Multi-Scale Study of Foam Flow Dynamics in Porous Media - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Multi-Scale Study of Foam Flow Dynamics in Porous Media

Étude multi-échelle de la dynamique d'écoulement des mousses en milieux poreux

Christopher Yeates
  • Fonction : Auteur
  • PersonId : 993074

Résumé

In this work, we use of a high-complexity micromodel of fixed structure on which we perform a series of experiments with varying injection rates, foam qualities, inlet bubble size distributions and injection methods. We perform individual bubble tracking and associate flow properties with bubble size properties and structural characteristics of the medium. We propose new tools describing the local and global flow in different ways. We establish specific behaviors for different bubble sizes, demonstrating that trapped foams are more likely to have smaller than average bubble sizes, while flowing bubbles also tend to segregate in different flow paths according to bubble size. Larger bubbles tend to flow in high-velocity preferential paths that are generally more aligned with pressure gradient, but smaller bubbles tend to access in supplement transversal paths linking the different preferential paths. Furthermore, for our data we establish the pre-eminence of the trapped foam fraction over bubble density within the microscopic explanation of apparent viscosity, although both contribute to some degree. We structurally characterize consistently trapped zones as areas with either low pore coordination, low entrance throat size, unfavorable throat orientation or a combination thereof. High-flow zones however cannot be characterized in terms of local structural parameters and necessitate integration of complete path information from the entire model. In this regard, in order to capture the high-flow zones, we develop a path-proposing model that makes use of a graph representation of the model, from an initial decomposition into pores and throats, that uses only local throat size and throat orientation relative to pressure gradient to characterize paths.
Pour ce travail, nous utilisons un micromodèle à haute complexité et à structure fixe pour faire une série d’expériences en variant la vitesse d’injection, la qualité de la mousse, les distributions de taille de bulles d’injection, et la méthode d’injection. Nous mettons en œuvre un suivi individuel de bulles pour associer les propriétés d’écoulement aux propriétés de taille de bulles ainsi que les caractéristiques structurelles du milieu poreux. Nous proposons de nouveaux outils pour décrire l’écoulement d’un point de vue global et local de différentes manières. Nous établissons des comportements spécifiques à chaque taille de bulle, en montrant que les bulles des mousses piégées sont plus probables d’être de taille inférieure aux tailles de bulles moyennes, alors que les mousses en mouvement accèdent elles-mêmes à différents chemins d’écoulement selon les tailles de bulles. Les bulles plus volumineuses s’écoulent en majorité dans des chemins préférentiels à haute vitesse, généralement parallèles au gradient de pression, mais les petites bulles sont transportées en supplément à l’intérieur de chemins transversaux liant les chemins préférentiels. Ailleurs, pour nos données nous démontrons l’importance supérieure de la fraction de mousse piégée vis-à-vis de la densité de bulles quant à l’explication microscopique de la viscosité apparente, malgré une contribution des deux. Nous caractérisons structurellement les zones piégées à répétition, comme étant soit des zones à faible coordination de pore, de faible taille de seuil d’entrée, d’orientation de seuil désavantageuse, ou une combinaison de ceux-ci. Les zones à fort écoulement échappent à une caractérisation en termes de paramètres de structure locale et nécessitent une considération de l’information des différents chemins traversant la totalité du modèle. À ce but, afin de décrire les zones à fort écoulement, nous développons un modèle générant des chemins, utilisant une représentation en graphe du milieux poreux, basé sur une décomposition initiale en pores et seuils, qui intègre seulement les notions de taille de seuil et d’orientation de seuil relatif au gradient de pression pour caractériser les chemins.
Fichier principal
Vignette du fichier
These_Christopher_Yeates_final_2019.pdf (19.17 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02459728 , version 1 (29-01-2020)
tel-02459728 , version 2 (28-04-2020)

Identifiants

  • HAL Id : tel-02459728 , version 2

Citer

Christopher Yeates. Multi-Scale Study of Foam Flow Dynamics in Porous Media. Soft Condensed Matter [cond-mat.soft]. Sorbonne Université, 2019. English. ⟨NNT : 2019SORUS023⟩. ⟨tel-02459728v2⟩
289 Consultations
26 Téléchargements

Partager

Gmail Facebook X LinkedIn More