These
baseline results show that an automatic diarization system struggles to outperform a
simpler segmental-based approach. This may be explained by the lower cluster purity
of 75% (34% DER) for the i-vector system with regard to the 88% cluster purity (and
95% DER) for the GMM-UBM segmental approach. The proposed approach manages
to overcome the errors in the online clustering algorithm bringing the performance of
the resulting system (solid purple line) closer to that of the oracle system. These results
show the positive impact to ASV performance of the proposed algorithm and confirm
the research hypothesis. Closer integration of diarization and recognition is beneficial.
Furthermore, better performance can be achieved, even when diarization performance
(when assessed independently) is worse.

Further evidence is illustrated in Figure 9.2 which shows the evolution in PLDA
scoring for the baseline and proposed LLSS solutions for an arbitrary utterance that
contains the target speaker during the intervals indicated towards the top of the plot.
The LLSS output for the proposed system is consistently higher than that of the baseline,
showing that SCE serves to improve purity, forcing a monotonic increase in the score.
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9.4 Summary

This chapter shows how the performance of a low-latency speaker spotting (LLSS) solution
can be improved by tailoring the operation of a speaker diarization sub-system to that
of the following speaker detection sub-system. The proposed SCE scheme exploits the
target speaker model to guide the diarization process in order to enhance the purity
of matching clusters in the diarization hypothesis. The work serves to show that the
optimisation of a diarization system on its own will never produce optimal results when
diarization is only but one component of a more complex toolchain. Selective cluster
enrichment will surely degrade the reliability of the diarization hypothesis when assessed
with the traditional diarization error rate, but it nonetheless leads to more reliable
speaker detection and LLSS performance. Universal improvements observed across two
different speaker detection algorithms and a range of different speaker latencies show the
potential for still further improvements using more elaborate end-to-end optimisations.
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Conclusions

This chapter provides a summary of the results and findings from the work reported in
this thesis. This material is reported in Section 10.1. It also presents some directions for
future research are presented in Section 10.2.

10.1 Summary

The topic central to this thesis is speaker diarization (SD), an important pre-processing
tool for the tasks of conversational analysis, content indexing, or, as regards this thesis,
speaker recognition. The research probed two different angles. First, it reports a study
of domain mismatch leading to the training-data independent, domain-robust approach
to SD based on binary key (BK) speaker modelling [105]. Second, it reports a study of a
practical application of SD concerning the rapid detection of blacklisted speakers. In
contrast to most work in SD, it concerns the joint assessment of online SD and automatic
speaker verification (ASV).

Chapter 4 proposes an alternative to traditional spectral analysis as a means of
improving the discriminative capacity of BK speaker modelling. Traditional acoustic
features (Mel-frequency cepstral coefficients (MFCCs)) are derived from spectral analysis
based on the short-time Fourier transform (STFT). Here, MFCCs are compared to
the recently developed infinite-impulse response, constant Q transform (IIR-CQT) Mel-
frequency cepstral (ICMC) coefficients [160] in their first application to BK speaker
modelling. Given the novel front-end, the work also analyses the impact of frame lengths
that exceed those typically used for short-term feature extraction. Experiments in terms
of controlled ASV and fully fledged diarization show that: the discriminative capacity of
BK speaker modelling benefits from increased frame lengths for both evaluated front-

155



Chapter 10. Conclusions

end techniques; the multi-resolution nature of ICMC features and IIR-CQT spectral
analysis outperforms STFT-based MFCCs, in both speaker recognition and diarization.
These findings are confirmed through other work reported later in the thesis, specifically
in Chapter 6, in which the same front-ends are compared using a different dataset.
The enhanced front-end for BK-based SD was also compared to that of other systems
submitted to the Albayzin 2016 Speaker Diarization Evaluation, in which the submitted
system obtained 1st place.

The problem of explicit speaker change detection (SCD), of use for SD and other
related applications, had never been addressed by means of BK speaker modelling before
the undertaking of this thesis. The baseline system defined in Chapter 3 performs
implicit SCD through the segmentation of speech in chunks of short length. The work
reported in Chapter 5 investigates explicit SCD. The potential is assessed through two
different methods of composing the binary key background model (KBM). The traditional
baseline approach is compared to a second, novel method that attempts to better exploit
local contextual information in the speech content surrounding hypothesised speaker
change points. Results in terms of BK-based SCD are positive, showing consistently
better results than the baseline system based on the Bayesian information criterion
(BIC). The work considers two segment-level representations derived from the KBM, i.e.
cumulative vectors (CVs) and binary keys (BKs). BKs are found to obtain better speaker
segmentation performance than CVs. The difference is attributed to the more aggressive
scoring method between BKs using the Jaccard distance.

In keeping with other, similar work on the same topic, SCD experiments were
performed using the ETAPE databse. The proposed training-free BK approach is shown
to perform competitively compared to deep learning (DL) inspired approaches, though
without the need for domain-matched training data. The proposed SCD approach is
also assessed with regard to its influence on SD performance. Different methods to
SCD are applied to the baseline BK-based SD system. These include the baseline
homogeneous segmentation, a splitting of the speech content based on the boundaries
of the voice activity detection (VAD) system, the explicit BK-based SCD approach,
and their combination. Results in terms of diarization performance show the benefit
of the proposed method when coupled with a baseline MFCC-based acoustic front-end.
However, when tested using the better-performing ICMC features (Chapter 4), the benefit
of explicit SCD diminishes. While slightly discouraging, this finding corroborates those
of other works [56, 59] which show inconsistent benefit of SCD to SD performance. Even
so, SCD may still be beneficial for other, related applications for which the efficiency of
BK modelling may still be an advantage in terms of competing techniques.

Chapter 6 relates to clustering. This work is reported in the context of the first
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DIHARD challenge. The DIHARD dataset includes much more diverse data domains
than those usually considered in the SD literature and other evaluations. This diversity
presents a significant challenge for SD technology. Work reported in Chapter 6 attempted
to tackle domain robustness using a BK-based SD system. The solution is to avoid
domain-specific training data entirely, while remaining competitive with the systems
submitted by leading international research institutions.

An analysis of the baseline system, enhanced by means of the acoustic front-end
proposed in Chapter 4, showed that the baseline agglomerative hierarchical clustering
(AHC) algorithm is responsible for poor performance. Particularly, the erroneous selection
of the number of speakers was most harmful to performance. This observation motivated
the search for alternative methods. For the first time, spectral clustering (SC) was
applied and optimised for its application in a BK-based diarization solution using CVs.
Affinity matrices, calculated for in-session CVs and necessary for the eigendecomposition
involved in SC, are refined by a number of pattern-enhancing operations designed to
improve speaker discrimination. SC proved to be a reliable, domain-robust alternative
to clustering for BK-based diarization systems. In order to estimate the number of
speakers, the maximum eigengap between eigenvalues was used as a criterion. This
work resulted in a more robust approach to estimate the number of speakers. When
integrated into the baseline AHC system, use of the new approach to estimate the
number of speakers produced the 2nd most significant improvement to the baseline
system. Furthermore, the novel approach to single speaker detection which is based
on the distance between eigenvalues leads to additional improvements in performance.
Compared to leading alternatives, the resulting BK-based diarization system obtains
competitive results. These are close to those of other systems for which results were
also submitted to the DIHARD challenge. These are mostly based on data-hungry and
computationally demanding DL solutions. While the difference in performance is modest,
the BK-based SD system requires no external training data, is thus readily applicable to
data in any domain and is significantly less computationally demanding.

The final contribution to the development of BK-based SD, reported in Chapter 7,
took a slightly different direction. It is argued in this thesis that independence to
training data is the main asset of the BK approach to SD which makes it inherently
domain insensitive. Deep learning approaches in the form of speaker embeddings are
nonetheless slightly superior in performance when it comes to test sets whose domains
match those available for training. In consequence, and to investigate the complementary
character of training dependent and independent methods to SD, the work reported in
Chapter 7 describes the first effort to link BK-based solutions with neural embedding-
based approaches. The Albayzin 2018 Speaker Diarization Challenge provided a new
dataset and two training conditions with which to explore system combination/fusion.
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The method to SD fusion applied on the open-set condition of the Albayzin 2018
database is based upon the integration of time-aligned systems via a similarity-matrix
approach. This kind of operation can be detrimental to the performance of the individual
systems. However, open-set conditions to imply that neural embeddings may leverage
large amounts of external training data. The speaker modelling techniques used within this
fusion approach involve BK-based CVs, x-vectors and triplet-loss neural embedddings [57].
The resulting fused system earned 1st place for the open-set training condition. The
fusion approach used for the closed-set training condition involved BK and triplet-loss
neural embedding-based systems. Use of x-vectors was discarded as performance was
poor when trained with constrained data. Fusion was performed at the hypothesis level
(where synchrony between systems is not necessary), and is based upon a label-merging
technique. The resulting system obtained 2nd place in the Albayzin 2018 Speaker
Diarization Challenge.

Findings from the first line of research are summarised as follows:

• Use of front-ends with larger frame duration lead to a relative improvement in
diarization error rate (DER) of a 9% for MFCCs. The replacement of STFT spectral
analysis by IIR-CQT-based ICMC coefficients lead to a relative improvement of
14% DER.

• Use of BK-based CVs for explicit SCD leads to a relative increase in average
coverage of 10% over the BIC-based baseline for both KBM-composition methods.
Use of BKs results in a relative improvement of 17.4% for a global-context KBM.
The novel, local-context approach to the KBM results in a 18.3% increase.

• Use of spectral clustering (SC) leads to relative improvements in DER over the
baseline system of (i) 30% when SC is used to estimate the number of speakers
and clustering, (ii) 37% when also coupled with the baseline AHC, and (iii) 40%
when also used for single-speaker detection.

• Using a similarity-matrix, fusion of BK and DL based SD solutions leads to
an 8% relative improvement in DER for the open-set condition of the Albayzin
2018 Speaker Diarization Challenge. For the closed-set training condition and a
hypothesis-level fusion, a 13% relative improvement was achieved.

The second line of research in this manuscript investigates SD in a real use case.
EURECOM’s participation in the joint-national ODESSA project helped define this line
of work. Its goal concerns the development of solutions for the rapid, online detection
of previously enrolled speakers in multi-speaker audio streams. Such research addresses
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10.1. Summary

two limitations of current ASV technology, namely (i) robust speaker detection using
only short test utterances and (ii) robust speaker detection in the presence of multiple
speakers. The new task is coined as low-latency speaker spotting (LLSS).

Chapter 8 defines the task and proposes a framework for its investigation. Con-
tributions include: (i) the inclusion of speaker latency into ASV assessment; (ii) a
protocol that supports LLSS research using a public database; (iii) the development of an
i-vector based online SD system; (iv) the benchmarking of three different LLSS solutions
employing GMM-UBM, i-vectors, and neural embeddings techniques. Results highlight
the challenging of the proposed LLSS task which stems from the difficulty in clustering
in online fashion using very small quantities of data. As a result, there is only modest
difference in the performance of each approach to ASV. SD is thus the bottleneck and
better solutions to online clustering are needed.

An attempt to the improve LLSS performance is presented in Chapter 9. The work
aims to fuse online diarization and speaker detection systems at their heart and with the
final application in mind from the start. This work marks a departure from traditional
speaker diarization research.

This approach, named selective cluster enrichment (SCE) serves to guide the online
sequential clustering algorithm. This is achieved by leveraging the target speaker model,
usually used only for speaker detection, for clustering in the SD stage. SCE acts to purify
the cluster which corresponds to the target speaker. While it also acts to minimise the
effect to detection of other speaker models resulting from clustering. Results are reported
for GMM-UBM and i-vector approaches to ASV and show the benefit of the approach.
Of particular interest is the degradation to SD performance which nonetheless results
in better speaker detection performance. The results show that optimisation of an SD
solution when it is not the final application is not necessarily sensible.

The findings from the second line of research are summarised as follows:

• The online SD system based on the sequential clustering of i-vectors delivers a
performance of 34 % DER and associated cluster purity/coverage of 75/82%. The
segmental, non-clustered approach to SD delivers a comparatively higher DER of
96% and a considerably lower coverage of 6%, but a higher purity of nearly 89%.

• Even though it degrades SD performance, SCE improves LLSS performance. Com-
pared to the baseline system, the EER is reduced by a 4% relative for speaker
latencies of 3 and 5s, 8% for 10s, and a 9% for 15s.
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Chapter 10. Conclusions

10.2 Directions for future research

Directions for future research relate to both further study of the BK-based approach
to SD as well as continued research in LLSS. Further work as regards the BK-based
approach to SD include:

• Data augmentation: Recent developments in DL solutions to speaker mod-
elling [5] were made possible through (i) the use of topologies that led to more
discriminative speaker modelling, but also, very importantly, (ii) the exploitation
of huge amounts of data, including acoustically modified versions of the training
data that increases data quantity and also data variability. Its independence from
external training data is an asset of BK-based approaches to SD. Even so, the
KBM is still trained, albeit with test data. Data augmentation, by means of added
noise and/or reverberation, but applied at test time (when the KBM is learned)
could help to better model in-session variability Further work should thus study the
coupling of data augmentation techniques with BK-based modelling. It is stressed
that such work would remain independent from external training data.

• Domain adaptation: BK-based approaches to SD have relatively few tunable
hyper-parameters. However, KBM parameters can still be tuned to deliver better
results for some domain-specific scenarios. Training data-dependent methods to
speaker modelling usually rely on hyper-parameters tuned over an extensive training
set in order to learn a general representation of the speaker space. Here though, a
generic set of parameters could be undesirable, especially given that the KBM is a
strictly local representation of the acoustic space. In this sense, the development of
KBM training techniques that adapt better and more specifically to the domain
may have scope to improve domain robustness further.

• Better fusion with DL approaches: The work presented in this thesis shows
that BK-based approaches to SD compare favourably to the more data-hungry and
computationally demanding techniques. This makes BK-based solutions appealing
when suitable training data is scarce even if performance can fall slightly short
of that of competing systems, there is potential benefit of combining BK-based
systems with DL based pipelines. Future work should investigate further the fusion
of SD systems and especially those which cope with asynchronous label boundaries.

Ideas for future research related to LLSS include:

• LLSS-oriented dataset collection: The Augmented Meeting Interaction (AMI)
database [248] used for the work in LLSS reported in this thesis was not collected
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with speaker recognition let alone LLSS tasks in mind. The collection of an LLSS-
oriented database would be essential to future work. Such a database would need
transcriptions similar to those used in SD research. The same databases could also
be used for research in short duration ASV.

• Online target speaker extraction: Much research has appeared recently in the
literature relating to the problem of target speaker extraction and separation in the
context of overlapping, multi-speaker speech [250,251,252,253,254]. Most of these
methods generate speaker-dependent acoustic masks applicable at the spectrogram
level to separate speech. This kind of technology could be of benefit to the LLSS
task by separating mixed speech in the occasional presence of speaker overlap.
Ideally, separate threads of speech could be generated for all participating speakers,
potentially benefiting both diarization and LLSS performance. Future work should
consider such approaches and online implementations suited to both tasks.
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