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Abstract (English) 
 

Building reconstruction from aerial photographs and other multi-source urban 
spatial data is a task endeavored using a plethora of automated and semi-automated 
methods ranging from point processes, classic image processing and laser scanning. In 
this thesis, an iterative relaxation system is developed based on the examination of 
the local context of each edge according to multiple spatial input sources (optical, 
elevation, shadow & foliage masks as well as other pre-processed data as elaborated 
in Chapter 6). All these multisource and multiresolution data are fused so that 
probable line segments or edges are extracted that correspond to prominent building 
boundaries. 

Two novel sub-systems have also been developed in this thesis. They were 
designed with the purpose to provide additional, more reliable, information regarding 
building contours in a future version of the proposed relaxation system. The first is a 
deep convolutional neural network (CNN) method for the detection of building 
borders. In particular, the network is based on the state of the art super-resolution 
model SRCNN (Dong, Loy, He, & Tang, 2015). It accepts aerial photographs depicting 
densely populated urban area data as well as their corresponding digital elevation 
maps (DEM). Training is performed using three variations of this urban data set and 
aims at detecting building contours through a novel super-resolved heteroassociative 
mapping. Another innovation of this approach is the design of a modified custom loss 
layer named Top-N. In this variation, the mean square error (MSE) between the 
reconstructed output image and the provided ground truth (GT) image of building 
contours is computed on the 2N image pixels with highest values1. Assuming that most 
of the N contour pixels of the GT image are also in the top 2N pixels of the re-
construction, this modification balances the two pixel categories and improves the 
generalization behavior of the CNN model. It is shown in the experiments, that the 
Top-N cost function offers performance gains in comparison to standard MSE. Further 
improvement in generalization ability of the network is achieved by using dropout. 

The second sub-system is a super-resolution deep convolutional network, which 
performs an enhanced-input associative mapping between input low-resolution and 
high-resolution images. This network has been trained with low-resolution elevation 
data and the corresponding high-resolution optical urban photographs. Such a 
resolution discrepancy between optical aerial/satellite images and elevation data is 
often the case in real world applications. More specifically, low-resolution elevation 
data augmented by high-resolution optical aerial photographs are used with the aim 
of augmenting the resolution of the elevation data. This is a unique super-resolution 
problem where it was found that many of -the proposed general-image SR 
propositions do not perform as well. The network aptly named building super 
resolution CNN (BSRCNN) is trained using patches extracted from the aforementioned 

                                                                 
1 N is the number of contour pixels in the GT. 



data. Results show that in comparison with a classic bicubic upscale of the elevation 
data the proposed implementation offers important improvement as attested by a 
modified PSNR and SSIM metric. In comparison, other proposed general-image SR 
methods performed poorer than a standard bicubic up-scaler. 

Finally, the relaxation system fuses together all these multisource data sources 
comprising of pre-processed optical data, elevation data, foliage masks, shadow 
masks and other pre-processed data in an attempt to assign confidence values to each 
pixel belonging to a building contour. Confidence is augmented or decremented 
iteratively until the MSE error fails below a specified threshold or a maximum number 
of iterations have been executed. The confidence matrix can then be used to extract 
the true building contours via thresholding. 

  



Abstract (Français) 
 

La reconstruction de bâtiments à partir de photographies aériennes et d’autres 
données spatiales urbaines multi-sources est une tâche qui utilise une multitude de 
méthodes automatisées et semi-automatisées allant des processus ponctuels au 
traitement classique des images et au balayage laser. Dans cette thèse, un système de 
relaxation itératif est développé sur la base de l'examen du contexte local de chaque 
bord en fonction de multiples sources d'entrée spatiales (masques optiques, 
d'élévation, d'ombre et de feuillage ainsi que d'autres données prétraitées, décrites 
au chapitre 6). Toutes ces données multisource et multirésolution sont fusionnées de 
manière à extraire les segments de ligne probables ou les arêtes correspondant aux 
limites des bâtiments. 

Deux nouveaux sous-systèmes ont également été développés dans cette thèse. Ils 
ont été conçus dans le but de fournir des informations supplémentaires, plus fiables, 
sur les contours des bâtiments dans une future version du système de relaxation 
proposé. La première est une méthode de réseau de neurones à convolution profonde 
(CNN) pour la détection de frontières de construction. Le réseau est notamment basé 
sur le modèle SRCNN (Dong C. L., 2015) de super-résolution à la pointe de la 
technologie. Il accepte des photographies aériennes illustrant des données de zones 
urbaines densément peuplées ainsi que leurs cartes d'altitude numériques (DEM) 
correspondantes. La formation utilise trois variantes de cet ensemble de données 
urbaines et vise à détecter les contours des bâtiments grâce à une nouvelle 
cartographie hétéroassociative super-résolue. Une autre innovation de cette 
approche est la conception d'une couche de perte personnalisée modifiée appelée 
Top-N. Dans cette variante, l'erreur quadratique moyenne (MSE) entre l'image de 
sortie reconstruite et l'image de vérité de sol (GT) fournie des contours de bâtiment 
est calculée sur les 2N pixels de l'image avec les valeurs les plus élevées. En supposant 
que la plupart des N pixels de contour de l’image GT figurent également dans les 2N 
pixels supérieurs de la reconstruction, cette modification équilibre les deux catégories 
de pixels et améliore le comportement de généralisation du modèle CNN. Les 
expériences ont montré que la fonction de coût Top-N offre des gains de performance 
par rapport à une MSE standard. Une amélioration supplémentaire de la capacité de 
généralisation du réseau est obtenue en utilisant le décrochage. 

Le deuxième sous-système est un réseau de convolution profonde à super-
résolution, qui effectue un mappage associatif à entrée améliorée entre les images 
d'entrée à basse résolution et à haute résolution. Ce réseau a été formé aux données 
d’altitude à basse résolution et aux photographies urbaines optiques à haute 
résolution correspondantes. Une telle différence de résolution entre les images 
optiques / satellites optiques et les données d'élévation est souvent le cas dans les 
applications du monde réel. Plus spécifiquement, des données d'altitude à faible 
résolution, augmentées par des photographies aériennes optiques à haute résolution, 
sont utilisées dans le but d'augmenter la résolution des données d'altitude. Il s'agit 
d'un problème de super-résolution unique dans lequel il a été constaté que nombre 
des propositions de SR en image générale proposées ne fonctionnent pas aussi bien. 
Le réseau CNN (BSRCNN), qui porte bien son nom, est formé à l’aide de correctifs 



extraits des données susmentionnées. Les résultats montrent que, par rapport à une 
élévation bicubique classique des données d'élévation, la mise en œuvre proposée 
offre une amélioration importante, comme l'atteste une métrique modifiée PSNR et 
SSIM. En comparaison, d'autres méthodes de SR à image générale proposées ont 
obtenu des résultats inférieurs à ceux d'un agrandisseur bicubique standard. 

Enfin, le système de relaxation fusionne toutes ces sources de données multisource 
comprenant des données optiques pré-traitées, des données d'élévation, des 
masques de feuillage, des masques d'ombre et d'autres données pré-traitées dans le 
but d'attribuer des valeurs de confiance à chaque pixel appartenant à un contour de 
bâtiment. La confiance est augmentée ou décrémentée de manière itérative jusqu'à 
ce que l'erreur MSE échoue au-dessous d'un seuil spécifié ou qu'un nombre maximal 
d'itérations ait été exécuté. La matrice de confiance peut ensuite être utilisée pour 
extraire les véritables contours du bâtiment via le seuillage. 

 

 

 

  



1. Introduction 
 

There is a widespread demand across multiple business domains for the automatic 

detection and 3D reconstruction of building boundaries in urban settings from aerial 

or satellite photographs. Applications, among many, range from urban planning, 

virtual tourism, transportation navigation and creation of virtual 3D models, which can 

assist in further models like the propagation of radio waves in an urban environment. 

These images could be optical aerial photographs or digital surface models 

(DSM)/digital elevations models (DEM) constructed by point-clouds of LIDAR (Light, 

Imaging, Detection and Ranging) equipment and taken from fixed-wing aircraft; 

helicopters; balloons; UAVs and other vehicles. Further pre-processing can then be 

performed in order to filter out irrelevant patterns by creating foliage or synthetic 

object maps. The first step towards building a realistic 3D model is the extraction of 

edge chains that are part of building contours, which is in broad terms the main 

objective of the thesis. 

1.1 Previous work 

There are many proposals as to how to extract building contours from aerial 

/satellite imagery, based on three broad categories. The first category only makes use 

of monocular optical or elevation data; the second is a fusion of the first two using 

multiple sources while the third uses 3D image provider datasets. Only the first two 

cases are examined in this thesis. Early methods of the first category were severely 

constrained due to their reliance on a generic model, which assumed that buildings 

follow a certain pattern, and thus failed to provide consistent results when applied to 

varied urban environments (Mason & Balisavias, 1997). Unfortunately, such models 

were also hampered due to low-resolution ground sampling data, occlusions and 

shadows. Other researchers have used photogrammetric techniques which avail of 

stereoscopic images with several of these methods using optical images while others 

elevation data. Examples of the former category are Lang (Lang F. , 1996) as well as 

Fraser (Fraser, Baltsavias, & Gruen, 2002) who reconstructed 3D buildings from high-

resolution IKONOS stereoscopic imagery. Hierarchical processing and correlation 

schemes of optical data were used in Paparoditis et al. (Paparoditis, Cord , & 

Corquerez, 1998)  

A graph-based approach was presented by Kim et al. (Kim & Muller, 1999) who 

utilized four stages: line extraction; line-relation-graph generation; building 

hypothesis generation and building hypothesis. They were able to achieve robustness 

by considering only the mathematical and geometric relations between lines in the 

course of generating building hypotheses verification. Ok (Ok, Senaras, & Yuksel, 

2012) utilized a fuzzy landscape generation approach to model the spatial relation 

between building and their shadows. They then applied a pruning process to eliminate 

generated landscapes inconsistent with an urban environment. In addition, a shadow 

model was used by Peng (Peng & Liu, 2004) in order to extract buildings in monocular 



urban aerial images. Raw segmentations of buildings were first extracted and verified 

by the shadow model. 

Airborne laser scanning equipment became more reliable and refined during the 

late 1990s and early 2000s, thus becoming an important source of obtaining digital 

surface maps (DSM). Mass and Moleman developed two approaches to detecting 

building contours using DSMs (Mass & Vosselman, 1999), but they were limited to 

gable roof types. They used pseudo 3D point clouds and their calculated invariant 

moments to determine the parameters of standard gable roof types. Furthermore, 

observed point clouds from LIDAR data have been used by Rottensteiner et al. 

(Rottensteiner & Briese, 2002). More specifically the researchers applied a hierarchical 

robust interpolation using a skew error distribution function of the point cloud in 

order to discriminate between points belonging to building contours and others. 

Another application of point clouds LIDAR building contour detections was presented 

by Cho et al. (Cho, Jwa, Chang, & Lee, 2004) who introduced a pseudo grid that 

prevented the loss of information due to interpolation. The pseudo grid then passed 

through several stages of processing (noise removal; segmentation; grouping for 

building detection; linearization and simplification of building boundary) which 

resulted in a 3D model. A segmentation approach to point cloud data was 

demonstrated by Ramiya (Ramiya, Nidamanuri, & Krishnan, 2017) who applied a novel 

histogram based methodology to separate the building clusters from non-building 

ones with very good accuracy. Yet another method based on point clouds but this time 

specifically aiming to improve the detected building edges by removing jagged 

contours was presented by Mineo (Mineo, Pierce, & Summan, 2019). Their approach 

used dynamic thresholds to detect points belonging to sharp edges and creases by 

applying FFT based reconstruction. This eliminates the need for the predefinition of a 

specific polynomial function order for optimum polynomial curve fitting, according to 

the authors.  

Probabilistic methods that avail of digital elevation models (DEM) have also been 

presented. For instance Ortner et al. (Ortner, Descombes, & Zerubia, 2007) used 

marked point processes and an energy function, which took into account the height 

of the building as well as prior knowledge about the general layout of buildings in 

urban settings. Simulated annealing was then employed in order to minimize the 

energy function.  A variation of the previous method was presented by Lafarge et al. 

(Lafarge, Descombes, Zerubia, & Pierot-Deseilligny, 2008) which again used marked 

point processes to roughly approximate building contours via rectangular structures. 

These rectangular footprints were then regularized by taking into account the local 

context of each rectangle and detecting roof height discontinuities.  

Fusing optical and elevation data was early on another promising avenue to 

examine, thus Haala et al. (Haala & Nrenner, 1999) combined altimetry data with 

multi-spectral images in order to extract buildings and trees in an urban environment. 

They combined this extraction, in a second step, with 2D ground plan information in 

order to obtain a 3D reconstruction. Similarly, Rottensteiner (Rottensteiner F. &., 

2003) integrated LIDAR cloud point data with aerial images. They firstly detected 



building regions from the point cloud and applied a curvature-based segmentation 

technique to identify roof planes, which were then grouped to create polyhedral 

building models.  Also, Sohn (Sohn, Sohn, & Dowman, 2007) used high-resolution 

IKONOS multispectral imagery with low-sampled airborne laser scanning. They initially 

detected building objects by investigating the height property of the point cloud and 

the normalized index vegetation indices (NDVI) from the IKONOS data.  

More recently, deep convolutional networks have been added to the plethora of 

methods aiming to extract building contours from aerial/satellite images of various 

sources. For example, Yuan (Yuan, 2017) demonstrated a deep convolutional network 

that aimed to detect building contours. The author created a simple deep neural 

network model that integrated activation from multiple layers for pixel wise 

prediction. He used a signed distance function of building boundaries to represent 

output. Similarly, Alshehhi (Alshehhi, Marpu, Woon, & Dalla, 2017) presented an 8-

layer deep convolutional network that extracted roads and building contours from 

high-resolution remote sensing data. They used a post-processing stage on the output 

of the convolutional network to integrate the low-features of the roads & buildings 

with those of the network. Finally, Vakalopoulou et al. (Vakalopoulou, Karantzalos, 

Komodaki, & Paragios, 2015) used single very high-resolution satellite images to build 

an automated building detection framework with a deep convolutional neural 

network. The network was trained using a supervised classification procedure  

The proposed solution is an expansion of the third category and aims to reconstruct 

building contours using a fusion of multisource spatial data with the aid of 

computational intelligence and classic image processing techniques. All primary data 

used for this research were courtesy of the Archimedes III research program2 and In 

particular, kind amenities have to be given to GeoIntelligence for providing the DSM 

and DTM elevation data as well as the National Cadastre & Mapping Agency of Greece 

for providing the high-resolution aerial photographs. In addition to the available data, 

two additional sub-systems were created for this research, a) a deep convolutional 

network, which extracts building, contours from multisource spatial data; b) a super 

resolution deep convolutional network augments the resolution of our data using 

optical & elevation data. These systems offer additional post-processed versions of 

the available data, which could prove important for a future version of the iterative 

relaxation system. Finally, the iterative relaxation system is constructed per se. This 

system accepts a plethora of multi-resolution spatial data with the aim to render a 

faithful building contour. 

  

                                                                 
2  Archimedes Research Program with title “Intelligent Pattern Recognition Techniques for the 
Development of Multimodal Representations of Urban Areas”, co-funded by the European Union 
(European Social Fund) and Greek national resources. 



1.2 Objectives of the thesis 

 

The objective of this work is to employ spatial multisource and multiresolution 

urban data towards an improved 3D building modeling. It explores image processing 

and pattern recognition techniques in order to determine salient features of the input 

data that could efficiently be used to obtain a 3D reconstruction. For this purpose, the 

multisource and multiresolution data were fused so that probable line segments or 

edges could be extracted that correspond to prominent building boundaries. 

In order to achieve these objectives an iterative relaxation system was developed 

which accepts the multisource and multiresolution input. The aim of this system is to 

assign a confidence value to each pixel of the final image, which is a direct measure of 

how certain the system is that it corresponds to a true building boundary. In order to 

do this the system performs some one-time pre-processing and then enters into an 

iterative process which increments/decrements the confidence of each pixel 

according to the local context of the confidence matrix. The iterative process is 

terminated after a predetermined number of iterations and Otsu’s method is used to 

binarize the image so that only pixels belonging to true edges are retained.  

Two further systems were developed3, that can operate autonomously or offer 

further post-processed data to a future version of the proposed iteration system.  The 

first one is a deep neural network, which detects building boundaries by directly 

generating a real valued ([0..1] range) building contour image and that is named 

BCDCNN. It implements a super-resolved heteroassociative mapping, since low-

resolution elevation data are mapped onto their associated high resolution building 

contours available during training from the ground truth data. The model is comprised 

of 3-layers, which perform in succession: a) building features patch extraction; b) non-

linear map transformation; c) building contour reconstruction. The network then 

creates a building contour image. 

Besides the building contour detector, a super-resolution deep convolutional 

network was specifically trained in an attempt to augment the resolution of digital 

elevation maps depicting urban areas. Similarly, to the previous implementation this 

model performs a mapping between the low-resolution image and high-resolution 

counterpart. However, this network now performs a hybrid auto-associative mapping 

between these two images, in the sense that the network performs the mapping 

assisted by corresponding high-resolution optical data. Elevation data are usually of 

lower resolution than the corresponding optical data and there is great need for such 

applications. Furthermore, elevation data have some intricacies of their own 

rendering generic super-resolution techniques inappropriate. The network was 

trained with various configurations and with the same urban data set that the previous 

network used. Results show that in comparison with a classic bicubic upscale of the 

                                                                 
3 These systems can also operate independently as a building contour detector and for optical images 
depicting urban areas super-resolution. 



optical data this implementation offers important improvement as attested by a 

modified PSNR and SSIM metric. 

In summary, the objective of the thesis is to create a relaxation system that when 

given all these multisource input data will produce a reconstruction of the real building 

contours more accurately than any of the previous methods described used in 

isolation. In order to assist the relaxation iterative method a great deal of work was 

done towards the development of the two deep neural networks BCDCNN AND 

BSRCNN.  

  



1.3 Areas of contribution 

The main contributions of this thesis are in the following areas: 

 

1. Building reconstruction using optical aerial imagery & LIDAR elevation data: 

Obtaining an accurate building contour image given a) an optical 

aerial/satellite image; b) LIDAR elevation data; c) a combination of both is a 

very difficult problem to automate. This problem has been tackled with varying 

levels of success by many researchers as presented in the introduction. 

Nonetheless, there remains significant room for improvement.  

The approach followed in this paper is twofold. Firstly, a deep convolutional 

neural network has been applied which does not operate as a classifier but 

attempts to directly derive a building contour image from the available aerial 

and elevation data. Using two channels of data has the advantage of 

overcoming most difficulties that arise from the usage of a single image. For 

instance, the contrast of an image severely affects methods based solely on 

optical data. Despite this, the problem remains difficult because as explained 

in detail later in this dissertation not all) optical edges are also elevation edges 

and vice versa while there also exist cases of implied edges which are the most 

difficult case of all. Our solution differs from other proposals because it does 

not operate as a classifier but directly derives an output image, which depicts 

building boundaries. The deep building contour detector convolutional neural 

network (BCDCNN) performs remarkably well given the amount of available 

training data and proves that CNNs are not only suitable for classification. 

Secondly, an iterative relaxation system has been developed. This is based 

on the implementation by Prager (Prager J. , 1980) who developed a system 

that extracted line segments as connected sets of edges, labeled them, and 

computed features for them such as length and confidence. This initial 

implementation has been much expanded taking into account multiple sources 

of spatial data. It begins by applying a modified Canny operator to the optical 

image depicting a heavily populated urban area. The output of this operator is 

given as input to the relaxation system, which begins by performing one-time 

pre-processing on this building boundaries image according to the elevation 

data, the shadow masks and the foliage masks. The result is an initial 

confidence matrix with values in the range [0..1], where 0 denotes total 

confidence that a pixel does not belong to a building boundary and 1 that full 

confidence that it does. The system then enters into an iterative process, which 

takes into account the local context and more specifically their gradient 

directions in order to augment/decrement the confidence of an edge.  A binary 

image is then derived using Otsu’s method to calculate a cutoff threshold.  

 

 



2. Urban area imagery super-resolution. 

Super resolution has been extensively researched during the previous years 

with methods ranging from sparse dictionary representations to deep 

convolutional neural networks using one or multiple images as source. This 

thesis examines how deep neural networks can be trained using high-

resolution optical aerial/satellite images in conjunction with low-resolution 

DEM maps obtained from the processing of LIDAR data. This combination of 

high-resolution and low-resolution data combos is often the case in real world 

applications despite the falling cost of LIDAR equipment. More specifically, the 

work done aims to increase the resolution of low-resolution elevation data 

given corresponding high-resolution optical data of urban areas.  



 

 

 

 

 

 

 

 

 

 

 

 

 

PART I - DEEP CONVOLUTIONAL NETWORKS 
  



2. BACKGROUND ON NEURAL NETWORKS 

Artificial Neural Networks constitute a parallel-distributed computing model, which 

has been inspired from the functioning of the mammalian cognitive system. They 

intend to mimic the highly distributed processing and representation of the 

mammalian brain. The following Table depicts the main differences between artificial 

neural networks and classical computing systems. 

Table 1 - von Neuman vs Neural Networks 

 von Neuman computing 
systems 

Artificial Neural Networks 

Parallel processing Limited Yes 

Fault tolerance Limited Yes 

Graceful degradation No Yes 

Generalization No Yes 

 

Classical von Neuman architecture has limited parallel processing capabilities, 

expensive fault tolerance solutions, generally does not gracefully degrade and 

proposed solutions cannot generalize. On the contrary, artificial neural networks are 

inherently parallel processing, have fault tolerance even if many neurons fail, degrade 

their performance gracefully when part of the network fails and can generalize much 

better than hand-crafted computing models.  

2.1 Simplified Neural Network Model 

A simplified model of a mammalian brain as proposed by McClelland (McClelland, 

Rumelhart, & PDP Reserach Group, 1987) is comprised of eight major elements: 

 A set of processing units. 
 A state of activation. 
 An output function for each unit. 
 A pattern of connectivity among units. 
 A propagation rule for propagating patterns of activities through the network. 
 An activation rule for combining the inputs impinging on a unit with the current 

state of the unit to produce a new level of activation for the unit. 
 A learning rule whereby patterns of connectivity are modified by experience. 
 An environment within which the system must operate. 

 
An analysis of each element appears in Tables 2-9. 
 

Table 2 - Neural Network Architecture (processing units) 

Set of processing units 

These units are simple abstract elements over which meaningful patterns can be 
assigned as a distributed representation. A simple processing unit carries no 
meaningful information; it is the pattern as a whole, which holds meaningful 
content. This is in contrast to one-unit-one-concept representational systems, in 



which a single unit represents entire concepts. A unit acts on receiving weighted 
inputs from its neighbors and transmits an output signal according to its activation 
function. Classical neural networks employed three layers input, hidden and output 
due to the computational complexity of adding further layers. Modern deep 
network models have overcome this limitation due to the availability of powerful 
GPU architectures. During the past ten years power powerful GPUs have enabled 
the training of very deep neural networks These GPUs can be pooled or used for 
distributed training of deep neural networks enabling the development of models 
previously thought impossible. Deep networks employed up to 1000 layers in 2017 
(Fog, 2019). Recently focus has shifted from the number of layers and processing 
units that a deep neural network features to the examination of idea of using a block 
as a structural unit instead of a layer (Khan, Sohail, Zahoora, & Qureshi, 2019). 

 
Table 3 - Neural Network Architecture (state of activation) 

State of activation 

The representation of the state of the system at time t, which is specified by a 
vector N of real numbers a(t). Each element of the vector stands for the activation 
of one of the units at time t. The pattern of activation over the set of units captures 
what the system is representing at any time. However, for practical analytical 
purposes only the status of the output layer neurons are utilized since all 
intermediate layers represent the computational details of this output. Activation 
values can be continuous or discrete, bounded or unbounded. 

 

Table 4 - Neural Network Architecture (output of the unit) 

Output of the unit 

Units interact by transmitting signals to their neighbors. Associated with each 
unit ui(t), is an output function, fi(ai(t)), which maps the current state of activation 
ai(t) to an output signal o(t). Usually f is a sort of threshold function so that a unit 
has no effect on another unit except if its activation exceeds the threshold. 

 

Table 5 - Neural Network Architecture (patterns of activation) 

Pattern of Connectivity 

Units are connected to one another, which produces a pattern of activation that 
constitutes what the system knows and determines how it will respond to any 
arbitrary input. Each unit contributes to the input of the units to which it is 
connected. Thus, the total input to a unit is a weighted sum of each individual input. 
The weights between the neurons of layer i and layer j are usually represented as 
matrix wij whereby each entry represents the strength of the connection between 
unit i and j. 

 

Table 6 - Neural Network Architecture (propagation rule) 



Propagation rule 

This rule accepts the outputs o(tj) for every neuron j of a specific layer and 
combines it with the weight matrices to produce the net input provided to the 
succeeding layer. It accepts the outputs o(tj) for every neuron j of a specific layer 
and combines it with the weight matrices to produce the net input provided to the 
succeeding layer. 

 

Table 7 - Neural Network Architecture (activation rule) 

Activation rule 

The rule whereby the net inputs impinging on a particular unit are combined 
with one another and with the current state of the unit to produce a new state of 
activation. The rule whereby the net inputs impinging on a particular unit are 
combined with one another and with the current state of the unit to produce a new 
state of activation. 

 

Table 8 - Neural Network Architecture (learning rule) 

Learning rule 

The weights connecting the outputs of neurons of a previous layer to the input 
of the next layer are modified according to the expected output through this 
algorithm. The most commonly used algorithm used today is the backpropagation 
algorithm, which commences execution at the final output layer and back 
propagates the error differences according to the chain rule. 

 

Table 9 - Neural Network Architecture (operational environment) 

Operational environment 

The environment is represented as a time-varying stochastic function over the 
space of input functions. The environment is represented as a time-varying 
stochastic function over the space of input functions. 

 

Neural networks can be trained using the backpropagation (BP) algorithm, which 
was developed in a non-neural network context the 1960s and elaborated in the 1970s. 
Paul Werbos was the first to discover how the back-propagation algorithm could be 
used to train multi-layer neural networks during his doctoral thesis in 1974 but he did 
not report on his findings due to the AI-winter context of the period. He did publish 
on it in 1982. The classic BP algorithm has evolved since then to more complex 
implementations like the ADAM and RMSProp, which converge to a solution much 
faster. 

 



2.2 Historical Overview 

Artificial neural networks first appeared in the 1940s. What follows is a brief history 

of major milestones and developments. 

 McCullough and Pitts researched in 1943 the operation of a biological neuron 

and the result of their work was the first mathematical models of a neuron. As 

shown in Figure 1, a biological neuron is comprised of a) dendrites: which 

accept input from other neurons; b) soma: in which protein synthesis occurs; 

c) axon through which the output of a neuron is transmitted to dendrites; d) 

and the synapse which controls how much of the output of a neuron will reach 

the dendrite of another.  

 

 
 

Figure 1 - A simple model of a biological dendrite (source -wikipedia) 

 

 

The researchers presented a neuron model which summed binary inputs, 

outputting a logical 1 if these inputs exceeded a threshold or 0 otherwise. By 

using such a model of neuron, he and his colleagues designed mathematical 

models of the basic AND/OR/XOR logical functions. However, their model 

offered no mechanism for learning something, which limited its applications. 

A depiction of their model can be seen in Figure 2. As shown in the figure, it is 

composed of two parts. The left part named g, accepts a number of inputs xn ∈

{0,1} and performs an aggregation (calculates the sum). The right part named 

f is a functionf(∑ 𝑥𝑛)𝑛
1 , which outputs either a positive (1) or negative (0) 

decision based on the inputs. 
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Figure 2 - McCullough & Pits neuron model 

 

McCullough defined two categories of input: a) inhibitory, which force the 

neuron not to activate when they are active b) excitatory, which contribute to 

whether the neuron will activate. As an example, let us use a simple neuron to 

make a decision on whether I should go for a walk or stay inside. Three 

excitatory variables determine whether the neuron will activate as follows: 

o x1 (excitatory): Is it raining? (0: not raining, 1: raining) 

o x2 (excitatory): Is it warm outside? (0: no, 1: yes) 

o x3 (excitatory):  Am I feeling well? (0: no, 1: yes) 

The neuron will accept these inputs and calculate their sum. Expressed 

mathematically:  

 𝒈(𝒙) = ∑ 𝒙𝒊
𝑵
𝒊=𝟏  (1) 

 

 , which is a simple sum of the input. The neuron activates according to 

whether the sum of the inputs exceeds a threshold θ. In mathematical terms: 

 𝒚 = 𝒇(𝒈(𝒙)) = 𝟏, 𝒊𝒇 𝒈(𝒙) ≥ 𝜽 

                           = 𝟎, 𝒊𝒇 𝒈(𝒙) < 𝜽 

(2) 

 

 1954: Donald Hebb and the IBM research group presented the first simulations 

of the McCullough and Pitts model. What has since been called the Hebb rule, 

stated ‘When an axon of cell A is near enough to excite a cell B and repeatedly 

or persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A’s efficiency, as one of the cells firing 

B, is increased’. The revolutionary idea that learning occurs in the brain 

through the formation and change of synapses in the brain has had a deep 

impact on the development of neural networks.  

 1958: Frank Rosenblatt’s perceptron: Rosenblatt expanded on the work of 

Hebb by adding weights to the inputs of a neuron and introduced a learning 



mechanism for his perceptron. Given a training set of input-output pairs the 

‘Perceptron’ learns via increasing the weights if the output for a specific input 

is too low compared to the expected output and vice versa. The perceptron is 

a more generic computational model that was proven capable of solving 

linearly separable problems. It is depicted in Figure 3. 

x1

x2

x3

...

xn

w1
w2

w3

wn

y
F(g)

θ

g

 
Figure 3 - Perceptron model 

 

Mathematically the perceptron can be described as: 

 𝒚 =  ∑ 𝒇(𝒘𝒊 ∗ 𝒙𝒊) + 𝜽𝑵
𝒊=𝟏  (3) 

 

 

Just like the neuron proposed by McCullough & Pits, the perceptron will 

activate if𝑦 ≥ 𝜃 , where θ is a pre-defined threshold. The most important 

difference compared to the McCulloughs-Pits neuron is that a perceptron uses 

synaptic weights with which each input is multiplied. By adjusting the weights 

the perceptron can learn to activate or not according to the presented input. 

A more practical model of the perceptron is depicted in Figure 4. In Figure 4, 

the threshold θ is passed as a synaptic weight to a unit input. This simplifies 

the model since now it will only activate if y > 0.  

 1969: Marvin Minsky proved that the Perceptron learning mechanism had 

severe limitations (Minsky & Papert, 2017). This was mostly a reaction by 

scientists engaged in algorithmic artificial intelligence systems who remained 

skeptical at all the fervor regarding artificial neural networks. His most notable 

criticism was the failure of the Perceptron to model the simple XOR logical 

function because it is not linearly separable. This publication ushered in an era 

of disenchantment with neural networks and artificial intelligence in general, 

aptly named the AI Winter. 
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Figure 4 - Perceptron generic model 

 

 1985 - Reemergence of interest in neural networks: The handicaps that Minsky 

had presented back in 1969 were shown to be overcome through the usage of 

multi-layer networks and the back-propagation algorithm in order to train 

them. The hidden intermediate layers could find features within the training 

data allowing following layers to operate on this intermediate representation 

than on the initial raw data. For example, in a 4-layer fully connected layer 

designed to categorize human faces, the first hidden layer could find abstract 

features of the input images like circles, rectangles and other basic geometric 

elements while the second hidden layer could combine these and enable the 

output layer to categorize the faces according to their ethnicity. Nonetheless, 

progress was cumbersome and slow due to the inadequacy of the available 

hardware. Training requires many simple processing elements working in 

tandem, something that would not be massively available for another two 

decades.  

2.3 Neural networks 

The late 1950s and until Minsky’s paper, which proved that a single-layer neural 

network could not solve non-linearly separable problems, was a period in which many 

developments occurred regarding artificial intelligence. There was great faith that AI 

would solve many engineering problems and that AI cognition would surpass human 

natural intelligence. Minsky’s seminal work ushered in an era of stagnation for AI, 

which would last until the early 1980s. That is not to say that important work was not 

being done, since many multi-layered neural networks were being developed during 

the late 1970s and early 1980s. Fukushima for instance, developed the first 

convolutional neural network in 1980 (Fukushima, 1980). This area was characterized 

by a disenchantment and a loss of belief that AI would solve many of the important 

challenges of the era. In any case, AI started to reemerge as a credible discipline during 

the 1980s and by mid 1980s, multi-layered neural networks were being once again 

successfully used for many applications.  

A typical multi-layered neural network is shown in Figure 5.  
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Figure 5- A simplified model of a fully connected neural network (synaptic weights not shown) 
 

As seen in Figure 5, classical neural networks consist of many simple, connected 
processors, called neurons, each producing a sequence of real-valued activation. The 
number of layers comprising these networks were few due to processing power 
limitations of the era. They are now classified as shallow networks according to Fog et 
al. (Fog, 2019).  

2.3.1 The neuron as a basic computing element 

The basic computing unit of a neural network is called a neuron (depicted as a circle 

in Figure 5), which models the operation of a physiological neuron. A typical artificial 

neuron is depicted in Figure 6, where it can be seen that it simply sums the weighted 

inputs up. It then adds a bias (threshold) and changes its status according to a non-

linear activation function φ (in order to simplify the model, the bias (threshold) is 

usually added as further input to the summation with a value of 1 as depicted in Figure 

4). There are many variations of the activation functions, most of which are based on 

the functioning of biological neurons. Biological neurons can be either active or 

inactive. When active, they transmit an analog signal of varying intensity. 
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Figure 6 - Analytic model of a neuron 

 

In the following section, the most typical activation functions are elaborated 

(Ramachandran, Zoph, & Le, 2017), (Sharma, 2019): 

2.3.2 Activation functions 

 Step function: The simplest of the activation functions, which activates simply 
if the weighted sum of all inputs is above a specified threshold. This function 
operates well for a binary classification problem but fails when a categorization 
problem has multiple categories. Non-linearly separable problems cannot be 
solved with a single neuron and this activation function. The plot of the step 
function can be seen in Figure 7. 

 Linear activation function: Theoretically, this function solves the multiple 
categorization failure of the step function. Unfortunately, the linear function 
given by the mathematical expression 𝑌 = 𝑐𝑋  has another problem. When 
moving on to the back-propagation stage, this produces a constant derivative 
regardless of the input X which would in turn cause the weights of the network 
to be updated by a constant factor in every iteration and no learning would be 
possible. Another important problem of this activation function is that if two 
or more layers are connected via linear activation functions then these layers 
can be collapsed to a single linear layer with the result that the network would 
lose its structure.   

 



 

Figure 7 - step activation 

 

 Sigmoid activation function: The sigmoid function was heavily applied in 
classical neural networks and with good reason. The mathematical notation 
for the sigmoid is 𝜑(𝑧) = 1/(1 + 𝑒−𝑧) and its graph is given in Figure 8. This 
function exhibits several very agreeable characteristics. Firstly, it performs well 
as a binary classifier as it has the tendency to push the Y values towards the 
edges of the graph (0 or 1). Secondly, it is nonlinear, which means that the 
layers of the neural network can be stacked one after another without bringing 
about the collapse of its structure. Lastly, the output is always in the range 
[0..1] as opposed to the linear function.  

Unfortunately, there is also a significant drawback. Notice that the function 
has a near linear operating region between the ordinate range [-2..2]. Outside 
that region large changes in the X value lead to very small changes in the Y 
values, something which means that the neural network will stop learning in 
that region. 
 
 
 
 
 
 
 

 



 

Figure 8 - sigmoid activation function 

 

 Hyperbolic tangent function (Tanh): This activation function has many 
similarities to the sigmoid function. As can be seen from Figure 9, it is bounded 
to the range [-1..1] which guarantees a stable learning process in the linear 
operating region of the function. The gradient is also slightly steeper than the 
sigmoid, which can lead to faster convergence of the learning process. 
Nonetheless, it suffers from the same constraints as the sigmoid as the neural 
network stops learning outside the linear operating region. 

 

 

 

 

 

 

 

 

 



 

Figure 9 - Tanh activation function 

 Rectified Linear Unit (ReLU): The ReLU is a rather modern activation function 
that offers the best of both worlds that the step function and the sigmoid 
function have to offer. It is linear in nature in the positive X axis but returns 
zero for negative values and is shown in figure 64. The benefits of using this 
function are its simplicity since it is linear for positive but non-linear for 
negative values, which means that layers connected via this function can be 
stacked up without the network’s structure collapsing. A final significant 
benefit of the ReLU is that it leads to sparse activation in comparison to the 
sigmoid or Tanh. Consider a case where the initial weights of the neural 
network are randomly initialized. This will lead to 50% of the neurons to be 
initially inactive. After training, a specific representation will lead to a sparse 
activation of neurons. This is because of the nature of the ReLU activation 
function. As can be seen in Figure 10, all neurons whose weighted summed 
inputs are less than zero, will be rendered inactive. This leads to situation 
where half of the neurons in the hidden units will be inactive, as Bengio 
pointed out in his work (Bengio, Bordes A., & Glorot X., 2011). In comparison, 
a corresponding representation for Tanh or sigmoid will lead to a much denser 
activation of hidden neurons. 

The classic ReLU can however lead to the dying neurons problem, wherein 
when the gradient goes towards 0 the weights will stop adjusting. Such 
neurons will stop responding to the variations of the error function. Leaky 
ReLU bypasses this problem by allowing for a small incline in the output for 
negative values so that the gradient never is zeroed out and the learning 
process can continue.  



 

 

Figure 10 -ReLU activation function 

 

2.3.3 Perceptron Learning Algorithm 

The goal of the Perceptron learning algorithm is to adjust the values of the elements 
of the weight vector 𝒘 = {𝒘𝟏, 𝒘𝟐, … , 𝒘𝒏}  with which the input vector 𝒙 =
{𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} s multiplied (dot product), so that the neural element can learn to 
classify correctly positive and negative inputs. For this reason, a supervised learning 
algorithm is applied through which the weights are adjusted in a way so that the 
output of the neuron is as close as possible to a given real value L. A scaled multiple of 
the difference between the output of the neuron and L is used to adjust the weights. 
The full algorithm is given in Table 10.  

Table 10 - Perceptron training algorithm 

Initialize w randomly; 
𝒄𝒔 = {𝑻𝑬𝟏, 𝑻𝑬𝟐, … , 𝑻𝑬𝒏 } 
While 𝑠𝑖𝑧𝑒(𝐶𝑠) > 0 { 
  i = random(𝑠𝑖𝑧𝑒(𝐶𝑠)); 
  𝑇𝐸 = 𝑐𝑠(𝑖); 
 y = w.x(TE); // this is the dot product 
if positive(TE) & y > 0 { 
  𝐶𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑇𝐸); 
  break; 
} 
else If positive(TE) & y <= 0 { 
    w = w + x(TE); 



  } 
 
If negative(TE) & y < 0 { 
  𝐶𝑠. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑇𝐸) 
}  
else If negative(TE) & y ≥ 0 { 
    w = w – x(TE); 
  } 
} 

The algorithm commences by randomly initializing the weights. It then creates a set 
of all training exemplars before entering into a loop that will adjust the weights until 
all training exemplars have been correctly classified. Once in the loop it randomly 
extracts a training exemplar and examines if it has been correctly classified. There are 
two cases: 

o The exemplar is positive: A positive exemplar is correctly classified if the 
neuron outputs a positive value. If this is the case, the training exemplar 
is removed from the set and another iteration of the loop follows. 
Otherwise, the weights of the neuron are incremented by the value of 
the input for that exemplar. 

o The exemplar is negative: A negative exemplar is correctly classified if 
the output of the neuron is negative. In this case, the exemplar is 
removed from the exemplar training set. Otherwise, the weights of the 
neuron are decremented by the value of the input for that exemplar.  

The algorithm continues until all exemplars are correctly classified. 

  



3. Deep learning in neural networks 

 

The emergence of powerful Graphics Processing Units (GPU) in the past decade as 

well as the development of distributed computing frameworks like CUDA and OpenCL 

have enabled the deployment of much more powerful neural networks consisting of 

a multitude of layers in contrast to the typical 3 fully connected layers (input-hidden-

output) of classical neural networks. The GPUs can operate in parallel and/or a 

distributive manner. Such networks have been called Deep Neural Networks4.  

A deep neural network maps inputs to outputs by finding correlations between 

them. Essentially, for input vector x it seeks to approximate the unknown function 𝑦 =

𝑓(𝑥) which fully describes the relationship between input and output. In addition, it 

has been described as a universal approximator, because assuming a causal or 

correlational relationship does exist, a deep neural network will find it (Nicholson, 

2019). 

3.1 Deep neural network applications  

Some of the most important applications of deep neural networks (DNN) are: 

 Classification: The process through which a DNN learns to find abstract 

similarities between images and assigning them a label. This is done through 

supervised learning, whereby the network is presented a training set of 

exemplars, which have been labeled by an expert or through crowd labeling 

efforts.  A class of DNNs called convolutional neural networks (CNNs) are 

especially adept for this application due to their ability to learn the filters 

that classic image processing methods would have to apply in order to 

achieve a result of similar level. Classification applications range from face 

detection, object identification, voice recognition and hate speech 

recognition. 

 Clustering: Clustering is the process of identifying similarities between 

objects of a data set. In algorithmic pattern recognition, it would be done 

via the k-means algorithm and its variants. This process does not require 

labelled data sets and is thus a case of unsupervised learning. Given large 

data sets, deep neural networks trained using unsupervised learning can 

produce very accurate models. Typical applications are sound & documents 

retrieval based on similarity metrics. 

Besides detecting similarities, deep neural networks can perform the 

opposite. They can find outlying members of a data set. There have been 

examples in the literature of deep neural networks trained to detect out of 

baseline performance on a computer network. This can be an indication of 

                                                                 
4 Although the term deep network was initially proposed in the 1970s, it did not receive any widespread 
usage until 2006. 



a denial of service attack or other illicit behavior.  For instance, (Tang T.A, 

Mhamdi, McLernon, Zaidi, & Ghgho, 2016) trained a deep neural network 

for flow-based anomaly detection in an SDN environment. They thus demonstrated 

an effective NN intrusion detection system. 

 Regression: Neural networks can also be used in a more generic context to 

predict future events. For instance, (Nicholson, 2019) states that ‘deep 

learning is able to establish correlations between present events and future 

events. It can run regression between the past and the present’. Regression 

applications of deep neural networks are especially prominent in the health 

sciences. Stroke predictors, kidney failure predictors and heart attack 

predictors are among the few of many similar applications. For instance, in 

(Lee, Kim, Kim, & Kang, 2017), a review was conducted on the then current 

state of play of neural network imaging. The authors found that in most 

stroke cases examined, neural networks had comparable or better 

performance than health professionals and/or more established prognostic 

solutions. 

3.2 Deep neural networks 

3.2.1 Deep convolutional neural networks 

Convolutional Neural Networks are a form of deep network that was initially 

inspired from the organization of the visual cortex of the human brain. It is especially 

tuned to the processing of data that comes in the form of multiple arrays with a typical 

example being a color image that comes in the RGB format. Such images contain a 

matrix for the pixel intensities of each channel. Convolutional Neural Networks are 

especially suitable for categorization problems with a typical architecture depicted in 

Figure 11. 

 

 

 
Figure 11 - convolutional neural network (wikipedia) 

 

As depicted in Figure 11, a CNN is composed of many pairs of convolutional and 

subsampling (pooling) layers followed by a fully connected layer and a Softmax cost 



function layer at the output5. CNNs exploit four properties of natural signals: local 

connections; shared weights; pooling; and the use of many layers. Each convolutional 

layer accepts a set of feature maps and usually applies 3D convolution on these maps 

outputting another set of feature maps. A single neuron conducts each convolution 

by accepting local patches of the feature maps of the previous layer multiplied by the 

corresponding weights while a set of convolution kernels that renders the feature 

maps is called a filter bank. The result is then passed through a non-linear activation 

function, such as the ReLU. Such an architecture can easily detect local groups of 

values that are often highly correlated, forming patterns that can easily be 

distinguished. Furthermore, the local statistics of images and other signals are 

invariant to location. A pattern can be repeated many times across an image. Thus, a 

filter bank trained to detect a specific pattern in one location of an image can easily 

generalize to recognize a similar pattern in another part of the image.  

The neural network depicted in Figure 11 is a typical implementation of a 

categorization convolution neural network. These networks are comprised of a 

succession of convolution and max pooling layers followed by several fully connected 

layers and a finally, a softmax layer that asserts one or more categorization neurons 

according to their probabilities scores6. The foremost application of Deep CNNs is 

image and video classification. Such a classifier has the task of taking an input image 

and categorizing it as belonging to one or more classes with their respective 

probabilities. This is a basic trait of human beings, which is learned even from an infant 

age and is constantly being perfected in our adult lives. We develop early on the ability 

to be able to discern different images in our environment and assign a category to 

each object in it. Prior knowledge plays a crucial role in this process and can easily be 

adapted to different environments. 

Despite advances in machine learning, computers had a very hard time generalizing 

in image classifications tasks before the advent of effective deep convolutional 

networks. Hand engineered methods were successful in recognizing images of a 

specific domain only in an ideal or artificially generated context. For a computer, an 

image is simply of collection of pixel values in an array data structure. A color image 

of resolution 640x480 has three-color channels (RGB) and thus would have a 

representative array of size 640x480x3. The task of the computer given these numbers 

is to calculate the probabilities that the input belongs to a specific class and then 

return the class or classes with the highest probabilities. 

An analysis of the basic layers of which a CNN is comprised in the context of image 

classification follows: 

 Convolutional Layer: This is the main layer of a CNN. It aims to process a 

local patch around a pixel and to create translation invariant feature 

                                                                 
5 Not shown in the Figure. 
6 The softmax is an activation function that converts the inputs it receives into a probability vector 
whose values sum to 1. It was not presented in the activation functions section because it is primarily 
used in classifier CNNs, which is not the case for any of the developed CNNs for this thesis. 



detectors, which can detect various patterns in an image. The main 

advantage against typical fully connected networks is firstly computational, 

since there exists a vastly reduced number of connections (weights) that 

need to be stored and trained and secondly, performance wise it can easily 

focus on the local context and fine tune to it (Le, 2015). The complexity of a 

network can be further reduced via weight sharing, in which certain 

connections that aim to discover the underlying pattern on a local context 

share the same weights. 
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Figure 12- Weight sharing in a convolutional network 

 

For instance in Figure 12, weights 𝑤1 = 𝑤4 = 𝑤7, 𝑤2 = 𝑤5 = 𝑤8, 𝑤3 =

𝑤5 = 𝑤9 . This way, the network can be compact in terms of storage 

requirements, as only three different weights need to be stored instead of 

nine. This can also be viewed as a necessity due to the nature of 

convolutional networks, which require the same filters to be applied to 

different parts of an image or video. An effect of the nature of the 

convolution operator is the reduction of the resolution of the feature maps 

of the previous layer. This is because the convolution kernels do not exactly 

fit at the corners of the image. A compensation measure, in case this 

resolution reduction has an adverse effect on an application, is to zero pad 

all dimensions of the feature maps so that the convolution kernel precisely 

fits the original data. 

 

 Max Pool Layer: This layer takes the outputs of several neurons of a 
convolution layer and only let us through the one with the maximum value 
(Krizhevsky, Sutskever, & Hinton, 2012).  It enables the network to better 
generalize since two input vectors x that enter this layer and have the same 
values but different permutation will output the same value. Take for 
example, the input vectors𝑣1 = {0,1,0,0} 𝑎𝑛𝑑 𝑣2 = {1,0,0,0}, which will 
both return a value of one after the max pool layer. This layer can also be 
found in the literature as the sub-sampling layer, since it has the effect of 
reducing the resolution of the output. The immediate effect of this layer is 



the reduction of the resolution of the produced feature maps. The max pool 
layer can be seen in Figure 13. 
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Figure 13- Max Pooling Layer 

       In a deep convolutional network, the previous two layers are repeated in 
succession according to the application and depth of a network. This has the 
effect of creating a hierarchy of feature maps that learn to recognize more 
intricate features of the input data as a function of the network depth. In 
Figure 14, the architecture of the deep convolutional network used by Hinton, 
Krizhevsky and Sutskever (Krizhevsky, Sutskever, & Hinton, 2012) in order to 
categorize 1.2 million images of the ImageNet database into 1200 categories 
is depicted. 

 

 

Figure 14 - Deep Neural Network used by Hinton, Kizhevsky and Sutskever to categorize 
ImageNet images into 1200 categories 

 



 Fully Connected Layer: One or more fully connected layers typically follow 
the last Max-pooling layer. The preceding convolutional layers have created 
a series of features maps that describe the details of input data. It is up to 
the fully connected layers to take these feature maps and reach a 
classification decision. The first fully connected layer accepts a single vector 
that is a summary of the details in the feature map. During training, the 
weights of this fully connected layer are adjusted in order to learn how to 
classify each input vector.  

The output of convolution/pooling is flattened into a single vector of values, 
each representing a probability that a certain feature belongs to a label. For 
example, if the image is of a cat, features representing things like whiskers or 
fur should have high probabilities for the label “cat”. The process is shown in 
Figure 15 (AI, Misssing Link, 2019).  
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Figure 15 - Role of fully connected layer in a CNN 

 



 Loss layer: The final layer of a deep neural network is comprised of loss 
function that is necessary so that the stochastic gradient descend 
commences back propagation of the error and perform the weight 
adjustment, in order to facilitate learning. The loss function 7  assess a 
candidate solution and produces an error that denotes how far away the 
neural network is from the optical solution 8 . Its function is extremely 
important, as the single value produced by it will be used to assess how well 
the complete neural network is performing and will guide the 
backpropagation of errors (Brownlee, 2019).  

The category of loss functions characterized as maximum-likelihood 

estimators (MLE) are used for neural networks. MLE is a framework for 

inference for finding the best statistical estimates of parameters from 

historical training data. Under maximum likelihood, a loss function estimates 

how closely the distribution of predictions made by a model matches the 

distribution of target variables in the training data. When modeling a 

classification problem where we are interested in mapping input variables to 

a class label, we can model the problem as predicting the probability of an 

example belonging to each class. In a binary classification problem, there 

would be two classes, so we may predict the probability of the example 

belonging to the first class. In the case of multiple-class classification, we can 

predict a probability for the example belonging to each of the classes. 

(Brownlee, 2019).  

 

3.3 Learning procedure 

Learning in neural networks can be either supervised or unsupervised. Supervised 

learning requires labeled training exemplars and it is mostly used in the context of 

neural networks for classification purposes. On the contrary, unsupervised learning 

only requires large amounts of training data of which it tries to determine similarities. 

Since this thesis deals with convolutional neural networks that use labeled data, the 

focus is on supervised learning.  

3.3.1 Supervised learning and the back propagation algorithm 

 

The modern back-propagation algorithm and its variations has been evolving since 

the early 1960s but were only successfully applied to the training of neural networks 

in the early 1980’s. For instance, Kelley et al. (Kelley, 1960) derived analytic formulas 

for flight performance optimization according to the method of steepest descent 

(gradient). A year later Bryson (Bryson A. E., 1961) presented an early version of the 

back-propagation algorithm, which he developed further in (Bryson & Denham, 1962) 

                                                                 
7 Also called an objective function. 
8 This is typical for a neural network but in other cases, we may seek to maximize the objective 
function. 



in the context of developing optimum programs for nonlinear systems with terminal 

constraints. A common denominator of the many variations of the back-propagation 

algorithm that have been presented since then, is the requirement of finding the 

steepest descent in the weight space by iterating the chain rule.  

Early implementations were inefficient because they relied on back propagating 

Jacobian information through the standard Jacobian matrix calculations from one 

layer to the previous, something, that requires a lot of memory. More efficient error 

back-propagation was first introduced in the master‘s thesis of Linnainmaa  

(Linnainmaa, 1970) albeit with no reference to neural networks (NN). Speelpenning, 

also wrote a program for automatically deriving and implementing BP for given 

differentiable systems (Speelpenning, 1980). These initial implementations did not 

pertain to neural networks but they paved the way for variations of the BP, which 

could modify the control parameters (weights) of a NN driven by a cost function. 

According to (Schmidhuber, Deep learning in neural networks. An overview, 2015) the 

first application of the BP algorithm to NN appeared in 1981 by Werbos (Werbos, 

1982). Much important work was published in the early 1980s. For example, Lecun 

(Lecun, Une procedure d'apprentissage ponr reseau a seuil asymetrique, 1985) 

analyzed neural networks with low Kolmogorov complexity and high generalization 

capability. soon thereafter, while Rumelhart et al. (Rumelhart, Hinton, & Williams, 

1985) made an impact through a significant contribution, whose major theoretical & 

practical contribution was the procedure now known as error propagation, whereby 

the gradient can be determined by individual units of the network based only on 

locally available information. 

According to the back-propagation algorithm and after an episode of activation 

spreading through the differentiable activation functions of individual neurons 

culminating with the calculation of the total error cost E, a single iteration of gradient 

descend computes changes of all 𝑤𝑖 . Weights are usually initialized to zero or 

according to a Gaussian distribution function. The algorithm is described in Table 11 

(Nielsen, 2019). 

Table 11 - Back propagation algorithm 

1. Input x: Set the corresponding activation 𝑎1 for the input layer. 

2. Feedforward: For each l=2,3,…,L compute 𝑧𝑙 = 𝑤𝑙 𝑎𝑙−1 + 𝑏𝑙 l and 𝑎𝑙 =

𝜎(zl), where wl: the weights of layer l, al-1: the input to layer l, bl: the bias of layer l 

and σ: the chosen activation function. 

3. Compute the vector𝛿𝐿 =  ∇𝑎𝐶 ⊙ 𝜎𝑙(𝑧𝐿), where C: the training example and 

the symbol ⊙ is the Hadamard product (Nielsen, 2019). 



4. Back propagate the error: For each l=L−1,L−2,…,2 compute 𝛿𝑙 =

((𝑤𝑙+1)𝑇𝑑𝑙+1) ⊙ 𝜎′(𝑧𝑙) 

5. The gradient of the cost function is given by 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1𝑎𝑛𝑑 
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙. 

 

It is called back propagation precisely because of the way it operates. Execution 

commences only after the total error has been calculated, computing the backward 

errors 𝛿𝜆 starting from the final layer.  

No matter how efficient it proved when first developed, various shortcomings of 

back propagation were quickly noticed. By the late 1980’s most neural network 

designers considered the basic BP algorithm applicable only to shallow networks. This 

was nonetheless not considered to be much of a problem since the Kolomogorov 

theorem (Kůrková, 1992) stated that a single layer network with enough hidden units 

can approximate any multivariate continuous function with arbitrary accuracy. Thus, 

the basic BP algorithm notwithstanding its drawbacks9 remained the most popular 

neural network-training algorithm for shallow FNN.  

BP is essentially a linear least-squares problem where second order gradient 

information is passed up to preceding layers as noted in Biegler et al. (Biegler-König & 

Bärmann, 1993) and since the inception of the basic BP algorithm in the 1960’s various 

other improvements have been proposed. Least-square methods like those proposed 

by Stoer (Stoer, Bauer, & Bulirsch, 1989) or quasi Newton methods (Shanno, 1970) 

were proven computationally expensive. Momentum was introduced by Rumelhart et 

al., (Rumelhart, Hinton, & Williams, 1985), in order to speed up calculation and avoid 

small pitfalls in the solution space. It quickly became mainstream, proving more 

efficient than other contemporary and future proposals like ad-hoc constants added 

to the slope of linearized activation functions (Fahlman, 1991) or exaggerating the 

non-linearity of the slope of activation functions (West & Saad, 1996). Another 

popular variation is the R-Prop, which only takes into account the sign of the error 

derivatives as well as it’s more (Riedmiller & Rprop, 1994) robust variant named 

irProp+. 

A variant of the classic BP algorithm widely employed in modern neural networks 

is stochastic gradient descent (SGD), in which a batch of inputs is presented to the 

network, which then computes the a) outputs; b) the errors; c) the average gradient 

for those examples and only then proceeds to adjust the weights accordingly. This 

process continues for many batches until the average of the objective or cost function 

stops decreasing (Lecun, Bengio, & Hinton, Deep learning., 2015). The stochastic 

adjective is used because each batch gives a noisy estimate of the average over the 

                                                                 
9  For instance, the rather slow convergence to an acceptable solution in comparison with newer 
adaptations considered later in this chapter. 



total gradient for all examples. Although simple, it usually offers a quick convergence 

to weight values that produce a good result. A test set is then usually applied in order 

to assess the performance of the trained network to unseen inputs, which is used as 

a metric of the generalization ability of the network. 

 

3.3.2 Learning in a feed forward deep network 

 

A deep leaning network learns to map a fixed sized input to a fixed sized output. 

The weighted sum of the inputs to a layer are computed and then passed on to the 

next layer after being moderated by an activation function. As stated above the most 

widely used activation function is the ReLU, which offers a straightforward and fast 

implementation while also having non-linear features. It can be seen as the half-wave 

rectifier. The ReLU typically has a faster learning rate than other activation functions 

like the tanh or sigmoid (Lecun, Bengio, & Hinton, Deep learning., 2015).  A typical 

deep neural network has many hidden layers whose function is to distort the input in 

a non-linear way so that the output layer can linearly separate the input into 

categories. 

Neural Networks in general were mostly forsaken until the late 1990s because it 

was believed that simple gradient descent or stochastic gradient descent would be 

trapped in local minimum, which would not lead to optimal solutions. Since the early 

2000’s evidence has slowly accrued which points to the other direction. Poor local 

minima are rarely a problem with deep networks (Lecun, Bengio, & Hinton, Deep 

learning., 2015). It has been shown theoretically and empirically that the solution 

space is full of saddle points where the gradient is zero. Almost all of these saddle 

points have a few downward curving directions, which have similar values for the 

objective function. This means that the network will find a more or less similar solution 

irrespective of the saddle point it could temporarily stuck at. Neural Networks in their 

deep variation were reintroduced in the scientific literature owing to Hinton et al. 

working under the auspices of the Canadian Institute for Advanced Research (CIFAR), 

who introduced an unsupervised learning procedure that could create layers of 

feature detectors without requiring labeled data (Hinton , Osindero, & Teh, 2006). The 

objective of the network was to model the activities of features detectors in previous 

layers, which was accomplished via the pre-training of several layers of progressively 

more complex feature detectors using this reconstruction objective. The whole 

network could then be trained after adding an output layer using standard 

backpropagation techniques. Such networks were applied for recognizing hand-

written digits and worked very well. 

The advent of easily programmable powerful GPUs allowed the training of 

gradually more complex networks much faster than could be done in the past. Speech 

recognition was one of the first signal analysis domains to avail of deep neural 

networks. In 2009, the previous described technique of Hinton was employed to map 



short temporal windows of coefficients extracted from a sound wave to a set of 

probabilities for the various fragments of speech that might be represented by the 

frame in the center of window. Variations of this technique were being used in 

Android phones by 2012 with remarkable success. 

  



4. DEEP CONVOLUTIONAL NEURAL NETWORKS 
FOR BUILDING CONTOUR DETECTION 

For this thesis, research was conducted on using convolutional neural networks for 
building contour detection. The result of this research is a deep convolutional neural 
network that can directly detect building contours. Due to the nature of the work in 
Dong et al. (Dong, Loy, He, & Tang, 2015) which exhibits several features that were 
considered akin to this application, a modified version of this network was applied as 
the basis of the solution. In this case the modified SRCNN, which was named BCDCNN 
(Building Contour Detector Convolutional Neural Network) accepts a tuple of available 
data in the form <[optical, DEM], GT> which is comprised of an optical and a DEM input 
pair along with the corresponding ground truth output. The network is expected to 
approximate the GT data given the [optical, DEM] pair. The data used for this research 
originated from a densely populated area of Kallithea – Attica –Greece. They comprise 
of sets of optical – digital elevation maps and handcrafted ground truth images. Of the 
whole dataset two blocks were selected as shown in Figures 16(a-f).  
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Figure 16 – Original data used for the building contour detector. (a) Optical image of block 1. (b) 
Elevation data of block 1. (c) Ground truth data of block 1. (d) Optical image of block 2. (e) Elevation 
data of block 2. (f) Ground truth data of block 2. 

The data of Figure 16 were segmented into three categories: 

 Train data: Used for training the neural network model. The whole of block 
1 was used (Figures 16(a-c)) and the top 2/3 portion of Figures 16(d-f). The 



top 2/3 of Figures 16(d-f) used for training are shown in Figures 17(a-c). 

 Validation data: This set of data was used for validation purposes during 
training. No weight adjustment was performed with this data set. The data 
are displayed in Figures 18(a-c). 

 Test data: This is the part of block 2 that was used to assess the performance 
of the proposed model. It measures the generalization capability of the 
model and can be seen in Figures 19(a-c). 
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Figure 17 – Remaining training data (top 2/3 of block 2) 
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Figure 18- Original validation data 
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Figure 19 - Original test data 



 

4.1 Methodology 

The proposed BCDCNN model is based on the Super-Resolution Convolutional 
Neural Network (SRCNN) presented by Dong et al. (Dong, Loy, He, & Tang, 2015). 
However, if one can say that SRCNN implements a super-resolved auto associative 
mapping in the sense that a low resolution image is mapped onto the high resolution 
version of itself, BCDCNN implements a super-resolved heteroassociative mapping 
since low resolution elevation data are mapped onto their associated high resolution 
building contours available during training from the ground truth data. In particular, 
similar to the first convolutional layer of SRCNN, BCDCNN accepts a low-resolution 
elevation map at the input which is up sampled to the desired higher resolution (the 
up sampling scale is determined by the corresponding high resolution optical image) 
using the joint (optical + DEM) mean-shift based up sampling algorithm described in 
(Vassilas, Tsenoglou, & Ghazanfarpour, 2015).  Following Dong et al. (Dong, Loy, He, & 
Tang, 2015), it is assumed that the high-resolution optical image combined with the 
preprocessed low-resolution elevation map constitute the mixed resolution input X to 
the network. The goal of the convolutional network is then to reconstruct an image 
F(X) that is similar to the corresponding ground truth high-resolution building contours 
image Y. In order to accomplish this, BCDCNN uses a mapping F from input to 
reconstruction (output) which consists of the following three operations: 

 Patch extraction and representation. Patches from the mixed resolution image 
X are extracted, then processed by the filter bank of the first convolutional 
layer and, finally, represented as a set of feature maps. This can be 
mathematically expressed as the operation: 

 𝑭𝟏(𝑿) = 𝒎𝒂𝒙(𝟎, 𝑾𝟏 ∗ 𝑿 + 𝑩𝟏) (4) 

 

where 𝑾𝟏 = { 𝑾𝟏
𝒌 |  1 ≤ k ≤ 𝑵𝟏 } and 𝑩𝟏 = { 𝑩𝟏

𝒌 |  1 ≤ k ≤ 𝑵𝟏 } with 𝒘𝟏
𝒌 being 

the k-th 3-D filter of the first layer’s filter bank 𝒘𝟏, 𝑩𝟏
𝒌 the corresponding bias term 

and 𝑭𝟏(𝑿) the set of 𝑵𝟏 feature maps. As induced by eq. (1), this layer includes a 
ReLU non-linearity. Each of the 𝑵𝟏 filters is of size 𝒔𝟏𝒙𝒔𝟏𝒙 𝑵𝟎, with 𝑵𝟎 denoting the 
number of channels in the input image (𝑵𝟎=2  for the first layer). Finally, operator ‘*’ 
signifies convolution. 

 Non-linear feature map transformation. In the second convolutional layer, 
the𝑵𝟏  feature maps generated by the previous operation are non-linearly 
transformed into another set of 𝑵𝟐 feature maps by applying 𝑵𝟐 filters of size 
𝒔𝟐𝒙𝒔𝟐𝒙𝑵𝟏 1 and then, as before, passing the results from a ReLU. This 



operation can be described mathematically as 

 𝑭𝟐(𝑿) = 𝐦𝐚𝐱 (𝟎, 𝑾𝟐 ∗ 𝑭𝟏(𝑿) + 𝑩𝟐 (5) 

  

where 𝑾𝟐 contains 𝑵𝟐filters of size 𝒔𝟐𝒙𝒔𝟐𝒙𝑵𝟏 and 𝑩𝟐is 𝑵𝟐 dimensional. 

 Building contour reconstruction: Finally, the feature maps of the previous stage 
are aggregated to generate the high-resolution building contour image. The 
reconstruction operation is implemented as a linear convolution layer, 

 𝑭𝟑(𝑿) = 𝑾𝟑 ∗ 𝑭𝟐(𝑿) + 𝑩𝟑 (6) 

 

where 𝒘𝟑 corresponds to a single filter of size 𝒔𝟑𝒙𝒔𝟑𝒙𝑵𝟐_2 and 𝑩𝟑 is the final layer’s 
bias term.  

The network architecture is illustrated in Figure 20 in which the input to the network, 

the optimal output and the size of the convolution kernels applied at each layer are 

shown. 

 

 

Figure 20 - proposed 3-layer convolutional system architecture 

 

The goal is to get a building contour map F(Y) that is as close as possible to the 
ground truth. However, unlike classification type of applications in which the training 
procedure associates input images to, usually, a few class labels, the proposed system 
is presented with a far more difficult and challenging problem. That is because it is 
learning a heteroassociative mapping from a quite limited training set of <input, 
output> pairs and then expecting to generalize on new pairs of building top-view 
images. Further adding to the complexity of our data sources there are four different 



types of edges that the network must learn to differentiate. 

 Elevation edges that are simultaneously optical edges, which is mostly the case. 

 Optical edges that are not elevation edges: For instance, rooftops of 
neighboring buildings of different colors but same heights. 

 Elevation edges that are not optical: For example, a rooftop of the same color 
as an adjacent street and at different heights. 

 Implied edges: For instance, rooftops with the same color and same height. 
This is the most difficult case. 

Just to make the problem even more difficult, the available elevation data – carrying 
most of the building contours information are at a five times lower spatial resolution 
than the optical images and the associated building contours. Hence, the proposed 
CNN architecture is actually performing a combination of elevation data super-
resolution assisted by available high-resolution optical images and a heteroassociative 
mapping to building contours. 

4.2 Data pre-processing 

The proposed network is trained using high-resolution aerial orthophotographs of 
Kallithea, a densely populated area in Attica, Greece, as well as the corresponding low-
resolution digital elevation model and the high-resolution ground truth building con-
tours. Figures 16(a) and 16(b) depict the optical and elevation data of a building block 
(named BLOCK1), respectively. In particular, to arrange the two data sources as two 
channels of a multimodal image, the depicted DEM has been up sampled with a scale 
of 5 using the joint mean shift algorithm (Vassilas, Tsenoglou, & Ghazanfarpour, 2015). 
A second block of buildings from the same area has also being selected and sliced to 
produce a complementary dataset for training (Figure 17) and testing (Figure 19). As 
before, the corresponding DEM channels have been 5x up-sampled using joint mean 
shift. The original and mean-shift processed elevation data for block 1 and 2 are shown 
in Figures 21-22(a-b), respectively. 

 

(a) 

 

(b) 

Figure 21 - Original and MS processed elevation data (block 1) 
 



 

 

(a) 

 

(b) 

Figure 22 - Original and MS processed elevation data (block 2) 

 

Furthermore, three variations of the training data were used. More specifically, the 

first variation is comprised of the original optical data and the mean shift up sampled 

DEM data [Figures 23-24(a-c) – Train, Figures 25(a-c) – Validation, Figures 26(a-c) - 

Test]. Moving on to the second variation, the optical channel has also been filtered 

with the mean shift edge preserving smoothing algorithm [Comanciu Meer, 2002]. The 

full data set can be seen in [Figures 27-28(a-c) – Train, Figures 29(a-c) – Validation, 

Figures 30(a-c) – Test]. Finally, in the third variation the mean shift optical & DEM data 

have been filtered by a Laplacian of Gaussian (LoG) operator [see Figures 30-31(a-c) - 

Train, Figures 32(a-c) - Validation, Figures 33(a-c) - Test]. The last variations has been 

considered as an attempt to reduce the effective dimensionality of the input data and 

improve the generalization ability of the proposed system. 
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Figure 23 - Original train data block 1. a) Optical b) MS DEM c) GT building contours 
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Figure 24 - Original train data block 2 a) Optical b) MS DEM c) GT building contours 
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Figure 25 - Original validation data a) Optical b) MS DEM c) GT building contours 
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Figure 26 - Original test data a) Optical b) MS DEM c) GT building contours 
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Figure 27 - MS train data block 1 a) MS Optical b) MS DEM c) GT building contours 
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Figure 28 - MS train data block 2 a) MS Optical b) MS DEM c) GT building contours 
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Figure 29 - MS validation data block a) MS Optical b) MS DEM c) GT building contours 
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Figure 30 - MS test data a) MS Optical b) MS DEM c) GT building contours 
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Figure 31 - Log train data block 1 a) LoG Optical b) Log DEM c) GT building contours 
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Figure 32- Log train data block 2 a) LoG Optical b) Log DEM c) GT building contours 
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Figure 33 - Log validation data a) LoG Optical b) Log DEM c) GT building contours 
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Figure 34 - Log test data a) LoG Optical b) Log DEM c) GT building contours 
 

4.3 Cost function modification 

A typical cost function to be minimized during network training is the root mean 
square error (RMSE) between the actual reconstruction and the ground truth, which 
in this particular application is a binary image with ones for pixels belonging to the 
building contour and zeroes for all other pixels. However, only a very small proportion 
of pixels in the GT image (as well as its sub images and patches thereafter) will have a 
value of one and will pull the corresponding neuron outputs of the reconstruction 
layer. All the remaining neuron outputs (or pixel values), no matter how close to zero 
they are will be pushed towards zero. Although no post processing stage has been 
included to clean up the reconstructed binary contours, it is intuitively evident that the 
neuron outputs of the reconstructed image that correspond to background and have 
close to zero or negative values, could be set aside from the derivative computations 
of the back-propagation phase, e.g. by setting them to zero. On the other hand, neuron 
outputs wrongly close to 1 should play a role in the back-propagation phase in order 
to be pushed down to lower values. A second point we can make regarding weight 
adaptation in this application is that all output neurons share the same weights and 
that these weights should be given a chance to adapt in such a way as to satisfy 
confronting demands: to push some output neurons to one and other neurons to zero. 
Since the proportion of 1-pixels is much smaller than that of 0-pixels, it is expected 
that the shared weights will prioritize minimizing the error of the “many” background 
pixels instead of the “few” contour pixels. This comment highlights network-training 
difficulties in heteroassociative mappings that arise due to unequal pixel-class 
probabilities and resembles the necessity for class-balanced datasets in classification 
problems. In order to balance the weight adaptation process to serve equally well the 
contour and non-contour pixels, it is proposed to substitute the typical RMSE cost 
criterion that involves all neuron outputs of the reconstruction layer by a novel custom 
cost layer, which was named Top-N. Under this scheme, the RMSE between the 
reconstructed image and the corresponding GT is calculated only for those pixels that 
belong to the 2N pixels with highest values10. Assuming that most of the N contour 
pixels of the ground truth image are also in the top 2N pixels of the reconstruction, 
this scheme satisfies the imposed balancing criterion. 

 

                                                                 
10 N is the number of contour pixels in GT 



 

(a) 

 

(b) 

Figure 35 - Proposed Top-N custom cost layer. (a) low-quality reconstruction. (b) Corresponding 
ground truth data 

 

 

(a) 

 

(b) 

Figure 36 - Proposed Top-N custom cost layer. c) pdf and cdf of intensity levels and Top-N threshold, 
and d) Top-N version of the reconstruction. 

 

In practical terms, the threshold used to specify the top 2N pixel values is calculated 

as follows: The probability distribution function and cumulative distribution function 

of the intensity levels for each image used during training are calculated and only the 

pixels that have an intensity above the 2N threshold11 are retained. This is depicted in 

Figures 35(a-b) and 36(a-b), which show a low quality reconstruction of the test data, 

the corresponding ground truth, the Top-N threshold calculated as the percentage of 

pixels above the Top-N intensity and the Top-N version of the reconstruction, 

respectively. 

4.4 Experiments 

4.4.1 Training Set Preparation 

To satisfy the requirement of large numbers of training data to properly train deep 
neural networks I performed data augmentation (Simonyan & Zisserman, 2014). 
Firstly, 33x33 data patches were extracted from the input data (optical + DEM) along 
with the corresponding 21x21 patches of the GT data (GT patches are smaller due to 
“valid” convolutions with 9x9, 1x1 and 5x5 kernels). The data were then augmented 
with rotations at multiples of 90° and with their vertical flips. In this manner tuples of 

                                                                 
11 Actually, the average value of the intensity level for a whole batch is used in order to accelerate the 

computation procedure. 



input data and GT were constructed in the form <[optical_section, DEM_section], 
GT_section>. The procedure described in the following sections was followed for each 
of the three variations of the training data set (original, Mean-Shift processed, LoG 
processed).  

4.5 Experimental results 

All presented results pertain to the 9-1-5 or 9-3-5 convolution kernel choices and to 
the 64-32-1 feature maps configuration, i.e. number of feature maps at the output of 
each convolutional layer. Actually, several tests were conducted to assess how the 
number of feature maps affect the performance of the network. Specifically, networks 
of with 128-64-1 and 256-128-1 feature map configurations were tested. However, 
even though performance is increased (the RMSE for the Original data sets at epoch 
60 decreases from 3,4048 to 3,3384 and then to 3,2077 for the larger configurations), 
the heavy computational costs prohibited their further use). 

Three deep learning framework were used before making a final decision on which 
to use. These were: 

 Tensorflow: Tensorflow is the brainchild of Google brain. It supports general 
machine learning and deep learning. It has grown considerably since its 
inception in 2015 because of its capabilities and the reputation of Google. 
Although initial experiments were done under this framework, it was not 
selected because it could not integrate directly with other code written in 
Matlab. 

 Caffe: This framework was created by Yangqing Jia during his PhD at Berkley. 
It has impressive expressive capability and it is very fast. Regarding the 
programming interface, it can be programmed using Python and Matlab. 
The support for Matlab is crucial for researchers using Matlab and this is 
why it was used. Unfortunately, it can only efficiently be extended using c++ 
and CUDA programming which requires a recompilation of the framework. 

 MatConvNet: This a specialized framework for Matlab. It is suitable for 
applications using convolutional neural networks only. Since it is written in 
Matlab it is can seamlessly change between CPU and GPU processing 
according to whether it is given GPU arrays or standard arrays. It is also 
easily extensible via standard Matlab code since the source code is readily 
available. Finally, it is almost as fast as Caffe and Tensorflow. 

4.5.1 Comparison between MSE and Top-N Custom Loss 
Layers 

The proposed Top-N custom cost layer leads to lower RMSE and higher PSNR values 
as shown in Tables 12-14. The tables depict the RMSE and PSNR of the test data for 
the case of training on the Original, the Mean Shift and LoG data sets, respectively. In 
all cases, the custom Top-N layer exhibits lower RMSE and higher PSNR values than the 
typical MSE cost layer. For instance, in Table 12 regarding the Dropout 50% 9-1-5 case 
the proposed Top-N cost layer produced an RMSE 3.37% lower than the corresponding 



MSE cost layer. Comparing corresponding entries for the PSNR for the Original data 
(Table 12), 5 out of 6 entries have a higher value for the 9-3-5 network. Likewise, for 
the Mean Shift and LoG processed data (Tables 13 and 14) most PSNR entries are 
higher for the 9-3-5 network. Nonetheless, since the 9-3-5 configuration was by 16.5% 
slower during training than the 9-1-5 configuration and since as shown in Tables 12 
through 14, there was only a slight improvement either in RMSE or in PSNR compared 
to 9-1-5, we decided to consider the more practical 9-1-5 configuration as was also 
argued in Dong et al. (Dong, Loy, He, & Tang, 2015).   

 

Table 12 - RMSE and PSNR metrics for Original dataset 

Loss Layer 

Dropout 50% Dropout 50%-50% NoDropout 

RMSE PSNR RMSE PSNR RMSE PSNR 

Min Max Min Max Min Max 

Top-N (9-1-5) 0,10442 15,205 0,10537 15,087 0,10565 15,268 

Top-N (9-3-5) 0,10620 15,217 0,10591 15,269 0,11408 15,257 

MSE (9-1-5) 0,10806 14,293 0,10961 14,780 0,10802 14,919 

MSE (9-3-5) 0,10886 14,866 0,10816 14,888 0,10793 14,930 

 

Table 13 - RMSE and PSNR metrics for MS dataset 

Loss Layer 

Dropout 50% Dropout 50%-50% NoDropout 

RMSE PSNR RMSE PSNR RMSE PSNR 

Min Max Min Max Min Max 

Top-N (9-1-5) 0,10423 15,257 0,10549 15,079 0,10486 15,067 

Top-N (9-3-5) 0,10263 15,263 0,10343 15,263 0,10865 15,283 

MSE (9-1-5) 0,10833 14,903 0,10977 14,807 0,10926 14,832 

MSE (9-3-5) 0,10817 14,912 0,10912 14,841 0,10923 14,842 

 
Table 14 - RMSE and PSNR metrics for LoG dataset 

Loss Layer 

Dropout 50% Dropout 50%-50% NoDropout 

RMSE PSNR RMSE PSNR RMSE PSNR 

Min Max Min Max Min Max 

Top-N (9-1-5) 0,10948 14,831 0,10811 14,929 0,10779 15,127 

Top-N (9-3-5) 0,10608 15,031 0,10637 15,106 0,10763 15,148 

MSE (9-1-5) 0,11005 14,647 0,11314 14,489 0,11093 14,803 

MSE (9-3-5) 0,10955 14,005 0,10988 14,746 0,10839 14,824 



4.5.2 BCDCNN Configurations & Applied Metrics 

Experiments were run with two convolution kernel sizes for the second layer using 
1x1 and 3x3 mapping kernels. Across all three layers of our model, the sizes of the 
convolution kernels we tested for were 9-1-5 and 9-3-5. In addition, the network used 
64 feature maps for the first layer, 32 for the second and 1 for the last, which is 
henceforth denoted as 64-32-1. Furthermore, for each training data set and each 
convolution kernel size performance was assessed for three cases: a) No dropout; b) 
Dropout 50%, i.e. dropout rate of 50% after the RELU activation function of the first 
layer; c) Dropout 50%-50%, i.e. dropout rate of 50% after the RELU activations of the 
first and second layers. A learning rate of 10-4 was used for layers 1 and 2 while the 
learning rate was 10-5 for layer 3.  In addition, the weight decay was 5 ∗ 10−3 for all 
layers and the batch size was set to 128. In total, 18 experiments were run for the 64-
32-1 configuration. Finally, the RMSE and PSNR metrics were utilized to assess 
performance of our network. 

4.5.3 Detection of building contours 

In Figures 37 & 38, two typical reconstructions for the training data Block1 are 
shown for the TopN & MSE configurations of the network. BCDCNN was able to learn 
the association of building contours to the input data sources.  
 

 

 

 
Figure 37 - Reconstruction of Train data for Original data set and Top-N Cost Layer 

 



 

 
Figure 38 - Reconstruction of Train data for Original data set and MSE Cost Layer 

 

The above reconstructions are not the best that this research produced. By 

increasing the number of feature maps to 256-128-1 for the three layers respectively, 

the network learned to detect building contours with extreme precision. This however 

was at the cost of training & reconstruction speed and quite detrimental to the 

model’s generalization ability. For instance in the following Figures 39 & 40, a 

reconstruction obtained in early 2017 using the Caffe framework is presented. Figure 

39 displays the reconstruction for the Train data and Figure 40 for the Test. From 

Figure 39, it is shown that given enough data and training epochs a deep neural 

network can learn to detect building contours with extreme precision. Unfortunately, 

when the data are not enough this is to the expense of the generalization capability 

as shown in Figure 40. 

 

 
Figure 39 - Dual channel reconstruction for 256-128-1 feature maps (Train data) 

 



 

 
Figure 40 - Dual channel reconstruction for 256-128-1 feature maps (Test data) 

 

However, the 64-32-1 model trained under MatConvNet can also generalize. The 

reconstructions of the test data for networks trained on the three variations for the 

proposed Top-N and MSE loss layer are shown in Figures 41 – 43. 
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Figure 41 - Top-N reconstruction of test data. a) PSNR curve for test data on Original dataset training 
b) Corresponding reconstruction of test data 
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(b) 
Figure 42 - Top-N reconstruction of test data. PSNR curve for test data on MS dataset training b) 
Corresponding reconstruction of test data 
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(b) 
Figure 43 – Top-N reconstruction of test data. a) PSNR curve for test data on LoG dataset training b) 
Corresponding reconstruction of test data 

 

According to Figure 41(a), the highest PSNR for the test data set was at epoch 55 

for the dropout 50% case and the reconstruction at that specific instant is presented 

(Figure 41b). This process was repeated for all our training data variations and the 

resulting reconstructions are shown in Figures. 42(b) and 43(b). The corresponding 

experiments for the MSE cost layer are shown in Figures 44 to 46. It has to be noted 

that no post-processing was used at this stage to improve the obtained building 

contours, as this is the case of the relaxation system presented in chapter 6. From 

Figures 41-46, it can be readily observed that deciding about how to improve the 

generalization ability of the network is not straightforward. Perhaps, one can say that 

when the effective input dimensionality is high (i.e. when the variance of the input 

pixel values is large) as is the case for the Original data sets, the network exhibits poor 

generalization behavior (see the blue curves of Figures 41(a) and 42(a). As the 

effective dimensionality is progressively reduced through the imposed smoothing 

from the Mean Shift and LoG data preprocessing the generalization ability of the 



network is improved and, in the case of LoG, even surpasses the cases that use 

dropout in one or two layers. 
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Figure 44 - MSE reconstruction of test data. a) PSNR curve for test data on Original dataset training 
b) Corresponding reconstruction of test data 
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(b) 
Figure 45 - MSE reconstruction of test data. a) PSNR curve for test data on MS dataset training b) 
Corresponding reconstruction of test data 
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(b) 

Figure 46 - MSE reconstruction of test data. a) PSNR curve for test data on LoG dataset training b) 
Corresponding reconstruction of test data 

A second remark that we can make is that by using 50% dropout on one or two 
layers the network resists better to overfitting. Specifically, in the case of training data 
sets with relatively high effective dimensionality as is the case with the Original and 
Mean Shift processed data sets, dropout (either in one or in two layers) proves to be 
the necessary choice for network generalization. Finally, in accordance to the 
comparative results of Tables 12–14, a comparison of Figures 41-46 shows that there 
is a slight improvement in PSNR under any training data set variation when using the 
Top-N cost layer. 

  



5. Super-Resolution of low-resolution digital 
elevation data 

5.1 Context 

High-resolution optical cameras for urban aerial photographs are readily available 
these days but LIDAR technology, despite recent advances, still produces images of 
comparatively lower resolution while it also remains more expensive. It is for this 
reason that usually aerial camera optical photographs are of much higher resolution 
than matching digital elevation maps (DEM) produced from the processing of LIDAR 
data taken from the same plane or drone.  

Image super resolution reconstruction has diverse applications ranging from 
medical image augmentation (Baranov, Olea, & van den Bogaart, 2019) to geological 
applications (Wang, Armstrong, & Mostaghimmi, 2019), to the augmentation of 
general purpose images (Dong, Loy, He, & Tang, 2015). Regardless of the application, 
the goal is to upscale a low-resolution image {IL} and produce a super resolution 
reconstruction {IH’} as close as possible to the original high-resolution image {IH}. It is 
a well-studied problem of computer vision with a variety of solutions but no unanimity 
yet on how to optimally assess the similarity of the reconstructed image to the original 
(Benecki , Kawulok , Kostrzewa, & Skonieczny, 2018). Super resolution can be attained 
through either a single image or multiple images. In the second case, the two channels 
can either be displaced versions of a single image or images depicting corresponding 
but of different nature information. 

This chapter of the thesis aims to apply convolutional neural networks to augment 
the low resolution of elevation data augmented by corresponding optical high-
resolution data. The elevation data available were of very low resolution (120x80); five 
times lower than the corresponding optical resolution data (600x400). Two blocks of 
elevation data of the fore-mentioned resolution were available. This chapter will 
briefly examine some previous work on the topic, the methodology followed in this 
thesis to accomplish super-resolution of elevation data; the experiments conducted 
and will reach several conclusions on the matter. 

5.2 Previous work 

In recent years, there has been a great interest in super-resolution applications as 
can be concluded by numerous published research results. Only a very brief 
presentation in the field of image super-resolution will thus be performed in this 
thesis.  Facial recognition from low-resolution cameras for instance, is an important 
super-resolution application and Huang and He (Huang, 2010) used super resolution 
for facial recognition from low-resolution security cameras by applying nonlinear 
mappings to infer coherent features that favored higher recognition of nearest 
neighbor (NN) classifiers for recognition of single low-resolution face images. 
Furthermore, old manuscripts were given the super-resolution treatment, when 
Datsenko & Elad (Datsenko & Elad, 2007) applied super-resolution in order to enhance 
manuscripts containing text & equations. For this, they assigned to low resolution 
patches several high-quality candidate patches, using the nearest neighbor metric in 
an image database that contained low and high resolution corresponding patches. 



They then used a penalty function to reject some of the irrelevant examples, keeping 
the rest for image reconstruction.  Medical and microscopy imaging are also a very 
active research topic regarding super resolution and on this Huang et al. (Huang B., 
Wang, Bates, & Zhuang, 2008) applied super-resolution to fluorescence microscope 
imaging by using optical astigmatism in order to determine both axial and lateral 
positions of individual fluorophores with nanometer accuracy. 

The majority of applications based on a single image are based on the exemplar 
paradigm in which learning attempts to match <low-resolution, high-resolution> 
image pairs that are then used to reconstruct general high-resolution images from 
low-resolution ones. Two of the most prominent methods in modern scientific 
literature are sparse representation and deep neural networks. An example of the first 
case is Yang et al. (Yang, Wright, Huang, & Mia, 2010) who created sparse 
representations for low-resolution patches of the input image and then used the 
coefficients of these representations to generate high-resolution reconstructions. On 
the contrary, Dong  et al. created a deep neural network model with 3 layers that 
performed a single-channel super-resolved non-linear mapping between low-
resolution patches and high-resolution ones during training which was used to adjust 
the weights of the convolution filter-bank (Dong, Loy, He, & Tang, 2015). 

 Super-resolution from multiple images has also offered excellent results. It is 
usually based on the definition of a parametrized image model (PIM) where the 
multiple images required for training are derived from applying image processing 
operators like warping, blurring, down sampling or contamination with noise. An 
optimization technique is then applied to find the optimal parameter values. For 
instance, Vilenna et al. (Villena, Abad, Molina, & Katsaggelos, 2004) implemented an 
iterative technique based on a Bayesian classifier, which obtained a set of under 
sampled and degraded frames by shifting displacements of high-resolution images. 
The researchers then applied an iterative Bayesian method to estimate the unknown 
shifts and the high-resolution image from the corresponding low-resolution one. 
Multi-channel deep learning techniques have been especially prominent in the past 
several years with many advancements and new proposals. In their research, Lee et 
al. (Lee, Chen, Tseng, & Lai, 2016) utilize complementary RGB-D images (color and 
depth) to achieve recognition that is more accurate. They first trained their network 
with a color RGB dataset and then fine-tuned with the depth dataset using transfer 
learning with the results showing a higher accuracy than a single image RGB solution. 

5.3 Contribution to multi-channel super-resolution 

A dual-channel input convolutional neural network learning approach for super 

resolution (SR) is proposed that performs a mixed-input associative mapping between 

a low-resolution elevation image depicting the height of an urban area in Kalliithea – 

Attica - Greece and a corresponding high-resolution optical image of the area. The 

network, named building super resolution auto-associative convolutional neural 

network (BSRCNN), performs a mixed-input associative mapping in the sense that it is 

assisted by high-resolution optical data to augment low-resolution elevation data, in 

order to associate them to a high-resolution rendition of themselves. Furthermore, 



the network was trained with a rather limited available dataset12.  The nature of 

elevation data has several subtleties that differentiate this application from general-

purpose SR approaches. Firstly, elevation data are a by-product of LIDAR data that 

usually comes in the form of a point-cloud. The result is a digital-surface-model (DSM) 

or a digital elevation model (DEM) that is a real-valued matrix denoting the true height 

of the ground/buildings, respectively. This matrix can be further processed to attain a 

graylevel image that corresponds to the real-valued data and this is precisely the case 

of the DEM data used in this chapter. The resulting image shifts from subtle graylevel 

differences to steep changes in the graylevel of adjacent pixels making it difficult for a 

nearest neighbor or a bicubic up-sampler to make an optimum choice. Furthermore, 

deep convolutional neural networks (CNNs) trained to perform super-resolution on 

generic real-world images are also not expected to perform very well because of this 

difference in high & low frequency content even within a convolution kernel. It was 

expected that a CNN trained with elevation data & augmented with high-resolution 

optical data of the urban would perform at least on par or better than the 

corresponding neural network trained only with the low-resolution elevation data. 

In order to test this assumption the performance of the dual-channel approach was 

compared to a single-channel rendition using the MSE, PSNR and SSIM metrics. 

Furthermore, comparisons were made against other state of the art generic super-

resolution models like that of [Dong, Loy, He, Tang, 2015]. In addition, it was tested 

how well various forms of super-low resolution data are augmented from high-

resolution optical data. For this reason, the LR DEM data were transformed into a very 

low-resolution version by either the bicubic or the nearest neighbor interpolation 

method. 

5.4 Data preparation 

The optical images of the dataset were considered as the high-resolution (HR) input 

(600x400) while the corresponding DEM had a resolution five times lower than the 

optical (120 x 80), aka the characterization of low-resolution data. The high-resolution 

optical data and corresponding low-resolution DEM are shown in Figure 47 (a-d). 

 

                                                                 
12 Two blocks of elevation data each of resolution 120x80 and the corresponding five-time higher 
optical data (upscaled & downscaled to 120x80) were used for the research, as elaborated later in the 
chapter. These data were taken from the research of [Vassilas N., Charou, Petsa, Grammatikopoulos, 
2013]. 
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(d) 

Figure 47 -DEM & Optical data. a) DEM block1 LR b) Optical block1 HR c) DEM block2 LR d) Optical 
block2 HR 

 

The data shown in Figure 47 (a-d) were used for training of the CNN, verification of 

its performance and testing its generalization capability. Two sets of training data 

were constructed from the aforementioned data with the second being noisier and 

thus a harder problem to solve. In order to render the data in a form suitable for this 

application, the following pre-processing was performed:  

- Elevation data set 1: 120x80 (original resolution) → downscale BC by two → upscale 
BC x two → DEM_SLR (120x80). The original elevation data that the CNN had to 
augment. 

- Elevation data set 2: 120x80 (original resolution) → downscale NN by two → upscale 
NN x two → DEM_SLR (120x80). A more difficult elevation data set with noise and 
spurious gray levels.  

- Optical data (600x400): downscale BC x five → optical LR (120x80). 
 

The pre-processed elevation data sets one and two as well as the pre-processed 

optical data are shown in Figures 48 and 49. 
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Figure 48 - Train & validation data with elevation set one. a) Block 1 LR bicubic DEM (120x80)  b) part 
of  Block 2 LR bicubic DEM (120x48) c) Block 1 optical HR (120x80) d) part of BLock 2 optical HR 
(120x48) e) part of Block 2 LR validation 1 DEM (29x31)  f) part of Block 2 LR validation 2 (41x31) g) 
part of Block 2 HR validation 1 optical (29x31) h) part of Block 2 HR validation 2 optical (41x31) 
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(h) 

Figure 49 - Train and validation data with elevation set two. a) Block 1 SLR NN DEM (120x80)  b) part 
of BLock 2 SLR NN DEM (120x48) c) Block 1 optical LR (120x80) d) part of Block 2 optical LR HR 
(120x48) e) part of Block 2 LR validation 1 DEM  (29x31) f) part of Block 2 LR validation 2 (41x31) g) 
part of Block 2 HR validation 1 optical (29x31) h) part of Block 2 HR validation 2 optical (41x31) 



Two sets of data were used for the training and validation of the neural network 
model as shown below: 

 Elevation set 1: This was comprised of tuples <<Elevation SLR set one, 
Optical HR>, Elevation LR>13, where Elevation set one are the data shown in 
[Figures 48(a-h)]. The elevation data of the data series have been down & 
up scaled two times from the original resolution (120x80) using bicubic 
resizing to create the very low-resolution Elevation (slr_dem) set one. 
Furthermore, this data set was further divided for training and validation 
purposes as follows: 

o Train: The whole of block 1 down & up scaled using bicubic resizing 
[Figures 48(a, c)] and two-thirds of block 2 down & up scaled using 
bicubic resizing14 [Figures 48(b, d)]. The train set is comprised of very 
low-resolution elevation (slr_dem) and optical low-resolution 
(opt_lr) data for input as well as the low-resolution elevation GT 
data (lr_dem)15. 

o Validation 1: A part of block 2 down & up scaled using bicubic 
resizing for the elevation data [Figure 48(e, g)]. Validation set 1 was 
comprised of very low-resolution elevation (slr_dem) and optical 
low-resolution (opt_lr) data for input as well as the low-resolution 
elevation GT data (lr_dem). 

o Validation 2: A part of block 2 down & up scaled using bicubic 
resizing for the elevation data [Figure 48(f, h)]. )]. Validation set 2 
was comprised of very low-resolution elevation (slr_dem) and 
optical low-resolution (opt_lr) data for input as well as the low-
resolution elevation GT data (lr_dem). 

Finally, sliding windows of various resolutions were used to slice the very 
low-resolution elevation slr_dem) and LR optical data (opt_lr) into 
segments for training and validation purposes. The resolution depended on 
the convolution kernels used16. Similarly, a smaller window was used to slice 

                                                                 
13 The first tuple of the training scheme <Elevation LR set one, Optical HR> stands for a dual channel 
configuration where the first channel is comprised of elevation data and the second of optical. Similarly, 
the last tuple <, Elevation_LR> stands for the GT LR elevation data. The corresponding single-channel 
configuration scheme would be <Elevation_SLR, Elevation_LR> where the network would only accept a 
single elevation channel Elevation_SLR as input and Elevation_LR would be the GT. 
14 Only the elevation data have been resized during this step. The same is true for the validation and 
test data. 
15 The input elevation data are very low resolution because they were down and up scaled from the 
initial low-resolution elevation data (slr_dem) while the optical data are low-resolution since they have 
been downscale 5 times to reach the elevation data resolution (opt_lr). Finally, the GT data are the 
original low-resolution elevation data (lr_dem). 
16 As explained in Section 5.5 the proposed model is comprised of three layers. A typical convolution 
kernel used was (9-1-5), which means 9x9, 1x1, 5x5 kernels for the first, second and third layer, 
respectively. For this case, the sliding window could be 33x33 for the SLR elevation and LR optical data 
and 21x21 for the ground truth LR elevation data. The resolution discrepancy for the GT data is because 
the convolution kernels do not precisely fit on the corners of the image, leading to a reduction of 
resolution (8 pixels 1st layer, none for the second and 4 pixels for the third) of the feature maps as they 



the ground truth LR elevation data into segments for training & validation 
purposes. The data segments were artificially augmented in much the same 
way as was done for BCDCNN but this time using a stride of one17 due to 
the much lower resolution of the available data. Finally, tuples were created 
comprising of the data segments in the form <<slr_dem, lr_opt>, lr_dem>, 
where slr_dem is the very-low resolution elevation data; lr_opt: the low-
resolution optical data; and lr_dem: the low-resolution elevation data. 

 Set 2:   This was comprised of tuples <<Elevation SLR set two, Optical HR>, 

Elevation LR> where Elevation set two are the data shown in [Figures 49(a-

h)]. The elevation data of the data series have been down & up scaled two 

times from the original resolution (120x80) using nearest neighbor resizing 

to create the Elevation SLR set two. Furthermore, this data set was further 

divided for training and validation purposes as follows: 

o Train: The whole of block 1 down & up scaled using nearest neighbor 
[Figures 49(a, c)] and two-thirds of block 2 down & up scaled using 
nearest neighbor [Figures 49(b, d)]. The train set is comprised of very 
low-resolution elevation (slr_dem) and optical low-resolution 
(opt_lr) data for input as well as the low-resolution elevation GT 
data (lr_dem)18. 

o Validation 1: A part of block 2 down & up scaled using nearest 
neighbor resizing for the elevation data [Figure 49(e, g)]. Validation 
set 1 was comprised of very low-resolution elevation (slr_dem) and 
optical low-resolution (opt_lr) data for input as well as the low-
resolution elevation GT data (lr_dem). 

o Validation 2: A part of block 2 down & up scaled using nearest 
neighbor resizing for the elevation data [Figure 49(f, h)]. Validation 
set 2 was comprised of very low-resolution elevation (slr_dem) and 
optical low-resolution (opt_lr) data for input as well as the low-
resolution elevation GT data (lr_dem). 

The data were then sliced into segments as described for the bicubic-
resized data and were artificially augmented in much the same way as was 
done for BCDCNN but this time using a slice of one due to the much lower 
resolution of the available data. Finally, tuples were created comprising of 
the data segments in the form <<slr_dem, lr_opt>, lr_dem>, where slr:dem 
the super-low resolution elevation data; lr_opt: the low-resolution optical 
data; and lr_dem: the low-resolution elevation data. 

                                                                 
are propagated through the network. The same is true of other sliding windows size used (23x23-
>11x11, 21x21->9x9, 19x19->7x7, 17x17->5x5) for a 9-1-5 model. 
17 A stride of two was used for the training data of BCDCNN due to the larger training set. This means 
that every second row and column was skipped. 
18 The input elevation data are very low resolution because they were down and up scaled from the 
initial low-resolution elevation data (slr_dem) while the optical data are low-resolution since they have 
been downscale 5 times to reach the elevation data resolution (opt_lr). Finally, the GT data are the 
original low-resolution elevation data (lr_dem). 



 

The total number of used for both set one or set two training examples were: 

 120x80 (block 1) = 9600 examples * 4 (rotations for 90°, 270° and 360°) * 4 
(vertical flipping & rotations for 90°, 270° and 360°) = 153.600. 

 120x80 (block 2) * 2/3 = 6336 examples * 4 (rotations for 90°, 270° and 360°) 
* 4 (vertical flipping & rotations for 90°, 270° and 360°) = 101.376. 

The number of training examples were thus substantially less than the data 
available for the training of BCDCNN due to the lower resolution of the available data. 

5.5 Proposed model 

The proposed model is based on the single channel super-resolution architecture 

by Dong et al. (Dong, Loy, He, & Tang, 2015), which was modified by adding another 

input channel. The modified version has been named BSRCNN (Building super 

resolution convolutional neural network). In contrast to SRCNN, which performs a 

super-resolved auto associative mapping between the low-resolution image and the 

high-resolution version of itself, this network implements a super-resolved enhanced 

input auto associative mapping. This means that the network can map a low-

resolution image, depicting in this case elevation data, onto a high-resolution version 

of itself with the assistance of a high-resolution optical image. In essence, BSRCNN 

accepts as input a super low-resolution elevation image combined with a 

corresponding low-resolution optical image and this constitutes the mixed resolution 

input X. The goal of the convolutional network is then to reconstruct an image F(X) 

that is similar to the corresponding ground truth high-resolution elevation image Y. In 

order to accomplish this and in a similar manner to BCDCNN, BSRCNN uses a mapping 

F from input to reconstruction (output) which consists of the following three 

operations: 

 Patch extraction and representation. Patches from the mixed resolution image 
X are extracted, then processed by the filter bank of the first convolutional 
layer and, finally, represented as a set of feature maps. This can be 
mathematically expressed as the operation: 

  𝑭𝟏(𝑿) = 𝒎𝒂𝒙(𝟎, 𝑾𝟏 ∗ 𝑿 + 𝑩𝟏) (7) 

 

 

 

where 𝑾𝟏 = { 𝑾𝟏
𝒌 |  1 ≤ k ≤ 𝑵𝟏 } and 𝑩𝟏 = { 𝑩𝟏

𝒌 |  1 ≤ k ≤ 𝑵𝟏 } with 𝒘𝟏
𝒌 being 

the k-th 3-D filter of the first layer’s filter bank 𝒘𝟏, 𝑩𝟏
𝒌 the corresponding bias term 

and 𝑭𝟏(𝑿) the set of 𝑵𝟏 feature maps. As induced by eq. (1), this layer includes a ReLU 
non-linearity. Each of the 𝑵𝟏  filters is of size  𝒔𝟏𝒙𝒔𝟏𝒙 𝑵𝟎 , with 𝑵𝟎  denoting the 
number of channels in the input image (𝑵𝟎=2  for the first layer). Finally, operator ‘*’ 



signifies convolution. 

 Non-linear feature map transformation. In the second convolutional layer, 
the𝑵𝟏  feature maps generated by the previous operation are non-linearly 
transformed into another set of 𝑵𝟐 feature maps by applying 𝑵𝟐 filters of size 
𝒔𝟐𝒙𝒔𝟐𝒙𝑵𝟏 1 and then, as before, passing the results from a ReLU. This 
operation can be described mathematically as 

 𝑭𝟐(𝑿) = 𝐦𝐚𝐱 (𝟎, 𝑾𝟐 ∗ 𝑭𝟏(𝑿) + 𝑩𝟐 (8) 

  

where 𝑾𝟐 contains 𝑵𝟐filters of size 𝒔𝟐𝒙𝒔𝟐𝒙𝑵𝟏 and 𝑩𝟐is 𝑵𝟐 dimensional. 

 High-resolution elevation data reconstruction: Finally, the feature maps of the 
previous stage are aggregated to generate the high-resolution elevation data 
image. The reconstruction operation is implemented as a linear convolution 
layer, 

 𝑭𝟑(𝑿) = 𝑾𝟑 ∗ 𝑭𝟐(𝑿) + 𝑩𝟑 (9) 

   

One thing that has to be said about the network is its extreme sensitivity to training 

parameters since the final layer has no bounding activation function. The network 

architecture can be seen in Figure 50. 
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Figure 50 - BSRCNN Proposed three-layer architecture 

 

Similarly to BCDCNN, the proposed model has a difficult task to solve. This time the 

complexity increases even further due to the scarcity of available data ( 1 and 2/3 

120x80 mixed-resolution image was available as opposed to 1 and 2/3 600x400 mixed-

resolution image for BCDCNN). Furthermore, the original high-resolution optical data 

of 600x400 were down sampled five times to reach the low-resolution of the elevation 

data.  



5.6 Experiments 

5.6.1 Neural network configuration & metrics 

 

The neural network was trained under the MatConvNet (MatConvNet, n.d.) Matlab 

framework, which is a specialized framework for deep convolutional networks. It can 

operate both in CPU and GPU mode. The experiments were conducted in GPU mode.  

A series of experiments were conducted using various combinations of the 

configurations in Table 15. For example, a 7-1-5 convolution kernel x 17x17 window 

size x 32-16-1 feature maps, would be a full configuration of an experiment19.  

 

Table 15 - Experiments configurations 

Convolution 
kernel size 

7-1-5 9-1-5 9-3-5   

Window 
size 

17x17 19x19 21x21 23x23 33x33 

Feature 
maps 

32-16-1 64-32-1    

 

The full list of experiments (dual channels) is listed in Table 16. No tests were 

conducted with more than 64-32-1 feature maps due to the relative low amount of 

available training data. This will be made clear when the experimental results are 

presented in the next section. 

Table 16 - Experiments configuration (dual-channel) 

Experiment configuration 

Elevation set one (bicubic) Elevation set 2 (NN) 

7-1-5 x 17-17 x 32-16-1 

7-1-5 x 19-19 x 32-16-1 

7-1-5 x 21-21 x 32-16-1 

7-1-5 x 23-23 x 32-16-1 

7-1-5 x 33-33 x 32-16-1 

7-1-5 x 17-17 x 64-32-1 

7-1-5 x 19-19 x 64-32-1 

7-1-5 x 21-21 x 64-32-1 

7-1-5 x 17-17 x 32-16-1 

7-1-5 x 19-19 x 32-16-1 

7-1-5 x 21-21 x 32-16-1 

7-1-5 x 23-23 x 32-16-1 

7-1-5 x 33-33 x 32-16-1 

7-1-5 x 17-17 x 64-32-1 

7-1-5 x 19-19 x 64-32-1 

7-1-5 x 21-21 x 64-32-1 

                                                                 
19 This experiment would be denoted as 7-1-5 x 17-17 x 64-32-1 and this denotation is followed 
henceforth. 



7-1-5 x 23-23 x 64-32-1 

7-1-5 x 33-33 x 64-32-1 

9-1-5 x 17-17 x 32-16-1 

9-1-5 x 19-19 x 32-16-1 

9-1-5 x 21-21 x 32-16-1 

9-1-5 x 23-23 x 32-16-1 

9-1-5 x 33-33 x 32-16-1 

9-1-5 x 17-17 x 64-32-1 

9-1-5 x 19-19 x 64-32-1 

9-1-5 x 21-21 x 64-32-1 

9-1-5 x 23-23 x 64-32-1 

9-1-5 x 33-33 x 64-32-1 

9-3-5 x 17-17 x 64-32-1 

9-3-5 x 19-19 x 64-32-1 

9-3-5 x 21-21 x 64-32-1 

9-3-5 x 23-23 x 64-32-1 

9-3-5 x 33-33 x 64-32-1 

 

 

7-1-5 x 23-23 x 64-32-1 

7-1-5 x 33-33 x 64-32-1 

9-1-5 x 17-17 x 32-16-1 

9-1-5 x 19-19 x 32-16-1 

9-1-5 x 21-21 x 32-16-1 

9-1-5 x 23-23 x 32-16-1 

9-1-5 x 33-33 x 32-16-1 

9-1-5 x 17-17 x 64-32-1 

9-1-5 x 19-19 x 64-32-1 

9-1-5 x 21-21 x 64-32-1 

9-1-5 x 23-23 x 64-32-1 

9-1-5 x 33-33 x 64-32-1 

 

 

In order to assess how better the dual-channel proposed network performed in 

comparison to the equivalent single channel network20, the following single-channel 

experiments were conducted. 

Table 17 - Experiments configuration (single-channel) 

Experiment configuration 

Elevation set one (bicubic) 

7-1-5 x 17-17 x 64-32-1 

9-1-5 x 17-17 x 32-16-1 

9-1-5 x 19-19 x 32-16-1 

9-1-5 x 21-21 x 32-16-1 

9-1-5 x 23-23 x 32-16-1 

                                                                 
20 The single channel equivalent was trained with the same data but only for elevation set one. The 
tuples were of the form <slr_dem, lr_dem>, where slr_dem: the super-low resolution elevation data 
and lr_dem: the GT low-resolution elevation data. 



9-1-5 x 33-33 x 32-16-1 

9-1-5 x 17-17 x 64-32-1 

9-1-5 x 19-19 x 64-32-1 

9-1-5 x 21-21 x 64-32-1 

9-1-5 x 23-23 x 64-32-1 

9-1-5 x 33-33 x 64-32-1 

 

It was previously noted that the model is very sensitive to variations of the learning 

parameters. For this reason and after extensive testing, a fixed learning rate of 10−4 

for layers 1 and 2 and 10−5 for layer 3, were selected.  In addition, the weight decay 

was set to  5 ∗ 10−3 for all layers and the batch size to 128. In total, 25 experiments 

for the elevation set one and 20 experiments for the elevation set two were conducted 

(dual-channel) while a further 11 experiments were conducted for a single channel 

(DEM only).  Finally, the MSE, PSNR and SSIM metrics were used to assess 

performance of the network. A brief explanation of each used metric follows: 

 MSE: ‘The mean squared error (MSE) or mean squared deviation (MSD) of an 

estimator (of a procedure for estimating an unobserved quantity) measures 

the average of the squares of the errors—that is, the average squared 

difference between the estimated values and the actual value. MSE is a risk 

function, corresponding to the expected value of the squared error loss. The 

fact that MSE is almost always strictly positive (and not zero) is because of 

randomness or because the estimator does not account for information that 

could produce a more accurate estimate’ (Wikipedia) 

 PSNR: ‘Peak signal-to-noise ratio, is an engineering term for the ratio between 

the maximum possible power of a signal and the power of corrupting noise 

that affects the fidelity of its representation. Because many signals have a very 

wide dynamic range, PSNR is usually expressed in terms of the logarithmic 

decibel scale’. (Wikipedia) 

 SSIM: ‘The structural similarity (SSIM) index is a method for predicting the 

perceived quality of digital television and cinematic pictures, as well as other 

kinds of digital images and videos’. (Wikipedia). It ranges in values from 0 to 1, 

where 0 signifies total irrelevance between two images and 1 total similarity.  

5.6.2 Experimental results 

The first test the proposed network had to pass was the performance improvement 

it could offer versus a single-channel (optical) solution. Having been then proven to 

offer superior performance in this regard, it was tested against well-accepted image 

processing resizing techniques like the bicubic up-sampler. Finally, it was also tested 

against state of the art techniques like the single-channel Dong et al. (Dong, Loy, He, 

& Tang, 2015) model of which BSRCNN is a modification. 



5.6.2.1 Single channel results (elevation set 1) 
 

The single channel performance of the network can be seen for the Train data set 

(Figure 51). The network had been trained on these data so the good performance 

was expected. Figures 51 depicts the PSNR for the whole image while Figures 52(a-f) 

display the performance during training. More analytically, the curves of Figure 51 

depict the PSNR between the reconstructed LR DEM and the original LR DEM, when 

given the SLR DEM as input. Similarly, Figures 52(a-f) depict the running average of 

RMSE error for the patches used during training and thus have a finer granularity. It 

can be clearly seen that the RMSE is constantly dropping for both the training and 

validation patches. Furthermore, the larger convolution kernel of 9-1-5 offers a slight 

performance increase in comparison to the 7-1-5 case both for the PSNR and SSIM 

metrics as can been from Table 18.  

 

 
(a) 

 
(b) 

Figure 51 - PSNR single channel. a) 7-1-5 64-32-1 b) 9-1-5 64-32-1 
 



 

(a) 

 

(b) 
 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 52 - Training curves single channel 64-32-1. a) 7-1-5 17x17 b) 9-1-5 17x17 c) 9-1-5 19x19 d) 
9-1-5 21x21 e) 9-1-5 23x23 f) 9-1-5 33x33 

 

The SSIM metric curves are similarly shown in Figures 53(a-b). Regarding, the 

reconstruction it is good and clearly better than the corresponding bicubic 

reconstruction as can be seen in Figures 54(a-c).  

 

 

(a) 
 

(b) 

Figure 53 - SSIM Single channel Train data. a) 7-1-5 64-32-1 b) 9-1-5 64-32-1 
 

Table 18 - Single channel PSNR and SSIM for Train data set. 

Metric Convolution kernel size Bicubic 

7-1-5 9-1-5  

PSNR 26,65361 26,70987 22,742064 

SSIM 0,9210329 0,9245114 0,901115 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 54 - 64-32-1 Single channel Train reconstruction. a) 7-1-5 b) 9-1-5 c) bicubic d) GT 
 

Moving on to the validation set 2 data21, the corresponding PSNR and SSIM curves 

can be seen in Figures 55(a-d). Furthermore, as can be seen from Table 19 the 

proposed method performs better than the bicubic method even with the relative 

limited training set that was used. On top of that, there is slight performance increase 

when moving to a bigger convolution kernel (7-1-5 -> 9-1-5). Both the PSNR and SSIM 

metric are better for the 9-1-5 kernel. 

 

 
(a) 

 
(b) 

                                                                 
21 Validation set 2 is named Test data on the curves. 



 
(c) 

 
(d) 

Figure 55 - PSNR & SSIM single channel validation set 2 64-32-1. a) PSNR 7-1-5  b) PSNR  9-1-5  c) 
SSIM 7-1-5 d) SSIM  9-1-5 

 

Table 19 - Single channel PSNR and SSIM for validation set 2 data set 

Metric Convolution kernel size Bicubic 

7-1-5 9-1-5  

PSNR       23,36433 23,38185 21,012714 

SSIM 0,8756447 0,8771589 0,858634 

 

As can be seen from Table 19, the proposed single-channel model trained with the 

bicubic down and up scaled data performs much better in comparison to the bicubic 

case. The reconstructions can be seen in Figure 56. 

 



 
(a) 

 
(b) 

 
(c ) 

 
(d) 

Figure 56 - 64-32-1 Single channel validation set 2 reconstruction. a) 7-1-5 b) 9-1-5 c) bicubic d) GT 
 

5.6.6.2 Single channel results (elevation set 2) 
 

This data set is a different case since the data have been downscaled and up scaled 

using the nearest neighbor algorithm. This algorithm produces jaggy edges and is 

noisier. The trained model was expected to perform worse than the previous case. 

The PSNR and SSIM curves for this case can be seen in Figures 57(a-b). 

 

 



 
(a) 

 
(b) 

Figure 57 - Single channel PSNR & SSIM for Train data. Elevation set 2. 9-1-5 64-32- a) PSNR b) SSIM 
 

Table 20 lists the maximum PSNR and SSIM values for the models trained with 

elevation set 2, 9-1-5 32-64-1 among the 17x17, 19x19, 21x21, 23x23 and 33x33 cases. 

Comparing Tables 18 (elevation set 1 Train results) & 20 (elevation set 2 Train results) 

it can be clearly seen that the second network does not learn to augment the 

resolution as well. The noisier data of the nearest neighbor interpolation have an 

adverse effect on performance. The reconstruction can be seen in Figure 58. 

 

Table 20 - Single channel PSNR and SSIM for Train data set. 

Metric Convolution kernel size Bicubic 

9-1-5 

PSNR 23,17907 22,742064 

SSIM 0,8254921 0,901115 

 

The corresponding validation set 2 curves are shown in Figures 59(a-b) and the 

analytic values in Table 21. Comparing Tables 19 and 21, it is clear that the model can 

reconstruct far better when trained with elevation set 1. The added complexity that 

the nearest neighbor noisy upscaling brings about to the data is the main cause.  Lastly, 

the reconstruction can be seen in Figure 60. 

 



 
Figure 58 - 64-32-1 Single channel Train reconstruction (elevation set 2) 

 

 

 
(a) 

 
(b) 

Figure 59 - Single channel PSNR & SSIM For validation set 2 data (Elevation set 2) 9-1-5 64-32- a) 
PSNR b) SSIM 

 

Table 21 - Single channel PSNR and SSIM for validation set 2 data set 

Metric Convolution kernel size Bicubic 

9-1-5 

PSNR 20,93913 21,012714 

SSIM 0,7829993 0,858634 

 

 



 
Figure 60 - 64-32-1 Single channel validation set 2 reconstruction (elevation set 2) 

 

We can notice from Table 21 that the single channel version fails to perform better 

than the bicubic interpolation method for elevation set 2. This is in contrast to the 

dual channel method as will be seen in section 5.6.2.3. 

5.6.2.3 Dual channel results 
A second channel with the low-resolution optical data was added in order to assess 

how this would affect the reconstruction. Experiments using 32-16-1 & 64-32-1 

feature maps were conducted with both the elevation set 1 and elevation set 2. In 

addition, kernel sizes of 7-1-5, 9-1-5 & 9-3-5 were examined. Finally, the results of the 

two different elevation sets (Bicubic & NN) used will be presented separately.  

5.6.2.3.1 Elevation set one results 

As a rule, the more the available data the more a neural network model avails of 

additional feature maps. Under this assumption, the results for the 9-1-5 case will be 

presented for the 32-16-1 and 64-32-1 cases, which will help decide whether the 64-

32-1 should be examined further. From comparison of Figures 61(a, c) and 61(b, d) it 

is clear that the available training data were not enough to make use of the extra 

features maps. As a result, performance has deteriorated for the 64-32-1 case. Both 

renditions surpass the performance of the bicubic up-scaler for the PSNR metric but 

the 32-16-1 feature maps version is marginally better as can be from Table 22. 

 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 61 -Dual channel elevation set one PSNR & SSIM metrics for Train data. a) PSNR 32-16-1 b) 
SSIM 32-16-1 c) PSNR 64-32-1 d) SSIM 64-32-1 

 

 

Table 22 – Dual channel Train 9-1-5 PSNR & SSIM. Comparison between 32-16-1 and 64-32-1 feature 

maps 

Metric Feature maps Bicubic 

32-16-1 64-32-1  

PSNR 26,69095 26,68689 22,742064 

SSIM 0,9242242 0,9235429 0,901115 

 

The reconstructions can be seen in Figure 62(a, b) for the 32-16-1 and 64-32-1 

case, respectively. 



 

(a) 

 

(b) 

Figure 62  - Dual channel Train reconstruction. 32-16-1 & 64-32-1 comparison 

 

Similarly, the performance of the two versions are compared for the validation set 

2 in Figures 63(a-d).  From Figures 63(a-d), Table 23 and the similar performance drop 

for the Train data, it can be safely assumed that performance steadily declines with 

larger feature maps for this data set. This is not to say that performance would not 

have been higher when using more feature maps had more training data been 

available. However, this is something that has to be verified with more training data. 

 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 63 - Dual channel elevation set one 9-1-5 PSNR & SSIM metrics for validation set 2 data. a) 
PSNR 32-16-1 b) SSIM 32-16-1 c) PSNR 64-32-1 d) SSIM 64-32-1 

 

Table 23 - Dual channel validation set 2 9-1-5 PSNR & SSIM. Comparison between 32-16-1 and 64-32-1 

feature maps 

Metric Feature maps Bicubic 

32-16-1 64-32-1  

PSNR 23,46689 23,38473 21,012714 

SSIM 0,8781328 0,8756348 0,858634 

 

The reconstructions can be seen in Figure 64(a, b) for the 32-16-1 and 64-32-1 case, 

respectively. If we compare the PSNR value of the 64-32-1 network with the 

corresponding value of the single channel model, we can discern a slight performance 

increase for the dual channel version. 



 

(a) 

 

(b) 

Figure 64 - Dual channel validation set 2 reconstruction. 32-16-1 & 64-32-1 comparison 

 

The convolution kernel size also had an impact on performance. As can be seen in 

Figure 65 and Table 24 the larger convolutional kernel 9-1-5 performed a lot better for 

the validation set 2 data in comparison to the 7-1-5 case. This pattern did not hold for 

larger kernels something that is attributed to the low-resolution of the available data 

and that elevation edges that correspond to optical edges may not fall within the 

convolution window. 

 

 

(a) 

 

(b) 
 

(c) 

Figure 65 - PSNR comparison of different kernel sizes 32-16-1 for validation set 2 data a) 7-1-5 b) 9-
1-5 c) 9-3-5 

 

Table 24 - PSNR & SSIM of validation set 2 data for different kernel sizes and 32-16-1 feature maps 

Metric Convolution kernel Bicubic 

7-1-5 9-1-5 9-3-5  

PSNR 21,39834 23,46689 23,41802 21,012714 

SSIM 0,8063351 0,8781328 0,8777893 0,858634 

 

In order to assess real world performance, a comparison of the proposed model to 

that of Dong et al. (Dong, Loy, He, & Tang, 2015) was conducted. The model of Dong 



had been trained with two sets of data22 and this comparison was done for the smaller 

dataset of the two datasets that used 91 images. In order to conduct a fair comparison, 

tests were run using the code provided by Dong et al. (Dong C. , 2019), so that all 

numbers including the PSNR of the bicubic method are given as was returned by the 

code of the original research 23 . More specifically, the Train, Validation and Test 

elevation images for elevation data set one were used. They were up scaled two times 

just as done for the proposed model. The results are presented in Table 25 while the 

reconstructions can be seen in Figures 66(a-c) for the Dong model; on Figures 66(d-f) 

for the proposed model; and Figures 66(g-i) display for the GT24. It can visually be seen 

from Figures 66(a-c) and 66(d-f) that the model of Dong returns more blurry 

reconstructions than the proposed model. Furthermore, the PSNR returned for all 

Dong reconstructions is clearly less than the bicubic method. This finding strengthens 

the argument that general-purpose super-reconstruction models trained with generic 

data are insufficient to process images of elevation data. 

Table 25 - PSNR for Train, Validation sets 1 and 2 data returned by Dong's model 

 PSNR of Dong Model PSNR of bicubic method 

Train 23,775215 26.926449 

Validation set 1 20,381643 23.009273 

Validation set 2 22,116246 22.796978 

 

 

                                                                 
22 The first was trained with a rather small set of 91 general nature & people images while the second 
with a much larger ImageNet data set. 
23 A discrepancy between the PSNR given for the proposed method and that given by the code of Dong 
is due to the normalization to the 0..1 range that was conducted in the case of the proposed method. 
Dong et al. worked directly with the 0..255 range gray levels. 
24 The proposed method is based on 9-1-5 32-16-1 21x21 dual-channel configuration, which was found 
to offer the best dual-channel performance. 
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(i) 

Figure 66 - SR Reconstructions of Train, Validation sets 1 and 2 data. a) Dong Train b) Dong Validation 
set 1 c) Dong validation set 2 d) proposed method Train e) proposed method validation set 1 f) 
proposed method validation set 2 g) GT Train h) GT Validation set 1 i) GT validation set 2 

 

5.6.2.3.2 Elevation set two results 

This variation of the training was considered as an attempt to assess the 

performance of the model under more adverse conditions. The elevation data have in 

this case been downscaled and up-scaled two times with the nearest neighbor 

method, which introduces much more noise and produces jaggy images (Figure 49). 

In this regard, the effect of the convolution kernel size on performance for the Train 

data can be seen in Figure 67, where the 9-1-5 kernel seems to offer slightly better 

performance than 7-1-5 rendition, as was the case for elevation set one. Furthermore, 



it can be seen in Table 26 that both the maximum PSNR and SSIM are higher for the 

9-1-5 kernel. Lastly, the reconstructions can be seen in Figure 68 for the 7-1-5 and 9-

1-5 case, respectively. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 67 - Dual channel elevation set two PSNR & SSIM metrics for Train data. a) PSNR 7-1-5 b) PSNR 
9-1-5 c) SSIM 7-1-5 d) SSIM 9-1-5 

 

Table 26 - Dual channel 32-16-1 PSNR & SSIM Train Reconstruction. Comparison between 7-1-5 and 9-

1-5 convolution kernels. 

Metric Convolution kernel Bicubic 

7-1-5 9-1-5  

PSNR 23,05184 23,16803 22,742064 

SSIM 0,8304677 0,8323113 0,901115 

 

 

 

 



 
(a) 

 
(b) 

Figure 68 - Dual channel Train reconstruction for elevation set two. 7-1-5 & 9-1-5 comparison 
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(b) 

 
(c) 

 
(d) 

Figure 69 - Dual channel elevation set two PSNR & SSIM metrics for validation set 2 data. a) PSNR 7-
1-5 b) PSNR 9-1-5 c) SSIM 7-1-5 d) SSIM 9-1-5 

 

Table 27 Dual channel 32-16-1 PSNR & SSIM validation set 2 reconstruction. Comparison between 7-

1-5 and 9-1-5 convolution kernels. 

Metric Convolution kernel Bicubic 

7-1-5 9-1-5  

PSNR 21,30144 21,11909 21,012714 



SSIM 0,7934909 0,7801557 0,858634 

 

 

 
(a) 

 
(b) 

Figure 70- Dual channel validation set 2 reconstruction for elevation set two. 7-1-5 & 9-1-5 
comparison 

 

According to Table 27, the 9-1-5 version seems to, unexpectedly, offer slightly 

worse performance for both metrics when reconstructing on validation set 2, which is 

attributed to jaggy high-frequency content of the nearest neighbor upscaling. More 

importantly though, the dual-channel version of the network outperforms the 

corresponding best case for the single-channel version by approximately 0.2db (9-1-5 

case).  The reconstructions can be seen in Figure 70 (a-b) and the performance curves 

in Figure 69. 

5.6.2.3 Single vs dual channel comparison 
The research presented in this chapter was based on the assumption that the dual 

channel version would offer benefits to the performance of the network. This was not 

always the case, as can be seen from Table 28. More specifically, the single channel 7-

1-5 convolution kernel size scored marginally lower as compared to the single-channel 

equivalent when reconstructing on the validation set 2 data and trained on the 

elevation set 1 data set. This can be seen in Figures 71(a-d) and Table 28. 
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Figure 71 - PSNR and SSIM 64-32-1 for single and dual channel validation set 2 7-1-5 model. a) PSNR 
single channel b) PSNR dual channel c) SSIM single-channel d) SSIM dual-channel 

 

Table 28 - PSNR and SSIM 7-1-5 single and dual channel validation 2 comparison 

Metric 7-1-5 Convolution kernel Bicubic 

Single channel Dual channel25  

PSNR 23,36433 23,340 21,012714 

SSIM 0,8756447 0,86729 0,858634 

 

Further comparisons are shown for the 9-1-5 case. This time, as shown in Table 29, 

the dual channel scores better than the single channel version. The problem tackled 

in this chapter of my research is very difficult since the resolution of the elevation data 

were five times lower than the optical version and because of the rather limited 

training set. It surmised that more available or by reducing the resolution discrepancy 

between the elevation and optical data would help improve performance.  Finally, a 

similar improvement of performance for the 9-1-5 dual-channel case trained on 

elevation set 2 over the equivalent 9-1-5 single channel performance was also 

observed, as can be attested by comparing Table 21 (single-channel) and Table 27 

(dual-channel). 

                                                                 
25 Elevation set one. 
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(d) 

Figure 72 - PSNR and SSIM 64-32-1 for single and dual channel 9-1-5 validation set 2 model. a) PSNR 
single channel b) PSNR dual channel c) SSIM single-channel d) SSIM dual-channel 

 

Table 29 - PSNR and SSIM 9-1-5 single and dual channel comparison (validation set 2) 

Metric 9-1-5 Convolution kernel Bicubic 

Single channel Dual channel26  

PSNR 23,38185 23,46689 21,012714 

SSIM 0,8771589 0,8781328 0,858634 

  

                                                                 
26 Elevation set one. 



 

 

 

 

 

PART II – ITERATIVE RELAXATION SYSTEM 
  



6. Relaxation System 

The idea behind the relaxation system stems from image processing applications 
for edge detection of the early 1980’s but applied in a more general context. Owing to 
the increased computing power available, a multitude of spatial information can come 
into play increasing the accuracy of the algorithm. The logic behind a relaxation system 
is to allow the smooth formation of an edge chain by examining the local context of an 
edge e27. If the local context contains evidence that the under investigation edge fits 
in with neighboring edges it has a confidence value augmented. Otherwise, its 
confidence value is decremented. The ultimate goal of such a system is to reach a point 
where all edges are positively labeled as belonging to an edge or not. 

6.1 Historical origins 

Many propositions for edge detection were made since Marr & Hildreth formulated 
a concrete theory of edge detection in 1980 (Marr D. & Hildreth, 1980). The most 
successful and influential proved to be the proposition of Canny (Canny, 1986), a 
method so efficient that variations of it are widely used even today. The significant 
contribution of Canny was the inception of non-maximal suppression of directional 
edge data, which discarded spurious low-intensity edges along the direction of the 
magnitude of an edge28. This was followed by a hysteresis stage that would classify the 
remaining edges as strong and weak, respectively. Weak edges that were not in the 
neighborhood of strong edges were discarded while weak edges near a strong edge 
were converted into strong edges themselves. The result was a crisp edge image free 
of most spurious edges. 

Edge detectors are a vital component of many edge segmentation algorithms. The 
first step in such algorithms is to find the edges by applying edge detecting operators 
that detect discontinuities in the graylevel, color or texture of an image (Sonka M., 
Hlavac, & Boyle, 2014). Supplementary processing is then performed to combine the 
found edges into continuous chains with the continuity usually defined through a 4-
way or 8-way connectivity operator. A problem regarding edge detectors is that 
borders still have noise with important edges missing. It is for this reason that edge 
properties in the context of the under inspection edge can yield important information 
for making the case whether it should be included in an edge chain. This procedure 
can be performed iteratively, with each successive iteration augmenting or 
decrementing the confidence of whether an edge belongs to an edge chain or not. For 
example, a weak edge placed between two strong edges can provide an indication that 
it should be included in an edge chain (Sonka M., Hlavac, & Boyle, 2014). This 
procedure has come to be known as relaxation. 

The method proposed in this thesis, is a variation of Prager’s method (Prager J. , 
1980), which is based on the so-called crack-edges (virtual edges between the pixels 
of an images). Prager’s initial proposal was to consider all crack edges emanating from 

                                                                 
27 An edge in this context is the pixel of a given image that is being examined if it belongs to a transition 
chain segmenting two regions. 
28 Also known as the orientation of an edge. 



an edge as show in Figure 73 [taken from (Sonka M., Hlavac, & Boyle, 2014) ]. Prager 
considered horizontal and vertical edge chains so he developed rules for finding 
continuity between the central edge e and all parallel horizontal edges29 or all possible 
parallel vertical edges30. He then created categories according to the number of crack 
edges that had strong neighboring edges.  

 
 

 
Figure 73 - Crack edges of central edge e 

Edges pairings(𝐱, 𝐲), were then created which were called the vertex-type. In this 
schema, x is the number of left strong neighboring crack edges and y is the number of 
right strong neighboring edges. Prager also defined various vertex-type categories and 
according to this categorization, the edge e confidence could either incremented or 
decremented. The categories Prager defined were: 

 0-0: isolated edge – negative influence on edge confidence. 

 0-1: uncertain – weak positive or no influence on edge confidence. 

 0-2. 0-3: dead end – negative influence on edge confidence. 

 1-1: continuation – strong positive influence on edge confidence. 

 1-2, 1-3: continuation to border intersection – medium positive influence on 

edge confidence. 

                                                                 
29 Horizontal case. 
30 Vertical case. 



 2-2, 2-3, 3-3: bridge between borders – not necessary for border creation, no 

influence on edge confidence. 

The patterns of connectivity for the horizontal case can be seen in Figure 74 (from 

[Sonka M., Hlavac, Boyle, 2014]). A pairing (x,y) of crack edges is called the vertex-

type. 

 

 

Figure 74 - Some typical crack edges connectivity patterns 

To compute the vertex type choose the maximum confidence vertex conf(j) , i.e., 
the vertex is type j where j maximizes conf(j), as shown below: 

Table 30 - Confidence of vertex type calculation 

 𝒄𝒐𝒏𝒇(𝟎) = (𝒎 − 𝒂)(𝒎 − 𝒃)(𝒎 − 𝒄) (7) 

 𝒄𝒐𝒏𝒇(𝟏) = 𝒂(𝒎 − 𝒃)(𝒎 − 𝒄) (8) 

 𝒄𝒐𝒏𝒇(𝟐) = 𝒂𝒃(m-c) (9) 

 𝒄𝒐𝒏𝒇(𝟑) = 𝒂𝒃𝒄 (10) 

 𝒎 = 𝐦𝐚𝐱 (𝒂, 𝒃, 𝒄, 𝒒), where a,b,c: normalized gradient for the 
three edges and q a constant (0.1 or something close). 

(11) 

Parameter m adjusts the vertex classification so that it is relative to the local 
maximum. For example, (a,b,c) = (0.25, 0.01, 0.01) is a type 1 vertex31. The parameter 
q forces weak vertices to type zero. After the determination of the left and right 
vertex-type, the edge-type is simply the concatenation of the left and right vertex-
type. Finally, the edge confidence in each iteration is modified according to the 
following equations: 

                                                                 
31 If you do the math according to equations 7-11, conf(1) is the maximum value so the edge is classified 
as type 1. 



 

 

Table 31 - Modification of confidence 

Increment 𝒄𝒌+𝟏(𝒆) = 𝒎𝒊𝒏 (𝟏, 𝒄𝒌(𝒆) + 𝜹) (12) 

Decrement 𝒄𝒌+𝟏(𝒆) = 𝒎𝒂𝒙 (𝟎, 𝒄𝒌(𝒆) − 𝜹) (13) 

Leave as is 𝒄𝒌+𝟏(𝒆) = 𝒄𝒌(𝒆) (14) 

This iterative process smoothly relaxes the confidences of the edges so that they 

fit in with strongly aligned edges or atrophy. 

6.2 Data sources and pre-processing 

Multimodal data sources have been collected from a dense urban neighborhood of 
Athens, Greece. Since the development of many of the algorithms in this thesis was 
conducted under the Mathworks Matlab platform, part of the necessary pre-
processing pertains to the transformation of these primary data sources to the 
appropriate Matlab formats. Specifically, the following tools were used: a) LAS Tools, 
b) Quantum GIS, c) Monteverdi, d) Global Mapper, e) TNT Mips. This thesis used the 
product of the pre-processing as conducted in the research project of the 
Technological Institute of Athens, Archimedes III in 2013 by Vassilas et al. (Vassilas N., 
Charou, Petsa, & Grammatikopoulos, 2013).  

6.2.1 Data sources 

1. LiDAR data from a neighborhood of Kallithea regarding a region 2km x 4km which 
were taken and delivered in 2003 by GoeIntelligence1. The initial data have been re-
sampled through interpolation so that they have a spatial resolution (sampling step) 
of 1m. This re-sampling resulted in a LiDAR picture of 2000x4000 pixels from which a 
specific region of 1827x1793 was cropped and used for further processing. The height 
resolution of the initial LiDAR data was 20cm whilst that of the delivered data (after 
the re-sampling) was 1cm. These data form the digital terrain of the urban region 
(Digital Surface Map – DSM)32.  

2. A digital elevation map for the same area was also handed in by Geointelligence. 
The DEM was calculated through interpolation from the DSM and has a spatial 
resolution of 2m. An area of resolution 1827x1793 was cropped from the DEM and 
used in this thesis.  

3. Normalized DSM (nDSM): This has been calculated by subtracting the DEM from 
the DSM data, that is nDSM = DSM – DEM. The nDSM contains the real height of the 
buildings from the ground up and can be used in the 3D reconstruction of the area. 

                                                                 
32 All cited data sources of this section come from the research of Vassilas et al. (Vassilas N., Charou, 
Petsa, & Grammatikopoulos, 2013) and for the sake of brevity are not shown.  



Normalization was performed in Matlab. Possible negative values were replaced by a 
height of zero. Such negative values are errors, which are the product of the 
interpolation technique used to calculate the DEM. The delivered nDSM data came in 
two formats. First, is a grayscale image with a range of values 0..255 and secondly a 
Matlab m file which contains the absolute real value of the height. 

4. Colored high-resolution RGB aerial-photograph from the National Cadastre & 
Mapping Agency S.A., which depicts the specific area of interest in Kalithea, Greece. 

5. Multispectral Google Earth satellite image dated from 2003. This image was used 
in order to extract ground truth maps of the building boundaries in the region. It was 
also used to interpret possible differences between the optical (aerial) photograph 
given by the National Cadastre & Mapping Agency S.A and the Digital Elevation Map 
given by GeoIntelligence in 2007. 

6. Three optical channels of the ICONOS orthogonal projected satellite image with 
zero cloud overlay and a spatial resolution of 1m (pan-sharpened). This image was 
granted for the research needs of the Archimedes III program by the Computational 
Intelligence Laboratory. 

7. 12 bird’s eye views of the region of interest. These data will assist in the 
qualitative assessment of the results and in the extraction of ground truth maps, which 
will facilitate the quantitative results of the experiments. 

6.2.2 Implicit data sources 

As part of the Archimedes III research program, masks were created that classify 
the pixels of the optical data according to various attributes of interest. These masks 
are binary images where a logical 0 denotes the existence of the attribute of interest 
and a logical 1 the absence hereof. Tree, grass and shadow masks were created by 
training neural networks to identify these structures. 

6.2.3 Selection and pre-processing of building block 

The building block selected has the facades of the buildings oriented across two 
dominant directions, which were found to be at -41º and 49º. In order to simplify 
calculations without losing the general features of the region the following pre-
processing steps were applied: 

            ▪ Rotation according to the dominant direction of -41º. 

            ▪ Extraction of a rectangular region that corresponds to a building block from 
the initial data. Data were extracted for the optical and DEM channel during this 
process and are shown in Figure 75(a-b). The rotated and cropped green and tree 
masks were similarly extracted. These are shown in Figure 76 (a-b). Finally, the shadow 
mask was extracted in a similar manner and is shown in Figure 77. 

 

 

 



 

 

 

 

 

(a) 

 

(b) 

Figure 75 - rotated & cropped a) Optical data b) DEM data 

 

 

  

Figure 76 - rotated & cropped a) Grass mask b) Tree mask 

 



 

Figure 77 - rotated & cropped shadow mask 



6.2.4 Further pre-processing 

Various necessary pre-processing is conducted in the sub-section. 

 Creation of foliage mask: This mask is the logical conjunction of the grass and 
tree masks after a closure has been applied to it and thereafter some further 
dilation. It is show in Figure 78. 

 

 

Figure 78 - Foliage mask 

 

 Gray-scale version of optical data. 

 

 

Figure 79 - Gray scale version of optical data 

 



 Optical data with foliage masked out: The foliage is masked out according to 
the composite foliage mask. 

 

 

Figure 80 - Optical data with foliage masked out 

 

 DEM data with foliage masked out: The foliage is masked out according to 
the composite foliage mask. 

 

 

Figure 81 - DEM data with foliage masked out 

 

 Height cohesive regions map: A height cohesive region map developed by 
(Vassilas N., Charou, Petsa, & Grammatikopoulos, 2013) was also used as input 
to the relaxation system. The algorithm utilizes 8-way connectivity to scan the 



image from the top-left to the bottom-right searching for neighbors along the 
three pixels of the previous scanline as well as along the pixel to the left33. The 
map can be seen in Figure 82. 

 

 

Figure 82 - Colored height cohesive region map 

 

 A grayscale version of the cohesive regions image: This image was used in order 
to detect the edges of the cohesive regions. It can be seen in Figure 83. 

 

 

Figure 83 - grayscale height cohesive region map 

 

                                                                 
33 The algorithm is a generalization of the binary cohesive region generation algorithm. See the full 
paper of (Vassilas N., Charou, Petsa, & Grammatikopoulos, 2013) for more details. 



 Smoothing of the grayscale version of the cohesive region image, which is 
standard procedure before applying any edge detection technique 34 . A 
Gaussian kernel with a unit standard deviation was used. 

 

 

Figure 84 - smoothed height cohesive regions 

 

 Edge detection of cohesive regions: The edges of the cohesive regions are 
found using the Canny edge detection algorithm. A proprietary version of the 
Canny method was written for this purpose. This variation of the Canny 
algorithm performs maximum suppression and hysteresis along the diagonals 
as well as along the horizontal & vertical directions. The magnitude and edges 
are shown in Figure 85(a-b). 

 

 

(a) 

 

(b) 

Figure 85 – a) Magnitude of cohesive regions b) Edges of cohesive regions 

 

 Smoothing of optical & DEM data with a Gaussian filter (μ=0 & std=1). 

                                                                 
34 The edges of the height cohesive regions map are used in the Relaxation process. 



 

 

 

 

(a) 

 

(b) 

Figure 86 - Gaussian smoothed (μ=0, std=1) a) Optical data b) DEM data 

 

 Edge detection of optical and DEM data: A proprietary implementation of the 
Canny edge detection is utilized in order to find the edges. The three stages of 
the Canny detection method as modified for the purpose of the thesis are 
described below. 

o Magnitude of optical & DEM data: The standard Sobel masks 

 
𝑮𝒙 =

−𝟏 𝟎 𝟏
𝟐 𝟎 𝟐

−𝟏 𝟎 𝟏
 

(15) 

 
𝑮𝒚 =  

𝟏 𝟐 𝟏
𝟎 𝟎 𝟎

−𝟏 −𝟐 −𝟏
 

(16) 

 

are utilized in order to calculate the magnitude and orientation of the 
optical and DEM data and the gradient magnitudes are then calculated 
as the Euclidean distance measure according to the equation 

 
|𝑮| = √𝑮𝒙

𝟐 + 𝑮𝒚
𝟐 

(17) 

 

 while the orientation of the gradient according to the equation. 

 𝜽 = 𝐚𝐫𝐜𝐭𝐚𝐧 (𝑮𝒚/𝑮𝒙) (18) 

 

The results are shown in Figures 87 and 88. 

 



 

Figure 87 - Magnitude of optical image 

 

 

 

Figure 88 - Magnitude of DEM image 

 

o Non-maximum suppression stage: The purpose of this stage of the 
Canny edge detection algorithm is to sharpen the edges. All local 
maxima of the gradient image are preserved while all other gradients 
are discarded. Since all calculations of this stage use 8-way 
connectivity, all orientations are rounded to the nearest 45º. Then the 
magnitude of each edge is compared to that of the magnitudes along 



the positive and negative gradient directions quantized to the nearest 
8-neighbors. If the strength of the edge is the largest, then the edge is 
retained otherwise it is suppressed. The results of this stage are shown 
in Figures 89 and 90. 

o Double thresholding stage: This final Canny stage has the goal of 
removing spurious edges due to noise. Two thresholds are used by 
Canny, a strong threshold above which edges are accepted and a weak 
threshold below which edges are discarded. Edges that have a 
magnitude between these two thresholds are marked as weak. A final 
stage called hysteresis is then applied. In this stage, weak edges are 
tested to ascertain whether they are flanked by strong edges. Such 
weak edges are turned into strong edges. The logic behind this is that 
noise in unlikely to result in strong edges, which are supposed to be 
due only to variations of the image. The results are shown in Figures 91 
and 92. 

o Create logical neighbor cell matrix: Four Matlab cell matrices35 are used 
in order to extract all logical neighbors of a cell according to 8-way 
connectivity. These are the a) horizontal cell matrix; b) vertical cell 
matrix; c) 45° with the dimension being the same as that of the optical 
& DEM data. Each cell in turn holds a 3x3 matrix that represents the 
central edge and its eight neighbors.  It has a logical one for each 
possible neighbor aligned along the orientation of the under 
consideration edge while all other entries have a logical zero. The four 
cell matrices are shown in Figures 93(a-d). 

 

                                                                 
35 Cell matrices are a Matlab complex array type in which each entry can hold another structure. For 
instance, each entry could contain a full matrix. These are essentially used as masks to extract the 
relevant neighbors according to the orientation. 



 

Figure 89 - Magnitude of gradient (optical) after non-maximum suppression 

 

 

 

Figure 90 - Magnitude of gradient (DEM) after non-maximum suppression 

 

o Create neighbor extract cell matrix A Matlab cell matrix with same 
dimensions as that of the optical & DEM data. Each cell holds a 3x3 
matrix with the values of the magnitude along the asserted entries of 



the previous logical neighbor’s cell matrix 36 . The previous logical 
neighbor’s cell matrices are used as logical masks to extract the 
corresponding magnitude. 

 

 

Figure 91 - Magnitude of optical image after double thresholding 

 

 

 

 

 

 

 

 

 

 

 

                                                                 
36 For instance an edge with horizontal orientation will have the neighbors extracted according to 
Figure 108(a); with vertical according to Figure 108(b); with 45° according to 108(c) and with -45° 
according to Figure 108(d). 



 

Figure 92 - Magnitude of DEM image after double thresholding 

 

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 93 - Logical neighbors cell matrix 

 

o Crack neighbors & logical Crack neighbors: These are derived cell 
matrices just like the previous two cell matrices. The difference is that 
they take into account the orientation of the possible neighbors and 
include them only if they are aligned with the central edge. 

o Erosion of DEM data: An erosion morphological operator is applied to 
the DEM in order to facilitate the comparison with the optical data 
while minimizing the possibility of accidentally wiping off optical data 
that are not supported by the DEM. 

6.3 Confidence matrix initialization 

The goal of the proposed algorithm is to create orthogonal borders that correspond 



to the building facades of a densely populated urban area. In order to achieve this the 
edge borders of the optical image as attested by the magnitude of Figure 96 are utilized 
in an iterative technique called Relaxation. The confidence assigned to each edge is 
merely a measure of the certainty that it is a true edge belonging to a building contour. 
The algorithm processes edges differently according to their type. As previously stated 
we define four type types of edges (Vassilas N., Charou, Petsa, & Grammatikopoulos, 
2013): 

 ‘Optical and elevation edges. Most edges belong to this category. Optical edges 
separate regions of different graylevel in the optical image while elevation 
edges separate regions of different height. This the typical case’. 

 ‘Optical edges that are not elevation edges. These edges separate regions of 
different graylevel but same height. For instance, adjacent roofs with different 
graylevel’. 

 ‘Elevation edges that are not optical edges: These edges separate regions of 
different height but same color. For instance, roofs that have the same graylevel 
as the pavement’. 

 ‘Edges that are neither optical nor elevation edges: This is the most difficult 
case. For instance, adjacent roofs with the same height and same graylevel’.  

The proposed relaxation system is divided into two sub-systems. The first sub-
system performs one time confidence adjustment. This is because of the nature of 
some of the data they cannot be used in an iterative procedure since this would always 
yield the same result. The confidence matrix would thus be distorted and not 
correspond to reality. It is for this reason that these data affect the confidence matrix 
once before the relaxation process commences.  

The initial confidence matrix is set to the magnitude of the optical data after the 
pre-processing that occurred in the previous section. It can be seen in Figure 94.  

 



 
Figure 94 - Initial confidence matrix (set to magnitude of optical data) 

 

One time confidence adjustment37 

The confidence adjustment presented in this section are performed only once 
before the iterative procedure commences. 

1. Pruning of all edges below 3.7m: Any structure below the threshold of 3.7m can be 
safely removed since it is assumed not to belong to a building facade. This is done by 
examining the DEM data as it has been pre-processed in the previous section. The 
modified confidence matrix is graphically depicted in Figure 95. Table 32 lists the 
number of edges that were pruned according to this criterion. 

 

Table 32 -Low height edges pruned after low-height object removal 

Edges pruned 51730 

 

 

 

 

 

 

                                                                 
37 As explained in introduction to this section, due to the static nature of some of the data they cannot 
be used in the iterative relaxation process. They are however used to adjust the confidence once before 
the iterative relaxation procedure commences. 



 

 

 

 

 

Figure 95 - Confidence matrix after low-height object removal 

 

2. Enhancement of edges that coincide with cohesive regions edges: Edges that 
coincide with those of figure 90(b) have their confidence set to 100% since the optical 
edges fall upon the cohesive regions boundaries. This almost certainly only occurs for 
a true edge. Nine thousand two hundred fifty two edges were found to coincide. The 
modified confidence matrix is show in Figure 96. 

Table 33 - Number of optical edges coinciding with cohesive regions edges 

Positive edges 9257 

3. Enhancement of optical edges that are also DEM edges: If an optical edge coincides 
with a DEM edge then we can be almost certain that this a true edge. The confidence 
is boosted to 100% and is displayed in Figure 97. 

Table 34 - Number of optical edges coinciding with DEM edges 

Positive edges 15349 

4. Suppression of edges delimiting low height spanning objects: Edges of objects with 
a relative height span less than 3.5m are labeled as low height-spanning objects and 
are suppressed. This is done with the aid of the elevation edge image (Figure 92). 

 



 

Table 35 -Number of optical edges suppressed due to low-height spanning objects 

Positive edges 26790 

 

 

 

Figure 96 - Confidence after taking into account the coincidence of optical and cohesive region edges 

 

5. Enhancement of edges that are optical and are above minimum height-span: All 
optical edges that are above the 3.7m height threshold have their credibility 
augmented. Likewise all optical edges that are above 3.7m and are at a cohesive 
region boundary are further augmented. Finally, all optical edges that are above 3.7m, 
are Canny optical edges and are at a cohesive region boundary are even further 
augmented. The new confidence matrix is shown in Figure 98. 

Table 36 - Edges above 3.7m that have their confidence augmented 

Edges above 3.7m 5791 

Edges above 3.7m and at cohesive region 

boundary 

3543 

Edges above 3.7m, at cohesive region 
boundary and Canny output edges. 

2007 

 



 

Figure 97 - Confidence matrix after coinciding optical & elevation edges have their confidence 

boosted to 100% 

 

 

 

Figure 98 - Confidence matrix after augmenting confidence according to Table 36 

 



6. Edges along dominant directions: All edges that have an orientation aligned with 
the dominant directions is given a small augmentation to their credibility. On the 
contrary, all edges that are not aligned with the dominant directions have their 
credibility decremented. Since, the initial data images have been compensated for the 
dominant directions, the default dominant directions are 0º and 90º. The new 
confidence matrix can be seen in Figure 99. 

Table 37 - Edges aligned with dominant directions 

Edges aligned with dominant directions 14868 

Edges not aligned with dominant directions  49168 

 

 

 

Figure 99 - Confidence matrix after augmenting confidence of edges along dominant directions 

7. Shadow mask edges: Careful examination of the original shadow mask in (Vassilas 
N., Charou, Petsa, & Grammatikopoulos, 2013) reveals that the illumination source 
(sun) must have been placed at the bottom-center of the image. It was determined in 
the research by Vassilas et al. that the horizontal shadows must be the result of higher 
buildings casting their shadows north on lower surfaces while the vertical shadows are 
due to higher buildings casting their shadows to the east38. These borders (edges) give 

                                                                 
38 According to Vassilas et al. (2013) who originally created the shadow mask.  'The illumination source 

must have been to the southeast'. Since our data have been rotated to compensate for the dominant 

directions, the illumination source must have been to the bottom-center. 
 



very important information about the boundaries of the building facades and thus 
have priority over other edges or height data.  

The shadow mask used for this processing was created by turning the initial binary 
image of the shadow mask (Figure 82) to a bipolar map (0/1 to -1/+1). The bipolar map 
was then filtered with the templates of Table 38(a-b), for horizontal and vertical edges, 
respectively and then normalized with the Otsu method. This resulted in a usable 
shadow mask, which is depicted in figure 100.   The shadow mask of Figure 100 is then 
placed on top of the optical edges and coinciding edges are found by performing a 
logical AND between them. The remaining edges have a high probability of being a 
true edge belonging to a building contour. Hence, their confidence is significantly 
boosted. The resulting confidence mask can be seen in Figure 101. 

Table 38 a) Horizontal template b) Vertical template 

 

 

 

 

 

(a) 

 

(b) 

 

Table 39 - Number of optical edges that coincide with shadow edges 

Number of optical edges that coincide with shadow edges 2858 

 

8. Enhancement of credibility of edges that have strong neighboring edges along their 
orientation: Each edge that has a strong neighboring edge along its orientation is 
enhanced. Eight-way connectivity is used in order to ascertain whether a strong 
neighboring edge exists, thus all orientations are partitioned in 45° areas. Each edge 
that has at least one neighbor along its orientation has its credibility augmented. The 
resulting confidence matrix can be seen in Figure 102. 

 

Table 40 - Number of edges with strong edges along their orientation 

Number of edges that have strong neighbors along their orientation 11688 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 100 - Final shadow mask 

 

 
Figure 101 - Confidence after augmenting edges that coincide with shadow edges 

 



 

Figure 102 - Confidence after taking into account neighbors along edge orientation 

 

This was the final step of the pre-processing before the iterative relaxation process. 

 

6.4 Iterative relaxation 

As stated at the beginning of this chapter, borders of regions or other edges are 
strongly affected by image noise. Therefore, considering the context of an edge can 
result in a crisper image. For example, ‘a weak horizontal edge positioned between 
two strong horizontal edges is highly probable to be a true edge and should gain 
credibility. On the contrary, an edge that is positioned by itself with no supporting 
context should have its credibility decreased’. This is the basic idea behind Prager’s 
work. The contribution of this thesis to his work is that connectivity is considered not 
only for horizontal and vertical edges but also for other diagonal edges. 

Prager (Prager J. , 1980) proposed an iterative technique, which can easily be 
parallelized, that gradually increases/decreases the credibility or confidence of the 
edges until they asymptotically approach 0 or 1.  The proposed algorithm is presented 
below: 

 

Table 41 - Proposed relaxation algorithm (Prager, 1980) 

1. Set the initial confidence of each edge as the gradient of the optical image, 

normalized to unity. 



2. Enter loop. 

1. Compute edge-type and vertex-type based on the confidence of edge 

neighbors. 

2. Modify confidence of each edge based on its vertex type and previous 

confidence. 

3. End iterative loop when all confidences have asymptotically 

approached zero or one. 

The two most important notions of this algorithm are: 

    • Edge-types: The number of left and right neighbors. There are two edge types 
ranging from 0 to 3 for each edge, as explained in Section 6.1. 

    • Vertex-type: Each vertex (edge) has a left and right edge-type, which are 
computed from the strength of edges emanating from a vertex. Their concatenation 
is the vertex-type.  

The proposed variation of Prager’s algorithm uses an 8-way connectivity scheme 
and is applicable to horizontal edges, vertical edges 45º and -45º edges39. It can easily 
be extended to other edge types as well40. Starting from the central edge e and 
considering a horizontal orientation, the left-vertex is the end-point for three other 
possible edges to the left. Likewise, the right-vertex is the end-point for three other 
possible edges to the right. 

The variation of the Prager’s algorithm implemented for the purposes of this thesis, 
assumes that each edge can continue along three edges to the left and/or three edges 
to the right for the horizontal case. Three more cases are consider which are the 
vertical, the diagonal type 1 and the diagonal type 2. The idea is illustrated in Figure 
103. The central edge in Figure 103(a) has three possible neighbors to the left and 
three possible neighbors to the right. How many neighbors really exists is determined 
according to the equations, which were presented in section 6.1. Regarding the 
relaxation technique, each edge is evaluated according to the number of edges 
emanating from the vertex (left or right for the horizontal case, top or bottom for the 
vertical case, alternating diagonal connectivity for the two diagonal cases).  The edge-
type is then simply a concatenation of the left and right vertex-types, using an x-y 
pairing scheme, where x is the number of left neighbors and y the number of right 
neighbors. The confidence of each edge is then modified in an iterative scheme 
according to the edge type41 where equations (7-11) are used to calculate the vertex-
type. The vertex type calculations depend on the orientation of the under examination 
edge and the crack edges in its context, as shown in Figure 103. After the 
determination of the left and right vertex-type, the edge-type is simply the 
concatenation of the left and right vertex-type. Finally, the edge confidence in each 

                                                                 
39 Prager’s algorithm only labeled edge-types according to horizontal and vertical crack edges. 
40 For instance, the granularity of the orientations could me made finer. 
41 Edges types were defined in section 6.1. 



iteration is modified according to equations 12-14 and the vertex-type.  

The algorithm is iterative and it aims to categorize all elements of the confidence 
matrix as certain edges (aka belonging to a building contour or not) or non-certain 
edge (aka those that the algorithm failed to verify as belonging to building contours 
or not). The categories are defined as shown below: 

 Certain Edges: Edges that have a confidence less than 0.2 or greater than 0.8. 

 Non-certain edges: Edges that have a confidence between 0.2 and 0.8. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 103 - Crack edges. a) Horizontal b) Vertical c) Diagonal case 1 (45°) d) Diagonal case 2 (-45°) 

The iterative effect of the relaxation process on the confidence of the edges is 
shown in Table 42. As can be seen from the table, the algorithm has managed to 
classify the vast majority of edges with certainty. Only five (5) edges have remained 
unclassified. The final confidence matrix is illustrated in Figure 104.  

After the final confidence has been calculated, a small region elimination procedure 
is executed on the image. The result of the small area elimination process is shown in 
Figure 105. 

 

 



 

Table 42 - Iterative effect of relaxation process on confidence 

Iteration Edges classified with certainty Non-certain edges 

0 12081 2658 

1 12081 4204 

2 12081 8070 

3 12082 8069 

4 12088 8063 

5 12103 8048 

6 12143 8008 

7 12236 7915 

8 12382 7769 

9 12584 7567 

10 12983 7168 

11 13750 6401 

12 14855 5296 

13 16280 3871 

14 20146 5 

15 20146 5 

 

 

 
 



 

 
Figure 104 - The confidence matrix after the 15th iteration of the relaxation algorithm 

 

 

 

 
Figure 105- Final confidence after small area elimination (binary image) 

 

6.5 Evaluation 

As can be seen from visually inspecting Figure 105, many of the important edges 
have been discovered. However, there do exist gaps in the edge chain, which a deeper 
context examination might have found. This would be an interesting topic to pursue 



in future research. For the quantitative assessment of the performance of the 
algorithm, two metrics were utilized. The first was the mean square error (MSE) and 
the second was the peak signal to noise ratio (PSNR). The metrics regarding the 
Relaxation method were taken after performing small area elimination. 

The ground truth image for the building block whose edges were discovered by the 
Relaxation system is shown in Figure 106. This same block was used to train the 
BCDCNN neural network proposed in Chapter 4 and a direct comparison is thus 
possible. 

 

 
Figure 106 - Ground truth image 

 

Table 43 - Quantitative comparison between Relaxation system and BCDCNN 

 MSE PSNR 

Relaxation 0,1280 8,9282 

BCDCNN 0,10423 15,269 
 

From Table 43 it can be seen that the relaxation method performs worse than the 
proposed in Chapter 4 BCDCNN for both the MSE and PSNR metrics. The neural 
network has been trained with the GT image of Figure 106 so it would be very difficult 
for the relaxation method to perform better.   



7. CONCLUSIONS 

This thesis has presented innovative research methodologies towards the 
automatic detection of building contours. Building contours can be considered as a 
first step for a 3D model of urban areas.  

The building contour detector presented in Chapter 4, which is based on 
convolutional neural networks, proved that CNNs are potent tools to obtain a full 
image reconstruction of the building contours. This is in contrast to most to date 
typical applications of convolutional neural networks, which operate as classifiers. The 
network that was named BCDCNN, accepts low-resolution elevation data of an urban 
area and corresponding high-resolution optical data of the same area. It then 
performs a hetero associative mapping to a new image, which contains the building 
contours. Another innovation of the proposed model is the Top-N custom layer, which 
offers performance benefits, wherein the RMSE and PSNR exhibit better performance 
for the Top-N layer as opposed to the typical MSE cost layer. The effect of adding more 
feature maps was also examined and it was shown that dropout is mostly necessary 
in order for the model to generalize. It is very interesting to notice that training with 
the LoG data set was the only case in which the network managed to generalize 
without using dropout, presumably a result of the reduced dimensionality of the LoG 
dataset. The tackled problem is extremely complex to solve using deep neural 
networks due to the varying context around true building contours in an urban 
environment. It is conjectured that given more training data the performance of the 
network will increase but handcrafting such ground truth data is a very tedious and 
time costly procedure. It would be interesting to see how the network would perform 
given more training data42. Further research proposal on CNNs and building contour 
detection would be to build a pixel classifier whose performance could be compared 
with this implementation. 

The stimulus for building the super-resolution system presented in Chapter 5 was 
the BCDCNN network, since it had been initially designed to perform super-resolution 
with a single channel. This thesis examined how well this network would perform with 
elevation data when assisted by a second channel of optical data. It was designed to 
enhance the resolution of low-resolution elevation data augmented by corresponding 
high-resolution optical data. The research demonstrated the efficacy of deep neural 
networks for super-resolution applications regarding elevation data. It also exhibited 
some intricacies of elevation data. Foremost of them is the requirement that these 
models are trained with elevation data per se. Elevation data seem to have an 
increased ratio of low to high43 frequency content as compared to generic images that 
makes it difficult for SR CNNs trained on generic images to perform well on them.  
Generic SR CNNs although offering top-notch performance on general-purpose 
images, failed to hold that performance when presented with elevation data. It was 
also demonstrated, as proof of concept that high-resolution optical data can help 
augment low-resolution optical data. This can be seen for elevation set 1 and 2 when 
reconstructing on Validation set 2. In this setup, the dual channel version performed 

                                                                 
42 Obtaining pairs of optical & DEM datasets is quite expensive. Therefore, a promising avenue to 
explore would be the synthesis of artificial optical-DEM data pairs. 
43 Or vice-versa. 



better than the corresponding single channel version. Furthermore, using many 
feature maps does not scale well when using a small dataset. The number of feature 
maps must be commensurate with the available volume of training data while a similar 
trend seems to hold regarding the dimensions of the convolution kernel. This 
application was also hampered by the resolution discrepancy between the low-
resolution elevation data and the high-resolution optical data. It is surmised that 
lowering the ratio of the discrepancy would lead to better results. In addition, it would 
be interesting to explore deeper architectures trained with more data. Since procuring 
pairs of optical - elevation data is costly, the previous proposition regarding BCDCNN 
to use synthetic pairs of optical - elevation data also holds for BSRCNN.  

 Finally, the developed relaxation system accepts multi-resolution spatial data from 
various sources and fuses them all together. It attempts to ease in pixels that belong 
to building contours to an edge chain while suppressing pixels that do not fit in. For 
this reason, it is an iterative process that examines the local context of every pixel of 
the image depicting an urban area taking into the orientation of the under 
examination edge and that of the local context. It then proceeds to either augment or 
decrement the confidence of the pixel belonging to a building contour. The proposed 
system was shown to provide clear-cut edge chains that mostly belonged to building 
contours. A possible enhancement to the system would examine a deeper local 
context.  

This thesis presented two innovative deep CNN systems that can be used to detect 
building contours or perform super resolution on elevation data. These systems can 
operate independently. However, it would be worth exploring how the output of 
these two systems can be used by the proposed relaxation system. The combinatory 
power of the output produced by BCDCNN and the relaxation system could lead to 
even better building contour detection. On top of that, BSRCNN can be used to 
augment the resolution of the elevation data provided to the relaxation system. This 
would be a final proposal for future research based on this thesis.  
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