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Titre: Quantificateurs et dualité

Résumé: Le thème central de la présente thèse est le contenu sémantique
des quantificateurs logiques. Dans leur forme la plus simple, les
quantificateurs permettent d’établir l’existence, ou la non-existence,
d’individus répondant à une propriété. En tant que tels, ils incarnent
la richesse et la complexité de la logique du premier ordre, par delà la
logique propositionnelle. Nous contribuons à l’analyse sémantique
des quantificateurs, du point de vue de la théorie de la dualité, dans
trois domaines différents des mathématiques et de l’informatique
théorique. D’une part, dans la théorie des langages formels à travers
la logique sur les mots. D’autre part, dans la logique intuitionniste
propositionnelle et dans l’étude de l’interpolation uniforme. Enfin,
dans la topologie catégorique et dans la sémantique catégorique de
la logique du premier ordre.

Mots clefs: dualité de Stone, quantificateurs, théorie des langages,
mesure, demi-anneau, algèbre profinie, monade de codensité,
interpolation uniforme, logique intuitionniste propositionnelle,
théorème de l’application ouverte, espaces compacts, pretopos.

Title: Quantifiers and duality

Abstract: The unifying theme of the thesis is the semantic meaning of
logical quantifiers. In their basic form quantifiers allow to state the
existence, or non-existence, of individuals satisfying a property. As
such, they encode the richness and the complexity of predicate logic,
as opposed to propositional logic. We contribute to the semantic un-
derstanding of quantifiers, from the viewpoint of duality theory, in
three different areas of mathematics and theoretical computer sci-
ence. First, in formal language theory through the syntactic approach
provided by logic on words. Second, in intuitionistic propositional
logic and in the study of uniform interpolation. Third, in categorical
topology and categorical semantics for predicate logic.

Keywords: Stone duality, quantifiers, language theory, measure,
semiring, profinite algebra, codensity monad, uniform inter-
polation, intuitionistic propositional calculus, open mapping
theorem, compact Hausdorff spaces, pretopos.
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“Je ne vois pas à quoi ca sert de rêver en arrière et à son âge elle ne pouvait plus
rêver en avant.”

Émile Ajar
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Overview of the thesis

Duality theory is a powerful tool in the study of propositional logic, and it
provides a bridge between syntax and semantics. As a first step towards a
duality theoretic understanding of logical quantification, we study quan-
tifiers in connection with formal language theory. This investigation is of
independent interest, since it is related to the separation of language classes
defined by fragments of logic. Further, we study uniform interpolation for
the intuitionistic propositional calculus, a form of quantifier elimination,
and categorical interpretations of quantifiers through the lens of duality.

The thesis is divided in two parts. The common theme is the modelling
of quantifiers, either from an algebraic or categorical point of view, and the
dual mirroring constructions.

Part I is concerned with ‘Formal languages and duality’, and it con-
sists of four chapters. In Chapter 1 we provide the relevant background on
duality and formal language theory. In more detail, we recall Stone dual-
ity for Boolean algebras, along with some examples, and we illustrate its
connection with formal languages. We also recall the algebraic approach
to language theory, and the logic one based on so-called logic on words.
Finally, we introduce topo-algebraic recognisers for arbitrary languages,
which we call BiMs (Boolean spaces with internal monoids), which arise
naturally from a duality theoretic perspective.

Chapter 2 investigates the first-order existential quantifier in logic on
words from the point of view of duality. This leads to a unary construction
on BiMs relying on the classical construction of the Vietoris hyperspace.
A binary version of this construction is shown to generalise the Schützen-
berger product for monoids, well known in formal language theory.

Chapter 3 is a preparation for the following chapter. We study profi-
nite algebras arising as limits of inverse systems of finite semimodules over
semirings S. Under the appropriate assumptions on S, these profinite al-
gebras are characterised as algebras of finitely additive S-valued measures.
In this chapter we adopt a categorical approach based on profinite monads.

The measure theoretic characterisation described above is applied in
Chapter 4 to investigate so-called semiring quantifiers in logic on words. In
particular, we show that algebras of measures arise as duals of the effect of
applying a layer of semiring quantifiers to Boolean algebras of languages.
These constructions are proved to be natural from the standpoint of duality
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FIGURE 1: Dependences and relations between the chapters.

theory; several results of Chapter 2 can then be recovered by taking as
semiring the two-element Boolean algebra.

Part II deals with ‘Logic, spaces and coherent categories’, and it consists
of three chapters. In Chapter 5 we provide an introduction to the theory
of coherent categories and their connection to logic; roughly, coherent cat-
egories are to the (>,⊥,∧,∨, ∃)-fragment of first-order logic as Boolean
algebras are to classical propositional logic. We also recall a result of Ghi-
lardi and Zawadowski showing that the uniform interpolation property of
the intuitionistic propositional calculus, and the existence of a model com-
pletion for the first-order theory of Heyting algebras, are tightly connected
to the theory of certain coherent categories, namely Heyting categories.

In Chapter 6 we prove an open mapping theorem for the spaces dual
to finitely presented Heyting algebras. In turn, this result is used to obtain
a new proof of Pitts’ uniform interpolation theorem for the intuitionistic
propositional calculus. While Pitts adopted a proof theoretic approach to
prove this theorem, our proof is semantic in nature and relies on Esakia
duality for Heyting algebras.

Finally, in Chapter 7 we provide a characterisation of the category of
compact Hausdorff spaces and continuous maps in the spirit of Lawvere’s
ETCS (Elementary Theory of the Category of Sets). The characterisation,
and the techniques involved, hinge in large part on the fact that the cate-
gory of compact Hausdorff spaces is a pretopos, hence a coherent category.
To capture compactness and Hausdorffness of the objects we introduce the
notion of filtrality, a condition on certain posets of subobjects which has its
origins in the work of Magari in universal algebra.

The dependences between the chapters of the thesis are indicated in
Figure 1. Where appropriate, at the end of the chapters we have included
sections collecting concluding remarks, open questions, and some possible
directions for future work.
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The relevant publications related to the thesis are the following:

• Chapter 2 is a modified version of [50];

• Chapter 3 is based on [111], currently in preparation;

• Chapter 4 is a modified version of [49];

• Chapter 6 is a modified version of [58];

• Chapter 7 will be the topic of [91].





Part I

Formal languages
and duality
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Chapter 1

Introduction: duality and
recognition

Duality theory provides a mathematical framework to study connections
such as those between algebra and geometry, syntax and semantics, and ob-
servables and states, which abound both in the mathematics and physics
worlds. It was initiated by mathematician M. H. Stone who showed, in his
own words [123, p. 383], that

“The algebraic theory of Boolean rings is mathematically equiv-
alent to the topological theory of Boolean spaces...”.

This is the content of Stone duality for Boolean algebras. Dualities appear
naturally in several fields. In analysis, in the study of Fourier transforms
through Pontryagin duality for locally compact groups, in logic in the se-
mantic approach to propositional and modal logics, and in physics in the
theory of C∗-algebras, to name a few. They allow to translate properties
and questions from one field of mathematics to another, and back. This
applies, for instance, to the algebraic and spatial approaches to logic. In
order to prove a certain property of a logic, we can translate the statement
into a topological one and then exploit the tools of general topology. For
example, Gödel’s completeness theorem for first-order logic can be seen as
a consequence of Baire category theorem via Stone duality, cf. [110]. The
language of category theory provides a way of formalising the intuition
of duality: it is an equivalence between a category C and the opposite of a
category D. If we regard the objects of C as algebras, then the objects of
D should be thought of as spaces, and the opposite category is obtained
by formally reversing the arrows. This simple process of looking at a trans-
formation A → B as a transformation A ← B accounts for the difference
between equivalence and duality, and it is at the heart of duality theory.

Formal language theory, initiated by Chomsky in the 1950s, is a branch
of theoretical computer science which is concerned with the specification
and manipulation of sets of strings of symbols, so-called formal languages.
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It abstracts away from the semantic content of words, i.e. their meaning,
that is fundamental in natural languages, and it only retains the syntacti-
cal aspects. As such it is the perfect setting for complexity theory, allow-
ing the study of typical problems arising from the study of hierarchies of
families of languages, such as decidability, separation and comparison of
complexity classes. Formal language theory is tightly related to the theory
of monoids (more generally, semigroups) through the concept of language
recognition. For example, one of the fundamental classes of formal lan-
guages, consisting of the regular languages, corresponds precisely to the
class of finite monoids. Formal languages are also strongly related to finite
automata, finite-state machines providing mathematical models of compu-
tation. Automata, just like monoids, are used to recognise languages. As
we shall argue in the sequel, the finite (and profinite) monoids arising in
formal language theory are dual to certain Boolean algebras of regular lan-
guages. Thus they should be thought of as spaces, and not as algebras. In
this sense, monoids and automata have the same spatial nature.

The link between Stone duality and languages, in the form of profi-
nite completions of algebras, was exhibited by Birkhoff [15] already in
1937.1 The connection was then rediscovered by Almeida in [8], but it was
not until Pippenger [105] that duality theory was used as a tool in formal
language theory. Only recently, starting with [46, 47], the deep connec-
tion between Stone duality and formal languages started to emerge. In
these papers a new notion of language recognition, based on topological
methods, was proposed for the setting of non-regular languages. More-
over, the scene was set for a new duality-theoretic understanding of the
celebrated Eilenberg-Reiterman theorems, establishing a connection be-
tween varieties of languages, pseudo-varieties of finite algebras and profi-
nite equations. This showed that several fundamental phenomena in for-
mal language theory are instances of duality, and led to an active research
area where categorical and duality-theoretic methods are used to encom-
pass notions of language recognition for various automata models. Among
the contributions in this direction are the monadic approach to language
recognition put forward by Bojańczyk [16], and the series of papers on a
category-theoretic approach to Eilenberg-Reiterman theory, see [7] and ref-
erences therein.

Formal language theory is also closely related to logic. Indeed, many
classes of languages correspond to fragments of so-called logic on words,
which has its origins in the works of Büchi [22], Elgot [35] and Trakht-
enbrot [137]. In turn, in the search for separation results for complexity
classes corresponding to logic fragments, it is crucial to identify equations

1In Birkhoff’s paper [15] there is of course no mention of languages, which were introduced
only in the 1950s. However, an easy adaptation of one of his results for groups shows that the
Boolean algebra of all regular languages in a finite alphabet A is dual to the underlying space
of the profinite completion of the free monoid A∗.
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corresponding to the effect of applying a layer of quantifiers to Boolean al-
gebras of languages. In Part I of this thesis we focus on modelling binding
of first-order variables via duality.

Outline of the chapter. In Section 1.1 we provide a gentle introduction to
Stone duality for Boolean algebras, which will be employed throughout
the thesis. The rôle of Stone duality in the theory of formal languages is
illustrated in Section 1.2, while in Section 1.3 we discuss the connection
between formal languages and logic. In Section 1.4 Stone duality is used
to extend the notion of recognition by finite monoids, central to the theory
of regular languages, to the setting of arbitrary languages. Finally, having
provided the necessary background, in Section 1.5 we can state precisely
the research questions which are addressed in the remainder Part I of the
thesis.

1.1 Stone duality for Boolean algebras

Duality theory as we will study it here has its origins in the work of M.
H. Stone, and can be regarded as a fruitful synthesis of algebra, topology
and logic. In 1936, Stone [125] developed what is nowadays known as
Stone duality for Boolean algebras. In modern terms, it can be formulated as
follows.

Theorem 1.1 ([125, Theorem 67]). The category of Boolean algebras and their
homomorphisms is dually equivalent to the category of Boolean spaces and contin-
uous maps.

The aim of this section is to provide the necessary background to un-
derstand the theorem above. Along the way, we shall provide examples of
this duality, and point at its connection with logic. Before proceeding, we
remark that in 1938 Stone generalised this duality from Boolean algebras
to bounded distributive lattices [126]. For more details, see Section 6.1.

Recall that a lattice is a partially ordered set L in which any two elements
x, y have a least upper bound x ∨ y, and a greatest lower bound x ∧ y. For
the basics of lattice theory, we refer the interested reader to [11, Chapters II-
III]. If L contains a least element 0, and a top element 1, then it is said to be
bounded. Moreover, it is a distributive lattice provided the binary operations
∨ and ∧ distribute one over the other. If L is a bounded distributive lattice,
and x ∈ L, a complement of x is an element ¬x ∈ L such that

x ∧ ¬x = 0 and x ∨ ¬x = 1.

In the presence of distributivity such a complement, if it exists, is unique.
A Boolean algebra is a bounded distributive lattice in which every element
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FIGURE 1.1: Boolean algebra with eight elements; the
atoms are represented by white circles.

has a complement. Bounded distributive lattices and Boolean algebras can
both be described by means of operations and equations, i.e., they form
varieties of algebras (cf. [23]).

The properties defining a Boolean algebra are meant to abstract those of
the collection of all subsets of a given set. Thus, the prototypical example
of Boolean algebra is the power-set algebra℘(X) of a set X, equipped with
set-theoretic operations. The elements of ℘(X) of the form {x}, for x ∈ X,
have the property of being minimal among the non-zero elements. Such
elements of a Boolean algebra (and, more generally, of a poset with 0) are
called atoms. An elementary, and yet crucial, observation is that a finite
Boolean algebra is completely determined by its atoms.

Let Boole f be the category of finite Boolean algebras and their ho-
momorphisms (i.e., those functions preserving the basic operations), and
write Set f for the category of finite sets and functions between them. In
one direction, we have the contravariant power-set functor

℘ : Set f → Boole f

which sends a function f : X → Y to f−1 : ℘(Y) → ℘(X). In the other
direction, we can define a contravariant functor

At : Boole f → Set f

taking a finite Boolean algebra B to its set of atoms At B. To define the be-
haviour of this functor on morphisms, we need the following observation.
Recall that a pair g : P� Q : h of functions between posets is an adjoint pair
provided

∀p ∈ P, ∀q ∈ Q g(p) 6 q ⇔ p 6 h(q).



1.1. Stone duality for Boolean algebras 11

If this happens, g is said to be lower adjoint to h, h is upper adjoint to g, and
they are both monotone maps.

Lemma 1.2. Let g : P � Q : h be an adjoint pair of functions between Boolean
algebras. If h preserves finite suprema, then g sends atoms to atoms.

If h : B → B′ is a morphism in Boole f , then it has a lower adjoint g
by the adjoint functor theorem for posets. In view of the previous lemma,
we define At f : At B′ → At B to be the restriction of g to the atoms of B′.
Explicitly, for every b′ ∈ At B′, At f (b′) is the unique atom b ∈ At B such
that b′ 6 h(b). At the level of finite Boolean algebras, Stone duality states
that, up to a natural isomorphism, the functors ℘ and At are inverse to
each other. In particular, any finite Boolean algebra B is isomorphic to a
power-set algebra, namely B ∼= ℘(At B). This is known as the finite duality
for Boolean algebras.

Proposition 1.3. The functors At : Boole f � Set f :℘ yield a dual equivalence
between the category of finite Boolean algebras and the category of finite sets.

By general category-theoretic results, we can extend this duality in two
different directions by taking either the ind-completion, or the pro-completion,
of Boole f (see, e.g., [69, Chapter VI]). The pro-completion of Boole f ,
which is roughly obtained by adding cofiltered limits, can be identified
with the category CABA of complete and atomic Boolean algebras, and
complete homomorphisms. Here, a complete Boolean algebra is one in
which every set of elements has a supremum and an infimum, and atomic
means that every element is the join of all the atoms that are below it. A
homomorphism between complete Boolean algebras is complete if it pre-
serves arbitrary suprema and infima. Complete and atomic Boolean al-
gebras are precisely those of the form ℘(X), for a (possibly infinite) set
X. The category CABA is thus dual to the ind-completion of the category
Set f , obtained essentially by adding filtered colimits, which is the category
Set of sets and functions. The ensuing duality is called discrete duality, or
Lindenbaum-Tarski duality [133]. The functors involved are the obvious ex-
tensions of the functors At and ℘.

On the other hand, we can consider the ind-completion of Boole f .
Since the ind-completion of the category of finitely presented algebras of a
variety V coincides with V,2 the ind-completion of Boole f is the category
Boole of Boolean algebras and their homomorphisms. Hence Boole is
dually equivalent to the pro-completion of Set f , which can be identified
with the category BStone of so-called Boolean spaces and continuous maps.

Definition 1.4. A Boolean (Stone) space is a compact Hausdorff space with
a basis of clopens, i.e. of sets that are simultaneously closed and open.

2For a proof of this fact, see e.g. [69, Corollary VI.2.2]; this also applies to show that the
ind-completion of Set f is Set, as mentioned above.
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FIGURE 1.2: Finite duality, discrete duality, and Stone du-
ality for Boolean algebras.

Several authors, see e.g. [69], call Stone spaces what we refer to as Boolean
spaces. As the name Stone space is often used to indicate the dual space of a
bounded distributive lattice, we chose to adopt Stone’s terminology [124,
p. 198]:

“These theorems show that the theory of Boolean algebras is
coextensive with the theory of totally-disconnected bicompact
spaces. In the sequel, therefore, we shall refer to spaces of this
type as Boolean spaces.”

The duality between Boolean algebras and Boolean spaces is known as
Stone duality for Boolean algebras, and it is displayed at the bottom of Fig-
ure 1.2. Next we give an explicit description of the functors involved
in this duality. To extend the functor At : Boole f → Set f to a functor
Boole→ BStone, we need a generalisation of the concept of atom. Indeed,
in an infinite Boolean algebra there might be too few atoms to recover the
algebraic structure, cf. Example 1.8. This leads to the notion of ultrafilter.

Definition 1.5. A subset F of a bounded distributive lattice B is a filter if it
satisfies the following conditions:

• non-emptiness: 1 ∈ F;

• upward closure: if a ∈ F and b ∈ B satisfy a 6 b, then b ∈ F;

• closure under finite meets: if a, b ∈ F, then a ∧ b ∈ F.
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A filter F ⊆ B is proper if F 6= B. If B is a Boolean algebra, then an ultrafilter
of B is a filter that is maximal (with respect to inclusion) among the proper
ones. Equivalently, it is a proper filter F such that, for each a ∈ B, either
a ∈ F or ¬a ∈ F.

If a is any element of a Boolean algebra B, then the set

↑a = {b ∈ B | a 6 b} (1.1)

is a filter of B, and it is an ultrafilter precisely when a is an atom. Ultrafilters
of this form are called principal ultrafilters. If B is finite, then every ultra-
filter is principal, so that the notion of ultrafilter generalises that of atom
of a finite Boolean algebra. However, as soon as B is infinite, it admits an
ultrafilter that is free, i.e. non-principal. This is the source of the richness of
the theory.

Let XB be the collection of all the ultrafilters of B. The fundamental
insight of Stone was that, if one equips XB with the appropriate topology,
the Boolean algebra B can be recovered from XB. The elements of XB will
be denoted by x, y, z, . . .. Consider the Boolean algebra homomorphism

(̂−) : B→ ℘(XB), a 7→ â = {x ∈ XB | a ∈ x}. (1.2)

The latter is an embedding in view of Stone’s prime ideal theorem [125, The-
orem 64], also known as the ultrafilter lemma. The Stone topology on XB
is the topology generated by the image of the embedding in (1.2). One
can show that XB, equipped with the Stone topology, is compact and
Hausdorff (cf. Remark 1.6). Moreover, each â is clopen because âc = ¬̂a
for any a ∈ B. Therefore XB is a Boolean space, the dual space of B. If
h : B → B′ is a Boolean algebra homomorphism, the inverse-image func-
tion h−1 : ℘(B′) → ℘(B) sends ultrafilters to ultrafilters. Its restriction
h−1 : XB′ → XB turns out to be continuous with respect to the Stone
topologies. This yields a functor Boole → BStone, which is half of the
duality.

Remark 1.6. The set of ultrafilters of a Boolean algebra B can be identified
with the set hom(B, 2) of Boolean algebra homomorphisms from B into
the two-element Boolean algebra 2. The homomorphism associated to an
ultrafilter x ∈ XB is the characteristic function χx : B→ 2 of x. Conversely,
a homomorphism h : B → 2 yields the ultrafilter h−1(1) on B. Under this
correspondence, the Stone topology on XB corresponds to the subspace
topology with respect to the product topology on 2B, where 2 is equipped
with the discrete topology. Note that hom(B, 2) is a closed subspace of
2B, which in turn is compact (by Tychonov’s theorem), Hausdorff, and it
admits a basis of clopens. We conclude that XB is a Boolean space because
the relevant properties are closed-hereditary.
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In the other direction, for any Boolean space X, we take the Boolean
algebra BX of its clopen subsets equipped with the obvious set-theoretic
operations. We refer to BX as the dual algebra of X. If f : X → Y is a contin-
uous map, then f−1 : BY → BX is a homomorphism of Boolean algebras.
This gives a functor BStone → Boole. Note that any topological space X
yields a Boolean algebra of clopens. However, if X is not Boolean, in this
process we ‘lose essential information’ about the space.

The two processes of assigning to a Boolean algebra its dual space, and
to a Boolean space its dual algebra, are (up to a natural isomorphism) in-
verse to each other. This is the content of the celebrated Stone duality for
Boolean algebras [125, Theorems 67–68], stated above as Theorem 1.1. One
of the most useful aspects of a duality is that it does not only take objects
into account, but also morphisms. For instance, Boolean subalgebras of B
correspond to continuous images of XB, and homomorphic images of B to
closed subspaces of XB. This will be illustrated in the following examples.

Example 1.7 (Stone-Čech compactification). Let S be any set. The dual
space of the power-set algebra℘(S) is denoted by β(S), and it is known as
the Stone-Čech compactification of the set S. The map ηS : S→ β(S), sending
s ∈ S to the principal ultrafilter ↑{s} of (1.1), is injective. If S is equipped
with the discrete topology, then ηS embeds S as a dense subspace of β(S).
The fact that β(S) has a dense subset of isolated points corresponds to the
fact that its dual Boolean algebra is atomic. Indeed, there is a bijection
between atoms of a Boolean algebra and isolated points of its dual space.

The space β(S) is characterised by the following universal property: for
any compact Hausdorff space X and function f : S → X, there is a unique
continuous extension g : β(S)→ X of f .

S β(S)

X

ηS

f
g

In particular, any function f : S → T between two sets can be extended
to a continuous map β f : β(S) → β(T). Note that this extension can be
obtained by first applying the discrete duality to the function f , and then
applying Stone duality to the resulting Boolean algebra homomorphism.
Explicitly, for any ultrafilter x ∈ β(S),

β f (x) = {L ∈ ℘(T) | f−1(L) ∈ x}. (1.3)

In other words, writing KH for the category of compact Hausdorff spaces
and continuous maps, the ensuing functor β : Set → KH is left adjoint to
the underlying-set functor KH→ Set.
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0 1 2 3 ∞

FIGURE 1.3: One-point compactification of N, and the
open neigbourhoods of ∞.

Example 1.8 (Remainder). For any infinite set S, consider the space S∗ =
β(S) \ S. This is a (non-empty) closed subspace of the Stone-Čech com-
pactification of S, hence it is a Boolean space with respect to the subspace
topology. It is usually called the remainder of the Stone-Čech compactifi-
cation of S. By definition, its points are the free ultrafilters of the Boolean
algebra℘(S). By duality, we know that the dual algebra of S∗ is a quotient
of ℘(S). Consider the filter

{L ∈ ℘(S) | Lc is finite} (1.4)

of the cofinite subsets of S. This is known as the Fréchet filter, and the ultrafil-
ters that are free are precisely those extending the Fréchet filter. Therefore
the dual algebra of S∗ is isomorphic to the quotient of ℘(S) with respect
to the filter (1.4). 3 Such a quotient has no atoms. Recalling the correspon-
dence between atoms of a Boolean algebra and isolated points of the dual
space, we conclude that S∗ has no isolated points. That is, regarded as a
subset of β(S), S∗ is dense-in-itself.

Example 1.9 (One-point compactification of N). Consider the power-set
algebra ℘(N) of the set N of natural numbers. Let B be the Boolean sub-
algebra of ℘(N) consisting of the finite and cofinite subsets of N. Each
singleton {n}, with n ∈ N, is an atom of B. Therefore the dual space of
B will contain countably many isolated points. As recalled in the previous
example, an ultrafilter is free precisely when it extends the filter of cofinite
subsets. Thus the dual space of B contains only one non-isolated point, and
it is homeomorphic to the one-point (or Alexandroff ) compactification

N∞ = N∪ {∞}

of the discrete space N, pictured in Figure 1.3. The open subsets of N∞

are the subsets that are either cofinite, or do not contain the limit point
∞. This space can be obtained as a continuous image of the Stone-Čech
compactification β(N), by collapsing all the free ultrafilters into one single
point.

3Every filter F of a Boolean algebra B yields a congruence ∼F on B defined by a ∼F b ⇔
a ↔ b ∈ F for every a, b ∈ B, where a ↔ b = (¬a ∨ b) ∧ (a ∨ ¬b). Thus the filter F induces a
quotient B/∼F . In fact, this gives a bijection between quotients of B and filters of B.
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Example 1.10 (Vietoris hyperspace). Let X be any Boolean space. Write
V(X) for the set of closed subsets of X, and equip it with the topology
generated by the sets of the form

�C = {V ∈ V(X) | V ⊆ C} and ♦C = {V ∈ V(X) | V ∩ C 6= ∅}, (1.5)

for C a clopen of X. The ensuing topological space is called the Vietoris
hyperspace of X, and is again a Boolean space [95, Theorem 4.9]. This is
a particular case of the hyperspace of an arbitrary topological space first
introduced by Vietoris in 1922, see [138].

For any continuous function f : X → Y between Boolean spaces, defin-
ing V f : V(X) → V(Y) as the forward image function V 7→ f (V) yields
a functor V : BStone → BStone. This functor turns out to be part of a
monad, whose unit is

ηX : X → V(X), x 7→ {x},

and whose multiplication is

µX : V2(X)→ V(X), S 7→
⋃

V∈S
V.

The definition of the components µX goes back at least to [81, Theorem
5 p. 52]. Note that, in (1.5), the sets of the form ♦C can be replaced by
the complements of those of the form �C (and vice versa). Indeed, ♦C =
(�Cc)c. Also, note that� is ∧-preserving. If B is the dual algebra of X, it is
not difficult to see that the dual algebra of V(X) is obtained from the free
Boolean algebra on the set

{�a | a ∈ B}

by imposing the conditions

�1 = 1, �(a ∧ b) = �a ∧�b.

I.e., the dual algebra of V(X) is the free Boolean algebra on the∧-semilattice
reduct of B. Recall that a ∧-semilattice is a pair (S,∧) where S is a set and
∧ is an associative and commutative binary operation which is idempotent,
i.e. s ∧ s = s for every s ∈ S. A semilattice is bounded if it contains an
element 1 ∈ S satisfying s ∧ 1 = s for every s ∈ S.

In contrast with the embedding S → β(S) of a set into its Stone-Čech
compactification, ηX : X → V(X) does not have dense image. However, it
is not difficult to see that the set ℘ f (X) of finite subsets of X is dense in
V(X). For a proof see, e.g., [80, p. 163]. This fact will play a crucial rôle in
the next chapters.
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1.2 The algebraic approach to automata theory

The best way to illustrate the rôle of Stone duality in the theory of for-
mal languages is probably through the algebraic approach to automata the-
ory, that we sketch below. Roughly, one might say that finite automata
(or, rather, the associated monoids) are dual spaces, and their dual alge-
bras are Boolean algebras of languages. To make this statement precise we
introduce the notion of language recognition, both through automata and
monoids, and show its connection with Stone duality. For a gentle intro-
duction to this point of view we refer the interested reader to [43].

Automata are devices designed to recognise languages. Consider a set
A, the alphabet. A word (in the alphabet A) is an element of the monoid A∗

free over A. A language (in the alphabet A, also called an A-language) is a
set of words, i.e. a subset of A∗. Throughout the thesis, we shall consider
only finite alphabets A.

Definition 1.11. A finite A-automaton (or simply a finite automaton, if the
alphabet A is clear from the context) is a tuple

A = (Q, A, δ, I, F)

where Q is a finite set whose elements are called states, A is a finite alphabet
and δ ⊆ Q × A × Q is a relation, called the transition relation. The sets I
and F are subsets of Q, and their elements are called initial and final states,
respectively. If I is a singleton and the relation δ is the graph of a function
Q× A→ Q, then the automaton A is said to be deterministic.

A finite automaton A can be thought of as a directed graph whose
nodes are the elements of Q, and where an edge

q1 q2
a

between two states q1 and q2 corresponds to an element a ∈ A satisfying
(q1, a, q2) ∈ δ. An example of a (non-deterministic) finite automaton on the
alphabet {a, b} is provided in Figure 1.4, where the initial state is indicated
by the label ‘start’, and the final state is represented by a grey circle. A path
in A is a finite sequence

(q0, a1, q1)(q1, a2, q2) · · · (qk−1, ak, qk)

where each (qi−1, ai, qi) belongs to δ. A word w = a1 · · · an in A∗ is recog-
nised by the automaton A if there is a path (q0, a1, q1) · · · (qn−1, an, qn) in A
such that q0 ∈ I and qn ∈ F. That is, there is a path in the automaton which
starts in an initial state, it ends in a final state, and it is labeled by the word
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1start 2 3

a

a

b

b

a

FIGURE 1.4: A finite automaton A...

{1}start {1, 2} {1, 3} {1, 2, 3}a

a

b
a

a

b

FIGURE 1.5: ...and the associated finite deterministic au-
tomaton A′.

w. The language
L(A) ⊆ A∗

is the set of those words which are recognised by A. Given any finite au-
tomaton A, there is a deterministic finite automaton A′ satisfying L(A) =
L(A′). See, e.g., [33, III.2]. The automaton A′ is obtained by means of
a power-set construction, therefore the transformation A 7→ A′ involves
a blow-up in the size of the automaton (cf. Figures 1.4 and 1.5). How-
ever, from the standpoint of language recognition, deterministic finite au-
tomata are as powerful as possibly non-deterministic ones. In the follow-
ing, whenever convenient, we tacitly assume that the automaton at hand
is deterministic.

Definition 1.12. A language L ⊆ A∗ is called regular if there is a (deter-
ministic) finite A-automaton A such that L = L(A). The set of all regular
languages on the alphabet A is denoted by Reg(A∗).

An important operation on languages is the (complex) multiplication,
also known as concatenation. Given two languages K, L ∈ ℘(A∗), set

KL = {uv ∈ A∗ | u ∈ K, v ∈ L}.

This multiplication gives rise to an adjoint family of binary operations on
℘(A∗), called residuals, which are uniquely determined by the laws:

∀J, K, L ∈ ℘(A∗), KJ ⊆ L ⇔ J ⊆ K\L ⇔ K ⊆ L \J.
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Explicitly, these are given by

K\L = {w ∈ A∗ | ∀u ∈ K, uw ∈ L},
L \J = {w ∈ A∗ | ∀v ∈ J, wv ∈ L}.

In the particular case where K = {w}, the operations L 7→ {w}\L are called
left quotients and the language {w}\L is denoted by w−1L. Similarly for the
right quotients L \{w}, denoted by Lw−1.

If L is a regular language, then so is the language x−1Ly−1 for every
x, y ∈ A∗. Indeed, x−1Ly−1 is recognised by the automaton obtained by
moving the initial states of a finite automaton A recognising L along the
paths labeled by x, and the final states (backwards) along paths labeled by
y. Given that the automaton A is finite, the set {x−1Ly−1 | x, y ∈ A∗} is
finite. Further, since the quotienting operations x−1( ) are Boolean algebra
homomorphisms and S\( ) =

⋂
x∈S x−1( ) for all x ∈ A∗ and S ∈ ℘(A∗)

(and the same on the right), we obtain the following lemma.

Lemma 1.13. The finite Boolean subalgebra of ℘(A∗) defined by

B(L) = <{x−1Ly−1 ∈ ℘(A∗) | x, y ∈ A∗}>BA (1.6)

is closed under the operations S\( ) and ( ) \S, for all S ∈ ℘(A∗). In particular,
B(L) is closed under the binary operations \, \.

A subalgebra of℘(A∗) that is closed under the binary operations \, \is
called a residuation subalgebra. The stronger property of being closed under
residuation with respect to arbitrary denominators yields the concept of
residuation ideal; note that every residuation ideal is a residuation algebra.
With this terminology, the previous lemma states that B(L) is a residuation
ideal of ℘(A∗). In particular, regarding (B(L), \, \) as a Boolean algebra
with additional operations, it has an extended dual space. Dualities for addi-
tional operations originate in Jónsson and Tarski [70, 71] in the context of
canonical extensions, and the first duality theoretic account in the setting of
Priestley duality for bounded distributive lattices is due to Goldblatt [56].
Next we show that the dual relation common to the two additional oper-
ations \, \is a functional ternary relation, which yields a monoid structure
on the dual of the Boolean algebra B(L).

Lemma 1.14. If L ∈ Reg(A∗), then the extended dual of the Boolean algebra
(B(L), \, \) is the finite monoid obtained as the quotient of A∗ by the congruence

u ∼L v ⇔ ∀x, y ∈ A∗(xuy ∈ L⇔ xvy ∈ L). (1.7)

Proof. As observed above, the quotients of the form x−1Ly−1 correspond to
moving around the initial and final states of a finite automaton recognising



20 Chapter 1. Introduction: duality and recognition

L. Therefore there are only finitely many such quotients, say

{x−1
1 Ly−1

1 , . . . , x−1
n Ly−1

n },

and the generated Boolean algebra B(L) is finite. The atoms of B(L) are
the elements of the form⋂

i∈π1

x−1
i Ly−1

i ∩
⋂

j∈π2

(x−1
j Ly−1

j )c

for some partition {π1, π2} of {1, . . . , n}. Note that two words u, v ∈ A∗

belong to the same atom if, and only if, they satisfy

∀x, y ∈ A∗ (u ∈ x−1Ly−1 ⇔ v ∈ x−1Ly−1).

In turn, this is equivalent to u ∼L v, where∼L is as in (1.7). It is not difficult
to see that ∼L is a congruence on A∗. Then the atoms of B(L) are the
equivalence classes for ∼L, which are the elements of ML = A∗/∼L. We
now show that the duality between B(L) and ML extends to the additional
operations. Since all the operations of an adjoint family have the same
dual relation, up to the order of the coordinates, we focus on the operation
\. The latter is meet preserving in each coordinate when regarded as an
operation \ : B(L)op ×B(L)→ B(L). Its dual relation is given by

R\(X, Y, Z) ⇔ FX \ IY ⊆ IZ,

where FX is the prime filter of B(L) associated to X, while IY and IZ are the
prime ideals associated to Y and Z, respectively (i.e. the complements of
the prime filters associated to Y and Z). For more details, cf. [43, 44]. Since
the Boolean algebra B(L) is finite, we can identify FX with the atom X, and
IY, IZ with the co-atoms Yc, Zc, respectively. Thus we have

R\(X, Y, Z) ⇔ X\Yc ⊆ Zc

⇔ Z 6⊆ X\Yc

⇔ ∃x ∈ X, ∃z ∈ Z such that xz ∈ Y

⇔ ∃x, z such that X = [x]∼L , Z = [z]∼L , Y = [xz]∼L ,

where in the second equivalence we used the fact that in a finite Boolean
algebra an element is not above an atom p if, and only if, it is below the
co-atom ¬p. This shows that, up to the order of the variables, the relation
R\ is the graph of the monoid operation of ML.

It is not difficult to see that, for every language L ∈ ℘(A∗), the relation
∼L defined in (1.7) is a congruence on A∗. It is the coarsest congruence of
A∗ for which L is saturated, and it is called the syntactic congruence of L.



1.2. The algebraic approach to automata theory 21

The quotient morphism A∗ � A∗/∼L is called the syntactic morphism of
L, and the monoid ML = A∗/∼L is the syntactic monoid of L. So, Lemma
1.14 states that, if L is regular, the extended dual space of the Boolean alge-
bra B(L) is the syntactic monoid ML. Note that, in this case, the syntactic
morphism of L is the discrete dual of the embedding B(L) ↪→ ℘(A∗).

The following well known fact, which is the starting point for the alge-
braic approach to automata theory, can be seen as a consequence of finite
Stone duality.

Proposition 1.15. A language L ⊆ A∗ is regular if, and only if, its syntactic
monoid ML is finite.

Proof. If L is regular, then the Boolean algebra B(L) is finite. By Lemma
1.14 the syntactic monoid ML is the (extended) dual space of B(L), hence
it is finite. Conversely, if ML is finite then the action of A on ML defines
a deterministic finite automaton which recognises L. For more details see,
e.g., [128, Theorem V.1.1].

We are naturally led to an algebraic notion of language recognition. Let
us say that a monoid morphism

h : A∗ → M

recognises a language L ⊆ A∗ if L = h−1(h(L)). Note that the syntactic
morphism A∗ → ML recognises L. In fact it is minimal with respect to this
property, in the sense that it factors through any other surjective homomor-
phism recognising L [128, Theorem V.1.3]. Hence Proposition 1.15 entails
at once the following fact.

Proposition 1.16. A language L ⊆ A∗ is regular if, and only if, it is recognised
by a monoid morphism A∗ → M into a finite monoid.

Using the previous proposition it is easy to see that the set Reg(A∗) of
regular languages is a Boolean subalgebra of ℘(A∗). Reasoning as in the
case of the Boolean algebra B(L), we deduce that Reg(A∗) is a residua-
tion ideal of ℘(A∗). In particular, (Reg(A∗), \, \) is a residuation algebra.
While the dual space of Reg(A∗) was already understood in [15], its ex-
tended dual space was first identified in [47]. Write Â∗ for the free profinite
monoid on the set A. This coincides with the profinite completion of the
monoid A∗ and it can be described either as the codirected limit of the fi-
nite homomorphic images of A∗, or as the completion of A∗ with respect
to an appropriate (ultra)metric, cf. [101, VI.2].

Theorem 1.17 ([47, Theorem 6.1]). The extended dual space of the Boolean al-
gebra (Reg(A∗), \, \) is the free profinite monoid Â∗ on A. In particular, the
dual relation common to the binary operations \, \on Reg(A∗) is the continuous
monoid operation of Â∗.
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Roughly, the previous theorem says that studying the Boolean alge-
bra of all regular languages Reg(A∗) with its residuation operations is the
same thing as studying the profinite monoid Â∗. This hints at the effective-
ness of profinite methods in the study of regular languages. We remark
that Theorem 1.17 was generalised in [44, Theorem 4.5] by replacing the
finitely generated free monoid A∗ with any Birkhoff algebra.

Remark 1.18. In this section we have looked at regular languages from the
standpoint of recognition. We have defined a regular language as one that
is recognised by a finite automaton, and we have seen that this is equiva-
lent to being recognised by a homomorphism into a finite monoid. Whilst
in the next section we will characterise regular languages in terms of log-
ical definability, there is one more approach that ought to be mentioned.
We have remarked that the collection Reg(A∗) of all regular languages in
a finite alphabet A is closed under the operations of union (K, L) 7→ K ∪ L
and (complex) multiplication (K, L) 7→ KL. There is another operation on
℘(A∗) that is of interest, namely the Kleene star. Given a language L ⊆ A∗,
and regarding ℘(A∗) as a monoid with respect to complex multiplication,
write L∗ for the submonoid of ℘(A∗) generated by L. Explicitly, if ε de-
notes the empty word,

L∗ = {ε} ∪ L ∪ LL ∪ LLL ∪ · · ·

The set of regular languages is closed under the star operation L 7→ L∗.
Indeed, ifA is a finite automaton recognising L, there is a finite automaton
A′ satisfying L(A′) = L∗. Roughly, A′ is obtained by adding copies of the
initial state to A so to match the number of final states, and then ‘bending’
the automaton to glue each final state with a single initial state. Kleene’s
Theorem [76] states that Reg(A∗) is the smallest subset of ℘(A∗) which
contains all the singletons consisting of one letter words {a}, for a ∈ A,
and which is closed under the operations of union, multiplication and star.
Let us say that a rational expression is an expression of the form

(ab)∗ ∪ a∗(bb ∪ bc)∗,

containing letters from the alphabet A, and the latter three operations.
With this terminology, a language is regular if, and only if, it is definable by
a regular expression. For example, the automaton in Figure 1.5 recognises
the language

aa∗ba∗ ∪ aa∗b(aa∗b)∗.



1.3. Logic on words 23

1.3 Logic on words

There is a deep connection between formal language theory and logic,
which is due in large part to Büchi [22, 21]. For a thorough treatment of
the subject see, e.g., [128]. The basic idea is that a word w in a finite alpha-
bet A can be regarded as a relational structure on the initial segment of the
natural numbers

{1, . . . , |w|},

where |w| denotes the length of the word, equipped with a unary relation
Pa for each a ∈ A which singles out the positions in the word where the
letter a appears. For a sentence ϕ (i.e., a formula in which every variable
is in the scope of a quantifier) in a language interpretable over words, the
satisfaction relation

w � ϕ

is defined inductively on the complexity of ϕ. It is clear how to interpret
the predicates Pa and Boolean combinations of sentences. If x is a first-
order variable and ϕ = ∃x.ψ(x), then the word w satisfies ϕ if there is a
position i in w such that ψ is true in w when the variable x points at i. For
example,

w � ∃x.Pa(x)

holds whenever the word w contains the letter a. If ϕ is any sentence, we
denote by Lϕ the set of all words in A∗ satisfying ϕ. Among the addi-
tional relations that are often considered are the identity relation =, the
(appropriate restrictions of the) order < on N and the successor relation
σ = {(i, i + 1) | i ∈N}. For example, the sentence

∃x∀y∀z(x 6 y ∧ Pa(x) ∧ (σ(x, z)→ Pb(z)))

defines the language containing the word a, along with all the words ad-
mitting ab as a prefix. A regular expression defining this language is

a ∪ abA∗.

In this logic, first-order variables are interpreted as positions in the word.
But one might consider also (monadic) second-order variables, and in-
terpret them as sets of positions in the word. Büchi’s Theorem [21] shows
that monadic second order logic captures precisely the class of regular lan-
guages:

Theorem 1.19. A language is regular if, and only if, it is definable by a monadic
second-order sentence using the additional relation σ.

Remark 1.20. The question arises, what are the languages recognised by
first-order sentences. McNaughton and Papert [93] showed that, allowing
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< as the unique additional relation, the languages definable by first-order
sentences are precisely the star-free ones. These are the languages obtained
from the one-letter words by applying Boolean operations and multiplica-
tion, but not the Kleene star. In turn, a result of Schützenberger [120] identi-
fies the star-free languages precisely as those whose syntactic monoids are
aperiodic, i.e. they contain no non-trivial subgroup. In other words, first-
order logic (on words) corresponds to finite aperiodic monoids.

So far we have looked only at sentences. We now illustrate how to deal
with free variables in the context of logic on words. Since our focus is on
first-order quantifiers, we shall study the case of first-order variables only.
Assume ϕ(x) is a formula with a free first-order variable x. That is, x is
not in the scope of any quantifier. In order to be able to interpret the free
variable, we consider the extended alphabet

A× 2

which we think of as consisting of two copies of A. That is, we identify
A× 2 with

A ∪ {a′ | a ∈ A},

and we call the elements of the second copy of A marked letters. Given a
word w = a1 · · · a|w| and a position 1 6 i 6 |w|, we set

w(i) = a1 · · · ai−1a′iai+1 · · · a|w|. (1.8)

This is the word in the alphabet A × 2 having the same shape as w but
with the letter in position i marked. We can now extend the notion of
satisfaction from sentences to formulae. For every u ∈ (A × 2)∗ we set
u � ϕ(x) iff there exists w ∈ A∗, and 1 6 i 6 |w|, such that u = w(i) and
ϕ(x) is true in w when the variable x is interpreted as the position i. Define

Lϕ(x) ⊆ (A× 2)∗

to be the set of all words in the alphabet A × 2 which satisfy ϕ(x). The
generalisation to formulae containing any finite number of free (first-order)
variables is straightforward, and we omit it. Now, given L ⊆ (A × 2)∗,
denote by

L∃ ⊆ A∗ (1.9)

the language consisting of those words w ∈ A∗ such that there exists 1 6
i 6 |w| with w(i) ∈ L. Observe that

L = Lϕ(x) ⇒ L∃ = L∃x.ϕ(x),
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thus we recover the usual existential quantification of formulae.
Among the generalisations of the existential quantifier that are of inter-

est in formal language theory are the modular quantifiers [130]. Consider
the ring Z/qZ of integers modulo q, and pick p ∈ Z/qZ. We say that a
word w satisfies the sentence

∃p mod qx.ϕ(x)

if the number of positions in w for which the formula ϕ(x) holds is equal to
p modulo q. Moreover, for an arbitrary language L ⊆ (A× 2)∗, we define

L∃p mod q

as the set of words w = a1 · · · an such that the cardinality of the set

{1 6 i 6 |w| | w(i) ∈ L} (1.10)

is congruent to p modulo q. If the language L is defined by the formula
ϕ(x), then L∃p mod q

is defined by the formula ∃p mod qx.ϕ(x).
Finally, generalising the preceding situations, consider a semiring

(S,+, ·, 0S, 1S) and an element k ∈ S (for the notion of semiring, see Defi-
nition 3.1 in Chapter 3). Given L ⊆ (A× 2)∗, consider the language of all
words w ∈ A∗ such that

1S + · · ·+ 1S︸ ︷︷ ︸
m times

= k,

where m is the cardinality of the set in (1.10). The ensuing quantifier ∃S,k is
an instance of what we call semiring quantifiers, and it allows to count the
number of witnesses for a formula in a given semiring (cf. the introduction
to Chapter 4).

In Chapters 2 and 4 we will investigate the effect, at the level of recog-
nising objects, of applying a layer of existential and semiring quantifiers,
respectively, to Boolean algebras of (languages defined by) formulae. Since
we do not assume that these Boolean algebras are contained in Reg(A∗),
and finite monoids are not well-suited for recognition outside the class of
regular languages, we need a suitable notion of recognition in the general
setting. This is the topic of the next section.

1.4 Boolean spaces with internal monoids

In Section 1.2 we illustrated how finite and profinite monoids are central to
the theory of regular languages. However, monoid theory does not allow
for a fine-grained analysis of arbitrary languages. Indeed, there are several
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(non-regular) languages L whose syntactic morphism is the identity of A∗.
This implies that every monoid recognising L recognises any language in
the alphabet A. We give an example of such a language L. Set

L = {wwR ∈ A∗ | w ∈ A∗},

where wR is the reversal of w. For example, (abbc)R = cbba. We claim
that the syntactic morphism A∗ → ML is the identity of A∗. If u ∼L v then
vuR, uvR ∈ L. Thus it suffices to note that any two words in the same equiv-
alence class must have the same length, for then they have to be equal. In
turn, this can be proved directly. We give an example for A = {a, b}, u = aa
and v = aaaa. To see that the words u and v cannot be equivalent modulo
∼L, pick x = baabb and y = b. Then xuy ∈ L, but xvy /∈ L.

We thus need to introduce a new class of recognising objects that ex-
tends the collection of finite monoids, and that is well-suited for the recog-
nition of arbitrary languages. This leads to the notion of Boolean spaces with
internal monoids (BiMs). Instead of giving the precise definition up front,
we derive it from the analysis of Boolean algebras of languages closed un-
der quotients introduced in Section 1.2.

Define a biaction of a monoid M on a set X as a pair (λ, ρ) of compatible
(or commuting) left and right actions of M on X. That is,

λ : M× X → X, ρ : X×M→ X

are left and right actions, respectively, and for any m, n ∈ M and x ∈ X,

λ(m, ρ(x, n)) = ρ(λ(m, x), n).

Throughout, we write λm : X → X for the function λ(m,−), and ρn : X →
X for ρ(−, n). With this notation, the compatibility condition amounts to
saying that, for each m, n ∈ M,

λm ◦ ρn = ρn ◦ λm.

Every monoid acts in the obvious way on itself, both on the left and on
the right. The two actions are compatible precisely because the monoid
operation is associative. If X is equipped with a topology, and the functions
λm, ρn are continuous for every m, n ∈ M, then we say that the biaction
(λ, ρ) has continuous components.

Now, recall from Section 1.2 that, for any two words v, w ∈ A∗, the map

v−1( )w−1 : ℘(A∗)→ ℘(A∗), L 7→ v−1Lw−1
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is a Boolean algebra homomorphism. By Stone duality, this homomor-
phism corresponds to a continuous function from the Stone-Čech compact-
ification β(A∗) to itself. This function coincides with the unique extension

β(α(v,w)) : β(A∗)→ β(A∗)

of the ‘left and right multiplication’ function

α(v,w) : A∗ → A∗, u 7→ vuw.

Note that, taking α(v,ε) (resp. α(ε,w)), where ε ∈ A∗ is the identity element,
we recover the natural left (resp. right) action of A∗ on itself. So β(A∗)
admits a dense subset with a monoid structure, namely A∗, whose natural
biaction lifts to a biaction of A∗ on β(A∗) with continuous components.

This structure is inherited by the dual spaces of Boolean algebras of
languages closed under quotients. Let B be a Boolean subalgebra of℘(A∗)
that is closed under the quotients L 7→ v−1Lw−1 for every v, w ∈ A∗. Then
we have a commutative square as follows.

℘(A∗) ℘(A∗)

B B

v−1( )w−1

v−1( )w−1

(1.11)

Write X for the dual space of the Boolean algebra B, and f : β(A∗)� X for
the continuous surjection corresponding to the embedding B ↪→ ℘(A∗).
The diagram in (1.11) corresponds, by duality, to a commutative square as
follows.

β(A∗) β(A∗)

X X

β(α(v,w))

f f
β(α(v,w))

(1.12)

Thus the space X is equipped with a biaction with continuous components
of the monoid A∗. This biaction can be ‘internalised’ in the following way.
Consider the image f (A∗) of the restriction of f : β(A∗) � X to the dense
subspace A∗.

β(A∗) X

A∗ f (A∗)

f

(1.13)
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The subset f (A∗) is dense in X because

X = f (β(A∗)) = f (A∗) ⊆ f (A∗).

Moreover, since the continuous map f is equivariant with respect to the
biaction of A∗ by (1.12), the monoid operation of A∗ induces a monoid
operation on f (A∗). Indeed, for any x ∈ f (A∗) pick wx ∈ f−1(x). If
x′ ∈ f (A∗), we set

x · x′ = λwx (x′).

It is not hard to see that this operation is well defined and it is a monoid
operation making the restriction of f to A∗ a monoid morphism. The bi-
action of A∗ on X can then be regarded as a biaction of the monoid f (A∗)
on X. Therefore, similarly to β(A∗), the Boolean space X admits a dense
subspace with a monoid structure whose biaction lifts to a biaction with
continuous components on X. Note that, if B = B(L) for some language
L ⊆ A∗ (cf. equation (1.6)), then f (A∗) is the syntactic monoid ML of L.
Thus X is a compactification of the syntactic monoid ML. As opposed to
β(A∗), it is second countable. That is, its Boolean algebra of clopens is
countable, being the Boolean algebra B(L) generated by L under the biac-
tion of the countable monoid A∗.

Definition 1.21. The syntactic space of a language L ⊆ A∗ is the Boolean
space X dual to the Boolean algebra B(L) generated by the quotients of L,
cf. equation (1.6).

The discussion above leads to the following notion of topological recog-
nisers for arbitrary languages.

Definition 1.22. A Boolean space with an internal monoid (BiM, for short) is a
pair (X, M) such that

1. X is a Boolean space;

2. M is a dense subspace of X equipped with a monoid structure;

3. the biaction of M on itself extends to a biaction (λ, ρ) of M on X with
continuous components.

In item 3, saying that the biaction (λ, ρ) extends the biaction of M on itself
means that, for every m ∈ M, the following two squares commute.

M X M X

M X M X

m·− λm −·m ρm

Before proceeding, a few remarks are in order.
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Remark 1.23. Let L ⊆ A∗ be an arbitrary language, and X its syntactic
space. Then L is regular if, and only if, its syntactic monoid ML is finite. In
turn, this is equivalent to X being finite and coinciding with ML. Hence,
if L is regular, X admits a (continuous) monoid operation. If L is not reg-
ular, it is never the case that the biaction of the internal monoid is given
by the left and right components of a continuous monoid operation on X
(cf. Theorem 1.29 below). For example, consider the monoid N free on
one generator. By the universal property of the Stone-Čech compactifica-
tion, the biaction of N on itself extends to a biaction of N on β(N) with
continuous components. However the space β(N) is not equipped with a
continuous monoid operation extending the one on N, see [63, Chapter 4].

Remark 1.24. In Chapter 4 we will need a slight generalisation of the no-
tion of BiM. Instead of imposing that the monoid is a dense subset of
the space, we will only require a function from the monoid to the space
with dense image. The reason is that the more restrictive notion intro-
duced above is not well-suited when considering monads on the category
of BiMs, cf. Theorem 4.4.

Remark 1.25. Boolean spaces with internal monoids were first defined
in [50]. However, a closely related notion of topological recognisers al-
ready existed in the form of semiuniform monoids [46]. These are monoids
equipped with a uniform space structure, namely the Pervin uniformity
given by a Boolean algebra of subsets of the monoid, such that the biac-
tion of the monoid on itself has uniformly continuous components. As it
was shown in [46, Theorem 1.6], if (M,U ) is a semiuniform monoid, then
its uniform completion X is a Boolean space containing M as a dense sub-
space. Also, by uniform continuity, the biaction of M on itself has a unique
extension to a biaction with continuous components on X. Thus (X, M) is
a BiM. Conversely, given a BiM (X, M), since preimages of clopens under
the components of the actions of M on X are clopens, the actions of M on
itself are uniformly continuous with respect to the Pervin uniformity U on
M given by the Boolean algebra

{C ∩M | C is clopen in X}.

Thus (M,U ) is a semiuniform monoid. It is not hard to see that these two
constructions are inverse to each other. A related approach, also based on
a topological notion of recognition, was put forward in [122].

Next we introduce the notion of recognition associated with BiMs,
generalising the recognition of languages through morphisms to finite
monoids. To do so, we need to define what a morphism between two
Boolean spaces with internal monoids is.
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Definition 1.26. A morphism between two BiMs (X, M) and (Y, N) is a con-
tinuous map f : X → Y that restricts to a monoid morphism M→ N.

We now show that morphisms, as just defined, preserve the relevant
left and right actions.

Lemma 1.27. Let f : (X, M) → (Y, N) be a morphism of BiMs. Then f is
equivariant, i.e. for every m ∈ M

f ◦ λm = λ f (m) ◦ f and f ◦ ρm = ρ f (m) ◦ f .

Proof. We only consider the left actions; the proof for the right actions is the
same, mutatis mutandis. Consider the continuous functions f ◦ λm, λ f (m) ◦
f : X → Y. Since Y is Hausdorff, it suffices to show that the two functions
coincide when restricted to the dense subset M. In turn, this follows at
once from the fact that f restricts to a monoid morphism M→ N.

An example of a BiM morphism is the map f of (1.13). In fact, note that
the syntactic space X of the language L, displayed in the latter equation,
carries the structure of a BiM whose internal monoid is f (A∗).

To define recognition through BiM morphisms, recall from Example 1.7
that the Boolean algebra of clopens of β(A∗) is isomorphic to the power-set
℘(A∗). Concretely, for every L ∈ ℘(A∗), the isomorphism is given by

L 7→ L̂ = {x ∈ β(A∗) | L ∈ x}. (1.14)

Definition 1.28. Let A be a finite alphabet, and L ⊆ A∗ a language. We say
that L (or L̂) is recognised by the BiM morphism

f : (β(A∗), A∗)→ (X, M)

if there is a clopen C ⊆ X such that L̂ = f−1(C), i.e. L = f−1(C ∩ M).
Moreover, the language L is recognised by the BiM (X, M) if there is a mor-
phism (β(A∗), A∗) → (X, M) recognising L. Similarly, we say that a mor-
phism (or a BiM) recognises a Boolean algebra of languages if it recognises
all its elements.

For regular languages the previous definition coincides with the notion
of language recognition through morphisms into finite monoids defined
on page 21, for then X = M is a finite monoid. However, it is finer-grained
than discrete recognition by the syntactic monoid in the non-regular set-
ting, because the topology of X specifies which subsets of M can be used
for recognition. These are precisely those of the form

C ∩M,

for C a clopen subset of X.
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We conclude by showing that, outside the regular languages, the dual
spaces of Boolean algebras of languages closed under quotients cannot be
equipped in a natural way with continuous monoid operations. In this
sense, outside regular languages profinite monoids have to be replaced by
BiMs. The following theorem first appeared in [46, Theorem 4.1]; here, we
provide an idea of the proof.

Theorem 1.29. Let B be a Boolean subalgebra of ℘(A∗) closed under the quo-
tient operations L 7→ v−1Lw−1 for every v, w ∈ A∗. The following statements
are equivalent.

1. The inclusion morphism B ↪→ ℘(A∗) factors through Reg(A∗), i.e. every
language in B is regular.

2. The dual space X of B is equipped with a (jointly) continuous monoid oper-
ation which extends the monoid operation of its internal monoid.

Proof. Assume that item 1 holds. By Theorem 1.17, the dual of the inclusion
morphism B ↪→ Reg(A∗) is a continuous surjective map f : Â∗ � X. For
any x, y ∈ X, set x · y = f (uv) where u ∈ f−1(x) and v ∈ f−1(y). Since
B is closed under the quotient operations, this monoid operation is well-
defined, it is continuous, and it turns f into a monoid morphism. Since the
canonical surjection β(A∗)� Â∗ is also equivariant, item 2 follows.

Now, suppose item 2 holds. Then the composition

A∗ ↪→ β(A∗)� X

is a monoid morphism from A∗ to the profinite monoid X. By the universal
property of Â∗ there is a unique continuous monoid morphism Â∗ → X
such that the bottom triangle in the diagram below commutes.

β(A∗)

A∗ Â∗

X

It then follows that the right vertical triangle commutes. That is, by Theo-
rem 1.17, the morphism B ↪→ ℘(A∗) factors through Reg(A∗).
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1.5 An overview of the following chapters

Having introduced BiMs and the ensuing notion of recognition, we can
formulate the problem that will be addressed in the remaining chapters
of Part I of this thesis. The question is the following: let L be a language
defined by a formula ϕ(x) with a free first-order variable x, and X a BiM
recognising it. If Q is some quantifier (e.g., Q = ∃, or a modular quantifier
introduced in Section 1.3), write X′ for the syntactic space of the language
defined by the formula Qx.ϕ(x). What is the relation between X and X′?
That is, what is the effect at the level of topological recognisers of applying
a layer of first-order quantifiers to Boolean algebras of formulae?

In Chapter 2 we deal with the case Q = ∃. There we avoid any cate-
gorical machinery, and we rather exploit algebraic and topological intu-
itions. We will see that the effect on BiMs of applying a layer of exis-
tential quantifier involves two main ingredients: the Vietoris hyperspace
construction from general topology and the bilateral semidirect product of
two monoids, a generalisation of the semidirect product of group theory.
Our construction is closely related to a construction on finite (and profinite)
monoids, namely that of Schützenberger product. This product is a central
ingredient in Schützenberger’s characterisation of star-free languages; cf.
the introduction to Chapter 2. Indeed, we show that a binary variant of
our construction on BiMs corresponds to the concatenation of languages
on the algebraic side. This leads to the generalisation of classical results of
Schützenberger and Reutenauer concerning the concatenation of regular
languages.

In the case of the semiring quantifiers ∃S,k, the Vietoris hyperspace must
be replaced by the free profinite S-semimodule on a Boolean space. In
Chapter 3 we provide a characterisation of these profinite objects as alge-
bras of finitely additive S-valued measures, provided S is a finite semir-
ing. More generally, we study algebras of measures with values in profinite
semirings. In turn, this allows us to identify in Chapter 4 the construction
on BiMs dual to applying a layer of semiring quantifiers ∃S,k with S finite.
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Chapter 2

On existentially quantified
languages

In the theory of regular languages, a fundamental tool in studying the con-
nection between algebra and logic is the availability of constructions on
monoids which mirror the action of quantifiers. That is, given the syntac-
tic monoid for a language defined by a formula with a free variable, one
wants to construct a monoid recognising the language defined by the quan-
tified formula. Constructions of this type abound, and are all versions of
semidirect products. In particular, a central rôle is played by the so-called
block product which allows one to construct recognisers for many different
quantifiers [134].

In this chapter we focus on this problem, but in the setting of arbitrary
languages. Suppose we are given a (possibly non-regular) language L in
the extended alphabet A× 2, and a Boolean space with an internal monoid
(X, M) recognising L. As explained on page 24, we can consider the ‘quan-
tified language’

L∃ ⊆ A∗

associated to L. In the case where L was defined by a formula ϕ(x) with a
free first-order variable x, the language L∃ will be defined by the sentence
∃x.ϕ(x). We want to construct a BiM recognising the language L∃ and
as little else as possible. In other words, what is the effect on topological
recognisers corresponding to applying a layer of existential quantifier on
Boolean algebras of languages?

Using the standard semantic view of quantification as projection, we
derive a notion of unary Schützenberger product for BiMs. This makes heavy
use of the Vietoris construction from general topology, which is also cen-
tral to the coalgebraic treatment of classical modal logic, and it extends the
Schützenberger product for monoids. The binary Schützenberger prod-
uct was originally introduced in [120] as a main ingredient towards the
characterisation of star-free languages as those whose syntactic monoids
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contain no non-trivial subgroups. We show that the unary Schützenberger
product of a BiM provides a recogniser for the quantified languages L∃,
and we prove that it is ‘optimal’ by characterising the Boolean algebra of
languages that it recognises. The results concerning the unary Schützen-
berger product of a BiM will be further generalised in Chapter 4, where
we will consider semiring quantifiers. However, in the present chapter we
avoid any categorical machinery and rather use algebraic and topological
tools. This concrete approach will allow us to guess how to deal with more
general quantifiers, and it will provide a running example in the general
setting.

When considering the binary Schützenberger product of BiMs we ob-
tain a generalisation of the classical results on the concatenation of regular
languages. The Schützenberger product for two monoids was also gener-
alised, in a different direction, in [28]. There, the authors replace monoids
(that is, monoid objects in the category of sets) with monoid objects in dif-
ferent categories, and generalise the notion of Schützenberger product to
that setting. It would be interesting to find a common framework for our
extension, involving BiMs, and theirs.

Finally, we give an equational characterisation of the Boolean algebras
obtained by taking the unary Schützenberger product of a BiM. In the set-
ting of regular languages, equations have played an essential rôle in pro-
viding decidability results for so-called varieties of languages. For classes
of arbitrary languages decidability is not to be expected and separation of
classes is the main focus. For this reason soundness becomes more im-
portant than completeness per se. However, complete axiomatisations are
useful for obtaining decidability results for the class of regular languages
within a fragment. The basis of equations we provide in this chapter is not
optimal, however this represents a first step in this research direction.

This chapter is a modified version of the paper [50].

Outline of the chapter. In Section 2.1 we analyse the relation between
recognisers for a language L ⊆ (A× 2)∗, and recognisers for the existen-
tially quantified language L∃ ⊆ A∗. To this end, we introduce a unary ver-
sion of the Schützenberger product, first at the level of (internal) monoids
and then for Boolean spaces. We prove in Theorem 2.9 that if a BiM (X, M)
recognises L, then its unary Schützenberger product (♦X,♦M) recog-
nises L∃. Further, we characterise the languages recognised by (♦X,♦M)
through length preserving morphisms (see Theorem 2.10).

In Section 2.2 we introduce the binary version of the Schützenberger
product for BiMs. Theorem 2.12 extends results of Reutenauer in the reg-
ular setting and establishes the connection with the concatenation product
for arbitrary languages. Finally, in Section 2.3 we provide equations for the
Boolean algebra recognised by the binary Schützenberger product of a BiM
with the one-element space.
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2.1 The unary Schützenberger product of a BiM

Let A be a finite alphabet. Recall from Section 1.3 that a formula ϕ(x) (in
a language interpretable over words) with a free first-order variable x can
be interpreted in those words w ∈ A∗ containing a marked position, which
prescribes what the interpretation of the free variable should be. If w ∈ A∗

and 1 6 i 6 |w|, w(i) denotes the word obtained from w by marking the i-
th position. This can naturally be seen as a word on the extended alphabet
A× 2, as explained in Section 1.3. Write

A∗ ⊗N = {(w, i) ∈ A∗ ×N | 1 6 i 6 |w|}.

Throughout this section we will make use of the following three maps

γ0 : A∗ → (A× 2)∗, γ1 : A∗ ⊗N→ (A× 2)∗, π : A∗ ⊗N→ A∗.

• The map γ0 : A∗ → (A × 2)∗ is the embedding given by w 7→ w0,
where w0 has the same length as w = w1 · · ·w|w| and

(w0)j = (wj, 0) for each 1 6 j 6 |w|.

That is, w0 is copy of the word w with no marked letter.

• The map γ1 : A∗ ⊗N → (A × 2)∗ is the embedding (w, i) 7→ w(i),
where we recall from equation (1.8) that w(i) has the same length as
w = w1 · · ·w|w| and

(w(i))j =

{
(wj, 1) if i = j
(wj, 0) otherwise.

• The map π : A∗ ⊗N→ A∗ is the projection onto the first coordinate.

Remark 2.1. If Lϕ(x) is the language defined by a formula ϕ(x), then

L∃x.ϕ(x) = π(γ−1
1 (Lϕ(x))).

More generally, given any language L ⊆ (A× 2)∗, we have

L∃ = π(γ−1
1 (L)),

where the language L∃ is defined as in equation (1.9).

Remark 2.2. Unlike γ0, the maps γ1 and π are not monoid morphisms.
Indeed, A∗ ⊗N does not have a suitable monoid structure. However, it
does admit a biaction of A∗. For any v ∈ A∗ and (w, i) ∈ A∗ ⊗N, the
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components of the left and right actions are given by

λv(w, i) = (vw, i + |v|),
ρv(w, i) = (wv, i).

It is clear that both γ1 and π preserve the actions of A∗.

Assume that a language 1 L ⊆ (A × 2)∗ is recognised by a monoid
morphism τ : (A× 2)∗ → M. Then we have a span as follows. Note that
this span is not a relational morphism in the sense of Tilson’s definition
given in [34], since the domain A∗⊗N does not have a compatible monoid
structure.

A∗ ⊗N

A∗ (A× 2)∗

M

π γ1

τ

The latter gives rise to a relation R : A∗ 9 M defined by

(w, m) ∈ R ⇐⇒ ∃ (w, i) ∈ π−1(w) such that (τ ◦ γ1)(w, i) = m

⇐⇒ ∃ 1 6 i 6 |w| such that τ(w(i)) = m.

Though π is not injective, it does have finite preimages. As will be crucial in
what follows, this allows us to represent R as a function (which, in general,
is not a monoid morphism with respect to the complex multiplication on
℘ f (M))

ξ1 : A∗ → ℘ f (M), w 7→ {τ(w(i)) | 1 6 i 6 |w|} (2.1)

where ℘ f (M) denotes the set of finite subsets of M. Consider the monoid
structure on℘ f (M) with union as the binary operation, and the empty set
as unit. Notice that the monoid M acts on ℘ f (M) both to the left and to
the right, and the two actions are compatible. The left action

M×℘ f (M)→ ℘ f (M)

is given, for m ∈ M and S ∈ ℘ f (M), by

m · S = {m · s | s ∈ S}.
1As long as we are concerned with quantification of languages, we might assume that L

is contained in the image of γ1. Indeed, if L ⊆ (A × 2)∗ and L′ = L ∩ γ1(A∗ ⊗N), then
L∃ = L′∃.
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Similarly, the right action is given by

S ·m = {s ·m | s ∈ S}.

Definition 2.3. We define the unary Schützenberger product ♦M of the
monoid M as the bilateral semidirect product of the monoids (℘ f (M),∪)
and (M, ·). Explicitly, the underlying set of ♦M is the Cartesian product
℘ f (M)×M, and the multiplication is given by

(S, m) ∗ (T, n) = (S · n ∪m · T, m · n).

We point out that the construction M 7→ ♦M is functorial. Also, note
that the projection onto the second coordinate, π2 : ♦M → M, is a monoid
morphism.

Remark 2.4. What is nowadays called the Schützenberger product of two
monoids was introduced by Schützenberger [120, p. 191] in connection
with the concatenation product, and it was later generalised by Straubing
[127] to any finite number of monoids and by Pin [100] to ordered monoids.
Using Straubing’s construction, the unary Schützenberger product of M is
simply M, and hence is different from ♦M introduced above. When deal-
ing with the binary case in Section 2.2, we shall work with the binary op-
eration as originally introduced by Schützenberger.

Proposition 2.5. If τ : (A × 2)∗ → M is a monoid morphism recognising the
language L ⊆ (A× 2)∗, then there exists a monoid morphism

ξ : A∗ → ♦M

that recognises the language L∃ and makes the following diagram commute.

A∗ ♦M

(A× 2)∗ M

ξ

γ0 π2

τ

Proof. Define ξ : A∗ → ♦M as the pairing of the maps ξ1 : A∗ → ℘ f (M)
from (2.1), and τ ◦ γ0 : A∗ → M. Explicitly,

ξ : w 7→ ({τ(w(i)) | 1 6 i 6 |w|}, τ(w0)).

A straightforward computation shows that ξ is a monoid morphism. In
order to see that ξ recognises the language L∃, pick V ⊆ M such that L =
τ−1(V), and set �V = {S ∈ ℘ f (M) | S ∩V 6= ∅}. Then

ξ−1(�V ×M) = {w ∈ A∗ | {τ(w(i)) | 1 6 i 6 |w|} ∈ �V}
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= {w ∈ A∗ | {τ(w(i)) | 1 6 i 6 |w|} ∩V 6= ∅}

= {w ∈ A∗ | ∃1 6 i 6 |w| s.t. w(i) ∈ τ−1(V)} = L∃.

That is, ξ recognises the language L∃ through the subset �V.

Remark 2.6. Definition 2.3 (and consequently also the upcoming Defini-
tion 2.7) was ‘pulled out of a hat’. However one can derive by duality, by
a careful analysis of how quotients in ℘(A∗) of quantified languages are
calculated relative to those in ℘((A× 2)∗), that the operation given in the
definition of ♦M is the right one. We shall do this in greater generality in
Section 4.4.

We now extend the previous construction from monoids to Boolean
spaces with internal monoids. To this end, suppose the language L ⊆
(A× 2)∗ is recognised by a BiM morphism

τ : (β(A× 2)∗, (A× 2)∗)→ (X, M).

Notice that in this case we have a pair of continuous maps

β(A∗ ⊗N)

β(A∗) β(A× 2)∗

X

βπ βγ1

τ

(2.2)

which, as before, yields a relation β(A∗) 9 X. We describe this relation
as a continuous map on β(A∗). In the topological setting, the analogue
of the finite power-set construction is provided by the Vietoris hyperspace
V(X) introduced in Example 1.10. Just as in the monoid case, diagram (2.2)
yields a map

ξ1 : β(A∗)→ V(X) (2.3)

defined as the composition τ ◦ βγ1 ◦ (βπ)−1, or equivalently as the unique
continuous extension of the map ξ1 : A∗ → ℘ f (M) defined in (2.1).

Definition 2.7. The unary Schützenberger product of a BiM (X, M) is the pair
(♦X,♦M), where ♦X is the Boolean space V(X) × X equipped with the
product topology and ♦M is as in Definition 2.3.

Lemma 2.8. If (X, M) is a BiM, then so is its unary Schützenberger product
(♦X,♦M).

Proof. The obvious embedding ℘ f (M) → V(X) has dense image (cf. Ex-
ample 1.10), thus the monoid ♦M is a dense subset of ♦X. We show that,
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for each S ∈ ℘ f (M) and m ∈ M, the function l(S,m) : ♦X → ♦X given by

l(S,m) : (K, x) 7→ ({λs(x) | s ∈ S} ∪ λm(K), λm(x))

is continuous. It is clear that the above map extends the left action of ♦M
on itself. Uniqueness will then follow automatically from continuity. The
continuity of the right action can be proved in a similar fashion.

To settle the continuity of l(S,m) : ♦X → ♦X it is enough to prove that
π1 ◦ l(S,m) and π2 ◦ l(S,m) are both continuous, where π1 : ♦X → V(X) and
π2 : ♦X → X denote the first and second projections, respectively. Note
that π2 ◦ l(S,m) = λm, which is continuous. Hence it suffices to prove that,
whenever V ⊆ X is clopen, the preimage under the map π1 ◦ l(S,m) of the
subbasic clopen �V from (1.5) is again clopen. Now,

(π1◦ l(S,m))
−1(�V)

= {(K, x) ∈ V(X)× X | ({λs(x) | s ∈ S} ∪ λm(K)) ∩V 6= ∅}
= {(K, x) ∈ V(X)× X | ∃s ∈ S s.t. λs(x) ∈ V} ∪ (�λ−1

m (V)× X)

= (V(X)×
⋃
s∈S

λ−1
s (V)) ∪ (�λ−1

m (V)× X),

exhibiting (π1 ◦ l(S,m))
−1(�V) as a clopen in ♦X.

Similarly to the monoid case, the projection π2 : ♦X → X onto the sec-
ond coordinate is a BiM morphism. Next we extend Proposition 2.5 from
monoids to BiMs, thus providing topological recognisers for the existen-
tially quantified languages.

Theorem 2.9. If τ : (β(A × 2)∗, (A × 2)∗) → (X, M) is a BiM morphism
recognising the language L ⊆ (A× 2)∗, then there is a BiM morphism

ξ : (β(A∗), A∗)→ (♦X,♦M)

recognising the language L∃ and such that the following diagram commutes.

β(A∗) ♦X

β(A)∗ X

ξ

βγ0 π2

τ

Proof. The map ξ : β(A∗) → ♦X is given by the pairing of ξ1 : β(A∗) →
V(X) from (2.3) with τ ◦ βγ0. This is clearly continuous, and it restricts
to a monoid morphism A∗ → ♦M by (the proof of) Proposition 2.5. If the
morphism τ recognises the language L through the clopen V ⊆ X, it is easy
to see that ξ recognises the language L∃ through the clopen �V × X.
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The previous theorem exhibits a recogniser for the existentially quanti-
fied languages of the form L∃, but it does not say whether the construction
is somehow optimal. For instance, (β(A∗), A∗) is another BiM recognis-
ing L∃, but it is clearly far from being optimal because it recognises any
A-language.

The next theorem states that, restricting to the appropriate class of
recognising morphisms (β(A∗), A∗) → (♦X,♦M), the Boolean algebra
closed under quotients of languages recognised by (♦X,♦M) is as small
as one could hope for. The proof of this result is postponed to Chapter
4, where an analogous fact is shown to hold in greater generality (see
Theorem 4.29). Let us say that a BiM morphism

τ : (β(A∗), A∗)→ (♦X,♦M)

is length preserving if, for each a ∈ A, the first component of τ(a) ∈
℘ f (M) × M is of the form {ma} for some ma ∈ M. For any finite al-
phabet A and BiM (X, M), write B(X, A) for the Boolean algebra of all
languages over A recognised by some BiM morphism into (X, M). Fur-
ther, let B(X, A× 2)∃ denote the Boolean subalgebra of ℘(A∗) generated
by the set {L∃ | L ∈ B(X, A× 2)}. We have

Theorem 2.10. Let (X, M) be a BiM, and A a finite alphabet. The Boolean subal-
gebra closed under quotients of ℘(A∗) generated by all the languages recognised
by a length preserving morphism (β(A∗), A∗) → (♦X,♦M) is generated as a
Boolean algebra by the union of B(X, A) and B(X, A× 2)∃.

2.2 The Schützenberger product of two BiMs

The unary operation on BiMs (X, M) 7→ (♦X,♦M) introduced in the pre-
vious section can be lifted to a binary operation. We first deal with the in-
ternal monoids. Given two monoids (M, ·) and (N, ·), their Schützenberger
product ♦(M, N), introduced in [120], has underlying set

℘ f (M× N)×M× N

and it is equipped with the monoid operation

(S, m1, n1) · (T, m2, n2) = (m1 · T ∪ S · n2, m1 ·m2, n1 · n2).

The latter operation can be viewed as a matrix multiplication:(
m1 S
0 n1

)(
m2 T
0 n2

)
=

(
m1 ·m2 m1 · T ∪ S · n2

0 n1 · n2

)
.
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Now, consider two Boolean spaces with internal monoids (X, M) and
(Y, N). We define the Boolean space ♦(X, Y) as the product

V(X×Y)× X×Y.

The monoid ♦(M, N) is dense in ♦(X, Y). Moreover, the left action
of ♦(M, N) on itself can be extended to ♦(X, Y) by setting, for any
(S, m1, n1) ∈ ♦(M, N),

λ(S,m1,n1)
: ♦(X, Y)→ ♦(X, Y), (Z, x, y) 7→ (m1Z ∪ Sy, λm1(x), λn1(y)),

(2.4)

where

m1Z = {(λm1(x), y) ∈ X×Y | (x, y) ∈ Z}

and

Sy = {(m, λn(y)) ∈ X×Y | (m, n) ∈ S}.

Similarly, the right action can be defined by

ρ(S,m1,n1)
: ♦(X, Y)→ ♦(X, Y), (Z, x, y) 7→ (Zn1 ∪ xS, ρm1(x), ρn1(y)),

(2.5)

where

Zn1 = {(x, ρn1(y)) ∈ X×Y | (x, y) ∈ Z}

and

xS = {(ρm(x), n) ∈ X×Y | (m, n) ∈ S}.

It is easy to see that this yields a biaction of ♦(M, N) on ♦(X, Y).

Lemma 2.11. The biaction of ♦(M, N) on ♦(X, Y) defined in (2.4) and (2.5) has
continuous components. Thus (♦(X, Y),♦(M, N)) is a BiM.

Proof. We show that the components of the left action are continuous, the
proof for the right action being the same, mutatis mutandis. It suffices to
prove that the map

g : V(X×Y)×Y → V(X×Y), (Z, y) 7→ m1Z ∪ Sy

is continuous, for every m1 ∈ M and S ∈ ℘ f (M× N). Since �L = (�Lc)c

and � preserves finite joins, it suffices to show that g−1(�(L1 × L2)) is
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clopen whenever L1, L2 are clopens of X and Y, respectively. We have

g−1(�(L1 × L2)) = {(Z, y) ∈ V(X×Y)×Y | (m1Z ∪ Sy) ∩ (L1 × L2) 6= ∅}
= (V(X×Y)× {y | Sy ∩ (L1 × L2) 6= ∅}) ∪

({Z | m1Z ∩ (L1 × L2) 6= ∅} ×Y).

We remark that

m1Z ∩ (L1 × L2) 6= ∅ ⇐⇒ Z ∈ �(λ−1
m1

(L1)× L2)

and

Sy ∩ (L1 × L2) 6= ∅ ⇐⇒ π1(S) ∩ L1 6= ∅ and y ∈
⋃

n∈π2(T)

λ−1
n (L2),

where T = π−1
1 (L1) ∩ S. Therefore

g−1(�(L1 × L2)) =
(
V(X×Y)×

( ⋃
n∈π2(T)

λ−1
n (L2)

))
∪

(�(λ−1
m1

(L1)× L2)×Y),

exhibiting g−1(�(L1 × L2)) as a clopen.

The next result establishes the connection between concatenation of
possibly non-regular languages, and the binary Schützenberger product
of two Boolean spaces with internal monoids. In particular, it extends the
theorems of Schützenberger [120] and Reutenauer [113].

Theorem 2.12. Consider BiMs (X, M) and (Y, N). Let B be the Boolean algebra
generated by all the A-languages of the form L1, L2 and L1aL2, where L1 (respec-
tively L2) is recognised by X (respectively Y) and a ∈ A. Then an A-language is
recognised by the BiM (♦(X, Y),♦(M, N)) if, and only if, it belongs to B.

Proof. In one direction, suppose the languages L1, L2 are recognised by two
BiM morphisms

τ1 : (β(A∗), A∗)→ (X, M) and τ2 : (β(A∗), A∗)→ (Y, N)

through the clopens C1 ⊆ X and C2 ⊆ Y, respectively. Fix an arbitrary
a ∈ A. We will define a morphism (β(A∗), A∗) → (♦(X, Y),♦(M, N))
recognising the concatenation L1aL2. By abuse of notation, we write

τ1 × τ2 : β(A∗ × {a} × A∗)→ X×Y
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for the unique continuous extension of the product map A∗ × {a} × A∗ →
X×Y whose components are

(w, a, w′) 7→ τ1(w) and (w, a, w′) 7→ τ2(w′).

Let ζa : β(A∗)→ V(X×Y) be the continuous function induced by the span

β(A∗ × {a} × A∗)

β(A∗) X×Y

βc τ1×τ2

just as for diagram (2.2), where c : A∗ × {a} × A∗ → A∗ is the concate-
nation map (w, a, w′) 7→ waw′. We claim that the map ζa recognises the
language L1aL2 through the clopen �(C1 × C2). Indeed,

ζ−1
a (�(C1 × C2)) ∩ A∗

= {w ∈ A∗ | ((τ1 × τ2) ◦ (βc)−1(w)) ∩ (C1 × C2) 6= ∅}
= {w ∈ A∗ | (βc)−1(w) ∩ (L1 × {a} × L2) 6= ∅}
= {w ∈ A∗ | ∃u ∈ L1, ∃v ∈ L2 s.t. w = uav} = L1aL2.

Therefore the continuous product map 〈ζa, τ1, τ2〉 : β(A∗) → X♦Y recog-
nises the language L1aL2 through the clopen �(C1 × C2)× X×Y. Further,
it induces a morphism (β(A∗), A∗)→ (X♦Y, M♦N) because 〈ζa, τ1, τ2〉 re-
stricts to a monoid morphism A∗ → M♦N. This amounts to saying that
τ1, τ2 restrict to monoid morphisms, and for all w, w′ ∈ A∗

τ1(w) · ζa(w′) ∪ ζa(w) · τ2(w′)

= τ1(w) · {(τ1(u), τ2(v)) | u, v ∈ A∗, w′ = uav} ∪
{(τ1(u), τ2(v)) | u, v ∈ A∗, w = uav} · τ2(w′)

= {(τ1(wu), τ2(v)) | u, v ∈ A∗, w′ = uav} ∪
{(τ1(u), τ2(vw′)) | u, v ∈ A∗, w = uav}
= ζa(ww′).

We remark that the morphism 〈ζa, τ1, τ2〉 : (β(A∗), A∗) → (X♦Y, M♦N)
recognises also the languages L1 and L2 through the clopens V(X × Y)×
C1 ×Y and V(X×Y)× X× C2.

For the converse direction, consider an arbitrary BiM morphism

〈ζ, τ1, τ2〉 : (β(A∗), A∗)→ (X♦Y, M♦N).

It suffices to show that the languages ζ−1(�(C1 × C2)) ∩ A∗ belong to the
Boolean algebra B, for arbitrary clopens C1 ⊆ X and C2 ⊆ Y. We need the
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following fact.

Claim. If a ∈ A and C1, C2 are clopens of X and Y, respectively, then the lan-
guage LC1×C2,a defined as

{w ∈ A∗ | ∃u, v ∈ A∗ s.t. w = uav and τ1(u)ζ(a)τ2(v) ∈ �(C1 × C2)}

belongs to the Boolean algebra B.

Proof of Claim. Since ζ(a) ∈ ℘ f (M× N), there is s ∈N such that

ζ(a) = {(m1, n1), . . . , (ms, ns)}

for some {m1, . . . , ms} ⊆ M and {n1, . . . , ns} ⊆ N. We will show that

LC1×C2,a =
s⋃

i=1

AiaBi, (2.6)

where

Ai = τ−1
1 (ρ−1

mi
(C1)) ∩ A∗ and Bi = τ−1

2 (λ−1
ni

(C2)) ∩ A∗.

(Recall that ρmi is the continuous component of the right action of M on X,
and λni is the continuous component of the left action of N on Y). This will
settle the claim.

Pick w ∈ A∗. Then w ∈ LC1×C2,a if, and only if, there exist u, v ∈ A∗

with w = uav and τ1(u)ζ(a)τ2(v) ∈ �(C1 × C2) if, and only if, w = uav
and there is i ∈ {1, . . . , s} such that

(τ1(u) ·mi, ni · τ2(v)) = τ1(u) · (mi, ni) · τ2(v) ∈ C1 × C2,

i.e. u ∈ τ−1
1 (ρ−1

mi
(C1)) ∩ A∗ and v ∈ τ−1

2 (λ−1
ni

(C2)) ∩ A∗. In turn, this is
equivalent to w ∈ ⋃s

i=1 AiaBi and thus (2.6) is proved.

Now, as observed in [113, p. 261], for any w ∈ A∗

ζ(w) =
⋃

u,v∈A∗
a∈A

w=uav

τ1(u)ζ(a)τ2(v).

Thus w ∈ ζ−1(�(C1 × C2)) ∩ A∗ if, and only if, there are u, v ∈ A∗ and
a ∈ A such that w = uav and τ1(u)ζ(a)τ2(v) ∈ �(C1 × C2). Therefore, by
the claim,

ζ−1(�(C1 × C2)) ∩ A∗ =
⋃

a∈A
LC1×C2,a
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is a finite union of elements of B.

Remark 2.13. From the proof of Theorem 2.12 it is possible to extract
a ‘local version’ of this result, dealing with single BiM morphisms into
(♦(X, Y),♦(M, N)). See [50, Theorem 18].

Finally, the next corollary follows by Theorem 2.12, by noting that

L1L2 =

{⋃
a∈A L1a(a−1L2) if ε /∈ L2⋃
a∈A L1a(a−1L2) ∪ L1 otherwise

where ε denotes the empty word.

Corollary 2.14. The BiM (♦(X, Y),♦(M, N)) recognises the concatenation
L1L2 of languages L1, L2 recognised by (X, M) and (Y, N), respectively.

2.3 Ultrafilter equations

Identifying simple equational bases for the Boolean algebras of languages
recognised by Schützenberger products, in terms of the equational theories
of the input Boolean algebras, is an important step in studying classes built
up by repeated application of quantification or language concatenation.
See, e.g., [104, 20] for examples of such work in the regular setting.

As a proof-of-concept and first step, we provide a fairly easy com-
pleteness result for the Boolean algebra of languages recognised by the
Schützenberger product of a BiM with the one-element space. The set of
equations we provide is far from being optimal, and we believe smaller
bases of equations could be exhibited. For more on equations and their use
in the setting of non-regular languages, we refer the interested reader to
[47, 48, 44]. We start by introducing some notation that will be useful in
the following.

Definition 2.15. Let B1 and B2 be Boolean algebras of A-languages closed
under quotients. We define the Boolean algebra

B1♦+B2 = <B1 ∪ B2 ∪ {L1aL2 | L1 ∈ B1, L2 ∈ B2, a ∈ A}>BA.

Note that this Boolean algebra is also closed under quotients. In fact,
by Theorem 2.12, its dual is the BiM obtained as the binary Schützenberger
product of the BiMs corresponding to B1 and B2. Let B ⊆ ℘(A∗) be a
Boolean algebra closed under quotients. We shall give equations for B♦+2,
where 2 is the two-element Boolean algebra. Explicitly, B♦+2 is the Boolean
algebra generated by the set B ∪ {LaA∗ | L ∈ B}. Dually, this corresponds
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to taking the binary Schützenberger product of a BiM (X, M) with the one-
element space, which is isomorphic to the unary Schützenberger product
of (X, M).

Recall that an (ultrafilter) equation for a Boolean subalgebra of ℘(A∗)
is a pair µ ≈ ν, where µ, ν ∈ β(A∗). A language L ∈ ℘(A∗) satisfies the
ultrafilter equation µ ≈ ν provided

L ∈ µ if, and only if, L ∈ ν.

A Boolean subalgebra of ℘(A∗) satisfies an ultrafilter equation provided
each of its elements satisfies it. If B is any Boolean subalgebra of ℘(A∗),
there is always a set of ultrafilter equations that is (trivially) complete for
B, namely the kernel of the continuous map dual to the inclusion B ↪→
℘(A∗). The point is finding a manageable basis of equations that generates
this kernel. Now, set

fa : A∗ ⊗N→ A∗, (w, i) 7→ w(a@i + 1),

and

fr : A∗ ⊗N→ A∗, (w, i) 7→ w|i = w1 · · ·wi,

where a ∈ A and, if 1 6 i 6 |w|, w(a@i) denotes the word obtained by
replacing the ith letter of the word w = w1 · · ·w|w| by an a. Further, define

w(a@|w|+ 1) = wa.

The intuition is that the extension β fa will allow us to factor an ultrafilter at
an occurrence of the letter a, whereas the extension β fr gives us access to
the prefix of this factorisation.

Definition 2.16. Let E(B♦+2) denote the set of all ultrafilter equations µ ≈ ν
so that

• µ ≈ ν holds in B;

• for each γ ∈ β(A∗ ⊗N) with µ = β fa(γ), there exists δ ∈ β(A∗ ⊗N)
such that ν = β fa(δ) and the equation β fr(γ) ≈ β fr(δ) holds in B;

• for each δ ∈ β(A∗ ⊗N) with ν = β fa(δ), there exists γ ∈ β(A∗ ⊗N)
such that µ = β fa(γ) and the equation β fr(γ) ≈ β fr(δ) holds in B.

In order to prove that the ultrafilter equations above characterise the
Boolean algebra B♦+2, we prepare two technical lemmas.

Lemma 2.17. Let γ ∈ β(A∗ ⊗N). If µ = β fa(γ) and L ∈ β fr(γ), then
LaA∗ ∈ µ.
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Proof. Recall from equation (1.3) that L ∈ β fr(γ) iff f−1
r (L) ∈ γ. Moreover

f−1
r (L) = {(w, i) ∈ A∗ ⊗N | w|i ∈ L}

⊆ {(w, i) ∈ A∗ ⊗N | w(a@i + 1) ∈ LaA∗} = f−1
a (LaA∗),

so that f−1
a (LaA∗) ∈ γ, i.e. LaA∗ ∈ β fa(γ) = µ.

Lemma 2.18. Let F ⊆ ℘(A∗) be a proper filter, µ ∈ β(A∗) and a ∈ A. If
LaA∗ ∈ µ for all L ∈ F, then there exists γ ∈ β(A∗ ⊗N) such that µ = β fa(γ)
and F ⊆ β fr(γ).

Proof. It suffices to show that the collection

{ f−1
a (K) ∩ f−1

r (L) | K ∈ µ, L ∈ F}

is a filter basis (i.e., the intersection of any finite number of its elements
is not empty), for then the Ultrafilter Extension Theorem will provide an
ultrafilter satisfying the conditions in the statement. Furthermore, since µ
and F are closed under finite intersections, it is enough to show that each
set f−1

a (K) ∩ f−1
r (L) is not empty.

Since LaA∗ ∈ µ by hypothesis, the intersection K ∩ LaA∗ is non-empty
because it belongs to µ. Thus there exists w ∈ K and 1 6 i < |w| such that
w|i ∈ L and wi+1 = a. That is, (w, i) ∈ f−1

a (K) ∩ f−1
r (L).

We can finally prove that the set of equations in Definition 2.16 is sound
and complete with respect to the Boolean algebra of languages B♦+2.

Theorem 2.19. The equations in E(B♦+2) characterise the Boolean algebra B♦+2.

Proof. We first prove soundness, i.e. every language in B♦+2 satisfies the set
of ultrafilter equations E(B♦+2). Given the symmetric nature of the latter
it is enough to check that, for any L ∈ B, a ∈ A and µ ≈ ν ∈ E(B♦+2),
the language LaA∗ belongs to ν whenever it belongs to µ. By applying
Lemma 2.18 with F = {L}, the condition LaA∗ ∈ µ entails that there exists
γ ∈ β(A∗⊗N) such that µ = β fa(γ) and L ∈ β fr(γ). Then, by hypothesis,
there is δ ∈ β(A∗ ⊗N) satisfying ν = β fa(δ) and L ∈ β fr(δ). Hence
LaA∗ ∈ ν by Lemma 2.17.

Now, we prove completeness. That is, every language K ∈ ℘(A∗) satis-
fying all the equations in E(B♦+2) must belong to B♦+2. Let us denote the
dual map of the embedding B ↪→ ℘(A∗) by τ : β(A∗) � X. Recall from
equation (1.14) the bijection K 7→ K̂ between subsets of A∗ and clopens of
β(A∗). For any ultrafilter µ ∈ K̂ set

Cµ = τ−1(τ(µ)) ∩
⋂
{L̂aA∗ | a ∈ A, L ∈ B, LaA∗ ∈ µ} ∩⋂
{(L̂aA∗)c | a ∈ A, L ∈ B, LaA∗ /∈ µ}.
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Claim. Let K ∈ ℘(A∗). Then K ∈ B♦+2 if, and only if, Cµ ⊆ K̂ for all µ ∈ K̂.

Proof of Claim. Let µ be an arbitrary element of K̂, and assume that Cµ ⊆ K̂.
Then

τ−1(τ(µ)) =
⋂
{Ĥ | H ∈ B, H ∈ µ}.

By compactness there are H1, . . . , Hh, L1, . . . , Ll , M1, . . . , Mm ∈ B such that

(
h⋂

i=1

Ĥi) ∩ (
l⋂

i=1

L̂iai A∗) ∩ (
m⋂

i=1

(M̂ia′i A
∗)c) ⊆ K̂.

Write Dµ for the intersection on the left-hand side of the display above.
Then Dµ is a clopen containing µ, and the language Lµ = Dµ ∩ A∗ belongs
to B♦+2. Further L̂µ = Dµ ⊆ K̂, hence

K̂ =
⋃

µ∈K̂

L̂µ

since µ is arbitrary. Again by compactness there are ultrafilters µ1, . . . , µn ∈
K̂ such that K̂ =

⋃n
i=1 L̂µi . Thus K ∈ B♦+2 because each Lµi belongs to B♦+2.

For the converse direction, pick ν ∈ Cµ, for some µ ∈ K̂. Then B♦+2
satisfies the equation µ ≈ ν. Since K ∈ B♦+2 and µ ∈ K̂, we have K ∈ ν.
That is, ν ∈ K̂.

In view of the previous claim it is enough to fix an arbitrary µ ∈ K̂
and show that Cµ ⊆ K̂. Pick ν ∈ Cµ and notice that it suffices to prove
µ ≈ ν ∈ E(B♦+2), for then µ ∈ K̂ entails ν ∈ K̂, since K is assumed to
satisfy all the equations in E(B♦+2). Clearly, ν ∈ τ−1(τ(µ)) entails that
µ ≈ ν holds in B. For the second condition in Definition 2.16, suppose that
µ = β fa(γ) for some γ ∈ β(A∗ ⊗N), and consider the collection

F = {L | L ∈ B, L ∈ β fr(γ)}.

Then LaA∗ ∈ µ for every L ∈ F, by Lemma 2.17. Moreover, since µ ≈ ν
holds in B, LaA∗ ∈ ν for all L ∈ F. Since F is a filter basis closed un-
der finite intersections, upon considering the proper filter generated by F,
Lemma 2.18 entails the existence of δ ∈ β(A∗ ⊗N) such that ν = β fa(δ)
and F ⊆ β fr(δ). Notice that F = τ(β fr(γ)), thus τ(β fr(γ)) = τ(β fr(δ)).
That is, B satisfies the equation β fr(γ) ≈ β fr(δ). The third condition can
be proved in a similar fashion.
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Chapter 3

Profinite algebras, and
semiring-valued measures

In the previous chapter we studied the effect, at the level of topological
recognisers, of applying one layer of existential quantifier ∃ to Boolean al-
gebras of languages defined by formulae with free first-order variables. We
have seen that applying the quantifier ∃ on the algebra side corresponds
essentially to taking the Vietoris hyperspace on the space side. We aim to
generalise this result to the semiring quantifiers introduced in Section 1.3.
The case of the existential quantifier is recovered by considering the two-
element distributive lattice 2, regarded as a semiring. The key observation
is that the Vietoris space V(X) of a Boolean space X is the free profinite semi-
lattice on X. In turn, semilattices are semimodules over 2. Thus, to under-
stand the effect of applying a layer of semiring quantifiers, we should first
have a good understanding of the profinite S-semimodules free on Boolean
spaces, for S a semiring. This is achieved in the present chapter, while the
representation result obtained here will be applied in Chapter 4 in the logic
setting.

Semirings generalise rings by relaxing the conditions on the additive
structure requiring just a monoid rather than a group. The analogue of
the notion of module over a ring is that of semimodule over a semiring,
or more concisely of an S-semimodule where S is the semiring. A profi-
nite S-semimodule is one that is isomorphic to the inverse limit (or cofil-
tered limit) of finite S-semimodules. Every profinite S-semimodule carries
a topology turning it into a Boolean space. We show in our main result,
Theorem 3.23, that the free profinite S-semimodule on a Boolean space X
is isomorphic to the algebra of all measures on X taking values in S, pro-
vided S is finite. Here, the measurable subsets of X are the clopens, and the
measures on X are only required to be finitely additive (cf. Definition 3.14).

Our measure-theoretic representation provides a bridge between sev-
eral topics of interest. Firstly, it connects measures and profinite algebras.
In this respect, it is related to Leinster’s observation that the notions of
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integration and of codensity monads are tightly related [84]. Codensity
monads are a special case of the concept of right Kan extension. Lein-
ster’s observation is that sometimes they can be seen as providing a corre-
spondence akin to the one between ‘integration operators’ and ‘measures’.
This analogy becomes concrete in our measure-theoretic representation.
Indeed, profinite algebras arise from a special class of codensity monads
(see Section 3.1), and we isolate a class of such monads admitting a con-
crete representation in terms of genuine measures. On the other hand, our
main result makes a connection between measures and logic, as outlined
above. Similar connections already exist and have proved useful. For ex-
ample, in model theory Keisler measures [74] are probability measures on
Boolean algebras of definable subsets of models, and generalise the no-
tion of (complete) types. Finally, we connect measures and semirings in
the form of integration theory with coefficients in a semiring, which is the
main focus of idempotent analysis [78]. In the particular case of the tropical
semiring, see Example 3.13, this leads to tropical geometry.

The results presented in this chapter will be the topic of [111]. The
characterisation of the free profinite S-semimodules, for S finite, was al-
ready announced in [49], where many details of the proofs were omitted.
Here, we contribute a complete account of the topic and we consider the
main result from a wider perspective, by studying algebras of measures
with values in profinite semirings.

Outline of the chapter. In dealing with profinite algebras, we adopt a cat-
egorical approach. While monads allow for a categorical treatment of al-
gebra, profinite algebra can be studied by means of profinite monads [16, 6],
a special case of right Kan extensions. Therefore, in Section 3.1 we give a
complete account of the basic theory of profinite monads meant to be ac-
cessible to non-experts in category theory. In particular, we show in Propo-
sition 3.10 that profinite monads yield the expected notion of profinite al-
gebra for varieties of Birkhoff algebras. This covers the case of the profinite
S-semimodules free on Boolean spaces, for any S (Corollary 3.11).

We only obtain our measure-theoretic characterisation of the free profi-
nite S-semimodule on a Boolean space for finite semirings S, but in Section
3.2 we study the more general situation where S is profinite. We show that
the algebras of S-valued measures yield those semimodules in which the
scalar multiplication of S is jointly continuous, that we call ‘strongly con-
tinuous’ semimodules (cf. Theorem 3.21). The case of finite semirings is
considered in Section 3.3. If S is finite then every profinite S-semimodule
is strongly continuous. Thus we obtain our main result, Theorem 3.23.

Finally, in Section 3.4 we consider the case where S is profinite and
idempotent. In this setting, every measure is uniquely determined by its
density function (see Theorem 3.34). Provided S is finite and idempo-
tent, this yields a characterisation of the free profinite S-semimodule on
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a Boolean space X as the algebra of all the continuous S-valued functions
on X, with respect to an appropriate topology on S.

3.1 Codensity and profinite monads

The purpose of this first section is to introduce the notion of a profinite
monad. This is a special case of a more general construction, namely that
of a codensity monad (which, in turn, is a special case of right Kan exten-
sion). Profinite monads provide a way of associating to a monad T on the
category of sets a monad T̂ on the category of Boolean spaces. We show
in Proposition 3.10 that, whenever the monad T is finitary, T̂X is the free
profinite T-algebra on the Boolean space X. Although its content is categor-
ical in nature, and the reader is supposed to be familiar with the basics of
category theory, the section is written so as to be accessible to non-experts
in category theory. In particular, we provide an elementary exposition of
the notions involved up to the concept of monad as a categorical approach
to algebra. For a more thorough introduction to the theory of codensity
monads we refer the interested reader to [84].

3.1.1 Codensity monads: a brief introduction

We start by introducing a class of finitary monads on Set that will play a
crucial rôle in the following, namely the semiring monads. First, let us recall
the following notions from algebra.

Definition 3.1. A semiring is a tuple S = (S,+, ·, 0, 1) such that (S,+, 0) is
an Abelian monoid, (S, ·, 1) is a monoid, and for all s, t, u ∈ S the laws

s · (t + u) = (s · t) + (s · u),
(t + u) · s = (t · s) + (u · s),

s · 0 = 0 = 0 · s

are satisfied. A semimodule over S (an S-semimodule, for short) is an Abelian
monoid M = (M,+M, 0M) equipped with a ‘scalar multiplication’ of S,
that is, a function S×M→ M, (s, m) 7→ sm satisfying

s(m +M n) = sm +M sn,

(s + t)m = sm +M tm,

(s · t)m = s(tm),

1m = m,

0m = 0M = s0M

for all s, t ∈ S and m, n ∈ M.
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Example 3.2. Semimodules over semirings can be obtained as algebras for
certain monads on Set, called semiring monads. Indeed, every semiring S
gives rise to a functor S : Set → Set that associates to a set X the set of all
finitely supported S-valued functions on X, i.e.

SX = { f : X → S | f (x) = 0 for all but finitely many x ∈ X}. (3.1)

If ϕ : X → Y is any function, we get a function Sϕ : SX → SY by setting

Sϕ : f 7→
(
y 7→ ∑

ϕ(x)=y
f (x)

)
.

Every element f ∈ SX can be represented as a formal sum ∑n
i=1 sixi, where

{x1, . . . , xn} ⊆ X is the support of f and f (xi) = si for each i. With this
notation, we have S f (∑n

i=1 sixi) = ∑n
i=1 si f (xi). It is straightforward to

check that S : Set → Set is a functor. In fact, it is part of a monad (S, η, µ)
whose unit is

ηX : X → SX, ηX(x) : x′ 7→
{

1 if x′ = x
0 otherwise

(in other words, ηX(x) is the S-valued characteristic function of {x}), and
whose multiplication is

µX : S2X → SX,
n

∑
i=1

si fi 7→
(

x 7→
n

∑
i=1

si fi(x)
)
.

We remark that the only place where the multiplication of S plays a rôle is
in the definition of the multiplication µ of the monad. We refer to S as the
semiring monad associated to S. Note that the finite power-set functor ℘ f
is the semiring monad associated to the two-element distributive lattice

2 = ({0, 1},∨,∧, 0, 1),

regarded as a semiring. The algebras for the monad S are precisely
the S-semimodules. For example, if S is 2, N = (N,+, ·, 0, 1) or Z =
(Z,+, ·, 0, 1), then the algebras for S are semilattices, Abelian monoids
and Abelian groups, respectively.

An interesting example of a Set-monad which is not finitary is the ultra-
filter monad. Recall the category BStone of Boolean spaces and continuous
maps. The underlying-set functor

| − | : BStone→ Set
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has a left adjoint

β : Set→ BStone (3.2)

that sends a set X, regarded as a discrete space, to its Stone-Čech compact-
ification β(X) (cf. Example 1.7). This adjunction induces a monad on Set,
the ultrafilter monad, that is not finitary. By a theorem of Manes (see [90,
Section 1.5] for a detailed exposition), its algebras are precisely the com-
pact Hausdorff spaces.

We briefly recall some basic facts from the theory of monads, see e.g. [3].
If T = (T, η, µ) is a monad on a category C, we write CT for the category
of (Eilenberg-Moore) algebras for T. In the special case where T is a monad
with rank and C is the category Set of sets and functions, the categories of
the form SetT are, up to equivalence, exactly the varieties of algebras (with
operations of possibly infinite, but bounded, arity). This correspondence
restricts to categories of algebras for finitary Set-based monads (i.e., mon-
ads preserving filtered colimits) and varieties of Birkhoff algebras. See,
e.g., [3, VI.24]. Whether T is finitary or not, the category SetT is always
equipped with a (regular epi, mono) factorisation system. In the category
of compact Hausdorff spaces, this is the factorisation of a continuous map
into a continuous surjection followed by a continuous injection. If T is fini-
tary, we recover the usual decomposition of a homomorphism of Birkhoff
algebras into a surjective homomorphism followed by an injective one.

Codensity monads allow us to assign to (almost) any functor a monad
on its codomain, and are a special case of a more general construction,
namely that of right Kan extension. Henceforth, if F and G are any two
parallel functors, F ⇒ G denotes a natural transformation from F to G.

Definition 3.3. Let F : C → D and G : C → E be any two functors. The
right Kan extension of F along G is a pair

(K, κ),

where K : E → D and κ : K ◦ G ⇒ F, such that the following universal
property is satisfied: for every pair (K′, κ′) with K′ : E → D and κ′ : K′ ◦
G ⇒ F, there exists a unique natural transformation ε : K′ ⇒ K such that
the right-hand diagram below commutes. If F = G, the right Kan extension
of G along itself is called the codensity monad of G, and it is denoted by TG.

C D K′ ◦ G F

E K ◦ G

G

F κ′

εG
κ

K

K′

ε κ
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We remark that the fact that TG is a monad, i.e. it can be equipped with
a unit and a multiplication, is a consequence of the universal property of
the right Kan extension. For instance, its multiplication µ : TG ◦ TG ⇒ TG

is obtained by taking K′ = TG ◦ TG and κ′ = κ ◦ TGκ.
The right Kan extension of a functor along another one does not exist in

general. However, it does exist under mild assumptions on the categories
at hand, and can be computed as a limit. We state this precisely in the next
lemma, in the special case of codensity monads. To do so, we first need to
recall the notion of comma category. For a functor G : C→ D and an object
d of D, the comma category d ↓ G has as objects pairs (α, c), where c is an
object of C and α : d → Gc is a morphism in D. A morphism between two
objects (α1, c1), (α2, c2) of d ↓ G is a morphism f : c1 → c2 in C such that
G f ◦ α1 = α2.

Lemma 3.4 ([86, Theorem X.3.1]). Let G : C → D be any functor. If C is
essentially small (i.e., it is equivalent to a small category) and D is complete, then
the codensity monad TG : D→ D exists and for every d in D

TGd = lim
d→Gc

Gc

where the limit is taken over the comma category d ↓ G.

An example of codensity monad is provided by a result of Kennison
and Gildenhuys [75], which identifies the codensity monad of the inclu-
sion Set f → Set of finite sets into sets as the ultrafilter monad on Set.
Recently, Leinster [84] reinterpreted Kennison and Gildenhuys’ result as
a correspondence between measures (i.e., ultrafilters, or two-valued mea-
sures) and integration operators (i.e., elements of the free algebras for the
codensity monad). He then took the analogy further to study the coden-
sity monad of the inclusion of finite-dimensional vector spaces into the
category of vector spaces [84, Section 7]. Proposition 3.10 and Theorem
3.23 together identify a class of codensity monads whose (free) algebras
admit a description as algebras of bona fide measures, thus providing a set-
ting in which the analogy above is concretely realised. The Giry monad on
measurable spaces provides another example, as proved in [10].

Example 3.5. The algebras for the finite power-set monad ℘ f on sets are
semilattices (cf. Example 3.2), thus the finitely carried algebras are the fi-
nite semilattices. Let G be the functor from the category of finite semilat-
tices and semilattice homomorphisms, to the category BStone of Boolean
spaces, which regards the underlying set of a finite semilattice as a dis-
crete space. The codensity monad TG of this functor exists and it is the
Vietoris monad on BStone defined in Example 1.10. Although this fact can
be proved directly, it will follow at once from equation (3.8) below, along
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with the fact that the Vietoris functor on BStone preserves codirected lim-
its [36, 3.12.27(f)]. Monads on BStone arising in this manner are called
profinite monads.

3.1.2 Profinite monads and their algebras

Profinite monads allow us to associate to every monad T = (T, η, µ) on the
category of sets a monad T̂ = (T̂, η̂, µ̂) on the category of Boolean spaces,
called the profinite monad of T. If SetT

f denotes the full subcategory of SetT

on the finitely carried T-algebras, we can consider the composition

G : SetT
f → Set f → BStone

of the underlying-set functor from finite T-algebras to finite sets, followed
by the full embedding of finite sets into the category of Boolean spaces.
Note that SetT

f is essentially small and BStone is complete, so that Lemma

3.4 applies to G. The profinite monad T̂ is defined as the codensity monad of
the functor G. That is,

T̂ = TG : BStone→ BStone, T̂X = lim
X→G(Y,h)

G(Y, h). (3.3)

Remark 3.6. Profinite monads were first introduced as a natural categori-
cal extension of the profinite algebraic methods that are heavily used in the
theory of regular languages. In [16], Bojańczyk associates to a Set-monad
T another Set-monad which models the profinite version of the objects
modelled by T. Profinite monads, as defined above, first appeared in [6],
where it is pointed out that Bojańczyk’s construction can be recovered by
composing the monad T̂ with the adjunction β : Set � BStone : | − | in
(3.2). We point out that in [6] the authors consider, more generally, monads
on a variety of Birkhoff algebras V. The associated profinite monad is then
a monad on the category of profinite V-algebras. Here, we shall deal only
with the case where V = Set. The monadic approach to formal language
theory, put forward by Bojańczyk in op. cit., is also adopted in Chapter 4,
as it allows to deal with different kinds of quantifiers at the same time.

The Vietoris hyperspace monad V on Boolean spaces, which coincides
with the profinite monad of the finite power-set monad℘ f on the category
of sets (see Example 3.5), provides a prime example of the profinite monad
construction. The original monad ℘ f and its profinite extension V come
equipped with a ‘comparison map’: for each Boolean space X there is a
function τX : ℘ f (X)→ V(X) which views a finite subset of the space X as
a closed subspace. The ensuing natural transformation τ plays a key rôle,
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and can be defined for any profinite monad, as we shall now explain. Write

κ : T̂ ◦ G ⇒ G (3.4)

for the natural transformation such that the pair (T̂, κ) satisfies the uni-
versal property defining the right Kan extension. The forgetful functor
| − | : BStone → Set is right adjoint, hence it commutes with right Kan
extensions [86, Theorem X.5.1]. That is, | − | ◦ T̂ is the right Kan extension
of | − | ◦ G along G. Now, consider the left-hand diagram below.

SetT
f Set BStone BStone

BStone Set Set

G

|−|◦G T̂

|−| |−|
|−|κ

|−|◦T̂ T◦|−|

τ

T

τ

There is an obvious natural transformation α : T ◦ | − | ◦ G ⇒ | − | ◦ G
whose component at a finite T-algebra (X, h) is simply α(X,h) = h. There-
fore, by the universal property of the right Kan extension (| − | ◦ T̂, | − |κ),
there is a unique natural transformation τ : T ◦ | − | ⇒ | − | ◦ T̂ as in the
right-hand diagram above, satisfying

| − |κ ◦ τG = α. (3.5)

In view of equation (3.3), the components of the natural transformation τ
admit explicit descriptions as limit maps. Since the functor | − | preserves
limits, we have

|T̂X| = | lim
X→G(Y,h)

G(Y, h)| = lim
X→G(Y,h)

Y.

In turn, each object (X
ϕ−→ G(Y, h), (Y, h)) of the comma category X ↓ G

yields a function ϕ∗ : T|X| → Y given by ϕ∗ = h ◦ T|ϕ|. Note that ϕ∗ is the
unique T-algebra morphism extending the function |ϕ| : |X| → Y.

Definition 3.7. Let T be any monad on Set, and T̂ its profinite monad.
Define

τ : T ◦ | − | ⇒ | − | ◦ T̂

as the unique natural transformation satisfying (3.5). For any X in BStone,
the component τX : T|X| → |T̂X| is the unique function induced by the
cone

{ϕ∗ : T|X| → Y | (ϕ, (Y, h)) ∈ X ↓ G}.
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In [5, Proposition B.7.(a)] the authors prove that the natural transfor-
mation τ behaves well with respect to the units and multiplications of
the monads T and T̂. That is, using the terminology of [131], the pair
(| − |, τ) : (BStone, T̂) → (Set, T) is a monad functor. This means that the
next two diagrams commute.

| − | | − | ◦ T̂

T ◦ | − |

|−|η̂

η|−| τ
(3.6)

T2 ◦ | − | T ◦ | − |

T ◦ | − | ◦ T̂ | − | ◦ T̂2 | − | ◦ T̂

Tτ

µ|−|

τ

τT̂ |−|µ̂

An immediate consequence is that the forgetful functor | − | : BStone →
Set lifts to a functor BStoneT̂ → SetT , thus showing that every algebra for
the profinite monad T̂ admits a T-algebra reduct, and every morphism of
T̂-algebras preserves this structure. For a free T̂-algebra T̂X on a Boolean
space X, its T-algebra reduct is provided by the composition

T|T̂X| |T̂2X| |T̂X|.
τT̂X |µ̂X | (3.7)

Lemma 3.8. For every Set-monad T and Boolean space X, the map in (3.7) yields
a T-algebra structure on (the underlying set of ) the space T̂X such that the map

τX : T|X| → |T̂X|

from Definition 3.7 is a morphism of T-algebras.

In the case of the map τX : ℘ f (X) → V(X) the previous lemma states
that the Vietoris space V(X) is a semilattice when equipped with the
binary operation ∪, and the inclusion τX : (℘ f (X),∪) → (V(X),∪) is
a semilattice homomorphism. Another important property of the map
τX : ℘ f (X) → V(X) is the well-known fact that it has dense image (cf.
Example 1.10). This feature turns out to be common to all profinite mon-
ads. In the special case of a finite discrete space X, this follows from [5,
Proposition B.7.(b)].

Lemma 3.9. For every Set-monad T and Boolean space X, the component
τX : T|X| → |T̂X| has dense image.
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Proof. Since the category X ↓ G is codirected, it is enough to show that
every non-empty subbasic open set of T̂X, in the limit topology, contains
an element in the image of τX . Such an open set is of the form p−1(y),
where p : T̂X → Y is a continuous function in the limit cone defining T̂X
(cf. equation (3.3)) and y ∈ Y is in the image of p. More precisely, this
means that there exists an object

(X
ϕ−→ G(Y, h), (Y, h))

in the comma category X ↓ G such that |p| ◦ τX = ϕ∗ : T|X| → Y. To settle
the statement, it thus suffices to prove (ϕ∗)−1(y) 6= ∅.

Recall that ϕ∗ is the T-algebra morphism obtained as the free extension
of the function |ϕ| : |X| → Y. We can then consider its (regular epi, mono)
factorisation in the category of T-algebras as displayed below.

(T|X|, µ|X|) (Y, h)

(Y′, h′)

ϕ∗

e m

The map e : T|X| � Y′ is surjective, hence it is enough to prove m−1(y) 6=
∅. Note that m is a morphism in the category X ↓ G. Indeed, e ◦
η|X| : |X| → Y′ is the underlying function of a continuous map ϕ′ : X → Y′

(namely, an appropriate corestriction of ϕ) and m ◦ ϕ′ = ϕ. Hence

m : (ϕ′, (Y′, h′))→ (ϕ, (Y, h))

is a morphism in X ↓ G. It follows that there exists p′ : |T̂X| → Y′ satisfying
m ◦ p′ = p. Since y is in the image of p by hypothesis, it is also in the image
of m, as was to be shown.

In general, the morphisms τX : T|X| → |T̂X| do not have to be injec-
tive. A counterexample is provided by the power-set monad ℘ on Set,
whose profinite monad is again the Vietoris monad. In this case the map
τX : ℘(X) → V(X) sends a subset of X to its topological closure, and it is
injective precisely when X is finite.

However, the components of the natural transformation τ are injective
provided the monad T is finitary and restricts to finite sets. To see this
observe that, whenever T restricts to finite sets, the underlying-set functor
SetT

f → Set f is right adjoint and is thus preserved by right Kan extensions.
It follows that the limit formula in (3.3) can be considerably simplified to
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yield, for every Boolean space X,

T̂X = lim
X� f Y

TY. (3.8)

Here, the notation X � f Y means that Y is a finite continuous image of X.
Moreover, the limit is computed in BStone by equipping the finite sets TY
with the discrete topology. In this setting the function τX is the limit map
for the cone

{T|ϕ| : T|X| → TY | ϕ : X� f Y}

and hence it is injective if, and only if, this cone is jointly monic. Suppose
f , g : S→ T|X| are any two functions, and f (s) 6= g(s) for some s ∈ S. If T
is finitary, and F is the collection of finite subsets of |X|,

T|X| = T(colimF∈F F) = colimF∈F TF

implies the existence of a finite subset F of X such that f (s), g(s) ∈ TF.
Since X is a Boolean space, there is a finite discrete space Z and a continu-
ous surjection ψ : X � f Z such that ψ separates any two distinct elements
of F. Then T|ψ| distinguishes f (s) and g(s), showing that the cone is jointly
monic.

Regarding the injectivity of τX , it will follow from Proposition 3.10 be-
low that the hypothesis that T restricts to finite sets cannot, in general, be
dropped. Indeed, for a finitary monad T and a finite discrete space X,
injectivity of τX corresponds to the free finitely generated T-algebra T|X|
being residually finite. In turn, Birkhoff varieties containing no non-trivial
finite member (see, e.g., [9]) yield obvious examples of finitary monads T
for which τX fails to be injective.

We conclude the section by showing that, whenever the T is finitary,
the algebraic and topological structures on T̂X are compatible, i.e. T̂X is
a topological T-algebra. In fact, it is the free profinite T-algebra on the
space X. That is, T̂ is the monad induced by the forgetful functor from the
category of profinite T-algebras to the category of Boolean spaces, and its
left adjoint. We thus recover the folklore result stating that, for any Boolean
space X, the Vietoris space V(X) is the free profinite semilattice on X.

Proposition 3.10. Let T be a finitary Set-monad, and X a Boolean space. Then
T̂X is the free profinite T-algebra on the Boolean space X.

Proof. We first show that T̂X is a profinite T-algebra. Let

{πY : T̂X → Y | (ϕ, (Y, h)) ∈ X ↓ G}

be the cone of continuous functions defining T̂X has an inverse limit. It
suffices to show that each |πY| is a T-algebra homomorphism. In turn, this
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amounts to saying that the outer rectangle below commutes,

T|T̂X| |T̂2X| |T̂X|

|T̂Y|

TY Y

τT̂X

T|πY |

|µ̂X |

|T̂πY |

|πY |
|κ(Y,h) |τY

h

where κ : T̂ ◦ G ⇒ G is as in (3.4). The bottom triangle commutes by (3.5),
while the left-hand trapezoid commutes by naturality of τ. Finally, the
commutativity of the right-hand trapezoid follows from the equalities κ ◦
T̂κ = κ ◦ µ̂G and πY = κ(Y,h) ◦ T̂ϕ. The first one is obtained by noticing that
µ̂ : T̂2 ⇒ T̂ is the unique natural transformation induced by the universal
property of the right Kan extension (T̂, κ) and the natural transformation
κ ◦ T̂κ : T̂2 ◦ G ⇒ G. For the second equality, it suffices to show that |πY| ◦
τX = |κ(Y,h) ◦ T̂ϕ| ◦ τX . In turn, this follows from naturality of τ, and the
fact that |πY| ◦ τX = h ◦ T|ϕ|.

It remains to prove that T̂X satisfies the universal property with respect
to the unit η̂X : X → T̂X. That is, for every profinite T-algebra Y and every
continuous map f : X → Y there is a unique continuous morphism of T-
algebras T̂X → Y making the following diagram commute.

X T̂X

Y

η̂X

f
(3.9)

First observe that, if such a map exists, it is unique. Indeed, assume
g1, g2 : T̂X → Y are continuous T-algebra morphisms making diagram
(3.9) commute. By Lemma 3.9, along with the fact that T̂X is Hausdorff, if
we prove |g1| ◦ τX = |g2| ◦ τX it will follow that g1 = g2. By the universal
property of the free T-algebra T|X| there is a unique T-algebra morphism
ξ : T|X| → |Y| extending | f | : |X| → |Y|, i.e. satisfying

ξ ◦ |ηX | = | f |. (3.10)

By Lemma 3.8 the maps |g1| ◦ τX , |g2| ◦ τX are T-algebra morphisms. In
turn, the left-hand diagram in (3.6) entails that they are both solutions to
equation (3.10). We conclude |g1| ◦ τX = |g2| ◦ τX , whence g1 = g2.

To conclude, we prove that diagram (3.9) admits a solution. Let

{(Yi, hi) | i ∈ D}
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be a collection of finite discrete T-algebras whose limit in the category of
(Boolean) topological T-algebras is Y. Since the limit maps ρi : Y → Yi are
continuous T-algebra morphisms, each Yi belongs to the diagram defining
T̂Y (see equation (3.3)). Thus, for every i ∈ D, there is a continuous map
πi : T̂Y → Yi in the limit cone. As we saw in the first part of the proof,
each |πi| is a T-algebra morphism. Consider now the continuous map
ϕi : T̂X → Yi defined by ϕi = πi ◦ T̂ f . The function |T̂ f | is a T-algebra
morphism, as pointed out before Lemma 3.8. It follows that

{ϕi : T̂X → Yi | i ∈ D}

is a cone of continuous T-algebra morphisms, and it therefore induces a
unique continuous T-algebra morphism ϕ : T̂X → Y such that ρi ◦ ϕ = ϕi
for every i ∈ D. We claim that ϕ is a solution to (3.9). It is enough to prove
ρi ◦ ϕ ◦ η̂X = ρi ◦ f for every i ∈ D. In turn, this follows from the definition
of ϕ and the commutativity of the left-hand diagram in (3.6).

Recall from Example 3.2 the notion of semiring monad on Set. We con-
clude by specialising Proposition 3.10 to the particular case of a semiring
monad S, and its profinite monad Ŝ on BStone.

Corollary 3.11. Let S be any semiring, and X a Boolean space. Then ŜX is the
free profinite S-semimodule on the Boolean space X.

3.2 Measures with values in profinite semirings

In the previous section we saw that, for any semiring S, the free profinite
S-semimodule on a Boolean space X is isomorphic to ŜX (Corollary 3.11),
where Ŝ is the profinite monad of the semiring monad associated to S. We
are interested in a concrete description of the profinite algebra ŜX. It turns
out that ŜX can be identified with the algebra of all the S-valued measures
on X (in the sense of Definition 3.14), provided S is finite. This is the con-
tent of Section 3.3. In the present section we deal with the more general
case of profinite semirings S. Here, it is not true that the free profinite S-
semimodule on a Boolean space X is isomorphic to the algebra of all the
S-valued measures on X (cf. Remark 3.22). However, we shall see in Theo-
rem 3.21 that the latter algebra enjoys a universal property relative to those
profinite S-semimodules in which the scalar multiplication of S is jointly
continuous. If S is finite, then separate and joint continuity coincide, thus
providing the desired measure-theoretic representation of ŜX.
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Throughout this section we fix a profinite semiring S = (S,+, ·, 0, 1),
i.e. S is the limit of an inverse system of finite semirings and semiring ho-
momorphisms. Every profinite semiring is a Boolean topological semir-
ing.1 In view of [118, Proposition 7.2], the converse is also true. That is,
a semiring is profinite if, and only if, it is equipped with a Boolean topol-
ogy which makes the operations + and · continuous. Every finite semir-
ing, endowed with the discrete topology, is trivially profinite. Two infinite
profinite semirings are described in Examples 3.12 and 3.13 below.

In the remainder of the chapter we will make use of Stone duality for
Boolean algebras; for the basics of this duality we refer the reader to Section
1.1. The connection between Stone duality and profinite algebra is a deep
one, and it was fully exposed in [44].

Example 3.12. Let N∞ be the one-point compactification of the set N of
natural numbers, defined in Example 1.9. The usual addition and multi-
plication on N can be extended to N∞ by setting

∀x ∈N∞, x + ∞ = ∞ and x ·∞ =

{
0 if x = 0
∞ otherwise.

This gives a semiring (N∞,+, ·, 0, 1) that is easily seen to be topological,
hence profinite.

Example 3.13. We equip the Boolean space N∞ with a different semiring
structure. Define the addition of the semiring to be the min operation (with
identity element ∞), and the multiplication to be +. The ensuing idempo-
tent semiring (N∞, min,+, ∞, 0) is called (min-plus) tropical semiring. The
operations min and + are continuous with respect to the Boolean topology,
hence this is a profinite semiring. The tropical semiring plays an important
rôle in the theory of formal languages, see e.g. the survey [102].

Next we introduce the notion of measure, that will play a central rôle
throughout the chapter.

Definition 3.14. Let X be a Boolean space with dual algebra B. An S-valued
measure (or simply a measure, if the semiring is clear from the context) on X
is a function µ : B→ S which is finitely additive, i.e.

1. µ(0) = 0;

2. µ(a ∨ b) = µ(a) + µ(b) whenever a, b ∈ B satisfy a ∧ b = 0.

Item 2 can be expressed without reference to disjointness, in the following
way:

∀a, b ∈ B, µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b).
1This fact is not specific about semirings, and it holds for any variety of Birkhoff algebras.

See, e.g., [69, Corollary VI.2.4]
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For any Boolean space X, write

M(X, S) = {µ : B→ S | µ is a measure}

for the set of all the S-valued measures on X. The latter is naturally
equipped with a structure of S-semimodule, whose operations are com-
puted pointwise: for all s ∈ S and for all µ1, µ2 ∈ M(X, S),

µ1 + µ2 : b 7→ µ1(b) + µ2(b) and s · µ1 : b 7→ s · µ1(b).

On the other hand, M(X, S) can also be equipped with a natural topol-
ogy, namely the subspace topology induced by the product topology of SB.
This coincides with the initial topology for the set of evaluation functions

evb : M(X, S)→ S, µ 7→ µ(b), (3.11)

for b ∈ B. Note that evb is the restriction of the b-th projection SB → S. A
subbasis for this topology is given by the sets of the form

〈b, U〉 = {µ ∈ M(X, S) | µ(b) ∈ U}, (3.12)

for b ∈ B and U a clopen subset of S. With respect to this topology, M(X, S)
is a Boolean space:

Lemma 3.15. For any Boolean space X, the space M(X, S) of all the S-valued
measures on X is Boolean.

Proof. By Tychonov’s theorem, the product topology on SB is compact.
Since S admits a basis of clopens, so does SB. Hence SB is a Boolean space.
Since a closed subspace of a Boolean space is Boolean, it is enough to prove
that M(X, S) is a closed subset of SB. If b ∈ B, write πb : SB → S for the
b-th projection. By definition of measure, we have

M(X, S) = π−1
0 (0) ∩

⋂
a∧b=0

{ f ∈ SB | f (a ∨ b) = f (a) + f (b)}. (3.13)

The set π−1
0 (0) is closed because so is {0} ⊆ S. Further, for each a, b ∈ B,

{ f ∈ SB | f (a ∨ b) = f (a) + f (b)}

is closed since it is the equaliser of the continuous maps

SB S
πa∨b

πa+πb

into the Hausdorff space S. Here, πa + πb is the composition of the contin-
uous product map 〈πa, πb〉 : SB → S2 with the continuous map + : S2 → S.
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Thus (3.13) exhibits M(X, S) as an intersection of closed subsets of SB.

Remark 3.16. Let X be a Boolean space, and {Xi | i ∈ I} the codirected
diagram of its continuous finite images. One can show that the space of
measures M(X, S) coincides with the limit in BStone of the diagram {SXi |
i ∈ I}, where each SXi is equipped with the product topology.

We will see in Lemma 3.19 below that the S-semimodule structure on
M(X, S) is compatible with the Boolean topology in a strong sense. Re-
call from Definition 3.1 that a semimodule over S is given by an Abelian
monoid M, along with a ‘scalar multiplication’

α : S×M→ M

satisfying certain compatibility conditions. Suppose M is equipped with a
topology making the monoid operation continuous, i.e. M is a topological
monoid. If α is separately continuous, i.e. the functions α(s,−) : M → M
are continuous for each s ∈ S, then M is a topological S-semimodule. Further,

Definition 3.17. An S-semimodule M is strongly continuous if the scalar
multiplication α of S on M is not only separately continuous, but also
jointly continuous. That is, α : S × M → M is continuous with respect
to the product topology on S×M.

Not every topological S-semimodule is strongly continuous, as the next
example shows.

Example 3.18. We give an example of a finite and discrete S-semimodule
that is not strongly continuous. Denote by A the semilattice on the set
{0, 1, ω} whose order is 0 < 1 < ω. In other words, its join operation is
defined as follows.

0 1 ω

0 0 1 ω
1 1 1 ω
ω ω ω ω

Recall from Example 3.12 the profinite semiring (N∞,+, ·, 0, 1). The ob-
vious action of N on A (obtained by regarding A as an Abelian monoid)
can be extended to an action α : N∞ × A → A of N∞ on A by setting
α(∞, 0) = 0, and α(∞, 1) = α(∞, ω) = ω. This action yields a structure of
N∞-semimodule on A. If A is equipped with the discrete topology, then
the scalar multiplication is obviously separately continuous. However, it
is not jointly continuous. Indeed, one has

α−1(ω) = (∞, 1) ∪ (N∞ \ {0})× {ω},

which is not clopen because ∞ is not an isolated point of N∞.
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The spaces of measures M(X, S) turn out to be strongly continuous,
hence topological, S-semimodules.

Lemma 3.19. For any Boolean space X, M(X, S) is a strongly continuous S-
semimodule.

Proof. Let X be an arbitrary Boolean space with dual algebra B. To prove
that M(X, S) is a topological monoid it suffices to show that, for each b ∈ B,
the composition

M(X, S)×M(X, S) M(X, S) S+ evb

is continuous, where evb is the evaluation map defined in (3.11). In turn,
this follows from the commutativity of the next diagram, and the fact that
+ : S× S→ S is continuous.

M(X, S)×M(X, S) S× S

M(X, S) S

evb×evb

+ +

evb

The same argument, mutatis mutandis, shows that the function S ×
M(X, S) → M(X, S) taking (s, µ) to s · µ is continuous. Therefore M(X, S)
is a strongly continuous S-semimodule.

By Lemmas 3.15 and 3.19, for any Boolean space X, M(X, S) is a
strongly continuous topological S-semimodule on a Boolean space. In [118,
Proposition 7.5] it is shown that every such semimodule is the limit of an
inverse system of finite and discrete strongly continuous S-semimodules.
In particular, M(X, S) is a profinite S-semimodule. However M(X, S) is
not, in general, the free profinite S-semimodule on X (cf. Remark 3.22).
Nonetheless, we will see in Theorem 3.21 that M(X, S) enjoys a univer-
sal property relative to those Boolean topological S-semimodules that are
strongly continuous. In order to prove the latter theorem we need a pre-
liminary result, Lemma 3.20 below, relating finitely supported functions
and measures.

Let X be a Boolean space. Recall from equation (3.1) the set S|X| of
finitely supported S-valued functions on X. Every f ∈ S|X| gives a mea-
sure on X, namely ∫

f : B→ S, b 7→
∫

b
f = ∑

x∈b
f (x). (3.14)
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(Throughout, we identify a sum over the empty set with the identity ele-
ment 0). The ‘integration map’ f 7→

∫
f allows us to identify S|X| with a

dense subset of M(X, S).

Lemma 3.20. The map S|X| → M(X, S) sending f to
∫

f , defined as in equation
(3.14), is injective with dense image.

Proof. To prove the injectivity, assume f , g are distinct elements of S|X|,
and pick x ∈ X such that f (x) 6= g(x). Write σ for the union of the supports
of f and g, and note that x ∈ σ. Since X is Boolean, there is a clopen b ∈ B
such that b ∩ σ = {x}. Therefore∫

b
f = f (x) 6= g(x) =

∫
b

g,

showing that the assignment f 7→
∫

f is injective. With respect to the
density, we must prove that every non-empty basic open subset of M(X, S)
contains a measure of the form

∫
f , for some f ∈ S|X|. In view of equation

(3.12), such a basic open can be written as

O = 〈b1, U1〉 ∩ · · · ∩ 〈bm, Um〉

where b1, . . . , bm ∈ B, and U1, . . . , Um are clopens of S. Let {c1, . . . , cn} be
the clopen partition of the set

⋃m
i=1 bi induced by the covering {b1, . . . , bm},

and assume without loss of generality that each cj is non-empty. In other
words, the cj’s are the atoms of the Boolean subalgebra of B generated
by the bi’s. Fix an element xj ∈ cj for each j = 1, . . . , n. Since O is not
empty, it contains a measure µ. Define a function f : X → S with support
{x1, . . . , xn} such that f (xj) = µ(cj) for each j. By finite additivity of µ we
have

∫
bi

f = µ(bi) for all i = 1, . . . , m, so that
∫

f ∈ O.

We are now ready to prove the main result of this section, which pro-
vides a characterisation of the profinite algebra M(X, S) by means of a
universal property. Let us say that a strongly continuous S-semimodule
is profinite if it is the inverse limit of finite and discrete strongly continu-
ous S-semimodules. As observed after Lemma 3.19, M(X, S) is a profinite
strongly continuous S-semimodule. The next theorem shows that M(X, S)
is free on X with respect to this structure.

Theorem 3.21. Let S be a profinite semiring. For any Boolean space X, the col-
lection M(X, S) of all the S-valued measures on X is the free profinite strongly
continuous S-semimodule on X.

Proof. Let ηX : X → M(X, S) be the continuous function sending x to the
measure µx concentrated in x, i.e. µx(b) = 1 if x ∈ b, and µx(b) = 0
otherwise. We will prove that M(X, S) satisfies the universal property with
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respect to the map ηX . That is, for every profinite strongly continuous S-
semimodule Y and continuous function f : X → Y, there exists a unique
continuous homomorphism of S-semimodules g : M(X, S) → Y such that
the following triangle commutes.

X M(X, S)

Y

ηX

f
g (3.15)

By Lemma 3.20 the function S|X| → M(X, S), mapping f to
∫

f , is injec-
tive and has dense image. Observe that any measure on X of the form∫

f , for f ∈ S|X|, is a finite linear combination with coefficients in S of
measures concentrated at a point. Thus any two continuous homomor-
phisms making diagram (3.15) commute must coincide on the image of
S|X| → M(X, S). Since the latter is dense in M(X, S), and Y is Hausdorff,
there is at most one solution to the diagram above.

To exhibit such a solution, we proceed as follows. Let {πi : Y → Yi | i ∈
I} be a cone of continuous homomorphisms defining Y as the inverse limit
of the finite and discrete strongly continuous S-semimodules Yi, and set

fi = πi ◦ f : X → Yi.

We will define a cone of continuous homomorphisms {gi : M(X, S) → Yi |
i ∈ I} such that the induced limit map M(X, S) → Y provides the desired
solution. For each i ∈ I consider the square

X M(X, S)

Yi M(Yi, S)

ηX

fi f ∗i
hYi

where f ∗i : M(X, S)→ M(Yi, S) sends a measure µ to its pushforward with
respect to fi, i.e. f ∗i µ(b) = µ( f−1

i (b)) for every clopen b of Yi, and

∀ν ∈ M(Yi, S), hYi (ν) = ∑
y∈Yi

ν(y) · y.

Here, ν(y) stands for ν({y}), and the expression makes sense because Yi is
discrete. It is not difficult to see that the pushforward maps f ∗i are contin-
uous homomorphisms of S-semimodules. Suppose for a moment that the
hYi are also continuous homomorphisms. Then, for each i ∈ I, gi = hYi ◦ f ∗i
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would be a continuous homomorphism satisfying gi ◦ ηX = fi. Indeed,

∀x ∈ X (gi ◦ ηX)(x) = ∑
y∈Yi

f ∗i µx(y) · y = fi(x)

because f ∗i µx is the measure on Yi concentrated in fi(x). If g : M(X, S)→ Y
is the continuous homomorphism of S-semimodules induced by the cone
{gi : M(X, S) → Yi | i ∈ I}, we have g ◦ ηX = f . That is, g is a solution
to diagram (3.15). Hence it remains to show that each hYi is a continuous
homomorphism. To improve readability, we write Z instead of Yi, and
assume that Z = {y1, . . . , yn}. We only check that hZ is continuous, for
the preservation of the algebraic structure is easily verified. Consider the
composition

γ : (S× Z)n → Zn → Z

where the first map sends ((`1, z1), . . . , (`n, zn)) to (`1 · z1, . . . , `n · zn), and
the second one sends (z1, . . . , zn) to z1 + · · · + zn. Since Z is a strongly
continuous S-semimodule, γ is a continuous function. For any z ∈ Z, let
Tz be the closed subset of Sn obtained by projecting the clopen set γ−1(z) ⊆
(S× Z)n onto the S-coordinates. Then one has

h−1
Z (z) =

{
ν ∈ M(Z, S) | ∑

y∈Z
ν(y) · y = z

}
= (evy1 × · · · × evyn)

−1(Tz)

for any z ∈ Z, where evy1 × · · · × evyn : M(Z, S) → Sn. The latter function
is continuous, whence h−1

Z (z) is a closed subset of M(Z, S), showing that
the function hZ is continuous. Hence the statement.

We conclude the section by showing that, in general, M(X, S) is not
the free profinite S-semimodule on X. This is due to the fact that separate
continuity of the scalar multiplication on an S-semimodule does not imply
joint continuity. However, it clearly does if S if finite, for then the two
notions coincide. The latter case will be treated in the next section.

Remark 3.22. Let X be any Boolean space. We claim that every profinite
S-semimodule that is a continuous homomorphic image of M(X, S) is a
strongly continuous S-semimodule. Note that this implies that M(X, S)
cannot be the free profinite S-semimodule on X, for otherwise every profi-
nite S-semimodule would be strongly continuous (and we know by Exam-
ple 3.18 that this is not the case). To settle the claim, let A be a profinite
S-semimodule and f : M(X, S) � A a continuous surjective homomor-
phism. Write

α : S×M(X, S)→ M(X, S), β : S× A→ A
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for the scalar multiplications on M(X, S) and A, respectively. We have the
following commutative square.

S×M(X, S) M(X, S)

S× A A

α

idS× f f
β

We must prove that β is continuous. Note that f , and hence also idS × f ,
are topological quotients. Thus, for every open subset U ⊆ A, β−1(U) is
open if, and only if, β ◦ (idS × f )−1(U) is open in S×M(X, S). In turn, the
latter set is open because the diagram commutes and f ◦ α is continuous.

3.3 The case of finite semirings: the main result

Recall that we aim to give a concrete representation of the free profinite
S-semimodule on a Boolean space X. In view of Proposition 3.10 the latter
is isomorphic to ŜX, where Ŝ is the profinite monad of the Set-monad S
associated to the semiring S. In Theorem 3.21 we saw that, if S is profi-
nite, then the algebra M(X, S) of all the S-valued measures on X is the free
profinite strongly continuous S-semimodule on X. Provided S is finite, ev-
ery topological S-semimodule is strongly continuous. Therefore we obtain
the following theorem as a corollary.

Theorem 3.23. Let S be a finite semiring, and X a Boolean space. Then ŜX, the
free profinite S-semimodule on X, is isomorphic to the algebra M(X, S) of all the
S-valued measures on X.

In the remainder of the section we indicate how one could give a direct
proof of Theorem 3.23, exploiting the finiteness of the semiring. Through-
out the section we assume S = (S,+, ·, 0, 1) is a finite semiring. We first
describe the dual algebra of ŜX in terms of the dual algebra of the Boolean
space X. Recall from (3.1) the set S|X| of finitely supported S-valued func-
tions on X, and the integration map S|X| → M(X, S), f 7→

∫
f of (3.14).

Lemma 3.24. Let X be a Boolean space with dual algebra B. The algebra B̂ dual to
ŜX is isomorphic to the Boolean subalgebra of℘(S|X|) generated by the elements
of the form

[b, k] =
{

f ∈ S|X| |
∫

b
f = k

}
,

for b ∈ B and k ∈ S.

Proof. Let X be a Boolean space. Then X is the limit of the codirected di-
agram {Xi | i ∈ I} of its finite continuous images. Write πi : X → Xi for
the ith limit map. Since S is finite, by equation (3.8) the Boolean space ŜX
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is homeomorphic to the inverse limit of the finite discrete spaces SXi. Let
pi : ŜX → SXi be the ith limit map. As observed in Section 3.1, under these
hypotheses the ‘comparison map’ τX : S|X| → |ŜX| from Definition 3.7 is
injective and satisfies

Sπi = pi ◦ τX

for each i ∈ I. The dual algebra of ŜX consists of the clopens of the form
p−1

i ( f ), where f ∈ SXi. By Lemma 3.9 the map τX has dense image, thus
the clopen p−1

i ( f ) can be identified with its restriction to S|X|, i.e. with
(Sπi)

−1( f ). In turn, we have

(Sπi)
−1( f ) =

⋂
x∈Xi

{
g ∈ S|X| |

∫
π−1

i (x)
g = f (x)

}
=

⋂
x∈Xi

[π−1
i (x), f (x)]

showing that B̂ is isomorphic to the subalgebra of ℘(S|X|) generated by
the elements of the form [b, k], where b ranges over the clopens of X and
k ∈ S.

Now, let x be a point of ŜX, i.e. an ultrafilter on the Boolean algebra B̂.
By the previous lemma, for each b ∈ B, {[b, k] | k ∈ S} is a finite set of
pairwise disjoint elements of B̂ whose join is the top element. Thus we can
define a function

ŜX → M(X, S), x 7→ µx (3.16)

where, for each b ∈ B, we define µx(b) to be the unique k ∈ S satisfying
[b, k] ∈ x. It is not difficult to see that each µx is, indeed, a measure. This
correspondence is injective because the elements of the form [b, k] generate
the Boolean algebra B̂ by Lemma 3.24.

On the other hand, let µ : B → S be a measure on X. We will exhibit an
ultrafilter x on B̂ such that µ = µx. Consider the set F = {[b, µ(b)] | b ∈
B} ⊆ ℘(S|X|). Observe that [b, k] = ∅ if, and only if, b = 0 and k 6= 0.
Hence the empty set does not belong to F because µ(0) = 0. Moreover, for
every b1, . . . , bn ∈ B,

[b1, µ(b1)] ∩ · · · ∩ [bn, µ(bn)] 6= ∅

by additivity of µ, i.e. F is a filter basis. Let x be the proper filter generated
by F. It is enough to prove that x is an ultrafilter, for then µ = µx. Since
the [b, k]’s generate B̂, it suffices to show that [b, k] /∈ x implies [b, k]c ∈ x.
Assume [b, k] /∈ x. Then k 6= µ(b) entails [b, µ(b)] ⊆ [b, k]c, thus [b, k]c ∈ x.

This shows that the map in (3.16) is a bijection. One can check that it
is also a continuous homomorphism of S-semimodules, so that we recover
the result in Theorem 3.23.
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Theorem 3.25. Let S be a finite semiring, and X a Boolean space. The map
in (3.16) yields a continuous isomorphism of S-semimodules between ŜX and
M(X, S). Thus, the free profinite S-semimodule on X is isomorphic to the algebra
M(X, S) of all the S-valued measures on X.

Upon identifying an element of ŜX with the corresponding measure
on X, the ‘comparison map’ τX : S|X| → |ŜX| of Definition 3.7 can be con-
cretely described as the integration function

τX : S|X| → M(X, S), f 7→
∫

f .

The latter map is an embedding with dense image and, for each b ∈ B and
k ∈ S, the closure of the subset

[b, k] =
{

f ∈ S|X| |
∫

b
f = k

}
of M(X, S) is the subbasic clopen subset

〈b, k〉 = {µ ∈ M(X, S) | µ(b) = k}.

Moreover, for any continuous map h : X → Y and measure µ ∈ M(X, S),
the continuous homomorphism Ŝh : M(X, S) → M(Y, S) sends a measure
µ on X to its pushforward with respect to h. That is,

Ŝh(µ) : b 7→ µ(h−1(b))

for every clopen b of Y.
Further, recall from (3.2) the adjunction | − | : BStone � Set : β. Since

adjoints compose, the free profinite S-semimodule on a set A is isomor-
phic to M(β(A), S), where β(A) is the Stone-Čech compactification of the
discrete space A. Note that an element of M(β(A), S) is a finitely additive
function ℘(A) → S, i.e. the measurable subsets of β(A) are in bijection
with the subsets of A.

Remark 3.26. Theorem 3.23 yields, in the case of the two-element distribu-
tive lattice 2, a representation of the Vietoris space V(X) of a Boolean space
X as the space of 2-valued measures over X. This should be compared with
the representations by Shapiro [121] and Radul [108] of V(X), for X a com-
pact Hausdorff space, in terms of real-valued functionals.
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3.4 The case of profinite idempotent semirings:
algebras of continuous functions

In this final section we show that, if S is a profinite idempotent semiring,
then all the S-valued measures are uniquely given by continuous density
functions (Theorem 3.34). By Theorem 3.23, this yields a representation of
the free profinite S-semimodule on a Boolean space X in terms of continu-
ous S-valued functions on X, provided S is a finite idempotent semiring.

Suppose (S,+, ·, 0, 1) is a profinite semiring that is idempotent, i.e. it sat-
isfies s + s = s for every s ∈ S. Any idempotent semiring is equipped with
a natural partial order 6 defined by s 6 t if, and only if, there is u such
that s + u = t. The operation + is then a join-semilattice operation with
identity 0. Accordingly, we write ∨ instead of +. In particular, a profinite
idempotent semiring is a topological join-semilattice on a Boolean space. 2

Next we recall some basic facts about such topological semilattices that
we will use in the following. We warn the reader that, while we work with
join-semilattices, most of the literature (cf. [65, 69, 55]) deals with meet-
semilattices.

Definition 3.27. An element k in a complete lattice L is compact if, for every
subset S ⊆ L such that k 6

∨
S, there is a a finite subset F ⊆ S with

k 6
∨

F. An algebraic lattice is a complete lattice in which every element is
the supremum of the compact elements below it.

Let L be a directed complete poset (dcpo, for short). That is, L is a poset in
which every directed subset admits a supremum. A subset U ⊆ L is called
Scott open if it is upward closed and, for every directed subset D ⊆ L,∨

D ∈ U ⇒ D ∩U 6= ∅.

The collection of all Scott open subsets is a topology, the Scott topology of L.
Further, the lower topology on L is the topology generated by the sets of the
form (↑x)c for x ∈ L.

Definition 3.28. The Lawson topology of a dcpo L is the smallest topology
containing both the Scott topology and the lower topology.

The following theorem identifies the topology of a topological meet-
semilattice on a Boolean space as the Lawson topology. For a proof see,
e.g., [55, Theorem VI-3.13].

Theorem 3.29. Let L be a topological meet-semilattice with 1 whose underlying
space is Boolean. Then L is an algebraic lattice and its topology is the Lawson
topology.

2Although we shall not need this fact, we remark that the topological semilattices whose
underlying spaces are Boolean, are precisely the profinite semilattices [98].
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In the case of the profinite idempotent semiring S, the previous theorem
entails that S is a complete lattice in which every element is the infimum of
the co-compact elements above it (the concept of co-compact element is the
order-dual of that of compact element). Thus the topology of S, the dual
Lawson topology (i.e., the Lawson topology of the order-dual of S), has as
basic opens the sets of the form

↓k ∩ (↓l1)c ∩ · · · ∩ (↓ln)c, (3.17)

where k, l1, . . . , ln are co-compact elements of S. Every set of the form ↓k,
with k co-compact, is clopen [65, Theorem II.3.3]; this shows that the sets
in (3.17) provide a basis of clopens for S. Finally, any directed subset of
S considered as a net converges to a unique limit, namely its least upper
bound. Similarly, for codirected subsets and greatest lower bounds (see,
e.g., [65, II.1]).

In view of the completeness of S, for each measure µ ∈ M(X, S) we can
define a function

δµ : X → S, x 7→
∧
x∈b

µ(b) (3.18)

that intuitively provides the value of the measure µ at a point. In gen-
eral, the functions δµ : X → S are not continuous with respect to the dual
Lawson topology of S. However, they are continuous with respect to the
dual Scott topology, i.e. the Scott topology of the order-dual of S. The lat-
ter coincides with the topology of all those open sets (in the dual Lawson
topology) which are downward closed, cf. [55, Proposition III-1.6].

Definition 3.30. Let S be a profinite idempotent semiring. We define S↓

to be the topological space obtained by equipping S with the dual Scott
topology.

Lemma 3.31. Let S be a profinite idempotent semiring, and X a Boolean space.
For every measure µ ∈ M(X, S), δµ : X → S↓ is a continuous function.

Proof. Let µ be a measure on X, and U an open down-set of S. We must
prove that the preimage

δ−1
µ (U) = {x ∈ X |

∧
x∈b

µ(b) ∈ U}

is open. Note that the set {µ(b) | x ∈ b} is codirected. If its infimum
belongs to U, which is dual Scott open, there must exist b ∈ B containing x
and satisfying µ(b) ∈ U. Thus

δ−1
µ (U) ⊆

⋃
{b ∈ B | µ ∈ 〈b, U〉}.
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The converse inclusion holds because U is a down-set. This shows that
δ−1

µ (U) is open in X.

Let C(X, S↓) denote the set of all the S-valued functions on X which
are continuous with respect to the dual Scott topology of S. This can be
regarded as a semilattice, with respect to the pointwise order. Similarly for
M(X, S). In view of the previous lemma, there is a function

δ : M(X, S)→ C(X, S↓), µ 7→ δµ (3.19)

which is readily seen to be monotone. In the converse direction, since S is
complete, for every function f : X → S and clopen b of X we can define the
integral of f over b as ∫

b
f =

∨
x∈b

f (x).

This notion of integration with values in an idempotent semiring is well-
known, and it is studied in particular in idempotent analysis (see, e.g.,
[78]). So we have the integration map∫

: C(X, S↓)→ M(X, S), f 7→
(
b 7→

∫
b

f
)

(3.20)

which is also monotone.

Proposition 3.32. Let S be a profinite idempotent semiring. The maps

δ : M(X, S)� C(X, S↓) :
∫

defined in (3.19) and (3.20) form an adjoint pair, where δ is upper adjoint and
∫

is lower adjoint.

Proof. We must prove that, for any µ ∈ M(X, S) and f ∈ C(X, S↓), we have∫
f 6 µ⇔ f 6 δµ. This follows from the definitions of

∫
f and δµ.

The set C(X, S↓) of continuous S↓-valued functions on X carries a nat-
ural structure of S-semimodule, where both the monoid operation and the
scalar multiplication are defined pointwise. With respect to this structure,
the functions δ : M(X, S) � C(X, S↓) :

∫
are seen to be homomorphisms

of S-semimodules. Moreover, they are continuous if the set C(X, S↓) is
equipped with the topology generated by the sets of the form

{
f ∈ C(X, S↓) |

∫
b

f ∈ U
}

,
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for b a clopen of X, and U an open subset of S. We will see that, in fact,
the adjoint pair in Proposition 3.32 provides an isomorphism of topologi-
cal algebras between M(X, S) and C(X, S↓). We first show that δµ can be
regarded as the density function of the measure µ.

Lemma 3.33. Let S be a profinite idempotent semiring, and X a Boolean space
with dual algebra B. For every µ ∈ M(X, S) and b ∈ B, µ(b) =

∫
b δµ.

Proof. Fix x ∈ B. We show that µ(b) is the limit in S of the directed set

N = {
∨

x∈F
δµ(x) | F ∈ ℘ f (b)},

considered as a net. Since
∫

b δµ is also a limit for this net, it will follow
that µ(b) =

∫
b δµ because S is Hausdorff. Let k, l1, . . . , ln be co-compact

elements of S such that the basic open set

U = ↓k ∩ (↓l1)c ∩ · · · ∩ (↓ln)c

contains µ(b). We prove that the net N is eventually in the open neigh-
bourhood U of µ(b). Note that, for each x ∈ b, δµ(x) is below µ(b) whence
it belongs to ↓k. So it suffices to find, for every i ∈ {1, . . . , n}, a point xi ∈ b
such that δµ(xi) ∈ (↓li)c, for then every element of N above

∨n
i=1 δµ(xi)

will belong to U. Assume by contradiction that there exists i ∈ {1, . . . , n}
with

b ∩ δ−1
µ ((↓li)c) = ∅.

That is, b ⊆ δ−1
µ (↓li). Since ↓li is clopen, for each x ∈ b there is an open

neighbourhood Ux of δµ(x) contained in ↓li. By definition, δµ(x) is the
limit of the net {µ(b) | x ∈ b}, so for every x ∈ b there is bx ∈ B such
that x ∈ bx and µ(bx) ∈ Ux. We can assume without loss of generality
that each bx is contained in b. Then the clopen covering {bx | x ∈ b} of
b has a finite subcover {bx1 , . . . , bxp}. For every j ∈ {1, . . . , p} we have
µ(bxj) ∈ Ux ⊆ ↓li, thus

µ(b) = µ(bx1) ∨ · · · ∨ µ(bxp) 6 li,

a contradiction.

Theorem 3.34. Let S be a profinite idempotent semiring, and X a Boolean space.
Then the continuous homomorphisms of S-semimodules

δ : M(X, S)� C(X, S↓) :
∫
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of (3.19)–(3.20) are inverse to each other. Thus M(X, S), the algebra of all the S-
valued measures on X, is isomorphic to the algebra C(X, S↓) of all the continuous
S↓-valued functions on X.

Proof. In view of Lemma 3.33 we know that
∫
◦ δ is the identity of M(X, S),

for every Boolean space X. It remains to prove that, whenever f : X → S↓

is a continuous function, the measure µ =
∫

f satisfies f = δµ. That is, for
each x ∈ X,

f (x) =
∧ { ∫

b
f | x ∈ b, b ∈ B

}
,

where B is the dual algebra of X. Regarding the codirected set

N = {
∫

b
f | x ∈ b, b ∈ B}

as a net, this is equivalent to say that the limit of N is f (x). Consider co-
compact elements k, l1, . . . , ln of S such that the basic open set

U = ↓k ∩ (↓l1)c ∩ · · · ∩ (↓ln)c.

contains f (x). We must prove that N is eventually in U. Of course we have∫
b f ∈ (↓l1)c ∩ · · · ∩ (↓ln)c for every b containing x. So it suffices to find

a clopen b′ ∈ B such that x ∈ b′ and
∫

b′ f 6 k, for then every element of
N below

∫
b′ f will belong to U. Since the function f is continuous with

respect to the dual Scott topology of S, and ↓k is dual Scott open, f−1(↓k)
is an open neighbourhood of x. Let b′ ∈ B be a clopen satisfying x ∈ b′ ⊆
f−1(↓k). Then ∫

b′
f 6 k,

as was to be proved.

Note that, if the semiring S is finite, the dual Scott topology on S is sim-
ply the down-set topology, i.e. the Alexandroff topology of the order-dual
of S. In this situation, the previous theorem has the following immediate
corollary.

Theorem 3.35. Let S be a finite idempotent semiring, and X a Boolean space.
Then ŜX, the free profinite S-semimodule on X, is isomorphic to the algebra
C(X, S↓) of all the continuous S↓-valued functions on X.

Proof. This follows from Theorems 3.23 and 3.34.

Remark 3.36. If S is the two-element distributive lattice 2, then S↓ is home-
omorphic to the Sierpiński space. We thus recover from Theorem 3.35 the
classical representation of the Vietoris space V(X) of a Boolean space X as
the semilattice of all the continuous functions from X into the Sierpiński
space.
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Concluding remarks

The contributions of this chapter are twofold. On the one hand, we spelled
out in detail the basics of the theory of profinite monads as a categorical
approach to profinite algebra. While the categorical approach to univer-
sal algebra is well known, profinite monads have been introduced only
recently and they seem to have received attention only from the computer
science community. To the best of our knowledge, the only relevant publi-
cations on the subject are [6, 4].

One the other hand, we contribute a connection between profinite al-
gebra and measure theory, in the form of measures on Boolean algebras.
These objects were investigated, with different motivations, also in the
framework of fuzzy mathematics. There, one studies fuzzy measures tak-
ing values in the real interval [0, 1] equipped with a co-norm ⊥, see e.g.
[31, 141]. Although our results do not seem to be directly applicable when
⊥ is not idempotent (e.g., when ⊥ is the truncated sum ⊕), it would be in-
teresting to know if the same kind of ideas could be applied in that context.

It would also be interesting to investigate further the relation between
our representation result in terms of measures and the functional repre-
sentations of Shapiro and Radul of V(X), for X a compact Hausdorff, men-
tioned in Remark 3.26. In other words, can our result be somehow ex-
tended to spaces that are not zero-dimensional? Finally, another possible
direction for future work consists in exploring in more depth the rôle of
measures in logic, hence establishing a link between measures as they ap-
pear in logic on words, and in other contexts such as model theory [74]
or finite model theory [97]. In this direction, there might be a connection
between our measure-theoretic characterisation and the quantum monad
on relational structures introduced by Abramsky et al. in [2]. Cf. also the
comonadic approach to game theory put forward in [1].
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Chapter 4

Semiring quantifiers and
measures

In the context of logic on words, semiring quantifiers generalise the usual
existential quantifier ∃ by counting the number of witnesses for a formula
in a given semiring. Let (S,+, ·, 0S, 1S) be a semiring, and k an element
of S. If ϕ(x) is a formula with a free first-order variable x in a language
interpretable over words, and w ∈ A∗ is a word on a finite alphabet A, set

w � ∃S,kx.ϕ(x)

if and only if

1S + · · ·+ 1S︸ ︷︷ ︸
m times

= k,

where m is the cardinality of the set {1 6 i 6 |w| | w(i) � ϕ(x)} and w(i) is
the word obtained from w by marking the i-th position (cf. Section 1.3).

If S = Z/qZ, then we obtain the so-called modular quantifiers, intro-
duced by Straubing, Thérien and Thomas in [130]. In op. cit. it is shown
that the languages definable using modular quantifiers of modulus q are
exactly the languages whose syntactic monoids are solvable groups of car-
dinality dividing a power of q. Studying modular quantifiers is relevant
for tackling open problems in Boolean circuit complexity, see for exam-
ple [129] for a discussion. Since Boolean circuit classes contain non-regular
languages, expanding the automata theoretic techniques beyond the regu-
lar setting is relevant for addressing these problems.

In Chapter 2 we showed that applying a layer of existential quantifier
∃ to a Boolean algebra of languages corresponds to a transformation, at
the level of topological recognisers, sending a Boolean space with internal
monoid (X, M) to (♦X,♦M), see Theorems 2.9 and 2.10. The underly-
ing space of the BiM (♦X,♦M) is the Cartesian product V(X)× X, where
V(X) is the Vietoris hyperspace of X, and the internal monoid is given by a
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semidirect product construction. Here we will generalise this construction
to semiring quantifiers.

As already observed on page 60, V(X) is the free profinite semilattice
on the Boolean space X, and semilattices are semimodules over the Boolean
algebra 2. Thus, when moving from 2 to an arbitrary semiring S, we will
replace V(X) with ŜX, the free profinite S-semimodule on X. In Chapter
3 we provided a measure-theoretic characterisation of ŜX, whenever S is
a finite semiring (Theorem 3.23). Exploiting this result, we will be able to
identify optimal recognisers

(♦SX,♦S M)

for the languages obtained by applying semiring quantifiers ∃S,k with S
finite. In this respect, the main result of this chapter is Theorem 4.29. Set-
ting S = 2 we recover the main results of Chapter 2 concerning the unary
Schützenberger product of a BiM.

This chapter is a modified and extended version of the paper [49]. A
journal version is currently in preparation.

Outline of the chapter. In Section 4.1 we show that every finitary commu-
tative monad on the category of sets can be lifted to the category of Boolean
spaces with internal monoids. This result is instantiated in Section 4.2 in
the case of the semiring monads S with S finite, and the measure-theoretic
characterisation of Chapter 3 is used to provide a concrete description of
the constructions involved.

In Section 4.3 we develop a generic approach to build recognisers for
languages obtained by applying operations modelled by (finitary and
commutative) monads. This relies on the result on the lifting of set mon-
ads obtained in Section 4.1. In particular, we will be able to build BiMs
(♦SX,♦S M) recognising the quantified languages. Finally, Section 4.4 ex-
plains how these constructions are natural from a duality theoretic view-
point, and provides a Reutenauer-like result characterising the Boolean
algebra closed under quotients generated by the languages recognised by
the BiM (♦SX,♦S M).

In contrast with Chapter 3, in this chapter we often omit to mention ex-
plicitly the underlying-set functor | − | : BStone→ Set to ease readability.

4.1 Extending Set-monads to BiMs

One of the main constructions of Chapter 2 relies on the fact that the finite
power-set monad ℘ f on Set lifts to a functor taking a BiM (X, M) to the
BiM (V(X),℘ f (M)). The main result of this section, Theorem 4.4, states
that any Set-monad satisfying appropriate conditions can be lifted to a
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monad on the category of BiMs. However, for this to work, we need a slight
generalisation of the notion of BiM given in Section 1.4. More precisely, we
do not impose that the monoid is a dense subset of the space, but we only
require a function from the monoid to the space whose image is dense.
This is stated formally in Definition 4.1 below.

Throughout this chapter, we adopt the following notations. For a
Boolean space X we write [X, X] for the set of continuous endofunctions
on X, which comes equipped with the obvious monoid operation ◦ given
by composition. Given a monoid (M, ·), we will denote by

l : M→ MM and r : M→ MM

the two maps induced from the monoid multiplication via currying, which
correspond to the obvious left, respectively right action of M on itself.

Definition 4.1. A Boolean space with an internal monoid (BiM) is a tuple

(X, M, h, λ, ρ)

where X is a Boolean space, M is a monoid, h : M → X, λ : M → [X, X]
and ρ : M → [X, X] are functions such that h has a dense image and for all
m ∈ M the following diagrams commute in Set.

M X M X

M X M X

h

l(m) λ(m)

h

r(m) ρ(m)

h h

(4.1)

If no confusion arises, we write (X, M), or even just X, for the BiM
(X, M, h, λ, ρ). A morphism between two BiMs (X, M) and (X′, M′) is a
pair ( f̃ , f ) where f̃ : X → X′ is a continuous map, and f : M → M′ is a
monoid morphism such that

f̃ ◦ h = h′ ◦ f .

Note that since the image of h is dense in X, given f , f̃ is uniquely deter-
mined if it exists. Accordingly, we will sometimes just write f to designate
the pair as well as each of its components. We denote the ensuing category
of BiMs by BiM.

Remark 4.2. From the above definition it follows that λ and ρ induce com-
patible left and right actions of M on X with continuous components, and
h is equivariant. Indeed, since the image of h is dense in X it follows that
λ(m) and ρ(m) are the unique extensions to X of l(m) and r(m), respec-
tively. But the left and right actions of M on itself commute, hence λ and
ρ must enjoy the same properties. Therefore (X, h(M)) is a Boolean space
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with an internal monoid as defined in Section 1.4. Also, note that an equiv-
alent way of saying that the diagrams (4.1) commute for all m ∈ M is to
say that the following two diagrams commute in Set.

[X, X] XM [X, X] XM

M MM M MM

−◦h −◦h

λ

l

h◦− ρ

r

h◦−

The same notion of recognition introduced in Definition 1.28 applies to
this setting: a language L on a finite alphabet A is recognised by a morphism
of BiMs

f : (β(A∗), A∗)→ (X, M)

if there is a clopen C ⊆ X satisfying f−1(C) = L̂, where L̂ is the clopen of
β(A∗) corresponding to L. That is, f−1(h−1(C)) = L. As usual, we say that
(X, M) recognises a language L if there is a morphism f : (β(A∗), A∗) →
(X, M) recognising L, and it recognises a Boolean subalgebra B ⊆ ℘(A∗)
if it recognises each L ∈ B.

Let us fix, for the remainder of the section, a monad T on Set. In Theo-
rem 4.4 we will provide sufficient conditions for T to admit a lifting to the
category of BiMs, thus generalising the transformation

(X, M) 7→ (V(X),℘ f (M)).

In Section 3.1.2 of the previous chapter we have seen that the profinite
monad T̂ associated to T provides a canonical way of extending T to the
category of Boolean spaces. We will now consider ways of lifting T to the
category of monoids.

It is well known that there are two ‘canonical’ natural transforma-
tions of bifunctors ⊗,⊗′ : TX × TY → T(X × Y), defined intuitively as
follows. Thinking of elements in TX as terms t(x1, . . . , xn), the element
t(x1, . . . , xn)⊗ s(y1, . . . , ym) is defined as

t(s((x1, y1), . . . , (x1, ym)), . . . , s((xn, y1), . . . , (xn, ym))),

whereas t(x1, . . . , xn)⊗′ s(y1, . . . , ym) is defined as

s(t((x1, y1), . . . , (xn, y1)), . . . , t((x1, ym), . . . , (xn, ym))).

In general⊗ and⊗′ do not coincide, and when they do the monad is called
commutative, a notion due to Kock [77]. Given a monoid (M, ·, 1), one has
two possibly different ‘canonical’ ways of defining a binary operation on
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TM, obtained as either of the two composites

TM× TM T(M×M) TM.
⊗′

⊗ T(·)
(4.2)

If e : 1→ M denotes the map selecting the unit of the monoid, we can also
define a map 1 → TM obtained as the composite Te ◦ η1. That these data
(with either of the two binary operations) give rise to monoid structures
on TM is a consequence of [77, Theorem 2.1]. In Theorem 4.4 we shall
assume that the monad T is commutative and therefore the two monoid
structures on TM coincide. In order to prove the latter theorem, we need
the following lemma.

Lemma 4.3. For every monad T on Set, the sets TMTM and T̂XTM carry struc-
tures of T-algebras. If in addition T is finitary, then this also holds for the set
[T̂X, T̂X].

Proof. In universal algebraic terms, the first part of the lemma follows by
observing that, for any set A and algebra B, the power BA is again an alge-
bra with respect to pointwise operations. It thus suffices to instantiate this
fact to the free T-algebra TM on M, and to the T-algebra structure on T̂X
given in Lemma 3.8. For the second part of the statement, recall from Sec-
tion 3.1.2 that T̂X is the cofiltered limit of finite sets Yi carrying T-algebra
structures αi : TYi → Yi. We have the following isomorphisms in Set:

[T̂X, T̂X] ∼= [T̂X, limiYi]

∼= limi[T̂X, Yi]
∼= limi[limjYj, Yi]

∼= limi colimj [Yj, Yi],

where for the last isomorphism we have used the fact that the Yi are finite
spaces, whence finitely copresentable (cf. Definition 5.8 in Chapter 5). More-
over, notice that the colimit above is filtered. In view of the observation
above, since the sets Yi carry T-algebra structures, so do the sets

[Yj, Yi] ∼= Y
Yj
i .

If T is finitary, the forgetful functor SetT → Set creates both limits and
filtered colimits (cf. [18, Prop. 3.4.1–3.4.2]). Hence [T̂X, T̂X] carries a T-
algebra structure. Further, one can check that [T̂X, T̂X] is a subalgebra of
the T-algebra

T̂X
T̂X

obtained as in the first part of the proof. Hence the statement.
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Theorem 4.4. Any finitary commutative Set-monad T can be extended to a
monad on the category BiM mapping (X, M) to (T̂X, TM).

Proof. We first give the definition of the monad on an object (X, M, h, λ, ρ).
We will show that this is mapped to a BiM

(T̂X, TM, ĥ, λ̂, ρ̂),

where ĥ, ρ̂ and λ̂ are defined as follows. Define the function

ĥ : TM→ T̂X

as the composite

TM TX T̂X,Th τX (4.3)

where the natural transformation τ is as in Definition 3.7. By Lemma 3.9,
this function has dense image. Since both Th and τX are T-algebra mor-
phisms (cf. Lemma 3.8), we conclude that ĥ is also a T-algebra morphism.

To define λ̂, consider the composite of the following two maps, where
T̂X,X is given by the application of the functor T̂ to a continuous function
in [X, X]:

M [X, X] [T̂X, T̂X].λ T̂X,X (4.4)

Note that [T̂X, T̂X] is a T-algebra by Lemma 4.3, hence one can uniquely
extend the map in (4.4) to a T-algebra morphism λ̂ : TM → [T̂X, T̂X]. The
function ρ̂ is defined similarly, as the unique T-algebra morphism extend-
ing T̂X,X ◦ ρ.

In order to prove that (T̂X, TM, ĥ, λ̂, ρ̂) is a BiM, it remains to show that
the functions ĥ, λ̂ and ρ̂ make the diagrams in Definition 4.1 commute.
Equivalently, in view of Remark 4.2, that the next square (and the analo-
gous one with λ̂ replaced by ρ̂, and l̂ by r̂) commutes,

[T̂X, T̂X] T̂XTM

TM TMTM

−◦ĥ

λ̂

l̂

ĥ◦− (4.5)

where l̂ and r̂ denote the left and right action, respectively, of TM on it-
self. To this end, observe that the following diagram commutes. The two
trapezoids are easily seen to be commutative using the definition of ĥ and
the naturality of τ, whereas the inner square is a reformulation of the left
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commuting square in (4.1).

[T̂X, T̂X] T̂XTM

[X, X] XM

M MM TMTM

−◦ĥ

T̂X,X

−◦h

τX◦T−

λ

l

h◦−
TM,M

ĥ◦−

Claim. The functions ĥ ◦ − and − ◦ ĥ are T-algebra morphisms.

Proof of Claim. To see that ĥ ◦ − is a T-algebra morphism, we use the fact
that whenever αi : TBi → Bi for i ∈ {1, 2} are T-algebras and f : B1 → B2
is a T-algebra morphism, then Set(A, f ) : BA

1 → BA
2 is also a T-algebra

morphism.
On the other hand, the function − ◦ ĥ is obtained as the composite of

the two T-algebra morphisms

[T̂X, T̂X] T̂XT̂X T̂XTM,T̂Xĥ

hence it is a T-algebra morphism.

We derive the commutativity of (4.5) using the universal property of the
free T-algebra on M and by observing that a) in the outer square above, the
top horizontal and the right vertical arrows are morphisms of T-algebras
by the previous claim; b) the map λ̂ was defined as the unique extension
of T̂X,X ◦ λ to the free algebra TM; and, c) the map l̂ is the unique algebra
morphism extending TM,M ◦ l to TM.

It is now straightforward to check that the assignment (X, M) 7→
(T̂X, TM) yields the functor part of a monad on the category of BiMs.
We remark that the commutativity of the monad T is used in order to
show that (T̂X, TM) is a well-defined BiM (cf. the next remark) and, also,
to prove that we have indeed obtained a monad.

Remark 4.5. Suppose that the monad T is not commutative and we at-
tempt to use in the proof of Theorem 4.4 the monoid multiplication on TM
given by ⊗. All is fine for the right action and indeed the right action r̂ of
TM on itself is the unique extension of TM,M ◦ r. However, this is not the
case for the left action. Symmetrically, if we chose the multiplication of TM
stemming from⊗′, then the left action l̂ would be the extension of the map
TM,M ◦ l, but this property would fail for the right action.
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4.2 Extending the free semimodule monad to
BiMs

In Theorem 4.4 we showed how to lift any finitary commutative monad on
Set to a monad on BiM. The purpose of the present section is then twofold.
On the one hand we provide an example of a family of Set-monads to
which this result applies, and on the other hand we give explicit descrip-
tions of the various objects, maps and actions of the associated monads
on BiM. This will be essential for our further work on recognisers for the
quantified languages.

Given a semiring (S,+, ·, 0, 1), recall from Example 3.2 the free S-
semimodule monad S on Set. Notice that S is a commutative monad if,
and only if, S is a commutative semiring, i.e. the multiplication · is com-
mutative. Indeed, for a monoid M, the two monoid operations one can
define on SM (cf. equation (4.2)) are given as follows. If f , f ′ ∈ SM and
x ∈ M, then one can define f f ′(x) either by

∑
mm′=x

f (m) · f ′(m′) or ∑
m′m=x

f ′(m′) · f (m),

and the two coincide precisely when the semiring is commutative. Along
with the monad S, we consider its profinite monad Ŝ on BStone. In virtue
of Corollary 3.11 we know that, for any Boolean space X, ŜX is the free
profinite S-semimodule on X. In turn, provided S is finite, Theorem 3.23
allows us to identify ŜX with the algebra M(X, S) of all the S-valued mea-
sures on X. For this reason, for the rest of the chapter we assume that S is
a finite and commutative semiring.

As explained in Section 3.2, the set of measures M(X, S) is a topological
S-semimodule with respect to the pointwise operations

µ1 + µ2 : b 7→ µ1(b) + µ2(b)

and
s · µ : b 7→ s · µ(b),

for every s ∈ S. Now assume that X is not just a Boolean space, but a BiM.
To improve readability, we assume h : M → X is injective and identify M
with its image. Firstly, we observe that SM sits as a dense subspace of ŜX
by composing the map Sh : SM → SX with the integration map f 7→

∫
f

of equation (3.14). This is the concrete incarnation of the ‘comparison map’
τX , introduced in Definition 3.7, in the case of the monad S.

Lemma 4.6. Let (X, M) be a Boolean space with an internal monoid. Then

SM→ ŜX, f 7→
∫

f
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is the map ĥ from (4.3) transporting SM into a dense subspace of ŜX.

We remark that, since we assumed h is injective, then so is the map ĥ (cf.
the discussion after Lemma 3.9). Now, to exhibit the BiM structure of ŜX,
we start by identifying the actions of M on ŜX. We state these as lemmas
and, indeed, one can prove them directly. However, they are just special
cases of the more general results proved in the previous section.

Lemma 4.7. Let (X, M) be a Boolean space with an internal monoid. Further, let
µ ∈ ŜX and m ∈ M. Then

mµ : b 7→ µ(m−1b),

where m−1b = {x ∈ X | mx ∈ b} whenever b is a clopen of X, is again a
measure on X. This defines a left action of M on ŜX with continuous components.
Similarly,

µm : b 7→ µ(bm−1)

defines a right action of M on ŜX with continuous components, and these actions
are compatible, i.e. (mµ)n = m(µn).

Using the S-semimodule structure of ŜX, along with the biaction of M
on ŜX provided by the previous lemma, it is easy to obtain the biaction of
SM on ŜX. The following can be regarded as the specific incarnation of
Theorem 4.4.

Lemma 4.8. Let (X, M) be a Boolean space with an internal monoid. The map

SM× ŜX → ŜX, ( f , µ) 7→ f µ = ∑
m∈M

f (m) ·mµ

is a left action of SM on ŜX with continuous components. A right action with
continuous components may be defined similarly. Finally, the two actions are
compatible and provide the BiM structure on (ŜX, SM).

Next, we consider a restriction of the above action of SM on ŜX which
we will need for the construction of the space ♦SX in Section 4.3. This is
given by precomposing with the unit of the monad Ŝ:

η̂X : X → ŜX, x 7→ µx

where µx is the measure concentrated in x. That is, µx(b) = 1 if x ∈ b, and
µx(b) = 0 otherwise. It is immediate that this map embeds X as a (closed)
subspace of ŜX. Thus we obtain an ‘action’

SM× X → ŜX, ( f , x) 7→ f µx,

which factors through the integration map τX : SX → ŜX. We record this
fact in the following lemma.
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Lemma 4.9. Let (X, M) be a BiM. Consider the map

SM× X → SX, ( f , x) 7→ f x,

where f x(y) = ∑mx=y f (m). Then we have

f µx =
∫

f x.

Furthermore, for each f ∈ SM, the assignment x 7→
∫

f x is continuous.

4.3 Recognisers for operations given by S-valued
transductions

In this section we will see how we can use the extension of a Set-monad
T to BiM obtained in Section 4.1 to generate recognisers for languages ob-
tained by applying an operation modelled by the monad T, specifically
by a Kleisli map R : A∗ → T(B∗). If T is the power-set monad, then the
Kleisli maps for T are so-called transductions,1 and it is by now a standard
result in formal language theory that transductions can be used to model
operations on languages, see [103]; in Section 4.3.2 we see how semiring
quantifiers fit into this pattern. In Section 4.3.1 we present the blueprint of
our approach, using an additional assumption on the T-Kleisli map under
consideration (namely that it is a monoid morphism), and in Section 4.3.2
we instantiate T to the free S-semimodule monads for finite commutative
semirings S and we adapt the general theory developed previously.

4.3.1 Recognising operations modelled by a monad

Let T be an arbitrary commutative and finitary monad on Set, and let A, B
be finite sets. We start by observing that a function R : A∗ → T(B∗), i.e. a
morphism in the Kleisli category Kl(T) of T, could be used to transform lan-
guages in the alphabet B into languages in the alphabet A (for background
on Kleisli categories the reader can consult, e.g., [86, VI.5]). Assume that
L = ϕ−1(P) for some monoid morphism ϕ : B∗ → M and some P ⊆ M.
We consider the function

A∗ T(B∗) TM.R Tϕ

1Roughly, a finite state transducer can be seen as a finite automaton in which the label of
each edge does not only describe an input letter, but also an output word. While automata
recognise (or generate) words, transducers transform them.
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Since T is a commutative monad, we know that it lifts to the category of
monoids, and hence we can see Tϕ as a monoid morphism. If R is also a
monoid morphism, and we will assume this only in this subsection, then
so is Tϕ ◦ R, and it could be used for language recognition in the stan-
dard way. Assuming that we have a way of turning the recognising sets in
M into recognising sets in TM, i.e., that we have a predicate transformer
℘(M) → ℘(TM) mapping P to P̃, we obtain a language L̃ in A∗ as the
preimage of P̃ under the monoid morphism Tϕ ◦ R.

Remark 4.10. In the running example of the next subsection we will need
maps R that are not monoid morphisms, and in that setting we will have to
use a matrix representation of the transduction instead. Nevertheless, the
techniques used in the next subsection can be seen as an adaptation of the
theory developed here for the case where R is indeed a monoid morphism.

We are interested in languages recognised by a BiM morphism as fol-
lows.

β(B∗) X

B∗ M

ϕ̃

ϕ

h (4.6)

We recall that to improve readability, and since ϕ̃ is uniquely deter-
mined by its restriction to B∗, we sometimes denote such a morphism
of BiMs simply by ϕ instead of (ϕ̃, ϕ). By Theorem 4.4, we know that
(T̂X, TM) is a BiM, and in what follows we use it for recognising A-
languages by constructing another BiM morphism

(β(A∗), A∗)→ (T̂X, TM)

as in Lemma 4.11 below. To this end, we need a way of lifting the Kleisli
map R : A∗ → T(B∗) to a Kleisli map for the monad T̂. This can be done in
a natural way using a natural transformation

τ# : βT ⇒ T̂β

obtained from the natural transformation τ : T ◦ | − | ⇒ | − | ◦ T̂ (see Defi-
nition 3.7) using the unit ι and counit ε of the adjunction β a | − | in equa-
tion (3.2). Explicitly, τ# is obtained as the composite

βT βT| − |β β| − |T̂β T̂β.
βTι βτβ εT̂β

(4.7)

This is a rather standard construction in category theory, see for exam-
ple [131, Theorem 9]. It follows that, just like τ, the natural transformation
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β(A∗) T̂β(B∗) T̂X

A∗ T(B∗) TM

R̂ T̂ ϕ̃

ι

R Tϕ

τX◦Th

FIGURE 4.1: BiM morphism obtained from (ϕ̃, ϕ) by
means of the Kleisli map R.

τ# : βT ⇒ T̂β also behaves well with respect to the units and multiplica-
tions of the monads. That is, in the terminology of [131], the pair (β, τ#) is
a monad opfunctor. This in turn implies that β can be lifted to a functor β̂ be-
tween the Kleisli categories making the square in (4.8) commute, where the
vertical functors are the free functors from the base to the Kleisli categories.

Kl(T) Kl(T̂)

Set BStone

β̂

β

(4.8)

The functor β̂ sends the Kleisli map R : A∗ → T(B∗) to the Kleisli map
R̂ : β(A∗)→ T̂β(B∗) given by the composite

R̂ : β(A∗) βT(B∗) T̂β(B∗).
βR τ#

(4.9)

Lemma 4.11. If the pair (ϕ̃, ϕ) from (4.6) is a BiM morphism, then so is the pair

(T̂ ϕ̃ ◦ R̂, Tϕ ◦ R)

described in Figure 4.1.

Proof. Using the definition of R̂, we need to show that next diagram com-
mutes.

|β(A∗)| |βT(B∗)| |T̂β(B∗)| |T̂X|

T|β(B∗)| T|X|

A∗ T(B∗) TM

|βR| |τ#| |T̂ ϕ̃|

T|ϕ̃|
τ τ

ι

R

ι

Tι

Tϕ
Th

The two rectangles commute by naturality of ι, respectively τ, and the bot-
tom right rhombus commutes because ϕ is a morphism of BiMs. Finally,
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recalling from equation (4.7) the definition of the natural transformation
τ#, one can prove that the middle trapezoid is also commutative.

4.3.2 Recognising quantified languages via S-transductions

We now show how to construct BiMs recognising quantified languages.
We start with a language L in the extended alphabet A× 2 recognised by a
BiM morphism as displayed below.

β((A× 2)∗) X

(A× 2)∗ M

ϕ̃

ϕ

h

In other words, there exists a clopen C of X such that L = ϕ−1(h−1(C)).
Fix a finite and commutative semiring (S,+, ·, 0, 1), and pick k ∈ S. The
aim of this subsection is to construct recognisers for the quantified languages

Qk(L)

(we omit reference to S to ease readability) of those w ∈ A∗ such that

1S + · · ·+ 1S︸ ︷︷ ︸
m times

= k,

where m is the cardinality of the set

{1 6 i 6 |w| | w(i) ∈ L}.

If the language L is defined by the formula ϕ(x), then Qk(L) is defined by
the sentence ∃S,kx.ϕ(x), as illustrated at the beginning of the chapter. If
S = 2 and k = 1, or S = Z/qZ and k = p, we denote the language Qk(L)
by L∃ and L∃p mod q

, respectively. Consider the function

R : A∗ → S((A× 2)∗), w 7→
|w|

∑
i=1

1S · w(i).

If S is the Boolean algebra 2, then R simply associates to each word w the
set of all words in (A× 2)∗ with the same shape as w and with exactly one
marked letter. The framework developed in the previous subsection does
not immediately apply, since R is not a monoid morphism. So the first step
we have to take is to obtain a monoid morphism from R, which will then
be used to construct BiM recognisers for the quantified languages.
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Upon viewing R as an S-transduction (see, e.g., [116]), we observe that
it is realised by the rational S-transducer TR pictured in Figure 4.2, in which
we have drawn transition maps only for a generic letter a ∈ A. This trans-

1start 2

a|a

a|a′

a|a

FIGURE 4.2: The S-transducer TR realising R. All the tran-
sitions have weights 1S, and thus the transducer outputs
value 1S for all pairs of the form (w, w(i)), with w ∈ A∗

and 1 6 i 6 |w|.

ducer provides the following representation of R in terms of a monoid mor-
phism

R : A∗ →M2(S((A× 2)∗)), (4.10)

whereMn(S((A× 2)∗)) denotes the set of n× n-matrices over the semi-
module S((A× 2)∗). For a word w ∈ A∗, the matrix R(w) has at position
(i, j) the formal sum of output words obtained from the transducer TR by
going from state i to state j while reading the input word w. Recalling that
w0 represents the word w with no marked position, as defined on page 35,
R is given by

w 7→
(

1S · w0 ∑i 1S · w(i)

0S 1S · w0

)
.

Example 4.12. Assume S is the Boolean algebra 2, regarded as a semiring.
Then S = ℘ f is the finite power-set monad and

R(w) = {w(i) | 1 6 i 6 |w|}.

The language L∃ ⊆ A∗ is recognised by the following composite monoid
morphism, that will be denoted by ϕ∃.

A∗ M2(℘ f ((A× 2)∗)) M2(℘ f (M))R M2(℘ f ϕ)

Indeed, if L = ϕ−1(P) for some P ⊆ M, then L∃ = ϕ−1
∃ (P̃), where P̃ is

the set of matrices inM2(℘ f (M)) such that the finite set in position (1, 2)
intersects P.

Example 4.13. Assume S is the semiring Z/qZ. The language L∃p mod q
⊆

A∗ is recognised by the following composite monoid morphism, denoted
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by ϕ∃p mod q
.

A∗ M2(S((A× 2)∗)) M2(SM)R M2(Sϕ)

Indeed, if L = ϕ−1(P) for some P ⊆ M, then L∃p mod q
= ϕ−1

∃p mod q
(P̃), where

P̃ is the set of matrices inM2(SM) such that the finitely supported func-
tion f : Z/qZ → M in position (1, 2) has the property that

∫
P f = p in

Z/qZ.

In view of Theorem 4.4, we know that whenever (X, M) is a BiM, then
so is (ŜX, SM) with the actions of the internal monoid as in Lemma 4.8.
Using this fact as an intermediate step, we can prove the following lemma.

Lemma 4.14. If (X, M) is a BiM, then so is

(Mn(ŜX),Mn(SM))

for any integer n > 1.

Proof. Notice that the set Mn(ŜX) is a Boolean space with respect to the
product topology of n× n copies of ŜX. The statement then follows easily
upon defining the actions of the monoid Mn(SM) on Mn(ŜX) by using
the actions of SM on ŜX via matrix multiplication, and the S-semimodule
structure of ŜX. For example, the left action of ( fij)i,j ∈ Mn(SM) on
(µij)i,j ∈ Mn(ŜX) yields a matrix of measures in ŜX having at position
(i, j) the measure ∑n

k=1 fikµkj.

Next we will see that the monoid morphisms ϕ∃ and ϕ∃p mod q
con-

structed in Examples 4.12 and 4.13 can be extended to BiM morphisms
recognising L∃ and L∃p mod q

, respectively.

Lemma 4.15. If the pair (ϕ̃, ϕ) from (4.6) is a morphism of BiMs and

R : A∗ →Mn(S(B∗))

is a monoid morphism, then the pair (Mn(Ŝϕ̃) ◦ R̂,Mn(Sϕ) ◦ R) described in
the next diagram is also a BiM morphism,

β(A∗) Mn(Ŝβ(B∗)) Mn(ŜX)

A∗ Mn(S(B∗)) Mn(SM)

R̂ Mn(Ŝϕ̃)

R Mn(Sϕ)

Mn(τX◦Sh)
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where R̂ is the map obtained as the unique continuous extension of the following
composition:

A∗ Mn(S(B∗)) Mn(βS(B∗)) Mn(Ŝβ(B∗)).R Mn(ι) Mn(τ#)

Proof. This follows essentially by Lemma 4.11 by setting T = S, along with
the functoriality of Mn( ). Note that the lemma applies to this setting
becauseR is a monoid morphism.

When we apply the previous lemma to the monoid morphism R of
(4.10) we obtain the BiM (M2(ŜX),M2(SM)) which, when instantiated
with the appropriate semiring S, recognises e.g. the quantified languages
L∃ and L∃p mod q

.
For instance, suppose the semiring S is Z/qZ. If L is recognised by a

clopen C ⊆ X then, upon recalling from (3.12) that subbasic clopens of ŜX
are of the form 〈b, k〉 for b a clopen of X and k ∈ S, one can easily prove
that the quantified language L∃p mod q

is recognised by the clopen subset of

M2(ŜX) given by the product

ŜX× 〈C, p〉 × ŜX× ŜX,

where the elements of the clopen 〈C, p〉 should appear in position (1, 2) in
the matrix view of the space.

However, notice that the image of the morphism M2(Sϕ̃) ◦ R̂ is con-
tained in the subspace ofM2(ŜX) which can be represented by the matrix(

X ŜX
0 X

)
.

As a consequence, we can use for the same recognition purpose a smaller
BiM, through which the morphism M2(Sϕ̃) ◦ R̂ factors. We denote this
morphism by

♦S ϕ : (β(A∗), A∗)→ (♦SX,♦S M), (4.11)

where
♦SX = ŜX× X and ♦S M = SM×M. (4.12)

The monoid structure on ♦S M, and the biaction of ♦S M on ♦SX, are de-
fined essentially by identifying the products above with upper triangular
matrices, and then using the matrix multiplication and the concrete de-
scription of several monoid actions from Lemmas 4.7 and 4.9. Using the
notations described in these lemmas, the left action can be described by(

m f
0 m

)(
x µ
0 x

)
=

(
mx mµ +

∫
f x

0 mx

)
,
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where ( f , m) ∈ ♦S M and (µ, x) ∈ ♦SX. Recall from the discussion at
the beginning of this subsection that the language Qk(L) in the alphabet
A is obtained by ‘quantifying’ the language L ⊆ (A× 2)∗ with respect to
the quantifier associated to a semiring S and an element k ∈ S. We sum-
marise the preceding observations in the following theorem which, in a
sense, states that our construction is sound. Completeness will be established
in the next section, cf. Theorem 4.29.

Theorem 4.16. Let S be a finite commutative semiring, and k ∈ S. Suppose a
language L ⊆ (A× 2)∗ is recognised by a BiM morphism

ϕ : (β((A× 2)∗), (A× 2)∗)→ (X, M).

Then the quantified language Qk(L) ⊆ A∗ is recognised by the BiM morphism

♦S ϕ : (β(A∗), A∗)→ (♦SX,♦S M)

in equation (4.11).

Remark 4.17. The notation (♦SX,♦S M) introduced in equation (4.12) is
consistent with the one in Chapter 2. Indeed, if S is the Boolean algebra 2
and k = 1, the BiM (♦2X,♦2 M) coincides with the unary Schützenberger
product (♦X,♦M) of Definition 2.7. Therefore we recover the results in
Chapter 2 on existential quantification. In particular, Theorem 2.9 follows
at once from the theorem above.

4.4 Duality-theoretic account of the construction

In the previous section we defined a BiM (♦SX,♦S M) that recognises the
quantified languages Qk(L) we are interested in. However, this construc-
tion was ‘pulled out of a hat’. The aim of this section is to derive, by duality,
that the space ♦SX and the actions of the monoid ♦S M are, indeed, the
right ones. To improve readability, we simply write ♦X,♦M and ♦ϕ in-
stead of ♦SX,♦S M and ♦S ϕ (cf. equations (4.11) and (4.12)).

Let S be a finite and commutative semiring, (X, M) a BiM and B the
dual algebra of the Boolean space X. Further, consider a BiM morphism

ϕ : (β((A× 2)∗), (A× 2)∗)→ (X, M)

and let B be the preimage under ϕ of B. That is, B is the Boolean algebra,
closed under quotients in ℘((A× 2)∗), of languages recognised by ϕ.

In equation (4.11) we introduced the map ♦ϕ as a recogniser for the
quantified languages obtained from the languages in B. Here we prove
that ♦ϕ is in fact the dual of a certain morphism of Boolean algebras with
quotient operations whose image B′ is generated as a Boolean algebra
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closed under quotients by the languages obtained either by quantification
of languages from B, or by direct recognition via the composition of ϕ with
the embedding

( )0 : β(A∗)→ β((A× 2)∗), w 7→ w0.

In the process we also show that the actions of ♦M on ♦X, given by matrix
multiplication in Section 4.3.2, arise by duality from the quotient opera-
tions on B′.

We then conclude with a Reutenauer-type result (Theorem 4.29), show-
ing that the Boolean algebra closed under quotients generated by the A-
languages recognised by length preserving morphisms into ♦X is precisely
the Boolean algebra generated by those recognised by X directly and those
obtained by quantification from languages in (A× 2)∗ recognised by X.

4.4.1 The BiM ♦X by duality

Recall from (4.9) the Kleisli map R̂. Notice that the continuous map

ϕQ : β(A∗) Ŝβ((A× 2)∗) ŜXR̂ Ŝϕ

which is given for w ∈ A∗ by

ϕQ(w) =
∫

fw,

where

fw =
|w|

∑
i=1

1S · ϕ(w(i)), (4.13)

recognises the quantified languages Qk(L) for k ∈ S and L ∈ B. In fact,
the clopen in β(A∗) corresponding to Qk(L) is ϕQ

−1(〈K, k〉) where K ⊆ X
is the clopen in X recognising L via ϕ, and 〈K, k〉 is as in equation (3.12).
Since the clopens of ŜX are generated by the sets of the form 〈K, k〉 with
k ∈ S and K ⊆ X clopen, we have:

Proposition 4.18. The Boolean algebra QB of those languages over A which
are inverse images of clopens under ϕQ is generated by the quantified languages
Qk(L), for k ∈ S and L ∈ B.

Note that QB, as defined in the previous proposition, is not closed un-
der quotients. This is the reason we had to make an adjustment between
Sections 4.3.1 and 4.3.2 above.
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We denote by B0 the Boolean algebra of languages closed under quo-
tients which is recognised by the composite BiM morphism

ϕ0 : (β(A∗), A∗) (β(A× 2)∗, (A× 2)∗) (X, M).
( )0 ϕ

Note that B0 consists of all languages of the form L0 = ϕ0
−1(K), obtained

as the preimage under ( )0 of languages L = ϕ−1(K) in B. Taking the
product map, it now follows that

♦ϕ = ϕQ × ϕ0 : β(A∗)→ ŜX× X,

viewed just as a map of Boolean spaces, recognises the Boolean algebra
generated by QB ∪ B0. However, since QB is not closed under quotients,
a priori, neither is <QB ∪ B0>BA.

The Boolean algebra B′ that we are interested in is the closure under
quotients of <QB ∪ B0>BA. The important observation is that <QB ∪
B0>BA is already closed under the quotient operations, thus explaining why
ŜX× X, with the above product map, is the right recogniser space-wise.

Proposition 4.19. The Boolean algebra generated by QB ∪ B0 is closed under
quotients. That is,

B′ = <Qk(L), L0 | L ∈ B and k ∈ S>BA.

Proof. Since B0 is closed under quotients, it suffices to consider the quoti-
enting of languages of the form Qk(L) = ϕQ

−1(〈K, k〉) where K ⊆ X is the
clopen recognising L via ϕ. For u ∈ A∗ we have

u−1Qk(L) = {w ∈ A∗ | uw ∈ Qk(L)}

= {w ∈ A∗ |
∫

fuw ∈ 〈K, k〉}.

Since the free variable in the word uw occurs either in u or in w,

fuw = ϕ(u0) fw + fu ϕ(w0).

Further, since
∫
(ϕ(u0) fw + fu ϕ(w0)) =

∫
ϕ(u0) fw +

∫
fu ϕ(w0), we have

u−1Qk(L) = {w ∈ A∗ |
∫

ϕ(u0) fw +
∫

fu ϕ(w0) ∈ 〈K, k〉}

=
⋃

k1+k2=k

{w ∈ A∗ |
∫

ϕ(u0) fw ∈ 〈K, k1〉 and
∫

fu ϕ(w0) ∈ 〈K, k2〉}.

Now, ∫
ϕ(u0) fw ∈ 〈K, k1〉 ⇐⇒

∫
fw ∈ 〈ϕ(u0)−1K, k1〉 (4.14)
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which in turn is equivalent to w ∈ Qk1((u
0)−1L), which is an element of

QB. We now proceed with the second condition. We have
∫

fu ϕ(w0) ∈
〈K, k2〉 if, and only if, there is a set

I ⊆ Sup( fu),

where Sup( fu) = {m ∈ M | fu(m) 6= 0}, satisfying

•
∫

I fu = k2;

• mϕ(w0) ∈ K for each m ∈ I;

• mϕ(w0) 6∈ K for each m 6∈ I.

Observe that mϕ(w0) ∈ K if, and only if, w ∈ ϕ0
−1(m−1K). Thus

{w ∈ A∗ |
∫

fu ϕ(w0) ∈ 〈K, k2〉}

is equal to

⋃
I⊆Sup( fu)∫

I fu=k2

(
[
⋂

m∈I
ϕ0
−1(m−1K)] ∩ [

⋂
m∈Ic

ϕ0
−1(m−1Kc)]

)
, (4.15)

which is in B0.

Corollary 4.20. The dual space of B′ is a closed subspace of ŜX× X. In particu-
lar, B′ is recognised as a Boolean algebra by ŜX× X.

Proof. By the previous proposition, B′ = <QB ∪ B0>BA. But B0 is the
preimage of the dual of X under ϕ0, andQB is the preimage of the dual of
ŜX under ϕQ. Thus B′ is the preimage of the dual of ŜX × X under ♦ϕ,
and therefore B′ is recognised as a Boolean algebra by ŜX× X.

Now, factoring the map ♦ϕ, we obtain a closed subspace Y of ŜX× X:

♦ϕ : β(A∗)� Y ↪→ ŜX× X.

Since the dual of the quotient map β(A∗) � Y is an embedding whose
image is B′, the dual of Y is isomorphic to B′.

Now, we want to understand why the actions on ♦X are as described
in Section 4.3.2. For this purpose let us recall that the internal monoid in
♦X is ♦M = SM×M and that for ( f , m) ∈ ♦M, the component of the left
action

λ( f , m) : ♦X → ♦X
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is given by its two components:

λ1( f , m) : ŜX× X → ŜX, (µ, x) 7→ mµ +
∫

f x,

and
λ2( f , m) : ŜX× X → X, (µ, x) 7→ mx.

We will show by duality that this is the appropriate action on ♦X for mak-
ing ♦ϕ a BiM morphism. For this purpose, we consider the homomor-
phism dual to ♦ϕ:

δ : B̂ + B→ ℘(A∗), 〈K, k〉 7→ ϕQ
−1(〈K, k〉), K 7→ ϕ0

−1(K).

We already know, by Proposition 4.19, that the image of δ is closed under
quotients. The point is, in fact, that Proposition 4.19 tells us that we can
define a biaction on B̂ + B so that δ becomes a homomorphism of Boolean
algebras with biactions. Thus, for each ( f , m) ∈ ♦M, we want to define a
‘left quotient’ by ( f , m) (that is, the component at ( f , m) of a right action)
on B̂ + B (and a ‘right quotient’, which is a left action) so that δ becomes a
homomorphism of Boolean algebras with biactions.

The monoid morphism from A∗ to ♦M is given by sending the inter-
nal monoid element u ∈ A∗ to the internal monoid element ( fu, ϕ(u0)) in
SM×M, where fu is defined as in equation (4.13). Now, the component at
( f , m) of a ‘left quotient’ operation on B̂ + B is a homomorphism

Λ( f , m) : B̂ + B→ B̂ + B.

Such a homomorphism is determined by its components Λ1( f , m) : B̂ →
B̂ + B and Λ2( f , m) : B→ B̂ + B. Our goal then, is to show that:

• the computation of quotient operations in the image of δ combined
with wanting δ to be a morphism of Boolean algebras with biactions,
dictates what Λ1( f , m) and Λ2( f , m) must be;

• Λ1( f , m) is dual to λ1( f , m) and Λ2( f , m) is dual to λ2( f , m).

The symmetric facts for the right action are similar and thus we only con-
sider the left action. Also, note that we will not prove directly that the
Λ( f , m)’s that we define are components of a right action on a Boolean al-
gebra, as this will follow from the second bullet point above since we have
seen in Section 4.3 that λ is a left action on the dual space.

So, we want to define the action such that δ becomes a homomorphism
sending the action of ( fu, ϕ(u0)) to the action of the quotient operation
u−1( ) on ℘(A∗). The computations in the proof of Proposition 4.19 tell us
the components of u−1 ϕQ

−1(〈K, k〉) in QB and in B0, respectively. Since
QB and B0 are precisely the images under δ of B̂ and B, respectively,
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the computation tells us how to define Λ1( fu, ϕ(u0)) using components
Λ11( f , m) : B̂→ B̂ and Λ12( f , m) : B̂→ B.

By the computation in (4.14), the component Λ11( f , m) : B̂ → B̂ de-
pends only on the second coordinate of the pair ( fu, ϕ(u0)) and it sends
〈K, k〉 to 〈(ϕ(u0))−1K, k〉. Stating it for an arbitrary element ( f , m) ∈ SM×
M, we have

Λ11( f , m) : B̂→ B̂, 〈K, k〉 7→ 〈m−1K, k〉.

Similarly, the computation in (4.15), stated for an arbitrary element ( f , m) ∈
SM×M, yields Λ12( f , m) : B̂→ B given by

〈K, k〉 7→
⋃

I⊆Sup( f )∫
I f=k

(
[
⋂
n∈I

n−1K] ∩ [
⋂

n∈Ic

n−1Kc]
)
. (4.16)

The above observations imply that

Proposition 4.21. The map δ : B̂ + B→ ℘(A∗) is a homomorphism of Boolean
algebras with biactions when we define the left quotient operation Λ( f , m) of B̂ +
B on B̂ by

Λ1( f , m) : 〈K, k〉 7→
∨

k1+k2=k

(Λ11(〈K, k1〉) ∧Λ12(〈K, k2〉))

and on B by Λ2( f , m) : K 7→ m−1K.

It is now an easy verification that the maps Λ11( f , m) and Λ12( f , m)
are dual to the summands of the first component of the action of ( f , m) on
♦X, and that Λ1( f , m) and Λ2( f , m) are dual to λ1( f , m) and λ2( f , m) as
defined in Section 4.3, respectively.

Lemma 4.22. The homomorphism Λ11( f , m) : B̂ → B̂ given by 〈K, k〉 7→
〈m−1K, k〉 is dual to the continuous function λ11( f , m) : ŜX → ŜX given by
µ 7→ mµ, where

mµ : B→ S, K 7→ µ(m−1K).

Proof. The function λ11( f , m) is dual to Λ11( f , m) if and only if, for all µ ∈
ŜX and all 〈K, k〉 ∈ B̂ we have

λ11( f , m)µ ∈ 〈K, k〉 ⇐⇒ µ ∈ Λ11( f , m)〈K, k〉.

But λ11( f , m)µ = mµ, so

λ11( f , m)µ ∈ 〈K, k〉 ⇐⇒ mµ ∈ 〈K, k〉
⇐⇒ mµ(K) = k

⇐⇒ µ(m−1K) = k
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⇐⇒ µ ∈ 〈m−1K, k〉 = Λ11( f , m),

as was to be proved.

Lemma 4.23. The homomorphism Λ12( f , m) : B̂ → B given as in (4.16) is dual
to the continuous function λ12( f , m) : X → ŜX given by x 7→

∫
f x, where∫

f x : B→ S, K 7→
∫

Kx−1
f .

Proof. Let x ∈ X and [K, k] ∈ B̂. Then∫
f x ∈ [K, k] ⇐⇒

∫
K

f x = k

⇐⇒
∫

Kx
f = k

⇐⇒ ∑
x∈n−1K

f (n) = k,

and the latter is true if, and only if, there exists I ⊆ Sup( f ) with
∫

I f = k
satisfying x ∈ n−1K for each n ∈ I and x 6∈ n−1K for each n 6∈ I. That is,∫

f x ∈ [K, k] ⇐⇒ x ∈ λ12( f , m)[K, k].

Lemma 4.24. The homomorphism Λ1( f , m) : B̂ → B̂ + B given as in Proposi-
tion 4.21 is dual to the continuous function λ1( f , m) : ŜX × X → ŜX given by
(µ, x) 7→ mµ +

∫
f x.

Proof. Let (µ, x) ∈ ŜX× X and [K, k] ∈ B̂. Then

λ1( f , m)(µ, x) ∈ [K, k] ⇐⇒ λ11( f , m)µ + λ12( f , m)x ∈ [K, k]

⇐⇒ ∃k1, k2 (k1 + k2 = k, λ11( f , m)µ ∈ [K, k1], and λ12( f , m)x ∈ [K, k2])

⇐⇒ ∃k1, k2 (k1 + k2 = k, µ ∈ Λ11( f , m)[K, k1], and x ∈ Λ12( f , m)[K, k2])

⇐⇒ (µ, x) ∈ Λ1[K, k],

as was to be shown.

It is straightforward that Λ2( f , m) : K 7→ m−1K is dual to λ2 : x 7→ mx.
We conclude that

Corollary 4.25. The left quotienting operation Λ on B̂ + B defined in Proposi-
tion 4.21 is dual to the left action of ♦M on ♦X.

A similar result holds for the right action. As a consequence, we have
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Theorem 4.26. Let ϕ : (β((A× 2)∗), (A× 2)∗)→ (X, M) be a BiM morphism.
Then the BiM morphism

♦ϕ : (β(A∗), A∗)→ (♦X,♦M)

derived in Section 4.3.2 is dual to the homomorphism of Boolean algebras with
biactions

δ : B̂ + B→ ℘(A∗), 〈K, k〉 7→ ϕQ
−1(〈K, k〉), K 7→ ϕ0

−1(K)

obtained by equipping B̂ + B with the biaction of ♦M as indicated in Proposi-
tion 4.21.

4.4.2 A Reutenauer theorem for ♦X

In this last subsection we prove a Reutenauer-like theorem characterising
the Boolean algebra closed under quotients generated by all languages
recognised by the space ♦X with respect to length preserving morphisms.
As already mentioned in Chapter 2, this theorem is akin to the result of
Reutenauer [113] characterising the languages recognised by the binary
Schützenberger product of two monoids.

Definition 4.27. We call a BiM morphism ψ : (β(A∗), A∗) → (♦X,♦M)
length preserving provided, for each a ∈ A, we have that

π1 ◦ ψ(a) : M→ S

is the characteristic function χma for some ma ∈ M. That is, π1 ◦ψ(a)(m) =
1 if m = ma, and π1 ◦ ψ(a)(m) = 0 otherwise.

Recall that, given any BiM morphism

ϕ : (β((A× 2)∗), (A× 2)∗)→ (X, M),

we obtain a BiM morphism

♦ϕ : (β(A∗), A∗)→ (♦X,♦M), w 7→ (
∫

fw, ϕ(w0)).

Note that, upon defining fa = π1 ◦♦ϕ(a), we have

fa = χma

where ma = ϕ(a, 1), so that ♦ϕ is length preserving. Conversely,

Proposition 4.28. Let X be a BiM. Every length preserving BiM morphism

(β(A∗), A∗)→ (♦X,♦M)
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is of the form♦ϕ for some BiM morphism ϕ : (β((A× 2)∗), (A× 2)∗)→(X, M).

Proof. Consider an arbitrary length preserving BiM morphism

ψ : (β(A∗), A∗)→ (♦X,♦M).

We define ϕ : (β((A× 2)∗), (A× 2)∗)→ (X, M) by

ϕ : (A× 2)∗ → M,

(a, 0) 7→ π2 ◦ ψ(a)

(a, 1) 7→ ma

where ma ∈ M is such that π1 ◦ ψ(a) = χma . The universal property of the
Stone-Čech compactification guarantees that ϕ is a BiM morphism with the
topological component ϕ̃ = βϕ. It now suffices to show that ψ(a) = ♦ϕ(a)
for each a ∈ A. We have

♦ϕ(a) = ( fa, ϕ0(a)) = (χϕ(a,1), ϕ(a, 0))

= (χma , π2 ◦ ψ(a)) = (π1 ◦ ψ(a), π2 ◦ ψ(a)) = ψ(a),

which concludes the proof.

We can finally prove our Reutenauer-like result, which characterises the
Boolean algebra closed under quotients of languages recognised by length
preserving morphisms into ♦X. In a sense, the theorem states that the BiM
♦X is optimal for the recognition of quantified languages.

Theorem 4.29. Let X be a BiM, and A a finite alphabet. The Boolean subalge-
bra closed under quotients of ℘(A∗) generated by all languages over A which
are recognised by a length preserving BiM morphism into ♦X is generated as a
Boolean algebra by the languages over A recognised by X, and the quantified lan-
guages Qk(L) for L a language over A× 2 recognised by X.

Proof. Let us denote by B′′ the Boolean algebra generated by the languages
over A recognised by X and the languages Qk(L) for L a language over
A× 2 recognised by X. If L′ ∈ ℘(A∗) is recognised by a length preserving
BiM morphism

ψ : (β(A∗), A∗)→ (♦X,♦M),

then by Proposition 4.28 there is a BiM morphism

ϕ : (β((A× 2)∗), (A× 2)∗)→ (X, M)

such that ♦ϕ = ψ. That is, L′ lies in the Boolean algebra called B′ in the
beginning of this section. Since B′ ⊆ B′′ by Proposition 4.19, we have
L′ ∈ B′′.
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For the reverse containment, if L is a language over A × 2 recognised
by X, then Qk(L) is recognised by ♦X through a length preserving mor-
phism in view of Theorem 4.16. Finally, suppose L is a language over A
recognised by η : β(A∗)→ X through the clopen K. Consider any function

ϕ : β((A× 2)∗)→ M

satisfying ϕ(a, 0) = η(a) for each a ∈ A. Then L = ♦ϕ−1(ŜX × K), show-
ing that L is recognised by ♦X through a length preserving morphism.

Concluding remarks

In this chapter we have identified the construction on Boolean spaces
with internal monoids which corresponds to applying a layer of semiring
quantifiers on Boolean algebras of languages; the approach we adopted
could be easily adapted to model different operations on languages. These
results lead to the following question: given an equational basis for the
Boolean algebra of languages recognised by a BiM (X, M), what is a sim-
ple equational basis for the Boolean algebra of languages recognised by
(♦SX,♦S M), described in Theorem 4.29? Answering this question is cru-
cial in order to obtain separation results for language classes corresponding
to fragments of logic. A first step was made in Section 2.3, in the particular
case where S = 2. We leave this as a topic for future research.

Another interesting direction would consist in generalising the results
of this chapter so to deal with infinite semirings. For example the majority
quantifier, which plays an important rôle in language theory, is modelled
by the semiring Z. Our approach does not directly apply to this quanti-
fier, and we suspect that in defining the actions of the internal monoid an
external set-theoretic construction would be needed (cf. [19]).

Finally, we mention the question of whether BiMs, employed here as
topological recognisers, are in some sense algebras. We suspect the obvious
forgetful functors from BiM to BStone, Set and to the category of monoids
are not monadic. However, BiMs might be algebras for other monads (or
functors), or they might be algebras in a weaker sense (e.g., relational alge-
bras). We leave this for future work.



Part II

Logic, spaces
and coherent categories
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Chapter 5

Introduction: coherent
categories and their
neighbourhoods

The purpose of the second part of this thesis is to present two results which
talk about the ability of certain categories to interpret an appropriate frag-
ment of first-order logic, and in particular some quantifiers. In Chapter 6
we prove an open mapping theorem for certain ordered Boolean spaces.
Via duality, this result implies the uniform interpolation property for the
propositional intuitionistic calculus, which in turn is related to the implicit
definition of propositional quantifiers. In Chapter 7 we provide a ‘cate-
gorical axiomatisation’ of the category of compact Hausdorff spaces and
continuous maps, which is the result of trying to understand the ‘logic’ of
this category and its ability to interpret the existential quantifier.

The way in which one can associate a category to a fragment of first-
order logic, or more generally to a theory in such a fragment, is analogous
to the classical Lindenbaum-Tarski construction yielding a Boolean algebra
attached to a propositional theory.1 We briefly recall how the latter works.

Assume a set V of propositional variables is given. To any propositional
theory T, i.e. to any set of propositional formulae over the set of atoms V,
one can associate the Boolean algebra

F(V)/τ,

where F(V) is the free Boolean algebra on V and τ is the filter generated
by T. This is called the Lindenbaum-Tarski algebra of the theory T, and it
provides a way to associate to any theory an algebraic object, which is syn-
tactic in nature. Explicitly, elements of F(V)/τ are equivalence classes of
propositional formulae over V, and two formulae ϕ, ψ are in the same class

1We remark that the connection between Boolean algebras and classical propositional logic
has its origins in the work of Boole [17], see also the introductory text [59].
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precisely when the theory T proves both ϕ→ ψ and ψ→ ϕ. That is, when
ϕ and ψ are T-equiprovable. Conversely, every Boolean algebra arises as the
Lindenbaum-Tarski algebra of some propositional theory. From this point
of view, the dual space of a Boolean algebra is the space of models of the
associated propositional theory.

When moving to first-order theories, due to the presence of quantifiers,
Boolean algebras do not suffice anymore. Maintaining the intuition of al-
gebraic logic, starting in the 1950s several kinds of algebraic structures have
been introduced to deal with first-order theories: polyadic, monadic and
cylindric algebras to name a few (see, e.g., [60, 61]). There, the idea is that
of modelling quantifiers by adding structure, i.e. operations, to Boolean
algebras. On the other hand, in the 1960s Lawvere observed that quanti-
fiers arise as adjoints to certain maps [82]. This means that they are part of
the internal structure, and not an additional external construct. Lawvere’s
insight led to what is nowadays called categorical logic.

To illustrate how quantifiers can be interpreted as adjoints, we start by
considering the fragment of first-order logic on the propositional connec-
tives >,⊥,∧,∨, and the quantifier ∃.2 The associated logic is known as
coherent logic. What makes first-order logic more powerful and expressive
than propositional logic is the presence of free variables, and consequently
the possibility of quantifying over them. This explains the importance of
the notion of context in first-order logic. Let us fix a countable set X of
first-order variables. A context is a finite list of variables

x̄ = x1, . . . , xn

from X, with no repetitions. As in usual first-order logic, we can define
by induction the set of coherent formulae. Then, if ϕ is a coherent formula
and x̄ is a context, we will say that x̄ is suitable for ϕ if all the free variables
appearing in ϕ are contained in x̄. A formula in context is an expression of
the form x̄.ϕ, where x̄ is a context suitable for ϕ. A coherent sequent is an
expression of the form

ϕ `x̄ ψ

where ϕ, ψ are coherent formulae, and x̄ is a context suitable for both ϕ and
ψ. Any formula ϕ, with free variables x̄, can be identified with a sequent,
namely > `x̄ ϕ. Although over full first-order logic any sequent ϕ `x̄ ψ
can be identified with a formula, namely

∀x̄(ϕ→ ψ),

this is not the case in general. We thus need to replace formulae by the

2For simplicity, throughout, we assume a one-sorted signature Σ has been fixed.
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more general notion of sequents. Accordingly, by a coherent theory we un-
derstand any set of coherent sequents. The coherent fragment of first-order
logic admits a natural sequent calculus. This consists of the usual rules of
inference for the propositional connectives (see, e.g., [24, Chapter 1]), along
with the following rule for the existential quantifier

ϕ `x̄,y ψ

(∃y)ϕ `x̄ ψ (5.1)

where y does not occur freely in ψ. A coherent sequent is said to be provable
from a coherent theory T if it can be obtained from the sequents in T by
applying finitely many instances of the inference rules.

We can now introduce the syntactic structures that play the rôle of
Lindenbaum-Tarski algebras in the first-order setting. The free Boolean
algebra F(V) is replaced by the category C whose objects are coherent for-
mulae in context,3 and a morphism in C is of the form

x̄.ϕ ȳ.ψϑ

where ϑ is a coherent formula in the free variables x̄, ȳ that is provably func-
tional. Assuming without loss of generality that the contexts x̄, ȳ are dis-
joint, this means that the sequents

ϕ `x̄ (∃ȳ)ϑ,

ϑ `x̄,ȳ ϕ ∧ ψ,

ϑ ∧ ϑ[z̄/ȳ] `x̄,ȳ,z̄ ȳ = z̄

are provable, where ϑ[z̄/ȳ] denotes the formula obtained by replacing the
variables in ȳ with those of a context z̄ of the same length. Now, if T is any
coherent theory then the syntactic category of the theory T, denoted

CT ,

has the same objects as C, and its morphisms are equivalence classes (mod-
ulo T-equiprovability) of coherent formulae that are T-provably functional.
The category CT plays the same rôle of the Lindenbaum-Tarski algebra in
the propositional setting. For more details, the reader can consult [89] or
[68, D1.4].

Note that the syntactic category CT has all finite limits. The terminal
object is represented by the formula > in the empty context; assuming
x̄ and ȳ are disjoint contexts, the product of x̄.ϕ and ȳ.ψ is the conjunc-
tion x̄, ȳ.ϕ ∧ ψ. More generally, for any two morphisms ϑ : x̄.ϕ → z̄.ω and

3Up to α-equivalence, i.e. up to a renaming of the free variables.
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γ : ȳ.ψ→ z̄.ω, the following diagram is a pullback square.

x̄, ȳ.(∃z̄)ϑ ∧ γ ȳ.ψ

x̄.ϕ z̄.ω

γ

ϑ

(5.2)

Furthermore, every morphism ϑ : x̄.ϕ → ȳ.ψ factors through its image,
namely

x̄.ϕ ȳ.(∃x̄)ϑ ȳ.ψϑ (∃x̄)ϑ

and such images are seen to be stable under pullbacks. In any category,
the image of a morphism f : X → Y, if it exists, is a subobject of Y, i.e. a
monomorphism m : S→ Y, such that:

• f factors through m;

• if m′ : S′ → Y is another subobject through which f factors, then m
factors through m′.

That is, the image of f is the ‘smallest’ subobject of Y through which f
factors. The discussion above then accounts for the structure of regular
category of CT :

Definition 5.1. A regular category is a finitely complete category with
pullback-stable image factorisations.

Example 5.2. • Any ∧-semilattice with 1, regarded as a category, is
regular.

• Every variety of algebras is a regular category, with morphisms all
the homomorphisms. Images are the usual homomorphic images.

• The categories BStone of Boolean spaces, and KH of compact Haus-
dorff spaces, are regular. Finite limits and images are liftings of those
in Set. In particular, images are simply continuous images and they
are stable.

• The category Top of topological spaces and continuous maps is not
regular because images are provided by regular epis,4 which are not
stable under pullbacks. See, e.g., [99, p. 180].

4A regular epimorphism is a morphism that is the co-equaliser of some pair of parallel mor-
phisms. Dually, a regular monomorphism is a morphism that is the equaliser of some pair of
parallel morphisms. Every regular epimorphism (resp. regular monomorphism) is an epi-
morphism (resp. monomorphism).
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Given an object X in a category D, the set of monomorphisms with
codomain X, i.e. the set of subobjects of X, admits a pre-order 6 defined
as follows. For any two monomorphisms m1 : S1 → X, m2 : S2 → X, say
that m1 6 m2 iff there exists a morphism S1 → S2 making the following
diagram commute.

S1 X

S2

m1

m2

We can canonically associate to this pre-order an equivalence relation ∼,
by setting m1 ∼ m2 iff m1 6 m2 and m2 6 m1. Note that m1 ∼ m2 if, and
and only if, there is an isomorphism f : S1 → S2 satisfying m1 = m2 ◦ f .
Write Sub X for the set 5 of∼-equivalences classes of monomorphisms with
codomain X. The pre-order6 defined above descends to a partial order on
Sub X, that we denote again by6. We refer to Sub X as the poset of subobjects
of X.

If D is a regular category then, due to the existence of pullbacks, each
Sub X is a ∧-semilattice whose top element is the identity morphism.
Moreover, for any morphism f : X → Y in D, the pullback functor

f ∗ : Sub Y → Sub X

sending a subobject m : S → Y to its pullback along f is a ∧-semilattice
homomorphism. Note that the function f ∗ is well-defined because in any
category the pullback of a mono, if it exists, is again a mono. For example,
if f : S→ X is a monomorphism, then f ∗ = S ∧− : Sub X → Sub S. In the
other direction, there is an order-preserving function

∃ f : Sub X → Sub Y

sending a subobject m : S→ X to the image of the composition f ◦m : S→
Y. It turns out that this map is lower adjoint to the pullback functor f ∗, i.e.

∃ f a f ∗.

In the syntactic category CT , the subobjects of x̄.ϕ are (up to isomor-
phism) precisely those formulae ψ in the context x̄ such that the sequent
ψ ` ϕ is provable modulo the theory T, see [68, p. 844]. Write f for the
morphism x̄, y.> → x̄.> in CT . The adjunction ∃ f a f ∗ then corresponds
to the rule (5.1) of introduction and elimination of the existential quantifier.

5Throughout, we assume that D is well-powered, cf. Definition 7.2 in Chapter 7.
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That is, for every x̄, y.ϕ and x̄.ψ,

ϕ `x̄,y ψ ⇔ (∃y)ϕ `x̄ ψ.

This exhibits the existential quantifier ∃ as an adjoint map. In the syntactic
category CT , the posets of subobjects admit also finite suprema, i.e. they
are lattices. Indeed, if x̄.ϕ and x̄.ψ are subobjects of x̄.ω, then their join is
x̄.ϕ ∨ ψ. Exploiting the description of pullbacks provided in (5.2), it is not
hard to see that such joins are stable under pullback.

Definition 5.3. A coherent category is a regular category in which the posets
of subobjects have finite joins and, for every morphism f : X → Y, the
pullback functor f ∗ : Sub Y → Sub X preserves them.

Thus we have proved that, for every coherent theory T, its syntactic
category CT is coherent. The next proposition, which should be compared
to the analogous statement for Boolean algebras and classical propositional
theories, states that the converse is also true. For a proof, see [89, p. 128].

Proposition 5.4. If T is a coherent theory, then CT is a coherent category. More-
over, every coherent category is equivalent to one of the form CT , for some coherent
theory T.

For basic facts about regular and coherent categories, we refer the inter-
ested reader to [67, Sections A1.3, A1.4] and [89, Chapter 3]. We record for
future use the following elementary, yet important, result on the structure
of the posets of subobjects in a coherent category.

Lemma 5.5. Let D be a coherent category. For every object X of D, its poset of
subobjects Sub X is a bounded distributive lattice.

Proof. By definition, Sub X is a bounded lattice. It remains to show that it is
distributive. For any subobject m : S→ X, the map S∧− : Sub X → Sub X
coincides with the composition ∃m ◦m∗. The map m∗ is a pullback functor,
hence it preserves finite joins. Further, ∃m preserves finite joins because
it is lower adjoint. Therefore their composition preserves finite joins, i.e.,
finite infima distribute over finite suprema in Sub X.

We now give some examples of categories that are, or that are not, co-
herent.

Example 5.6. • Any bounded distributive lattice, regarded as a cate-
gory, is coherent.

• The categories BStone and KH are coherent. The join of two sub-
spaces is simply their (set-theoretic) union. Categorically, the join of
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two subobjects S1, S2 ∈ Sub X can be computed as the pushout of
their intersection, i.e. as the pushout of the diagram

S1 S1 ∩ S2 S2.

In other words, unions of subobjects in BStone and KH are effective.

• The category Top of topological spaces and continuous maps is not
regular, and a fortiori not coherent.

• The category of groups is not coherent, because the lattice of all sub-
groups of a given group is not distributive, in general. For instance,
consider the product of cyclic groups Z/4Z×Z/6Z. Let G1, G2, G3
be the subgroups generated by (1, 1), (1, 0) and (0, 1), respectively.
Then G1 ∩ (G2 ∪ G3) = G1, but

(G1 ∩ G2) ∪ (G1 ∩ G3) = <{(2, 0), (0, 2), (0, 4)}>.

To sum up, coherent categories are precisely those categories that are
rich enough to encode a coherent theory, and in particular the existential
quantifier ∃. The next two chapters can be understood from this point of
view:

• In Chapter 6 we deduce from an open mapping theorem the uni-
form interpolation property of the intuitionistic propositional calcu-
lus, which is tightly connected to the theory of a certain type of co-
herent categories. These are the so-called Heyting categories.

• In Chapter 7 we provide a categorical characterisation of the category
KH of compact Hausdorff spaces. This result relies heavily on the
coherent structure of KH. That is, in view of the discussion above,
on the fact that KH is rich enough to represent a coherent theory.

Let us briefly sketch the connection between uniform interpolation and
Heyting categories mentioned in the first bullet point. Recall that a Heyting
algebra is a bounded distributive lattice A in which the operation ∧ has a
residual→, that is

∀a, b, c ∈ A, a ∧ b 6 c ⇔ b 6 a→ c.

The order-dual of the latter condition defines the notion of co-Heyting alge-
bra. For instance, if X is a topological space then the collection Ω(X) of all
open subsets of X is a Heyting algebra. In fact it is an example of frame, i.e.
a complete lattice L satisfying the infinite distributive law

a ∧
(∨

i∈I
bi) =

∨
i∈I

(a ∧ bi) (5.3)
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for every subset {a} ∪ {bi | i ∈ I} ⊆ L. The order-dual of the latter condi-
tion defines a co-frame. By the adjoint functor theorem for posets, for any
element a of a frame the operation a ∧ − has a residual a → −. Thus ev-
ery frame is a Heyting algebra; more precisely, frames (resp. co-frames) are
exactly complete Heyting (resp. co-Heyting) algebras.

However, not every (complete) Heyting algebra is of the form Ω(X) for
some space X, see e.g. [69, II.2.14]. This leads to Esakia duality, which pro-
vides in particular a topological representation of any Heyting algebra (cf.
Chapter 6 for more details). Heyting categories can be regarded as the cat-
egorical generalisation of Heyting algebras. They are coherent categories
that are rich enough to interpret, in addition to the existential quantifier ∃,
the universal quantifier ∀.

Definition 5.7. A Heyting category is a coherent category in which, for every
morphism f : X → Y, the pullback functor f ∗ : Sub Y → Sub X has an
upper adjoint ∀ f : Sub X → Sub Y. Hence

∃ f a f ∗ a ∀ f .

The posets of subobjects in a Heyting category are always Heyting al-
gebras, since the maps S ∧ − : Sub X → Sub X, for S ∈ Sub X, are pull-
back functors and thus admit upper adjoints. Also, for every morphism
f : X → Y, the pullback functor f ∗ : Sub Y → Sub X is a Heyting algebra
homomorphism.

Before providing some examples of Heyting categories, we recall the
concept of finitely copresentable object.

Definition 5.8. Let D be a locally small category. An object X of D is called
finitely copresentable (in the sense of Gabriel and Ulmer [41, Definition 6.1])
if the functor homD(−, X) : Dop → Set preserves filtered colimits.

Example 5.9. • Any Heyting algebra, regarded as a category, is Heyt-
ing.

• The full subcategory of BStone on the finitely copresentable objects
is Heyting. Indeed, by finite Stone duality, the latter can be identified
with the category Set f of finite sets and functions, which is Heyting.
More generally, every elementary topos is a Heyting category [67,
Corollary A2.3.5].

• The full subcategory of KH on the finitely copresentable objects can
also be identified with the category Set f of finite sets and functions
(cf. [92, Proposition 1.3]), hence it is Heyting. A similar result, for
the (finitely copresentable) spaces dual to Heyting algebras, will be
discussed below.
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• The categories BStone and KH are not Heyting, since their posets
of subobjects are not Heyting algebras, in general. For instance,
consider the Boolean space N∞, the one-point compactification of
the natural numbers (see Example 1.9). Its poset of subobjects is
the lattice of those subsets of N∞ that are either finite, or contain
∞. This lattice is not a Heyting algebra. For example, the pseudo-
complement {∞} → ∅ does not exist, for this would be a largest fi-
nite subset of N. However, Sub N∞ carries a structure of co-Heyting
algebra (in fact, of co-frame).

An analogue of Proposition 5.4 holds for Heyting categories, to the ef-
fect that Heyting categories capture precisely intuitionistic first-order logic.
The latter is defined by extending coherent logic with the connective →
and the quantifier ∀, and by adding the appropriate inference rules (except
for the law of excluded middle, i.e. contraction on the right). The construc-
tion of the syntactic category of a coherent theory extends in the obvious
way to first-order theories. For more details, see [68, D1.4].

Proposition 5.10. A category is Heyting if, and only if, it is the syntactic cate-
gory of an intuitionistic first-order theory.

The connection between the theory of Heyting categories and the uni-
form interpolation property for the intuitionistic propositional calculus
was already implicit in [106], and it was then fully exposed by Ghilardi
and Zawadowski, cf. the monograph [54]. The intuitionistic propositional
calculus (IPC) is essentially obtained from the classical one by dropping
the law of excluded middle

ϕ ∨ ¬ϕ = >.

If ϕ(p, v) is a formula of IPC, then a right uniform interpolant for ϕ is a for-
mula ϕR(p) such that, for any formula ψ(p, q) not containing v,

ϕ `IPC ψ ⇐⇒ ϕR `IPC ψ.

Similarly, a left uniform interpolant for ϕ is a formula ϕL(p) such that, for
any formula ψ(p, q) not containing v,

ψ `IPC ϕ ⇐⇒ ψ `IPC ϕL.

In 1992 Pitts [106] showed that every formula of IPC admits both right and
left uniform interpolants. This can be seen as a weak form of quantifier
elimination, by regarding uniform interpolants as the result of applying
a propositional quantifier (for an introduction to these ideas the reader can
consult the survey [29]). Indeed, ϕR = (∃v)ϕ and ϕL = (∀v)ϕ.



116 Chapter 5. Coherent categories and their neighbourhoods

Ghilardi and Zawadowski observed that Pitts’ result implies that the
class of existentially closed Heyting algebras is first-order axiomatisable, that
is, the first-order theory of Heyting algebras admits a model completion (for
all the undefined notions we refer the reader to [54]). Further, they proved
that this can be translated into a statement concerning Heyting categories:
in these terms, Pitts’ result states that the dual of the category of finitely
presented Heyting algebras is a Heyting category (for a definition of finitely
presented Heyting algebra, see page 121).

In fact, Ghilardi and Zawadowski proved a more general result, which
applies to a large class of propositional logics: let V be the variety of alge-
bras associated to an algebraizable propositional logic, and T the first-order
theory of the latter collection of algebras. Then, under mild assumptions
on V, the theory T admits a model completion if, and only if, the dual
of the category of finitely presented algebras in V is r-Heyting. For a pre-
cise statement, see [54, Theorem 3.11]. The notion of r-Heyting category
is obtained by replacing monomorphisms with regular monomorphisms in
all relevant definitions. This is because quotients in a variety of algebras
are exactly the regular epimorphisms, which dually correspond to regu-
lar monomorphisms. In the case of Heyting algebras, Beth’s definability
theorem for IPC, cf. [54, Chapter 2], implies that every monomorphism be-
tween finitely presented Heyting algebras is regular. Therefore the fact that
the dual of the category of finitely presented Heyting algebras is a Heyting
category, along with Ghilardi and Zawadowski’s theorem, entail that the
first-order theory of Heyting algebras has a model completion.

In the next chapter we will prove an open mapping theorem for the
spaces dual to finitely presented Heyting algebras, and show how Pitts’
uniform interpolation theorem for IPC follows from it. We will also ex-
plain how the openness of these morphisms is connected to the existence
of upper and lower adjoints to the pullback functors, i.e. to the Heyting
structure of the dual of the category of finitely presented Heyting algebras.
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Chapter 6

Uniform interpolation for
IPC, topologically

In this chapter we provide a short and self-contained proof of an open
mapping theorem for the spaces dual to finitely presented Heyting alge-
bras. Our proof relies only on Esakia duality for Heyting algebras and a
combinatorial argument in the spirit of [53], but it avoids the machinery of
sheaves and games used there. This open mapping theorem in particular
yields as a corollary an alternative proof of the uniform interpolation theo-
rem for intuitionistic propositional logic (IPC), first proved by Pitts in [106]
using proof-theoretic methods.

Uniform interpolation is a strong property possessed by certain propo-
sitional logics. On the one hand, uniform interpolants give implicit defi-
nitions of second-order quantifiers in a propositional logic [106]. On the
other hand, as outlined in Chapter 5, uniform interpolation is tightly re-
lated to the existence of a model completion for the first-order theory of the
class of algebras associated to a logic [54]. While the connection between
ordinary deductive interpolation for propositional logics and amalgama-
tion properties of the associated variety of algebras has been extensively
investigated (see e.g. [94]), the first systematic study of uniform interpola-
tion from an algebraic standpoint appears to be [57], following [54].

This chapter is a modified version of the paper [58].

Outline of the chapter. In Section 6.1 we briefly recall Esakia duality for
Heyting algebras, along with the relevant facts that we will use. In Sec-
tion 6.2 we formulate an open mapping theorem and we show how Pitts’
uniform interpolation theorem follows from it. We also show that our open
mapping theorem is slightly stronger than Pitts’ theorem. Sections 6.3 – 6.5
contain the proof of the main theorem. In Section 6.3 we introduce an ultra-
metric on the dual spaces, which shows how the step-by-step construction
of finitely generated free Heyting algebras [52] relates to the topological
setting. In Section 6.4, we use this ultrametric to reduce the open mapping
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theorem to a lemma concerning finite Kripke models. We prove this lemma
in the final Section 6.5.

6.1 Esakia duality for Heyting algebras

We will introduce Esakia duality for Heyting algebras as a refinement of
Stone-Priestley duality for bounded distributive lattices. Note that, histor-
ically, Esakia and Priestley dualities were developed independently. For
more details on Esakia duality we refer the reader to [42], or to the forth-
coming English translation [38] of Leo Esakia’s book [37], originally writ-
ten in Russian.

Throughout, by a distributive lattice we understand a bounded distribu-
tive lattice, and we write DL for the category of distributive lattices and
lattice homomorphisms. The first duality for DL is due to Stone [126] and
it was published in 1938, shortly after his landmark paper on the duality
for Boolean algebras. He showed that the category DL is dually equivalent
to the category of certain non-Hausdorff compact spaces, so-called spectral
spaces.1 There are mainly two features of this duality that make it ‘less el-
ementary’ than the one for Boolean algebras. First, one has to work with
non-Hausdorff spaces, thus loosing a large part of the usual spatial intu-
ition. Second, the category of spectral spaces and their natural morphisms
is not a full subcategory of the category of topological spaces (cf. footnote
1). Thirty years later, in 1970, Hilary Priestley [107] showed that one can
ameliorate Stone’s duality for distributive lattices by working in a larger
ambient category of ordered topological spaces. This led to Priestley duality
for distributive lattices. We briefly recall how this works; for more details
the reader can consult [107] or [30, Chapter 11].

The idea of combining topology and order goes back to Nachbin’s
work, see the monograph [96]. He defined a compact ordered space to be
a pair (X,6) where X is a compact space, and 6 ⊆ X × X is a partial
order that is closed in the product topology. Note that every such space
is Hausdorff, because the diagonal ∆ = > ∩ 6 is closed in the product
topology. The existence of a basis of clopens, which characterises Boolean
spaces among the compact Hausdorff spaces, can be generalised to the
ordered case by means of the notion of total order-disconnectedness. In order
to give a precise definition, we introduce the following notations. Given a
poset (X,6) and an element x ∈ X, write

↑x = {y ∈ X | x 6 y} and ↓x = {y ∈ X | y 6 x}.
1A spectral space is a compact sober T0 space in which the collection of all compact open

subsets is closed under finite intersections, and forms a basis for the topology. The morphisms
between spectral spaces are the perfect maps, i.e. those continuous maps f : X → Y such that
f−1 sends compact subsets of Y to compact subsets of X.
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For any S ⊆ X, we set ↑S =
⋃

x∈S ↑x and ↓S =
⋃

x∈S ↓x. If S = ↑S (resp.
S = ↓S) then we say that S is an up-set (resp. a down-set).

Definition 6.1. A Priestley space is a compact ordered space (X,6) which is
totally order-disconnected, i.e. for every x, y ∈ X with x 66 y there is a clopen
up-set in X that contains x but not y.

Recall from Definition 1.5 the concept of filter of a distributive lattice. A
prime filter of a distributive lattice A is a proper filter F such that, for every
a, b ∈ A, a ∨ b ∈ F implies either a ∈ F or b ∈ F.2 The set XA of prime
filters of A partially ordered by set-theoretic inclusion is a Priestley space
when equipped with the Boolean topology generated by the sets

â = {x ∈ XA | a ∈ x} and âc = {x ∈ XA | a /∈ x}, (6.1)

for a ∈ A. Moreover, if h : A → B is a lattice homomorphism then
h−1 : XB → XA is continuous and order-preserving. This gives a con-
travariant functor

DL→ Pries,

where Pries denotes the category of Priestley spaces and continuous order-
preserving maps. In the converse direction, to a Priestley space (X,6) we
can associate the distributive lattice of its clopen up-sets with set-theoretic
operations. If f : X → Y is a morphism in Pries, then f−1 is a lattice ho-
momorphism from the lattice of clopen up-sets of Y to the lattice of clopen
up-sets of X. This yields a contravariant functor

Pries→ DL.

Priestley duality for distributive lattices states that these two functors together
induce a dual equivalence of categories.

Theorem 6.2 ([107]). The category DL of bounded distributive lattices and lat-
tice homomorphisms is dually equivalent to the category Pries of Priestley spaces
and continuous order-preserving maps.

In particular, a distributive lattice A can be recovered up to isomor-
phism from its dual Priestley space as the algebra of clopen up-sets of XA,
where the assignment a 7→ â of (6.1) is a lattice isomorphism. The following
lemma provides a duality theoretic characterisation of those lattice homo-
morphisms admitting a lower or upper adjoint, and it is a straightforward
consequence of the previous theorem.

2Equivalently, a prime filter of A is a meet-prime element of the lattice of filters of A.
This explains the terminology prime filter. Note that every ultrafilter of a Boolean algebra is a
prime filter and, due to the law of excluded middle x∨¬x = 1, every prime filter of a Boolean
algebra is an ultrafilter.
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Lemma 6.3. Let h : A → B be a homomorphism in DL, and f : XB → XA the
dual morphism in Pries. The following statements hold.

1. h has a lower adjoint iff ↑ f (S) is open whenever S ⊆ XB is a clopen up-set.

2. h has an upper adjoint iff ↓ f (S) is open whenever S ⊆ XB is a clopen
down-set.

Proof. We prove item 1. The proof of item 2 is the same, mutatis mutandis.
By Priestley duality, for any a ∈ A and b ∈ B, we have

b 6 h(a) ⇔ b̂ ⊆ ĥ(a) ⇔ b̂ ⊆ f−1(â) ⇔ f (b̂) ⊆ â ⇔ ↑ f (b̂) ⊆ â.

Thus h has a lower adjoint if, and only if, there exists a monotone map
g : B→ A satisfying

g(b̂) ⊆ â ⇔ ↑ f (b̂) ⊆ â (6.2)

for every a ∈ A and b ∈ B. Note that ↑ f (b̂) is closed because the up-
ward closure of a closed set in a Priestley space is again closed. Further,
every closed up-set is the intersection of all the clopen up-sets containing
it. Hence equation (6.2) holds for every a ∈ A if, and only if, g(b̂) = ↑ f (b̂).
We conclude that the lower adjoint g exists exactly when ↑ f (b̂) is a clopen
up-set for every b ∈ B. In turn, this is equivalent to ↑ f (b̂) being open for
every clopen up-set b̂ ⊆ XB.

The inclusion functor Boole→ DL of the category of Boolean algebras
into the category of distributive lattices has a left adjoint, which sends a
distributive lattice A to its Booleanisation A− (see [11, V.4], where it appears
under the name of free Boolean extension). Up to isomorphism, A− is the
unique Boolean algebra that contains A as a sublattice and is generated as
a Boolean algebra by A. Concretely, if j : A→ B is a lattice embedding of A
into any Boolean algebra B, then the Boolean algebra generated by the im-
age of j is isomorphic to A−. Further, if (X,6) is the dual Priestley space of
A, the dual Boolean algebra of X is isomorphic to A−. For any distributive
lattice A, the unit of this adjunction provides a lattice embedding

A→ A−

of A into its Booleanisation. Heyting algebras can be characterised as those
distributive lattices A such that the embedding A → A− has an upper
adjoint (details on this algebraic perspective on Esakia duality for Heyting
algebras can be found in [42]). Thus, by item 2 in Lemma 6.3, the dual
distributive lattice of a Priestley space (X,6) is a Heyting algebra iff ↓C is
clopen whenever C is a clopen subset of X. This motivates the following
definition.
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Definition 6.4. An Esakia space is a Priestley space (X,6) such that ↓C is
clopen whenever C is a clopen subset of X.

Write Heyt for the category of Heyting algebras and their homomor-
phisms, that is, those functions preserving the operations 0, 1,∧,∨ and→.
Note that Heyt is not a full subcategory of DL, due to the presence of
→. Under Priestley duality, one can prove that the lattice homomorphisms
between Heyting algebras that preserve the Heyting implication → cor-
respond precisely to those continuous maps f : X → Y of Esakia spaces
satisfying the condition

∀S ∈ ℘(Y), ↑ f−1(S) = f−1(↑S). (6.3)

A function between posets satisfying condition (6.3) is called p-morphism,
and it is automatically order-preserving. Let Esa denote the category of
Esakia spaces and continuous p-morphisms between them. Then Priestley
duality restricts to a dual equivalence, known as Esakia duality, between
the categories Heyt and Esa.

Theorem 6.5 ([39]). The category Heyt of Heyting algebras and their homomor-
phisms is dually equivalent to the category Esa of Esakia spaces and continuous
p-morphisms.

As for distributive lattices, a Heyting algebra A can be recovered up
to isomorphism from its dual Esakia space XA as the algebra of clopen
up-sets, where the assignment a 7→ â in (6.1) is a Heyting algebra isomor-
phism.

In dealing with properties of IPC, a key rôle is played by finitely gener-
ated free Heyting algebras and their dual spaces. Let F(p) be the Heyting
algebra free on a finite set p, that is, the algebra of IPC-equivalence classes
of propositional intuitionistic formulae in the variables p, and E(p) its dual
Esakia space. A Heyting algebra is finitely presented if it is the quotient of
F(p) under a finitely generated congruence; such congruences can in fact
always be generated by a single pair of the form (ϕ,>). A finitely presentable
Heyting algebra is one that is isomorphic to a finitely presented Heyting
algebra. We call an Esakia space finitely copresentable if its Heyting algebra
of clopen up-sets is finitely presentable (this coincides with the notion of
finitely copresentable object á la Gabriel-Ulmer, cf. Definition 5.8). Equiva-
lently, an Esakia space is finitely copresentable if it is order-homeomorphic
to a clopen up-set of E(p) for some finite p. We recall two basic facts about
such spaces in Proposition 6.6. The first item amounts to the complete-
ness of IPC with respect to its canonical model, and the second item is the
dualization of the universal property of free algebras.

Proposition 6.6. Let p = {p1, . . . , pl} be any finite set of variables.
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1. For any two formulae ϕ(p) and ψ(p), we have ϕ `IPC ψ if, and only if,
ϕ̂ ⊆ ψ̂ as subsets of E(p).

2. If Y is an Esakia space and C1, . . . , Cl are clopen up-sets of Y, there exists
a unique continuous p-morphism hY : Y → E(p) satisfying h−1

Y ( p̂i) = Ci
for all i ∈ {1, . . . , l}.

Proof. For item 1, we have ϕ `IPC ψ iff [ϕ] 6 [ψ] in F(p), which in turn is
equivalent to ϕ̂ ⊆ ψ̂ because (̂−) is an isomorphism of Heyting algebras.
For item 2, note that the choice of the clopen up-sets C1, . . . , Cl gives a
function from p to the algebra of clopen up-sets of Y. The dual map of the
unique homomorphism lifting this function is hY.

6.2 Open maps and uniform interpolation

The main aim of this chapter is to prove the following theorem.

Theorem 6.7. Every continuous p-morphism between finitely copresentable
Esakia spaces is an open map.

We first show that Pitts’ uniform interpolation theorem follows in a
straight-forward manner from Theorem 6.7 and the Craig interpolation
theorem for IPC [119]. Throughout, p denotes a finite set of variables and
v a variable not in p.

Theorem 6.8 (Pitts [106]). Let ϕ(p, v) be a propositional formula. There exist
propositional formulae ϕR(p) and ϕL(p) such that, for any formula ψ(p, q) not
containing v,

ϕ `IPC ψ ⇐⇒ ϕR `IPC ψ,

ψ `IPC ϕ ⇐⇒ ψ `IPC ϕL.

Proof. By the Craig interpolation theorem for IPC, it suffices to prove the
statement for any formula ψ whose variables are contained in p (cf., e.g.,
[57, Prop. 3.5]). Since ϕ̂ ⊆ E(p, v) is a clopen up-set, it follows at once from
Theorem 6.7, and the definitions of Esakia space and p-morphism, that
f (ϕ̂) and (↓ f (ϕ̂ c))c are clopen up-sets of E(p). Thus there exist formulae
ϕR(p) and ϕL(p) such that ϕ̂R = f (ϕ̂) and ϕ̂L = (↓ f (ϕ̂ c))c. It is easy to see,
using the first part of Proposition 6.6, that ϕR and ϕL satisfy the conditions
in the statement.

As a first step towards proving Theorem 6.7, we show that the theorem
follows from a special case, namely Proposition 6.9 below. Denote by i the
embedding of free Heyting algebras F(p) ↪→ F(p, v) that is the identity on
p. Let f : E(p, v)� E(p) be the continuous p-morphism dual to i.
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Proposition 6.9. The map f : E(p, v)� E(p) is open.

Proof that Proposition 6.9 implies Theorem 6.7. Let g : XA → XB be any con-
tinuous p-morphism between Esakia spaces. If XA and XB are dual to
finitely presented Heyting algebras A and B, respectively, then (see, e.g.,
[57, Lemma 3.11]) there are finite presentations jA : F(p, q) � A and
jB : F(p) � B such that jA ◦ i = g−1 ◦ jB, where i : F(p) ↪→ F(p, q) is the
natural embedding. Dually, we have the following commutative square

E(p, q) E(p)

XA XB
g

where the top horizontal map is open by Proposition 6.9. Since the pre-
sentation jA is finite, the dual map identifies the Esakia space XA with a
clopen up-set of E(p, q), so that the left vertical map is open. Therefore
g : XA → XB is also open.

If XA and XB are dual to finitely copresentable Heyting algebras A and
B, respectively, then we can apply the argument above to any two isomor-
phic copies of A and B that are finitely presented.

The connection between the existence of uniform interpolants and open
maps can be explained in terms of adjoints. Indeed, it was already ob-
served in [106] that the uniform interpolation theorem is equivalent to
the existence of both left and right adjoints for the embeddings F(p) ↪→
F(p, v). In turn, Lemma 6.3 says that if a morphism in Esa is open, then
its dual Heyting algebra homomorphism has left and right adjoints. The-
orem 6.7 implies that these properties always hold for homomorphisms
between finitely presented Heyting algebras. We will see in Example 6.10
below that the two properties are distinct in general. In this sense, our open
mapping theorem establishes a slightly stronger property than uniform in-
terpolation.

As promised in the previous chapter, we explain the connection be-
tween the open mapping theorem for finitely copresentable Esakia spaces
and the Heyting structure of the category Dop, where D denotes the full
subcategory of Heyt on the finitely presented objects. First, note that ev-
ery epimorphism between finitely presented Heyting algebras is regular.
This is the algebraic translation of Beth’s definability theorem for IPC, cf.
[54, Chapter 2]. Hence every monomorphism in D is regular. If A is an
object of D, then the poset of subobjects of A in the larger category Heytop

is isomorphic to the lattice of congruences of A. The latter is isomorphic
to the lattice of filters of A. Now, the subobjects of A in Dop correspond to
the compact filters of A, which in turn are precisely the principal ones. That
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is, the lattice of subobjects of A in Dop is isomorphic to A. Theorem 6.7,
along with Lemma 6.3, then provide the upper and lower adjoints to the
pullback functors that are crucial in order to show that Dop is a Heyting
category.

Example 6.10. We give an example of a Heyting algebra homomorphism
h : A → B such that h is both left and right adjoint, but its dual map is not
open. Consider the one-point compactification N∞ of the natural numbers
(cf. Example 1.9), partially ordered by x 6 y iff x = y or y = ∞. For any
natural number n > 1, denote by n = {1 < · · · < n} the finite chain with n
elements and the discrete topology. Let X = 1+2+ · · · , the disjoint order-
topological sum of countably many finite discrete chains, and let X∞ =
X ∪ {∞} its one-point compactification. Extend the partial order on X to a
partial order on X∞ by defining x 6 ∞ for all x ∈ X∞. Then X∞ and N∞

are both Esakia spaces. Define a function f : X∞ →N∞ by f (∞) = ∞, and

∀x ∈ n ⊆ X∞, f (x) =

{
∞ if x = n,
n otherwise.

Note that f is a continuous p-morphism. Let h : A→ B be the dual Heyting
algebra homomorphism. If U ⊆ X∞ is a clopen up-set, then f (U) = ↑ f (U)
is a clopen up-set, and if V ⊆ X∞ is a clopen down-set then ↓ f (V) is a
clopen down-set. Therefore, h admits left and right adjoints by Lemma 6.3.
However, the map f is not open. Indeed, for any n > 2, n ⊆ X is open, but
f (n) = {n, ∞} is not.

Remark 6.11. The viewpoint of adjoint maps establishes a link between
uniform interpolation for IPC and the theory of monadic Heyting algebras.
Indeed, recall that a monadic Heyting algebra can be described as a pair
(H, H0) of Heyting algebras such that H0 is a subalgebra of H and the
inclusion H0 ↪→ H has left and right adjoints [13, Theorem 5]. The relation
between adjointness of a Heyting algebra homomorphism, and openness
of the dual map, was already investigated in this framework. See, e.g., [14,
p. 32] where an example akin to the one above is provided.

6.3 Clopen up-sets step-by-step

The →-degree (also called implicational degree) of a propositional formula
ϕ, denoted by |ϕ|, is the maximum number of nested occurrences of the
connective→ in ϕ; ϕ has→-degree 0 if the connective→ does not occur in
ϕ. Fix a finite set of variables p. For a point x in E(p) and n ∈ N, we write
Tn(x) for the degree n theory of x, i.e.

Tn(x) = {ϕ(p) | |ϕ| 6 n and ϕ ∈ x}.
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We define a quasi-order 6n on E(p) by setting

x 6n y ⇐⇒ Tn(x) ⊆ Tn(y),

and we standardly define an equivalence relation ∼n on E(p) by:

x ∼n y ⇐⇒ x 6n y and y 6n x
(
⇐⇒ Tn(x) = Tn(y)

)
.

We remark that
⋂

n∈N6n = 6, the natural order of E(p). Moreover, for
every n ∈N, there are only finitely many formulae of→-degree at most n.
In particular, ∼n has finite index.

Remark 6.12. Notice that: a subset S ⊆ E(p) is of the form ϕ̂ for some formula
ϕ(p) of→-degree6 n if, and only if, it is an up-set with respect to6n. Thus, S is
a clopen up-set if, and only if, it is an up-set with respect to 6n for some n ∈ N.
Hence, in particular, ∼n-equivalence classes are clopen. In this sense, the quasi-
orders 6n yield the clopen up-sets of the space E(p) ‘step-by-step’.

The next proposition accounts for the Ehrenfeucht-Fraissé games em-
ployed in [53]. In our setting, these combinatorial structures reflect the
interplay between the natural order of E(p) and the quasi-orders 6n.

Proposition 6.13. Suppose x, y ∈ E(p) and n ∈N. The following equivalences
hold.

1. x 60 y if, and only if, for each variable pi ∈ p, pi ∈ x implies pi ∈ y;

2. x 6n+1 y if, and only if, for each y′ ∈ ↑y there exists x′ ∈ ↑x such that
x′ ∼n y′.

Proof. Item 1 follows at once from the fact that every formula ϕ(p) of→-
degree 0 is equivalent to a finite disjunction of finite conjunctions of vari-
ables, along with the fact that x, y are prime filters.

In order to prove the left-to-right implication in item 2, assume x 6n+1
y. Since ∼n has finite index, choose a finite set {y1, . . . , yk} ⊆ ↑y such that
each y′ ∈ ↑y is ∼n-equivalent to some yi. It suffices to prove that for each
i ∈ {1, . . . , k} there is xi ∈ ↑x with xi ∼n yi. To this aim, consider the
formula ϕ of→-degree 6 n + 1 defined by

ϕ =
k∨

i=1

(∧
Tn(yi)→

∨
Tn(yi)

c
)

,

where the complement is relative to the set of formulae of →-degree at
most n. It follows from the definitions of the logical connectives and of ∼n
that, for every z ∈ E(p),

ϕ /∈ z ⇐⇒ ∀i ∈ {1, . . . , k} ∃zi > z with zi ∼n yi.
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In particular, ϕ 6∈ y. Since x 6n+1 y, also ϕ 6∈ x. Therefore, for each
i ∈ {1, . . . , k} there is xi ∈ ↑x satisfying xi ∼n yi, as was to be shown.

For the right-to-left implication, it is enough to show that ϕ → ψ ∈ y
whenever ϕ(p), ψ(p) are formulae of→-degree 6 n such that ϕ → ψ ∈ x.
This follows easily from the definitions and the assumption.

6.4 Reduction to finite Kripke models

Fix a finite set of variables p. The Esakia space E(p) has a countable ba-
sis, and thus admits a compatible metric by Urysohn metrization theorem,
and even an ultrametric (see, e.g., [36, 7.3.F]). We explicitly define such an
ultrametric. Set

d : E(p)× E(p)→ [0, 1], (x, y) 7→ 2−min{|ϕ| | ϕ∈ x4y}

where x4 y denotes the symmetric difference of x and y. We adopt the
conventions min ∅ = ∞ and 2−∞ = 0. It is immediate to check that d is
an ultrametric on the set E(p), i.e. for all x, y, z ∈ E(p) the following hold:
(i) d(x, y) = 0 if, and only if, x = y; (ii) d(x, y) = d(y, x); (iii) d(x, z) 6
max (d(x, y), d(y, z)).

Note that, for every x, y ∈ E(p) and n ∈ N, x ∼n y if, and only if,
d(x, y) < 2−n. Therefore, the open ball B(x, 2−n) of radius 2−n centered in
x coincides with the equivalence class [x]n = {y ∈ E(p) | y ∼n x}, which
is clopen by Remark 6.12.

Lemma 6.14. The topology of the Esakia space E(p) is generated by the clopen
balls of the ultrametric d.

Proof. Note that, for any formula ϕ(p), ϕ̂ =
⋃

x∈ϕ̂[x]|ϕ| =
⋃

x∈ϕ̂ B(x, 2−|ϕ|).
Since the latter union is over finitely many clopen sets, it follows that ϕ̂ is
clopen in the topology induced by the ultrametric d.

In order to prove that the map f : E(p, v)� E(p) is open, it is useful to
see the spaces at hand as approximated by finite posets, in the following
sense. For each k ∈N define the finite set of balls

Xk = {B(x, 2−k) | x ∈ E(p, v)}
(
= {[x]k | x ∈ E(p, v)}

)
,

partially ordered by6k, and write qk : E(p, v)� Xk for the natural quotient
x 7→ [x]k. For every k′ > k, there is a monotone surjection ρk′ ,k : Xk′ � Xk
sending [x]k′ to [x]k. Since f is non-extensive, it can be ‘approximated’ by
the monotone map fk : Xk → Yk, [x]k 7→ [ f (x)]k, where Yk = {B(y, 2−k) |
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y ∈ E(p)}.

E(p, v) E(p)

Xk′ Yk′

Xk Yk

f

qk′

ρk′ ,k
fk

To prove the open mapping theorem for the dual spaces of free finitely
generated Heyting algebras (i.e., Proposition 6.9), it is enough to show that
for every clopen ball B = B(x, 2−n) in E(p, v), f (x) lies in the interior of
f (B). This is equivalent to finding, for every n, a number R(n) such that

B( f (x), 2−R(n)) ⊆ f (B(x, 2−n))

for all x ∈ E(p, v). Since f (B(x, 2−n)) is closed, it suffices to construct,
for any y with y ∼R(n) f (x), a sequence (xm) in B(x, 2−n) such that
f (xm) converges to y. For the construction of such a sequence we will
use Lemma 6.15, which is a variant of the lemmas in [53, Section 4] and in
[139, Section 5].

Before stating Lemma 6.15 and showing how it completes the above
argument, we introduce some notation. Recall that a Kripke model on the
finite set of variables p (a p-model, for short) is a partially ordered set (M,6)
equipped with a monotone map cM : M→ 2p. If M is a finite p-model, then
by the second part of Proposition 6.6 there is a unique p-morphism

hM : M→ E(p)

such that h−1
M ( p̂i) = c−1

M (↑pi) for every pi ∈ p. In Lemma 6.15 we will
construct a (p, v)-model M which is a sub-poset of Xn ×Ym, where m > n.
Given any sub-poset M of Xn ×Ym, we have a diagram

M

Xn Ym

Xm

π1 π2

ξ

ρm,n fm

(6.4)

where ξ : M → Xm is defined as ξ = qm ◦ hM and π1 : M → Xn, π2 : M →
Ym are the natural projections.

Lemma 6.15. Let n ∈ N. There is an integer R(n) > n such that, for every
m > R(n), there is a finite (p, v)-model M which is a sub-poset of Xn × Ym and
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satisfies the following properties:

1. {([x]n, [y]m) | y ∼R(n) f (x)} ⊆ M;

2. ρm,n ◦ ξ = π1;

3. fm ◦ ξ = π2.

In particular, items (2) and (3) together correspond to the commutativity of dia-
gram (6.4).

The proof of Lemma 6.15 is the content of the next section. We conclude
by showing how Proposition 6.9, and hence Theorem 6.7, follow from it.

Proof of Proposition 6.9. It suffices to prove that

B( f (x), 2−R(n)) ⊆ f (B(x, 2−n))

for every point x ∈ E(p, v) and n ∈ N. Let y ∼R(n) f (x). For ev-
ery m > R(n), ([x]n, [y]m) ∈ M by item 1 in Lemma 6.15; we de-
fine xm = hM([x]n, [y]m). By item 2 in Lemma 6.15, we have [xm]n =
ρm,n(ξ([x]n, [y]m)) = [x]n, so xm ∈ B(x, 2−n). Item 3 in Lemma 6.15 entails
that [ f (xm)]m = fm(ξ([x]n, [y]m)) = [y]m, so that f (xm) converges to y.

6.5 Proof of Lemma 6.15

Fix n ∈ N. For every x ∈ E(p, v), define r(x) to be the number of ∼n-
equivalence classes in E(p, v) above x, i.e.,

r(x) = #{[x′]n | x′ ∈ ↑x} = #qn(↑x)

where #S denotes the cardinality of a set S. Further, set R(n) = 2(#Xn)− 1.
To improve readability, instead of R(n) we simply write R.

Fix an arbitrary integer m > R. For elements (x, y) and (x′, y′) in
E(p, v) × E(p), we say that (x′, y′) is a witness for (x, y) if x′ > x, y′ 6 y,
x′ ∼n x, f (x) ∼2r(x)−1 y′, and f (x′) ∼2r(x)−2 y. Note that, by definition,
f (x) ∼2r(x)−1 y if, and only if, (x, y) is a witness for itself.

Define M = {([x]n, [y]m) ∈ Xn × Ym | there exists a witness for (x, y)},
and equip it with the product order. Defining cM : M→ 2(p,v) by

cM([x]n, [y]m) = {u ∈ (p, v) | x ∈ û }

turns M into a (p, v)-model. We prove that it satisfies the three required
properties.
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1. If ([x]n, [y]m) ∈ Xn × Ym satisfies y ∼R f (x), then (x, y) is a wit-
ness for itself because 2r(x) − 1 6 2(#Xn) − 1 = R. Therefore
([x]n, [y]m) ∈ M.

2. Observe that ρm,n ◦ ξ = qn ◦ hM. Hence we must show that

hM([x]n, [y]m) ∼n x.

Assume, without loss of generality, that (x, y) admits a witness. We
will prove by induction on k that, for any 0 6 k 6 n,

∀([x]n, [y]m) ∈ M, hM([x]n, [y]m) ∼k x. (Pk)

For k = 0, (Pk) is true by definition of cM. We prove (Pk) holds for
k + 1 provided it holds for k ∈ {0, . . . , n− 1}. We will show that (a)
hM([x]n, [y]m) 6k+1 x and (b) x 6k+1 hM([x]n, [y]m).

(a) Consider an arbitrary w > x. In view of Proposition 6.13 it is
enough to find z > hM([x]n, [y]m) such that z ∼k w. Let (x′, y′)
be a witness for (x, y). Then x′ ∼n x, so that there is x′′ > x′

with x′′ ∼n−1 w, whence x′′ ∼k w. Now, two cases:

(i) If x′′ ∼n x, by the inductive hypothesis hM([x]n, [y]m) ∼k
x we have hM([x]n, [y]m) ∼k x′′ ∼k w. Thus we set z =
hM([x]n, [y]m).

(ii) Else, suppose x′′ 6∼n x. Since f (x′) ∼2r(x)−2 y and f (x′′) >
f (x′), there exists z′ > y with z′ ∼2r(x)−3 f (x′′). Now,
x′′ 6∼n x entails r(x′′) < r(x), hence 2r(x′′)− 1 6 2r(x)− 3,
showing that (x′′, z′) is a witness for itself. Setting z =
hM([x′′]n, [z′]m) we see that z > hM([x]n, [y]m) because hM
is monotone, and z ∼k x′′ ∼k w by the inductive hypothesis
applied to z.

(b) Given z > hM([x]n, [y]m) we must exhibit w > x such that w ∼k
z. Since hM is a p-morphism, there is ([x′]n, [y′]m) > ([x]n, [y]m)
such that hM([x′]n, [y′]m) = z. By the inductive hypothesis,
hM([x′]n, [y′]m) ∼k x′. Now, x 6n x′ implies the existence of
w > x satisfying w ∼n−1 x′, therefore w ∼k x′ ∼k z.

3. We first prove the following claim.

Claim. π2 : M→ Ym is a p-morphism.

Proof of Claim. Pick ([x]n, [y]m) ∈ M and z ∈ E(p) with y 6m z.
We need to prove that there is w ∈ E(p, v) such that ([w]n, [z]m) ∈
M. Suppose, without loss of generality, that (x, y) admits a witness
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(x′, y′). Then f (x) ∼2r(x)−1 y′ 6 y 6m z entails f (x) 62r(x)−1 z be-
cause m > 2r(x) − 1. Since f is a p-morphism, there exists x′′ > x
such that f (x′′) ∼2r(x)−2 z. We distinguish two cases, as above:

(i) If x′′ ∼n x, set w = x. Then (x′′, y′) is a witness for (w, z).

(ii) If x′′ 6∼n x, set w = x′′. It is easy to see, reasoning as in case (ii)
of the proof of item (2), that (w, z) is a witness for itself.

We use the claim to prove the identity fm ◦ ξ = π2. We show by
induction that, for any 0 6 k 6 m,

∀([x]n, [y]m) ∈ M, f (hM([x]n, [y]m)) ∼k y. (Qk)

For k = 0, (Qk) is true because y ∼0 f (x). We prove that (Qk) holds
for k + 1 if it holds for k ∈ {0, . . . , m− 1}. As in item 2, we prove that
(a) f (hM([x]n, [y]m)) 6k+1 y and (b) y 6k+1 f (hM([x]n, [y]m)).

(a) Pick w > y. By Proposition 6.13 it suffices to find an element
z > f (hM([x]n, [y]m)) satisfying z ∼k w. Since by the claim
π2 is a p-morphism and w >m y, there is ([x′]n, [y′]m) ∈ M
such that ([x′]n, [y′]m) > ([x]n, [y]m) and y′ ∼m w. Define z =
f (hM([x′]n, [y′]m)). Then z > f (hM([x]n, [y]m)) because f and
hM are monotone maps, and the inductive hypothesis applied
to z yields z ∼k y′ ∼k w.

(b) The argument is the same, mutatis mutandis, as in the previ-
ous item, and it hinges on the fact that both hM and f are p-
morphisms.

Concluding remarks

In this chapter we have adopted a topological approach to the study of
uniform interpolation for the intuitionistic propositional calculus. In par-
ticular, we have exposed the relation between uniform interpolation and
open mapping theorems in topology. These kinds of connections between
logical properties and topological ones are at the heart of duality theory.
A well-known example is Rasiowa and Sikorski’s proof [110] of Gödel’s
completeness theorem for first-order classical logic, which exploited Baire
Category Theorem.

It would be interesting to investigate further how Theorem 6.7 com-
pares to classical open mapping theorems in functional analysis (e.g. for
Banach spaces) and in the theory of topological groups, which typically
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rely on an application of Baire Category Theorem. Also, it would be impor-
tant to understand if similar open mapping theorems hold for other propo-
sitional logics, and what are the underlying reasons — from a duality-
theoretic perspective — for such theorems to hold.

Another possible direction for future work would consist in exploiting
our open mapping theorem to study the descent theory of the category of
finitely copresentable Esakia spaces. In [54, p. 204] the authors observe
that, if every continuous surjective p-morphism in the latter category is an
effective descent morphism, then IPC enjoys a certain property concerning
the separation of independent sets of variables. The descent theory of this
class of spaces is not yet well understood. Given the classical results on
effective descent for open surjections between locales [72] and topological
spaces (see, e.g., [112]), we expect that our open mapping theorem might
play an important rôle in settling the problem.
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Chapter 7

An abstract characterisation
of compact Hausdorff spaces

In this chapter we give a characterisation of the category KH of compact
Hausdorff spaces and continuous maps. It differs from the characterisa-
tions already available in the literature [62, 140, 40] in that it does not de-
pend on an ambient category of topological spaces, but only on categorical
properties. This result ultimately hinges on the fact that the category KH
has both a spatial nature, and an algebraic one. We briefly sketch these two
aspects of KH.

The spatial nature of the category of compact Hausdorff spaces is ev-
ident, and it has proved very rich from a duality theoretic viewpoint.
Starting in the forties, several dualities for KH were discovered [79, 73,
142]. The most celebrated is probably Gelfand-Naimark duality between
compact Hausdorff spaces and the category of commutative unital C∗-
algebras and their homomorphisms [51]. Note that the concept of norm,
central in the definition of C∗-algebra, is not algebraic in nature. How-
ever, Duskin showed in 1969 that the dual of KH is monadic over Set
[32, 5.15.3]. Roughly, this means that KHop is equivalent to a variety of
algebras. Although operations of finite arity do not suffice to describe any
such variety, Isbell [66] proved that finitely many finitary operations, along
with a single operation of countably infinite arity, generate the theory of
KHop. In joint work with Marra we provided a finite axiomatisation of
such a variety [92]. This accounts for the algebraic nature of KHop; for
more on its axiomatisability, we refer the interested reader to [12, 115].

On the other hand, the category KH itself has an algebraic nature. This
was first pointed out by Linton, who proved that the category KH is varietal
[85, Section 5]. Again, this essentially means that KH can be described by
operations (of possibly infinite arity) and identities. An explicit descrip-
tion of such an equational axiomatisation was later given by Manes [90,
Section 1.5], who showed that compact Hausdorff spaces are precisely the
algebras for the ultrafilter monad on Set. This algebraic nature is one of
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the distinctive aspects of KH among the categories of topological spaces.
In [62] Herrlich and Strecker exploited this intuition to show that KH is the
unique non-trivial full epireflective subcategory of Hausdorff spaces that
is varietal in the sense of Linton (see also [114]). This characterisation is rel-
ative to a fixed category of topological spaces, namely Hausdorff spaces.
To the best of our knowledge, no ‘abstract’ characterisation of KH has been
provided so far. Our main result, Theorem 7.20, offers one.

Our characterisation relies on the notion of pretopos, that is a coherent
and exact category in which finite coproducts exist and are disjoint. The
category KH provides an example of pretopos. We prove that, up to equiv-
alence, KH is the only non-trivial well-powered pretopos that is well-pointed, ad-
mits all coproducts, and is filtral. Exactness accounts for the algebraic nature
of KH, whereas the structure of coherent category reflects the fact that KH
is rich enough to encode a certain coherent theory, as explained in Chap-
ter 5. Although we shall not make the connection with logic explicit, the
rôle played by the coherent structure of KH will be evident throughout
the chapter. The last condition, filtrality, should be understood as a form
of compactness of the copowers of the terminal object; it roughly asserts
that the I-fold copower of the terminal object behaves like the Stone-Čech
compactification of the discrete space I. In a sense, the main result of this
chapter consists in identifying the concept of filtrality as crucial to a ‘nice’
topological representation of a category. To the best of our knowledge, the
notion of filtrality, which arises in the work of Magari in universal algebra
(cf. Remark 7.15 below), has not been considered elsewhere for categories
which are not varieties Birkhoff algebras.

The results of this chapter will be the topic of the forthcoming [91].

Outline of the chapter. In Section 7.1 we study the functor assigning to
every object of a well-pointed coherent category X its set of points (i.e.,
global elements). This functor admits a lifting to the category of topological
spaces, yielding a topological representation of X. The notion of filtrality
is introduced in Section 7.2, as a condition on certain posets of subobjects
in X. Under the appropriate hypotheses, we show that the category X is
filtral precisely when its topological representation lands in the category of
compact Hausdorff spaces. The full pretopos structure on X is considered
in Section 7.3, where we prove our main result, Theorem 7.20. Finally, in
Section 7.4 we make explicit the relation between the category X and the
category of Boolean spaces by means of the notion of decidable object.

For most of the steps of the construction leading to the main result, we
do not need to assume that X satisfies all the assumptions in the statement
of the latter. Hence we fix, in each section, an incremental set of hypothe-
ses that the category X is assumed to satisfy. To avoid overcomplicated
statements, we have sometimes opted for a set of hypotheses that is not
minimal.
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Notation. Assuming they exist, the initial and terminal objects of a cate-
gory are denoted by 0 and 1, respectively, and the unique morphism from
an object X to 1 is ! : X → 1. While the coproduct of two objects X, Y is
written X + Y, for infinite coproducts we rather use the symbol ∑.

7.1 The topological representation

Given a topological space X, a point x ∈ X can be identified with the map
{∗} → X from the one-point space selecting x. We abstract this idea to an
arbitrary category.

Definition 7.1. Let X be a category admitting a terminal object 1. For any
object X of X, a point of X is a morphism

1→ X

in the category X.

If X is locally small, i.e. every hom-set in X is a small set, we can define a
functor

pt = homX(1,−) : X→ Set (7.1)

taking X to its set of points pt X. In category theoretic terminology, points
are usually referred to as global elements.

The aim of this section is to lift the functor pt : X → Set to a functor
into the category of topological spaces (cf. Corollary 7.12 below), yielding
a topological representation of the category X. To do so, we prepare several
lemmas concerning the properties of the sets of points. First, note that each
point 1 → X is a section of the unique morphism X → 1, hence it is a
monomorphism. It follows that every point of X belongs to the poset of
subobjects Sub X.

Definition 7.2. A category is well-powered if every object has a small set of
subobjects.

Every locally small category is well-powered. On the other hand, every
well-powered category with finite products is locally small, for then each
morphism f : X → Y can be identified with a subobject of X × Y (in the
category of sets, this corresponds to identifying a function with its graph).
In particular, a well-powered coherent category is locally small.

Since we seek a representation of the category X by means of the func-
tor of points pt : X → Set, it is reasonable to assume that this functor is
faithful; i.e., the category X is well-pointed.
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Definition 7.3. Suppose X is a category admitting a terminal object 1. Then
X is said to be well-pointed if, for any two distinct morphisms f , g : X ⇒ Y
in X, there is a point p : 1→ X such that f ◦ p 6= g ◦ p.

In the following, we will study the properties of the functor of points
when X is a coherent category satisfying some extra assumptions. Before
proceeding, note that every coherent category C has an initial object 0. This
can be taken to be the least element of Sub 1. Moreover, 0 is strict, in the
sense that every morphism X → 0 must be an isomorphism (for a proof of
these facts see, e.g., [67, A.1.4]). In turn, this implies that 0 ∼= 1 if, and only
if, any two objects in the category are isomorphic, and therefore C is equiv-
alent to the terminal category with only one object and one morphism.
Thus, if 0 ∼= 1, we shall say that the category C is trivial. Finally, recall that
every poset of subobjects in C is a distributive lattice by Lemma 5.5, and
C admits stable images which arise from a (regular epi, mono) factorisa-
tion system that is stable under pullback (cf. Definition 5.1). Throughout,
whenever convenient, we will tacitly use the fact that in every coherent cat-
egory there is such a factorisation system. For the remainder of the section,
we assume the category X satisfies the following properties.

Assumption. The category X is a coherent category that is non-trivial, i.e.
0 6∼= 1, well-powered, and well-pointed.

We note in passing that, if X is an object of X such that the copower
∑pt X 1 exists in X, then the canonical morphism

∑
pt X

1→ X

is an epimorphism, by well-pointedness of X. In view of the discussion
above, the next lemma is immediate.

Lemma 7.4. The functor pt : X → Set from (7.1) is well-defined and faithful.

Some interesting properties of the sets of points can be derived by as-
suming that the unique morphism ! : 0→ 1 is an extremal monomorphism.
Recall that a monomorphism m is extremal if, whenever it can be decom-
posed as m = f ◦ e with e an epimorphism, then e is an isomorphism. A
moment’s reflection shows that

1. if g ◦ f is an extremal mono, then so is f ;

2. every extremal mono that is epic must be an isomorphism.

Remark 7.5. In a coherent category the unique morphism 0→ 1 is always
a monomorphism, but in general it is not extremal. Note that 0 → 1 is



7.1. The topological representation 137

an extremal mono if, and only if, for every non-initial object X there is an
object Y and two distinct morphisms X ⇒ Y. If the category is positive, i.e.
it has disjoint finite sums, then one can consider Y = X + X along with the
coproduct injections X ⇒ Y. This shows that in every positive coherent
category the unique morphism 0→ 1 is an extremal monomorphism.

Lemma 7.6. Suppose the unique morphism 0 → 1 is an extremal mono. The
following statements hold.

1. Every non-initial object of X has at least one point.

2. Up to isomorphism, 1 is the unique non-initial object of X that has no non-
trivial subobjects.

3. The functor pt : X→ Set preserves regular epis, i.e. 1 is regular projective.

Proof. 1. Suppose X is an object in X satisfying pt X = ∅. Then
∑pt X 1 ∼= 0, showing that the unique morphism 0→ X is an epimor-
phism. By assumption, the composition 0 → X → 1 is an extremal
mono. Hence the unique morphism 0 → X is both an epimorphism
and an extremal monomorphism, whence an isomorphism. That is,
X is initial.

2. We start by observing that 1 has no non-trivial subobjects. Indeed,
assume m : X → 1 is a monomorphism. If X is not initial, then by the
previous item there is a point p : 1 → X. Then m ◦ p is the identity
of 1, showing that m is a retraction. Since every mono which is a
retraction is an isomorphism, we have X ∼= 1. Now, suppose X is a
non-initial object of X that admits no non-trivial subobjects. By item
1 there is a monomorphism 1→ X, whence X ∼= 1.

3. Let f : X → Y be a regular epimorphism in X, and p : 1 → Y an
arbitrary point of Y. We must exhibit q ∈ pt X such that pt f (q) = p.
Consider the following pullback square.

Z 1

X Y

!

g p

f

Since regular epis are pullback stable, Z !−→ 1 is a regular epi. Hence
Z 6∼= 0 because the unique morphism 0→ 1 is a mono, and 0 6∼= 1. By
item 1, Z has a point q′ : 1→ Z. Defining q ∈ pt X as the composition
g ◦ q′ : 1→ X yields pt f (q) = p, as was to be shown.
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Remark 7.7. Items 1 and 2 of Lemma 7.6 together imply that, if 0 → 1 is
an extremal mono, then the atoms of the poset Sub X are precisely the points of
X. This fact will be important in the following.

Given an object X of X and a subobject S ∈ Sub X, define the set

V(S) = {p : 1→ X | p factors through the subobject S→ X} (7.2)

of all points of X that ‘belong to S’. Conversely, we would like to be able
to define a subobject of X induced by the choice of a subset of points of X.
Note that the operator V : Sub X −→ ℘(pt X) preserves all infima existing
in Sub X. In particular, it is monotone. If the poset of subobjects Sub X is
complete, then V has a lower adjoint I : ℘(pt X) → Sub X. By the usual
description of the lower adjoint to an upper adjoint map between posets,
cf. [30, 7.33], for any set T ⊆ pt X of points of X,

I(T) =
∧
{S ∈ Sub X | each p ∈ T factors through S}. (7.3)

That is, I(T) is the smallest subobject of X that ‘contains (all the points in)
T’. We record the adjunction I a V in the lemma below.

Remark 7.8. The assumption that all the posets of subobjects in X are com-
plete (that is, using categorical terminology, that X is mono-complete) is a
weak form of completeness of the category X. Indeed, suppose X is an
object of X, and consider any subset

{Si | i ∈ I} ⊆ Sub X.

Then, if it exists, the infimum
∧

i∈I Si ∈ Sub X is the limit in X of the codi-
rected diagram of the finite intersections of elements from {Si | i ∈ I},
with the obvious monomorphisms between them.

Therefore if X has, in addition to all finite limits, all small codirected
limits (thus, by [86, p. 208], all small limits) then Sub X is complete for each
X in X. However, the completeness of X is not a necessary condition for the
existence of arbitrary infima (and suprema) of subobjects: the category of
finite sets provides a counterexample. We point out that another sufficient
condition for the posets of subobjects in X to be complete is the existence
of arbitrary coproducts. Indeed, if the coproduct ∑i∈I Si exists in X, then
the (regular epi, mono) factorisation of the morphism

∑
i∈I

Si → X

yields the supremum
∨

i∈I Si of the set {Si | i ∈ I}.

Lemma 7.9. Assume that every poset of subobjects in X is complete. For each
object X of X the following statements hold.
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1. The operators V : Sub X −→ ℘(pt X) and I : ℘(pt X) −→ Sub X, de-
fined in (7.2) and (7.3), form an adjoint pair:

℘(pt X) > Sub X.

I

V

(7.4)

2. For each morphism f : X → Y in X, the function pt f : pt X → pt Y is
pseudo-continuous,1 that is, for every T ∈ ℘(pt X)

pt f (V ◦ I(T)) ⊆ V ◦ I(pt f (T)).

Proof. Item 1 is the content of the discussion after Remark 7.7. For item 2,
fix an arbitrary subset T ⊆ pt X and suppose that q ∈ pt f (V ◦ I(T)). That
is, q = pt f (p) for some point p ∈ pt X that belongs to all the subobjects of
X that contain all the points in T. We must prove that q belongs to every
subobject of Y containing all the points of the form f ◦ p′ with p′ ∈ T.
Let S be a subobject of Y satisfying the latter property, and consider the
following pullback square in X.

f ∗(S) S

X Y
f

By the universal property of the pullback, f ∗(S) contains all the points in
T. Hence p ∈ f ∗(S). It follows that q = f ◦ p ∈ S, as was to be proved.

We are interested in the situation where the closure operators V ◦ I in-
duce a topology on the sets of points of the objects of X. This is the content
of Proposition 7.11 below. We shall also prove that, if the lattice Sub X is
atomic, i.e. every element of Sub X is the supremum of the atoms below it,
then every element of Sub X is fixed by the operator I ◦V.

Remark 7.10. Assume every poset of subobjects in X is complete. If X is
balanced, i.e. every morphism that is both a mono and an epi is an iso, then
Sub X is atomic for every X in X. Indeed, for any S ∈ Sub X we always

1Let g : X → Y be a function between topological spaces, and cl, cl’ the natural closure
operators on ℘(X) and ℘(Y), respectively. Then g is continuous iff g(cl A) ⊆ cl’ f (A)
for every A ⊆ X. If X, Y are merely sets, and cl, cl’ are (possibly non-topological) closure
operators, we speak of pseudo-continuity. Similarly, we say that g is pseudo-closed if it satisfies
cl’ f (A) ⊆ g(cl A) for every A ⊆ X. Provided the closure operators at hand are topological, a
pseudo-closed map is a closed map in the usual topological sense.
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have ∨
{p : 1→ X | p 6 S} 6 S.

Observe that∨
{p : 1→ X | p 6 S} =

∧
{S′ ∈ Sub X | ∀ p : 1→ X (p 6 S⇒ p 6 S′)}.

Write T =
∨{p : 1 → X | p 6 S}, and let m : S′ → S be a monomorphism

witnessing the inequality T 6 S. The functor pt is faithful by Lemma 7.4,
hence it reflects monos and epis. If X is balanced then pt is conservative, i.e.
it reflects isomorphisms. Therefore, in order to prove that T = S in Sub X,
it suffices to show that pt T = pt S′. In turn, we have

pt T =
⋂
{pt S′ | S′ ∈ Sub X, pt S ⊆ pt S′} = pt S,

where the first equality follows from the fact that the functor pt is repre-
sentable, hence it preserves limits (cf. Remark 7.8). In fact, one can prove
that the functor pt is conservative if, and only if, Sub X is atomic for ev-
ery X in X. One direction was proved in this remark. For the converse
direction, cf. Lemma 7.33 below.

Proposition 7.11. Assume every poset of subobjects in X is complete, and the
morphism 0→ 1 is an extremal monomorphism. The following statements hold.

1. For each morphism f : X → Y in X, the function pt f : pt X → pt Y is
pseudo-closed,2 that is, for every T ∈ ℘(pt X)

V ◦ I(pt f (T)) ⊆ pt f (V ◦ I(T)).

2. For each object X of X, the closure operator V ◦ I on℘(pt X) is topological,
i.e. it preserves finite unions.

3. If Sub X is atomic, then each subobject S ∈ Sub X is a fixed point of the
operator I ◦V, i.e. I ◦V(S) = S.

Proof. 1. Suppose q ∈ V ◦ I(pt f (T)), i.e. q is a point of Y that be-
longs to all the subobjects of Y that contain all the points of the form
pt f (p) for some p ∈ T. We must prove that q ∈ pt f (V ◦ I(T)).
Let ∃ f : Sub X → Sub Y be the lower adjoint to the pullback functor
f ∗ : Sub Y → Sub X. Recall that ∃ f sends a subobject m : S → X
to the codomain of the (regular epi, mono) factorisation of the mor-
phism f ◦m, and

∃ f (I(T)) =
∧
{S ∈ Sub Y | I(T) 6 f ∗(S)}. (7.5)

2Cf. footnote 1 on page 139.
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Now, if S is an arbitrary subobject of Y satisfying I(T) 6 f ∗(S), every
point of T must belong to f ∗(S). Thus S contains every point of the
form pt f (p) for p ∈ T, so that q 6 S. By (7.5) we have q 6 ∃ f (I(T)).
To conclude, it is enough to show that

V(∃ f (I(T))) = pt f (V ◦ I(T)).

Let e : I(T) → ∃ f (I(T)) be the canonical regular epi. Then pt e is
surjective by item 3 in Lemma 7.6, showing that V(∃ f (I(T))) =
pt f (V ◦ I(T)).

2. The operator I preserves arbitrary joins because it is lower adjoint.
Hence it is enough to show that V preserves finite joins. Since X
is non-trivial, we have V(0) = ∅. Now, let S1, S2 ∈ Sub X, and
pick a point p ∈ pt X. The latter is an atom of Sub X (cf. Remark
7.7). Since the lattice Sub X is distributive by Lemma 5.5, and atoms
in a distributive lattice are are always join-prime, we conclude that
p 6 S1 ∨ S2 iff p 6 S1 or p 6 S2. That is V(S1 ∨ S2) = V(S1)∪V(S2).

3. Let S ∈ Sub X be an arbitrary subobject. In view of the previous
item, we have I ◦V(S) 6 S. In the other direction, we must prove
that S 6 S′ whenever S′ ∈ Sub X is such that every point of X that
factors through S factors also through S′. In view of Remark 7.7, this
holds if Sub X is atomic.

The next corollary is an immediate consequence of item 3 in Lemma 7.9
and item 2 in Proposition 7.11.

Corollary 7.12. Suppose every poset of subobjects in X is complete, and 0 → 1
is an extremal monomorphism. Then pt : X→ Set can be lifted to a functor

Spec : X→ Top

into the category of topological spaces sending an object X of X to the set pt X
equipped with the topology induced by the closure operator V ◦ I in diagram (7.4).

Write | − | : Top→ Set for the underlying-set functor. Since the functor
pt is faithful (Lemma 7.4) and the diagram below commutes, we conclude
that Spec : X→ Top is a faithful functor.

X Top

Set

Spec

pt |−|
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Moreover, in view of item 1 in Proposition 7.11, for every morphism
f : X → Y in X the continuous function Spec f : Spec X → Spec Y is closed,
i.e. it sends closed sets to closed sets. Finally we remark that, if the poset
Sub X is atomic for each X in X, then item 3 in Lemma 7.11 implies that the
most general closed subset of Spec X is of the form

{p : 1→ X | p factors through S}

for some S ∈ Sub X.

Remark 7.13. In this remark we assume the reader is familiar with the ba-
sics of point-free topology. It is well known that every complete lattice which
is
∨

-generated by its join-prime elements is a spatial co-frame.3 Now, ev-
ery poset of subobjects in X is a distributive lattice, and every atom in a
distributive lattice is join-prime. Therefore, if Sub X is a complete atomic
lattice, then it is a spatial co-frame and it is isomorphic to the co-frame of
closed subsets of Spec X. Write Xσ for the space of points (in the point-free
sense) of the frame (Sub X)∂ order-dual to Sub X. Then Xσ is the soberifi-
cation of Spec X. The two spaces coincide precisely when each join-prime
element of Sub X is an atom.

7.2 Filtrality

Throughout this section, we make the following assumptions on the cate-
gory X.

Assumption. The category X is a coherent category that is non-trivial, i.e.
0 6∼= 1, well-powered, and well-pointed. Moreover, the unique morphism
0→ 1 is an extremal mono, and Sub X is a complete atomic lattice for every
X in X.

In the previous section we have seen that, under these assumptions,
there is a faithful functor

Spec : X→ Top.

The latter sends an object X of X to the topological space Spec X whose
underlying set is pt X, the set of points of X, and whose closed sets are of
the form

{p ∈ pt X | p 6 S}

where S varies among the subobjects of X. In this section we investigate
when the functor Spec takes values in the full subcategory of Top on the

3A co-frame is spatial if it is
∨

-generated by the set of its join-prime elements. Spatial co-
frames are precisely those arising as the collections of all closed subsets of some sober space.
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compact and Hausdorff spaces. This leads to the notion of filtrality, cf.
Theorem 7.17.

Suppose that, for every object X of X, the copower ∑pt X 1 exists in X.
Every point of X yields a coproduct injection of 1 into ∑pt X 1, and this
assignment is injective. Whenever convenient, we identify an element of
pt X with the corresponding coproduct injection of ∑pt X 1, i.e. we regard
pt X as a subset of pt ∑pt X 1. Every filter F of the power-set lattice℘(pt X)
defines a subobject of ∑pt X 1, namely

F 7−→ k(F) =
∧
{S ∈ Sub ∑

pt X
1 | pt S ∩ pt X ∈ F}. (7.6)

We remark that the condition pt S ∩ pt X ∈ F is equivalent to the existence
of some A ∈ F satisfying A ⊆ pt S. Write Filt(℘(pt X)) for the lattice of
filters of ℘(pt X), and Filt(℘(pt X))∂ for its order-dual. The assignment
in (7.6) yields an order-preserving map

k : Filt(℘(pt X))∂ → Sub ∑
pt X

1. (7.7)

We point out that the requirement that F be a filter, and not merely a sub-
set, is not a real restriction. Indeed, the subobject associated to a subset F
of ℘(pt X) coincides with the one associated to the filter generated by F.
However, the phrasing in terms of filters allows for a smooth formulation
of the next definition.

Definition 7.14. Assume arbitrary copowers of 1 exist in X. Then the cate-
gory X is filtral if, for each X in X, the map k from (7.7) is a bijection.

Filtrality should be regarded as a form of compactness, and at the same
time Hausdorffness, of certain copowers of the terminal object. In fact, the
map k is an abstraction of the lattice isomorphism between (the order-dual
of) the lattice of filters of ℘(I), for I any set, and the lattice of closed sets
of the Stone-Čech compactification β(I) of the discrete space I.

Note that in order to formulate the notion of filtrality it is not necessary
to assume that all the copowers of the terminal object exist, for those in-
dexed by a set of the form pt X, for some X in X, suffice. For example, the
definition above makes sense for the category of finite sets and functions,
which is easily seen to be filtral. However, we have opted for a stronger
assumption to simplify the set of hypotheses and improve readability.

Remark 7.15. Fix a class L of Birkhoff algebras of the same similarity type,
and consider a subset {Ai | i ∈ I} ⊆ L. If B is a subalgebra of the direct
product ∏i∈I Ai, and F is a filter of ℘(I), then the relation ϑF defined by

∀b, b′ ∈ B, (b, b′) ∈ ϑF ⇔ {i ∈ I | bi = b′i} ∈ F
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is a congruence on B. In [87], Magari calls the algebra B filtral if every
congruence on B is of the form ϑF for some filter F. The class L is then said
to be filtral if every subdirect product of members of L is a filtral algebra,
and semi-filtral if the latter condition is required only for direct products. If
L consists of a single algebra A, then L is semi-filtral iff, for every set I, the
filters of ℘(I) are in bijection with the quotients of AI .

Suppose V is a variety of algebras, and A is the initial algebra in V, i.e.
the free V-algebra on the empty set. If L = {A} is semi-filtral in the sense
of Magari and every monomorphism in V is regular (this happens, for in-
stance, if V satisfies the strong amalgamation property), then the category
Vop is filtral in the sense of Definition 7.14. For example, one can take V to
be the variety of Boolean algebras, and A the two-element Boolean algebra.

The next lemma states that the monotone map k : Filt(℘(pt X))∂ →
Sub ∑pt X 1 is, in fact, a homomorphism of semilattices. This observation
will be exploited in Theorem 7.17 below to show that, if X is filtral, then
the spaces of the form Spec ∑pt X 1 are compact and Hausdorff.

Lemma 7.16. For any X in X, the map k from equation (7.7) is a ∨-semilattice
homomorphism.

Proof. Suppose F1, F2 are filters of ℘(pt X). We must prove that

k(F1 ∧ F2) = k(F1) ∨ k(F2).

It is immediate that k(F1 ∧ F2) > k(F1)∨ k(F2). With respect to the converse
inequality, by the infinite distributive law of co-frames (i.e., the order-dual
of the distributive law in (5.3)) we have

k(F1) ∨ k(F2) =
∧
{S ∨ S′ ∈ Sub ∑

pt X
1 | pt S ∩ pt X ∈ F1, pt S′ ∩ pt X ∈ F2}.

(7.8)

Suppose pt (S ∨ S′) ∩ pt X ∈ F1 ∩ F2 whenever S ∨ S′ belongs to the right-
hand set in (7.8). Then it must be k(F1 ∧ F2) 6 k(F1) ∨ k(F2). In turn, recall
that pt (S ∨ S′) = pt S ∪ pt S′ because points are join-prime elements in the
lattice Sub X. Thus

pt (S ∨ S′) ∩ pt X = (pt S ∪ pt S′) ∩ pt X = (pt S ∩ pt X) ∪ (pt S′ ∩ pt X),

which belongs to F1 ∩ F2. This concludes the proof.

The following theorem, which is the main result of the section, says that
the category X is filtral if, and only if, the functor Spec : X → Top takes
values in the category of compact Hausdorff spaces. However, in order
to show the ‘if’ part of the statement, we have to assume that those finite
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coproducts that exist in X are disjoint. That is, if a coproduct X +Y exists in
X, then the pullback of one coproduct injection along the other one is the
initial object 0.

Theorem 7.17. Suppose arbitrary copowers of 1 exist in X, and any finite coprod-
uct that exists in X is disjoint. The following statements are equivalent.

1. The category X is filtral.

2. Spec ∑pt X 1 is a compact Hausdorff space for every X in X.

3. Spec X is a compact Hausdorff space for every X in X.

Proof. We recall a well-known topological fact that will be employed be-
low: the continuous image of a compact Hausdorff space through a closed
map is again a compact Hausdorff space.

1⇒ 2. If X is filtral, then the map k : Filt(℘(pt X))∂ → Sub ∑pt X 1 from
(7.7) is a bijective ∨-semilattice homomorphism by Lemma 7.16, hence a
lattice isomorphism. In particular, it restricts to a bijection between the
atoms of Filt(℘(pt X))∂, i.e. the ultrafilters of ℘(pt X), and the atoms of
Sub ∑pt X 1. The latter coincide, by Remark 7.7, with the points of ∑pt X 1.
Consider β(pt X), the Stone-Čech compactification of the discrete space
pt X. We claim that the restriction of k to the set of atoms of Filt(℘(pt X))∂

yields a homeomorphism

ϕ : β(pt X)→ Spec ∑
pt X

1,

which in turn exhibits Spec ∑pt X 1 as a compact Hausdorff space. By
the topological fact recalled at the beginning of the proof, it suffices to
show that ϕ is continuous and closed. The most general closed subset of
Spec ∑pt X 1 is of the form

C = {p ∈ pt ∑
pt X

1 | p 6 S}

for some S ∈ Sub ∑pt X 1. If, under the isomorphism k, S corresponds
to a filter F of ℘(pt X) then C corresponds to the set of all ultrafilters of
℘(pt X) extending F, which is the most general closed subset of β(pt X).
Thus ϕ is continuous and closed.

2⇒ 1. Assume Spec ∑pt X 1 is compact and Hausdorff for every X in X.
Write

f : pt X → Spec ∑
pt X

1
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for the function sending a point p of X to the corresponding coproduct
injection of ∑pt X 1. By the universal property of the Stone-Čech compacti-
fication, there is a (unique) continuous map

g : β(pt X)→ Spec ∑
pt X

1

such that the next diagram commutes.

pt X β(pt X)

Spec ∑pt X 1
f

g

Claim. The map g is a bijection.

Proof of Claim. We first show that g is injective. Recall that, for every x ∈
β(pt X),

g(x) =
⋂

A∈x
{p ∈ pt ∑

pt X
1 | ∀S ∈ Sub ∑

pt X
1 ( f (A) ⊆ V(S) ⇒ p ∈ V(S))}.

Let x, y ∈ β(pt X) be distinct ultrafilters, and T ⊆ pt X such that T ∈ x
and Tc ∈ y. Since f (T) ⊆ V(∑T 1), we have g(x) ∈ V(∑T 1). Similarly,
g(y) ∈ V(∑Tc 1). We claim that V(∑T 1) ∩V(∑Tc 1) = ∅, which clearly
implies g(x) 6= g(y). The operator V is upper adjoint by Lemma 7.9, thus
it suffices to prove

V(∑
T

1 ∧∑
Tc

1) = ∅.

The sum ∑T 1 + ∑Tc 1 exists in X and coincides with ∑pt X 1. Thus it is
disjoint by assumption, that is ∑T 1 ∧ ∑Tc 1 = 0. It follows that V(∑T 1 ∧
∑Tc 1) = ∅.

On the other hand, surjectivity of g follows if we show that the image
of pt X through f is dense in Spec ∑pt X 1. An arbitrary open subset of
Spec ∑pt X 1 is of the form

O = {p ∈ pt ∑
pt X

1 | p does not factor through S},

for some subobject S ∈ Sub ∑pt X 1. If O 6= ∅, then S 6∼= ∑pt X 1. There-
fore, there exists a coproduct injection q : 1 → ∑pt X 1 which does not fac-
tor through S, and hence belongs to O. In turn, q is in the image of pt X
through f , showing that the latter set is dense in Spec ∑pt X 1.
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For any topological space Y, write K(Y) for its lattice of closed subsets.
There is a commuting square as follows. The vertical arrows, sending re-
spectively a filter of ℘(pt X) to the set of ultrafilters extending it, and a
subobject of ∑pt X 1 to the set of its points, are lattice isomorphisms.

Filt(℘(pt X))∂ Sub ∑pt X 1

K(β(pt X)) K(Spec ∑pt X 1)

k

g[−]

In view of the claim, g is a homeomorphism between the spaces β(pt X)
and Spec ∑pt X 1. Therefore the direct image function g[−] is a lattice iso-
morphism. We conclude that k is also a lattice isomorphism, showing that
X is filtral.

2 ⇔ 3. For the non-trivial direction, consider an object X of X and the
canonical morphism ε : ∑pt X 1→ X. Direct inspection shows that the con-
tinuous function Spec ε is surjective. Moreover, it is closed by item 1 in
Proposition 7.11. Hence, if Spec ∑pt X 1 is a compact and Hausdorff space,
then so is Spec X.

The following corollary follows at once from the previous theorem, and
it does not make use of the hypothesis that the existing sums are disjoint.
In particular, the characterisation of Spec ∑pt X 1 follows from the proof of
the implication 1⇒ 2.

Corollary 7.18. If X is filtral and admits arbitrary copowers of 1, then the functor
Spec : X→ Top co-restricts to a functor

Spec : X→ KH. (7.9)

Furthermore, for each X in X, Spec ∑pt X 1 is homeomorphic to the Stone-Čech
compactification of the discrete space pt X. That is, the following square commutes
up to a natural isomorphism.

X X

Set KH

∑pt− 1

pt Spec
β

We conclude this section by observing that, under the hypotheses of
the previous corollary, the functor Spec : X → KH preserves all the limits
that exist in X. The proof hinges on the fact that the underlying-set func-
tor | − | : KH → Set is conservative. However, one could give a direct
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proof by showing that Spec preserves finite and codirected limits, hence
all small limits [86, p. 208]. This can be done through a direct inspection of
the topology of the limit objects. Next, we indicate how one could prove
directly that Spec preserves binary products.

If X, Y are objects of X, then there is a bijection between the underlying
sets of Spec (X×Y) and Spec X × Spec Y because the functor pt is repre-
sentable, hence it preserves limits. In turn, the topology of Spec (X×Y)
is finer than the topology of Spec X × Spec Y because it makes the projec-
tions continuous. By the previous corollary, these two topologies are both
compact and Hausdorff. Therefore Spec (X×Y) ∼= Spec X × Spec Y be-
cause any two distinct compact Hausdorff topologies on the same set are
incomparable.

Proposition 7.19. If X is filtral and admits arbitrary copowers of 1, then the
functor Spec : X→ KH preserves all the limits that exist in X.

Proof. Consider the following commutative diagram of functors.

X KH

Set

Spec

pt |−|

The functor | − | preserves all limits because it is represented by the one-
point space. Furthermore it is conservative, i.e. any continuous bijection
between two compact Hausdorff spaces is a homeomorphism. Since every
conservative functor reflects all the limits that it preserves, we conclude
that | − | reflects all limits. Since pt preserves them, Spec must preserve all
the limits that exist in X.

7.3 A characterisation of KH

The aim of this section is to prove our main result, i.e. the following charac-
terisation of the category KH of compact Hausdorff spaces and continuous
maps.

Theorem 7.20. Up to equivalence, KH is the unique non-trivial well-powered
pretopos that is well-pointed, admits all coproducts, and is filtral.

We now recall the basic definitions and facts needed in order to prove
the previous theorem. A category C is said to be (Barr) exact provided it
is regular, and every internal equivalence relation in C is effective, i.e. it
coincides with the kernel pair of its coequaliser. For instance, every variety
of algebras is exact. More generally, every category that is monadic over
Set is exact. Roughly speaking, a pretopos is an exact category in which
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finite sums exist and are ‘well-behaved’. The latter property is formalised
by the notion of extensivity.

Definition 7.21. A category C is extensive provided it has finite coproducts,
and the canonical functor

C/X1 × C/X2 → C/(X1 + X2)

is an equivalence for every X1, X2 in C.

In the presence of enough limits a more intuitive reformulation of this
notion is available. Given two objects X1, X2 in C, the coproduct X1 + X2
is universal if the pullback of the coproduct diagram X1 → X1 + X2 ← X2
along any morphism yields a coproduct diagram. Moreover, recall that the
coproduct X1 +X2 is said to be disjoint if pulling back a coproduct injection
along the other one yields the initial object of C.

Lemma 7.22 ([26, Proposition 2.14]). If C has finite sums and pullbacks along
coproduct injections, then it is extensive iff finite sums in C are universal and
disjoint.

Definition 7.23. A pretopos is an exact and extensive category.

Pretoposes are often defined as positive and effective coherent categories.
Here, positive means that finite coproducts exist and are disjoint, while an
effective regular category is what has been called an exact category above.
The two definitions are equivalent, since finite coproducts in a positive and
effective coherent category are universal, and an exact extensive category
is automatically coherent. We record this fact for future use.

Lemma 7.24. A category C is a pretopos if, and only if, it is a positive and effective
coherent category.

Example 7.25. 1. The category of sets and functions is a pretopos. Its
full subcategory on the finite sets is also a pretopos. More generally,
every elementary topos is a pretopos.

2. The category KH of compact Hausdorff spaces and continuous maps
is a pretopos. The hard bit is checking that KH is exact. In turn, this
follows from the fact that KH is monadic over Set [85].

3. The category BStone of Boolean spaces and continuous maps is a
positive coherent category, but it is not effective. Thus it is not a pre-
topos. In fact, its pretopos completion is the category KH (cf. [27]).

Remark 7.26. If the condition in Definition 7.21 is extended to arbitrary co-
products, one obtains the notion of ∞-extensive category. The condition of
filtrality is somehow orthogonal to that of ∞-extensiveness. Indeed, in an
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∞-extensive category arbitrary coproducts are disjoint. From a geometric
viewpoint, this means that we allow for infinite discrete objects. Since we
aim to capture the category of compact Hausdorff spaces and continuous
maps, we assume compactness in the form of filtrality. Given that every lo-
cally small cocomplete elementary topos (in particular, every Grothendieck
topos) is ∞-extensive [67, p. 100], no such topos is filtral.

Recall that a coherent functor is a functor between coherent categories
that preserves finite limits, regular epimorphisms, and finite joins of sub-
objects. Under the hypotheses of Theorem 7.20, the functor Spec : X→ KH
turns out to be coherent.

Lemma 7.27. Let X be a non-trivial well-powered pretopos that is well-pointed,
admits all coproducts, and is filtral. Then the functor Spec : X → KH from (7.9)
is well-defined and coherent.

Proof. Assume X is as in the statement. We verify that X satisfies the as-
sumptions at the beginning of Section 7.2. In view of Lemma 7.24, it suf-
fices to show that the morphism 0 → 1 is an extremal mono, and Sub X is
a complete atomic lattice for every X in X. Since every monomorphism in
a pretopos is regular [67, Corollary A.1.4.9], the morphism 0 → 1 is reg-
ular, whence extremal. In view of Remark 7.8, since arbitrary coproducts
exist in X, every poset of subobjects in X is complete. On the other hand,
X is balanced because every monomorphism is regular. Hence Sub X is an
atomic lattice, for each X in X, by Remark 7.10.

Further, arbitrary copowers of 1 exist in X. Hence, by Corollary 7.18,
the functor Spec : X → KH is well-defined. We prove that it is a coherent
functor. The preservation of limits was proved in Proposition 7.19. Reg-
ular epis in KH are simply continuous surjective functions, therefore the
functor Spec preserves regular epis by item 3 in Lemma 7.6. It remains to
prove that Spec preserves finite joins of subobjects. We first note that

Claim. The functor Spec preserves finite coproducts.

Proof of Claim. Since the initial object of X is strict, we have Spec 0 = ∅. It
thus suffices to prove that Spec X + Y ∼= Spec X + Spec Y whenever X, Y
are objects of X. At the level of underlying sets, the obvious function

pt X + pt Y → pt (X + Y)

is injective because sums in X are disjoint. On the other hand, surjectivity
follows from universality of sums. To prove that this bijection is actually
a homeomorphism, one has to show that every subobject of X + Y can be
split as the sum of a subobject of X, and a subobject of Y. In turn, this
follows from the universality of sums in X. Indeed, taking the pullback
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of the coproduct X → X + Y ← Y along a subobject S → X + Y yields a
splitting of S of the form S = S1 + S2, with S1 ∈ Sub X and S2 ∈ Sub Y.

To conclude, consider X in X and two subobjects S1 → X and S2 → X.
Write j : S1 + S2 → X for their coproduct. Since the functor Spec preserves
finite coproducts by the previous claim, Spec j : Spec (S1 + S2) → Spec X
is the sum of the subobjects Spec S1 → Spec X and Spec S2 → Spec X.
The subobject S1 ∨ S2 → X is obtained by taking the (regular epi, mono)
factorisation of j. Since the functor Spec preserves regular epis and monos,
the image under Spec of the factorisation of j is the (regular epi, mono)
factorisation of Spec j. Hence

Spec (S1 ∨ S2) ∼= Spec S1 ∨ Spec S2,

as was to be shown.

The last ingredient we need in order to prove Theorem 7.20 is the fol-
lowing proposition due to Makkai. Suppose C, D are coherent categories,
and F : C → D is a coherent functor. We say that F is full on subobjects if,
for any X in C, the induced lattice homomorphism Sub X → Sub FX is
surjective. Further, F covers D if, for each object Y in D, there exist X in C
and an epimorphism FX → Y in D. Finally, a morphism of pretoposes is a
functor between pretoposes preserving finite limits, finite coproducts, and
coequalisers of internal equivalence relations.

Proposition 7.28 ([88, Prop. 2.4.4 and Lemma 2.4.6]). The following state-
ments hold.

1. Any coherent functor between pretoposes is a morphism of pretoposes.

2. A morphism of pretoposes is an equivalence iff it is conservative, full on
subobjects, and it covers its codomain.

We are now ready for the proof of our main result.

Proof of Theorem 7.20. By Lemma 7.27 and Proposition 7.28, it is enough to
show that Spec : X → KH is conservative, it is full on subobjects, and it
covers KH.

The functor Spec : X → KH is faithful because so is pt : X → Set (cf.
Lemma 7.4). Thus, since X is balanced, Spec is conservative. The functor
Spec is full on subobjects because monomorphisms in KH are inclusions
of closed subsets, and the closed subsets of Spec X, for X in X, correspond
precisely to the subobjects of X. Finally, consider any compact Hausdorff
space Y. Since X admits arbitrary coproducts, the Y-fold copower of 1 ex-
ists in X. Write X = ∑Y 1. By Corollary 7.18, Spec ∑pt X 1 is homeomorphic
to the Stone-Čech compactification of the discrete space pt X. Note that Y
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can be identified with a subset of pt X, by sending y ∈ Y to the correspond-
ing coproduct injection of ∑Y 1. Let f : pt X → Y be any function that is the
identity when restricted to Y. By the universal property of the Stone-Čech
compactification there is a (unique) continuous map g : Spec ∑pt X 1 → Y
extending f . Since f is surjective, then so is g. This shows that the functor
Spec covers KH, thus concluding the proof.

Remark 7.29. We comment on the independence of the hypotheses in The-
orem 7.20. First, the category Set of sets and functions is a non-trivial well-
powered pretopos that is well-pointed and cocomplete, but it is not filtral.
Thus the latter assumption is independent from the others. The existence
of all coproducts is also independent, as the example of Set f , the category
of finite sets, shows.

To see that the hypothesis that X be a pretopos is also independent,
consider the category BStone of Boolean spaces. This is a non-trivial well-
powered coherent category that is well-pointed, cocomplete and filtral, but
it is not exact (cf. Example 7.25). Another example of a category that satis-
fies all the assumptions but the pretopos condition is provided by the cate-
gory KH6 of ordered compact spaces and monotone continuous maps. Re-
call from Section 6.1 that an ordered compact space is a pair (X,6) where X
is a compact space, and 6 ⊆ X× X is a partial order closed in the product
topology. The category KH6 is easily seen to be non-trivial, well-powered
and well-pointed. Furthermore it is cocomplete (cf. [135, Corollary 2]), and
filtral because the copowers of the terminal object are computed as in KH.
However, KH6 is not a pretopos. For instance, while every monomor-
phism in a pretopos is regular, this is not the case in KH6. Indeed, the
regular monomorphisms in KH6 are precisely the continuous order em-
beddings (for a proof of this fact see [64, Prop. 4.7]). In turn, the identity
function ([0, 1],=) → ([0, 1],6) provides an example of a monomorphism
that is not regular.

7.4 Decidable objects and Boolean spaces

As observed in Example 7.25, the category BStone is not a pretopos. That
is, assuming the exactness of the category X prevents us from capturing the
Boolean spaces. We thus take a step back, and drop the assumption that
the category X be exact. Throughout the section, we assume X satisfies the
following properties, which imply that the functor Spec : X → KH from
(7.9) is well-defined.

Assumption. The category X is a coherent positive category that is non-
trivial, i.e. 0 6∼= 1, well-powered, well-pointed, and filtral. Moreover, arbi-
trary copowers of 1 exist in X, and Sub X is a complete atomic lattice for
every X in X.
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Note that, under the assumptions above, the unique morphism 0 → 1
is an extremal mono (cf. Remark 7.5).

Recall that an object X of a finitely complete and extensive category
is decidable provided the diagonal morphism δX : X → X × X is comple-
mented, i.e. there exists a morphism εX : Y → X× X such that

X X× X Y
δX εX

is a coproduct diagram. The class of decidable objects contains the initial
object 0, the terminal object 1, and it is closed under taking subobjects,
finite sums and finite products. For instance, decidable objects in Top are
the discrete spaces, while decidable objects in KH are the finite discrete
spaces. See [25] for a proof of these statements, and for the basics of the
theory of decidable objects.

Proposition 7.30. The functor Spec : X→ KH preserves decidable objects.

Proof. Let X be a decidable object in X, and Y → X× X the complement of
the diagonal of X. Note that Spec (X× X) ∼= Spec X × Spec X because
Spec preserves limits by Proposition 7.19. Then the diagonal of X × X
is mapped to the diagonal of Spec X × Spec X, and it admits Spec Y as a
complement because Spec preserves finite coproducts (cf. the Claim in the
proof of Lemma 7.27).

Remark 7.31. Since every decidable object in KH is a finite and discrete
space, Proposition 7.30 entails that Spec X is finite and discrete whenever
X is a decidable object of X. On the other hand, every finite discrete space
arises in this manner. Indeed, suppose Y is a discrete space with n ele-
ments. Then Y ∼= Spec ∑n

i=1 1 because every coproduct injection yields a
distinct point of ∑n

i=1 1, and every point is a coproduct injection because
sums in X are universal. Note that the object ∑n

i=1 1 is decidable because it
is a finite sum of decidable objects.

Denote by Dec X the full subcategory of X on the decidable objects. This
subcategory turns out to be equivalent to the category of finite sets:

Proposition 7.32. The functor Spec : X → KH restricts to an equivalence be-
tween the category Dec X of decidable objects of X, and the category Set f of finite
sets.

Proof. The functor Spec : X → KH restricts to a functor Spec : Dec X →
Set f by Proposition 7.30. Since the former is faithful, then so is the latter. In
turn, Remark 7.31 shows that Spec : Dec X→ Set f is essentially surjective.
Hence it remains to show that it is full.

To this end, we prove that for every continuous function f : Spec X →
Spec Y with Spec Y finite and discrete, there is a morphism g : X → Y in X
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such that Spec g = f . Since Spec Y is finite and discrete, f induces a parti-
tion of Spec X into finitely many clopens, corresponding to complemented
subobjects S1, . . . , Sn of X. Thus X ∼= ∑n

i=1 Si. For each i ∈ {1, . . . , n},
define gi : Si → Y as the composition

Si 1 Y! v

where v ∈ pt Y is the value that f assumes on the clopen corresponding to
Si. Upon writing g = ∑n

i=1 gi : X → Y, we see that Spec g = f .

Recall from Section 1.1 that the category of Boolean spaces coincides
with the pro-completion of the category of finite sets. Therefore, if X has
all codirected limits, the equivalence in the previous proposition can be
lifted to an equivalence between a full subcategory of X and the category
of Boolean spaces. In order to show this fact, we need a preliminary result.

Lemma 7.33. The functor Spec : X→ KH is conservative.

Proof. It is enough to show that the functor pt : X → Set is conservative.
First, note that pt is conservative on monomorphisms because all the posets
of subobjects in X are atomic. That is, whenever m is a mono in X and pt m
is a bijection, m must be an isomorphism in X. Now, let f be a morphism
in X, and m ◦ e its (regular epi, mono) factorisation. Suppose

pt f = pt m ◦ pt e

is an iso. We prove that both e and m are isomorphisms. Since pt f is an
iso, pt m is an epi. But pt m is also a mono because pt preserves limits, thus
it is a bijection. By the observation above, m is an iso. In turn, the functor
pt is faithful, hence it reflects monos. Since pt f is an iso, pt e is a mono.
We conclude that e is both a mono and a regular epi in X, hence an iso.
Therefore f is an isomorphism.

Call pro-decidable an object of X that is the codirected limit of decid-
able objects, and write proDec X for the full subcategory of X on the pro-
decidable objects. We will show that proDec X is equivalent to the category
of Boolean spaces, provided X has enough limits. Note that the existence of
codirected limits of decidable objects of X would suffice. However, to sim-
plify the set of assumptions, we will assume that X admits all codirected
limits. Then, since X has finite limits, it has all small limits [86, p. 208].

Theorem 7.34. If X is complete, then the functor Spec : X→ KH restricts to an
equivalence between the category proDec X of pro-decidable objects of X, and the
category BStone of Boolean spaces.
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Proof. The functor Spec : X→ KH restricts to a functor Spec : proDec X→
BStone by Propositions 7.19 and 7.30. Since the former is faithful, then
so is the latter. Every Boolean space is the codirected limit of finite dis-
crete spaces, and each finite discrete space is isomorphic to one of the
form Spec X, for X in Dec X, by Proposition 7.32. Since the functor Spec
preserves limits by Proposition 7.19, we conclude that Spec : proDec X →
BStone is essentially surjective. To conclude the proof, we must show that
it is full.

Assume f : Spec X → Spec Y is a continuous function, and Spec Y is
a Boolean space. Then f is uniquely determined by its compositions with
the quotients onto the finite discrete images of Spec Y. Such finite images
are in the essential range of Spec : Dec X → Set f , so they are of the form
pi : Spec Y → Spec Yi, with each Yi decidable. Thus f is determined by the
cone

{ fi : Spec X → Spec Yi},

where fi = pi ◦ f . Since the Spec Yi are finite and discrete spaces, for each
fi there is a morphism ϕi : X → Yi such that Spec ϕi = fi (cf. the proof of
Proposition 7.32). Similarly, for each pi : Spec Y → Spec Yi there is πi : Y →
Yi with Spec πi = pi. The functor Spec is conservative by Lemma 7.33,
hence it reflects limits. That is, the limit of the codirected system (Yi, πi) in
X is Y. Let g : X → Y be the morphism induced by the cone {ϕi : X → Yi}
in X. We have

pi ◦ Spec g = Spec (πi ◦ g) = Spec ϕi = fi

for every i, whence Spec g = f . This concludes the proof.

To state the next corollary we introduce some terminology. We say that
a functor is codense if its codensity monad exists and is the identity monad
(cf. Section 3.1). Further, a co-frame is 0-dimensional if every element is the
infimum of the complemented elements above it. We obtain the following
characterisation of the category of Boolean spaces, under the assumptions
at the beginning of the section.

Corollary 7.35. If X is complete, then the following conditions are equivalent.

1. X is equivalent to the category BStone of Boolean spaces.

2. The inclusion functor Dec X→ X is codense.

3. For each X in X, the co-frame Sub X is 0-dimensional.

4. 1 + 1 is a cogenerator for the category X.

5. The category X is cogenerated by a decidable object with at least two points.
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Proof. Every category equivalent to BStone satisfies the conditions in
items 2− 5. We prove that 2 ⇒ 1. In view of Lemma 3.4, saying that the
inclusion Dec X → X is codense means that every object of X is the limit
of decidable objects in a canonical way. Since the product of two decidable
objects is again decidable, the limit at hand is easily seen to be codirected.
Therefore every object of X is pro-decidable. The statement then follows at
once from Theorem 7.34.

In view of the conservativity of the functor Spec (Lemma 7.33), if
Spec X is a Boolean space then X is pro-decidable in X. In turn, each of
the conditions in items 3− 5 ensures that the functor Spec : X→ KH takes
values in BStone. Indeed, since Sub X is isomorphic to the co-frame of
closed subsets of Spec X, the latter is a Boolean space whenever Sub X is
0-dimensional. Moreover, if X is cogenerated by a decidable object Y (with
at least two points), then every object X of X admits a monomorphism to a
power of Y. Since Spec preserves limits, this means that Spec X is a closed
subspace of a Boolean space, hence it is Boolean. Therefore each of the
conditions 3− 5 implies that every object of X is pro-decidable. Hence, by
Theorem 7.34, they all entail that X is equivalent to BStone.

Concluding remarks

The main novelty of our work consists in identifying the concept of filtral-
ity as the categorical abstraction of compactness and Hausdorffness, in the
context of the topological representation provided by the functor Spec.

In Remark 7.15 we indicated the relation between our notion of filtral-
ity, and filtrality as it was introduced by Magari in universal algebra. The
latter notion is related to Boolean products and sheaf representations of
algebras: it would be interesting to know how our work relates to sheaf
representations, and in particular to the recent publication [45]. On the
other hand, filtrality in the sense of Magari is connected to a certain incon-
sistency lemma in logic, see [109]. We leave as an interesting direction for
future work the investigation of the relation between this logic property,
and filtrality in our sense.

The characterisation of the category of compact Hausdorff spaces pre-
sented in this chapter should be compared to Lawvere’s Elementary Theory
of the Category of Sets (ETCS) outlined in [83]. While we identified a set P of
properties such that any category satisfying P is equivalent to the category
of compact Hausdorff spaces (Theorem 7.20), in op. cit. Lawvere gives eight
elementary axioms (in the language of categories) such that every complete
category satisfying these axioms is equivalent to the category of sets and
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functions.4 Some of his axioms appear verbatim in our characterisation, e.g.
the existence of enough points (elements, in Lawvere’s terminology). Also,
the assumption that every non-initial object has a point — one of the eight
axioms — should be compared to our Lemma 7.6, while our assumption
of effective equivalence relations corresponds to [83, Theorem 6]. Where
the two constructions, Lawvere’s and ours, diverge is about the existence
of infinite ‘discrete’ objects: the third axiom of ETCS states the existence of
an object N behaving like the set of natural numbers. We identify a notion
that is somehow orthogonal to the latter, namely filtrality, which precisely
forbids the existence of such objects. In a sense, our characterisation shows
to which extent the categories Set and KH are similar, and where they dif-
fer. Note that the condition of filtrality is of a different nature, compared
to the other properties in P, because it is external; it would be interesting
to know if this condition can be internalised. To conclude the discussion
of Lawvere’s ETCS, let us mention that his axiomatisation was adapted by
Schlomiuk in [117] to capture the category of topological spaces. However,
Schlomiuk’s characterisation does not bear a greater resemblance to ours
than Lawvere’s does.

A direction for possible future work consists in adapting our charac-
terisation of KH to the category KH6 of ordered compact spaces which,
although not a pretopos, is filtral (cf. Remark 7.29). Here, we believe the
right setting is that of categories enriched in the quantale 2 (see [132] for a
gentle introduction to quantaloid-enriched categories). This is related to a
question motivated by the logic. In Section 7.4 we identified a class of cat-
egories X that contain a full subcategory dually equivalent to the category
of Boolean algebras (see Corollary 7.34); this subcategory may be regarded
as a Boolean ‘core’ of the category X. An enriched setting will probably
allow us to study categories with a distributive, or Heyting, ‘core’.

Another interesting direction is that of a constructive version of our
result. While the assumption of well-pointedness yields right away the
existence of enough points, one might try to adapt the result to the category
of compact regular locales which, under the axiom of choice, is equivalent to
KH (see, e.g., [69, Corollary III.1.10]). This would establish a connection
with [136].

4Unlike the other axioms, completeness (i.e., the existence of arbitrary limits) is not ex-
pressible by means of a first-order sentence. In this sense, Lawvere’s characterisation of Set
is almost elementary.
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