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Abstract

The VIPAFLEET project aims at developing a framework to manage a fleet of Individual
Public Autonomous Vehicles (VIPA). We consider a fleet of cars distributed at specified
stations in an industrial area to supply internal transportation, where the cars can be
used in different modes of circulation (tram mode, elevator mode, taxi mode). The goal
is to develop and implement suitable algorithms for each mode in order to satisfy all the
requests either under an economic point aspect or under a quality of service aspect, this
by varying the studied objective functions.

We model the underlying online transportation system as a discrete event based
system and propose a corresponding fleet management framework, to handle modes,
demands and commands. We consider three modes of circulation, tram, elevator and
taxi mode. We propose for each mode appropriate online algorithms and evaluate their
performance, both in terms of competitive analysis and practical behavior by compu-
tational results. We treat in this work, the pickup and delivery problem related to the
Tram mode and the Elevator mode the pickup and delivery problem with time windows
related to the taxi mode by means of flows in time-expanded networks.

Keywords: fleet management; offline and online pickup and delivery problem; au-
tonomous vehicles; online optimization; heuristic; network flows
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Chapter 1
Introduction

Transport systems are fundamental to modern societies, functioning as vital sections that
are central to economic and social activities (Rodrigue et al., 2016 [111]). They enable
and shape individuals’ mobility through their daily activities, which makes up their
social network geography and facilitates social and psychological needs deemed necessary
for their social well-being, quality of life, independence and greater life participation
(Delbosc, 2012 [51], Axhausen, 2008 [18]).

However, society faces a grand challenge as the current form for individual mo-
torized transportation’s issues reveal themselves: it is an unsustainable approach that
contributes heavily to climate change, resulting in adverse environmental and health
effects (Woodcock et al., 2007 [122]).

Despite technological advantages and its commitment to reduce all emissions by
20% below the 1990 level before 2020, the European union’s transport sector is one of
few sectors where emissions have increased over the last 20 years. For instance, the
total CO2 emission from private cars continues to rise, making them the leading source
of greenhouse gas emissions after power production (European Commission, 2016 [1]).
Such problems has tarnished the traditional image of cars and made it synonymous with
pollution, traffic jams, nuisance and high costs [Chevrier (2008)].

Several innovative mobility systems have emerged in response to the current system’s
issues.

The current trends in mobility management involve the use of flexible reactive sys-
tems, which meet mobility demands in a dynamic way by implementing vehicle sharing
and by interacting with alternative transportation modes. Such systems strive in order
to find their room between fully individual mobility and traditional collective transporta-
tion systems. They also aim at bridging the gap between goods and people mobility,
and require the use of advanced technologies [100] such as Internet, web services, mobile
communications, remote tracking and monitoring. Depending on the context, they work
either as closed systems, whose access is restricted to users who accept rules related to
mobility tracking, pricing and responsibility, or open systems, which work on the basis
of a free access/free market principle. Among such systems Car-Sharing, Car-Pooling
(e.g., AUTOLIB) and Ride Sharing systems (see [23, 34, 93]).

1



1. Introduction

On-Demand Transportation (ODT) permits its users to define the spatio-temporal
framework of their ride. Taxis are certainly the most popular type of ODT service in
urban areas. I t is also used in rural areas where the demand for public transportation is
less frequent and for disabled people for whom mobility is harder and more demanding.
SuperShuffle is an example of a successful company that specializes in ODT services for
airports. It started 30 years ago in California USA, has expanded since in 20 countries
and has a 7 billion euros turnover. Another example is the research project Modulobus,
financed by ANR (national agency of research) from 2008 to 2011, that studied a new
ODT system optimizing the number of vehicles’ detours and its response time to users
demands. Many people associate the word transport to the use of an individual car and
most of the time, this car has only one person on board. This mobility attitude inspired
the Ride-Sharing system. The user may either borrow a vehicle exclusively for a period
of time (Car-sharing systems) or he may share its capacity with other users in order to
reach a common destination (car-pooling, uber). Such transport systems are economic,
ecologic and convenient to flow management.

Road accidents cause 1.2 million deaths and 50 million injuries every year. However,
none of the above mentioned transportation systems proposes a solution for this serious
issue. Thereby the need for a new type of innovative solutions that address security and
efficiency standards on the road. On another side, recent advances in artificial percep-
tion and remote control made appear new generations of autonomous (i.e., without any
driver) individual or collective electrical vehicles, such as Cycab and VIPA (Individual
Public Autonomous Vehicle) developed by Easymile and Ligier [79, 80]. This combina-
tion of the emergence of a new generation of autonomous vehicles and current trends
about people/good mobility towards more shared use, flexibility and reactivity led, in
the case of VIPA electric cars, to a large scale experimental project VIPAFLEET, whose
main partners were LIGIER S.A (VIPA manufacturer), MICHELIN Manufacture, EX-
OTIC SYSTEM S.A, LIMOS CNRS and PASCAL INSTITUTE CNRS and which was
carried on inside the MICHELIN/LADOUX industrial in Clermont-Ferrand (FRANCE).
Other applications are currently considered for the future, involving hospitals and some
pedestrian downtown areas.

This thesis was founded by the French National Research Agency, the European
Commission (Feder funds) and the Reǵion Auvergne in the Framework of the LabEx
IMobS3 (Innovative Mobility: Smart and Sustainable Solutions) where more than 300
researchers and engineers, and more than 150 PhD students and post-doctoral fellows
work in 7 research laboratories on three main challenges:

(1) Intelligent vehicles and machines: the focus of this challenges is on the conception
of ergonomic, safe and intelligent vehicles and machines (autonomous and partly
autonomous driving, advanced driver assistance systems, agricultural robotics, . . . ).

(2) Services and systems for smart mobility: This challenge studies innovative systems
for mobility and how they can be integrated into their economical and social en-
vironment. The study of the innovative systems also includes the development of

2



1. Introduction

new management system supporting an optimized control of fleets of vehicles within
these innovative systems for mobility.

(3) Energy production processes for mobility: this challenge focuses on the development
of design and optimization of an innovative and efficient processes for the production
of biofuel, the storage of biofuel, and the life cycle analysis linked to the production
and use of the new forms of energy.

Figure 1.1: The VIPA by Ligier and its newer version Easy10 by Easymile

The project VIPAFLEET aims at contributing to sustainable mobility (2) through
the development of innovative urban mobility solutions by means of fleets of Individual
Public Autonomous Vehicles (VIPA) allowing passenger transport in closed sites like
industrial areas, medical complexes, campuses, or airports. This innovative project in-
volves different partners in order to ensure the reliability of the transportation system
[81]. A VIPA is an autonomous vehicle that does not require a driver nor an infras-
tructure to operate, it is developed by Easymile and Ligier [79, 80] within Challenge (1)
thanks to innovative computer vision guidance technologies [112, 113]. Figure 1.1 shows
a picture of the VIPA developed by Ligier and its newer version Easy10 developed by
Easymile. A fleet of VIPAs shall be used in a closed site to transport employees and
visitors e.g. between parkings, buildings and from or to a restaurant. The fleet is dis-
tributed at specified stations within the site. To supply internal transportation, a VIPA
can operate in three different circulation modes:

• Tram mode: VIPAs continuously run on predefined lines or circuits in a prede-
fined direction and stop at a station if requested to let users enter or leave.

• Elevator mode: VIPAs run on predefined lines and react to requests by moving
to a station to let users enter or leave, thereby changing their driving direction if
needed.

• Taxi mode: VIPAs run on a connected network to serve transport requests (from
any start to any destination station in the network within given time windows).

This leads to a Pickup-and-Delivery Problem (PDP) where a fleet of servers shall
transport goods or persons from a certain origin to a certain destination. If persons
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1. Introduction

have to be transported, we usually speak about a Dial-a-Ride Problem (DARP). Many
variants are studied including the Dial-a-Ride Problem with time windows [54, 58]. In
our case, we are confronted with an online situation, where transportation requests are
released over time [10, 25, 47].

The goal of this project is:

• To develop and implement suitable algorithms for each mode in order to satisfy
all the requests and to reduce the waiting time of a customer.

• To develop and install a fleet management system that allows the operator to
switch between the different modes within the different periods of the day ac-
cording to the dynamic transportation demands of the customers (Dynamic Fleet
Management).This is the innovative idea and challenging problem of the project.

The project consists of the following phases.

• P1. Develop the autonomous vehicle that is able to communicate with safe and
reliable operation with the external environment

• P2. Develop an on-line fleet management system that can perform real-time opti-
mization of the different movements of the vehicles

• P3. Develop a solution of communication and interactive associated borns in order
to ensure the communication between vehicles and with the central server of Fleet
Management.

• P4. Ensure the reliability of the VIPA

• P5. Perform the experimentation of VIPA in real conditions (CHU, Michelin)

Our work is mainly focused on the area of Discrete Optimization. It consists of devel-
oping suitable models and efficient methods for solving complex on-line transportation
problems. Hereby, knowledge of the structure of the underlying networks is often re-
quired. This project is a collaboration between many partners (IMOBS3, Ligier, Exotic
system, and Michelin) and the LIMOS (area of Models and algorithms for computer-
aided decision). The LIMOS contributes in the phases 1,2 and 5 of the project. Phase
2 is the main objective of my PhD thesis, which is innovative from a theoretical point
of view. Since this type of dynamic fleet management problems is novel and highly
complex.

The sequel of this thesis is structured as follows. In Chapter 2, we present the
State-of-the-Art on related transportation problems. In Chapter 3 we present all the
technical details, the constraints, the features and the requirements of the VIPAFLEET
management system, and we model it as a discrete event based system. Chapters 4-6 are
devoted to the models and algorithms for each of the VIPA circulation modes. Finally,
we end this thesis with some concluding remarks on our approaches and on the global
fleet management system. We also give some future lines of research and open problems.
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Chapter 2
State of Art

The VIPAfleet project consists of developing models and algorithms for managing the
fleet of Individual Public Autonomous Vehicles (VIPA). In this system, we consider a
fleet of cars distributed at specified stations in an industrial area to supply internal
transportation, where the cars can be used in different modes of circulation (tram mode,
elevator mode, taxi mode). In this chapter, we first introduce the main classical trans-
portation problems and give a brief survey about solution methods and applications.
As in this project the requests are not known in advance but revealed over time, the
classical transportation problems do not reflect such situations. Therefore, we introduce
the online optimization and some online transportation problems as well as some results
about competitiveness for online algorithms on specific metric spaces.

2.1 Classical Transportation Problems

The first works on transportation problems are associated with the famous problem of
the Traveling Salesman Problem (TSP). These works go back one or two centuries. Their
origin is not clear, it appears to be in the 18th century. The TSP can be formulated as
follows. A traveling salesman has to visit a number of given cities, starting and ending
at the same city such that each of the cities must be visited once. The problem has
been formulated several times by Sir William Rowam Hamilton, a mathematician from
Ireland, and Thomas Penyngton Kirkman, a British mathematician. Detailed discussion
about the work of Hamilton & Kirkman can be seen in the book titled Graph Theory
(Biggs et al. 1976) [27]. It is believed that the general form of the TSP has been first
studied by Karl Menger in Vienna and Harvard in 1932 [103]. The traveling salesman
problem is a well known NP-hard problem [106]. The proof of this complexity was
given by reducing the decision problem of TSP to the search for a Hamiltonian cycle
for which Richard M. Karp showed in 1972 that it was NP-complete [89]. Thus, several
heuristics [74], meta-heuristics [5, 88] and approximation algorithms [8, 35, 72, 73] have
been applied in order to solve the problem within a reasonable time. The most successful
methods are branch and bound techniques [78, 105] which can solve large instances i.e.
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2. State of Art

the Concorde TSP code [6] follows a branch-and-cut scheme and is able to obtain an
optimal TSP tour through 85,900 cities

The vehicle routing problem (VRP) generalizes the traveling salesman problem. It
consists of determining the optimal set of routes to be performed by a fleet of vehicles to
serve a given set of customers and it is one of the most important, and studied, combina-
torial optimization problems. It was first studied by George Dantzig and John Ramser
in 1959 [50] where they described a mathematical formulation and an algorithmic ap-
proach applied for gasoline deliveries to service stations. In 1964, Clarke and Wright
[41] improved Dantzig and Ramser’s approach by proposing an effective greedy approach
called the savings algorithm. The Vehicle Routing Problem VRP and its variants have
been studied intensively in the last three decades and have been the object of several
literature surveys. In particular, we refer to Magnanti 1981 [101], Assad et al. 1983
[11], Laporte & Nobert 1987 [97], Laporte 1992 [96] and Irnich et al. 2014 [83]. Specific
examples are bank deliveries, postal deliveries, industrial garbage collection and routing
and scheduling of school-buses. Furthermore, several variations of the vehicle routing
problem have been studied, e.g., vehicle routing problems with time windows [98], ca-
pacitated vehicle routing problems [125], using a heterogeneous or homogeneous fleet
of vehicles. Exact approaches for the vehicle routing problem and their variations are
usually based on integer linear programming [38, 42, 56, 61, 65]. Typical applied meta-
heuristics range from tabu search [66, 68, 98, 117], to simulated annealing [117] and
genetic algorithms [19, 118].

A generalization of the vehicle routing problem is the so-called pickup-&-delivery
problem where a fleet of servers shall transport goods or persons between given origin
and destination locations. If persons have to be transported, we usually talk about a
Dial-a-Ride Problem (DARP). The usual objective functions considered are minimizing
the operational costs, i.e., the costs of transferring the goods or persons. If persons are
transported instead of goods, it is of interest to minimize the waiting or travel time
for the persons. Typical applications of these pickup-&-delivery problems are less-than-
truckload transportation and urban courier operations. A dial-a-ride problem typically
occurs for every taxi company, the transportation of elderly or handicapped people.

Most variants of pickup and delivery problems have been studied intensively in the
last three decades and have been the object of several literature surveys. In particular,
we refer to Parragh, Doerner and Hartl [107, 108] for a general survey of PDPs and to
Berbeglia et al. [24]. Many variants are also studied [45, 53] including the Dial-a-Ride
Problems with time windows [54, 58, 59, 82, 124], capacitated Dial-a-Ride problems [46],
using a heterogeneous [119] or homogeneous fleets [86] of transport vehicles. Besides
tabu search [36, 46], and genetic algorithms [26, 37], also insertion techniques [52, 53]
are applied to the dial-a-ride problem. An insertion algorithm initializes all tours for
the drivers by the empty tours, and then, in each iteration, it tries to find a good
position within a tour to insert and serve the requested transfers. Hereby, capacity and
time-window constraints are respected.

Like other vehicle routing problems, these transportation problems are considered
static or classical according to the availability of their information and their input data.
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In static problems, all problem parameters are deterministic and known a priori before
vehicle routes are constructed. Dynamic problems are characterized by the fact that
some of the information required to make decisions is gradually revealed over time and
requires the solution to be updated. Dynamic problems may also be stochastic when
some information about the uncertain parameters are known in the form of probability
distributions.

Complexity A (Combinatorial) Optimization Problem has as input a finite (implicitly
given) set N , an objective f : N → Q and the goal is to find among all feasible solu-
tions N , one that maximizes respectively minimizes f , i.e. maxx∈N f(x) respectively
minx∈N f(x). The decision problem associated with an optimization problem P has an
instance (a solution) I ∈ P, z ∈ Q and the goal is to answer whether there exists an ob-
jective f such that I ≥ z respectively I ≤ z or not. For example, the traveling salesman
problem is an optimization problem, while the corresponding decision problem asks if
there is a Hamiltonian cycle with a cost less than k in a given graph G. An optimization
problem is NP-hard if its associated decision problem is NP-complete. The traveling
salesman problem is a well known NP-hard problem [106]. The proof of this complexity
was given by reducing the decision problem of TSP to the search for a Hamiltonian cycle
for which Richard M. Karp showed in 1972 that it was NP-complete [89].
Conjecture 1. The decision problem, is there an optimal path in life for happiness, is
NP-complete.

Flows in time-expanded network to model transportation problems Network
flows over time have been first studied by Ford and Fulkerson [62, 63] in the 1960s,
who developed a reduction of flow over time problems to static flow problems using
time-expanded networks. These problems usually have a large number of variables and
constraints and arise in great variety of applications

Two important characteristics of real-world transportation problems are the facts
that flow along arcs varies over time and that flow does not arrive instantaneously at
its destination but only after a certain delay. As none of these two characteristics is
captured by classical network flows, the more powerful model of flows over time has
been shifted into the focus of current research. Various interesting applications and
examples can, for instance, be found in the surveys of Aronson [7] and Powell, Jailet and
Odoni [110].

In our study, the two characteristics of the VIPAFLEET management system are
the facts that no two VIPAs can traverse the same arc at the same time and that the
operator needs to communicate to the VIPA the exact time to stop at certain station to
pick up or deliver customers and he needs to communicate to the customer the time at
which he will be served (picked up and then delivered).

In his introduction to network flows over time Skutella, 2009 [115] notes that the
use of a discretization that includes each possibly relevant time point can be challenging
computationally in many problem settings. There is widespread use of discretizations of
time and time-expanded networks in service network design models ([4, 49, 57, 87, 95].
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Modeling such problems is essentially based on the Multicommodity flow. Skutella et
al. [75] show that the multicommodity flow over time problem is NP-hard, even on
series-parallel graphs. Recently, for a service network design problem arising in less-
than-truckload consolidation, Boland et al. 2017 [30] introduce a new approach, in
which the strength of a time-expanded integer linear programming (IP) formulation is
employed, without the penalty of an enormous model, they designed a partially time-
expanded network without loss of optimality. In [31], the authors extend this dynamic
approach solving the Traveling Salesman Problem with Time Windows.

Total unimodularity A matrix A is called totally unimodular if each square subma-
trix of A has determinant 0,+1 or −1. In particular, each entry of A is 0,+1 or −1. The
interest of totally unimodular matrices for optimization was discovered by the following
theorem of Hoffman and Kruskal 1956 [77]: If A is totally unimodular and b and w are
integer vectors vectors, then both sides of the LP-duality equation

max{wx|Ax ≤ b} = min{yb|y ≥ 0, yA = w}

have integer optimum solutions.
The constraints matrix of maximum flow and minimum cost flow problems is totally

unimodular. Thus, such network flow problems with bounded integer capacities have an
integral optimal value.

2.2 Online Optimization

In our VIPAFLEET management system, users send their requests from smartphones,
web application or ad-hoc communication devices and wait for the vehicles to serve
them. As related movements are performed inside a closed and restricted area (smaller
than a few square kilometers), user demands must be handled in a very reactive way.
This means that standard classical transportation problem models are not useful here
and that we really need to focus on the online situation. We must design a real time
decision rule robust enough in order to be integrated into a complex wireless communi-
cation architecture. Hereby, this is the reason why the classical transportation problems
presented above do not reflect the situation of the studied VIPAFLEET management
system. In the next sections, we introduce the online optimization and some online
transportation problems.

What is the common problem between a person who goes skying for the first time
in his life, and a manager of a fleet of vehicles in a closed site where passengers arrive
over time to benefit from a certain transportation service? Uncertainty.

They both need to take a decision that minimizes a certain cost or maximizes a
certain profit without knowing the complete information about the upcoming future
events.

Online optimization, a branch in operations research, provides the mathematical
framework for dealing appropriately with such practical situations. In contrast to the
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classical optimization problems, online optimization problems are characterized by the
fact that not all their input data are known in advance. A solution strategy for online
optimization problems (online algorithm) has, therefore, to make its decisions before the
complete information about the data is available.

The arrival of the input data over time is most commonly modeled by the “sequence
model” and the “time-stamp model”, which differ in the way how the information be-
comes available to the online algorithm.

In both cases, an online algorithm ALG is confronted with a finite request sequence
σ = {r1, r2, . . . rn}. Like in a classical optimization algorithm, ALG has to serve the
requests rj according to its specific rules and the action taken by ALG to serve rj incurs
a certain cost (respectively profit) and the overall goal is to minimize the total service
cost (respectively maximize the profit).

For an online optimization problem in the sequence model, the requests must be
served in the order of their occurrence. More precisely, that means:

• When serving a request rj , the online algorithm ALG does not have any knowledge
of the requests ri with i > j; the decision taken by ALG how to serve rj is
irrevocable.

• Only after rj has been served, the next request rj+1 becomes known to ALG; in
some cases, the appearance of the last request rn is announced, in other cases not.

As for an online optimization problem in the time-stamp model, requests are not ordered
within a sequence but become available over time at their release times. The release
time tj ≥ 0 is a non negative real number and specifies the time at which request rj
becomes known. More precisely, that means:

• an online algorithm ALG is confronted with a finite request sequence σ = {r1, r2, . . .}
which is given in order of non-decreasing release times, and ALG cannot serve rj
before its release time tj .

• ALG has to determine its behavior at time t, based on the requests rj released up
to time t, but ALG is allowed to wait and to revoke decisions (as long as they have
not yet been executed or communicated to customers as (fixed) appointments).

• The action taken by ALG to serve rj incurs a certain cost; waiting incurs additional
costs typically depending on the elapsed time. In some cases, the end of the
considered time horizon is known or announced, in other cases not.

Remark. Serving each single request rj is like in classical optimization, but it might
be only a locally good solution, not leading to a global optimum taken over the whole
request sequence. It is also possible to define online profit-maximization algorithms for
both the sequence model and the time-stamp model. For such problems, serving a re-
quest yields a profit and the goal is to maximize the total profit obtained.
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The algorithms used in online situations are typically heuristics because no exact
solution is possible due to the lack of information and because the requests must be pro-
cessed immediately or within a short time horizon. Two main types of online algorithms
for the sequence or time-stamp model are:

The general algorithmic scheme for the sequence model is relatively easy. The idea
is to serve each newly released request with a certain RULE serve (see Algorithm 1),
whereas the online algorithms for the time-stamp model are usually more complex (see
Algorithm 2).

Algorithm 1 Algorithmic Scheme for the Sequence Model
Input: a sequence of requests σ (given one by one)
Output: costs for serving all requests in σ
1: for request rj ∈ σ do
2: serve rj according to a RULEserve

3: update costs
4: return total costs

Algorithm 2 Algorithmic Scheme for the Time-Stamp Model
Input: a sequence of requests σ (given at their release times)
Output: costs for serving all requests in σ
1: Initialize list σt with released but unserved requests until time t
2: while σ 6= ∅ do
3: select one or several request(s) according to RULEsel

4: serve selected request(s) according to a RULEserve

5: update σt and costs
6: return total costs

We next discuss the evaluation of the applied solution strategies. The traditional
theoretical analysis of algorithms is concerned with an offline problem where the complete
input is given (but worst for the strategy of the algorithm) and is focused either on the
efficiency (for an exact algorithm) or the quality of the solution compared to the optimal
solution (for a heuristic).

To solve online problems, heuristic strategies are typically applied and so we are
interested in rating the quality of a heuristic solution. So what should be called a “good”
online algorithm? First systematic investigations to rate online algorithms were started
by [Sleator and Tarjan 1985] [116] who suggested to compare an online algorithm with
an optimal offline algorithm on the same request sequences. This so-called competitive
analysis (introduced by [Karlin, Manasse, Rudolph, and Sleator 1988] [114]) became
standard to rate the quality of online algorithms.

Given a request sequence σ, denote

• by ALG(σ) the cost incurred by an online algorithm ALG when serving σ and
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• by OPT(σ) the optimal offline cost (the optimal offline algorithm OPT knows the
entire request sequence σ in advance and can serve it with minimum cost, but also
has to respect release times).

Definition 2.1. An online algorithm ALG is called c-competitive if ALG produces
for some given c ≥ 1 and for any request sequence σ a (primal) feasible solution ALG(σ)
with

ALG(σ) ≤ c ·OPT (σ).

The competitive ratio of ALG is the infimum over all c such that ALG is c-competitive.

Remarks:

• The definition of c-competitiveness varies in the literature. Sometimes an online
algorithm ALG is called c-competitive, if there exists a constant b s.t.

ALG(σ) ≤ c ·OPT (σ) + b

holds for any request sequence σ (and ALG is called strictly c-competitive if b = 0).

• Competitive analysis can be viewed as a game between an online algorithm ALG
and a malicious adversary who tries to generate a worst-case request sequence σ
which maximizes the ratio between the online cost ALG(σ) and the optimal offline
cost OPT (σ) knowing the entire request sequence σ in advance.

• In general, the theoretical results on analyzing deterministic online algorithms are
weak. For randomized online algorithms, the adversary does not know the random
decisions of the online player and cannot that easily construct a worst case instance.

• In practice, non-competitive algorithms typically behave worse than competitive
ones. Whether competitive deterministic or randomized online algorithms behave
better in practice depends on the studied instances (even if the randomized online
algorithms often achieve a better competitive ratio). Typically, a simulation of
the algorithm’s behavior on some realistic test instances decides which algorithm
is used in practice.

In the following, we define the types of adversaries used within this thesis. An
oblivious adversary knows the complete behavior of a (deterministic) online algorithm
ALG and chooses a worst-case sequence for ALG as well as the profits for serving the
requests. He is allowed to move servers towards yet unreleased requests, but must not
serve any request before it is released, i.e., before its release time.

In this thesis, we “weaken” the adversary by limiting the set of algorithms with which
the adversary can solve the offline problem.

The non-abusive adversary (see, e.g., [92]) is limited by the algorithms he can
choose from. He knows the complete behavior of ALG and can choose a worst case
sequence but he is only allowed to move the servers towards origins (or destinations) of
already released requests.
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Remark 2.2. Competitive results, (ratios) against an oblivious adversary are the strongest.
As for non-competitive results against a weaker adversary (e.g., non-abusive adversary)
are the strongest. �

2.3 Online Transportation Problems in Metric Task
Systems

In this section, we introduce a general model for transport problems, in which many
(online) transportation problems can be captured. The definitions and the examples are
taken from [120]. In a Metric Task System, servers have to process a sequence of tasks.
The servers can be in one of a finite number of states and the cost of processing a task
depends on the state of the server. Formally, a Metric Task System is a pair (M, T ),
where M = (V, d) is a (finite) metric space and T is a set of tasks, typically requests
to visit certain points v ∈ V or to transport objects from their start position vs ∈ V to
their destination vd ∈ V .

An example of an infinite metric space is them-dimensional Euclidean space (Rm, dE),
where dE is the standard Euclidean distance. Another example is a finite metric space
induced by a weighted graph G = (V,E) with weight function w : E → R+. The set of
points is the set of nodes V and the distance between two points v, w ∈ V is the length
of the shortest path from v to w.

Many real-world problems can be modeled as transport problems in Metric Task
Systems, where requests to visit certain points or to transport objects or persons from a
start position to a destination have to be served by one or several servers (with a certain
capacity in the case of transport requests). In this section we present online versions of
the following optimization problems in the area of transportation.

• Online Traveling Salesman Problem: one server (the salesman) has to visit
all points in V ;

• Online k-Server Problem: k servers are available to visit points in V (which
includes the problem to partition the requests appropriately and to plan tours for
all k servers);

• Online Pickup-and-Delivery Problem: k servers are available to transport
objects or persons from a start point to a destination in V ; (which includes the
problem to partition the requests appropriately and to plan tours for all k servers,
taking into consideration that a server typically has a certain capacity C.

• Online Pickup-and-Delivery Problem with time windows: k servers are
available to transport objects or persons from a start point to a destination in V ;
(which includes the problem to partition the requests appropriately and to plan
tours for all k servers, taking into consideration that a server typically has a certain
capacity C, respecting a time window for each of the requests. A server must pick
up the good or person not earlier then the pickup time and deliver it not later then
the latest deliver time.
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2.3.1 Online Traveling Salesman Problem

The “Online Traveling Salesman Problem” (see, e.g., [29, 84]) is given in the time-stamp
model. An instance of the Online TSP consists of a metric space M = (X, d) with a
distinguished origin x0 ∈ X and a sequence σ = {r1, · · · , rn} of requests.

• Each request is a pair ri = (ti, xi) where ti is the release date and xi ∈ X the point
in the metric space requested to be visited.

• a server is located in the origin x0 at time t = 0 and can move at unit speed.

• A feasible solution is a tour for the server visiting all request points (not earlier
than their release dates) which starts and ends in the origin.

• The cost of a tour is the time when the server has served the last request and has
returned back to the origin (i.e. the makespan).

• The online algorithm does neither have information about the time when the last
request is released nor about the total number of requests.

origin

server

12

4

53

Figure 2.1: A partial solution of the O-TSP.

Figure 2.1 illustrates the setting for O-TSP. More formally, we obtain the following
problem formulation:

Problem 2.3 (The Online Traveling Salesman Problem (O-TSP)).

Given: a metric space M = (X, d) with an origin xo ∈ X and a sequence σ =
{r1, . . . , rn} of requests, where each request is a pair ri = (ti, xi) specifying release time
ti and the point xi ∈ X to be visited.

Task: create a tour for the server, visiting all points xi not earlier than ti, which starts
and ends in the origin.

Goal: Minimize the travel time of the server.

Remark: The O-TSP differs from its famous relative, the classical TSP in certain
aspects:

• The server might visit a certain point in the metric space more than once.
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• The cost of a tour is not the length of the tour, but the total travel time needed
by the server (obtained from the tour length plus waiting times).

• There are two versions of the online problem. In the first one, open online TSP,
the server is not required to return to the departure point after all presented
requests have been served. For the other version of the problem, closed online
TSP, returning to the departure point is required. Both, returning immediately to
the origin and waiting for new requests could cause unnecessary costs, depending
on whether or not a further request becomes known.

An offline algorithm for this problem knows the complete sequence σ = r1, r2, . . . rn
in advance and can produce an optimal tour. As the problem is also hard in the offline
version, producing an optimal solution is not always real-time compatible, but there are
good approximation algorithms (especially in the metric case).
In principle, every online algorithm for the closed O-TSP is described as in Algorithm
3.

Algorithm 3 Algorithmic Scheme for the O-TSP
1: Wait in the origin for the first released request and visit x1.
2: if there are known unserved requests then
3: determine the next point(s) to be visited due to a certain RULE
4: visit the point(s)
5: else
6: return to the origin.
7: return makespan

Thus, the algorithms for O-TSP differ only in the RULE how to determine the next
point(s) to be visited (based only on the sequence r1, . . . rj with tj ≤ t). Examples for
RULEs are:

• FIFO: select the longest released point next
(i.e. visit all requested points xi in the order of their release dates ti)
• GREEDY: select the requested point xj closest to the current server position
(i.e. visit always the currently nearest point)
• IGNORE: determine an optimal tour for all currently known unserved requests
and completely serve this tour
• REPLAN: determine an optimal tour for all currently known unserved requests
and serve this tour until the next request becomes known

Note that FIFO behaves like in the sequence model. GREEDY and IGNORE make
some use of the possibility to postpone decisions. Only REPLAN uses the possibility to
revoke decisions about yet unserved requests. On the other hand, IGNORE can be seen
to obey (already fixed) appointments with customers.
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Example 2.4. Given the metric space M = (R2
+, d) with d Manhattan metric, the

origin xo = (0, 0), a unit speed server (1 unit way per 1 unit time) and the following
request sequence σ:

i 1 2 3 4 5
ti 0 2 3 6 10
xi (3, 1) (0, 2) (3, 2) (2, 1) (1, 3)

The considered strategies produce the solutions shown in Figure 2.2, including the op-
timal offline solution OFF(σ) and the optimal solution OPT(σ) of the underlying TSP
without respecting release dates.
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Figure 2.2: The solutions of the O-TSP from Example 2.4.

♦

Research concerning online versions of the TSP have been introduced relatively re-
cently. Kalyanasundaram and Pruhs [28] have treated a unique version of an online
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traveling salesman problem where new cities are revealed locally during the traversal
of a tour (i.e., an arrival at a city reveals any adjacent cities that must also be vis-
ited). Angelelli, Savelsbergh, Speranza [3, 4] study related online routing problems
in a multi-period setting. Ausiello, Feuerstein, Leonardi, Stougie, Talamo [15] stud-
ied the online TSP. They analyzed the problem on the real line and on general metric
spaces, developing online algorithms for both cases and achieving a best-possible on-
line algorithm for general metric spaces, with a competitive ratio of 2. These authors
also provide a polynomial-time online algorithm, for general metric spaces, which is 3-
competitive. The paper by Ascheuer, Krumke, Rambau [10] implies the existence of a
polynomial-time algorithm, for general metric spaces, which is 2.65-competitive as well
as a (2+ε)-competitive (ε > 0) algorithm for Euclidean spaces. Lipmann [99] developed a
best-possible online algorithm for the real line, with a competitive ratio of approximately
1.64. Blom, Krumke, de Paepe, Stougie [15][29] gave a best-possible online algorithm
for the non-negative real line, with a competitive ratio of 3

2 . Other groups of researchers
have studied the online TSP in other variants: Ausiello, Bonifaci and Laura [7] [14] have
studied the online Asymmetric TSP, Ausiello, Demange, Laura, Paschos [8] [15] have
studied the online Quota TSP, and Allulli et al. [3], define the notion of a lookahead.
A lookahead δ allows an online algorithm to foresee all requests that arrive during the
next δ time units. The authors investigate the effect of the lookahead on many different
online vehicle routing problems.

Ausiello et al.[17] consider in their paper two versions of the problem open online
TSP, and closed online TSP. For the open online TSP they derive a lower bound on
the competitive ratio of 2 on the real line. Besides, a 2.5-competitive algorithm for a
wide class of metric spaces, and a 7

3 -competitive algorithm for the real line are provided.
For the other version of the problem, closed online TSP, they present an optimal 2-
competitive algorithm for the general class of metric spaces. If in this case the metric
space is the real line they present a 1.75-competitive algorithm that is compared with a
1.64 lower bound.

Bjelde et al. 2017 [28] provided recently for closed online TSP, a 1.64-competitive
algorithm, thus matching the known lower bound. For open online, they give a new upper
bound as well as a matching lower bound that establish the remarkable competitive ratio
of 2.04.

Lipmann [36] [99] considers the online TSP where all cities are on the real line.
Lipmann designs a rather complicated online algorithm that is best-possible with a
competitive ratio of (9 +

√
17)/8 ≈ 1.64

Blom et al. [29] consider the online TSP when all cities are on the non-negative
real line. They also consider different types of adversaries. In other words, instead
of comparing the cost of an online algorithm to that of an optimal offline algorithm,
the online cost is compared to the cost of another weaker algorithm. In this way, the
competitive ratio results are not as pessimistic and more realistic since many times
the competitive ratio is induced by rather contrived problem instances. We conclude
our summary of these authors’ work with a presentation of their best-possible online
algorithm Move-Right-If-Necessary (MRIN) for the online TSP on the real line, where
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Table 2.1: Overview of results of competitive analysis of the Closed Online TSP on the
line w.r.t. minimizing the makespan

References Algorithm Competitive
ratio c

lower bound LB

Ausiello et al. 1994 [16] Algorithm c = 7
4 = 1.75 LB = 1.64

Ascheuer et al. 1998 [9] LB = 1 +
√

2
2

= 1.70
Lipmann 1999 [99] (complicated) c = 1.64 LB = 1.64
Blom et al. 2001 [29] MRIN (non-negative

real line)
c = 3/2

Bjelde et al. 2017 [28] (simple) c = (9 +
√

17)/8
≈ 1.64

the competitive ratio is 3/2.

Algorithm 4 Algorithm : MRIN for the O-TSP on the non-negative real line
1: If there is an unserved city to the right of the salesman, he moves towards it at unit

speed.
2: If there are no unserved cities to the right of the salesman, he moves back towards

the origin at unit speed
3: Upon reaching the origin, the salesman becomes idle.

Regarding the performance of the Online TSP, we have

Theorem 2.5. (Ausiello et al. 1994) [16].
No (deterministic) online algorithm for Online TSP can achieve a competitive ratio

c < 2.

The online algorithms IGNORE and REPLAN have been developed and analyzed w.r.t.
minimizing the makespan by [Ascheuer, Krumke and Rambau 1998].

Theorem 2.6 (Ascheuer, Krumke and Rambau 1998 [9]).
The online algorithms IGNORE and REPLAN are 5

2 -competitive for O-TSP w.r.t. min-
imizing the makespan on general metric spaces.

On the other hand, we have the following lower bounds:

Theorem 2.7 (Ascheuer, Krumke and Rambau 1998 [9]).
No (deterministic) online algorithm for O-TSP can achieve a competitive ratio
• k < 1 +

√
2

2 = 1.70 for the metric space X = R,
• k < 5

3 = 1.66 in general.
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Table 2.2: Overview of results of competitive analysis of the Closed Online TSP on the
general metric space w.r.t. minimizing the makespan

References Algorithm Competitive ratio c lower bound
LB

Ausiello et al. 1994 [16] LB = 2
Ascheuer et al. 1998 [9] IGNORE and

REPLAN
c = 5

2 LB=5
3 = 1.66

2.3.2 The Online k-Server Problem

In a k-Server Problem, the objective is to find the best way to visit a given set of points
exactly once using k servers (starting from and returning to a depot). The offline version
of the k-Server Problem is already NP-hard because it contains the TSP as a special case
(the TSP is a k-Server Problem with k = 1). In addition finding a tour for each server
includes the problem to partition the set of given points into k appropriate subsets.

The Online k-Server Problem can be understood as a metric task system where an
instance consists of

• a metric space (X, d) with a distinguished origin x0 ∈ X (the depot),

• a sequence {r1, · · · , rn} requests ri = (ti, xi) where ti specifies the release date and
xi ∈ X is the point requested to be visited.

A task is served by moving one server to the requested point xi ∈ X (not earlier than
the time ti).

A feasible solution consists of k tours for the k servers such that each requested point
is visited exactly once; all k tours start and end in the origin x0. The goal is to minimize
the total distance traveled by the servers. Hereby the Online k-Server Problem may
occur in different variants:

• Time-stamp model: there is “locally” an offline situation on the subset of already
released but not yet served requests: the requests in the waiting list have to be
assigned to servers and integrated in their tours.

• Sequence model: the requests become known one by one and for each of them,
it has to be decided which of the k servers shall serve this request. (by moving
from its current position to the requested one).

The “k-server problem” is a widely analyzed problem (see, e.g., [20–22, 39, 40, 43,
48, 55, 91, 102]).

This problem is a natural online version of the well-known transportation problem
and has been extensively discussed in previous work (see for example [33, 76]). This
section will present a brief summary of the main ideas and results.

Bonifaci and Stougie [32] study the online k-server problem. For the case where all
cities are on the real line, these authors give an asymptotically (as m → ∞) optimal
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online algorithm. They also focus on resource augmentation with respect to the number
of vehicles: the online algorithm has m salesmen and the offline algorithm has m∗ ≤ m

salesmen. They give an online algorithm that is (1 +
√

1 + 1/2[m/m∗]−1) -competitive.
Ausiello, Allulli, Bonifaci, Laura [13] consider the behavior of online routing algorithms
as a function of the number of servers.

2.3.3 The Online Pickup-&-Delivery Problem

The classical version of the Pickup-&-Delivery Problem PDP is NP-hard because it
contains the TSP as a special case. In the Pickup-&-Delivery Problem, k servers have to
transport loads from given origins or pickup node to given destinations or delivery node
(starting from and returning to a depot). In fact the Pickup-&-Delivery Problem PDP
generalizes the k-server problem, where the origin and the destination of a transportation
request are equal.

The Online PDP can be understood as metric task system where an instance of the
problem consists of

• a metric space (X, d) with a distinguished origin x0 ∈ X (the depot),

• a sequence {r1, · · · , rn} of transportation requests rj = (tj , oj , dj , zj) where tj
specifies the release date, (oj , dj) ∈ X ×X the origin/destination pair, and zj the
load size.

• k servers si of capacity Cap and their initial position pos(si) ∈ X.

Serving a task rj means to transport a load from the origin oi ∈ X of the request to its
destination dj ∈ X by a server of capacity Cap (not earlier than tj).

A feasible solution, called transportation schedule, consists of tours for the k servers
such that each requested transport is performed, the server capacity is respected and
all k tours start and end in the depot x0. The goal is to minimize the total distance
traveled by the k servers.

Hereby tours are composed by transportation moves.

Definition 2.8. A transportation move for a server s is a quadruple

m(s) = (t, x, y, R)

where t is the starting time, x the starting point, y the end point, and R the (possibly
empty) set of requests loaded during the move. The load

∑
ri∈σ zj of move m(s) must

not exceed the capacity Cap.

A tour for server s is a sequence m1(s),m2(s), · · · of transportation moves such that
the

• first move starts in the origin x0,

• end point of mi(s) is the starting point of mi+1(s),
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• starting time of mi(s) respects the release dates of all loaded requests,

• arrival time of a move is the sum of its starting time t and d(x, y),

• last move ends in the origin x0.

A transportation schedule consists of tours for all k servers such that each requested
transport is performed.

Preemptive or non preemptive In the preemptive Pickup-&-Delivery Problem or
Dial-A-Ride problem, the server can drop off any request it is carrying at its current
location at any time. In the non-preemptive Dial-A-Ride problem, the server may only
drop off a request at its target location.

In [60], Feuerstein and Stougie consider the online Dial-a-Ride problem, where each
city is replaced by an origin-destination pair. The authors consider both the uncapac-
itated case, giving a best-possible 2-competitive algorithm, and the capacitated case,
giving a 2.5-competitive algorithm. They also show that this is best possible, as no
algorithm can have competitive ratio better than 2 independent of the capacity of the
server.

As the Online TSP is a special case of the Online PDP, we infer from Theorem 2.5:

Theorem 2.9. No (deterministic) online algorithm for Online PDP can achieve a com-
petitive ratio c < 2.

Ascheuer et al. [10] give a 2-competitive online algorithm for the online Dial-a-Ride
problem with multiple servers and capacity constraints.

A survey on some competitive ratios for the Online TSP and other variants and
Online DARP is found in [85]. In [28], authors narrow the gaps for online Dial-A-Ride
on the line by giving improved bounds.

Additionally, they provide a simple preemptive 2.41-competitive algorithm, which
improves a (non-preemptive) 3.41-competitive algorithm by Krumke [94]. For the closed
Dial-A-Ride variant, the lower bound of 1.64 by Ausiello et al. [17] was improved for
one server with unit capacity without preemption to 1.71 by Ascheuer et al. [10]. They
improve this bound further to 1.75 for any finite capacity c ≥ 1. The best known
algorithm for closed Dial-A-Ride on the line for finite capacity c ≥ 1 is 2-competitive
and was given by Ascheuer et al. [10].

For the closed online Dial-A-Ride problem without preemption, Feuerstein and Stougie
[60] show a lower bound of 2 for the competitive ratio in general, and present an algo-
rithm with a best-possible competitive ratio of 2 for the case that the server has infinite
capacity. Ascheuer et al. [10] analyze different algorithms for the same setting and
present a 2-competitive algorithm for any finite capacity c ≥ 1.

Complexity For the non-preemptive offline Dial-A-Ride problem on the line, results
have previously been obtained for the closed variant without release times. For capacity
c = 1 Gilmore and Gomory [67] and Atallah and Kosaraju [12] gave polynomial time
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Table 2.3: Overview of results of competitive analysis of the Online PDP on the line
w.r.t. minimizing the makespan

References Algorithm Competitive ratio c
Ascheuer et al. 2000 [10] multiple servers and

capacity constraints
2

Krumke 2006 [94] non-preemptive
algorithm

3.41

Bjelde et al. 2017 [28] preemptive algo-
rithm

2.41

Table 2.4: Overview of results of competitive analysis of the Closed Online Dial-A-Ride
on the general metric space w.r.t. minimizing the makespan

References Algorithm Competitive ratio c lower
bound LB

Ausiello et al. 1994 [16] one server, unit ca-
pacity

LB = 1.64

Ascheuer et al. 2000
[10]

finite capacity c ≥ 1 2 LB = 1.71

Feuerstein and Stougie
[60]

infinite capacity Alg 2-competitive LB = 2

Krumkeet al. 2012 [93] k servers (real line
and trees)

c = k

Bjelde et al. 2017 [28] finite capacity c ≥ 1 LB = 1.75

algorithms, and Guan [71] proved hardness for the case c = 2. In [28], authors show that
both the open and closed variant of the problem are NP-hard for any capacity c ≥ 2.
Additionally, they show that the case with release times and any c ≥ 1 is NP-hard. The
complexity of offline Dial-A-Ride on the line with unbounded capacity remains open.

There are many offline variants of the Dial-A-Ride problem, differing in capacities,
the underlying metric space, release times and deadlines, open versus closed tours, and
in whether preemption is allowed (e.g., see [121]). The special case without release times
and unit capacity is known as the stacker crane problem. Attalah and Kosaraju [12]
present a polynomial algorithm for the closed, non-preemptive stacker crane problem
on the real line. Frederickson and Guan [64] show that this problem is NP-complete
on trees. Guan [71] shows that the Dial-A-Ride problem remains easy on the line with
capacities larger than one if preemption is allowed, and that it remains hard on trees.

For the non-preemptive Dial-A-Ride problem on the line authors of [28] show that
the open and closed variant with release times are NP-hard. Without release times, they
prove they are NP-hard for capacity c ≥ 2. their reductions are from the circular arc
coloring problem, which is also used in a reduction for minimizing the sum of completion
times of Dial-A-Ride on the line with capacity c = 1 [121].
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Theorem 2.10. Bjelde et al. 2017 [28]
No algorithm for the non-preemptive closed Dial-A-Ride problem on the line with fixed
capacity Cap ≥ 1 has competitive ratio lower than c = 1.75

2.4 The Online Pickup-&-Delivery Problem with Time
Windows

The Online Pickup-&-Delivery Problem with TimeWindows can be understood as metric
task system where an instance of the problem consists of

• a metric space (V, d) with a distinguished origin v0 ∈ V (the depot),

• k servers si of capacity Cap and their initial position pos(si) ∈ V .

• a sequence {r1, · · · , rn} of transportation requests rj = (tj , xj , yj , pj , qj , zj) where

– tj ∈ [0, T ] is the release time (i.e., the time when rj becomes known),
– xj ∈ V is the origin node,
– yj ∈ V is the destination node,
– pj ∈ [0, T ] is the earliest possible pickup time,
– qj ∈ [0, T ] is the latest possible delivery time,
– zj specifies the number of passengers or goods,

and tj ≤ pj , pj + d(xj , yj) ≤ qj , as well as zj ≤ Cap needs to be satisfied

Serving a task rj means to transport a load from the origin oi ∈ X of the request by a
server of capacity Cap (not earlier than pj) to its destination dj ∈ X (not later than qj .
More precisely, a task is defined by

τj = (tj , xj , tpickj , yj , t
drop
j , zj).

It is created by the operator in order to serve an (accepted) request rj = (tj , xj , yj , pj , qj , zj)
and is sent at time tj to a server indicating that zj passengers have to be picked up at
station xj at time tpickj and delivered at station yj at time tdropj , where pj ≤ tpickj ≤
qj − d(xj , yj) and pj + d(xj , yj) ≤ tdropj ≤ qj must hold.

A feasible solution, called transportation schedule, consists of tours for the k servers
such that each accepted request (in case there are rejected requests) is performed, the
server capacity is respected and all k tours start and end in the depot x0.

Hereby tours are composed by transportation moves.

Definition 2.11. A transportation move for a server s is a quadruple

m(s) = (t, x, y, R)

where t is the starting time, x the starting point, y the end point, and R the (possibly
empty) set of requests loaded during the move. The load

∑
ri∈σ zj of move m(s) must

not exceed the capacity Cap.
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A tour for server s is a sequence m1(s),m2(s), · · · of transportation moves such that
the

• first move starts in the origin x0,

• end point of mi(s) is the starting point of mi+1(s),

• starting time of mi(s) respects the time windows of all loaded requests,

• arrival time of a move is the sum of its starting time t and d(x, y),

• last move ends in the origin x0.

A transportation schedule consists of tours for all k servers such that each requested
transport is performed.

A transportation schedule S for (M, TA) consists of a collection of tours {Γ1, . . . ,Γk}
and is feasible when

• each of the k servers has exactly one tour that starts and ends in the depot,
• each (accepted) request rj is served within time window [pj , qj ].

The goal is to construct transportation schedules S for the servers with the objective to
minimize the total distance traveled by the k servers. Solution approaches for problems
with dynamic requests must follow the online routing process where, at the beginning of
the planning horizon, initial tours are constructed for the k vehicles based on the already
released requests. These tours can be followed without any modifications, until a new
customer request is released. In this case, there is always a chance that the new customer
can be inserted into the existing planned tours without affecting the order of subsequent
customers and with minimal delay. However, it is more likely that the insertion of new
requests into the existing tour will require either partial or full rescheduling of the vehicle
tour.

The common practice for generating a base routing plan is to use exact, metaheuristic
or heuristic algorithms already developed for the corresponding static problem. These
algorithms can be applied in a rolling time horizon basis to reoptimize the existing so-
lution when there is a new released request. For example, the method tabu developed
by [Cordeau and Laporte (2003)] for the static case is also used for the Online PDP, see
the works of [Mitrović-Minić et al. (2004)], [Attanasio et al. (2004)], [Berbeglia et al.
(2012)] et [Kergosiena et al. (2011)]. Note that this process does not take into account
of a possible appointment with the user. These insertions are done w.r.t. minimizing the
cost. [Attanasio et al. (2004)] integrate the implementation of [Cordeau and Laporte
(2003)] in the dynamic problem with an infinite penality validating the different solu-
tions obtained on each unit. [Berbeglia et al. (2012)] used also the method of [Cordeau
and Laporte (2003)] for the dynamic case, but the Tabu search is accompanied by an
exact constraint programming procedure. [Kergosiena et al. (2011)] exploit the Tabu
research in a real context: the transport of patients. Reoptimization approaches have
the drawback of repeatedly solving difficult optimization problems, which may require
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excessive computational times. Note also that exact approaches can provide optimal
solutions for the current state only (unless information is available over the entire plan-
ning horizon in advance). In this case, any solution at hand may be suboptimal once
new data arrives. We refer to Psaraftis [123] for an example where insertion of a new
customer into an existing optimal tour renders the tour suboptimal. The use of ex-
act approaches often results in better overall solutions compared to using heuristics for
the same purpose (see Yang, Jaillet, and Mahmassani [158] and Chen and Xu [26]).
As mentioned above, heavy computational requirements might hinder the use of reop-
timization procedures, especially in highly dynamic environments where the problem
quickly becomes more complex with arrivals of new information (see Ichoua, Gendreau,
and Potvin [77]). In this case, an alternative approach is to locally update the existing
solution. For this purpose, a wide variety of local update and instant reaction heuristic
methods (e.g., insertion heuristics) have been proposed. Ordinary insertion procedures
and well-known construction heuristics have often been employed in the literature for
various problem settings under several operational constraints. In this case, planned
routes are constructed for all known requests. Besides flexibility, one other advantage of
using insertion procedures to react to incoming immediate requests is that the planned
routes can be also used for later decisions. Furthermore, insertion procedures are suffi-
ciently fast and can also be used in real time to accept or reject a request or to specify
a time window for a customer visit (see Ichoua, Gendreau, and Potvin [77]). [Madsen
et al. (1995)] used the heuristic of resolution based on insertions of [Jaw et al. (1986)]
and adapt it to the dynamic context. Their approach inserts the new request to the
existing tour in less then one second. Their works had an application in the real word
that was a transportation service for the elderly and or disabled people in Copenhagen.
Users provide a single time window for the origin or for the destination. Different types
of vehicles are used. They are not available at the same time and they may break down.

Whenever an immediate request is received (or at regular time intervals) the effort
is initially to find feasible insertion positions, or to dispatch a new vehicle, for the new
requests in the existing plan and handle the insertion of pairs of pickup and delivery
locations. At this point, accept or reject requests may occur (see Gendreau et al. [48]
and Ichoua, Gendreau, and Potvin [74] Berbeglia, Cordeau, and Laporte [13], Cordeau
and Laporte [32], Cordeau et al. [34], and Madsen, Ravn, and Rygaard [98].

Subsequently, depending on the objective(s), the best feasible insertion position(s) is
selected and the new requests are incorporated into the routing plan. Although various
fitness criteria and metrics have been proposed (e.g., related to the geographical proxim-
ity, the temporal closeness, the latency, the response times), the most used methods
adopt an insertion position that results in the shortest detour over a subset of vehicle
routes. Yi and Tian (2005) maximize the number of requests for which service starts
within a fixed time period after their release. They provide lower bounds for the single-
vehicle case with either unit capacity or infinite capacity. Yi et al. (2006) add restricted
information and a finite capacity to the work of Yi and Tian (2005).
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Applications Some approaches for resolving the online DARP with time windows
or online PDP with time windows are already used in real world transportation. For
example, Hanne et al. (2009), Beaudry et al. (2010) study transportation systems in
a hospital context, where emergency requests should be serviced within a very limited
time frame. Coslovich et al. (2006) focus on unexpected users asking for service during
the stop of a vehicle. Cremers et al. (2009) consider subcontracting requests to taxi
services during peak moments. The taxis are cheaper when booked one day in advance,
but some requests are only revealed at the beginning of the operation day. Apart from
additional requests, several unexpected events related to users or vehicles may be taken
into account, including user no-shows, cancelations of requests, changes of requests,
vehicle breakdowns and traffic jams (Donoso et al. 2009; Häme 2011). Particularly the
latter two may have a considerable operational impact (Xiang et al. 2008). We refer
to [Beaudry et al. (2012)] for relevant details and to [Cordeau and Laporte (2007)] and
[Pillac et al. (2013)] for surveys on online PDPs and online VRPs.

In the VIPAFLEET management system, we are dealing with autonomous vehicles.
Therefore, we need to carefully model the problem to trace the route of the VIPAs over
time and ensure that there is no VIPA blocking another and we need to obey as well
other technical requirements detailed in Chapter 3. Therefore we will use some simple
heuristics for solving the online PDP on specific metric spaces. In order to solve the
online PDPTW, we will use flows in time-expanded networks.
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Chapter 3
Modeling Framework for the

VIPAFLEET Management System

We embed the VIPAFLEET management problem in the framework of a metric task
system as proposed for the (online) transportation problems detailed in Chapter 2. We
encode the closed site where the VIPAFLEET system is running as a metric space
M = (V, d) induced by a connected network G = (V,E), where the nodes correspond
to stations, edges to their physical links in the closed site, and the distance d between
two nodes vi, vj ∈ V to the length of a shortest path from vi to vj in G. In V , we
have a distinguished origin vo ∈ V , the depot of the system, where all VIPAs are parked
when the system is not running, i.e., outside a certain time horizon [0, T ]. Figure 3.1
shows the industrial site “Ladoux” of Michelin at Clermont-Ferrand where a long-term
experimentation has been performed for several months.

3.1 Discrete Event-based System
The studied VIPAFLEET management system can be modeled as a discrete event-based
system where

• the system components are the set of VIPAs V H = {vh1, . . . , vhk} having Cap
as Capacity;

• a system state wt ∈ Zn specifies, for each VIPA vh, the load that is the number
of customers wtvh in the VIPA at a time t ≤ T within a time horizon [0, T ];

• an attribute att(vh, t) of VIPA vh at time t specifies the location of the VIPA at
time t, at which station, or on which arc;

• states can be changed by vehicle events (breakdown, meeting of two vehicles ...),
or customer requests (pick up and deliver users).

Hereby, any request rj is defined as a 6-tuple rj = (tj , xj , yj , pj , qj , zj) where
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Figure 3.1: This figure illustrates the network G of the industrial site “Ladoux” of
Michelin at Clermont-Ferrand. Each station is highlighted by a dot on the map; the
different parkings are illustrated by a black dot within a white dot. The depot of the
network is illustrated by a cross within a square and the restaurant by a cross within a
circle. The edges illustrated by 2 parallel lines are tunnels (the road cannot be shown in
the figure).

• tj ∈ [0, T ] is the release date (i.e., the time when rj becomes known),
• xj ∈ V is the origin node,
• yj ∈ V is the destination node,
• pj ∈ [0, T ] is the earliest possible pickup time,
• qj ∈ [0, T ] is the latest possible delivery time,
• zj specifies the number of passengers,

and tj ≤ pj , pj + d(xj , yj) ≤ qj , as well as zj ≤ Cap needs to be satisfied.
Note that a request rj may have missing information according to the mode wherein

a VIPA is operating (in a tram, elevator, or a taxi mode) and to the source of the request.
In a VIPAFLEET system, users can either call a VIPA directly from a station with the
help of a call-box or can book their request in real time by mobile or web applications.
Accordingly, different types of requests can be distinguished:

• pdp-request: a request coming from an evolved call-box specifying release date,
origin, destination and load, rpdj = (tj , xj , yj , null, null, zj), or simply rpdj = (tj , xj ,
yj , zj), where tj , xj , yj and zj are known.
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• full-request: a request coming from a web application rfj = (tj , xj , yj , pj , qj , zj),
where all the parameters tj , xj , yj , pj , qj , and zj are known.

In particular, the source of the request has an impact on the request type and there-
fore on the online transportation problem being considered.

• Having pdp-requests from call-boxes leads to an Online Dial-a-Ride Problem or
Online Pickup-&-Delivery Problem (VIPAs have to transport users from an origin
station to a destination).

• Having full-requests from a mobile or web application leads to an Online Dial-a-
Ride Problem with Time Window, or Online Pickup-&-Delivery Problem with Time
Windows (VIPAs have to transport users from an origin station to a destination
within a certain time window).

An operator manages a fleet of k VIPAs each with a capacity of Cap passengers.
The fleet management allows the operator to decide when and how to move the VIPAs
in the network, and to assign requests to VIPAs. The operator monitors the evolution
of the requests over time and

• decides which requests can be accepted (in case some requests have to be rejected),
and

• creates tasks to serve accepted requests by moving the VIPAs to some stations to
pickup, transport and deliver users.

More precisely, a task can be defined in different ways according to the type of
requests that we are dealing with.

• pdp-task τj = (tj , xj , tpickj , yj , t
drop
j , zj): a task created by the operator in order

to serve an accepted pdp-request rj = (tj , xj , yj , zj); this task is sent at time tj
to a VIPA, indicating that zj passengers have to be picked up at xj at time tpickj

and delivered at station yj at time tdropj ,where tj ≤ tpickj ≤ T − d(xj , yj) and
tj + d(xj , yj) ≤ tdropj ≤ T must hold.

• full-task τ fj = (tj , xj , tpickj , yj , t
drop
j , zj): a task created by the operator in order

to serve an accepted full-request rfj = (tj , xj , yj , pj , qj , zj), this task is sent at time
tj to a VIPA, indicating that zj passengers have to be picked up at station xj at
time tpickj and delivered at station yj at time tdropj , where pj ≤ tpickj ≤ qj−d(xj , yj)
and pj + d(xj , yj) ≤ tdropj ≤ qj must hold.

We denote by TA the set of tasks generated by the operator in order to serve the
accepted requests. The system states wt are influenced by customer requests. For that,
we define, for every time t, an update vector ut ∈ Zn, where each index corresponds to
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the number of customers leaving the vehicle vh (utvh < 0) or entering to vh (utvh > 0).
Then, we can define for a system state wt at time t the successor state wt+1 by

wt+1 = wt + ut.

A system state wt is feasible if 0 ≤ wtv ≤ Cap and the equality wt+1 = wt + ut holds
for every VIPA vh ∈ V H and infeasible otherwise.

An operator manages a fleet of k VIPAs each with a capacity for Cap passengers.
The fleet management allows the operator to decide when and how to move the VIPAs
in the network, and to assign tasks to VIPAs. In order to fulfill the tasks in TA, we let
a fleet of VIPAs (one or many, each having a capacity for Cap passengers) circulate in
the network inducing the metric space.

More precisely we determine a feasible transportation schedule S for (M, T ) consist-
ing of a collection of tours {Γ1, . . . ,Γk} where:

• each of the k VIPAs has exactly one tour,

• each (accepted) request rj is served not earlier than the time tj it is released (or
not earlier than pj if it is precised),

• each tour starts and ends in the depot.

Vehicle preemption Next, we explain the notion of preemption between tours,
where users are not transported from their pickup station to their delivery station by
the same VIPA, so they change VIPAs at a certain station v. Hereby, it is reasonable to
assume that the users can only change VIPAs at stations and not on the street where
changing vehicles can possibly cause a traffic jam, and is not desirable for a matter
of security since we are dealing with autonomous vehicles. In other words, there is a
preemption in v if a VIPA drops users at v and these users are picked up by another
VIPA in order to arrive to their final destination. If each user is transported from its
start station to its final destination by only one VIPA, then S is called non-preemptive,
otherwise preemptive.

Load preemption Splitting transportation requests having a load zj > 1, i.e. in-
volving several passengers is called load preemption. Therefore, if load preemption is
allowed, a request may be split if it is beneficial to do so. Then, a transportation request
consisting of more than one user may be served by more than one VIPA or consecutively
by the same VIPA.

Technical constraints In addition, depending on the policy of the operator of such
a system, different technical side constraints have to be obeyed. If two or many VIPAs
circulate on the same (sub)network, the fleet management has to handle e.g. the

• meeting of two vehicles on a station or an arc,
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• blocking the route of a VIPA by another one waiting at a station (if two VIPAs
are not allowed to enter the same node or arc at the same time),

and has to take into account

• the events of breakdown or discharge of a vehicle,

• technical problems with the server, the database or the communication network
between the stations, VIPAs and the central server.

Depending on the policy of the operator in the studied VIPAFLEET management
problem, different questions may arise:

• Do customers book their requests in advance?

• Can we reject customer requests, or do we have to serve them all?

– If we have to serve them all: is there a feasible solution?

– If we can reject requests: when does the algorithm have to make decision?

– When do we communicate the decision to the customers to accept or reject
the corresponding request?

• What is the objective function?

– Maximize the number of accepted requests/the profit?

– Minimize the costs/the tour length?

– Minimize the maximal/total waiting time?

– Is the riding time in the vehicle limited?

• Which strategy is best to plan tours?

• How do different algorithms perform?

• Do we allow load preemption?

• Which type of call-boxes do we use?

• Does a VIPA block the other or can one overtake the other in case of meeting of
two VIPAs?

• Can two VIPAs use a same arc in both directions?

The answer to these questions depends on the circulation mode used for the VIPAs.
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3.1.1 The Objective Functions

Depending on the policy of the operator, different objective functions may be considered.
Therefore, the goal is to construct a transportation schedule S = {Γ1, . . . ,Γk} w.r.t
minimizing one of the following objective functions.

• Total tour length: the length of a tour corresponds to the distance traveled by
the VIPA(s). In this case, the total tour length of S is the sum of the lengths of
the tours without considering the waiting time of the VIPA(s).

• Makespan: the time when the last VIPA returned to the depot v0 after all tasks
are served.

• Total waiting time: the sum of waiting times of the requests defined as the
difference between the pickup time of a request, the time when the VIPA performed
the pickup, and its release time.

• Total number of stops: the total number of stops where the VIPA stops at a
station to pick up or deliver users. This objective function is interesting to study in
case of autonomous vehicles as the time required by a VIPA to move between two
stations clearly takes into account the decelerations and the accelerations required
before and after the stop. This is a normal case while using any vehicle. But when
using autonomous vehicles, this characteristic may slow enormously the VIPAS, as
their speed is 15km/h and this will decrease if they have to stop at each station
and restart.

• Total number of rejected requests: by first maximizing the number of accepted
requests and second by serving the accepted ones with a minimum total tour length.

The global goal is to provide a feasible transportation schedule over the whole time
horizon (from the morning till the evening) that satisfies all accepted requests and min-
imizes one of these objective functions (Global Fleet Management Problem).

3.1.2 Requirements of each Circulation Mode

Recall that a VIPA can operate in three different circulation modes in order to supply
internal transportation:

• Tram mode: VIPAs continuously run on predefined lines or circuits in a prede-
fined direction and stop at a station if requested to let users enter or leave.

• Elevator mode: VIPAs run on predefined lines and react to customer requests
by moving to a station to let users enter or leave, thereby changing their driving
direction if needed.

• Taxi mode: users book their transport requests (from any start to any destination
station within the network with a start and an arrival time) in real time.
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Based on the circulation modes of the VIPA (tram, elevator, taxi) and the types of
requests (pdp-requests and full requests), we may notice the following.

• Running the VIPAs in different circulation modes on the whole network at the same
time is not possible, we may face security issues due to meeting of two VIPAs, and
the whole network is not suitable for all circulation modes. The VIPA can run
only on predefined lines or circuits when operating in tram mode, and only on
predefined lines when operating in elevator mode.

• Precising a time window by a customer for his pick up and delivery station is of
no interest if the VIPA is operating in tram mode or elevator mode.

Based on these technical precisions, we need to respect the following.

• Operating the VIPA in tram mode requires a subnetwork G′ = (V ′, E′) of G, that
is either a unidirected cycle, called circuit C or a bidirected path, called line L,
and pdp-requests (rj = tj , xj , yj , zj). If more than one VIPA operates on C or L,
the meeting of two VIPAs has to be addressed (avoided).

• Operating the VIPA in elevator mode, requires a subnetwork G′ = (V ′, E′) of G,
that is a bidirected path, called line L, and pdp-requests (rj = tj , xj , yj , zj). Only
one VIPA can operate on a line.

• Operating the VIPA in taxi mode, requires a connected network G = (V,E) with
full-requests (rj = tj , xj , yj , pj , qj , zj).

Hereby, the VIPAFLEET management system integrates three main online problems:
Tram Mode Problem, Elevator Mode Problem and Taxi Mode Problem. In our context,
we are confronted with an online situation for the three problems, as the transportation
requests are released over time. In the online situation, the customers interact with the
VIPAFLEET system during the routing and scheduling process. Thus, the system state
changes in general during the routing process in the online situation and the operator
has to react dynamically to the changes.

3.2 Tram Mode Problem (TramMP )
The tram mode is the most restricted operation mode where VIPAs run on predefined
circuits in a predefined direction at a constant speed equal to about 15 km/h and stop
at stations to let users enter or leave. The behavior of the VIPAs is even independent
of the source of requests (call-boxes, web or mobile application) and thus, the type of
generated requests and tasks. We consider circuits C with one distinguished node, the
origin of the circuit. Circuits can also be lines where one end is the origin and the VIPA
can change its direction only at the two ends of the line. In this mode, we consider that
a VIPA cannot overtake another. Running two or many VIPAs on the same circuit may
cause problems, thus while operating several VIPAs on the same circuit, we make use
of waiting strategies, which consider delaying the VIPA from performing its tour in an
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attempt to prevent its meeting with another VIPA. For example, it might be beneficial
for a VIPA to wait at its current location if it is empty and to be prepared to pick up
new requests on its way in case new requests are released. Moreover, sometimes a VIPA
may continue its tour without stopping at a station that is a pickup station of an already
released but unserved request (there is a user waiting at this station to be picked up) to
avoid blocking the next VIPA that will arrive shortly at this station.

Problem 3.1 (Tram Mode Problem (M,σ, T, k,Cap) (TramMP )). Given a metric
space M = (V, d) induced by a connected network C = (V,E) (circuit), a sequence σ
of pdp-requests rj = (tj , xj , yj , zj), a time horizon [0, T ] and k VIPAs of capacity Cap,
determine a feasible transportation schedule S = {Γ1, . . . ,Γk} to serve all requests in σ
with minimizing one of the following objective functions:

• total tour length,

• makespan,

• total waiting time,

• total number of stops.

3.3 The Elevator Mode Problem (EMP )

The elevator mode is a less restricted operation mode where one VIPA runs on a pre-
defined line (bi-directional elementary path) and can change its direction at any station
of this line to move towards a requested station. One end of this line is distinguished as
origin O (called, the “left” end). In this mode, we consider that a VIPA cannot overtake
another one, running two or many VIPAs on the same circuit may cause problems. Thus,
we concentrate on fully independent lines (they do not share any arc with each other).

Problem 3.2 (Elevator Mode Problem (M,σ, p, T, 1,Cap) (EMP )). Given a metric
space M = (V, d) induced by a connected network L = (V,E) (line), a sequence of pdp-
requests σ, a time horizon [0, T ] and one VIPA of capacity Cap, determine a feasible
transportation schedule S = {Γ1} to serve all requests in σ with respect to minimizing
one of the following objective functions:

• total tour length,

• makespan,

• total waiting time,

• total number of stops.
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3.4 The Taxi Mode Problem (TaxiMP )

The taxi mode, which characterizes standard DARP or PDP systems and makes vehicles
free to move from any origin to any destination along a network through a certain path
is an elaborated mode. Actually, current technology does not make it realistic in the
case of the VIPAs. Yet, this thesis involves the autonomous vehicles, the VIPAs, in
the operational research issues. Modeling and studying this system makes it possible
to create the schedules of these new vehicles. The future purpose would be to study
and model such systems without worrying about the fact that they are autonomous.
This work attempts to provide all the possible scenarios and analysis that may occur for
the Taxi mode within a closed site to provide a solution that can be used today with
technical constraints and that can be adaptable in the future when these constraints and
issues are solved.

Problem 3.3 (Taxi Mode Problem (M,σ, p, T, k,Cap) (TaxiMP )). Given a metric
space M = (V, d) induced by a connected network G = (V,E), a sequence of full-requests
σ, profits p for accepted requests, a time horizon [0, T ] and k VIPAs of capacity Cap,
determine a maximum subset σA of accepted requests (by maximizing the profit) and
find a feasible transportation schedule S = {Γ1, . . . ,Γk} of minimum total tour length to
serve all requests in σA.

3.5 Design of the Network

In the following, we discuss how the customer behavior and their requests are represented
within this model. This implies the representation of information about the behavior
of the customers of the VIPAFLEET system (e.g., gained from statistics and prelimi-
nary studies) and their usage within a metric task system in order to solve the online
transportation problems behind.

Defining three different transportation problems (TramMP , EMP , TaxiMP ) mo-
tivated by the circulation modes of the VIPA and the type of the requests solves the
VIPAFLEET management problem if we assume that we chose one problem among the
three and apply it over the whole time horizon [0, T ], or if we partition the time horizon
into different periods [t, t′] ⊆ [0, T ], and apply to it one of the three defined problems.
However, running all the VIPAs in one circulation mode on the whole network G over
the whole time horizon [0, T ] may not always be the best solution, i.e., If we consider
one Hamilton circuit where VIPAs operate in tram mode, the passengers may wait for
long time to be picked up or delivered. Considering a line that covers all the nodes of
the network where one VIPA operates in elevator mode is not enough, it will restrict the
quality of the solutions and limit the number of requests that can be accepted. In case
we use the taxi mode on the whole network G over the whole time horizon and solve the
Taxi Mode Problem, no partition of the network is needed. However, as we are working
with autonomous vehicles, the taxi mode is a very difficult mode to operate. The VIPAs
should apprehend the whole graph, arc by arc and they should handle all the degrees of
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road deviation and angles. Thereby, the taxi mode should be used in necessary cases,
when other modes fail to satisfy the requests.

Therefore we aim at proposing a suitable design for the network. This design might
be a collection of subnetworks (circuits and lines) such that all stations of the network
are covered, and the chosen subnetworks intersect (to ensure transports between all
possible origin/destination pairs), such collection is called a partition. Partitioning of
the network into subnetworks is mandatory for the reliability of the system, but the
question is how to partition the network? For that we especially rely on the customer
behavior. In the following we detail some preliminary studies of the transport requests
within the industrial site “Ladoux” of Michelin at Clermont-Ferrand where a long-term
experimentation [112] has been performed for several months (October 2014 - February
2015) that enabled us to suggest several partitioning solutions depending on the different
periods of the time horizon.

3.5.1 Patterns of Requests

Based on some preliminary studies, we notice some particularities that characterize the
requests in the VIPAFLEET management system on different periods of the day. We
notice the following changing patterns of requests over time.

Morning respectively evening pattern of requests The transport requests are
between parkings and buildings. Thus the requests have the same pickup stations, the
different parkings of the site, during the morning and respectively the same delivery
stations during the evening. Figure 3.2 shows the morning respectively evening pattern
of requests in the industrial site “Ladoux” of Michelin at Clermont-Ferrand.

Lunch pattern of requests: The transport requests are between buildings and the
restaurant of the industrial complex. Thus, the requests have either the same pickup
station or the same delivery station (the restaurant). Figure 3.3 shows an example of
the lunch pattern of requests in the industrial site “Ladoux” of Michelin at Clermont-
Ferrand.

General pattern of requests: There are mainly unspecified requests without com-
mon origins or common destinations.

3.5.2 Scenarios: Combinations of Modes and Subnetworks

A Global Fleet Management System allows the operator to switch between different
circulation modes within the different periods of the day in order to react to changing
patterns of customer demands evolving during the day. When the system is prepared
before the beginning of the service within a certain period, it is essential to use the
information of the preliminary studies about the customer behavior to predict a good
design of the network for the next period. For that, for a certain period [t, t′] ⊆ [0, T ],
we define a metric subspace M ′ = (V ′, d′) induced by a set of subnetworks of G, where

36



3. Modeling Framework for the VIPAFLEET Management System

v21v20

v19
v18v17

v16 v15

v13 v12

v10

v9 v8

v7v6

v5

v4
v3

v2

v1

v0

v11

v14

node restaurant depotparking

v21v20


v19
v18v17

v16 v15

v13 v12

v10

v9 v8

v7v6

v5

v4
v3

v2

v1

v0

v11

v14

node restaurant depotparking

Figure 3.2: This figure illustrates an example of the morning respectively evening pattern
of requests on the network G of the industrial site “Ladoux” of Michelin at Clermont-
Ferrand. Each station is highlighted by a dot on the map; the different parkings are
illustrated by a black dot within a white dot. The depot of the network is illustrated by
a cross within a square. The transportation requests of the customers are indicated by
arcs from the origin to the destination.

a subset of nodes and arcs of the network is active (i.e. where the VIPAs have the right
to perform a move on this arc or pass by this node during [t, t′]).

Based on all the above technical features and properties that have an impact on the
feasibility of the transportation schedule, we can cluster the requests into subproblems,
apply to each subproblem a certain algorithm, and check the results in terms of feasibility
and performance. The choice of the design of the network in the industrial site, where
the VIPAs operate, will change over time according to the technical features, properties
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Figure 3.3: This figure illustrates an example of the lunch pattern of requests of the
network G of the industrial site “Ladoux” of Michelin at Clermont-Ferrand. The requests
are between the buildings (dot) and the restaurant (a cross within a circle).

and the request patterns. We consider four typical scenarios (periods [t, t′] ⊆ [0, T ]) that
occurred while operating a fleet in an industrial site based on some preliminary studies
of the transport requests within the site.

Morning/evening: The transport requests are between parkings and buildings. For
this time period, we propose the following.

• Design a collection of subnetworks (lines and circuits) as shown in Figure 3.4 s.t.

- all buildings and parkings are covered,
- each subnetwork contains one parking p and all the buildings where p is the
nearest parking (to ensure that for each request, during the morning origin
(the parking) and destination (a building) lie in the same subnetwork, and
during the evening destination (the parking) and origin (a building) lie in the
same subnetwork).

• Depending on the number of employees in the served buildings, assign one VIPA
(in elevator mode) to every line and one or several VIPAs (in tram mode) to each
circuit.

Lunch time: The transport requests are between buildings and the restaurant of the
industrial complex. For this time period, we propose the following.

• Design a collection of lines and circuits as shown in Figure 3.5 s.t.
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Figure 3.4: This figure illustrates an example of a collection of subnetworks (one line and
two circuits) for the morning/evening scenario, each subnetwork is shown in a different
color. All buildings and parkings are covered in this partition. Each subnetwork contains
one parking (black dot within a white dot). The station v7 is a common station for two
subnetworks.

- all buildings are covered,

- each subnetwork contains the station of the restaurant (to ensure that for
each request, to or from the restaurant, origin and destination lie in the same
subnetwork).

• Depending on the number of employees in the served buildings, assign one VIPA
(in elevator mode) or one or several VIPAs (in tram mode) to the subnetworks.

Emergency case: In the case of a breakdown of the central servers, the database or
the communication system, transports between all possible origin/destination pairs have
to be ensured without any decision by the operator. For that, we propose

• to use one Hamilton cycle as shown in Figure 3.6, through all the stations as
subnetwork and

• to let half of the fleet of VIPAs operate in each direction on the cycle (all in tram
mode).

Other periods: There are mainly unspecified requests without common origins or
common destinations. The operator can use all VIPAs in his fleet in taxi mode on the
complete network or design lines and circuits s.t. all stations are covered and the cho-
sen subnetworks intersect (to ensure transports between all possible origin/destination
pairs). For example, this can be done by
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Figure 3.5: This figure illustrates an example of a collection of subnetworks (two lines
and one circuit) for the lunch scenario, each subnetwork is shown in a different color.
All stations (buildings and parkings) are covered in this partition, and each subnetwork
contains the station of the restaurant (a cross within a circle).

• using one Hamilton cycle through all stations where half of the fleet operates (in
tram mode) in each direction, (leading to tour non-preemptive schedules)

• a spanning collection of lines and circuits meeting in a central station, as shown in
Figure 3.3, where one VIPA (in elevator mode) operates on each line, one or several
VIPAs (in tram mode) on each circuit (leading to tour preemptive schedules).
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Figure 3.6: This figure illustrates an example of a Hamilton cycle for emergency cases,
i.e. all stations (buildings, parkings, restaurant and depot) are covered in this cycle.
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Outline

The sequel of this thesis is structured as follows. We study each of the three online
transportation problems (Tram Mode Problem, Elevator Mode Problem, and Taxi Mode
Problem) separately in Chapters 4, 5 and 6.

In Chapter 4 we study the Tram Mode Problem. We propose different online algo-
rithms. We present a model for computing the optimal offline solution for the TramMP
w.r.t. each of the objective functions (total tour length, makespan, total waiting time and
total number of stops). Then we evaluate the performance of the proposed algorithms
in comparison with the optimal offline solutions in theory (with the help of competitive
results), and in practice as well (with the help of some computational results).

In Chapter 5 we study the Elevator Mode Problem. We propose an online algorithm
(see Section 5.1). We present a model for computing the optimal offline solution for
the EMP w.r.t. each of the objective functions (total tour length, makespan, total
waiting time and total number of stops). Then we evaluate the performance of the
proposed algorithm in comparison with the optimal offline solutions in theory (with the
help of competitive results), and in practice as well (with the help of some computational
results).

In Chapter 6, we consider the Taxi Mode Problem, where the objective is a hier-
archical one; to maximize the number of accepted customer requests (primary) and to
serve them at minimum costs (secondary). This means that, the operator decides which
request can be accepted and which has to be rejected. We distinguish two main problems
that arise from the Taxi Mode Problem, the Non-Preemptive and the Preemptive Taxi
Mode Problems, and provide a solution approach for each of them by means of flows in
time-expanded networks. In Section 6.1.1, we present a way to compute optimal offline
solutions for the Non-Preemptive Taxi Mode Problem. In Section 6.1.2, we propose a re-
plan strategy for the Online Non-Preemptive Taxi Mode Problem that, in fact, solves the
online problem by computing a sequence of offline subproblems on certain subsequences
of requests. In Section 6.2.1, we propose two ways to solve the Offline Preemptive Taxi
Mode Problem optimally first using a path formulation and second using multicommod-
ity flow. Due to the long computation time of finding a good or an optimal solution in
the Preemptive Taxi Mode Problem, we propose a flow-based heuristic. In Section 6.2.2,
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we propose a modified replan strategy for the Online Preemptive Taxi Mode Problem
that, in fact, solves the online problem by computing a sequence of “heuristic offline sub-
problems” on certain subsequences of requests. Then, we evaluate the performance of
the proposed replan strategies in comparison with the optimal offline solutions in theory
(with the help of competitive analysis, in Section 6.3), and in practice as well (with the
help of some computational results, in Section 6.4).

Finally, we end this thesis with some concluding remarks on our approaches and on
the global fleet management system. We also give some future lines of research and open
problems.
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Chapter 4
Tram Mode Problem

In this chapter, we treat the PDP related to the tram mode. It is the most restricted
operation mode in which VIPAs run on predefined circuits in a predefined direction at
a constant speed of about 15km/h and stop at stations to pick up or deliver users. We
consider circuits C with one distinguished node, v0, the origin of the circuit. Circuits
can also be lines where one end is the origin and the VIPA can change its direction only
at the two ends of the line.

The input for the Online or Offline Tram Mode Problem (M,σ, T, k,Cap) consists of
the following data:

• a circuit or a bi-directed path C = (V,E, d), where the nodes in V correspond
to stations, edges in E to their links, and edge weights d : E → R+ determine
the driving times between two nodes vi, vj ∈ V with respect to the distance d
corresponding to the length of a shortest path from vi to vj .
• a sequence σ = {r1, . . . , rh} of pdp-requests1 rj = (tj , xj , yj , zj) with zj ≤ Cap,
• a time horizon [0, T ],
• the total number k of VIPAs, and the capacity Cap of the VIPAs as the maximum
number of passengers which can be simultaneously transported in one VIPA.

The output of the Online or Offline Tram Mode Problem is a feasible transportation
schedule S serving all requests in σ.

The goal is to construct a transportation schedule S = {Γ1, . . . ,Γk} w.r.t minimizing
one of the following objective functions: total tour length, makespan, total waiting time
and total number of stops.

1In this chapter, the term “request” means pdp-request.

43



4. Tram Mode Problem

4.1 Online Algorithms

In tram mode, the possible decisions of the VIPA are either to continue its tour or to
wait at its current position for newly released requests. Starting from the origin of C,
a tour of a VIPA operating in tram mode consists of one or many full rounds called
“subtour(s)”. Each subtour starts and ends in the origin of the circuit and has a length
of |C|, the length of the circuit C. For the online situation, we propose the following
algorithm for VIPAs operating in tram mode on a circuit C:

SIR (“Stop If Requested”)

• each VIPA waits in the origin of C; as soon as a request is released, a VIPA starts a
full subtour in a given direction, thereby it stops at a station when a user requests
to enter/leave.

SIR starts its tour as soon as a request is released. During the morning respectively
the evening, all requests have the same pickup respectively delivery node. Therefore,
SIR can be adapted to accumulate the requests up to the capacity Cap of the VIPA
before starting its tour. For that, we propose two other algorithms for VIPAs operating
in tram mode in the morning respectively evening:

SIFM (“Start if fully loaded”) for the morning scenario

• each VIPA waits in the parking until Cap passengers have entered,

• it starts a full round (as soon as it is fully loaded) and stops at stations where
passengers request to leave.

SIFE (“Start if fully loaded”) for the evening scenario

• each VIPA waits in the parking until enough requests are released to reach Cap,

• it starts a full round and stops at stations where passengers request to enter and
returns (fully loaded) to the parking.

The algorithms SIFE and SIFM can be merged together to obtain a version for the
lunch scenario, where requests have either the same pickup node or the same delivery
node, which is the origin v0 of the circuit.

SIFL (“Start if fully loaded on at least one arc”)

• each VIPA waits in the restaurant until enough requests are released s.t. by serving
these requests using one VIPA, the VIPA is fully loaded at least on one arc in the
circuit.

• it starts a full round and stops at stations where passengers request to enter or
leave and returns to the restaurant.
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4.2 Minimizing the Total Tour Length

4.2.1 Optimal Offline Solution for the TramMP w.r.t. Minimizing
the Total Tour Length

To compute an optimal offline solution OPT (σ) w.r.t. minimizing the TTL, we will
provide two possibilities:

• one as a coloring problem in an interval graph.

• another by means of flows in a suitable network.

In both cases, the optimal solution can be computed in polynomial time. It will turn out
that the interpretation as coloring problem is helpful for the argumentation in subsequent
proofs, whereas the flow formulation is more practical to perform the computations.

Optimal offline solution via colorings of interval graphs: An interval graph G(I)
is obtained as intersection graph of a set I of intervals within a line segment, where

• the nodes of G(I) represent the intervals in I,

• the edges of G(I) represent their conflicts in terms of overlaps (i.e. two nodes are
adjacent if the corresponding intervals have a non-empty intersection).

The clique number w(G(I)) corresponds to the largest number of pairwise intersecting
intervals in I, a coloring corresponds to an assignment of colors to intervals such that
no two intersecting intervals receive the same color. In all graphs, the clique number is
a lower bound on the minimum number X (G(I)) of required colors. For interval graphs
it was shown in [104] that the following Greedy coloring algorithm always produces an
w(G(I))-coloring of G(I):

• sort all intervals in I according to their left end points.

• color the nodes of G(I) in this order: starting with the first node, assign to each
node the smallest color that none of its already colored neighbors has.

We next interpret the offline solution for VIPAs operating in tram mode on a circuit
in this context. We have given a circuit C = {vo, v1, . . . , v`} and a sequence σ of m
requests rj = (tj , xj , yj , zj) with origin/destination pairs (xj , yj) ∈ C × C. W.l.o.g. we
may assume that the origin v0 of the circuit does not lie in the interior of (xj , yj) for
any rj ∈ σ. We transform C into a path P = {v0, v1, . . . , v`, v0} having the origin v0
of C as start and end node (as the line segment), and we split each request rj into zj
many uniform requests (resp. single passengers), interpreted as subpaths (xj , yj) ⊆ P
(to obtain the (multi) set I of intervals). By construction, we have for the resulting
interval graph Gσ = G(I):

• the clique number w(Gσ) corresponds to the maximum number of requests rj in σ
(counted with their multiplicities zj) traversing a same edge of P ,
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• a coloring of Gσ corresponds to an assignment of places in the VIPA(s) to passen-
gers.

Clearly one VIPA can serve all (uniform) requests from up-to Cap color classes in
a single subtour traversing C. We can, thus, turn any coloring of Gσ into a feasible
transportation schedule by

• waiting until time tm in the origin v0 (to ensure that all requests are released before
they are served),

• selecting up to Cap many color classes and assigning the corresponding uniform
requests (i.e. single passengers) to one VIPA, to be served within the same subtour
traversing C, until all requests are served.

This leads to the following algorithm to compute optimal offline solutions for the tram
mode:

Opt-Tram w.r.t. TTL
Input: σ = {r1, r2, . . . , rm}, C = {vo, v1, . . . , v`}, Cap and k
Output: transportation schedule of minimum total tour length

(i) for each rj = (tj , xj , yj , zj) ∈ σ: create zj many intervals (xj , yj) to obtain I,

(ii) sort all intervals in I in increasing left end points (and in case left end points are
equal, in increasing right end points),

(iii) create the interval graph G(I) and apply the Greedy algorithm to color it,

(iv) wait until tm (the release time of the last request),

(v) as long as there are unserved requests:

select Cap many (or all remaining) color classes, assign the corresponding passen-
gers to a VIPA and perform one subtour traversing C to serve them.

Example 4.1. Consider a circuit C = (a, b, c, d, e) with origin a and one unit-speed
server (i.e. a VIPA that travels 1 unit of length in 1 unit of time) with capacity Cap = 2,
and a sequence σ of 6 requests:

r1 = (1, c, e, 2) r4 = (4, b, c, 2)

r2 = (2, a, d, 1) r5 = (5, a, b, 1)
r3 = (3, d, e, 1) r6 = (6, b, e, 1)
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(i) for each rj ∈ σ we create zj many intervals (xj , yj) to obtain I:
a b c d e a

I11 = (c, e)

I12 = (c, e)

I2 = (a, d)

I3 = (d, e)

I41 = (b, c)

I42 = (b, c)

I5 = (a, b)

I6 = (b, e)

(ii) We sort all intervals in I according to their left end points: I5, I2, I41, I42, I6, I11, I12, I3.

(iii) We create the interval graph G(I):

I5 I2 I41 I42 I6 I11 I12 I3

(iv) We apply the Greedy algorithm to color it:

a b c d e a

color 1:
I5 I41 I11

color 2:
I2 I3

color 3:
I42 I12

color 4:
I6

(v) As long as there are unserved requests, we select 2 random color classes, assign
the corresponding passengers to a VIPA and perform one subtour traversing C to
serve them, for instance:

• first VIPA, first round: color 1 and 2 (r5, r2, r41, r11, r3),

• second VIPA, or second round of first VIPA: color 3 and 4 (r42, r12, r6).

♦

Theorem 4.2. Algorithm Opt-Tram provides a load-preemptive optimal solution for
the Offline Tram Mode Problem w.r.t. minimizing the total tour length.
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Proof. By construction, splitting the requests rj from σ according to their multiplicities
zj gives a (multi)set I of intervals where each of them stands for a uniform request of a
single passenger. Accordingly, the clique number w(G(I)) of the resulting interval graph
G(I) corresponds to the maximum number of passengers traversing a same edge e of the
circuit C, that is

w(G(I)) = max{
∑

e∈(xj ,yj),rj∈σ
zj ; e ∈ C}

On the other hand, a coloring of G(I) corresponds to an assignment of places in the
VIPA(s) to passengers, and subtours for the VIPA(s) can be easily created by repeatedly
choosing Cap color classes and assigning the passengers colored that way to the Cap
places of one VIPA. Clearly, at least

⌈
w(G(I))

Cap

⌉
many such subtours are needed to serve

all requests. The transportation schedule obtained is feasible because, by waiting until
tm to start any subtour, we ensure that all requests have been released before. As
the Greedy coloring algorithm provides an optimal w(G(I))-coloring of G(I), we can
guarantee to obtain a feasible transportation schedule performing the minimal number
of subtours by always choosing Cap colors (except for the last subtour where we choose
all remaining ones) so that the minimal total tour length equals

OPT (σ) =
⌈
w(G(I))
Cap

⌉
· |C| .

The resulting solution is a load-preemptive transportation schedule because it cannot be
ensured that all zj passengers coming from the same request rj are served by the same
VIPA (even if zj ≤ Cap holds).

Remark 4.3.
• The minimal total tour length does not depend on the number of VIPAs used to
serve all requests.

• Algorithm Opt-Tram is clearly polynomial because all the steps of the algorithm
can be computed in polynomial time.

• By not selecting Cap color classes randomly to create subtours, it is possible to:

• reduce load-preemption,
• minimize the number of stops performed to let passengers leave or enter a
VIPA,

but the so modified algorithm is not necessarily polynomial anymore.

�

In Example 4.1, if we do not select the color classes randomly, but

• first VIPA, first round contains color 1 and 3 thus, the intervals I41, I42 and I11, I12
are together, and r5, r4 and r1 are served.
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• second VIPA, or second round of first VIPA contains color 2 and 4 s.t. r2, r3, and
r6 are served

Then, this selection avoids load-preemption (as I11, I12 and I41, I42 are served together)
and yields the minimum possible number of stops (8) from this coloring. Adding this
procedure to the algorithm Opt-Tram changes its complexity. Given the set Color =
{1 · · · colors}, finding the partition P ∗ of colors that

• minimizes the total number of stops, and or

• avoids or reduce load-preemption

is a set partitioning problem that is NP-hard. Hereby, this procedure consists of solving
a set partitioning problem and Opt-Tram will have an exponential running time if the
color classes are not selected randomly.

Optimal Offline Solution w.r.t. minimizing the Total Tour Length via a min-
cost flow In order to solve the Optimal Offline Solution for the Tram Mode Problem
w.r.t. minimizing the Total Tour Length, we build a demand network CD = (VD, AD)
based on σ and the original circuit C.
The node set VD = s ∪ Vx ∪ Vy ∪ t is composed of

• all origins xj of all requests rj in σ, in Vx,
• all destinations yj of all requests rj in σ, in Vy,
• the nodes s as source that correspond to the origin of the circuit where all VIPAs

are initially placed and t as sink.

The arc set AD = A+ ∪AR ∪AL ∪A− is composed of

• source arcs from s to all origins xj ∈ Vx, in A+,
• request arcs from each xj ∈ Vx to yj ∈ Vy in AR,
• link arcs from all destinations yj ∈ Vy to all reachable origins xi ∈ Vx such that
yj ≤ xj in driving directions of the VIPAs, i.e. the origin v0 of the circuit does not
lie in the interior of the path (yj , xj), in AL,
• sink arcs from all destinations yj ∈ Vy to t in A−.

This demand network CD = (VD, AD) reflects the requests rj ∈ σ. We require a flow
f(a) = zj on all request arcs a ∈ AR to ensure that all requests are served, see constraint
(4.1b).

The demand network CD is acyclic by construction. A flow f through this demand
network CD corresponds to the places occupied by the passengers in the VIPAs. For
all internal nodes v ∈ Vx ∪ Vy, we use normal flow conservation constraints, (see 4.1c).
Flow conservation constraints (4.1c) give rise to a totally unimodular matrix (the node-
arc incidence matrix of the digraph underlying the network CD), therefore integrality
constraints are not required. We consider a min-cost flow problem, where the costs
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correspond to the traveled distances c(a) = d(u, v) on all arcs a = (u, v) ∈ AD. The
corresponding linear program is detailed in (4.1).

min
∑
a∈AD

c(a)f(a) (4.1a)

s.t. f(a) = zj ∀a ∈ AR (4.1b)∑
a∈δ−(v)

f(a) =
∑

a∈δ+(v)
f(a) ∀v ∈ Vx ∪ Vy (4.1c)

f(a) ≥ 0 ∀a ∈ AD (4.1d)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set of
incoming arcs of (v, t). There are no capacity constraints on arcs needed. In fact, for
each unit of flow sent from the source s to the destination t, a cost is incurred equal
to the sum of costs of all the arcs traversed. As we consider a min-cost flow problem
consisting in finding a solution that minimizes the total cost (4.1a) while meeting the
demand of all request arcs in the network (4.1b), then capacities on the arcs are taken
implicitly.

The linear program (4.1) solves the offline version of the Tram Mode Problem, where
the whole sequence σ of requests is known at time t = 0, w.r.t. minimizing the total
tour length to optimality. The resulting demand network CD = (VD, AD) of the circuit
presented in Example 4.1 is shown in Figure 4.1, and the solution computed by the LP
(4.1) is shown in Figure 4.2.

Theorem 4.4. The linear program (4.1) provides an optimal load-preemptive solution
of the Offline Tram Mode Problem w.r.t. minimizing the total tour length.

Proof. Let f∗ be the optimal flow according to (4.1). By requiring f(a) = zj ∀a ∈ AR,
it is clear that all requests are served. This demand network CD is acyclic, and by its
construction we have the resulting min-cost flow where

• For a partition of VD = Vs ∪ Vt such that s ∈ Vs and t ∈ Vt, the subset of arcs
δ+(Vs) = {(u, v) ∈ AD : u ∈ Vs, v ∈ Vt} is an (s, t)-cut. If Cut = δ+(Vs) is a
maximal (s, t)-cut in CD, then

∑
a∈A− f(a) =

∑
a∈A+ f(a) =

∑
a∈Cut f(a), and

this maximal (s, t)-cut in CD corresponds to the maximum number of passengers
traversing a same edge in the original circuit C.

• for each flow unit, the traversed (s, t)-path in CD by this flow unit corresponds to
one place in a VIPA during a subtour in the original circuit C traversing v0 →
v1 → . . . → vn → v0. Hereby, selecting Cap many such (s, t)-paths creates the
load for one VIPA traversing C. Thus,

⌈
val(f∗)

Cap

⌉
many such subtours are needed

to serve all requests.

We can note certain similarities between the optimal offline solution computed via col-
orings of interval graphs and this optimal offline solution computed via a min-cost flow.
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The clique number w(G(I)) corresponds to the value
∑
a∈Cut f(a) of the max-cut Cut

and the coloring of Gσ corresponds to the (s, t)-paths traversing C, therefore, by using
the same strategy, where one VIPA can serve all (uniform) requests from up to Cap
color classes in a single subtour traversing C. We can, thus, turn any optimal computed
flow f∗ in CD into a feasible transportation schedule by

• waiting until time tm in the origin v0 (to ensure that all requests are released before
they are served),

• selecting up to Cap many (s, t)-paths and assigning the corresponding uniform
requests (i.e. single passengers) to one VIPA, to be served within the same subtour
traversing C, until all requests are served.

As the considered min-cost flow problem consists in finding a solution that minimizes
the total cost while meeting the demand of all request arcs in the network, therefore∑

rj∈σ
zj =

∑
a∈AR

f(a)

By construction, for each flow unit, the traversed (s, t)-path in CD by this flow unit
contains at least one arc a ∈ AR. On the other hand, the (s, t)-paths in CD correspond
to an assignment of places in VIPA(s) to passengers, and subtours for the VIPA(s) can
be easily created by repeatedly choosing Cap (s, t)-paths and assigning uniform requests
(i.e. single passengers) covered by the corresponding (s, t)-paths to the Cap places of
one VIPA.

Clearly, at least
⌈
val(f∗)

Cap

⌉
=
⌈∑

a∈Cut f(a)
Cap

⌉
many such subtours are needed to serve

all requests. The transportation schedule obtained is feasible because, by waiting until
tm to start any subtour, we ensure that all requests have been released before. As the
linear program (4.1) provides an optimal flow f∗, we can guarantee to obtain a feasible
transportation schedule performing the minimal number of subtours by always choosing
Cap (s, t)-paths (except for the last subtour where we choose all remaining ones) so that
the minimal total tour length equals

OPT (σ) =
⌈
val(f∗)
Cap

⌉
· |C| .

The resulting solution is a load-preemptive transportation schedule because it cannot be
ensured that all zj passengers coming from the same request rj are served by the same
VIPA (even if zj ≤ Cap holds).

Note that the decomposition shown in Theorem 4.4 is not necessarily unique. Fur-
thermore, we have the same implications as mentioned for the coloring approach in
Remark 4.3 concerning the selection of (s,t)-paths.
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Figure 4.1: This figure illustrates the network CD = (VD, AD) of Example 4.1 built in
order to compute the optimal solution w.r.t. minimizing the total tour length. The
requests are illustrated by solid arcs, the source and sink arcs by dotted arcs and the
link arcs by dashed arcs.

s t

a, r5 b, r5 c, r1 e, r1

a, r2 d, r2

b, r4 c, r4 d, r3 e, r3

b, r6 e, r6

0

1

0

1

0

2

1

0 3

0

1

11

1

0

2

1

1

3

1

Figure 4.2: This figure illustrates the resulting flow computed by the LP (4.1) on the
network CD = (VD, AD) of Example 4.1. The resulting flow has a value of 4. For each
flow unit, the corresponding (s, t)-path is indicated by a different color and thickness for
its arcs.

4.2.2 Competitive Analysis

In fact, in tram mode, the possible decisions of the VIPA are either to continue its
tour or to wait at its current position for newly released requests. This can be used by
the adversary to “cheat” an online algorithm, in order to maximize the ratio between
the online and the optimal costs. As competitive results, (ratios) against an oblivious
adversary are the strongest, in the analysis of competitive ratios we prove that the
algorithms are c− competitive against the oblivious adversary. Here, the strategy of the
adversary is to force SIR to serve only one uniform request per subtour, whereas the
adversary only needs a single subtour traversing C to serve all requests.
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Example 4.5. Consider a circuit C = (v0, v1, . . . , v`) with origin v0, a unit distance
between vi and vi+1 for each i, and one unit-speed server with capacity Cap. The
adversary releases a sequence σ of Cap · |C| uniform requests that force SIR to perform
one full round (subtour) of length |C| = ` + 1 for each uniform request, whereas the
adversary is able to serve all requests in a single subtour (fully loaded on each edge):

• Cap requests rj = ((j − 1) |C| , v0, v1, 1) for 1 ≤ j ≤ Cap

• Cap requests rj = ((j − 1) |C| , v1, v2, 1) for Cap + 1 ≤ j ≤ 2Cap
...

• Cap requests rj = ((j − 1) |C| , v`−1, v`, 1) for (`− 1)Cap + 1 ≤ j ≤ `Cap

• Cap requests rj = ((j − 1) |C| , v`, v0, 1) for `Cap + 1 ≤ j ≤ (`+ 1)Cap

SIR starts its VIPA at time t = 0 to serve r1 = (0, v0, v1, 1) and finishes the first subtour
of length |C| without serving any further request. When the VIPA operated by SIR is
back to the origin v0, the second request r2 = (|C| , v0, v1, 1) is released and SIR starts
at t = |C| = `+1 a second subtour of length |C| to serve r2, without serving any further
request in this subtour. This is repeated for each request yielding SIR(σ) = Cap·|C|·|C| .

The adversary waits at the origin v0 until t = (Cap − 1) |C| and serves all requests
r1, . . . , rCap from v0 to v1. Then he waits until t = (2Cap − 1) |C| at v1 and serves all
requests rCap+1, . . . , r2Cap from v1 to v2. This is repeated for all Cap requests from vi
to vi+1, yielding OPT (σ) = |C| . The tours performed by SIR and OPT are illustrated
in Fig 4.3. Therefore, we obtain

SIR(σ)
OPT (σ) = Cap · |C| · |C|

|C|
= Cap · |C|

as a lower bound for the competitive ratio of SIR. ♦

t, d
O C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C

C

Figure 4.3: This figure illustrates the tour performed by SIR (in blue) and the adversary
(dotted in green) in order to serve the requests (dashed arcs in red) from Example 4.5
for Cap = 3, ` = 3 and |C| = 4.

In the special case of the lunch scenario, we may consider VIPAs operating in tram
mode on circuits, where each circuit has the restaurant as its distinguished origin. A
sequence σ′ containing the first Cap and the last Cap requests from the sequence pre-
sented in Example 4.5, shows that 2 · Cap is a lower bound on the competitive ratio of
SIR during lunch time, see Figure 4.4 for an illustration.
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t, d
O C 2C 3C 4C 5C 6C

C

Figure 4.4: This figure illustrates the tour performed by SIR (in blue) and the adversary
(dotted in green) in order to serve the first Cap and the last Cap requests (dashed arcs
in red) from the sequence presented in Example 4.5 for Cap = 3, ` = 3 and |C| = 4.
These requests satisfy the criterias of the lunch scenario.

As for the morning respectively evening scenario, we consider VIPAs operating in
tram mode on a circuit C where the parking is the distinguished origin of C. A sequence
σ′′ containing the first Cap resp. last Cap requests from the sequence presented in
Example 4.5 shows that Cap is a lower bound on the competitive ratio of SIR during
morning respectively evening, see Figure 4.5 and Figure 4.6, respectively.

t, d
O C 2C 3C

C

Figure 4.5: This figure illustrates the tour performed by SIR (in blue) and the adversary
(dotted in green) in order to serve the first Cap requests (dashed arcs in red) from the
sequence presented in Example 4.5 for Cap = 3, ` = 3 and |C| = 4. These requests
satisfy the criterias of the morning scenario.
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t, d
O C 2C 3C

C

Figure 4.6: This figure illustrates the tour performed by SIR (in blue) and the adversary
(dotted in green) in order to serve the last Cap requests (dashed arcs in red) from the
sequence presented in Example 4.5 for Cap = 3, ` = 3 and |C| = 4. These requests
satisfy the criterias of the evening scenario.

We can prove that the previously presented examples are indeed worst cases for SIR:

Theorem 4.6. For one or several VIPAs with capacity Cap operating in tram mode on
a circuit C with length |C|, SIR is w.r.t the objective of minimizing the total tour length

• Cap · |C|-competitive in general,

• 2 · Cap-competitive during the lunch scenario,

• Cap-competitive during the morning scenario resp. the evening.

Proof. Recall that a transportation schedule is based on a coloring of the interval graph
Gσ, whose nodes stand for passengers from σ, i.e. to the requests rj ∈ σ counted with
their multiplicities zj . The worst coloring of Gσ is to assign different colors to all nodes,
i.e. using |Gσ| =

∑
rj∈σ zj many colors. The worst transportation schedule results

if, in addition, each VIPA performs a separate subtour of length |C| for each color (i.e.
serving a single uniform request only per subtour), yielding |Gσ| · |C| as total tour length.

SIR can indeed be forced to show this behavior by releasing the requests accordingly
(i.e. by using uniform requests with zj = 1 each and with sufficiently large delay between
tj and tj+1),

• in general: using the sequence σ from Example 4.5,

• during lunch: using the sequence σ′ restricted to the first Cap and the last Cap re-
quests (tj , v0, v1, 1) and (tj , v`, v0, 1) from the sequence σ presented in Example 4.5
as in Figure 4.4,

• during morning/evening: using the sequence σ′′ restricted to the first Cap requests
(tj , v0, v1, 1) (resp. the last Cap requests (tj , v`, v0, 1)) from the sequence σ pre-
sented in Example 4.5, as Figure 4.5 (resp. Figure 4.6) shows.

55



4. Tram Mode Problem

Furthermore, to maximize the ratio between this total tour length obtained by SIR and
the optimal offline solution, we need to ensure that all requests in σ can be served with
as few subtours of length |C| as possible. This is clearly the case if all requests have
length 1 and there are Cap many requests traversing the same edge of C s.t. a single
subtour suffices to serve all of them (see again Example 4.5). This leads to

• |Gσ| = |σ| = Cap · |C| and w(G(I)) = Cap s.t.

SIR(σ)
OPT (σ) = Cap · |C| · |C|

1 · |C| = Cap · |C|

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible
sequences in general.

• |Gσ′ | = |σ′| = 2Cap and w(G(I)) = Cap s.t.

SIR(σ′)
OPT (σ′) = 2 · Cap · |C|

1 · |C| = 2 · Cap

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible
sequences during the lunch.

• |Gσ′′ | = |σ′′| = Cap and w(G(I)) = Cap s.t.

SIR(σ′′)
OPT (σ′′) = Cap · |C|

1 · |C| = Cap

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible
sequences during the morning or evening.

As for SIFM and SIFE , we can ensure optimality for these two strategies:

Theorem 4.7. SIFM (resp. SIFE) is 1-competitive w.r.t minimizing the total tour
length for one or several VIPAs operating in tram mode on a circuit during the morning
(resp. evening).

Proof. Both variants of SIF are optimal, because due to the special request structure
during the morning resp. evening, all requests traverse the first (resp. last) edge of
P in the morning (resp. evening) s.t. Gσ becomes a clique. In other words, no two
passengers can share a same place in a VIPA s.t. starting fully loaded from the origin
(resp. returning fully loaded to the origin) indeed provides the optimal solution w.r.t.
minimizing the total tour length.

Recall that the two previous algorithms SIFE and SIFM can be merged together to
obtain a version for the lunch scenario, SIFL. We show in the next theorem that SIFL
is 2-competitive.
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Theorem 4.8. SIFL is 2-competitive w.r.t minimizing the total tour length for one or
several VIPAs operating in tram mode on a circuit during the lunch.

Proof. Due to the special request structure during the lunch, all requests start and end
in the restaurant and, thus, traverse the first and the last edge of P s.t. Gσ consists of
two cliques Q1 and Q2 resulting from all uniform requests traversing the first and the
last edge, respectively.
The worst transportation schedule of SIFL results if the requests are released in a way
that SIFL never serves a request from Q1 with one from Q2 together, therefore by each
subtour of length |C| performed by SIFL Cap requests are served either from the clique
Q1 or from Q2, yielding SIFL(σ) = d |Gσ |Cap e · |C| as total tour length.
In order to maximize the ratio, OPT needs to serve as many requests as possible using
the least total tour length possible. OPT always combines Cap requests from Q1 with
Cap requests from Q2 and serves them together by performing a subtour of length |C|.
In addition, to avoid not fully loaded moves for OPT, the adversary chooses |Q1| = |Q2|
and as a multiple of Cap which leads to OPT (σ) = |Gσ |

2Cap · |C|, therefore

SIFL(σ)
OPT (σ) =

|Gσ |
Cap · |C|
|Gσ |
2Cap · |C|

= 2

is the maximum possible ratio between SIFL(σ) and OPT (σ) taken over all possible
sequences on a circuit of length |C| during the lunch.

4.3 Minimizing the Makespan

4.3.1 Optimal Offline Solution for the TramMP w.r.t. Minimizing
the Makespan

A mixed-integer program with multicommodity flow where the set of commodities cor-
responds to the set of vehicles, has been proposed for a PDP where time windows are
specified for the requests, on a graph where the objective function minimizes the total
routing cost (total tour length with waiting time)[44]. We adapted this formulation to
the Offline Tram Mode Problem where no time windows are specified but a release time
of requests that must be respected and changed the objective function to minimizing the
makespan. Accordingly, we propose the following integer program in order to obtain the
optimal offline solution OPT (σ) w.r.t. minimizing the makespan.

Given a circuit C = (v0, . . . , vn) with origin v0 as a network C = (V,E), k VIPAs
with capacity Cap, and a request sequence σ with n requests rj = (tj , xj , yj , zj) such
that zj ≤ Cap, otherwise the request is split.

Letm denote the number of requests, i.e., m = |σ|, to be served. We build a complete
directed graph GM = (VM , AM ) where the node set VM = Vx ∪ Vy ∪ {s, t} is composed
of
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• all origins xj of all requests rj in σ in Vx,
• all destinations yj of all rj in σ in Vy,
• the nodes s as source and t as sink that correspond to the origin of the circuit C.

With each node v ∈ VM is associated a load q(v) such that q(s) = q(t) = 0, q(xj) = zj
and q(yj) = −zj for rj ∈ σ. Each request rj is thus associated with a pickup node xj
and a delivery node yj . The arc set AM is composed of link arcs (v, v′) for each pair of
nodes v ∈ VM , v′ ∈ VM .

The routing decisions are represented by the variables below.

• The time at which the VIPA vhi begins service at node v ∈ VM , is denoted by the
decision variable Bi(v).

• The load of the VIPA vhi after visiting node v ∈ VM is denoted by Qi(v).

• the trace of the VIPA vhi is reflected by

fi(v, v′) =
{

1, if the VIPA vhi travels along the arc a = (v, v′)
0, otherwise

∀a ∈ AM , i ∈ {1 · · · k}

Finally, with each arc (v, v′) ∈ AM are associated a cost c(v, v′) and a driving time
d(v, v′) corresponding to the distance of the shortest path from v to v′ in the circuit
C = (V,E). The objective function (4.2a) is to minimize Tmax, where Tmax is greater or
equal than the time at which the last VIPA arrives at the depot maxi∈{1···k}Bi(t).

The corresponding integer program is detailed in (4.2)

minTmax (4.2a)
s.t. Tmax ≥ Bi(t) ∀i ∈ {1 · · · k} (4.2b)∑

i∈{1···k}

∑
a∈δ−(xj)

fi(a) = 1, ∀xj ∈ Vx (4.2c)

∑
a∈δ−(xj)

fi(a) =
∑

a∈δ−(yj)
fi(a) ∀rj ∈ σ, i ∈ {1 · · · k} (4.2d)

∑
a∈δ−(s)

fi(a) = 1 ∀i ∈ {1 · · · k} (4.2e)

∑
a∈δ−(v)

fi(a) =
∑

a∈δ+(v)
fi(a) ∀v ∈ Vx ∪ Vy, i ∈ {1 · · · k} (4.2f)

∑
a∈δ+(t)

fi(a) = 1 ∀i ∈ {1 · · · k} (4.2g)

Bi(v′) ≥ (Bi((v) + d(v, v′))fi(v, v′) ∀v, v′ ∈ VM , i ∈ {1 · · · k} (4.2h)
Qi(v′) ≥ (Qi(v) + q(v))fi(v, v′) ∀v, v′ ∈ VM , i ∈ {1 · · · k} (4.2i)
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Bi(yj)−Bi(xj)− d(xj , yj) ≥ 0 ∀rj ∈ σ (4.2j)
Bi(t)−Bi(s) ≤ T ∀i ∈ {1 · · · k} (4.2k)
Bi(xj) ≥ tj ∀xj ∈ Vx, i ∈ {1 · · · k} (4.2l)
max{0, q(v)} ≤ Qi(v) ≤ min{Cap,Cap + q(v)} ∀v ∈ VM , i ∈ {1 · · · k} (4.2m)
fi(a) ∈ {0, 1} ∀, a ∈ AM , i ∈ {1 · · · k} (4.2n)

Constraints (4.2c) and (4.2d) ensure that each request is served exactly once and that
the pickup and delivery nodes of a request are visited by the same VIPA. Constraints
(4.2e), (4.2f) and (4.2g) guarantee that all tours start at the origin v0 of the circuit C, flow
conservation constraints guarantee that all tours end in t (and thus, in the origin v0 of
the circuit). Consistency of the time and load variables is ensured by constraints (4.2h)
and (4.2i). Precedence constraints are imposed through inequalities (4.2j). Finally,
inequalities (4.2k) bound the duration of each route (the route of each VIPA cannot
exceed the time horizon T ) while (4.2l) ensures that a request cannot be served before
it is released and (4.2m) impose capacity constraints.

This formulation is non linear because of constraints (4.2h) and (4.2i). By introducing
constants M(v, v′) and W (v, v′), these constraints can be linearized as follows:

Bi(v′) ≥ Bi((v) + d(v, v′)−M(v, v′)(1− fi(v, v′)) ∀v, v′ ∈ VM
Qi(v′) ≥ Qi(v) + q(v)−W (v, v′)(1− fi(v, v′)) ∀v, v′ ∈ VM

The linear program (4.2) provides an optimal non-preemptive solution of the Offline
Tram Mode Problem w.r.t. minimizing the makespan [44]. The resulting computed
routing decisions of the Example 4.1 are illustrated in Figure 4.7.

It is straightforward to construct the tours from the resulting computed routing
decisions. In fact a positive flow fi(a) > 0 on an arc a corresponds to a move of vhi
on the arc a = (v, v′) starting at time Bi(v) and arriving at time Bi(v′). If fi(a) > 0
and the nodes v and v′ correspond to the same station, then a positive flow fi(a) > 0
on an arc a corresponds to a waiting move where the VIPA waits at the same station
from time Bi(v) until time Bi(v′). All tours start at s at time 0 (thus, at the origin v0
of the circuit C), and end in t (thus, at the origin v0 of the circuit C) at time Bi(t). The
makespan maxi∈{1···k}Bi(t) is the time when the last VIPA returns to the origin v0 of
the circuit C. The resulting optimal transportation schedule of the Example 4.1 w.r.t.
minimizing the makespan is the following.

r5−−−−−→ r6−−−−−−−−−−−−→r2−−−−−−−−−−−−−−−−−−→ r3−−−−−→
Γ1 =(a, 0)→ (a, 2)→ (a, 5)→ (b, 6)→ (d, 8)→ (e, 9)→ (a, 10)

r4−−−−−→ r1−−−−−−→
Γ2 =(a, 0)→ (a, 3)→ (b, 4)→ (c, 5)→ (e, 7)→ (a, 8)
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Figure 4.7: This figure illustrates the resulting flow computed by the LP (4.2) that
represents the routes of the VIPAs on the network CM = (VM , AM ) of Example 4.1.
The tour of the first VIPA finishes at time 10, and the tour of the second one finishes at
time 8. The makespan has a value of 10, it is indeed minimum because r5 = (5, a, b, 1)
and r6 = (6, b, e, 1) cannot be served earlier then their release times, and 5 + d(a, b) +
d(b, a) = 5 + 1 + 4 = 10 and 6 + d(b, e) + d(e, a) = 6 + 3 + 1 = 10. The origins of the
requests are represented by circles, the destinations by squares. The values of B1(v)
respectively B2(v′) on the corresponding nodes are illustrated by a value enclosed by
a gray respectively blue circle above the nodes. The arcs are labeled by the values of
Qi(v) (the load of the VIPA vhi after visiting a node v. The values next to the nodes v
correspond to the load q(v) of the node, (q(s) = q(t) = 0).

4.3.2 Competitive Analysis

Concerning the objective of minimizing the makespan, the adversary can cheat SIR by
releasing a request on a station where the VIPA operated by SIR shortly left. (Again in
these competitive analysis we use the oblivious adversary.)

Example 4.9. Consider a circuit C = (v0, . . . , vn) with origin v0 and one unit-speed
server. The adversary releases a sequence σ = (r1, r2) with only 2 requests

r1 = (0, v0, vi, 1) and r2 = (ε, v0, vi, 1).

SIR starts its VIPA at time t = 0 to serve r1. It returns to v0 at time t = |C| and starts
a second round to serve r2, yielding

SIR(σ) = 2 |C| .
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The adversary waits at the origin v0 until t = ε, starts its VIPA with both requests r1
and r2 and is back to v0 at time t = |C|+ ε, yielding

OPT (σ) = |C|+ ε.

♦

This gives a lower bound of 2 for the competitive ratio of SIR w.r.t. minimizing the
makespan, even during the morning scenario. The same is true for SIFE during the
evening:

Example 4.10. Consider a circuit C = (v0, . . . , vn) with origin v0, a unit distance
between vi and vi+1 for each i, and one unit-speed server. The adversary releases a
single request

r1 = (n, vn, v0,Cap)

with z1 = Cap. SIFE starts its VIPA at time t = n to serve r, arrives at t = 2n at vn
and is back to v0 at time t = 2n+ 1, yielding SIFE(σ) = 2n+ 1. The adversary starts
its VIPA at t = 0, arrives at vn at t = n (when r is released) and is back to v0 at time
t = n+ 1, yielding OPT (σ) = n+ 1. ♦

This also gives a lower bound of 2 for the competitive ratio of SIFE w.r.t minimizing
the makespan. The same is true for SIFL during the lunch using the same example.
Just for SIFM , the situation might be better. We conjecture that the following sequence
is a worst case for SIFM :

Example 4.11. Consider a circuit C = (v0, . . . , vn) with origin v0 and one unit-speed
server. The adversary releases a sequence σ with 3 pdp-requests

r1 = (0, v0, vi, 1), r2 = (n+ 1, v0, vi,Cap− 1) and r3 = (n+ 1, v0, vi, 1),

announcing that r3 is the last request in σ. SIFM starts its VIPA at time t = n + 1
fully loaded to serve r1 and r2, and finishes the first subtour at time t = 2n+ 2 = 2|C|.
Because r3 is the last request in σ, SIFM starts a second subtour to serve r3 (without
being fully loaded) at time t = 2n + 2 and is back to v0 at time t = 3n + 3, yielding
SIFM (σ) = 3n+ 3. The adversary starts its VIPA directly at t = 0 to serve r1, is back
to the origin v0 at time t = n + 1 and can immediately serve r2 and r3 together in a
second subtour, finishing its tour at t = 2n+ 2, yielding OPT (σ) = 2n+ 2.

♦

This shows that 3/2 is a lower bound for the competitive ratio of SIFM w.r.t mini-
mizing the makespan in the morning. We conjecture that this bound is tight.
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4.4 Minimizing the Waiting Time

In this section, we present a model to solve the Offline Tram Mode Problem optimally
w.r.t. minimizing the Total Waiting Time using a multicommodity flow in a time ex-
panded network based on the original circuit. Then we prove that there is no competitive
(deterministic) online algorithm for the Online TramMP w.r.t. minimizing the waiting
time.

4.4.1 Optimal offline Solution for the TramMP w.r.t. Minimizing the
Total Waiting Time

Given a circuit C = (v0, . . . , v`) with origin v0, k VIPAs with capacity Cap, and a request
sequence σ with pdp-requests rj = (tj , xj , yj , zj).
We build a time-expanded request network CT = (VT , AT ) based on σ and the studied
circuit C.
The node set VT is constructed as follows.
For each station v ∈ V and each time point t ∈ [0, T ], there is a node (v, t) ∈ VT , which
represents station v at time t as a station where VIPA can simply pass or can pick up
or deliver users.
We distinguish |σ| subsets V j

y of nodes in VT where each subset V j
y consists of all possible

destinations (yj , tdropj ) of the corresponding request rj , for all tj ≤ tpickj ≤ T −d(xj , yj)−
d(yj , v0). Note that tpickj and tdropj come from the pdp-task τj generated by the operator
in order to serve the request rj where tpickj respectively tdropj is the time at which the
passengers of rj should be picked up respectively delivered.

The arc set AT = AW ∪AM ∪A− is composed of

• wait arcs, from (v, t) ∈ VT to (v, t+ 1) with t ∈ {0, 1, . . . , T − 1} in AW
• transport arcs, from (v, t) ∈ VT to (v′, t + d(v, v′)) for each edge (v, v′) of C and
each time point t ∈ T with t+ d(v, v′) ≤ T , in AM

• sink arcs, from all destinations (yj , tdropj ) ∈ V j
y to (v0, T ), in Aj−. We have

A− =
⋃|σ|
j=1A

j
−.

Note, that the time-expanded network CT is acyclic by construction.
On the time-expanded network CT , we define a VIPA flow F to encode the route

of the VIPAs through CT and a set of commodities fj to represent the routing of each
request rj ∈ σ.

To correctly initialize the system, we use the node (v0, 0) ∈ VT and (v0, T ) ∈ VT as
source and sink for the flow F and set the balance of the source accordingly to the number
k of available vehicles, see (4.3b). For all internal nodes (v, t) ∈ VT \{(v0, 0), (v0, T )}, we
use normal flow conservation constraints, see (4.3c), which also automatically ensures
that a flow F of value k is entering the sink (v0, T ).

We use, for each request rj , the node (xj , tj) as source of the corresponding commod-
ity fj and the node (v0, T ) as the commodity’s sink. As each commodity fj corresponds
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to request rj , the flow fj is bounded by zj accordingly, but we may avoid load preemp-
tion by requiring that fj ∈ {0, 1}. To ensure that a request is served but not more than
once, we require that exactly one outgoing arc from the commodity’s origin (xj , tj) of
the corresponding request rj is chosen, see (4.3d). We use normal flow conservation con-
straints, see (4.3f), which also automatically ensures that, for each request rj , a flow of 1
of its corresponding commodity fj is leaving the source node, xj , tj), of the commodity,
and a flow of 1 is entering the sink node. To ensure that passengers are dropped at their
corresponding destinations, we require for each commodity fj that exactly one arc from
the corresponding sink arcs Aj− is chosen, see (4.3e). To ensure that the capacity of the
VIPA is respected on all arcs a ∈ AM , we require that∑

rj∈σ
fj(a) · zj ≤ Cap · F (a)∀a ∈ AM

Thus, the capacities for F on the transportation arcs are not given by constants but by
a function.

Note that, due to these flow coupling constraints (4.3g), the constraint matrix of
the ILP is not totally unimodular (as in the case of uncoupled flows) and therefore
integrality constraints for both flows are required (4.3h) and (4.3i), reflecting that solving
the problem is NP-hard.

We consider a min-cost flow problem. Accordingly, our objective function (4.3a)
considers costs c(a) only on the wait arcs for the commodities fj . The corresponding
integer linear program is detailed in (4.3).

min
∑
rj∈σ

∑
a∈AW

c(a)fj(a)zj (4.3a)

∑
a∈δ+(v0,0)

F (a) = k (4.3b)

∑
a∈δ−(v,t)

F (a) =
∑

a∈δ+(v,t)
F (a) ∀(v, t) 6= (v0, 0), (v0, T ) (4.3c)

∑
a∈δ−(xj ,tj)

fj(a) = 1 ∀rj ∈ σ (4.3d)

∑
a∈Aj−

fj(a) = 1 ∀rj ∈ σ (4.3e)

∑
a∈δ−(v,t)

fj(a) =
∑

a∈δ+(v,t)
fj(a) ∀rj ∈ σ, ∀(v, t) 6= (xj , tj) (4.3f)

∑
rj∈σ

fj(a) · zj ≤ Cap · F (a) ∀a ∈ AM (4.3g)

F (a) ∈ {0, 1} ∀a ∈ AT (4.3h)
fj(a) ∈ {0, 1} ∀a ∈ AT , ∀rj ∈ σ (4.3i)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set
of incoming arcs of (v, t).
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The integer linear program (4.3) solves the offline version of the Tram Mode Prob-
lem w.r.t. minimizing the total waiting time (where the whole sequence σ of requests is
known at time t = 0) to optimality. The resulting computed flows of the Example 4.1
are illustrated in Figure 4.8.

Remark 4.12. This model with F (a) ≤ 1 ∀a ∈ AT handles the condition that no two
VIPAs must use a same arc simultaneously such that there is no VIPA that blocks
another, and the significant reliability requirements of using the VIPAs are ensured. �

(a, 0) (a, 1) a, 2

r2
(a, 3) (a, 4) a, 5

r5
(a, 6) (a, 7) (a, 8) (a, 9) (a, 10)

(b, 0) (b, 1) (b, 2) (b, 3) b, 4

r4
(b, 5) b, 6

r6
(b, 7) (b, 8) (b, 9) (b, 10)

(c, 0) c, 1

r1
(c, 2) (c, 3) (c, 4) (c, 5) (c, 6) (c, 7) (c, 8) (c, 9) (c, 10)

(d, 0) (d, 1) (d, 2) d, 3

r3
(d, 4) (d, 5) (d, 6) (d, 7) (d, 8) (d, 9) (d, 10)

(e, 0) (e, 1) (e, 2) (e, 3) (e, 4) (e, 5) (e, 6) (e, 7) (e, 8) (e, 9) (e, 10)

Figure 4.8: This figure illustrates the resulting flow computed by the LP (4.3) on the
network CT = (VT , AT ) of Example 4.1. The resulting flow has a value of 8 as a total
waiting time. We identify the route of the VIPAs from the arcs a with F (a) > 0
represented by solid arcs. Each request rj corresponds to a commodity fj and the nodes
enclosed by circles illustrate the corresponding commodity’s origins. For each request,
the corresponding arcs a with fj(a) > 0 are indicated by dashed arcs with a different
color.

Theorem 4.13. The integer linear program (4.3) solves the offline version of the Tram
Mode Problem w.r.t. minimizing the total waiting time (where the whole sequence σ of
requests is known at time t = 0) to optimality.

Proof. From constraints (4.3b) it is ensured that there are exactly k available VIPAs at
the start station. By starting the flow F from the depot (v0, 0), it is ensured that each
VIPA starts its tour from the depot, and with the constraint (4.3c) we ensure that there
exists k paths P in GT from the source node (v0, 0) to the sink node (v0, T ). The tracks
of the VIPAs over time can be recovered from the flow F (a) on the arcs by standard flow
decomposition, see [2]. Hereby, VIPA flows on transportation arcs correspond to a move
in the tour of the corresponding VIPA. After constructing a sequence of moves M for
the K tours for the VIPAs, we insert between them the actions. The actions are incurred
by the set of commodities fj . Hereby, from a positive flow for a commodity fj , we can
determine through which arcs, the request rj is served by determining the arcs a that
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have a fj(a) = 1. The set of arcs having fj(a) = 1 is the (s, t)-path of the commodity fj
from the commodity’s origin (xj , pj) to the commodity’s destination (v0, T ) (there cannot
be more than one (s, t)− path for each commodity fj by constraints (4.3d), (4.3e) and
(4.3f). A request rj served through the (s, t)-path implies that a VIPA traverses the arcs
from (xj , tpickj ) to (yj , tdropj ). (constraints (4.3g)), therefore we can add the corresponding
pickup and delivery actions between the corresponding moves of the tour that contains
these arcs.

4.4.2 Competitive Analysis

Concerning the competitive analysis of the Online Tram Mode Problem w.r.t. minimiz-
ing the waiting time, we obtain the more general result that no (deterministic) online
algorithm for the Online TramMP is competitive w.r.t. minimizing the waiting time
against two common types of adversaries.

We first consider an oblivious adversary who knows the complete behavior of
a (deterministic) online algorithm ALG and chooses a worst-case sequence for ALG.
Hereby, an oblivious adversary is allowed to move VIPAs towards the origins xj of not
yet released requests rj (but also has to respect the release time tj to serve accepted
requests rj).

Theorem 4.14. There is no competitive (deterministic) online algorithm for the Online
TramMP w.r.t. minimizing the waiting time against an oblivious adversary.

Proof. The adversary can cheat any online algorithm ALG for this problem by releasing
Cap requests as follows. Consider a circuit C = (v0, . . . , vn) with origin v0 and one unit-
speed server with capacity Cap. The adversary releases a sequence σ = (r1, . . . , rCap) of
Cap equal requests

ri = (|C| − 1, vn, v0, 1).

The adversary starts its VIPA at time t = 0 to arrive at vn when the requests are
released, and serves them all immediately, yielding

OPT (σ) = 0.

ALG starts its tour at t = |C|−1, arrives to vn at 2(|C|−1) and serves all Cap requests,
yielding

ALG(σ) = Cap · (|C| − 1).

this shows
ALG(σ)
OPT (σ) =∞

so that there is no finite number c bounding the ratio between OPT (σ) and ALG(σ) for
all possible request sequences σ of the Online TramMP w.r.t. minimizing the waiting
time.
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Next, we consider a non-abusive adversary who also knows the complete behavior
of ALG and chooses a worst-case sequence for ALG, but is only allowed to move VIPAs
towards origins (or destinations) of already released requests (and has also to respect
the release times).

We show that also no (deterministic) online algorithm ALG for the Online TramMP
is competitive w.r.t. minimizing the waiting time against a non-abusive adversary.

Theorem 4.15. There is no competitive (deterministic) online algorithm for the Online
TramMP w.r.t. minimizing the waiting time against a non-abusive adversary.

Proof. Any online algorithm designed for the Online Tram Mode Problem shall have the
following choices at each time t at any position v ∈ V of the circuit:

• either to start moving to serve a released request,

• or to wait and accumulates request to serve them.

We show that we can construct a sequence in phases that can force ALG to make the
customers waiting (in all cases whether ALG decides to move or to wait) while OPT can
serve all requests without waiting time. Consider a circuit C = (v0, . . . , vn) with origin
v0 and one unit-speed server with capacity Cap. The adversary first releases one request
r1 = (0, v0, vi, 1) for some i ∈ {1, . . . , n}.

Case 1: ALG starts at time t = 0 to serve r1 only, performs a full round and would
be back to v1 at time t = |C|. But the adversary releases one request r2 shortly after
ALG has started his tour r2 = (ε, v0, vi,Cap − 1) for some i ∈ {1, . . . , n}. Therefore,
ALG will start a second round to serve r2 at time t = |C|, and each passenger of r2 has
waited for |C| yielding

ALG(σ) = |C| · (Cap− 1).

The adversary waits at the origin v0 until t = ε, starts its VIPA to serve both requests
r1 and r2 at once, yielding

OPT (σ) = ε.

Therefore, we obtain
ALG(σ)
OPT (σ) = |C| · (Cap− 1)

ε
→∞

(when choosing ε arbitrarily small).

Case 2: ALG decided to wait and delay the service of r1 in an attempt to take
advantage of future released requests to serve them together. But OPT starts im-
mediately to serve r1. The adversary waits until t = |C| to release a last request
r2 = (|C|, v0, vi,Cap − 1)∀i ∈ {1, . . . , n}. Then, OPT is back from his first round and
can start his second round immediately to serve the second request, yielding

OPT (σ) = 0.
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However, ALG starts his first round to serve r1 and r2 together (Cap customers), yielding

ALG(σ) = |C| .

this shows
ALG(σ)
OPT (σ) =∞

so that there is no finite number c bounding the ratio between OPT (σ) and ALG(σ)
for all possible request sequences σ of the Online TramMP w.r.t. minimizing the waiting
time against a non-abusive adversary.

Hereby, the ratio between OPT (σ) and ALG(σ) is unbounded even if the requests
have a specific pattern. Thus, the result does not become better for the morning, evening
or lunch scenarios for any of the algorithms SIFM , SIFE , SIFL and SIR. Table 4.1
details the strategy used by the adversary according to the online algorithm used.

Corollary 4.16. None of the algorithms SIFM , SIFE, SIFL and SIR is competitive
w.r.t. minimizing the total waiting time.

Table 4.1: The strategy used by the adversary according to the online algorithm used in
TramMP w.r.t. minimizing the total waiting time.

Online
Algorithm

Oblivious adversary Non-abusive adversary

SIFM the oblivious adversary has the same power as the non-abusive
adversary. SIFM uses the strategy of delaying the service of re-
quests. The adversary releases the same request sequence as in
case 2 of Theorem 4.15.

SIFE the oblivious adversary releases
a sequence of Cap requests as
the example of Theorem 4.14.

the non-abusive adversary uses
the same strategy as in case 2 of
Theorem 4.15, but releases one
request (0, vn, v0, 1).

SIFL the non-abusive adversary re-
leases a sequence similar to the
one in case 2 of Theorem 4.15.

SIR the oblivious adversary uses the
same strategy as the example of
Theorem 4.14 but releases only
one request.

the non-abusive adversary re-
leases a sequence similar to the
one in case 1 of Theorem 4.15.
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4.5 Minimizing the Number of Stops

An ILP formulation of the static version (where all requests are known in advance) of
the TramMP has been proposed in [109]. We can turn any optimal solution of the static
version of the TramMP to an optimal solution for the offline TramMP w.r.t. minimizing
the total number of stops by

• waiting until time tm in the origin v0 (to ensure that all requests are released before
they are served),

• solving the static version of the TramMP.

4.5.1 Optimal Offline Solution for the TramMP w.r.t. Minimizing
the Total Number of Stops

The offline TramMP w.r.t. minimizing the total number of stops may be viewed as
an extension of interval graph coloring models (see, e.g., [69]). We may use the pro-
posed methods of Section 4.2.1 as a base to compute an optimal offline solution. In the
following, we briefly present the method that may be applied.

In order to compute the optimal offline solution w.r.t. minimizing the total number
of stops we need to

• wait until time tm in the origin v0 (to ensure that all requests are released before
they are served),

• compute the optimal offline solution w.r.t. minimizing the total number of stops
assuming that the VIPA has a unit capacity, by solving an LP similar to the one
proposed in Section 4.2.1 w.r.t. the total tour length. In this case, the objective
function considers costs d(a) = d(u, v) for the flow f only on link arcs a = (u, v)
in AL, where d(u, v) is the length of a shortest path from u to v in the circuit C,

• solve a partitioning problem to partition the paths obtained into subtours for the
VIPAs such that the total number of stops is minimized.

Remark 4.17. We may also use the method proposed in Section 4.2.1 of colorings of in-
terval graphs to compute the optimal offline solution w.r.t. minimizing the total number
of stops assuming that the VIPA has a unit capacity. But the algorithm needs to be
modified (the color classes are not selected randomly). �

4.5.2 Competitive Analysis

Concerning the objective of minimizing the number of stops, the strategy of the adversary
is to force the online algorithm to stop to pick up or deliver one passenger at a time by
serving only one request per subtour with 2 stops, whereas the adversary can pick up
and deliver Cap passengers at each stop. We first show a lower bound for SIR.
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Example 4.18. Consider a circuit C = (v0, . . . , vn) with origin v0, a unit distance
between vi and vi+1 for each i, and one unit-speed server. The adversary releases a
sequence σ of Cap · n pdp-requests similar to the sequence presented in Example 4.5
that force SIR to perform one full round (subtour) with two stops for each request,
whereas the adversary is able to serve all requests in a single subtour using n+ 1 stops:

• Cap requests rj = ((k − 1) |C| , v0, v1, 1) for 1 ≤ j ≤ Cap

• Cap requests rj = ((k − 1) |C| , v1, v2, 1) for Cap + 1 ≤ j ≤ 2Cap
...

• Cap requests rj = ((k − 1) |C| , vn−1, vn, 1) for (n− 1)Cap + 1 ≤ j ≤ nCap

• Cap requests rj = ((k − 1) |C| , vn, v0, 1) for nCap + 1 ≤ j ≤ (n+ 1)Cap

SIR starts its VIPA at time t = 0 to serve r1 = (0, v0, v1, 1), stops to pick up the
passenger from v0 and to deliver him at v1, and finishes the first subtour without serving
any further request. When the VIPA operated by SIR is back to the origin v0, the second
request r2 = (|C| , v1, v2, 1) is released and SIR starts at t = |C| a second subtour using
2 stops to serve r2, without serving any further request in this subtour. This is repeated
for each request yielding SIR(σ) = 2 · Cap · (n+ 1).
The adversary waits at the origin v0 until t = (Cap − 1) |C| and serves all requests
r1, . . . , rCap from v0 to v1 (2 stops). Then, he waits until t = (2Cap − 1) |C| at v1 and
serves all requests rCap+1, . . . , r2Cap from v1 to v2 (1 stop v2). This is repeated for all
Cap requests from vi to vi+1, yielding OPT (σ) = (n+ 1) + 1. Therefore, we obtain

SIR(σ)
OPT (σ) = 2 · Cap · (n+ 1)

(n+ 1) + 1 = 2 · Cap

as a lower bound for the competitive ratio of SIR. ♦

In the special case of the lunch scenario, a sequence σ′, containing the first Cap
and the last Cap requests from the sequence presented in Example 4.18, shows that
SIR(σ′) = 2·2·Cap and OPT (σ′) = 3 yielding 4

3Cap as a lower bound of the competitive
ratio of SIR, see Figure 4.4 for an illustration.

As for the morning respectively evening scenario, a sequence σ′′, containing the first
Cap resp. last Cap requests from the sequence presented in Example 4.5, shows that Cap
is a lower bound on the competitive ratio of SIR, see Figure 4.5 (Figure 4.6 respectively).

We can prove that the previously presented examples are indeed worst cases for SIR
w.r.t. minimizing the total number of stops:

Theorem 4.19. For one or several VIPAs with capacity Cap operating in tram mode
on a circuit C, SIR is w.r.t the objective of minimizing the total number of stops

• 2 · Cap-competitive in general,
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• 4
3 · Cap-competitive during the lunch scenario,

• Cap-competitive during the morning scenario resp. the evening.

Proof. Recall that a transportation schedule is based on a coloring of the interval graph
Gσ, whose nodes stand for passengers from σ, i.e. to the requests rj ∈ σ counted with
their multiplicities zj . The worst coloring of Gσ is to assign different colors to all nodes,
i.e. using |Gσ| =

∑
rj∈σ zj many colors. The worst transportation schedule results if, in

addition, each VIPA uses 2 stops for each color (i.e. serving a single uniform request
only per subtour), yielding |Gσ| · 2 as total number of stops, whereas the adversary can
accumulate the requests and pick up Cap passengers and deliver other Cap passengers
every time he stops except the first and last stop in his tour.

SIR can indeed be forced to show this behavior by releasing the requests accordingly
(i.e. by using uniform requests with zj = 1 each and with sufficiently large delay between
tj and tj+1),

• in general: using the sequence σ from Example 4.18,

• during lunch: using the sequence σ′ restricted to the first Cap and the last Cap re-
quests (tj , v0, v1, 1) and (tj , v`, v0, 1) from the sequence σ presented in Example 4.18
as in Figure 4.4,

• during morning/evening: using the sequence σ′′ restricted to the first Cap requests
(tj , v0, v1, 1) (resp. the last Cap requests (tj , v`, v0, 1)) from the sequence σ pre-
sented in Example 4.5, as Figure 4.5 (respectively Figure 4.6) shows.

Furthermore, to maximize the ratio between this total number of stops obtained by SIR
and the optimal offline solution, we need to ensure that all requests in σ can be served
with as few stops as possible. This is clearly the case if all requests have length 1 and
there are Cap many requests traversing the same edge of C s.t. a single subtour with
`+ 1 stops suffices to serve all of them (see again Example 4.18). This leads to

• |Gσ| = |σ| = Cap · ` and w(G(I)) = Cap s.t.

SIR(σ)
OPT (σ) = Cap · ` · 2

`+ 1 = 2Cap

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible
sequences in general.

• |Gσ′ | = |σ′| = 2Cap and w(G(I)) = Cap s.t.

SIR(σ′)
OPT (σ′) = 2 · Cap · 2

3 = 4
3 · Cap

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible
sequences during the lunch.

70



4. Tram Mode Problem

• |Gσ′′ | = |σ′′| = Cap and w(G(I)) = Cap s.t.

SIR(σ′′)
OPT (σ′′) = Cap · 2

2 = Cap

is the maximum possible ratio between SIR(σ) and OPT (σ) taken over all possible
sequences during the morning or evening.

As for SIFM respectively SIFE , the lower bound can be improved by the fact that,
the requests have the same origin respectively the same destination, and the VIPA starts
its subtour only when enough requests are released to reach Cap passengers. The strategy
of the adversary is to force SIFM (respectively for SIFE) to deliver (respectively to pick
up) one passenger at each stop except the origin v0 of the circuit.

The adversary can cheat SIFM by releasing Cap · Cap requests as follows.

Example 4.20. Consider a circuit C = (v0, . . . , vn) with origin v0 and a server with
capacity Cap s.t. Cap ≤ n. The adversary releases a sequence σ of Cap · Cap uni-
form pdp-requests that force SIFM to deliver one passenger at each stop, whereas the
adversary is able to serve Cap requests in a single subtour using 2 stops:

for 1 ≤ j ≤ Cap


rj = (0, v0, v1, 1))
rj = (0, v0, v2, 1)
...

rj = (0, v0, vCap, 1)

for Cap + 1 ≤ j ≤ 2Cap


rj = (1 · |C| , v0, v1, 1))
rj = (1 · |C| , v0, v2, 1)
...

rj = (1 · |C| , v0, vCap, 1)
...

for (Cap− 1) · Cap + 1 ≤ j ≤ Cap · Cap


rj = (Cap · |C| , v0, v1, 1))
rj = (Cap · |C| , v0, v2, 1)
...

rj = (Cap · |C| , v0, vCap, 1)

SIFM starts its VIPA at time t = 0 to serve the first Cap requests, stops to pick
up the Cap passengers from the origin v0 and then stops at v1 to deliver the first pas-
senger, at v2 to deliver the second, this is repeated for all Cap requests arriving to
vcap. Thus, SIFM finishes the first subtour serving Cap requests with Cap + 1 stops.
When the VIPA operated by SIFM is back to the origin v0, the next Cap requests for
Cap + 1 ≤ j ≤ 2Cap are released and SIFM starts at t = |C| a second subtour serving
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Cap requests with Cap+ 1 stops. This is repeated for each subset of Cap requests yield-
ing SIFM (σ) = Cap(Cap + 1)

The adversary waits at the origin v0 until t = Cap · |C| and serves the Cap requests
r1, rCap+1, · · · , r(Cap−1)·Cap+1 going from v0 to v1 at once, he stops at v0 to pick up all
Cap and then at v1 to deliver them. This is repeated for each subset of Cap requests
having the clustered by their destinations yielding OPT (σ) = Cap · 2. Therefore, we
obtain

SIFM (σ)
OPT (σ) = Cap(Cap + 1)

Cap · 2 = Cap + 1
2

as a lower bound for the competitive ratio of SIFM . ♦

The same is true for SIFE during the evening using the same example but switching
the origins and destinations. We conjecture that this lower bound is tight for SIFM and
SIFE For SIFL the lower bound is Cap + 1 as the next example shows.

Example 4.21. Consider a circuit C = (v0, . . . , vn) with origin v0 and a server with
capacity Cap s.t. Cap ≤ n. The adversary releases a sequence σ of 2 ·Cap ·Cap uniform
pdp-requests similar to the sequence presented in Example 4.20 but with Cap · Cap
requests having the origin of the circuit as their destination. This sequence forces SIFL
to deliver one passenger at each stop for the first Cap ·Cap requests, and to pick up one
passenger at each stop for the last Cap·Cap requests, yielding SIFL(σ) = 2Cap(Cap+1),
whereas the adversary is able to serve 2Cap requests in a single subtour using 2 stops
except the last subtour using 3 stops, yielding OPT (σ) = Cap · 2 + 1. Therefore, we
obtain

SIFL(σ)
OPT (σ) = 2Cap(Cap + 1)

Cap · 2 + 1 = Cap + 1

as a lower bound for the competitive ratio of SIFL. ♦

4.6 Computational Results
This section deals with computational experiments for the proposed online algorithms
w.r.t. different objective functions (total tour length, makespan and total waiting time).
In fact, due to the very special request structures of the previously presented worst case
instances, we can expect a better behavior of the proposed online algorithms in average.
The computational results presented in Tables 4.2-4.8 support this expectation.

They compare the total tour length TTL, the makespan MS, and the total waiting
time TWT computed by the online algorithms SIR, SIFM , SIFE , SIFL with the
corresponding optimal offline solution OPT .

The computations use instances based on the network from the industrial site of
Michelin and randomly generated request sequences resembling typical instances that
occurred during the experimentation [112].

The computations are performed with the help of a simulation tool developed by
Yan Zhao [123]. The instances use a circuit as subnetwork with 1-10 VIPAs, 5-200
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requests, represented by m in the tables, 1-12 as the maximum load zj of a request. For
each period (morning, evening, lunch and general), for every parameter set (number of
requests 5, 20 and 200), we created 50 test instances and compute them varying the
number of VIPAs used and varying their capacity 1-10.

In these test instances, the time horizon is [0, 130] and the length of the circuit used
is equal to |C| = 25. In this table, the instances are grouped by first the period of
the time (morning, evening, lunch, and general), then for each period, the instances are
grouped by the number of requests (5, 20 and 100) and the capacity of the VIPA (1, 5
and 10). The average results of the instances are shown. The operating system for all
tests is Linux (CentOS with kernel version 2.6.32). The algorithms SIR, SIFM , SIFE ,
SIFL have been implemented in Java. For solving the integer linear programs to get
the optimal solutions w.r.t. the different objective functions we use Gurobi 8.21. In the
following tables, the instances are grouped by number of requests (1st column) and the
capacity (2nd column). In Tables 4.2, 4.4 and 4.9 where the computational results w.r.t.
minimizing the total tour length are shown, the number of VIPAs does not affect the
total tour length. Whether we use 1, 2 or 5 VIPAs the total tour length remains the
same. Table 4.2 shows the values of the total tour length SIRTTL obtained by SIR for
several test instances for the general scenario, where requests have no common origins or
common destinations in comparison to the value of the optimal offline solution OPT TTL
w.r.t. minimizing the total tour length and the ratio between them. The competitive
ratio c is shown for each of the scenarios, it is always greater than SIRTTL

OPTTTL
.

Table 4.2: This table shows the total tour length computed by SIR SIRTTL in compar-
ison to the optimal offline solution OPT TTL in general and the ratio between them.

SIR general, |C| = 25
m Cap SIRTTL OPTTTL SIRT T L

OPTT T L c = Cap · |C|
5 1 113.75 106.25 1.35 25
5 5 113.75 25 5.25 125
5 10 87.5 25 3.5 250
20 1 453.75 337.5 1.76 25
20 5 287.5 75 3.83 125
20 10 168.75 50 3.38 250
200 1 4700 2506.25 1.87 25
200 5 2600 550 4.73 125
200 10 2168.75 275 7.89 250

In Table 4.2, the competitive ratio of SIR in the general case (where the requests are
arbitrary) is far from being reachable. In Table 4.3, we can notice that the average ratio
between SIR and OPT w.r.t. minimizing the makespan is greater in case we use only one
VIPA. The difference between ratios when using 2 and 5 VIPAs is not remarkable. The
improvement of the ratio in average when using 5 VIPAs instead of 2 is only 1.68%. The
average is computed only for the instances of 5 and 20 requests. Thus, when we have a
small number of requests, it is of no interest to operate more than 2 VIPAs on the circuit.
Concerning the objective of minimizing the total waiting time, we can notice that while
using 5 VIPAs with instances of 5 requests, the competitive ratio is reached (∞). This
is because OPT will behave as the oblivious adversary. OPT is allowed to move VIPAs
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Table 4.3: This table shows the computational results for several test instances of the
algorithm SIR for the general scenario, w.r.t. different objective functions makespan
MS and total waiting time TWT in comparison to the value of the respective optimal
offline solutions OPTMS and OPT TWT and the ratio between them. The competitive
ratio c or a lower bound LB is shown for each objective function. The results are grouped
by the number of VIPA used. A hyphen ’-’ indicates that no solution has been found
(due to the restricted time horizon). A cross ’×’ indicates that no optimal solution has
been found by the ILP within four hours and therefore a cross ’×’ in the ratio column
indicates that no ratio can be computed due to the absence of the optimal solution.
In case the solution is preceded by a percentage, it means that only this percentage of
instances give a solution and the others are infeasible.

SIR general, MS, LB=2 SIR general, TWT, c =∞
m Cap SIRMS OPTMS SIRMS

OPTMS SIRTWT OPTTWT SIRT W T )
OPTT W T

One VIPA
5 1 123.75 106.25 1.16 42.6 37.25 1.14
5 5 123.75 90.6 1.37 42.6 17.25 2.47
5 10 123.75 90.6 1.37 42.6 17.25 2.47
20 1 - - - - - -
20 5 - - - - - -
20 10 - - - - - -
200 1 - - - - - -
200 5 - - - - - -
200 10 - - - - - -

Two VIPAs
5 1 95.7 82.4 1.16 42.6 37.25 1.14
5 5 91.6 76.5 1.20 42.6 17.25 2.47
5 10 91.6 76.6 1.20 42.6 17.25 2.47
20 1 - - - - - -
20 5 119.4 102.5 1.16 172.5 54.34 3.17
20 10 104.4 90.4 1.15 154.5 52.12 2.96
200 1 - - - - - -
200 5 - - - - - -
200 10 - - - 365.5 × ×

Five VIPAs
5 1 95.7 82.4 1.16 18.4 0 ∞
5 5 91.6 76.5 1.20 36.5 0 ∞
5 10 91.6 76.6 1.20 36.5 0 ∞
20 1 123.5 95.5 1.29 128.65 57.6 2.23
20 5 103.4 90.23 1.15 84.6 27.5 3.08
20 10 92.6 80 1.16 84.6 27.5 3.08
200 1 - - - - - -
200 5 (29%)124.8 × × 665.5 × ×
200 10 121.6 × × 253.4 × ×

towards the origins xj of not yet released requests rj (but also has to respect the release
time tj to serve accepted requests rj), leading to 0 as total waiting time of customers.

In Table 4.4, we can notice that the ratio of SIFL (in average 1.16%) is better than
the ratio of SIR (in average 2.94%).

In Table 4.5, we can notice that there is approximately no improvement of the ratio of
SIR and SIFL w.r.t. minimizing the makespan if we use 5 VIPAs instead of 2. Overall,
SIFL leads to better ratios than SIR during the lunch. SIFL could serve 20 requests
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Table 4.4: This table shows the total tour length SIRTTL computed by SIR in compari-
son to the optimal offline solution OPT TTL for the lunch scenario and the ratio between
them.

TTL lunch
SIR c = 2 · Cap SIFL c = 2

m Cap OPTTTL SIRTTL
SIRT T L
OPTT T L

SIFTTLL

SIFT T L
L

OPTT T L

5 1 93.75 112.5 1.2 100 1.07
5 5 25 75 3 25 1
5 10 25 68.75 2.75 25 1
20 1 337.5 418.75 1.24 400 1.19
20 5 75 206.25 2.75 81.25 1.08
20 10 43.75 206.25 4.71 56.25 1.29
200 1 2818.75 4300 1.53 2968.75 1.05
200 5562.5 2125 3.78 600 1.07
200 10 202.6 550.45 5.5 468.75 1.7

with one VIPA with a capacity 5 but SIR could not. One VIPA operating on a circuit
using SIFL algorithm may serve up to 20 requests within the time horizon [0, 125].

In Table 4.7,4.10 SIFM respectively SIFE lead to better ratios than SIR during
the morning respectively evening. In Tables 4.8 and 4.11, w.r.t. minimizing the total
waiting time, SIFM leads to better ratios than SIR during the morning. SIFE leads to
better ratios than SIR during the evening.
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Table 4.5: This table shows the computational results of the algorithms SIR respectively
SIFL w.r.t. the makespan for the lunch scenario, in comparison to the value of the
corresponding optimal offline solution OPTMS and OPT TWT and the ratio between
them. The competitive ratio c is shown.

SIR lunch, MS, LB=2 SIFL lunch, MS, LB=2

m Cap OPTMS SIRMS SIRMS

OPTMS SIFMS
L

SIFMS
L

OPTMS

One VIPA
5 1 93.75 112.5 1.20 112.5 1.2
5 5 67.8 88.4 1.30 75.7 1.11
5 10 67.8 88.4 1.30 75.5 1.11
20 1 - - - - -
20 5 100.43 - - 120.8 1.25
20 10 85.6 121.78 1.42 104.5 1.22
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Two VIPAs
5 1 93.75 112.5 1.20 112.5 1.20
5 5 67.8 88.4 1.30 75.7 1.12
5 10 67.8 88.4 1.30 75.5 1.11
20 1 - - - - -
20 5 89.23 - - 109.4 1.23
20 10 85.6 121.78 1.42 104.5 1.22
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Five VIPAs
5 1 93.75 112.5 1.20 112.5 1.20
5 5 67.8 74.5 1.10 75.5 1.11
5 10 67.8 74.5 1.10 75.5 1.11
20 1 - - - - -
20 5 85.6 106.7 1.25 104.5 1.22
20 10 85.6 106.7 1.25 104.5 1.22
200 1 - - - - -
200 5 - - - - -
200 10 × 120.5 × 113.5 ×
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Table 4.6: This table shows the computational results of the algorithms SIR respec-
tively SIFL for the lunch scenario, in comparison to the value of the corresponding
optimal offline solution OPT TWT and the ratio between them. The competitive ratio c
is unbounded for both algorithms.

SIR lunch, TWT, c =∞ SIFL lunch, TWT, c =∞

m Cap OPTTWT SIRTWT SIRT W T

OPTT W T SIFTWT
L

SIFT W T
L

OPTT W T

One VIPA
5 1 88.6 92.5 1.04 92.5 1.04
5 5 23.5 36.8 1.57 42.5 1.81
5 10 23.5 36.8 1.57 42.5 1.81
20 1 - - - - -
20 5 95.2 - - - -
20 10 85.6 105.25 1.23 428.25 5.00
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Two VIPAs
5 1 76.4 92.5 1.21 92.5 1.21
5 5 18.7 25.2 1.35 28.5 1.52
5 10 18.7 25.2 1.35 28.5 1.52
20 1 - - - - -
20 5 84.6 - - 223.5 2.64
20 10 82 85.25 1.04 428.25 5.22
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Five VIPAs
5 1 76.4 92.5 1.21 92.5 1.21
5 5 18.7 25.2 1.35 28.5 1.52
5 10 18.7 25.2 1.35 28.5 1.52
20 1 - - - - -
20 5 73.23 85.25 1.16 152.3 2.08
20 10 73.23 85.25 1.16 428.25 5.85
200 1 - - - - -
200 5 - - - - -
200 10 × 1654.6 × 1042.5 ×
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Table 4.7: This table shows the computational results of the algorithms SIRM respec-
tively SIFM w.r.t. the makespan for the morning scenario, in comparison to the value
of the corresponding optimal offline solution OPTMS and the ratio between them. A
lower bound for the competitive ratio c is shown.

SIR morning, MS, LB=2 SIFM morning, MS, LB= 3
2

m Cap OPTMS SIRMS
M

SIRMS
M

OPTMS SIFMS
M

SIFMS
M

OPTMS

One VIPA
5 1 125 125 1.00 125 1.00
5 5 105 119 1.13 105 1.00
5 10 105 119 1.13 105 1.00
20 1 - - - - -
20 5 100 115.5 1.16 110.6 1.10
20 10 98.4 106.25 1.08 110.6 1.12
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Two VIPAs
5 1 105 125 1.19 105 1.00
5 5 105 112.5 1.07 105 1.00
5 10 105 112.5 1.07 105 1.00
20 1 - - - - -
20 5 95.4 115.5 1.21 110.6 1.16
20 10 95.4 106.25 1.11 95.4 1.00
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Five VIPAs
5 1 105 125 1.19 105 1.00
5 5 105 119 1.13 105 1.00
5 10 105 119 1.13 105 1.00
20 1 - - - - -
20 5 95.4 115.5 1.21 95.4 1.00
20 10 95.4 106.25 1.11 95.4 1.00
200 1 - - - - -
200 5 - - - - -
200 10 96.23 124.1 1.29 118.6 1.23
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Table 4.8: This table shows the computational results of the algorithms SIRM re-
spectively SIFM w.r.t. minimizing the total waiting time for the morning scenario, in
comparison to the value of the corresponding optimal offline solution OPT TWT and the
ratio between them. The competitive ratio c is unbounded.

SIR morning, TWT, c =∞ SIF morning, TWT, c =∞

m Cap OPTTWT SIRTWT
M

SIRT W T
M

OPTT W T SIFTWT
M

SIFT W T
M

OPTT W T

One VIPA
5 1 101.2 101.2 1.00 101.2 1.00
5 5 28.4 36.2 1.27 28.4 1.00
5 10 28.4 36.2 1.27 28.4 1.00
20 1 - - - - -
20 5 145.6 258 2.02 145.6 1.13
20 10 152.6 175.4 2.63 152.6 2.28
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Two VIPA
5 1 101.2 101.2 1.00 101.2 1.00
5 5 28.4 36.2 1.27 28.4 1.00
5 10 28.4 36.2 1.27 28.4 1.00
20 1 - - - - -
20 5 98.2 235.4 2.40 137.6 1.40
20 10 66.8 201.56 3.02 197.5 2.96
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Five VIPA
5 1 101.2 101.2 1.00 101.2 1.00
5 5 28.4 36.2 1.27 28.4 1.00
5 10 28.4 36.2 1.27 28.4 1.00
20 1 - - - - -
20 5 98.2 235.4 2.40 137.6 1.40
20 10 66.8 235.4 3.52 197.5 2.95
200 1 - - - - -
200 5 - - - - -
200 10 × 335.8 × 165.28 ×

Table 4.9: This table shows the values of the total tour length obtained by SIR for the
morning and evening scenarios, in comparison to the value of the corresponding optimal
offline solution OPT TTL and the ratio between them. The competitive ratio c is shown
for each of the scenarios, it is always greater than SIRTTL

OPTTTL
, unless when the capacity of

the VIPA is equal to 1, the ratio SIRTTL

OPTTTL
is equal to competitive ratio c.

TTL
SIR morning, TTL, c = Cap SIR Evening, TTL, c = Cap

m Cap SIRTTL OPTTTL SIRT T L

OPTT T L
SIRTTL OPTTTL SIRT T L

OPTT T L

5 1 125 125 1.00 125 125 1.00
5 5 86.67 25 3.47 100 25 4.00
5 10 86.67 25 3.47 81.25 25 3.25
20 1 500 500 1.00 500 500 1.00
20 5 125 100 1.25 113.3 100 1.13
20 10 106.25 50 2.13 110.4 50 2.21
200 1 5000 5000 1.00 5000 5000 1.00
200 5 1270.8 1000 1.27 2881.25 1000 2.88
200 10 585.5 500 1.17 575.45 401.5 1.43

79



4. Tram Mode Problem

Table 4.10: This table shows the makespan of the algorithms SIR and SIFE for the
evening scenario, in comparison to the value of the corresponding optimal offline solution
OPTMS and the ratio between them. A lower bound of the competitive ratio c is shown.

SIR evening, MS, LB=2 SIFE , evening, MS, LB=2
One VIPA

m Cap OPTMS SIRMS SIRMS

OPTMS SIFMS
E

SIFMS
E

OPTMS

5 1 125 125 1.00 125 1.00
5 5 87.8 106 1.21 102.2 1.16
5 10 87.8 106 1.21 102.2 1.16
20 1 - - - - -
20 5 103.5 124.6 1.20 121.5 1.17
20 10 103.5 121.2 1.17 108.5 1.04
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Two VIPAs
SIR evening, MS, LB=2 SIFE , evening, MS, LB=2

m Cap OPTMS SIRMS SIRMS

OPTMS SIFMS
E

SIFMS
E

OPTMS

5 1 125 125 1.00 125 1.00
5 5 87.8 104.2 1.19 102.2 1.16
5 10 87.8 104.2 1.19 102.2 1.16
20 1 - - - - -
20 5 75.2 124.6 1.66 116.6 1.55
20 10 75.2 120.5 1.60 116.6 1.55
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Five VIPAs
SIR evening, MS, LB=2 SIFE , evening, MS, LB=2

m Cap OPTMS SIRMS SIRMS

OPTMS SIFMS
E

SIFMS
E

OPTMS

5 1 125 125 1.00 125 1.00
5 5 87.8 90.2 1.03 95.6 1.08
5 10 87.8 90.2 1.03 95.6 1.08
20 1 - - - - -
20 5 75.2 92.6 1.23 87.6 1.16
20 10 75.2 92.6 1.23 87.6 1.16
200 1 - - - - -
200 5 - - - - -
200 10 × 118.26 × 102.46 ×
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Table 4.11: This table shows the total waiting time of the algorithms SIR and SIFE
for the evening scenario, in comparison to the value of the corresponding optimal offline
solution OPT TWT and the ratio between them. The competitive ratio c is unbounded.

SIR (evening) SIFE (evening)

m Cap OPTTWT SIRTWT SIRT W T

OPTT W T SIFTWT
E

SIFT W T
E

OPTT W T

One VIPA
5 1 88.1 120.3 1.37 120.3 1.37
5 5 22.3 52.25 2.34 60.4 2.71
5 10 22.3 52.25 2.34 60.4 2.71
20 1 - - - - -
20 5 - - - 257.8 -
20 10 78.2 201.5 2.58 168.4 2.15
200 1 - - - - -
200 5 - - - - -
200 10 - - - - -

Two VIPAs
SIR (evening) SIF (evening)

m Cap OPTTWT SIRTWT SIRT W T

OPTT W T SIFTWT
E

SIFT W T
E

OPTT W T

5 1 88.1 120.3 1.37 120.3 1.37
5 5 22.3 52.25 2.34 60.4 2.71
5 10 22.3 52.25 2.34 60.4 2.71
20 1 - - - - -
20 5 78.2 302.7 3.87 212.5 2.72
20 10 78.2 250.4 3.20 168.4 2.15
200 1 - - - - -
200 5 - - - - -
200 10 - - - 328.6 ×

Five VIPAs
SIR (evening) SIF (evening)

m Cap OPTTWT SIRTWT SIRT W T

OPTT W T SIFTWT
E

SIFT W T
E

OPTT W T

5 1 88.1 120.3 1.37 120.3 1.36
5 5 22.3 52.25 2.34 60.4 2.71
5 10 22.3 52.25 2.34 60.4 2.71
20 1 - - - - -
20 5 - - - - -
20 10 73.2 302.7 4.14 252.23 3.44
200 1 - - - - -
200 5 - - - - -
200 10 × 468.5 × 328.6 ×
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Chapter 5
Elevator Mode Problem

In this chapter we treat the PDP related to the elevator mode of the VIPA. The elevator
mode is a less restricted operation mode where one VIPA runs on a predefined line and
can change its direction at any station of this line to move towards a requested station.
One end of this line is distinguished as origin v0 (say, the “left” end).

The input for the Online or Offline Elevator Mode Problem (M,σ, T, 1,Cap) consists
of the following data:

• a weighted graph G = (V,E, d), a bi-directed path, where the nodes correspond to
stations, edges to their links, and edge weights d : E → R+ determine the driving
times between two nodes vi, vj ∈ V with respect to the distance d corresponding
to the length of a shortest path from vi to vj .

• a sequence σ = {r1, . . . , rh} of pdp-requests1 rj = (tj , xj , yj , zj) with zj ≤ Cap,
• a time horizon [0, T ],
• one VIPA with a capacity Cap as the maximum number of passengers which can

be simultaneously transported.

The output of the Online or Offline Elevator Mode Problem is a feasible transportation
schedule S serving all requests in σ, consisting of one tour Γ for the VIPA.

The goal is to construct a transportation schedule S = {Γ} w.r.t minimizing one of
the following objective functions: total tour length, makespan, total waiting time, and
total number of stops. As there is only one VIPA operating on the line, the objective
functions are updated accordingly.

5.1 An Online Agorithm

An algorithm MRIN (“Move Right If Necessary”) has been proposed for the Online-
Traveling Salesman Problem (where no transports have to be performed, but only points
to be visited) on a line. MRIN has been analyzed w.r.t. minimizing the makespan [29],

1In this chapter, the term “request” means pdp-request.
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giving a competitive ratio of 3/2. We generalize MRIN to the Pickup and Delivery
Problem to solve the Online Elevator Mode Problem. In fact, in elevator mode, the
server (VIPA) has the choice to continue its tour in the current direction, to wait at its
current position or to change its driving direction. Accordingly, we propose the algorithm
MAIN that consists of moving the VIPA away from the origin of the line as long as there
are yet unserved requests in the same direction of the VIPA moves. If there are no more
unserved requests in the same direction, then the VIPA changes direction and moves
towards the origin of the line (see Algorithm 5). Then we, analyze it w.r.t. different
objective functions in the next sections.

Algorithm 5 MAIN (“Move Away If Necessary”)
Input: request sequence σ, line L with origin vO, Cap
Output: tour on L to serve all requests in σ
1: initial server position s := vO
2: initial set of currently waiting requests (already released but not yet served requests)

σ′ := {rj ∈ σ : tj = 0}
3: while σ′ 6= ∅ do
4: determine the subset σ′up of requests rj = (tj , xj , yj , zj) ∈ σ′ with s ≤ xj ≤ yj
5: if σ′up 6= ∅ then
6: Serve all requests (or up to Cap passengers) in σ′up (moving away from vO to

furthest destination yk among all rj ∈ σ′up)
7: else
8: determine subset σ′down of requests rj = (tj , xj , yj , zj) ∈ σ′ with xj > yj
9: serve all requests (or up to Cap passengers) in σ′down while moving to the

origin
10: update s and σ′ (remove all served requests, add all newly released requests)

Important step in the MAIN algorithm When executing the step of “serving all
requests (or up to Cap passengers) in σ′up or σ′down”, in Algorithm 5, we need to handle
the case when there are more than Cap passengers waiting to be served. Therefore we
propose the following.

In case
∑
rj∈σ′up zj > Cap, then

• sort σ′up by multiple levels of criteria.

– the up requests of σ′up are sorted in decreasing order of their destinations the
request with the furthest delivery node from the origin v0 of the line is the
first one

– a second criteria for ordering is then applied on the subset of requests having
the same delivery node, that is an increasing order of their origins, the request
with the nearest pickup node to the origin v0 of the line is the first one;
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• plan a new subtour for the server starting from the origin v0 of the line, respecting
the above canonical ordering of the requests:

– take the first request of the ordered list σ′up
– check if, when inserting it to the subtour, the load of the VIPA on all up arcs

(vi, vi+1) of the line will be less or equal than Cap
– if the capacity of the VIPA is not violated, then insert the request to the

subtour and remove the request from σ′up

– else stop.

– take the last request of the ordered list σ′up
– check if, when inserting it to the subtour, the load of the VIPA on all up arcs

(vi, vi+1) of the line will be less or equal than Cap
– if the capacity of the VIPA is not violated, then insert the request to the

subtour and remove the request from σ′up

– else stop.

In case
∑
rj∈σ′down

zj > Cap, then

• sort σ′down by multiple levels of criteria:

– the down requests of σ′down are sorted in increasing order of their destinations,
the request with the nearest delivery node to the origin v0 of the line is the
first one.

– a second criteria for ordering is then applied on the subset of requests having
the same delivery node, that is a decreasing order of their origins, the request
with the furthest pickup node from the origin v0 of the line is the first one.

• plan a new subtour for the server starting from the origin v0 of the line, respecting
the above canonical ordering of the requests:

– take the first request of the ordered list σ′down
– check if, when inserting it to the subtour, the load of the VIPA on all down

arcs (vi, vi+1) of the line will be less or equal than Cap.
– if the capacity of the VIPA is not violated, then insert the request to the

subtour and remove the request from σ′down
– else stop.

– take the last request of the ordered list σ′down
– check if, when inserting it to the subtour, the load of the VIPA on all down

arcs (vi, vi−1) of the line will be less or equal than Cap.
– if the capacity of the VIPA is not violated, then insert the request to the

subtour and remove the request from σ′down
– else stop.
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5.2 Minimizing the Total Tour Length

5.2.1 Optimal Offline solution for the EMP w.r.t. Minimizing the
Total Tour Length

In order to obtain the optimal offline solution OPT (σ) w.r.t. minimizing the total tour
length, we compute a min cost flow in a suitable network. Given a line L = (v0, . . . , v`)
with origin v0 as a subnetwork, one VIPA of capacity Cap, and a request sequence σ
with pdp-requests rj = (tj , xj , yj , zj).
In the sequel, we distinguish in which direction an edge vivi+1 of L is traversed and speak
of the up arc (vi, vi+1) and the down arc (vi+1, vi). In order to construct the network
GE , we proceed as follows:

• Neglect the release dates tj and only consider the loads of the requests zj , their
origins xj and their destinations yj .

• Partition the requests into two subsets:

– U of “up-requests” rj ∈ σ with xj < yj ,
– D of “down-requests” rj ∈ σ with xj > yj .

• Determine the loads of all up arcs (vi, vi+1) or down arcs (vi+1, vi) of the line L as
a weighted sum of the load of all request-paths (xj , yj) containing this arc:

– load(vi, vi+1) =
∑

(vi,vi+1)∈(xj ,yj),xj<yj zj ∀i ∈ {0, `− 1}, ∀rj ∈ U
– load(vi+1, vi) =

∑
(vi+1,vi)∈(xj ,yj),xj>yj zj ∀i ∈ {0, `− 1}, ∀rj ∈ D

• Determine the “multiplicities” m of all up/down arcs: in order to serve all the
requests in σ, each arc (vi, vi+1) must be visited m(i,i+1) = d load(vi,vi+1)

Cap e times
and each arc (vi+1, vi) must be visited m(i+1,i) = d load(vi+1,vi))

Cap e times. In case
the multiplicity m(i,i+1) resp. m(i+1,i) is equal to zero, the corresponding up resp.
down arc is removed.

Now we build a network GE = (VE , AE), where

• the node set VE = V up(o) ∪ V up(d) ∪ V down(o) ∪ V down(d)∪{s, t} contains

– the origin nodes of all up arcs with non-zero multiplicity in V up(o),
– the destination nodes of all up arcs with non-zero multiplicity in V up(d),
– the origin nodes of all down arcs with non-zero multiplicity in V down(o),
– the destination nodes of all down arcs with non-zero multiplicity in V down(d),
– the origin v0 of the line L as source s and as sink t,

• the arc set AE = As ∪AU ∪AD ∪AL ∪At is composed of:

86



5. Elevator Mode Problem

– source arcs from the source s to all vup(o)
i ∈ V up(o) and all vdown(o)

i ∈ V down(o)

in As,

– up arcs (vup(o)
i , v

up(d)
i+1 ) whenever m(i,i+1) 6= 0 in AU ,

– down arcs (vdown(o)
i+1 , v

down(d)
i ) whenever m(i+1,i) 6= 0 in AD,

– link arcs in AL going from all vup(d)
i ∈ V up(d) to all vdown(o)

i ∈ V down(o), and
from all vdown(d)

i ∈ V down(d) to all vup(o)
i ∈ V up(o),

– sink arcs from all vup(d)
i ∈ V up(d) and from all vdown(d)

i ∈ V down(d) to the sink
t in At.

Note that GE contains directed cycles. The objective function considers costs d(a) =
d(u, v) for the flow f on all arcs a = (u, v) in AE , where d(u, v) is the length of a short-
est path from u to v in the line L expressed in driving times. To correctly initialize the
system, we use the source node s as source for the flow and the sink node t as its desti-
nation. For all internal nodes, we use normal flow conservation constraints. We require
a flow on all up/down arcs f(a) = m(a) for all a ∈ {AU ∪ AD}, see constraint (5.1e).
We finally add the constraint (5.1d) to eliminate all possible isolated cycles that the flow
may contain (since the network contains directed cycles).

This leads to a Min-Cost Flow Problem, whose output is a subset of arcs needed to
form a transportation schedule for a metric task system, whose tasks are induced by the
requests. The corresponding integer linear program is as follows:

min
∑
a∈AE

d(a)f(a) (5.1a)

s.t.
∑

a∈δ−(s)
f(a) = 1 (5.1b)

∑
a∈δ−(v)

f(a) =
∑

a∈δ+(v)
f(a) ∀v 6= {s, t} (5.1c)

∑
a∈δ(W )

f(a) ≥ 2 ∀W ⊂ VE \ {s, t}, 2 ≤ |W | ≤ |VE | − 3 (5.1d)

f(a) = m(a) ∀a ∈ {AU ∪AD} (5.1e)
f(a) ∈ Z+ (5.1f)

where δ−(v, t) denotes the set of outgoing arcs of v, δ+(v) denotes the set of incoming
arcs of v and δ(W ) denotes the set of incoming or outgoing arcs (u, v) of W s.t. u ∈W
and v /∈ W or u /∈ W and v ∈ W . The time required to compute the integer linear
program grows in proportion to 2|V | due to the constraint (5.1d) that eliminates all
possible isolated cycles, and, hence, it may grow exponentially. However, this integer
linear program can be computed in reasonable time provided that the number V of nodes
in the original network (the line) is small.
Remark 5.1. The family of constraints (5.1d) can be generated and then each inequal-
ity is separated to verify if it is violated or not. However, due to their exponential
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number, the process of separation in order to verify if a solution satisfies all constraints
is exponential. Since the number of subtour elimination constraints is exponential, we
may firstly compute the integer linear program without the constraints (5.1d). Then
we check if there is an isolated cycle in the solution obtained, if yes, we add only the
constraint (5.1d) using the nodes of this isolated cycle. This procedure is repeated until
a solution without isolated cycles is found. �

Finally, the flow in the time-expanded network is interpreted as a transportation
schedule.The tracks of the VIPA over time can be recovered from the flow f(a) on the
arcs by standard flow decomposition, see [2]. Hereby, a flow f(a) on an arc a = (u, v)
corresponds to a move of a VIPA on this arc. Based on the flow values, one can construct
a unique path from source s to sink t traversing all arcs a with positive flow exactly
f(a) times. This shows that the optimal solution of system (5.1) corresponds to a
transportation schedule with minimal total tour length for the offline problem behind
the elevator mode.

Example 5.2. Consider a line L = (v0, . . . , v`) with origin v0, a unit distance between
vi and vi+1 for each i, with a set σ of 9 pdp-requests shown in Figure 5.1, and a VIPA
with capacity Cap = 2. The resulting network GE = (VE , AE) of the line presented in
this example is illustrated in Figure 5.2, and the solution computed by the LP (5.1) is
shown in Figure 5.3.

The optimal offline solution, the transportation schedule of the VIPA with a minimal
total tour length, is obtained by computing the presented integer linear program for a
min-cost flow problem in the constructed network GE = (VE , AE).

♦

5.2.2 Competitive Analysis

Example 5.3. Consider a line L = (v0, . . . , v`) with origin v0, a unit distance between
vi and vi+1 for each i, and one unit-speed server with capacity Cap. Recall that, compet-
itive results, (ratios) against an oblivious adversary are the strongest, in the analysis of
competitive ratios we prove that the algorithms are c− competitive against the oblivious
adversary. The adversary releases a sequence σ = (σ1, σ2, σ3) of uniform pdp-requests
that force MAIN to leave the origin of the line and to perform a subtour of a certain
distance for each request, whereas the adversary is able to serve all requests in a single
subtour of length 2 |L|:

The first block σ1 of ` · Cap pdp-requests, consists of the following requests:
r1 = (0, v0, v1, 1)
rj = (tj−1 + 2d(v0, v1), v0, v1, 1) for 2 ≤ j ≤ Cap
rj = (tj−1 + 2d(v0, v1), v1, v2, 1) for j = Cap + 1
rj = (tj−1 + 2d(v0, v2), v1, v2, 1) for Cap + 2 ≤ j ≤ 2Cap
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v0 v1 v2 v3 v4

r1 = (t1, v0, v4, 1)

r2 = (t2, v4, v3, 1)

r3 = (t3, v3, v4, 2)

r4 = (t4, v4, v3, 1)

r5 = (t5, v3, v4, 1)

r6 = (t6, v4, v3, 2)

r7 = (t7, v4, v2, 1)

r8 = (t8, v0, v1, 2)

r9 = (t9, v1, v0, 1)

load(uparcs) 3 1 1 4
load(downarcs) 1 0 1 5

m(uparcs) = d loadCape 2 1 1 2
m(downarcs) =

d loadCape
1 0 1 3

Figure 5.1: This figure illustrates the line L = (v0, . . . , v`) with origin v0, and a set σ of
9 pdp-requests and a VIPA with capacity Cap = 2. The requests are partitioned into
two subsets “up-requests” (arcs in black) and “down-requests” (arcs in red). Each arc
represents a load of 1, for example r3 is represented by 2 arcs going from v3 to v4. The
loads of all up arcs (all arcs (vi, vi+1)) or down arcs (all arcs (vi+1, vi)) of the line L
are shown in the first and second row of the table. Then the third and the forth rows
contain the “multiplicities” m of all up/down arcs.

rj = (tj−1 + 2d(v0, v`−1), v`−1, v`, 1) for j = (`− 1)Cap + 1
rj = (tj−1 + 2d(v0, v`), v`−1, v`, 1) for (`− 1)Cap + 2 ≤ j ≤ `Cap

The second block σ2 consists of the following 2`′ · Cap pdp-requests:
rj = (tj−1 + 2d(v0, v`), v`, v`−1, 1) for `Cap + 1 ≤ j ≤ (`+ 1)Cap
rj = (tj−1 + 2d(v0, v`), v`−1, v`, 1) for (`+ 1)Cap + 1 ≤ j ≤ (`+ 2)Cap
rj = (tj−1 + 2d(v0, v`), v`, v`−1, 1) for (`+ 2`′ − 2)Cap + 1 ≤ j ≤ (`+ 2`′ − 1)Cap
rj = (tj−1 + 2d(v0, v`), v`−1, v`, 1) for (`+ 2`′ − 1)Cap + 1 ≤ j ≤ (`+ 2`′)Cap

The third block σ3 consists of the following ` · Cap pdp-requests:
rj = (tj−1 + 2d(v0, v`), v`, v`−1, 1) for (`+ 2`′ + 1)Cap + 1 ≤ j ≤ (`+ 2`′ + 2)Cap
rj = (tj−1 + 2d(v0, v`), v`−1, v`−2, 1) for j = (`+ 2`′ + 2)Cap + 1
rj = (tj−1 + 2d(v0, v`), v`, v`−1, 1) for (`+ 2`′ + 2)Cap + 2 ≤ j ≤ (`+ 2`′ + 3)Cap
rj = (tj−1 + 2d(v0, v2), v1, v0, 1) for j = (2`+ 2`′ − 1)Cap + 1
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s t

vup0 vup1 vup1 vup2 vup2 vup3 vup3 vup4

vd0 vd1 vd2 vd3 vd3 vd4

2 1 1 2

311
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Figure 5.2: This figure illustrates the network GE = (VE , AE) of Example 5.2. The up
and down arcs are illustrated by continuous arcs. Source and sink arcs are illustrated
by dotted arcs. To ease the readability, we show a subset of the link arcs (dashed in the
figure). The values within circles correspond to the value of the multiplicity m(a) of the
up or down-arc a in GE . The values on the source, sink or link arcs correspond to the
distance d(a) of the arc a.
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Figure 5.3: This figure illustrates the flow computed by the presented integer linear
program for a min-cost flow problem in the network GE = (VE , AE) of Example 5.2.
The values above the arcs correspond to the value of the flow f(a) or the number of
times the VIPA traverses the arc a in the transportation schedule.

rj = (tj−1 + 2d(v0, v1), v1, v0, 1) for (2`+ 2`′ − 1)Cap + 2 ≤ j ≤ (2`+ 2`′)Cap

MAIN starts its VIPA at time t = 0 to serve r1 = (0, v0, v1, 1) and finishes the first
subtour of length 2d(v0, v1) = 2 without serving any further request. When the VIPA
operated by MAIN is back to the origin v0, the second pdp-request r2 = (2, v0, v1, 1) is
released and MAIN starts at t = 2 a second subtour of length 2 to serve r2, without
serving any further request in this subtour. This is repeated for each request until serving
the first block of ` · Cap requests yielding

MAIN(σ1) = 2 · Cap
∑

1≤i≤`
i = Cap · |L| · (|L|+ 1)
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Then at t = t`Cap+1 MAIN starts to serve r`Cap+1 from vn to vn−1 and performs a
subtour of length 2d(v0, v`) = 2 |L|. When the VIPA operated by MAIN is back to the
origin v0, the request r`Cap+2 is released and MAIN performs a new subtour of length
2 |L| to serve it. This is repeated for each request until serving the second block of
`′ · 2Cap requests yielding

MAIN(σ2) = 2`′ · 2Cap |L| .

Finally in order to serve the third block MAIN has the same behavior as to serve the
first block of requests yielding

MAIN(σ3) = 2 · Cap
∑

1≤i≤`
i = Cap · |L| · (|L|+ 1).

Therefore

MAIN(σ) = Cap · |L| · (|L|+ 1) + 2`′ · 2Cap |L| = (|L|+ 1 + 2`′) · 2 |L| · Cap.

The adversary waits at the origin v0 until t = tCap and serves all requests r1, . . . , rCap
from v0 to v1. Then he waits until t = t2Cap at v1 and serves all requests rCap+1, . . . , r2Cap
from v1 to v2. This is repeated for all Cap requests from vi to vi+1 until the adversary
arrives to v`. OPT served the first block of ` · Cap requests with a total tour length
equal to |L|. Then the adversary begins to oscillate his VIPA between v` and v`−1 and
serves each time Cap requests, this is repeated 2`′ times leading to a total tour length
for σ2 equal to 2`′. Finally the adversary follows the other direction and waits each time
until Cap requests are released to serve them, for all Cap requests from vi to vi−1 until
reaching v0, yielding OPT (σ) = 2 |L|+ 2`′. Therefore, we obtain

MAIN(σ)
OPT (σ) = 2 · Cap · |L| · (|L|+ 1) + (`′ · 2 · Cap · 2 |L|)

2(|L|+ `′) = 2 · Cap · |L| · (|L|+ 1 + 2`′)
2(|L|+ `′)

= Cap · |L|+ (1 + `′)
|L|+ `′

Cap · |L| −→
`′→+∞

2Cap · |L|

as a lower bound for the competitive ratio of MAIN. ♦

We can determine an upper bound for the competitive ratio of MAIN close to the
ratio obtained by the previous example:

Theorem 5.4. MAIN is 2Cap · |L|-competitive w.r.t minimizing the total tour length
for one VIPA operating in elevator mode on a line L with length |L|.

Proof. The worst transportation schedule results if all requests are uniform and the
VIPA operated by MAIN performs a separate subtour serving a single pdp-request rj =
(tj , xj , yj , 1) each time the VIPA leaves the origin v0 of the line, yielding

∑
rj∈σ 2 max(d(v0, xj), d(v0, yj))

as total tour length.
To maximize the ratio between the total tour length obtained by MAIN and the optimal
offline solution, we need to ensure that
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Figure 5.4: This figure illustrates the set σ = σ1 ∪ σ2 ∪ σ3 of pdp-requests (arcs under
the line L = (v0, . . . , v5) with origin v0) from Example 5.3 for Cap = 3, ` = 5 and `′ = 1.

• we do not have a move with a load less than the capacity Cap of the VIPA in the
transportation schedule of OPT ;

• all requests in σ can be served with as few and as short subtours as possible in
OPT.

The worst ratio of subtours can be obtained when

• OPT oscillates fully loaded between two neighbored nodes of L,

• MAIN is forced to traverse the whole line twice per passenger, i.e. oscillates be-
tween v0 and v`.

For that, v` needs to be either origin or destination of each request, and the delay between
the release dates needs to be sufficiently large. This can be achieved with subsequence
σ2 from Example 5.3, with `′ blocks each consisting of

• Cap consecutive uniform pdp-requests from vn to vn−1, alternated by

• Cap consecutive uniform pdp-requests from vn−1 to vn,
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always with a delay 2 |L| between the release dates of any two pdp-requests rj and rj+1.
We obtain OPT (σ2) = 2`′ andMAIN(σ2) = `′ ·2 ·Cap ·2 · |L| which leads to the studied
subtour ratio of

MAIN(σ2)
OPT (σ2) = `′ · 2 · Cap · 2 · |L|

2`′ = 2 · Cap · |L| .

However, this ratio so far neglects the initial and final server position v0 for the VIPA
operated by OPT. The requirement of starting and ending the tour in v0 leads to a total
tour length for OPT of

OPT (σ) = |L| · 2`′ · |L| .

In order to maximize the ratio of the complete tours, the adversary releases more requests
to ensure that the VIPA operated by

• OPT can arrive at vn (resp. return from vn to v0) fully loaded on each arc,

• MAIN is forced to oscillate between v0 and the destination yj (resp. the origin xj)
of each uniform request rj .

This can be achieved with the subsequences σ1 and σ3 from Example 5.3 with

• Cap consecutive uniform pdp-requests from vi to vi+1 for each 0 ≤ i < ` and

• Cap consecutive uniform pdp-requests from vi to vi−1 for each ` ≥ i ≥ 1,

always with delay 2 · d(v0, yj) resp. 2 · d(xj , v0) between the release dates of any two
requests rj and rj+1 within these subsequences. We obtain (as in Example 5.3) that

MAIN(σ1) = MAIN(σ3) = 2 · Cap
∑

1≤i≤`
i = Cap · |L| · (|L|+ 1).

This finally leads to

MAIN(σ)
OPT (σ) = 2 · Cap · |L| · (|L|+ 1) + (`′ · 2 · Cap · 2 |L|)

2(|L|+ `′) = 2 · Cap · |L| · (|L|+ 1 + 2`′)
2(|L|+ `′)

= Cap · |L|+ (1 + `′)
|L|+ `′

Cap · |L| −→
`′→+∞

2Cap · |L|

as the maximum possible ratio between MAIN(σ) and OPT (σ) taken over all possible
sequences on a line L.

Concerning the lunch scenario, we may consider VIPAs operating in elevator mode
on lines, where each line has the restaurant as its distinguished origin. A sequence σ′
containing the first Cap requests of the first block σ1 and the last Cap requests from the
third block σ3 from the sequence presented in Example 5.3 shows that 2 ·Cap is a lower
bound on the competitive ratio of MAIN for the lunch scenario. As for the morning
resp. evening scenario, we may consider VIPAs operating in elevator mode on lines,
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where each line has a parking as its distinguished origin. A sequence σ′′ containing the
first Cap requests of the first block σ1 resp. the last Cap requests from the third block
σ3 from the sequence presented in Example 5.3 shows that Cap is a lower bound on
the competitive ratio of MAIN for the morning respectively the evening scenario. We
can show that these examples are the worst cases for MAIN during lunch, morning and
evening:

Theorem 5.5. For one VIPA with capacity Cap operating in elevator mode on a line,
MAIN is w.r.t. the objective of minimizing the total tour length

• 2 · Cap-competitive during the lunch scenario,

• Cap-competitive during the morning resp. the evening scenario.

Proof. The worst transportation schedule results if the VIPA operated by MAIN per-
forms a separate subtour serving a single uniform pdp-request rj = (tj , v0, v1, 1) or rj =
(tj , v1, v0, 1) each time the VIPA leaves the origin v0 of the line, yielding

∑
rj∈σ 2d(v0, v1)

as total tour length. MAIN can indeed be forced to show this behavior by releasing the
requests accordingly (i.e. by using requests with zj = 1 each and with sufficiently large
delay between tj and tj+1). In order to maximize the ratio between the total tour length
obtained by MAIN and the optimal offline solution, we need to ensure that

• we do not have a move from or to the origin with a load less than the capacity
Cap of the VIPA in the transportation schedule of OPT . For that, the adversary
releases

• during the lunch Cap many requests traversing the same arc. Whereas MAIN tra-
verses d(v0, v1) twice to serve a pdp-request rj = (tj , v0, v1, 1) or rj = (tj , v1, v0, 1),
OPT travels d(v0, v1) once to serve the request and can share it with Cap − 1
others.

• during the morning/evening Cap many requests traversing the same arc. Whereas
MAIN traverses d(v0, v1) twice to serve a pdp-request rj = (tj , v0, v1, zj) resp.
rj = (tj , v1, v0, zi), OPT travels the same distance to serve the request but can
share it with Cap− 1 others.

• all requests in σ can be served with as few and as short subtours as possible in
OPT. For that, the adversary releases

• during the lunch a sequence σ of 2Cap requests: Cap many requests v0 → v1
followed by Cap many requests v1 → v0. Therefore we obtain

MAIN(σ) =
∑
rj∈σ

2d(v0, v1) = 2 · Cap · 2d(v0, v1) and OPT (σ) = 2d(v0, v1)

s.t. MAIN(σ)
OPT (σ) = 2 · Cap · 2d(v0, v1)

2d(v0, v1) = 2Cap
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is the maximum possible ratio between MAIN(σ) and OPT (σ) taken over all
possible sequences on a line during the lunch.

• during the morning/evening a sequence σ of Cap requests: Cap many requests
v0 → v1 resp. Cap many requests v1 → v0. Therefore we obtain

MAIN(σ) =
∑
rj∈σ

2d(v0, v1) = Cap · 2d(v0, v1) and OPT (σ) = 2d(v0, v1)

s.t. MAIN(σ)
OPT (σ) = Cap · 2d(v0, v1)

2d(v0, v1) = Cap

is the maximum possible ratio between MAIN(σ) and OPT (σ) taken over all
possible sequences on a line during the morning resp. evening.

5.3 Minimizing the Makespan

5.3.1 Optimal Offline Solution for the EMP w.r.t. Minimizing the
Makespan

In Chapter 4 Section 4.3.1, we presented an adapted model for the Tram Mode Problem
w.r.t. minimizing the makespan based on a formulation for the PDP with time windows
proposed in [44].

In case of the Elevator Mode Problem, minimizing the makespan turns out to be
the same as minimizing the total tour length with the waiting time of the VIPA, as
only one VIPA is used on a line. Accordingly, we adapt the model used in Section 4.3.1
in Chapter 4. In the following we mention only the differences: Given a line L =
(v0, . . . , vn), with origin v0 as a network L = (V,E), a VIPA with capacity Cap, and a
request sequence σ with n pdp-requests rj = (tj , xj , yj , zj) such that zj ≤ Cap, otherwise
the request is split.
We construct the complete directed graph LM = (VM , AM ) in a similar way as CD for the
offline solution of the Tram Mode Problem w.r.t. minimizing the makespan. The main
differences are in decision variables of the integer program proposed. Instead of using k
different decision variables for the routing, the times, and the load of the VIPAs, we use
only one for each, because in the Elevator Mode Problem, we have k = 1. Therefore,
the routing decisions are represented by the variables below.

• The time at which the VIPA begins service at node v ∈ VM , is denoted by the
decision variable B(v).

• The load of the VIPA after visiting node v ∈ VM is denoted by Q(v).

• the trace of the VIPA is reflected by
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f(v, v′) =
{

1, if the VIPA travels along the arc a = (v, v′)
0, otherwise

Finally, with each arc (v, v′) ∈ AM we associate a cost c(v, v′) and a driving time d(v, v′)
corresponding to the distance of the shortest path from v to v′ in the original line
L = (V,E).

The objective function in (4.2) for the Tram Mode Problem is to minimize Tmax,
where Tmax is greater or equal than the time at which the last VIPA arrives at the depot
maxi∈{1···k}Bi(t). As we are considering only one VIPA, we can replace this objective
function by B(t) (5.3a), and obtain the same result.

The corresponding integer program is detailed in (5.3)

min B(t) (5.3a)
s.t.

∑
a∈δ−(xj)

f(a) = 1, ∀xj ∈ Vx (5.3b)

∑
a∈δ−(s)

f(a) = 1 (5.3c)

∑
a∈δ−(v)

f(a) =
∑

a∈δ+(v)
f(a) ∀v ∈ Vx ∪ Vy (5.3d)

∑
a∈δ+(t)

f(a) = 1 (5.3e)

B(v′) ≥ (B((v) + d(v, v′))f(v, v′) ∀v, v′ ∈ VM (5.3f)
Q(v′) ≥ (Q(v) + q(v))f(v, v′) ∀v, v′ ∈ VM (5.3g)
B(yj)−B(xj)− d(xj , yj) ≥ 0 ∀rj ∈ σ (5.3h)
B(t)−B(s) ≤ T (5.3i)
B(xj) ≥ tj ∀xj ∈ Vx (5.3j)
max{0, q(v)} ≤ Q(v) ≤ min{Cap,Cap + q(v)} ∀, v ∈ VM (5.3k)
f(a) ∈ {0, 1} ∀, a ∈ AM (5.3l)
B(v) ≥ 0 ∀, v ∈ VM (5.3m)
Q(v) ≥ 0 ∀, v ∈ VM (5.3n)

Constraints (5.3b) ensure that each request is served exactly once. Constraints
(5.3c),(5.3d) and (5.3e) guarantee that a tour starts at the origin v0 of the circuit C.
Consistency of the time and load variables is ensured by constraints (5.3f) and (5.3g).
Precedence constraints are imposed through inequalities (5.3h). Finally, inequalities
(5.3i) bound the duration of the tour (the tour of the VIPA cannot exceed the time hori-
zon T ). Constraints (5.3j) ensure that a request cannot be served before it is released
and (5.3k) impose capacity constraints.

Similarly to the formulation of the offline solution in Tram Mode Problem w.r.t.
minimizing the makespan, this formulation is also non linear because of constraints
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(5.3f) and (5.3g). By introducing constants M(v, v′) and W (v, v′), these constraints can
be linearized as follows:

B(v′) ≥ B((v) + d(v, v′)−M(v, v′)(1− f(v, v′)) ∀v, v′ ∈ VM (5.4a)
Q(v′) ≥ Q(v) + q(v)−W (v, v′)(1− f(v, v′)) ∀v, v′ ∈ VM (5.4b)

In Figure 5.5, we show the computed flow of the Example 5.2 by solving the inte-
ger linear program (5.3). The computed flow and routing decisions yield an optimal
transportation schedule for the Offline Elevator Mode Problem w.r.t. minimizing the
makespan.
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Figure 5.5: This figure illustrates the resulting flow computed by the LP (4.2) on the
network CM = (VM , AM ) of Example 5.2. The makespan has a value of 15. The origins
of the requests are represented by circles, the destinations by square. the values of B1(v)
on the nodes are illustrated by a value enclosed by a gray circle above the nodes The
arcs are labeled by the values of Q(v) (the load of the VIPA after visiting a node v.
The values next to the nodes v correspond to the load of the q(v), (q(s) = q(t) = 0).
the nodes of the requests are placed in the figure vertically by their increasing order of
release dates.
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We construct the tours from the resulting computed routing decisions in the same
way as in TramMP (see Section 4.3.1). The resulting optimal transportation schedule
of the Example 5.2 w.r.t. minimizing the makespan is the following.

r1−−−−−−→ r2−−−−−−→ r3−−−−−−→ r6−−−−−−→ r5−−−−−−→
Γ1 =(v0, 0)→ (v0, 1)→ (v4, 5)→ (v3, 6)→ (v4, 7)→ (v3, 8)→ (v4, 9)

r7−−−−−−−−−−−−−→r4−−−−−−→ r9−−−−−−→ r8−−−−−−→
(v4, 9)→ (v3, 10)→ (v2, 11)→ (v1, 12)→ (v0, 13)→ (v1, 14)→ (v0, 15)

5.3.2 Competitive Analysis

The adversary can again “cheat” the strategy of MAIN, as the following example shows.
(Again in these competitive analysis we use the oblivious adversary.)

Example 5.6. Consider a line L = (v0, . . . , vn) with origin v0, a unit distance between
vi and vi+1 for each i, and one unit-speed server. The adversary releases a sequence
σ = (r1, r2) with 2 pdp-requests

r1 = (0, v0, vn, 1) and r2 = (ε, v0, vn, 1).

MAIN determines at time t = 0 the set σ′ = {r1} and serves r1 by moving from v0 to
vn. At time t = n, we have s = vn and σ′ = ∅, so it moves back to v0, arriving at
time t = 2n. Now, s = v0 and σ′ = {r2}, so MAIN starts its VIPA again to serve r2 by
moving from v0 to vn, and finally returns to v0 at time t = 4n. The adversary waits in
v0 until t = ε and serves both requests r1 and r2 by moving from v0 to vn, and returns
to v0 at time t = 2n+ ε. Therefore, we obtain

MAIN(σ)
OPT (σ) = 4n

ε+ 2n = 2

as a lower bound for the competitive ratio of MAIN w.r.t. minimizing the makespan,
even in the morning scenario. ♦

By slightly modifying the worst case example of the morning scenario, one can obtain
a worst case example for the evening scenario w.r.t. minimizing the makespan.

Example 5.7. Consider a line L = (v0, . . . , vn) with origin v0, a unit distance between
vi and vi+1 for each i, and one unit-speed server. The adversary releases a sequence
σ = (r1, r2) with 2 requests

r1 = (0, vn, v0, 1) and r2 = (n+ ε, vn, v0, 1).

MAIN determines at time t = 0 the set σ′ = {r1} and moves from v0 to vn and starts
serving r1 at time t = n and arrives at the origin v0 at t = 2n. But the adversary releases
a new request r2 = (n + ε, vn, v0, 1). Now, s = v0 and σ′ = {r2}, so MAIN starts its
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VIPA again to serve r2 by moving from v0 to vn, and finally returns to v0 at time t = 4n.
The adversary waits in v0 until t = ε moves from v0 to vn, and serves both requests r1
and r2, then arrives to v0 at time t = 2n+ ε. Therefore, we obtain

MAIN(σ)
OPT (σ) = 4n

ε+ 2n = 2

as a lower bound for the competitive ratio of MAIN w.r.t. minimizing the makespan,
even in the evening scenario. ♦

We conjecture that this bound is tight in general and can ensure it for the morning
and evening scenario:

Theorem 5.8. MAIN is 2-competitive for the Online Elevator Mode Problem w.r.t
minimizing the makespan for one VIPA operating in elevator mode on a line during the
morning and evening scenarios, with uniform requests, i.e., all requests have a load of
1.

Before proving the theorem, we provide the following lemma.

Lemma 5.9. MAIN computes an optimal transportation schedule for the Elevator Mode
Problem w.r.t. minimizing the makespan if the whole sequence σ is known in advance,
i.e. if all release dates are zero, during the morning respectively the evening.

Proof. First, note that minimizing the makespan amounts to minimizing the total tour
length taking into account the waiting time of the VIPA because we are using only one
VIPA on the line. The objective of this lemma is to prove that MAIN provides the
optimal solution w.r.t. minimizing the makespan if the whole sequence σ is known in
advance, i.e. if all release dates are zero, during the morning respectively the evening.
Therefore this lemma will provide the proof that MAIN solves optimally the classical
DARP or PDP with one server operating on a line as a metric space, in case all requests
have the same origin or all requests have the same destination. During the morning
respectively the evening, all requests have the same pickup respectively delivery node
that is the origin v0 of the line. If

∑
rj∈σ zj ≤ Cap, then MAIN serves all the requests

in σ together and MAIN(σ) = OPT (σ). If
∑
rj∈σ zj > Cap, MAIN proceeds as follows.

MAIN sorts the requests in σ in the decreasing order of their destinations respectively
in the increasing order of their origins during the morning respectively the evening, as
Figures 5.6 and 5.7 show. Then MAIN serves progressively Cap passengers each time
he leaves the origin respecting the order of sorting. For example, in the examples shown
in Figures 5.6 and 5.7, MAIN first serves r1, r2 and r3 in a subtour Γ′ and then serves
r4, r5 and r6 in the subtour Γ′′.

In order to express the value of the makespan or the total tour length with the
waiting time of MAIN we may rely on the model presented in Section 5.2.1 used to solve
the optimal offline solution w.r.t the total tour length. Therefore we proceed as follows.

• Partition the requests into two subsets:
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v0 v1 v2 v3 v4

r1 = (t, v0, v4, 2)

r2 = (t, v0, v4, 1)

r3 = (t, v0, v3, 1)

r4 = (t4, v4, v3, 1)

r5 = (t5, v3, v4, 1)

r6 = (t6, v4, v3, 2)

Γ′

Γ′′

load(uparcs) 8 6 5 3
load(downarcs) 0 0 0 0

m(uparcs) = d loadCape 2 2 2 1
m(downarcs) =

d loadCape
0 0 0 0

Figure 5.6: This figure illustrates the line L = (v0, . . . , v`) with origin v0, and a set σ of
6 requests and a VIPA with capacity Cap = 4. There is only one partition of requests,
“up-requests”, since we are in the morning scenario (illustrated by the arcs). Each arc
represents a load of 1, for example r1 is represented by 2 arcs going from v0 to v4. The
loads of all up arcs (all arcs (vi, vi+1)) or down arcs (all arcs (vi+1, vi)) of the line L
are shown in the first and second row of the table. Then the third and the forth rows
contain the “multiplicities” m of all up arcs.

– U of “up-requests” rj ∈ σ with xj < yj ,

– D of “down-requests” rj ∈ σ with xj > yj .

• Determine the loads of all up arcs (vi, vi+1) or down arcs (vi+1, vi) of the line L as
a weighted sum of the load of all request-paths (xj , yj) containing this arc:

– load(vi, vi+1) =
∑

(vi,vi+1)∈(xj ,yj),xj<yj zj ∀i ∈ {0, `− 1}, ∀rj ∈ U

– load(vi+1, vi) =
∑

(vi+1,vi)∈(xj ,yj),xj>yj zj ∀i ∈ {0, `− 1}, ∀rj ∈ D

• Determine the “multiplicities” m of all up/down arcs: in order to serve all the
requests in σ, each arc (vi, vi+1) must be visited m(i,i+1) = d load(vi,vi+1)

Cap e times and
each arc (vi+1, vi) must be visited m(i+1,i) = d load(vi+1,vi))

Cap e times.

Let mi = max{m(vi−1, vi),m(vi, vi− 1)}, then we may express the makespan of MAIN
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v0 v1 v2 v3 v4

r1 = (t, v0, v4, 2)

Γ′

Γ′′

r2 = (t, v0, v4, 1)

r3 = (t, v0, v3, 1)

r4 = (t, v4, v3, 1)

r5 = (t, v3, v4, 1)

r6 = (t, v4, v3, 2)

load(uparcs) 0 0 0 0
load(downarcs) 8 6 5 3

m(uparcs) = d loadCape 0 0 0 0
m(downarcs) =

d loadCape
2 2 2 1

Figure 5.7: This figure illustrates the line L = (v0, . . . , v`) with origin v0, and a set σ of
6 requests and a VIPA with capacity Cap = 4. There is only one partition of requests,
“down-requests”, since we are in the evening scenario (illustrated by the arcs). Each
arc represents a load of 1, for example r1 is represented by 2 arcs going from v4 to v0.
The loads of all up arcs (all arcs (vi, vi+1)) or down arcs (all arcs (vi+1, vi)) of the line
L are shown in the first and second row of the table. Then the third and the forth rows
contain the “multiplicities” m of all up/down arcs.

during the morning and evening scenario by

MAIN(σ) =mn · 2d(v0, vn) +
∑

σi∈σ,1≤i≤n−1
(mi −mi+1) · 2d(v0, vi) s.t. mi −mi+1 ≥ 0

=mn · 2d(v0, vn) + (mn−1 −mn) · 2d(v0, vn−1) + · · ·+ (m1 −m2) · 2d(v0, v1)
=mn · 2(d(v0, v1) + d(v1, v2) + · · ·+ d(vn−1, vn)) + (mn−1) · 2(d(v1, v2) + · · ·

+ d(vn−2, vn−1))−mn · 2(d(v1, v2) + · · ·+ d(vn−2, vn−1)) + · · ·+
m1 · 2d(v0, v1)−m2 · 2d(v0, v1)

=mn · 2d(vn−1, vn) + · · ·+m2 · 2d(v1, v2) +m1 · 2d(v0, v1)

As for OPT, in order to express its value of the makespan, we may also rely on the
model presented in Section 5.2.1 used to solve the optimal offline solution w.r.t the total
tour length. Actually we can use this model to compute a transportation schedule w.r.t.
minimizing the makespan only if all release dates are the same, i.e. tj = 0 for all requests
rj ∈ σ, and not in the offline situation. The multiplicity computed for each arc enables
us to precise exactly how many times the VIPA must traverse each of the up and down
arcs in order to serve all requests. In general, the total tour length of OPT serving the
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sequence σ is

OPT (σ) =
∑

1≤i≤n
max{m(vi, vi+1),m(vi+1, vi)} · 2d(vi, vi+1).

Let mi = max{m(vi−1, vi),m(vi, vi− 1)}, then

OPT (σ) =
∑

1≤i≤n
mi · 2d(vi, vi+1)1 ≤ i ≤ n

=m1 · 2d(v0, v1) +m2 · 2d(v1, v2) + · · ·+mn · 2d(vn−1, vn).

Therefore MAIN(σ) = OPT (σ) for the Elevator Mode Problem w.r.t. minimizing the
makespan if the whole sequence σ is known in advance, all release dates are zero, during
the morning respectively the evening.

Now we can prove the Theorem 5.8.

Proof. We show the theorem by induction on the number of requests in the set σ =
r1, ...rm−1, rm of pdp-requests rj = (tj , xj , yj , 1). It clearly holds if σ contains at most
one request. Assume now that the claim of the theorem holds for any sequence of m− 1
requests and prove it for m requests. Suppose that request rm = (tm, xm, ym, zm) is the
last request of σ = r1, ..., rm−1, rm. If t = tm = 0, from Lemma 5.9 we may deduce that
MAIN(σ) = OPT (σ) and MAIN is 2-competitive. Thus, the capacity would not enter
the analysis in the following proof of competitive ratio w.r.t. minimizing the makespan
during the morning or the evening. Assume that t > 0, let pos(t) and pos∗(t) be the
positions of MAIN and the adversary server at time t, respectively. Note that, as the
metric space M = (V, d) is a line, if the server of MAIN for example is at the origin
then pos(t) = 0 and each of the positions reflect the distance from the origin to the
corresponding station (d(v0, xj) = xj and so on).

Let a = maxrj∈σ\{rm}{xj , yj} be the pickup or the delivery node among all pickup
and delivery nodes of the requests rj (excluding rm), unserved by the MAIN server at
time t, which is furthest away from the origin of the line. If all requests in σ = r1, ..., rm−1
have already been served by MAIN at time t, then we set a = 0. Let am be the origin or
the destination of the request rm which is furthest away from the origin, i.e. if xm < ym
then am = ym, else am = xm.

We start by proving the case when pos(t) = pos∗(t) = v0 (both VIPAs are located
at the origin of the line at time t). Afterwards, we analyze all the cases of the general
situation when MAIN and the adversary have different positions.

(1) Case pos(t) = pos∗(t) = v0:

• If MAIN did not serve yet rj but the adversary has already served it, then
t ≥ 2d(v0, a) = 2a, OPT (σ) = t+ 2am and MAIN(σ) = t+ 2 ·Max(a, am).
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If a ≤ am, then MAIN(σ) = OPT (σ) = t + 2am and MAIN is obviously 2-
competitive.
If a ≥ am, then MAIN(σ) = t+ 2a.

MAIN(σ)
OPT (σ) = t+ 2a

t+ 2am
= t+ 2am
t+ 2am

+ 2(a− am)
t+ 2am

≤ 1 + 2(a− am)
t+ 2am

2a− 2am ≤ 2a ≤ t ≤ t+ 2am ⇒
2(a− am)
t+ 2am

≤ 1

MAIN(σ)
OPT (σ) = t+ 2a

t+ 2am
≤ 2

• If MAIN did not serve yet rj and neither did the adversary, then

OPT (σ) = MAIN(σ) = t+ 2 ·Max(a, am)
and MAIN is obviously 2-competitive.

(2) Case pos(t) = pos∗(t) 6= v0 or pos(t) 6= pos∗(t):
At time t, we can have many options for the request rj :

(i) MAIN did not serve yet rj , but the adversary has already served it.

OPT (σ) = t+ pos∗(t) + 2am (5.5)
MAIN(σ) = t+ pos(t) + 2 ·Max(a, am) (5.6)

(ii) MAIN did not serve yet rj , neither did the adversary

OPT (σ) = t+ pos∗(t) + 2 ·Max(a, am) (5.7)
MAIN(σ) = t+ pos(t) + 2 ·Max(a, am) (5.8)

(iii) MAIN did not serve yet rj , the adversary already started to serve rj .
If the adversary already started to serve rj , one of the following possibilities may
occur.

(a) The user is not yet delivered to a, but already picked up from v0 during the
morning.

(b) The user is not yet delivered to v0, neither picked up from a during the
evening.

(c) The user is not yet delivered to v0, but already picked up from a during the
evening.

We obtain , for option (a) and (b),
OPT (σ) = t+ d(pos∗(t), a) + a+ 2am = t+ |a− pos∗(t)|+ a+ 2am (5.9)
for option (c), OPT (σ) = t+ pos∗(t) + 2am (5.10)
therefore, OPT (σ) ≥ t+ |a− pos∗(t)|+ a+ 2am ≥ t+ pos∗(t) + 2am (5.11)
MAIN(σ) = t+ pos(t) + 2 ·Max(a, am) (5.12)
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(iv) MAIN and the adversary already started to serve rj . Therefore one, of the follow-
ing possibilities may occur.

(a) In both algorithms the user is not yet delivered to a, but already picked up
from v0 during the morning.

(b) In both algorithms the user is not yet delivered to v0, neither picked up from
a during the evening.

(c) In both algorithms the user is not yet delivered to v0, but already picked up
from a during the evening.

(d) In MAIN, the user is not yet delivered to v0, neither picked up from a and
the adversary did not yet delivered the user to v0, but already picked him up
from a during the evening.

We obtain for option (a) and (b),
OPT (σ) = t+ d(pos∗(t), a) + a+ 2am = t+ |a− pos∗(t)|+ a+ 2am (5.13)
for option (c) and (d), OPT (σ) = t+ pos∗(t) + 2am (5.14)
therefore, OPT (σ) ≥ t+ |a− pos∗(t)|+ a+ 2am ≥ t+ pos∗(t) + 2am (5.15)
for option (a), (b) and (d),
MAIN(σ) = t+ d(pos(t), a) + a+ 2am = t+ |a− pos(t)|+ a+ 2am (5.16)
for option (c), MAIN(σ) = t+ pos(t) + 2am (5.17)
therefore, MAIN(σ) ≤ t+ pos(t) + 2am ≤ t+ |a− pos(t)|+ a+ 2am (5.18)

(v) MAIN already started to serve rj and the adversary has already served it. If MAIN
already started to serve rj , one of the following possibilities may occur.

(a) The user is not yet delivered to a, but already picked up from v0 during the
morning.

(b) The user is not yet delivered to v0, neither picked up from a during the
evening.

(c) The user is not yet delivered to v0, but already picked up from a during the
evening.

Therefore we obtain

OPT (σ) = t+ pos∗(t) + 2am and (5.19)
For option (a) and (b), MAIN(σ) = t+ |a− pos(t)|+ a+ 2am (5.20)
For option (c), MAIN(σ) = t+ pos(t) + 2am (5.21)
therefore, MAIN(σ) ≤ t+ pos(t) + 2am ≤ t+ |a− pos(t)|+ a+ 2am (5.22)
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We can notice that:

OPT (σ) ≥ t+ pos∗(t) + 2 ·Max(a, am) by (5.7)
≥ t+ pos∗(t) + 2am by (5.5), (5.11), (5.15) and (5.19)

MAIN(σ) ≤ t+ pos(t) + 2 ·Max(a, am) by (5.6), (5.8) and (5.12)
≤ t+ |a− pos(t)|+ a+ 2am by (5.18) and (5.22)

Therefore without loss of generality we can prove the theorem by using

OPT (σ) ≥ t+ pos∗(t) + 2am ≥ t+ 2am and MAIN(σ) ≤ t+ |a− pos(t)|+ a+ 2am

Where MAIN has already started to serve rj and the adversary has already served it,
thus t ≥ 2a.

MAIN(σ)
OPT (σ) ≤

t+ |a− pos(t)|+ a+ 2am
t+ 2am

≤ 1 + |a− pos(t)|+ a

t+ 2am

|a− pos(t)|+ a ≤ t ≤ t+ 2am ⇒
2a− pos(t)
t+ 2am

≤ 1

and MAIN(σ)
OPT (σ) ≤ 2

and MAIN is 2-competitive.

We conjecture that this competitive ratio hold even if the requests are not uniform.
Conjecture 2. MAIN is 2-competitive for the Online Elevator Mode Problem w.r.t min-
imizing the makespan for one VIPA operating in elevator mode on a line during the
morning and evening scenarios.

5.4 Minimizing the Total Waiting Time

5.4.1 Optimal Offline Solution for the EMP w.r.t. Minimizing the
Total Waiting Time

In Chapter 4 Section 4.4.1, we presented an integer linear program to solve the Offline
Tram Mode Problem w.r.t. minimizing the total waiting time, based on a formulation
for the PDP with time windows proposed in [44]. In case of the Elevator Mode Problem,
we use the same model for computing the optimal offline solution w.r.t. minimizing the
total waiting time. In Figure 5.8, we show the computed flow of the Example 5.2 by
solving the integer linear program (4.3) of Section 4.4.1 in Chapter 4. The computed
flow yields an optimal transportation schedule for the Offline Elevator Mode Problem
w.r.t. minimizing the total waiting time.
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Figure 5.8: This figure illustrates the time-expanded network LT = (VT , AT ) of Exam-
ple 5.2. It shows the flow computed by the integer linear program (4.3) in LT . The
resulting flow has a value of 26 as a total waiting time. We identify the route of the
VIPA from the arcs a with F (a) > 0 represented by solid arcs. Each request rj corre-
sponds to a commodity fj and the nodes enclosed by circles illustrate the corresponding
commodity’s origins. For each request, the corresponding arcs a, with fj(a) > 0, are
indicated by dashed arcs with a different color. To ease the readability, the end of time
horizon is not presented, thus there are missing nodes from (v, 19) to (v, 22), where
v ∈ V . The arcs having positive flow containing nodes (v, t) with 19 ≤ t ≤ 22 are also
not illustrated. This includes the sink arcs a having a positive flow fj(a) > 0 of the
different commodities, and the arcs a with F (a) > 0 that represent the way back of the
VIPA from (v4, 18) to the sink (v0, 22) (the origin of the line).

5.4.2 Competitive Analysis

Concerning the objective of minimizing the total waiting time, it turns out that MAIN is
not competitive. In this example, the oblivious and the non-abusive adversaries behave
the same way.

Example 5.10. Consider a line L = (v0, . . . , vn) with origin v0. The adversary releases
a sequence σ = (r1, r2) with only 2 requests

r1 = (0, v0, vn, 1) and r2 = (ε, v0, vn,Cap− 1).

MAIN starts its tour at t = 0, serves r1 by moving from v0 to vn and is back to v0 at
time t = 2|L| s.t. each passenger of r2 has waited for 2|L|, yielding

MAIN(σ) = (Cap− 1) · 2|L|.

The adversary waits at the origin v0 until t = ε, starts its VIPA to serve both requests
r1 and r2 at once, yielding

OPT (σ) = ε.

Therefore we obtain
MAIN(σ)
OPT (σ) = 2|L| · (Cap− 1)

ε
→∞

(when choosing ε arbitrarily small) which implies that MAIN is not competitive w.r.t.
minimizing the total waiting time TWT . ♦
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5.5 Minimizing the Total Number of Stops

5.5.1 Optimal Offline Solution for the EMP w.r.t. Minimizing the
Total Number of Stops

Similarly to Chapter 4 Section 4.5, in order to compute the optimal offline solution w.r.t.
minimizing the total number of stops we need to

• wait until time tm in the origin v0 (to ensure that all requests are released before
they are served),

• compute the optimal offline solution w.r.t. minimizing the total number of stops
assuming that the VIPA has a unit capacity, by solving an LP similar to the one
proposed in Section 5.2.1 w.r.t. the total tour length. In this case, the objective
function considers costs d(a) = d(u, v) for the flow f only on link arcs a = (u, v)
in AL, where d(u, v) is the length of a shortest path from u to v in the line L.

• solve a partitioning problem to partition the paths obtained into subtours for the
VIPA such that the total number of stops is minimized

5.5.2 Competitive Analysis

Concerning the objective of minimizing the number of stops, the oblivious adversary
can cheat by accumulating all requests having the same origin and destination and serve
them together.

Example 5.11. Consider a line L = (v0, . . . , v`) with origin v0, a unit distance between
vi and vi+1 for each i, and one unit-speed server with capacity Cap. The adversary
releases a sequence σ = (σ1, σ3) of the sequence of the Example 5.3 of 2` · Cap uniform
pdp-requests that force MAIN to serve each request using two stops, whereas the adver-
sary is able to serve all requests using 2`+ 1 stops.

The first block σ1 consists of the following ` · Cap requests:
r1 = (0, v0, v1, 1)
rj = (tj−1 + 2d(v0, v1), v0, v1, 1) for 2 ≤ j ≤ Cap
rj = (tj−1 + 2d(v0, v1), v1, v2, 1) for j = Cap + 1
rj = (tj−1 + 2d(v0, v2), v1, v2, 1) for Cap + 2 ≤ j ≤ 2Cap
...

rj = (tj−1 + 2d(v0, v`−1), v`−1, v`, 1) for j = (`− 1)Cap + 1
rj = (tj−1 + 2d(v0, v`), v`−1, v`, 1) for (`− 1)Cap + 2 ≤ j ≤ `Cap

The third block σ3 consists of the following ` · Cap requests:
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rj = (tj−1 + 2d(v0, v`), v`, v`−1, 1) for `Cap + 1 ≤ j ≤ (`+ 1)Cap
rj = (tj−1 + 2d(v0, v`), v`−1, v`−2, 1) for j = (`+ 1)Cap + 1
rj = (tj−1 + 2d(v0, v`), v`, v`−1, 1) for (`+ 1)Cap + 2 ≤ j ≤ (`+ 2)Cap
...

rj = (tj−1 + 2d(v0, v2), v1, v0, 1) for j = (2`− 1)Cap + 1
rj = (tj−1 + 2d(v0, v1), v1, v0, 1) for (2`− 1)Cap + 2 ≤ j ≤ 2`Cap

MAIN starts its VIPA at time t = 0 to serve r1 = (0, v0, v1, 1) and finishes the first
subtour of length 2d(v0, v1) = 2 and 2 stops without serving any further request. When
the VIPA operated by MAIN is back to the origin v0, the second request r2 = (2, v0, v1, 1)
is released and MAIN starts at t = 2 a second subtour of length 2 and 2 stops to serve
r2, without serving any further request in this subtour. This is repeated for each request
until serving the first block of ` · Cap requests yielding

MAIN(σ1) = Cap · ` · 2

Finally in order to serve the third block MAIN has the same behavior as to serve the
first block of requests yielding

MAIN(σ3) = Cap · ` · 2

Therefore

MAIN(σ) = 2Cap · ` · 2

The adversary waits at the origin v0 until t = tCap and serves all requests r1, . . . , rCap
using 2 stops from v0 to v1. Then he waits until t = t2Cap at v1 and serves all requests
rCap+1, . . . , r2Cap from v1 to v2, using only one stop at v2 for delivering the passengers.
The pick up of the passengers of rCap+1, . . . , r2Cap is done at v1, at the same time of
the delivery of the passengers of the first Cap requests. This is repeated for all Cap
requests from vi to vi+1 until the adversary arrives to v`. OPT served the first block of
` ·Cap requests with a total number of stops equal to `+ 1 stops. Finally the adversary
follows the other direction and waits each time until Cap requests are released to serve
them, for all Cap requests from vi to vi−1 until reaching v0, using ` stops, yielding
OPT (σ) = 2`+ 1. Therefore, we obtain

MAIN(σ)
OPT (σ) = 2Cap · ` · 2

2`+ 1 −→
`→+∞

2Cap

as a lower bound for the competitive ratio of MAIN. ♦

We can determine an upper bound for the competitive ratio of MAIN close to the
ratio obtained by the previous example:
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Theorem 5.12. MAIN is 2Cap-competitive for the Online Elevator Mode Problem w.r.t
minimizing the total number of stops.

Proof. The worst transportation schedule results if all requests are uniform and the
VIPA operated by MAIN performs a separate subtour using 2 stops serving a single
request rj = (tj , xj , yj , 1) each time the VIPA leaves the origin v0 of the line, yielding
2 · |σ| as total number of stops.
To maximize the ratio between the total number of stops obtained by MAIN and the
optimal offline solution, we need to ensure that

• we do not have a move with a load less than the capacity Cap of the VIPA in the
transportation schedule of OPT ;

• all requests in σ can be served with as few subtours as possible in OPT.

In order to maximize the ratio of the complete tours, the adversary releases more requests
to ensure that the VIPA operated by

• OPT picks up Cap passengers and delivers Cap passengers at each stop.

• MAIN is forced to use 2 stops per passenger.

This can be achieved with the subsequences σ1 and σ3 from Example 5.11 with

• Cap consecutive uniform requests from vi to vi+1 for each 0 ≤ i < ` and

• Cap consecutive uniform requests from vi to vi−1 for each ` ≥ i ≥ 1,

always with delay 2 · d(v0, yj) resp. 2 · d(xj , v0) between the release dates of any two
requests rj and rj+1 within these subsequences. We obtain (as in Example 5.11) that

MAIN(σ1) = MAIN(σ3) = Cap · ` · 2).

This finally leads to
MAIN(σ)
OPT (σ) = 2Cap · ` · 2

2`+ 1 −→
`→+∞

2Cap

as the maximum possible ratio between MAIN(σ) and OPT (σ) taken over all possible
sequences on a line L.

Concerning the lunch scenario, a sequence σ′ containing the first Cap requests of
the first block σ1 and the last Cap requests from the third block σ3 from the sequence
presented in Example 5.11 shows that 4

3 ·Cap is a lower bound on the competitive ratio
of MAIN. As for the morning resp. evening scenario, a sequence σ′′ containing the first
Cap requests of the first block σ1 resp. the last Cap requests from the third block σ3
from the sequence presented in Example 5.11 shows that Cap is a lower bound on the
competitive ratio of MAIN. We can show that these examples are the worst cases for
MAIN during lunch, morning and evening:
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Theorem 5.13. For one VIPA with capacity Cap operating in elevator mode on a line,
MAIN is w.r.t. the objective of minimizing the total number of stops

• 4
3 · Cap-competitive during the lunch scenario,

• Cap-competitive during the morning resp. the evening scenario.

Proof. The worst transportation schedule results if the VIPA operated by MAIN per-
forms a separate subtour serving a single uniform request rj = (tj , v0, v1, 1) or rj =
(tj , v1, v0, 1) each time the VIPA leaves the origin v0 of the line, yielding 2 · |σ| as total
number of stops. MAIN can indeed be forced to show this behavior by releasing the
requests accordingly (i.e. by using requests with zj = 1 each and with sufficiently large
delay between tj and tj+1). In order to maximize the ratio between the total number of
stops obtained by MAIN and the optimal offline solution, we need to ensure that

• we do not have a move from or to the origin with a load less than the capacity
Cap of the VIPA in the transportation schedule of OPT . For that, the adversary
releases

– during the lunch Cap many requests traversing the same arc. Whereas MAIN
uses 2 stops to serve a request rj = (tj , v0, v1, 1) or rj = (tj , v1, v0, 1), OPT
stops once at v0 to pick up Cap passengers, then stops at v1 to deliver Cap
passengers of the first Cap requests, and and pick up Cap passengers. Finally
MAIN stops at v0 to deliver Cap passengers. Overall OPT uses 3 stops.
travels d(v0, v1) once to serve the request and can share it with Cap − 1
others.

– during the morning/evening Cap many requests traversing the same arc.
Whereas MAIN uses 2 stops to serve a request rj = (tj , v0, v1, zj) resp.
rj = (tj , v1, v0, zi), OPT uses 2 stops but to serve Cap requests together.

• all requests in σ can be served with as few subtours as possible in OPT. For that,
the adversary releases

– during the lunch a sequence σ of 2Cap requests: Cap many requests v0 → v1
followed by Cap many requests v1 → v0. Therefore we obtain

MAIN(σ) = 2 · |σ| = 2 · 2 · Cap and OPT (σ) = 3

s.t. MAIN(σ)
OPT (σ) = 2 · 2 · Cap

3 = 4
3Cap

is the maximum possible ratio between MAIN(σ) and OPT (σ) taken over
all possible sequences on a line during the lunch.

– during the morning/evening a sequence σ of Cap requests: Cap many requests
v0 → v1 resp. Cap many requests v1 → v0. Therefore we obtain

MAIN(σ) = 2 · |σ| = 2 · Cap and OPT (σ) = 2
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s.t. MAIN(σ)
OPT (σ) = 2 · Cap

2 = Cap

is the maximum possible ratio between MAIN(σ) and OPT (σ) taken over
all possible sequences on a line during the morning resp. evening.

5.6 Computational Results

This section deals with computational experiments for the MAIN algorithm w.r.t. dif-
ferent objective functions (total tour length, makespan and total waiting time). In fact,
due to the very special request structures of the previously presented worst case in-
stances, we can expect a better behavior of the proposed online algorithm in average.
The computational results presented in Table 5.1 support this expectation. They com-
pare the total tour length MAINTTL, the makespan MAINMS and the total waiting
time MAINTWT computed by MAIN with the corresponding optimal offline solutions
OPT TTL, OPTMS and OPT TWT . The computations use instances based on the net-
work from the industrial site of Michelin and randomly generated request sequences
resembling typical instances that occurred during the experimentation [112]. The com-
putations are performed with the help of a simulation tool developed by Yan Zhao [123].
The instances use a line as subnetwork with 1 VIPA, 5-200 requests, represented by m in
the table, 1-12 as the maximum load zj of a request. For each period (morning, evening,
lunch and general), for every parameter set, we created 50 test instances and compute
them using 1 VIPA but varying its capacity 1-10. The instances are grouped by first
the period of the time, then for each period, the instances are grouped by the number of
requests and the capacity of the VIPA. The average results of the instances are shown.
The operating system for all tests is Linux (CentOS with kernel version 2.6.32). The
algorithm MAIN has been implemented in Java. For solving the integer linear programs
to get the optimal solutions w.r.t. the different objective functions we use Gurobi 8.21.

In Table 5.1, a hyphen ’-’ indicates that no solution has been found (due to the
restricted time horizon). A cross ’×’ indicates that no optimal solution has been found
by the ILP within four hours and therefore a cross ’×’ in the ratio column indicates
that no ratio can be computed due to the absence of the optimal solution. In case the
solution is preceded by a percentage, it means that only this percentage of instances give
a solution and the others are infeasible.

In Table 5.1, we can notice the following:

• w.r.t. minimizing the total tour length, MAIN has (in average) good ratios, that
never reach the competitive ratios.

• w.r.t. minimizing the makespan, MAIN has also (in average) good ratios. Note
that in 15% of the instances with 200 requests, MAIN can serve all 200 requests
within a time horizon of [0-160].
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For the lunch scenario, for the instances with 200 requests with a VIPA of capacity
10, the total tour length is (in average 165) close to the T = 160. Therefore, MAIN
would have served 200 requests if we slightly increase T during the lunch.

• w.r.t. minimizing the waiting time, the ratio between MAIN and OPT is small
in general, except during the lunch, where OPT would move VIPAs towards the
origins xj of not yet released requests rj (but also would respect the release time tj
to serve accepted requests rj). Thus in the optimal offline solution the passengers
wait less.
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Table 5.1: This table shows the computational results for several test instances of the
algorithm MAIN w.r.t. different objective functions (total tour length, makespan and
total waiting time) in comparison to the value of the respective optimal offline solutions,
the time horizon is [0, 160] and the length of the line is |L| = 32.

MAIN (Morning)
total tour length TTL Makespan MS Total waiting time TWT

c = Cap c = 2 c =∞
m Cap MAINTTL OPTTTL TTL

OPT
MAINMS OPTMS MS

OPT
MAINTWT OPTTWT TWT

OPT
5 1 97.3 97.3 1 110.8 110.8 1 5.6 5.6 1
5 5 55.5 25.78 2.15 84.5 63.74 1.33 23.2 15.7 1.48
5 10 55.5 25.78 2.15 84.5 63.74 1.33 23.2 15.7 1.48
20 1 327.2 327.2 1 - - - - - -
20 5 135.8 135.8 1 135.8 135.8 1 22.6 22.6 1
20 10 78.3 47.5 1.65 92.35 69.4 1.33 92.35 69.4 1.33
200 1 3394.8 3394.8 1 - - - - - -
200 5 1050.5 694.8 1.51 - - - - - -
200 10 760.8 362.34 2.1 - - - - - -

MAIN (Evening)
total tour length TTL Makespan MS Total waiting time TWT

c = Cap c = 2 c =∞
m Cap MAINTTL OPTTTL TTL

OPT
MAINMS OPTMS MS

OPT
MAINTWT OPTTWT TWT

OPT
5 1 85.5 57.3 1.49 117.67 75.5 1.56 25.2 16.9 1.49
5 5 55.5 25.78 2.15 68.6 45.2 1.52 29.6 13.4 2.21
5 10 55.5 25.78 2.15 68.6 45.2 1.52 29.6 13.4 2.21
20 1 365.2 327.2 1.12 - - - - - -
20 5 135.8 73 1.86 145.6 86.5 1.68 92.6 31.2 2.97
20 10 108.3 47.5 2.28 124.6 69.6 1.79 92.35 28.5 3.24
200 1 3434.8 3394.8 1.01 - - - - - -
200 5 1050.5 694.8 1.51 - - - - - -
200 10 860.8 362.34 2.38 - - - - - -

MAIN (Lunch)
total tour length TTL Makespan MS Total waiting time TWT

c = 2 · Cap LB = 2 c =∞
m Cap MAINTTL OPTTTL TTL

OPT
MAINMS OPTMS MS

OPT
MAINTWT OPTTWT TWT

OPT
5 1 61.15 29,5 2.07 89.5 78.15 1.15 42.8 8.9 4.81
5 5 74.76 37 2.02 84.5 57.6 1.47 26.5 1.02 25.98
5 10 74.76 37 2.02 84.5 57.6 1.47 26.5 1.02 25.98
20 1 222.35 177 1.26 - - - - -
20 5 78.4 67 1.17 90.8 79.2 1.15 86.2 17.6 4.9
20 10 75.58 34 2.22 84.6 61.6 1.37 83.6 16.4 5.1
200 1 4918.75 1855.5 2.65 - - - - - -
200 5 2696.42 368.5 7.32 - - - - - -
200 10 1166.25 165 7.06 - - - - - -

MAIN (General)
total tour length TTL, |L| = 32 Makespan MS Total waiting time TWT

c = 2 · Cap · |L| LB = 2 c =∞
m Cap MAINTTL OPTTTL TTL

OPT
MAINMS OPTMS MS

OPT
MAINTWT OPTTWT TWT

OPT
5 1 56.3 36 1.56 72.4 46.8 1.55 72.8 32.9 2.21
5 5 42.45 27 1.57 50.78 37.9 1.34 36.5 16.3 2.24
5 10 42.45 27 1.57 50.78 37.9 1.34 36.5 16.3 2.24
20 1 140.8 120,5 1.17 146.5 131.7 1.11 - - -
20 5 95.54 43 2.22 120.3 72.8 1.65 89.6 25.2 3.56
20 10 80.15 33,5 2.39 100.4 55.8 1.8 79.5 23.2 3.43
200 1 5023.25 1435,5 3.5 - - - - - -
200 5 1662.4 292 5.69 - - - - - -
200 10 180.8 120,5 1.5 (15%)154.5 126.6 1.22 (15%)152.3 × ×
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Chapter 6
Taxi Mode Problem

In this chapter, we treat the PDP related to the taxi mode as the most advanced circula-
tion mode for VIPAs in the dynamic fleet management system, the Taxi Mode Problem.
The transport requests are released over time and need to be served within a specified
time window. A request can be either accepted or rejected, but once accepted, it must be
served, i.e., there must be a VIPA available at the associated stations. Hereby, we con-
sider the user-friendly (and operator-unfriendly) situation, where the decision whether
a request is accepted or rejected is taken at the moment the customer sends his request.

In the following, we consider the Taxi Mode Problem, where the objective is a hier-
archical one; to maximize the number of accepted customer requests (primary) and to
serve them at minimum costs (secondary).

This means, the operator decides which request can be accepted and which has to
be rejected. We distinguish two main problems that arise from the Taxi Mode Problem
and provide a solution approach for each of them:

• Non-Preemptive Taxi Mode Problem, where at each time, at most one cus-
tomer can be transported by a VIPA (a customer can be a group of people less
than the capacity of the VIPA and load preemption is not allowed), and a VIPA
cannot serve other requests until the current one is delivered. Note that, due to
the time windows and the additional technical restrictions of the VIPAs, it is not
always possible to serve all transport requests. Hence, the studied PDP includes
firstly to accept or reject requests and secondly to generate non-preemptive tours
for the VIPAs to serve the accepted requests.

• Preemptive Taxi Mode Problem, where at each time, a VIPA may serve one
or many requests with or without load preemption respecting the VIPAs capacity.
This depends on the policy of the operator. It is not always possible to serve all
transport requests. Hence, the studied PDP also includes firstly to accept or reject
requests and secondly to generate preemptive tours (where VIPAs may exchange
customers at a station) for the VIPAs to serve the accepted requests.
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The input for the Online or Offline (Preemptive or Non-Preemptive) Taxi Mode
Problem (M,σ, p, T, k,Cap) consists of the following data:

• a weighted graph G = (V,E,w) where the nodes correspond to stations, edges to
their links, and edge weights w : E → R+ determine the driving times between
two neighbored stations u, v ∈ V ,

• a sequence σ = {r1, . . . , rh} of full-requests1 rj = (tj , xj , yj , pj , qj , zj) with tj ≤ pj ,
pj + d(xj , yj) ≤ qj , as well as zj ≤ Cap,

• per request a profit p(rj) for serving the request rj ,
• a time horizon [0, T ],
• the total number k of VIPAs, and the capacity Cap of the VIPAs as the maximum
number of passengers which can be simultaneously transported in one VIPA.

The output of the Online or Offline Taxi Mode Problem is the decision to accept or
reject the requests (in terms of a subset σA ⊆ σ of accepted requests) and a feasible
transportation schedule S serving all accepted requests. The goal is to accept as many
requests as possible and to serve them at minimum costs by a transportation schedule
S = {Γ1, . . . ,Γk} of minimum total tour length. Thus, we treat the quality-of-service
aspect of the problem, with the goal to accept as many requests as possible, and the eco-
nomic aspect, with the goal to serve the accepted requests at minimum costs, expressed
in terms of minimizing the total tour length of the constructed tours. The tours differ
depending on whether or not we require non-preemption.

In this chapter, we provide a solution approach for each of the studied problem
variants, the Non-Preemptive and the Preemptive Taxi Mode Problems, by means of
flows in time-expanded networks as, e.g., proposed by [63, 70, 90] for other variants
of PDPs. Hereby, we need to distinguish between the online and the offline version of
the problem. The online version occurs in practice (as the transport requests become
known over time), whereas the offline version is important in theory to rate the quality
of solutions for the online problem, compared to the optimal offline solution which is
computed based on the entire request sequence already known.

In order to solve the offline versions of the Taxi Mode Problem, we consider a max-
profit flow problem in suitable networks where moving the VIPAs in the system induces
some small costs and a high profit is given for each accepted request. Due to the high
profit on an accepted request, the solver emphasizes on serving these, while the small fee
on moving the VIPAs ensures that VIPAs are not sent out unnecessarily. This results
in more natural transportation schedules than if there are no costs for the VIPAs.

In Section 6.1.1, we present a method to compute optimal offline solutions for the
Non-Preemptive Taxi Mode Problem. In Section 6.1.2, we propose a replan strategy for
the Online Non-Preemptive Taxi Mode Problem that, in fact, solves the online problem
by computing a sequence of offline subproblems on certain subsequences of requests.

In Section 6.2.1, we propose two methods to solve the Offline Preemptive Taxi Mode
Problem optimally first using a path formulation and second using multicommodity

1In this chapter, the term “request” means full-request.
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flow. Due to the long computation time of finding a good or an optimal solution in the
Preemptive Taxi Mode Problem, we propose a flow-based heuristic (see Section 6.2.1.3).
This flow-based heuristic computes a solution in two phases: (1) a preprocessing phase
where we aim at refining the time-expanded network and (2) computing a transportation
schedule on a reduced time-expanded network. In Section 6.2.2, we propose a “modified
replan” strategy for the Online Preemptive Taxi Mode Problem that, in fact, solves the
online problem by computing a sequence of “heuristic offline subproblems” on certain
subsequences of requests.

Finally, we evaluate the performance of the proposed replan strategies in comparison
with the optimal offline solution in theory (with the help of competitive analysis, in
Section 6.3), and in practice as well (with the help of some computational results, in
Section 6.4). We summarize the outline of this chapter in Table 6.1.

Table 6.1: Outline of Chapter 6

Non-
Preemptive
(NP-TaxiMP)
Section 6.1

Offline
Sec-
tion 6.1.1

Exact method via Max-Profit Flow

Online
Sec-
tion 6.1.2

Replan strategy REPLAN-NP

Preemptive
(P-TaxiMP)
Section 6.2

Offline
Sec-
tion 6.2.1

Exact method via a path formulation
Section 6.2.1.1
Exact method via a multicommodity coupled flow
Section 6.2.1.2
heuristic via a multicommodity flow
FLOW-HEURISTIC Section 6.2.1.3

Online
Sec-
tion 6.2.2

modified replan strategy hREPLAN-P

NP-TaxiMP
and P-TaxiMP

Competitive Analysis Section 6.3
Computational results Section 6.4

6.1 Solving the Non-Preemptive Taxi Mode Problem
(NP- TaxiMP)

In this Section, we compute optimal offline solutions for the Non-Preemptive Taxi Mode
Problem, then we propose a replan strategy for the Online Non-Preemptive Taxi Mode
Problem that, in fact, solves the online problem by computing a sequence of offline
subproblems on certain subsequences of requests.
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6.1.1 Offline NP-TaxiMP via Max-Profit Flow

In order to solve the Offline Non-Preemptive Taxi Mode Problem, we build a time-
expanded demand network GD = (VD, AD) based on σ and the original network G.
The node set VD = (v0, 0) ∪ Vx ∪ Vy ∪ (v0, T ) is composed of

• all possible origins (xj , tpickj ) of all requests rj in σ, for all pj ≤ tpickj ≤ qj−d(xj , yj)
in Vx,
• all possible destinations (yj , tdropj ) of all rj in σ, for all pj + d(xj , yj) ≤ tdropj ≤ qj
in Vy,
• the nodes (v0, 0) as source and (v0, T ) as sink that correspond to the depot at the
beginning and at the end of the time horizon.

The arc set AD = A+ ∪AR ∪AL ∪A− is composed of

• source arcs from (v0, 0) to all reachable origins (xj , tpickj ) in Vx with d(v0, xj) ≤ tpickj

in A+,
• request arcs from each (xj , tpickj ) ∈ Vx to (yj , tpickj + d(xj , yj)) ∈ Vy in AR,
• link arcs from all destinations (yj , tdropj ) ∈ Vy to all reachable origins (xi, tpicki ) ∈ Vx
with tdropj + d(yj , xi) ≤ tpicki in AL,
• sink arcs from all destinations in Vy to (v0, T ) in A−.

Note that the time-expanded network GD is acyclic by construction.
The VIPAs shall form a flow F through this time-expanded demand network GD.

To correctly initialize the system, we use the node (v0, 0) ∈ VD as source for the flow F
and set its balance accordingly to the number k of available vehicles, see (6.1b). For all
internal nodes (v, t) ∈ VD\{(v0, 0), (v0, T )}, we use normal flow conservation constraints,
see (6.1c), which also automatically ensures that a flow of value k is entering the sink
(v0, T ).

A request arc from (xj , tpickj ) to (yj , tpickj + d(xj , yj)) has a capacity 1 for the VIPA
flow. We distinguish |σ| subsets AjR of arcs in AR where each subset AjR consists of the
request arcs of the corresponding request rj , so that we have AR =

⋃|σ|
j=1A

j
R. To ensure

that a request can be rejected and is not served more than once, we require that the
sum of the flow traversing all the request arcs in AjR of the corresponding request rj is at
most 1, see (6.1d). By the previous constraints, the flow F is (automatically) bounded
on all other arcs by 1.

Note that source and flow conservation constraints (6.1b), (6.1c) together give rise
to a totally unimodular matrix (the node-arc incidence matrix of the digraph underlying
the network GD), but due to the inequalities (6.1d) the entire constraint matrix is not
totally unimodular s.t. integrality constraints (6.1f) are required (to prevent fractional
solutions).

We consider a max-profit flow problem to decide which requests can be served without
spending more costs than gaining profit by serving them. Accordingly, our objective
function (6.1a) considers profits p(a) for the flow F on all a ∈ AR whereas all other
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arcs a = ((u, t), (v, t + d(u, v))) have zero profits. The costs correspond to the traveled
distances c(a) := d(u, v) on all arcs.

The corresponding integer linear program is as follows:

max
∑
a∈AR

p(a)F (a)−
∑
a∈AD

c(a)F (a) (6.1a)

s.t.
∑

a∈δ+(v0,0)
F (a) = k (6.1b)

∑
a∈δ−(v,t)

F (a) =
∑

a∈δ+(v,t)
F (a) ∀(v, t) 6= (v0, 0), (v0, T ) (6.1c)

∑
a∈AjR

F (a) ≤ 1 ∀AjR ∈ AR (6.1d)

F (a) ≥ 0 ∀a ∈ AD (6.1e)
F (a) ∈ Z ∀a ∈ AD (6.1f)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set of
incoming arcs of (v, t).

The integer linear program (6.1) solves the offline version of the Non-Preemptive
Taxi Mode Problem (where the whole sequence σ of requests is known at time t = 0) to
optimality.

Theorem 6.1. The integer linear program (6.1) provides an optimal solution of the
Offline Non-Preemptive Taxi Mode Problem.

Proof. Let F ∗ be the optimal flow according to (1). Accepted requests clearly correspond
to request arcs a ∈ AR with F ∗(a) = 1 so that we have

σA = {rj ∈ σ : F ∗(a) = 1 for one a ∈ AjR}.

Moreover, it is clear that accepted requests are indeed served. The computed flow F ∗ in
the time-expanded demand network GD can be interpreted as transportation schedule,
since we can recover the tracks of the k VIPAs over time from the flow F ∗ on the
arcs a ∈ AD with F ∗(a) > 0 by standard flow decomposition as in [2]. In our case,
the correspondence between the flow in GD and the moves in the VIPA tours Γi is
particularly easy to see, because constraints (6.1d) together with the flow conservation
constraints (6.1c) imply also for the flow on all source, link and sink arcs an upper bound
of 1 so that clearly F ∗(a) ∈ {0, 1} holds for all a ∈ AD. Therefore, a flow of 1 on

• a source arc a ∈ A+ from (v0, 0) to an origin (xj , tpickj ) ∈ Vx means that one VIPA
starts its tour with a move along a shortest path from v0 to xj and performs a
pickup action at xj ;

• a request arc a ∈ AR from an origin (xj , tpickj ) in Vx to its destination (yj , tpickj +
d(xj , yj)) means that request rj is served by a move of one VIPA along a shortest
path from xj to yj and that a drop action is performed at yj ;
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• a link arc a ∈ AL from a destination (yj , tdropj ) in Vy to an origin (xi, tpicki ) in Vx
means that the VIPA continues its tour by a move along a shortest path from yj
to xi and performs a pickup action at xi;

• a sink arc a ∈ A− from a destination (yj , tdropj ) in Vy to (v0, T ) means that the
VIPA closes its tour by returning to the depot via a move along a shortest path
from yj to v0.

Again, due to F ∗(a) ∈ {0, 1} ∀a ∈ AD, the composition of the tours is also particularly
easy.
For each source arc ((v0, 0), (xj , tpickj )) = a ∈ A+ with F ∗(a) = 1, there is exactly one
request arc a′ ∈ AR which is the only outgoing arc from (xj , tpickj ) and, due to flow
conservation, a′ is such that, F ∗(a′) = 1. From each destination (yj , tdropj ) with an
incoming request arc a′ with F ∗(a′) = 1, there is, due to flow conservation, exactly one
outgoing link or sink arc a with F ∗(a) = 1.
Hence, the arcs a ∈ AD with F ∗(a) = 1 exactly correspond to k arc-disjoint directed
paths from the source (v0, 0) to the sink (v0, T ), and each of these paths equals one tour
Γi of one VIPA (composed by an alternating sequence of moves and actions).

Finally, provided that the profits are high enough, the chosen objective function (6.1a)
guarantees that σA is maximum and that the tours Γ1, . . . ,Γk have indeed minimum total
tour length.

In the special case of tight time windows satisfying pj + d(xj , yj) = qj (which clearly
results in pj = tpickj and qj = tdropj ) for all rj ∈ σ, there is exactly one request arc per
request s.t. the entire constraint matrix becomes totally unimodular which implies:

Corollary 6.2. The Offline Non-Preemptive Taxi Mode Problem with tight time win-
dows can be solved in polynomial time.

In the general case, this is not true, but computational experiments show that the
running times to solve the Offline Non-Preemptive Taxi Mode Problem are still reason-
able (see Section 6.4).

Example 6.3. Consider an instance (M,σ, p, 10, 2, 1) of the Offline Non-Preemptive
TaxiMP with

• the network G with a depot v0 with arcs having uniform distance, see Figure 6.1,

• two unit-speed servers (i.e. two VIPAs that travel 1 unit of length in 1 unit of
time) with capacity Cap = 2 originally located at the depot v0,

• the following sequence σ of 6 requests:

r1 =(0, a, c, 1, 4, 1) r4 = (3, b, f, 4, 7, 1) r6 = (5, b, c, 6, 8, 1)
r2 =(1, c, f, 5, 9, 1) r5 = (3, b, g, 4, 7, 1) r7 = (5, b, e, 6, 9, 1)
r3 =(1, e, g, 2, 5, 1)
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a

g

b

v0

f

c

e

Figure 6.1: This figure illustrates the network G of the instance (M,σ, p, 10, 2, 1) of the
Offline Non-Preemptive TaxiMP from Example 6.3.

• profits p(rj) = 2d(xj , yj) for accepted requests rj .

The optimal solution F ∗ in the resulting time-expanded demand network GD is illus-
trated in Figure 6.2. We have σA = {r1, r2, r3, r4, r6} and the following tours for the two
VIPAs:

Γ1 =(v0, 0)→ (a, 1) r1−→ (c, 3)→ (b, 4) r4−→ (f, 7)→ (v0, 9)
Γ2 =(v0, 1)→ (e, 2) r3−→ (g, 4)→ (b, 6) r6−→ (c, 7) r2−→ (f, 9)→ (v0, 9)

The total number of accepted requests is 5 served with a total tour length of 15 and an
objective function value of 5.

v0, 0 v0, 1 v0, 9

a, 1 a, 2

b, 4 b, 5 b, 6 b, 7

c, 3 c, 4 c, 5 c, 6 c, 7 c, 8

e, 2 e, 3

f, 7 f, 8 f, 9

g, 4 g, 5 g, 6 g, 7

r
1

r2

r3

r
4

r
5

Figure 6.2: This figure shows the arcs with positive flow in the time-expanded demand
network GD for the instance (M,σ, p, 10, 2, 1) of the Offline Non-Preemptive TaxiMP
from Example 6.3. The computed flow F ∗ in the time-expanded demand network GD
can be interpreted as transportation schedule. The tour of the first VIPA is indicated
by dashed arcs, and the tour of the second VIPA by dotted arcs. Solid arcs correspond
to request arcs in AR. The total number of accepted requests is 5 served with a total
tour length of 15.

♦
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6.1.2 Online NP-TaxiMP via Replan

To handle the online situation (where the requests in σ are released over time during a
time horizon [0, T ]), we propose to solve a sequence of offline subproblems for certain
time intervals [t′, T ′] within [0, T ] on accordingly modified demand networks.

Recall that the overall idea of a replan strategy is to

• consider at each time t′ ∈ [0, T ] the subsequence σ(t′) of currently waiting requests
(i.e., already released but not yet served requests), to determine which requests
from σ(t′) can be accepted, and to compute optimal (partial) non-preemptive tours
to serve them,
• perform these tours until new requests are released and to recompute σ(t′) and the

tours (keeping already accepted requests).

Hereby, finding optimal (partial) tours corresponds to solve, in each replanning step,
an optimal offline solution on the subsequence σ(t′). This is summarized in Algorithm 6
REPLAN-NP.

Algorithm 6 (REPLAN-NP)
Input: (M,σ, p, T, k,Cap)
Output: σA and tours Γ1, . . . ,Γk
1: initialize σA = ∅, σ(t′) = {rj ∈ σ : tj = 0}, and Γi = (v0, 0) for 1 ≤ i ≤ k
2: WHILE t′ ≤ T DO: call OFFLINE-NP(σA, σ(t′), Γ1, . . . ,Γk)

perform the (modified) tours until new requests become known
update t′ and σ(t′)

3: return σA and Γ1, . . . ,Γk

To compute those optimal solutions for the subsequences σ(t′), we build a time-
expanded demand network G(t′) = (V ′, A′) based on σ(t′) and the original network G
and consider a flow in G(t′) that corresponds to the studied (partial) tours.

We construct G(t′) = (V ′, A′) in a similar way as GD for the offline situation. The
main difference is that we do not have a single source (as (v0, 0) in GT ), but that we
need to use the possible start positions and possible start times of the VIPAs as sources.

For that, we extract the possible start positions P (t′) and start times S(t′) for the
VIPAs from the current tours Γ1, . . . ,Γk. At the beginning, i.e. at time t = 0, we clearly
have P (t′)i = v0 and S(t′)i = 0. At any later time point t′, the start positions and start
times are as follows: if VIPA i is currently serving a request rj , then P (t′)i = yj and
S(t′)i = tdropj ; otherwise, P (t′)i is the current position v of VIPA i and S(t′)i = t′.

We construct G(t′) = (V ′, A′) as follows:
The node set V ′ = V+ ∪ Vx ∪ Vy ∪ (v0, T

′) is composed of

• the VIPAs start positions and start times (P (t′)i, S(t′)i) for 1 ≤ i ≤ k as sources
in V+,
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• all possible origins (xj , tpickj ) of all rj ∈ σ(t′) and all pj ≤ tpickj ≤ qj − d(xj , yj) in
Vx,

• all possible destinations (yj , tdropj ) of all rj ∈ σ(t′) and all pj+d(xj , yj) ≤ tdropj ≤ qj
in Vy,
• a sink node (v0, T

′) with T ′ = max{tdropj , rj ∈ σ(t′)}.

The arc set A′ = A+ ∪AR ∪AL ∪A− is composed of

• source arcs from all nodes (P (t′)i, S(t′)i) ∈ V+ to all reachable origins (xj , tpickj )
∈ Vx with t′ + d(v, xj) ≤ tpickj in A+,
• request arcs from each (xj , tpickj ) ∈ Vx to (yj , tpickj + d(xj , yj)) ∈ Vy in AR,
• link arcs from all destinations (yj , tdropj ) ∈ Vy to all reachable origins (xi, tpicki )
∈ Vx with tdropj + d(yj , xi) ≤ tpicki in AL,
• sink arcs from all destinations (yj , tdropj ) ∈ Vy to (v0, T

′) in A−.

To keep previously accepted requests, we partition σ(t′) into the subsequences

• σA(t′) of previously accepted but until time t′ not yet served requests and
• σN (t′) = {rj ∈ σ : tj = t′} of requests that are newly released at time t′,

and partition the request arcs accordingly in ARA and ARN . Moreover, we distinguish the
subsets AjRA and AjRN of request arcs of the corresponding previously accepted request
rj ∈ σA(t′) respectively newly released request rj ∈ σN (t′).

In G(t′), we solve the following max profit flow problem

max
∑
a∈AR

p(a)f ′(a)−
∑
a∈A′

c(a)f ′(a) (6.2a)

s.t.
∑

a∈δ+(v,t)
f ′(a) = k(v) ∀(v, t) ∈ V+ (6.2b)

∑
a∈δ−(v,t)

f ′(a) =
∑

a∈δ+(v,t)
f ′(a) ∀(v, t) ∈ Vx ∪ Vy (6.2c)

∑
a∈AjRA

f ′(a) = 1 ∀AjRA ⊆ ARA (6.2d)

∑
a∈AjRN

f ′(a) ≤ 1 ∀AjRN ⊆ ARN (6.2e)

f ′(a) ≥ 0 ∀a ∈ A′ (6.2f)
f ′(a) ∈ Z ∀a ∈ A′ (6.2g)

where again δ−(v, t) denotes the set of outgoing arcs of (v, t), δ+(v, t) the set of incoming
arcs of (v, t) and k(v) the number of VIPAs initially situated in v.

Constraints (6.2d) ensure that previously accepted requests are served whereas con-
straints (6.2e) allow to reject newly released requests.
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Source and flow conservation (6.2b), (6.2c) together give again rise to a totally uni-
modular matrix, but due to (6.2d) and (6.2e) the entire constraint matrix is not totally
unimodular s.t. integrality constraints (6.2g) are again required.

From the computed flow f ′ in the demand network G(t′), it is straightforward to
determine newly accepted requests (corresponding to request arcs a ∈ ARN with f ′(a) >
0) and to construct (partial) tours Γ1, . . . ,Γk for the VIPAs in the same way as described
for the offline situation.

The whole process can be summarized in Algorithm 7 OFFLINE-NP.

Algorithm 7 (OFFLINE-NP)
Input: σA, σ(t′), Γ1, . . . ,Γk

Output: modified σA and modified tours Γ1, . . . ,Γk
1: determine VIPA start positions P (t′) and start times S(t′) from Γ1, . . . ,Γk

2: create the demand network G(t′)
3: solve the max profit flow problem (6.2) on G(t′)
4: update σA and Γ1, . . . ,Γk accordingly and return them

Example 6.4. Consider the instance (M,σ, p, 10, 2, 1) of the NP-TaxiMP from Ex-
ample 6.3. REPLAN-NP proceeds with this request sequence σ as follows. At the
beginning, REPLAN-NP initializes σA = ∅, and the two tours Γ1 = Γ2 = (v0, 0). At
time t′ = 0, r1 = (0, a, c, 1, 4, 1) is released. REPLAN-NP computes the partial offline
solution for σA(0) = ∅, σN (0) = {r1}, S(0) = (0, 0) and P (0) = (v0, v0) on the network
G0, see Figure 6.3.

v0, 0 v0, 4

a, 1 a, 2

c, 3 c, 4

r
1

r
1

Figure 6.3: The demand network G0 from Example 6.4.
REPLAN-NP solves the max profit flow problem (6.2) on G0, obtains

Γ1 =(v0, 0)→ (a, 1) r1−→ (c, 3)→ (v0, 4)
Γ2 =(v0, 0)→ (v0, 4)

accepts r1 and moves VIPA 1 towards a.
At time t′ = 1, r2 = (1, c, f, 5, 9, 1) and r3 = (1, e, g, 2, 5, 1) are released. REPLAN-
NP computes the partial optimal offline solution for σA(1) = {r1}, σN (1) = {r2, r3},
S(1) = (1, 1) and P (1) = (a, v0) on the network G1, see Figure 6.4.
REPLAN-NP solves the max profit flow problem (6.2) on G1, obtains

Γ1 =(a, 1) r1−→ (c, 3)→ (c, 5) r2−→ (f, 7)→ (v0, 7)
Γ2 =(v0, 1)→ (e, 2) r3−→ (g, 4)→ (v0, 7)
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v0, 1 v0, 9

a, 1 a, 2

c, 3 c, 4 c, 5 c, 6 c, 7

e, 2 e, 3

g, 4 g, 5
f, 7 f, 8 f, 9

r1
r1

r
2

r
2

r
2

r3
r3

Figure 6.4: The demand network G1 from Example 6.4.

accepts r2 and r3 and moves VIPA 1 towards c (serving r1) and VIPA 2 towards e.
At time t′ = 3, r1 is served, r3 is currently being served and r4 = (3, b, f, 4, 7, 1) and
r5 = (3, b, g, 4, 7, 1) are released. REPLAN-NP computes the partial optimal offline
solution for σA(3) = {r2}, σN (3) = {r4, r5}, S(3) = (3, 4) and P (3) = (c, g) on the
network G3, see Figure 6.5.

v0, 9c, 3 c, 5 c, 6 c, 7

f, 7 f, 8 f, 9

b, 4 b, 5

g, 4 g, 6 g, 7

r2 r2
r2

r4

r5
r5

Figure 6.5: The demand network G3 from Example 6.4.

REPLAN-NP solves the max profit flow problem (6.2) on G3, obtains

Γ1 =(c, 3)→ (b, 4) r4−→ (f, 7)→ (v0, 8)
Γ2 =(g, 4)→ (c, 6) r2−→ (f, 8)→ (v0, 8)

accepts r4 and rejects r5. REPLAN-NP moves VIPA 1 towards b then towards f (serving
r4) and VIPA 2 towards c (note that r2 is replanned to be served by VIPA 2 with pickup
time 6).
At time t′ = 5, r3 is served, r4 is currently being served and r6 = (5, b, c, 6, 8, 1) and
r7 = (5, b, e, 6, 9, 1) are released. REPLAN-NP computes the partial optimal offline
solution for σA(5) = {r2}, σN (5) = {r6, r7}, S(5) = (7, 6) and P (5) = (f, c) on the
network G5, see Figure 6.6.
REPLAN-NP solves the max profit flow problem (6.2) on G5, obtains

Γ1 =(f, 7)→ (v0, 8)
Γ2 =(c, 6) r2−→ (f, 8)→ (v0, 8)

and rejects r6 and r7, in order to serve r2 and r4 from σA(5).
In total, REPLAN-NP accepts 4 requests with σA = {r1, r2, r3, r4} and serves them by
the tours
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v0, 9c, 6 c, 7 c, 8

f, 7 f, 8 f, 9

b, 6 b, 7

e, 8 e, 9r7

r7

r
2

r
2

r6
r6

Figure 6.6: The demand network G5 from Example 6.4.

Γ1 =(v0, 0)→ (a, 1) r1−→ (c, 3)→ (b, 4) r4−→ (f, 7)→ (v0, 8)
Γ2 =(v0, 0)→ (v0, 1)→ (e, 2) r3−→ (g, 4)→ (c, 6) r2−→ (f, 8)→ (v0, 8)

with a total tour length of 14 and an objective function value of 4. ♦

6.2 Solving the Preemptive Taxi Mode Problem
(P-TaxiMP)

In this section, we propose two methods to solve the Preemptive Taxi Mode Problem
optimally first using a path formulation and second using multicommodity flow.

Due to the long computation time of finding a good or an optimal solution, we then
propose a flow-based heuristic that computes a solution in two phases: (1) a prepro-
cessing phase where we aim at computing the arcs in a time-expanded network and (2)
computing a transportation schedule on a reduced time-expanded network. We then
employ the flow-based heuristic within the framework of a REPLAN strategy to handle
the online situation.

6.2.1 Offline P-TaxiMP

In order to solve the Offline Preemptive TMP, we build a time-expanded network GT =
(VT , AT ) based on σ and the original network G.
The node set VT is constructed as follows. For each station v ∈ V and each time
point t ∈ [0, T ], there is a node (v, t) ∈ VT which represents station v at time t as a
station where VIPAs can simply pass or pickup or deliver customers.

The arc set AT = AW ∪AM is composed of

• wait arcs, from (v, t) ∈ VT to (v, t+ 1) with t ∈ {0, 1, . . . , T − 1} in AW ,
• transport arcs, from (v, t) ∈ VT to (v′, t + d(v, v′)) for each edge (v, v′) of G and

each time point t ∈ T with t+ d(v, v′) ≤ T , in AM .

Note that the time-expanded network GT is acyclic by construction.
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6.2.1.1 Offline P-TaxiMP using a path formulation

The idea of this model is based on a path formulation. Actually, if we consider a full
request rj = (tj , xj , yj , pj , qj , zj) with pj + d(xj , yj) ≤ qj , there exists at least one path
from xj to yj in the graph G. Hereby there exists at least one path from the node (xj , pj)
to the node (yj , qj) in the time expanded network GT . In this model, after constructing
the time expanded network GT , enumerating all possible paths between the origin and
the destination of each request is required. Then, we have to chose one of them to serve
the request. In the following, we detail the decision variables used in this model as well as
the constraints. The VIPAs shall form a flow F through this time-expanded network GT .
To correctly initialize the system, we use the node (v0, 0) ∈ VT as source for the flow F
and set its balance according to the number k of available vehicles, see (6.3b). For all
internal nodes (v, t) ∈ VT \{(v0, 0), (v0, T )}, we use normal flow conservation constraints,
see (6.3c), which also automatically ensures that a flow of value k is entering the sink
(v0, T ).

There exist many possible paths in GT that allow us to serve a request (starting from
(xj , pj) of a request rj and finishing at (yj , qj)). A path pji of a request rj is a sequence
of nodes (v, t) ∈ VT to be visited exactly once provided that the load of a request is
always less than the capacity of the VIPA, otherwise the request is split. Each path pji
of a request rj starts at (xj , pj) of the request rj and finishes at (yj , qj). We distinguish
|σ| subsets P j of paths in the set Pσ such that Pσ =

⋃|σ|
j=1 P

j , where each subset P j
consists of the different paths a vehicle can drive along starting from the pickup station
arriving to the delivery station of the corresponding request rj within the specified time
window. Hereby, the routing decisions are represented by the binary variables

Xji =
{

1, if a request rj is served along path pji ∈ P j
0, otherwise

To ensure that a request can be rejected and is not served more than once, we require
that at most one path is chosen from P j for each request rj , see (6.3d). To ensure that
the capacity of the VIPA is respected on all arcs a ∈ AT , we require that

∑
pji3a

Xjizj ≤ Cap · F (a)

We consider a max-profit flow problem to decide which requests can be served without
spending more costs than gaining profit by serving them. Accordingly, our objective
function (6.3a) considers profits p(j) to serve a request rj , the costs correspond to the
traveled distances

c(a) := d(u, v)
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on all arcs a = (u, v). The corresponding integer linear program is as follows:

max
∑

rj∈σ,pji∈P j
p(j)Xji −

∑
a∈AT

c(a)F (a) (6.3a)

s.t.
∑

a∈δ+(v0,0)
F (a) = k (6.3b)

∑
a∈δ−(v,t)

F (a) =
∑

a∈δ+(v,t)
F (a) ∀(v, t) 6= (v0, 0), (v0, T ) (6.3c)

∑
pji∈P j

Xji ≤ 1 ∀rj ∈ σ (6.3d)

∑
pji3a

zjXji ≤ Cap · F (a) ∀a ∈ AT ,∀pji ∈ Pσ (6.3e)

F (a) ≥ 0 ∀a ∈ AT (6.3f)
F (a) ∈ Z ∀a ∈ AT (6.3g)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set of
incoming arcs of (v, t).

The integer linear program (6.3) solves the offline version of the Preemptive Taxi
Mode Problem where the whole sequence σ of requests is known at time t = 0 to
optimality, provided that we can enumerate all the possible paths of all requests of σ.

Remark 6.5. This model with F (a) ≤ 1 ∀a ∈ AT handles the condition that no two
VIPAs must use a same arc simultaneously such that there is no VIPA that blocks
another, and the significant reliability requirements of using the VIPA are ensured. �

Theorem 6.6. The integer linear program (6.3) provides an optimal solution of the
Offline Preemptive Taxi Mode Problem.

Proof. From constraint (6.3b), it is ensured that there are exactly k available VIPAs at
the start station. By starting the flow F from the depot (v0, 0), it is ensured that each
VIPA starts its tour from the depot, and with the constraint (6.3c) we ensure that there
exist k paths P in GT from the source node (v0, 0) to the sink node (v0, T ). The tracks
of the VIPAs over time can be recovered from the flow F (a) on the arcs by standard flow
decomposition, see [2]. Hereby, VIPA flows on transportation arcs correspond to a move
in the tour of the corresponding VIPA. After constructing a sequence of moves M for
the k tours for the VIPAs, we insert between them the actions. The actions are incurred
by the binary variables Xji. Hereby, from a binary variable Xji that is equal to 1, we
can determine that the request rj is accepted, and through which path pji is served. An
accepted request rj served through the path pji implies that a VIPA traverses the same
path (constraints (6.3e)), therefore, we can add the corresponding pickup and delivery
actions between the corresponding moves of the tour that contains this path.
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6.2.1.2 Offline P-TMP using multicommodity coupled flow

The first presented model in Section 6.2.1.1 solves the Offline Preemptive TaxiMP but
requires many steps of preprocessing in order to have all possible paths for each request.
In this section, we present a similar model where we do not generate the paths in advance.
By introducing a commodity for each request, we are able to compute the optimal path
for each request using a multicommodity flow. For that, we use the same time-expanded
network GT = (VT , AT ) presented in the beginning of Section 6.2.1 based on σ and the
original network G.
On the time-expanded network GT , we define a VIPA flow F to encode the route of
the VIPAs through GT . To correctly initialize the system, we use again the nodes
(v0, 0) ∈ VT and (v0, T ) ∈ VT as source and sink for the flow F and set the balance of
the source accordingly to the number k of available vehicles, see (6.4b). For all internal
nodes (v, t) ∈ VT \ {(v0, 0), (v0, T )}, we use normal flow conservation constraints, see
(6.4c), which also automatically ensure that a flow of value k is entering the sink (v0, T ).

In order to encode the routing of each request rj ∈ σ we consider |σ| commodities
f1 · · · f|σ|. Each commodity fj has a single source (xj , pj) where xj is the pickup node
and pj the earliest pickup time of the request rj , also referred to as the commodity’s
origin, a single sink (yj , qj) where yj is the delivery node and qj the latest possible
delivery time of the request rj , also referred to as the commodity’s destination, and a
quantity zj which is the load of the request rj that must be routed along a single path
from source to sink. In order to avoid load preemption (a request is partially served by
a vehicle), we require that the quantity to be routed by each commodity fj is equal to
zj but fj ∈ {0, 1}.

To ensure that a request can be rejected and is not served more than once, we require
that for each fj at most one outgoing arc from the commodity’s origin is chosen, see
(6.4d). We use normal flow conservation constraints, see (6.4e), which also automatically
ensure that for each commodity fj in case a flow of 1 is leaving the commodity’s origin
a flow of 1 is entering the commodity’s destination. To ensure that the capacity of the
VIPA is respected on all arcs a ∈ AT , we require that∑

rj∈σ
fj(a) · zj ≤ Cap · F (a) ∀a ∈ AT

Thus, the capacities for fj on the transportation arcs are not given by constants but by
a function.

Note that due to these flow coupling constraints, the constraint matrix of the network
is not totally unimodular (as in the case of uncoupled flows) and therefore integrality
constraints for all flows are required (6.4h) and (6.4i), reflecting that solving the problem
is NP-hard.

We consider a max-profit flow problem to decide which requests can be served with-
out spending more costs than gaining profit by serving them. Accordingly, our objective
function (6.4a) considers profits p(j) for each commodity fj to serve a request rj , there-
fore a profit p(j) to serve a request rj is considered by putting profit on an arc a where
a ∈ δ−(xj , pj), whereas all other arcs have zero profits. The costs correspond to the
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traveled distances c(a) := d(u, v) on all arcs. The corresponding integer linear program
is as follows:

max
∑
rj∈σ

∑
a∈δ−(xj ,pj)

p(j)fj(a)−
∑
a∈AT

c(a)F (a) (6.4a)

s.t.
∑

a∈δ+(v0,0)
F (a) = k (6.4b)

∑
a∈δ−(v,t)

F (a) =
∑

a∈δ+(v,t)
F (a) ∀(v, t) 6= (v0, 0), (v0, T ) (6.4c)

∑
a∈δ−(xj ,pj)

fj(a) ≤ 1 ∀rj ∈ σ (6.4d)

∑
a∈δ−(v,t)

fj(a) =
∑

a∈δ+(v,t)
fj(a) ∀rj ∈ σ∀(v, t) 6= (xj , pj), (yj , qj) (6.4e)

∑
rj∈σ

fj(a) · zj ≤ CapF (a) ∀a ∈ AT (6.4f)

F (a) ≥ 0 ∀a ∈ AT (6.4g)
F (a) ∈ Z ∀a ∈ AT (6.4h)
fj(a) ∈ {0, 1} ∀a ∈ AT ,∀rj ∈ σ (6.4i)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set of
incoming arcs of (v, t).

The above integer linear program solves the Offline Preemptive Taxi Mode Problem,
where the whole sequence σ of requests is known at time t = 0 to optimality.
Remark 6.7. This model with F (a) ≤ 1, ∀a ∈ AT handles the condition that no two
VIPAs must use a same arc simultaneously such that there is no VIPA that blocks
another, and the significant reliability requirements of using the VIPA are ensured. �

In Figure 6.7, we show the computed flow of the Example 6.4 by solving the integer
linear program (6.4).

The next theorem shows that one can construct a transportation schedule from a
solution of this integer linear program. It can be proven in a similar way as Theorem 6.6.

Theorem 6.8. The integer linear program (6.4) provides an optimal solution of the
Offline Preemptive Taxi Mode Problem.

Proof. From constraint (6.4b) it is ensured that there are exactly k available VIPAs at
the start station. By starting the flow F from the depot (v0, 0), it is ensured that each
VIPA starts its tour from the depot, and with the constraint (6.4c) we ensure that there
exists k paths P in GT from the source node (v0, 0) to the sink node (v0, T ). The tracks
of the VIPAs over time can be recovered from the flow F (a) on the arcs by standard
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(a, 1) (a, 5)

(b, 2) (b, 4) (b, 6) (b, 7)

(c, 3) (c, 4) (c, 5) (c, 7) (c, 8)

(v0, 0) (v0, 2) (v0, 3) (v0, 4) (v0, 6) (v0, 8) (v0, 11)

(e, 2) (e, 3) (e, 6) (e, 8) (e, 9)

(f, 7) (f, 9)

(g, 4) (g, 5) (g, 6) (g, 7)
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Figure 6.7: This figure shows the tours of the VIPAs, the arcs a with positive flow F (a)
in the time expanded network GT of Example 6.4, illustrated by solid arcs. For each
request rj , the corresponding arcs a with fj(a) > 0 are indicated by dashed arcs with a
different color. There are 7 accepted requests over 7.

flow decomposition, see [2]. Hereby, VIPA flows on transportation arcs correspond to
a move in the tour of the corresponding VIPA. After constructing a sequence of moves
M for the k tours for the VIPAs, we insert between them the actions. The actions are
incurred by the set of commodities fj . Hereby, from a positive flow for a commodity fj ,
we can determine that the request rj is accepted, and through which arcs is served by
determining the arcs a that have a fj(a) = 1. The set of arcs having fj(a) = 1 is the
(s, t)-path of the commodity fj from the commodity’s origin (xj , pj) to the commodity’s
destination (yj , tdropj ) (there cannot be more than one (s, t)-path for each commodity fj
by constraints (6.4d) and (6.4e). An accepted request rj served through the (s, t)-path
implies that a VIPA traverses the arcs from (xj , tpickj ) to (yj , tdropj ) (constraints (6.4f)),
therefore we can add the corresponding pickup and delivery actions between the corre-
sponding moves of the tour that contains these arcs.

6.2.1.3 A Flow-Based Heuristic for the Offline P-TaxiMP

Computing an optimal solution either using a path formulation or a multicommodity
coupled flow is generally very slow and, thus, not applicable in practice in case of having
a large scale on two dimensions (time and network). However, the runtime can be
improved by reducing the number of arcs and nodes in the time-expanded network, which
corresponds to a reduction of variables in the corresponding integer linear program. As
experiments have shown that only a small percentage of arcs in GT is used in the optimal
solution while solving the Offline Preemptive Taxi Mode Problem using multicommodity
coupled flow, the idea is to reduce GT to a network containing only arcs which are taken
in the optimal solution with high probability. Therefore, we present a heuristic that
solves the heuristic Offline Preemptive Taxi Mode Problem in two phases. In the first
phase, we compute those arcs which are likely to be used in an optimal solution. In the
second phase, we construct a reduced time-expanded network GhT , where we keep only
the previously computed arcs by the three steps of the first phase and discard all others;
afterwards, we solve the integer linear program (6.4) on this reduced network GhT . This
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does not lead to a globally optimal solution on GT , but provides reasonable solutions in
short time.

Preprocessing (Phase 1) This phase is performed in two steps:

• compute a classic max profit multicommodity flow problem by adjusting the profits
and the costs,

• compute a classical min cost multicommodity flow problem by adjusting the profits
and the costs to compute a shortest path for each of the requests if needed.

Max Profit Multicommodity Flow and its Linear Program. In this step, we
build a time-expanded network GhT = (V h

T , A
h
T ) based on σ and the original network G

similar to the time-expanded network GT = (VT , AT ) in Section 6.2.1.2 with few differ-
ences:
The node set V h

T is exactly the same as VT . In addition we distinguish

• |σ| subsets V j
x of nodes in V h

T where each subset V j
x consists of all possible origins

(xj , tpickj ) of the corresponding request rj , for all pj ≤ tpickj ≤ qj−d(xj , yj), so that
we have Vx =

⋃|σ|
j=1 V

j
x .

• |σ| subsets V j
y of nodes in V h

T where each subset V j
y consists of all possible destina-

tions (yj , tdropj ) of the corresponding request rj , for all pj + d(xj , yj) ≤ tdropj ≤ qj ,
so that we have Vy =

⋃|σ|
j=1 V

j
y .

The arc set AhT = AW ∪AM is composed of the wait arcs AW and transport arcs AM
that are the same as in AT . On the time-expanded network GhT = (V h

T , A
h
T ) we consider

only a set of commodities f1
j , j ∈ {1 · · ·σ} for the requests. Unlike in the exact approach,

in this step, the flow corresponding to each request is not coupled to the VIPA flow. The
reason why there is no VIPA flow is that in this step we want to construct interesting
paths without taking into consideration the route of the VIPAs. Therefore, this step seeks
to determine the “gaining and profitable” path for each commodity starting from the
commodity’s origin and ending at the commodity’s destination while passing especially
by origins and destinations of other requests (as the profits are set on the possible pickup
and delivery nodes of the requests). Accordingly, our objective function (6.6a) considers
profits p(a) for the commodity f1

j on all a = ((v, t), (v′, t′)) ∈ AM having a pickup or
delivery node as an origin or destination of the arc (v, t) or (v′, t′) ∈ Vx ∪ Vy, whereas all
other arcs have zero profits.
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The corresponding linear program is as follows:

max
∑
rj∈σ

∑
a∈AhT

p(a)f1
j (a) (6.5a)

s.t.
∑

a∈δ+(xj ,pj)
f1
j (a) = 1 ∀rj ∈ σ (6.5b)

∑
a∈δ−(yj ,qj)

f1
j (a) = 1 ∀rj ∈ σ (6.5c)

∑
a∈δ−(v,t)

f1
j (a) =

∑
a∈δ+(v,t)

f1
j (a) ∀(v, t) 6= (xj , pj), (yj , qj),∀rj ∈ σ (6.5d)

f1
j (a) ≥ 0 ∀a ∈ AhT (6.5e)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set
of incoming arcs of (v, t).
In order to avoid unnecessary waiting moves in the beginning of the paths for each
commodity, we can set some costs on waiting arcs a = (v, t, v, t′), e.g,

c(a) = t′ ∀a ∈ Aw

Then we can adjust the objective function by adding these costs to the objective function
resulting in

max
∑
rj∈σ

∑
a∈AhT

p(a)f1
j (a) −

∑
rj∈σ

∑
a∈AhT

c(a)f1
j (a)

The above linear program can be computed in polynomial time. It is simply a
continuous multicommodity flow problem which is a well-known polynomially-solvable
problem [2]. Thus, constraining the flow to be integer is not necessary since the constraint
matrix is totally unimodular. The resulting computed flows of the Example 6.4 are
illustrated in Figure 6.8.

Min Cost Multicommodity Flow and its Linear Program. In this step, we also
use a set of commodities for the requests. We compute a min cost multicommodity flow
in order to build a shortest path for each request. For that, we use the same time-
expanded network GhT = (V h

T , A
h
T ) built in the first step of this heuristic, based on σ

and the original network G similar to the time-expanded network GT = (VT , AT ) in
Section 6.2.1.2.

The arc set AhT = AW ∪ AM is composed of the wait arcs AW and transport arcs
AM that are the same as in AT . We consider a min-cost multicommodity flow problem
to construct a shortest path for each request. Accordingly, our objective function (6.6a)
considers costs c(a) = d(u, v) for the flow f2

j on all a ∈ AM , costs c(a) = t′ for the flow
f2
j on all a = (v, t, v, t′) ∈ AW (so that we compute a shortest path starting from the
earliest possible pickup time).

The corresponding linear program is detailed in (6.6).
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(a, 0) (a, 1) (a, 2) (a, 3) (a, 4) (a, 5) (a, 6) (a, 7) (a, 8) (a, 9) (a, 10) (a, 11)

(b, 0) (b, 1) (b, 2) (b, 3) (b, 4) (b, 5) (b, 6) (b, 7) (b, 8) (b, 9) (b, 10) (b, 11)

(c, 0) (c, 1) (c, 2) (c, 3) (c, 4) (c, 5) (c, 6) (c, 7) (c, 8) (c, 9) (c, 10) (c, 11)

(v0, 0) (v0, 1) (v0, 2) (v0, 3) (v0, 4) (v0, 5) (v0, 6) (v0, 7) (v0, 8) (v0, 9) (v0, 10) (v0, 11)

(e, 0) (e, 1) (e, 2) (e, 3) (e, 4) (e, 5) (e, 6) (e, 7) (e, 8) (e, 9) (e, 10) (e, 11)

(f, 0) (f, 1) (f, 2) (f, 3) (f, 4) (f, 5) (f, 6) (f, 7) (f, 8) (f, 9) (f, 10) (f, 11)

(g, 0) (g, 1) (g, 2) (g, 3) (g, 4) (g, 5) (g, 6) (g, 7) (g, 8) (g, 9) (g, 10) (g, 11)

Figure 6.8: This figure illustrates the resulting computed flows f1
j based on the original

network from Example 6.4. Each request rj corresponds to a commodity f1
j and the

result of computing a max-profit multicommodity flow is the |σ| different paths shown
in this figure. Each path starts from the commodity’s origin (xj , pj) with the earliest
pickup station of the corresponding request and ends with the latest possible delivery
station while trying to pass by other “profitable nodes”, that are the possible pickup
respectively delivery stations of other requests enclosed by dashed respectively dotted
rectangles in the figure.

min
∑
a∈AhT

c(a)f2
j (a) (6.6a)

s.t.
∑

a∈δ+(xj ,pj)
f2
j (a) = 1 ∀rj ∈ σ (6.6b)

∑
a∈δ−(yj ,qj)

f2
j (a) = 1 ∀rj ∈ σ (6.6c)

∑
a∈δ−(v,t)

f2
j (a) =

∑
a∈δ+(v,t)

f2
j (a) ∀(v, t) 6= (xj , pj), (yj , qj) (6.6d)

f2
j (a) ≥ 0 ∀a ∈ AhT (6.6e)

The above linear program can be computed in polynomial time. Thus, constraining the
flow to be integer is not necessary since the constraint matrix is totally unimodular. The
resulting computed flows of the Example 6.4 are illustrated in Figure 6.9.

Computing a Transportation Schedule (Phase 2) Each of the commodities of
the two steps in the first phase can be rapidly computed, but the computed solution is
not a feasible transportation schedule. In this section, we describe the construction of a
reduced version GH = (VH , AH) of the original time-expanded network GT = (VT , AT )
based on the flows computed in the preprocessing (Phase 1). Hereby, we reduce the
total number of nodes as well as of wait and transport arcs. Afterwards, we compute an
optimal solution on GH providing a feasible transportation schedule.

The reduced network GH is constructed as follows. The node set VH is initiated by
the nodes (v0, 0) and (v0, T ). The arc set AH = A′W ∪ A′M is constructed as follows.
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1(a, 0) (a, 1) (a, 2) (a, 3) (a, 4) (a, 5) (a, 6) (a, 7) (a, 8) (a, 9) (a, 10) (a, 11)

2(b, 0) (b, 1) (b, 2) (b, 3) (b, 4) (b, 5) (b, 6) (b, 7) (b, 8) (b, 9) (b, 10) (b, 11)

(c, 0) (c, 1) (c, 2) (c, 3) (c, 4) (c, 5) (c, 6) (c, 7) (c, 8) (c, 9) (c, 10) (c, 11)

(v0, 0) (v0, 1) (v0, 2) (v0, 3) (v0, 4) (v0, 5) (v0, 6) (v0, 7) (v0, 8) (v0, 9) (v0, 10) (v0, 11)

(e, 0) (e, 1) (e, 2) (e, 3) (e, 4) (e, 5) (e, 6) (e, 7) (e, 8) (e, 9) (e, 10) (e, 11)

(f, 0) (f, 1) (f, 2) (f, 3) (f, 4) (f, 5) (f, 6) (f, 7) (f, 8) (f, 9) (f, 10) (f, 11)

1(g, 0) (g, 1) (g, 2) (g, 3) (g, 4) (g, 5) (g, 6) (g, 7) (g, 8) (g, 9) (g, 10) (g, 11)

Figure 6.9: The resulting computed flows f2
j based on the original network from Exam-

ple 6.4. Each request rj corresponds to a commodity f2
j and the result of computing a

min-cost multicommodity flow is the |σ| shortest paths shown in this figure. Each path
starting with the earliest pickup station of the corresponding request and ending with
the convenient delivery station.

The transport arcs a = [(v, t), (w, t′)] ∈ AM with f1
j (a) > 0 or f2

j (a) > 0 remain in A′M ,
and we add the nodes (v, t) and (w, t′) to VH . Next, for each station v ∈ VH , we add
wait arcs in A′W between two successive nodes on the time line of v. Note that, in the
two steps of the preprocessing (Phase 1), we compute certain “gaining and profitable”
paths. In the first step, a path of rj starts from the earliest pickup node (xj , pj) of
rj , tries to pass by other origins and destinations and ends up in the latest possible
destination (yj , qj) of the request rj . In the second step of the first phase, the computed
path of rj is one of the shortest paths from (xj , pj) to (yj , pj + d(xj , yj)). Using these
two steps in the preprocessing, we increase the chance to serve the requests that share
(partially) a path together in one tour. However, there may be some requests that can
be served sequentially one after another in one tour in the original network GT but can-
not be served together in one tour in the reduced network GH unless we add additional
transport arc from the destination of the first request to the origin of the second (if
possible). Therefore, some additional transport arcs can be added using the following
steps of Algorithm 8 (AAA).

We denote by Vx all possible origins (xj , tpickj ) of all requests rj in σ, for all pj ≤ tpickj ≤
qj − d(xj , yj), and by Vy all possible destinations (yj , tdropj ) of all rj in σ, for all pj +
d(xj , yj) ≤ tdropj ≤ qj . The input of the AAA algorithm is Vx, Vy, and GH = (VH , AH).
The output is the final reduced network GH = (VH , AH) on which we compute a feasible
transportation schedule by solving the integer linear program (6.4) from Section 6.2.1.2.
The resulting reduced network the Example 6.4 is illustrated in Figure 6.10.
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Algorithm 8 Add Additional Arcs (AAA)
Input: Vx, Vy, GH = (VH , AH)
Output: modified GH
For all nodes (v, t) ∈ VH ∩ Vy

For all nodes (v′, t′) ∈ VH ∩ Vx
if t+ d(v, v′) ≤ t′
if there does not exist a path ∈ AH between (v, t) and (v′, t′)
add the arc ((v, t), (v′, t′)) to the transport arcs A′M
update GH

return GH

(a, 1) (a, 5)

(b, 2) (b, 4) (b, 6)

(c, 3) (c, 4) (c, 5) (c, 7) (c, 8)

(v0, 0) (v0, 2) (v0, 3) (v0, 4) (v0, 6) (v0, 8) (v0, 11)

(e, 2) (e, 3) (e, 6) (e, 8) (e, 9)

(f, 7) (f, 9)

(g, 4) (g, 5) (g, 6) (g, 7)

Figure 6.10: This figure illustrates the reduced network GH of Example 6.4. the trans-
portation arcs are indicated by dashed arcs, the source and the source and sink arcs by
dotted arcs. The wait arcs are represented by dashdotted arcs. Note that ((c, 3), (b, 4))
and ((g, 4), (b, 6)) are added by AAA Algorithm while constructing the reduced network.
Overall the number of arcs is significantly reduced in GH . The original time expanded
network GT has 84 nodes and 313 arcs among which 220 transport arcs, as for the
reduced network GH , it has 28 nodes and 71 arcs among which 27 transport arcs.

Computing a Feasible Transportation Schedule. A feasible transportation sched-
ule is computed by solving the integer linear program (6.4) from Section 6.2.1.2 on the
reduced time-expanded network GH . The problem is always feasible due to the following
reason: in the Preemptive Taxi Mode Problem, every customer request can be rejected.
Due to the wait arcs, for every station v ∈ V there is a path from the source node (v, 0) to
the node (v, T ) for VIPA flow and the request flows. Thus, we can directly conclude that
the flow-based heuristic always computes a feasible solution for the Offline Preemptive
Taxi Mode Problem.

In Figure 6.11, we show the paths used in the optimal offline solution. In this example
they are all present in the reduced network GH . In this example FLOW-HEURISTIC
provides the optimal solution, the flow computed has the same values as the optimal
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solution shown in Figure 6.7 computed by the exact formulation using a multicommodity
flow. The computed flow in the reduced network of Example 6.4 is illustrated in Figure
6.12.

(a, 1) (a, 5)

(b, 2) (b, 4) (b, 6)

(c, 3) (c, 4) (c, 5) (c, 7) (c, 8)

(v0, 0) (v0, 2) (v0, 3) (v0, 4) (v0, 6) (v0, 8) (v0, 11)

(e, 2) (e, 3) (e, 6) (e, 8) (e, 9)

(f, 7) (f, 9)

(g, 4) (g, 5) (g, 6) (g, 7)

r1

r1

r2

r2

r3 r3

r4

r4

r4

r5 r5 r6

r7

r7

Figure 6.11: This figure illustrates the paths used in the optimal offline solution for each
request rj , and the arcs (dashed) of the reduced network GH of Example 6.4. For each
request rj , the corresponding arcs are indicated by solid arcs with a different color.

(a, 1) (a, 5)

(b, 2) (b, 4) (b, 6)

(c, 3) (c, 4) (c, 5) (c, 7) (c, 8)

(v0, 0) (v0, 2) (v0, 3) (v0, 4) (v0, 6) (v0, 8) (v0, 11)

(e, 2) (e, 3) (e, 6) (e, 8) (e, 9)

(f, 7) (f, 9)

(g, 4) (g, 5) (g, 6) (g, 7)

Figure 6.12: This figure illustrates the arcs with positive flow F in the reduced network
GH of Example 6.4. There are 7 accepted requests. In this example FLOW-HEURISTIC
provides the optimal solution.

6.2.2 Online P-TaxiMP via Heuristic Replan

To handle the online situation, where the requests in σ are released over time during
a time horizon [0, T ], we propose a heuristic to solve a sequence of offline subproblems
for certain time intervals [t′, T ′] within [0, T ] on accordingly modified time-expanded
networks. A usual replan strategy is based on computing the optimal solution on the
subsequence of requests released in each replanning step. In the proposed hREPLAN-P
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(see Algorithm 9), we use the previously presented heuristic to compute offline solutions
on the subsequence σ(t′).

Algorithm 9 (hREPLAN-P)
Input: (M,σ, p, T, k,Cap)
Output: σhA, and tours Γ1, . . . ,Γk
1: initialize σhA = ∅, σh(t′) = {rj ∈ σ : tj = 0}, and Γi = (v0, 0) for 1 ≤ i ≤ k
2: WHILE t′ ≤ T DO: call hOFFLINE-P(σhA, σh(t′), Γ1, . . . ,Γk)

perform the (modified) tours until new requests become known
update t′ and σh(t′)

3: return σhA, and Γ1, . . . ,Γk

To compute those offline solutions for the subsequences σ(t′), we build a time-
expanded network GhT (t′) = (V h

T ′ , A
h
T ′) based on σ(t′) and the original network G, apply

the first phase of FLOW-HEURISTIC, apply the phase 2 of FLOW-HEURISTIC on the
reduced network GH(t′) obtained and consider a flow in GH(t′) that corresponds to the
studied (partial) tours.

We construct GhT ′ = (V h
T ′ , A

h
T ′) and GH(t′) = (V ′H , A′H) in a similar way as GhT and

GH for the offline situation. The main difference is that we do not have a single source
(v0, 0), but that we need to use the possible start positions and possible start times of
the VIPAs as sources.

For that, we extract the possible start positions P h(t′) and start times Sh(t′) for the
VIPAs from the current tours Γ1, . . . ,Γk. At the beginning, i.e. at time t = 0, we clearly
have P h(t′)i = v0 and Sh(t′)i = 0. At any later time point t′, the start positions and
start times are as follows. If VIPA i is currently serving a request rj , then we have a new
fictive pickup node xj = P h(t′)i which is the position of the VIPA at time t′ and a new
fictive earliest pickup time tpickj = Sh(t′)i which is the time t′. If the VIPA is actually at
a node or the expected arrival time if the VIPA is at an arc towards the node; otherwise,
P h(t′)i is the current position v of VIPA i and Sh(t′)i = t′.

To keep previously accepted requests, we partition σh(t′) into the subsequences

• σhC(t′) of accepted and currently (at time t′) being served,
• σhA(t′) of previously accepted but until time t′ not yet served requests and
• σhN (t′) = {rj ∈ σ : tj = t′} of requests that are newly released at time t′.

For the first phase of FLOW-HEURISTIC, at the beginning, i.e. at time t = 0, for
each commodity fj we clearly have the node (xj , pj) as the commodity’s origin. At any
later time point t′, the commodity’s origins are as follows:

• for the requests rj ∈ σhC(t′), where VIPA i is currently serving a request rj , we use
a new fictive pickup node (P h(t′)i, t′) as source for the corresponding commodity,
the commodity’s destination would not change.
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• for all requests rj ∈ σhN (t′)∪σhA(t′), we use (xj , pj) as source for the corresponding
commodity.

For the second phase of FLOW-HEURISTIC, the network GH(t′) is constructed in a
similar way as GH based on the arcs in GhT (t′) having positive flows in the first or second
step of the first phase. Some additional arcs may be added by Algorithm 8 (AAA).
For the requests rj ∈ σhC(t′), where VIPA i is currently serving a request rj , we use
(P h(t′)i, t′) as a new fictive pickup node. As we are using a reduced network GH(t′) to
compute the transportation schedule during the second phase, there may be some arcs
absent in GH(t′). In order to ensure that all the accepted requests rj ∈ σhC(t′)∪σhA(t′) can
be served in the new computed transportation schedule, we add all the transportation
arcs (u, tu, v, tv) of the previous transportation schedule such that tu ≥ t′ to GH(t′) if
they were not already present. Moreover, another difference is that we do not have a
single source (v0, 0), but that we need to use the possible start positions and possible
start times of the VIPAs as sources. Therefore, we denote by V+, the VIPAs start
positions and start times (P h(t′)i, t′) for 1 ≤ i ≤ k as sources in V+. In phase 2 of
FLOW-HEURISTIC, we compute a transportation schedule by solving the max profit
flow problem in GH(t′) = (V ′H , A′H) detailed in (6.7).

max
∑

rj∈σh(t′)

∑
a∈δ−(xj ,pj)

p(a)f ′j(a) −
∑
a∈A′H

c(a)F ′(a) (6.7a)

s.t.
∑

a∈δ+(v,t′)
F ′(a) = k(v) ∀(v, t) ∈ V+ (6.7b)

∑
a∈δ−(v,t)

F ′(a) =
∑

a∈δ+(v,t)
F ′(a) ∀(v, t) 6= V+ ∪ {(v0, t

′)} (6.7c)

∑
a∈δ−(xj ,pj)

f ′j(a) ≤ 1 ∀rj ∈ σhN (t′) (6.7d)

∑
a∈δ−(xj ,pj)

f ′j(a) = 1 ∀rj ∈ σhC(t′) ∪ σhA(t′) (6.7e)

∑
a∈δ−(v,t)

f ′j(a) =
∑

a∈δ+(v,t)
f ′j(a) ∀rj ∈ σ, ∀(v, t) 6= (xj , pj), (yj , qj) (6.7f)

∑
rj∈σh(t′)

f ′j(a) · zj ≤ CapF ′(a) ∀a ∈ A′M (6.7g)

F ′(a) ≥ 0 ∀a ∈ A′H (6.7h)
F ′(a) ∈ Z ∀a ∈ A′H (6.7i)
f ′j(a) ∈ {0, 1} ∀a ∈ A′H , ∀rj ∈ σh(t′) (6.7j)

where again δ−(v, t) denotes the set of outgoing arcs of (v, t), δ+(v, t) the set of
incoming arcs of (v, t) and k(v) the number of VIPAs initially situated in v.

Constraints (6.7e) ensure that previously accepted requests are served whereas con-
straints (6.7e) allow to reject newly released requests.
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From the computed flows F ′ and f ′j in the time-expanded network GH(t′), it is
straightforward to determine newly accepted requests (corresponding to requests rj with
f ′j(a) > 0 for some a ∈ A′H) and to construct (partial) tours Γ1, . . . ,Γk for the VIPAs in
the same way as described for the offline situation in Theorem 6.8.

The whole process can be summarized in Algorithm 10 hOFFLINE-P.

Algorithm 10 (hOFFLINE-P)
Input: σhA, σh(t′), Γ1, . . . ,Γk

Output: modified σhA and modified tours Γ1, . . . ,Γk
1: determine VIPA start positions P h(t′) and start times Sh(t′) from Γ1, . . . ,Γk

2: create the time-expanded network GhT (t′)
3: solve FLOW-HEURISTIC using GhT (t′)
4: update σhA, and Γ1, . . . ,Γk accordingly and return them

Example 6.9. Consider the instance (M,σ, p, 10, 2, 1) of the P-TaxiMP from Exam-
ple 6.3. hREPLAN-P proceeds with this request sequence σ as follows. At the beginning,
hREPLAN-P initializes σhA = ∅, and the two tours Γ1 = Γ2 = (v0, 0). At time t′ = 0,
r1 = (0, a, c, 1, 4, 1) is released. hREPLAN-P computes the partial heuristic offline so-
lution for σhA(0) = ∅, σhC(0) = ∅, σhN (0) = {r1}, Sh(0) = (0, 0) and P h(0) = (v0, v0),
computes a transportation schedule with the time-expanded network GhT and GH con-
structed using FLOW-HEURISTIC (6.2.1.3), obtains

r1−−−−−−−−−−→
Γ1 =(v0, 0)→ (a, 1)→ (b, 2)→ (c, 3)→ (v0, 4)
Γ2 =(v0, 0)→ (v0, 4)

accepts r1 and moves VIPA 1 towards a.
At time t′ = 1, r2 = (1, c, f, 5, 9, 1) and r3 = (1, e, g, 2, 5, 1) are released. hREPLAN-P
computes the partial offline solution for σhA(1) = {r1}, σhC(1) = ∅, σhN (1) = {r2, r3},
Sh(1) = (1, 1) and P h(1) = (a, v0), recomputes a transportation schedule with the time-
expanded network GhT and GH constructed using FLOW-HEURISTIC (6.2.1.3), obtains

r1−−−−−−−−−−→ r2−−−−−−−−−−→
Γ1 =(a, 1)→ (b, 2)→ (c, 3)→ (c, 5)→ (e, 6)→ (f, 7)→ (v0, 9)

r3−−−−−−−−−−→
Γ2 =(v0, 1)→ (e, 2)→ (v0, 3)→ (g, 4)→ (v0, 9)

accepts r2 and r3 and moves VIPA 1 towards c (serving r1) and VIPA 2 towards e.
At time t′ = 3, r1 is served, r3 is currently being served and r4 = (3, b, f, 4, 7, 1),
r5 = (3, b, g, 4, 7, 1) are released. hREPLAN-P computes the partial offline solution
for σhA(3) = {r2}, σhC(3) = ∅, σhN (3) = {r4, r5}, Sh(3) = (3, 3) and P h(3) = (c, v0)
hREPLAN-P recomputes a transportation schedule with the time-expanded network
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GhT and GH constructed using FLOW-HEURISTIC (6.2.1.3), obtains

r4−−−−−−−−−−−−−−−−−−→r5−−−−−−−−−−→
Γ1 =(c, 3)→ (b, 4)→ (a, 5)→ (g, 6)→ (f, 7)→ (v0, 10)

r2−−−−−−−−−−→
Γ2 =(v0, 3)→ (v0, 5)→ (c, 6)→ (e, 7)→ (f, 8)→ (v0, 10)

accepts r4, r5. hREPLAN-P moves VIPA 1 towards b then towards a then towards g
(serving r5) then towards f (serving r4) and VIPA 2 towards c (note that r2 is replanned
to be served by VIPA 2 with pickup time 6).
At time t′ = 5, r3 is served, r4 and r5 are currently being served and r6 = (5, b, c, 6, 8, 1)
and r7 = (5, b, e, 6, 9, 1) are released. hREPLAN-P computes the partial optimal of-
fline solution for σhA(5) = {r2}, σhC(5) = {r4, r5}, σhN (5) = {r6, r7}, Sh(5) = (5, 5) and
P h(5) = (a, v0), recomputes a transportation schedule with the time-expanded network
GhT and GH constructed using the flow based heuristic (6.2.1.3), obtains

r4−−−−−−−−−−−−→r5−−−−−→
Γ1 =(a, 5)→ (g, 6)→ (f, 7)→ (v0, 8)

r2−−−−−−−−−−→
Γ2 =(v0, 5)→ (c, 6)→ (e, 7)→ (f, 8)→ (v0, 10)

and rejects r6 and r7, in order to serve r2, r4 and r5 from σhA(5) and σhC(5).
In total, hREPLAN-P accepts 5 requests with σhA = {r1, r2, r3, r4, r5} and serves them
by the tours

r4−−−−−−−−−−−−−−−−−−→r1−−−−−−−−−−→ r5−−−−−−−−−−→
Γ1 =(v0, 0)→ (a, 1)→ (b, 2)→ (c, 3)→ (b, 4)→ (a, 5)→ (g, 6)→ (f, 7)→ (v0, 9)

r3−−−−−−−−−−→ r2−−−−−−−−−−→
Γ2 =(v0, 0)→ (v0, 1)→ (e, 2)→ (f, 3)→ (g, 4)→ (a, 5)→ (c, 6)→ (e, 7)→ (f, 8)→ (v0, 10)
with a total tour length of 14 and an objective function value of 8. ♦

Computing an upper bound We may solve the uncapacitated Taxi Mode Problem
or the uncapacitated PDP with time windows by using the same time-expanded network
GT = (VT , AT ) with a VIPA Flow F and a set of commodities fj , j ∈ {1 · · · |σ|} for the
requests. The only difference is that we remove the coupling constraint:∑

a∈AT

fj(a) · zj ≤ Cap · F (a), ∀a ∈ AM

and replace it by

F (a) ≥ fj(a), ∀a ∈ AM
Therefore by relaxing the coupling constraint and supposing that the VIPAs have

infinite capacity so that we serve as much requests as possible, it is possible to directly
compute an upper bound on the maximal profit as well as the maximal number of cus-
tomer requests which can be theoretically served in the Preemptive Taxi Mode Problem.
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6.3 Competitive Analysis

Concerning the competitive analysis of the Online Non-Preemptive and the Preemptive
Taxi Mode Problem, we in fact, obtain the more general result that no (deterministic)
online algorithm for the Online TaxiMP is competitive against two common types of ad-
versaries. As the examples provided below prove that there is no finite number bounding
the ratio between the optimal offline algorithm OPT and any online algorithm ALG nei-
ther for the Online NP-TaxiMP nor for the P-TaxiMP, therefore in the sequel of the
theorems and proofs we do not distinguish between the preemptive and non-preemptive
problems but we only consider the Online Taxi Mode Problem (TaxiMP).

We first consider an oblivious adversary who knows the complete behavior of
a (deterministic) online algorithm ALG and chooses a worst-case sequence for ALG.
Hereby, an oblivious adversary is allowed to move VIPAs towards the origins xj of
not yet released requests rj (but also has to respect the time windows [pj , qj ] to serve
accepted requests rj).

We show that an oblivious adversary can force any (deterministic) online algorithm
ALG for the Online TaxiMP to reject all requests of a sequence while the adversary can
accept and serve all requests, implying that ALG is not competitive.

Theorem 6.10. There is no competitive (deterministic) online algorithm for the Online
TaxiMP against an oblivious adversary.

Proof. The idea for a worst case sequence for an online algorithm ALG is as follows. The
adversary releases the requests rj ∈ σ in such a way that the delay between the release
time tj and the latest possible pickup time qj − d(xj , yj) is smaller than the distance
d(v0, xj). That way, ALG has to reject all requests (and its VIPA stays in the depot v0),
whereas the adversary moves its VIPA already towards the origin x0 of the first request
r0 before r0 has been released and is able to arrive at x0 at time q0 − d(x0, y0) and can
accept and serve r0 and all following requests in the sequence σ. For that, we consider
an instance (M,σ, p, T, 1, 1) of the Online TaxiMP with

• the network G with depot v0 from Figure 6.13

v0

v2

v1

2

2

1

Figure 6.13: This figure illustrates the network G of the instance (M,σ, p, T, 1, 1) of the
Online TaxiMP with an oblivious adversary.
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• the following sequence σ = {r0, r1, r2, . . . , r`} of requests with

rj = (j + 1, v1, v2, j + 2, j + 3, 1) for all even j with 0 ≤ j ≤ `,
rj = (j + 1, v2, v1, j + 2, j + 3, 1) for all odd j with1 ≤ j ≤ `,

• profits p(rj) = 2d(xj , yj) for accepted requests rj .

The online algorithm ALG treats the sequence σ as follows. At time t = 1, the first
request r0 = (1, v1, v2, 2, 3, 1) is released. As the origin x0 = v1 of r0 is not reachable
from the depot before or at the latest possible pickup time q0 − d(v1, v2) = 2 due to
d(v0, v1) = 2, ALG rejects r0 and the VIPA operated by ALG stays in the depot v0. At
time t = 2, request r1 = (2, v2, v1, 3, 4, 1) is released. Again, the origin x1 = v2 of r1 is not
reachable from the depot before or at the latest possible pickup time q1 − d(v1, v2) = 3
due to d(v0, v2) = 2. Hence, ALG also rejects r1 and the VIPA operated by ALG stays
in v0. This is repeated for any further request rl ∈ σ so that all rj ∈ σ are rejected by
ALG and we clearly have

ALG(σ) = 0.

In contrary, the adversary moves its VIPA at time t = 0 from the depot v0 towards
x0 = v1, arrives at p0 = 2 in v1 and accepts and serves r0 by moving to y0 = v2, arriving
there at time 3 = p1, Thus, the adversary can accept and serve r1 by moving to v1 = y1,
arriving there at time 4 = p2. This is repeated for any further request rj in σ (that the
VIPA operated by the adversary always arrives at xj at time pj) so that the adversary
can accept and serve all requests rj in σ. At the end of the sequence the adversary
returns its VIPA to the depot to close its tour. Thus we obtain

OPT (σ) = (`+ 1) · 2d(v1, v2)− ((`+ 1) · d(v1, v2) + 2 + 2) = (`+ 1) · d(v1, v2)− 4 = `− 3.

This shows
OPT (σ)
ALG(σ) =∞

so that there is no finite number c bounding the ratio between OPT (σ) and ALG(σ) for
all possible request sequences σ of the Online TaxiMP.

Next, we consider a non-abusive adversary who also knows the complete behavior
of ALG and chooses a worst-case sequence for ALG, but is only allowed to move VIPAs
towards origins (or destinations) of already released requests (and has also to respect
the time windows).

We show that also no (deterministic) online algorithm ALG for the Online TaxiMP
is competitive against a non-abusive adversary, since the adversary can force ALG to
accept only one request and to reject all other requests of a sequence while the adversary
can accept and serve all requests but one of the sequence.

Theorem 6.11. There is no competitive (deterministic) online algorithm for the Online
TaxiMP against a non-abusive adversary.
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Proof. The idea for a worst-case sequence for an online algorithm ALG is as follows.
The adversary releases a first request r0 that is accepted by ALG and brings the VIPA
operated by ALG to a station y0 in the network whose distance d(y0, xj) to the origins
xj of all further requests rj is larger than the delay between the release time tj and
the latest possible pickup time qj − d(xj , yj). Thus, ALG has to reject all remaining
requests, whereas the adversary rejects r0 but can accept and serve all other requests in
the sequence. For that, we consider an instance (M,σ, p, T, 1, 1) of the Online TaxiMP
with

• the network G with depot v0 from Figure 6.14

v0

v1 v2 v3

1 1

1 2

1

Figure 6.14: This figure illustrates the network G of the instance (M,σ, p, T, 1, 1) of the
Online TaxiMP with a non-abusive adversary.

• the following sequence σ = {r0, r1, r2, . . . , r`} of requests with

r0 = (0, v2, v3, 1, 3, 1)
rj = (j + 2, v1, v2, j + 3, j + 4, 1) for all odd j with 1 ≤ j ≤ `
rj = (j + 2, v2, v1, j + 3, j + 4, 1) for all even j with 2 ≤ j ≤ `

• profits p(rj) = 2d(xj , yj) for accepted requests rj .

The online algorithm ALG treats the sequence σ as follows. At time t = 0, r0 is the only
released request. As the origin x0 = v2 of r0 is reachable from the depot v0, ALG accepts
r0 and serves it by moving its VIPA from (v0, 0) to (v2, 1) and then to the destination
(v3, 3) of r0. At time t = 3, request r1 = (3, v1, v2, 4, 5, 1) is released. As the VIPA
operated by ALG is situated in v3, ALG cannot arrive in the origin x1 = v1 of r1 before
or at the latest possible pickup time 4 = q1 − d(v2, v1) due to d(v3, v1) = 2. Thus,
ALG rejects r1 and the VIPA operated by ALG stays in v3. At time t = 4, request
r2 = (4, v2, v1, 5, 6, 1) is released. Again, ALG cannot arrive in the origin x2 = v2 of r2
before or at the latest possible pickup time 5 = q2−d(v1, v2) due to d(v3, v2) = 2. Thus,
ALG rejects also r2 and the VIPA operated by ALG stays in v3. This is repeated for
any further request rj ∈ σ so that all rj with j > 0 are rejected by ALG. At the end
of the sequence, ALG returns its VIPA to the depot in order to close its tour. Thus we
obtain

ALG(σ) = p(r0)− (d(v0, v2) + d(v2, v3) + d(v3, v0)) = 2 · 2− (1 + 2 + 1) = 0

144



6. Taxi Mode Problem

In contrary, the adversary rejects r0 but is able to accept and serve all other requests by
moving its VIPA from (v0, 3) to (v1, 4) as origin of r1, then to (v2, 5) as destination of
r1 and origin of r2, then to (v1, 6) as destination of r2 and origin of r3, and so on. After
all requests are served, the adversary returns its VIPA (from v1 or v2) to the depot to
close its tour. Thus, we obtain

OPT (σ) = ` · 2 · d(v1, v2)− (` · d(v1, v2) + 2) = ` · d(v1, v2)− 2 = `− 2

This shows
OPT (σ)
ALG(σ) =∞

so that there is no finite number c bounding this ratio between OPT (σ) and ALG(σ)
for all possible sequences σ.

Since in both cases, the worst-case request sequence used to show the non-competitivity
result is only based on the reachability of requests, but not on a particular strategy of
an online algorithm, we conclude:

Corollary 6.12. None of the algorithms REPLAN-NP and hREPLAN-P is competitive
for the Online TaxiMP against an oblivious or non-abusive adversary.

6.4 Computational Results
This section deals with computational experiments for the optimal offline solutions of the
TaxiMP (Non-Preemptive and Preemptive) and the replan strategies (REPLAN-NP and
hREPLAN-P) for the Online TMP. In fact, due to the very special request structures of
the previously presented worst-case instances to prove the non-competitiveness of any
online algorithm for the Online TMP, we can expect a better behavior of the proposed
replan strategies for the Online TaxiMP in average.

The computational results presented in this section support this expectation. They
compare the total number of accepted (and thus served) requests by REPLAN-NP and by
hREPLAN-P with the optimal offline solutions OPT-NP and OPT-P. The computations
use randomly generated instances with 20 stations, 5 to 10 VIPAs, time-horizons between
180 and 240 time units, and between 90 and 300 customer requests. These instances
are based on the network from the industrial site of Michelin at Clermont-Ferrand and
randomly generated request sequences resembling typical instances that occurred during
an experimentation in Clermont-Ferrand performed from October 2015 until February
2016 [112].

The operating system for all tests is Linux CentOS with kernel version 2.6.32 clocked
at 2.40GHz, with 1TB RAM. The approaches are implemented in Python and Gurobi 8.21
is used for solving the ILPs.

In the first set of 180 instances, the requests have a random load between 4 and 10
(10 is the capacity of the VIPA), in the second set of 180 instances, the requests have
a random load between 1 and 10 (with the same capacity of the VIPA). For each set,
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we run its instances to compare the total number of accepted (and thus served) requests
by REPLAN-NP (respectively hREPLAN-P) with the optimal offline solution OPT-NP
(respectively OPT-P). Due to the long computation time of finding an optimal solution
for the P-TaxiMP using the instances with 300 requests, an upper bound is shown by
computing the uncapacitated preemptive TaxiMP (marked in the tables by (UB)), in
order to get this upper bound we fixed a time limit of four hours for the solver while
solving the LP corresponding to the uncapacitated preemptive TaxiMP). The results are
summarized in Table 6.2 and Table 6.4.

REPLAN-NP (respectively hREPLAN-P) computes solutions for each replanning
step within a short time, and a reasonable ratio w.r.t. the total number of accepted
requests between the optimal offline solution OPT-NP and REPLAN-NP (respectively
OPT-P and hREPLAN-P) in average around 53% for the first set and 45% for the second
(respectively 49% for the first and 44% for the second). Note that hREPLAN-P takes
more time to compute a solution for each replanning step, but in average the time is
reasonable (less than 30 seconds).

In the first set of instances, we observe that the percentage of improvement between
the optimal offline non-preemptive solution OPT-NP and the preemptive offline solution
OPT-P is not very high (in average around 10%) and the percentage of improvement
between the REPLAN-NP and hREPLAN-P is also not very high (in average around
13%) (see Table 6.3). The reason why there is no remarkable improvement is that
the load of the requests is greater than Cap/2 most of the times. As in OPT-P and
hREPLAN-P we allow vehicle preemption but not load preemption, therefore most of
the times the requests cannot be accumulated together to be served.

In the second set of instances, we observe that the percentage of improvement between
the optimal offline non-preemptive solution OPT-NP and the preemptive offline solution
OPT-P increased. It is in average around 43% and the percentage of improvement
between the REPLAN-NP and hREPLAN-P also increased in average around 74% (see
Table 6.5). The reason why there is a remarkable improvement is that the load of
the requests varies between 1 and 10. As in OPT-P and hREPLAN-P we allow vehicle
preemption but not load preemption, therefore most of the times OPT-P and hREPLAN-
P can serve more than one request simultaneously and therefore accept more requests
than OPT-NP and REPLAN-NP.
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Table 6.2: This table shows the computational results for the first set of 180 test instances
of REPLAN-NP respectively hREPLAN-P in comparison to OFFLINE-NP entitled by
OPT-NP respectively to the optimal preemptive offline solution OPT-P. The instances
are grouped by the number of requests (1st column), the time horizon (2nd column) and
the number of VIPAs (3rd column) with 30 instances per parameter set. Average values
are shown for the total number |σA| of accepted requests and for the total tour length
TTL needed to serve the accepted requests. Finally, we provide the time needed to
compute the optimal offline solution, the average runtime of REPLAN-NP respectively
hREPLAN-P per recomputation step and the maximum runtime of the recomputation
steps of REPLAN-NP respectively hREPLAN-P.

NP-TaxiMP
|σA| TTL runtime (s)

req T k OPT-NP REPLAN-NP gap % OPT-NP REPLAN-NP OPT-NP AVG MAX

94 180 10 77 39 49,35 667,5 424 11,9 0,49 1,6
188 180 10 112 55 50,9 831 580 151 3 10,83
295 180 10 146,86 75,85 48,35 1005 750,57 76867,86 13,56 45,54
97 240 5 62,04 25,19 59,4 527,16 298,82 1650,94 0,29 1,23
194 240 5 93,76 45,84 51,1 680,44 490 229,76 1,8 7,85
290 240 5 115,94 47,64 58,9 759,94 500,6 121985,32 7,18 29,8

P-TaxiMP
|σA| TTL runtime (s)

req T k UB hREPLAN-P gap % OPT-P hREPLAN-P OPT-P AVG MAX

94 180 10 82,8 41,8 46,78 658,7 406,74 2543,76 2,06 9,62
188 180 10 121,08 59,12 48,82 835,3 540,76 85732,2 6,47 38,63
295 180 10 160 90,8 62,78 1067,8 762,4 89547(UB) 21,7 68,4
97 240 5 66,48 29,7 44,67 514,65 267,75 5469,5 1,22 12,92
194 240 5 104,34 51,2 49,52 705,42 501,5 115678,6 3,79 24,4
290 240 5 129 54,4 43,44 792,75 496,6 132576(UB) 19,5 58,25

Table 6.3: This table shows the percentage of improvement of the average number of
accepted requests between the non-preemptive and preemptive optimal solutions and
between REPLAN-NP and hREPLAN-P for the first set of instances.

req T k OPT-NP UB Improvement (%) REPLAN-NP hREPLAN-P Improvement (%)
94 180 10 77 82,8 7,53 39 41,8 7,18
188 180 10 112 121,08 8,11 55 59,12 7,49
295 180 10 146,86 160,54 9,31 (UB) 75,85 90,8 19,71
97 240 5 62,04 66,48 7,16 25,19 29,7 17,90
194 240 5 93,76 104,34 11,28 45,84 51,2 11,69
290 240 5 115,94 129,22 11,45 (UB) 47,64 54,4 14,19
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Table 6.4: This table shows the computational results for the second set of instances.

NP-TaxiMP
|σA| TTL runtime (s)

req T k OPT-NP REPLAN-NP gap % OPT-NP REPLAN-NP OPT-NP AVG MAX

94 180 10 65,31 36,54 55,95 667,5 416,7 12,6 0,68 5,32
188 180 10 107,48 47,16 43,888 831 596,35 181,23 2,69 12,45
295 180 10 153,2 79,14 51,66 1005 726,86 73456,5 12,67 27,42
97 240 5 61,76 24,1 39,02 527,16 279,15 697,75 0,86 6,45
194 240 5 100,32 45,38 45,24 680,44 504,7 846,5 3,7 14,6
290 240 5 123,67 46,21 37,37 759,94 527,45 116875,85 14,1 22,46

P-TaxiMP
|σA| TTL runtime (s)

req T k UB REPLAN-P gap % UB REPLAN-P UB AVG MAX

94 180 10 86,70 47,54 54,83 727,56 460,16 43824,50 2,58 11,58
188 180 10 158,65 77,80 49,04 930,75 649,67 125849,75 7,42 45,45
295 180 10 283(UB) 124,10 43,77 1175,25 878,25 97849(UB) 26,45 82,42
97 240 5 84,40 32,50 38,51 558,45 358,75 90470,67 1,36 14,36
194 240 5 154,23 72,67 47,12 825,74 609,40 156752,58 4,26 27,42
290 240 5 275(UB) 88,50 32,13 957,52 630,86 128417(UB) 21,78 65,80

Table 6.5: This table shows the percentage of improvement of the average number
of accepted requests between OPT-NP and OPT-P and between REPLAN-NP and
hREPLAN-P for the second set of instances.

req T k OPT-NP OPT-P Improvement (%) REPLAN-NP hREPLAN-P Improvement (%)
94 180 10 65,31 86,70 32,75 36,54 47,54 30,10
180 180 10 107,48 158,65 47,61 47,16 77,80 64,97
295 180 10 153,20 283,50 85,05 (UB) 79,14 124,10 56,81
97 240 5 61,76 84,40 36,66 24,10 32,50 34,85
194 240 5 100,32 154,23 53,74 45,38 72,67 60,14
290 240 5 123,67 275,47 122,74 (UB) 46,21 88,50 91,52

6.5 Conclusion

Regarding the quality of the solutions obtained by REPLAN-NP, we summarize from
this chapter that

• in theory, REPLAN-NP is not competitive since there is no finite c s.t. for all
instances σ we have that REPLAN-NP(σ) ≥ c OPT(σ), but

• in practice, REPLAN-NP provides solutions of reasonably quality within short
time for each recomputation step, see again Table 2.4.

• in theory, hREPLAN-P is also not competitive since there is no finite c s.t. for all
instances σ we have that REPLAN-NP(σ) ≥ c OPT(σ), but

• in practice, hREPLAN-P leads to a higher rate of accepted requests and, therefore,
to a higher quality-of-service level for the fleet management than REPLAN-NP.
However, sometimes the transportation schedule contains preemptive tours.
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Therefore, in order to handle the Online Taxi Mode Problem in the studied VIPAFLEET
management system it is up to the operator to decide whether it is worth to have
preemptive tours in order to increase the number of accepted requests.
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Chapter 7
Conclusion

Vehicle routing problems integrating constraints on autonomy are new in the field of
operational research but are important for the future mobility. Autonomous vehicles,
which are intended to be used as a fleet in order to provide a transport service, need to be
effective also considering to their management. We summarize the results of competitive
analysis presented in this work w.r.t. different objective functions in Table 7.1.

Table 7.1: This table shows the competitive ratios obtained in this work. For each case,
we show the competitive ratio for the algorithm on which type of graphs, using which
mode w.r.t. which objective function. In some cases only lower bounds LB are shown.

Mode metric space Algorithm General Lunch Morning Evening
w.r.t. minimizing the total tour length

TramMP Circuit or Line SIR Cap · |C| 2Cap Cap Cap
TramMP Circuit or Line SIFM - - 1 -
TramMP Circuit or Line SIFE - - - 1
TramMP Circuit or Line SIFL - 2 - -
EMP Line MAIN 2Cap · |L| 2Cap Cap Cap

w.r.t. minimizing the total number of stops
TramMP Circuit or Line SIR 2 · Cap 4

3 · Cap Cap Cap
TramMP Circuit or Line SIFM - - Cap+1

2 -
TramMP Circuit or Line SIFE - - - Cap+1

2
TramMP Circuit or Line SIFL - Cap + 1 - -
EMP Line MAIN 2Cap 4

3 · Cap Cap Cap
w.r.t. minimizing the makespan

TramMP Circuit or Line SIR LB = 2 LB = 2 LB = 2 LB = 2
TramMP Circuit or Line SIFM - - LB = 3

2 -
TramMP Circuit or Line SIFE - - - LB = 2
TramMP Circuit or Line SIFL - LB = 2 - -
EMP Line MAIN LB = 2 LB = 2 2 2

w.r.t. minimizing the total waiting time
TramMP Circuit or Line SIR ∞
TramMP Circuit or Line SIFM ∞
TramMP Circuit or Line SIFE ∞
TramMP Circuit or Line SIFL ∞
EMP Line MAIN ∞

w.r.t. maximizing the number of accepted requests (serving them with minimum costs)
NP-TaxiMP general metric space REPLAN-NP ∞
P-TaxiMP general metric space hREPLAN-P ∞
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Competitive analysis has been one of the main tools for deriving worst-case bounds
on the performance of algorithms but an online algorithm having the best competitive
ratio in theory may reach the worst case more frequently in practice with a certain
topology. That is the reason why we are not only interested in the “worst-case” but also
in the “best-case” performance of the algorithms. Thus, we need to determine properties
which govern the behavior of each chosen algorithm and define the cases where it can
be applied and give the best results in terms of performance. So far, we can suggest the
following.

• Morning/evening: partition the network into disjoint circuits as subnetworks such
that each subnetwork contains one parking p and all buildings are covered, assign
one or several VIPA to every circuit operating in tram mode using SIFM resp.
SIFE .

• Lunch time: consider a collection of circuits all meeting in a central station (the
restaurant) and all buildings are covered, one or several VIPAs on each circuit
operating in tram mode using SIFL.

• In general periods: consider a spanning collection of lines and circuits meeting in
a central station where one VIPA (in elevator mode) operates on each line using
MAIN , one or several VIPAs (in tram mode) on each circuit using SIR.

• In “important periods”: consider the whole graph where a fleet of VIPAs transport
“VIPs” from their requested origins to their requested stations. Depending on
the loads per request, the VIPAs operate on the network using REPLAN-P or
hREPLAN-NP with the constraint that only one VIPA is allowed per arc to avoid
their meetings.

• In “Emergency case”: in the case of a breakdown of the central servers, the
database or the communication system, transports between all possible origin/destination
pairs have to be ensured without any decision by the operator. For that,

– consider one Hamilton cycle as shown in Figure 3.6, through all the stations
as subnetwork and

– to let half of the fleet of VIPAs operate in each direction on the cycle (all in
tram mode) using SIR.

Regarding the quality of the solutions obtained by the algorithms proposed for the
TramMP (SIFM , SIFE , SIFL, and SIR) we summarize from Chapter 4 that

• during the morning, SIFM is suitable to apply w.r.t. all the different objective
functions.

• during the evening, SIFE is suitable to apply w.r.t. all the different objective
functions.
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• during the lunch, SIFL is suitable to apply w.r.t. all the different objective func-
tions.

• SIR is convenient to be applied in case of emergencies so that the operator does
not need to take any decision.

The future works are to take into consideration the case of VIPAs running on circuit
and a VIPA can overtake another one but only when arriving at stations. The circuit C
may be designed to have the main arcs between stations, where overtaking is forbidden
but on each station there is a loading/an unloading area, where a VIPA leaves the main
track to load or unload users and does not block the other VIPAs that may pass by this
station and they do not want to load or unload passengers.

Regarding the quality of the solutions obtained by the algorithm proposed for the
EMP (MAIN) we summarize from Chapter 5 that

• MAIN leads to good ratios and reasonable solutions. Despite that MAIN can
be used with only one VIPA operating on the line, this algorithm can serve more
requests than SIR for the TramMP. By using MAIN in general case we may improve
the quality of service.

Regarding the quality of the solutions obtained by REPLAN-NP, we summarize from
Chapter 6 that

• in theory, REPLAN-NP is not competitive since there is no finite c, s.t., for all
instances σ, we have that REPLAN-NP(σ) ≥ c OPT(σ), but

• in practice, REPLAN-NP provides solutions of reasonably quality within short
time for each recomputation step, see again Tables 6.2-6.5

• in theory, hREPLAN-P is also not competitive since there is no finite c, s.t., for
all instances σ, we have that REPLAN-NP(σ) ≥ c OPT(σ), but

• in practice, hREPLAN-P leads to a higher rate of accepted requests and, therefore,
to a higher quality-of-service level for the fleet management than REPLAN-NP.
However, sometimes the transportation schedule contains preemptive tours, there-
fore it is up to the operator to decide whether it is worth to have preemptive tours
in order to increase the number of accepted requests.

We can conclude that the proposed replan strategies are promising algorithms to handle
the Online NP-TaxiMP and the Online P-TaxiMP in the studied VIPAFLEET manage-
ment system. FLOW-HEURISTIC is a promising heuristic that may be used not only
to solve the Online P-TaxiMP but also its static version. As a perspective, we intend
to apply this heuristic to static transportation problems (PDPTW and DARPTW) and
to production and logistic problems such as Resource Constrained Project Scheduling
Problems with convenient updates.

The main task of the VIPAfleet management is to find a good global strategy for
processing the incoming requests. Hereby, the following questions have to be addressed:
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• How often should the design of network be changed?

• Which algorithm we use for each mode and which subnetwork?

• Is it convenient to allow preemption? (i.e., the passenger needs to change VIPA
at a certain station to be delivered to his destination?)

The online character of the problem and at the same time its main challenge comes
from the impossibility to predict, where and when new requests in the (near) future will
take place.

Given a “snapshot” of the situation at some moment in time, the Global VIPAFleet
management problem consists in computing a transportation schedule for serving all
requests with the available VIPAs w.r.t. a certain objective function.

If we take an example of one of the presented scenarios (lunch time on Michelin
network), and we try to apply one algorithm on the whole network and apply the pro-
posed algorithms SIFL and MAIN on subnetworks resulting from a partitionning of
the network such that each building is reached via a shortest path from the restaurant
and compare the transportation schedules obtained.

We clearly note that partitioning the network is beneficial on many levels:

• it is easier to handle the meeting of two vehicles.

• it provides better solutions in average if we know the pattern of requests in advance.

• it is easier for the VIPA to operate on a line or on a circuit than on the whole
network.

Actually, we propose a design of network for each scenario with suitable algorithms
for each subnetwork. The real challenge is to solve the partitioning problem behind this
global fleet management problem. We know in advance that there is no hope to find
theoretical results in terms of competitiveness on the global optimality because there are
two much constraints that we need to take into consideration from the practical sense.
However, an interesting idea would be to find a convenient partitioning heuristic and
provide some analysis in practice via simulations to determine the best or the partition
that gives a global good solution.
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