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 Thesis objectives 

I.1.1. Introduction 

Following the industrial revolution, the rise in atmospheric CO2 concentration combined with the 

increased frequency of severe weather events led to increasing concerns that global climate change 

was being fueled by fossil fuel consumption. Climatologists have agreed that continuous injection 

of fossil carbon into the atmosphere will have lethal effects even in the near future, and the 

development of alternative fuels that avoid the introduction of additional greenhouse gases into 

the atmosphere became more vital than ever. 

Renewable resources, primarily wind and solar, along with nuclear power became favored topics 

for consideration and we witnessed a significant increase in wind and solar contributions to the 

overall energy production balance. The average greenhouse gases (GHG) emissions in tonnes of 

CO2-equivalent per GWh (Gigawatt-hours) from different power sources were reviewed in a WNA 

(World Nuclear Association) report [1] and are compared in figure 1. 

 

Figure I-1. GHG emissions from different power sources 

However, the accelerating growth of population and industrial activities has resulted in a large 

increase in consumption of energy and effectively little displacement of fossil carbon combustion. 
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A growing global population means that energy demand will continue to grow, and it is impossible 

to overlook the fact that the wind does not always blow, nor does solar radiation always reach solar 

receptors, not to mention the overwhelming investment needed for the decentralization of power 

generation. Until now, nuclear plants that takes advantage of the energy released from uranium 

fission reaction, remain the only energy source that allows the reduction of carbon emissions while 

responding to our energy demands. 

Uranium is one of earth’s heaviest elements, with a density of 19.1 g/cm3. Its two main isotopes 

are U-238 (99.283%) and U-235 (0.711%). The rare U-234 isotope is formed by the α-decay of U-

238 and counts for only 0.005% of the total mass of uranium. U-235 is the only natural isotope 

which releases energy through fission chain reaction under neutrons bombardment, and finds 

important applications in the energy production industry, either for peaceful purposes like 

electrical energy production, or military purposes like nuclear weapons and nuclear-powered 

submarines. 

Different forms of enriched, depleted or reprocessed uranium exist depending on the proportions 

of the three isotopes mentioned above. For example, enriched uranium comprises 3–5% U-235 for 

civilian applications, and more than 90% for military applications. Highly enriched U might induce 

radiological toxicity. Natural or depleted uranium is not considered to be a radiological hazard but 

can induce a non-negligible chemical toxicity. 

 
Scheme I-1. Simplified nuclear fuel cycle 

The “nuclear fuel cycle” is the industrial process that includes various activities involved in the 

production of electricity from uranium in a nuclear power reactor. The nuclear fuel cycle starts 
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with the mining of uranium (front end) and ends with the management of nuclear waste (back end), 

either by disposal (open fuel cycle) or by recycling and reusing in a new energy production process 

(closed fuel cycle). The nuclear fuel cycle is briefly described in scheme 1. 

The present project was initiated in 2015 by a collaboration between the Lebanese Atomic Energy 

Commission (LAEC) of the National Council for Scientific Research of Lebanon (CNRS-L), and 

the “Synthèse de Molécules et de Macromolécules Bioactives” (SM2B) laboratory at the “Institut 

de Chimie Moléculaire et des Matériaux d’Orsay” (ICMMO) of Paris-Sud/Paris-Saclay university 

in France. This collaboration joins the knowledge of both parties, the LAEC expertise in the field 

of nuclear safety and nuclear analytical techniques, and the SM2B know-how in the field of 

polymer science and surface modification. The aim of the present thesis, entitled “Functionalized 

surfaces for radio-decontamination”, is to come up with innovative polymer materials with the 

ability to bind to radionuclides like uranium under a specific set of conditions, for a variety of 

applications with a focus on the nuclear industry and radiodecontamination. 

In the nuclear industry, the new polymer materials will be proven promising in three fields of 

research. First of all, at the front end of the nuclear fuel cycle, they will contribute to the ongoing 

search for alternative uranium resources, namely the uranium extraction from seawater. 

Furthermore and at the back-end of the nuclear fuel cycle, they are potential candidate materials 

for nuclear waste treatment and recycling. Finally, facing the ever present risk on the environment 

following nuclear accidents and the release of hazardous radionuclides, these new materials can 

be possibly used in the field of radiodecontamination, also for the radiodetoxification of living 

beings following a radionuclides intoxication. 

In this introductory chapter, we will briefly discuss the above mentioned fields of research and 

challenges they are facing, and we will try to justify the need for innovative solutions like ours. 

We will then present the state of art techniques used to synthesize those polymer materials, either 

in solution or on a solid substrate. 
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I.1.2. Uranium extraction from seawater 

With over 4 billion tons, world’s oceans count for 99.9 % of earth’s uranium. Extracting some of 

this uranium was suggested shortly after the Second World War. However, because of the fast 

growing demand, it was decided that efforts should be directed towards the then known ores, 

mainly due to the overwhelming economic and technical challenges of extracting the extremely 

diluted uranium (3.3 ppb) from natural waters [2]. Nonetheless, at the current consumption rate, 

conventional reserves of uranium should dry out in roughly a century [3], making it inevitable to 

reconsider uranium harvesting from seawater. 

The International Atomic Energy Agency (IAEA) estimated in a 2016 report [4] that nuclear power 

production may increase worldwide by up to 56% over the period 2015–2030. Because of the 

increasing demand of nuclear energy, and the fact that conventional uranium reserves could be 

depleted within a century, uranium recovery from seawater was listed as one of “ Seven chemical 

separations to change the world “ in a 2016 Nature article [5]. 

In the next few decades, the oceans can become a long sustainable resource for uranium. However, 

it is very challenging to extract uranium from seawater because of its extremely low concentration 

while many other elements are present in overwhelmingly higher or comparable concentrations 

(table 1). Therefore, the extraction process must be extremely efficient, highly selective and must 

be a passive process, meaning that no energy should be spent to force the extraction. This can be 

possible for example by taking advantage of tidal wave energy [6]. 

Table I-1. Various elements in seawater [7] 

Element Concentration (ppb)   Element Concentration (ppb) 

Cl  1.91 x 107  Fe 1-2 

Na  1.08 x 107  Ni 0.5-1.7 

Mg  1.33 x 106  V 1.5 

Ca  4.22 x 105  Ti 1 

K 3.8 x 105  Cu 0.6 

Li 170  Mn 0.25 

Zn 4  Co 0.05 

U 3-3.3  Pb 0.03 

Al 2       
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The extremely low concentration of the uranyl ion (UO2
2+) in seawater (~3.3 ppb) and the presence 

of competitive ions complicate the recovery process. Uranium recovery is hindered by the complex 

solution chemistry in seawater; uranium is present in multiple forms even if the dominant form 

(~85%) is the uranyl tricarbonate UO2(CO3)3
4- complex. Furthermore, seawater has varying 

solution characteristics in terms of pH (7.5–8.5), temperature (12 – 40 °C), complex ion speciation 

and high salt concentration (0.6–0.7 M). As a consequence, the extraction of uranium from 

seawater requires the development of a highly selective separation process. 

For the uranium recovery from seawater by adsorption, the development of a highly selective 

adsorbent technology has been primarily focused on the interaction of an adsorbent (stationary 

phase) with seawater (mobile phase). Considering the dilute uranium concentration, adsorption by 

chelating polymers appears to be the most promising method for uranium recovery from seawater 

in terms of simplicity of operation, operating cost, environmental risk and uptake capacity [8], as 

compared to other separation methods such as coagulation, coprecipitation, and membrane 

filtration [9] which require additional sedimentation and filtration processes and high operating 

costs. Membranes tend also to foul during filtration [10]. 

Several adsorbing materials have been developed for that purpose. Those materials can be divided 

into three main categories, i.e. inorganic porous materials, biopolymers, and synthetic organic 

polymers [7]. 

Various inorganic materials have been considered as potential adsorbents for uranium recovery. 

Magnesium silicate [11] and oxyhydroxide [12], silicate [13], nanoporous alumina [13], iron (III) 

oxide [14], and hydrous titanium oxide (TiO2.nH2O) [15] have been studied, with hydrous titanium 

oxide receiving the most interest [16]. Advantages of these materials over polymeric adsorbents 

include high surface area, high porosity and tunable pore structure. However, transport limitations 

due to pore blockage can significantly reduce the accessible surface area. Moreover, adsorption of 

uranium has been affected by the solution pH [17], temperature [18], the presence of other ions 

[19], crystallographic form, morphology, surface area and grain size…[20]. The complexity of the 

above systems associated with high operating costs pushed scientists to look for alternative 

strategies. 
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Biological adsorbents have been also considered [21]. Ligands such as grafted DNA [22], starch-

based hydrogels [23], unicellular cyanobacteria [24], chitosan resin [25] and various biomass [26] 

have been tested as potential adsorbents for the recovery of uranium from seawater. Biopolymers 

have the advantage of being renewable and environmentally friendly for marine systems. However 

they are more likely to be sensitive to changes of environmental conditions (e.g., temperature, pH, 

and biofouling). Biological adsorbents are still being considered for uranium harvesting from 

seawater, but a parallel search for more robust adsorbents is gaining momentum, namely synthetic 

polymers. 

Synthetic polymers have received the most interest for the recovery of uranium from seawater [27-

30] because selective functional groups can be readily added on polymer chains to enhance 

uranium capacity and affinity. Robust and ductile polymers can be chosen as a substrate for the 

adsorbent and various shapes of polymeric adsorbents can be fabricated in large quantities. 

Adsorbents with amidoxime functional groups (scheme 2) are by far the most promising 

adsorbents because of their high affinity in chelating uranyl ions in seawater [28]. Over the last 

few decades, many efforts had been devoted to this topic and one of the most successful strategies 

among them was polymer fiber adsorbents synthesized via radiation-induced graft polymerization 

(RIGP) [7, 31]. Researchers at the Japanese Atomic Energy Agency (JAEA) developed polymeric 

fiber adsorbents, which contained polyethylene or polypropylene as a trunk polymer and 

amidoximated polyacrylonitrile (PAN) copolymerized with hydrophilic groups (e.g., 

poly(methacrylic acid)) as a graft chain. The incorporation of hydrophilic groups is crucial to allow 

seawater to access the amidoxime (AO) group on the graft chain [32, 33]. Japanese researchers 

also performed marine tests with stacked unwoven fabrics and braided fibers for different periods 

of time and at different locations [29]. Their pioneering work has established a good foundation to 

this research field. 

 

Scheme I-2. JAEA’s amidoxime-based adsorbent [28] 
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More recently, researchers at the Oak Ridge National Laboratory (ORNL) employed a similar 

strategy (i.e., using RIGP) but with different geometry polyethylene fibers, which provided a high 

surface area, and demonstrated an improved uranium adsorption capacity [34]. Polymeric fiber 

adsorbents for uranium adsorption have several advantages, they are easily deployable in seawater, 

light weight and easy to fabricate into various shapes and lengths.  

However, polymeric fiber adsorbents prepared solely via conventional RIGP have some 

limitations such as inability to tune its composition, degree of grafting, conformation, and 

morphology due to its ill controlled polymerization mechanism. Therefore, ORNL researchers 

utilized a hybrid approach, using RIGP and controlled atom-transfer radical polymerization 

(ATRP) [30] to prepare polymeric fiber adsorbents for uranium recovery from seawater. 

In this strategy, RIGP-grafted poly-(vinylbenzyl chloride) (PVBC) were prepared in the first step 

then used for subsequent ATRP as shown in scheme 3. 

 

Scheme I-3. Reaction scheme for the preparation of fiber adsorbents via ATRP [30] 

The use of the controlled radical polymerization allows to control the degree of polymerization 

(length of graft chains) in order to reach higher chain lengths and, once optimized, to reproduce 

the optimal degree of polymerization and architecture for best performance in aqueous systems. 
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Using this strategy, adsorbents made by the ORNL team are steadily approaching an adsorption 

capacity of 6 mg U/mg adsorbent, much higher than the average 1.1 mg U/mg adsorbent for that 

of JAEA.  

Despite the high uranium adsorption capacity, poly(amidoxime)-based fiber still suffer from the 

following drawbacks: 

1. The need for a hydrophilic comonomer (ex. acrylic acid) to allow seawater to access the 

ligand. 

2. The use of a multiple step preparation strategy, increasing the adsorbent production cost, 

and consequently the overall extraction cost. 

3. The use of classical ATRP polymerization in which reagents and solvents must be 

degassed, and heating is required (65 °C). A harmful solvent like DMSO is used and the 

unstable copper (I) catalyst should be purified prior to reaction. 

4. Amidoxime, the main ligand responsible for uranium adsorption, exhibits a very high 

competitive affinity towards vanadium species [35]. In fact, vanadium is present at lower 

concentrations (1.5 ppb) than uranium (3.3 ppb) in seawater (table 1). Yet, vanadium 

uptake by poly(amidoxime) fibers is found to be twice higher than uranium’s [34]. The 

vanadium species bind so strongly that stripping them under harsh acidic conditions 

irreversibly damages the amidoxime sorbent [36]. 

In the present work, and in order to overcome the problems associated with amidoxime-based 

adsorbents, we proposed the use of a 4-hydroxy-dipicolinic acid (chelidamic acid)-derived 

monomer as an alternative ligand. This approach offers the following advantages: 

1. Dipicolinic acid is water soluble, eliminating the need for a hydrophilic comonomer.   

2. This ligand has already proven to have a higher affinity towards uranium UO2
2+ (log K = 

11.6) over VO2
+ (log K1 = 9.3) and VO2+ (log K2 = 8.0) cations [37]. 

3. The classical ATRP polymerization will be replaced by the Supplemental Activation 

Reducing Agent (SARA) ATRP. This way, the non-stable copper (I) catalyst will be 

replaced by the stable copper (II) and the catalyst load will be reduced by a factor of 100. 

DMSO will be replaced by acetonitrile, a green solvent. Furthermore, the polymerization 

will be achieved at room temperature, minimizing the energy consumption and eventually 

the overall cost. Finally, thanks to metallic copper added to the system, the reaction is 
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oxygen tolerant and no degassing will be needed. SARA ATRP will be discussed in detail 

in a later section. 

4. The modification steps will be reduced to a single step using PVC-co-CPVC fiber as a 

substrate. PVC-based fibers were very recently used by the ORNL team to graft 

poly(amidoxime) adsorbent [38]. However, they still used classical ATRP, higher 

temperature (65 °C), and a high boiling point (244 °C) toxic ethylene carbonate (EC) 

solvent. Their strategy is described in scheme 4.   

 

Scheme I-4. Synthesis steps of uranium adsorbent fibers from PVC-co-CPVC fibers [38] 

Our proposed strategy is described in scheme 5, where SARA ATRP stands for Supplemental 

Activation Reducing Agent Atom Transfer Radical Polymerization and VDPM stand for the 4-

vinyl dimethyl dipicolinate monomer, both terms will be described later in this manuscript. The 

monomer synthesis, surface-initiated polymerization and performance of the new adsorbent 

materials will be discussed in details throughout this manuscript. 

 
Scheme I-5. Synthesis of the new (PVC-co-CPVC)-g-PVDPA adsorbents 
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I.1.3. Nuclear waste management 

Given the intensity and persistence of the radiation field of discharged nuclear fuel, it is clear that 

significant handling precautions are needed for reasons of safety and security. Intact nuclear fuel 

has been considered to be “self-protecting” from intrusion because of the intense gamma radiation 

field. This philosophy was the driver for adoption of the open nuclear fuel cycle (scheme 1), 

especially in the United States. In this approach, the spent fuel is considered as waste to be 

deposited in a geological repository permanently. 

This approach however, is very questionable and fuel recycling is now being used and developed 

for different reasons [39]. Spent fuel poses a serious danger on population upon exposure to 

ionizing radiation. For the direct disposal option, fuel must be isolated from the accessible 

environment for about 250,000 years, due mainly to the radiotoxicity of Pu-239. Building a 

repository system for a time greater than that of human civilization is challenging and is considered 

impossible. Reprocessing with actinide transmutation shifts the radiotoxicity to fission products 

like Sr-90 and Cs-137, acute radiotoxicity threat is then reduced to 300-400 years. Reprocessing 

can also help prevent nuclear weapons proliferation by limiting isolated uranium and plutonium 

reserves. 

In term of financial cost, even though reprocessing is directly more expensive, this cost can be 

counterbalanced by a decreased safety margin needed in repository, the reuse of reprocessed fuel 

in closed nuclear cycle and the use of other partitioned materials like minor actinides, lanthanides, 

and other byproducts. Enhancing nuclear energy’s economic viability, and most importantly its 

security, will also favors its attractiveness compared to conventional carbon emitting fossil fuel as 

energy source. 

Two options for spent fuel reprocessing exists today, the aqueous (solution) approach and the 

pyroelectrometallurgy (dry) approach [40]. The aqueous approach begins with the dissolution of 

used fuel rods in concentrated nitric acid, followed by solvent-extraction processes designed to 

extract the target metallic species. The dry method is achieved under inert atmosphere and in the 

absence of aqueous media. It mainly uses molten salts and/or liquid molten metals. Pyroprocessing 

has the benefit of being tolerant to high radiation doses, which allows the treatment of used fuel 

without having to wait for an extended period of time to let the material decay to lower levels of 

activity. Pyroprocessing will not be further discussed and is out of scope of our work.  
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I.1.3.1. Aqueous processing/recycling of nuclear spent fuel 

Nuclear spent fuel (NSF) contains approximately 95% uranium, 1% plutonium, and 4% fission 

products (minor actinides, lanthanides and many other elements). Once dissolved in concentrated 

nitric acid, spent fuel reprocessing is carried out using PUREX (Plutonium Uranium Redox 

Extraction) liquid-liquid extraction process to extract uranium and plutonium using a 30% tributyl 

phosphate (TBP) solution in kerosene. Remaining fission products and minor actinides are then 

sent for subsequent processing, or treated as wastes for disposal as high-level radioactive waste 

stored in a solid matrix like glass or ceramic. The uranium recovered by PUREX is stored for 

future use and plutonium is recycled to create MOX (mixed oxide) fuel by blending with natural 

uranium. 

To assure the sustainability of the nuclear fuel cycles, both on the technical and economic levels, 

the PUREX process is continuously reviewed and possible improvement paths are investigated. In 

the American UREX (URanium EXtraction) process, uranium can be extracted along with 

technetium while leaving the plutonium to waste with the fission products and higher actinides. 

Since plutonium is not isolated, proliferation risks associated with PUREX are reduced [41]. 

Another American process, TRUEX (TRansUranic EXtraction) allows the extraction of 

transuranic metals (americium and curium) by adding octyl(phenyl)(N,N-diisobutylcarbamoyl 

methyl)-phosphine oxide (CMPO) ligand to PUREX’s TBP solution. 

Alternatively in the French COEX process, used nuclear fuel is separated into three streams: 

uranium-plutonium, uranium, and fission products and minor actinides. Pure plutonium is never 

separated out and thus the risk of proliferation is reduced. The uranium-plutonium stream is 

extracted and then turned into MOX fuel. The uranium stream is sent to a separate facility for 

purification, conversion and re-enrichment and conversion into added recycled fuel. The fission 

products and minor actinides stream is vitrified and stored as high-level waste then disposed of 

[42]. 
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Scheme I-6. French multistage spent fuel recycling 

Consequently, PUREX/COEX raffinate can be further processed and minor actinides separated 

using the french DIAMEX-SANEX process. After having been extracted with lanthanides by in 

the DIAMEX (DIAMide EXtraction) process using N,N'-dimethyl-N,N'-dioctylhexylethoxy 

malonamide (DMDOHEMA), minor actinides (mainly americium and curium) are separated in 

the SANEX (Selective ActiNide EXtraction) process [43]. Americium can also be extracted alone 

from the PUREX raffinate by the ExAm (Extraction of Americium) [44] or the SESAME 

(Selective Extraction and Separation of Americium by Means of Electrolysis) processes [45]. 

 

Figure I-2. Ligands used in different separation processes 
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In the future 4th generation nuclear reactors, a more homogeneous reprocessing plan will be needed 

to minimize the proliferation risk and to close the nuclear fuel cycle. This leads us to the GANEX 

(Grouped ActiNide EXtraction) concept where actinides (uranium, plutonium, neptunium, 

americium and curium) are extracted and reintegrated in a new fuel cycle. Lanthanides (Ln) and 

other fission products (FP) are sent as waste. In a GANEX process, this is done by adding a bis-

triazinyl bipyridine (BTBP)-based ligand to the TBP organic solution [46]. 

 

Scheme I-7. Homogeneous actinide recycling by GANEX process 

 

I.1.3.2. Proposed polymer assisted reprocessing strategy  

The development of the An/Ln separation strategy is of great importance, either for the DIAMEX-

SANEX process or the future GANEX homogenous recycling concept. Nitrogen and sulfur donors 

was found to bind preferentially to trivalent actinides than to lanthanides [47], and promising 

extractants were suggested like 2,4,6-tri(2-pyridyl)-1,3,5-triazine (TPTZ) and di-(2-

ethylhexyl)dithiophosphoric acid  (DTPA) [48]. However, the CHON rule makes N-donors more 

preferred in a nuclear application because they can be incinerated, purified and released into the 

atmosphere. In contrast, incineration of S-donor phosphorus containing molecules leaves solid 

residue that contribute to the production of radioactive waste and can retain not easily recoverable 

residues of actinides [47].   

A wide variety of N-donor ligands has been proposed for the An/Ln separation including 

terpyridines (Tpy) and bis-triazinylpyridines (BTP)-based ligands and many others [47]. The 

development of partitioning processes has attracted increased attention and the search for 

improved N-donors has become more intensive.  

However, efforts have been focused on lipophilic extractants knowing that all strategies are based 

on liquid-liquid separation, the metallic species being in the aqueous phase (nitric acid) and the 
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extractant being in the organic phase. In this case, the basicity of the extractant is an important 

factor, because it determines the extent to which the H+ ions compete with the Ln or An ions for 

the N-donor ligand. The complexant is only slightly soluble in water in the unprotonated form and 

it becomes more soluble with increasing concentration of H+ ions (i.e. increasing degree of 

protonation). The distribution coefficient of the ligand between the organic and the aqueous phase 

is then dependent on pH. Decreasing the pH then leads to a loss of extractants to the aqueous phase 

and partially compromise the solvent extraction separation process. 

In this scope, several studies have proposed the use of adsorbents in the form of ion exchange 

resins to trap elements of interest directly from nitric acid, then selectively eluting them from those 

resins. Compared to the conventional liquid-liquid extraction, adsorption separation process have 

the advantage of a minimal organic solvent utilization, smaller separation equipment and 

simultaneous separation of multi-components. In fact, ion exchange has been considered for spent 

fuel reprocessing long time ago, but ion exchanger were very sensitive to swelling/shrinking 

depending on solution composition and had poor performance. 

Recent advances however in the field of organic ion-exchange, like porous silica-based resins, 

encouraged researchers to reconsider the use of ion exchange in reprocessing. For example, 

pyridine-type resin synthesized by copolymerizing 4-vinylpyridine with 20% divinylbenzene in 

porous silica proved capable of separating uranium from fission products in an acidic medium 

[49]. Another ion exchanger, named AR-01, where the resin, with benzimidazole groups (figure 

3) as exchange sites, is embedded in porous silica particles, was successfully used to separate 

uranium from most fission products [50] in a 6 M nitric acid solution. Fission products were further 

separated in a CMPO and R-BTP based resins [51]. CMPO and R-BTP structures were shown 

earlier in figure 2. 

 

Figure I-3. N-methylbenzimidazol used in AR-01 ion-exchange resin 
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These suggestions try to overcome problems associated with a liquid-liquid extraction process. 

However, they still use concentrated nitric acid to dissolve spent fuel with which several other 

disadvantages are associated, including the increased emission of volatile fission products (e.g., 

I2), the discharge of toxic NOx vapors, and the large plant footprint required to perform the fuel 

digestion [52]. 

Other researchers looked for alternative UO2 dissolution processes in order to avoid some of the 

challenges associated with highly acidic reprocessing. The use of peroxide-containing carbonate 

solutions, for example, can open the door to a process with lower operating costs and improved 

safety relative to PUREX [52]. The oxidative dissolution of UO2 by hydrogen peroxide H2O2 was 

studied as a function of peroxide concentration and pH and was proven feasible [53]. 

 

Figure I-4. UO2 dissolution rates (in mol m-2 s-1) as a function of pH at [H2O2] = 10-5 M (left) and as a 

function of hydrogen peroxide concentration at pH 5.8 (right) (ref [53]) 

Moreover, the dissolution of the tetravalent UO2 in sodium carbonate solutions was found to be 

straightforward in the presence of an oxidant according to the following equation [52], yielding a 

hexavalent uranyl carbonate complex. 

UIVO2 (s) + CO3
2- + oxidant  UVIO2(CO3)3

4- 

To conclude, the above mentioned efforts suggest using ion exchange technology to extract 

different radionuclides (using lipophilic extractant fixed on silica) from nitric acid solutions on 

one side, or on the other hand, dissolving spent fuel in solvents other than nitric acid (like H2O2) 

before PUREX liquid-liquid extraction.  

In this scope, we are proposing a new concept for spent fuel recycling, a strategy where actinides, 

lanthanides and other fission products can be separated directly from an aqueous solution even at 
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mild pH levels. In this strategy, both actinides and lanthanides will be trapped by a hydrophilic 

polymer and the rest of fission products will be eliminated by a first filtration. Afterwards, by 

decreasing the pH level, lanthanides will be released back into an aqueous solution and eliminated 

by a second filtration to leave actinides trapped in the polymer matrix. We called this strategy 

PALEX as in “Polymer assisted Actinide Lanthanide EXtraction”. Our proposed strategy is 

described in scheme 8. 

 

Scheme I-8. Proposed PALEX process 

Later in this thesis (chapter IV), we will further discuss this strategy, its advantages compared to 

above mentioned liquid-liquid extraction processes, and the future challenges that needs to be 

eradicated if this strategy is ever to be considered for nuclear spent fuel recycling. 
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I.1.4. Radiotoxicity and radiodecontamination  

I.1.4.1. Radiotoxicity 

The radiological and chemical toxicity of uranium and other radionuclides are responsible for 

many public health issues. Exposure to radionuclides can be either external when the radionuclide 

remains outside or at the surface of the body, or internal when the radionuclide is absorbed into 

the body either by inhalation, ingestion or through skin [54].  

Inhalation is considered as the most frequent mode of contamination in the industry. It can occur 

after an explosion or a fire, causing atmospheric dispersion of radionuclides in case of containment 

disruptions. The second most frequent mode of contamination after inhalation is skin exposure. 

This can occur especially on injured skin, after an explosion or improper handling of contaminated 

tools. The skin can also be contaminated by contact with aerosols or by contact with contaminated 

surfaces. Ingestion is unlikely to happen among workers in the nuclear industry thanks to strict 

health and safety instructions. However, it may be more critical for civilians in the case of an 

accidental release of radioactivity into the environment [55] after an accident such as the one that 

took place in Chernobyl or more recently in the Fukushima Dai-ichi Nuclear Power Plant [56]. 

The risk is also increased in geographic areas where uranium is mined, milled, processed and/or 

fabricated as well as in the vicinity of former battlefields where depleted uranium munitions were 

deployed. Several studies reported increased rates of cancer and congenital anomalies following 

the hostilities in conflict areas like Bosnia-Herzegovina [57] and Iraq [58, 59] and described the 

consequences arising from the inhalation of the uranium oxide aerosols generated when depleted 

uranium munitions are detonated [60]. 

High levels of uranium, thorium and plutonium were found in the bodies of deceased workers who 

have worked in mining and processing plants [61] and high cancer mortality was registered among 

employees working in these plants [62] and communities living nearby [63]. Exposure to uranium 

has several consequences on living species including humans, with variations in sensitivity among 

species. The chemical toxicity of uranium in kidneys is one of the consequences of the precipitation 

and binding of the radionuclide to the proximal tubular cells [64]. Radionuclides like radium and 

uranium are also retained in bones where they replaces the calcium in the hydroxyapatite structure 

and causes a decrease in osteogenesis and therefore of bone mass [65, 66]. The skin of rats exposed 
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to uranium was found to be 35-50% thinner and more permeable compared to controls [67]. 

Uranium can also induce the secretion of inflammation proteins, and cell death through the 

activation of kinase proteins [68]. It can also induce apoptosis and necrosis of macrophages and T 

lymphocytes and was found to deregulate the immune response even at non-cytotoxic 

concentrations [69]. Uranium can also accumulate in some parts of the brain like the striatum, 

hippocampus and frontal cortex [70]. 

I.1.4.2. Radiodecontamination 

Uranium related hazards are treated either by limiting and controlling external exposure paths and 

contaminated sources like soil and water or, if uranium is already incorporated into a human body, 

by chelation therapy. 

Uranium polluted environment can be treated by physical, chemical or biological means [71]. 

Physical methods (coagulation, precipitation, evaporation, extraction and membrane separation) 

are only suitable for small areas of water contaminated by uranium and have high operating cost. 

Chemical methods have high efficiency and low cost to remove the uranium, but most are still in 

the experimental stage. Bioremediation methods (bacteria, fungi, yeast and algae…) are 

appropriate for large areas of soil and water contaminated by low concentrations of uranium and 

don’t produce secondary pollution, but their success depends largely on the geochemistry of 

contaminated sites [72]. 

Chelation therapy is the use of chelating agent capable of binding to a metal contaminant, uranium 

in this case, and guide it out of the human body, mainly through sweat and urine. For a chelating 

agent to be suitable for treatment of uranium intoxication, several factors have to be considered, 

like the solubility of the chelating agent at physiological pH (~7.4), its toxicity, its ability to bind 

to uranium and eventually the competitive chelation with other metals present in the human body 

like iron, zinc and manganese. 

Many chelating agents were considered for the decorporation of uranium. Treatments with sodium 

bicarbonate [73], sodium citrate [60], ethylenediaminetetraacetic acid (EDTA) [74] and many 

other agents [75] were recommended to promote uranium mobilization and elimination. Among 

many chelating agents, Tiron™ (2,4,5-Trihydroxy-1,3- benzenedisulfonic acid) appears to be the 

most effective agent of those tested in the treatment of acute uranium intoxication [76]. 
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Once again, our dipicolinic acid-based polymer materials could be a potential candidate for an 

improved radiodecontamination and radiodetoxification. In addition to its high chelating 

capability, dipicolinic acid has a proven biocompatibility and has been reported in pharmaceutical 

research articles [77]. 

It should be noted however, that this thesis is more of a precursor work. Field experiments in the 

three applications mentioned above are of extreme difficulty given the complexity of each field 

and the three years lifetime of a thesis work. An important prove-of-concept work was achieved 

at the laboratory scale level, and we hope that this work will be at the basis of future projects and 

collaborations with experts in each field for further development. 
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 Controlled Radical Polymerization (CRP) 

I.2.1. Introduction 

Nowadays, conventional radical polymerization (RP) is employed to produce annually more than 

100 million tons of polymer materials, with thousands of different compositions [78]. However, 

until the last two decades, the control of molecular architecture in a RP was considered impossible 

at a level similar to other living ionic systems because two radicals always terminate at a very fast 

rate [79]. In conventional RP, described in scheme 9, control over molecular structure is impossible 

because radical intermediates are very reactive with a lifetime less than 1 second [80], making it 

impossible to control macromolecular structure during such a short time.  

 

Scheme I-9. Conventional radical polymerization 

The concept of controlled/living radical polymerization, or reversible-deactivation radical 

polymerization (RDRP) as IUPAC recommends, was introduced in order to domesticate this 

uncontrolled radical behavior. By inserting long periods of latency (~1 min) after each ~1 ms of 

activity, the overall life of propagating chains can be extended to minutes, hours or days, giving 

the time to “control” the molecular structure of the expanding polymer chains. This extension of 

the lifetime of growing chains was accomplished by insertion of multiple reversible radical 

deactivation steps and allowed the synthesis of well-defined, tailor-made polymers. 
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Even though the first “living” radical polymerization was introduced back in the early 80s by Otsu 

and coworkers [81], it got its real boost later in mid-90s following the independent work of 

Sawamoto [82] and Matyjaszewski [83]. Ever since, the Matyjaszewski team at Carnegie Mellon 

University pioneers the field of controlled radical polymerization. 

The controlled radical polymerization (CRP), or reversible-deactivation radical polymerization 

(RDRP), has paved the way to a wide variety of advanced materials with precisely controlled 

molecular architecture [84, 85]. All of the RDRP methods are based on establishing a dynamic 

equilibrium between a limited amount of growing free radicals and a large majority of dormant 

species. The dormant chains may be alkyl halides, as in atom transfer radical polymerization 

(ATRP) [86], thioesters, as in reversible addition fragmentation chain transfer processes (RAFT) 

[87] or alkoxyamines, as in nitroxide mediated polymerization (NMP) [88]. These different 

mechanisms are described in scheme 10. 
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Scheme I-10. The three main types of RDRP 

Each of these three highly successful CRP systems has its own set of advantages and limitations. 

The higher reaction temperatures of NMP can be harmful to a wide array of substrates and, high 

temperature makes NMP energy consuming. RAFT, on the other hand, has a versatile and robust 

reaction setups. However, its use has been hindered by the multistep reactions required for the 

synthesis of the chain transfer agent. ATRP is the most attractive and highly translational technique 

across laboratories, disciplines, and levels of chemical expertise, due to the simple experimental 

setup, broad range of monomers and solvents used and commercial availability of initiators (alkyl 

halides, which can also be easily attached to surfaces or biological molecules) and catalyst 

components, while maintaining exquisite control and versatility [85]. 

In the following section, we will further describe ATRP, its mechanism, advantages and 

limitations. We will also explain how its drawbacks can be further eradicated using a special kind 

of ATRP called Supplemental Activator and Reducing Agent (SARA) ATRP. 
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I.2.2. Atom transfer radical polymerization (ATRP) 

ATRP is mechanistically related to transition metal mediated atom transfer radical addition 

(ATRA) reactions used to form a carbon-carbon bond through a transition metal catalyst [85]. In 

normal ATRP, the polymerization system components are composed of an organic halide species 

(R-X), known as the ATRP initiator, and a transition metal (most often copper)-ligand complex in 

the low oxidation state (Mtn/ligand), known as the activator (scheme 11). The detachment of the 

halogen from R-X results in the generation of an oxidized halogenated transition metal complex 

(X-Mtn+1/ligand), called the deactivator, in addition to the radical center, R•. The radical center 

can then undergo radical addition across double bonds of monomers, affording polymerization. 

The deactivator rapidly transfers the halogen back to the propagating radicals to reform the 

dormant alkyl halides and the activator.  

 

Scheme I-11. Atom transfer radical polymerization 

The overall process occurs with a rate constant of activation, kact, and deactivation kdeact. Polymer 

chains grow eventually by the addition of the intermediate radicals to monomers like in 

conventional radical polymerization, with the rate constant of propagation kp. Termination 

reactions kt can also occur mainly through radical coupling and disproportionation; however, in a 

well-controlled ATRP, termination is limited to no more than a few percent of the polymer chains. 

In a typical transition metal catalyzed ATRP, assuming that contribution of termination becomes 

insignificant due to the persistent radical effect [89], and using a fast equilibrium approximation, 

the polymerization rate law Rp can be expressed by the following equation [90]: 

𝑅𝑝 = 𝑘𝑝[M][P∗] = 𝑘𝑝[M]𝑘𝑒𝑞 [P-X] ×  [MtnL]/[X-Mtn+1L] 

where [M] is the monomer concentration, [P*] the propagating chain radical, [P-X] the dormant 

chains concentration and keq = kact/kdeact. 
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The number-average degree of polymerization (DPn) of the produced polymers is determined by 

the initial concentration ratio of monomer to initiator [M]0/[R-X]0, and the monomer conversion. 

In a well-controlled ATRP with fast initiation, no chain-breaking reactions, and a small number of 

monomer units added during each activation step, the formed polymers are characterized by a 

narrow molecular weight distribution or low dispersity (Đ = Mw/Mn < 1.5), where Mn is the 

number-average molar mass and Mw is the mass-average molar mass. 

I.2.2.1. ATRP components 

A typical ATRP is composed of the monomer, an initiator and a catalyst/ligand complex. For a 

successful ATRP, these components, and other variables like solvent and temperature, have to be 

finely tuned. 

The monomer:  

A wide variety of monomers have been successfully polymerized using ATRP (styrenes, 

(meth)acrylates, (meth)acrylamides…). Each monomer possesses its own intrinsic radical 

propagation rate. Thus, for a specific monomer, the concentration of propagating radicals and the 

rate of radical deactivation need to be adjusted, among other parameters, to maintain good 

polymerization control. 

The initiator:  

It determines the number of growing polymer chains. If initiation is fast and transfer and 

termination negligible, then the number of growing chains is constant and equal to the initial 

initiator concentration. The theoretical molecular weight or degree of polymerization (DP) 

increases with the decrease of initial concentration of initiator in a living polymerization.  

𝐷𝑃 = [𝑚𝑜𝑛𝑜𝑚𝑒𝑟]0 / [𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟]0 × 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 

Alkyl halides (R-X) are typically used as initiators with the rate of the polymerization being at first 

order with respect to the concentration of R-X. In a well-controlled ATRP, the halide must rapidly 

and selectively migrate between the growing chain and the transition-metal complex. Typically, 

when either bromine or chlorine are used, the molecular weight control is the best, though iodine 

[91] and pseudohalogens like thiocyanates [92] can be used in certain cases. 
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Figure I-5. ATRP activation rate constants for various initiators with Cu(I)-X/PMDETA (X = Br or Cl) in 

MeCN [93] 

A selection of initiators is shown in figure 5 and placed as a function of activation rate constants 

in a certain ATRP system [93].    

The catalyst:  

A good choice of a metal/ligand complex is the key to a successful ATRP since it determines the 

position of the equilibrium and the dynamics of exchange between the dormant and active species. 

The metal center must have two (or more) accessible oxidation states separated by one electron. It 

should also have reasonable affinity toward a halogen and be able to bind strongly to the ligand. 

A number of transition metal complexes have been used in ATRP including molybdenum [94], 

chromium [95], rhenium [91], ruthenium [82], iron [96], rhodium [97], nickel [98], palladium [99], 

cobalt [100] osmium [101] and titanium [102]. However, copper is by far the most used transition 

metal catalyst due to its high versatility and low cost [90] and will be the metal of choice in this 

thesis. 

As for the ligand, a long list of nitrogen based ligands commonly used for ATRP is available. 

Monodentate nitrogen ligands along with sulfur, oxygen, or phosphorus ligands are less effective 

due to the different electronic effects or weak binding constants [103]. Therefore, polydentate (N 

≥ 2) nitrogen ligands are used. These ligands could be either amines or pyridine derivatives, linear, 

branched or cyclic. 
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The role of the ligand in ATRP is to solubilize the metal salt and to tune the catalytic activity. The 

choice of ligand greatly influences the effectiveness of the catalyst. The redox potential of the 

metal complex serves as a useful guideline for catalyst design. Polydentate nitrogen-based ligands 

generally work well for Cu-mediated ATRP. A selection of ligands is shown in figure 6 and placed 

as a function of activation rate constants in a certain ATRP system [104]. 

 

Figure I-6. ATRP activation rate constants for various ligands with EtBriB initiator and Cu(I)-X (X = Br 

or Cl) in MeCN [104] 

The solvent:  

ATRP can be carried out either in bulk, in solution, or in a heterogeneous system (e.g., emulsion, 

suspension). Various solvents, such as benzene, toluene, anisole, diphenyl ether, ethyl acetate, 

acetone, N,N-dimethyl-formamide (DMF), ethylene carbonate, alcohol, water, carbon dioxide, and 

many others, have been used for different monomers. A solvent is sometimes necessary, especially 

when the obtained polymer is insoluble in its monomer (e.g., polyacrylonitrile). Several factors 

affect the solvent choice [86]. Chain transfer to solvent should be minimal and interactions 

between the solvent and the catalytic system should be considered. Catalyst poisoning by the 
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solvent and solvent-assisted side reactions, such as elimination of HX from polystyryl halides 

should be minimized [105]. 

Temperature and reaction time:  

The rate of polymerization in ATRP increases with temperature due to the increase of both the 

radical propagation rate constant and the atom transfer equilibrium constant. As a result of the 

higher activation energy for the radical propagation than for the radical termination, higher kp/kt 

ratios and better control may be observed at higher temperatures. However, chain transfer and 

other side reactions become more pronounced [105] as well as catalyst decomposition [97].  

At high monomer conversions, the rate of propagation slows down considerably; however, the rate 

of monomer and concentration independent side reactions persists. Prolonged reaction times 

leading to nearly complete monomer conversion will induce loss of end groups [106]. Thus, to 

preserve high end-group functionality or to subsequently synthesize block copolymers, near total 

monomer conversion must be avoided to prevent end-group loss. 

I.2.2.2. ATRP applications 

ATRP, either in its conventional of its many modified forms that we will discuss in a later section, 

gives access to polymers with complex yet precisely controlled architectures in terms of chain 

topology (stars, cycles, combs, brushes, regular networks), composition (block, graft, alternating, 

gradient copolymers) and functionality, for different purposes or applications. Scheme 12 

illustrates some of the recent advances in macromolecular engineering enabled by ATRP.  
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Scheme I-12. Macromolecular Architecture and Applications of polymers synthesized by ATRP [85] 

Composition:  

The living character of ATRP gives an easy access to block, gradient, and periodic/alternating 

copolymers not accessible by conventional RP. The efficient initiation, propagation and 

preservation of chain end functionalities allow the synthesis of block copolymers that can self-

assemble in solution and find applications that range from thermoplastic elastomers to drug 

delivery systems, coatings, sealants, templates or membranes [107]. Gradient copolymers can be 

obtained by spontaneous copolymerization by ATRP [108], based on different reactivity ratios of 

comonomers or through continuous controlled feeding of one monomer. Gradient copolymers 

show very broad glass transition temperatures [109] and can be used as sound or vibration 

dampening materials [110]; they have high critical micelle concentrations and can be used as 

efficient surfactants for dispersed media and for polymer blends [111]. On the other hand, 

comonomer pairs with strongly different polarities, like a strong electron-accepting monomer and 

an electron-donating comonomer [112], have strong tendency to alternate and yield 

periodic/alternating copolymer, styrene-maleic anhydride and styrene-maleimides being classical 

examples [113]. Comonomers with a weak alternation like styrene/MMA with reactivity ratios 

∼0.5 form statistical copolymers but in the presence of complexing agents such as strong Lewis 

acids can also lead to alternating incorporation of the monomers [114]. 
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Topology:  

The use of a mono- or difunctional initiator leads to formation of linear polymers. The obtained 

mono- or difunctional macroinitiator can be used to form an AB diblock or ABA triblock 

copolymers, respectively. Multifunctional initiators can yield star [115] or graft polymers [116]. 

Branched polymers can also be obtained when a branching agent, like a divinyl monomer, is used 

[117]. Growth from polymer chains with several initiating sites leads to graft copolymers. This 

can be done by grafting-from, -through and -onto a polymer’s backbone with multiple reactive 

sites. The majority of molecular brushes are prepared by the grafting-from procedure, and this is a 

particularly important technique that will be used in our project to build polymer brushes from a 

solid substrate, also known as surface-initiated ATRP (SI-ATRP) [118]. 

Functionalities:  

Functional groups can be placed at the tail-end of the polymer chain when an initiator with the 

desired functionality or its precursor is used. The growing head (halide) of the polymer can be 

used to attach functional moieties via nucleophilic substitution [119, 120], click chemistry [121] 

or electrophilic addition [122]. Functional groups can also be incorporated into the polymer 

backbone by a direct polymerization of functional monomers [123-126] or by the post modification 

of the repeating units [127-131]. Their density and distribution can be designed by the type of 

copolymerization (block, statistical, gradient…) and/or reaction conditions (monomer feeding). 

Applications: 

The range of monomers polymerized by ATRP is ever expanding and many of these obtained 

polymers have been commercialized around the world [132]. They can be used for an endless list 

of applications, from lubricants, sealants and oil additives, to wetting agents, blend compatibilizers 

[133] pigment dispersants, surfactants and cosmetics. Oil resistant and recyclable polar 

thermoplastic elastomers were also prepared by bulk or emulsion ATRP [134].  

ATRP was successfully used for “grafting-from” surfaces with controlled brushes thickness and 

grafting density [135]. Surface initiated ATRP can be used to tailor surface properties such as 

hydrophilicity/hydrophobicity, conductivity, biocompatibility, adhesion, adsorption, corrosion 

resistance, and friction. ATRP is used to synthesize antibacterial/antimicrobial surfaces [136] and 

nanoparticles [137]. ATRP-functionalized particles were used as the stationary phase for 
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chromatography columns for protein separation [138]. Biodegradable functional copolymers were 

used for drug [139] and gene delivery [140]. Various natural products were also successfully 

coupled to polymers prepared by ATRP [141]. 

Metal-complexing polymers like poly(4-vinylpyridine) were also prepared by ATRP [142] and 

poly(amidoxime) grafted polyethylene fibers were prepared via ATRP for uranium extracting from 

seawater [30], the latter being at the heart of the current thesis and will be later discussed in detail. 

I.2.3. Supplemental activator and reducing agent (SARA) ATRP 

Despite its enormous versatility, ATRP has several drawbacks that make it time and energy 

consuming, difficult to scale up and relatively expensive. Among these drawbacks, ATRP suffers 

from its oxygen sensitivity that leads to the unavoidable buildup of the higher oxidation state CuII 

and therefore hard degassing techniques like freeze-pump-thaw cycles are systematically used and 

the non-stable CuI has to be purified before each reaction to eliminate the oxidized fraction. 

Relatively high load of catalyst has to be used in order to compensate for the lost copper species 

during the reaction, increasing the cost of post-treatment to remove that excess catalyst. These 

drawbacks stand especially in the way of scaling up the reaction to industrial levels.  

Several strategies have been proposed to make the reaction oxygen tolerant and minimize the 

copper load [86], where dissolved oxygen is removed from the system and accumulated CuII is 

reduced back to CuI using electric potential, photoreduction, or chemical reductant like 

conventional initiators, SnII species, ascorbic acid, hydrazine and zerovalent metals [143-151].  

The process of continuously reducing the CuII is labeled under activator regenerated by electron 

transfer (ARGET) ATRP [148].  

When considering the industrial viability of these different reducing agents, metallic copper is 

most interesting due to its low cost, compatibility with different polymerization systems and its 

simple removal especially when used in a heterogeneous form (wire, tube…), facilitating industrial 

scale employment. Metallic copper or Cu0-mediated RDRP was investigated and two different 

reaction mechanisms were suggested (scheme 13). One proposed mechanism, supplemental 

activator and reducing agent atom transfer radical polymerization (SARA ATRP), has CuI as the 

major activator of alkyl halides, Cu0 acting as a supplemental activator and both by inner-sphere 

electron transfer (ISET). Another proposed mechanism called single electron transfer living radical 
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polymerization (SET-LRP) assumes that the CuI species do not activate alkyl halides, but undergo 

instantaneous disproportionation, and that the relatively rapid polymerization is due to a fast 

reaction between alkyl halides and Cu0 through an outer-sphere electron transfer (OSET).  

 

Scheme I-13. SARA ATRP and SET-LRP mechanisms. Line thickness reflects relative rates as in Ref 

[152] 

Researchers have debated about the mechanism of copper-mediated RDRP in the presence of Cu0 

[153-155]. A detailed study of the two mechanisms was conducted by the Matyjaszewski group 

[152, 156] where the kinetic experiments agreed more with SARA ATRP rather than SET-LRP. 

The SARA ATRP mechanism will be adopted in this thesis, though fully aware of the ongoing 

debate. SARA ATRP allows to use the stable CuII at the beginning of the reaction instead of the 

non-stable CuI. Cu0 and CuII can then comproportionate to generate the CuI activator in situ. As a 

results, the quantity of the copper catalyst is reduced by ~100 folds without the need for special 

precautions, a major advantage if the strategy is to be applied on industrial scale.  

I.2.4. Surface-initiated CRP 

To a certain extent, every type of CRP (ATRP, NMR, RAFT…) can be applied to graft polymer 

“brushes” on a surface by means of surface-initiated (SI)-CRP. Surface modification using 

polymer brushes has become a powerful tool to tailor the chemical and physical properties of 

interfaces [157-162]. 

Polymer brushes are thin polymer films where chains are attached by one end to an interface. These 

chains can adopt various conformations, “mushroom”, “pancake” or a true “brush” conformation, 

depending on the density of anchoring sites, polymer’s size (chain length) and the interaction 

between polymer chains and the surface. These conformations are described in scheme 14. 
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Scheme I-14. Conformations of surface-anchored polymers 

Polymer brushes can be prepared mainly by “grafting-to” or “grafting-from” methods [163] as 

shown in scheme 15. In the “grafting-to” approach, a polymer is grafted to the surface through 

anchoring sites while in the “grafting-from” strategy, polymers are built from radical initiating 

sites present at the surface prior to polymerization. Grafting-from strategy is often preferred as it 

allows a higher grafting density and film thickness while having a simple experimental setup, mild 

reaction conditions, tolerance toward a variety of functional groups and compatibility with both 

aqueous and organic media [162]. 

 

Scheme I-15. Building polymer brushes by “grafting-to” or “grafting-from” strategies 

Surface-Initiated SARA ATRP (SI-SARA ATRP) is a fast method for the synthesis of polymer 

brushes with ultrahigh molecular weight, low dispersity, and high chain-end fidelity. It is also 

attractive thanks to its high tolerance to air and impurities, mild conditions, simple experimental 

setup and robustness [162]. 

It should be noted that while SI-CRP is already extensively used to produce polymer brushes for 

many applications, it still faces several challenges. Direct characterization of polymer brush 

molecular weight and dispersity, for example, is a difficult task. Consequently, calculating 

important parameters like the grafting density is not straightforward. The majority of published 

papers relies on characterization of free polymers produced via sacrificial initiators during polymer 

brush growth. This approach lacks accuracy because it doesn’t take into account important 
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variables like substrate curvature and confinement [164, 165] on SI-CRP kinetics. Several studies 

suggest significant differences in the molecular weight and dispersity between bulk and surface-

initiated polymers [166, 167] and indicate that the rate of termination of anchored chains depends 

on grafting density [168]. Local viscosity at the interface, known as the Trommsdorff gel effect 

[169], was found to enhance polymerization rates. Surface charge also appears to 

accelerate/decelerate propagation by influencing the concentration of the metal catalysts near the 

interface [170]. The type of initiator, the ligand and the solvent can also affect the rate of 

polymerization on the surface versus chains in solution. In the case of Cu0-mediated CRP, the 

disproportionation/comproportionation equilibrium between copper species can also play a critical 

role in the brush growth kinetics. Overall, it seems that the chain length and distribution of polymer 

brushes rarely correspond to that of free polymers, however, it is difficult to draw a general 

conclusion because every case has its own set of variables that should be considered as a whole. 

From silicon [171], silica [172], metals [173-175], metal oxides [176-178], carbon nanomaterials 

[179, 180] to polymer surfaces such PET [181], Nylon [182], PTFE [183], PP [184], PVDF [185] 

and many others, SI-CRP allows to grow polymer brushes from a wide variety of substrates [186]. 

These surfaces also include a variety of biobased substrates like cellulose in different forms [187-

189], chitin nanofibers [190] and other natural fibers [191, 192], proteins [193-196] and 

microorganisms [197, 198], in addition to mesoporous materials [165, 199-202], graphene and 

related substrates [203-211]. It should be noted that even if one SI-CRP reaction can be applied on 

so many substrates, each surface needs to be carefully treated prior to polymerization in order to 

graft the halogenated initiator, in accordance with each surface’s chemistry [162]. 
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 Conclusion and perspectives 

In the following chapters, free and surface-initiated CRP, particularly SARA ATRP, will be used 

to synthesize innovative chelating materials. Different strategies will be first evaluated using a 

model monomer (4-vinylpyridine), to be then applied on a highly chelating dipicolinic acid-based 

monomer. Polymer brushes will be built from poly(ethylene terephthalate) (PET) surfaces, both 

films and fibers, silica films and microparticles and later from poly(vinyl chloride) (PVC)-based 

substrates. These new materials will be characterized, their interaction with rare earths and 

uranium species will be examined and their potential applications, especially in the nuclear 

industry, will be evaluated. 
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 Introduction 

During the first year of this thesis, the synthesis of the highly chelating dipicolinic-acid based 

monomer was under investigation. Meanwhile, the polymerization strategy that will be later used 

to synthesis the new polymer materials was being studied using a model monomer, the commercial 

4-vinylpyridine (4VP). This monomer has some structural similarity with our targeted dipicolinic 

acid-based monomer bearing a pyridine center, and has indeed some affinity towards metals, 

including copper, that makes the polymerization more challenging because of the competition 

between the chelating monomer and the ligand used in the ATRP reaction. This will help us 

develop the polymerization system that will be later applied to dipicolinic acid-based monomer, 

both in solution and on a solid substrate. 

In this chapter, the polymerization of 4VP will be investigated and optimized in solution, to be 

then applied to build P4VP polymer brush from polyethylene terephthalate (PET) and silica 

surfaces. Obtained materials will be characterized and assessed at each point.   

 Polymerization of 4VP in solution 

Herein, the control and livingness of the ATRP polymerization of 4VP is examined in solution. 

The polymerization of 4VP by ATRP is quite challenging because 4VP is a coordinating monomer 

that competes for the binding of the metal catalysts. To avoid this problem, a strong ligand like 

tris(2-pyridylmethyl)amine (TPMA) should be used in the polymerization system. 

Conventional ATRP of 4VP was reported before in different polymerization systems in term of 

different radical initiators, catalysts, ligands and solvents [1-5] and the Cu0-mediated 

polymerization of 4VP was reported in the very expensive solvent of hexafluoropropan-2-ol 

(HFIP) [6]. The surface initiated ATRP (SI-ATRP) of 4VP was reported on polysulfone surface 

[7] and Cu0-mediated surface initiated polymerization of 4VP was described on silicon wafer using 

a copper plate at 0.5 mm distance from the surface as a Cu0 source and DMSO as solvent [8]. 

However, the above systems were either oxygen sensitive (in the case of classical ATRP), too 

expensive (in the case of HFIP solvent) or not feasible on an industrial scale (in the case of copper 

plate). A possible simplification of the polymerization system using SARA ATRP in 2-propanol 
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and a copper wire reducer is here considered. Benzyl chloride (BnCl) was used as initiator and 

CuCl2/TPMA as a catalyst/ligand complex (scheme 1). 

 

Scheme II-1. SARA ATRP of 4VP 

Reaction protocols are detailed in “materials and methods” and the overall polymerization reaction 

is described as follows:  4VP / BnCl / CuCl2 / TPMA = 100 / 1 / 0.05 / 0.2 

The resulting P4VP was characterized with 1H NMR and size exclusion chromatography (SEC). 

Monomer conversion was calculated from the 1H NMR spectra of aliquots taken at different 

reaction times. Taking the monomer’s vinyl protons at 5.5 and 6.1 ppm as 1 proton reference each, 

the 4VP monomer conversion was calculated as follows: 

4𝑉𝑃 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
𝒜7.7−8.9 𝑝𝑝𝑚 − 2

𝒜7.7−8.9 𝑝𝑝𝑚
 × 100 

𝒜7.7−8.9 𝑝𝑝𝑚 being the peak area between 7.7 and 8.9 ppm attributed to the 2 protons at ortho 

position from the nitrogen atom. Figure 1 shows an example at 79 % 4VP conversion. 

 

Figure II-1. 1H NMR spectrum at 79 % 4VP monomer conversion 
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The reaction kinetics of the optimized polymerization system were studied. Between 1 and 9 hours 

of reaction time, the monomer conversion ranged between 13 and 79%, with calculated Mn (NMR) 

ranging between 1.4 103 and 8.3 103 g.mol-1, measured Mn (SEC) between 4.1 103 and 13.4 103 

g.mol-1 and dispersity Ð between 1.07 and 1.37. Results are summarized in table 1. Monomer 

conversion, molecular weight evolution, and SEC traces are plotted in figure 2. 

Table II-1. 4VP polymerization kinetics 

Time (h) Conversion (%) Mn (NMR) 103 g.mol-1 Mn (SEC) 103 g.mol-1 Ð (SEC) 

1 13 1.4 4.1 1.07 

3 35 3.7 8.1 1.21 

5 52 5.5 8.7 1.33 

7 71 7.5 12.8 1.37 

9 79 8.3 13.4 1.34 

4VP / BnCl / CuCl2 / TPMA = 100 / 1 / 0.05 / 0.2 

T = 30 °C, solvent = 2-propanol   

 

  

        
Figure II-2. 4VP polymerization kinetics. (A): ln([M]0/[M]) vs time; (B): evolution of molar masses as a 

function of monomer conversion. (C): evolution of SEC traces. 
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As described earlier in chapter I, the ATRP rate law Rp should ideally exhibit a linear dependence 

with respect to the monomer concentration [M], due to negligible termination so that the 

concentration of the propagating chains [P*] is constant. 

𝑅𝑝 =  −
𝑑[M]

𝑑𝑡
 = 𝑘𝑝[M][P∗]    ln

[𝑀]0

[𝑀]
=  𝑘𝑝 [𝑃∗] 𝑡 

The first order kinetic behavior shown in figure 2A, along with the monomodal distribution and 

relatively low dispersity at high monomer conversion (Ð = 1.37 at 79 % conversion) (figure 2B, 

2C) suggest fast initiation, good control, and limited chain termination of the SARA ATRP of 4VP 

in 2-propanol under the used reaction conditions. Deviations of Mn (SEC) from predicted values 

Mn (NMR) are probably due to different hydrodynamic volumes of P4VP and the PMMA 

standards. Chain extension was also conducted to prove the livingness of the reaction and as the 

polymerization was successfully validated in solution, similar conditions will be used to build 

P4VP on different substrates in the following sections. 

It should be mentioned though, that system components were carefully examined before adopting 

the above system. A mixed 2-propanol/water solvent caused the polymerization reaction to 

accelerate but compromised its control. When iron or magnesium powder were used as reducers 

instead of copper, we lost the control over polymer chain distribution. CuCl2 ratio was also varied 

between 0 and 1000 ppm (with respect to 4VP) and a concentration of 500 ppm was kept as a 

reasonable compromise between reaction kinetics and chain length control. 

  



 
57 Poly(4-vinylpyridine) 

 P4VP on PET surfaces 

Once the polymerization system optimized in solution, P4VP chains were built from PET films. 

The overall modification strategy is described in scheme 2 and the reactions protocols are detailed 

in “materials and methods”. It involves the successive aminolysis with PEI, grafting of BnCl 

initiator and surface initiated SARA ATRP of 4VP. The aminolysis of PET was used before in our 

lab and the reaction was conducted in methanol [9]. However, DMSO was reported in the literature 

to allow a denser network of amines [10]. In our work, methanol and DMSO were assessed and 

indeed DMSO was found to nearly double the amount of amines grafted on the PET surface and 

became the solvent of choice for the PET aminolysis reaction. 

 

Scheme II-2. SI-SARA ATRP of 4VP on PET surface 

To ensure a successful modification after each step, PET films were characterized by means of 

different techniques starting with water contact angle (WCA). 

Water contact angle (WCA): 

As shown in figure 3, WCA clearly changes after following each modification step. After 

aminolysis, it drops from a hydrophobic 80.0 ± 1.0° for non-modified PET surface to a hydrophilic 

29.0 ± 0.5° for PEI covered substrate (PET-NH2) due to amine functions. Colorimetric analysis 

showed a surface density of 0.71 ± 0.05 NH2/nm2 after aminolysis. WCA then increases to 52.0 ± 

1.0° after grafting the less water soluble BnCl initiator (PET-Cl). This increase in hydrophobicity 
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is correlated with a drop of surface amine density to 0.22 ± 0.03 NH2/nm2. After the surface 

initiated polymerization of 4VP for at least one day, WCA drops to 35.0 ± 1.2°. In order to examine 

the nature of the outer layer, modified films were washed with HCl (0.1 M) to protonate the 

pyridine units. As a result, The WCA further dropped to a very hydrophilic 16.0 ± 0.6° as expected, 

then increased back to 35° after a NaOH (0.1 M) wash. This WCA behavior gives a first hint of a 

potential pH-sensitive P4VP outer layer on the PET film surface. 

 

Figure II-3. Water Contact Angle (WCA) measurements of modified PET substrate 

The promising WCA behavior encouraged us to look further into the chemical nature of the P4VP-

modified surfaces, starting with infrared spectroscopy. 

Attenuated total reflection (ATR): 

ATR spectrum of PET surface was compared to the PET-P4VP surface as shown in figure 4. 

  
Figure II-4. ATR spectra of PET and PET-P4VP surfaces (left) and pyridinic C-N stretching band 

intensity at 1640 cm-1 as a function of polymerization time (right) 
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Looking at the spectra in Figure 4, one can see the single peak at 1640 cm-1 that corresponds to the 

pyridinic C-N stretching band on the PET-P4VP film spectrum (after 5 days of polymerization). 

Even after an extensive soxhlet wash in ethanol, this pyridinic peak could still be seen, proving the 

strong covalent nature of the bond linking the P4VP layer to the PET substrate. 

Reaction kinetics were also examined. Figure 4 shows the evolution of the pyridinic stretching 

band intensity at 1640 cm-1 as a function of polymerization time. The linear increase in signal 

intensity reflects a living polymerization of P4VP within the studied time frame, giving a thicker 

and/or denser layer of P4VP. 

After ATR, modified surfaces will be analyzed by the more surface sensitive x-ray photoelectron 

spectroscopy (XPS). 

 

 

X-ray photoelectron spectroscopy (XPS): 

XPS analysis was conducted to examine the surface chemical composition after each modification 

step shown in scheme 2. Figures 5 and 6 show high resolution C1s and N1s spectra giving a more 

surface sensitive insight into the chemical nature of the modified substrate. Specific peak 

components are shown in tables 2 and 3, and elements contributions are shown in table 4. 
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Figure II-5. XPS C1s spectra of native PET, after aminolysis (PET-NH2), initiator grafting (PET-Cl) and 

5 days of polymerization (PET-P4VP) 

C1s peak of native PET (figure 5) shows three components that correspond to aromatic C*-C 

(284.8 eV), alongside C*-O (286.5) and C*=O (288.9 eV). The aminolysis is evidenced by the 

C*-N peak that appears at 285.6 eV (Red) and the grafting of the BnCl initiator is then shown by 

the appearance of the N-C*=O peak at 287.5 eV (Green). After polymerization of 4VP, the C1s 

spectrum of PET-P4VP surfaces shows an increased contribution for both C*-C (284.8 eV) and 

C*-N (285.6 eV) components versus an ever decreasing contribution for C*-O (286.5 eV), C*=O 

(288.9 eV) and N-C*=O (287.5 eV) (table 2). 
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Figure II-6. XPS N1s spectra of native PET, after aminolysis (PET-NH2), initiator grafting (PET-Cl) and 

5 days of polymerization (PET-P4VP) 

N1s spectra in figure 6 show no signal detected on PET substrate. The appearance of N*-C peak 

at 399.3 eV after aminolysis shows a successful grafting of PEI. Another peak at 401.2 eV is 

associated with protonated amines NH+. The later reduction of this peak after initiator grafting is 

due to the much weaker basicity of formed amides (scheme 2). Although weaker, this peak still 

exists as the initiator grafting has a yield of 60-70% as shown by the colorimetric analysis. Finally, 

the introduction of P4VP by SI-SARA ATRP is proven by the pyridinic N*-C peak that appears 

at 398.8 eV, and the noticeable decrease of all other peaks (table 3). 
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Table II-2. Peak characteristics and relative contribution in C1s spectra 

   
Atomic % 

 Peak BE FWHM (eV) PET PET-NH2 PET-Cl PET-P4VP (5 days) 

C* - C 284.8 1.21 77.6 58.4 54.3 65 

C* - O 286.5 0.95 11.3 8.1 13.4 6.2 

C* = O 288.9 0.94 11.1 12.6 9.9 1.3 

C*-N 285.6 1.19 - 20.9 16.8 25 

N-C*=O 287.5 1.2 - - 5.6 2.5 

 

Table II-3. Peak characteristics and relative contribution in N1s spectra 

   Atomic % 

 Peak BE FWHM (eV) PET PET-NH2 PET-Cl PET-P4VP (5 days) 

N* - C 399.3 1.56 - 69.1 88.3 26.9 

NH+ 401.2 1.75 - 30.9 11.7 7.5 

N* - C (Py) 398.8 1.2 - - - 64.3 

shake up 406.1 1.01 - - - 1.4 

Table 4 shows the evolution of elements contributions after each modification step and most 

importantly as a function of polymerization time. Going from PET-Cl to different PET-P4VP 

surfaces, carbon and nitrogen contributions increased while oxygen contribution decreased. 

Furthermore, a C/N ratio of 14.0 was observed on PET-Cl surface. This ratio decreases to 9.6 after 

one day of polymerization then goes down to 9.1 then 8.1 after three and five days of 

polymerization, respectively, approaching the theoretical C/N ratio of 7.0 for pure P4VP. 

Table II-4. Total element contribution determined by XPS 

 Atomic % 

 PET PET-NH2 PET-Cl PET-P4VP (1 day) PET-P4VP (3 days) PET-P4VP (5 days) 

C 77 68 70 77 78 81 

N - 7 5 8 9 10 

O 23 25 17 13 12 8 

Cl - - 4 2 1 1 

XPS analysis proved the covalent bonding between the substrate and the P4VP layer, and an 

increasing thickness of P4VP with polymerization time, though the absolute thickness was not 

obtained. 
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ToF-SIMS: 

In order to provide more chemical and dimensional specificity of the surface, high-resolution time-

of-flight secondary ion mass spectrometry (ToF-SIMS) analysis was performed. Secondary ion 

fragments from each layer were identified as follows: the fragment at m/z = 104 (C6H4CO+) was 

chosen for PET [11] and the fragment at m/z = 42 (C2H4N
+) was chosen for PEI [12] in addition 

to the easily attributed 4VP fragment of m/z = 106 (C7H8N
+) [13]. An additional fragment at m/z 

= 153 (C8H6ClO+) was attributed to the BnCl initiator and mass spectra were overlaid in figure 7, 

with zoom into m/z of interest. 

No signal was detected at m/z = 42 before PET modification, it first appears after aminolysis and 

the fragment identified as C2H4N
+ is emitted. BnCl initiator specific fragment C8H6ClO+ appears 

at m/z = 153 only after initiator grafting. At m/z = 106, P4VP was detected after polymerization 

and identified through the C7H8N
+ fragment. 

 

Figure II-7. TOF-SIMS positive spectra of native PET, after aminolysis (PET-NH2), initiator grafting 

(PET-Cl) and 5 days of polymerization (PET-P4VP) with, from bottom up, zoom in to m/z: 42, 106 and 

153 
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Afterwards, and on the final PET-P4VP surface, the intensity of the secondary ions specific to 

each layer was followed along the z-axis, i.e. as a function of sputtering time as shown in figure 8. 

Fragments with m/z = 42, 104 and 106 were used to follow the PEI, PET and P4VP signals, 

respectively. 

 

Figure II-8. Secondary ions intensity (logarithmic) as a function of sputtering time of the PET-P4VP-5d 

surface 

At the outer surface (t = 0 s), P4VP is predominately present with negligible intensity from the 

PEI and PET substrate. As we go down the Z axis, P4VP signal intensity gradually decreases as 

both PEI and PET signals increase. Around t = 500 s, PEI signal reaches its maximum intensity 

then decreases along with P4VP, while PET signal continues to increase up to t = 4500 s where 

only traces of P4VP and PEI are detected. This depth profile shows no clear interfaces between 

layers as no sudden shifts in signal intensities were detected. This reveals an important aspect of 

these surfaces. The absence of sharp interfaces reflects an interpenetrating “interphases” of 

successive layers. In fact, this aspect can be attributed to the use of the branched PEI that offers a 

dense network of amines that allows multiple attachment sites between the PEI layer and the PET 

substrate and multiple initiating sites for the later polymerization of 4VP. As a result, PET substrate 

was indeed functionalized with a covalently attached, dense and uniform layer of P4VP, but 
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initiated from different sites that are geometrically localized at various depths. Consequently, 

interphases are observed rather than sharp interfaces between the consecutive components as 

shown in the 3D reconstruction of figure 9. 

 

Figure II-9. 3D reconstruction of PET-P4VP-5d surface, m/z = 106 (Blue), 42 (green) and 104 (red) 

Once the modification of PET with P4VP proven successful, we wanted to have a look at the 

surface morphology after each step. In the next section, PET film are examined under an atomic 

force microscope (AFM) and PET fibers are viewed under a scanning electron miscroscope 

(SEM). 

Surface morphology: 

The surface topography of the modified PET film was studied using tapping mode AFM after each 

treatment as shown in figure 10. 

 

Figure II-10. AFM topography images (up) and 3D reconstruction (down) of PET surfaces after each 

modification. (A): non-modified PET, (B): after aminolysis, (C): grafted initiator, (D): PET-P4VP-5d 
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A measured root-mean-square (RMS) roughness of 1.21 nm/µm2 was observed for the bare clean 

PET surface (figure 10A). After aminolysis (figure 10B), RMS roughness increases to 1.66 

nm/µm2, and further up to 1.97 nm/µm2 after the incorporation of the initiator (figure 10C). Figure 

10D shows the final aspect of the surface after the surface initiated SARA ATRP of 4VP, with a 

dry RMS roughness ranging between 2.60 and 3.30 nm/µm2 after different polymerization times. 

This increase in surface roughness can be attributed first to the use of the amorphous PEI and then 

to the polymerization reaction, even though the surface can still be considered smooth. 

PET fibers, modified according to the same strategy (scheme 2), were observed under a scanning 

electron microscope (SEM) as shown in figure 11. 

 

Figure II-11. SEM images of modified PET fibers 

Even though SEM images supports the fact that a smooth homogenous layer of P4VP was 

successfully grafted on the PET surface, it reveals an important drawback of this strategy. The 

average diameter of those fibers stayed within the average diameter of bare non-modified fibers of 

12 ± 1 µm. This means that at best, only few nanometers of P4VP were built on the PET surface. 

This drawback needs to be dealt with in the next chapter if we want to build a thick layer of the 

highly metal chelating dipicolinic acid-based polymer on fiber materials. 

Meanwhile, and after a successful grafting of P4VP on the organic PET surface, the surface 

initiated polymerization of 4VP was extended to a different substrate. In the next section, SI- 

SARA ATRP will be applied to an inorganic silica substrate.  
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 P4VP on silica surfaces 

Before applying the same polymerization system on silica, a different approach has to be used to 

fix the BnCl initiator on the silica (SiO2) surface. APTES-based molecules are extensively studied 

as preferred candidates to tailor silicon surfaces and represent an initial step towards the covalent 

attachment of a variety of functional molecules on mineral surfaces [14-16], including radical 

initiator for subsequent polymerization [17-19]. Herein, the silica surface was first silanized with 

the new APTES-BnCl initiator synthesized as shown in scheme 3. 

 

Scheme II-3. Synthesis of APTES-BnCl 

SI-SARA ATRP of 4VP was then conducted on the silanized surface. The overall modification 

strategy is described in scheme 4. Protocols for APTES-BnCl synthesis, the silanization of silica 

surface and the surface initiated polymerization are detailed in “materials and methods”. 

 

Scheme II-4. SI-SARA ATRP of 4VP on silica 

This strategy was applied on a flat silica surface, then on silica microparticles to be used as a pH-

switchable barrier for oil/water separation. 
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II.4.1. P4VP on flat silica 

A silicon wafer was treated with a highly oxidizing piranha solution to bare a clean silanol-

terminated silica surface, as detailed in “materials and methods”. The strategy described in scheme 

4 was then applied and the modified surface was examined by different techniques, starting with 

WCA. 

Water contact angle (WCA): 

To ensure a successful modification, Water Contact Angle (WCA) was measured (figure 12) on 

bare silanol-terminated silica (Si-OH), initiator-grafted (APTES-BnCl) surface and P4VP-grafted 

surface. WCA analysis show that a hydrophilic surface (Θ = 24.0° ± 2.0) is seen on silanol-

terminated silica surface (Si-OH). The APTES-BnCl grafted surface gave a higher angle of 61.0° 

± 1.0, demonstrating the hydrophobic character of BnCl initiator. The successful grafting of the 

pH-sensitive P4VP layer was demonstrated by a switchable WCA between 73.0° ± 2.0 for the 

water washed surface (hydrophobic P4VP), and a WCA of 18.0° ± 1.0 for the HCl rinsed substrates 

(protonated hydrophilic P4VP). These results gave a first hint of a pH-sensitive surface and 

encouraged further detailed analysis of the modified substrates. 

 

Figure II-12. Water Contact Angle (WCA) measurements of modified silica surface 

 

X-ray photoelectron spectroscopy (XPS): 

Figure 13 shows the complete survey of the XPS spectra across modification steps. Silica surface 

shows only Si and O peaks around 100 eV (Si2p), 150 eV (Si2s) and 530 eV (O1s), with minor 

C1s contaminants at around 285 eV. High resolution spectra (figure 14) later showed a 76.6 % 

contribution for bulk Si-Si compared to 23.4 % for surface Si-O (table 6), as the ellipsometric 

measurement showed only a 2 nm thick layer of SiO2 on top of the bulk silicon, a thickness lower 

than the ~10 nm probing depth of XPS. 
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APTES-BnCl modified surface show the same peak positions as bare SiO2, with an additional peak 

of Cl2p at around 200 eV and a small N1s peak at around 400 eV (figure 13). An increase in atomic 

% (table 5) of carbon from 5.7 % to 31.7 % is expected for a homogenous top layer of APTES-

BnCl. However, ellipsometry measurement showed a thin monolayer (~1 nm) of APTES-BnCl, 

too thin to mask signals from the SiO2 sublayer. 

After the 4VP polymerization, the XPS spectrum shows trace levels of both oxygen and silicon 

signals with the enhancement of carbon and nitrogen peaks (figure 13). The minimal signal of SiO2 

sublayer is supported by the ellipsometric measurements where a layer of 10-12 nm is present at 

the surface. Atomic % data (table 5) gives a carbon/nitrogen ratio of 7.9/1.0, close to the theoretical 

ratio of 7/1 for pure P4VP. 

 
Figure II-13. XPS survey of bare and modified silicon wafer 

Table II-5. Total elements contributions determined by XPS 

Surface C O N Si Cl 

Si-SiO2 5.7 34.3 - 60 - 

SiO2-APTES-BnCl 16.2 31 1.5 49.9 1.4 

SiO2-P4VP 82 2.5 10.3 5.2 - 

 

High resolution XPS analysis was also conducted to examine each step. 
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Si-SiO2 surface: 

Figure 14 shows the high-resolution spectrum of the silanol-terminated silicon wafer. Two distinct 

doublets were observed in the Si2p, corresponding to bulk silicon Si*-Si (99.2 eV) and silicon 

bonded to oxygen Si*-O (103.3 eV), their relative contributions are presented in Table 6. 

 

Figure II-14. High resolution XPS spectra of silica surface 

Table II-6. Peak characteristics and relative contributions of Si2p spectrum of silanol-terminated silica 

 Position (eV) FWHM (eV) Contribution (%) 

Si* - Si 99.2 0.83 76.6 

Si* - O 103.3 1.56 23.4 

 

SiO2-APTES-BnCl surface: 

High-resolution XPS spectra of APTES-BnCl modified silica surface are presented in Figure 15. 

The C1s spectrum shows all peaks expected from APTES-BnCl grafted surface, namely, C*−Csp3 

at 285 eV, C*−Csp2 at 284.6 eV, C*−N at 286.3 eV, and N-C*=O at 288.1 eV. The N1s peaks 

(hydrogen bonded NH+ at 401.6 eV5 and N*-C at 399.8 eV), along with Cl2p peaks (C–Cl* at 

200.3 and 201.9 eV), further confirmed a successfully modified surface. Table 7 provides the peaks 

contributions in each high-resolution spectrum of Figure 15. 
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Figure II-15.XPS high resolution spectra of APTES-BnCl modified silica 
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Table II-7. Peak characteristics and relative contributions of APTES-BnCl modified silica 

 Position (eV) FWHM (eV) Contribution (%) 

C* - C sp3 285 1.27 43.9 

C* - C sp2 284.6 1.29 32.7 

N - C* = O 288.1 1.24 7.1 

C* - N 286.3 1.61 16.3 

N* - C 399.8 1.44 95.4 

NH+ 401.6 1.40 4.6 

N - C = O* 531.4 1.19 22.6 

C - O* - Si 532.2 1.11 54.9 

Si - O* - Si 532.8 1.13 22.5 

C-Cl* 2p3/2 200.3 1.33 50 

C-Cl* 2p1/2 201.9 1.33 50 

It is interesting to attempt to figure out the way APTES-BnCl molecules can be attached to the 

surface. This can be shown by the C/N atomic ratio in the XPS spectrum. Possible structures are 

depicted in Figure 16 where the molecules can be attached as a monopod (C/N = 15), dipod (C/N 

= 13), tripod or crosslinked (C/N = 11). An atomic ratio of C/N = 10.8 found for APTES-BnCl 

modified surface (table 5) shows a dominant contribution of the tripodic or crosslinked structures. 

Differentiating between those two structures needs further analysis. 

 

Figure II-16. Different possible forms of the attachment of APTES-BnCl to silica surface 
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SiO2-P4VP surface: 

The high resolution spectra of the P4VP modified silica, after 22 hours of polymerization, is shown 

in figure 17. The C1s spectrum confirms the polymer backbone’s C*-C peak at 284.7 eV, the 

aromatic C*-C peak at 285.3 eV and the aromatic C*-N peak at 285.9 eV. The atomic contribution 

of these peaks is shown in table 8, where a ratio of 2.5/3/2.2 for C-C/ArC-C/ArC-N further proves 

the presence of 4VP units when compared to the theoretical ratio of 2/3/2 for pure P4VP. No peaks 

for C*=O or aliphatic C*-N from the previous spectrum (figure 15) are present, hypothesizing that 

the APTES-BnCl layer was completely covered with the polymer. N1s spectrum in Figure 17 

shows a unique pyridinic N*-C peak at 400.7 eV, with shake-up peaks at higher energy, as 

expected from a quasi-pure P4VP outer layer. 

 

Figure II-17. High resolution spectra of P4VP-modified silica 

 

Table II-8. Peak characteristics and relative contributions in the C1s spectrum of P4VP-modified silica 

 Position (eV) FWHM (eV) Contribution % 

Backbone C*-C 284.7 1.07 31.1 

Aromatic C*-C 285.3 0.92 36.6 

Aromatic C*-N 285.9 1.03 27.2 

shake-up 291.9 1.84 5.1 
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ToF-SIMS: 

TOF-SIMS depth profiles are shown in figure 18. C7H8N
+ Fragment at m/z = 106 is the main 

fingerprint of P4VP, the fragments at m/z = 28 (Si+), 60 (SiO2
-) and 77 (SiO3H

-) were chosen to 

follow the silica-APTES-BnCl layer. Due to the Si-O function of the APTES-BnCl, it was difficult 

to separate its fragments from the silica ones.  

The P4VP intensity exhibits an initial linear decrease for the first 30 seconds of sputtering time 

followed by an exponential decrease to reach after 100 s a steady state of few counts. The interface 

between p4VP and the Si sublayer is clearly visible due to the decay of the P 4VP signal by 2 to 3 

orders of magnitude simultaneously with the rise of the Si+, SiO2
- signals. It is important to note 

that at the interface the intensity of SiO3H
- signal gets a boost when it is compared to the other 

characteristic peaks of the Silica-APTES-BnCl layer. This could be attributed to the high 

probability of extracting this ion at the interface both from the APTES-BnCl monolayer and the 

substrate. However, it can also be attributed to the SIMS matrix effect where the yield of some 

ions appear to be enhanced at an oxide interface [20]. 

 

Figure II-18. Evolution of the intensity of the emitted fragments (C7H8N
+, Si+, SiO3H

-, SiO2
-) as a function 

of sputtering time of the P4VP-modified silica surface on a logarithmic scale. 
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Figure 19 shows the 3D rendering of the positively charged ions of m/z = 28 and 106 collected at 

every depth (2 sec) of the performed depth profile measurement. This 3D image confirms that the 

P4VP is uniformly distributed across the region being analyzed and not concentrated in selected 

voxels (air-P4VP interface or P4VP-Silica interface). 

 

Figure II-19. 3D reconstruction of the modified surface, A) P4VP (blue), B) Si (red), C) Total overlay 

These results become significant when compared to the earlier PET-P4VP surface (figure 9). When 

polyethyleneimine (PEI) was used to link P4VP to a polyethylene terephthalate (PET) substrate, 

no sharp interface was detected between the layers, and a rather interpenetrating layers 

(interphases) were obtained due to the branched nature of PEI and that of the “soft” organic PET 

substrate. On silica, more sharp interfaces were detected where P4VP is polymerized using a 

monolayer of initiator attached to the “harder and polished” silica surface. 

Atomic force microscopy (AFM): 

Figure 20 shows the topography and 3D AFM images obtained for (a) bare silica surface, (b) 

APTES-BnCl-silanized surface and (c) Silanized substrate after surface initiated polymerization 

of 4VP. 

A measured RMS roughness of 0.48 nm/µm2 was observed for clean silica substrate (Fig. 20A). 

A slight increase in the surface roughness to 0.53 nm/µm2 is observed after the APTES-BnCl 

treatment (Fig. 20B). This increase in roughness can be attributed to the formation of a few number 

of a 4-6 nm thick island-like aggregates coming from the APTES-BnCl oligomers formed 

inevitably in the APTES-BnCl solution in toluene. Fig. 20C shows the topography of the P4VP 

layer built from the APTES-BnCl initiator by SI-SARA ATRP where RMS increased to 0.67 

nm/µm2 after almost one day of polymerization. 
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Figure II-20. AFM topography images (up) and 3D reconstruction (down) of (A): SiO2 surface, (B): 

APTES-BnCl modified surface, (C): P4VP top layer 

These observations proves that smooth, uniform and homogenous surfaces were obtained after 

each step. P4VP outer layer is also expected to be smoother when built on silica than on the PET 

substrate (figure 10) 

Stability of modified surfaces: 

As reported in the literature, silica surfaces modified with an APTES-based molecule show a low 

stability of just few hours [21] as these films are highly sensitive to hydrolysis. Therefore, the 

stability of APTES-BnCl and P4VP surfaces was examined. After 5 days exposed to room 

temperature and humidity, the XPS measurements show a complete degradation of the APTES-

BnCl layer, whereas samples bearing P4VP show no alteration. Moreover, ToF-SIMS analysis 

later showed high stability of P4VP-modified surfaces left for one year under room conditions. 

These measurements proved that the P4VP layer is thick and homogenous enough to prevent 

hydrolysis of the APTES-BnCl sublayer, and therefore proved a high stability of the final P4VP-

modified silica surfaces. 
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II.4.2. P4VP on silica particles 

Even though the 4VP is used in this project as a model monomer that allows the development of 

grafting techniques for the dipicolinic acid-based chelating monomer later discussed in chapters 

III and IV, we wanted to give the P4VP-modified surfaces a meaningful application. 

Taking advantage of the pH-switchable hydrophilicity/hydrophobicity of pyridine units by 

protonation/deprotonation (scheme 5), silica microparticules were modified according to the same 

strategy described earlier in scheme 4. 

 

Scheme II-5. pH sensitivity of P4VP 

The preparation of a pH-sensitive membrane based on 4VP, copolymerized with methyl 

methacrylate (MMA) using SARA ATRP, was reported before [22]. The PMMA-b-P4VP block 

copolymer was cast into a membrane and used for an efficient pH-induced oil/water separation. 

Herein, silica microparticles (70-200 µm) were modified with an outer layer of P4VP and used for 

an efficient pH-switchable oil/water separation process. The successful modification was verified 

by XPS, giving results similar to those seen on flat silica (figures 13-17). 

Furthermore, ATR spectra of the silica-P4VP microparticles are shown in figure 21. The 

appearance of the Si-C peak at 1261 cm-1 proved the covalent attachment between the APTES-

BnCl molecule and the silica surface and the P4VP outer layer can be detected through the 

pyridinic C-N vibration at 1635 cm-1. 
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Figure II-21. ATR spectra of bare silica particles (black dashed line) and silica-P4VP particles (red line) 

The P4VP-coated silica powder was then used as a pH-switchable barrier for oil/water separation. 

pH-switchable oil/water separation: 

The wettability of P4VP (pKa = 4.5) surface can be switched at different pH by the 

protonation/deprotonation of pyridyl groups (scheme 5). This property was shown earlier on a flat 

surface by the WCA measurements (figure 12) where the P4VP surface switched between 

hydrophobicity and hydrophilicity by alternating neutral water/diluted HCl washes. Silica powder 

modified with P4VP was used as a pH-controlled barrier for oil/water separation. The experimental 

set-up is shown in figure 22. 

In a blank experiment, non-modified silica was put into a separatory funnel to a height of ~3 cm. 

A layered mixture of 10 mL dichloromethane (DCM) (bottom layer), 30 mL water (middle layer) 

and 10 mL n-hexane (top layer) were added on top of the silica (figure 22A), both organic solvents 

were colored with iodine [22] for better visualization. When the tap was opened (figure 22B), all 

solvents passed through within few minutes and no retention behavior was observed for the non-

modified silica. 
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Figure II-22. Oil/Water separation on non-modified/blank silica (A,B) vs P4VP-modified (C, D, E, F) 

silica 

In figure 22C, P4VP-modified silica was put to a height of ~3 cm followed by a layered mixture 

of DCM and water. When the tap was opened (figure 22D), DCM slowly passed through within a 

couple of minutes and the water was retained by the hydrophobic P4VP-modified silica. No water 

passed through the P4VP-modified silica even when left for several hours. Afterwards, few 

milliliters of concentrated HCl were added and the water was topped with a layer of n-hexane 

(figure 22E). Within a minute, water started to pass through, which can be explained by the 

protonation of the P4VP-modified silica, now turned hydrophilic (scheme 5). After all the water 

passed through, n-hexane was retained (figure 22F), proving the hydrophilic behavior of the 

protonated P4VP-modified silica, again with no change when the set-up was left for several hours. 
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 Conclusion  

In this chapter, the Cu0-mediated CRP of 4VP was investigated. The polymerization system was 

optimized in solution as to obtain fairly controlled polymer chains. This reaction was then applied 

on PET then silica surfaces, with the initiator grafted in accordance to each substrate’s chemistry. 

All modified surfaces were examined by several characterization techniques that gave access to 

surface chemistry and morphology. Finally, P4VP-modified silica powder was used for oil/water 

separation by switching its hydrophilicity/hydrophobicity. 

The 4VP mainly served as model monomer for subsequent studies. In chapter III, a new monomer 

derived from chelidamic (4-hydroxy dipicolinic acid) will be discussed. The new monomer called 

4-vinyl dimethyl dipicolinate (VDPM) will be synthesized and then used to obtain a highly 

chelating poly(4-vinyl dipicolinic acid) polymer (PVDPA). This polymer will later prove in 

chapter IV to be highly performing, either in its free (in solution) form or when grafted on solid 

substrates. 
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III. Poly(4-vinyldipicolinic acid) 

An innovative functional polymer 
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 Introduction 

Following the studies conducted on 4VP in chapter II, we move on in this chapter to our new 

highly chelating polymer that is at the heart of this project. This polymer called poly(4-vinyl 

dipicolinic acid) (PVDPA) is derived from chelidamic acid which is derived from chelidonic acid 

(figure 1), a constituent of a plant called chelidonium majus. Chelidonic acid is known to have 

many pharmacological effects, including analgesic, antimicrobial, anti-inflammatory and anti-

depressant effects [1-3]. Chelidamic and dipicolinic acids, on the other side, are known to strongly 

bind to a lot of metals including transition metals, lanthanides and the most important uranium [4-

10]. Earlier attempts were made in our lab to attach a polymerizable function on chelidamic acid 

but strategies were time consuming and the resulting polymers weren’t water soluble, nor had the 

right physicochemical properties to be considered interesting with respect to the application of 

aqueous radiodecontamination. To the best of our knowledge, PVDPA is indeed a new polymer 

that has very interesting chelating capacity and physicochemical properties as we will later discuss 

in chapter IV.   

 

Figure III-1. Chelidonic acid and its derivatives 

Chelidonic acid can be obtained synthetically by a simple reaction of acetone with diethyloxalate, 

and then turned to chelidamic acid (4-hydroxydipicolinic acid) when reacting with aqueous 

ammonia [11] as shown in scheme 1. 
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Scheme III-1. Synthetis of chelidamic acid 

To synthesize the VDPA monomer from chelidamic acid, one should pass by its 4-vinyl dimethyl 

dipicolinate (VDPM) ester form as shown in scheme 2. VDPM is then hydrolyzed and the resulting 

VDPA could be polymerized in water to get the PVDPA polymer. However, aqueous 

polymerization was found to be a bit too complicated to tame. Furthermore, co-polymerization 

with hydrophobic co-monomers like styrene will also be challenging (nanoparticles being an 

exception). An easier strategy would be to polymerize the VDPM ester monomer in an organic 

medium and the obtained PVDPM could be then easily hydrolyzed to get the water soluble PVDPA 

polymer (scheme 2).  

 

Scheme III-2. Synthesis of PVDPA 

In the following sections, the synthesis of the VDPM monomer is detailed. Its polymerization is 

then discussed in solution and from PET surfaces. Later on, we will describe how we went from 

PET to poly(vinyl chloride) (PVC) as a more efficient, easier to use substrate for surface-initiated 

polymerization of the VDPM monomer.  
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 Synthesis of VDPM monomer  

Several strategies were evaluated for the synthesis of the VDPM monomer. Cross coupling 

reactions between halogenated chelidamic acid and triethoxyvinylsilane were tried either in 

PEG/water mixture or dioxane as solvents [12]. The coupling reaction was also tried with a 

vinylboronic acid pinacol ester [13]. The monomer was obtained either in poor yield and/or was 

too difficult to extract from the reaction medium and purified. 

 

Scheme III-3. VDPM synthesis using triethoxyvinylsilane or a vinylboronic acid pinacol ester 

The solution was offered by potassium vinyltrifluoroborate [14-16], which has the advantage of 

being a potassium salt, much more stable than silanes and boronic esters, in addition to the fact 

that it affords a product that is easier to isolate and purify with a much higher yield. The overall 

synthesis was done as follows: 

 

Scheme III-4. VDPM synthesis using potassium vinyltrifluoroborate 
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Dimethyl 4-chloropyridine-2,6-dicarboxylate (2) was first obtained in good yield according to a 

literature described two-step procedure involving the reaction of the 4-hydroxypyridine-2,6-

dicarboxylic acid (chelidamic acid) hydrate (1) with phenylphosphonic dichloride (PhPOCl2) then 

treated with methanol in a one pot reaction (yield = 87%). 

Dimethyl 4-iodopyridine-2,6-dicarboxylate (3) was then synthesized by the reaction of (2) with 

sodium iodide (NaI) with acetyl chloride (MeCOCl) to substitute the chloride with an iodide 

function as a better leaving group for the later Suzuki coupling reaction (yield = 90%). 

The VDPM monomer (4) was finally obtained following a palladium catalyzed Suzuki coupling 

with potassium vinyltrifluoroborate (CH2=CH-BF3K). The structure was verified by 1H NMR, 

especially the vinylic protons at 5.63 (d, 1H, J = 11.1 Hz, C=CHtrans), 6.14 (d, 1H, J = 17.4 Hz, 

C=CHcis) and 6.75 (dd, 1H, J = 17.4 Hz, J = 11.1 Hz, CH=CH2). 
13C NMR and ESI mass 

spectrometry further proved the monomer structure (yield = 70-80%).  

All protocols are detailed in “materials and methods”.  
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 Polymerization of VDPM in solution 

Inspired by the SARA ATRP polymerization of 4VP (chapter II), the polymerization of the new 

VDPM monomer was conducted. Reaction conditions were optimized and the obtained polymers 

were characterized. Benzyl chloride (BnCl), CuCl2, TPMA and Cu0 were kept as initiator, catalyst, 

ligand and reducer, respectively, in the polymerization system. DMSO, and later acetonitrile, were 

used as solvents. The reaction was conducted both at 30° and 50 °C. 

III.3.1. PVDPM homopolymer 

SARA ATRP was first used for the homopolymerization of the new VDPM monomer as follows: 

 

Scheme III-5. SARA ATRP polymerization of VDPM 

The monomer concentration was kept at 0.5 M in DMSO or acetonitrile (T= 30 or 50 °C), metallic 

copper wire was fixed at 1 cm/mL and initial molar ratios for the polymerization system 

components were as follows: 

VDPM / BnCl / CuCl2 / TPMA = 100 / 1 / 0.01 / 0.4 

A successful polymerization was verified by 1H NMR (CDCl3) and the reaction kinetics were 

studied by following the disappearance of the vinyl proton peaks at 5.32 ppm, 5.83 ppm and 6.45 

ppm as references for 1 proton each (figure 2). 

To note that concentrations and molar ratios in the polymerization reaction were modified with 

respect to those used for 4VP (chapter II) in order to obtain a first order kinetics. 
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Figure III-2. VDPM homopolymerization monitored by 1H NMR (CDCl3) 

The monomer conversion was then calculated using the methyl protons peak (6 protons) at 3.63 

ppm that turns from a high singlet in the monomer form to a larger peak at 3.49 ppm in the polymer 

form. The monomer conversion is then calculated using the peak area 𝒜 in the region between 

3.10 ppm and 3.95 ppm as follows: 

 𝑉𝐷𝑃𝑀 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
𝒜3.10−3.95 𝑝𝑝𝑚 − 6

𝒜3.10−3.95 𝑝𝑝𝑚
 × 100 

Reaction kinetics and polymer characteristics are summarized in table 1 and figure 3.  

Table III-1. VDPM polymerization kinetics 

Time (min) Conversion (%) 
Mn (NMR) 

103 gmol-1 

Mn (RI) 

103 gmol-1 

Mn (LS)** 

103 gmol-1 
Ð (RI) 

10 10 2.2 70 (19)* 58 (21.8)* 1.2 (2.7)* 

20 45 9.9 63 64.5 1.7 

30 65 14.4 50 47.8 1.7 

40 85 18.8 43 45.2 2 

60 96 21.2 34 34.4 2.5 

VDPM / BnCl / CuCl2 / TPMA = 100 / 1 / 0.01 / 0.4 

* At 10% conversion, calculations were made without and (with) the shoulder peak at higher elution volume 

** with dn/dc in DMF estimated at 0.16 mL/g similar to that of P4VP 
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Figure III-3. VDPM polymerization kinetics. ln ([M]0/[M]) vs time (up left); LS (up middle) and RI (up 

right) SEC traces and obtained molar masses as a function of monomer conversion (down) 

The first order kinetic behavior shown in figure 3 (up left) by the linear increase of ln([M]0/[M]) 

as a function of reaction time suggests fast initiation and limited chain termination under the used 

reaction conditions, a sign of a good reaction livingness. 

SEC results, however, are a whole different story. First of all, the SEC traces show a double 

population at 10% conversion and important tailing at higher conversions. Going from 1 to 9 hours 

of reaction time and monomer conversions from 10 to 96%, the calculated Mn (NMR) values go 

from 2.2 up to 21.1 kg.mol-1, correspondingly. However, Mn (RI) values decrease from 70 down 

to 34 kg.mol-1 (with respect to PMMA standards) and Mn (LS) values from 58 down to 34.4 

kg.mol-1 as shown in table 1 and figure 3. 

Surprisingly, calculated Mn (RI) and Mn (LS) are inversely proportional to monomer conversion. 

Polymer samples are eluted in a wrong order and longer chains seem to be more delayed than short 

ones, an unusual behavior for a size-dependent SEC analysis. 
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We suspected an adsorption phenomenon induced by an interaction between the ester functions of 

PVDPM and the column’s polyester stationary phase. The fact that our PVDPM polymer has two 

ester functions on each repeating unit means that an adsorption phenomenon may give flawed 

results. Longer chains have more ester functions and therefore adsorb more to the stationary phase 

and are retained more than short chains. 

Fortunately, the system was equipped with a light scattering (LS) detector which should be able to 

estimate molar masses independently of elution order. However, Mn (LS) values and behavior 

were similar to Mn (RI) as shown in table 1 and figure 3 (down). This observation may be the 

result of polymer aggregation or self-assembly in DMF. Interestingly, this aggregation 

phenomenon seems to be inversely proportional to polymer chain length and is most pronounced 

for small chains as seen in figure 3. 

To conclude, the SEC analysis remains a challenge and the control over PVDPM chain length 

distribution remains unknown, which should be a priority in future studies. For now, only the 

livingness of the polymerization reaction was proven. In the next section, MALDI-ToF will be 

used to see whether or not the chlorine chain ends are preserved. 

 

MALDI-ToF: 

A PVDPM sample of an estimated molar mass of 17 kgmol-1 (77 repeating unit) was analyzed by 

MALDI-ToF in an AcN-DCTB matrix. In the obtained spectrum (figure 4), the signals are 

separated by ~221.1 units, which corresponds to molar mass of VDPM repeating unit. The molar 

masses of individual species correspond to the expected structure as can be seen in the zoomed 

views in figure 4, with the chlorine atom always present. 
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Figure III-4. MALDI-ToF analysis of PVDPM 
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The most important information drawn from this MALDI-ToF analysis was that the chain-end’s 

chlorine atom was preserved, a proof of the livingness of the polymerization reaction, which will 

later allow us to reach high chain lengths, an important feature which will be proven essential to 

synthesize highly absorbing surfaces, later discussed in the chapter IV. It should be noted that the 

spectrum in figure 4 doesn’t reflect the real molar mass nor the chain lengths distribution of the 

analyzed sample due the high dependence of the signal intensities on the polymer structure and 

experimental conditions like the solvent, the matrix and the ionization energy, making it difficult 

to extract heavier chains without optimizing each parameter.  

In the following section, the copolymerization of VDPM monomer with styrene will be discussed.  

  

III.3.2. Poly(VDPM/styrene) copolymers 

Even if the radiodecontamination in aqueous environments is the main application targeted in our 

work, it should be interesting to explore different strategies that allow the tuning of the 

physicochemical properties of PVDPA if the polymer is to be used in different environments like 

in organic media, or where a specific set of properties is needed to build certain surface 

architectures (ex: honeycomb architecture). Herein, the copolymerization of VDPM with styrene 

is examined. 

III.3.2.1. Styrene homopolymerization 

The SARA ATRP of styrene is described in the literature [17]. We began by adapting it to our 

system and the modified reaction is described as follows: 

 

Scheme III-6. SARA ATRP polymerization of styrene 

The reaction kinetics were investigated and the ln ([M]0 / [M]) = f (polymerization time) plots of 

the styrene polymerization in different solvents are shown in figure 5. 
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Figure III-5. Styrene homopolymerization kinetics 

The above plot shows that initiation was fastest in sulfolane/water, followed by sulfolane then by 

the bulk polymerization. However, in sulfolane/water, the propagation slowed down dramatically 

after ~30 % monomer conversion, probably due to decreasing solubility of polystyrene chains at 

higher conversion in the sulfolane/water mixture. In sulfolane alone, the propagation slowed down 

after ~52 % but stayed efficient. The bulk polymerization showed an efficient and consistent 

propagation throughout the reaction.  

It’s worth mentioning also that in an attempt to further reduce that copper load in the reaction, 

metallic copper reducer was replaced with sodium dithionite (Na2S2O4) according to [18] and the 

reaction was doped with 2%v water to slowly solubilize the sodium salt into the system. Perfectly 

controlled polystyrene was obtained (Ð = 1.09). 

The synthesized polystyrene was analyzed by NMR and SEC and excellent control was achieved. 

Main results are shown in table 2. 

Table III-2. Polystyrene obtained in different polymerization conditions 
CuCl2 / 

BnCl 
solvent reducer time 

conversion 

(%) 

Mn (NMR) 

103 gmol-1 

Mn (SEC) 

103 gmol-1 

Ð 

(SEC) 

0.02 bulk Cu (0) 5 h 67 6.98 7.87 1.12 

0.02 sulfolane Cu (0) 5 h 62 6.46 6.76 1.18 

0.02 
sulfolane/water 

(9/1) 
Cu (0) 5 h 49 5.1 5.11 1.16 

0.1 
sulfolane/water 

(98/2) 
Na2S2O4 > 24 h 34 3.54 3.35 1.09 

T = 60 °C and styrene / BnCl / TPMA = 100 / 1 / 0.2    
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The styrene homopolymerization was successful. Nevertheless, when compared with VDPM 

polymerization, higher temperature (60 °C) was needed, and another solvent (sulfolane) was used. 

The non-solubility of polystyrene in acetonitrile and DMSO caused the polymerization reaction to 

be terminated too early due to the precipitation of polystyrene. These results made the 

VDPM/styrene copolymerization more challenging.  

It should be mentioned also that even though excellent control of polystyrene chain lengths was 

achieved using Na2S2O4 as a reducer, applying this technique to VDPM polymerization was not 

straightforward and further studies would be needed. We maintain then Cu0 as a reducer for 

subsequent studies. 

III.3.2.2. VDPM/styrene copolymerization 

Several attempts were made to have a successful copolymerization between VDPM and styrene, 

the overall reaction is described as follows: 

 

Scheme III-7. SARA ATRP copolymerization of VDPM/styrene 

Different types of copolymers can be obtained depending on the polymerization system 

components and reaction conditions (choice of solvents, delayed comonomer injection…). SARA 

ATRP polymerization allowed us to synthesize linear copolymers (statistical, gradient and block 

copolymers) and classical radical polymerization in aqueous solution using VDPA (hydrolyzed 

VDPM) comonomer allowed the synthesis of monodisperse latex nanoparticles with polystyrene 

core and PVDPA shell. These different copolymers are described in scheme 8. 
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Scheme III-8. Different styrene/VDPM copolymers 

 

 

III.3.2.2.1. Statistical copolymer 

The statistical copolymer was obtained by the simultaneous copolymerization of a 1/1 ratio of the 

two comonomers (x0 = y0) in a sulfolane/DMSO mixed solvent at 60 °C. Initial molar ratios of the 

polymerization system components were as follows: 

Styrene / VDPM / BnCl / CuCl2 / TPMA = 50 / 50 / 1 / 0.2 / 4 

The 1H NMR (CDCl3) spectrum (figure 6) of the purified polymer showed that indeed a statistical 

copolymer was obtained, with methyl protons from VDPM appearing at 3.91 ppm, and the 

aromatic protons from both comonomers visible between 5.8 and 7.8 ppm. Nevertheless, peaks 

integrations shown that the VDPM comonomer was more incorporated into the copolymer with 

65 % contribution, against 35 % for styrene comonomer as shown in figure 6. 
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Figure III-6. 1H NMR spectrum of VDPM/styrene statistical copolymer 

 

We saw earlier that the two separate homopolymerizations have different kinetics, where the 

VDPM reaches total conversion within one hour (figure 3) while the styrene takes several hours 

to reach similar conversions (figure 5). This can explain the fact that, in the statistical copolymer, 

the VDPM comonomer is more present as it is more reactive than styrene, which will later help us 

synthesize the gradient then the diblock copolymer. 
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III.3.2.2.2. Gradient copolymer 

This time, an initial VDPM comonomer ratio of 5 % (i.e. x0/y0 = 95/5) was used in the following 

system:  Styrene / VDPM / BnCl / CuCl2 / TPMA = 95 / 5 / 1 / 0.01 / 0.44 

As expected, the more reactive VDPM comonomer was incorporated faster than styrene. The result 

was a gradient copolymer where the VDPM units are relatively dense at the beginning of the 

polymerization and become diluted with increasing chain lengths. 

The ln ([M]0 / [M]) = f (polymerization time) plot (figure 7) shows how VDPM has both higher 

initiation and propagation rates when compared to the styrene comonomer. 

 
Figure III-7. Gradient copolymerization kinetics 

Once the copolymers was precipitated in methanol and purified, its 1H NMR spectra (figure 8) 

allowed us to determine the VDPM incorporation in the final copolymer. Taking the VDPM’s 

methyl peak at ~4 ppm as a reference for 6 protons, VDPM incorporation was calculated as 

follows: 

𝑉𝐷𝑃𝑀 𝑐𝑜𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑖𝑛𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (%) =  
1

(𝒜
6−8 𝑝𝑝𝑚

− 1)/5 
× 100 

where aromatic protons from both comonomers are gathered under the peak between 6 and 8 ppm. 
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Figure III-8. 1H NMR spectra of gradient copolymers after different reaction times (hours), y 

= VDPM comonomer incorporation  

The molar masses calculated from NMR were compared with those determined by SEC analysis. 

Results are shown in table 3 and plotted as a function of styrene comonomer conversion in figure 

9. 

Table III-3. Gradient copolymer kinetics 

time 

(hours) 

Styrene 

conversion % 

VDPM 

conversion % 

VDPM 

incorporation % 

Mn (NMR) 

103 g.mol-1 

Mn (SEC) 

103 g.mol-1 

Ð 

(SEC) 

1 12 45 9 1.8 4.6 1.5 

2 32 90 12 4.3 5.4 1.42 

3 51 > 98 16 6.3 6.6 1.33 

4 70 > 98 23 8.1 8.9 1.26 

Styrene / VDPM / BnCl / CuCl2 / TPMA = 95 / 5 / 1 / 0.01 / 0.44 

Solvent: sulfolane, T = 60 °C     

 

As shown in table 3, between 1 and 4 hours of polymerization, styrene conversion went from 12 

to 70% and VDPM conversion from 45 to 98%, giving a theoretical Mn (NMR) between 1.8 and 

8.1 103 g.mol-1 and a measured Mn (SEC) between 4.6 and 8.9 103 g.mol-1, correspondingly. 
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Figure III-9. Mn (SEC), Mn (NMR) and dispersity (Ð) as a function of styrene comonomer conversion 

(%) 

When plotted in figure 9, a non-classical behavior is observed. First of all, the Mn (SEC) began 

far from Mn (NMR) and the two values became closer at higher styrene conversion. Ð was also 

much higher at first, and linearly decreased as a function of styrene conversion. In order to explain 

this phenomenon, we have to keep in mind that the VDPM component is not soluble in the THF 

eluent, causing an important change in the hydrodynamic volume of the resulting copolymer in 

THF, when compared with the polystyrene standard. This change is more important with high 

VDPM incorporation in the final copolymer. Knowing that in our case, VDPM incorporation ratio 

decreased in longer copolymers (and styrene component became more dominant), we can 

reasonably predict that longer copolymers behaved more like pure polystyrene than shorter ones. 

This hypothesis can explain the closer results at higher styrene conversion between the two Mn 

(NMR and SEC), and the apparent decrease in dispersity Ð. 
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III.3.2.2.3. Block copolymer 

Finally, we took advantage of the higher reactivity of VDPM to synthesize a PVDPM-block-PS 

copolymer in a one pot reaction. We began by polymerizing the VDPM comonomer to a 10 units 

long oligomer (VDPM/BnCl = 10) in DMSO at 60 °C. After ~30 minutes, NMR showed complete 

VDPM conversion. At this point, styrene comonomer (St/BnCl = 400) was injected followed with 

sulfolane. The overall molar ratios are:  

Styrene / VDPM / BnCl / CuCl2 / TPMA = 400 / 10 / 1 / 0.02 / 0.4 

Styrene conversion was monitored by NMR and block copolymers with variable polystyrene block 

lengths were obtained depending on reaction time. Below is the 1H NMR (CDCl3) spectrum of a 

PVDPM10-block-PS165 copolymer: 

 
Figure III-10. 1H NMR spectrum of the PVDPM10-block-PS165 copolymer 
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III.3.2.2.4. Core-shell nanoparticles 

VDPA was obtained by hydrolyzing the VDPM monomer in NaOH 1 M. Afterwards, concentrated 

HCl allowed the protonation of VDPA which precipitates in water and can be then recovered by 

filtration. VDPA was then dissolved back in water and used to synthesize core-shell nanoparticles 

when copolymerized with styrene. 

 
Scheme III-9. VDPM hydrolysis to VDPA 

Briefly, styrene was injected in an aqueous solution of deprotonated VDPA (pH = 8 adjusted with 

NaOH) under inert atmosphere and constant stirring, the solution was heated gradually to 70 °C 

before injecting the potassium persulfate (K2S2O8, KPS) initiator. Nanoparticle average diameter 

was monitored by DLS and the reaction was stopped at 2 hours. The nanoparticles suspension was 

dialyzed to remove excess comonomers and analyzed. Stable monodisperse nanoparticles were 

obtained, having a polystyrene core and PVDPA shell. DLS analysis (figure 11) shows the 

monodispersity of the nanoparticles and that an average diameter of 70 nm (PdI = 0.04) was 

obtained after 30 minutes of polymerization and reached 82 nm (PdI = 0.08) after 2 hours. 

 
Figure III-11. DLS analysis of the latex core-shell nanoparticles 
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To prove that a PVDPA shell is successfully obtained, the pH of the nanoparticles aqueous 

suspension was modified (figure 12). At high pH, the nanoparticle average diameter increased 

from 82 nm (neutral) to 92 nm (alkaline), probably due to the swelling of the negatively charged 

PVDPA shell. At low pH, the monodispersity is lost due to a visible aggregation. The higher 

population at around 270 nm corresponds to an expected behavior of a protonated PVDPA shell, 

which is no more stable in aqueous media and tend to precipitate. 

 
Figure III-12. DLS analysis of the latex suspension at different pH 

Furthermore, when seen under a scanning electron microscope (figure 13), nanoparticles (neutral 

pH) had an average diameter of 65 nm. The downshift from DLS diameter (82 nm) is probably 

due to SEM conditions where the nanoparticles are dried, causing them to shrink, proving once 

more that PVDPA is actually present at the nanoparticles shell. 

 
Figure III-13. SEM image of the latex nanoparticles 
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 PVDPM functional surfaces 

Once the VDPM successfully polymerized in solution, we proceeded to the surface-initiated 

polymerization on different substrates. Obviously, we began with modifying a PET substrate after 

this strategy was successfully used for 4VP (chapter II), we later dropped out PET as a substrate 

in favor of PVC-based substrates. In this section, we will explain how this transition from PET to 

PVC allowed us to reach higher degrees of surface functionalization, all with an even more 

simplified and efficient procedure. 

III.4.1. PVDPM on PET surfaces 

PET surface was modified according to a strategy similar to the one used with 4VP (chapter II). 

Under the proper reaction conditions, PVDPM chains were built on PET surface according to 

scheme 10. 

 
Scheme III-10. PET-initiated VDPM polymerization 

The modification protocols are detailed in “materials and methods”. Similarly, the obtained 

surfaces were examined using different surface characterization techniques. 
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ATR: 

Infrared ATR spectroscopy gave the first evidence of a successful PET surface modification. The 

Spectrum of the modified surface (24 hours polymerization time) was compared to both non-

modified PET surface and pure PVDPM spectra as shown in figure 14. 

 

Figure III-14. ATR spectra of PET-PVDPM surface 

Knowing that ATR can detect molecular vibrations from down to a 2 µm depth, it was too difficult 

for the naked eye to clearly see peaks coming from the few nanometer thick PVDPM layer. This 

obstacle was overcome with a spectral decomposition using Fluortools™ software that showed 

22% spectral contribution for PVDPM on the final surface, proving a successful grafting of a 

PVDPM layer. Spectral decomposition is a mathematical operation that determines the 

contribution of different components, PET and PVDPM in this case, in the mixed ATR spectrum. 

It’s worth mentioning that when PET fibers (not films) were similarly modified, only 6% spectral 

contribution was detected. 

ATR is then followed by the more surface sensitive x-ray photoelectron spectroscopy (XPS). 
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XPS: 

PET surfaces were analyzed by XPS after each step of modification in the strategy described in 

scheme 10. XPS surveys are shown in figure 15 and elements contribution can be seen in table 4.  

 

Figure III-15. XPS survey of modified PET surfaces 

 

Table III-4. Elements contribution on the modified PET surfaces 

Atomic % PET PET-NH2 PET-Cl PET-PVDPM 

C 77 68 70 72 

N - 7 5 4 

O 23 25 17 24 

Cl - - 4 - 

The analysis of spectra and elements contributions clearly show the successful modification of the 

PET substrate. Detailed analysis of PET, PET-NH2 and PET-Cl surfaces was discussed earlier in 

chapter II. The high resolution XPS analysis of the final PET-PVDPM surface is shown in figure 

16. 
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Figure III-16. High resolution XPS spectra of the PET-PVDPM surface 

 

Table III-5. Total elemental contribution and atomic ratios on the PET-PVDPM surface 

 Peak BE Exp % Calc %   Experimental Calculated 

C 285.12 72 69  C/N 12.1 11.5 

O 532.79 24 25  C/O 2.99 2.76 

N 399.19 4 6  O/N 4.05 4.17 

Looking at the elemental ratios (table 5), experimental results agree perfectly with the theoretical 

(calculated) ratios expected from a pure PVDPM layer. XPS here proves a successful PET 

modification with a homogenous PVDPM outer layer of a minimal thickness greater that XPS’s 

probing depth of 10 nm. 

We concluded that, just like in the case of 4VP (chapter II), VDPM was successfully polymerized 

from a PET surface. In the next section, we will discuss how and why PET was later replaced by 

PVC as more convenient substrate to synthesize the desired functional surfaces.     
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III.4.2. PVDPM on PVC surfaces 

Throughout this project, we always looked to simplify our strategies to obtain the final functional 

surfaces. We considered that the PET modification process, even if proved to be successful, still 

had the inconvenience of being a multiple step strategy with the need for prior aminolysis and 

grafting of the BnCl radical initiator, which limited the economic viability of this strategy. In 

addition to that, we saw that only a few dozen nanometers of PVDPM were grafted on the PET 

surface, probably limiting the absorbing capacity of these surfaces. Therefore, we looked for an 

alternative substrate which can fulfil the following conditions: 

 The substrate should be commercially available in the form of fibers just like PET and at a 

low cost. 

 The substrate should offer chemical and physical resistance that at least matches PET and 

should be usable in an aqueous environment. 

 The substrate should have additional advantages to explain the transition from PET. Most 

importantly, it should be easier to modify, and should allow the grafting of a much thicker 

layer of PVDPM. 

The solution was brought by PVC, a widely available substrate, especially in the form of fiber, 

which offers high chemical and mechanical resistance, especially in aqueous environment. This 

simplified strategy for VDPM polymerization on PVC substrate is described as follows: 

 

Scheme III-11. PVC-initiated VDPM polymerization 
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PVC has the advantage of having a chlorine atom in its polymer’s repeating unit (x) with variable 

levels of doubly chlorinated units (y) called labile chlorines (scheme 11), a ready to use radical 

initiator for subsequent polymerization. This very important property would reduce the 

modification process to only one functionalization step. This strategy was first applied on pure 

PVC powder (x >>> y), then on CPVC-coated polypropelene (PP) films (x <<< y) before applying 

it on the final substrate in the form of PVC-co-CPVC fibers (x/y = 7/3). 

III.4.2.1. Polystyrene graft polymerization on PVC (x >>> y) 

Before grafting VDPM, we wanted to see if PVC is a good initiator for radical polymerization of 

a classical monomer like styrene. This was done by applying the same styrene 

homopolymerization described earlier in sulfolane, while replacing the BnCl radical initiator with 

the PVC macroinitiator, this reaction is described in scheme 12. 

 
Scheme III-12. PVC initiated styrene polymerization 

Below is the 1H NMR (CDCl3) spectrum of the obtained graft copolymer. 

 
Figure III-17. 1H NMR spectrum of PVC-g-PS 
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Figure 17 shows that PVC was successfully used as an initiator for styrene polymerization. Using 

the CH-Cl peak as a 1 proton reference (around 4.4 ppm), the polystyrene’s ring protons between 

6.2 and 7.4 ppm allowed us to calculate a 70 % molar contribution for polystyrene against 30 % 

for the PVC macroinitiator (i.e. m/n = 3/7). 

To estimate the polystyrene chain lengths, the doubly chlorinated units (y) have to be of known 

quantity. The technique known as the phenolysis of PVC [19] allowed us to estimate that ~0.2 % 

of PVC units are capable of initiating the radical polymerization, known as labile chlorine, the 

phenolysis protocol is detailed in “materials and methods”. Using the PVC-g-PS NMR spectrum 

(figure 17), we were able to estimate that a degree of polymerization as high as 1220 was reached. 

This was the first evidence of the very high efficiency of PVC as macroinitiator, and later on as a 

substrate to build PVDPM chains from.  

III.4.2.2. PVDPM on PVC powder surface (x >>> y) 

Once the efficiency of PVC as macroinitiator was proved with styrene, we directly applied it to 

the VDPM polymerization (scheme 11). However, because our goal was to modify the surface of 

PVC, we had no interest of solubilizing it. The VDPM was polymerized on the PVC powder 

suspended in acetonitrile and acting as a surface. Protocols are detailed in “materials and methods”. 

The first observation was a 25 % mass gain for the modified PVC powder, giving the first evidence 

of a grafted layer of PVDPM. Furthermore, the modified PVC powder was no longer soluble in 

THF, a very good PVC solvent and a non-solvent for PVDPM, which supports the suggestion that 

PVC particles could be now protected with a thick enough PVDPM outer layer. 

To test this hypothesis, we performed an NMR analysis on the modified PVC powder in deuterated 

DMSO. The methyl protons around 3.7 ppm in the 1H NMR spectrum in figure 18 shows that 

PVDPM chains were successfully grafted on PVC. Using NMR, we also calculated that PVDPM 

represents ~6 % of the final product. However it wasn’t possible to estimate the PVDPM chain 

lengths as only the labile chlorine on the PVC powder surface were used to initiate the 

polymerization, and a big majority of those sites were inaccessible inside the PVC particles 

suspended in acetonitrile during the polymerization reaction.  
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Figure III-18. 1H NMR spectrum of PVC-g-PVDPM modified powder 

We then used ATR and XPS to further prove the presence of the PVDPM layer on PVC particles. 

ATR: 

ATR spectrum (figure 19) of the modified PVC-g-PVDPM powder showed peaks from PVDPM 

chains and an overall 11% spectral contribution for PVDPM, which is most visible by the C=O 

vibration at around 1722 cm-1, a further evidence of a PVDPM layer surrounding the PVC 

particles. 

 
Figure III-19. ATR spectrum of PVC-g-PVDPM modified powder 
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XPS: 

The successful grafting of PVDPM on PVC was also proved by XPS. Surveys are shown in figure 

20 and elemental contributions in table 6. 

 

Figure III-20. XPS survey of pure PVC powder and PVC-g-PVDPM 

As expected, looking at the pure PVC surface (figure 20), one can see three main peaks, C1s (286 

eV), Cl2s (271 eV) and Cl2p (201 eV) with a C/Cl ratio of 65/35 (table 6). When PVC powder 

surface was modified with a layer of PVDPM, N1s and O1s peaks appeared at around 286 and 533 

eV, respectively, while the Cl peaks decreased dramatically. Cl elemental contribution dropped 

from 35% on bare PVC to 5% on PVC-g-PVDPM, proving that PVC particles were indeed 

covalently covered with a layer of PVDPM. 

Table III-6. Total elemental contribution and atomic ratios of PVC vs PVC-g-PVDPM surface 

  PVC powder PVC-g-PVDPM PVDPM (Calculated) 

C 65 86 69 

O - 22 25 

N - 5 6 

Cl 35 5 - 

C/N - 17.2 11.5 

C/O - 3.9 2.7 

O/N - 4.4 4.2 
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However, the atomic ratios in table 6 show that the experimental C/N and C/O ratios of 17.2 and 

3.9, respectively, on PVC-g-PVDPM don’t fit perfectly with the theoretical values of 11.5 and 2.7 

even if elemental contribution are reasonably close. On the other hand, O/N experimental ratio of 

4.4 is closest to its theoretical ratio of 4.2 (table 6). This means that a carbon excess is present 

within the probing depth of XPS (~10 nm). To figure that out, we turn to the C1s high resolution 

spectra of bare PVC and PVC-g-PVDPM shown in figure 21. Peaks components are listed in table 

7. For a better comparison, peak components from PVDPM’s C1s spectrum drawn from figure 16 

are also put in table 7.  

 

Figure III-21. High resolution C1s spectra of bare PVC and PVC-g-PVDPM 

Bare PVC’s spectrum (figure 21 left) shows two main components at 285.9 and 287.2 eV that 

correspond to C(6) and C(7), respectively, with a small impurity peak at 284.8 eV that is excluded. 

In the PVC-g-PVDPM spectrum (figure 21 right), these two components can still be seen (red 

dashed line), even if they are now dominated by PVDPM components C(1) to C(5) and shake-up 

(green solid line). The PVC-g-PVDPM spectrum fit was optimized using PVDPM’s components 

drawn from figure 16. 

The fact that PVC substrate is still visible now explains the excess carbon seen on PVC-g-PVDPM 

surface with probably only a few nanometers thick outer layer of PVDPM surrounding the PVC 

powder particles. The remarkable mass gain of 25%, not seen in the case of PET films or fibers, 

can be here explained by the high surface area of PVC powder, offering a lot more initiation site 

than flat PET surfaces. 
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Table III-7. High resolution C1s components of bare PVC, PVDPM and PVC-g-PVDPM 

C1s   Peak BE FWHM eV   Peak BE FWHM eV Atomic % 

1 

P
V

D
P

M
 (

fi
gu

re
 1

6
) 285.03 1.23 

P
V

C
-g

-P
V

D
P

M
 

284.9 1.14 11.9 

2 285.47 1.25 285.47 1.25 19.48 

3 286.13 1.15 286.08 1.15 12.34 

4 286.83 1.25 286.77 1.25 12.43 

5 289.25 1.12 289.25 1.34 13.6 

shake-up 292.16 1.47 292.05 1.31 0.84 

6 

P
V

C
 285.93 1.43 285.53 1.41 12.53 

7 287.17 1.29 286.87 1.51 16.89 

Herein, we saw that a PVC surface was successfully used to build a PVDPM layer, reducing the 

surface modification strategy to a unique step when PVC is used as a substrate instead of PET. 

However, it’s obvious that the PVDPM layer is still limited to a few nanometers thickness, limiting 

the attractiveness of PVC as a substrate. To solve this problem, we need to look back at scheme 

11 to be reminded that only the doubly chlorinated CPVC units (y) are capable of initiating the 

radical polymerization and not the PVC units with a single chlorine atom (x). Or the PVC powder 

has not more than 0.2% of CPVC units as the phenolysis technique showed earlier, we concluded 

that the initiating sites on the PVC powder surface are rare. In the following section we will apply 

the same modification strategy on a pure CPVC surface to see if a thicker layer of PVDPM can be 

built.  

III.4.2.3. PVDPM on CPVC films (x <<< y) 

Commercial packaging polypropylene (PP) films coated with CPVC from Innovia™ where all the 

repeating units are doubly chlorinated (x=0, y=1) were modified with PVDPM (scheme 11) and 

examined. It’s important to note that the CPVC-coated PP film is an ordinary commercial film 

used for food packaging and that surface analysis of such substrate posed several challenges. 

Chemical additives and the manufacturing process used to produce these films usually give 

surfaces with low purity, high surface roughness and less than perfect homogeneity of the outer 

CPVC coating. Still, the modified CPVC-g-PVDPM surface were studied using ATR and ToF-

SIMS to ensure a successful grafting of a PVDPM layer.  
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ATR: 

ATR spectra of commercial CPVC substrate modified with a PVDPM layer (figure 22) showed 

that a PVDPM layer of variable thickness was built. After 1 day of polymerization, PVDPM has a 

29 % spectral contribution on the modified surface, and when the reaction time was extended to 3 

days, PVDPM spectral contribution reached up to 83%. 

 

Figure III-22. ATR analysis of CPVC-g-PVDPM surfaces 

Having 83% spectral contribution in the 2 µm ATR probing depth here gives the first evidence of 

a potential micrometer scale layer of PVDPM thanks to abundance of the doubly chlorinated 

CPVC units (y) (scheme 11) capable of initiating the radical polymerization. A pure CPVC surface 

seems to be more reactive than pure PVC. In the next section, ToF-SIMS, this time possible on a 

flat film surface, is used to further prove that longer polymerization time gave a thicker PVDPM 

outer layer. 
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ToF-SIMS: 

ToF-SIMS analysis was performed on CPVC-g-PVDPM films. A series of secondary ion 

fragments was identified and followed along the z-axis (i.e. surface sputtering time) as shown in 

figure 23 in which we compare CPVC-g-PVDPM surfaces after 1 and 3 days of reaction time. 

Three secondary ions fragments were followed, each representing a sublayer. The C11H12NO4
+ 

fragment (m/z = 222 u) was assigned to the protonated PVDPM’s repeating unit (M-H+), the Cl+ 

(m/z = 35 u) ion coming either from CPVC or the PVDPM chain ends and the C5H9
+ (m/z = 69 u) 

coming most probably from the PP sublayer.  

 

Figure III-23. ToF-SIMS depth profiling of CPVC-g-PVDPM surfaces 

Looking at the depth profile (figure 23), the first observation was that the ion intensity levels took 

longer time to change (either up or down) when the surface was modified for 3 days (hollow 

points), indicating a thicker PVDPM layer, consistently with ATR’s conclusion (figure 22). In fact, 

when analyzing the 1 day-modified surface under the same conditions (solid point), we had to 

acquire faster mass spectra (every 2 sec) than for the 3 days-modified surface (every 10 seconds), 

to get a better resolved profile with enough data points. 

Looking again at the above depth profiles, the PVDPM/substrate interface was encountered at 

around 30 sec for the 1 day-modified films where the C11H12NO4
+ fragment intensity drop of ~2 

orders of magnitude is seen against a ~2 order of magnitude increase for the C5H9
+ fragment 
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intensity. The same relative behavior was seen for the 3 days-modified films, only that the interface 

was encountered this time at around 100 sec of sputtering. A thicker layer of PVDPM was clearly 

built when film were modified for longer time, proving an effective polymer chain propagation 

and limited termination. 

In the next section, the modification of PVC-based fibers is discussed. 

III.4.2.4. PVDPM on PVC-co-CPVC fibers (x/y = 7/3) 

We move on to the surface-initiated polymerization of VDPM on PVC-co-CPVC Rhovyl™ fibers 

having 30 % doubly chlorinated units (x/y = 7/3). These fibers were modified with PVDPM (1 to 

3 days of polymerization time), again as shown in scheme 11, and examined. The first observation 

was an impressive mass gain of the modified fibers. Up to ~250 % mass gain was reached, meaning 

for example that a 100 mg of fibers, weighted ~350 mg after the modification reaction. This mass 

gain exceeds by far both pure PVC and pure CPVC substrates. (PVC-co-CPVC)-g-PVDPM fiber 

were then analyzed. 

ATR: 

The ATR spectrum of (PVC-co-CPVC)-g-PVDPM fibers was compared to those of bare PVC-co-

CPVC fibers and pure PVDPM in figure 24. 

 

Figure III-24. ATR spectra of (PVC-co-CPVC)-g-PVDPM fibers 
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Indeed, no signs of the PVC-co-CPVC substrate were detected. As mentioned earlier, this 

technique can penetrate down to 2 µm. The fact that no peak from the PVC-co-CPVC substrate 

was detected, proves that the PVDPM layer has possibly a thickness greater than 2 µm. when 

compared with the PET-PVDPM surface (figure 14) where only few dozen nanometers of PVDPM 

layer were probably reached (and no mass gain was seen), one can see that PVC-based surfaces 

are way more efficient. Using a PVC-based substrate is not only much easier compared to PET 

with a unique modification step, but also much more efficient, a PVDPM layer of several 

micrometers thickness can be built. To further prove it, PVDPM-modified fibers, both PET and 

PVC-co-CPVC were seen under an electron microscope in the following section. 

SEM: 

Herein, (PVC-co-CPVC)-g-PVDPM fibers are seen by SEM and compared to PET-PVDPM fibers 

modified according to the strategy described earlier in scheme 10. Both fibers are shown before 

and after building the PVDPM layer in figure 25.   

 

Figure III-25. SEM images of PVDPM-modified PET and PVC-co-CPVC fibers 
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Both non-modified PET and PVC-co-CPVC fibers had a similar diameter of 12 ± 1 µm. PET-

PVDPM fibers (figure 25 up right) had an average diameter of 11.8 µm. (PVC-co-CPVC)-g-

PVDPM fibers (figure 25 down right), however, reached an average diameter of 27.2 µm in the 

shown example. As a result, PET-PVDPM fibers diameter showed no remarkable increase, in 

agreement with a limited nanometer scale layer of PVDPM and no mass gain of fibers after 

modification. On the other hand, (PVC-co-CPVC)-g-PVDPM fibers diameters ranged between 24 

and 30 µm, meaning that an enormous 6 to 9 µm thick layer of PVDPM was built around the PVC-

co-CPVC fibers, in agreement with a mass gain of up to 250 %. 

 Conclusion 

In this chapter, PVDPM was successfully synthesized in solution then built on both PET and PVC-

based surfaces of different forms (powder, films, and fibers). All surfaces were examined by means 

of different advanced techniques. PVC-based surfaces showed superior performance as a substrate 

for surface initiated polymerization of VDPM, especially the PVC-co-CPVC fibers, justifying the 

transition we made from PET to PVC as a preferred substrate to prepare highly absorbing materials 

for radiodecontamination application. Major advantages of PVC over PET are summarized in the 

following table. 

Table III-8. PET vs PVC for surface initiated polymerization of VDPM 

criteria PET PVC 

Chemical/physical resistance highly resistant highly resistant 

Commercial availability available at low cost available at low cost 

VDPM polymerization strategy multiple step (scheme 10) one step (scheme 11) 

Mass gain after modification negligible up to 250 % mass gain 

PVDPM layer thickness few nanometers several micrometers 

Later on, PVDPM will be hydrolyzed to PVDPA (scheme 2) both in its free form as water soluble 

polymer and its grafted form as a (PVC-co-CPVC)-g-PVDPA fibers. The interaction of these 

functional materials with different metals, especially lanthanides and uranium, will be examined 

in the next chapter, and their performance vis-à-vis different applications will be discussed.   
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 Introduction 

After polymerization, either in solution or from a solid substrate, it was important to evaluate the 

performance of the new polymer as a lanthanides/actinides scavenger in an aqueous environment. 

The first step was the hydrolysis of PVDPM (free or grafted) to get the water soluble PVDPA. In 

the case of a free polymer, a PVDPM sample of an estimated molar mass of around 17 kg.mol-1 

(77 repeating units) was treated in a NaOH 1 M solution and then concentrated HCl was added to 

precipitate PVDPA which was isolated by filtration. The reaction is shown is scheme 1. 

 

Scheme IV-1. PVDPM hydrolysis to PVDPA 

PVDPA’s spontaneous complexation with lanthanides/actinides in aqueous solution at pH~7 was 

conducted by mixing a PVDPA solution with a lanthanide/actinide solution at different PVDPA / 

metal ratios at room temperature. The same polymer was used in all complexation studies. 

Due to the special precautions needed to handle uranium solutions even in its depleted form, 

studies were conducted first with lanthanides (especially europium) and when proven successful, 

the PVDPA-uranium complexes were studied. 

Both in its free and grafted forms, PVDPA will show high scavenging performance towards several 

lanthanide (III) ions and uranium (VI). 
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 PVDPA - Lanthanides (III) complexes 

The first evidence of a spontaneous interaction between PVDPA and a lanthanide was observed 

upon mixing a PVDPA solution with an equimolar Eu(III) nitrate solution. Within seconds, an 

unknown white precipitate was observed. When this precipitate was isolated by filtration, it 

exhibited a strong reddish fluorescence under a UV light as shown in figure 1. 

 

Figure IV-1. PVDPA – Eu(III) precipitation from aqueous mixture 

We hypothesized that the white fluorescent solid is actually a PVDPA - Eu(III) complex and we 

tried to prove this hypothesis plausible. Due to the non-solubility of this complex in common 

solvents, the most suitable way was to perform ATR on the solid precipitate and compare its 

spectrum to the pure PVDPA’s. 
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ATR: 

In figure 2, the ATR spectrum of pure PVDPA and the presumed PVDPA – Eu(III) complex are 

overlaid. 

 

Figure IV-2. ATR spectrum of PVDPA - Eu(III) complex 

Looking at the PVDPA spectrum, main peak at 1724, 1240 and 1610 cm-1 were assigned to C=O, 

C-O and pyridinic C=N stretching vibrations. In the PVDPA – Eu(III) complex spectrum, those 

peaks were replaced by peaks at 1593 cm-1 (COO- symmetrical stretching) and 1408 cm-1 (COO- 

asymmetrical stretching) proving that PVDPA matched the Eu(III) through its carboxyl functions. 

The C=N peak shifting down to 1377 cm-1 indicated the nitrogen’s contribution to the chelation 

ring in agreement with literature data [1]. Pyridine ring breathing peak shifting up from 1003 to 

1020 cm-1 is a further evidence of complexation. 

In the following sections we will further examine the interaction between PVDPA and Eu(III) in 

water in order to understand the complexation mechanism and why does the resulting complex 

precipitate. 
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UV spectroscopy: 

We saw earlier that when the PVDPA polymer interacts with Eu(III) in water, the PVDPA – Eu(III) 

complex precipitate, which makes it difficult to acquire the absorption spectrum of the complex. 

To overcome this problem, the VDPA monomer was used instead of the PVDPA polymer. In this 

case, no precipitation is encountered and the absorption spectra could be acquired. 

VDPA monomer: 

The VDPA monomer (scheme 2) was obtained by hydrolyzing the VDPM monomer with NaOH 

1 M then precipitating VDPA by adding HCl to pH < 2. VDPA is then resolubilized in water at 

neutral pH. 

 

Scheme IV-2. VDPM hydrolysis to VDPA 

UV absorption spectrum of a 0.1 mM VDPA solution in water is shown in figure 3. When Eu(III) 

was added at increasing Eu(III)/VDPA ratio, no precipitation was observed and the changes in the 

UV spectrum were depicted in figure 3.  

Two other lanthanides, Nd(III) and Yb(III) were also examined and exhibited a similar behavior, 

as seen in figure 3. 
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Figure IV-3. UV absorption spectra of VDPA interaction with different lanthanides (III) 

As shown in figure 3, VDPA has an absorption band at around 284 nm (solid line). When Eu (III) 

and other lanthanides were gradually added (dashed lines), the spectrum changes and 3 peak 

maxima appear at 265, 291 and 302 nm. No change is seen at Eu (III) > 0.5 equivalent. 

Two main conclusions were drawn: 

1. The change in peaks positions and number shows that an interaction is taken place between 

VDPA and the added lanthanide ions Ln(III). 

2. The interaction is present up to a Ln(III) / VDPA ratio of ~0.5 which may be explained by 

the possible formation of Ln(VDPA)2
- complex 

  

Ln(III)  +  2 VDPA2-         Ln(VDPA)2
-
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PVDPA polymer: 

Once the interaction between the VDPA monomer and trivalent lanthanides Ln(III) ions was 

proven, we went back to study the PVDPA polymer interaction with Ln(III) in aqueous solution. 

We hypothesized earlier that the white fluorescent precipitate seen when Eu(III) was added to a 

PVDPA solution is probably a PVDPA – Eu(III) complex and we gave a first evidence by 

comparing the infrared spectrum of this precipitate with the pure PVDPA spectrum (figure 2). 

The precipitation phenomenon is particularly interesting if our polymer is to be used for 

lanthanides scavenging in water. If true, we should be able to decontaminate a lanthanide solution 

by simply adding PVDPA then passing the solution through a filter to isolate the precipitated 

complex. 

To put this idea to test, we used UV absorption spectroscopy to study the decontamination of 

lanthanide solutions with PVDPA. However, preliminary scans showed that lanthanide solutions 

don’t have useable absorption peaks in the available wavelength range of 200-800 nm. To solve 

this problem, a reverse titration was conducted where different lanthanides were added to a 

PVDPA solution of a known initial concentration of 0.25 mM. The solution was then filtrated and 

the absorption spectra registered (figure 4).  

 

Figure IV-4. UV absorption spectra of remaining PVDPA after addition of different lanthanides (III) 
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As shown in figure 4, the PVDPA absorption spectrum went down when lanthanides were added 

in increasing ratios, proving again that the precipitate is most probably a PVDPA - Ln(III) 

complex. The same experiment was then repeated while looking closely at the PVDPA absorption 

intensity at 272 nm and with more intermediate steps of added Eu(III). The results are shown in 

figure 5. 

 

Figure IV-5. Absorption at 272 nm at variable Eu(III) / PVDPA ratios 

 

Two main conclusions were drawn from this study: 

1. All the examined lanthanides showed the exact same behavior, meaning that PVDPA is 

interacting similarly with these lanthanide (III) ions. 

2. PVDPA was completely precipitated at 0.5 equivalent of lanthanide (III), meaning that 

reciprocally, 2 equivalents of PVDPA would be needed to decontaminate a given 

lanthanide (III) solution by the probable formation of Ln(PVDPA)2
- complex as follows: 

 

Ln(III)  +  2 PVDPA2-       Ln(PVDPA)2
-
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How to explain the precipitation? 

The fact that the PVDPA – Ln(III) complexes precipitate is a major advantage for lanthanides 

scavenging. A simple filtration would be sufficient to decontaminate a lanthanide aqueous 

solution. But the question is why does the polymer complex precipitate? 

The answer can be found in the above UV absorption study. We saw that the interaction between 

lanthanides and the VDPA monomer is limited to a Ln(III) / VDPA ratio of 0.5 (figure 3). 

Similarly, the PVDPA polymer precipitate entirely when the Ln(III) / PVDPA ratio reaches 0.5 

(figures 4 and 5). It seems that the lanthanide center is indeed linked to 2 PVDPA ligand units. 

This conclusion being in perfect agreement with literature data for the lanthanides - dipicolinic 

acid coordination modes [2]. 

Knowing that crosslinked polymers tend to have very low solubility in most common solvents, we 

believe that the precipitation in probably due to an intrachain and/or interchain crosslinking 

phenomenon, as described in scheme 3. 

 

Scheme IV-3. Proposed PVDPA crosslinking by lanthanides(III) ions 

To further prove the formation of the Ln(PVDPA)2
- complexes, time-resolved laser-induced 

fluorescence spectroscopy (TRLFS) is used in the following section to examine the Eu(III) 

coordination environment.  
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TRLFS: 

Time-resolved laser-induced fluorescence spectroscopy (TRLFS) had the final word in proving 

the complexation mode between PVDPA and Eu(III). The above UV absorption study favored the 

Eu(PVDPA)2
- configuration. If so, the TRLFS results should give further evidence. 

After laser excitation, Eu(III) exhibits radiative relaxation (fluorescence) emitting light in the 

visible spectrum. The emission bands of Eu(III) originate from electronic transitions from the 

lowest excited state 5D0 , to the ground state 7FJ (J=0-6) [3]. The intensity, splitting and energy of 

the luminescence bands as well as the relative intensities of the different bands are very sensitive 

to the symmetry and the detailed nature of the ligand environment [4]. The simplified energy 

diagram of Eu(III) is shown in scheme 4, with only two transitions of interest shown for clarity. 

 

Scheme IV-4. Energy diagram of Eu(III) 

The excitation wavelength of the laser source was set at 466 nm (7F0→
5D2) with pulse energies of 

7.5 mJ. Emission spectra were recorded between 470 and 720 nm. Static luminescence spectra of 

Eu(III) have been normalized to the peak area of the 5D0→
7F1 transition at 591 nm, which is a 

magnetic dipole and therefore not influenced by complexation [5]. 
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The luminescence spectra of Eu(III) 1 mM before and after adding 1 then 2 equivalents of PVDPA 

are shown in figure 6. (NB: PVDPA concentration refers to the concentration of dipicolinic acid 

repeating units). 

 

Figure IV-6. Emission spectra of 1 mM Eu(III) solution before and after adding 1 and 2 equivalents of 

PVDPA 

During ligand addition, the characteristic changes in Eu(III) luminescence spectrum caused by 

complex formation can be seen by the strong increase of the 5D0→
7F2 transition at 615 nm. 

To determine the complex configuration, the fluorescence was time-resolved and the decay 

lifetimes were calculated by fitting the integrated luminescence signal to a sum of exponential 

decay functions: 

𝐼 (𝑡) =  ∑ 𝐼𝑖0 exp(−𝑡/𝜏𝑖)

𝑖

 

I (t) being the total luminescence intensity at time t, Ii0 the luminescence intensity of the species i 

at the time t = 0, and τi the corresponding lifetime. 
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The number of water molecules (hydration number) in the first coordination shell was determined 

from the luminescence lifetimes, using the following empirical formula [6]: 

𝑛 𝐻2𝑂(±0.5) =
1.07

𝜏
− 0.62 

Lifetime measurements and resulting hydration numbers are given in the following table: 

Table IV-1. Lifetimes and hydration numbers at different PVDPA / Eu(III) ratios 

  τ1 (µs) n(H2O) ± 0.5 τ2 (µs) n(H2O) ± 0.5 

Eu(III)  = 1 mM 110 8.6 - - 

PVDPA / Eu(III) = 1 110 8.6 300 2.7 

PVDPA / Eu(III) ≥ 2 - - 300 2.7 

As seen in table 1, the addition of 2 PVDPA equivalents to the Eu(III) solution prolonged the 

lifetime from 110 µs for the Eu(III) aqua ion to 300 µs for PVDPA / Eu(III) ≥ 2.  τ1 (110 µs) 

allowed us to estimate a 8.6 ± 0.5 (rounded to 9) hydration number for the aqua Eu(III) in perfect 

agreement with literature data [7].  

In the case where PVDPA / Eu(III) ≥ 2, τ2 (300 µs) indicated a hydration number of 2.7 ± 0.5 

(rounded to 3), meaning that PVDPA, kicked out 6 water molecule from the Eu(III) hydration 

shell, in perfect coherence with a two trivalent ligands linked to a Eu(III) center, herein the 

formation of the Eu(PVDPA)2
- complex. 

In the intermediate case where PVDPA / Eu(III) = 1, both τ1 (110 µs) and τ2 (300 µs) were needed 

for the best fit of luminescence decay, indicating the presence of both the free Eu(III) aqua ion and 

the Eu(PVDPA)2
- complex. 
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Where is Eu(PVDPA)+ ? 

When we think of the interaction between Eu(III) and the deprotonated PVDPA2-, we imagine a 

mono-complex Eu(PVDPA)+ being formed before the Eu(PVDPA)2
- bi-complex according to the 

following reaction: 

 

However, the TRLFS study showed that at PVDPA / Eu(III) = 1, instead of Eu(PVDPA)+, a 

mixture of free Eu(III) and the Eu(PVDPA)2
- complex is present. This can be explained by the fact 

that Eu(PVDPA)2
- precipitate and push the equilibrium forward. Future studies should be 

conducted in order to elucidate this phenomenon. 

 

After studying the PVDPA complexation with lanthanides, we could proceed to examine the 

formation of PVDPA – uranium (VI) complexes. 
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 PVDPA - Uranium (VI) complexes 

Herein, upon mixing a uranyl nitrate aqueous solution with a PVDPA solution, a white precipitate 

is seen. This precipitate exhibits this time a greenish fluorescence under a UV lamp (figure 7). 

In the case of VDPA monomer – U(VI) mixture, no precipitate was formed allowing the UV-Vis 

study of the complex. Interestingly though, the U(VI) solution, originally fluorescent under an 

ordinary UV lamp, was no longer luminescent when VDPA was added (figure 7). In other words, 

the uranyl fluorescence was quenched upon VDPA monomer addition. This additional 

phenomenon will be later investigated by TRLFS. 

 

Figure IV-7. Uranium (VI) solution before and after adding PVDPA (polymer) and VDPA (monomer) 
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UV spectroscopy 

VDPA monomer: 

UV absorption spectroscopy is used here to put in evidence the interaction between the VDPA 

ligand and U(VI) ions in aqueous solution. Into a 0.1 mM solution of VDPA monomer, U(VI) 

was gradually added and the absorption spectra analyzed. The results are shown in figure 8. 

 

Figure IV-8. UV absorption spectra of VDPA – U(VI) complexes 

Similarly to VDPA - Ln(III) seen before in figure 3, when U(VI) was added, the single VDPA 

peak at 284 nm was replaced by 3 maxima, a main peak at 265 nm and two shoulder peaks at 291 

and 305 nm. Again, no further changes were seen at U(VI) > 0.5 equivalent and the same 2 

conclusions were drawn: 

1. The change in peaks positions and number shows that an interaction is taking place 

between the VDPA and the added uranyl ion. 

2. The interaction is present up to a U(VI) / VDPA ratio of 0.5 which may be explained by 

the formation of UO2(VDPA)2 complex  

UO2
2+  +  2 VDPA2-        UO2(VDPA)2 

To note that TRLFS will later prove the second conclusion only partially true! 
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PVDPA polymer: 

Into a 0.25 mM aqueous solution of PVDPA polymer, U(VI) was gradually added. The solution 

was filtered and the UV absorption registered and shown in figure 9. 

 

Figure IV-9. UV absorption spectra of remaining PVDPA after uranyl (VI) addition 

As shown in figure 9, the PVDPA absorption spectrum went down when U(VI) was added in 

increasing ratios. At uranyl (VI) / PVDPA ratio higher that 0.5, no PVDPA is detected and the free 

U(VI) absorption increased, proving that the PVDPA – U(VI) complex was indeed precipitated 

and isolated when the solution filtered. 

We concluded that PVDPA was completely precipitated at 0.5 equivalent of U(VI) and that 

reciprocally, 2 equivalents of PVDPA would be needed to decontaminate a given U(VI) solution. 

This results explains the observation in figure 7 where the greenish fluorescence was limited to 

the precipitate at the bottom of the solution. 

In the following section, TRLFS will be employed to examine the coordination environment of 

uranyl ions when either the VDPA monomer or the PVDPA polymer were added.  
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TRLFS: 

A 0.1 mM solution of uranyl nitrate was prepared and the pH adjusted to 7 ± 0.2 with sodium 

hydroxide. The fluorescence intensity of uranium species was recorded in the presence of 

increasing concentrations of VDPA (monomer) and PVDPA (polymer). As shown in figure 10, 

when either VDPA or PVDPA were added, the fluorescence intensity decreased dramatically. 

 

Figure IV-10. Uranyl fluorescence spectra at different PVDPA/Uranyl (left) and VDPA/Uranyl (right) 

ratios 

The decrease of fluorescence intensity shows that an interaction is taking place between the ligand 

(monomer and polymer) and the uranyl ion. However, in the case of PVDPA, the peak shape 

changed, whether in the case of VDPA monomer no change is seen in the peak shape or position. 

This observation is more obvious when emission spectra were normalized, as shown in figure 11. 
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Figure IV-11. Normalized uranyl fluorescence at different PVDPA/Uranyl (left) and VDPA/Uranyl (right) 

ratios 

Inspired by the visual observation in figure 7, we hypothesized that when PVDPA was added, the 

change in fluorescence spectra is due to the formation of fluorescent complexes and the 

fluorescence spectrum seen after adding 2 equivalents of PVDPA is actually the PVDPA - U(VI) 

complex fluorescence. On the other hand, when the VDPA monomer was added, the formed 

complex is not fluorescent and the registered fluorescence is only due to the remaining free uranyl 

in solution. 

To test this hypothesis and further understand this phenomenon, fluorescent species in each 

solution had to be identified through lifetime measurements. However, contrary to the relatively 

simple europium (III) fluorescence studied earlier, several uranyl species are present at neutral pH, 

and the direct speciation at pH 7 and above (most common pH range for natural waters) is not 

straightforward as too many species are present due the uranyl hydrolysis [8-16]. 
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Total peak area between 450 and 600 nm had to be used, and the fluorescence decay had to be fit 

to a 4th degree exponential function using origin™: 

y = A1*exp(-x/t1) + A2*exp(-x/t2) + A3*exp(-x/t3) + A4*exp(-x/t4) + y0 

where Ai, the pre-exponential constant, equals the fluorescence intensity of a uranyl species of 

lifetime ti, at time zero. Normalized fluorescence decays are shown in figure 12. Decays were 

normalized before fitting to make it easier to compare the fits after adding the VDPA monomer or 

PVDPA polymer. Fitting results are shown in table 2. 

 

Figure IV-12. Normalized uranyl (VI) fluorescence decay at different PVDPA/Uranyl (left) and 

VDPA/Uranyl (right) ratios 

Table IV-2. 4th exponential fitting functions 

conc (10-4 M) A1 t1 A2 t2 A3 t3 A4 t4 

VDPA 

0 27 0.9 27 8.1 46 26.4 6 73.3 

0.5 23 0.9 30 8.1 47 26.4 5 73.3 

1 25 0.9 33 8.1 44 26.4 3 73.3 

2 60 0.9 12 8.1 23 26.4 6 73.3 

PVDPA 

0 18 0.9 22 8.1 57 26.4 6 73.3 

1 28 0.4 27 2.1 30 11.8 28 37.6 

2 59 0.4 31 3.4 22 14.2 11 33.5 
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These results indicate the existence of at least 4 main uranyl species at pH~7, in agreement with 

literature data which concludes that several uranyl-hydroxide complexes are present. We tried to 

identify the uranyl species present in the original uranyl (VI) solution (before adding VDPA nor 

PVDPA) and we concluded that the 4 main uranyl species are: 

UO2(OH)3
-   (t1 = 0.9 µsec)   (UO2)2(OH)2

2+  (t3 = 26.4 µsec) 

(UO2)3(OH)5
+   (t2 = 8.1 µsec)   UO2OH+   (t4 = 73.3 µsec) 

Discussion of polymer complexation: 

The change in measured lifetimes (table 2) proves the complexation between uranyl and PVDPA. 

Nevertheless, elucidating the PVDPA-uranyl structure is seemingly too complicated and further 

studies, namely XAFS (X-ray Absorption Fine Structure), would be needed to further understand 

the uranyl coordination environment. 

Discussion of monomer complexation: 

As the chelating function is the same in both cases, it is believed that a complexation is also taking 

place in the case of VDPA monomer-uranyl mixture, but for some reason, fluorescence band shape 

and lifetimes (table 2) don’t seem to change, meaning that the only florescence detected comes 

from the remaining free uranyl (VI) species.  

 

Scheme IV-5. Structures of VDPA monomer and PVDPA polymer 

The only structural difference between the VDPA monomer and the PVDPA polymer being the 

vinyl function as shown in scheme 5, it seems that the vinyl function on the VDPA monomer has 

something to do with the fact that no fluorescence is detected from the formed complex, possible 

through charge transfer. Indeed, when reviewing the literature, uranyl fluorescence quenching by 

vinyl monomers is reported [17, 18]. However, more advanced studies should be done to elucidate 

this phenomenon, which is not within the scope of the present work. 
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 PVDPA functional surfaces 

Once the complexation mechanism and efficiency of free PVDPA established, the performance of 

PVDPA-functionalized surfaces was examined. 

Different PVDPM-functionalized surfaces described in chapter III were treated in NaOH to yield 

PVDPA surfaces as shown earlier in scheme 1 above. These surface were then dipped for few 

minutes in a Eu(III) nitrate solution, washed with distilled water and dried. Taking advantage of 

the europium fluorescence in the visible spectrum, these surfaces were examined under a 254 nm 

UV lamp as shown in figure 13. 

 

 

Figure IV-13. PVDPA – Eu(III) complexes on different surfaces 

 

 



 
145 PVDPA – Metal complexes 

Looking at these different surfaces, one can see that all PVDPA-functionalized surfaces emit a 

reddish light under the UV lamp. However, the variation of the apparent red fluorescence intensity 

going from PET film and fibers to PVC powder, CPVC film and PVC-co-CPVC fibers, could 

indicate a variable density/thickness of the PVDPA – Eu(III) complex on the surface. 

Back in chapter III, PVC-based substrates proved to be more efficient in surface initiated 

polymerization than PET. Most interestingly, a thicker layer of PVDPM could be built from PVC-

co-CPVC fibers than from PET fibers (chapter III, figure 30). A thicker PVDPM layer means a 

thicker PVDPA one and accordingly a thicker PVDPA-Eu(III) complex layer, i.e. a higher trapping 

capacity. 

To prove this hypothesis, ATR is used in the first place to show a thicker PVDPA – Eu(III) 

complex layer on PVC-co-CPVC fibers. The PVDPA – U(VI) complexe on the PVDPA-modified 

fibers was then evidenced by TRLFS. Finally, ICP-MS will prove a higher U(VI) trapping capacity 

of PVC-co-CPVC fibers as compared to PET fibers as substrate. 

 

Figure IV-14. ATR of PVDPA – Eu(III) complex on PET vs PVC-co-CPVC fibers 

As shown in figure 14, ATR spectral decomposition shows that the PVDPA – Eu(III) had a 18% 

spectral contribution on the modified PET fiber surface (figure 14 left) vs 96% on the modified 

PVC-co-CPVC fiber (figure 14 right). This result is in perfect agreement with a thicker PVDPM 

layer built on PVC-co-CPVC, as shown earlier (chapter III, figure 30). 
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Consequently, PVC-based fibers should also show a higher capacity in scavenging U(VI) in 

aqueous media. But before testing this hypothesis, the formation of the PVDPA - U(VI) complex 

should first be proven. This was done by dipping a piece of (PVC-co-CPVC)-g-PVPDA fiber in a 

U(VI) solution at pH~7 for few minutes. The fibers were then washed several time with water to 

remove excess U(VI) and dried. Under an ordinary UV lamp (λ = 254 nm), the green fluorescence 

gave the first hint of a PVDPA – U(VI) complex on the surface of the modified PVC-co-CPVC 

fiber (figure 15). Afterwards, the emission spectrum of this surface, excited at 430 nm, was 

acquired and shown in figure 15. 

 

Figure IV-15. Luminescence of (PVC-co-CPVC)-g-PVDPA – U(VI) 

The surface emission spectrum is compared to that of PVDPA – U(VI) complex taken from figure 

10. As seen in figure 15, the spectral shape and position proves that PVDPA – U(VI) complex is 

indeed formed on the surface of the modified PVC-co-CPVC fiber, similar to that formed before 

in solution (figure 10). 

The higher performance of PVC-co-CPVC as a substrate compared to PET was finally proven by 

ICP-MS. Two sets of fibers, PET-PVDPM and (PVC-co-CPVC)-g-PVDPM, the latter with a 

degree of grafting (d.g) of 41 % and each weighting exactly 3.1 mg, were hydrolyzed to PET-

PVDPA and (PVC-co-CPVC)-g-PVDPA, respectively, according to scheme 1. These fibers were 

dipped in a 0.1 mM U(VI) solution at pH~7 overnight. The solutions were then filtered and the 

remaining concentration of U-238 measured with ICP-MS, as shown in figure 16. 
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Figure IV-16. U-238 concentration (ppb) before and after treatment with modified fibers 

It is very important to note that only one ICP-MS measurement was made on time on each sample 

to include in this manuscript and it was not repeated. Unfortunately, all ICP-MS measurements 

include errors and a correction factor should have been used for each measured element. For this 

reason, instead of discussing absolute concentrations in ppb, we will be discussing relative 

concentrations and compare their ratios before and after treatment with PVDPA-based materials.  

Taking the initial U(VI) concentration before treatment as a 100 % reference, we can see in figure 

16 that when this solution was treated with modified fiber, the relative concentration dropped to 

54 % and 12 % when treated with PET-PVDPA and (PVC-co-CPVC)-g-PVDPA, respectively. 

This result proves that using PVC-co-CPVC as a substrate is more efficient to produce the highly 

absorbing materials. Unfortunately however, determining the absolute absorption capacity of these 

fibers could not be achieved at this stage. Greater quantities of uranium salt solutions would be 

needed and so we encourage future studies to explore the full capacity of our materials. 

On the other hand, another question is posed here, regarding the effect of the degree of grafting 

(d.g), i.e. the thickness of the PVDPA layer, on the absorption capacity of the modified fibers. 

Does a thicker layer of PVDPA capable of absorbing more U(VI) and if so, to what extent? 

Looking at figure 16, we can see that when PVC-co-CPVC fiber where modified to d.g. = 235%, 

the performance was slightly better with 8% remaining U(VI) than those with d.g. = 41 %. This 

means one of two things, the first being that the two sets of fibers have similar performances and 

a 235 % degree of grafting represents a negligible improvement compared to a degree of grafting 

of 41%, making it useless to build a thicker layer of PVDPA. 
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The second possibility is that a 1 mL solution of 0.1 mM U(VI), used in this experiment, is too 

little to show the full capacity of the d.g. = 235 % fibers. Unfortunately, once again we didn’t have 

enough uranium, nor the time, to test this hypothesis. What we could do though, is visually 

comparing the instant absorbing capacity of modified fiber, without leaving the fibers overnight. 

 

 
Figure IV-17. U(VI) decontamination with (PVC-co-CPVC)-g-PVDPA (d.g = 41%) 

In figure 17, a 2 mL solution of 0.25 mM U(VI) was treated with an increasing quantity of (PVC-

co-CPVC)-g-PVDPA fibers with a 41 % degree of grafting and observed under a 254 nm UV lamp 

with less than a minute separating each two steps. We saw that it was not until 15 mg of fibers 

were added that the green fluorescent became invisible to the naked eye. When the same 

experiment was done with the d.g. = 235 % fibers, only 3 mg were used to get a similar result. 

To conclude, PVDPA-modified fibers were used for a successful decontamination of a U(VI) 

aqueous solution. PVC-co-CPVC substrate is favored over PET, because a thicker layer of PVDPA 

can be built on PVC surface, giving a higher absorbing capacity, in addition to an easier 

modification strategy discussed earlier in chapter III. A higher degree of grafting, i.e. thicker 

PVDPA layer, also seems to have a higher absorbing capacity, though further studies should be 

conducted to determine the optimal PVDPA thickness and the absolute absorbing capacity. 
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 Uranium harvesting from seawater 

Uranium harvesting from seawater is a particularly ambitious application for our highly adsorbent 

PVDPA-based materials. Current state-of-the-art poly(amidoxime)-based adsorbent materials still 

face a major obstacle that limits its uranium adsorbing capacity, that of the very high affinity of 

those materials towards vanadium (V) ions. Even though V(V) exists in seawater at levels (1.9 

ppb) lower than that of U(VI) (3.3 ppb), V(V) greatly outcompete uranium for binding sites [19]. 

Moreover, the seawater high ionic strength can affect the absorbing performance of absorbents. In 

this section, we will study the effect of seawater’s high ionic strength on the complexation of U(VI) 

by PVDPA and the competition between uranium and vanadium species for PVDPA binding sites. 

IV.5.1. The effect of ionic strength 

The effect of seawater’s ionic strength was studied by preparing a 0.1 mM U(VI) solution using 

distilled water and simulated seawater as solvents. Simulated seawater was prepared by dissolving 

the proper quantities of sodium chloride (NaCl) and sodium bicarbonate (NaHCO3) in water to 

mimic the seawater ionic strength of 0.4 M. Two equivalents of PVDPA were added to each of the 

U(VI) solutions. The solutions were kept for few minutes to allow the PVDPA – U(VI) complex 

to precipitate then filtrated. The remaining U(VI) concentration was then measured by ICP-MS as 

shown in figure 18. 

 

Figure IV-18. PVDPA – U(VI) complexation in simulated seawater 
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As seen in figure 18, when PVDPA was added and the solution filtrated, the concentration of U(VI) 

dropped to 64% with respect to the non-treated U(VI) solution prepared in distilled water. When 

simulated seawater was used, the drop in U(VI) relative concentration went down to 18% with 

respect to the non-treated solution. This means that PVDPA is capable of decontaminating a U(VI) 

solution, even at high ionic strength. 

This result doesn’t mean that the PVDPA complexation is not efficient in distilled water, because 

we saw earlier that the PVDPA complex is completely formed in a zero ionic strength solution 

(figures 9 and 10). Herein, our main concern was that we knew that PVDPA has a lower solubility 

in high ionic strength water, which we thought can decrease its performance. This experiment 

showed that, instead of decreasing its efficiency, the high ionic strength actually favors the 

precipitation of PVDPA, taking with it the U(VI) ions. Thus, the lower efficiency of PVDPA at 

zero ionic strength (distilled water) is probably due to slower precipitation of the complex, 

therefore not efficiently retained by filtration. 

Back to our more important result, we conclude that the formation of the PVDPA – U(VI) complex 

is highly efficient at an ionic strength level similar to that of seawater. In the next section, we 

investigate the other obstacle that faces the uranium harvesting from seawater, that of uranium-

vanadium competitive absorption. 

IV.5.2. Uranium (VI) – Vanadium (V) competition 

In the literature, dipicolinic acid, from which our polymer is derived, already demonstrated a 

higher selectivity towards U(VI) (log K = 11.6) over V(V) (log K = 9.3). Herein, we needed to 

examine the performance of our materials in decontaminating a U(VI) solution, even if V(V) is 

present. We first used UV absorption spectroscopy to see to was extent the VDPA monomer is 

interacting with V(V). We then put PVDPA polymer to test and tried to decontaminate a U(VI) 

solution after the PVDPA was saturated with V(V). 

VDPA monomer: 

Into a 0.1 mM VDPA solution, V(V) was added in increasing ratios using a concentrated mother 

solution of vanadium (V) oxide solution (V2O5). The resulting solutions were analyzed by UV 

absorption spectroscopy and the obtained spectra are shown in figure 19.  
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Figure IV-19. UV absorption spectra of VDPA – V(V) complexes 

As seen in figure 19, the peak maximum, originally situated at 284 nm for VDPA, gradually shifted 

with increasing V(V) ratio to 275 nm at 2 V(V) equivalents. It should be noted that no further 

change was seen at V(V) ratio greater than 2 (data not shown). These results were compared with 

those of VDPA – Ln(III) (figure 3) and VDPA – U(VI) (figure 8) complexes and the following 

conclusions were drawn: 

1. The change in peak maxima up to a V(V) / VDPA ratio of 2 shows an interaction is taking 

place between the VDPA monomer and V(V) ion. However, spectral shape is different than 

that of VDPA – Ln(III) and VDPA – U(VI) complexes, indicating that the binding mode 

is probably different. 

2. The interaction is present up to a V(V)/VDPA ratio of 2, in contrast with the case of  VDPA 

– Ln(III) and VDPA – U(VI) complexes were the interaction was limited to a ratio of 0.5, 

meaning that one VDPA unit could be binding 2 V(V) ions: 
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PVDPA polymer: 

A 0.25 mM solution of PVDPA polymer was prepared and saturated with 2 equivalents of V(V). 

No precipitation was detected. Into this solution, 0.5 equivalent of U(VI) was added and the 

solution filtered. The UV absorption spectra were registered at each step and plotted in figure 20. 

 

Figure IV-20. Simultaneous PVDPA interaction with U(VI) and V(V) 

When 2 equivalents of V(V) were added to the 0.25 mM PVDPA solution, one can see the change 

in spectrum shape going from pure PVDPA (solid black line) to PVDPA+2eq V(V) (solid red 

line). When 0.5 equivalent of U(VI) were further added, the PVDPA was precipitated and no peak 

from PVDPA was detected (red dashed line). To better understand this result, the PVDPA+0.5 eq 

U(VI) spectrum (black dashed line) was taken from figure 9. The two dashed lines were not 

identical, probably due to the V(V) released when replaced by U(VI) on the PVDPA binding sites, 

explained by the non-zero absorption of V(V) shown in blue line. 

The above result shows that even when PVDPA’s binding sites were saturated with 2 equivalents 

of V(V), U(VI) was still able to outcompete for PVDPA’s binding. This higher selectivity is 

probably even more enhanced thanks to precipitation, pushing the equilibrium towards U(VI) 

binding rather than V(V). 
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To further prove the affinity of PVDPA for U(VI) even if V(V) is present in the medium, we 

studied the emission of U(VI) when interacting with PVDPA with and without V(V). A 0.1 mM 

solution of U(VI) was prepared (pH~7), into which either V(V), PVDPA or both were added. All 

the solutions were excited at 405 nm and at least 50 emission scans were accumulated for optimal 

signal/noise ratio. The emission spectra are shown in figure 21. 

 

Figure IV-21. Emission spectra of different U(VI) / V(V) / PVDPA mixtures 

U(VI) 0.1 mM solution emission is shown in black line. First of all, when 1 equivalent of V(V) 

was added (red line), the U(VI) luminescence was largely quenched. The later emission spectra 

was multiplied by 50 to better visualize the change in the emission spectrum. TRLFS studies in 

earlier sections showed that different U(VI) species are present at pH 7 due to uranium hydrolysis. 

Herein in figure 21, that change in peak in intensities, shape and positions show that some of the 

U(VI) species luminescence are quenched by V(V). Uranium quenching by transition metals was 

also reported in literature [20]. 

Later on, 2 equivalents of PVDPA polymer were added to the U(VI) solution with (red dashed 

line) and without (black dashed line) the presence of 1 equivalent of V(V). In both cases, the U(VI) 

emission spectra changed remarkably. When PVDPA was added to U(VI), the peaks intensity, 

number and position changed. This case was already discussed in the previous section when 

PVDPA-U(VI) complexation was studied by TRLFS. 
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When PVDPA was added to U(VI) in the presence of 1 equivalent of V(V) (red line), the U(VI) 

emission was more intense (red dashed line), with a change in peak position and number. We 

concluded that PVDPA is indeed interacting with U(VI) even when V(V) is present. 

When comparing the PVDPA-U(VI) complexes in both cases, with (red dashed line) and without 

(black dashed line) the presence of V(V), we can see that in the two cases, the two emission spectra 

have the same shape in term of peaks number and position. However, the intensity of the PVDPA-

U(VI) emission was lower when V(V) was present (red dashed line). This can be explained by a 

luminescence quenching by V(V), or by an inferior efficiency of the PVDPA-U(VI) complex 

formation. Having the same number of peaks at the same positions in both case favors the first 

explanation (i.e. V(V) is also quenching the PVDPA - U(VI) complex luminescence), but further 

studies would be needed to settle. This is why we later conducted an ICP-MS measurement. 

A mixed solution of 0.1 mM U(VI) and 0.1 mM V(V) was prepared in simulated seawater. Two 

equivalents of PVDPA were then added and the remaining species measured by ICP-MS as shown 

in figure 22. Results were compared to the PVDPA - U(VI) complex formation in seawater taken 

from figure 18. 

 

Figure IV-22. PVDPA-U(VI) complexation with and without V(V) 

As discussed earlier, the U(VI) relative concentration dropped down to 18% when the solution 

treated with 2 equivalents of PVDPA. Herein, when V(V) was introduced into the system, the 

relative concentration of U(VI) went further down to 6% (figure 22). V(V) on the other hand, went 

down to 66% with respect to the non-treated solution. We conclude that the U(VI) complexation 

is indeed enhanced in the presence of V(V), making our PVDPA-based absorbent materials very 

promising vis-à-vis the application of uranium harvesting from seawater.   
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 Polymer assisted Actinide Lanthanide EXtraction (PALEX) 

Back in chapter I, we discussed the potential application of PVDPA in spent nuclear fuel recycling 

and we proposed a recycling process we called PALEX (Polymer assisted Actinide Lanthanide 

EXtraction). In the PALEX process (scheme 6), lanthanides and actinides are simultaneously 

trapped in an aqueous solution and separated from other fission products. Lanthanides are then 

separated from actinides by pH tuning. 

 

Scheme IV-6. Proposed PALEX process 

Despite our limited resources vis-à-vis this application and the extreme difficulty of establishing 

such a process, we tried to obtain preliminary experimental results to encourage future 

developments and serious consideration of the PALEX process. 

In order to do that, the simultaneous complexation of lanthanides and uranium with PVDPA was 

first examined. For practical reasons, Eu(III) was used as lanthanide for fluorescence studies and 

Nd(III) for ICP-MS measurements. The interaction of PVDPA was then examined with two major 

fission products, cesium (Cs) and strontium (Sr). Finally, the PALEX process was mimicked using 

free PVDPA and (PVC-co-CPVC)-g-PVDPA fibers.  
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IV.6.1. Lanthanides (III) / Uranium (VI) simultaneous complexation 

In order to prove the simultaneous complexation between PVDPA and both lanthanides and 

actinides, PVDPA was added to a mixed aqueous solution of Eu(III) and U(VI). The first hint of a 

simultaneous complexation was given visually as shown in figure 23. 

 

Figure IV-23. PVDPA interaction with U(VI), Eu(III) and both 

To a mixed solution of U(VI) and Eu(III) at 0.1 mM each at pH~7, two equivalents of PVDPA 

were added as shown in figure 23 (right), causing a precipitation with a yellowish fluorescence 

when seen under a 254 nm UV lamp. Keeping in mind that the PVDPA - U(VI) complex is green 

(figure 23 top left) and that PVDPA-Eu(III) complex is red (figure 23 bottom left), we believe that 

the yellow precipitate is actually a mixed PVDPA - U(VI) / Eu(III) complex. 

To prove this hypothesis, we looked at the fluorescence spectra of a mixed U/Eu solution before 

and after adding two equivalents of PVDPA, excited at 405 nm, as shown in figure 24. 

 

Figure IV-24. Emission spectra of a mixed U(VI)/Eu(III) solution with or without PVDPA 
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The change in U(VI) emission band shape between 480 and 570 nm on one side, and the Eu(III) 

591/615 nm bands ratios on the other side (figure 24), both show that PVDPA is indeed interacting 

with both U(VI) and Eu(III) simultaneously, under the used conditions. 

In another experiment, a mixed solution of U(VI) and Nd(III), at 0.1 mM each in simulated 

seawater, was prepared. Two equivalents of PVDPA were added and the solution filtered to 

remove the precipitated complexes. The relative concentrations of U(VI) and Nd(III) were then 

measured by ICP-MS. For a better comparison, U(VI) complexation in the absence of Nd(III) was 

taken from figure 18. The overall results are shown in figure 25. Nd(III) results were divided by 

0.172 to account for the relative isotopic abundance of Nd-146. 

 

Figure IV-25. PVDPA interaction with a mixed U(VI) / Nd(III) solution 

When only U(VI) was present, its relative concentration went down to 18% after treatment with 

PVDPA. When Nd(III) was introduced, we can see in figure 25 the competition between U(VI) 

and Nd(III) for the binding of PVDPA. The relative concentration of U(VI) went down slightly to 

89% while Nd(III) relative concentration dropped to an impressive 0.34% when compared to the 

non-treated solution. These results show that, at neutral pH, the formation of PVDPA - Nd(III) 

complex is favored over PVDPA - U(VI).  

It should be mentioned that this was the case when only 2 equivalents of PVDPA were added. 

Nevertheless, it is expected that when 4 equivalents of PVDPA are added, the majority of both 

species is trapped. 
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IV.6.2. PVDPA interaction with cesium and strontium 

In order for the PALEX process to work, the PVDPA-based materials should have a higher affinity 

towards actinides/lanthanides over other major fission products. Herein, we assess the interaction 

between PVDPA and both cesium (I) and strontium (II) ions. Into a 0.25 mM solution of PVDPA, 

Cs(I) and Sr(II) were added in increasing ratios. Most importantly, no precipitation was seen. UV 

absorption spectra were registered at each point as shown in figure 26. 

 

Figure IV-26. UV absorption spectra of PVDPA interaction with Cs(I) and Sr(II) 

As seen in figure 26 (left), the addition of Cs(I) in increasing ratio doesn’t seem to change the 

shape and position of the UV absorption spectrum of PVDPA. The PVDPA-Cs(I) spectra are 

identical at 0.5, 1 and 2 equivalents of added Cs(I). This is a sign of a minimal interaction between 

PVPDA and Cs(I). 

In the case of strontium (figure 26 right), the addition of Sr(II) changed the shape of PVDPA’s 

spectrum to the extent of a Sr(II)/PVDPA ratio of 1. This means that Sr(II) has a stronger effect 

on PVDPA than Cs(I). It’s hard though to further understand the interaction of Cs(I) and Sr(II) 

with PVDPA and more studies would be needed. Unfortunately, these studies were not made on 

time. 
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However, literature data suggests that carboxylate ligands have minimal interaction of Cs(I) in 

water, followed by Sr(II) and both behind actinides like thorium (IV), uranium (VI) and plutonium 

(IV) and lanthanides like Eu(III). Carboxylate ligands were found to have metal affinities in the 

order of Pu(IV) > Eu(III) > Sr(II) > Cs(I) with a 0.1 M NaNO3 concentration sufficient to prevent 

Cs(I) and Sr(II) complexation [21-23]. Picolinate ligand was found to have metal affinities in the 

order of Th(IV) > U(VI) > Sr(II) > Cs (I) [24]. 

These observations suggests that the interaction of PVDPA with Cs(I) and Sr(II) in water should 

be minimal if existent. Furthermore, the precipitation of PVPDA - Ln(III) and PVDPA-U(VI) 

complexes should enhance even more the selectivity of PVDPA towards actinides and lanthanides. 

Future in-depth studies should tackle this subject. 

 

IV.6.3. Simulation of the PALEX concept 

Finally, we wanted to simulate a nuclear spent fuel treatment using the PALEX concept. The 

complexity of such study and our limited resources made it impossible for us to use real samples, 

in addition to the fact that this was done towards the end of this thesis, preventing advanced 

analysis to be done on time. Based on all of the above observations and conclusions, we tried at 

least to prove visually the feasibility of the PALEX concept. 

A mixed solution of U(VI), Eu(III), Sr(II) and Cs(I), at 1 mM each, was prepared. Into this solution, 

4 equivalents of PVDPA were added to ensure that both U(VI) and Eu(III) are trapped and, within 

seconds, a white precipitate is formed. Under a 254 nm UV lamp, this precipitate exhibits a yellow 

fluorescence as seen in figure 27. This precipitate is believed to be a mixed PVDPA - U/Eu 

complex, especially when compared with earlier observations (figure 23). At this point, a simple 

filtration allows the isolation of the PVDPA-U/Eu complex as first step of the PALEX concept. 

It’s worth mentioning that the same experiment was repeated at neutral (pH~7) or acidic (0.1 mM 

HNO3) pH, with the same result in both cases. 
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Figure IV-27. A simulation of the PALEX concept 

In the second step of the PALEX concept, concentrated nitric acid was gradually added and around 

1.4 M, the yellow precipitate turned green (figure 27), a sign of the PVDPA-U(VI) complex as 

seen earlier in figure 23. We believe that at this moment, Eu(III) is released back into the solution 

and U(VI) is still trapped by PVDPA. Herein, a simple filtration should be able to separate the 

trapped U(VI) from the released Eu(III). However, in this simulation, the used quantities were too 

small to actually do the filtration at each step. Thus, to have a better idea on the separation of U(VI) 

and Eu(III), the same experiment was repeated, this time using the (PVC-co-CPVC)-g-PVDPA 

fibers, which are easier to remove from the solution. Results are shown in figure 28. 

 

Figure IV-28. Sorption of U(VI) and Eu(III) on (PVC-co-CPVC)-g-PVPDA at neutral and acidic pH 
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Herein, (PVC-co-CPVC)-g-PVDPA fibers were dipped in a mixed U/Eu/Cs/Sr solution then taken 

out and seen under a UV lamp. Interestingly, when PVDPA-functionalized fibers were used 

instead of the free PVDPA polymer, the complexation behavior at neutral pH (figure 28 left) was 

different from that which took place in an acidic medium (figure 28 right). 

At neutral pH, the fibers surface exhibits a red fluorescence, typical of a PVPDA - Eu(III) complex 

(figure 28 left). This means that Eu(III) may be predominantly trapped, in agreement with higher 

lanthanides affinity seen before in figure 25. When washed with a 1.4 M nitric acid solution, the 

fibers turned green, a sign of PVDPA - U(VI) complex. This means that even though the fibers 

were red fluorescent, uranium was also trapped and left on the surface after the nitric acid wash 

stripped off Eu(III). 

In the second case, when the fibers were dipped in a mixed U/Eu/Cs/Sr solution at acidic pH (figure 

28 right), the yellow fluorescence was a sign of a mixed PVDPA-U/Eu complex, similar to that 

seen earlier in figure 27. Here also, the nitric acid wash turned the fibers green, meaning again that 

Eu(III) was stripped off the fibers surface and U(VI) was still trapped. 

To conclude, both U(VI) and Eu(III) were trapped by the PVDPA-functionalized fibers and a nitric 

acid wash is indeed releasing Eu(III), keeping U(VI) trapped on the PVPDA surface. Furthermore, 

pH seems to play an important role in deciding the PVDPA affinity towards U(VI) and Eu(III). 

Future studies should focus on understanding how pH tuning should be used to customize the 

PVDPA selectivity towards different metals and the metal releasing behavior as a function of pH, 

including actinides and lanthanides other than uranium and europium, in addition to other fission 

products. 
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 Conclusion 

The interactions of PVDPA with different metal species were investigated. PVDPA showed high 

performance in trapping lanthanides (III) and uranium (VI) ions in aqueous media. PVDPA-based 

materials are promising candidates in application fields related to the nuclear industry. They can 

be used to harvest uranium from seawater as a future renewable source of clean energy. It should 

be noted that we actually tried to deploy a set of adsorbent fiber in the Mediterranean near the 

Lebanese shores but unfortunately they were lost in a storm. We hope though that this experiment 

would be reattempted in future studies. Furthermore, PVDPA can also be used in nuclear spent 

fuel recycling through the PALEX concept. It is also a strong ligand that can be used in the field 

of radiodecontamination and detoxification following nuclear accidents. 

Even though a full assessment of PVDPA’s usability in each of those fields requires further in-

depth investigations, we think of this thesis as a precursor work that encourages future projects 

and collaborations with academic and industrial partners. Other applications can also be imagined 

for PVDPA-based materials, from fluorescent probes in biomedical imaging and counterfeit 

detection to heterogeneous catalysis. 

Two scientific papers were submitted following the work on P4VP (one published and the other 

one pending) and two international PCT patent applications followed the work on the new PVDPA 

polymer and were submitted in France at the Institut National de la Propriété Industrielle (INPI) 

under the reference numbers PCT/FR2017/052705 and PCT/FR2017/052706.       
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In roughly a century, conventional reserves of uranium should dry out, making it inevitable to 

reconsider uranium harvesting from seawater to fuel future generation nuclear reactors. The 

extremely low uranium concentration and the complexity of seawater matrix make adsorption by 

chelating polymers the most promising method for uranium recovery from seawater in terms of 

simplicity of operation, operating cost, environmental risk and uptake capacity. Adsorbents with 

amidoxime functional groups are the most promising adsorbents because of their high affinity in 

chelating uranyl ions in seawater. However, they suffer from vanadium outcompeting uranium for 

binding sites and the need to use a hydrophilic comonomer. Our new water soluble and selective 

PVDPA polymer proved to be promising in solving these problems. 

The other challenge facing nuclear industry is the recycling of spent fuel. In future reactors, all 

actinides will be recycled together and integrated in a new energy production cycle. The PVDPA 

polymer will be proven capable of simultaneously trapping actinides and lanthanides in aqueous 

solution and later release lanthanides back into an acidic solution. We thus provided the first 

experimental results of a polymer assisted spent fuel recycling concept we called PALEX. 

The PVDPA polymer is also a promising candidate as an agent for radiodecontamination and 

radiodetoxification, following nuclear accidents.  

The nuclear fuel cycle was first described in chapter I and the relation between our project and 

different aspects and challenges of the nuclear industry was established. Then, the main techniques 

and strategies to be employed in this work were reviewed. Different controlled polymerization 

techniques were described, and the adopted Supplemental Activation Reducing Agent Atom 

Transfer Radical Polymerization (SARA ATRP) was explained. 

SARA ATRP polymerization offered several advantages. The non-stable copper (I) catalyst, used 

in conventional ATRP will be replaced by the stable copper (II) and the catalyst load will be 

reduced by a factor of 100, the reaction will be achieved in green solvents and at room temperature, 

minimizing the energy consumption and eventually the overall cost of post-purification. Thanks 

to metallic copper, the reaction is oxygen tolerant and no prior degassing. A green solvent is also 

used. These advantages made the synthesis of PVDPA easy, fast and cheap, both in solution and 

from different solid substrates. 
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In chapter II, 4-vinylpyridine (4VP) served as a model monomer and helped us investigating the 

SARA ATRP experimental conditions. P4VP was synthesized in solution and the SEC analysis 

proved the livingness and the control over chain length distribution. Furthermore, P4VP chains 

were successfully built from both an organic (PET) and inorganic (Silica) substrates. PET surface 

was pretreated by aminolysis with PEI, followed by the grafting of the BnCl radical initiator. On 

the other hand, the synthesized APTES-BnCl allowed the direct grafting of the radical initiator 

onto the silica surface. P4VP was then successfully built from both surfaces and studied by 

different surface analysis techniques, proving the covalent bonding between P4VP and both 

substrates. P4VP-modified silica powder was then used for oil/water separation, thanks to the pH-

switchable wettability of P4VP. 

In chapter III, the VDPM monomer synthesis was simplified and optimized. Its SARA ATRP 

polymerization was investigated in solution and the reaction livingness was evidenced, though the 

control over chain lengths distribution was not achieved on time. Styrene/VDPM copolymerization 

was then conducted with great success, allowing the synthesis of statistical, gradient and block 

copolymers. Monodisperse core-shell nanoparticles were also prepared using the water soluble 

VDPA monomer with styrene. Afterwards, PVDPM chains were successfully built from PET 

surfaces. Later on, PVC-based substrates took over and the surface functionalization strategy was 

reduced into a unique step allowing the fast preparation of functional surfaces with several 

micrometers thick PVDPM outerlayer. 
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In chapter IV, the prepared materials were hydrolyzed to obtain the water soluble PVDPA, either 

as a free polymer in aqueous solution or in the form of (PVC-co-CPVC)-g-PVDPA fibers. In both 

forms, PVDPA-based materials showed a high performance in scavenging targeted radionuclides 

in water. Several lanthanides along with uranium were successfully trapped and the solutions were 

“decontaminated”. Furthermore, the high ionic strength and the presence of competing elements 

like vanadium, cesium and strontium didn’t seem to compromise the trapping performance of 

PVDPA. 

The high uranium and lanthanides trapping capacity in aqueous media makes PVDPA-based 

materials excellent candidates for different applications related to the nuclear industry. They can 

be used for uranium harvesting from seawater and are potentially more advantageous than the 

known amidoxime-based materials. They are potential candidates for nuclear spent fuel recycling 

through the proposed PALEX concept and can be further used in the field of environment 

decontamination and detoxification of living organisms including humans, following nuclear 

accidents. 

Future efforts should focus on many aspects not enough tackled in this thesis. First of all, the 

control over PVDPM chain length distribution should be achieved and the polymerization kinetics 

further studied. The copolymerization of VDPM with comonomers other than styrene should be 

investigated and polymer compositions and architectures further developed. The surface-initiated 

polymerization should also be extended to other organic and inorganic substrates. 

The interactions between PVDPA and different metals should be further studied. PVDPA’s 

affinities towards different lanthanides, actinides and transition metals should be quantified, 

compared and the complexation mechanisms further understood. The preparation of PVDPA-

based surfaces should be further optimized and the conditions for best performance determined. 

Concerning the uranium harvesting from seawater, expeditions should be organized, PVDPA-

based materials should be deployed in real ocean water and the uranium uptake determined in 

order to guide further developments. When for the PALEX concept, further studies should be 

conducted and PVDPA performance analyzed in simulated then real spent fuel samples.  

The structural modification on PVDPM, before and after polymerization, could also be 

investigated. The ester moieties offer endless possibilities and can be replaced with many chemical 



 
170 Conclusion and perspectives 

functions allowing to the physico-chemical properties of the resulting polymer to be tailored and 

thereby extending its usability in targeting specific metals in aqueous or organic media, and in 

other application fields like pyridine-based heterogeneous catalysis. When coupled to different 

metals, especially lanthanides, PVDPA complexes fluorescence can be used in biomedical imaging 

and counterfeit detection. 

In this exploratory thesis, we tried to make a small contribution in solving several challenges facing 

the nuclear energy industry. Most importantly, we tried to avoid complex and expensive strategies 

in order to keep our approach economically viable. This project is hopefully first of many and by 

submitting two international patent applications, we hope that this work will encourage future 

developments and generate collaborations with experts in different related fields of research, both 

in academia and industry. 
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 Characterization techniques 

VI.1.1. Nuclear magnetic resonance (NMR) 

NMR measurements were done using Bruker’s DPX250, DRX300 and AV360 spectrometers. 

Sample concentrations were fixed at a 10 mg/mL for 1H-NMR and at 40 mg/mL for 13C-NMR. 

VI.1.2. Size exclusion chromatography (SEC) 

SEC analysis was performed in N,N-dimethylformamide (DMF) for P4VP using a Styragel column 

(HR 4E, 5 µm, 4.6 x 300 mm) from Waters and refractive-index detector.  The experiments were 

performed at a flow rate of 0.3 mL/min and the injection volume was 50 µL (1 mg/mL). PMMA 

standards were used to estimate the average molar masses and dispersities of analyzed samples. 

PS and P(S-co-VDPM) were analyzed with THF as eluent (1 mL/min) in a ViscoGELTM column 

(7.8 x 300 mm, GMHH R-H) provided by Viscotek and equipped with a Waters 410 refractive 

index detector, molar masses and dispersities were determined using polystyrene standards. 

PVDPM samples were analyzed in DMF (+ LiBr, 1 g/L) at 60°C, at a flow rate of 0.8 mL/min and 

a polymer concentration from 2 to 5 mg/mL. The steric exclusion was carried out on two PSS 

GRAM 1000 Å columns (8 x 300 mm; separation limits: 1 to 1000 kg/mol) and one PSS GRAM 

30 Å (8 x 300 mm; separation limits: 0.1 to 10 kg/mol) coupled with three detectors (Viscotek, 

TDA 305): a differential refractive index (RI) detector, a viscosimeter detector and a light 

scattering (LS) detector (laser λ = 670 nm at 7° and 90°). The OmniSEC 4.6.2 software was used 

for data acquisition and data analysis. Molar masses and dispersities (Ð) were calculated with a 

calibration curve based on narrow PMMA standards (from Polymer Standard Services), using only 

the RI detector. Light scattering (LS) molar masses were estimated using a dn/dc of 0.16 mL/g.  

VI.1.3. Static water contact angle measurements (WCA) 

Water contact angle (WCA) were carried out using a DS100 Kruss goniometer. The contact angle 

was measured within 10 s of placing a 3µL droplet of milliQ water on the surfaces and an average 

of at least 4 measurements was reported. 
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VI.1.4. Colorimetric measurement of amine functions 

The masses of PET substrates were precisely measured prior to colorimetric assays, which then 

allowed to determine the exact surface area knowing the surface to mass ratio. Orange II method 

[1] was used to quantify the amount of exposed amine groups on the PET surfaces. The amino-

covered films were immersed in 2 mL of dye solution (15 mg/mL) in acidic solution (Milli-Q 

water adjusted to pH 3 with 1 M HCl) for 30 min at 40 °C. The samples were then intensively 

rinsed several times using the acidic solution (pH 3) to remove unbound dye. Once air-dried, the 

colored films were immersed in 1 mL of alkaline solution (Milli-Q water adjusted to pH 12 with 

a 1 M NaOH solution). The pH of the solution containing the desorbed dye was adjusted to pH 3 

by adding 1% v/v of 12 M HCl. The absorbance of the solution was then measured at 484 nm. 

VI.1.5. Attenuated total reflection infrared spectroscopy (ATR-FTIR) 

Infrared analysis were carried out on Bruker IFS 66 equipment with an ATR module with a 

diamond crystal from Pike technologies. 150 scans were performed with a resolution of 4 cm-1. 

Absorbance spectra were registered between 600 and 4000 cm-1.  

VI.1.6. X-ray photoelectron spectroscopy (XPS) 

XPS measurements were performed on a K-Alpha spectrometer from ThermoFisher, equipped 

with a monochromated X-ray Source (Al Kα, 1486.6 eV). A spot size of 400 mm was employed. 

The hemispherical analyzer was operated in CAE (Constant Analyzer Energy) mode, with a pass 

energy of 200 eV and a step of 1 eV for the acquisition of surveys spectra, and a pass energy of 50 

eV and a step of 0.1 eV for the acquisition of high-resolution spectra. A “dual beam” flood gun 

was used to neutralize the charge build-up. The spectra obtained were treated by means of the 

“Avantage” software provided by ThermoFisher. A Shirley-type background subtraction was used 

and the peak areas were normalized using the Scofield sensitivity factors in the calculation of 

elemental compositions. 

VI.1.7. Atomic Force Microscopy (AFM) 

Tapping mode topography and phase imaging was accomplished using di Innova AFM Bruker 

with NanoDrive v8.02 software. Tapping mode images were acquired using silicon tips from 
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Nanosensors (PPP NCSTR) with a resonance frequency ranging between 76 and 263 kHz. Images 

were processed using Gwyddion software, freely available on the internet. 

VI.1.8. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

ToF-SIMS measurements were carried out using a ToF-SIMS 5-100 (IONTOF GmbH) equipped 

with two sources; Bismuth liquid-metal ion source for spectroscopy analysis and an Argon ion 

source for sputtering, both with an incident angle of 45 degrees to the surface of the sample. 

Spectra of positive ions were collected from an area of 500 x 500 µm2 from each sample using a 

pulsed 0.07pA Bi3
+ beam, at 25 keV energy, and by keeping the primary ion dose (<2x 

1011 ion/cm2) below the secondary ion mass spectroscopy static limits. The secondary ions were 

extracted, with 2 keV energy, passing throw a single stage reflector before hitting a single micro 

channel plate detector. Low energy flood gun was used for the surface charge compensation. For 

in depth profiling, a 2.5 to 25 keV (depending on sample) Ar1500 cluster ion beam was used 

repeatedly for sputtering through the film with a current of 0.3 nA and a raster size of 1000×1000 

µm2 and a 25 keV Bi3
+ beam (0.07 pA, 500x500 µm2, 128x128 pixels) to analyze between each 

sputtering. The data were acquired and processed with SurfaceLab 6.6 software from IONTOF 

GmbH. 

VI.1.9. Scanning electron microscopy (SEM) 

SEM was performed using a field emission gun scanning electron microscope (FEGSEM) (ZEISS 

SUPRA 55 VP) at low voltage (1 kV) and low current (a few pA) and a very short working distance 

in order to be able to observe samples without coating them with a conductive layer. These 

conditions were selected to ensure the observation of only the top surface of the samples without 

any coating and to be able to combine or compare more efficiently SEM images with AFM ones. 

VI.1.10. Matrix-assisted laser desorption/ionization time of flight mass 

spectrometry (MALDI-ToF) 

The highest grade available of trans-2-[3-(4-ter-Butylphenyl)-2-propenylidene] malonitrile 

(DCTB), used as the matrix for MALDI-TOF MS, was purchased from Sigma Aldrich and used 

without further purification. MALDI-TOF MS analysis were performed using an UltrafleXtreme 

mass spectrometer (Bruker Daltonics, Bremen). Acquisitions were performed in reflector positive 

ion mode. The laser intensity was set just above the ion generation threshold to obtain peaks with 
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the highest possible signal-to-noise (S/N) ratio without significant peak broadening. The mass 

spectrometer was externally calibrated using PEG1500 and PEG4500. All data were processed 

using the FlexAnalysis software (Bruker Daltonics, Bremen). 

VI.1.11. UV-Vis absorption spectroscopy 

UV-vis spectra were recorded over 300-800 nm range with 0.5 nm resolution using a Carry 1E 

UV-vis spectrophotometer. 

VI.1.12. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) 

TRLFS of uranium (VI) was conducted at room temperature, using a tunable OPO Panther® 

Continuum pulsed laser at incident wavelength of 430 nm and 3 mJ energy. The detection was 

made by means of a Spectra-Pro®-300 monochromator (Acton Research Corporation® coupled 

with a Princeton Instruments® CCD Camera). Spectra were recorded between 450 and 600 nm 

using 2 mL quartz glass cuvettes. Decay curves of uranium (VI) were obtained with a gate width 

of 0.5 μs and delay range between 0.2 and 200 μs. For each delay time, each luminescence 

spectrum was recorded four times, and for each spectrum 100 accumulations were averaged. 

Fluorescence lifetimes were calculated by fitting the decay to an exponential decay function using 

the OriginPro® software: 

𝐼 (𝑡) =  ∑ 𝐼𝑖0 exp(−𝑡/𝜏𝑖)

𝑖

 

I(t) being the total luminescence intensity at time t, Ii0 the luminescence intensity of the species i 

at the time t = 0, and τi the corresponding lifetime. 

For europium (III), the excitation wavelength was set at 466 nm and 7.5 mJ energy, the spectra 

recorded between 470 and 720 nm and decay curves obtained with a gate width of 5 μs and delay 

range between 2 and 1000 μs. 

VI.1.13. Inductively coupled plasma mass spectrometry (ICP-MS)  

Samples were diluted 100 times in ultrapure 1% nitric acid. Ultrapure commercial standards were 

used for calibration of U, V and Nd at 1 ppt, 10 ppt, 100 ppt, 1 ppb, 10 ppb and 100 ppb. 

Measurements were performed using a ThermoScientific HR-ICPMS Element XR at 50 µl/min 

direct injection. 
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 Synthesis of VDPM 

VI.2.1. Dimethyl 4-chloropyridine-2,6-dicarboxylate [2] 

 

In a round bottom flask, PhPOCl2 (13 mL, 100 mmol, 4 eq) was slowly added to 4-

hydroxypyridine-2,6-dicarboxylic acid (known as chelidamic acid or 4-hydroxy dipicolinic acid) 

hydrate (4.58 g, 25 mmol, 1 eq) while cooling in an ice bath. The reaction was then refluxed at 

120 °C for 2 hours then slowly cooled back to room temperature. MeOH (75 mL) was added and 

the solution stirred for an additional 1 hour at room temperature. The solution is concentrated and 

DCM (100 mL) was added. This solution was washed with water (2 x 100 mL), NaHCO3 (100 

mL) then water (100 mL) again. The organic layer was dried over MgSO4, filtrated then 

concentrated. Dimethyl 4-chloropyridine-2,6-dicarboxylate (M = 229.62 g.mol-1) was then re-

crystallized in hot MeOH, filtrated and dried (yield = 87%) 

1H NMR (CDCl3, 360 MHz), δ (ppm): 3.99 (s, 6H, CO2CH3), 8.26 (s, 2H, CHar). 
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VI.2.2. Dimethyl 4-iodopyridine-2,6-dicarboxylate [3] 

 

Dimethyl 4-chloropyridine-2,6-dicarboxylate (4.04 g, 17.6 mmol) and NaI (26 g, 174 mmol, 9.9 

eq) were solubilized in 120 mL and sonicated for 20 minutes. MeCOCl (4.16 g, 53 mmol, 3 eq) 

was then slowly added, the yellow solution turned dark brown. This solution was then sonicated 

for 30 minutes then concentrated then re-solubilized in DCM and neutralized with a 5% K2CO3 

solution. The organic DCM layer was washed with a Na2S2O3 solution, water, then dried over 

MgSO4, filtrated and concentrated. The product was then re-crystalized in hot MeOH was washed 

with Et2O to obtain the dimethyl 4-iodopyridine-2,6-dicarboxylate crystals (M = 321.07 g.mol-1, 

yield = 90%) 

1H NMR (CDCl3, 360 MHz), δ (ppm): 3.98 (s, 6H, CO2CH3), 8.64 (s, 2H, CHar). 
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VI.2.3. Dimethyle 4-vinylpyridine-2,6-dicarboxylate (VDPM) [4] 

 

Dimethyl 4-iodopyridine-2,6-dicarboxylate (1.99 g, 6.2 mmol) was put in round bottom flask with 

263 mg (1 mmol) of triphenylphosphine and 74 mg (0.33 mmol) of Palladium acétate. These 

reagents were solubilized in 20 mL of THF / water solvent mixture (9/1). 6.19 g of cesium 

carbonate (19 mmol) and 1.01 g of potassium vinyltrifluoroborate (7.5 mmol) were then added. 

The reaction was allowed to proceed at 85 °C for 8 hours with stirring, then cooled and filtrated. 

The white residue is washed with ethyl acetate then concentrated. The obtained solution is purified 

over silica gel, and eluted with a petroleum ether / ethyl acetate (3/1), then concentrated. Dimethyl 

4-vinylpyridine-2,6-dicarboxylate (dimethyl 4-vinyl dipicolinate - VDPM) (M = 221.21 gmol-1) 

was then recrystallized from a DCM / petroleum ether (1/10) mixture (yield = 70-80%). 

1H NMR (CDCl3, 250 MHz), δ (ppm): 3.98 (s, 6H, CO2CH3), 5.63 (d, 1H, J = 11.1 Hz, C=CH 

trans), 6.14 (d, 1H, J = 17.4 Hz, C=CH cis), 6.75 (dd, 1H, J = 17.4 Hz, J = 11.1 Hz, CH=CH2), 

8.24 (s, 2H, CHar). 

13C NMR (CDCl3, 250 MHz), δ (ppm): 53.38 (s, CO2CH3), 121.57 (s, CH=CH2), 125.11 (s, 

CHar), 133.49 (s, CH=CH2), 147.85 (s, C-CH=CH2), 148.91 (s, C-CO2CH3), 165.37 (s, C=O). 

ESI-MS: [M+H]+ = 222.075 
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 SARA ATRP of 4VP in solution 

The monomer (4VP, 1.0 mL, 9.27 mmol), initiator (BnCl, 8 µL, 0.0927 mmol), Cu0 (l = 2 cm, d = 

1 mm), catalyst (CuCl2, 0.625 mg, 4.65 µmol ), ligand (TPMA, 6.25 mg, 0.022 mmol) and 2-

propanol (1.0 mL) were added to a 10 mL tube. The tube was sealed and placed in a water bath at 

30 °C without prior degassing. After a predetermined time, an aliquot was taken for 1H NMR 

measurement in MeOD. The solvent was evaporated, DCM was added to re-solubilize the content, 

and the resulting solution was precipitated in 200 mL of cold diethyl ether while stirring. The 

polymer was isolated by filtration and dried under vacuum at room temperature. The monomer 

conversion was determined by 1H NMR in MeOD. 

 SARA ATRP of VDPM in solution 

In a typical reaction, the VDPM (M = 221.2 g.mol-1) monomer’s initial concentration was kept at 

0.5 M in acetonitrile, and the copper wire at 1 cm/mL. The monomer (100 eq), CuCl2 (0.01 eq), 

TPMA (0.4 eq) were dissolved in DMSO or acetonitrile in a 10 mL tube, the copper wire was 

added and the BnCl initiator (1 eq) added and the tube closed at placed in an oil bath for a 

predetermined time at 30 °C or 50 °C, without prior degassing. After a predetermined time, an 

aliquot was taken for 1H NMR measurement in CDCl3 to determine monomer conversion. The 

reaction was then diluted with an equal volume of DCM then the PVDPM polymer precipitated in 

THF, filtrated and dried. 

The PVDPM polymer can be then hydrolyzed in NaOH to yield the poly(4-vinyl dipicolinic acid) 

polymer PVDPA for complexation studies. 
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 SARA ATRP of styrene 

VI.5.1. Bulk SARA ATRP with Cu0 as reducer agent 

A solution of CuCl2 (2.3 mg), TPMA (50 mg) and 10 mL styrene was prepared (St / CuCl2 / TPMA 

= 100 / 0.02 / 0.2). 3 mL of this solution was placed in a 10 mL tube with 3 cm copper wire and 

30 µL of BnCl initiator (DP = 100). The tube was closed and placed in an oil bath at 60 °C and 

aliquots were periodically taken and analyzed by NMR to determine the monomer conversion. The 

reaction solution was then diluted with DCM and the polymer precipitated in MeOH, filtrated and 

dried under vacuum. 

Styrene monomer conversion was determined from NMR spectra. Below is an example at ~67 % 

monomer conversion: 

 

Using the vinyl doublets at 5.33 and 5.84 ppm as references for 1 protons each, the monomer 

conversion was calculated using the peak area 𝒜 in the region between 6.3 ppm and 7.8 ppm as 

follows: 

𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
𝒜6.3−7.8 𝑝𝑝𝑚 − 6

𝒜6.3−7.8 𝑝𝑝𝑚 − 1
 × 100 
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VI.5.2. SARA ATRP with Cu0 as reducer and sulfolane or sulfolane/water as 

solvent 

For the polymerization in sulfolane or sulfolane / water as solvent. 2 mL of the same 

styrene/CuCl2/TPMA solution was placed in a 10 mL tube with 1 mL of solvent, either pure 

sulfolane of sulfolane / water (9/1) mixture. 2 cm of a copper wire and 20 µL of BnCl initiator (DP 

= 100) was added, and the tube was closed and placed in an oil bath at 60 °C and aliquots were 

periodically taken and analyzed by 1H NMR to determine the monomer conversion. The reaction 

solution was then diluted with DCM and the polymer precipitated in MeOH, filtrated and dried 

under vacuum. 

VI.5.3. SARA ATRP with Na2S2O4 as reducer agent and sulfolane / water as 

solvent 

Styrene (1 ml), TPMA (5.0 mg), CuCl2 (8.3 µL of a 137.9 mg in 985 µL water solution) and 

Na2S2O4 (15.9 mg) were placed in a 10 mL tube with 0.5 mL sulfolane. 10 µL of the BnCl initiator 

(DP = 100) was added and the tube closed and placed in an oil bath at 60 °C. Aliquots were 

periodically taken to determine the monomer conversion. The reaction solution was then diluted 

with DCM and the polymer precipitated in MeOH, filtrated and dried under vacuum. 

Styrene / BnCl / CuCl2 / TPMA = 100 / 1 / 0.1 / 0.2 

VI.5.4. Styrene graft polymerization using PVC macroinitiator 

PVC powder (82 mg), styrene (3 ml), CuCl2 (3.6 mg), TPMA (8.3 mg), sulfolane (1 ml) and Cu0 

(3 cm) were put in a 10 mL tube. The tube was closed and put in an oil bath at 60 ºC for a 

predetermined time. The solution was then precipitated in MeOH to yiel the PVC-g-PS polymer. 
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To determine the amount of labile chlorine, the non-modified PVC powder (500 mg) was put in a 

round-bottom flask with an excess phenol (24 g) and agitated at 60 ºC for 4 days. The phenolized 

PVC was then precipitated in MeOH and filtrated.  

 

The 1H NMR spectrum then allowed the determination of labile chlorine (y). 
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 Copolymerization of styrene with VDPM 

VI.6.1. Statistical copolymer 

Styrene (75 µL), VDPM monomer (147 mg), TPMA (7.5 mg), CuCl2 (0.164 mg), sulfolane (0.68 

mL), Cu0 (2cm) were placed in a 10 mL tube. 128 µL of a 5.8 µL BnCl in 1 mL sulfolane solution 

was added and the tube closed and placed in an oil bath at 60 °C. Aliquots were periodically taken 

to determine the monomer conversion. The reaction solution was then diluted with DCM and the 

polymer precipitated in MeOH, filtrated and dried under vacuum. 

Styrene / VDPM / BnCl / CuCl2 / TPMA = 50 / 50 / 1 / 0.2 / 4  

VI.6.2. Gradient copolymer 

Styrene (1.33 mL), VDPM monomer (147 mg), TPMA (15 mg), CuCl2 (0.164 mg), sulfolane (0.68 

mL), Cu0 (2 cm) were placed in a 10 mL tube. 13.4 µL of the BnCl initiator was added and the 

tube closed and placed in an oil bath at 60 °C. Aliquots were periodically taken to determine the 

monomer conversion. The reaction solution was then diluted with DCM and the polymer 

precipitated in MeOH, filtrated and dried under vacuum. 

Styrene / VDPM / BnCl / CuCl2 / TPMA = 95 / 5 / 1 / 0.01 / 0.44 
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Individual comonomer conversions were determined using the following equations: 

𝑉𝐷𝑃𝑀 𝑐𝑜𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  
𝒜3.9−4.1 𝑝𝑝𝑚 − 6

𝒜3.9−4.1 𝑝𝑝𝑚
 × 100 

Vinyl’s doublets at 5.66 and 6.17 ppm were used as 1 proton references for VDPM comonomer. 

𝑆𝑡𝑦𝑟𝑒𝑛𝑒 𝑐𝑜𝑚𝑜𝑛𝑜𝑚𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
𝒜6.25−7.80 𝑝𝑝𝑚 −  0.33 ∗ 𝒜3.9−4.1 𝑝𝑝𝑚 − 6

𝒜6.25−7.80 𝑝𝑝𝑚
× 100 

Vinyl’s doublets at 5.27 and 5.78 ppm were used as 1 proton references for styrene comonomer. 

VI.6.3. Block copolymer: 

VDPM monomer (110.6 mg), TPMA (5.8 mg), CuCl2 (0.135 mg), DMSO (0.3 mL) and Cu0 (1 

cm) were placed in a 10 mL tube. 5.8 µL of the BnCl initiator was added and the tube closed and 

placed in an oil bath at 60 °C. After 30 minutes, NMR showed no traces of unreacted VDPM. 2.3 

mL of styrene were injected with 0.5 mL sulfolane. One hour after styrene injection, we took a 

small aliquot and did a simple precipitation test, the sample precipitated in THF, meaning that the 

PVDPM block is still predominant, or maybe the styrene didn’t even polymerize. After 2 hours, 

an aliquot was completely soluble in THF, meaning that polystyrene was successfully being built 

on the PVDPM block. Another 0.5 mL of sulfolane were added and the reaction kinetics monitored 

by NMR. At each point, an aliquot was precipitated in MeOH, filtrated and dried under vacuum. 

Styrene / VDPM / BnCl / CuCl2 / TPMA = 400 / 10 / 1 / 0.02 / 0.4 
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 Surface-initiated SARA ATRP of 4VP on PET 

VI.7.1. Aminolysis of PET surface [5] 

PET films (2 x 1 cm2) were washed prior to modification in H2O / EtOH (1/1 v/v) for 10 minutes 

followed by 10 minutes in absolute acetone, then dried under vacuum at room temperature. Films 

were then immersed in DMSO for couple of minutes then put in a solution of 10 w/w of PEI in 

DMSO for a predetermined time in a water bath preheated at 50 °C. Treated PET was then washed 

in DMSO for 10 minutes before being put again in fresh DMSO and left overnight on a rotary 

table to remove any adsorbed PEI. It was then washed in copious amount of distilled water to wash 

off DMSO and remaining PEI. This step is crucial and was monitored by UV-Vis until no 

absorption at 216 nm was observed, indicating that DMSO and unreacted/unbound PEI were 

completely removed. Substrates were then washed in absolute acetone and dried under vacuum at 

room temperature for several hours. 

VI.7.2. Grafting of radical initiator 

Immediately after aminolysis, ATRP initiator was introduced onto the surface. PET films were 

immersed in diethyl ether for couple of minutes then put in a 1M solution of 4-

(chloromethyl)benzoyl chloride in diethyl ether. 1.5 molar equivalent of Et3N was then added and 

the reaction left overnight on a rotary table. Films were then extensively washed with 

dichloromethane and acetone successively, then dried under vacuum at room temperature for 

several hours. WCA was then performed and the reaction yield was determined by measuring the 

remaining unreacted amine functions on the surface with Orange II method. 

VI.7.3. Surface-initiated SARA ATRP of 4VP 

P4VP chains were built from the modified PET substrate by means of SI-SARA ATRP. PET films 

were introduced in a modified glass container where several substrates can be treated at once. 35 

cm (7 x 5 cm) of a copper wire (d = 1mm) were washed successively with HCl (1M) / MeOH (1/1 

v/v), MeOH and 2-propanol (IPA) then put in. 5 mL of a catalyst/ligand solution (0.625 mg CuCl2 

+ 6.25 mg TPMA per 1 mL IPA) were added, followed by 40 mL of IPA and 5 mL of monomer 

(4VP). Reaction vessel was quickly sealed and put in a water bath preheated at 30 °C. After a 
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predetermined time, the vessel was opened, and the films were washed with copious amount of 

ethanol then acetone and dried under vacuum at room temperature for several hours then analyzed. 

The overall strategy is described below: 
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 Surface-initiated SARA ATRP of 4VP on silica 

VI.8.1. Synthesis of APTES-BnCl 

 

In a round flask, 5 g of 4-(chloromethyl)benzoyl chloride (26.5 mmol) was dissolved in 20 mL of 

dry DCM under argon at 0°C. 4.5 mL of triethylamine (43.4 mmol), then 6.2 mL of 3-

aminopropyltriethoxysilane (APTES) (26.5 mmol), were added dropwise. The reaction was 

allowed to proceed for 1 hour at room temperature and monitored by TLC. The reaction was 

diluted with 20 mL of DCM, washed with HCl (1M). The organic phase was dried with MgSO4, 

filtered and concentrated under vacuum. The resulting transparent oily product was dried under 

vacuum over night to obtain 8.57 g (87%) of APTES-BnCl.  

1H NMR (CDCl3, 360 MHz), δ (ppm): 0.69 (t, 2H, J = 7.8 Hz, CH2Si), 1.21 (t, 9H, J = 6.9 Hz, 

CH3CH2OSi), 1.74 (m, 2H, J = 7.3 Hz, CH2CH2Si), 3.45 (m, 2H, J = 6.4 Hz, NHCH2), 3.8 (m, 

6H, J = 7.0 Hz, CH3CH2OSi), 4.58 (s, 2H, CH2Cl), 6.53 (s, 1H, NH), 7.42 (d, 2H, J = 8.0 Hz, H 

ar), 7.75 (d, 2H, J = 8.0 Hz, H ar). 

VI.8.2. Initiator grafting 

Silicon wafer cut into 18 × 8 mm2 was immersed in piranha solution (H2SO4 / H2O2 7/3 v/v) for 

30 minutes, rinsed with copious amounts of distilled water until neutral pH, dried under a stream 

of argon and baked in a clean oven at 90 °C for 15 minutes, resulting in silanol-terminated silica 

surface. Immediately after piranha treatment, the dried substrates were immersed in a freshly 

prepared APTES-BnCl solution 2% (v/v) in anhydrous toluene for 1 hour at 70 °C, followed by 

thorough rinsing with toluene to remove any excess reagent, rinsed successively with methanol 

and distilled water. Finally, the substrates were baked in a clean oven at 90 °C for 30 minutes. 
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VI.8.3. Surface initiated SARA ATRP of 4VP 

Due to the low stability of silanized films, surfaced initiated SARA ATRP of 4VP was performed 

on APTES-BnCl modified surfaces immediately after initiator grafting as follows:  

In a modified glass container, substrates were placed along with 35 cm (5 × 7 cm) of a copper wire 

(d = 1 mm) (activated with HCl (1M) / MeOH then dried). 5 mL of a catalyst / ligand solution 

(0.625 mg CuCl2 + 6.25 mg TPMA per mL dry 2-propanol) were added, followed by 40 mL dry 

2-propanol and 5 mL of monomer (4VP). The container was quickly sealed with a septum and 

placed in a water bath at 30 °C for 22 hours. The vessel was then opened, and the films were 

washed successively with copious amount of ethanol, rinsed with diluted HCl (0.1 M) to remove 

potentially adsorbed copper catalyst, and washed with acetone. The films were dried under vacuum 

at room temperature for several hours then analyzed. 

The overall strategy is described below: 
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 Surface initiated SARA ATRP of VDPM on PET 

Similar to the surface initiated SARA ATRP of 4VP on PET, the PET substrates were aminolyzed, 

the initiator grafted and the surface initiated SARA ATRP of the VDPM monomer was realized. 

The strategy is described as follows: 

PET-Cl (film or fiber) was placed in a small vial containing a solution of VDPM/CuCl2/TPMA 

(100 / 0.1 / 4) in acetonitrile. Monomer initial concentration was at 0.5 M. The vial was then closed 

and placed at a rotary table at room temperature for a predetermined time. The substrate was then 

washed over night in acetonitrile several times then dried and weighted to determine the weight 

gain. Only just before using the fibers in the complexation experiments, they were hydrolyzed in 

a NaOH 1 M solution overnight at room temperature. 
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 Surface initiated SARA ATRP of VDPM on PVC substrates 

VI.10.1. General strategy 

When a PVC-based substrate was used, the surface initiated SARA ATRP of VDPM was 

directly applied, the strategy is described as follows: 

 

VI.10.2. PVDPM on PVC powder 

Precisely weighted PVC powder was placed in a 10 mL tube containing a solution of VDPM / 

CuCl2 / TPMA (100 / 0.1 / 4 molar ratios) in acetonitrile. Monomer initial concentration was kept 

at 0.5 M. The tube was then closed and placed in an oil bath at 50 °C for a predetermined time. 

The powder was then washed with acetonitrile several times then dried and weighted to determine 

the weight gain. Only just before using the powder in the complexation experiments, it was 

hydrolyzed in a NaOH 1M solution overnight at room temperature. 

VI.10.3. PVDPM on CPVC-coated PP films  

Innovia™ CPVC-coated PP films (2 x 1 cm2) were placed in a small vial containing a solution of 

VDPM / CuCl2 / TPMA (100 / 0.1 / 4) in acetonitrile. Monomer initial concentration was at 0.5 M. 

The vial was then closed and placed at a rotary table at room temperature for a predetermined time. 

The films was then washed over night in acetonitrile several times then dried. Only just before 

using the fibers in the complexation experiments, they were hydrolyzed in a NaOH 1M solution 

for one hour at room temperature. 
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VI.10.4. On PVC-co-CPVC fibers 

Precisely weighted Rhovyl™ PVC-co-CPVC fibers were placed in a small vial containing a 

solution of VDPM / CuCl2 / TPMA (100 / 0.1 / 4) in acetonitrile. Monomer initial concentration 

was at 0.5 M. The vial was then closed and placed at a rotary table at room temperature for a 

predetermined time. The fibers was then washed over night in acetonitrile several times then dried 

and weighted to determine the weight gain. Only just before using the fibers in the complexation 

experiments, they were hydrolyzed in a NaOH 1M solution overnight at room temperature. 

 Complexation studies 

When the free polymer was used, an aqueous 5 mM solution of PVDPA was prepared in distilled 

water. A proper volume of this solution was added to a metal salt (nitrate or chloride as a counter 

anion) aqueous solution of known initial concentration and prepared in distilled water or in 

simulated seawater. Simulated seawater was prepared by dissolving 25.6 g NaCl and 193 mg 

NaHCO3 in 1 L of distilled water. 

The same technique was used for PVDPA-functional surfaces by replacing the free polymer 

solution with the proper PVDPA-modified substrate. 

The used metals are:  

Vanadium (Z = 23)  Strontium (Z = 38)  Cesium (Z = 55) 

Lanthanum (Z = 57)  Neodymium (Z = 60)  Samarium (Z = 62) 

Europium (Z = 63)  Ytterbium (Z = 70)  Uranium (Z = 92) 
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D’ici la fin du siècle, les réserves naturelles d'uranium devraient s'assécher, il faudra alors 

envisager une alternative. La récupération de l'uranium de l'eau de mer, qui représente environ 

4500 millions de tonnes (environ 100 fois supérieure à la réserve naturelle terrestre), deviendrait 

alors inévitable pour assurer le bon fonctionnement des réacteurs nucléaires. Cependant, la 

concentration extrêmement faible (3,3 ppb) et la complexité de la solution océanique font que cette 

source est extrêmement difficile à exploiter. L'adsorption par des fibres à base de poly(amidoxime) 

de cet uranium, est la stratégie actuellement la plus prometteuse, en raison de sa simplicité et de la 

forte affinité de ces fibres pour les ions uranyles. Cependant, ces fibres captent également les ions 

vanadiums. La compétition uranium/vanadium associée à une faible hydrosolubilité du 

poly(amidoxime) fait que cette solution n’est pas encore totalement satisfaisante. Au cours de cette 

thèse, nous avons développé nouveau polymère, le poly(acide 4-vinyldipicolinique) (PVDPA), qui 

est soluble dans l'eau et qui s'est révélé prometteur pour résoudre le problème de compétition entre 

l’uranium et le vanadium. 

L'autre défi auquel l'industrie nucléaire est confrontée est le recyclage du combustible usagé. Dans 

les futurs réacteurs, tous les actinides seraient recyclés ensemble et réintégrés dans un nouveau 

cycle de production d'énergie. Le polymère PVDPA s’est révélé capable de piéger simultanément 

les actinides et les lanthanides en solution aqueuse et est capable de relarguer ensuite les 

lanthanides dans une solution acide, assurant ainsi la séparation des actinides des autres produits 

de fission. Nous avons ainsi fourni les premiers résultats expérimentaux d'un nouveau concept de 

recyclage du combustible usagé que nous avons appelé le procédé PALEX. 

Le PVDPA serait également un candidat prometteur qui pourrait être utilisé en tant qu'agent de 

radio-décontamination et de radio-détoxification, qui ferait suite à des accidents nucléaires. 

Le cycle du combustible nucléaire a d’abord été décrit dans le premier chapitre, la relation entre 

notre projet et les différents défis de l'industrie nucléaire a aussi été établie. Ensuite, les principales 

techniques et stratégies à utiliser dans ce travail ont été passées en revue. Différentes techniques 

de polymérisation contrôlées ont été décrites, la réaction de polymérisation de type SARA ATRP 

que nous avons employée dans ce travail a été expliquée et commentée. 

La SARA ATRP offre plusieurs avantages. Le catalyseur Cu (I) non stable, utilisé dans l'ATRP 

classique est remplacé par le Cu(II) et le Cu(0), formes les plus stables de ce métal. La quantité de 

catalyseur est employée dans cette polymérisation est réduite d'un facteur 100 par rapport à la 
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polymérisation ATRP classique réduisant éventuellement le coût global de la post-purification. 

Grâce au cuivre métallique, la réaction est tolérante à l'oxygène et réalisable sans dégazage 

préalable. La réaction est réalisée dans des solvants plus écologiques et à température ambiante, 

ce qui minimise la consommation d'énergie. Ces avantages facilitent la synthèse du PVDPA, à la 

fois en solution et à partir de différents substrats solides. 

Dans le chapitre II, la 4-vinylpyridine (4VP) a servi de monomère modèle et nous a permis 

d’étudier les conditions expérimentales de la SARA ATRP. Le P4VP a été synthétisé en solution 

et l'analyse SEC a mis en évidence le contrôle de la structure des polymères synthétisés. De plus, 

le P4VP a été greffé sur des substrats organiques (PET) et inorganiques (Silice). La surface de PET 

a été prétraitée par aminolyse avec de la polyéthylèneimine (PEI) suivie par le greffage de 

l'amorceur radicalaire BnCl. D'autre part, l'APTES-BnCl synthétisé a permis le greffage direct de 

l'amorceur radicalaire sur la surface de la silice. Le 4VP a ensuite été polymérisé sur les deux 

surfaces et les surfaces résultantes ont été caractérisées par différentes techniques d'analyse de 

surface mettant en évidence la liaison covalente entre le P4VP et les deux substrats. La poudre de 

silice modifiée avec le P4VP a ensuite été utilisée pour la séparation d’une émulsion d’huile dans 

l’eau, grâce à la modularité du P4VP en fonction du pH. 

Dans le chapitre III, la synthèse du monomère VDPM a été réalisée et optimisée. Sa polymérisation 

par SARA ATRP a été étudiée en solution et la conservation des extrémités des chaînes a été mise 

en évidence, bien que le contrôle de la distribution des longueurs de chaîne n'ait pas été réalisé à 

temps. La copolymérisation styrène / VDPM a ensuite été menée avec succès, permettant la 

synthèse de copolymères statistiques, à gradient et à blocs. Des nanoparticules cœur – coquilles 

monodisperses ont également été préparées en utilisant le monomère VDPA hydrosoluble et le 

styrène. Ensuite, le VDPM a été polymérisé à partir des surfaces de PET. Les surfaces à base de 

PVC ont également été étudiées, et l’utilisation de cette surface à permis de réduire la stratégie de 

fonctionnalisation à une seule étape, permettant la préparation rapide de surfaces fonctionnelles 

avec des couches de PVDPM de plusieurs micromètres d'épaisseur. 

Dans le chapitre IV, les matériaux à base de PVDPA, soit sous la forme libre en solution aqueuse 

soit sous la forme de fibres (PVC-co-CPVC) -g-PVDPA, ont été évalués vis-à-vis des différentes 

applications proposées. Dans les deux formes, le PVDPA a été capable de récupérer les 

radionucléides ciblés dans l'eau. Plusieurs lanthanides et l'uranium ont été piégés avec succès et 
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les solutions ont été « décontaminées ». De plus, la force ionique élevée et la présence d'éléments 

concurrents tels que le vanadium, le césium et le strontium ne semblent pas compromettre les 

performances de « piégeage » du PVDPA. 

La forte capacité de piégeage de l'uranium et des lanthanides dans les milieux aqueux, fait des 

matériaux à base de PVDPA d'excellents candidats pour différentes applications liées à l'industrie 

nucléaire. Ils peuvent être utilisés pour la récupération de l'uranium de l'eau de mer et sont 

potentiellement plus avantageux que les matériaux à base d'amidoxime. Ils sont aussi des candidats 

potentiels pour le recyclage du combustible nucléaire avec le concept PALEX proposé et peuvent 

être utilisés dans le domaine de la décontamination de l'environnement et de la désintoxication des 

organismes vivants, y compris des humains, qui ferait suite à des accidents nucléaires. 

Dans cette thèse, nous avons tenté d'apporter une contribution à la résolution de plusieurs défis 

auxquels l'industrie de l'énergie nucléaire est confrontée. Nous avons essayé d'éviter des 

stratégies complexes et coûteuses afin de maintenir notre approche économiquement viable. 

Nous espérons que ce projet encouragera des développements futurs et générera des 

collaborations avec des experts de différents domaines de recherche aussi bien dans le milieu 

académique que dans l'industrie. 
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Résumé : L'énergie nucléaire est l’un des 

moteurs de notre société moderne et, malgré des 

controverses, est considérée comme la forme 

d'énergie la plus efficace et la plus écologique. 

Néanmoins, elle est également à l'origine de 

nombreuses craintes : de part les déchets 

fortement radio-toxiques produits par les 

réacteurs et aussi les risques éventuels 

d’accidents nucléaires qui posent, sur la santé 

publique et l'environnement, de graves 

problèmes. Dans ce contexte, l'objectif de ce 

projet était de proposer de nouveaux matériaux 

innovants, capables de piéger efficacement les 

radionucléides dans les milieux aqueux 

contaminés. 

Un nouveau polymère chélatant hydrosoluble, 

dérivé de l’acide dipicolinique, est décrit et a été 

synthétisé à la fois en solution en utilisant la 

polymérisation radicalaire contrôlée de type 

Cu0-CRP mais également à partir de différents 

substrats comme le PET et le PVC, ce dernier 

s’étant révélé le plus efficace. 

Ces nouveaux matériaux ont ensuite été testés et 

se sont avérés très performants dans le piégeage 

de l'uranium et de nombreux lanthanides dans 

l'eau. Ces résultats ont de nombreuses 

applications potentielles dans l'industrie 

nucléaire. Ils peuvent être utilisés pour récupérer 

l'uranium de l'eau de mer comme une future 

source d'énergie renouvelable. Ils peuvent 

également contribuer à l'industrie de la gestion 

des déchets nucléaires grâce à un procédé, 

baptisé PALEX, qui permet d’extraire les 

actinides et/ou lanthanides des effluents 

radioactifs. En plus, ces matériaux sont 

prometteurs dans le domaine du traitement des 

eaux radiocontaminées et la radiodétoxification 

des organismes vivants, y compris les humains. 
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Abstract: Nuclear energy is the true engine of 

our modern day society and seen as the most 

efficient and clean form of energy. At the same 

time, it is the source of many concerns, with its 

highly radiotoxic waste produced by nuclear 

reactors and the public health and environmental 

risks that follow nuclear accidents. In this 

context, the aim of this project was to come up 

with new innovative materials, capable of 

efficiently trap radionuclides in contaminated 

aqueous media. 

A new water soluble chelating polymer, based 

on dipicolinic acid, is reported and synthesized 

in solution as a free polymer, using the easy, 

cheap and fast metallic copper-mediated 

controlled radical polymerization (Cu0-CRP). 

The new polymer was also built from different  

substrates like PET and PVC, the latter being the 

most efficient. 

These new materials were later put to test and 

proved to be highly performing in trapping 

uranium and many lanthanides in water. These 

results have many implications in the nuclear 

industry. They can be used to harvest uranium 

from seawater as a future renewable energy 

source. They can also help the nuclear waste 

management industry through a proposed 

polymer assisted actinide/lanthanide extraction 

process, baptized PALEX. They are also a 

potential candidate for treating 

radiocontaminated environments and for 

radiodetoxification of living species, including 

humans. 
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