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Inférence dans les modèles à changement de pente aléatoire :

application au déclin cognitif pré-démence

Résumé : Le but de ce travail a été de proposer des méthodes d’inférence pour

décrire l’histoire naturelle de la phase pré-diagnostic de la démence. Durant celle-ci,

qui dure une quinzaine d’années, les trajectoires de déclin cognitif sont non linéaires

et hétérogènes entre les sujets. Pour ces raisons, nous avons choisi un modèle à

changement de pente aléatoire pour les décrire. Une première partie de ce travail a

consisté à proposer une procédure de test pour l’existence d’un changement de pente

aléatoire. En effet, dans certaines sous-populations, le déclin cognitif semble lisse

et la question de l’existence même d’un changement de pente se pose. Cette ques-

tion présente un défi méthodologique en raison de la non-identifiabilité de certains

paramètres sous l’hypothèse nulle rendant les tests standards inutiles. Nous avons

proposé un supremum score test pour répondre à cette question. Une seconde partie

du travail concernait l’ordre temporel du temps de changement entre plusieurs mar-

queurs. La démence est une maladie multidimensionnelle et plusieurs dimensions

de la cognition sont affectées. Des schémas hypothétiques existent pour décrire

l’histoire naturelle de la démence mais n’ont pas été éprouvés sur données réelles.

Comparer le temps de changement de différents marqueurs mesurant différentes

fonctions cognitives permet d’éclairer ces hypothèses. Dans cet esprit, nous pro-

posons un modèle bivarié à changement de pente aléatoire permettant de comparer

les temps de changement de deux marqueurs, potentiellement non gaussiens. Les

méthodes proposées ont été évaluées sur simulations et appliquées sur des données

issues de deux cohortes françaises. Enfin, nous discutons les limites de ces deux

modèles qui se concentrent sur une accélération tardive du déclin cognitif précédant

le diagnostic de démence et nous proposons un modèle alternatif qui estime plutôt

une date de décrochage entre cas et non-cas.

Mots clés: Démence, modèles mixtes, données longitudinales multivariées,

paramètres de nuisance non identifiables, changement de pente aléatoire, test du

score.
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Inference for random changepoint models: application to pre-dementia

cognitive decline

Abstract: The aim of this work was to propose inferential methods to describe

natural history of the pre-diagnosis phase of dementia. During this phase, which can

last around fifteen years, the cognitive decline trajectories are nonlinear and het-

erogeneous between subjects. Because heterogeneity and nonlinearity, we chose a

random changepoint mixed model to describe these trajectories. A first part of this

work was to propose a testing procedure to assess the existence of a random change-

point. Indeed, in some subpopulations, the cognitive decline seems smooth and the

question of the existence of a changepoint itself araises. This question is method-

ologically challenging because of identifiability issues on some parameters under the

null hypothesis that makes standard tests useless. We proposed a supremum score

test to answer this question. A second part of this work was the comparison of the

temporal order of different markers changepoint. Dementia is a multidimensional

disease where different dimensions of the cognition are affected. Hypothetic cascade

models exist for describing this natural history but have not been evaluated on real

data. Comparing change over time of different markers measuring different cognitive

functions gives precious insight on this hypothesis. In this spirit, we propose a bi-

variate random changepoint model allowing proper comparison of the time of change

of two cognitive markers, potentially non Gaussian. The proposed methodologies

were evaluated on simulation studies and applied on real data from two French co-

horts. Finally, we discussed the limitations of the two models we used that focused

on the late acceleration of the cognitive decline before dementia diagnosis and we

proposed an alternative model that estimates the time of differentiation between

cases and non-cases.

Key words: Dementia, mixed models, multivariate longitudinal data, non iden-

tifiable nuisance parameters, random changepoint, score test.
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Résumé substantiel

Motivations

La motivation principale de ce travail a été l’étude de l’histoire naturelle de la

démence. La démence est un syndrome qui affecte les capacités cognitives et im-

pacte la vie quotidienne des malades. Parmi les causes de démence, on retrouve

principalement la maladie d’Alzheimer, 60 à 70% des cas selon l’OMS (WHO, 2017).

La démence est le résultat d’un processus de dégradation progressif qui peut durer

entre dix et quinze ans (Amieva et al., 2008, 2014) et se distingue d’un vieillissement

cognitif normal (Belleville et al., 1996; Machulda et al., 2013). L’OMS a classé la

démence comme la cinquième cause de mortalité au monde (WHO, 2017). En 2018,

selon l’association Alzheimer’s Disease International (Patterson, 2018), 50 millions

de personnes dans le monde étaient atteintes de démence et ce nombre devrait at-

teindre 152 millions d’ici 2050. Actuellement, un nouveau cas est identifié toutes les

trois secondes.

Ces dernières décennies, la recherche médicale s’est intéressée au développement

de traitements pour la maladie d’Alzheimer. Néanmoins, ceux-ci ont été conçus pour

cibler les symptômes plus que les causes de la maladie qui restent mal identifiées.

C’est pourquoi un champ majeur de la recherche actuelle se concentre à mieux com-

prendre l’histoire naturelle de la maladie d’Alzheimer. Cela permettrait de détecter

la maladie à un stade suffisamment précoce pour permettre le développement de

traitements préventifs ciblant une population identifiée comme à risque (Aisen et al.,

2011).

L’histoire naturelle de la démence a fait l’objet de nombreuses études (Hubbard
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et al., 1990; Jost et Grossberg, 1995; Beker et al., 1994). Il est désormais acquis que

durant la phase de pré-démence, les trajectoires de déclins cognitifs mesurées par des

marqueurs psychométriques sont non linéaires avec une accélération du déclin cog-

nitif qui se manifeste par un changement de pente (Wilson et al., 2012; Rajan et al.,

2017; Li et al., 2017) et ces trajectoires sont très hétérogènes entre sujets (Amieva

et al., 2014). De plus, le processus de dégradation semble se dérouler en étapes

successives (Godbolt et al., 2004; Amieva et al., 2008). À partir de ces observa-

tions, les chercheurs ont émis l’htpothèse de l’existence d’une cascade pathologique

atteignant successivement différentes dimensions de la cognition dont les étapes ont

été décrites dans des modèles théoriques (Jack et al., 2010, 2013; Verlinden et al.,

2016). Néanmoins, ces derniers restent hypothétiques et des méthodes statistiques

sont nécessaires pour les valider.

Dans ce travail, nous avons choisi les modèles non linéaires mixtes à changement

de pente aléatoire pour données longitudinales afin de modéliser les trajectoires de

déclin cognitif tout en prenant en compte l’hétérogénéité entre individus. Le pre-

mier objectif de la thèse était de proposer un test pour l’existence de changement

de pente aléatoire afin de déterminer si le déclin cognitif présente effectivement une

accélération individuelle. Un second travail a été de proposer un modèle bivarié per-

mettant la comparaison de la date de changement de pente de plusieurs marqueurs

mesurant différentes fonctions cognitives.

Test pour l’existence du changement de pente aléatoire

On note Yij la valeur du marqueur Y pour le sujet i au temps tij avec 1 ≤ i ≤ N et

1 ≤ j ≤ ni. Pour modéliser la trajectoire d’un marqueur cognitif nous avons choisi

un modèle inspiré par Bacon et Watts (1971) avec la fonction de transition proposée

par Griffiths et Miller (1973)

Yij = β0i + β1itij + β2

√
(tij − τi)2 + γ + εij

avec

τi = µτ + στ τ̃i et τ̃i ∼ N (0, 1),
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βki = β>k Xki + αki pour k = 0, 1,

αi = (α0i, α1i)
> ∼ N (0,Σ) avec Σ =

(
σ0 σ01

σ01 σ1

)
et εij ∼ N (0, σ).

Nous proposons une procédure de test en deux temps. Premièrement nous testons

s’il existe un changement de pente aléatoire puis, si l’existence de ce changement de

pente aléatoire est confirmée, nous testons si la différence de pente entre les deux

phases est aléatoire.

L’absence de changement de pente aléatoire est définie par l’hypothèse nulle

H0 : β2 = 0. Pour tester cette hypothèse nulle contre l’alternative H1 : β2 6= 0, nous

avons choisi le test du score. Cependant, sous H0, les paramètres liés au change-

ment de pente aléatoire (µτ , στ ) sont non identifiables. On ne peut donc calculer

leurs estimations du maximum de vraisemblance sous H0 et il est donc impossible

d’utiliser la statistique du test du score classique SN qui en dépend. Ce problème

d’identifiabilité présente un réel défi méthodologique. Nous avons proposé de con-

sidérer comme statistique de test le supremum de SN en les paramètres de nuisances

non identifiables (µτ , στ ). Si cela permet de lever le problème d’identifiabilité, il reste

néanmoins à déterminer la distribution asymptotique sous H0 pour pouvoir calculer

une p-valeur mais cette distribution n’a pas de forme analytique connue. Hansen

(1996) a proposé une procédure de perturbation des contributions individuelles au

score par des variables gaussiennes permettant d’échantillonner selon cette distri-

bution. Ces échantillonnages permettent de calculer une p-valeur empirique et de

conclure sur le test de l’existence du changement de pente aléatoire.

Cette procédure de test a été implémentée en R dans la fonction testRCPMM

du package rcpm (cf. Annexe B) et validée par une étude de simulations. Elle a

été appliquée à la cohorte française Paquid (Letenneur et al., 1994) et a permis de

mettre en évidence l’existence de changement de pente chez les déments de haut

et bas niveau d’étude pour le test d’Isaacs (Isaacs et Kennie, 1973) qui évalue la

fluence verbale (cf. Chapitre 3).

Si le test révèle l’existence d’un changement de pente aléatoire, il est maintenant

possible de tester si la différence de pentes entre les deux phases varie d’un individu

à l’autre. Autrement dit, il s’agit ici de tester la présence d’un effet aléatoire sur β2.
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Notons β2i = β2 + α2i avec αi = (α0i, α1i, α2i) ∼ N (0,Σ), le test peut être formulé

par les hypothèses

H0 : Σ =


σ0 σ01 0

σ01 σ1 0

0 0 0

 vs. H1 : Σ =


σ0 σ01 σ02

σ01 σ1 σ12

σ02 σ12 σ2

 .

Bien que ce type de test soit courant dans les modèles mixtes, il ne s’agit pas d’un test

standard car, sous l’hypothèse nulle, certains paramètres atteignent les bornes de

leur espace de définition. Stram et Lee (1994) ont proposé une approche rigoureuse

pour réaliser ce test et ont montré que la distribution nulle asymptotique suivait un

mélange de distribution du χ2. Le modèle à changement de pente aléatoire complet

Yij = β0i + β1itij + β2i

√
(tij − τi)2 + γ + εij

peut alors être estimé en maximisant la log-vraisemblance

`N(Y ; θ) =
N∑
i=1

log
1

π

∫ ni∏
j=1

f(Yij|τ̃i) exp(−τ̃ 2i )dτ̃i.

où θ contient tous les paramètres du modèle. Cette maximisation peut se faire en

utilisant l’algorithme de Marquardt-Levenberg (Levenberg, 1944; Marquardt, 1963)

par exemple. L’intégrale sur les effets aléatoires est approchée par la méthode de

quadrature de Gauss-Hermite. Cette procédure d’estimation a été implémentée en

R dans la fonction rcpme du package rcpm (cf. Annexe B).

Modèle bivarié curvilinéaire à changement de pente

aléatoire et comparaison temporelle

Afin de comparer les changements de pente de deux marqueurs, il est nécessaire

de les estimer simultanément car l’estimation de la covariance des temps moyens

de changement de pente µτ est nécessaire pour réaliser ce test statistique. Pour
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cela, nous proposons un modèle bivarié à changement de pente aléatoire basé sur le

modèle proposé par Bacon et Watts (1971) avec la fonction de transition proposée

par Griffiths et Miller (1973). Ce modèle bivarié s’écrit en notation matricielle

Yi = Γiβi + εi

où βi = (β1
0i, β

1
1i, β

1
2i, β

2
0i, β

2
1i, β

2
2i)
> ∼ N (β,B) avec β = (β1

0 , β
1
1 , β

1
2 , β

2
0 , β

2
1 , β

2
2)>, τ̃i =

(τ̃ 1i , τ̃
2
i )> ∼ N (0, D) et εi ∼ Nni(0,Σi) avec

Γi =

[
T 1
i 0n1

i×3

0n2
i×3 T 2

i

]
, B =

[
B1 B12

B21 B2

]
, D =

[
1 d12

d12 1

]
,

Σi =

[
σε1In1

i
0n1

i×n2
i

0n2
i×n1

i
σε2In2

i

]
, T li =


1 ti1 − τ li

√
(ti1 − τ li )2 + γ

...
...

...

1 tinli − τ
l
i

√
(tinli − τ

l
i )

2 + γ

 .
où IN est la matrice identité de taille N . Ce modèle s’estime également en max-

imisant la log-vraisemblance

`N(θ) =
N∑
i=1

log

∫
f(Yi|τ̃i)f(τ̃i)dτ̃i

où le vecteur θ contient tous les paramètres du modèle. La distribution condition-

nelle de Yi|τ̃i est une gaussienne multivariée définie par

Yi|τ̃i ∼ N (Γiβ, ΓiBΓ>i + Σi).

Cette maximisation peut être réalisée par l’algorithme de Marquardt-Levenberg

(Levenberg, 1944; Marquardt, 1963). L’intégrale sur les deux changements de pente

aléatoires est à nouveau approchée par une méthode de quadrature de Gauss-

Hermite. Pour réduire le nombre de noeuds tout en gardant une bonne précision,

on utilise la quadrature pseudo-adaptative (Rizopoulos, 2012). Plus précisément,
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grâce à l’estimation des deux modèles univariés, nous pouvons estimer les effets

aléatoires individuels pour chaque marqueur. Cette information peut alors être

utilisée pour recentrer la grille de la quadrature de Gauss-Hermite avant de lancer

l’optimisation. L’hypothèse de normalité du marqueur longitudinal, souvent peu

réaliste avec les marqueurs psychométriques, est ici assouplie. Une transformation

du marqueur brut, basée sur des I-splines, est estimée en même temps que tous les

autres paramètres du modèle. Cette transformation estimée permet à la procédure

d’estimation de s’appliquer à des marqueurs non gaussiens sans hypothèse a priori

sur la transformation.

Une fois l’estimation du modèle réalisée, la comparaison des temps moyens de

changements de pente entre les deux marqueurs revient à tester H0 : µ1
τ−µ2

τ = 0 par

un test de Wald classique dont la statistique de test suit sous H0 une distribution

du χ2.

Cette procédure d’estimation d’un modèle bivarié curvilinéaire à changement de

pente aléatoire a été implémentée en R dans la fonction bircpme du package rcpm

(cf. Annexe B). La procédure a été validée sur des simulations et appliquée à la

cohorte 3C (3C Study Group, 2003). Nous avons comparé chez les cas les dates de

changements de pente moyens de deux des scores de Grober et Buschke (Grober et

Buschke, 1987), le rappel immédiat et le rappel libre qui évaluent respectivement la

capacité d’encodage d’une information et la capacité de la mémoriser. L’estimation

du modèle a montré que la capacité de mémorisation d’une information déclinait

avant la capacité d’encodage.

Discussion et perspectives

En comparant nos résultats d’estimation du changement de pente à d’autres résultats

de la littérature (Amieva et al., 2014), nous constatons que le changement de pente

estimé par les modèles que nous proposons représente l’accélération tardive du déclin

cognitif précédent le diagnostic de démence et non la premiere accélération du déclin

qui correspond au moment où le déclin cognitif normal se distingue d’un déclin

pathologique. Une perspective intéressante serait, dans une étude cas-témoin nichée
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dans une cohorte, d’estimer cette date de décrochage. À cette fin, nous proposons

un modèle à classes latentes avec une classe linéaire et une classe à changement de

pente, où, à partir de τi, la différence entre la trajectoire dans la seconde phase et

la trajectoire linéaire est modelisée par une fonction flexible basée sur des I-splines.

Ce modèle est actuellement en cours de développement.

Un autre point de discussion est l’interprétation du changement de pente au

regard du temps de base choisi. En effet, dans les travaux présentés dans cette

thèse, nous avons considéré comme temps de base le délai à la démence en ne

travaillant que sur les cas diagnostiqués pendant le suivi. Dans un schéma cas-témoin

niché dans une cohorte, il est toujours envisageable d’utiliser le délai à la démence

comme temps de base en choisissant, pour les témoins qui n’ont par définition pas

de délai à la démence, le délai à la démence du cas apparié. Néanmoins, dans le

cadre de modèles plus complexes, comme les modèles conjoints qui permettent de

modéliser simultanément le temps jusqu’à la démence et l’évolution longitudinale

d’un marqueur cognitif, le temps de base est l’âge et l’interprétation du changement

de pente est moins aisée.

Ces travaux méthodologiques permettent de décrire l’histoire naturelle de la mal-

adie d’Alzheimer et de répondre à des questions cliniques d’intérêt tout en proposant

une solution aux défis méthodologiques que soulèvent ces questions. La méthodologie

développée dans cette thèse peut s’appliquer à toute autre pathologie dont la progres-

sion clinique peut être mesurée par un marqueur et à la condition qu’un changement

de pente dans la trajectoire longitudinale de ce marqueur ait un réel sens clinique.
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Chapter 1

Introduction

Before introducing the statistical methods used and developed during this work, we

outline in this introductory chapter the main clinical application that guided the

statistical developments presented in this document.

1.1 Dementia, a global public health issue

The main motivation for this work was the study of dementia. Dementia is a syn-

drome that affects cognitive abilities and daily life. The main cause of dementia is

known to be the Alzheimer’s Disease (AD) that represents around 60% to 70% of

the cases according to the WHO (2017), much more frequent than vascular demen-

tia and dementia with Lewy bodies. However, distinguishing between the different

types of dementia is difficult and often characteristics of AD and vascular dementia

can coexist. Dementia is the result of a long and progressive degradation process

that can last for around ten to fifteen years (Amieva et al., 2008, 2014) and differs

from a normal ageing process (Belleville et al., 1996; Machulda et al., 2013). Accord-

ing to the DSM-IV (2000), dementia is defined as the manifestation of symptoms

that lead to the loss of cognitive functions, such as memory, at such a scale that

activities of daily life are impacted. This loss of autonomy often causes institution-

alization of the patient and leads to death. The WHO (2017) has ranked AD and

other dementias as the fifth leading cause of death worldwide in 2016 and even the

1
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third one in high-income countries.

In 2018, according to Alzheimer’s Disease International (Patterson, 2018), 50

million people worldwide had dementia and this number is expected to rise to 152

million by 2050. Indeed, because of a global increasing life expectancy, especially

in middle and low income countries, the prevalence of dementia will mechanically

increase. Currently, one new case is identified every three seconds. It represents a

huge and heavy challenge for modern society which needs to address it by proposing

quality care for patients and appropriate support for their family. According to

figures from the Alzheimer’s Disease International (Patterson, 2018), the global

annual burden of dementia amounts to a trillion United States dollars a year.

Medical research has been focused on developing new drugs to treat AD. How-

ever, since 1988, only four of the one hundred attempts have lead to an approved

drug (Patterson, 2018). Moreover, these drugs were only designed to treat symp-

toms, not the causes of the disease themselves. New drugs, called disease modifying

drugs have been recently developed in order to control the evolution of the dis-

ease. Unfortunately, most clinical trials have failed and no such drug yet has been

approved (Salomone et al., 2012). This is why a major field of AD research now fo-

cuses on understanding the natural history of the disease. This would help detecting

the disease at an earlier stage and then developing new drugs that could target an

early pre-dementia population (Aisen et al., 2011), that is before dementia onset.

1.2 The natural history of Alzheimer’s Disease

The natural history of AD has been studied for some years now. Many publica-

tions focused on confirmed cases only through anatomic brain studies coupled with

retrospective assessment of cognitive deterioration (Hubbard et al., 1990), by retro-

spectively reviewing medical records including psychometric tests (Jost and Gross-

berg, 1995) or by selecting cases on longitudinal studies and reviewing their evolu-

tion (Becker et al., 1994). Since then, the pre-dementia evolution of subjects who

were disease-free at the inclusion but could develop dementia during the follow-up

have been explored through longitudinal cohort data. With such data, researchers
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could explore pre-dementia evolution over time through the repeated measurement

of markers.

It has emerged that during this pre-dementia phase, the cognitive decline trajec-

tory of markers are nonlinear, generally with an acceleration of the cognitive decline

several years before the diagnosis which manifests through a changepoint that might

depends upon individual characteristics (Wilson et al., 2012; Rajan et al., 2017; Li

et al., 2017). Also, decline trajectories present a wide heterogeneity between in-

dividuals not only on the changepoint date, but also on slopes parameters, which

needs to be taken into account, (Amieva et al., 2014).

Moreover, it has been found that the predementia phase was quite long and that

a temporal order existed in the degradation process (Godbolt et al., 2004; Amieva

et al., 2008). By comparing the temporal decline of some abilities and anatomic

functions, researchers were able to build hypothetical theoretical schemes of the

degradation process which led them to consider the development of the pathology

as a continuum (Jack et al., 2010, 2013; Verlinden et al., 2016). In Figure 1.1, the

hypothetical cascade model proposed by Jack et al. (2013) states that accumulation

of amyloid β and tau proteins is followed by brain lesions which are then mani-

fested through cognitive decline. The continuum hypothesis and cascade model are

widely accepted (Dubois et al., 2016) and this framework helps researchers to better

understand preclinical AD and to plan future research orientation. However, they

remain hypothetical proposals and statistical methods are needed to validate these

hypotheses.

The evolution of cognitive abilities during the preclinical phase of AD has been

divided in three states: normal cognition, mild cognitive impairment (MCI) and then

dementia. The transitional MCI state is the focus of many research efforts (Flicker

et al., 1991). Indeed, the construct of the MCI state is useful to identify patients

at risk of developing dementia before substantial damage has already happened.

However, the issue that it is not a valid pathological condition can be raised (Petersen

et al., 2001; Petersen, 2004) and there is a consensus that MCI must be well identified

and its definition standardized (Winblad et al., 2004).
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Figure 1.1: AD pathological cascade model from (Jack et al., 2013)

1.3 Methodological challenges and objectives

The general motivation behind this work was to provide methodological tools to

study the natural history of AD and in particular to identify and characterize a pos-

sible acceleration of the cognitive decline before dementia diagnosis. Previous studies

using cohort data of subjects initially non-demented have shown that this decline

is nonlinear and heterogeneous. To account for the correlation between repeated

measures of cognitive markers and for the high between-subject variability in all the

phases of the decline, we focused on mixed models with random changepoint. In-

deed, compared to a polynomial mixed model, a subject-specific changepoint model

has the advantage of directly estimating the time of acceleration of cognitive decline

which can be interpreted as a delay to dementia diagnosis over the appropriate time

scale.

However, the existence of a changepoint is not obvious for every subpopula-

tions. For instance, the pre-dementia decline of subjects with low educational level

is much smoother than the decline of highly educated subjects. This leads to an
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interrogation about the existence of the random changepoint itself. A methodolog-

ical issue is raised here as standard tests cannot be used for testing the existence of

a fixed changepoint because of unidentifiability of some parameters under the null

hypothesis. Moreover, in the literature, to our knowledge there is no proposal of a

test for the existence of a random changepoint in longitudinal data. If a random

changepoint exists, the time of change could be different according to some subjects

characteristics or even for different cognitive markers. To tackle this interrogation,

some methodological developments are required. Comparing the times of change of

neuropsychological tests measuring different cognitive functions would give insight

on the temporal order of decline of these abilities. This comparison can only be

made by estimating a bivariate random changepoint models for the evolution of

both markers.

The global methodological objective of this thesis was to propose inferential

methods for mixed models with random changepoint. More specifically, the first

objective was to propose a testing procedure to assess if there is an individual random

changepoint in longitudinal cognitive decline trajectories. A second objective was to

propose a methodology to compare the times of change for different markers based

on a bivariate random changepoint model.

1.4 Cohorts on cognitive aging and dementia

An important part of the literature has already focused on studying the natural his-

tory of AD. For this purpose, several cohorts have been implemented with repeated

measurements of psychometric scores and a longitudinal assessment of AD. During

this work, two French cohorts have been used and are introduced below.

1.4.1 The Paquid cohort

The Paquid cohort is an epidemiologic study (Letenneur et al., 1994) on cognitive

ageing that was launched in 1988. A total of 3777 subjects from two French de-

partments, Gironde and Dordogne, aged at least 65 years and living at home at

the beginning of the study were included. At 1, 3, 5, 8, 10, 13, 15, 17, 20, 22 and
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25 years after baseline, the participants completed a battery of neuropsychological

tests during an interview with a psychologist. These interviews were held at home

or at an institution if the subject had been transferred. A two-stage procedure was

used to diagnose dementia. Subjects meeting the DSM IIIR criteria for dementia

A, B and C (impairment of memory and at least one other cognitive function and

interference with daily living) or subjects whose Mini Mental State Examination

score had decreased by at least 3 points since the last visit were seen by a senior

neurologist who made the final diagnosis. The cognitive marker we used was the

Isaacs Set test (Isaacs and Kennie, 1973) of verbal fluency. This test requires the

subject to quote a maximum of 10 words in 60 seconds from four different semantic

categories: colors, animals, fruits, cities. The score is the number of words given by

the subject and then ranges from 0 to 40. Due to the strong ceiling effect of the

60-sec test, we used the shortened 15-sec version (Proust-Lima et al., 2007).

1.4.2 The Three-City study cohort

The Three-City Study (3C Study) is an observational cohort study started in France

in 1999 aiming at understanding the link between dementia and vascular diseases

in an elder population (3C Study Group, 2003). A total of 9.294 subjects from the

French cities of Bordeaux, Montpellier and Dijon being at least 65 years old were

recruited and followed-up over time 2, 4, 7, 10, 12 and 14 years after baseline. At

each visit, subjects completed a battery of cognitive tests that partly differ between

centres. The diagnosis of dementia was assessed at each visit in a two-step procedure:

screening based on neuropsychological performance and final diagnosis made by

a neurologist and evaluated by an independent committee. We were particularly

interested in the results to the Grober and Bushke tests (GB) that measures memory

functions (Grober and Buschke, 1987) through several recalls of 16 words. However

those tests were not performed at baseline and at the fourth year visit so that only

a maximum number of 5 measures per subjects was available in our sample.
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1.5 Outline of the manuscript

In the next chapter, a state of the art reviewing the main statistical framework

is presented. The third chapter deals with the testing procedure for the existence

of a random changepoint for longitudinal data. The fourth chapter describes the

bivariate random changepoint model that allows to compare the temporal order

of decline of two different markers. In the fifth and last chapter, we discuss the

proposed work and present some perspectives.
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Chapter 2

State of the art

In this chapter, we describe the statistical challenges raised by our objectives and

present some of the statistical tools proposed in the literature of random changepoint

models to tackle them and discuss their interest. First, we quickly introduce mixed

model theory and some numerical tools in Section 2.1. In Section 2.2, we introduce

and discuss changepoint models and their application to neuropsychology. Section

2.3 focuses on literature on hypothesis testing for the existence of a changepoint

from classic regression models to segmented regression and longitudinal data.

2.1 Mixed models for longitudinal data

2.1.1 From linear model to linear mixed models

The classic linear model

Yi = X>i β + εi

where for subject i, i = 1, . . . , N , Yi ∈ R is the dependant variable, Xi ∈ Rp the

vector of explanatory variables, β ∈ Rp the vector of regression coefficients and

εi ∼ N (0, σ2) the residual errors. Due to the independance of the residual errors,

this model assumes that the observations Yi are independent conditionally on Xi.

However, in the context of repeated or grouped data, this assumption is violated

and within subject or within group correlation must be taken into account. This

9
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is why Laird and Ware (1982) proposed linear mixed models. They introduced

into the model a random variable called the random effect that captures both the

within subject or within group correlation and individual heterogeneity. From now

on, we focus on repeated measures data only. Let Yij be the measure of subject i,

i = 1, . . . , N at time tij, j = 1, . . . , ni the classic linear mixed model formulation is

Yij = Yi(tij) = X>ijβ + Z>ij bi + εij. (2.1)

where Xij is the p-vector of regressors, β the p-vector of fixed effects, Zij is the

q-vector of regressors, subvector of Xij such as q ≤ p, bi ∼ N (0, B) the q-vector of

subject-specific random effects and εi = (εij)j=1,...,ni ∼ N (0,Σi) the residual error

assumed independent to bi. As stated, the random effect bi accounts for individual

deviation from the mean trajectory but also for the within subject correlation.

For example, if Zij reduces to 1, then (2.1) is called the random intercept model.

The random intercept measures the constant individual deviation from the mean

trajectory over time. For a subject i and for j 6= k, the within subject covariance

cov(Yij, Yik) = var(bi) remains constant over time which is not very realistic. If

Z>ij = (1, tij), (2.1) is a model with random intercept and slope, sometimes called

growth curve model. In the latter case, not only the intercept but also the slopes

varies between subjects and for j 6= k the within subject correlation cov(Yij, Yik) =

Z>ijvar(bi)Zik becomes time dependent.

2.1.2 Log-likelihood and estimation

Model (2.1) can be more conveniently written using matrix notation

Yi = Xiβ + Zibi + εi. (2.2)

where Yi is the ni-vector of observations for subject i, Xi is a ni × p matrix of

regressors, β the p-vector of fixed effects, Zi is a ni×q matrix of regressors, submatrix

of Xi such as q ≤ p, bi ∼ N (0, B) the q-vector of subject-specific random effects

and εi ∼ N (0,Σi) the ni-vector of residual errors assumed independent from bi and

with Σi a positive definite matrix of size ni. From (2.2), we can define the marginal



2.1. MIXED MODELS FOR LONGITUDINAL DATA 11

model

Yi ∼ N (Xiβ, Vi = ZiBZ
>
i + Σi) (2.3)

from which a log-likelihood can be derived. We note α all the variance and covariance

parameters intervening in Vi from (2.3) and θ = (α>, β>)>. We have a closed-form

expression for the log-likelihood

`N(θ) = −1

2

N∑
i=1

{
ni log(2π) + log |Vi(α)|+ (Yi −Xiβ)>V −1i (α)(Yi −Xiβ)

}
(2.4)

which can be directly maximized in θ by an iterative procedure to obtain the max-

imum likelihood estimate θ̂. Note that, in the case of a known α, by solving the

score equation
∂`N(θ)

∂β
= 0

we get a closed-form expression for the estimate of β depending upon α

β̂(α) =

(
N∑
i=1

X>i V
−1
i (α)Xi

)−1 N∑
i=1

X>i V
−1
i (α)yi

where yi are the observed values of Yi and α, if not known, is replaced by its maxi-

mum likelihood estimate α̂ obtained by maximizing `N(α, β̂(α)) in α.

When using classic maximum likelihood to estimate α, the variances parameters

of the nonlinear mixed model, we do not take into account the estimation of the fixed

effects β from the mixed model. This lead to biased estimates α̂ML of the variance

parameters (Verbeke and Molenberghs, 2000). To correct such bias, the restricted

maximum likelihood estimation (REML) of the variance parameters α̂REML can

be preferred. Its principle is to estimate α by maximising the likelihood of error

contrasts which does not depend upon β. The obtained estimate α̂REML also does

not depend upon the choice of the contrast. It has the advantage of correcting the

bias on variance estimation but cannot be used to compare models without the same

structure for the fixed effects.
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For prediction purpose or fit analysis for example, it is also interesting to compute

an estimate of individual random effects. The posterior distribution f(bi|yi) follows a

multivariate normal density and the individual random effect bi is usually estimated

by the mean of this posterior distribution which has a closed-form expression

b̂i(θ) = E(bi|Yi = yi) = BZ>i V
−1
i (α)(yi −Xiβ).

This estimator of individual random effects is the best linear unbiased predictor

(BLUP).

2.1.3 Nonlinear mixed model

In the model (2.1), the fixed and random effects are introduced through a linear

predictor. A generalization of this model is the nonlinear mixed model

Yi = g(Xi, β, bi) + εi (2.5)

where Xi is a ni×p matrix of regressors, β the p-vector of fixed effects, bi ∼ N (0, B)

the q-vector of subject-specific random effects, g an a priori specified parametric

function and εi ∼ N (0,Σi) the ni-vector of residual errors assumed independent

from bi and with Σi a ni positive definite matrix. Because of this nonlinearity, in

most cases, the marginal log-likelihood

`N(θ) =
N∑
i=1

log

∫
f(Yi|bi)f(bi)dbi (2.6)

has no analytic expression due to the integral over the random effects. This integral

is approximated by numerical integration such as the Laplace approximation, the

Gaussian quadrature or Markov chain Monte Carlo (MCMC) methods. The log-

likelihood optimization has then no closed-form expression and has to be maximized

with an iterative procedure. An estimation of individual random effects can also

be computed from the nonlinear mixed model (2.5). However, no analytic solution

exists for the mean which is approximated by the mode. It is obtained by maximizing
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f(bi|Yi = yi) with an optimization algorithm using the relation from Bayes rule

f(bi|Yi = yi) ∝ f(Yi = yi|bi)f(bi). (2.7)

2.1.4 Gauss-Hermite quadrature rule

Several methods exists for approximating the integral in (2.6) as detailed by Pinheiro

and Bates (1995). We chose Gaussian quadrature rule for its mix of efficiency

and accuracy when appropriately used. In particular, we did not choose methods

based on MCMC because, as one of our objective is to build an hypothesis testing

procedure, we wanted to avoid getting fluctuation of the test results coming from

the numerical integration.

Gaussian quadrature rules are a family of numerical analysis techniques that are

useful to approximate integrals. The general idea is to approximate the integral by

an appropriate weighted sum

∫ b

a

f(x)$(x)dx '
Q∑
l=1

wlf(xl).

Many different types of Gaussian quadrature exists depending on the bounds values

a, b ∈ R ∪ {±∞} and on the weighting function $ : [a, b] 7→ R+. For a chosen

type of Gaussian quadrature and for a fixed Q ∈ N∗, the quadrature weights wl and

nodes xl are known; they might be already tabulated or can be computed. In this

work, we mainly used the Gauss-Hermite quadrature rule suited for integrals of the

following form ∫ ∞
−∞

f(x) exp(−x2)dx.

Weights and nodes for the Gauss-Hermite quadrature have been computed for dif-

ferent values of Q (Abramowitz and Stegun, 1970). Gaussian quadrature can be

computationally heavy in practice when the integral is multidimensional. Indeed,

for an integral of dimension d ∈ N∗, the quadrature grid size is Qd and the nodes

of the Gaussian quadrature are d-vector. To tackle this issue, the adaptive Gauss-

Hermite quadrature, which consists in centering and rescaling the quadrature points
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at each iteration, may be used to increase the precision of the computation and re-

duce the number of quadrature points.

In the framework of the nonlinear mixed model (2.5), using the current estimate

of θ at iteration k of the optimisation algorithm, θ̂(k), we can compute the BLUP

of the random effects for each subject i, b̂
(k)
i and an estimate of its variance matrix

ˆvar(b̂
(k)
i ) by maximising (2.7). These estimates are used to center and rescale the

nodes of the classic Gauss-Hermite grid (bl)1≤l≤Q used for the approximation of the

integral over the random effects bi (2.6). At each iteration k, we get for each subject

i an updated Gauss-Hermite grid (b
(k)
il )1≤l≤Q where

b
(k)
il = b̂

(k)
i +

√
2 ˆvar(b̂

(k)
i )−1/2bl.

And finally, by substituting the classic grid by this new grid, the adaptive Gauss-

Hermite quadrature gives

∫
f(Yi|bi)f(bi)dbi ' 2d/2| ˆvar(b̂

(k)
i )|−1/2

Q∑
l=1

wl exp(b>l bl)f(Yi|b(k)il )f(b
(k)
il ).

Therefore, we can reach the same level of precision than the classic approach

using fewer quadrature nodes. By reducing Q, we also reduce the computational

cost of the quadrature (Lesaffre and Spiessens, 2001).

However, the estimation of all subject-specific random-effects at each iteration k

of the optimization algorithm is time-consuming. Some authors have then suggested

different schemes. For example, Rizopoulos (2012) proposed the pseudo-adaptive

Gauss-Hermite quadrature rule to estimate joint models for longitudinal markers

and time-to-events. The general idea is to center and rescale the quadrature nodes

and weights only once at the initial step of the optimisation algorithm using BLUP

of the subject-specific random effects estimated from a simpler model, the linear

mixed model in the framework of joint models. Then, nodes are not updated at

each iteration of the optimization algorithm. However, to raise the accuracy of this

approximation without too much heavier computational load, Ferrer et al. (2016)
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have proposed a two-step pseudo-adaptive Gauss–Hermite quadrature rule. The idea

is to estimate the BLUP and adapt the quadrature nodes and weights accordingly

twice instead of just once.

2.1.5 Optimisation algorithms

In this section we present some of the existing iterative methods used to maximise

the log-likelihood defined above to estimate mixed models. The main problem with

the log-likelihood of the nonlinear mixed models is that it entails integrals over

the random effects that have no closed-form expression and need to be numerically

approximated, sometimes at a certain computational cost.

Expectation-Maximisation algorithm

One classical approach to maximise (2.6) is the expectation maximisation (EM) al-

gorithm proposed by Dempster et al. (1977). We consider θ the set of all model

parameters. The rationale for the EM algorithm is that if we had observed the

complete data, i.e. in our framework the observations Y and the unknown random

effects b = (bi)i=1,...,N , we could easily compute the log-likelihood of the complete

data `N(θ;Y, b). From this, an estimate of θ can be easily obtained. In practice,

because we do not observe the random effects b, the log-likelihood `N(θ;Y, b) can-

not be computed but can be approximated by its expectancy conditionally on the

observations Y . The EM algorithm consists into repeating the following steps:

• Expectation: From the previous estimate θ̂k−1, we compute Eθ̂k−1 [`N(θ;Y, b)|Y ]

• Maximisation: θ̂k is obtained by maximizing Eθ̂k−1 [`N(θ;Y, b)|Y ] over θ

These two steps are repeated until convergence. The convergence is generally

assessed by evaluating the difference θ̂k − θ̂k−1. This algorithm is interesting as

it avoids the heavy numerical integration from classic maximisation approaches.

However, the computation of the expectancy can sometimes be difficult and might

need further integral approximation techniques. Two majors drawbacks of the EM

algorithm are its slow convergence and the fact that no estimation of the asymptotic
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variance matrix of the estimates is directly provided by the algorithm. For these

reasons, we chose not to use the EM algorithm in the work presented here.

Newton-like algorithms

The classic optimisation techniques for finding an optimum are the family of Newton-

like algorithms. They range from the basic gradient method which can be quite slow

to more efficient algorithms using not only the gradient but also the Hessian of the

objective function like the Newton-Raphson method. An advantage of such method

is that we can easily get estimates of the variance of the estimates from the Hessian of

the last step of the algorithm. However, it can happen that sometimes, the Hessian

used in the optimisation algorithm is not positive definite. To solve this issue,

we can chose the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,

1963) designed to solve nonlinear problems and known to be robust with a good

convergence rate. It is an iterative procedure where at each step k ∈ N,

θ(k+1) = θ(k) − αH?(k)−1∂`N(θ)

∂θ

∣∣∣
θ=θ(k)

where the positive-definiteness is ensured by the inflation of the current Hessian

matrix defined by H?(k) = (H
?(k)
ij ) where H

?(k)
ij = H

(k)
ij if i 6= j and

H
?(k)
ii = H

(k)
ii + λ

[
(1− η)|H(k)

ii |+ ηtr(H(k))
]
.

The initial values for λ and η are 0.01, they are increased to ensure the positive

definiteness of the Hessian matrix if necessary. First, the Hessian matrix is inflated

by its diagonal and if this is not sufficient the Hessian matrix is inflated by its trace

by an increase of both parameters. The parameter α is modified, if necessary, to

ensure that each step improves the log-likelihood. An R package MarqLevAlg that

proposes an implementation of this algorithm exists (Commenges et al., 2016).
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2.2 Changepoint models

In this section, we first review the broad literature of changepoint models and sec-

ondly, we limit ourselves to the main formulations tailored to answer our objectives.

Last, we discuss their application in neuropsychology with a focus on cognitive de-

cline studies.

2.2.1 The changepoint problem in the literature

Historically, the changepoint problem as defined by Hinkley (1970) consists in mak-

ing inference about the point in a sequence of random variables at which the proba-

bility distribution changes. That is, if we observe independent outcomes Y1, . . . , YN ,

the goal is to find a unique fixed value τ such as Y1, . . . , Yτ and Yτ+1, . . . , YN have two

different distributions. These distributions could be assumed to have a parametric

form f(Y, θ1) and g(Y, θ2) respectively, with f , g, θ1 and θ2 either known or unknown.

Different approaches have been proposed to tackle such a problem, either with max-

imum likelihood approach (Hinkley, 1970) or with Bayesian approach (Smith, 1975).

However, as put forward by Carlin et al. (1992), because of computational burden,

Bayesian approach were barely used for some decades.

The changepoint detection issue has been investigated in more complex frame-

works such as situations with multiple changepoints or non independent data. For

example, Hawkins (2001) has proposed an algorithm for estimating multiple change-

points for exponential family distributed data and has described applications to

stock-market data among others. Multiple changepoints models have also naturally

arisen in time series literature, it has been and is still extensively studied. Several re-

cent reviews exists on changepoint detection on time series (Aue and Horváth, 2013;

Aminikhanghahi and Cook, 2017) with a lot of interest for climate data (Reeves

et al., 2007). Another important part of the literature about changepoint models

is dealing with dynamic detection of a changepoint for sequentially obtained data

(Lai, 1995). Here, we will not discuss such literature as these models are not suited

to answer our objective to explore a unique changepoint in longitudinal cohort data.

In the context of our motivating application, the natural history of dementia, we
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are interested in a specific class of changepoint models. First, this work relies on the

analysis of cohort data that involve repeated measures of markers on the same sub-

jects. We thus focused on mixed models to account for the intra-subject correlation.

Secondly, because of the heterogeneity of the cognitive decline trajectories already

mentioned (Amieva et al., 2014), the time of change should be different between

subjects. This is why a random effect on the changepoint is needed into the model.

Also, as mentioned, cognitive decline trajectories are continuous and there is no gap

at the time of change between the two distributions of the outcome. We also focus

on models with only one changepoint to make the interpretation of the changepoint,

as the time of acceleration of cognitive decline, more straightforward.

This is why, from now on, we only consider unique random changepoint mixed

models. They are suited for our objectives as they take into account the within sub-

ject correlation and the between subject heterogeneity. In the literature, this model

is sometimes called breakpoint mixed model, piecewise mixed model or segmented

mixed model. From now on, we will only use the designation random changepoint

mixed model.

2.2.2 Random changepoint mixed models

In the literature, several formulations have been proposed for the random change-

point mixed model. We describe four main formulations: the broken-stick model,

the Bacon-Watts model, the bent-cable model and the polynomial model. In the

following, we note Yij = Yi(tij) the measure of the outcome Y for subject i at time

tij with i = 1, . . . , N and j = 1, . . . , ni. The subject specific changepoint is noted

τi. All the models introduced in this section are represented in Figure 2.1.

The broken-stick model

The broken-stick mixed model, or even more explicitly called the linear-linear mixed

model consists of two straight lines intersecting at the changepoint (Hinkley, 1969).

Yij = β0i + β1i(tij − τi) + β2i(tij − τi)sgn(tij − τi) + εij (2.8)
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with sgn(x) = x/|x| if x 6= 0, sgn(x) = 0 otherwise, βki = βk+αki for k = 0, 1, 2, τi =

µτ +στ τ̃i where the vector of all the random effects (α0i, α1i, α2i, τ̃i)
> is multivariate

normally distributed with null mean vector and variance matrix B a positive-definite

matrix. With this formulation, β0i is the value of the outcome of subject i at the

changepoint, β1i is the mean slope and β2i half the difference of slope before and

after the changepoint. In other words, the slope before the changepoint is β1i − β2i
and the slope after is β1i + β2i.

This model assumes a sharp change of slope at the changepoint which raises

two important issues. First, it is not clinically realistic as cognitive decline tra-

jectories are generally smooth, even at the changepoint. Second, if we choose a

frequentist approach using optimization algorithm to maximize the log-likelihood,

non-differentiability of the model at the changepoint τi can cause numerical troubles.

The Bacon-Watts model

To deal with these issues, a direct extension of the broken-stick model (2.8) has been

proposed by Bacon and Watts (1971). They replaced the function sgn in (2.8) by a

transition function trn which smooths the intersection between the two lines at the

changepoint.

Yij = β0i + β1i(tij − τi) + β2i(tij − τi)trn(tij − τi) + εij (2.9)

The trn function must verify the following assumptions:

1. lim
s→∞

trn(|s|/γ) = 1

2. trn(0) = 0

3. lim
γ→0

trn(s/γ) = sgn(s)

4. lim
s→∞

strn(s/γ) = s.

All these conditions allow the function trn to behave in a similar manner to the

function sgn it approximates. The value of γ defines the smoothness of the transition.

The closer to 0 γ is, the sharper the transition will be. The bigger γ is (according
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to the range of the time variable), the smoother the transition will be. Bacon and

Watts (1971) proposed several examples of such functions: trn(s) = tanh(s/γ),

trn(s) = 1 − exp(|s|/γ), trn(s) = (s/γ)2/{1 + (s/γ)2}. Griffiths and Miller (1973)

dropped out condition 2 in order to avoid a bulge in the trajectory that entails an

increase just before the random changepoint which is not very realistic for dementia

applications. They proposed instead to use trn(s) =
√
s2 + γ/x as a transition

function

Yij = β0i + β1i(tij − τi) + β2i

√
(tij − τi)2 + γ + εij (2.10)

This bulge and the comparison between both formulations are illustrated in

Figure 2.2. An interesting review of transition functions between linear regimes can

be read in Seber and Wild (2005). This model has the advantages to solve the major

issue of the broken-stick formulation without losing its nice interpretability. Indeed,

for a small γ, β01, β1i and β2i have the same interpretation than in the broken-stick

model.

The bent-cable model

An alternative approach to solve the non-differentiability issue raised by the broken

stick-model has been proposed by Tishler and Zang (1981) under the name of bent-

cable model. Their idea is to smooth the trajectory on a neighbourhood around the

changepoint using a quadratic transition between the two linear phases. With our

notations, the bent-cable model is written

Yij = β0i + β1itij + β2iq(tij; τi, γ) + εij (2.11)

where

q(t; τ, γ) =
(t− τ + γ)2

4γ
1{|t−τ |≤γ} + (t− τ)1{t>τ+γ}.

With this formulation, β0i is the intercept and β1i the slope of the first linear part

before the transition phase, β2i is the slope after the transition, with the transition

spanning on the interval [τi − γ; τi + γ] centered at τi and of length 2γ. If γ = 0,

this model becomes a broken-stick model.
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Figure 2.1: Example of trajectories according to the broken-stick model, the Bacon-
Watts model for Griffiths and Miller (1973) transition, the bent-cable model and
the polynomial model all with γ = 1. The grey solid line is the changepoint value,
here at −7, and the grey dashed lines are the limit of the transition area. Adapted
from van den Hout et al. (2013).
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Figure 2.2: Bacon-Watts model with hyperbolic tangent transition function (dashed
black) and Griffiths and Miller (1973) transition function (solid black) compared to
the linear-linear trajectory (solid grey). The dashed grey line indicates the change-
point and here γ = 3 to illustrate the behaviour of the transition functions.
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In the case of a white noise and when there is no random effects, neither on the

βki, k = 0, 1, 2 nor on the changepoint τi, Chiu et al. (2006) showed that the least

squares estimators of the regression parameters were consistent and asymptotically

normally distributed. In more recent work, Chiu and Lockhart (2010) extended their

results for the case of auto-regressive noise. Note that sometimes in the literature,

the Bacon-Watts model (2.9) is also called the bent-cable model.

The polynomial model

More recently, van den Hout et al. (2011) proposed an alternative to the previous

models that they called the polynomial model. In their view, the Bacon-Watts model

(2.9) with hyperbolic tangent transition does not always allow easy interpretation

of β1i and β2i. In particular, for big γ values, β1i and β2i may not be the true slope

values. However, when γ is small, the Bacon-Watts model parameters can be easily

interpreted. Similarly to the bent-cable of Tishler and Zang (1981), van den Hout

et al. (2011) modeled the transition between the two straight lines with a polynomial

function. They chose a cubic polynomial function and their model is written

E(Yij) =


β0i + β1itij tij < τi

g(tij|β0i, β1i, β2i, γ) τi ≤ tij < τi + γ

λi + β2itij τi + γ ≤ tij

(2.12)

where the smoothness of the transition is ensured by the following constraints on

the cubic polynomial function g

1. g(τi) = β0i + β1iτi

2. g(τi + γ) = λi + β2i(τi + γ)

3. ∂
∂t
g(τi) = β1i

4. ∂
∂t
g(τi + γ) = β2i.

These conditions imply continuity and smoothness between the linear parts and

the cubic transition. Note that here, contrarily to the previous models, the change-



24 CHAPTER 2. STATE OF THE ART

point τi is defined as the beginning of the transition phase of length γ. In order

to be closer to the broken-stick model, one might add the constraint that the two

linear parts should intersect at the middle of the transition phase by imposing that

λi = β0i + (τi + γ/2)(β1i − β2i). The parameters of the model from both the lin-

ear parts have the advantage of having a direct interpretation, contrarily to the

Bacon-Watts model with large γ. Over the bent-cable model, this model has the

advantage of estimating a cubic transition rather than a quadratic one which allows

smoother transition regimes. In our application however, such smoothness is not

necessary and a quadratic transition is sufficient to model cognitive decline trajec-

tories. One drawback of this model is that the third degree polynomial function g

must be estimated by solving a system of differential equation.

2.2.3 Changepoint models in neuropsychology

We now review applications of models with fixed or random changepoint in neu-

ropsychology mainly with a focus on dementia studies.

Fixed changepoint and profile likelihood approach

In the first attempts to model cognitive trajectory of demented subjects, a pro-

file likelihood approach with fixed changepoint was preferred to estimate the time

of change as it avoids estimation of nonlinear mixed models. However, some au-

thors were aware that the assumption of a fixed changepoint was not very realistic

regarding the known heterogeneity in cognitive decline trajectories.

Hall et al. (2000) proposed a changepoint model to study the natural history of

dementia based on a sample of 365 subjects including 72 cases from the Bronx Aging

Study cohort (Katzman et al., 1989). They modelled retrospectively the individual

evolution of the Buschke Selective Reminding Test (Buschke, 1973), a score that

measures episodic memory, as a function of age and time to dementia. The trajec-

tory over age was at first assumed quadratic-quadratic, with, for the cases only, a

shift at a fixed changepoint relative to time to diagnosis. They finally dropped all

the quadratic terms as they were non significant and studied the reduced model, a
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broken-stick model (2.8) with a fixed changepoint for the cases and a linear mixed

model for the control. The authors chose a frequentist approach with gaussian as-

sumption to estimate the model by profiling on a grid of changepoint values. They

discarded the random changepoint model approach for several reasons. First their

main goal was to determine when cases and non-cases trajectories differ and, accord-

ing to them, heterogeneity on this date would not be helpful. Second, estimating

such a model would need a Bayesian approach but they highlight the lack of prior

information on most of the parameters. Last, they put forward that their data are

not sufficient to model correctly the changepoint distribution. In their application,

the changepoint was found to happen on average 5.1 years before the diagnosis of

dementia. A few years later, the same authors Hall et al. (2003), aware of their

strong assumption of a fixed changepoint explored it further. For the same co-

hort data, they modeled again the evolution of the Buschke Selective Reminding

Test as a function of age with a changepoint relative to time before diagnosis. A

fixed changepoint model estimated with a profile likelihood approach and a random

changepoint model estimated with a Bayesian approach were proposed. A Bayesian

model selection procedure based on the pseudo-Bayes factor was proposed to com-

pare the reduced model of common changepoint to the full model where at least

one individual changepoint differs from others. Surprisingly they found that het-

erogeneity in the changepoint did not improve the fit of the model. This conclusion

was unexpected because of the known heterogeneity in cognitive decline. The fact

that they modeled the evolution of the marker as a function of time to diagnosis

might partly explain this result. The authors also put forward that their surprising

conclusion matched previous results on the same cohort data.

Carlson et al. (2008) studied the evolution of the ventricular volume over age for

MCI and non-MCI subjects from the Oregon Brain Aging Study. A fixed change-

point relative to time to MCI diagnosis was assumed for all cases. They found that

the annual rate of expansion of ventricular volume globally decreased with age and

that for MCI subjects it accelerated 2.3 years before diagnosis. Thorvaldsson et al.

(2008) evaluated the evolution of cognitive abilities before death. They used age as

a timescale with a changepoint relative to time to death. They found an acceleration
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of this decline 6.6 years prior to death for verbal ability, 7.8 years for spatial ability,

and 14.8 years for perceptual speed. On this study, the changepoint appeared earlier

than what some previous work have suggested (Wilson et al., 2003; Sliwinski et al.,

2006). This difference might be due to different lengths of follow-up and differences

in health characteristics of the sample. More recently, Bartolucci et al. (2009) used a

changepoint model to evaluate how the Mini Mentale State Examination (MMSE),

a cognitive score introduced by Folstein et al. (1975), evolved over time in a cohort

of diagnosed AD subjects. Using Bayesian techniques with non-informative priors

and a uniform prior for the changepoint, they computed posterior estimates of the

changepoint and of the two slopes. In their data, the changepoint was estimated at

2.4 years over the 4 year follow-up of the cohort, after adjustment on age, sex and

education.

Howieson et al. (2008) evaluated the trajectory of verbal memory, animal fluency,

and visuospatial constructions abilities over time before MCI onset. To do so, he

estimated a linear mixed model for non-cases and a broken-stick model (2.8) for MCI

subjects using a profile likelihood approach. The changepoint for verbal memory

was estimated to be around 3 years before MCI onset and about 4 years for ani-

mal fluency, and visuospatial constructions abilities. After these changepoints, the

decline was significantly increased for all cognitive abilities. Johnson et al. (2009)

evaluated in separated analyses the trajectory of global, verbal, visuospatial and

working memory as a function of time before diagnosis. A linear mixed model, a

broken-stick model (2.8) and a linear-quadratic model were estimated on the data.

The changepoint was estimated using a profile likelihood approach. They found the

linear model to be the best for non-cases and the broken-stick model for the cases

with the quadratic term being non significant as in Hall et al. (2000). They could

estimate for each marker a changepoint which happened 3 years before dementia for

visuospatial memory, 2 years for global memory and 1 year for verbal and working

memory.

The results of Howieson et al. (2008), Thorvaldsson et al. (2008) and Johnson

et al. (2009) are interesting as they compared trajectories of different markers which

give insight on the multidimensional aspects of the natural history of the disease.
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However, because they modeled the markers independently, comparing the times

of change of different markers is impossible because to do so their covariance is

needed. All of the above models assumed a common changepoint for all individuals,

mainly because of computational limitations or too short follow-up. Despite the

results of Hall et al. (2003), that the authors themselves have discussed, it is mainly

acknowledged that the cognitive evolution is very heterogeneous between subjects.

To handle this heterogeneity while profiling, all of the above authors, except Bar-

tolucci et al. (2009) have considered the changepoint as a time to a specific event:

MCI diagnosis, AD diagnosis or death. This way, they diminished the heterogeneity

around the changepoint which allowed them to assume a fixed changepoint. How-

ever, it should be wiser to properly take into account the known subject-specific

variability of the changepoint by using a full random changepoint model, even when

the timescale is time to diagnosis.

Random changepoint model: frequentist and Bayesian approach

Recent advances in computational efficiency has made possible the estimation of

mixed model with a subject-specific random changepoint leading to more realistic

models. Two main approaches have been used: either a frequentist approach where

the log-likelihood of the nonlinear mixed model is maximized, entailing the numerical

approximation of an integral over all the random effects, or a Bayesian approach

using MCMC techniques for posterior elicitation and the necessary specification of

prior distribution.

Dominicus et al. (2008) compared the performance of the full broken-stick model

(2.8) including all four random effects model to a linear mixed model and a quadratic

mixed model. They used data from a Swedish Adoption Twin Study of Aging cohort

(Pedersen et al., 1992) focusing on the evolution over age of the symbol digit test

which assesses the ability of a subject to quickly compare numbers and symbols.

Estimation was done in the Bayesian framework using conjugate priors and MCMC

simulations through Gibbs sampling to approximate the posterior distribution of

the parameters. The three models were compared with the deviance information

criterion (Spiegelhalter et al., 2002) and the best model was found to be the random
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changepoint model, whatever the hyperparameters values among three different sce-

narios. For these scenarios, the mean random changepoint was estimated between

71.4 and 74.3 years old.

van den Hout et al. (2011) compared a frequentist and a Bayesian approach

for the estimation of the broken-stick (2.8), the Bacon-Watts (2.9) with hyperbolic

tangent transition function and the polynomial model (2.12) they proposed. They

applied these models to highlight a terminal decline of the MMSE score over time

to death in the UK cohort CC75C (Brayne et al., 1992). Standard software routine

from the R package lme4 was used for the frequentist estimation of the Bacon-Watts

and polynomial model. As their routine needed the derivative of the model, they

could not estimate the broken-stick model with the frenquentist approach since it

has no derivative. They used a profile likelihood approach to find the optimal value

of the smoothing parameters γ in (2.9) and (2.12). Bayesian inference was performed

using WinBUGS software that allows easy implementation of MCMC methods. The

Bayesian approach gave better variance estimation and was less sensitive to starting

values. However the Bayesian approach is slow and model comparison is not straight-

forward. Using the AIC obtained from the frequentist approach, they compared the

fit of the Bacon-Watts and polynomial model. Both gave similar results for the esti-

mation of the changepoint, around 6 years before death, but the Bacon-Watts model

was preferred. Moreover, the Bacon-Watts model remains easier to implement and

faster to run while keeping nice interpretability. van den Hout et al. (2013) extended

their previous work by dropping the Gaussian assumption on the outcome and on

the distribution of the random effects. They proposed a semi-parametric nonlinear

random changepoint model to study the evolution of MMSE over time to death in

the Origins of Variance in the Old–old (OCTO-Twin) study (McClearn et al., 1997).

Their model is plugged into a latent class model with two classes: one with a change

in the trajectory and one without a change. Models were estimated using maximum

likelihood approach with a Nelder-Mead algorithm (Nelder and Mead, 1965) for the

maximisation and were compared using BIC. The bent cable model was preferred

and they found a drop of the MMSE score 5.8 years before death. Authors dis-

carded the Bacon-Watts model because using the hyperbolic transition function, it
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presents an increase just before the changepoint that the authors judged unsuitable

to model cognitive decline and that makes parameters interpretation less obvious.

Note however that using a different transition function in the Bacon-Watts model,

like the one proposed by Griffiths and Miller (1973) in (2.10), rules out this issue.

An alternative estimation procedure was proposed by Muggeo et al. (2014) and

applied to compare the performance of three treatments over time on the longitudi-

nal evolution of the Beck Depression Inventory, a marker that measures depressive

symptoms. He used the broken-stick model (2.8) with all four random effects as-

sumed correlated. A reparametrization of the changepoint distribution is used so

that it can be contained in a chosen bounded interval. This non linear mixed model

is estimated by a maximum likelihood approach using a linearisation by a first order

Taylor expansion. This linearisation makes possible the use of standard estimation

routines for linear mixed model but it may lead to biased estimates or less efficient

estimator than methods based on numerical integration (Molenberghs and Verbeke,

2005).

Because they were able to estimate full random changepoint models, the authors

mentioned above were able to confirm the superiority of random changepoint model

over non random changepoint models contrarily to the result obtained by Hall et al.

(2003). They could also compare the frequentist and the Bayesian approach. The

main issues with the Bayesian approach are its slowness, the non trivial choice of

hyperparameters and priors which can influence the results, the absence of proper

statistical tests and the randomness that comes from MCMC integration techniques.

The main issue with the frequentist approach lies on the integral over the random

effects. However, this can be ruled out using adaptive Gauss quadrature (see Section

2.1.4). In the frequentist approach, another issue is the transition window param-

eters γ. It is generally a priori fixed or estimated by profile likelihood. However,

clinical knowledge about the marker can be sufficient to chose a realistic value for γ.

Above authors also compared the various formulations of the random changepoint

models described in Section 2.2.2. The broken-stick model is discarded for its lack

of realism and its non differentiability. The polynomial model is generally consid-

ered harder to implement and to estimate. The bent-cable and the Bacon-Watts
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model performs well especially with a small γ and the Griffiths and Miller (1973)

formulation (2.10) which ease the interpretation.

Beyond the simple random changepoint mixed model

In this section, we explore extensions of the random changepoint model. First, as

already mentioned, Howieson et al. (2008), Thorvaldsson et al. (2008) and Johnson

et al. (2009) all described the evolution over time of several markers assumed inde-

pendent and with a fixed changepoint. To explore the multidimensional aspect of

the cognitive decline a multivariate random changepoint model that allows proper

comparison between different markers would be more appropriate. Secondly, as

cognitive change over time is linked to dementia and death, these two events may

induce informative dropout in the cohorts. To avoid biases in the estimation, joint

modeling of the cognitive trajectories and the time to dementia and/or death is

required.

To our knowledge, only two bivariate random changepoint mixed models have

been proposed in the literature and both assumed very restrictive correlation struc-

ture between the markers. Hall et al. (2001) proposed a bivariate model to compare

the changepoint in both the decline of accelerated memory over age, assessed by the

Buschke Selective Reminding Test (Buschke, 1973), and the decline of perfomance

on speeded tasks over age assessed by the WAIS performance IQ test (Wechsler,

1955). They compared a profile likelihood approach with common changepoint to a

full Bayesian approach with subject-specific changepoint where the changepoints are

relative to time to diagnosis. Only the intercepts of the two markers were correlated.

They found that performance on memory declines before performance on speeded

tasks (7.5 years before diagnosis versus 2.1 years) and, quite surprisingly, that nei-

ther the randomness of the changepoint neither the correlation between markers

improved the fit of the model. The result about the changepoint was similar to

Hall et al. (2003) and appeared also to be inherent to this cohort. The absence of

correlation between the two markers did not surprise the authors as these markers

are known to show very little within-subject correlation. More recently, Yang and

Gao (2013) also proposed a bivariate random changepoint model and compared the
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performance of the broken-stick 2.8, the Bacon-Watts 2.9 with hyperbolic tangent

function and the polynomial mixed model formulations. They found that the poly-

nomial model performed better but their conclusion has to be tempered because they

simulated data from this model only in order to compare all the formulations. In

their implementation, only the changepoints were correlated. It was estimated with

Bayesian techniques using MCMC methods and prior sensitivity analysis. Their

methodology was applied on Indianapolis–Ibadan Dementia Study (Hendrie et al.,

1995) to compare evolution of Body Mass Index (BMI) and cognitive functions over

age and it was found that BMI declines 16 years before cognitive functions.

Jacqmin-Gadda et al. (2006) proposed a joint model which combines a linear-

polynomial model with a smooth transition between the two phases to model the

longitudinal evolution of cognition and a log-normal model including the changepoint

as a covariate for the time to dementia. Maximisation of the joint log-likelihood

is performed by a Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,

1963). They applied the model to the Paquid cohort to compare the cognitive

trajectories of the Benton Visual Retention Test over age according to educational

level. Their results confirmed the hypothesis of cognitive reserve stated by Stern

et al. (1994) among high education subjects. Indeed, before the changepoint their

cognitive decline is slight, but afterwards, when defence mechanisms fails, the decline

is more dramatic compared to low education subjects. However, in this model all

subjects were assumed to be at risk of dementia and to have a changepoint in their

cognitive decline trajectory. Another limit was that potential informative censoring

due to death was not taken into account but this can be fixed by extending the

model to a multi-state model.

Yu and Ghosh (2010) proposed a joint model where a mixture survival model

takes into account two competing risks: dementia versus dementia-free death using a

logistic model for the class membership. The longitudinal evolution of the Cognitive

Abilities Screening Instrument score over age from the Honolulu Asia Ageing Study

is modelled using a piecewise polynomial model with a random changepoint. The

risk of each event follows a Weibull model with the risk of dementia depending upon

the changepoint value. Their model also takes into account the uncertainty on the



32 CHAPTER 2. STATE OF THE ART

time of dementia onset due to the interval censoring but not the missing information

regarding the health status between the last visit without dementia and the death.

The model was estimated using a Bayesian approach with weakly informative priors.

Recently, to address most of the previously mentioned issues, Dantan et al. (2011)

proposed a joint multi-state model. The longitudinal part was modeled using the

Bacon-Watts formulation of the random changepoint model (2.10) with Griffiths and

Miller (1973) transition. For the survival part, a multi-state model was proposed

with four states: healthy, pre-diagnosis, dementia and death. The changepoint

defines the entrance to the pre-diagnosis state and the risk of dementia before this

state is null and increases with the time spent in this phase. The risk of death

depends on the individual health status only through the current expected marker

value. The authors proposed to consider the pre-diagnosis state as the MCI state.

A frequentist approach was proposed to estimate the model and an application on

the Paquid cohort to evaluate evolution of the Benton Visual Retention Test over

age was presented.

These extensions are useful to answer important limits of previous models. The

multivariate modelisation allows a proper estimation of correlated markers. How-

ever, in the above mentioned article, the correlation structures remain too simple

and may not capture the whole association: only the intercepts are correlated in

Hall et al. (2001) and only the changepoints in Yang and Gao (2013). In dementia

studies, where cognitive dimensions are often strongly correlated, a more complex

between markers correlation structure should be considered. The extension to joint

models is important to take into account informative dropout due do death or de-

mentia but raises two main issues. First, all of the proposed models do not allow

testing for the existence of a random changepoint because the absence of change-

point entails independence between the risk of dementia and the cognitive evolution

which is not realistic at all. Secondly, because joint models are applied to the whole

population, the used timescale is age and the changepoint interpretation becomes

more subtile as detailed in the concluding remarks.
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Concluding remarks

We have explored the use of changepoint models in the literature of dementia. In

practise, both the Bayesian and frequentist approach have advantages and draw-

backs. However, we chose a frequentist approach which allows proper statistical

testing and used appropriate Gaussian quadrature to handle the heavy numerical

integration.We also chose to use Bacon-Watts type formulation because this model

is easy to implement and if the appropriate formulation (2.10) is used, its parameters

are easily interpretable.

One important aspect that emerges from this state of the art is the importance

of chosing an appropriate timescale. When the changepoint is fixed, the chosen

timescale is the time to dementia because the delay between acceleration of cognitive

decline and dementia may be expected to be more homogeneous than the age at

acceleration of the decline which can be at least as variable as the age at dementia.

When the changepoint is random, authors generally considered age or time spent in

the cohort as timescale because the inclusion of a random effect on the changepoint

allows for the expected great heterogeneity between the age of change. In joint

models, the timescale cannot be a delay to diagnosis because all subjects are included

and such a delay cannot be computed for non-cases. The interpretation of the time

of change directly depends upon this timescale. When the timescale is the delay

to diagnosis, a time of change represents the length of the phase of accelerated

cognitive decline until diagnosis. If the timescale is age, the changepoint represents

the age at which the cognitive decline begins to accelerate which is highly variable

between subjects because strongly correlated with the age at dementia. In our case,

the delay to diagnosis sounds more appropriate to describe the natural history of

dementia. As mentioned however, such a timescale imposes working with cases only

because non-cases have no delay to dementia. This leads to a selection bias due to

the interval censored nature of dementia diagnosis because only subjects who remain

in the study until diagnosis are considered while subjects who dropped out before

diagnosis or where diagnosed after the end of the study are excluded.
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2.3 Testing the existence of a changepoint

In the previous section, we described the main changepoint models proposed in the

literature. However, in dementia, it can happen that for certain subpopulations,

the trajectory appears smoother which arises the question of the existence of the

random changepoint. The formulations of such a test are multiples and various null

hypothesis are plausible. However, under these null hypothesis, some parameters

of the models vanishes making them unidentifiable under the null hypothesis and

standard testing methods non applicable. In this section, we describe the existing

approaches proposed in the literature, first to tackle the more general problem of

detecting a change in a parameter of a regression model, i.e. a structural change, and

secondly for detecting a structural change in segmented regression model specifically.

Finally, we are looking into the quite limited literature discussing approaches suited

for longitudinal data.

2.3.1 Tests for structural change in regression models

Here, the changepoint is defined as a unique fixed value τ such as, if we observe

independent outcomes Y1, . . . , YN , the subvectors Y1, . . . , Yτ and Yτ+1, YN have two

different distributions F and G. These distributions might have a non parametric

form or a parametric form f(Y, θ1) and g(Y, θ2) respectively, with f , g, θ1 and θ2

either known or unknown. No assumption of continuity is made at the changepoint

τ , contrarily to segmented regression model. Several methods have been proposed

to test for a shift in a regression model for independent data.

The non parametric case

Some of them are suited to the non parametric case and the proposed tests are based

on rank statistics. Among these, Pettitt (1979) proposed, for the case of continuous

F and G, a procedure to test the null hypothesis of no change versus the alternative

of exactly one change. Its test statistics is based on the Mann-Whitney statistics.

He derived exacts significance probabilities for the case of F and G being Bernoulli

distributions and computed approximations for the case of continuous distributions.
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Lombard (1987) extended this work by considering both the abrupt case where no

assumption was made on the values of F (τ) and G(τ) and a continuous case with

the constraint F (τ) = G(τ). For the abrupt case, he considered the one changepoint

alternative as well as the multiple changepoints alternative. His test was built on

quadratic form rank statistics from which he derived the asymptotic null distribution

and tabulated significance probabilities. More recently, an interesting particular case

has been treated by Aly et al. (2003) who considered, as the alternative hypothesis,

the existence of ordered multiple changepoints. That means, that on each of the

k+1 segments formed by k changepoints, they considered a partially ordered relation

Fi ≺ Fi+1, i = 1, . . . , k as the alternative. The asymptotic null distribution was given

and tables of critical values were computed through a Monte Carlo approach.

The parametric case

For the parametric case, methods based on the likelihood ratio tests have been

extensively used in the literature and different tests have been proposed depending

on the nature of the distribution: gaussian data or a logistic model framework.

For normally distributed data, Quandt (1960) studied the behaviour of the like-

lihood ratio statistic for testing that no switch occurred versus the alternative that

one switch occurred in a linear regression model after which intercept, slope and

residual variance might change. He showed that the commonly used chi squared

approximation of the asymptotic distribution of the likelihood ratio under the null

failed completely and computed its empirical distribution from simulations so that

he could build an empirical test. Kim and Siegmund (1989) proposed a likelihood ra-

tio test procedure for normally homoscedastic distributed data in a more constrained

framework. On a linear regression model with one dependent variable, they tested

the null hypothesis of no change versus a change in the intercept or versus a change

either in the intercept or in the slope. Approximations were given for the signifi-

cance levels of their likelihood ratio test and accuracy was assessed in simulation

studies. Horvath (1993) proposed a likelihood ratio test to study the more general

case of a sample of independent random Gaussian variables. He proposed a proce-

dure to test that all variables are sampled from the same Gaussian distribution, i.e.
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with same mean and variance, versus the alternative that, from some changepoint

τ , the sampling distribution changes either in mean or in variance. The asymptotic

distribution was computed using asymptotic results from stochastic process theory.

In order to detect a change in the parameters of a logistic model, a likelihood ratio

test statistic that makes no assumption on the covariates behaviour was proposed

by Gurevich and Vexler (2005) inspired by a sequential procedure introduced by

Robbins and Siegmund (1972). Fong et al. (2015) proposed to test for a threshold

effect in a logistic model, i.e. to test if a covariate has no effect before an unknown

changepoint and has a constant effect afterwards. They used a supremum score

test approach because of identifiability issues and proposed approximations of the

p-values. This supremum score test will be discussed more thoroughly in Chapter

3. An additional case was considered by including an interaction term between

some covariates and the changepoint variable. This test is built on the maximum

of likelihood ratio statistic and a sampling procedure of its asymptotic distribution

under the null is provided. Their methods have been implemented in a R package

(Fong et al., 2017).

2.3.2 Tests for structural change in segmented regression

models for independent data

Here, we specifically focus on segmented regression model, that is, a linear-linear

model where at the changepoint there is continuity between the two straight lines.

The smooth model of Lombard (1987) introduced previously could fit in this section.

We only discuss the case of independent data for the moment.

Farley and Hinich (1970) proposed a method to detect a change in the slope

coefficents of a linear regression model with the condition that this change has to

be small relative to the residual variance. The changepoint was assumed uniformly

distributed on all the range of possible values. They used a likelihood ratio test

statistic whose critical values were approximated by a first order approximation

around the null. For the same statistical problem, Feder (1975) gave more theoretical

insights for the asymptotic behaviour of the test statistic under the null. They
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showed that, under the null, this test statistic behaves actually like the maximum

of correlated χ2(1) and χ2(2) random variables.

Muggeo (2016b) proposed a framework for testing the existence of a fixed change

for longitudinal Gaussian homoscedastic data. A score test approach that avoids

the possibly heavy estimation of the alternative model is chosen. However, because

some parameters vanish under the null, they become unidentifiable and the classic

score test approach cannot be used as the MLE of these unidentifiable nuisance

parameters cannot be computed under the null. In a similar spirit than Andrews

and Ploberger (1994), he replaced the quantity that vanishes under the null by its

average over a pre-specified grid of values. The asymptotic null distribution was

given and a simulation assessed this test performance. We refer to Section 3.1.4 for

more details about the problem of nonidentifiable nuisance parameters under the

null.

2.3.3 Changepoint detection for segmented longitudinal data

All of the previously described literature only focused on independent data. When

working on longitudinal data, within subject correlation needs to be taken into ac-

count. However, if the literature about tests for independent data is quite developed

as we have seen, there is very few literature on dependent data.

Juang and Wolfe (1990) proposed test statistics based on the Mann-Whitney

statistics generalizing a previous work of Pettitt (1979) to test for the existence of at

most one changepoint for repeated data where each individual has the same number

of measures taken at the same time occurrences. They studied the asymptotic

behaviour of their statistics and proposed approximations of critical values for small

samples. However, BuHamra (1997), who worked in the same framework, evaluated

the performance of these statistics and found that some performed poorly because

they were not integrating between subjects information. She then proposed new

test statistics and by deriving its asymptotic distribution and by computing small

samples critical values using MCMC techniques she found that her new test statistics

performed better.

In a purely frequentist approach, Piepho and Ogutu (2003) proposed a test for
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the existence of a fixed changepoint in a segmented regression model for repeated

measures. They used a likelihood ratio approach where the bounds of the criti-

cal values of the test were computed using the approximation proposed by Davies

(1977) and Davies (1987). Ramanayake and Gupta (2010) proposed a likelihood

ratio type statistic T1 to detect a changepoint in the parameter of exponentially

distributed data assuming uniform prior for the changepoint and compared it to T2

the supremum of the classic likelihood ratio test. They computed the distribution

under the alternative to perform a power comparison of both tests and found that

T1 outperformed T2 when the true changepoint lies in the middle of the sequence of

observations.

As we have seen, the literature for testing a breakpoint in a regression model is

well developed (Bhattacharya, 1994) but not the literature for identifying a break-

point in a segmented model and especially in the case of repeated data. Several

challenges exists for developing such test. A first challenge is the identifiability issue

that arises when testing for the existence of a changepoint in segmented regres-

sion models. As we have seen, some authors proposed way to tackle this issue and

we described this matter more precisely in Chapter 3. A second challenge is that

the distribution under the null can be intractable and needs to be approximated.

Finally, the third challenge lies in the longitudinal nature of the data. To our knowl-

edge, there is in fact no developed methodology to assess the existence of a random

changepoint for repeated measures. This is why in Chapter 3, we propose a testing

procedure for the existence of a random changepoint in a mixed model.



Chapter 3

Testing the existence of a random

changepoint

In this chapter, we describe the methodology we propose to answer our first objec-

tive: testing the existence of a random changepoint for longitudinal data. In the

next section, we describe the mixed model with random changepoint and the test

procedure we propose for testing the existence of a random changepoint. Then we

discuss tests for the variability of this changepoint. The procedure is evaluated in

a simulation study in Section 3.2 and applied to real data on dementia among the

elderly in Section 3.3. We finally discuss the method in Section 3.4. This work has

been detailed in an article published in Statistics in Medicine (Segalas et al., 2019).

3.1 Methodology

3.1.1 The mixed model with random changepoint

Let us denote Yij = Yi(tij), the marker measure for subject i at time tij with 1 ≤
i ≤ N and 1 ≤ j ≤ ni where ni is the number of measures for subject i. Among

all the possible formulations of the random changepoint mixed model presented in

Section 2.2.2, we chose the Bacon-Watts formulation (2.10) with Griffiths and Miller

(1973) transition. Already used by Dantan et al. (2011), it has the advantage of

39
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being easily implemented and computationally attractive as stated by van den Hout

et al. (2011) while keeping easy interpretability properties when γ is small.

The test we aim to develop can be formulated using a simple null hypothesis

“there is no random changepoint, i.e., the trajectory is linear” and a simple alter-

native hypothesis “the trajectory follows a random changepoint mixed model”. We

then need a formulation of the model that allows to translate mathematically these

null and alternative hypotheses in the most convenient way. Unfortunately, this

cannot be done directly with formulation (2.10) because of the way τi intervenes as

a product of both β1i and β2i. Also, when testing for the existence of the random

changepoint, we first assume there is no random effect on β2, that is the difference

between the two slopes is assumed to be fixed if the random changepoint exists. The

reasons behind this assumption are twofold. First are the computational reasons as

removing one random effect is useful for numerical integration. Secondly, it appears

logic to test an eventual interindividual variation of the difference of slopes around

the changepoint only if this changepoint exists. This is why, we slightly modify

(2.10) into

Yij = β0i + β1itij + β2

√
(tij − τi)2 + γ + εij (3.1)

with

τi = µτ + στ τ̃i and τ̃i ∼ N (0, 1),

βki = β>k Xki + αki for k = 0, 1,

αi = (α0i, α1i)
> ∼ N (0,Σ) with Σ =

(
σ0 σ01

σ01 σ1

)
and εij ∼ N (0, σ).

Thanks to this new formulation, τi only intervenes as a product of β2 and the null

and alternative hypotheses can be easily written into the following mathematical

equations:

H0 : β2 = 0 vs. H1 : β2 6= 0. (3.2)

Therefore, our testing procedure is built as a two-step procedure. First, we test

if a random changepoint exists (3.2) and then, if it exits, we can test if, around
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this random changepoint, variation of the difference of slopes is subject-specific or

covariate dependent using classical tests detailed in Section 3.1.6. However, because

of this formulation, parameter β0i loses its interpretation as the value of the marker

at the changepoint. But as our main goal here is to test for the existence of the

changepoint, this is an acceptable compromise. In (3.1), τi is the individual random

changepoint, β1i is the mean slope over the two phases and β2 is half the difference

of slopes between the two phases. The slope before the changepoint τi is β1i − β2
and the slope after τi is β1i + β2. In addition to the random changepoint, the intra-

subject correlation is accounted for by including subject-specific random intercept

and random slope, α0i and α1i. The model may include covariates in the vectors

X0i and X1i, respectively associated with the mean level and with the mean slope.

In some applications, the changepoint could be constrained to be positive, for

example when age is the time basis. In such a case, we could use a log-normal

changepoint instead of a gaussian one. The changepoint support might also be

fixed to a closed interval by chosing an appropriate probability law such as a trun-

cated normal distribution as in van den Hout et al. (2013). These non gaussian

distributions might be handled by suitable reparametrization so that the random

effects could still be considered as normal variables (log-transformation for instance

or changing the bounds and rescaling the interval).

The random coefficient αki are assumed to be independent from the random

changepoint τ̃i because it was previously observed that without this assumption,

random changepoint mixed models were hardly identifiable (Jacqmin-Gadda et al.,

2006). Note, however that a priori independence does not imply the independence

of the posterior random effects predictions. The individual deviation from the mean

slope is assumed to be unchanged after the random changepoint because the differ-

ence of slope β2 is not random. The inclusion of a random effect on β2 as well as

inclusion of covariates for the difference of slopes and the time of change are dis-

cussed in Section 3.1.6. However, we stress the fact that the time of the changepoint

itself is random.

As advised by Dantan et al. (2011), we chose a small γ (γ = 0.1) to stay close to

the linear-linear model while ensuring the derivability condition. The size of γ has
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to be considered in relation to the time scale of the measured markers in our real

data. This parameter could also be estimated by profile likelihood but we emphasize

that large values of γ would make the interpretation of the changepoint and slopes

more questionable as underlined by van den Hout et al. (2011).

3.1.2 Estimation procedure

The log-likelihood of model (3.1) takes the following form

`N(Y ; β2, θ) =
N∑
i=1

log fi(Yi; β2, θ)

=
N∑
i=1

log

∫∫ ni∏
j=1

f(Yij|αi, τ̃i)f(αi)f(τ̃i)dαidτ̃i. (3.3)

with θ = (β>0 , β
>
1 , µτ , σ, σ0, σ1, σ01, στ )

> the vector of all model parameters except β2,

fi(Yi; β2, θ) the contribution to the likelihood of subject i, f(Yij|αi, τ̃i) the univariate

gaussian density for Yij given the random effects and f(αi) and f(τ̃i) the densities

of the random effects. The log-likelihood (3.3) involves a three-dimensional integral

on the random effects but conditionally on τ̃i, the log-likelihood is linear according

to αi and therefore the integral in αi is analytic and we have

`N(Y ; β2, θ) =
N∑
i=1

log

∫ ni∏
j=1

f(Yij|τ̃i)f(τ̃i)dτ̃i. (3.4)

Because τ̃i ∼ N (0, 1), if we substitute τ̃i by τ̆i = τ̃i/
√

2 in the integral of the log-

likelihood (3.4), we have

`N(Y ; β2, θ) =
N∑
i=1

log
1

π

∫ ni∏
j=1

f(Yij|τ̆i) exp(−τ̆ 2i )dτ̃i. (3.5)

which makes the use of Gaussian quadrature straightforward. To estimate model

(3.1) we chose a frequentist approach based on the maximization of the log-likelihood

(3.5) using the Marquardt-Levenberg algorithm (Levenberg, 1944; Marquardt, 1963).

The estimation algorithm based on this marginalized version of the log-likelihood
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has been implemented in R (R Core Team, 2018) and Rcpp (Eddelbuettel and Bala-

muta, 2017) using the classic Gauss-Hermite quadrature with 20 nodes for numerical

integration. The algorithm is freely available on the R package rcpm available on

GitHub at https://github.com/crsgls/rcpm. Details are given in Appendix B.

3.1.3 Score test statistic

Our objective is to test for the existence of a random changepoint in the mixed

model (3.1). As we said, thank to the new formulation we have proposed, the null

hypothesis of no random changepoint may be defined by

H0 : β2 = 0 vs. H1 : β2 6= 0.

Under the null hypothesis H0 : β2 = 0, the random changepoint model (3.1) reduces

to a simple linear mixed model. Alternatively, the null hypothesis of absence of

random changepoint could have been specified by H0 : στ = 0 and µτ ± ∞ (or

any values outside the range of time) but this formulation of the null hypothesis

is too complex to directly derive a test. Our objective, here, is not to test if the

changepoint is random vs. the changepoint is fixed but to test for the existence of

a changepoint that can be subject specific.

Among all the possible approach to perform this test, we chose a score test

approach. It has the interesting advantage of avoiding the estimation of the alterna-

tive model, a random changepoint model in our case, which can be computationally

expensive.

https://github.com/crsgls/rcpm
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Taking the derivative of the log-likelihood (3.3) at β2, we can compute the score

UN(β2; θ) =
∂`N(Y ; β2, θ)

∂β2

=
N∑
i=1

∂

∂β2
log fi(Yi; β2, θ)

=
N∑
i=1

1

fi(Yi; β2, θ)

∂

∂β2
fi(Yi; β2, θ)︸ ︷︷ ︸

(?)

. (3.6)

Denoting

Ỹij = E(Yij|αi, τ̃i) = β0i + β1itij + β2

√
(tij − τi)2 + γ,

we have

(?) =

∫∫
f(αi)f(τ̃i)(

√
2πσ)−ni

∂

∂β2

ni∏
j=1

exp

{
− 1

2σ2
(Yij − Ỹij)2

}
︸ ︷︷ ︸

(??)

dαidτ̃i. (3.7)

Using the equality (
∏

j uj(θ))
′ =
∑

j u
′
j(θ)

∏
k 6=j uk(θ), the derivative of the product

is

(??) =

ni∑
j=1

1

σ2
exp

{
− 1

2σ2
(Yij − Ỹij)2

}
(Yij − Ỹij)

√
(tij − τi)2 + γ

×
∏
k 6=j

exp

{
− 1

2σ2
(Yik − Ỹik)2

}
, (3.8)

Finally, by combining (3.6), (3.7) and (3.8) and by taking β2 = 0, the null score has
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the following form:

UN(0; θ) =
N∑
i=1

ui(0; θ)

=
N∑
i=1

[ ∫
f(τ̃i)

∫
f(αi)

ni∏
j=1

1√
2πσ

exp

{
− 1

2σ2
(Yij − β0i − β1itij)2

}
dαidτ̃i

]−1
×
∫∫

f(αi)f(τ̃i)(
√

2πσ)−ni
ni∑
j=1

[
1

σ2
exp

{
− 1

2σ2
(Yij − β0i − β1itij)2

}
× (Yij − β0i − β1itij)

√
(tij − τi)2 + γ

×
∏
k 6=j

exp

{
− 1

2σ2
(Yik − β0i − β1itik)2

}]
dαidτ̃i. (3.9)

The observed score test statistic is

SN(0; θ̂0) =
UN(0; θ̂0)

2

IN(0; θ̂0)
(3.10)

where θ̂0 is the maximum likelihood estimate (MLE) of all nuisance parameters θ

under the null and IN(0; θ̂0) is the variance of the score function given by Cox and

Hinkley (1979)

IN(β2, θ) = Iβ2β2 − Iβ2θI−1θθ I
>
β2θ
,

with

Iβ2β2 =
N∑
i=1

E

[
∂ log fi
∂β2

]2
,

Iθθ =
N∑
i=1

E

[(
∂ log fi
∂θ

)(
∂ log fi
∂θ

)>]
,

Iβ2θ =
N∑
i=1

E

[(
∂ log fi
∂β2

)(
∂ log fi
∂θ

)>]
.

However, analytic computation of IN(0; θ̂0) is intractable and numerical compu-

tation would be not precise enough without heavy computation due to numerical
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integrals. Thus, as suggested by Freedman (2012), the variance is approximated by

its empirical version

ÎN(0; θ̂0) =
N∑
i=1

ui(0; θ̂0)
2

where ui is the individual contribution to the score. When testing a random effect,

this approximation may lead to a slightly conservative test (Commenges et al., 1994)

but simulation results in Section 3.2 show that the type I errors are acceptable.

3.1.4 The identifiability issue

Following the classic score-test approach, to compute the observed test statistic

(3.10), we first need θ̂0, the MLE of θ under the null. However, in our case, the whole

set of parameters θ cannot be estimated under the null. The mean and variance of

the changepoint, µτ and στ , are indeed unidentifiable if β2 = 0 as τi vanishes from

model (3.1). We note η0 the vector of identifiable nuisance parameters under the

null, so that θ = (η0, µτ , στ ), and η̂0 its MLE under the null which therefore does

not depend upon (µτ , στ ). The presence of unidentifiable parameters under the null

makes that the classic approach does not hold anymore.

In the literature, three main ideas have been proposed to tackle the unidentifia-

bility issue in score tests, generally in the framework of mixture models. First, the

unidentifiable nuisance parameters may be replaced by a specific value, for example

the MLE under the alternative hypothesis as suggested by Conniffe (2001). One

disadvantage of such a strategy is that it requires estimating the alternative model

which we wanted to avoid. Moreover, no theoretical result is proposed about the

distribution of SN(0, µ̂τ , σ̂τ , η̂0) where µ̂τ , σ̂τ are the MLE of µτ and στ under the

alternative. Even numerically, the distribution under the null remains difficult to

compute and needs intense simulations.

A second method was proposed by Muggeo (2016b) to test for the existence of a

fixed changepoint for longitudinal data. This test also only requires the estimation

of the null model and the issue of unidentifiable nuisance parameters under the null

is ruled out by replacing the quantity that vanishes under the null by its average

over a pre-specified grid of values. The null distribution of the statistic is given and
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its behaviour on finite sample assessed through simulation studies. Their approach

to deal with unidentifiability is similar on philosophy to previous theoretical work by

Andrews and Ploberger (1994) who also proposed to use a weighting function over

a grid of nuisance parameter values from which they build test statistics. However

they do not discussed how critical values could be computed in practice.

The last method is to consider the supremum of the test statistic over the uniden-

tifiable nuisance parameters as the new test statistic. It has first been proposed by

Davies (1977, 1987). They also proposed bounds for the probability of the critical

region which can help building a test procedure. Unfortunately, as Hansen (1996)

highlighted, they make a strong theoretical assumption about the derivative of the

asymptotic of the test statistic that is often violated for large sample sizes and re-

sults in greater error. A resampling perturbation procedure based on the multiplier

bootstrap (Van Der Vaart and Wellner, 1996) has been proposed by (Hansen, 1996).

Since then, this procedure has been applied, for example, by Hsu et al. (2016) for

building a supremum score test for testing homogeneity in mixture models.

3.1.5 The supremum score-test statistic

Following the idea of Hansen (1996), we consider the supremum of the score-test

statistic over the unidentifiable nuisance parameters (µτ , στ ) as our test statistic,

i.e.

TN = sup
(µτ ,στ )

SN(0;µτ , στ , η0). (3.11)

To compute the observed value of TN , denoted T
(obs)
N , the identifiable parameters

η0 are estimated from the null model, which is a standard linear mixed model.

Then, replacing η0 by its MLE η̂0, SN(0;µτ , στ , η̂0) is maximized over (µτ , στ ) by

a Newton-like algorithm. We then compare this observed value T
(obs)
N to the theo-

retical distribution of TN under the null in order to compute the p-value. As this

distribution is unknown and has no analytical expression, we use the resampling per-

turbation procedure proposed by Hansen (1996). To do so, we repeat the following

steps for b = 1, . . . , B:

1. we simulate N standard normal variables (ξ
(b)
1 , . . . , ξ

(b)
N );
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2. we compute the sample statistic T
(b)
N

T
(b)
N = sup

(µτ ,στ )

(∑N
i=1 ui(0;µτ , στ , η̂0)ξ

(b)
i

)2
∑N

i=1 ui(0;µτ , στ , η̂0)2

Then, we obtain a sample of B realizations from the distribution of TN under the

null and the empirical p-value can be computed

p̂ =
B∑
b=1

1

B
1{T (b)

N >T
(obs)
N }.

The computation of the score statistic involves a maximization procedure performed

with the BFGS quasi-Newton algorithm already implemented in the R (R Core

Team, 2018) function optim. The three dimension integrals over (α0i, α1i, τ̃i) are

computed with a pseudo-adaptive gaussian quadrature approach. The estimates of

the individual random effects from the null linear mixed model were used to rescale

and center the quadrature nodes for (α0i, α1i). For τ̃i, standard Gauss-Hermite nodes

were used. In the simulation study of Section 3.2 and in the application of Section

3.3, integrals are computed with five nodes for each dimension. The computation

of the empirical p-value entails B optimizations of the perturbed sample statistics

T
(b)
N with b = 1, . . . , B. This algorithm was implemented using R (R Core Team,

2018) in the function testRCPMM of the package rcpm that is available on GitHub

and described in Appendix B.

3.1.6 Standard tests for the heterogeneity of β2i and τi

Heterogeneity in the difference of slopes β2i

In model (3.1), the time of change τi, the intercept β0i and the mean slope β1i are

subject-specific but the slope difference between the two phases, β2 is common for

all subjects. If the previous test had concluded to the existence of a random change-

point, it might be worthwile testing whether there is variability in the parameter β2,

due either to covariates or to a random effect. Indeed, it would be plausible that the
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heterogeneity between subjects increases in this second phase, i.e. the pathological

phase, as opposed to the healthy phase.

If we want to test for a covariate effect, replacing β2 by β2i = β20+β21Xi in model

(3.1), the standard Wald test may be used to test H0 : β21 = 0 vs. H1 : β21 6= 0.

To introduce a random difference in slopes, we replaced β2 by β2i = β2 + α2i

with αi = (α0i, α1i, α2i) ∼ N (0,Σ) in model (3.1). This model may be estimated

by maximizing the likelihood (3.4), marginalized over αi, since the integral over the

three-dimensional αi still has an analytical solution. To test the null hypothesis that

β2 is fixed versus random, the null and alternative hypotheses are defined by:

H0 : Σ =


σ0 σ01 0

σ01 σ1 0

0 0 0

 vs. H1 : Σ =


σ0 σ01 σ02

σ01 σ1 σ12

σ02 σ12 σ2

 .

. A standard test statistic cannot be applied because, under the null, the parameter

σ2 lies on the boundaries of the parameter space R+. A corrected test for variance

components was proposed by Stram and Lee (1994) who showed that, under the

null, the likelihood ratio statistic followed a mixture of chi-squared distribution. For

this test, with three non-independent random effects, it then follows a 0.5χ2
3 + 0.5χ2

2

distribution. In practice, the p-value for this test is computed as the mean of the

two p-values obtained by assuming that the likelihood ratio statistic has either a χ2
2

or χ2
3 distribution under the null.

Heterogeneity in the changepoint dates τi

It is also interesting to test the dependence of the mean and variance of the change-

point τi on some covariates. This can be achieved by estimating model (3.1) while

including the covariate of interest Xi in the model for τi, i.e.

τi = µτ0 + µτ1Xi + (στ0 + στ1Xi)τ̃i and τ̃i ∼ N (0, 1).

Then again, standard Wald tests can be used to test the association of Xi with the

mean time of change (H0 : µτ1 = 0) and with the variance of the time of change
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(H0 : στ1 = 0).

3.2 Simulations

3.2.1 Scenarios

We performed simulations studies to validate our testing procedure. The procedure

was applied to data simulated under the null and the alternative hypotheses to

compute the size and the power of the test, respectively. Under the null hypothesis,

data were simulated according to the linear mixed model (M0) Yij = β0i+β1itij+εij,

while under the alternative, they were simulated according to model (3.1) with

βki = βk + αki for k = 0, 1. We generated samples of size N = 50 or N = 100, with

8 measures per individual at times 0, 3, 6, 9, 12, 15, 18, 21.

For all generated models, the parameter values were β0 = 20, β1 = −0.3, σ = 1,

σ0 = 1, σ1 = 0.2, ρ01 = 0.5, γ = 0.1. Several models were considered under the

alternative hypothesis by varying β2 (difference between the mean slopes of the

two phases), µτ (mean time of change) and στ (inter-individual variance in time

of change). We used three different values for β2 : −0.05, −0.075 and −0.1 which

gave three models denoted M1, M2 and M3 with respective slopes (−0.25,−0.35),

(−0.225,−0.375) and (−0.2,−0.4) (see Figure 3.1). For each of these three models,

we used three different sets of values for (µτ , στ ) : (10; 2), (10; 4) and (15; 2) leading

to a total of nine alternative models. For each of these models, two scenarios were

considered: one without any dropout and one with a dropout probability of 0.1

at each visit so that around half the initial sample remained in the cohort at the

last visit. The empirical distribution of the null test statistic was simulated with

K = 500 perturbed samples. Empirical powers and sizes of the test were computed

using 1000 replicates.

3.2.2 Results

Table 3.1 presents the sizes and powers of the test for the various scenarios. First, the

type I error was correct even if it might be slightly undersized for small samples with
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Figure 3.1: The null and the three alternative scenarios used for the simulations.
The mean trajectory with µτ = 10 is plotted in solid black and individual trajectories
with a dropout probability of 0.1 at each visit for 30 randomly generated subjects
are plotted in grey.
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N 50 100
dropout 0 0.1 0 0.1

M0 0.041 0.030 0.038 0.040
M1 0.630 0.304 0.966 0.680

(µτ , στ ) = (10, 2) M2 0.967 0.678 1 0.973
M3 1 0.945 1 1
M1 0.470 0.185 0.864 0.501

(µτ , στ ) = (10, 4) M2 0.873 0.527 0.998 0.902
M3 0.980 0.791 1 0.993
M1 0.303 0.071 0.626 0.207

(µτ , στ ) = (15, 2) M2 0.615 0.215 0.967 0.545
M3 0.917 0.438 0.999 0.869

Table 3.1: Size and power of the test computed on 1000 replicates of each scenarios
with K = 500 perturbations.

dropout. As expected, the power increased with the absolute value of β2 (from M1

to M3), i.e. with the intensity of the change in slopes, and with sample size (N = 50

vs. N = 100). Whatever the model and sample size, the power was lower for samples

with dropout, owing to the loss of information and the shorter mean follow-up time.

Indeed, dropout induces a strong imbalance between the number of measurements

before and after the changepoint. Similarly, when the changepoint was later, i.e.

µτ = 15, the power of the test decreased. This behaviour is expected because this

shift in the changepoint time involves a loss of information on what happens next it

compared to the case where µτ = 10. When the variance of the changepoint time στ

increased, the power also decreased, probably because more subjects had an unequal

number of measures before and after their individual changepoint.

3.2.3 Power of the test when the difference in slopes is ran-

dom

In our two-step procedure, the difference between the two slopes in the two phases,

β2, is assumed to be a fixed parameter. The test for its variability is only performed

after the test for the existence of a random changepoint. It could thus be interesting

to evaluate the behaviour of the test of β2 = 0 when this assumption is violated,



3.2. SIMULATIONS 53

N 50 100
dropout 0 0.1 0 0.1

M1 0.361 0.153 0.708 0.390
(µτ , στ ) = (10, 2) M2 0.732 0.407 0.986 0.863

M3 0.955 0.754 1 0.986
M1 0.268 0.121 0.579 0.300

(µτ , στ ) = (10, 4) M2 0.623 0.328 0.952 0.729
M3 0.894 0.590 0.999 0.944
M1 0.187 0.061 0.421 0.147

(µτ , στ ) = (15, 2) M2 0.457 0.140 0.859 0.426
M3 0.752 0.307 0.991 0.752

Table 3.2: Power of the test computed on 1000 replicates of each scenarios with
K = 500 perturbations with data simulated with a random β2i, σ2 = 0.1.

i.e., when the parameter β2 is in fact random. To do so, the score test was applied

to data simulated with a subject-specific random effect β2i = β2 + α2i. All previous

values of parameters were kept and we chose σ2 = 0.1, ρ02 = corr(α0i, α2i) = 0.5

and ρ12 = corr(α1i, α2i) = −0.2. Results for all previous simulated scenarios are

shown in Table 3.2. As expected, the power globally decreased when β2 was random

compared to when it was fixed, but the obtained powers remained very satisfactory.

These results suggest that our procedure give good results even when the assumption

of a fixed β2 is violated.

3.2.4 Power analyses for changepoint models

The simulation procedure, also implemented in the package, may be used to conduct

a power analysis for the detection of a difference in slopes. It is of clinical interest

to know what sample size is needed to detect a random changepoint for a given

difference in slopes and a given power. The idea is to compute the empirical power for

different sample sizes N and to select the minimal value of N for which the empirical

power is at the desired level. As an illustration, we computed the empirical power for

a difference of slopes of 0.15, corresponding to scenario M2, with (µτ , στ ) = (15, 2).

We used 1000 replicates for each of N = 30, 40, 50, 60, 70, 100, 125, 150. We plotted

the results obtained for a fixed β2 as well as for a random β2i in Figure 3.2. The
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Figure 3.2: Empirical power obtained for a mean difference of slopes of 0.15 assuming
either a fixed difference of slopes (β2) or a random difference of slopes (β2i) for
different sample size with 1000 replicates for each. The horizontal dashed grey line
represents a power of 0.8.

minimum sample size for a power of 0.8 would then be N = 70 if β2 is fixed and

N = 100 if it is random.

3.3 Application

We applied the proposed inference procedure on real data about dementia in the

elderly. We tested the existence of an acceleration of cognitive decline before the

diagnosis of dementia whatever the educational level and, if changepoints were iden-

tified, compared them according to educational level.
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3.3.1 Sample

For a general presentation of the Paquid cohort, see Section 1.4.1. In our analysis,

only subjects free of dementia at baseline and diagnosed as demented during the

25 years of follow-up were selected because our objective was here to study the

trajectory of cognitive decline before dementia. Subjects without any measures were

also excluded. The final sample included 880 incident cases of dementia, of whom

522 had a primary school diploma or higher educational level. The mean number of

measures for each subject was 5.8 (from 1 to 12) for high educational subjects and

4.6 (from 1 to 12) for low educational ones. Delay to dementia in years was used as

the time basis and the date of dementia was estimated by the mean, denoted Di,

between the date of diagnosis and the date of the last visit without dementia. The

time scale used for the analysis is the difference between the measurement time for

the cognitive score and Di. Thus, time 0 is the imputed time of dementia. It is

negative in the pre-dementia phase and positive thereafter.

3.3.2 Test for the random changepoint

We performed the analyses separately for subjects with high educational level (HEL)

and subjects with low educational level (LEL). We tested H0 : β2 = 0 vs. H1 : β2 6= 0

without any adjustment in the model defined by (3.1). To compute the empirical test

statistic distribution under the null, we applied the perturbation procedure withK =

500. For the HEL sample, the observed test statistic was 143.7 and the estimated

p-value p < 0.001. For the LEL sample, the observed test statistic was 56.9 with

p < 0.001. We then rejected the null hypothesis of no random changepoint for both

educational levels. There was statistical evidence for a subject-specific breakpoint

in the trajectory of the Isaacs Set test before dementia for both educational levels.

As mentioned above, in the presence of a random changepoint, we can test

whether there is inter-individual variability in the parameter β2i by including the

random effect α2i. To compute the likelihood ratio statistic (LRS) for H0 : σ2 = 0,

the alternative random changepoint model with four random effects was estimated.

For the HEL, the LRS was −139.1 (p < 0.001) while it was −20.4 (p < 0.001)
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Figure 3.3: Marginal estimated trajectories of the random changepoint mixed models
for HEL and LEL subjects.

for the LEL. There was statistical evidence for an inter-individual variation in the

difference of slopes. From now on, we included this random effect in the model.

3.3.3 Estimation of the mixed model with random change-

point

The mixed model with random changepoint

Yij = β0i + β1itij + β2i

√
(tij − τi)2 + γ + εij. (3.12)

was then estimated on each subsample with βki = βk0 + αki for k = 0, 1, 2 with

αi = (α0i, α1i, α2i)
> ∼ N (0,Σ), γ = 0.1 and τi = µτ + στ τ̃i. The model was esti-

mated by maximum likelihood using a Levenberg-Marquardt algorithm (Levenberg,
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Paquid sample of demented subjects
High education (N = 522) Low education (N = 358)
Esti. 95%CI Esti. 95%CI

β0 22.56 [22.08,23.03] 20.32 [19.69,20.96]
β1 -0.94 [-1.03,-0.86] -0.58 [-0.66,-0.50]
β2 -0.61 [-0.69,-0.52] -0.39 [-0.46,-0.32]
µτ -3.31 [-4.06,-2.55] -4.82 [-6.10,-3.55]
σ 3.26 [3.15,3.37] 3.26 [3.11,3.41]
στ 1.85 [1.25,2.45] 1.92 [0.88,2.95]

Table 3.3: Parameter estimates of the mixed model with random changepoint on
Paquid data stratified on educational level. Numerical integration uses classic gaus-
sian quadrature with 20 nodes.
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Figure 3.4: Estimated individual trajectories (solid line) for randomly selected sub-
jects of either educational level (HEL or LEL) from the Paquid cohort compared to
their observed values (dots).
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1944; Marquardt, 1963) and gaussian quadrature with 20 nodes to compute the

marginalized log-likelihood (3.4). Estimated parameters are shown in Table 3.3.

Confidence intervals (CI) were computed by standard maximum likelihood theory

that can be applied here given that we know from the test results that β2 is non null

and that the changepoint parameters are identifiable. The variances are estimated

from the inverse of the observed Hessian matrix and the CI are computed using

asymptotic normal distribution. The marginal estimated trajectories are plotted in

Figure 3.3 for each educational level and were computed using classic Gauss-Hermite

quadrature to integrate

E(Y (t), θ̂, β̂2) =

∫
E(Y (t)|τi, θ̂, β̂2)f(τi|θ̂, β̂2)dτi.

Table 3.3 highlights differences in the IST trajectories according to educational

level. Indeed, the mean slope over the two phases appeared steeper (β1 = −0.94 vs.

−0.58). Regarding the changepoint, it appeared closer to the time of dementia onset

(µτ = −3.31 vs. −4.82) for HEL and the difference between the two slopes was also

larger (β2 = −0.61 vs −0.39). All these differences are noticeable on the plotted

estimated trajectories of the two groups in Figure 3.3. On the other hand, the

variance in the changepoint time and the residual variances were similar between

the two groups. From the previously estimated parameters, we can compute the

first and second slopes and their 95% CI for LEL subjects: −0.19 [−0.27;−0.1] and

−0.96 [−1.09;−0.84] as well as for HEL subjects: −0.34 [−0.39;−0.28] and −1.55

[−1.71;−1.39]. These results enlightened the difference in trajectories.

The estimated variance matrices for the random effects among LEL subjects Σ0

and among HEL subjects Σ1 also suggested some differences between educational

levels:

Σ̂0 =


14.96 −0.01 −0.01

−0.01 0.08 0.02

−0.01 0.02 0.01

 Σ̂1 =


18.93 −0.08 −0.03

−0.08 0.26 −0.07

−0.03 −0.07 0.03


The inter-subject variability was greater among HEL which is expected because
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Paquid sample of demented subjects
High education (N=522) Low education (N=358) Test for equality

Esti. 95%CI Esti. 95%CI p-value
β0 22.553 [22.08,23.03] 20.323 [19.69,20.96] < 0.001
β1 -0.945 [-1.03,-0.86] -0.577 [-0.66,-0.50] < 0.001
β2 -0.608 [-0.69,-0.53] -0.388 [-0.46,-0.32] < 0.001
µτ -3.295 [-4.06,-2.53] -4.823 [-6.09,-3.56] 0.042
σ 3.259 [3.17,3.35] 3.259 [3.17,3.35]
στ 1.852 [1.24,2.46] 1.919 [0.89,2.95] 0.913

Table 3.4: Parameter estimates of the mixed model with random changepoint on
Paquid data adjusted on educational level. Numerical integration uses classic gaus-
sian quadrature with 20 nodes.

the shift used to distinguish the two subsamples, the primary school certificate, leads

to more heterogeneity among HEL.

To test the apparent difference between the two groups, we estimated the com-

plete model (3.12) on the whole sample with both HEL and LEL subjects and

including educational level as a covariate in the modelling of each regression param-

eter βk and of the mean µk and standard error σk of the changepoint. In addition,

the covariance matrix Σ for the random effects was specific for each educational

level. According to results from the stratified analysis in Table 3.3, the residual

variance was assumed identical for the two educational levels. Results of the ad-

justed model, see Table 3.4, show that β0, β1 and β2 were significantly different

between educational levels (p < 0.001 for the three tests). The mean time of change

occured significantly later for HEL (p = 0.04) while the variance in the changepoint

time στ was not different between the groups (p = 0.9). The delayed and steeper

acceleration of cognitive decline among HEL supports the hypothesis of their greater

cognitive reserve (Stern et al., 1994; Stern, 2009). Figure 3.4 displays the subject-

specific estimated trajectories for 12 randomly selected subjects with their observed

values, showing a good fit of individual trajectories.
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3.4 Discussion

We have proposed a procedure to test the existence of a random changepoint for

longitudinal data accounting for intra-subject correlation. Our model allows the

trajectory parameters to depend upon covariates and subject-specific random effects

to account for inter-individual variations. A normal distribution was chosen for the

random effects, but another type of distribution could be considered such as a log-

normal or a truncated normal distribution. The approach used to perform the test is

a supremum score test coupled with a perturbation method to sample the empirical

distribution of the test statistic under the null. The performance of our procedure

was studied through simulation. Results of the application to the Paquid cohort

demonstrated the existence of a change of slopes in the cognitive decline before

dementia for both educational levels. We detected a later changepoint for HEL

subjects which is consistent with the cognitive reserve hypothesis (Stern, 2009).

Both the testing procedure and the estimation algorithm have been made available

on a R package rcpm available on the GitHub platform and are described in Appendix

B. Note that another package exists to estimate linear mixed models with random

changepoint (Muggeo, 2016a).

Another possible choice for the testing procedure is the approach proposed by

Conniffe (2001) which replaces the unidentifiable parameters under the null by their

estimates under the alternative. As pointed out, it needs the alternative model esti-

mation and the null statistic distribution still remains analytically intractable. More-

over, unlike the supremum score test, no theoretically founded simulation method

has been proposed to approximate the null statistic distribution. Wald and like-

lihood ratio tests were also ruled out for several reasons. First, both require the

alternative model estimation which can be quite time-consuming. Second, there are

no asymptotic results for the null asymptotic distribution with unidentifiable param-

eters. Moreover, any bootstrap-based simulation method to sample this distribution

would need intense numerical computations. These reasons and the abundant liter-

ature on the supremum score test motivated our choice.

We propose a step-by-step procedure to investigate the structure of the random
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changepoint model. First, we tested whether a random changepoint exists assuming

that the difference of slopes between the two phases β2 was identical for all subjects,

contrary to the intercept and the mean slope which are subject-specific. This is

legitimate because the randomness of β2i does not make sense without the existence

of the changepoint. We carefully evaluated the impact of this assumption. Our com-

plementary simulation study showed that the test performs well in terms of power

even when β2i is actually random. Also, we emphasize that this test is designed to

detect a non-zero mean difference of slopes i.e. a change in the mean trajectory. If

our procedure detects that this changepoint exists, the between-subject variability

in the slope difference can be tested. It may depend upon some covariates or upon

a subject-specific random effect. Finally, dependence of the mean and variance of

the changepoint time upon covariates may be tested by standard tests such as the

Wald test, as we did for the educational level.

Testing the existence of a random changepoint in a mixed model is a topic of

wide interest in biomedical studies, especially with regards to the natural history of

chronic diseases or marker changes under treatment. This question also arises in the

more complex context of joint models for time-to-events and longitudinal markers.

For example, testing for a random changepoint in the cognitive decline trajectory

by modelling jointly the age at dementia and death would avoid a selection bias

due to dropout and death. However, in such a joint analysis with age as time scale,

the difference in detected changepoints would not reflect a difference in delay to

dementia but rather a difference in terms of age at dementia. Nevertheless, the

score-test procedure we propose is valid for joint models but requires some changes

in the score statistic formula (3.9) to include terms regarding survival submodels.
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Chapter 4

Bivariate random changepoint

model and temporal order

On the previous chapter, we proposed a test procedure to assess the existence of

a random changepoint for longitudinal data. If the test was positive, we proposed

a way to estimate the random changepoint model and to compare its amplitude

according to a covariate. However, we might want to compare the time of change

between different markers in order to compare their temporal order of decline. This

would help to better understand the natural history of the disease. Such a compari-

son implies the two markers to be modelled jointly in a bivariate random changepoint

model. In the next section we described the proposed methodology to proceed to this

time of change comparison. We evaluate our procedure through simulation studies

in Section 4.2 and apply it to real data in Section 4.3. We discuss this methodology

in Section 4.4.

4.1 Methodology

4.1.1 Model formulation

Let us denote Yi = (Y 1
i , Y

2
i )> the ni-vector of all measures for subject i where Y 1

i

and Y 2
i are the n1

i -vector and n2
i -vector of measures of subject i from marker 1 and 2

63
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respectively with ni = n1
i +n2

i . We assume that each of these markers is described by

a random changepoint mixed model. Again, we chose the model (2.10) introduced

by Bacon and Watts (1971) with the transition function proposed by Griffiths and

Miller (1973). Here, we do not use the reformulation of the model that was needed

for testing the existence of the changepoint in the previous chapter. The model is

written

Y l
ij = Y l(tlij) = βl0i + βl1i(t

l
ij − τ li ) + βl2i

√
(tlij − τ li )2 + γ + εlij (4.1)

for marker l = 1, 2, subject i = 1, . . . , N and measure j = 1, . . . , nli. With these

notations, Y l
ij is the value of marker l for subject i at time tlij. We assume that

εlij ∼ N (0, σεl) and that the (εlij)ijl are independent according to both i, j and l.

In this work, the smoothing parameter γ is assumed identical for the two markers

because we are comparing markers with similar timescales and we chose γ = 0.1.

Each regression coefficient is written as the sum of a fixed effect and a random

effect βlki = βlk + blki, with bli = (bl0i, b
l
1i, b

l
2i)
> ∼ N (0, Bl) where Bl is a positive

definite matrix of dimension 3, and the random changepoint τ li = µlτ + στ l τ̃i
l, with

τ̃ li ∼ N (0, 1). We assume that τ̃i
l and bli are independant. The bivariate model is

defined by considering the covariances between the marker-specific random effects:

B12 = Cov(b1i , b
2
i ) and d12 = Cov(τ̃i

1, τ̃i
2).

In matrix notation, the bivariate model (4.1) is defined by:

Yi = Γiβi + εi (4.2)

where βi = (β1
0i, β

1
1i, β

1
2i, β

2
0i, β

2
1i, β

2
2i)
> ∼ N (β,B) with β = (β1

0 , β
1
1 , β

1
2 , β

2
0 , β

2
1 , β

2
2)>

and τ̃i = (τ̃ 1i , τ̃
2
i )> ∼ N (0, D) and εi ∼ Nni(0,Σi) with

Γi =

[
T 1
i 0n1

i×3

0n2
i×3 T 2

i

]
, B =

[
B1 B12

B21 B2

]
, D =

[
1 d12

d12 1

]
,
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Σi =

[
σε1In1

i
0n1

i×n2
i

0n2
i×n1

i
σε2In2

i

]
, T li =


1 ti1 − τ li

√
(ti1 − τ li )2 + γ

...
...

...

1 tinli − τ
l
i

√
(tinli − τ

l
i )

2 + γ

 .
where IN is the identity matrix of size N .

4.1.2 Estimation procedure

We choose to estimate model (4.2) by directly maximizing the log-likelihood and

use the maximum likelihood theory to derive tests for comparing trajectories of the

markers. The log-likelihood of model (4.2) is:

`N(θ) =
N∑
i=1

log f(Yi, θ)

=
N∑
i=1

log

∫∫
f(Yi|τ̃i, bi)f(τ̃i, bi)dτ̃idbi

=
N∑
i=1

log

∫
f(Yi|τ̃i)f(τ̃i)dτ̃i (4.3)

where the vector θ includes all model parameters (fixed effects and variance param-

eters). Given τ̃i, the model is linear and the integral over the random coefficients bi

has a closed form. The conditional distribution Yi|τ̃i is multivariate Gaussian with

mean and variance defined by:

Yi|τ̃i ∼ N (Γiβ, ΓiBΓ>i + Σi)

The integral of size 2 over τ̃i in the last term of (4.3) does not have an analyt-

ical solution and needs to be approximated numerically. We use pseudo-adaptive

Gauss-Hermite quadrature to estimate joint models. We first estimate the two

univariate random changepoint models separately and compute predictions of the

individual random changepoints ˆ̃τ li by empirical Bayes estimates. The posterior ex-

pectation E(τ̃ li |Y l
i ) is approximated by the mode of the distribution of f(Y l

i |τ̃ li )f(τ̃ li ).
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The modes are computed with the Newton-like Levenberg-Marquardt optimization

algorithm (Levenberg, 1944; Marquardt, 1963) and their variance matrix are esti-

mated from the observed Hessian matrix. Then, we center and rescale the nodes of

the Gauss-Hermite quadrature using ˆ̃τ li for l = 1, 2 and their variance, allowing to

reduce the number of quadrature nodes to 10. Finally, the Newton-like Levenberg-

Marquardt optimization algorithm is used again to maximize the log-likelihood of

the bivariate model (4.2).

In some scenario with great variability, it might be necessary to increase the

number of nodes or to use a two-step pseudo-adaptive Gauss-Hermite quadrature as

proposed by Ferrer et al. (2016). In the case of the bivariate random changepoint

model, it means that after a first run of the optimisation algorithm, we estimate the

BLUP ˆ̃τ 1i and ˆ̃τ 2i for both markers from the estimated bivariate random changepoint

model by taking the mode of f(Y 1
i , Y

2
i |τ̃ 1i , τ̃ 2i )f(τ̃ 1i , τ̃

2
i ). Then, we update nodes and

weights of the Gaussian quadrature and run a second optimisation algorithm.

The optimization is performed on a non-constrained space using a parametriza-

tion that ensures positive-definiteness of the variance matrices Σi, B and D. Instead

of estimating these matrices directly, we estimated U the Cholesky matrix of B such

as U>U = B where U is an upper triangular matrix, V the Cholesky matrix of D,

σε1 and σε2 the residual standard deviations from the matrix Σi. Variances of all

the estimated parameters are computed directly from the inverse of the Hessian

matrix and the delta-method is used to compute the variance of the estimates of

the untransformed parameters in Sigma, B and D (Oehlert, 1992). Let us note θ̃

the Cholesky and standard deviation parameters and h a function such that h(θ̃)

encompass all the variance parameters of the model. We can deduce the variance of

h(θ̃) from the asymptotic variance of θ̃,

var(h(θ̃)) ≈ ∇h(θ̃)>var(θ̃)∇h(θ̃)

where ∇h denotes the gradient of the function h.
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4.1.3 Curvilinearity

Model (4.2) assumes that the two markers are Gaussian whereas many psychometric

tests have asymmetric distribution that often highlights ceiling or floor effect. To

take into account such curvilinearity, a smooth transformation of each marker can

be used, instead of their crude values. Following Proust-Lima et al. (2013), we

extend the model to include monotonic marker specific transformations of the crude

markers defined on a basis of I-splines (Ramsay, 1988). They are defined as an

integral of M -splines so that the transformation is bijective. Explicit formulation

of the splines are given on Appendix C. The curvilinear model is defined by the

transformation

Ỹ l
ij = gl(Y l

ij, η
l) = ηl0 +

q∑
k=1

ηl2k I
l
k(Y

l
ij) (4.4)

where the transformed variable Ỹ l
ij follows model (4.1). The parameters (ηlk)k have to

be estimated and I lk is the marker specific I-spline basis depending on pre-specified

degree and number and location of knots. In this work, I-splines of degree 2 with

2 internal knots located at the terciles were used. To ensure identifiability of the

model, we added the constraints βl0 = 0 and σεl = 1: the intercept values are

captured by ηl0 while the residual variances are captured by the (ηlk)k.

The log-likelihood of the curvilinear model defined by (4.2) and (4.4) has the

following form:

`N(θ) =
N∑
i=1

log

∫
f(Ỹi|τ̃i)f(τ̃i)dτ̃i +N log |J1

g ||J2
g |

where θ now also includes I-spline parameters (ηlk)k, Ỹi = (Ỹ 1
i , Ỹ

2
i ) and |J lg| is the

determinant of the Jacobian matrix of gl with the constraints βl0 = 0 and σεl = 1

for l = 1, 2.
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4.1.4 Comparing the mean times of change

In order to identify the temporal order of cognitive impairments in dementia, the

comparison of the mean times of change of the two markers was a major objective

of the bivariate modelling. The null hypothesis to be tested is H0 : µ1
τ − µ2

τ = 0.

Thanks to the maximum likelihood theory, a simple Wald test can be used:

µ̂1
τ − µ̂2

τ

var(µ̂1
τ − µ̂2

τ )

which under the null follows a χ2(1) distribution. The variance is estimated by

v̂ar(µ̂1
τ − µ̂2

τ ) = v̂ar(µ̂1
τ ) + v̂ar(µ̂2

τ )− 2× ˆcov(µ̂1
τ , µ̂

2
τ )

computed from the observed Hessian matrix and the delta-method for the trans-

formed variance parameters.

4.2 Simulation

4.2.1 Scenarios

Simulations were performed to assess our estimation procedure and validate the test

for comparing the mean time of change. We simulated the longitudinal trajectories of

two correlated markers, according to model (4.2), measured at seven equally spaced

times from t = −25 to t = 0. These measurement times were assumed identical

for all subjects. To evaluate how the sample size impacts the behaviour of the test

procedure and the estimation quality, we simulated data for N = 100 and N = 500

subjects.

For all scenarios and for the first marker the intercept was β1
0 = 10 and slopes

parameters were β1
1 = −0.3, β1

2 = −0.3 while for the second marker they were

β2
0 = 20, β2

1 = −0.9 and β2
2 = −0.6. The residual variance was 1 for both markers

and we chose σ2
τ1 = 2, σ2

τ2 = 3 and ρτ12 = 0.5. Variance parameters for βi are given

below:
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B1 = B2 =


1 0.5

√
1× 0.1 0.5

√
1× 0.1

0.5
√

1× 0.1 0.1 0.5
√

0.1× 0.1

0.5
√

1× 0.1 0.5
√

0.1× 0.1 0.1

 ,

B12 = B21> =


0.5 0.2

√
1× 0.1 0.2

√
1× 0.1

0.2
√

1× 0.1 0.5
√

0.1× 0.1 0.2
√

0.1× 0.1

0.2
√

1× 0.1 0.2
√

0.1× 0.1 0.5
√

0.1× 0.1

 .
We considered two different scenarios for the mean time of change: the first

corresponds to the null hypothesis µ1
τ = µ2

τ and the second corresponds to the alter-

native hypothesis µ1
τ 6= µ2

τ . For these two scenarios, we first generated markers using

a gaussian model and then using a curvilinear model so that gaussian assumption

is violated. For the latter one, markers were
√

10ỹ where ỹ was generated from the

gaussian model. For the gaussian scenario, we generated two variants: a first with

centered changepoints (µ1
τ = µ2

τ = −10 for the null and µ1
τ = −10, µ2

τ = −8 for

the alternative) and a second with late changepoints (µ1
τ = µ2

τ = −5 for the null

and µ1
τ = −5, µ2

τ = −3 for the alternative). For the curvilinear scenario, only the

centered case was considered. Finally, we have six main different scenarios: gaussian

null, gaussian alternative, late gaussian null, late gaussian alternative, curvilinear

null and curvilinear alternative.

From 500 replicates for all scenarios, estimation quality was assessed through the

bias, the comparison of asymptotic and empirical standard error and the coverage

rate of the 95% confidence interval. Then from the alternative and null scenarios, we

computed empirical powers and sizes of the test for comparing the time of change.

The optimisation was performed using a pseudo-adaptive Gaussian quadrature with

10 nodes.

4.2.2 Results

All results from simulations are reported in Table 4.1 for the gaussian model with

centered changepoints, in Table 4.2 for the gaussian model with late changepoints
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and in Table 4.3 for the curvilinear model (βl0 and σεl do not appear in Table 4.3

because their value are constrained to be zero and one respectively).

As we can see from these tables, the overall estimation quality is good with sat-

isfying coverage rates and no bias for all scenarios and all parameters. As expected,

the results are better when the sample size increases and with N = 500 coverage

rates are very good. The sizes of the comparison test for the time of change were

close to the nominal value 0.05 and the empirical powers of the test were excellent.

Table 4.2 shows that even when changepoints are shifted towards the right, i.e. when

the information before and after the changepoint is imbalanced, the estimation pro-

cedure performs well. However, due to this imbalance, the size of the test slightly

increases around the value of 0.07. Table 4.3 shows that both our estimation pro-

cedure and the test for comparison of the time of change are valid for non-gaussian

markers thanks to the I-spline link transformation. Figure 4.1 displays the esti-

mated transformation and the true transformation of the marker for all curvilinear

scenarios. The estimated link functions fit very well the true ones.
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N = 100 N = 500

θ θ̂ bias% SdEmp SdAs CR θ̂ bias% SdEmp SdAs CR
gaussian null scenario: µ1

τ = µ2
τ

β1
0 10.000 10.008 0.081 0.139 0.143 94.8 9.998 0.018 0.064 0.064 94.6
β1
1 -0.300 -0.300 0.088 0.032 0.033 95.0 -0.302 0.563 0.014 0.015 95.0
β1
2 -0.300 -0.299 0.361 0.034 0.033 94.8 -0.300 0.003 0.014 0.015 96.6
µ1
τ -10.000 -10.006 0.056 0.289 0.288 95.6 -9.994 0.064 0.134 0.130 94.2

σ2
τ1 2.000 1.963 1.843 0.811 0.790 90.2 2.039 1.954 0.395 0.362 93.0
σ2
ε1 1.000 1.000 0.001 0.079 0.074 93.6 0.998 0.177 0.034 0.033 94.4
β2
0 20.000 20.005 0.025 0.181 0.183 94.8 20.000 0.002 0.083 0.082 94.6
β2
1 -0.900 -0.899 0.103 0.034 0.033 95.0 -0.901 0.138 0.015 0.015 96.4
β2
2 -0.600 -0.598 0.412 0.034 0.033 93.8 -0.600 0.018 0.015 0.015 94.0
µ2
τ -10.000 -10.008 0.078 0.255 0.245 94.0 -9.998 0.024 0.113 0.110 94.2

σ2
τ2 3.000 2.963 1.231 0.659 0.640 92.6 3.010 0.327 0.292 0.289 94.4
σ2
ε2 1.000 0.997 0.275 0.075 0.076 95.6 1.000 0.028 0.033 0.034 96.6

στ12 1.225 1.222 0.239 0.532 0.530 95.4 1.237 1.015 0.246 0.241 94.8
empirical size of the test H0 : µ1

τ = µ2
τ

0.052 0.050
gaussian alternative scenario: µ1

τ 6= µ2
τ

β1
0 10.000 10.003 0.033 0.151 0.142 94.0 10.001 0.007 0.064 0.064 95.0
β1
1 -0.300 -0.300 0.089 0.032 0.033 95.4 -0.302 0.559 0.015 0.015 95.2
β1
2 -0.300 -0.302 0.766 0.032 0.033 94.8 -0.300 0.052 0.015 0.015 93.0
µ1
τ -10.000 -9.999 0.007 0.313 0.287 93.2 -10.000 0.005 0.135 0.129 94.4

σ2
τ1 2.000 1.992 0.416 0.884 0.782 88.0 1.967 1.647 0.375 0.357 92.6
σ2
ε1 1.000 0.994 0.568 0.079 0.074 92.4 1.002 0.168 0.034 0.033 95.4
β2
0 20.000 19.997 0.014 0.181 0.180 95.8 20.001 0.006 0.088 0.081 92.6
β2
1 -0.900 -0.902 0.225 0.037 0.035 93.8 -0.901 0.086 0.017 0.016 92.4
β2
2 -0.600 -0.604 0.627 0.037 0.035 93.2 -0.600 0.077 0.016 0.016 94.2
µ2
τ -8.000 -7.985 0.190 0.277 0.254 92.4 -8.003 0.037 0.118 0.115 92.8

σ2
τ2 3.000 2.945 1.847 0.656 0.641 92.4 3.002 0.070 0.306 0.289 94.6
σ2
ε2 1.000 0.990 1.013 0.078 0.075 92.6 1.000 0.000 0.035 0.034 94.6

στ12 1.225 1.252 2.219 0.574 0.543 93.2 1.216 0.737 0.226 0.245 95.8
empirical power of the test H0 : µ1

τ = µ2
τ

0.998 1.000
SdEmp: Empirical standard deviation; SdAs: Mean asymptotic standard deviation; CR:
coverage rate of the 95% confidence interval.

Table 4.1: Results of the simulation study for the gaussian model with centered changepoints.
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N = 100 N = 500

θ θ̂ bias% SdEmp SdAs CR θ̂ bias% SdEmp SdAs CR
late gaussian null scenario: µ1

τ = µ2
τ

β1
0 10.000 10.012 0.117 0.142 0.139 95.2 10.001 0.013 0.062 0.062 94.4
β1
1 -0.300 -0.300 0.058 0.039 0.039 95.2 -0.299 0.243 0.018 0.018 94.6
β1
2 -0.300 -0.298 0.747 0.038 0.038 93.6 -0.300 0.023 0.018 0.018 94.2
µ1
τ -5.000 -5.021 0.420 0.416 0.372 89.6 -5.005 0.110 0.179 0.173 94.4

σ2
τ1 2.000 1.925 3.766 0.988 0.828 84.8 1.998 0.097 0.416 0.400 94.2
σ2
ε1 1.000 0.997 0.262 0.073 0.072 95.6 1.000 0.031 0.032 0.033 94.6
β2
0 20.000 19.992 0.038 0.191 0.186 94.4 20.005 0.026 0.083 0.083 94.8
β2
1 -0.900 -0.906 0.632 0.049 0.045 93.4 -0.899 0.083 0.021 0.020 92.6
β2
2 -0.600 -0.605 0.849 0.046 0.044 92.8 -0.600 0.077 0.021 0.020 94.2
µ2
τ -5.000 -4.963 0.743 0.332 0.310 93.2 -4.997 0.051 0.144 0.139 93.6

σ2
τ2 3.000 3.047 1.572 0.856 0.786 90.0 3.016 0.534 0.369 0.356 94.0
σ2
ε2 1.000 0.994 0.563 0.072 0.073 94.8 1.001 0.140 0.035 0.033 94.4

στ12 1.225 1.241 1.309 0.690 0.612 89.0 1.223 0.149 0.288 0.280 94.6
empirical size of the test H0 : µ1

τ = µ2
τ

0.076 0.072
late gaussian alternative scenario: µ1

τ 6= µ2
τ

β1
0 10.000 9.999 0.013 0.140 0.139 95.4 10.000 0.001 0.065 0.062 94.6
β1
1 -0.300 -0.302 0.749 0.038 0.040 95.8 -0.300 0.050 0.018 0.018 95.6
β1
2 -0.300 -0.304 1.257 0.040 0.040 96.2 -0.300 0.143 0.018 0.018 94.2
µ1
τ -5.000 -5.001 0.015 0.401 0.377 91.6 -4.998 0.036 0.181 0.175 93.6

σ2
τ1 2.000 1.978 1.120 0.950 0.866 88.4 2.007 0.353 0.420 0.406 94.4
σ2
ε1 1.000 0.998 0.242 0.071 0.073 94.0 1.000 0.026 0.033 0.033 95.6
β2
0 20.000 19.975 0.123 0.230 0.205 90.4 19.984 0.081 0.101 0.091 92.4
β2
1 -0.900 -0.919 2.141 0.091 0.076 89.8 -0.912 1.342 0.039 0.034 89.6
β2
2 -0.600 -0.620 3.406 0.090 0.075 89.4 -0.613 2.117 0.038 0.034 90.8
µ2
τ -3.000 -2.933 2.223 0.498 0.406 88.6 -2.954 1.538 0.207 0.183 91.8

σ2
τ2 3.000 2.939 2.027 0.835 0.738 90.6 3.034 1.137 0.343 0.338 93.4
σ2
ε2 1.000 0.994 0.551 0.075 0.070 91.6 1.001 0.117 0.032 0.032 94.0

στ12 1.225 1.201 1.936 0.700 0.609 88.8 1.234 0.764 0.283 0.281 94.8
empirical power of the test H0 : µ1

τ = µ2
τ

0.942 1.000
SdEmp: Empirical standard deviation; SdAs: Mean asymptotic standard deviation; CR:
coverage rate of the 95% confidence interval.

Table 4.2: Results of the simulation study for the gaussian model with late changepoints.
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N = 100 N = 500

θ θ̂ bias% SdEmp SdAs CR θ̂ bias% SdEmp SdAs CR
curvilinear null scenario: µ1

τ = µ2
τ

β1
0 - - - - - - - - - - -
β1
1 -0.300 -0.298 0.579 0.034 0.036 96.4 -0.297 0.846 0.016 0.016 95.2
β1
2 -0.300 -0.298 0.747 0.038 0.038 93.6 -0.298 0.690 0.017 0.017 93.8
µ1
τ -10.000 -10.025 0.255 0.285 0.296 94.6 -10.024 0.242 0.137 0.133 92.6

σ2
τ1 2.000 1.919 4.063 0.850 0.786 88.6 1.974 1.289 0.356 0.361 94.0
σ2
ε1 - - - - - - - - - - -
β2
0 - - - - - - - - - - -
β2
1 -0.900 -0.897 0.298 0.057 0.055 95.0 -0.896 0.430 0.023 0.025 96.0
β2
2 -0.600 -0.598 0.390 0.055 0.054 94.2 -0.596 0.601 0.022 0.024 95.8
µ2
τ -10.000 -10.070 0.699 0.257 0.263 94.8 -10.030 0.300 0.119 0.119 93.8

σ2
τ2 3.000 2.989 0.363 0.711 0.654 93.0 2.972 0.930 0.273 0.292 95.6
σ2
ε2 - - - - - - - - - - -

στ12 1.225 1.204 1.665 0.539 0.528 92.8 1.201 1.959 0.222 0.239 97.0
empirical size of the test H0 : µ1

τ = µ2
τ

0.052 0.064
curvilinear alternative scenario: µ1

τ 6= µ2
τ

β1
0 - - - - - - - - - - -
β1
1 -0.300 -0.298 0.800 0.037 0.036 94.0 -0.298 0.806 0.016 0.016 93.8
β1
2 -0.300 -0.295 1.591 0.039 0.038 93.8 -0.297 1.066 0.017 0.017 94.4
µ1
τ -10.000 -10.049 0.493 0.299 0.295 94.2 -10.005 0.052 0.137 0.134 94.2

σ2
τ1 2.000 1.905 4.736 0.865 0.782 87.0 1.972 1.388 0.372 0.363 92.6
σ2
ε1 - - - - - - - - - - -
β2
0 - - - - - - - - - - -
β2
1 -0.900 -0.890 1.121 0.058 0.059 94.0 -0.893 0.762 0.026 0.026 94.8
β2
2 -0.600 -0.587 2.225 0.055 0.057 94.0 -0.593 1.197 0.025 0.025 94.4
µ2
τ -8.000 -8.061 0.757 0.290 0.286 95.2 -8.045 0.565 0.133 0.126 91.4

σ2
τ2 3.000 2.989 0.358 0.710 0.660 91.2 2.999 0.033 0.286 0.293 93.4
σ2
ε2 - - - - - - - - - - -

στ12 1.225 1.202 1.875 0.589 0.545 93.4 1.220 0.363 0.250 0.247 95.4
empirical power of the test H0 : µ1

τ = µ2
τ

0.998 1.000
SdEmp: Empirical standard deviation; SdAs: Mean asymptotic standard deviation; CR:
coverage rate of the 95% confidence interval.

Table 4.3: Results of the simulation study for the curvilinear model.
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Figure 4.1: Estimated link function (solid) vs. true link function (dotted) for both
markers for the four following scenarios: (a) N = 100, µ1

τ = µ2
τ = −10; (b) N = 500,

µ1
τ = µ2

τ = −10; (c) N = 100, µ1
τ = −10, µ2

τ = −8; (d) N = 500, µ1
τ = −10,

µ2
τ = −8.

4.2.3 Comparison to Yang and Gao (2013)

In their work, Yang and Gao (2013) compared different formulations of the bivariate

mixed model with random changepoint: the broken-stick (2.8), the Bacon-Watts

(2.9) with hyperbolic tangent transition and the polynomial model (2.12). In their

simulation studies, they discarded the Bacon-Watts model that gave poor results

and preferred the smooth polynomial model. However, in their simulation, data

were simulated only from a polynomial model. Two scenarios were considered, one

with small variances and one with greater variances for the changepoint and residual

errors with the following values:
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Small variances: σ2
τ1 = 16; σ2

τ2 = 4; σ2
ε1 = 5; σ2

ε2 = 1

Great variances: σ2
τ1 = 64; σ2

τ2 = 16; σ2
ε1 = 20; σ2

ε2 = 5

In order to check if the misspecification of the Bacon-Watts model had an impact

on the results they obtained, we proceed to some further simulations studies. We

simulated scenarios from the Bacon-Watts model and chose parameters as close as

possible as those used by Yang and Gao (2013) that were chosen from the fit of their

model on the Indianapolis–Ibadan Dementia Study (Hendrie et al., 1995).

We simulated data from the Bacon-Watts model (2.10) for N = 238 subjects

followed over time during twenty years with seven equally spaced visits, assumed

equals for all subjects and without any missing data. Both the small and great

variance scenarios of Yang and Gao (2013) were considered. Results from 500 repli-

cates of our model estimation are shown in Table 4.4 and Table 4.5 for the small

and great variance scenarios respectively. The optimisation was performed using a

pseudo-adaptive Gaussian quadrature with 10 nodes.

For the small variance scenario, results are correct with no bias and good coverage

rates except for the mean time of change for the first marker which shows low

coverage rate due to a large underestimation of its standard error and a slight bias

for the variance of this random changepoint. For the great variance scenario, results

are globally less satisfying for the first marker changepoint. Concerning the empirical

power of the test, for both scenarios we get very satisfying power equal to one for

the small variance scenario and with only a slight decrease for the great variance

scenario. Compared to what was obtained by Yang and Gao (2013), our estimation

results are much better. It suggests that, as expected, the way they simulated data

has a clear impact on their results and their comparison. Also, we can note that

their changepoint variance parameters are quite huge for both the small and great

variances scenarios (see our estimated parameters on real data in Section 4.3 for

comparison). As they do not propose a statistical procedure to compare the mean
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N = 238

θ θ̂ bias% SdEmp SdAs CR
β1
0 70.000 70.001 0.001 0.355 0.341 92.8
β1
1 -1.600 -1.605 0.303 0.047 0.047 94.0
β1
2 -1.400 -1.397 0.185 0.099 0.099 94.4
µ1
τ 15.000 14.933 0.450 0.423 0.267 80.0
σ1
τ 16.000 15.253 4.667 1.669 1.711 90.2
σ1
ε 5.000 4.973 0.542 0.238 0.239 94.0
β2
0 28.000 28.015 0.054 0.270 0.276 95.2
β2
1 -0.300 -0.298 0.673 0.031 0.030 94.4
β2
2 -0.100 -0.102 1.866 0.029 0.030 95.0
µ2
τ 10.000 9.987 0.131 0.260 0.256 94.4
σ2
τ 4.000 4.139 3.466 1.005 0.946 94.0
σ2
ε 1.000 1.001 0.133 0.049 0.050 95.6

στ12 3.200 3.233 1.037 1.014 1.021 95.2
empirical power of the test H0 : µ1

τ = µ2
τ

1
SdEmp: Empirical standard deviation; SdAs: Mean asymptotic standard

deviation; CR: coverage rate of the 95% confidence interval.

Table 4.4: Results for the small variances scenario of the simulation study inspired
from Yang and Gao (2013).

changepoint, we cannot compare the power of the test.

4.3 Application

4.3.1 The Three-City Study

As detailed in Section 1.4.2, the Three-City Study (3C Study) is an observational

cohort of elderly involving repeated measures of cognitive tests over time and assess-

ment of dementia diagnosis at each visit started in France in 1999. In this analysis,

we focused on the Grober and Buschke test (GB), a French adaptation of the Free

and Cued Selective Reminding Test that measures memory function (Grober and

Buschke, 1987) through several recalls of 16 words. This test was proposed only

in the Bordeaux center at visits at 2, 7, 10, 12 and 14 years so that only a max-

imum number of 5 measures per subject was available. The present analysis was
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N = 238

θ θ̂ bias% SdEmp SdAs CR
β1
0 70.000 69.963 0.053 0.630 0.549 91.0
β1
1 -1.600 -1.605 0.340 0.086 0.071 90.0
β1
2 -1.400 -1.414 0.979 0.123 0.106 89.8
µ1
τ 15.000 14.726 1.826 1.047 0.448 62.8
σ1
τ 64.000 54.408 14.987 6.868 6.062 61.2
σ1
ε 20.000 19.821 0.895 0.927 0.903 92.6
β2
0 28.000 27.955 0.162 0.413 0.380 92.8
β2
1 -0.300 -0.301 0.191 0.032 0.033 95.6
β2
2 -0.100 -0.101 1.121 0.036 0.036 94.4
µ2
τ 10.000 10.103 1.027 0.881 0.753 88.8
σ2
τ 16.000 15.281 4.492 4.190 3.854 91.2
σ2
ε 5.000 4.982 0.352 0.233 0.238 94.8

στ12 3.200 2.490 22.177 4.107 3.787 88.6
empirical power of the test H0 : µ1

τ = µ2
τ

0.968
SdEmp: Empirical standard deviation; SdAs: Mean asymptotic standard

deviation; CR: coverage rate of the 95% confidence interval.

Table 4.5: Results for the great variances scenario of the simulation study inspired
from Yang and Gao (2013).

performed on the sample of 401 incident cases of dementia diagnosed over the 14

years of follow-up in the center of Bordeaux. Our objective was to compare the im-

mediate recall and the free recall which respectively measures the ability to encode

an information and to memorize it.

The timescale used in this application is the time to the diagnosis, the diagnosis

being considered as the time 0. We kept the measures up to five years after the

diagnosis to get enough information on individual trajectories but we discarded

measures beyond 5 years because the rate of missing measures were very high and the

missingness mechanism was probably informative. We used the curvilinear model

defined by (4.2) and (4.4) because the gaussian assumption was not valid with these

two markers as it can be seen on the histogram of the two markers displayed in

Figure 4.2. The estimation procedure described in Section 4.1.2 was run with 10

quadrature nodes using pseudo-adaptive Gaussian quadrature.
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Figure 4.2: Histogram of GB immediate and free recall.

4.3.2 Results

We estimated a bivariate random changepoint model for these two markers. Ta-

ble 4.6 shows the estimates for the trajectory parameters of both markers on the

transformed scale. Below is B̂, the estimated variance covariance matrix of the six

random effects bi on βl0i, β
l
1i and βl2i, three for each transformed marker. It was

computed from the estimated Cholesky parameters of this matrix.

B̂ =



0.452 −0.011 −0.047 0.804 0.000 −0.061

−0.011 0.004 0.003 −0.018 0.006 0.006

−0.047 0.003 0.008 −0.080 0.001 0.013

0.804 −0.018 −0.080 1.780 −0.025 −0.150

0.000 0.006 0.001 −0.025 0.011 0.007

−0.061 0.006 0.013 −0.150 0.007 0.030


For the changepoint, variances were estimated at 6.791 and 0.726 respectively for

the GB immediate and free recall with an estimated correlation of 0.922. For each

marker, we plotted in Figure 4.3 all the individual trajectories and the marginal

trajectory estimated from the bivariate random changepoint model obtained by

E(Ỹ l(t), θ̂l) =

∫
E(Ỹ l(t)|τ li , θ̂l)f(τ li |θ̂l)dτ li
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whose integral was computed with a classic Gauss-Hermite quadrature with 20

nodes. In Table 4.6, the mean time of change was estimated at−3.177 (−3.856;−2.498)

for the immediate recall and at −5.82 (−6.954;−4.685) years before diagnosis for

the free recall. These mean times of change were significantly different according to

the Wald test (p = 0.047). This means that the ability to memorize declines before

the ability to encode an information. Figure 4.3 highlights the differences in the

estimated trajectories of decline of the two markers with an earlier changepoint for

the GB free recall.

GB immediate recall GB free recall Wald test

β̂ se(β̂) 95%CI β̂ se(β̂) 95%CI Stat. pvalue
β1 -0.286 0.023 [-0.331;-0.242] -0.262 0.037 [-0.334;-0.189] 0.589 0.443
β2 -0.230 0.022 [-0.272;-0.187] -0.229 0.029 [-0.285;-0.173] 0.024 0.877
µτ -3.177 0.347 [-3.856;-2.498] -5.820 0.579 [-6.954;-4.685] 3.937 0.047

se: standard error; 95%CI: 95% confidence interval.

Table 4.6: Results of the estimation of the bivariate random changepoint model on
the immediate and free GB recall of the 3C Bordeaux demented subjects.

The fit of the bivariate random changepoint mixed model was evaluated in Fig-

ure 4.4. In the upper panel, we compared the individual observed values to the

individual predicted values in the transformed scale for all subjects while the lower

panel displays the observed and estimated trajectories for 8 randomly selected sub-

jects. Individual predictions were computed as E(Y l
ij|bi, τ̃i, θ̂l) from (4.1) replacing

bi and τ̃i by their empirical Bayes estimates. Figure 4.4 shows that the individual fit

is good with individual predicted trajectories matching the observed marker values.

4.4 Discussion

We proposed in this article a procedure to estimate a bivariate random changepoint

mixed model for two correlated longitudinal markers and to test for the difference

in the times of change. This methodology has been implemented in a R (R Core

Team, 2018) package rcpm that is freely available on the GitHub platform and whose

main functions are described in Appendix B. We assessed the performance of the
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Figure 4.3: All individual GB immediate recall and GB free recall trajectories on
the transformed scale compared to the estimated marginal trajectory E(Ỹ l(t))
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Figure 4.4: Fit of the bivariate random changepoint model for both markers (left:
GB immediate recall; right: GB free recall). On the upper panel are plotted the true
transformed observations vs. the predicted observations and on the lower panels are
plotted individual observations (dots) vs. their predicted trajectories (solid line) for
8 randomly selected subjects
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inference procedure in several simulated scenarios and we obtained good results for

the estimation as well as for the test. The procedure was applied to the French

3C cohort of elderly and we showed that the GB free recall (memorizing ability)

dropped on average more than 2 years before the GB immediate recall (encoding

ability) (p=0.047).

This work completes previous work about bivariate random changepoint (Yang

and Gao, 2013) by proposing a complete frequentist estimation procedure. Espe-

cially, we proposed a simple test to assess the temporal order of decline. Moreover,

the model we presented takes into account potential deviations from normality which

are very common for psychometric scores (floor or ceiling effect). Additionally, the

methods described in this article have been implemented and are freely available

for the R community. Yang and Gao (2013) compared several formulations for the

changepoint model and discarded the Bacon-Watts model. However, their simu-

lation studies were not very realistic regarding our cohort data as they had great

variances for the random changepoint and a correlation structure where only the

time of change were correlated between the two markers but not the slopes. More-

over, their conclusion on the Bacon-Watts model were based on data simulated from

a different model and the simulations we performed to check the consequence of this

misspecification led to better results.

In our application, only the evolution of subjects diagnosed with dementia has

been studied. This may lead to a selection bias because subjects who dropped out

before dementia diagnosis were excluded. Such a bias could be avoided by taking

into account dementia and death. A joint modelling approach with an illness-death

model for the survival part could be used. However, the delay to diagnosis could

not be used as the timescale any more and the changepoint would measure an age

of change rather than the delay between acceleration of the decline and diagnosis.

The methodology presented here has been developed for two markers. Its princi-

ple can be directly extended to a multivariate random changepoint models. However,

this would drastically increase the number of random effects and therefore the com-

putational burden. We rather advise to perform a pairwise comparison of the time

of change of the different markers using our bivariate random changepoint model
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and therefore deducing the temporal order of all the studied markers.



Chapter 5

Discussion and perspectives

In this section, we highlight the strengths and limitations of the models proposed in

this thesis and we outline and discuss alternative modelling approaches that could

solve some of these limitations.

5.1 Strengths of the proposed approaches

We proposed in this thesis methods for testing the existence of a random change-

point for longitudinal data and proposed way of estimating and comparing such

changepoints for different markers measuring different cognitive functions.

The development of the testing procedure raised important statistical challenges

because of the nonidentifiability of some parameters under the null. We proposed an

approach based on the supremum score test using a perturbation algorithm to sam-

ple the empirical distribution of the test statistic under the null. To our knowledge,

they were no statistical test available for testing the existence of a random change-

point in longitudinal data. The curvilinear bivariate random changepoint models we

developed makes possible the comparison of the time of change in order to answer

questions of particular clinical interest. The developed methodology was applied on

real data from two french cohorts Paquid and 3C (see Sectionss 3.3 and 4.3). We

assessed the existence of a random changepoint for several cognitive markers ac-

cording to individual characteristics such as educational level. The bivariate model

83
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allowed us to show that among future demented subjects, the ability to memorize

an information declines before the ability to encode it.

5.2 Late acceleration versus time of differentia-

tion

However, if we compare our estimation results to curves of cognitive decline previ-

ously estimated on the Paquid cohort using a semi-parametric approach (Amieva

et al., 2014), we observe that we are identifying later changepoints. Actually, the

changepoint that we identified represents the late acceleration of cognitive decline

just before dementia diagnosis rather than a time of differentiation between cases

and non-cases which happens earlier than the late acceleration. The reason is that

all our analyses presented on Sections 3.3 and 4.3 were done retrospectively on di-

agnoses cases only making impossible the identification of the time of differentiation

between case and non-cases. In order to identify this time of differentiation, it is

necessary to model cases and non-cases together.

To tackle this problem, we could consider a nested case-control study where

incident cases of dementia diagnosed during the follow-up would be matched to

controls according to age, sex and educational level with the condition that controls

are observed and free of dementia at the visit of diagnosis of the matching case.

The delay for a control would be the delay to diagnosis of the matching case. In the

following, δi is the case indicator that equals 1 for cases and 0 for controls.

Cognitive decline of cases and controls could be modelled together using the

delay to the diagnosis of the case as the timescale and assuming a two-class model

with a linear trend for a class (typically the controls) and the same linear trend

up to a certain date where the decline accelerates for a second class (typically the

cases). From this date and up to the diagnosis, there is a quite long phase during

which cognitive decline trajectories are nonlinear with a late acceleration just before

diagnosis. Thus, for this phase, a linear trend cannot be assumed but rather a

nonlinear decreasing trajectory that may be modelled using splines functions. The

next section described this model with two alternative formulations: a model where
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the class are defined by the status (case and control) and a latent-class model.

5.3 A proposal of a latent class random change-

point model

The two-class model described above is written

Yi(tij) = β0i + β1itij + ciβ2if(tij − τi, η) + εij (5.1)

where ci is an indicator that equals 1 for subjects with a random changepoint tra-

jectory and 0 otherwise, f is a function which depends upon some parameters η that

represent the difference from the linear trajectory after the time of differentiation

τi. We assume here that βki = βk + bki where bi = (b0i, b1i, b2i)
> ∼ N (0, B) with B

a positive matrix and that τi = µτ +στ τ̃i where τ̃i ∼ N (0, 1) is independent from bi.

The residual errors εi are assumed to follow a centered Gaussian distribution with

diagonal variance matrix σεIni and are assumed independent from all the random

effects. Here, tij denotes the delay as defined is our nested case-control study design.

For cases, it is directly the delay to dementia; for controls, it is the delay to dementia

of the matched case.

For the function f we chose to use a function based on I-spline of order 3 which

have the advantages of being monotonous, smooth and such as that at zero, they are

null, differentiable and of null slopes. These properties ensure a smooth transition

between the two phases and make sure that the second phase correspond to an

acceleration of the decline. Only one internal knot is chosen so that

f(tij − τi, η) =
3∑

k=1

η2kIk(tij − τi)

where (Ik)k=1,...,3 denotes the I-spline basis. For the model to be identifiable, we

assume the constraint β2 = −1 and let the splines parameters ηk to be unconstrained.

In this model, β0 is the mean value of the marker for subjects in the linear

class at the time of the case diagnosis, β1 is the mean slope of the cognitive decline
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Figure 5.1: Example of two mean trajectories from model (5.1): a linear trajectory
without any changepoint (dashed black) and a changepoint trajectory (solid) where,
from τi = −10, a differentiation from the linear trajectory modelled by an I-spline
function arises. The I-spline function is exactly the difference between the dashed
black line and the solid line.

during the normal cognitive ageing phase. For subjects whose trajectory presents a

random changepoint, f models the difference between this normal cognitive ageing

and a pathologic cognitive decline while β2 measures its mean intensity. Examples

of trajectories generated by model (5.1) are plotted in Figure 5.1. From here, two

approaches could be considered.

5.3.1 A priori defined class

First, we could assume both classes to be a priori known meaning that ci is known

for all subjects by fixing ci = δi. The N0 controls would have a linear trajectory and

the N1 cases a changepoint trajectory with N0 +N1 = N . The log-likelihood is then

directly the sum of the log-likelihood of the linear mixed model for the controls and
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of the log-likelihood of the random changepoint mixed model for the cases

`N(Y ; θ) = `0N0
(Y ; θ) + `1N1

(Y ; θ). (5.2)

We have

`0N0
(Y ; θ) =

N0∑
i=1

log f(Yi|ci = 0; θ)

where f(Yi|ci = 0; θ) is a multivariate Gaussian density with mean 0 and variance

Z0iB0Z
>
0i +σ2

εIni where Z0i is a ni×2 matrix with rows (1, tij)j=1,...,ni and B0 a 2×2

definite positive matrix, variance of the random effects (b0i, b1i)
>. And we have

`1N1
(Y ; θ) =

N1∑
i=1

log f(Yi|ci = 1; θ) =

N1∑
i=1

log

∫
f(Yi|ci = 1, τ̃i; θ)f(τ̃i)dτ̃i

the log-likelihood of the nonlinear mixed model defined by (5.1) when ci = 1.

5.3.2 A latent class approach

Alternatively, we could assume a latent class model where controls have a non-

null probability of having a changepoint whereas all the cases belong to the class

with changepoint. Indeed, in the nested-case-cohort framework, some subjects are

considered as control because they are free of dementia at this date even though

they might develop dementia at a later visit. Thus, we could model the probability

for a control of having a changepoint trajectory by a logistic model

πi = P(ci = 1|Xi, δi) =

(
exp(η>Xi)

1 + exp(η>Xi)

)1−δi

where Xi are some covariates. In this case, the log-likelihood of the model is written

`N(Y ; θ) =

N0∑
i=1

log[(1− πi)f(Yi|ci = 0, Xi) + πif(Yi|ci = 1, Xi)] + `1N1
(Y ; θ) (5.3)

where `1N1
(Y ; θ), f(Yi|ci = 0, Xi) and f(Yi|ci = 1, Xi) are all defined as above.
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5.3.3 Estimation and discussion

The log-likelihoods (5.2) and (5.3) can be maximised using the Levenberg-Marquardt

optimization algorithm (Levenberg, 1944; Marquardt, 1963) and Gaussian quadra-

ture to approximate the integrals over the random effect τ̃i. This new I-spline ran-

dom changepoint model is currently under development. For the a priori defined

class model, some preliminary results are detailed in Appendix D.

In the above formulation of the model we assume that during the normal cogni-

tive ageing phase, the mean trajectory is the same for subjects from both classes as

illustrated in the trajectories plotted in Figure 5.1. In practice, the mean cognitive

level at midlife of future demented subjects tends to be lower than normal subjects

because their characteristics differ. This difference may be accounted for either by a

careful adjustment on known risk factors for dementia (education, occupation, e.g.)

or by adding a class specific intercept β3ci.

The interest of the nested case-control study design is that it reduces bias due

to differential dropout rates between cases and controls as they are selected at the

same visits. However, because at each visit, we select only cases and controls seen

and observed up to this visit, there is an inevitable selection bias. Also, because

of the long pre-diagnosis phase of dementia, many subjects are classified as control

whereas they might develop dementia at a later stage leading to a loss of power.

One might increase the number of control per cases to improve the power. However,

to avoid the selection bias while increasing power, a more appropriate approach

might be to jointly model the longitudinal trajectory of the cognitive marker and

the time-to-dementia for controls.

5.4 A new joint random changepoint model

Jacqmin-Gadda et al. (2006) and Dantan et al. (2011) proposed joint models to study

the cognitive decline trajectories of cases and non-cases simultaneously. In both

these models, it is assumed that all the subjects will present a changepoint in their

cognitive decline trajectories while it could be expected that some subjects among

non-cases would present a linear trend only. Moreover, the models proposed by
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Jacqmin-Gadda et al. (2006) and Dantan et al. (2011) does not allow testing for the

existence of the random changepoint because its absence entails the independence

of the event and the longitudinal marker which is not realistic.

We could define a shared random effects joint model linking the longitudinal

model (5.1) with non-null probability for controls to be in the changepoint class and

a class specific survival model for time to dementia. We note Yi(tij) = Ỹi(tij) + εij

and define the survival model

λg(tij) = λ0g(tij) exp(ν>g Zig + γgỸi(tij))

where g = 0, 1 denotes the class dependence, λg are the hazard functions, λ0g de-

notes the baseline hazards, Zig the sets of covariates and νg and γg some regression

parameters. We insist on distinguishing this joint latent class model to a cure model.

A cure model would assume a null risk of developing dementia for a portion of the

subjects, typically those with a linear cognitive trend over time in our context. If

this null-risk portion existed, a plateau should be observed on Kaplan-Meier sur-

vival curves of dementia. As this plateau is not observed, the null risk portion is not

realistic and a cure model is not appropriate here. In the joint latent class model

we propose, subjects from both class are considered at risk of developing dementia

which is a more realistic assumption. However, these risks are class specific and

we can expect the risk of dementia in the linear class to be way lower than in the

random changepoint class.

This model would have some advantages compared to the previous models pro-

posed by Jacqmin-Gadda et al. (2006) and Dantan et al. (2011). First, because of

the two latent classes approach, it allows a portion of the subjects to have a linear

trend and does not make the assumption that all subjects have a changepoint. This

joint random changepoint model has also the advantage of allowing to test for the

existence of a random changepoint using a similar approach than the one developed

in Chapter 3.

As in Jacqmin-Gadda et al. (2006) and Dantan et al. (2011), the joint model

approach makes necessary the use of age as timescale because the delay to dementia
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cannot be computed for non-cases in such a cohort design. This leads to a change

in the interpretation of the time of differentiation which becomes the age at which,

on average, subjects of the changepoint class begin to differ from subjects having

a linear cognitive decline trajectory. Testing for differences of the mean age at dif-

ferentiation according to individual characteristic such as educational level would

not be relevant here as the detected difference would mainly capture the hetero-

geneity of age at dementia according to educational level. A comparison of age at

differentiation is however possible on a same sample therefore allowing to compare

the mean age at differentiation between different markers as in Chapter 4. Here,

however, we are mainly interested in the length of the phase of accelerated decline

before dementia diagnosis compared to normal ageing. For instance, it is known

that subjects with high education have a lower risk of dementia and thus a later age

at acceleration of cognitive decline than subjects with low education but it is still

unclear if the shape of the decline before diagnosis differs according to educational

level. To investigate this question, we would like to know if the delay between the

differentiation from normal ageing and the diagnosis differs according to the educa-

tional level. If this joint model does not allow comparing delay between the time of

differentiation and the diagnosis of dementia, this delay could still be computed a

posteriori.

This joint model could also be used to make prediction of the risk of dementia.

Therefore, an interesting question would be to investigate how this proposed joint

model would perform compared to joint models with, for example, a quadratic or

a spline evolution for the longitudinal cognitive marker. In other words, does the

random changepoint model for the cognitive marker improve the prediction of the

event in a shared random effects model?

5.5 A revival process

Recently, Dempsey and McCullagh (2018) have proposed a general framework for

modelling a survival process with a final absorbing state and a sequence of health

measurements using reverse alignment. Rather than considering the longitudinal
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health sequence over time Yi(t), they rather propose to study the revival process

Zi(s) = Y (Ti − s) where Ti is the survival time of subject i. The main interest

of their approach is the alignment of timescale and patient records to an event of

interest. It is similar to the models we proposed where the timescale used is the

delay do dementia diagnosis. Interpretation becomes easier and it helps finding

structure in the longitudinal trajectories. The difference with our models is that the

survival process is also modelled. As long as Ti is not observed however, the revival

process is not observable component-wise. This makes the proposed methodology as

it stands non applicable to incomplete records, which is the case in our application

where time to dementia is right censored for a large part of the sample.

5.6 Towards a smoother model?

As we highlighted in this discussion, several changepoints could be considered in the

cognitive decline trajectory before diagnosis. We identified at least two: the time of

differentiation, from which on average cases decline trajectories begin to derive from

a linear trajectory considered as normal ageing, and the late cognitive acceleration

that happens a few years before the diagnosis.

Changepoint models seems a natural way to model this progressive aspect of cog-

nitive decline trajectories. We could consider multiple changepoint models which

would have the main advantage of allowing clinically relevant interpretation of the

parameters. By directly modelling the changepoints, it would allow the comparison

of the time of change according to some individual characteristics or between differ-

ent cognitive markers. However estimation of mixed models with multiple random

changepoint would be computationally challenging.

It could be certainly possible to take into account this progressive aspect of cog-

nitive decline using a more flexible and simple model for the longitudinal marker.

A spline model could perfectly suit this purpose for example. Of course, by doing

so, we would loose the interpretation of the parameters, but for doing prediction of

time to dementia or describing cognitive decline before dementia without investigat-

ing clinical hypotheses, a smooth formulation of the longitudinal marker could be
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sufficient.

5.7 Other medical applications

Strictly speaking, the statistical methods described and developed here, in the par-

ticular context of dementia, could be applied to any other diseases. The only needed

condition is that the evolution of the disease is measurable through a marker and,

obviously, that a changepoint in this marker trajectory is of clinical interest. For ex-

ample, in Human Immunodeficiency Viruses studies, the rate of CD4 T-lymphocytes

and the viral load are very useful to assess the disease progression. In prostate can-

cer studies, a useful marker for cancer recurrence is the prostate specific antigen.

In chronic kidney disease studies, the evolution of their glomerular filtration rate is

very informative of the stage of kidney disease. For all these markers, a changepoint

in the trajectory may highlight a clinical progression of the disease.

5.8 On statistical models

When presenting this work, one criticism we got pointed out the heavy hypotheses

made by the random changepoint model on cognitive decline trajectories. Our most

honest answer is to say that, three years ago, these hypotheses actually led us to

chose this specific model. This is the ordinary way of scientific method. In statistics,

it begins with a question, here relative to the shape of cognitive decline trajectories

before dementia diagnosis. With this question in mind and knowledge from previous

epidemiological findings, we formulate one or several hypotheses. A statistical model

is then chosen or developed and applied to real data, here an observational study

satisfying scientific good practices on collecting data. From the interpretation of

the results, the initial hypotheses can be modified and new ones can emerge. It

happened in this manuscript. We first developed a model to identify and compare a

changepoint that happened to be the late cognitive decline. This led us to suggest

an alternative modelling to identify the time of differentiation between normal and

pathological cognitive decline while keeping the advantages of our first model. This
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cycle of confrontation between hypotheses and real world has fed scientific literature

for decades. In the particular case of statistics, this has led to the development of

certainly as many statistical models as statisticians.

A famous aphorism attributed to the British statistician George E. P. Box about

statistical modelling states that “All models are wrong but some are useful.” Pre-

tending that all models are wrong might seem provocative while it is just a tautology.

A statistical model is a simplified transposition of a real world phenomenon onto the

abstract world of mathematics. It cannot be true by itself. There is this joke about

an engineer, a physicist and a mathematician who are on a train heading north, and

have just crossed the border into Scotland. The engineer looks out of the window

and said “Look! Scottish sheep are black!”. The physicist says, “No, no. Some

Scottish sheep are black.” The mathematician looks irritated. “There is at least one

field, containing at least one sheep, of which at least one side is black.” This joke re-

flects how a model depends directly upon who formulates it and what knowledge he

has. Following scientific method principles, the confrontation of a model to reality

will led to improved knowledge and better models. Any model can be useful as long

as scientific principles are respected. If not, this will lead to biased knowledge and

biased models. Alas, these days, some people, even in the highest position, tend to

deny scientific findings by putting them on an equal footing to ideological models

that only answer a political agenda.

To conclude with a sense of irony, we might say that all models are useful but

some modellers are wrong.
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List of Abbreviations and Symbols

Abbreviations

3C Three-City french cohort

AD Alzheimer’s Disease

BLUP Best Linear Unbiased Predictor

BMI Body Mass Index

CI Confindence Interval

CR Coverage Rate

DSM Diagnostic and Statistical Manual of Mental Disorders

EM Expectation Maximisation

GB Grober and Buschke tests

HEL High Educational Level subjects

LEL Low Educational Level subjects

LRS Log-likelihood Ratio Statistic

MCI Mild-Cognitve Impairement

MCMC Monte-Carlo Markov Chain

MLE Maximum Likelihood Estimation
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MMSE Mini Mental State Examination

REML Restricted Maximum Likelihood

Symbols

.> Transpose operator

`N(θ) Log-likelihood depending upon unknown θ parameters from a N -sample

θ̂ Estimator of unknown θ parameter

IN Identity matrix of size N

R+ Set of real positive numbers

Rp Set of real p-vectors

1A(.) Indicator function of set A

sgn(x) Sign function

trn(x) Transition function

τi Random changepoint

x ≺ y Order relation between x and y

x ∝ y x is proportional to y
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The rcpm package

This R package proposes different functions to make inference in a random changepoint

models for longitudinal data as described all along this work. The development is

still in progress and the package is not yet fully functional. Already implemented

or being implemented are the following functions

• testRCPMM: a test for the existence of a random changepoint for longitudinal

data

• rcpme: an estimation algorithm for random changepoint mixed models

• bircpme: an estimation algorithm for bivariate random changepoint mixed

models taking into account an eventual correlation between two markers

B.1 The testRCPM function

This function realizes the supremum score test on longdata according to formu.

testRCPMM(longdata, formu, gamma, nbnodes, nbpert, covariate)

• longdata: A longitudinal dataset containing all variables used in the formula

formu.
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• formu: A formula object describing which variables are to be used. The

formula has to be of the following form markervar ∼ scorevar | groupvar

for the function to work.

• covariate: An eventual covariate dependence of all the parameters in the

model. NULL by default. Not implemented yet.

• gamma: A smoothing parameter for the transition on the changepoint date.

0.1 by default.

• nbnodes: Number of pseudo-adaptive Gaussian quadrature nodes used to

compute the numeric integrals. 5 by default.

• nbpert: Number of perturbations used to compute the empirical p-value. 500

by default.

The output contains a list with the computed empirical p-value and the observed

test statistic.

B.2 The rcpme function

This function estimates univariate random changepoint models developed and de-

tailed in Chapter 3, Chapter 4 and the fixed two-class random changepoint model

from the discussion in Chapter 5. rcpme(longdata, formu, covariate, REadjust,

gamma, nbnodes, param, model, link, statut)

• longdata: A longitudinal dataset containing all variables used in the formula

formu.

• formu: A formula object describing which variables are to be used. The

formula has to be of the following form markervar ∼ scorevar | groupvar

for the function to work.

• covariate: An optional string indicating a binary covariate to add on the

fixed effects, i.e. intercept, mean slope, difference of slopes and changepoint
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date. The parameter REadjust indicates how this covariate influences the

random effects variance structure. Default to NULL, i.e. no covariates.

• REadjust: An optional string value indicating how the random effects vari-

ance structure depends on covariate. Default to ”no”.

– no means that the structure doesn’t depend upon covariate

– prop indicates that the random effects variance structure is proportional

according to covariate value

– yes indicates that there is two different random effects variance struc-

tures, i.e. one for each level of covariate

• gamma: A numeric parameter indicating how smooth the trajectory is on the

changepoint date. It should be small according to the time variable scale.

Default to 0.1.

• nbnodes: A numeric parameter indicating how many nodes are to be used for

the gaussian quadrature for numerical integration. Default to 10.

• param: An optional vector parameter that contains initial parameter for the

optimization of the log-likelihood. Default to NULL.

• model: An optional string indicating which formulation of the random change-

point exists. When used for estimation purpose, you should either bw or

isplines which has better interpretability properties. Default to bw.

– test is used by the testRCPMM

– bw stands for the Bacon-Watts formulation

– isplines stands for the I-spline formulation

• link: An optional string indicating which link function is to be used. This

link function is used to deal with non-Gaussian data. Default to linear.

– with splines the model estimates an appropriate I-spline link function

g so that g(scorevar) is a Gaussian variable
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– with linear no link function will be estimated and data is assumed Gaus-

sian

• statut: An optional string indicating a binary variable from which two class

are considered: a linear class for subjects with statut=0 and a random change-

point class for subjects with statut=1. Default to NULL.

The output contains several objects : call is the function call; Loglik is the value

of the log-likelihood at the optimum; formula is the formula describing which vari-

ables are used in the model; fixed contains all fixed parameters estimates, standard

errors, CIs, wald test statistic and corresponding p-value when possible; sdres the

estimated residual error; VarEA a 4 × 4 matrix or a list of 4 × 4 matrices - if there

is some covariate for example - containing the estimated random effects covariance

matrix; optpar the optimal parameters maximizing the log-likelihood; covariate

the covariate declared in the function call; REadjust the string indicating how ran-

dom effects structure is handled as declared in the function call, invhessian the

covariance matrix containing all the standard errors and correlations of the param-

eter estimates; conv an index of successful convergence, equals to 1 if success; init

the initial values vector; model the model used during estimation; gamma the value

of gamma used during estimation; link the link function used during estimation.

B.3 The bircpme function

This function estimates the bivariate random changepoint models developed and de-

tailed in Chapter 4. bircpme(longdata, formu, covariate, REadjust, gamma,

nbnodes, adapt, param, nproc, model, link1, link2, twostep)

• longdata: A longitudinal dataset containing all variables used in the formula

formu.

• formu: A formula object describing which variables are to be used. The

formula has to be of the following form markervar ∼ scorevar | groupvar

for the function to work.
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• covariate: An optional string indicating a binary covariate to add on the

fixed effects, i.e. intercept, mean slope, difference of slopes and changepoint

date. The parameter REadjust indicates how this covariate influences the

random effects variance structure. Default to NULL, i.e. no covariates.

• REadjust: An optional string value indicating how the random effects vari-

ance structure depends on covariate. Default to ”no”.

– no means that the structure doesn’t depend upon covariate

– prop indicates that the random effects variance structure is proportional

according to covariate value

– yes indicates that there is two different random effects variance struc-

tures, i.e. one for each level of covariate

• gamma: A numeric parameter indicating how smooth the trajectory is on the

changepoint date. It should be small according to the time variable scale.

Default to 0.1.

• nbnodes: A numeric parameter indicating how many nodes are to be used for

the gaussian quadrature for numerical integration. Default to 10.

• adapt: A boolean indicating whether adaptive gaussian quadrature should be

used for numerical integration. Default to FALSE.

• param: An optional vector parameter that contains initial parameter for the

optimization of the log-likelihood. Default to NULL.

• nproc: An optional integer specifying the number of processors for paral-

lelisation of the optimization algorithm. Default to 1. An optional string

indicating which formulation of the random changepoint exists. When used

for estimation purpose, you should either bw or isplines which has better

interpretability properties. Default to bw.

– test is used by the testRCPMM

– bw stands for the Bacon-Watts formulation
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– isplines stands for the I-spline formulation which is not yet imple-

mented in the bivariate estimation

• link1: An optional string indicating which link function is to be used. This

link function is used to deal with non-Gaussian data. Default to linear.

– with splines the model estimates an appropriate I-spline link function

g so that g(scorevar) is a Gaussian variable

– with linear no link function will be estimated and data is assumed Gaus-

sian

• link2: Same as link1 but for the second marker. Default to linear.

• twostep: An optional boolean to specify if a two-step pseudo adaptive Gaus-

sian quadrature should be used. Currently not working. Default to FALSE.

The output contains several objects : loglik is the value of the log-likelihood at the

optimum; fixed contains all fixed parameters estimates, standard errors, CIs, wald

test statistic and corresponding p-value when possible; sdres the estimated residual

error; VarEA a matrix containing the estimated random effects covariance matrix

of the eight random effects: four for each marker with a general correlation struc-

ture between them; optpar the optimal parameters maximizing the log-likelihood;

covariate the covariate declared in the function call; REadjust the string indi-

cating how random effects structure is handled as declared in the function call,

invhessian the covariance matrix containing all the standard errors and correla-

tions of the parameter estimates; conv an index of successful convergence, equals

to 1 if success; init the initial values vector; niter the number of iterations before

convergence; model the model used during estimation; gamma the value of gamma

used during estimation; link1 and link2 the link functions used during estimation

for respectively the first and the second marker, paramSpl the parameters of the

I-spline transformations ηk.
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Doing splines with spleen

During this work, we used at several occasions function defined by a basis of I-

splines functions as described by Ramsay (1988). Here we define the I-splines and

M -splines and discuss the package spleen we developed in Rcpp and compared it

to the R package splines2 (Wang and Yan, 2018).

C.1 From M-spline to I-spline

Spline functions are piecewise polynomial functions often used for interpolation of

an unknown function. We first define the M -spline basis for a fixed order k, i.e. for

a fixed degree k − 1 and for n free parameters. We define the sequence of knots

t = t1 ≤ · · · ≤ tn+k such as t1 = · · · = tk and tn+1, . . . , tn+k and with a strict

inequality for the n − k internal knots. For x ∈ R, the basis of M -splines contains

n members Mi(x|k, t) defined for k = 1 as

Mi(x|1, t) =

{
1

ti+1−ti if ti ≤ x < ti+1

0 else

and for k > 1 as

Mi(x|k, t) =
k [(x− ti)Mi(x|k − 1, t) + (ti+k − x)Mi+1(x|k − 1, t)]

(k − 1)(ti+k − ti)
.
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Because of this definition, Mi(x|k, t) is positive and null outside [ti, ti+k]. The in-

tegral of an M -spline function is therefore a monotonous increasing function and is

called I-spline of order k where k is the order of the M -splines

Ii(x|k, t) =

∫ x

t1

Mi(u|k, t)du.

For x ∈ R and j such as tj ≤ x < tj+1, I-splines can be easily computed from

M -splines

Ii(x|k, t) =


0 if i > j∑j

m=i(tm+k+1 − tm)Mm(x|k + 1, t)/(k + 1) if j − k + 1 ≤ j ≤ i

1 if j − k + 1 > i

Example of generated splines basis are plotted in Figure C.1.

C.2 Using the spleen package

As most of our likelihood computation routines were developed directly in Rcpp

and not in R, we developed a Rcpp routine to generate spline basis as we were

not aware of the existence of such a routine. This routine is called spleen, not

because of a typo, but to the memory of the many hours of struggle with pro-

gramming and as a tribute to the French poet Charles Baudelaire and its fa-

mous and so enthusiastic Spleen. This routine is available on my GitHub page at

https://github.com/crsgls/spleen. The package makes available two functions

mspline(x, tmin, tmax, tint, k, intercept) and ispline(x, tmin, tmax,

tint, k, intercept) whose arguments are:

• x: A real vector containing the abscissa at which the spline basis should be

computed.

• tmin: A real number indicating the lower boundary knot.

• tmax: A real number indicating the upper boundary knot.

https://github.com/crsgls/spleen
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• tint: A real vector indicating the internal knots.

• k: An integer indicating the order of the spline. An M -spline of order k is a

function of degree k − 1. An I-spline of order k is the integral of an M -spline

of order k and is a function of degree k.

• intercept: A boolean indicating if an intercept should be included in the

spline basis.

We note lx the size of x and lint the size of tint, the output is a matrix of size

lx × (lint + k) if intercept = TRUE and lx × (lint + k − 1) if intercept = FALSE

containing the spline basis.

C.3 Comparison to splines2 package

The splines basis built by the spleen package are exactly the same as the ones built

using the splines2 R package that provides M -spline and I-spline implementation.

We compared the efficiency of both packages by generating 1000 M -splines and I-

splines basis using functions from the two packages and plotted the execution times

in Figure C.2. We observe that our package outperforms splines2 and especially

for I-splines.
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Figure C.1: Example of M -spline (upper panel) and I-spline (lower panel) basis
with tmin = 0, tmax = 30, k = 3 and 5, 3, 19 as internal knots with the intercept
spline included.
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Figure C.2: Benchmarking of splines function from splines2 and spleen packages
over 1000 computations of cubic M -splines and cubic I-splines basis with 5 internal
knots and a vector of abscissa of length 1000.
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Appendix D

Preliminary results from I-spline

model

In this Appendix, we detail some preliminary results obtained from the two-class

random changepoint model detailed in Section 5.3.1 of the discussion where the two

classes are fixed according to the subject status, case or control.

D.1 Simulation study

We ran 500 replicates of a simulated cohort of 1000 subjects all having 8 measure-

ments of a simulated marker. Among these 1000 subjects, half were simulated as

controls having a linear trajectory for the marker and the other half were simu-

lated having a random changepoint model for the marker as defined by the model

(5.2). Results of the simulation study are shown in Table D.1. The results are very

satisfying with very little bias and good coverage rates.

D.2 Application

From the Paquid cohort, we built a nested case-control study from the 901 incident

cases of dementia. For each of these cases, we matched one control with the same age

(±2 years), same educational level, same sex and with the condition that the control

111



112 APPENDIX D. PRELIMINARY RESULTS

θ θ̂ bias% sdEmp sdAs CR
β0 20.000 19.999 -0.000 0.038 0.039 0.96
β1 -0.500 -0.500 -0.001 0.007 0.007 0.95
µτ 10.000 9.948 -0.005 0.464 0.421 0.90
σ2
ε 1.000 0.998 -0.002 0.020 0.020 0.94
σ2
0 1.000 1.000 0.000 0.065 0.068 0.95
σ2
1 0.100 0.099 -0.005 0.008 0.008 0.95
σ2
2 0.100 0.102 0.017 0.022 0.021 0.94

σ01 0.040 0.040 -0.000 0.002 0.004 1.00
σ02 -0.008 -0.008 0.039 0.004 0.008 1.00
σ12 0.040 0.041 0.017 0.012 0.007 0.77
σ2
τ 4.000 3.977 -0.006 0.794 0.753 0.94
η1 2.000 1.992 -0.004 0.201 0.180 0.93
η2 2.000 1.926 -0.037 0.389 0.367 0.93
η3 2.000 1.943 -0.029 0.855 0.858 0.89

SdEmp: Empirical standard deviation; SdAs: Mean asymptotic standard
deviation; CR: coverage rate of the 95% confidence interval.

Table D.1: Results of the preliminary simulation study for the two-class random
changepoint model (5.2) over 500 replicates of simulated cohort with N = 1000.

has to be observed non demented at the visit of diagnosis of the case. On this nested

case-control design, we estimated the two-class model where the class membership

was fixed according to the status, controls being in the linear class and cases being

in the random changepoint class. We estimated a mean time of differentiation

−11.094 years before diagnosis with a 95%CI of [−12.522;−9.667]. Estimated mean

trajectories from the Paquid cohort are plotted in Figure D.1. These findings are

consistent to previous results on the time of differentiation (Amieva et al., 2014).

As we can see from Figure D.1, the late cognitive acceleration that we identified

among cases appears approximately 3 years before diagnosis.
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Figure D.1: Estimated mean trajectories of the two-class model assuming that the
changepoint happens at the mean of all individual changepoints for controls (dashed
black) and cases (solid black) for 500 randomly selected cases and 500 randomly
selected controls whose longitudinal trajectories are plotted in grey.
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Inférence dans les modèles à changement de pente aléatoire : application au déclin
cognitif pré-démence

Résumé : Le but de ce travail a été de proposer des méthodes d’inférence pour décrire l’histoire
naturelle de la phase pré-diagnostic de la démence. Durant celle-ci, qui dure une quinzaine d’années,
les trajectoires de déclin cognitif sont non linéaires et hétérogènes entre les sujets. Pour ces raisons,
nous avons choisi un modèle à changement de pente aléatoire pour les décrire. Une première partie
de ce travail a consisté à proposer une procédure de test pour l’existence d’un changement de pente
aléatoire. En effet, dans certaines sous-populations, le déclin cognitif semble lisse et la question de
l’existence même d’un changement de pente se pose. Cette question présente un défi méthodologique
en raison de la non-identifiabilité de certains paramètres sous l’hypothèse nulle rendant les tests stan-
dards inutiles. Nous avons proposé un supremum score test pour répondre à cette question. Une
seconde partie du travail concernait l’ordre temporel du temps de changement entre plusieurs mar-
queurs. La démence est une maladie multidimensionnelle et plusieurs dimensions de la cognition sont
affectées. Des schémas hypothétiques existent pour décrire l’histoire naturelle de la démence mais
n’ont pas été éprouvés sur données réelles. Comparer le temps de changement de différents mar-
queurs mesurant différentes fonctions cognitives permet d’éclairer ces hypothèses. Dans cet esprit,
nous proposons un modèle bivarié à changement de pente aléatoire permettant de comparer les temps
de changement de deux marqueurs, potentiellement non gaussiens. Les méthodes proposées ont été
évaluées sur simulations et appliquées sur des données issues de deux cohortes françaises. Enfin, nous
discutons les limites de ces deux modèles qui se concentrent sur une accélération tardive du déclin
cognitif précédant le diagnostic de démence et nous proposons un modèle alternatif qui estime plutôt
une date de décrochage entre cas et non-cas.

Mots clés : Démence, modèles mixtes, données longitudinales multivariées, paramètres de nui-
sance non identifiables, changement de pente aléatoire, test du score.

Inference for random changepoint models: application to pre-dementia cognitive decline

Abstract: The aim of this work was to propose inferential methods to describe natural history of
the pre-diagnosis phase of dementia. During this phase, which can last around fifteen years, the cog-
nitive decline trajectories are nonlinear and heterogeneous between subjects. Because heterogeneity
and nonlinearity, we chose a random changepoint mixed model to describe these trajectories. A first
part of this work was to propose a testing procedure to assess the existence of a random changepoint.
Indeed, in some subpopulations, the cognitive decline seems smooth and the question of the existence
of a changepoint itself araises. This question is methodologically challenging because of identifiability
issues on some parameters under the null hypothesis that makes standard tests useless. We proposed
a supremum score test to answer this question. A second part of this work was the comparison of
the temporal order of different markers changepoint. Dementia is a multidimensional disease where
different dimensions of the cognition are affected. Hypothetic cascade models exist for describing this
natural history but have not been evaluated on real data. Comparing change over time of different
markers measuring different cognitive functions gives precious insight on this hypothesis. In this spirit,
we propose a bivariate random changepoint model allowing proper comparison of the time of change
of two cognitive markers, potentially non Gaussian. The proposed methodologies were evaluated on
simulation studies and applied on real data from two French cohorts. Finally, we discussed the limi-
tations of the two models we used that focused on the late acceleration of the cognitive decline before
dementia diagnosis and we proposed an alternative model that estimates the time of differentiation
between cases and non-cases.

Keywords: Dementia, mixed models, multivariate longitudinal data, non identifiable nuisance
parameters, random changepoint, score test.
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