
HAL Id: tel-02458545
https://theses.hal.science/tel-02458545

Submitted on 28 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a 3D building reconstruction using spatial
multisource data and computational intelligence

techniques
Georgios Papadopoulos

To cite this version:
Georgios Papadopoulos. Towards a 3D building reconstruction using spatial multisource data and
computational intelligence techniques. Artificial Intelligence [cs.AI]. Université de Limoges, 2019.
English. �NNT : 2019LIMO0084�. �tel-02458545�

https://theses.hal.science/tel-02458545
https://hal.archives-ouvertes.fr

UNIVERSITE DE LIMOGES

ECOLE DOCTORALE SCIENCES ET INGENIERIE POUR

 L’ INFORMATION, MATHEMATIQUES / S2IM

UNITE DE RECHERCHE XLIM – UMR CHRS No 7252

COMPOSANTE DMI/SIR

THÈSES

Pour obtenir le grade de

DOCTEUR DE L’ UNIVERSITE DE LIMOGES

Discipline / Specialite : Informatique

presentee et soutenue par

Georgios Papadopoulos

Le 20 Septembre 2019

Towards a 3D building reconstruction using spatial multisource data and

computational intelligence techniques

These dirigee par Professeur Djamchid GHAZANFARPOUR, Professer en

Informatique, Faculté des Sciences et Technologies, Université de Limoges

Co-encadrement Professeur Nikolaos VASSILAS, Department of Informatics and

Computer Engineering, University of West Attica

Members of Jury

President of jury: M. Jean-Pierre Jessel, Professor at Paul University of Toulouge, Institut

de Recherche en Informatique de Toulouse.Reporters.

Reporters

M.Paris Mastorocostas, Professor of Computational Intelligence, Department of

Informatics and Computer Engineering, University of West Attica.

M. Jean-Pierre Jessel, Professor at Paul University of Toulouge, Institut de Recherche en

Informatique de Toulouse.

Examiners

M.Paris Mastorocostas, Professor of Computational Intelligence, Department of

Informatics and Computer Engineering, University of West Attica.

M. Jean-Pierre Jessel, Professor at Paul University of Toulouge, Institut de Recherche en

Informatique de Toulouse.

Guests

M. Georgios Miaoulis, Professor of Information Systems & Applications, Department of

Informatics and Computer Engineering, University of West Attica.

M. Voulodimos Athanasios, Professor of Informatics, Department of Informatics and

Computer Engineering, University of West Attica.

To my wife and parents who supported

me throughout this endeavor and to my

daughter to whom the future belongs.

Acknowledgements

I would like to express my deep gratitude to my advisors Dr. Djamchid

Ghazafanpour: professor of the Department of Informatics at the University of

Limoges; Dr. Nikolaos Vassilas: professor of the Department of Computer Engineering

at the University of Western Attica; and Dr. Anastasios Kesidis: associate professor of

the Department of Surveying and Geoinformatics Engineering at the University of

Western Attica, who supported me throughout all stages of my doctoral thesis with

their expertise, their generous counseling and by pointing me toward the right

direction when results were not as expected.

Furthermore, I would like to thank professor Dr. Georgios Miaoulis professor of the

Department of Computer Engineering at the University of Western Attica who trusted

me with this doctoral dissertation and for formulating my scientific thought.

Table of Contents
Acknowledgements .. 3

Abstract (English) .. 10

Abstract (Français) .. 12

1. Introduction .. 14

1.1 Previous work ... 14

1.2 Objectives of the thesis .. 17

1.3 Areas of contribution ... 19

PART I - DEEP CONVOLUTIONAL NETWORKS ... 21

2. BACKGROUND ON NEURAL NETWORKS ... 22

2.1 Simplified Neural Network Model .. 22

2.2 Historical Overview .. 25

2.3 Neural networks ... 28

2.3.1 The neuron as a basic computing element ... 29

2.3.2 Activation functions .. 30

2.3.3 Perceptron Learning Algorithm .. 34

3. Deep learning in neural networks .. 36

3.1 Deep neural network applications ... 36

3.2 Deep neural networks .. 37

3.2.1 Deep convolutional neural networks .. 37

3.3 Learning procedure .. 42

3.3.1 Supervised learning and the back propagation algorithm .. 42

3.3.2 Learning in a feed forward deep network .. 45

4. DEEP CONVOLUTIONAL NEURAL NETWORKS FOR BUILDING CONTOUR DETECTION 47

4.1 Methodology .. 49

4.2 Data pre-processing ... 51

4.3 Cost function modification ... 55

4.4 Experiments ... 56

4.4.1 Training Set Preparation ... 56

4.5 Experimental results .. 57

4.5.1 Comparison between MSE and Top-N Custom Loss Layers .. 57

4.5.2 BCDCNN Configurations & Applied Metrics .. 59

4.5.3 Detection of building contours ... 59

5. Super-Resolution of low-resolution digital elevation data ... 65

5.1 Context ... 65

5.2 Previous work ... 65

5.3 Contribution to multi-channel super-resolution .. 66

5.4 Data preparation .. 67

5.5 Proposed model ... 73

5.6 Experiments ... 75

5.6.1 Neural network configuration & metrics .. 75

5.6.2 Experimental results ... 77

5.6.2.1 Single channel results (elevation set 1) ... 78

5.6.6.2 Single channel results (elevation set 2) ... 82

5.6.2.3 Dual channel results .. 85

5.6.2.3 Single vs dual channel comparison .. 94

PART II – ITERATIVE RELAXATION SYSTEM ... 97

6. Relaxation System .. 98

6.1 Historical origins ... 98

6.2 Data sources and pre-processing ... 101

6.2.1 Data sources ... 101

6.2.2 Implicit data sources ... 102

6.2.3 Selection and pre-processing of building block .. 102

6.2.4 Further pre-processing ... 105

6.3 Confidence matrix initialization ... 114

6.4 Iterative relaxation ... 123

6.5 Evaluation ... 127

7. CONCLUSIONS .. 129

Bibliography .. 131

LIST OF FIGURES

Figure 1 - A simple model of a biological dendrite (source -wikipedia) ... 25
Figure 2 - McCullough & Pits neuron model... 26
Figure 3 - Perceptron model ... 27
Figure 4 - Perceptron generic model .. 28
Figure 5- A simplified model of a fully connected neural network (synaptic weights not shown) 29
Figure 6 - Analytic model of a neuron .. 30
Figure 7 - step activation .. 31
Figure 8 - sigmoid activation function .. 32
Figure 9 - Tanh activation function ... 33
Figure 10 -ReLU activation function ... 34
Figure 11 - convolutional neural network (wikipedia) ... 37
Figure 12- Weight sharing in a convolutional network .. 39
Figure 13- Max Pooling Layer ... 40
Figure 14 - Deep Neural Network used by Hinton, Kizhevsky and Sutskever to categorize ImageNet

images into 1200 categories ... 40
Figure 15 - Role of fully connected layer in a CNN ... 41
Figure 16 – Original data used for the building contour detector. (a) Optical image of block 1. (b)

Elevation data of block 1. (c) Ground truth data of block 1. (d) Optical image of block 2. (e) Elevation

data of block 2. (f) Ground truth data of block 2. ... 47
Figure 17 – Remaining training data (top 2/3 of block 2) ... 48
Figure 18- Original validation data ... 48
Figure 19 - Original test data .. 48
Figure 20 - proposed 3-layer convolutional system architecture ... 50
Figure 21 - Original and MS processed elevation data (block 1) .. 51
Figure 22 - Original and MS processed elevation data (block 2) .. 52
Figure 23 - Original train data block 1. a) Optical b) MS DEM c) GT building contours 52
Figure 24 - Original train data block 2 a) Optical b) MS DEM c) GT building contours 52
Figure 25 - Original validation data a) Optical b) MS DEM c) GT building contours 53
Figure 26 - Original test data a) Optical b) MS DEM c) GT building contours ... 53
Figure 27 - MS train data block 1 a) MS Optical b) MS DEM c) GT building contours 53
Figure 28 - MS train data block 2 a) MS Optical b) MS DEM c) GT building contours 53
Figure 29 - MS validation data block a) MS Optical b) MS DEM c) GT building contours 54
Figure 30 - MS test data a) MS Optical b) MS DEM c) GT building contours .. 54
Figure 31 - Log train data block 1 a) LoG Optical b) Log DEM c) GT building contours 54
Figure 32- Log train data block 2 a) LoG Optical b) Log DEM c) GT building contours 54
Figure 33 - Log validation data a) LoG Optical b) Log DEM c) GT building contours 54
Figure 34 - Log test data a) LoG Optical b) Log DEM c) GT building contours .. 55
Figure 35 - Proposed Top-N custom cost layer. (a) low-quality reconstruction. (b) Corresponding

ground truth data ... 56
Figure 36 - Proposed Top-N custom cost layer. c) pdf and cdf of intensity levels and Top-N threshold,

and d) Top-N version of the reconstruction. .. 56
Figure 37 - Reconstruction of Train data for Original data set and Top-N Cost Layer 59
Figure 38 - Reconstruction of Train data for Original data set and MSE Cost Layer 60
Figure 39 - Dual channel reconstruction for 256-128-1 feature maps (Train data) 60
Figure 40 - Dual channel reconstruction for 256-128-1 feature maps (Test data) 61
Figure 41 - Top-N reconstruction of test data. a) PSNR curve for test data on Original dataset training

b) Corresponding reconstruction of test data .. 61
Figure 42 - Top-N reconstruction of test data. PSNR curve for test data on MS dataset training b)

Corresponding reconstruction of test data .. 62
Figure 43 – Top-N reconstruction of test data. a) PSNR curve for test data on LoG dataset training b)

Corresponding reconstruction of test data .. 62

Figure 44 - MSE reconstruction of test data. a) PSNR curve for test data on Original dataset training b)

Corresponding reconstruction of test data .. 63
Figure 45 - MSE reconstruction of test data. a) PSNR curve for test data on MS dataset training b)

Corresponding reconstruction of test data .. 63
Figure 46 - MSE reconstruction of test data. a) PSNR curve for test data on LoG dataset training b)

Corresponding reconstruction of test data .. 64
Figure 47 -DEM & Optical data. a) DEM block1 LR b) Optical block1 HR c) DEM block2 LR d) Optical

block2 HR .. 68
Figure 48 - Train & validation data with elevation set one. a) Block 1 LR bicubic DEM (120x80) b) part

of Block 2 LR bicubic DEM (120x48) c) Block 1 optical HR (120x80) d) part of BLock 2 optical HR

(120x48) e) part of Block 2 LR validation 1 DEM (29x31) f) part of Block 2 LR validation 2 (41x31) g)

part of Block 2 HR validation 1 optical (29x31) h) part of Block 2 HR validation 2 optical (41x31) 69
Figure 49 - Train and validation data with elevation set two. a) Block 1 SLR NN DEM (120x80) b) part

of BLock 2 SLR NN DEM (120x48) c) Block 1 optical LR (120x80) d) part of Block 2 optical LR HR

(120x48) e) part of Block 2 LR validation 1 DEM (29x31) f) part of Block 2 LR validation 2 (41x31) g)

part of Block 2 HR validation 1 optical (29x31) h) part of Block 2 HR validation 2 optical (41x31) 70
Figure 50 - BSRCNN Proposed three-layer architecture ... 74
Figure 51 - PSNR single channel. a) 7-1-5 64-32-1 b) 9-1-5 64-32-1 ... 78
Figure 52 - Training curves single channel 64-32-1. a) 7-1-5 17x17 b) 9-1-5 17x17 c) 9-1-5 19x19 d) 9-1-

5 21x21 e) 9-1-5 23x23 f) 9-1-5 33x33 .. 79
Figure 53 - SSIM Single channel Train data. a) 7-1-5 64-32-1 b) 9-1-5 64-32-1 79
Figure 54 - 64-32-1 Single channel Train reconstruction. a) 7-1-5 b) 9-1-5 c) bicubic d) GT 80
Figure 55 - PSNR & SSIM single channel 64-32-1. a) PSNR 7-1-5 b) PSNR 9-1-5 c) SSIM 7-1-5 d) SSIM

9-1-5 ... 81
Figure 56 - 64-32-1 Single channel validation set 2 reconstruction. a) 7-1-5 b) 9-1-5 c) bicubic d) GT .. 82
Figure 57 - Single channel PSNR & SSIM for Train data. Elevation set 2. 9-1-5 64-32- a) PSNR b) SSIM 83
Figure 58 - 64-32-1 Single channel Train reconstruction (elevation set 2) ... 84
Figure 59 - Single channel PSNR & SSIM For validation set 2 data (Elevation set 2) 9-1-5 64-32- a) PSNR

b) SSIM .. 84
Figure 60 - 64-32-1 Single channel validation set 2 reconstruction (elevation set 2) 85
Figure 61 -Dual channel elevation set one PSNR & SSIM metrics for Train data. a) PSNR 32-16-1 b)

SSIM 32-16-1 c) PSNR 64-32-1 d) SSIM 64-32-1 ... 86
Figure 62 - Dual channel Train reconstruction. 32-16-1 & 64-32-1 comparison 87
Figure 63 - Dual channel elevation set one 9-1-5 PSNR & SSIM metrics for validation set 2 data. a)

PSNR 32-16-1 b) SSIM 32-16-1 c) PSNR 64-32-1 d) SSIM 64-32-1 .. 88
Figure 64 - Dual channel validation set 2 reconstruction. 32-16-1 & 64-32-1 comparison 89
Figure 65 - PSNR comparison of different kernel sizes 32-16-1 for validation set 2 data a) 7-1-5 b) 9-1-5

c) 9-3-5 .. 89
Figure 66 - SR Reconstructions of Train, Validation and Test data. a) Dong Train b) Dong Validation c)

Dong test d) proposed method Train e) proposed method validation f) proposed method Test g) GT

Train h) GT Validation i) GT Test ... 91
Figure 67 - Dual channel elevation set two PSNR & SSIM metrics for Train data. a) PSNR 7-1-5 b) PSNR

9-1-5 c) SSIM 7-1-5 d) SSIM 9-1-5 ... 92
Figure 68 - Dual channel Train reconstruction for elevation set two. 7-1-5 & 9-1-5 comparison 93
Figure 69 - Dual channel elevation set two PSNR & SSIM metrics for validation set 2 data. a) PSNR 7-1-

5 b) PSNR 9-1-5 c) SSIM 7-1-5 d) SSIM 9-1-5 .. 93
Figure 70- Dual channel Test reconstruction for elevation set two. 7-1-5 & 9-1-5 comparison 94
Figure 71 - PSNR and SSIM 64-32-1 for single and dual channel 7-1-5 model. a) PSNR single channel b)

PSNR dual channel c) SSIM single-channel d) SSIM dual-channel .. 95
Figure 72 - PSNR and SSIM 64-32-1 for single and dual channel 9-1-5 model. a) PSNR single channel b)

PSNR dual channel c) SSIM single-channel d) SSIM dual-channel .. 96
Figure 73 - Crack edges of central edge e ... 99
Figure 74 - Some typical crack edges connectivity patterns .. 100

Figure 75 - rotated & cropped a) Optical data b) DEM data .. 103
Figure 76 - rotated & cropped a) Grass mask b) Tree mask ... 103
Figure 77 - rotated & cropped shadow mask ... 104
Figure 78 - Foliage mask ... 105
Figure 79 - Gray scale version of optical data... 105
Figure 80 - Optical data with foliage masked out ... 106
Figure 81 - DEM data with foliage masked out .. 106
Figure 82 - Colored height cohesive region map .. 107
Figure 83 - grayscale height cohesive region map ... 107
Figure 84 - smoothed height cohesive regions ... 108
Figure 85 – a) Magnitude of cohesive regions b) Edges of cohesive regions 108
Figure 86 - Gaussian smoothed (μ=0, std=1) a) Optical data b) DEM data .. 109
Figure 87 - Magnitude of optical image ... 110
Figure 88 - Magnitude of DEM image ... 110
Figure 89 - Magnitude of gradient (optical) after non-maximum suppression 112
Figure 90 - Magnitude of gradient (DEM) after non-maximum suppression 112
Figure 91 - Magnitude of optical image after double thresholding ... 113
Figure 92 - Magnitude of DEM image after double thresholding... 114
Figure 93 - Logical neighbors cell matrix .. 114
Figure 94 - Initial confidence matrix (set to magnitude of optical data) .. 116
Figure 95 - Confidence matrix after low-height object removal .. 117
Figure 96 - Confidence after taking into account the coincidence of optical and cohesive region edges

 .. 118
Figure 97 - Confidence matrix after coinciding optical & elevation edges have their confidence

boosted to 100%... 119
Figure 98 - Confidence matrix after augmenting confidence according to Table 36 119
Figure 99 - Confidence matrix after augmenting confidence of edges along dominant directions 120
Figure 100 - Final shadow mask ... 122
Figure 101 - Confidence after augmenting edges that coincide with shadow edges 122
Figure 102 - Confidence after taking into account neighbors along edge orientation 123
Figure 103 - Crack edges. a) Horizontal b) Vertical c) Diagonal case 1 (45°) d) Diagonal case 2 (-45°) 125
Figure 104 - The confidence matrix after the 15th iteration of the relaxation algorithm 127
Figure 105- Final confidence after small area elimination (binary image) ... 127
Figure 106 - Ground truth image .. 128

LIST OF TABLES

Table 1 - von Neuman vs Neural Networks .. 22
Table 2 - Neural Network Architecture (processing units) ... 22
Table 3 - Neural Network Architecture (state of activation) .. 23
Table 4 - Neural Network Architecture (output of the unit) .. 23
Table 5 - Neural Network Architecture (patterns of activation) .. 23
Table 6 - Neural Network Architecture (propagation rule) .. 23
Table 7 - Neural Network Architecture (activation rule) .. 24
Table 8 - Neural Network Architecture (learning rule) ... 24
Table 9 - Neural Network Architecture (operational environment) ... 24
Table 10 - Perceptron training algorithm ... 34
Table 11 - Back propagation algorithm .. 43
Table 12 - RMSE and PSNR metrics for Original dataset .. 58
Table 13 - RMSE and PSNR metrics for MS dataset .. 58
Table 14 - RMSE and PSNR metrics for LoG dataset ... 58
Table 15 - Experiments configurations ... 75
Table 16 - Experiments configuration (dual-channel) .. 75
Table 17 - Experiments configuration (single-channel) .. 76
Table 18 - Single channel PSNR and SSIM for Train data set. ... 79
Table 19 - Single channel PSNR and SSIM for Test data set ... 81
Table 20 - Single channel PSNR and SSIM for Train data set. ... 83
Table 21 - Single channel PSNR and SSIM for Test data set ... 84
Table 22 - Dual channel Train 9-1-5 PSNR & SSIM. Comparison between 32-16-1 and 64-32-1 feature

maps ... 86
Table 23 - Dual channel validation set 2 9-1-5 PSNR & SSIM. Comparison between 32-16-1 and 64-32-1

feature maps .. 88
Table 24 - PSNR & SSIM of validation set 2 data for different kernel sizes and 32-16-1 feature maps . 89
Table 25 - PSNR for Train, Validation and Test data returned by Dong's model 90
Table 26 - Dual channel 32-16-1 PSNR & SSIM Train Reconstruction. Comparison between 7-1-5 and 9-

1-5 convolution kernels. ... 92
Table 27 Dual channel 32-16-1 PSNR & SSIM validation set 2 reconstruction. Comparison between 7-

1-5 and 9-1-5 convolution kernels. -... 93
Table 28 - PSNR and SSIM 7-1-5 single and dual channel comparison ... 95
Table 29 - PSNR and SSIM 9-1-5 single and dual channel comparison (validation set 2) 96
Table 30 - Confidence of vertex type calculation ... 100
Table 31 - Modification of confidence .. 101
Table 32 -Low height edges pruned after low-height object removal ... 116
Table 33 - Number of optical edges coinciding with cohesive regions edges 117
Table 34 - Number of optical edges coinciding with DEM edges ... 117
Table 35 -Number of optical edges suppressed due to low-height spanning objects 118
Table 36 - Edges above 3.7m that have their confidence augmented ... 118
Table 37 - Edges aligned with dominant directions ... 120
Table 38 a) Horizontal template b) Vertical template .. 121
Table 39 - Number of optical edges that coincide with shadow edges .. 121
Table 40 - Number of edges with strong edges along their orientation .. 121
Table 41 - Proposed relaxation algorithm (Prager, 1980) .. 123
Table 42 - Iterative effect of relaxation process on confidence ... 126
Table 43 - Quantitative comparison between Relaxation system and BCDCNN 128

Abstract (English)

Building reconstruction from aerial photographs and other multi-source urban
spatial data is a task endeavored using a plethora of automated and semi-automated
methods ranging from point processes, classic image processing and laser scanning. In
this thesis, an iterative relaxation system is developed based on the examination of
the local context of each edge according to multiple spatial input sources (optical,
elevation, shadow & foliage masks as well as other pre-processed data as elaborated
in Chapter 6). All these multisource and multiresolution data are fused so that
probable line segments or edges are extracted that correspond to prominent building
boundaries.

Two novel sub-systems have also been developed in this thesis. They were
designed with the purpose to provide additional, more reliable, information regarding
building contours in a future version of the proposed relaxation system. The first is a
deep convolutional neural network (CNN) method for the detection of building
borders. In particular, the network is based on the state of the art super-resolution
model SRCNN (Dong, Loy, He, & Tang, 2015). It accepts aerial photographs depicting
densely populated urban area data as well as their corresponding digital elevation
maps (DEM). Training is performed using three variations of this urban data set and
aims at detecting building contours through a novel super-resolved heteroassociative
mapping. Another innovation of this approach is the design of a modified custom loss
layer named Top-N. In this variation, the mean square error (MSE) between the
reconstructed output image and the provided ground truth (GT) image of building
contours is computed on the 2N image pixels with highest values1. Assuming that most
of the N contour pixels of the GT image are also in the top 2N pixels of the re-
construction, this modification balances the two pixel categories and improves the
generalization behavior of the CNN model. It is shown in the experiments, that the
Top-N cost function offers performance gains in comparison to standard MSE. Further
improvement in generalization ability of the network is achieved by using dropout.

The second sub-system is a super-resolution deep convolutional network, which
performs an enhanced-input associative mapping between input low-resolution and
high-resolution images. This network has been trained with low-resolution elevation
data and the corresponding high-resolution optical urban photographs. Such a
resolution discrepancy between optical aerial/satellite images and elevation data is
often the case in real world applications. More specifically, low-resolution elevation
data augmented by high-resolution optical aerial photographs are used with the aim
of augmenting the resolution of the elevation data. This is a unique super-resolution
problem where it was found that many of -the proposed general-image SR
propositions do not perform as well. The network aptly named building super
resolution CNN (BSRCNN) is trained using patches extracted from the aforementioned

1 N is the number of contour pixels in the GT.

data. Results show that in comparison with a classic bicubic upscale of the elevation
data the proposed implementation offers important improvement as attested by a
modified PSNR and SSIM metric. In comparison, other proposed general-image SR
methods performed poorer than a standard bicubic up-scaler.

Finally, the relaxation system fuses together all these multisource data sources
comprising of pre-processed optical data, elevation data, foliage masks, shadow
masks and other pre-processed data in an attempt to assign confidence values to each
pixel belonging to a building contour. Confidence is augmented or decremented
iteratively until the MSE error fails below a specified threshold or a maximum number
of iterations have been executed. The confidence matrix can then be used to extract
the true building contours via thresholding.

Abstract (Français)

La reconstruction de bâtiments à partir de photographies aériennes et d’autres
données spatiales urbaines multi-sources est une tâche qui utilise une multitude de
méthodes automatisées et semi-automatisées allant des processus ponctuels au
traitement classique des images et au balayage laser. Dans cette thèse, un système de
relaxation itératif est développé sur la base de l'examen du contexte local de chaque
bord en fonction de multiples sources d'entrée spatiales (masques optiques,
d'élévation, d'ombre et de feuillage ainsi que d'autres données prétraitées, décrites
au chapitre 6). Toutes ces données multisource et multirésolution sont fusionnées de
manière à extraire les segments de ligne probables ou les arêtes correspondant aux
limites des bâtiments.

Deux nouveaux sous-systèmes ont également été développés dans cette thèse. Ils
ont été conçus dans le but de fournir des informations supplémentaires, plus fiables,
sur les contours des bâtiments dans une future version du système de relaxation
proposé. La première est une méthode de réseau de neurones à convolution profonde
(CNN) pour la détection de frontières de construction. Le réseau est notamment basé
sur le modèle SRCNN (Dong C. L., 2015) de super-résolution à la pointe de la
technologie. Il accepte des photographies aériennes illustrant des données de zones
urbaines densément peuplées ainsi que leurs cartes d'altitude numériques (DEM)
correspondantes. La formation utilise trois variantes de cet ensemble de données
urbaines et vise à détecter les contours des bâtiments grâce à une nouvelle
cartographie hétéroassociative super-résolue. Une autre innovation de cette
approche est la conception d'une couche de perte personnalisée modifiée appelée
Top-N. Dans cette variante, l'erreur quadratique moyenne (MSE) entre l'image de
sortie reconstruite et l'image de vérité de sol (GT) fournie des contours de bâtiment
est calculée sur les 2N pixels de l'image avec les valeurs les plus élevées. En supposant
que la plupart des N pixels de contour de l’image GT figurent également dans les 2N
pixels supérieurs de la reconstruction, cette modification équilibre les deux catégories
de pixels et améliore le comportement de généralisation du modèle CNN. Les
expériences ont montré que la fonction de coût Top-N offre des gains de performance
par rapport à une MSE standard. Une amélioration supplémentaire de la capacité de
généralisation du réseau est obtenue en utilisant le décrochage.

Le deuxième sous-système est un réseau de convolution profonde à super-
résolution, qui effectue un mappage associatif à entrée améliorée entre les images
d'entrée à basse résolution et à haute résolution. Ce réseau a été formé aux données
d’altitude à basse résolution et aux photographies urbaines optiques à haute
résolution correspondantes. Une telle différence de résolution entre les images
optiques / satellites optiques et les données d'élévation est souvent le cas dans les
applications du monde réel. Plus spécifiquement, des données d'altitude à faible
résolution, augmentées par des photographies aériennes optiques à haute résolution,
sont utilisées dans le but d'augmenter la résolution des données d'altitude. Il s'agit
d'un problème de super-résolution unique dans lequel il a été constaté que nombre
des propositions de SR en image générale proposées ne fonctionnent pas aussi bien.
Le réseau CNN (BSRCNN), qui porte bien son nom, est formé à l’aide de correctifs

extraits des données susmentionnées. Les résultats montrent que, par rapport à une
élévation bicubique classique des données d'élévation, la mise en œuvre proposée
offre une amélioration importante, comme l'atteste une métrique modifiée PSNR et
SSIM. En comparaison, d'autres méthodes de SR à image générale proposées ont
obtenu des résultats inférieurs à ceux d'un agrandisseur bicubique standard.

Enfin, le système de relaxation fusionne toutes ces sources de données multisource
comprenant des données optiques pré-traitées, des données d'élévation, des
masques de feuillage, des masques d'ombre et d'autres données pré-traitées dans le
but d'attribuer des valeurs de confiance à chaque pixel appartenant à un contour de
bâtiment. La confiance est augmentée ou décrémentée de manière itérative jusqu'à
ce que l'erreur MSE échoue au-dessous d'un seuil spécifié ou qu'un nombre maximal
d'itérations ait été exécuté. La matrice de confiance peut ensuite être utilisée pour
extraire les véritables contours du bâtiment via le seuillage.

1. Introduction

There is a widespread demand across multiple business domains for the automatic

detection and 3D reconstruction of building boundaries in urban settings from aerial

or satellite photographs. Applications, among many, range from urban planning,

virtual tourism, transportation navigation and creation of virtual 3D models, which can

assist in further models like the propagation of radio waves in an urban environment.

These images could be optical aerial photographs or digital surface models

(DSM)/digital elevations models (DEM) constructed by point-clouds of LIDAR (Light,

Imaging, Detection and Ranging) equipment and taken from fixed-wing aircraft;

helicopters; balloons; UAVs and other vehicles. Further pre-processing can then be

performed in order to filter out irrelevant patterns by creating foliage or synthetic

object maps. The first step towards building a realistic 3D model is the extraction of

edge chains that are part of building contours, which is in broad terms the main

objective of the thesis.

1.1 Previous work

There are many proposals as to how to extract building contours from aerial

/satellite imagery, based on three broad categories. The first category only makes use

of monocular optical or elevation data; the second is a fusion of the first two using

multiple sources while the third uses 3D image provider datasets. Only the first two

cases are examined in this thesis. Early methods of the first category were severely

constrained due to their reliance on a generic model, which assumed that buildings

follow a certain pattern, and thus failed to provide consistent results when applied to

varied urban environments (Mason & Balisavias, 1997). Unfortunately, such models

were also hampered due to low-resolution ground sampling data, occlusions and

shadows. Other researchers have used photogrammetric techniques which avail of

stereoscopic images with several of these methods using optical images while others

elevation data. Examples of the former category are Lang (Lang F. , 1996) as well as

Fraser (Fraser, Baltsavias, & Gruen, 2002) who reconstructed 3D buildings from high-

resolution IKONOS stereoscopic imagery. Hierarchical processing and correlation

schemes of optical data were used in Paparoditis et al. (Paparoditis, Cord , &

Corquerez, 1998)

A graph-based approach was presented by Kim et al. (Kim & Muller, 1999) who

utilized four stages: line extraction; line-relation-graph generation; building

hypothesis generation and building hypothesis. They were able to achieve robustness

by considering only the mathematical and geometric relations between lines in the

course of generating building hypotheses verification. Ok (Ok, Senaras, & Yuksel,

2012) utilized a fuzzy landscape generation approach to model the spatial relation

between building and their shadows. They then applied a pruning process to eliminate

generated landscapes inconsistent with an urban environment. In addition, a shadow

model was used by Peng (Peng & Liu, 2004) in order to extract buildings in monocular

urban aerial images. Raw segmentations of buildings were first extracted and verified

by the shadow model.

Airborne laser scanning equipment became more reliable and refined during the

late 1990s and early 2000s, thus becoming an important source of obtaining digital

surface maps (DSM). Mass and Moleman developed two approaches to detecting

building contours using DSMs (Mass & Vosselman, 1999), but they were limited to

gable roof types. They used pseudo 3D point clouds and their calculated invariant

moments to determine the parameters of standard gable roof types. Furthermore,

observed point clouds from LIDAR data have been used by Rottensteiner et al.

(Rottensteiner & Briese, 2002). More specifically the researchers applied a hierarchical

robust interpolation using a skew error distribution function of the point cloud in

order to discriminate between points belonging to building contours and others.

Another application of point clouds LIDAR building contour detections was presented

by Cho et al. (Cho, Jwa, Chang, & Lee, 2004) who introduced a pseudo grid that

prevented the loss of information due to interpolation. The pseudo grid then passed

through several stages of processing (noise removal; segmentation; grouping for

building detection; linearization and simplification of building boundary) which

resulted in a 3D model. A segmentation approach to point cloud data was

demonstrated by Ramiya (Ramiya, Nidamanuri, & Krishnan, 2017) who applied a novel

histogram based methodology to separate the building clusters from non-building

ones with very good accuracy. Yet another method based on point clouds but this time

specifically aiming to improve the detected building edges by removing jagged

contours was presented by Mineo (Mineo, Pierce, & Summan, 2019). Their approach

used dynamic thresholds to detect points belonging to sharp edges and creases by

applying FFT based reconstruction. This eliminates the need for the predefinition of a

specific polynomial function order for optimum polynomial curve fitting, according to

the authors.

Probabilistic methods that avail of digital elevation models (DEM) have also been

presented. For instance Ortner et al. (Ortner, Descombes, & Zerubia, 2007) used

marked point processes and an energy function, which took into account the height

of the building as well as prior knowledge about the general layout of buildings in

urban settings. Simulated annealing was then employed in order to minimize the

energy function. A variation of the previous method was presented by Lafarge et al.

(Lafarge, Descombes, Zerubia, & Pierot-Deseilligny, 2008) which again used marked

point processes to roughly approximate building contours via rectangular structures.

These rectangular footprints were then regularized by taking into account the local

context of each rectangle and detecting roof height discontinuities.

Fusing optical and elevation data was early on another promising avenue to

examine, thus Haala et al. (Haala & Nrenner, 1999) combined altimetry data with

multi-spectral images in order to extract buildings and trees in an urban environment.

They combined this extraction, in a second step, with 2D ground plan information in

order to obtain a 3D reconstruction. Similarly, Rottensteiner (Rottensteiner F. &.,

2003) integrated LIDAR cloud point data with aerial images. They firstly detected

building regions from the point cloud and applied a curvature-based segmentation

technique to identify roof planes, which were then grouped to create polyhedral

building models. Also, Sohn (Sohn, Sohn, & Dowman, 2007) used high-resolution

IKONOS multispectral imagery with low-sampled airborne laser scanning. They initially

detected building objects by investigating the height property of the point cloud and

the normalized index vegetation indices (NDVI) from the IKONOS data.

More recently, deep convolutional networks have been added to the plethora of

methods aiming to extract building contours from aerial/satellite images of various

sources. For example, Yuan (Yuan, 2017) demonstrated a deep convolutional network

that aimed to detect building contours. The author created a simple deep neural

network model that integrated activation from multiple layers for pixel wise

prediction. He used a signed distance function of building boundaries to represent

output. Similarly, Alshehhi (Alshehhi, Marpu, Woon, & Dalla, 2017) presented an 8-

layer deep convolutional network that extracted roads and building contours from

high-resolution remote sensing data. They used a post-processing stage on the output

of the convolutional network to integrate the low-features of the roads & buildings

with those of the network. Finally, Vakalopoulou et al. (Vakalopoulou, Karantzalos,

Komodaki, & Paragios, 2015) used single very high-resolution satellite images to build

an automated building detection framework with a deep convolutional neural

network. The network was trained using a supervised classification procedure

The proposed solution is an expansion of the third category and aims to reconstruct

building contours using a fusion of multisource spatial data with the aid of

computational intelligence and classic image processing techniques. All primary data

used for this research were courtesy of the Archimedes III research program2 and In

particular, kind amenities have to be given to GeoIntelligence for providing the DSM

and DTM elevation data as well as the National Cadastre & Mapping Agency of Greece

for providing the high-resolution aerial photographs. In addition to the available data,

two additional sub-systems were created for this research, a) a deep convolutional

network, which extracts building, contours from multisource spatial data; b) a super

resolution deep convolutional network augments the resolution of our data using

optical & elevation data. These systems offer additional post-processed versions of

the available data, which could prove important for a future version of the iterative

relaxation system. Finally, the iterative relaxation system is constructed per se. This

system accepts a plethora of multi-resolution spatial data with the aim to render a

faithful building contour.

2 Archimedes Research Program with title “Intelligent Pattern Recognition Techniques for the
Development of Multimodal Representations of Urban Areas”, co-funded by the European Union
(European Social Fund) and Greek national resources.

1.2 Objectives of the thesis

The objective of this work is to employ spatial multisource and multiresolution

urban data towards an improved 3D building modeling. It explores image processing

and pattern recognition techniques in order to determine salient features of the input

data that could efficiently be used to obtain a 3D reconstruction. For this purpose, the

multisource and multiresolution data were fused so that probable line segments or

edges could be extracted that correspond to prominent building boundaries.

In order to achieve these objectives an iterative relaxation system was developed

which accepts the multisource and multiresolution input. The aim of this system is to

assign a confidence value to each pixel of the final image, which is a direct measure of

how certain the system is that it corresponds to a true building boundary. In order to

do this the system performs some one-time pre-processing and then enters into an

iterative process which increments/decrements the confidence of each pixel

according to the local context of the confidence matrix. The iterative process is

terminated after a predetermined number of iterations and Otsu’s method is used to

binarize the image so that only pixels belonging to true edges are retained.

Two further systems were developed3, that can operate autonomously or offer

further post-processed data to a future version of the proposed iteration system. The

first one is a deep neural network, which detects building boundaries by directly

generating a real valued ([0..1] range) building contour image and that is named

BCDCNN. It implements a super-resolved heteroassociative mapping, since low-

resolution elevation data are mapped onto their associated high resolution building

contours available during training from the ground truth data. The model is comprised

of 3-layers, which perform in succession: a) building features patch extraction; b) non-

linear map transformation; c) building contour reconstruction. The network then

creates a building contour image.

Besides the building contour detector, a super-resolution deep convolutional

network was specifically trained in an attempt to augment the resolution of digital

elevation maps depicting urban areas. Similarly, to the previous implementation this

model performs a mapping between the low-resolution image and high-resolution

counterpart. However, this network now performs a hybrid auto-associative mapping

between these two images, in the sense that the network performs the mapping

assisted by corresponding high-resolution optical data. Elevation data are usually of

lower resolution than the corresponding optical data and there is great need for such

applications. Furthermore, elevation data have some intricacies of their own

rendering generic super-resolution techniques inappropriate. The network was

trained with various configurations and with the same urban data set that the previous

network used. Results show that in comparison with a classic bicubic upscale of the

3 These systems can also operate independently as a building contour detector and for optical images
depicting urban areas super-resolution.

optical data this implementation offers important improvement as attested by a

modified PSNR and SSIM metric.

In summary, the objective of the thesis is to create a relaxation system that when

given all these multisource input data will produce a reconstruction of the real building

contours more accurately than any of the previous methods described used in

isolation. In order to assist the relaxation iterative method a great deal of work was

done towards the development of the two deep neural networks BCDCNN AND

BSRCNN.

1.3 Areas of contribution

The main contributions of this thesis are in the following areas:

1. Building reconstruction using optical aerial imagery & LIDAR elevation data:

Obtaining an accurate building contour image given a) an optical

aerial/satellite image; b) LIDAR elevation data; c) a combination of both is a

very difficult problem to automate. This problem has been tackled with varying

levels of success by many researchers as presented in the introduction.

Nonetheless, there remains significant room for improvement.

The approach followed in this paper is twofold. Firstly, a deep convolutional

neural network has been applied which does not operate as a classifier but

attempts to directly derive a building contour image from the available aerial

and elevation data. Using two channels of data has the advantage of

overcoming most difficulties that arise from the usage of a single image. For

instance, the contrast of an image severely affects methods based solely on

optical data. Despite this, the problem remains difficult because as explained

in detail later in this dissertation not all) optical edges are also elevation edges

and vice versa while there also exist cases of implied edges which are the most

difficult case of all. Our solution differs from other proposals because it does

not operate as a classifier but directly derives an output image, which depicts

building boundaries. The deep building contour detector convolutional neural

network (BCDCNN) performs remarkably well given the amount of available

training data and proves that CNNs are not only suitable for classification.

Secondly, an iterative relaxation system has been developed. This is based

on the implementation by Prager (Prager J. , 1980) who developed a system

that extracted line segments as connected sets of edges, labeled them, and

computed features for them such as length and confidence. This initial

implementation has been much expanded taking into account multiple sources

of spatial data. It begins by applying a modified Canny operator to the optical

image depicting a heavily populated urban area. The output of this operator is

given as input to the relaxation system, which begins by performing one-time

pre-processing on this building boundaries image according to the elevation

data, the shadow masks and the foliage masks. The result is an initial

confidence matrix with values in the range [0..1], where 0 denotes total

confidence that a pixel does not belong to a building boundary and 1 that full

confidence that it does. The system then enters into an iterative process, which

takes into account the local context and more specifically their gradient

directions in order to augment/decrement the confidence of an edge. A binary

image is then derived using Otsu’s method to calculate a cutoff threshold.

2. Urban area imagery super-resolution.

Super resolution has been extensively researched during the previous years

with methods ranging from sparse dictionary representations to deep

convolutional neural networks using one or multiple images as source. This

thesis examines how deep neural networks can be trained using high-

resolution optical aerial/satellite images in conjunction with low-resolution

DEM maps obtained from the processing of LIDAR data. This combination of

high-resolution and low-resolution data combos is often the case in real world

applications despite the falling cost of LIDAR equipment. More specifically, the

work done aims to increase the resolution of low-resolution elevation data

given corresponding high-resolution optical data of urban areas.

PART I - DEEP CONVOLUTIONAL NETWORKS

2. BACKGROUND ON NEURAL NETWORKS

Artificial Neural Networks constitute a parallel-distributed computing model, which

has been inspired from the functioning of the mammalian cognitive system. They

intend to mimic the highly distributed processing and representation of the

mammalian brain. The following Table depicts the main differences between artificial

neural networks and classical computing systems.

Table 1 - von Neuman vs Neural Networks

 von Neuman computing
systems

Artificial Neural Networks

Parallel processing Limited Yes

Fault tolerance Limited Yes

Graceful degradation No Yes

Generalization No Yes

Classical von Neuman architecture has limited parallel processing capabilities,

expensive fault tolerance solutions, generally does not gracefully degrade and

proposed solutions cannot generalize. On the contrary, artificial neural networks are

inherently parallel processing, have fault tolerance even if many neurons fail, degrade

their performance gracefully when part of the network fails and can generalize much

better than hand-crafted computing models.

2.1 Simplified Neural Network Model

A simplified model of a mammalian brain as proposed by McClelland (McClelland,

Rumelhart, & PDP Reserach Group, 1987) is comprised of eight major elements:

 A set of processing units.
 A state of activation.
 An output function for each unit.
 A pattern of connectivity among units.
 A propagation rule for propagating patterns of activities through the network.
 An activation rule for combining the inputs impinging on a unit with the current

state of the unit to produce a new level of activation for the unit.
 A learning rule whereby patterns of connectivity are modified by experience.
 An environment within which the system must operate.

An analysis of each element appears in Tables 2-9.

Table 2 - Neural Network Architecture (processing units)

Set of processing units

These units are simple abstract elements over which meaningful patterns can be
assigned as a distributed representation. A simple processing unit carries no
meaningful information; it is the pattern as a whole, which holds meaningful
content. This is in contrast to one-unit-one-concept representational systems, in

which a single unit represents entire concepts. A unit acts on receiving weighted
inputs from its neighbors and transmits an output signal according to its activation
function. Classical neural networks employed three layers input, hidden and output
due to the computational complexity of adding further layers. Modern deep
network models have overcome this limitation due to the availability of powerful
GPU architectures. During the past ten years power powerful GPUs have enabled
the training of very deep neural networks These GPUs can be pooled or used for
distributed training of deep neural networks enabling the development of models
previously thought impossible. Deep networks employed up to 1000 layers in 2017
(Fog, 2019). Recently focus has shifted from the number of layers and processing
units that a deep neural network features to the examination of idea of using a block
as a structural unit instead of a layer (Khan, Sohail, Zahoora, & Qureshi, 2019).

Table 3 - Neural Network Architecture (state of activation)

State of activation

The representation of the state of the system at time t, which is specified by a
vector N of real numbers a(t). Each element of the vector stands for the activation
of one of the units at time t. The pattern of activation over the set of units captures
what the system is representing at any time. However, for practical analytical
purposes only the status of the output layer neurons are utilized since all
intermediate layers represent the computational details of this output. Activation
values can be continuous or discrete, bounded or unbounded.

Table 4 - Neural Network Architecture (output of the unit)

Output of the unit

Units interact by transmitting signals to their neighbors. Associated with each
unit ui(t), is an output function, fi(ai(t)), which maps the current state of activation
ai(t) to an output signal o(t). Usually f is a sort of threshold function so that a unit
has no effect on another unit except if its activation exceeds the threshold.

Table 5 - Neural Network Architecture (patterns of activation)

Pattern of Connectivity

Units are connected to one another, which produces a pattern of activation that
constitutes what the system knows and determines how it will respond to any
arbitrary input. Each unit contributes to the input of the units to which it is
connected. Thus, the total input to a unit is a weighted sum of each individual input.
The weights between the neurons of layer i and layer j are usually represented as
matrix wij whereby each entry represents the strength of the connection between
unit i and j.

Table 6 - Neural Network Architecture (propagation rule)

Propagation rule

This rule accepts the outputs o(tj) for every neuron j of a specific layer and
combines it with the weight matrices to produce the net input provided to the
succeeding layer. It accepts the outputs o(tj) for every neuron j of a specific layer
and combines it with the weight matrices to produce the net input provided to the
succeeding layer.

Table 7 - Neural Network Architecture (activation rule)

Activation rule

The rule whereby the net inputs impinging on a particular unit are combined
with one another and with the current state of the unit to produce a new state of
activation. The rule whereby the net inputs impinging on a particular unit are
combined with one another and with the current state of the unit to produce a new
state of activation.

Table 8 - Neural Network Architecture (learning rule)

Learning rule

The weights connecting the outputs of neurons of a previous layer to the input
of the next layer are modified according to the expected output through this
algorithm. The most commonly used algorithm used today is the backpropagation
algorithm, which commences execution at the final output layer and back
propagates the error differences according to the chain rule.

Table 9 - Neural Network Architecture (operational environment)

Operational environment

The environment is represented as a time-varying stochastic function over the
space of input functions. The environment is represented as a time-varying
stochastic function over the space of input functions.

Neural networks can be trained using the backpropagation (BP) algorithm, which
was developed in a non-neural network context the 1960s and elaborated in the 1970s.
Paul Werbos was the first to discover how the back-propagation algorithm could be
used to train multi-layer neural networks during his doctoral thesis in 1974 but he did
not report on his findings due to the AI-winter context of the period. He did publish
on it in 1982. The classic BP algorithm has evolved since then to more complex
implementations like the ADAM and RMSProp, which converge to a solution much
faster.

2.2 Historical Overview

Artificial neural networks first appeared in the 1940s. What follows is a brief history

of major milestones and developments.

 McCullough and Pitts researched in 1943 the operation of a biological neuron

and the result of their work was the first mathematical models of a neuron. As

shown in Figure 1, a biological neuron is comprised of a) dendrites: which

accept input from other neurons; b) soma: in which protein synthesis occurs;

c) axon through which the output of a neuron is transmitted to dendrites; d)

and the synapse which controls how much of the output of a neuron will reach

the dendrite of another.

Figure 1 - A simple model of a biological dendrite (source -wikipedia)

The researchers presented a neuron model which summed binary inputs,

outputting a logical 1 if these inputs exceeded a threshold or 0 otherwise. By

using such a model of neuron, he and his colleagues designed mathematical

models of the basic AND/OR/XOR logical functions. However, their model

offered no mechanism for learning something, which limited its applications.

A depiction of their model can be seen in Figure 2. As shown in the figure, it is

composed of two parts. The left part named g, accepts a number of inputs xn ∈

{0,1} and performs an aggregation (calculates the sum). The right part named

f is a functionf(∑ 𝑥𝑛)𝑛
1 , which outputs either a positive (1) or negative (0)

decision based on the inputs.

g f

x1

x2

x3

...

xn

𝑥𝑛 ∈ {0,1}

Figure 2 - McCullough & Pits neuron model

McCullough defined two categories of input: a) inhibitory, which force the

neuron not to activate when they are active b) excitatory, which contribute to

whether the neuron will activate. As an example, let us use a simple neuron to

make a decision on whether I should go for a walk or stay inside. Three

excitatory variables determine whether the neuron will activate as follows:

o x1 (excitatory): Is it raining? (0: not raining, 1: raining)

o x2 (excitatory): Is it warm outside? (0: no, 1: yes)

o x3 (excitatory): Am I feeling well? (0: no, 1: yes)

The neuron will accept these inputs and calculate their sum. Expressed

mathematically:

 𝒈(𝒙) = ∑ 𝒙𝒊
𝑵
𝒊=𝟏 (1)

 , which is a simple sum of the input. The neuron activates according to

whether the sum of the inputs exceeds a threshold θ. In mathematical terms:

 𝒚 = 𝒇(𝒈(𝒙)) = 𝟏, 𝒊𝒇 𝒈(𝒙) ≥ 𝜽

 = 𝟎, 𝒊𝒇 𝒈(𝒙) < 𝜽

(2)

 1954: Donald Hebb and the IBM research group presented the first simulations

of the McCullough and Pitts model. What has since been called the Hebb rule,

stated ‘When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased’. The revolutionary idea that learning occurs in the brain

through the formation and change of synapses in the brain has had a deep

impact on the development of neural networks.

 1958: Frank Rosenblatt’s perceptron: Rosenblatt expanded on the work of

Hebb by adding weights to the inputs of a neuron and introduced a learning

mechanism for his perceptron. Given a training set of input-output pairs the

‘Perceptron’ learns via increasing the weights if the output for a specific input

is too low compared to the expected output and vice versa. The perceptron is

a more generic computational model that was proven capable of solving

linearly separable problems. It is depicted in Figure 3.

x1

x2

x3

...

xn

w1
w2

w3

wn

y
F(g)

θ

g

Figure 3 - Perceptron model

Mathematically the perceptron can be described as:

 𝒚 = ∑ 𝒇(𝒘𝒊 ∗ 𝒙𝒊) + 𝜽𝑵
𝒊=𝟏 (3)

Just like the neuron proposed by McCullough & Pits, the perceptron will

activate if𝑦 ≥ 𝜃 , where θ is a pre-defined threshold. The most important

difference compared to the McCulloughs-Pits neuron is that a perceptron uses

synaptic weights with which each input is multiplied. By adjusting the weights

the perceptron can learn to activate or not according to the presented input.

A more practical model of the perceptron is depicted in Figure 4. In Figure 4,

the threshold θ is passed as a synaptic weight to a unit input. This simplifies

the model since now it will only activate if y > 0.

 1969: Marvin Minsky proved that the Perceptron learning mechanism had

severe limitations (Minsky & Papert, 2017). This was mostly a reaction by

scientists engaged in algorithmic artificial intelligence systems who remained

skeptical at all the fervor regarding artificial neural networks. His most notable

criticism was the failure of the Perceptron to model the simple XOR logical

function because it is not linearly separable. This publication ushered in an era

of disenchantment with neural networks and artificial intelligence in general,

aptly named the AI Winter.

x1

x2

x3

...

xn

w1
w2

w3

wn

y
F(g)

g

1

-θ

Figure 4 - Perceptron generic model

 1985 - Reemergence of interest in neural networks: The handicaps that Minsky

had presented back in 1969 were shown to be overcome through the usage of

multi-layer networks and the back-propagation algorithm in order to train

them. The hidden intermediate layers could find features within the training

data allowing following layers to operate on this intermediate representation

than on the initial raw data. For example, in a 4-layer fully connected layer

designed to categorize human faces, the first hidden layer could find abstract

features of the input images like circles, rectangles and other basic geometric

elements while the second hidden layer could combine these and enable the

output layer to categorize the faces according to their ethnicity. Nonetheless,

progress was cumbersome and slow due to the inadequacy of the available

hardware. Training requires many simple processing elements working in

tandem, something that would not be massively available for another two

decades.

2.3 Neural networks

The late 1950s and until Minsky’s paper, which proved that a single-layer neural

network could not solve non-linearly separable problems, was a period in which many

developments occurred regarding artificial intelligence. There was great faith that AI

would solve many engineering problems and that AI cognition would surpass human

natural intelligence. Minsky’s seminal work ushered in an era of stagnation for AI,

which would last until the early 1980s. That is not to say that important work was not

being done, since many multi-layered neural networks were being developed during

the late 1970s and early 1980s. Fukushima for instance, developed the first

convolutional neural network in 1980 (Fukushima, 1980). This area was characterized

by a disenchantment and a loss of belief that AI would solve many of the important

challenges of the era. In any case, AI started to reemerge as a credible discipline during

the 1980s and by mid 1980s, multi-layered neural networks were being once again

successfully used for many applications.

A typical multi-layered neural network is shown in Figure 5.

n11

n12

n13

n23

n24

n22

n21

n25

n33

n34

n32

n31

n35

n43

n44

n42

n41

Layer 1 Layer 2 Layer 3 Layer 4

X1

X2

X3

Y1

Y2

Y3

Y4

Figure 5- A simplified model of a fully connected neural network (synaptic weights not shown)

As seen in Figure 5, classical neural networks consist of many simple, connected
processors, called neurons, each producing a sequence of real-valued activation. The
number of layers comprising these networks were few due to processing power
limitations of the era. They are now classified as shallow networks according to Fog et
al. (Fog, 2019).

2.3.1 The neuron as a basic computing element

The basic computing unit of a neural network is called a neuron (depicted as a circle

in Figure 5), which models the operation of a physiological neuron. A typical artificial

neuron is depicted in Figure 6, where it can be seen that it simply sums the weighted

inputs up. It then adds a bias (threshold) and changes its status according to a non-

linear activation function φ (in order to simplify the model, the bias (threshold) is

usually added as further input to the summation with a value of 1 as depicted in Figure

4). There are many variations of the activation functions, most of which are based on

the functioning of biological neurons. Biological neurons can be either active or

inactive. When active, they transmit an analog signal of varying intensity.

W1j

w2j

w3j

wnj

Σ φ

Transfer function

x1

x2

x3

xn

weights

Activation
function

oj

θj

Threshold

Net input
netj

.

.

.
.
.
.

Figure 6 - Analytic model of a neuron

In the following section, the most typical activation functions are elaborated

(Ramachandran, Zoph, & Le, 2017), (Sharma, 2019):

2.3.2 Activation functions

 Step function: The simplest of the activation functions, which activates simply
if the weighted sum of all inputs is above a specified threshold. This function
operates well for a binary classification problem but fails when a categorization
problem has multiple categories. Non-linearly separable problems cannot be
solved with a single neuron and this activation function. The plot of the step
function can be seen in Figure 7.

 Linear activation function: Theoretically, this function solves the multiple
categorization failure of the step function. Unfortunately, the linear function
given by the mathematical expression 𝑌 = 𝑐𝑋 has another problem. When
moving on to the back-propagation stage, this produces a constant derivative
regardless of the input X which would in turn cause the weights of the network
to be updated by a constant factor in every iteration and no learning would be
possible. Another important problem of this activation function is that if two
or more layers are connected via linear activation functions then these layers
can be collapsed to a single linear layer with the result that the network would
lose its structure.

Figure 7 - step activation

 Sigmoid activation function: The sigmoid function was heavily applied in
classical neural networks and with good reason. The mathematical notation
for the sigmoid is 𝜑(𝑧) = 1/(1 + 𝑒−𝑧) and its graph is given in Figure 8. This
function exhibits several very agreeable characteristics. Firstly, it performs well
as a binary classifier as it has the tendency to push the Y values towards the
edges of the graph (0 or 1). Secondly, it is nonlinear, which means that the
layers of the neural network can be stacked one after another without bringing
about the collapse of its structure. Lastly, the output is always in the range
[0..1] as opposed to the linear function.

Unfortunately, there is also a significant drawback. Notice that the function
has a near linear operating region between the ordinate range [-2..2]. Outside
that region large changes in the X value lead to very small changes in the Y
values, something which means that the neural network will stop learning in
that region.

Figure 8 - sigmoid activation function

 Hyperbolic tangent function (Tanh): This activation function has many
similarities to the sigmoid function. As can be seen from Figure 9, it is bounded
to the range [-1..1] which guarantees a stable learning process in the linear
operating region of the function. The gradient is also slightly steeper than the
sigmoid, which can lead to faster convergence of the learning process.
Nonetheless, it suffers from the same constraints as the sigmoid as the neural
network stops learning outside the linear operating region.

Figure 9 - Tanh activation function

 Rectified Linear Unit (ReLU): The ReLU is a rather modern activation function
that offers the best of both worlds that the step function and the sigmoid
function have to offer. It is linear in nature in the positive X axis but returns
zero for negative values and is shown in figure 64. The benefits of using this
function are its simplicity since it is linear for positive but non-linear for
negative values, which means that layers connected via this function can be
stacked up without the network’s structure collapsing. A final significant
benefit of the ReLU is that it leads to sparse activation in comparison to the
sigmoid or Tanh. Consider a case where the initial weights of the neural
network are randomly initialized. This will lead to 50% of the neurons to be
initially inactive. After training, a specific representation will lead to a sparse
activation of neurons. This is because of the nature of the ReLU activation
function. As can be seen in Figure 10, all neurons whose weighted summed
inputs are less than zero, will be rendered inactive. This leads to situation
where half of the neurons in the hidden units will be inactive, as Bengio
pointed out in his work (Bengio, Bordes A., & Glorot X., 2011). In comparison,
a corresponding representation for Tanh or sigmoid will lead to a much denser
activation of hidden neurons.

The classic ReLU can however lead to the dying neurons problem, wherein
when the gradient goes towards 0 the weights will stop adjusting. Such
neurons will stop responding to the variations of the error function. Leaky
ReLU bypasses this problem by allowing for a small incline in the output for
negative values so that the gradient never is zeroed out and the learning
process can continue.

Figure 10 -ReLU activation function

2.3.3 Perceptron Learning Algorithm

The goal of the Perceptron learning algorithm is to adjust the values of the elements
of the weight vector 𝒘 = {𝒘𝟏, 𝒘𝟐, … , 𝒘𝒏} with which the input vector 𝒙 =
{𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} s multiplied (dot product), so that the neural element can learn to
classify correctly positive and negative inputs. For this reason, a supervised learning
algorithm is applied through which the weights are adjusted in a way so that the
output of the neuron is as close as possible to a given real value L. A scaled multiple of
the difference between the output of the neuron and L is used to adjust the weights.
The full algorithm is given in Table 10.

Table 10 - Perceptron training algorithm

Initialize w randomly;
𝒄𝒔 = {𝑻𝑬𝟏, 𝑻𝑬𝟐, … , 𝑻𝑬𝒏 }
While 𝑠𝑖𝑧𝑒(𝐶𝑠) > 0 {
 i = random(𝑠𝑖𝑧𝑒(𝐶𝑠));
 𝑇𝐸 = 𝑐𝑠(𝑖);
 y = w.x(TE); // this is the dot product
if positive(TE) & y > 0 {
 𝐶𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑇𝐸);
 break;
}
else If positive(TE) & y <= 0 {
 w = w + x(TE);

 }

If negative(TE) & y < 0 {
 𝐶𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑇𝐸)
}
else If negative(TE) & y ≥ 0 {
 w = w – x(TE);
 }
}

The algorithm commences by randomly initializing the weights. It then creates a set
of all training exemplars before entering into a loop that will adjust the weights until
all training exemplars have been correctly classified. Once in the loop it randomly
extracts a training exemplar and examines if it has been correctly classified. There are
two cases:

o The exemplar is positive: A positive exemplar is correctly classified if the
neuron outputs a positive value. If this is the case, the training exemplar
is removed from the set and another iteration of the loop follows.
Otherwise, the weights of the neuron are incremented by the value of
the input for that exemplar.

o The exemplar is negative: A negative exemplar is correctly classified if
the output of the neuron is negative. In this case, the exemplar is
removed from the exemplar training set. Otherwise, the weights of the
neuron are decremented by the value of the input for that exemplar.

The algorithm continues until all exemplars are correctly classified.

3. Deep learning in neural networks

The emergence of powerful Graphics Processing Units (GPU) in the past decade as

well as the development of distributed computing frameworks like CUDA and OpenCL

have enabled the deployment of much more powerful neural networks consisting of

a multitude of layers in contrast to the typical 3 fully connected layers (input-hidden-

output) of classical neural networks. The GPUs can operate in parallel and/or a

distributive manner. Such networks have been called Deep Neural Networks4.

A deep neural network maps inputs to outputs by finding correlations between

them. Essentially, for input vector x it seeks to approximate the unknown function 𝑦 =

𝑓(𝑥) which fully describes the relationship between input and output. In addition, it

has been described as a universal approximator, because assuming a causal or

correlational relationship does exist, a deep neural network will find it (Nicholson,

2019).

3.1 Deep neural network applications

Some of the most important applications of deep neural networks (DNN) are:

 Classification: The process through which a DNN learns to find abstract

similarities between images and assigning them a label. This is done through

supervised learning, whereby the network is presented a training set of

exemplars, which have been labeled by an expert or through crowd labeling

efforts. A class of DNNs called convolutional neural networks (CNNs) are

especially adept for this application due to their ability to learn the filters

that classic image processing methods would have to apply in order to

achieve a result of similar level. Classification applications range from face

detection, object identification, voice recognition and hate speech

recognition.

 Clustering: Clustering is the process of identifying similarities between

objects of a data set. In algorithmic pattern recognition, it would be done

via the k-means algorithm and its variants. This process does not require

labelled data sets and is thus a case of unsupervised learning. Given large

data sets, deep neural networks trained using unsupervised learning can

produce very accurate models. Typical applications are sound & documents

retrieval based on similarity metrics.

Besides detecting similarities, deep neural networks can perform the

opposite. They can find outlying members of a data set. There have been

examples in the literature of deep neural networks trained to detect out of

baseline performance on a computer network. This can be an indication of

4 Although the term deep network was initially proposed in the 1970s, it did not receive any widespread
usage until 2006.

a denial of service attack or other illicit behavior. For instance, (Tang T.A,

Mhamdi, McLernon, Zaidi, & Ghgho, 2016) trained a deep neural network

for flow-based anomaly detection in an SDN environment. They thus demonstrated

an effective NN intrusion detection system.

 Regression: Neural networks can also be used in a more generic context to

predict future events. For instance, (Nicholson, 2019) states that ‘deep

learning is able to establish correlations between present events and future

events. It can run regression between the past and the present’. Regression

applications of deep neural networks are especially prominent in the health

sciences. Stroke predictors, kidney failure predictors and heart attack

predictors are among the few of many similar applications. For instance, in

(Lee, Kim, Kim, & Kang, 2017), a review was conducted on the then current

state of play of neural network imaging. The authors found that in most

stroke cases examined, neural networks had comparable or better

performance than health professionals and/or more established prognostic

solutions.

3.2 Deep neural networks

3.2.1 Deep convolutional neural networks

Convolutional Neural Networks are a form of deep network that was initially

inspired from the organization of the visual cortex of the human brain. It is especially

tuned to the processing of data that comes in the form of multiple arrays with a typical

example being a color image that comes in the RGB format. Such images contain a

matrix for the pixel intensities of each channel. Convolutional Neural Networks are

especially suitable for categorization problems with a typical architecture depicted in

Figure 11.

Figure 11 - convolutional neural network (wikipedia)

As depicted in Figure 11, a CNN is composed of many pairs of convolutional and

subsampling (pooling) layers followed by a fully connected layer and a Softmax cost

function layer at the output5. CNNs exploit four properties of natural signals: local

connections; shared weights; pooling; and the use of many layers. Each convolutional

layer accepts a set of feature maps and usually applies 3D convolution on these maps

outputting another set of feature maps. A single neuron conducts each convolution

by accepting local patches of the feature maps of the previous layer multiplied by the

corresponding weights while a set of convolution kernels that renders the feature

maps is called a filter bank. The result is then passed through a non-linear activation

function, such as the ReLU. Such an architecture can easily detect local groups of

values that are often highly correlated, forming patterns that can easily be

distinguished. Furthermore, the local statistics of images and other signals are

invariant to location. A pattern can be repeated many times across an image. Thus, a

filter bank trained to detect a specific pattern in one location of an image can easily

generalize to recognize a similar pattern in another part of the image.

The neural network depicted in Figure 11 is a typical implementation of a

categorization convolution neural network. These networks are comprised of a

succession of convolution and max pooling layers followed by several fully connected

layers and a finally, a softmax layer that asserts one or more categorization neurons

according to their probabilities scores6. The foremost application of Deep CNNs is

image and video classification. Such a classifier has the task of taking an input image

and categorizing it as belonging to one or more classes with their respective

probabilities. This is a basic trait of human beings, which is learned even from an infant

age and is constantly being perfected in our adult lives. We develop early on the ability

to be able to discern different images in our environment and assign a category to

each object in it. Prior knowledge plays a crucial role in this process and can easily be

adapted to different environments.

Despite advances in machine learning, computers had a very hard time generalizing

in image classifications tasks before the advent of effective deep convolutional

networks. Hand engineered methods were successful in recognizing images of a

specific domain only in an ideal or artificially generated context. For a computer, an

image is simply of collection of pixel values in an array data structure. A color image

of resolution 640x480 has three-color channels (RGB) and thus would have a

representative array of size 640x480x3. The task of the computer given these numbers

is to calculate the probabilities that the input belongs to a specific class and then

return the class or classes with the highest probabilities.

An analysis of the basic layers of which a CNN is comprised in the context of image

classification follows:

 Convolutional Layer: This is the main layer of a CNN. It aims to process a

local patch around a pixel and to create translation invariant feature

5 Not shown in the Figure.
6 The softmax is an activation function that converts the inputs it receives into a probability vector
whose values sum to 1. It was not presented in the activation functions section because it is primarily
used in classifier CNNs, which is not the case for any of the developed CNNs for this thesis.

detectors, which can detect various patterns in an image. The main

advantage against typical fully connected networks is firstly computational,

since there exists a vastly reduced number of connections (weights) that

need to be stored and trained and secondly, performance wise it can easily

focus on the local context and fine tune to it (Le, 2015). The complexity of a

network can be further reduced via weight sharing, in which certain

connections that aim to discover the underlying pattern on a local context

share the same weights.

σ σ σ

w1 w2
w3

w5w4
w6 w8 w9w7

Figure 12- Weight sharing in a convolutional network

For instance in Figure 12, weights 𝑤1 = 𝑤4 = 𝑤7, 𝑤2 = 𝑤5 = 𝑤8, 𝑤3 =

𝑤5 = 𝑤9 . This way, the network can be compact in terms of storage

requirements, as only three different weights need to be stored instead of

nine. This can also be viewed as a necessity due to the nature of

convolutional networks, which require the same filters to be applied to

different parts of an image or video. An effect of the nature of the

convolution operator is the reduction of the resolution of the feature maps

of the previous layer. This is because the convolution kernels do not exactly

fit at the corners of the image. A compensation measure, in case this

resolution reduction has an adverse effect on an application, is to zero pad

all dimensions of the feature maps so that the convolution kernel precisely

fits the original data.

 Max Pool Layer: This layer takes the outputs of several neurons of a
convolution layer and only let us through the one with the maximum value
(Krizhevsky, Sutskever, & Hinton, 2012). It enables the network to better
generalize since two input vectors x that enter this layer and have the same
values but different permutation will output the same value. Take for
example, the input vectors𝑣1 = {0,1,0,0} 𝑎𝑛𝑑 𝑣2 = {1,0,0,0}, which will
both return a value of one after the max pool layer. This layer can also be
found in the literature as the sub-sampling layer, since it has the effect of
reducing the resolution of the output. The immediate effect of this layer is

the reduction of the resolution of the produced feature maps. The max pool
layer can be seen in Figure 13.

σ σ σ

w1 w2
w3

w5w4
w6 w8 w9w7

max max

Convolutional Layer

Max pooling Layer

Figure 13- Max Pooling Layer

 In a deep convolutional network, the previous two layers are repeated in
succession according to the application and depth of a network. This has the
effect of creating a hierarchy of feature maps that learn to recognize more
intricate features of the input data as a function of the network depth. In
Figure 14, the architecture of the deep convolutional network used by Hinton,
Krizhevsky and Sutskever (Krizhevsky, Sutskever, & Hinton, 2012) in order to
categorize 1.2 million images of the ImageNet database into 1200 categories
is depicted.

Figure 14 - Deep Neural Network used by Hinton, Kizhevsky and Sutskever to categorize
ImageNet images into 1200 categories

 Fully Connected Layer: One or more fully connected layers typically follow
the last Max-pooling layer. The preceding convolutional layers have created
a series of features maps that describe the details of input data. It is up to
the fully connected layers to take these feature maps and reach a
classification decision. The first fully connected layer accepts a single vector
that is a summary of the details in the feature map. During training, the
weights of this fully connected layer are adjusted in order to learn how to
classify each input vector.

The output of convolution/pooling is flattened into a single vector of values,
each representing a probability that a certain feature belongs to a label. For
example, if the image is of a cat, features representing things like whiskers or
fur should have high probabilities for the label “cat”. The process is shown in
Figure 15 (AI, Misssing Link, 2019).

0,7

0,2

0,5

0,7

0,5

0,8

Cat

Dog

Flattening

Figure 15 - Role of fully connected layer in a CNN

 Loss layer: The final layer of a deep neural network is comprised of loss
function that is necessary so that the stochastic gradient descend
commences back propagation of the error and perform the weight
adjustment, in order to facilitate learning. The loss function 7 assess a
candidate solution and produces an error that denotes how far away the
neural network is from the optical solution 8 . Its function is extremely
important, as the single value produced by it will be used to assess how well
the complete neural network is performing and will guide the
backpropagation of errors (Brownlee, 2019).

The category of loss functions characterized as maximum-likelihood

estimators (MLE) are used for neural networks. MLE is a framework for

inference for finding the best statistical estimates of parameters from

historical training data. Under maximum likelihood, a loss function estimates

how closely the distribution of predictions made by a model matches the

distribution of target variables in the training data. When modeling a

classification problem where we are interested in mapping input variables to

a class label, we can model the problem as predicting the probability of an

example belonging to each class. In a binary classification problem, there

would be two classes, so we may predict the probability of the example

belonging to the first class. In the case of multiple-class classification, we can

predict a probability for the example belonging to each of the classes.

(Brownlee, 2019).

3.3 Learning procedure

Learning in neural networks can be either supervised or unsupervised. Supervised

learning requires labeled training exemplars and it is mostly used in the context of

neural networks for classification purposes. On the contrary, unsupervised learning

only requires large amounts of training data of which it tries to determine similarities.

Since this thesis deals with convolutional neural networks that use labeled data, the

focus is on supervised learning.

3.3.1 Supervised learning and the back propagation algorithm

The modern back-propagation algorithm and its variations has been evolving since

the early 1960s but were only successfully applied to the training of neural networks

in the early 1980’s. For instance, Kelley et al. (Kelley, 1960) derived analytic formulas

for flight performance optimization according to the method of steepest descent

(gradient). A year later Bryson (Bryson A. E., 1961) presented an early version of the

back-propagation algorithm, which he developed further in (Bryson & Denham, 1962)

7 Also called an objective function.
8 This is typical for a neural network but in other cases, we may seek to maximize the objective
function.

in the context of developing optimum programs for nonlinear systems with terminal

constraints. A common denominator of the many variations of the back-propagation

algorithm that have been presented since then, is the requirement of finding the

steepest descent in the weight space by iterating the chain rule.

Early implementations were inefficient because they relied on back propagating

Jacobian information through the standard Jacobian matrix calculations from one

layer to the previous, something, that requires a lot of memory. More efficient error

back-propagation was first introduced in the master‘s thesis of Linnainmaa

(Linnainmaa, 1970) albeit with no reference to neural networks (NN). Speelpenning,

also wrote a program for automatically deriving and implementing BP for given

differentiable systems (Speelpenning, 1980). These initial implementations did not

pertain to neural networks but they paved the way for variations of the BP, which

could modify the control parameters (weights) of a NN driven by a cost function.

According to (Schmidhuber, Deep learning in neural networks. An overview, 2015) the

first application of the BP algorithm to NN appeared in 1981 by Werbos (Werbos,

1982). Much important work was published in the early 1980s. For example, Lecun

(Lecun, Une procedure d'apprentissage ponr reseau a seuil asymetrique, 1985)

analyzed neural networks with low Kolmogorov complexity and high generalization

capability. soon thereafter, while Rumelhart et al. (Rumelhart, Hinton, & Williams,

1985) made an impact through a significant contribution, whose major theoretical &

practical contribution was the procedure now known as error propagation, whereby

the gradient can be determined by individual units of the network based only on

locally available information.

According to the back-propagation algorithm and after an episode of activation

spreading through the differentiable activation functions of individual neurons

culminating with the calculation of the total error cost E, a single iteration of gradient

descend computes changes of all 𝑤𝑖 . Weights are usually initialized to zero or

according to a Gaussian distribution function. The algorithm is described in Table 11

(Nielsen, 2019).

Table 11 - Back propagation algorithm

1. Input x: Set the corresponding activation 𝑎1 for the input layer.

2. Feedforward: For each l=2,3,…,L compute 𝑧𝑙 = 𝑤𝑙 𝑎𝑙−1 + 𝑏𝑙 l and 𝑎𝑙 =

𝜎(zl), where wl: the weights of layer l, al-1: the input to layer l, bl: the bias of layer l

and σ: the chosen activation function.

3. Compute the vector𝛿𝐿 = ∇𝑎𝐶 ⊙ 𝜎𝑙(𝑧𝐿), where C: the training example and

the symbol ⊙ is the Hadamard product (Nielsen, 2019).

4. Back propagate the error: For each l=L−1,L−2,…,2 compute 𝛿𝑙 =

((𝑤𝑙+1)𝑇𝑑𝑙+1) ⊙ 𝜎′(𝑧𝑙)

5. The gradient of the cost function is given by
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1𝑎𝑛𝑑
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙.

It is called back propagation precisely because of the way it operates. Execution

commences only after the total error has been calculated, computing the backward

errors 𝛿𝜆 starting from the final layer.

No matter how efficient it proved when first developed, various shortcomings of

back propagation were quickly noticed. By the late 1980’s most neural network

designers considered the basic BP algorithm applicable only to shallow networks. This

was nonetheless not considered to be much of a problem since the Kolomogorov

theorem (Kůrková, 1992) stated that a single layer network with enough hidden units

can approximate any multivariate continuous function with arbitrary accuracy. Thus,

the basic BP algorithm notwithstanding its drawbacks9 remained the most popular

neural network-training algorithm for shallow FNN.

BP is essentially a linear least-squares problem where second order gradient

information is passed up to preceding layers as noted in Biegler et al. (Biegler-König &

Bärmann, 1993) and since the inception of the basic BP algorithm in the 1960’s various

other improvements have been proposed. Least-square methods like those proposed

by Stoer (Stoer, Bauer, & Bulirsch, 1989) or quasi Newton methods (Shanno, 1970)

were proven computationally expensive. Momentum was introduced by Rumelhart et

al., (Rumelhart, Hinton, & Williams, 1985), in order to speed up calculation and avoid

small pitfalls in the solution space. It quickly became mainstream, proving more

efficient than other contemporary and future proposals like ad-hoc constants added

to the slope of linearized activation functions (Fahlman, 1991) or exaggerating the

non-linearity of the slope of activation functions (West & Saad, 1996). Another

popular variation is the R-Prop, which only takes into account the sign of the error

derivatives as well as it’s more (Riedmiller & Rprop, 1994) robust variant named

irProp+.

A variant of the classic BP algorithm widely employed in modern neural networks

is stochastic gradient descent (SGD), in which a batch of inputs is presented to the

network, which then computes the a) outputs; b) the errors; c) the average gradient

for those examples and only then proceeds to adjust the weights accordingly. This

process continues for many batches until the average of the objective or cost function

stops decreasing (Lecun, Bengio, & Hinton, Deep learning., 2015). The stochastic

adjective is used because each batch gives a noisy estimate of the average over the

9 For instance, the rather slow convergence to an acceptable solution in comparison with newer
adaptations considered later in this chapter.

total gradient for all examples. Although simple, it usually offers a quick convergence

to weight values that produce a good result. A test set is then usually applied in order

to assess the performance of the trained network to unseen inputs, which is used as

a metric of the generalization ability of the network.

3.3.2 Learning in a feed forward deep network

A deep leaning network learns to map a fixed sized input to a fixed sized output.

The weighted sum of the inputs to a layer are computed and then passed on to the

next layer after being moderated by an activation function. As stated above the most

widely used activation function is the ReLU, which offers a straightforward and fast

implementation while also having non-linear features. It can be seen as the half-wave

rectifier. The ReLU typically has a faster learning rate than other activation functions

like the tanh or sigmoid (Lecun, Bengio, & Hinton, Deep learning., 2015). A typical

deep neural network has many hidden layers whose function is to distort the input in

a non-linear way so that the output layer can linearly separate the input into

categories.

Neural Networks in general were mostly forsaken until the late 1990s because it

was believed that simple gradient descent or stochastic gradient descent would be

trapped in local minimum, which would not lead to optimal solutions. Since the early

2000’s evidence has slowly accrued which points to the other direction. Poor local

minima are rarely a problem with deep networks (Lecun, Bengio, & Hinton, Deep

learning., 2015). It has been shown theoretically and empirically that the solution

space is full of saddle points where the gradient is zero. Almost all of these saddle

points have a few downward curving directions, which have similar values for the

objective function. This means that the network will find a more or less similar solution

irrespective of the saddle point it could temporarily stuck at. Neural Networks in their

deep variation were reintroduced in the scientific literature owing to Hinton et al.

working under the auspices of the Canadian Institute for Advanced Research (CIFAR),

who introduced an unsupervised learning procedure that could create layers of

feature detectors without requiring labeled data (Hinton , Osindero, & Teh, 2006). The

objective of the network was to model the activities of features detectors in previous

layers, which was accomplished via the pre-training of several layers of progressively

more complex feature detectors using this reconstruction objective. The whole

network could then be trained after adding an output layer using standard

backpropagation techniques. Such networks were applied for recognizing hand-

written digits and worked very well.

The advent of easily programmable powerful GPUs allowed the training of

gradually more complex networks much faster than could be done in the past. Speech

recognition was one of the first signal analysis domains to avail of deep neural

networks. In 2009, the previous described technique of Hinton was employed to map

short temporal windows of coefficients extracted from a sound wave to a set of

probabilities for the various fragments of speech that might be represented by the

frame in the center of window. Variations of this technique were being used in

Android phones by 2012 with remarkable success.

4. DEEP CONVOLUTIONAL NEURAL NETWORKS
FOR BUILDING CONTOUR DETECTION

For this thesis, research was conducted on using convolutional neural networks for
building contour detection. The result of this research is a deep convolutional neural
network that can directly detect building contours. Due to the nature of the work in
Dong et al. (Dong, Loy, He, & Tang, 2015) which exhibits several features that were
considered akin to this application, a modified version of this network was applied as
the basis of the solution. In this case the modified SRCNN, which was named BCDCNN
(Building Contour Detector Convolutional Neural Network) accepts a tuple of available
data in the form <[optical, DEM], GT> which is comprised of an optical and a DEM input
pair along with the corresponding ground truth output. The network is expected to
approximate the GT data given the [optical, DEM] pair. The data used for this research
originated from a densely populated area of Kallithea – Attica –Greece. They comprise
of sets of optical – digital elevation maps and handcrafted ground truth images. Of the
whole dataset two blocks were selected as shown in Figures 16(a-f).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 16 – Original data used for the building contour detector. (a) Optical image of block 1. (b)
Elevation data of block 1. (c) Ground truth data of block 1. (d) Optical image of block 2. (e) Elevation
data of block 2. (f) Ground truth data of block 2.

The data of Figure 16 were segmented into three categories:

 Train data: Used for training the neural network model. The whole of block
1 was used (Figures 16(a-c)) and the top 2/3 portion of Figures 16(d-f). The

top 2/3 of Figures 16(d-f) used for training are shown in Figures 17(a-c).

 Validation data: This set of data was used for validation purposes during
training. No weight adjustment was performed with this data set. The data
are displayed in Figures 18(a-c).

 Test data: This is the part of block 2 that was used to assess the performance
of the proposed model. It measures the generalization capability of the
model and can be seen in Figures 19(a-c).

(a)

(b)

(c)

Figure 17 – Remaining training data (top 2/3 of block 2)

(a)

(b)

(c)

Figure 18- Original validation data

(a)

(b)

(c)

Figure 19 - Original test data

4.1 Methodology

The proposed BCDCNN model is based on the Super-Resolution Convolutional
Neural Network (SRCNN) presented by Dong et al. (Dong, Loy, He, & Tang, 2015).
However, if one can say that SRCNN implements a super-resolved auto associative
mapping in the sense that a low resolution image is mapped onto the high resolution
version of itself, BCDCNN implements a super-resolved heteroassociative mapping
since low resolution elevation data are mapped onto their associated high resolution
building contours available during training from the ground truth data. In particular,
similar to the first convolutional layer of SRCNN, BCDCNN accepts a low-resolution
elevation map at the input which is up sampled to the desired higher resolution (the
up sampling scale is determined by the corresponding high resolution optical image)
using the joint (optical + DEM) mean-shift based up sampling algorithm described in
(Vassilas, Tsenoglou, & Ghazanfarpour, 2015). Following Dong et al. (Dong, Loy, He, &
Tang, 2015), it is assumed that the high-resolution optical image combined with the
preprocessed low-resolution elevation map constitute the mixed resolution input X to
the network. The goal of the convolutional network is then to reconstruct an image
F(X) that is similar to the corresponding ground truth high-resolution building contours
image Y. In order to accomplish this, BCDCNN uses a mapping F from input to
reconstruction (output) which consists of the following three operations:

 Patch extraction and representation. Patches from the mixed resolution image
X are extracted, then processed by the filter bank of the first convolutional
layer and, finally, represented as a set of feature maps. This can be
mathematically expressed as the operation:

 𝑭𝟏(𝑿) = 𝒎𝒂𝒙(𝟎, 𝑾𝟏 ∗ 𝑿 + 𝑩𝟏) (4)

where 𝑾𝟏 = { 𝑾𝟏
𝒌 | 1 ≤ k ≤ 𝑵𝟏 } and 𝑩𝟏 = { 𝑩𝟏

𝒌 | 1 ≤ k ≤ 𝑵𝟏 } with 𝒘𝟏
𝒌 being

the k-th 3-D filter of the first layer’s filter bank 𝒘𝟏, 𝑩𝟏
𝒌 the corresponding bias term

and 𝑭𝟏(𝑿) the set of 𝑵𝟏 feature maps. As induced by eq. (1), this layer includes a
ReLU non-linearity. Each of the 𝑵𝟏 filters is of size 𝒔𝟏𝒙𝒔𝟏𝒙 𝑵𝟎, with 𝑵𝟎 denoting the
number of channels in the input image (𝑵𝟎=2 for the first layer). Finally, operator ‘*’
signifies convolution.

 Non-linear feature map transformation. In the second convolutional layer,
the𝑵𝟏 feature maps generated by the previous operation are non-linearly
transformed into another set of 𝑵𝟐 feature maps by applying 𝑵𝟐 filters of size
𝒔𝟐𝒙𝒔𝟐𝒙𝑵𝟏 1 and then, as before, passing the results from a ReLU. This

operation can be described mathematically as

 𝑭𝟐(𝑿) = 𝐦𝐚𝐱 (𝟎, 𝑾𝟐 ∗ 𝑭𝟏(𝑿) + 𝑩𝟐 (5)

where 𝑾𝟐 contains 𝑵𝟐filters of size 𝒔𝟐𝒙𝒔𝟐𝒙𝑵𝟏 and 𝑩𝟐is 𝑵𝟐 dimensional.

 Building contour reconstruction: Finally, the feature maps of the previous stage
are aggregated to generate the high-resolution building contour image. The
reconstruction operation is implemented as a linear convolution layer,

 𝑭𝟑(𝑿) = 𝑾𝟑 ∗ 𝑭𝟐(𝑿) + 𝑩𝟑 (6)

where 𝒘𝟑 corresponds to a single filter of size 𝒔𝟑𝒙𝒔𝟑𝒙𝑵𝟐_2 and 𝑩𝟑 is the final layer’s
bias term.

The network architecture is illustrated in Figure 20 in which the input to the network,

the optimal output and the size of the convolution kernels applied at each layer are

shown.

Figure 20 - proposed 3-layer convolutional system architecture

The goal is to get a building contour map F(Y) that is as close as possible to the
ground truth. However, unlike classification type of applications in which the training
procedure associates input images to, usually, a few class labels, the proposed system
is presented with a far more difficult and challenging problem. That is because it is
learning a heteroassociative mapping from a quite limited training set of <input,
output> pairs and then expecting to generalize on new pairs of building top-view
images. Further adding to the complexity of our data sources there are four different

types of edges that the network must learn to differentiate.

 Elevation edges that are simultaneously optical edges, which is mostly the case.

 Optical edges that are not elevation edges: For instance, rooftops of
neighboring buildings of different colors but same heights.

 Elevation edges that are not optical: For example, a rooftop of the same color
as an adjacent street and at different heights.

 Implied edges: For instance, rooftops with the same color and same height.
This is the most difficult case.

Just to make the problem even more difficult, the available elevation data – carrying
most of the building contours information are at a five times lower spatial resolution
than the optical images and the associated building contours. Hence, the proposed
CNN architecture is actually performing a combination of elevation data super-
resolution assisted by available high-resolution optical images and a heteroassociative
mapping to building contours.

4.2 Data pre-processing

The proposed network is trained using high-resolution aerial orthophotographs of
Kallithea, a densely populated area in Attica, Greece, as well as the corresponding low-
resolution digital elevation model and the high-resolution ground truth building con-
tours. Figures 16(a) and 16(b) depict the optical and elevation data of a building block
(named BLOCK1), respectively. In particular, to arrange the two data sources as two
channels of a multimodal image, the depicted DEM has been up sampled with a scale
of 5 using the joint mean shift algorithm (Vassilas, Tsenoglou, & Ghazanfarpour, 2015).
A second block of buildings from the same area has also being selected and sliced to
produce a complementary dataset for training (Figure 17) and testing (Figure 19). As
before, the corresponding DEM channels have been 5x up-sampled using joint mean
shift. The original and mean-shift processed elevation data for block 1 and 2 are shown
in Figures 21-22(a-b), respectively.

(a)

(b)

Figure 21 - Original and MS processed elevation data (block 1)

(a)

(b)

Figure 22 - Original and MS processed elevation data (block 2)

Furthermore, three variations of the training data were used. More specifically, the

first variation is comprised of the original optical data and the mean shift up sampled

DEM data [Figures 23-24(a-c) – Train, Figures 25(a-c) – Validation, Figures 26(a-c) -

Test]. Moving on to the second variation, the optical channel has also been filtered

with the mean shift edge preserving smoothing algorithm [Comanciu Meer, 2002]. The

full data set can be seen in [Figures 27-28(a-c) – Train, Figures 29(a-c) – Validation,

Figures 30(a-c) – Test]. Finally, in the third variation the mean shift optical & DEM data

have been filtered by a Laplacian of Gaussian (LoG) operator [see Figures 30-31(a-c) -

Train, Figures 32(a-c) - Validation, Figures 33(a-c) - Test]. The last variations has been

considered as an attempt to reduce the effective dimensionality of the input data and

improve the generalization ability of the proposed system.

(a)

(b)

(c)

Figure 23 - Original train data block 1. a) Optical b) MS DEM c) GT building contours

(a)

(b)

(c)

Figure 24 - Original train data block 2 a) Optical b) MS DEM c) GT building contours

(a)

(b)

(c)

Figure 25 - Original validation data a) Optical b) MS DEM c) GT building contours

(a)

(b)

(c)

Figure 26 - Original test data a) Optical b) MS DEM c) GT building contours

(a)

(b)

(c)

Figure 27 - MS train data block 1 a) MS Optical b) MS DEM c) GT building contours

(a)

(b)

(c)

Figure 28 - MS train data block 2 a) MS Optical b) MS DEM c) GT building contours

(a)

(b)

(c)

Figure 29 - MS validation data block a) MS Optical b) MS DEM c) GT building contours

(a)

(b)

(c)

Figure 30 - MS test data a) MS Optical b) MS DEM c) GT building contours

(a)

(b)

(c)

Figure 31 - Log train data block 1 a) LoG Optical b) Log DEM c) GT building contours

(a)

(b)

(c)

Figure 32- Log train data block 2 a) LoG Optical b) Log DEM c) GT building contours

(a)

(b)

(c)

Figure 33 - Log validation data a) LoG Optical b) Log DEM c) GT building contours

(a)

(b)

(c)

Figure 34 - Log test data a) LoG Optical b) Log DEM c) GT building contours

4.3 Cost function modification

A typical cost function to be minimized during network training is the root mean
square error (RMSE) between the actual reconstruction and the ground truth, which
in this particular application is a binary image with ones for pixels belonging to the
building contour and zeroes for all other pixels. However, only a very small proportion
of pixels in the GT image (as well as its sub images and patches thereafter) will have a
value of one and will pull the corresponding neuron outputs of the reconstruction
layer. All the remaining neuron outputs (or pixel values), no matter how close to zero
they are will be pushed towards zero. Although no post processing stage has been
included to clean up the reconstructed binary contours, it is intuitively evident that the
neuron outputs of the reconstructed image that correspond to background and have
close to zero or negative values, could be set aside from the derivative computations
of the back-propagation phase, e.g. by setting them to zero. On the other hand, neuron
outputs wrongly close to 1 should play a role in the back-propagation phase in order
to be pushed down to lower values. A second point we can make regarding weight
adaptation in this application is that all output neurons share the same weights and
that these weights should be given a chance to adapt in such a way as to satisfy
confronting demands: to push some output neurons to one and other neurons to zero.
Since the proportion of 1-pixels is much smaller than that of 0-pixels, it is expected
that the shared weights will prioritize minimizing the error of the “many” background
pixels instead of the “few” contour pixels. This comment highlights network-training
difficulties in heteroassociative mappings that arise due to unequal pixel-class
probabilities and resembles the necessity for class-balanced datasets in classification
problems. In order to balance the weight adaptation process to serve equally well the
contour and non-contour pixels, it is proposed to substitute the typical RMSE cost
criterion that involves all neuron outputs of the reconstruction layer by a novel custom
cost layer, which was named Top-N. Under this scheme, the RMSE between the
reconstructed image and the corresponding GT is calculated only for those pixels that
belong to the 2N pixels with highest values10. Assuming that most of the N contour
pixels of the ground truth image are also in the top 2N pixels of the reconstruction,
this scheme satisfies the imposed balancing criterion.

10 N is the number of contour pixels in GT

(a)

(b)

Figure 35 - Proposed Top-N custom cost layer. (a) low-quality reconstruction. (b) Corresponding
ground truth data

(a)

(b)

Figure 36 - Proposed Top-N custom cost layer. c) pdf and cdf of intensity levels and Top-N threshold,
and d) Top-N version of the reconstruction.

In practical terms, the threshold used to specify the top 2N pixel values is calculated

as follows: The probability distribution function and cumulative distribution function

of the intensity levels for each image used during training are calculated and only the

pixels that have an intensity above the 2N threshold11 are retained. This is depicted in

Figures 35(a-b) and 36(a-b), which show a low quality reconstruction of the test data,

the corresponding ground truth, the Top-N threshold calculated as the percentage of

pixels above the Top-N intensity and the Top-N version of the reconstruction,

respectively.

4.4 Experiments

4.4.1 Training Set Preparation

To satisfy the requirement of large numbers of training data to properly train deep
neural networks I performed data augmentation (Simonyan & Zisserman, 2014).
Firstly, 33x33 data patches were extracted from the input data (optical + DEM) along
with the corresponding 21x21 patches of the GT data (GT patches are smaller due to
“valid” convolutions with 9x9, 1x1 and 5x5 kernels). The data were then augmented
with rotations at multiples of 90° and with their vertical flips. In this manner tuples of

11 Actually, the average value of the intensity level for a whole batch is used in order to accelerate the

computation procedure.

input data and GT were constructed in the form <[optical_section, DEM_section],
GT_section>. The procedure described in the following sections was followed for each
of the three variations of the training data set (original, Mean-Shift processed, LoG
processed).

4.5 Experimental results

All presented results pertain to the 9-1-5 or 9-3-5 convolution kernel choices and to
the 64-32-1 feature maps configuration, i.e. number of feature maps at the output of
each convolutional layer. Actually, several tests were conducted to assess how the
number of feature maps affect the performance of the network. Specifically, networks
of with 128-64-1 and 256-128-1 feature map configurations were tested. However,
even though performance is increased (the RMSE for the Original data sets at epoch
60 decreases from 3,4048 to 3,3384 and then to 3,2077 for the larger configurations),
the heavy computational costs prohibited their further use).

Three deep learning framework were used before making a final decision on which
to use. These were:

 Tensorflow: Tensorflow is the brainchild of Google brain. It supports general
machine learning and deep learning. It has grown considerably since its
inception in 2015 because of its capabilities and the reputation of Google.
Although initial experiments were done under this framework, it was not
selected because it could not integrate directly with other code written in
Matlab.

 Caffe: This framework was created by Yangqing Jia during his PhD at Berkley.
It has impressive expressive capability and it is very fast. Regarding the
programming interface, it can be programmed using Python and Matlab.
The support for Matlab is crucial for researchers using Matlab and this is
why it was used. Unfortunately, it can only efficiently be extended using c++
and CUDA programming which requires a recompilation of the framework.

 MatConvNet: This a specialized framework for Matlab. It is suitable for
applications using convolutional neural networks only. Since it is written in
Matlab it is can seamlessly change between CPU and GPU processing
according to whether it is given GPU arrays or standard arrays. It is also
easily extensible via standard Matlab code since the source code is readily
available. Finally, it is almost as fast as Caffe and Tensorflow.

4.5.1 Comparison between MSE and Top-N Custom Loss
Layers

The proposed Top-N custom cost layer leads to lower RMSE and higher PSNR values
as shown in Tables 12-14. The tables depict the RMSE and PSNR of the test data for
the case of training on the Original, the Mean Shift and LoG data sets, respectively. In
all cases, the custom Top-N layer exhibits lower RMSE and higher PSNR values than the
typical MSE cost layer. For instance, in Table 12 regarding the Dropout 50% 9-1-5 case
the proposed Top-N cost layer produced an RMSE 3.37% lower than the corresponding

MSE cost layer. Comparing corresponding entries for the PSNR for the Original data
(Table 12), 5 out of 6 entries have a higher value for the 9-3-5 network. Likewise, for
the Mean Shift and LoG processed data (Tables 13 and 14) most PSNR entries are
higher for the 9-3-5 network. Nonetheless, since the 9-3-5 configuration was by 16.5%
slower during training than the 9-1-5 configuration and since as shown in Tables 12
through 14, there was only a slight improvement either in RMSE or in PSNR compared
to 9-1-5, we decided to consider the more practical 9-1-5 configuration as was also
argued in Dong et al. (Dong, Loy, He, & Tang, 2015).

Table 12 - RMSE and PSNR metrics for Original dataset

Loss Layer

Dropout 50% Dropout 50%-50% NoDropout

RMSE PSNR RMSE PSNR RMSE PSNR

Min Max Min Max Min Max

Top-N (9-1-5) 0,10442 15,205 0,10537 15,087 0,10565 15,268

Top-N (9-3-5) 0,10620 15,217 0,10591 15,269 0,11408 15,257

MSE (9-1-5) 0,10806 14,293 0,10961 14,780 0,10802 14,919

MSE (9-3-5) 0,10886 14,866 0,10816 14,888 0,10793 14,930

Table 13 - RMSE and PSNR metrics for MS dataset

Loss Layer

Dropout 50% Dropout 50%-50% NoDropout

RMSE PSNR RMSE PSNR RMSE PSNR

Min Max Min Max Min Max

Top-N (9-1-5) 0,10423 15,257 0,10549 15,079 0,10486 15,067

Top-N (9-3-5) 0,10263 15,263 0,10343 15,263 0,10865 15,283

MSE (9-1-5) 0,10833 14,903 0,10977 14,807 0,10926 14,832

MSE (9-3-5) 0,10817 14,912 0,10912 14,841 0,10923 14,842

Table 14 - RMSE and PSNR metrics for LoG dataset

Loss Layer

Dropout 50% Dropout 50%-50% NoDropout

RMSE PSNR RMSE PSNR RMSE PSNR

Min Max Min Max Min Max

Top-N (9-1-5) 0,10948 14,831 0,10811 14,929 0,10779 15,127

Top-N (9-3-5) 0,10608 15,031 0,10637 15,106 0,10763 15,148

MSE (9-1-5) 0,11005 14,647 0,11314 14,489 0,11093 14,803

MSE (9-3-5) 0,10955 14,005 0,10988 14,746 0,10839 14,824

4.5.2 BCDCNN Configurations & Applied Metrics

Experiments were run with two convolution kernel sizes for the second layer using
1x1 and 3x3 mapping kernels. Across all three layers of our model, the sizes of the
convolution kernels we tested for were 9-1-5 and 9-3-5. In addition, the network used
64 feature maps for the first layer, 32 for the second and 1 for the last, which is
henceforth denoted as 64-32-1. Furthermore, for each training data set and each
convolution kernel size performance was assessed for three cases: a) No dropout; b)
Dropout 50%, i.e. dropout rate of 50% after the RELU activation function of the first
layer; c) Dropout 50%-50%, i.e. dropout rate of 50% after the RELU activations of the
first and second layers. A learning rate of 10-4 was used for layers 1 and 2 while the
learning rate was 10-5 for layer 3. In addition, the weight decay was 5 ∗ 10−3 for all
layers and the batch size was set to 128. In total, 18 experiments were run for the 64-
32-1 configuration. Finally, the RMSE and PSNR metrics were utilized to assess
performance of our network.

4.5.3 Detection of building contours

In Figures 37 & 38, two typical reconstructions for the training data Block1 are
shown for the TopN & MSE configurations of the network. BCDCNN was able to learn
the association of building contours to the input data sources.

Figure 37 - Reconstruction of Train data for Original data set and Top-N Cost Layer

Figure 38 - Reconstruction of Train data for Original data set and MSE Cost Layer

The above reconstructions are not the best that this research produced. By

increasing the number of feature maps to 256-128-1 for the three layers respectively,

the network learned to detect building contours with extreme precision. This however

was at the cost of training & reconstruction speed and quite detrimental to the

model’s generalization ability. For instance in the following Figures 39 & 40, a

reconstruction obtained in early 2017 using the Caffe framework is presented. Figure

39 displays the reconstruction for the Train data and Figure 40 for the Test. From

Figure 39, it is shown that given enough data and training epochs a deep neural

network can learn to detect building contours with extreme precision. Unfortunately,

when the data are not enough this is to the expense of the generalization capability

as shown in Figure 40.

Figure 39 - Dual channel reconstruction for 256-128-1 feature maps (Train data)

Figure 40 - Dual channel reconstruction for 256-128-1 feature maps (Test data)

However, the 64-32-1 model trained under MatConvNet can also generalize. The

reconstructions of the test data for networks trained on the three variations for the

proposed Top-N and MSE loss layer are shown in Figures 41 – 43.

(a)

(b)

Figure 41 - Top-N reconstruction of test data. a) PSNR curve for test data on Original dataset training
b) Corresponding reconstruction of test data

(a)

(b)
Figure 42 - Top-N reconstruction of test data. PSNR curve for test data on MS dataset training b)
Corresponding reconstruction of test data

(a)

(b)
Figure 43 – Top-N reconstruction of test data. a) PSNR curve for test data on LoG dataset training b)
Corresponding reconstruction of test data

According to Figure 41(a), the highest PSNR for the test data set was at epoch 55

for the dropout 50% case and the reconstruction at that specific instant is presented

(Figure 41b). This process was repeated for all our training data variations and the

resulting reconstructions are shown in Figures. 42(b) and 43(b). The corresponding

experiments for the MSE cost layer are shown in Figures 44 to 46. It has to be noted

that no post-processing was used at this stage to improve the obtained building

contours, as this is the case of the relaxation system presented in chapter 6. From

Figures 41-46, it can be readily observed that deciding about how to improve the

generalization ability of the network is not straightforward. Perhaps, one can say that

when the effective input dimensionality is high (i.e. when the variance of the input

pixel values is large) as is the case for the Original data sets, the network exhibits poor

generalization behavior (see the blue curves of Figures 41(a) and 42(a). As the

effective dimensionality is progressively reduced through the imposed smoothing

from the Mean Shift and LoG data preprocessing the generalization ability of the

network is improved and, in the case of LoG, even surpasses the cases that use

dropout in one or two layers.

(a)

(b)

Figure 44 - MSE reconstruction of test data. a) PSNR curve for test data on Original dataset training
b) Corresponding reconstruction of test data

(a)

(b)
Figure 45 - MSE reconstruction of test data. a) PSNR curve for test data on MS dataset training b)
Corresponding reconstruction of test data

(a)

(b)

Figure 46 - MSE reconstruction of test data. a) PSNR curve for test data on LoG dataset training b)
Corresponding reconstruction of test data

A second remark that we can make is that by using 50% dropout on one or two
layers the network resists better to overfitting. Specifically, in the case of training data
sets with relatively high effective dimensionality as is the case with the Original and
Mean Shift processed data sets, dropout (either in one or in two layers) proves to be
the necessary choice for network generalization. Finally, in accordance to the
comparative results of Tables 12–14, a comparison of Figures 41-46 shows that there
is a slight improvement in PSNR under any training data set variation when using the
Top-N cost layer.

5. Super-Resolution of low-resolution digital
elevation data

5.1 Context

High-resolution optical cameras for urban aerial photographs are readily available
these days but LIDAR technology, despite recent advances, still produces images of
comparatively lower resolution while it also remains more expensive. It is for this
reason that usually aerial camera optical photographs are of much higher resolution
than matching digital elevation maps (DEM) produced from the processing of LIDAR
data taken from the same plane or drone.

Image super resolution reconstruction has diverse applications ranging from
medical image augmentation (Baranov, Olea, & van den Bogaart, 2019) to geological
applications (Wang, Armstrong, & Mostaghimmi, 2019), to the augmentation of
general purpose images (Dong, Loy, He, & Tang, 2015). Regardless of the application,
the goal is to upscale a low-resolution image {IL} and produce a super resolution
reconstruction {IH’} as close as possible to the original high-resolution image {IH}. It is
a well-studied problem of computer vision with a variety of solutions but no unanimity
yet on how to optimally assess the similarity of the reconstructed image to the original
(Benecki , Kawulok , Kostrzewa, & Skonieczny, 2018). Super resolution can be attained
through either a single image or multiple images. In the second case, the two channels
can either be displaced versions of a single image or images depicting corresponding
but of different nature information.

This chapter of the thesis aims to apply convolutional neural networks to augment
the low resolution of elevation data augmented by corresponding optical high-
resolution data. The elevation data available were of very low resolution (120x80); five
times lower than the corresponding optical resolution data (600x400). Two blocks of
elevation data of the fore-mentioned resolution were available. This chapter will
briefly examine some previous work on the topic, the methodology followed in this
thesis to accomplish super-resolution of elevation data; the experiments conducted
and will reach several conclusions on the matter.

5.2 Previous work

In recent years, there has been a great interest in super-resolution applications as
can be concluded by numerous published research results. Only a very brief
presentation in the field of image super-resolution will thus be performed in this
thesis. Facial recognition from low-resolution cameras for instance, is an important
super-resolution application and Huang and He (Huang, 2010) used super resolution
for facial recognition from low-resolution security cameras by applying nonlinear
mappings to infer coherent features that favored higher recognition of nearest
neighbor (NN) classifiers for recognition of single low-resolution face images.
Furthermore, old manuscripts were given the super-resolution treatment, when
Datsenko & Elad (Datsenko & Elad, 2007) applied super-resolution in order to enhance
manuscripts containing text & equations. For this, they assigned to low resolution
patches several high-quality candidate patches, using the nearest neighbor metric in
an image database that contained low and high resolution corresponding patches.

They then used a penalty function to reject some of the irrelevant examples, keeping
the rest for image reconstruction. Medical and microscopy imaging are also a very
active research topic regarding super resolution and on this Huang et al. (Huang B.,
Wang, Bates, & Zhuang, 2008) applied super-resolution to fluorescence microscope
imaging by using optical astigmatism in order to determine both axial and lateral
positions of individual fluorophores with nanometer accuracy.

The majority of applications based on a single image are based on the exemplar
paradigm in which learning attempts to match <low-resolution, high-resolution>
image pairs that are then used to reconstruct general high-resolution images from
low-resolution ones. Two of the most prominent methods in modern scientific
literature are sparse representation and deep neural networks. An example of the first
case is Yang et al. (Yang, Wright, Huang, & Mia, 2010) who created sparse
representations for low-resolution patches of the input image and then used the
coefficients of these representations to generate high-resolution reconstructions. On
the contrary, Dong et al. created a deep neural network model with 3 layers that
performed a single-channel super-resolved non-linear mapping between low-
resolution patches and high-resolution ones during training which was used to adjust
the weights of the convolution filter-bank (Dong, Loy, He, & Tang, 2015).

 Super-resolution from multiple images has also offered excellent results. It is
usually based on the definition of a parametrized image model (PIM) where the
multiple images required for training are derived from applying image processing
operators like warping, blurring, down sampling or contamination with noise. An
optimization technique is then applied to find the optimal parameter values. For
instance, Vilenna et al. (Villena, Abad, Molina, & Katsaggelos, 2004) implemented an
iterative technique based on a Bayesian classifier, which obtained a set of under
sampled and degraded frames by shifting displacements of high-resolution images.
The researchers then applied an iterative Bayesian method to estimate the unknown
shifts and the high-resolution image from the corresponding low-resolution one.
Multi-channel deep learning techniques have been especially prominent in the past
several years with many advancements and new proposals. In their research, Lee et
al. (Lee, Chen, Tseng, & Lai, 2016) utilize complementary RGB-D images (color and
depth) to achieve recognition that is more accurate. They first trained their network
with a color RGB dataset and then fine-tuned with the depth dataset using transfer
learning with the results showing a higher accuracy than a single image RGB solution.

5.3 Contribution to multi-channel super-resolution

A dual-channel input convolutional neural network learning approach for super

resolution (SR) is proposed that performs a mixed-input associative mapping between

a low-resolution elevation image depicting the height of an urban area in Kalliithea –

Attica - Greece and a corresponding high-resolution optical image of the area. The

network, named building super resolution auto-associative convolutional neural

network (BSRCNN), performs a mixed-input associative mapping in the sense that it is

assisted by high-resolution optical data to augment low-resolution elevation data, in

order to associate them to a high-resolution rendition of themselves. Furthermore,

the network was trained with a rather limited available dataset12. The nature of

elevation data has several subtleties that differentiate this application from general-

purpose SR approaches. Firstly, elevation data are a by-product of LIDAR data that

usually comes in the form of a point-cloud. The result is a digital-surface-model (DSM)

or a digital elevation model (DEM) that is a real-valued matrix denoting the true height

of the ground/buildings, respectively. This matrix can be further processed to attain a

graylevel image that corresponds to the real-valued data and this is precisely the case

of the DEM data used in this chapter. The resulting image shifts from subtle graylevel

differences to steep changes in the graylevel of adjacent pixels making it difficult for a

nearest neighbor or a bicubic up-sampler to make an optimum choice. Furthermore,

deep convolutional neural networks (CNNs) trained to perform super-resolution on

generic real-world images are also not expected to perform very well because of this

difference in high & low frequency content even within a convolution kernel. It was

expected that a CNN trained with elevation data & augmented with high-resolution

optical data of the urban would perform at least on par or better than the

corresponding neural network trained only with the low-resolution elevation data.

In order to test this assumption the performance of the dual-channel approach was

compared to a single-channel rendition using the MSE, PSNR and SSIM metrics.

Furthermore, comparisons were made against other state of the art generic super-

resolution models like that of [Dong, Loy, He, Tang, 2015]. In addition, it was tested

how well various forms of super-low resolution data are augmented from high-

resolution optical data. For this reason, the LR DEM data were transformed into a very

low-resolution version by either the bicubic or the nearest neighbor interpolation

method.

5.4 Data preparation

The optical images of the dataset were considered as the high-resolution (HR) input

(600x400) while the corresponding DEM had a resolution five times lower than the

optical (120 x 80), aka the characterization of low-resolution data. The high-resolution

optical data and corresponding low-resolution DEM are shown in Figure 47 (a-d).

12 Two blocks of elevation data each of resolution 120x80 and the corresponding five-time higher
optical data (upscaled & downscaled to 120x80) were used for the research, as elaborated later in the
chapter. These data were taken from the research of [Vassilas N., Charou, Petsa, Grammatikopoulos,
2013].

(a)

(b)

(c)

(d)

Figure 47 -DEM & Optical data. a) DEM block1 LR b) Optical block1 HR c) DEM block2 LR d) Optical
block2 HR

The data shown in Figure 47 (a-d) were used for training of the CNN, verification of

its performance and testing its generalization capability. Two sets of training data

were constructed from the aforementioned data with the second being noisier and

thus a harder problem to solve. In order to render the data in a form suitable for this

application, the following pre-processing was performed:

- Elevation data set 1: 120x80 (original resolution) → downscale BC by two → upscale
BC x two → DEM_SLR (120x80). The original elevation data that the CNN had to
augment.

- Elevation data set 2: 120x80 (original resolution) → downscale NN by two → upscale
NN x two → DEM_SLR (120x80). A more difficult elevation data set with noise and
spurious gray levels.

- Optical data (600x400): downscale BC x five → optical LR (120x80).

The pre-processed elevation data sets one and two as well as the pre-processed

optical data are shown in Figures 48 and 49.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 48 - Train & validation data with elevation set one. a) Block 1 LR bicubic DEM (120x80) b) part
of Block 2 LR bicubic DEM (120x48) c) Block 1 optical HR (120x80) d) part of BLock 2 optical HR
(120x48) e) part of Block 2 LR validation 1 DEM (29x31) f) part of Block 2 LR validation 2 (41x31) g)
part of Block 2 HR validation 1 optical (29x31) h) part of Block 2 HR validation 2 optical (41x31)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 49 - Train and validation data with elevation set two. a) Block 1 SLR NN DEM (120x80) b) part
of BLock 2 SLR NN DEM (120x48) c) Block 1 optical LR (120x80) d) part of Block 2 optical LR HR
(120x48) e) part of Block 2 LR validation 1 DEM (29x31) f) part of Block 2 LR validation 2 (41x31) g)
part of Block 2 HR validation 1 optical (29x31) h) part of Block 2 HR validation 2 optical (41x31)

Two sets of data were used for the training and validation of the neural network
model as shown below:

 Elevation set 1: This was comprised of tuples <<Elevation SLR set one,
Optical HR>, Elevation LR>13, where Elevation set one are the data shown in
[Figures 48(a-h)]. The elevation data of the data series have been down &
up scaled two times from the original resolution (120x80) using bicubic
resizing to create the very low-resolution Elevation (slr_dem) set one.
Furthermore, this data set was further divided for training and validation
purposes as follows:

o Train: The whole of block 1 down & up scaled using bicubic resizing
[Figures 48(a, c)] and two-thirds of block 2 down & up scaled using
bicubic resizing14 [Figures 48(b, d)]. The train set is comprised of very
low-resolution elevation (slr_dem) and optical low-resolution
(opt_lr) data for input as well as the low-resolution elevation GT
data (lr_dem)15.

o Validation 1: A part of block 2 down & up scaled using bicubic
resizing for the elevation data [Figure 48(e, g)]. Validation set 1 was
comprised of very low-resolution elevation (slr_dem) and optical
low-resolution (opt_lr) data for input as well as the low-resolution
elevation GT data (lr_dem).

o Validation 2: A part of block 2 down & up scaled using bicubic
resizing for the elevation data [Figure 48(f, h)].)]. Validation set 2
was comprised of very low-resolution elevation (slr_dem) and
optical low-resolution (opt_lr) data for input as well as the low-
resolution elevation GT data (lr_dem).

Finally, sliding windows of various resolutions were used to slice the very
low-resolution elevation slr_dem) and LR optical data (opt_lr) into
segments for training and validation purposes. The resolution depended on
the convolution kernels used16. Similarly, a smaller window was used to slice

13 The first tuple of the training scheme <Elevation LR set one, Optical HR> stands for a dual channel
configuration where the first channel is comprised of elevation data and the second of optical. Similarly,
the last tuple <, Elevation_LR> stands for the GT LR elevation data. The corresponding single-channel
configuration scheme would be <Elevation_SLR, Elevation_LR> where the network would only accept a
single elevation channel Elevation_SLR as input and Elevation_LR would be the GT.
14 Only the elevation data have been resized during this step. The same is true for the validation and
test data.
15 The input elevation data are very low resolution because they were down and up scaled from the
initial low-resolution elevation data (slr_dem) while the optical data are low-resolution since they have
been downscale 5 times to reach the elevation data resolution (opt_lr). Finally, the GT data are the
original low-resolution elevation data (lr_dem).
16 As explained in Section 5.5 the proposed model is comprised of three layers. A typical convolution
kernel used was (9-1-5), which means 9x9, 1x1, 5x5 kernels for the first, second and third layer,
respectively. For this case, the sliding window could be 33x33 for the SLR elevation and LR optical data
and 21x21 for the ground truth LR elevation data. The resolution discrepancy for the GT data is because
the convolution kernels do not precisely fit on the corners of the image, leading to a reduction of
resolution (8 pixels 1st layer, none for the second and 4 pixels for the third) of the feature maps as they

the ground truth LR elevation data into segments for training & validation
purposes. The data segments were artificially augmented in much the same
way as was done for BCDCNN but this time using a stride of one17 due to
the much lower resolution of the available data. Finally, tuples were created
comprising of the data segments in the form <<slr_dem, lr_opt>, lr_dem>,
where slr_dem is the very-low resolution elevation data; lr_opt: the low-
resolution optical data; and lr_dem: the low-resolution elevation data.

 Set 2: This was comprised of tuples <<Elevation SLR set two, Optical HR>,

Elevation LR> where Elevation set two are the data shown in [Figures 49(a-

h)]. The elevation data of the data series have been down & up scaled two

times from the original resolution (120x80) using nearest neighbor resizing

to create the Elevation SLR set two. Furthermore, this data set was further

divided for training and validation purposes as follows:

o Train: The whole of block 1 down & up scaled using nearest neighbor
[Figures 49(a, c)] and two-thirds of block 2 down & up scaled using
nearest neighbor [Figures 49(b, d)]. The train set is comprised of very
low-resolution elevation (slr_dem) and optical low-resolution
(opt_lr) data for input as well as the low-resolution elevation GT
data (lr_dem)18.

o Validation 1: A part of block 2 down & up scaled using nearest
neighbor resizing for the elevation data [Figure 49(e, g)]. Validation
set 1 was comprised of very low-resolution elevation (slr_dem) and
optical low-resolution (opt_lr) data for input as well as the low-
resolution elevation GT data (lr_dem).

o Validation 2: A part of block 2 down & up scaled using nearest
neighbor resizing for the elevation data [Figure 49(f, h)]. Validation
set 2 was comprised of very low-resolution elevation (slr_dem) and
optical low-resolution (opt_lr) data for input as well as the low-
resolution elevation GT data (lr_dem).

The data were then sliced into segments as described for the bicubic-
resized data and were artificially augmented in much the same way as was
done for BCDCNN but this time using a slice of one due to the much lower
resolution of the available data. Finally, tuples were created comprising of
the data segments in the form <<slr_dem, lr_opt>, lr_dem>, where slr:dem
the super-low resolution elevation data; lr_opt: the low-resolution optical
data; and lr_dem: the low-resolution elevation data.

are propagated through the network. The same is true of other sliding windows size used (23x23-
>11x11, 21x21->9x9, 19x19->7x7, 17x17->5x5) for a 9-1-5 model.
17 A stride of two was used for the training data of BCDCNN due to the larger training set. This means
that every second row and column was skipped.
18 The input elevation data are very low resolution because they were down and up scaled from the
initial low-resolution elevation data (slr_dem) while the optical data are low-resolution since they have
been downscale 5 times to reach the elevation data resolution (opt_lr). Finally, the GT data are the
original low-resolution elevation data (lr_dem).

The total number of used for both set one or set two training examples were:

 120x80 (block 1) = 9600 examples * 4 (rotations for 90°, 270° and 360°) * 4
(vertical flipping & rotations for 90°, 270° and 360°) = 153.600.

 120x80 (block 2) * 2/3 = 6336 examples * 4 (rotations for 90°, 270° and 360°)
* 4 (vertical flipping & rotations for 90°, 270° and 360°) = 101.376.

The number of training examples were thus substantially less than the data
available for the training of BCDCNN due to the lower resolution of the available data.

5.5 Proposed model

The proposed model is based on the single channel super-resolution architecture

by Dong et al. (Dong, Loy, He, & Tang, 2015), which was modified by adding another

input channel. The modified version has been named BSRCNN (Building super

resolution convolutional neural network). In contrast to SRCNN, which performs a

super-resolved auto associative mapping between the low-resolution image and the

high-resolution version of itself, this network implements a super-resolved enhanced

input auto associative mapping. This means that the network can map a low-

resolution image, depicting in this case elevation data, onto a high-resolution version

of itself with the assistance of a high-resolution optical image. In essence, BSRCNN

accepts as input a super low-resolution elevation image combined with a

corresponding low-resolution optical image and this constitutes the mixed resolution

input X. The goal of the convolutional network is then to reconstruct an image F(X)

that is similar to the corresponding ground truth high-resolution elevation image Y. In

order to accomplish this and in a similar manner to BCDCNN, BSRCNN uses a mapping

F from input to reconstruction (output) which consists of the following three

operations:

 Patch extraction and representation. Patches from the mixed resolution image
X are extracted, then processed by the filter bank of the first convolutional
layer and, finally, represented as a set of feature maps. This can be
mathematically expressed as the operation:

 𝑭𝟏(𝑿) = 𝒎𝒂𝒙(𝟎, 𝑾𝟏 ∗ 𝑿 + 𝑩𝟏) (7)

where 𝑾𝟏 = { 𝑾𝟏
𝒌 | 1 ≤ k ≤ 𝑵𝟏 } and 𝑩𝟏 = { 𝑩𝟏

𝒌 | 1 ≤ k ≤ 𝑵𝟏 } with 𝒘𝟏
𝒌 being

the k-th 3-D filter of the first layer’s filter bank 𝒘𝟏, 𝑩𝟏
𝒌 the corresponding bias term

and 𝑭𝟏(𝑿) the set of 𝑵𝟏 feature maps. As induced by eq. (1), this layer includes a ReLU
non-linearity. Each of the 𝑵𝟏 filters is of size 𝒔𝟏𝒙𝒔𝟏𝒙 𝑵𝟎 , with 𝑵𝟎 denoting the
number of channels in the input image (𝑵𝟎=2 for the first layer). Finally, operator ‘*’

signifies convolution.

 Non-linear feature map transformation. In the second convolutional layer,
the𝑵𝟏 feature maps generated by the previous operation are non-linearly
transformed into another set of 𝑵𝟐 feature maps by applying 𝑵𝟐 filters of size
𝒔𝟐𝒙𝒔𝟐𝒙𝑵𝟏 1 and then, as before, passing the results from a ReLU. This
operation can be described mathematically as

 𝑭𝟐(𝑿) = 𝐦𝐚𝐱 (𝟎, 𝑾𝟐 ∗ 𝑭𝟏(𝑿) + 𝑩𝟐 (8)

where 𝑾𝟐 contains 𝑵𝟐filters of size 𝒔𝟐𝒙𝒔𝟐𝒙𝑵𝟏 and 𝑩𝟐is 𝑵𝟐 dimensional.

 High-resolution elevation data reconstruction: Finally, the feature maps of the
previous stage are aggregated to generate the high-resolution elevation data
image. The reconstruction operation is implemented as a linear convolution
layer,

 𝑭𝟑(𝑿) = 𝑾𝟑 ∗ 𝑭𝟐(𝑿) + 𝑩𝟑 (9)

One thing that has to be said about the network is its extreme sensitivity to training

parameters since the final layer has no bounding activation function. The network

architecture can be seen in Figure 50.

n1 feature maps of low
resolution image

n2 feature maps of high
resolution image

f1xf1 f2xf2 f3xf3

Low resolution
optical data

Super-low
resolution

elevation data

High-resolution
reconstruction

Patch extraction and
representation

Non linear
representation

Reconstruction

Figure 50 - BSRCNN Proposed three-layer architecture

Similarly to BCDCNN, the proposed model has a difficult task to solve. This time the

complexity increases even further due to the scarcity of available data (1 and 2/3

120x80 mixed-resolution image was available as opposed to 1 and 2/3 600x400 mixed-

resolution image for BCDCNN). Furthermore, the original high-resolution optical data

of 600x400 were down sampled five times to reach the low-resolution of the elevation

data.

5.6 Experiments

5.6.1 Neural network configuration & metrics

The neural network was trained under the MatConvNet (MatConvNet, n.d.) Matlab

framework, which is a specialized framework for deep convolutional networks. It can

operate both in CPU and GPU mode. The experiments were conducted in GPU mode.

A series of experiments were conducted using various combinations of the

configurations in Table 15. For example, a 7-1-5 convolution kernel x 17x17 window

size x 32-16-1 feature maps, would be a full configuration of an experiment19.

Table 15 - Experiments configurations

Convolution
kernel size

7-1-5 9-1-5 9-3-5

Window
size

17x17 19x19 21x21 23x23 33x33

Feature
maps

32-16-1 64-32-1

The full list of experiments (dual channels) is listed in Table 16. No tests were

conducted with more than 64-32-1 feature maps due to the relative low amount of

available training data. This will be made clear when the experimental results are

presented in the next section.

Table 16 - Experiments configuration (dual-channel)

Experiment configuration

Elevation set one (bicubic) Elevation set 2 (NN)

7-1-5 x 17-17 x 32-16-1

7-1-5 x 19-19 x 32-16-1

7-1-5 x 21-21 x 32-16-1

7-1-5 x 23-23 x 32-16-1

7-1-5 x 33-33 x 32-16-1

7-1-5 x 17-17 x 64-32-1

7-1-5 x 19-19 x 64-32-1

7-1-5 x 21-21 x 64-32-1

7-1-5 x 17-17 x 32-16-1

7-1-5 x 19-19 x 32-16-1

7-1-5 x 21-21 x 32-16-1

7-1-5 x 23-23 x 32-16-1

7-1-5 x 33-33 x 32-16-1

7-1-5 x 17-17 x 64-32-1

7-1-5 x 19-19 x 64-32-1

7-1-5 x 21-21 x 64-32-1

19 This experiment would be denoted as 7-1-5 x 17-17 x 64-32-1 and this denotation is followed
henceforth.

7-1-5 x 23-23 x 64-32-1

7-1-5 x 33-33 x 64-32-1

9-1-5 x 17-17 x 32-16-1

9-1-5 x 19-19 x 32-16-1

9-1-5 x 21-21 x 32-16-1

9-1-5 x 23-23 x 32-16-1

9-1-5 x 33-33 x 32-16-1

9-1-5 x 17-17 x 64-32-1

9-1-5 x 19-19 x 64-32-1

9-1-5 x 21-21 x 64-32-1

9-1-5 x 23-23 x 64-32-1

9-1-5 x 33-33 x 64-32-1

9-3-5 x 17-17 x 64-32-1

9-3-5 x 19-19 x 64-32-1

9-3-5 x 21-21 x 64-32-1

9-3-5 x 23-23 x 64-32-1

9-3-5 x 33-33 x 64-32-1

7-1-5 x 23-23 x 64-32-1

7-1-5 x 33-33 x 64-32-1

9-1-5 x 17-17 x 32-16-1

9-1-5 x 19-19 x 32-16-1

9-1-5 x 21-21 x 32-16-1

9-1-5 x 23-23 x 32-16-1

9-1-5 x 33-33 x 32-16-1

9-1-5 x 17-17 x 64-32-1

9-1-5 x 19-19 x 64-32-1

9-1-5 x 21-21 x 64-32-1

9-1-5 x 23-23 x 64-32-1

9-1-5 x 33-33 x 64-32-1

In order to assess how better the dual-channel proposed network performed in

comparison to the equivalent single channel network20, the following single-channel

experiments were conducted.

Table 17 - Experiments configuration (single-channel)

Experiment configuration

Elevation set one (bicubic)

7-1-5 x 17-17 x 64-32-1

9-1-5 x 17-17 x 32-16-1

9-1-5 x 19-19 x 32-16-1

9-1-5 x 21-21 x 32-16-1

9-1-5 x 23-23 x 32-16-1

20 The single channel equivalent was trained with the same data but only for elevation set one. The
tuples were of the form <slr_dem, lr_dem>, where slr_dem: the super-low resolution elevation data
and lr_dem: the GT low-resolution elevation data.

9-1-5 x 33-33 x 32-16-1

9-1-5 x 17-17 x 64-32-1

9-1-5 x 19-19 x 64-32-1

9-1-5 x 21-21 x 64-32-1

9-1-5 x 23-23 x 64-32-1

9-1-5 x 33-33 x 64-32-1

It was previously noted that the model is very sensitive to variations of the learning

parameters. For this reason and after extensive testing, a fixed learning rate of 10−4

for layers 1 and 2 and 10−5 for layer 3, were selected. In addition, the weight decay

was set to 5 ∗ 10−3 for all layers and the batch size to 128. In total, 25 experiments

for the elevation set one and 20 experiments for the elevation set two were conducted

(dual-channel) while a further 11 experiments were conducted for a single channel

(DEM only). Finally, the MSE, PSNR and SSIM metrics were used to assess

performance of the network. A brief explanation of each used metric follows:

 MSE: ‘The mean squared error (MSE) or mean squared deviation (MSD) of an

estimator (of a procedure for estimating an unobserved quantity) measures

the average of the squares of the errors—that is, the average squared

difference between the estimated values and the actual value. MSE is a risk

function, corresponding to the expected value of the squared error loss. The

fact that MSE is almost always strictly positive (and not zero) is because of

randomness or because the estimator does not account for information that

could produce a more accurate estimate’ (Wikipedia)

 PSNR: ‘Peak signal-to-noise ratio, is an engineering term for the ratio between

the maximum possible power of a signal and the power of corrupting noise

that affects the fidelity of its representation. Because many signals have a very

wide dynamic range, PSNR is usually expressed in terms of the logarithmic

decibel scale’. (Wikipedia)

 SSIM: ‘The structural similarity (SSIM) index is a method for predicting the

perceived quality of digital television and cinematic pictures, as well as other

kinds of digital images and videos’. (Wikipedia). It ranges in values from 0 to 1,

where 0 signifies total irrelevance between two images and 1 total similarity.

5.6.2 Experimental results

The first test the proposed network had to pass was the performance improvement

it could offer versus a single-channel (optical) solution. Having been then proven to

offer superior performance in this regard, it was tested against well-accepted image

processing resizing techniques like the bicubic up-sampler. Finally, it was also tested

against state of the art techniques like the single-channel Dong et al. (Dong, Loy, He,

& Tang, 2015) model of which BSRCNN is a modification.

5.6.2.1 Single channel results (elevation set 1)

The single channel performance of the network can be seen for the Train data set

(Figure 51). The network had been trained on these data so the good performance

was expected. Figures 51 depicts the PSNR for the whole image while Figures 52(a-f)

display the performance during training. More analytically, the curves of Figure 51

depict the PSNR between the reconstructed LR DEM and the original LR DEM, when

given the SLR DEM as input. Similarly, Figures 52(a-f) depict the running average of

RMSE error for the patches used during training and thus have a finer granularity. It

can be clearly seen that the RMSE is constantly dropping for both the training and

validation patches. Furthermore, the larger convolution kernel of 9-1-5 offers a slight

performance increase in comparison to the 7-1-5 case both for the PSNR and SSIM

metrics as can been from Table 18.

(a)

(b)

Figure 51 - PSNR single channel. a) 7-1-5 64-32-1 b) 9-1-5 64-32-1

(a)

(b)

(c)

(d)

(e)

(f)

Figure 52 - Training curves single channel 64-32-1. a) 7-1-5 17x17 b) 9-1-5 17x17 c) 9-1-5 19x19 d)
9-1-5 21x21 e) 9-1-5 23x23 f) 9-1-5 33x33

The SSIM metric curves are similarly shown in Figures 53(a-b). Regarding, the

reconstruction it is good and clearly better than the corresponding bicubic

reconstruction as can be seen in Figures 54(a-c).

(a)

(b)

Figure 53 - SSIM Single channel Train data. a) 7-1-5 64-32-1 b) 9-1-5 64-32-1

Table 18 - Single channel PSNR and SSIM for Train data set.

Metric Convolution kernel size Bicubic

7-1-5 9-1-5

PSNR 26,65361 26,70987 22,742064

SSIM 0,9210329 0,9245114 0,901115

(a)

(b)

(c)

(d)

Figure 54 - 64-32-1 Single channel Train reconstruction. a) 7-1-5 b) 9-1-5 c) bicubic d) GT

Moving on to the validation set 2 data21, the corresponding PSNR and SSIM curves

can be seen in Figures 55(a-d). Furthermore, as can be seen from Table 19 the

proposed method performs better than the bicubic method even with the relative

limited training set that was used. On top of that, there is slight performance increase

when moving to a bigger convolution kernel (7-1-5 -> 9-1-5). Both the PSNR and SSIM

metric are better for the 9-1-5 kernel.

(a)

(b)

21 Validation set 2 is named Test data on the curves.

(c)

(d)

Figure 55 - PSNR & SSIM single channel validation set 2 64-32-1. a) PSNR 7-1-5 b) PSNR 9-1-5 c)
SSIM 7-1-5 d) SSIM 9-1-5

Table 19 - Single channel PSNR and SSIM for validation set 2 data set

Metric Convolution kernel size Bicubic

7-1-5 9-1-5

PSNR 23,36433 23,38185 21,012714

SSIM 0,8756447 0,8771589 0,858634

As can be seen from Table 19, the proposed single-channel model trained with the

bicubic down and up scaled data performs much better in comparison to the bicubic

case. The reconstructions can be seen in Figure 56.

(a)

(b)

(c)

(d)

Figure 56 - 64-32-1 Single channel validation set 2 reconstruction. a) 7-1-5 b) 9-1-5 c) bicubic d) GT

5.6.6.2 Single channel results (elevation set 2)

This data set is a different case since the data have been downscaled and up scaled

using the nearest neighbor algorithm. This algorithm produces jaggy edges and is

noisier. The trained model was expected to perform worse than the previous case.

The PSNR and SSIM curves for this case can be seen in Figures 57(a-b).

(a)

(b)

Figure 57 - Single channel PSNR & SSIM for Train data. Elevation set 2. 9-1-5 64-32- a) PSNR b) SSIM

Table 20 lists the maximum PSNR and SSIM values for the models trained with

elevation set 2, 9-1-5 32-64-1 among the 17x17, 19x19, 21x21, 23x23 and 33x33 cases.

Comparing Tables 18 (elevation set 1 Train results) & 20 (elevation set 2 Train results)

it can be clearly seen that the second network does not learn to augment the

resolution as well. The noisier data of the nearest neighbor interpolation have an

adverse effect on performance. The reconstruction can be seen in Figure 58.

Table 20 - Single channel PSNR and SSIM for Train data set.

Metric Convolution kernel size Bicubic

9-1-5

PSNR 23,17907 22,742064

SSIM 0,8254921 0,901115

The corresponding validation set 2 curves are shown in Figures 59(a-b) and the

analytic values in Table 21. Comparing Tables 19 and 21, it is clear that the model can

reconstruct far better when trained with elevation set 1. The added complexity that

the nearest neighbor noisy upscaling brings about to the data is the main cause. Lastly,

the reconstruction can be seen in Figure 60.

Figure 58 - 64-32-1 Single channel Train reconstruction (elevation set 2)

(a)

(b)

Figure 59 - Single channel PSNR & SSIM For validation set 2 data (Elevation set 2) 9-1-5 64-32- a)
PSNR b) SSIM

Table 21 - Single channel PSNR and SSIM for validation set 2 data set

Metric Convolution kernel size Bicubic

9-1-5

PSNR 20,93913 21,012714

SSIM 0,7829993 0,858634

Figure 60 - 64-32-1 Single channel validation set 2 reconstruction (elevation set 2)

We can notice from Table 21 that the single channel version fails to perform better

than the bicubic interpolation method for elevation set 2. This is in contrast to the

dual channel method as will be seen in section 5.6.2.3.

5.6.2.3 Dual channel results
A second channel with the low-resolution optical data was added in order to assess

how this would affect the reconstruction. Experiments using 32-16-1 & 64-32-1

feature maps were conducted with both the elevation set 1 and elevation set 2. In

addition, kernel sizes of 7-1-5, 9-1-5 & 9-3-5 were examined. Finally, the results of the

two different elevation sets (Bicubic & NN) used will be presented separately.

5.6.2.3.1 Elevation set one results

As a rule, the more the available data the more a neural network model avails of

additional feature maps. Under this assumption, the results for the 9-1-5 case will be

presented for the 32-16-1 and 64-32-1 cases, which will help decide whether the 64-

32-1 should be examined further. From comparison of Figures 61(a, c) and 61(b, d) it

is clear that the available training data were not enough to make use of the extra

features maps. As a result, performance has deteriorated for the 64-32-1 case. Both

renditions surpass the performance of the bicubic up-scaler for the PSNR metric but

the 32-16-1 feature maps version is marginally better as can be from Table 22.

(a)

(b)

(c)

(d)

Figure 61 -Dual channel elevation set one PSNR & SSIM metrics for Train data. a) PSNR 32-16-1 b)
SSIM 32-16-1 c) PSNR 64-32-1 d) SSIM 64-32-1

Table 22 – Dual channel Train 9-1-5 PSNR & SSIM. Comparison between 32-16-1 and 64-32-1 feature

maps

Metric Feature maps Bicubic

32-16-1 64-32-1

PSNR 26,69095 26,68689 22,742064

SSIM 0,9242242 0,9235429 0,901115

The reconstructions can be seen in Figure 62(a, b) for the 32-16-1 and 64-32-1

case, respectively.

(a)

(b)

Figure 62 - Dual channel Train reconstruction. 32-16-1 & 64-32-1 comparison

Similarly, the performance of the two versions are compared for the validation set

2 in Figures 63(a-d). From Figures 63(a-d), Table 23 and the similar performance drop

for the Train data, it can be safely assumed that performance steadily declines with

larger feature maps for this data set. This is not to say that performance would not

have been higher when using more feature maps had more training data been

available. However, this is something that has to be verified with more training data.

(a)

(b)

(c)

(d)

Figure 63 - Dual channel elevation set one 9-1-5 PSNR & SSIM metrics for validation set 2 data. a)
PSNR 32-16-1 b) SSIM 32-16-1 c) PSNR 64-32-1 d) SSIM 64-32-1

Table 23 - Dual channel validation set 2 9-1-5 PSNR & SSIM. Comparison between 32-16-1 and 64-32-1

feature maps

Metric Feature maps Bicubic

32-16-1 64-32-1

PSNR 23,46689 23,38473 21,012714

SSIM 0,8781328 0,8756348 0,858634

The reconstructions can be seen in Figure 64(a, b) for the 32-16-1 and 64-32-1 case,

respectively. If we compare the PSNR value of the 64-32-1 network with the

corresponding value of the single channel model, we can discern a slight performance

increase for the dual channel version.

(a)

(b)

Figure 64 - Dual channel validation set 2 reconstruction. 32-16-1 & 64-32-1 comparison

The convolution kernel size also had an impact on performance. As can be seen in

Figure 65 and Table 24 the larger convolutional kernel 9-1-5 performed a lot better for

the validation set 2 data in comparison to the 7-1-5 case. This pattern did not hold for

larger kernels something that is attributed to the low-resolution of the available data

and that elevation edges that correspond to optical edges may not fall within the

convolution window.

(a)

(b)

(c)

Figure 65 - PSNR comparison of different kernel sizes 32-16-1 for validation set 2 data a) 7-1-5 b) 9-
1-5 c) 9-3-5

Table 24 - PSNR & SSIM of validation set 2 data for different kernel sizes and 32-16-1 feature maps

Metric Convolution kernel Bicubic

7-1-5 9-1-5 9-3-5

PSNR 21,39834 23,46689 23,41802 21,012714

SSIM 0,8063351 0,8781328 0,8777893 0,858634

In order to assess real world performance, a comparison of the proposed model to

that of Dong et al. (Dong, Loy, He, & Tang, 2015) was conducted. The model of Dong

had been trained with two sets of data22 and this comparison was done for the smaller

dataset of the two datasets that used 91 images. In order to conduct a fair comparison,

tests were run using the code provided by Dong et al. (Dong C. , 2019), so that all

numbers including the PSNR of the bicubic method are given as was returned by the

code of the original research 23 . More specifically, the Train, Validation and Test

elevation images for elevation data set one were used. They were up scaled two times

just as done for the proposed model. The results are presented in Table 25 while the

reconstructions can be seen in Figures 66(a-c) for the Dong model; on Figures 66(d-f)

for the proposed model; and Figures 66(g-i) display for the GT24. It can visually be seen

from Figures 66(a-c) and 66(d-f) that the model of Dong returns more blurry

reconstructions than the proposed model. Furthermore, the PSNR returned for all

Dong reconstructions is clearly less than the bicubic method. This finding strengthens

the argument that general-purpose super-reconstruction models trained with generic

data are insufficient to process images of elevation data.

Table 25 - PSNR for Train, Validation sets 1 and 2 data returned by Dong's model

 PSNR of Dong Model PSNR of bicubic method

Train 23,775215 26.926449

Validation set 1 20,381643 23.009273

Validation set 2 22,116246 22.796978

22 The first was trained with a rather small set of 91 general nature & people images while the second
with a much larger ImageNet data set.
23 A discrepancy between the PSNR given for the proposed method and that given by the code of Dong
is due to the normalization to the 0..1 range that was conducted in the case of the proposed method.
Dong et al. worked directly with the 0..255 range gray levels.
24 The proposed method is based on 9-1-5 32-16-1 21x21 dual-channel configuration, which was found
to offer the best dual-channel performance.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 66 - SR Reconstructions of Train, Validation sets 1 and 2 data. a) Dong Train b) Dong Validation
set 1 c) Dong validation set 2 d) proposed method Train e) proposed method validation set 1 f)
proposed method validation set 2 g) GT Train h) GT Validation set 1 i) GT validation set 2

5.6.2.3.2 Elevation set two results

This variation of the training was considered as an attempt to assess the

performance of the model under more adverse conditions. The elevation data have in

this case been downscaled and up-scaled two times with the nearest neighbor

method, which introduces much more noise and produces jaggy images (Figure 49).

In this regard, the effect of the convolution kernel size on performance for the Train

data can be seen in Figure 67, where the 9-1-5 kernel seems to offer slightly better

performance than 7-1-5 rendition, as was the case for elevation set one. Furthermore,

it can be seen in Table 26 that both the maximum PSNR and SSIM are higher for the

9-1-5 kernel. Lastly, the reconstructions can be seen in Figure 68 for the 7-1-5 and 9-

1-5 case, respectively.

(a)

(b)

(c)

(d)

Figure 67 - Dual channel elevation set two PSNR & SSIM metrics for Train data. a) PSNR 7-1-5 b) PSNR
9-1-5 c) SSIM 7-1-5 d) SSIM 9-1-5

Table 26 - Dual channel 32-16-1 PSNR & SSIM Train Reconstruction. Comparison between 7-1-5 and 9-

1-5 convolution kernels.

Metric Convolution kernel Bicubic

7-1-5 9-1-5

PSNR 23,05184 23,16803 22,742064

SSIM 0,8304677 0,8323113 0,901115

(a)

(b)

Figure 68 - Dual channel Train reconstruction for elevation set two. 7-1-5 & 9-1-5 comparison

(a)

(b)

(c)

(d)

Figure 69 - Dual channel elevation set two PSNR & SSIM metrics for validation set 2 data. a) PSNR 7-
1-5 b) PSNR 9-1-5 c) SSIM 7-1-5 d) SSIM 9-1-5

Table 27 Dual channel 32-16-1 PSNR & SSIM validation set 2 reconstruction. Comparison between 7-

1-5 and 9-1-5 convolution kernels.

Metric Convolution kernel Bicubic

7-1-5 9-1-5

PSNR 21,30144 21,11909 21,012714

SSIM 0,7934909 0,7801557 0,858634

(a)

(b)

Figure 70- Dual channel validation set 2 reconstruction for elevation set two. 7-1-5 & 9-1-5
comparison

According to Table 27, the 9-1-5 version seems to, unexpectedly, offer slightly

worse performance for both metrics when reconstructing on validation set 2, which is

attributed to jaggy high-frequency content of the nearest neighbor upscaling. More

importantly though, the dual-channel version of the network outperforms the

corresponding best case for the single-channel version by approximately 0.2db (9-1-5

case). The reconstructions can be seen in Figure 70 (a-b) and the performance curves

in Figure 69.

5.6.2.3 Single vs dual channel comparison
The research presented in this chapter was based on the assumption that the dual

channel version would offer benefits to the performance of the network. This was not

always the case, as can be seen from Table 28. More specifically, the single channel 7-

1-5 convolution kernel size scored marginally lower as compared to the single-channel

equivalent when reconstructing on the validation set 2 data and trained on the

elevation set 1 data set. This can be seen in Figures 71(a-d) and Table 28.

(a)

(b)

(c)

(d)

Figure 71 - PSNR and SSIM 64-32-1 for single and dual channel validation set 2 7-1-5 model. a) PSNR
single channel b) PSNR dual channel c) SSIM single-channel d) SSIM dual-channel

Table 28 - PSNR and SSIM 7-1-5 single and dual channel validation 2 comparison

Metric 7-1-5 Convolution kernel Bicubic

Single channel Dual channel25

PSNR 23,36433 23,340 21,012714

SSIM 0,8756447 0,86729 0,858634

Further comparisons are shown for the 9-1-5 case. This time, as shown in Table 29,

the dual channel scores better than the single channel version. The problem tackled

in this chapter of my research is very difficult since the resolution of the elevation data

were five times lower than the optical version and because of the rather limited

training set. It surmised that more available or by reducing the resolution discrepancy

between the elevation and optical data would help improve performance. Finally, a

similar improvement of performance for the 9-1-5 dual-channel case trained on

elevation set 2 over the equivalent 9-1-5 single channel performance was also

observed, as can be attested by comparing Table 21 (single-channel) and Table 27

(dual-channel).

25 Elevation set one.

(a)

(b)

(c)

(d)

Figure 72 - PSNR and SSIM 64-32-1 for single and dual channel 9-1-5 validation set 2 model. a) PSNR
single channel b) PSNR dual channel c) SSIM single-channel d) SSIM dual-channel

Table 29 - PSNR and SSIM 9-1-5 single and dual channel comparison (validation set 2)

Metric 9-1-5 Convolution kernel Bicubic

Single channel Dual channel26

PSNR 23,38185 23,46689 21,012714

SSIM 0,8771589 0,8781328 0,858634

26 Elevation set one.

PART II – ITERATIVE RELAXATION SYSTEM

6. Relaxation System

The idea behind the relaxation system stems from image processing applications
for edge detection of the early 1980’s but applied in a more general context. Owing to
the increased computing power available, a multitude of spatial information can come
into play increasing the accuracy of the algorithm. The logic behind a relaxation system
is to allow the smooth formation of an edge chain by examining the local context of an
edge e27. If the local context contains evidence that the under investigation edge fits
in with neighboring edges it has a confidence value augmented. Otherwise, its
confidence value is decremented. The ultimate goal of such a system is to reach a point
where all edges are positively labeled as belonging to an edge or not.

6.1 Historical origins

Many propositions for edge detection were made since Marr & Hildreth formulated
a concrete theory of edge detection in 1980 (Marr D. & Hildreth, 1980). The most
successful and influential proved to be the proposition of Canny (Canny, 1986), a
method so efficient that variations of it are widely used even today. The significant
contribution of Canny was the inception of non-maximal suppression of directional
edge data, which discarded spurious low-intensity edges along the direction of the
magnitude of an edge28. This was followed by a hysteresis stage that would classify the
remaining edges as strong and weak, respectively. Weak edges that were not in the
neighborhood of strong edges were discarded while weak edges near a strong edge
were converted into strong edges themselves. The result was a crisp edge image free
of most spurious edges.

Edge detectors are a vital component of many edge segmentation algorithms. The
first step in such algorithms is to find the edges by applying edge detecting operators
that detect discontinuities in the graylevel, color or texture of an image (Sonka M.,
Hlavac, & Boyle, 2014). Supplementary processing is then performed to combine the
found edges into continuous chains with the continuity usually defined through a 4-
way or 8-way connectivity operator. A problem regarding edge detectors is that
borders still have noise with important edges missing. It is for this reason that edge
properties in the context of the under inspection edge can yield important information
for making the case whether it should be included in an edge chain. This procedure
can be performed iteratively, with each successive iteration augmenting or
decrementing the confidence of whether an edge belongs to an edge chain or not. For
example, a weak edge placed between two strong edges can provide an indication that
it should be included in an edge chain (Sonka M., Hlavac, & Boyle, 2014). This
procedure has come to be known as relaxation.

The method proposed in this thesis, is a variation of Prager’s method (Prager J. ,
1980), which is based on the so-called crack-edges (virtual edges between the pixels
of an images). Prager’s initial proposal was to consider all crack edges emanating from

27 An edge in this context is the pixel of a given image that is being examined if it belongs to a transition
chain segmenting two regions.
28 Also known as the orientation of an edge.

an edge as show in Figure 73 [taken from (Sonka M., Hlavac, & Boyle, 2014)]. Prager
considered horizontal and vertical edge chains so he developed rules for finding
continuity between the central edge e and all parallel horizontal edges29 or all possible
parallel vertical edges30. He then created categories according to the number of crack
edges that had strong neighboring edges.

Figure 73 - Crack edges of central edge e

Edges pairings(𝐱, 𝐲), were then created which were called the vertex-type. In this
schema, x is the number of left strong neighboring crack edges and y is the number of
right strong neighboring edges. Prager also defined various vertex-type categories and
according to this categorization, the edge e confidence could either incremented or
decremented. The categories Prager defined were:

 0-0: isolated edge – negative influence on edge confidence.

 0-1: uncertain – weak positive or no influence on edge confidence.

 0-2. 0-3: dead end – negative influence on edge confidence.

 1-1: continuation – strong positive influence on edge confidence.

 1-2, 1-3: continuation to border intersection – medium positive influence on

edge confidence.

29 Horizontal case.
30 Vertical case.

 2-2, 2-3, 3-3: bridge between borders – not necessary for border creation, no

influence on edge confidence.

The patterns of connectivity for the horizontal case can be seen in Figure 74 (from

[Sonka M., Hlavac, Boyle, 2014]). A pairing (x,y) of crack edges is called the vertex-

type.

Figure 74 - Some typical crack edges connectivity patterns

To compute the vertex type choose the maximum confidence vertex conf(j) , i.e.,
the vertex is type j where j maximizes conf(j), as shown below:

Table 30 - Confidence of vertex type calculation

 𝒄𝒐𝒏𝒇(𝟎) = (𝒎 − 𝒂)(𝒎 − 𝒃)(𝒎 − 𝒄) (7)

 𝒄𝒐𝒏𝒇(𝟏) = 𝒂(𝒎 − 𝒃)(𝒎 − 𝒄) (8)

 𝒄𝒐𝒏𝒇(𝟐) = 𝒂𝒃(m-c) (9)

 𝒄𝒐𝒏𝒇(𝟑) = 𝒂𝒃𝒄 (10)

 𝒎 = 𝐦𝐚𝐱 (𝒂, 𝒃, 𝒄, 𝒒), where a,b,c: normalized gradient for the
three edges and q a constant (0.1 or something close).

(11)

Parameter m adjusts the vertex classification so that it is relative to the local
maximum. For example, (a,b,c) = (0.25, 0.01, 0.01) is a type 1 vertex31. The parameter
q forces weak vertices to type zero. After the determination of the left and right
vertex-type, the edge-type is simply the concatenation of the left and right vertex-
type. Finally, the edge confidence in each iteration is modified according to the
following equations:

31 If you do the math according to equations 7-11, conf(1) is the maximum value so the edge is classified
as type 1.

Table 31 - Modification of confidence

Increment 𝒄𝒌+𝟏(𝒆) = 𝒎𝒊𝒏 (𝟏, 𝒄𝒌(𝒆) + 𝜹) (12)

Decrement 𝒄𝒌+𝟏(𝒆) = 𝒎𝒂𝒙 (𝟎, 𝒄𝒌(𝒆) − 𝜹) (13)

Leave as is 𝒄𝒌+𝟏(𝒆) = 𝒄𝒌(𝒆) (14)

This iterative process smoothly relaxes the confidences of the edges so that they

fit in with strongly aligned edges or atrophy.

6.2 Data sources and pre-processing

Multimodal data sources have been collected from a dense urban neighborhood of
Athens, Greece. Since the development of many of the algorithms in this thesis was
conducted under the Mathworks Matlab platform, part of the necessary pre-
processing pertains to the transformation of these primary data sources to the
appropriate Matlab formats. Specifically, the following tools were used: a) LAS Tools,
b) Quantum GIS, c) Monteverdi, d) Global Mapper, e) TNT Mips. This thesis used the
product of the pre-processing as conducted in the research project of the
Technological Institute of Athens, Archimedes III in 2013 by Vassilas et al. (Vassilas N.,
Charou, Petsa, & Grammatikopoulos, 2013).

6.2.1 Data sources

1. LiDAR data from a neighborhood of Kallithea regarding a region 2km x 4km which
were taken and delivered in 2003 by GoeIntelligence1. The initial data have been re-
sampled through interpolation so that they have a spatial resolution (sampling step)
of 1m. This re-sampling resulted in a LiDAR picture of 2000x4000 pixels from which a
specific region of 1827x1793 was cropped and used for further processing. The height
resolution of the initial LiDAR data was 20cm whilst that of the delivered data (after
the re-sampling) was 1cm. These data form the digital terrain of the urban region
(Digital Surface Map – DSM)32.

2. A digital elevation map for the same area was also handed in by Geointelligence.
The DEM was calculated through interpolation from the DSM and has a spatial
resolution of 2m. An area of resolution 1827x1793 was cropped from the DEM and
used in this thesis.

3. Normalized DSM (nDSM): This has been calculated by subtracting the DEM from
the DSM data, that is nDSM = DSM – DEM. The nDSM contains the real height of the
buildings from the ground up and can be used in the 3D reconstruction of the area.

32 All cited data sources of this section come from the research of Vassilas et al. (Vassilas N., Charou,
Petsa, & Grammatikopoulos, 2013) and for the sake of brevity are not shown.

Normalization was performed in Matlab. Possible negative values were replaced by a
height of zero. Such negative values are errors, which are the product of the
interpolation technique used to calculate the DEM. The delivered nDSM data came in
two formats. First, is a grayscale image with a range of values 0..255 and secondly a
Matlab m file which contains the absolute real value of the height.

4. Colored high-resolution RGB aerial-photograph from the National Cadastre &
Mapping Agency S.A., which depicts the specific area of interest in Kalithea, Greece.

5. Multispectral Google Earth satellite image dated from 2003. This image was used
in order to extract ground truth maps of the building boundaries in the region. It was
also used to interpret possible differences between the optical (aerial) photograph
given by the National Cadastre & Mapping Agency S.A and the Digital Elevation Map
given by GeoIntelligence in 2007.

6. Three optical channels of the ICONOS orthogonal projected satellite image with
zero cloud overlay and a spatial resolution of 1m (pan-sharpened). This image was
granted for the research needs of the Archimedes III program by the Computational
Intelligence Laboratory.

7. 12 bird’s eye views of the region of interest. These data will assist in the
qualitative assessment of the results and in the extraction of ground truth maps, which
will facilitate the quantitative results of the experiments.

6.2.2 Implicit data sources

As part of the Archimedes III research program, masks were created that classify
the pixels of the optical data according to various attributes of interest. These masks
are binary images where a logical 0 denotes the existence of the attribute of interest
and a logical 1 the absence hereof. Tree, grass and shadow masks were created by
training neural networks to identify these structures.

6.2.3 Selection and pre-processing of building block

The building block selected has the facades of the buildings oriented across two
dominant directions, which were found to be at -41º and 49º. In order to simplify
calculations without losing the general features of the region the following pre-
processing steps were applied:

 ▪ Rotation according to the dominant direction of -41º.

 ▪ Extraction of a rectangular region that corresponds to a building block from
the initial data. Data were extracted for the optical and DEM channel during this
process and are shown in Figure 75(a-b). The rotated and cropped green and tree
masks were similarly extracted. These are shown in Figure 76 (a-b). Finally, the shadow
mask was extracted in a similar manner and is shown in Figure 77.

(a)

(b)

Figure 75 - rotated & cropped a) Optical data b) DEM data

Figure 76 - rotated & cropped a) Grass mask b) Tree mask

Figure 77 - rotated & cropped shadow mask

6.2.4 Further pre-processing

Various necessary pre-processing is conducted in the sub-section.

 Creation of foliage mask: This mask is the logical conjunction of the grass and
tree masks after a closure has been applied to it and thereafter some further
dilation. It is show in Figure 78.

Figure 78 - Foliage mask

 Gray-scale version of optical data.

Figure 79 - Gray scale version of optical data

 Optical data with foliage masked out: The foliage is masked out according to
the composite foliage mask.

Figure 80 - Optical data with foliage masked out

 DEM data with foliage masked out: The foliage is masked out according to
the composite foliage mask.

Figure 81 - DEM data with foliage masked out

 Height cohesive regions map: A height cohesive region map developed by
(Vassilas N., Charou, Petsa, & Grammatikopoulos, 2013) was also used as input
to the relaxation system. The algorithm utilizes 8-way connectivity to scan the

image from the top-left to the bottom-right searching for neighbors along the
three pixels of the previous scanline as well as along the pixel to the left33. The
map can be seen in Figure 82.

Figure 82 - Colored height cohesive region map

 A grayscale version of the cohesive regions image: This image was used in order
to detect the edges of the cohesive regions. It can be seen in Figure 83.

Figure 83 - grayscale height cohesive region map

33 The algorithm is a generalization of the binary cohesive region generation algorithm. See the full
paper of (Vassilas N., Charou, Petsa, & Grammatikopoulos, 2013) for more details.

 Smoothing of the grayscale version of the cohesive region image, which is
standard procedure before applying any edge detection technique 34 . A
Gaussian kernel with a unit standard deviation was used.

Figure 84 - smoothed height cohesive regions

 Edge detection of cohesive regions: The edges of the cohesive regions are
found using the Canny edge detection algorithm. A proprietary version of the
Canny method was written for this purpose. This variation of the Canny
algorithm performs maximum suppression and hysteresis along the diagonals
as well as along the horizontal & vertical directions. The magnitude and edges
are shown in Figure 85(a-b).

(a)

(b)

Figure 85 – a) Magnitude of cohesive regions b) Edges of cohesive regions

 Smoothing of optical & DEM data with a Gaussian filter (μ=0 & std=1).

34 The edges of the height cohesive regions map are used in the Relaxation process.

(a)

(b)

Figure 86 - Gaussian smoothed (μ=0, std=1) a) Optical data b) DEM data

 Edge detection of optical and DEM data: A proprietary implementation of the
Canny edge detection is utilized in order to find the edges. The three stages of
the Canny detection method as modified for the purpose of the thesis are
described below.

o Magnitude of optical & DEM data: The standard Sobel masks

𝑮𝒙 =

−𝟏 𝟎 𝟏
𝟐 𝟎 𝟐

−𝟏 𝟎 𝟏

(15)

𝑮𝒚 =

𝟏 𝟐 𝟏
𝟎 𝟎 𝟎

−𝟏 −𝟐 −𝟏

(16)

are utilized in order to calculate the magnitude and orientation of the
optical and DEM data and the gradient magnitudes are then calculated
as the Euclidean distance measure according to the equation

|𝑮| = √𝑮𝒙

𝟐 + 𝑮𝒚
𝟐

(17)

 while the orientation of the gradient according to the equation.

 𝜽 = 𝐚𝐫𝐜𝐭𝐚𝐧 (𝑮𝒚/𝑮𝒙) (18)

The results are shown in Figures 87 and 88.

Figure 87 - Magnitude of optical image

Figure 88 - Magnitude of DEM image

o Non-maximum suppression stage: The purpose of this stage of the
Canny edge detection algorithm is to sharpen the edges. All local
maxima of the gradient image are preserved while all other gradients
are discarded. Since all calculations of this stage use 8-way
connectivity, all orientations are rounded to the nearest 45º. Then the
magnitude of each edge is compared to that of the magnitudes along

the positive and negative gradient directions quantized to the nearest
8-neighbors. If the strength of the edge is the largest, then the edge is
retained otherwise it is suppressed. The results of this stage are shown
in Figures 89 and 90.

o Double thresholding stage: This final Canny stage has the goal of
removing spurious edges due to noise. Two thresholds are used by
Canny, a strong threshold above which edges are accepted and a weak
threshold below which edges are discarded. Edges that have a
magnitude between these two thresholds are marked as weak. A final
stage called hysteresis is then applied. In this stage, weak edges are
tested to ascertain whether they are flanked by strong edges. Such
weak edges are turned into strong edges. The logic behind this is that
noise in unlikely to result in strong edges, which are supposed to be
due only to variations of the image. The results are shown in Figures 91
and 92.

o Create logical neighbor cell matrix: Four Matlab cell matrices35 are used
in order to extract all logical neighbors of a cell according to 8-way
connectivity. These are the a) horizontal cell matrix; b) vertical cell
matrix; c) 45° with the dimension being the same as that of the optical
& DEM data. Each cell in turn holds a 3x3 matrix that represents the
central edge and its eight neighbors. It has a logical one for each
possible neighbor aligned along the orientation of the under
consideration edge while all other entries have a logical zero. The four
cell matrices are shown in Figures 93(a-d).

35 Cell matrices are a Matlab complex array type in which each entry can hold another structure. For
instance, each entry could contain a full matrix. These are essentially used as masks to extract the
relevant neighbors according to the orientation.

Figure 89 - Magnitude of gradient (optical) after non-maximum suppression

Figure 90 - Magnitude of gradient (DEM) after non-maximum suppression

o Create neighbor extract cell matrix A Matlab cell matrix with same
dimensions as that of the optical & DEM data. Each cell holds a 3x3
matrix with the values of the magnitude along the asserted entries of

the previous logical neighbor’s cell matrix 36 . The previous logical
neighbor’s cell matrices are used as logical masks to extract the
corresponding magnitude.

Figure 91 - Magnitude of optical image after double thresholding

36 For instance an edge with horizontal orientation will have the neighbors extracted according to
Figure 108(a); with vertical according to Figure 108(b); with 45° according to 108(c) and with -45°
according to Figure 108(d).

Figure 92 - Magnitude of DEM image after double thresholding

(a)

(b)

(c)

(d)

Figure 93 - Logical neighbors cell matrix

o Crack neighbors & logical Crack neighbors: These are derived cell
matrices just like the previous two cell matrices. The difference is that
they take into account the orientation of the possible neighbors and
include them only if they are aligned with the central edge.

o Erosion of DEM data: An erosion morphological operator is applied to
the DEM in order to facilitate the comparison with the optical data
while minimizing the possibility of accidentally wiping off optical data
that are not supported by the DEM.

6.3 Confidence matrix initialization

The goal of the proposed algorithm is to create orthogonal borders that correspond

to the building facades of a densely populated urban area. In order to achieve this the
edge borders of the optical image as attested by the magnitude of Figure 96 are utilized
in an iterative technique called Relaxation. The confidence assigned to each edge is
merely a measure of the certainty that it is a true edge belonging to a building contour.
The algorithm processes edges differently according to their type. As previously stated
we define four type types of edges (Vassilas N., Charou, Petsa, & Grammatikopoulos,
2013):

 ‘Optical and elevation edges. Most edges belong to this category. Optical edges
separate regions of different graylevel in the optical image while elevation
edges separate regions of different height. This the typical case’.

 ‘Optical edges that are not elevation edges. These edges separate regions of
different graylevel but same height. For instance, adjacent roofs with different
graylevel’.

 ‘Elevation edges that are not optical edges: These edges separate regions of
different height but same color. For instance, roofs that have the same graylevel
as the pavement’.

 ‘Edges that are neither optical nor elevation edges: This is the most difficult
case. For instance, adjacent roofs with the same height and same graylevel’.

The proposed relaxation system is divided into two sub-systems. The first sub-
system performs one time confidence adjustment. This is because of the nature of
some of the data they cannot be used in an iterative procedure since this would always
yield the same result. The confidence matrix would thus be distorted and not
correspond to reality. It is for this reason that these data affect the confidence matrix
once before the relaxation process commences.

The initial confidence matrix is set to the magnitude of the optical data after the
pre-processing that occurred in the previous section. It can be seen in Figure 94.

Figure 94 - Initial confidence matrix (set to magnitude of optical data)

One time confidence adjustment37

The confidence adjustment presented in this section are performed only once
before the iterative procedure commences.

1. Pruning of all edges below 3.7m: Any structure below the threshold of 3.7m can be
safely removed since it is assumed not to belong to a building facade. This is done by
examining the DEM data as it has been pre-processed in the previous section. The
modified confidence matrix is graphically depicted in Figure 95. Table 32 lists the
number of edges that were pruned according to this criterion.

Table 32 -Low height edges pruned after low-height object removal

Edges pruned 51730

37 As explained in introduction to this section, due to the static nature of some of the data they cannot
be used in the iterative relaxation process. They are however used to adjust the confidence once before
the iterative relaxation procedure commences.

Figure 95 - Confidence matrix after low-height object removal

2. Enhancement of edges that coincide with cohesive regions edges: Edges that
coincide with those of figure 90(b) have their confidence set to 100% since the optical
edges fall upon the cohesive regions boundaries. This almost certainly only occurs for
a true edge. Nine thousand two hundred fifty two edges were found to coincide. The
modified confidence matrix is show in Figure 96.

Table 33 - Number of optical edges coinciding with cohesive regions edges

Positive edges 9257

3. Enhancement of optical edges that are also DEM edges: If an optical edge coincides
with a DEM edge then we can be almost certain that this a true edge. The confidence
is boosted to 100% and is displayed in Figure 97.

Table 34 - Number of optical edges coinciding with DEM edges

Positive edges 15349

4. Suppression of edges delimiting low height spanning objects: Edges of objects with
a relative height span less than 3.5m are labeled as low height-spanning objects and
are suppressed. This is done with the aid of the elevation edge image (Figure 92).

Table 35 -Number of optical edges suppressed due to low-height spanning objects

Positive edges 26790

Figure 96 - Confidence after taking into account the coincidence of optical and cohesive region edges

5. Enhancement of edges that are optical and are above minimum height-span: All
optical edges that are above the 3.7m height threshold have their credibility
augmented. Likewise all optical edges that are above 3.7m and are at a cohesive
region boundary are further augmented. Finally, all optical edges that are above 3.7m,
are Canny optical edges and are at a cohesive region boundary are even further
augmented. The new confidence matrix is shown in Figure 98.

Table 36 - Edges above 3.7m that have their confidence augmented

Edges above 3.7m 5791

Edges above 3.7m and at cohesive region

boundary

3543

Edges above 3.7m, at cohesive region
boundary and Canny output edges.

2007

Figure 97 - Confidence matrix after coinciding optical & elevation edges have their confidence

boosted to 100%

Figure 98 - Confidence matrix after augmenting confidence according to Table 36

6. Edges along dominant directions: All edges that have an orientation aligned with
the dominant directions is given a small augmentation to their credibility. On the
contrary, all edges that are not aligned with the dominant directions have their
credibility decremented. Since, the initial data images have been compensated for the
dominant directions, the default dominant directions are 0º and 90º. The new
confidence matrix can be seen in Figure 99.

Table 37 - Edges aligned with dominant directions

Edges aligned with dominant directions 14868

Edges not aligned with dominant directions 49168

Figure 99 - Confidence matrix after augmenting confidence of edges along dominant directions

7. Shadow mask edges: Careful examination of the original shadow mask in (Vassilas
N., Charou, Petsa, & Grammatikopoulos, 2013) reveals that the illumination source
(sun) must have been placed at the bottom-center of the image. It was determined in
the research by Vassilas et al. that the horizontal shadows must be the result of higher
buildings casting their shadows north on lower surfaces while the vertical shadows are
due to higher buildings casting their shadows to the east38. These borders (edges) give

38 According to Vassilas et al. (2013) who originally created the shadow mask. 'The illumination source

must have been to the southeast'. Since our data have been rotated to compensate for the dominant

directions, the illumination source must have been to the bottom-center.

very important information about the boundaries of the building facades and thus
have priority over other edges or height data.

The shadow mask used for this processing was created by turning the initial binary
image of the shadow mask (Figure 82) to a bipolar map (0/1 to -1/+1). The bipolar map
was then filtered with the templates of Table 38(a-b), for horizontal and vertical edges,
respectively and then normalized with the Otsu method. This resulted in a usable
shadow mask, which is depicted in figure 100. The shadow mask of Figure 100 is then
placed on top of the optical edges and coinciding edges are found by performing a
logical AND between them. The remaining edges have a high probability of being a
true edge belonging to a building contour. Hence, their confidence is significantly
boosted. The resulting confidence mask can be seen in Figure 101.

Table 38 a) Horizontal template b) Vertical template

(a)

(b)

Table 39 - Number of optical edges that coincide with shadow edges

Number of optical edges that coincide with shadow edges 2858

8. Enhancement of credibility of edges that have strong neighboring edges along their
orientation: Each edge that has a strong neighboring edge along its orientation is
enhanced. Eight-way connectivity is used in order to ascertain whether a strong
neighboring edge exists, thus all orientations are partitioned in 45° areas. Each edge
that has at least one neighbor along its orientation has its credibility augmented. The
resulting confidence matrix can be seen in Figure 102.

Table 40 - Number of edges with strong edges along their orientation

Number of edges that have strong neighbors along their orientation 11688

Figure 100 - Final shadow mask

Figure 101 - Confidence after augmenting edges that coincide with shadow edges

Figure 102 - Confidence after taking into account neighbors along edge orientation

This was the final step of the pre-processing before the iterative relaxation process.

6.4 Iterative relaxation

As stated at the beginning of this chapter, borders of regions or other edges are
strongly affected by image noise. Therefore, considering the context of an edge can
result in a crisper image. For example, ‘a weak horizontal edge positioned between
two strong horizontal edges is highly probable to be a true edge and should gain
credibility. On the contrary, an edge that is positioned by itself with no supporting
context should have its credibility decreased’. This is the basic idea behind Prager’s
work. The contribution of this thesis to his work is that connectivity is considered not
only for horizontal and vertical edges but also for other diagonal edges.

Prager (Prager J. , 1980) proposed an iterative technique, which can easily be
parallelized, that gradually increases/decreases the credibility or confidence of the
edges until they asymptotically approach 0 or 1. The proposed algorithm is presented
below:

Table 41 - Proposed relaxation algorithm (Prager, 1980)

1. Set the initial confidence of each edge as the gradient of the optical image,

normalized to unity.

2. Enter loop.

1. Compute edge-type and vertex-type based on the confidence of edge

neighbors.

2. Modify confidence of each edge based on its vertex type and previous

confidence.

3. End iterative loop when all confidences have asymptotically

approached zero or one.

The two most important notions of this algorithm are:

 • Edge-types: The number of left and right neighbors. There are two edge types
ranging from 0 to 3 for each edge, as explained in Section 6.1.

 • Vertex-type: Each vertex (edge) has a left and right edge-type, which are
computed from the strength of edges emanating from a vertex. Their concatenation
is the vertex-type.

The proposed variation of Prager’s algorithm uses an 8-way connectivity scheme
and is applicable to horizontal edges, vertical edges 45º and -45º edges39. It can easily
be extended to other edge types as well40. Starting from the central edge e and
considering a horizontal orientation, the left-vertex is the end-point for three other
possible edges to the left. Likewise, the right-vertex is the end-point for three other
possible edges to the right.

The variation of the Prager’s algorithm implemented for the purposes of this thesis,
assumes that each edge can continue along three edges to the left and/or three edges
to the right for the horizontal case. Three more cases are consider which are the
vertical, the diagonal type 1 and the diagonal type 2. The idea is illustrated in Figure
103. The central edge in Figure 103(a) has three possible neighbors to the left and
three possible neighbors to the right. How many neighbors really exists is determined
according to the equations, which were presented in section 6.1. Regarding the
relaxation technique, each edge is evaluated according to the number of edges
emanating from the vertex (left or right for the horizontal case, top or bottom for the
vertical case, alternating diagonal connectivity for the two diagonal cases). The edge-
type is then simply a concatenation of the left and right vertex-types, using an x-y
pairing scheme, where x is the number of left neighbors and y the number of right
neighbors. The confidence of each edge is then modified in an iterative scheme
according to the edge type41 where equations (7-11) are used to calculate the vertex-
type. The vertex type calculations depend on the orientation of the under examination
edge and the crack edges in its context, as shown in Figure 103. After the
determination of the left and right vertex-type, the edge-type is simply the
concatenation of the left and right vertex-type. Finally, the edge confidence in each

39 Prager’s algorithm only labeled edge-types according to horizontal and vertical crack edges.
40 For instance, the granularity of the orientations could me made finer.
41 Edges types were defined in section 6.1.

iteration is modified according to equations 12-14 and the vertex-type.

The algorithm is iterative and it aims to categorize all elements of the confidence
matrix as certain edges (aka belonging to a building contour or not) or non-certain
edge (aka those that the algorithm failed to verify as belonging to building contours
or not). The categories are defined as shown below:

 Certain Edges: Edges that have a confidence less than 0.2 or greater than 0.8.

 Non-certain edges: Edges that have a confidence between 0.2 and 0.8.

(a)

(b)

(c)

(d)

Figure 103 - Crack edges. a) Horizontal b) Vertical c) Diagonal case 1 (45°) d) Diagonal case 2 (-45°)

The iterative effect of the relaxation process on the confidence of the edges is
shown in Table 42. As can be seen from the table, the algorithm has managed to
classify the vast majority of edges with certainty. Only five (5) edges have remained
unclassified. The final confidence matrix is illustrated in Figure 104.

After the final confidence has been calculated, a small region elimination procedure
is executed on the image. The result of the small area elimination process is shown in
Figure 105.

Table 42 - Iterative effect of relaxation process on confidence

Iteration Edges classified with certainty Non-certain edges

0 12081 2658

1 12081 4204

2 12081 8070

3 12082 8069

4 12088 8063

5 12103 8048

6 12143 8008

7 12236 7915

8 12382 7769

9 12584 7567

10 12983 7168

11 13750 6401

12 14855 5296

13 16280 3871

14 20146 5

15 20146 5

Figure 104 - The confidence matrix after the 15th iteration of the relaxation algorithm

Figure 105- Final confidence after small area elimination (binary image)

6.5 Evaluation

As can be seen from visually inspecting Figure 105, many of the important edges
have been discovered. However, there do exist gaps in the edge chain, which a deeper
context examination might have found. This would be an interesting topic to pursue

in future research. For the quantitative assessment of the performance of the
algorithm, two metrics were utilized. The first was the mean square error (MSE) and
the second was the peak signal to noise ratio (PSNR). The metrics regarding the
Relaxation method were taken after performing small area elimination.

The ground truth image for the building block whose edges were discovered by the
Relaxation system is shown in Figure 106. This same block was used to train the
BCDCNN neural network proposed in Chapter 4 and a direct comparison is thus
possible.

Figure 106 - Ground truth image

Table 43 - Quantitative comparison between Relaxation system and BCDCNN

 MSE PSNR

Relaxation 0,1280 8,9282

BCDCNN 0,10423 15,269

From Table 43 it can be seen that the relaxation method performs worse than the
proposed in Chapter 4 BCDCNN for both the MSE and PSNR metrics. The neural
network has been trained with the GT image of Figure 106 so it would be very difficult
for the relaxation method to perform better.

7. CONCLUSIONS

This thesis has presented innovative research methodologies towards the
automatic detection of building contours. Building contours can be considered as a
first step for a 3D model of urban areas.

The building contour detector presented in Chapter 4, which is based on
convolutional neural networks, proved that CNNs are potent tools to obtain a full
image reconstruction of the building contours. This is in contrast to most to date
typical applications of convolutional neural networks, which operate as classifiers. The
network that was named BCDCNN, accepts low-resolution elevation data of an urban
area and corresponding high-resolution optical data of the same area. It then
performs a hetero associative mapping to a new image, which contains the building
contours. Another innovation of the proposed model is the Top-N custom layer, which
offers performance benefits, wherein the RMSE and PSNR exhibit better performance
for the Top-N layer as opposed to the typical MSE cost layer. The effect of adding more
feature maps was also examined and it was shown that dropout is mostly necessary
in order for the model to generalize. It is very interesting to notice that training with
the LoG data set was the only case in which the network managed to generalize
without using dropout, presumably a result of the reduced dimensionality of the LoG
dataset. The tackled problem is extremely complex to solve using deep neural
networks due to the varying context around true building contours in an urban
environment. It is conjectured that given more training data the performance of the
network will increase but handcrafting such ground truth data is a very tedious and
time costly procedure. It would be interesting to see how the network would perform
given more training data42. Further research proposal on CNNs and building contour
detection would be to build a pixel classifier whose performance could be compared
with this implementation.

The stimulus for building the super-resolution system presented in Chapter 5 was
the BCDCNN network, since it had been initially designed to perform super-resolution
with a single channel. This thesis examined how well this network would perform with
elevation data when assisted by a second channel of optical data. It was designed to
enhance the resolution of low-resolution elevation data augmented by corresponding
high-resolution optical data. The research demonstrated the efficacy of deep neural
networks for super-resolution applications regarding elevation data. It also exhibited
some intricacies of elevation data. Foremost of them is the requirement that these
models are trained with elevation data per se. Elevation data seem to have an
increased ratio of low to high43 frequency content as compared to generic images that
makes it difficult for SR CNNs trained on generic images to perform well on them.
Generic SR CNNs although offering top-notch performance on general-purpose
images, failed to hold that performance when presented with elevation data. It was
also demonstrated, as proof of concept that high-resolution optical data can help
augment low-resolution optical data. This can be seen for elevation set 1 and 2 when
reconstructing on Validation set 2. In this setup, the dual channel version performed

42 Obtaining pairs of optical & DEM datasets is quite expensive. Therefore, a promising avenue to
explore would be the synthesis of artificial optical-DEM data pairs.
43 Or vice-versa.

better than the corresponding single channel version. Furthermore, using many
feature maps does not scale well when using a small dataset. The number of feature
maps must be commensurate with the available volume of training data while a similar
trend seems to hold regarding the dimensions of the convolution kernel. This
application was also hampered by the resolution discrepancy between the low-
resolution elevation data and the high-resolution optical data. It is surmised that
lowering the ratio of the discrepancy would lead to better results. In addition, it would
be interesting to explore deeper architectures trained with more data. Since procuring
pairs of optical - elevation data is costly, the previous proposition regarding BCDCNN
to use synthetic pairs of optical - elevation data also holds for BSRCNN.

 Finally, the developed relaxation system accepts multi-resolution spatial data from
various sources and fuses them all together. It attempts to ease in pixels that belong
to building contours to an edge chain while suppressing pixels that do not fit in. For
this reason, it is an iterative process that examines the local context of every pixel of
the image depicting an urban area taking into the orientation of the under
examination edge and that of the local context. It then proceeds to either augment or
decrement the confidence of the pixel belonging to a building contour. The proposed
system was shown to provide clear-cut edge chains that mostly belonged to building
contours. A possible enhancement to the system would examine a deeper local
context.

This thesis presented two innovative deep CNN systems that can be used to detect
building contours or perform super resolution on elevation data. These systems can
operate independently. However, it would be worth exploring how the output of
these two systems can be used by the proposed relaxation system. The combinatory
power of the output produced by BCDCNN and the relaxation system could lead to
even better building contour detection. On top of that, BSRCNN can be used to
augment the resolution of the elevation data provided to the relaxation system. This
would be a final proposal for future research based on this thesis.

Bibliography

AI, Misssing Link. (2019, 9 8). Fully Connected Layers in Convolutional Neural Networks: The Complete

Guide. Retrieved from https://missinglink.ai/guides/convolutional-neural-networks/fully-

connected-layers-convolutional-neural-networks-complete-guide/

Alshehhi, R., Marpu, P., Woon, W., & Dalla, M. M. (2017). Simultaneous extraction of roads and

buildings in remote sensing imagery with convolutional neural networks. ISPRS Journal of

Photogrammetry and Remote Sensing, 130, pp. 139-149.

Baranov, M., Olea, R., & van den Bogaart, G. (2019). Chasing Uptake: Super-Resolution Microscopy in

Endocytosis and Phagocytosis. Trends in cell biology.

Benecki , P., Kawulok , M., Kostrzewa, D., & Skonieczny. (2018). Evaluating super-resolution

reconstruction of satellite images. Acta Astronautica, 153, pp. 15-25.

Bengio, Y., Bordes A., & Glorot X. (2011). Deep sparse rectifier neural networks. Proceedings of the

fourteenth international conference on artificial intelligence and statistics (, pp. 315-323.

Biegler-König, F., & Bärmann, F. (1993). A learning algorithm for multilayered neural networks based

on linear least squares problems. Neural Networks, 6(1), 127-131.

Borman, S. &. (1998, August). Super-resolution from image sequences-a review., (pp. 374-378)).

Brownlee, J. (2019, 9 8). Machine learning mastery. Retrieved from

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-

neural-networks/

Bryson, A. E. (1961). In Proc. Harvard Univ. Symposium on digital computers and their applications

(Vol. 72). A gradient method for optimizing multi-stage allocation processes.

Bryson, A., & Denham, W. (1962). A steepest-ascent method for solving optimum programming

problems. Journal of Applied Mechanics, 29(2),, pp. 247-257.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis

and machine intelligence, (6),, pp. 679-698.

Cho, W., Jwa, Y., Chang, H., & Lee, S. (2004). Pseudo-grid based building extraction using airborne

LIDAR data. Int. Arch. Photogramm. Remote Sens, 35, pp. 378-381.

Comanciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence 24(5),, pp. 603–619.

Datsenko, D., & Elad, M. (2007). Example-based single document image super-resolution: a global

MAP approach with outlier rejection. Multidimensional Systems and Signal Processing, 18(2-

3), pp. 103-121.

Dayan, P., Hinton, G., Neal, R., & Zemel, R. (1995). The helmholtz machine. Neural computation, 7(5),,

pp. 889-904.

Dong, C. (2019, 09 15). Image Super-Resolution Using Deep Convolutional Networks. Retrieved from

Image Super-Resolution Using Deep Convolutional Networks:

http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

Dong, C., Loy, C., He, K., & Tang, X. (2015). Image super-resolution using deep convolutional networks.

IEEE transactions on pattern analysis and machine intelligence, 38(2), pp. 295-307.

Fahlman, S. E. (1991). An empirical study of learning speed in back-propagation networks.

Fog, A. (2019, 09 03). A History of Deep Learning. Retrieved from import.io:

https://www.import.io/post/history-of-deep-learning/

Fraser, C., Baltsavias, E., & Gruen, A. (2002). Processing of Ikonos imagery for submetre 3D positioning

and building extraction. Journal of Photogrammetry and Remote Sensing, 56(3), pp. 177-194.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. In Biological cybernetics, 36(4) (pp. 193-

202).

Haala, N., & Nrenner, C. (1999). . Extraction of buildings and trees in urban environments. In . Isprs

journal of photogrammetry and remote sensing, 54(2-3), (pp. 130-137).

Hinton , G., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural

computation, 18(7), pp. 1527-1554.

Huang B., Wang, W., Bates, M., & Zhuang, X. (2008). Three-dimensional super-resolution imaging by

stochastic optical reconstruction microscopy. Science, 319(5864), pp. 810-813.

Huang, H. &. (2010). Super-resolution method for face recognition using nonlinear mappings on

coherent features. IEEE Transactions on Neural Networks, 22(1),, pp. 121-130.

Judd, J. S. (1990). Neural network design and the complexity of learning. MIT press.

Kelley, H. J. (1960). Gradient theory of optimal flight paths. Ars Journal, 30(10), pp. 947-954.

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. (2019). A survey of the recent architectures of deep

convolutional neural networks. In arXiv preprint arXiv:.

Kim, T., & Muller, J. (1999). Development of a graph-based approach for building detection. Image

and Vision Computing 17(1), pp. 3-14.

Krizhevsky, A. S. (2012). Imagenet classification with deep convolutional neural networks. Advances in

neural information processing systems, pp. 1097-1105.

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional

neural networks. Advances in neural information processing systems, pp. 1097-1105.

Kůrková, V. (1992). Kolmogorov's theorem and multilayer neural networks. Neural networks, 5(3), pp.

501-506.

Lafarge, F., Descombes, X., Zerubia, J., & Pierot-Deseilligny, M. (2008). Automatic building extraction

from DEMs using an object approach and application to the 3D-city modeling. In ISPRS

Journal of photogrammetry and remote sensing, 63(3), (pp. 365-381).

Lang, F. (1996). 3D-city modeling with a digital one-eye stereo system. Proceedings of the XVIII ISPRS-

Congress.

Lang, K., Waibel, A., & Hinton, G. (1990). A time-delay neural network architecture for isolated word

recognition. Neural networks, 3(1), pp. 23-43.

Le, Q. V. (2015). A tutorial on deep learning part 2: Autoencoders, convolutional neural networks and

recurrent neural networks. Google Brain, 1-20.

Lecun, Y. (1985). Une procedure d'apprentissage ponr reseau a seuil asymetrique. Proceedings of

Cognitiva 85, (pp. 599-604).

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), p. 436.

Lee, E., Kim, Y., Kim, N., & Kang, D. (2017). Deep into the brain: artificial intelligence in stroke imaging.

Journal of stroke, 19(3), p. 277.

Lee, Y., Chen, J., Tseng, C., & Lai, S. (2016, September). Accurate and robust face recognition from

RGB-D images with a deep learning approach., (p. 123).

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a Taylor

expansion of the local rounding errors. Master's Thesis (in Finnish). Helsinski: Univ. Helsinki,

6-7.

Marr D., & Hildreth, E. (1980). Theory of edge detection, Proc. Roy.Soc. London B-207., (p. 187}217).

Mason, S., & Balisavias, E. (1997). Image-based reconstruction of informal settlements. Automatic

extraction of man-made objects from aerial and space images (pp. 97-108). Birkhäuser,

Basel.

Mass, H., & Vosselman, G. (1999). Two algorithms for extracting building models from raw laser

altimetry data. ISPRS Journal of photogrammetry and remote sensing, 54(2-3), pp. 153-163.

MatConvNet. (n.d.). MatConvNet: CNNs for MATLAB. Retrieved from

http://www.vlfeat.org/matconvnet/

McClelland, J., Rumelhart, D., & PDP Reserach Group. (1987). Parallel distributed processing (Vol. 1).

Cambridge, MA::. MIT press.

Mineo, C., Pierce, S., & Summan, R. (2019). Novel algorithms for 3D surface point cloud boundary

detection and edge reconstruction. Journal of Computational Design and Engineering, 6(1),

pp. 81-91.

Minsky, M., & Papert, S. (2017). Perceptrons: An introduction to computational geometry. MIT press.

Mozer, M. C. (1995). A focused backpropagation algorithm for temporal. Backpropagation: Theory,

architectures, and applications, 137.

Nicholson, C. (2019, 09 05). A Beginner's Guide to Neural Networks and Deep Learning. Retrieved

from https://skymind.ai/wiki/neural-network

Nielsen, M. (2019, June). How the backpropagation algorithm works. Retrieved from

neuralnetworksanddeeplearning: http://neuralnetworksanddeeplearning.com/chap2.html

Ok, A., Senaras, C., & Yuksel, B. (2012). Automated detection of arbitrarily shaped buildings in

complex environments from monocular VHR optical satellite imagery. Neural computation,

12(10),, pp. 2385-2404.

Ortner, M., Descombes, X., & Zerubia, J. (2007). Building outline extraction from digital elevation

models using marked point processes. In International Journal of Computer Vision, 72(2), (pp.

107-132).

Panchai, G., Ganatra, A., Shah, P., & Panchal, D. (2011). Determination of over-learning and over-

fitting problem in back propagation neural network. International Journal on Soft Computing,

2(2), pp. 40-51.

Paparoditis, M., Cord , M., & Corquerez, J. (1998, November). Building Detection and Reconstruction

fromMid- and High-Resolution Aerial Imagery. COMPUTER VISION AND IMAGE

UNDERSTANDING, pp. 122-142.

Peng, J., & Liu, Y. (2004). The role of context and model in urban aerial image interpretation focusing

on buildings. IEEE International Conference on Networking, Sensing and Control, IEEE, (pp.

(Vol. 1, pp. 1-12).

Prager, J. (1980). Extracting and labeling boundary segments in natural scenes. In IEEE Transactions on

Pattern Analysis and Machine Intelligence, (1) (pp. 16-27).

Prager, J. M. (1980). Extracting and labeling boundary segments in natural scenes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, (1),, pp. 16-27.

Ramachandran, P., Zoph, B., & Le, Q. (2017). Searching for activation functions. preprint

arXiv:1710.05941.

Ramiya, A., Nidamanuri, R., & Krishnan, R. (2017). Segmentation based building detection approach

from LiDAR point cloud. The Egyptian Journal of Remote Sensing and Space Science, 20(1),

pp. 71-77.

Riedmiller, M., & Rprop, I. (1994). Rprop-description and implementation details.

Rottensteiner, F. &. (2003). In A. g. images.

Rottensteiner, F., & Briese, C. (2002). A new method for building extraction in urban areas from high-

resolution LIDAR data. International Archives of Photogrammetry Remote Sensing and Spatial

Information Sciences (Vol. 34, No. 3/A), p. 295.

Rumelhart, D. E. (1985). Learning internal representations by error propagation (No. ICS-8506).

California Univ San Diego La Jolla Inst for Cognitive Science.

Rumelhart, D., Hinton, G., & Williams, R. (1985). Learning internal representations by error

propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive Science.

Schmidhuber, J. (1996). The neural heat exchanger.

Schmidhuber, J. (2015). Deep learning in neural networks. An overview.

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics

of computation, 24(111),, pp. 647-656.

Sharma, S. (2019, 09 4). Activation Functions in Neural Networks. Retrieved from

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Shavlik, J., & Towell, G. (1989). COMBINING EXPLANATION-BASED AND NEURAL LEARNING: AN

ALGORITHM AND EMPmiCAL RESULTS.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:, p. 1409.1556.

Sohn, G. &., Sohn, G., & Dowman, I. (2007). Data fusion of high-resolution satellite imagery and LiDAR

data for automatic building extraction. In ISPRS Journal of Photogrammetry and Remote

Sensing, 62(1), (pp. 43-63).

Sonka M., Hlavac, V., & Boyle, R. (2014). Image processing, analysis, and machine vision. Cengage

Learning.

Speelpenning, B. (1980). Compiling fast partial derivatives of functions given by algorithms (No. COO-

2383-0063; UILU-ENG-80-1702; UIUCDCS-R-80-1002). Urbana: Illinois Univ., Urbana (USA).

Dept. of Computer Science.

Stoer, J., Bauer, F., & Bulirsch, R. (1989). Numerische Mathematik (Vol. 5). Berlin: Springer-Verlag.

Tang T.A, Mhamdi, L., McLernon, D., Zaidi, S., & Ghgho, M. (2016). Deep learning approach for

network intrusion detection in software defined networking. International Conference on

Wireless Networks and Mobile Communications.

Vakalopoulou, M., Karantzalos, K., Komodaki, N., & Paragios, N. (2015). Building detection in very high

resolution multispectral data with deep learning features. IEEE International Geoscience and

Remote Sensing Symposium (IGARSS), (p. 1873).

Vassilas N., Charou, Petsa, & Grammatikopoulos. (2013). Intelligent pattern recognition techniques

for the development of multimodal representation of urban areas.

Vassilas, N., Tsenoglou, T., & Ghazanfarpour, D. (2015). Mean shift-based preprocessing methodology

for improved 3D buildings reconstruction. WASET Int. J. Civ. Environ. Struct. Constr.

Architectural Eng, 9(5), pp. 575-580.

Vassillas N., Charou, Petsa, & Grammatikopoulos. (2013). Intelligent pattern recognition techniques

for the development of multimodal representation of urban areas.

Villena, S., Abad, J., Molina, R., & Katsaggelos, A. (2004, October). Estimation of high resolution

images and registration parameters from low resolution observations. Iberoamerican

Congress on Pattern Recognition . Springer, Berli.

Wang, Y., Armstrong, R., & Mostaghimmi, P. (2019). Enhancing resolution of digital rock images with

Super Resolution Convolutional Neural Networks. Journal of Petroleum Science and

Engineering, 106261.

Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. System modeling and

optimization (pp.). Springer, Berlin, Heidelberg., pp. 762-770.

West, A., & Saad, D. (1996). Adaptive back-propagation in on-line learning of multilayer networks.

Advances in Neural Information Processing Systems, pp. 323-329.

Yang, J., Wright, J., Huang, T., & Mia, Y. (2010). Image super-resolution via sparse representation. IEEE

transactions on image processing, 19(11), pp. 2861-2873.

Yuan, J. (2017). Learning building extraction in aerial scenes with convolutional networks. IEEE

transactions on pattern analysis and machine intelligence, 40(11), pp. 2793-2798.

