Introduction

The development of complementary metal-oxide-semiconductor (CMOS) transistors have long followed Gordon Moore's projection, namely that the density of transistors on a chip doubles every 18 months. However, this sustained exponential growth has met serious obstacles. Microelectronics require a variety of memory types that form a hierarchy: the closer the memory is to the processing unit (CPU), the faster it must be to deal with the rapid ux of information. The memory closest to the processor is called CPU cache and is typically static random-access memory (SRAM). SRAM has access times in the nanosecond range, requires constant voltage to retain information and is typically made up of 6 transistors, which represents a high cost in terms of space. With transistor density in modern processors reaching dozens of millions of transistors per squared millimeter, the power consumption and the low density of SRAM represents a signicant technological hurdle, one that is amplied by the current leakage experienced by nm-sized transistors, leading to heat management issues. One possible solution is the use of non-volatile, memory to reduce the static power consumption of the CPU cache.

A candidate to fulll the requirements of CPU cache is magnetic random-access memory (MRAM), a technology that is at the forefront of a eld of research called spintronics.

Spintronics, a portmanteau of spin electronics, concerns the study of solid state devices in which the spin of an electron, in addition to its charge, plays a pivotal role.

Historically, the rst development in spintronics was the discovery of tunnel magnetoresistance (TMR) by Jullière in 1975 [START_REF] Julliere | Tunneling between Ferromagnetic Films[END_REF], where the resistance of two ferromagnetic layers separated by an insulator depends on the relative orientation of each ferromagnet's magnetization. Nowadays, the magnetoresistance of so-called magnetic tunnel junctions based on CoFeB/MgO/CoFeB pillars can change by up to several hundreds of % based on the magnetization state of the two CoFeB layers. However, Jullière's discovery did not attract too much attention initially, and instead the development of spintronics was arguably sparked by the discovery of a similar phenomenon called giant magnetoresistance (GMR) by Fert and Grunberg in 1986 [START_REF] Baibich | Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices[END_REF][START_REF] Binasch | Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange[END_REF] which proved more readily exploitable using the material deposition techniques available at the time.

Only 11 years after their seminal discovery, IBM commercialized the rst hard disk drives with giant magnetoresistance read heads. Due to the radical increases in hard drive density made possible by their breakthrough, they were awarded the Nobel prize in physics in 2007. Today, much of the current interest on spintronics lies in the potential for scalable, non-volatile memory that can be integrated in CMOS chips. This 1 pursuit was bolstered by the prediction of spin-transfer torque (STT) [START_REF] Slonczewski | Current-Driven Excitation of Magnetic Multilayers[END_REF][START_REF] Berger | Emission of Spin Waves by a Magnetic Multilayer Traversed by a Current[END_REF] and its subsequent observation [START_REF] Tsoi | Excitation of a Magnetic Multilayer by an Electric Current[END_REF], where electrons owing in a ferromagnetic layer become spin-polarized in the direction of the magnetization, i.e., the proportion of up and down spins are not equal. When passing through a second ferromagnetic layer, the electrons are re-polarized in the direction of the second layer's magnetization. In effect, the coupled spin-charge current allows the transfer of angular momentum between the two ferromagnetic layers, meaning that one can control the magnetization state of the system by injecting a current through the device. Combining spin-transfer torque with tunnel magnetoresistance, one has the ingredients for an MRAM cell where the information is stored in the magnetization state, and a current is used either to read its state or to switch it. Such STT-MRAM modules are already commercialized today by Everspin [START_REF] Mertens | Everspin Starts to Ship Customer Samples of Its 28nm 1Gb STT-MRAM Chips[END_REF], serving as dynamic random-access memory. Modern magnetic tunnel junctions based on CoFeB/MgO/CoFeB are CMOS compatible due to the fact that the materials can be deposited on a Si wafer by magnetron sputtering, with Ta serving as a growth layer [Teh99; Gal06; Lin09]. Thus, STT-MRAM can be integrated on top of the processing elements [START_REF] Prenat | Beyond MRAM, CMOS/MTJ Integration for Logic Components[END_REF], instead of adjacent to it, which is the case for SRAM, thus saving space on the integrated circuit and potentially reducing access time. STT-MRAM uses power while reading or writing information but has no static power consumption, in fact memory is retained even when powered o. Sub-nanosecond switching has been demonstrated [START_REF] Zhao | Low Writing Energy and Sub Nanosecond Spin Torque Transfer Switching of In-Plane Magnetic Tunnel Junction for Spin Torque Transfer Random Access Memory[END_REF], fullling the most important requirement of CPU cache: speed. Furthermore, its footprint is small as it requires only a single transistor and the magnetic tunnel junction itself, which can scale down to diameters in the nm range [START_REF] Saida | 1× to 2× -Nm Perpendicular MTJ Switching at Sub-3-Ns Pulses Below 100µA for High-Performance Embedded STT-MRAM for Sub-20-Nm CMOS[END_REF]. In addition, STT-MRAM has the potential to be tailored to compete with other memory types: dynamic RAM by being non-volatile, and ash memory by being faster. However the high current required to switch the magnetic state can eventually lead to the breakdown of the junction, which presents an important hurdle, especially for CPU cache applications as writing speeds need to be high, implying high switching currents, and the endurance virtually unlimited.

Developments in spintronics in the last decade have led to the resurgence of two phenomena discovered in the 1970s which have helped overcome this obstacle: the Rashba eect [START_REF] Ohkawa | Quantized Surface States of a Narrow Gap Semiconductor[END_REF][START_REF] Bychkov | Properties of a 2D Electron Gas with Lifted Spectral Degeneracy[END_REF] and the spin Hall eect [START_REF] Dyakonov | Possibility of Orienting Electron Spins with Current[END_REF][START_REF] Dyakonov | Current-Induced Spin Orientation of Electrons in Semiconductors[END_REF], both of which were rst predicted for semiconductors or 2D electron gases. When they were discovered to be present in normal metals [START_REF] Miron | Current-Driven Spin Torque Induced by the Rashba Eect in a Ferromagnetic Metal Layer[END_REF][START_REF] Miron | Perpendicular Switching of a Single Ferromagnetic Layer Induced by In-Plane Current Injection[END_REF], it opened a new research eld called spinorbitronics. The aforementioned phenomena allow the creation of so-called spin-orbit torques (SOT) that are generated by a charge current in a normal metal, leading to new approaches for exciting the magnetization of an adjacent ferromagnet. The materials used to generate these eects include heavy metals such as Pt, Ta or W, owing to their large atomic number and thus large spin-orbit coupling. Ta and W have the advantage of being compatible with CoFeB/MgO/CoFeB magnetic tunnel junctions, retaining their compatibility with CMOS chips. Thus, a new class of devices emerged, called SOT-MRAM, which has the benet of separating the reading current from the writing current, resulting in increased reliability and endurance [START_REF] Prenat | Ultra-Fast and High-Reliability SOT-MRAM: From Cache Replacement to Normally-O Computing[END_REF][START_REF] Garello | SOT-MRAM 300MM Integration for Low Power and Ultrafast Embedded Memories[END_REF], while still demonstrating sub-nanosecond switching times [START_REF] Cubukcu | Ultra-Fast Perpendicular SpinOrbit Torque MRAM[END_REF].

Spintronics show the potential to disrupt conventional electronics in even more radical ways. The reduction of the transistor gate size has led to the static power dissipated by leakage has reached the same order of magnitude as the active power consumption [START_REF] Jeon | Standby Leakage Power Reduction Technique for Nanoscale CMOS VLSI Systems[END_REF]. This is due to the fact that energy, or information, in conventional electronics is physically manifested by currents and voltages, which, in nm-sized transistor gates inevitably leads to losses via switching or leakage by electron tunneling. In spintronics, information is mediated by spin moments, which can propagate without a net ow of charges. This propagation of spin currents can occur via spin-waves, the collective motion of local magnetic moments in a ferromagnetic or antiferromagnetic medium. Additionally, their wave-like nature allows wave-based logic in which information is encoded in the amplitude or the phase of the spin-wave. Proof-of-concept devices include a variety of logic gates (AND gate, XOR gate, etc.) [Sch08; Khi11; Nik15], majority gates [START_REF] Klingler | Design of a Spin-Wave Majority Gate Employing Mode Selection[END_REF],

magnon transistors [START_REF] Chumak | Magnon Transistor for All-Magnon Data Processing[END_REF], spin-wave multiplexer [START_REF] Vogt | Realization of a Spin-Wave Multiplexer[END_REF], spin-wave couplers [START_REF] Sadovnikov | Directional Multimode Coupler for Planar Magnonics: Side-Coupled Magnetic Stripes[END_REF] and beam splitter [START_REF] Sadovnikov | Magnonic Beam Splitter: The Building Block of Parallel Magnonic Circuitry[END_REF].

1 Some of these devices require less components than their semiconductor equivalents and thus, if they can be miniaturized successfully, they could have smaller footprints or consume less power. Thus, the study of spin-waves, a eld called magnonics, 2 shows potential for the propagation as well as the processing of information with small footprints and low power consumption. Combined with MRAM cache, memory and storage, one can even envision all-magnetic processors.

One of the most ubiquitous materials studied for magnonics is the yttrium iron garnet (YIG), a ferrimagnetic insulator in which spin-waves can propagate distances on the order of cm thanks to its damping parameter in the 10 -5 range, which is the lowest of all known materials [START_REF] Cherepanov | The Saga of YIG: Spectra, Thermodynamics, Interaction and Relaxation of Magnons in a Complex Magnet[END_REF]. Even though there is much research activity on growing YIG thin lms and creating YIG microstructures [START_REF] Hamadeh | Full Control of the Spin-Wave Damping in a Magnetic Insulator Using Spin-Orbit Torque[END_REF], including all of the proof-of-concepts cited earlier, a signicant problem lies in its inherent incompatibility with CMOS, due to the fact that YIG is grown via liquid phase epitaxy [START_REF] Glass | Attainment of the Intrinsic FMR Linewidth in Yttrium Iron Garnet Films Grown by Liquid Phase Epitaxy[END_REF][START_REF] Shone | The Technology of YIG Film Growth[END_REF] or pulsed laser deposition [START_REF] Dorsey | Epitaxial Yttrium Iron Garnet Films Grown by Pulsed Laser Deposition[END_REF][START_REF] Sun | Growth and Ferromagnetic Resonance Properties of Nanometer-Thick Yttrium Iron Garnet Films[END_REF], on a specic substrate: gadolinium gallium garnet. Thus, there is also signicant interest in CMOS-compatible material systems such as metallic NiFe alloys For magnonic devices to compete with conventional electronics, they must be CMOScompatible, scalable into the nanometer range and accordingly use spin-waves with wavelengths in the same range. This requires the development of materials and microstructures in which such spin-waves can propagate far enough to be of use, as well as integrated 1 For a review on magnonic devices, see [START_REF] Chumak | Magnonic Crystals for Data Processing[END_REF]. 2 From the wave-particle equivalence picture, a quantized spin-wave is a quasiparticle called a magnon, leading to the name of the eld of research.

3 NiFe alloys studied in spintronics and magnonics usually have one of the following compositions: Ni80Fe20 or Ni81Fe19. These alloys are often called permalloy, abbreviated as Py. 4 There are many dierent studied CoFeB alloys including Co60Fe20B20, Co20Fe40B20, Co20Fe60B20. The Fe-rich alloy used in this work is rather specic to the Spintec laboratory and is referred to as either Fe72Co8B20 or FeCoB here. CONTENTS methods to generate, interact with, and detect these spin-waves on-chip. Moreover, due to the need for nm-sized devices, the disadvantage of metallic systems with high damping and low propagation length is less important.

Much like phonons, non-coherent magnons spontaneously appear in ferromagnetic materials at non-zero temperature. However, magnonics often involves the study of coherent, non-thermal spin-waves, thus requiring methods for exciting spin-waves with higher energy. The simplest method involves driving an RF current in the GHz range into an antenna near the ferromagnetic material, thereby exciting via the Ørsted eld a range of spin-waves dictated by the conductor's geometry [START_REF] Olson | Propagation of Magnetostatic Surface Waves in YIG Rods[END_REF]. The technique was further rened by using microstructured antennae such as microstrips [START_REF] Ganguly | Microstrip Excitation of Magnetostatic Surface Waves: Theory and Experiment[END_REF] and coplanar waveguides [START_REF] Bailleul | Propagating Spin Wave Spectroscopy in a Permalloy Film: A Quantitative Analysis[END_REF]. Spin torques can also be used to excite spin-waves, though they are not wavevector selective, meaning that they excite a broad range of spin-waves including thermal spin-waves [START_REF] Demidov | Control of Magnetic Fluctuations by Spin Current[END_REF]. Coherent spin-wave excitation can be obtained by using a point contact geometry, through which a spin-polarized current is injected into a ferromagnetic layer to generate localized spin-waves [START_REF] Ji | Current-Induced Spin-Wave Excitations in a Single Ferromagnetic Layer[END_REF][START_REF] Slavin | Spin Wave Mode Excited by Spin-Polarized Current in a Magnetic Nanocontact Is a Standing Self-Localized Wave Bullet[END_REF]. Alternatively, by patterning a FM/NM layer (ferromagnetic/normal metal with spin-orbit interaction such as NiFe/Pt) into a nanoconstriction [START_REF] Demidov | Nanoconstriction-Based Spin-Hall Nano-Oscillator[END_REF][START_REF] Chen | Spin-Torque and Spin-Hall Nano-Oscillators[END_REF] or other restrictive shapes [START_REF] Duan | Nanowire Spin Torque Oscillator Driven by Spin Orbit Torques[END_REF], thereby modifying the local demagnetizing eld, SOTs can excite a single spinwave mode, the so-called localized spin-wave bullet. These are non-propagating spinwaves, and thus of limited interest for spin-wave based logic, though Madami et al.

observed out-of-plane spin-waves excited locally by STT propagate into the ferromagnetic medium [START_REF] Madami | Direct Observation of a Propagating Spin Wave Induced by Spin-Transfer Torque[END_REF]. Novel techniques include femto-second lasers [START_REF] Iihama | Quantication of a Propagating Spin-Wave Packet Created by an Ultrashort Laser Pulse in a Thin Film of a Magnetic Metal[END_REF] or the use of an RF localized electric eld to modify the perpendicular magnetic anisotropy of the CoFeB/MgO interface [START_REF] Rana | Excitation of Coherent Propagating Spin Waves in Ultrathin CoFeB Film by Voltage-Controlled Magnetic Anisotropy[END_REF].

Another obstacle for the integration of spin-wave based devices onto CMOS integrated circuits is the detection of the spin-waves themselves. Detection methods include large and expensive ex situ equipment such as Brillouin light scattering spectroscopy [START_REF] Sebastian | Micro-Focused Brillouin Light Scattering: Imaging Spin Waves at the Nanoscale[END_REF][START_REF] Demidov | Magnonic Waveguides Studied by Microfocus Brillouin Light Scattering[END_REF] and magneto-optical Kerr eect microscopy [START_REF] Park | Spatially Resolved Dynamics of Localized Spin-Wave Modes in Ferromagnetic Wires[END_REF], as well as propagating spinwave spectroscopy [START_REF] Bailleul | Propagating Spin Wave Spectroscopy in a Permalloy Film: A Quantitative Analysis[END_REF]. The rst two are laboratory equipments and in no way integrable onto a chip. The last is based on waveguides for the inductive detection of spin-waves, which has its own drawbacks, owing to the fact that the inductive coupling is wavevector-dependent. The reciprocal of the spin Hall eect, called the inverse spin Hall eect (iSHE), has been shown to be able to detect spin-wave dynamics in Pt/NiFe systems [START_REF] Ando | Electric Detection of Spin Wave Resonance Using Inverse Spin-Hall Eect[END_REF] and YIG/Pt [START_REF] Hahn | Comparative Measurements of Inverse Spin Hall Eects and Magnetoresistance in YIG/Pt and YIG/Ta[END_REF], and only requires that a metal with high spinorbit coupling be adjacent to the material in which the spin-waves propagate, making the inverse spin Hall eect a promising detection method for scalable integration. This thesis addresses the development of scalable CMOS-compatible spin-wave devices by investigating the properties of a spin-wave waveguide based on an ultrathin Ta/FeCoB/MgO wire. The material system was chosen for its compatibility with CMOS processes, the perpendicular anisotropy arising from the FeCoB/MgO interface [START_REF] Cuchet | Magnetic and transport properties of single and double perpendicular magnetic tunnel junctions[END_REF] and strong spin-orbit interactions in the Ta and at the Ta/FeCoB interface [START_REF] Cubukcu | Ultra-Fast Perpendicular SpinOrbit Torque MRAM[END_REF]. The purpose of the spin-orbit interactions is twofold: rstly, to allow the manipulation of spin-waves via spin-orbit torques [START_REF] Demidov | Control of Magnetic Fluctuations by Spin Current[END_REF], secondly, to allow the detection of magneti-zation dynamics via the combined eects of spin-pumping and the iSHE [START_REF] Ando | Electric Detection of Spin Wave Resonance Using Inverse Spin-Hall Eect[END_REF]. For the excitation of spin-waves, we designed nanometric coplanar waveguides on top of the SWWs capable of exciting a large range of non-zero wavevectors. This thesis is organized as follows:

The rst chapter gives an overview of the theory needed to understand the experiments described in this thesis. The dierent energy contributions present in a magnetic system are introduced, and the Landau-Lifshitz equation, which governs magnetization dynamics, is given. Subsequently, we calculate the susceptibility tensor for a variety of systems, successively adding terms such as the shape anisotropy, perpendicular magnetic anisotropy, and damping. Similarly, we introduce spin-waves and give the frequencywavevector dispersion relation for several systems. The last section concerns spin-orbit interactions such as the Rashba eect and the spin Hall eect, which can interact with the magnetization dynamics via the eld-like torque and the damping-like torque; as well as the inverse spin Hall eect and anisotropic magnetoresistance, which can be used to detect magnetization dynamics.

In the second chapter we briey describe the cleanroom fabrication process of the spin-wave waveguides and the coplanar waveguides, and give a detailed description of the devices.

The third chapter concerns ST-FMR experiments. We derive the rectied voltages that may arise from the dierent potential sources of rectication and then determine magnetic properties of Ta/FeCoB/MgO as a function of the FeCoB thickness. Doing so, we identify the ferromagnetic layer thickness for which the magnetization transitions from in-plane to out-of-plane, and focus on devices with a thickness around and at the transition. Subsequently, by performing a DC current-dependent study, we characterize the eld-like and damping-like torques as a function of the ferromagnetic thickness as well.

The fourth chapter deals with the excitation of spin-waves and their detection via the inverse spin Hall eect. First we give the expected spin-wave spectrum excited by an RF current injected in nanometric coplanar waveguides, taking into account the perpendicular magnetic anisotropy and the non-zero linewidth of the spin-waves. We then perform SWR spectroscopy. Similarly to ST-FMR, the spin-wave dynamics leads to a rectied signal that can be detected electrically via the iSHE. Afterwards we compare these results to Brillouin light scattering microscopy performed on the same type of devices. The BLS experiments also allow us to characterize the spin-wave decay length and lifetime in systems with perpendicular magnetic anisotropy.

Finally, a brief summary of the ndings is presented at the end of this thesis, and a perspective for scalable, integrated magnonics-spin-orbitronics is given.

Chapter 1 Theoretical Background

This chapter gives an overview of the theoretical background necessary to understand the experimental studies presented in this thesis. In order to characterize the spin-orbit torques' eects in Ta/FeCoB/MgO structures, we excite ferromagnetic resonance and spin-waves via a high frequency Ørsted eld or spin-orbit torque, and we detect the magnetization dynamics by the combined eects of spin-pumping and the inverse spin Hall eect.

Therefore, in this chapter we introduce the underlying physical phenomena of magnetization dynamics, spin-orbit torques, spin-pumping, and the inverse spin Hall eect.

For the magnetization dynamics, we present the dierent energies that arise in a ferromagnetic system, and how they contribute to the equilibrium magnetization. Next, we provide the equation that governs the dynamics of the magnetization, and from it, derive the Polder susceptibility tensor, which gives the uniform magnetization's response to a high frequency excitation. This is done for several cases, from the innite ferromagnet to the thin lm with perpendicular anisotropy. We then address the formalism for non-uniform magnetization dynamics, known as spin-waves, and derive the linear spin-wave dispersion relation for several ferromagnetic systems. Next, we present the spin-orbit phenomena that allow the control of the magnetization dynamics, specically the Rashba eect and the spin Hall eect, and the two torques that arise: the eld-like torque and the damping-like torque. We also discuss the inverse spin Hall eect, which, coupled with spin-pumping, is used for the detection of magnetization dynamics in the devices studied in my thesis. The nal subsection deals with anisotropic magnetoresistance, a further spin-orbit eect present in ferromagnetic materials that can also be used for probing the magnetization's state.

Energy contributions in a thin lm ferromagnetic system

The internal energy of a ferromagnetic system such as the Ta/FeCoB/MgO system considered in this work is, among others, the sum of the exchange energy, the Zeeman energy, the magnetocrystalline anisotropy energy and the dipolar energy of the ferromagnetic material. In this section we describe each energy involved and their origin for a ferromagnetic material. The case of the ferromagnetic thin lm, where the thickness is in the nanometer range and the lateral dimensions are several orders of magnitude larger, will be considered.

The exchange energy

The exchange interaction is a purely quantum mechanical eect which arises as a consequence of the Pauli exclusion principle and the fact that electrons are indistinguishable in a solid. It is responsible for the spontaneous ordering of spins within ferromagnetic and antiferromagnetic materials. The Heisenberg model [START_REF] Heisenberg | Zur Theorie des Ferromagnetismus[END_REF], a derivation of which can be found in English in [START_REF] Stöhr | Magnetism: From Fundamentals to Nanoscale Dynamics[END_REF], describes the exchange energy between an atom j with spin S j and all other atoms i with spin S i in a crystal. A simplied form consists of considering only the nearest neighbors' interaction (symbolized by nn in the equation) in the summation [START_REF] O'handley | Modern Magnetic Materials: Principles and Applications[END_REF]:

E ex,j = -2 nn i<j J ij S i • S j (1.1)
where J ij , expressed in units of Joules, is the exchange constant for the considered spins.

It is positive for ferromagnets (favoring parallel alignment of spins) and negative for antiferromagnets (favoring anti-parallel alignment). The exchange interaction is stronger than any other interaction considered in this section, but its range is very small, such that one can simply consider the interaction between an atom j and only its nearest neighbors. In the continuum approach, one can derive an expression of the energy for continuous media [START_REF] O'handley | Modern Magnetic Materials: Principles and Applications[END_REF], yielding an exchange energy for the local magnetization M(r) at the coordinate r that is written:

E ex = V A ex M 2 s ∂M(r) ∂x 2 + ∂M(r) ∂y 2 + ∂M(r) ∂z 2 d 3 r (1.2)
where M s = |M| is the saturation magnetization of the considered magnetic material (in A m -1 ) and A ex is the exchange stiness constant (in J m -1 ), which is a macroscopic measure of the stiness of coupling of the spins. While the exchange energy is the dominant term for magnetic ordering at the atomic scale, it is too short-ranged to be responsible for the formation of magnetic domains or hysteretic behavior. For a uniform magnetization, the exchange energy is minimal and the exchange interaction doesn't appear in magnetostatics or magnetization dynamics. However, it can have a signicant role in the boundary between two magnetic domains, called domain walls; and the propagation of perturbations in the magnetic ordering, called spin-waves; in both cases, the magnetization deviates from a uniform parallel alignment.

The dipolar energy

The dipolar energy, also called magnetostatic or demagnetizing energy, arises from the dipole-dipole interaction between magnetic moments. In contrast to the exchange interaction, the dipolar interaction is weak but long-ranged, such that for nite systems its analytical calculation is complex and its computation in micromagnetic simulations time-consuming. The magnetic eld created by a magnetic dipole µ j at a position r is:

H j (r) = 1 4π 3r(r • µ j ) r 5 - µ j r 3 (1.3)
where r = |r|. The dipolar energy is the sum of the energy arising from the dipolar interaction between all of the moments. For an innite magnetic medium, these interactions cancel each other out if the magnetization is uniform. For nite solids, the magnetic moments do not compensate each other at the boundary surfaces, resulting in dipolar elds. Inside the ferromagnet, these are referred to as demagnetizing elds, while outside of it they are called stray elds.

Accounting for all the magnetic moments in a solid, the volumetric energy of the dipolar eld H d is given by [START_REF] Morrish | The Physical Principles of Magnetism[END_REF]:

E d V = - µ 0 2V V H d (r) • M(r)d 3 r = µ 0 2V ∞ H d 2 (r)d 3 r (1.4)
where V is the volume of the ferromagnetic solid and µ 0 is the vacuum permeability. 1 The rst expression indicates that the energy is localized in the magnetic volume. However the equivalent second expression is obtained by considering the energy of the dipolar eld created by the ferromagnet, distributed throughout space [START_REF] Morrish | The Physical Principles of Magnetism[END_REF]. It shows that the dipolar energy is always positive and that the greater the stray elds, the greater the energy, which is unfavorable. As a consequence, in ferromagnets where the dipolar interaction is dominant, the magnetization at the edges of a solid will favor aligning parallel to the edges, minimizing the stray elds. In the case of a thin rectangular wire, the magnetization will tend to align with in-plane and parallel to the long axis of the rectangle. This behavior of the magnetization, which favors a particular direction in the solid to minimize the dipolar energy, is referred to as shape anisotropy, and can result in the hysteretic behavior of ferromagnets. On the other hand, for an innite ferromagnetic medium, there is no shape and thus no shape anisotropy.

In the case of a uniform magnetization M, the expression of the dipolar energy density can be simplied to:

e d = µ 0 2 M T • N • M (1.5)
where M T is the transpose of the magnetization vector and N is the demagnetizing tensor, a set of parameters dependent on the geometry of the magnetic volume. Its expression can be found in [START_REF] Newell | A Generalization of the Demagnetizing Tensor for Nonuniform Magnetization[END_REF]. However its analytical calculation is non-trivial

1 µ0 = 4πe -7 ≈ 1.2566 × 10 -6 T m A -1 .
for many geometries, such that developing ecient and accurate approximations is a concern for micromagnetic simulations. The tensor can be diagonalized, and it can be shown that its trace is equal to one [START_REF] Newell | A Generalization of the Demagnetizing Tensor for Nonuniform Magnetization[END_REF]. For a thin lm with a uniform magnetization and lateral dimensions much greater than the thickness, a sucient approximation for the demagnetizing tensor is to consider only one non-zero coecient, N xx = 1, with x the growth direction of the thin lm, perpendicular to the thin lm plane (see Fig. 1.1).

The demagnetization energy density becomes:

e d = µ 0 2 (M • x) 2 (1.6)
Thus, the dipolar energy in thin lms is minimized when the magnetization lies in the thin lm plane. Formulas and tables for demagnetizing tensor components have been calculated for dierent geometries, such as ellipsoids [START_REF] Osborn | Demagnetizing Factors of the General Ellipsoid[END_REF], cylinders [START_REF] Bozorth | Demagnetizing Factors of Rods[END_REF] and slabs [START_REF] Joseph | Demagnetizing Field in Nonellipsoidal Bodies[END_REF].

Figure 1.1: Coordinate system for describing resonance in a Ta/FeCoB/MgO spin-wave waveguide. The x axis is perpendicular to the lm plane and the ẑ axis is parallel to the external magnetic eld H. The magnetization is saturated by the eld and its equilibrium magnetization M eq is also parallel to ẑ.

Magnetocrystalline anisotropy energy

In crystalline ferromagnetic media, an energy contribution appears due to electron orbitals coupling with the lattice and with the spin moments, the magnetocrystalline anisotropy energy. This gives rise to preferential magnetization directions that are often along crystalline axes and contribute to the hysteretic behavior of ferromagnets. In materials such as hcp (0001) Co [START_REF] Hehn | Nanoscale Magnetic Domain Structures in Epitaxial Cobalt Films[END_REF], there is one preferential direction called the easy axis, and the anisotropy is called magnetocrystalline uniaxial anisotropy. The energy density for a magnetization M is:

e mc = K u 1 - M M s • k 2 (1.7)
where K u is the uniaxial anisotropy constant (in J m -3 ), and k is the direction of the easy axis.

ENERGY CONTRIBUTIONS IN A THIN FILM FERROMAGNETIC SYSTEM11

The material system used in this work is a thin lm stack deposited on a silicon wafer by magnetron sputtering, starting from the silicon substrate: Ta, Fe 72 Co 8 B 20 (hereafter referred to as FeCoB) and Mg. The sample is then oxidized and annealed. As a result, the material is polycrystalline in nature, but the distribution of the crystalline orientations is not random, instead the grains show a preferential growth direction. Such a material is said to be textured [START_REF] Takeuchi | Crystallization of Amorphous CoFeB Ferromagnetic Layers in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions[END_REF], but the resulting magnetocrystalline uniaxial anisotropy is negligible in such materials.

However another source of magnetocrystalline anisotropy can appear in such a material system. The electronic environment of the atoms at the interface of the ferromagnetic layer has reduced symmetry compared to those in the volume which modies the atomic orbitals and can lead to a magnetic anisotropy perpendicular to the plane. In the presence of a metallic oxyde such as MgO the perpendicular anisotropy is further increased, which is attributed to the hybridization of oxygen and transition metal orbitals [START_REF] Yang | First-Principles Investigation of the Very Large Perpendicular Magnetic Anisotropy at Fe | MgO and Co | MgO Interfaces[END_REF].

Experimentally, the anisotropy can be tuned by the oxydation and annealing conditions [START_REF] Monso | Crossover from In-Plane to Perpendicular Anisotropy in Pt/CoFe/AlOx Sandwiches as a Function of Al Oxidation: A Very Accurate Control of the Oxidation of Tunnel Barriers[END_REF][START_REF] Rodmacq | Inuence of Thermal Annealing on the Perpendicular Magnetic Anisotropy of Pt/Co/AlOx Trilayers[END_REF]. Both phenomena occur at the interface between FeCoB and MgO, giving rise to a magnetocrystalline anisotropy that favors a magnetization along the growth axis. It is called perpendicular magnetic anisotropy (PMA), surface anisotropy or interfacial anisotropy. For a ferromagnetic thin lm with a uniform magnetization M, the energy density of PMA for a ferromagnetic layer of thickness t f is:

e mc = K i t f 1 - M M s • x 2 (1.8)
where x is the growth axis and the normal to the interface and K i is the interfacial anisotropy constant for the ferromagnet/oxide interface (in J m -2 ). The PMA energy is minimum when the magnetization is either parallel or anti-parallel to the growth axis.

Due to the thickness dependence, the anisotropy can be extremely high for thin lms in the nanometer range, such that it overcomes the demagnetization energy and reorients the magnetization perpendicular.

The Zeeman energy

The Zeeman energy is the potential energy of a ferromagnetic solid subjected to an external magnetic eld. The moments in the solid will tend to align with the eld to minimize the energy. For a magnetization M in a eld H, the energy density is:

e Z = -µ 0 M • H (1.9)
It is minimum when the magnetization is aligned parallel with the eld. In contrast to the interactions in previous sections, the Zeeman energy favors a single direction for the magnetization for ferromagnetic materials. In the work presented here, the static external eld is always in the plane of the thin lm.

Energy minimization

The ferromagnetic system reaches an equilibrium state when the energy is minimized.

The mechanisms of how this equilibrium is reached is described in Sec. 1.2.1. The total internal energy density e is the sum of the energy densities seen in the previous sections:

e = e ex + e d + e mc + e Z

(1.10)

As the interactions responsible for these energies compete with each other, the equilibrium state can be a state where none of the energies are individually minimized. It is represented by the magnetization M, which can be uniform, split into domains, or present complex structures such as vortices.

For thin lms, materials can be referred to as in-plane magnetized, i.e., the magnetization lies in the plane in the absence of an external eld, or as out-of-plane, i.e., the equilibrium position is normal to the plane; there are also cases where the magnetization is oriented in an intermediate direction. When the magnetic system has PMA, there is a critical thickness t c , dened further below, where the magnetization reorients from the in-plane to the out-of-plane direction

The eective eld

To include the dierent interactions described in the previous section into an equation describing the dynamics of the magnetization, it is useful to express the interactions in the form of an eective eld. For each energy density e i dened above, where i = {ex, d, mc, Z}, one can dene the corresponding eective eld H i eff :

H i eff = - 1 µ 0    ∂e i ∂Mx ∂e i ∂My ∂e i ∂Mz    = - 1 µ 0 ∂e i ∂M H eff = i H i eff = - 1 µ 0 ∂e ∂M (1.11)
The total eective eld H eff is the local eld felt by the magnetization, the eld along which the magnetization will align if there is damping, through mechanisms detailed in the next section. The eective elds for the interactions described in the previous sections, assuming the presence of interfacial anisotropy, are:

H eff = 2A ex µ 0 M 2 s ∇ 2 M(r) + M(r) • x 2K i µ 0 M 2 s t f -1 x + H (1.12)
where ∇ 2 is the vector Laplace operator, which, in Cartesian coordinates, is written for M(r):

∇ 2 M(r) =   ∇ 2 M x (r) ∇ 2 M y (r) ∇ 2 M z (r)   (1.13)
The right side of Eq. (1.12) contains the exchange eld, the anisotropy eld, the demagnetizing eld and the external eld. In the case of a uniform magnetization, the exchange eld is zero. The demagnetizing and interfacial anisotropy elds depend on the same component of the magnetization and directly compete with each other: the former brings the magnetization into the plane, while the latter tries to pull it out of the plane.

It is often useful to dene an eective magnetization that sums up their eect:

M ef f = M s - 2K i µ 0 M s t f (1.14)
Thus, the sign of the eective magnetization gives the dening behavior of the material in the absence of an external eld: in-plane ferromagnetic thin lms have M ef f > 0 while out-of-plane ferromagnetic thin lms have M ef f < 0, and M ef f = 0 denes the critical thickness t c of the reorientation from in-to out-of-plane, given by:

t c = 2K i µ 0 M 2 s (1.15)
1.2 Uniform magnetization dynamics

Equations of motion of the magnetization

Now that we have dened the eective eld, we can describe the behavior of the magnetization when it experiences small perturbations. The equation of motion of the magnetization in response to a perturbation is given by the eective eld H eff :

dM dt = -γµ 0 M × H eff (1.16)
where γ is the gyromagnetic ratio dened by:

γ = |e|g 2m e = 1.84 × 10 11 rad s -1 T -1 γ = γ 2π = 29.25 GHz T -1 (1.17)
where e and m e are the electron's charge (in Coulomb) and its mass (in kg), and g is the unitless Landé g-factor.

2 Eq. (1.16), which is also called the lossless Landau-Lifshitz equation, describes the precessional motion of the magnetization around the eective eld at an angular frequency γµ 0 H ef f . Additionally, since the eective eld depends on the magnetization, the eld's direction and magnitude can change as the magnetization precesses around it.

Eq. (1.16) does not accurately describe the magnetization dynamics because it describes only the precession of the magnetization around its equilibrium but not the losses 2 The value used in this work is the value found for bulk Fe g = 2.09 found in [START_REF] Devolder | Damping of CoxFe80-xB20 Ultrathin Films with Perpendicular Magnetic Anisotropy[END_REF].

that are needed to bring the magnetization back to its equilibrium parallel to the eective eld. Experimentally, applying a magnetic eld on a ferromagnet will result in the magnetization taking a damped, swirling trajectory around the eld, until it is aligned parallel to it. Phenomenologically, this can be described by the ansatz used by Landau and Lifshitz [START_REF] Landau | On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies[END_REF], in what is now referred to as the Landau-Lifshitz (LL) equation:

dM dt = -γµ 0 M × H eff - α γµ 0 M s (M × (M × H eff )) (1.18)
where the last term describes a dissipative torque that leads to the magnetization aligning parallel with the eld, with α being a dimensionless damping parameter. The damped precessional motion is illustrated in Fig. 1.2. However later experiments by Gilbert and Kelly showed that the LL equation could not adequately predict the high damping factors or times scales of relaxation they measured. The Landau-Lifshitz-Gilbert (LLG) equation was then proposed in 1955 [START_REF] Gilbert | Anomalous Rotational Damping in Ferromagnetic Sheets[END_REF] to accurately model materials with high damping:

dM dt = -γµ 0 M × H eff + α M s M × dM dt (1.19)
It is possible to transform the LLG into an equation of the same form as the LL by injecting the expression of dM dt back into the LLG itself:

dM dt = - γµ 0 1 + α 2 M × H eff - α γµ 0 M s (1 + α 2 ) (M × (M × H eff )) (1.20)
The subtle dierence between the two equations and the two dampings is a long standing debate in the literature. However, even for rather large damping α = 0.1, we only have 1 + α 2 ≈ 1.01. Thus, in the analytical calculations described in this work, this factor will be neglected and we will consider the LL and the LLG equations to be equivalent, and the damping parameters equal α = α . In simulations, it is advantageous to use the LL equation or the LLG equation as written in Eq. (1.20) since the time derivative of the magnetization appears only on the left side of the equation, allowing for algorithms to solve the dierential equation such as the predictor-corrector method used in the OOMMF micromagnetic simulation program.

3

Dissipation mechanisms

The dissipation of angular momentum in magnetization dynamics can have intrinsic [START_REF] Hickey | Origin of Intrinsic Gilbert Damping[END_REF] and extrinsic origins. The latter includes impurities [START_REF] Nembach | Perpendicular Ferromagnetic Resonance Measurements of Damping and Lande G-Factor in Sputtered (Co2Mn)1-xGex Thin Films[END_REF], two-magnon scattering [Hei85; Lin03] and spin pumping [START_REF] Tserkovnyak | Enhanced Gilbert Damping in Thin Ferromagnetic Films[END_REF]. It was initially assumed in this work that there are only damping processes of the viscous or Gilbert-type, such that it can be described by α in the LL or LLG equations. However, in Sec. 3.4.4, we present signatures of non-Gilbert-type damping for the system studied here, Ta/FeCoB/MgO, related to inhomogeneities.

Polder susceptibility tensor

The Polder susceptibility tensor χ describes the dynamic response of the magnetization of a ferromagnetic system to an external alternating eld. The susceptibility is dened by the following relation:

M = χ h (1.21)
where h is the excitation RF magnetic eld. In the following section, the susceptibility tensor will be calculated for dierent geometrical and material considerations.

Susceptibility for an innite ferromagnetic medium

Let us linearize the lossless equation of motion Eq. (1.16) by evaluating small-angle displacements of the magnetization M of an unbounded ferromagnet under the eect of a static external magnetic eld H applied along ẑ. Since the ferromagnet is innite, and the magnetization is considered uniform, there is no demagnetizing eld and no interfacial anisotropy. The magnetization at equilibrium M eq is saturated and is aligned with H. If we now consider that the magnetization is slightly tilted out of equilibrium, and apply a time dependent magnetic eld h in the xy plane, then the magnetization will precess around the applied eld and we can write:

M = M eq + m H eff = H + h (1.22)
where h H and m M eq , such that M eq ≈ M s . The term m is the dynamic component of the magnetization that rotates in the xy plane around the applied eld H, 3 The Object Oriented MicroMagnetic Framework (OOMMF) project at ITL/NIST. For more information, see: https://math.nist.gov/oommf/. while M eq is constant. Similarly, H eff is split into the static eld H and the dynamic eld h. Substituting Eqs. (1.22) into Eq. (1.16), we obtain:

dM dt = -γµ 0 (M eq × H + M eq × h + m × H + m × h) (1.23)
Since the magnetization at equilibrium is considered to be aligned with the static eld, the rst term on the right side is zero, and the last term is of second order and therefore neglected. We then obtain the linearized equation of motion for an undamped, innite, ferromagnetic medium:

dm dt = -γµ 0 (M eq × h + m × H) (1.24)
Assuming that the time dependent eld and the dynamic component of the magnetization have the same time dependence e iωt , Eq. (1.24) can be rewritten:

iωm = -ẑ × (ω M h -ω H m) (1.25)
where the saturation magnetization and static eld are written in terms of angular frequencies:

ω M = γµ 0 M s ω H = γµ 0 H (1.26)
Assuming that the dynamic components of the magnetization and eld along the ẑ axis are negligible, we solve Eq. (1.25) for h in two dimensions:

h x h y = 1 ω M ω H -iω iω ω H m x m y (1.27)
where h i and m i are the components of h and m respectively. The inverse of the Polder susceptibility tensor dened by Eq. (1.21) can be recognized:

h = χ -1 m (1.28)
where M can be substituted by m since we are only interested in the dynamic component.

Inverting the matrix, we obtain the Polder susceptibility tensor and its components:

χ = χ iχ ⊥ -iχ ⊥ χ χ = ω H ω M ω 2 H -ω 2 χ ⊥ = ωω M ω 2 H -ω 2 (1.29)
As ω → ω H , the magnetization enters resonance, which is translated by the elements of χ diverging. This frequency is called the ferromagnetic resonance frequency (FMR). In the next sections, the LL equation and the eective eld will be modied to take into account additional interactions, yielding dierent expressions for the components of the susceptibility tensor.

Susceptibility for a ferromagnetic thin lm

For bounded systems, the dipolar energy is non-zero and adds a term in the eective eld that is dependent on the magnetization. For in-plane magnetized thin lms with x normal to the lm plane, the total eective eld becomes:

H eff = H + h -(m • x) x (1.30)
where the last term is the demagnetization eld, and where the static eld H is still applied along the ẑ axis and the dynamic eld h is in the xy plane. For the demagnetization term, only m remains since the magnetization is still saturated and M is parallel to ẑ. Injecting the above into Eq. (1.16) and once again neglecting the products of second order, we obtain:

h x h y = 1 ω M ω H + ω M -iω iω ω H m x m y (1.31)
Inverting Eq. (1.31) yields the susceptibility components:

χ = χ xx iχ xy -iχ xy χ yy χ xx = ω H ω M ω 2 0 -ω 2 χ xy = ωω M ω 2 0 -ω 2 χ yy = ω M (ω H + ω M ) ω 2 0 -ω 2 (1.32)
where:

ω 2 0 = ω H (ω H + ω M ) (1.33)
is the square of the ferromagnetic resonance angular frequency for the thin lm. The equation for the FMR frequency ω 0 of a ferromagnet is known as the Kittel formula; a number of geometric congurations can be found in [START_REF] Kittel | On the Theory of Ferromagnetic Resonance Absorption[END_REF]. Compared to the bulk, the thin lm reduces the symmetry of the system, which results in the diagonal components of the tensor being no longer equal.

With interfacial anisotropy

As seen in Sec. 1.1.6, interfacial anisotropy directly competes with the dipolar interaction in thin lm stacks. The eective eld becomes:

H eff = H + h + (m • x) 2K i µ 0 M 2 s t f -1 x (1.34)
In the case of in-plane magnetized samples, the equilibrium magnetization will align with the static eld. However for out-of-plane magnetized samples, the static eld must be strong enough so that M eq becomes aligned with H in the plane, so that the derivation of the susceptibility in the previous sections is still valid. Injecting the equation above into Eq. (1.16) and solving for h yields:

h x h y = 1 ω M ω H + ω M -ω K -iω iω ω H m x m y (1.35)
The components of the Polder tensor are then:

χ xx = ω H ω M ω 2 0 -ω 2 χ xy = ωω M ω 2 0 -ω 2 χ yy = ω M (ω H + ω M -ω K ) ω 2 0 -ω 2 (1.36)
where the anisotropy eld is expressed in terms of angular frequency:

ω K = γ 2K i M s t f (1.37)
and the resonance frequency is dened by:

ω 2 0 = ω H (ω H + ω M -ω K ) (1.38)
Thus the interfacial anisotropy introduces a thickness dependence, and for a given applied eld, reduces the resonance frequency. The dependence of the resonance frequency on ω M -ω K = µ 0 γM ef f makes it impossible to disentangle the contribution of the demagnetizing eld and of the anisotropy eld from a single FMR experiment for a xed ferromagnetic layer thickness. Only the eective magnetization M ef f can be obtained from a single measurement. To disentangle K i and M s it is necessary to do a thickness dependent study as will be shown in Chap. 3.

With damping

The equation of motion used so far in this section to describe the magnetization dynamics does not take into account the dissipation of angular momentum. The LLG equation provides a convenient way of deriving the susceptibility in lossy ferromagnetic media. Rewritting Eq. (1.19) using the same separation of static and dynamic components as in Eq. (1.23), and neglecting products of second order, we obtain:

dm dt = -γµ 0 (M eq × h + m × H) + α M s (M eq + m) × dm dt (1.39)
Assuming the same time dependence e iωt for the applied dynamic eld and the dynamic magnetizations, we can write:

iωm = -ẑ × (ω M h -ω H m) + α M s ((M eq + m) × iωm) ≈ -ẑ × (ω M h -(ω H + iαω) m) (1.40)
Thus, including the damping term is equivalent to making the substitution ω H → ω H + iαω. For a thin lm including a demagnetizing eld, without interfacial anisotropy, the Polder susceptibility tensor's components are:

χ xx = ω M ω H ω 2 0 -ω 2 + iαω(ω M + 2ω H ) χ xy = ωω M ω 2 0 -ω 2 + iαω(ω M + 2ω H ) χ yy = ω M (ω M + ω H ) ω 2 0 -ω 2 + iαω(ω M + 2ω H ) (1.41)
where the resonance frequency is dened by:

ω 2 0 = ω H (ω H + ω M ) (1.42)
The term iαω in the numerators of χ xx and χ yy in Eq. (1.41) and the term α 2 ω 2 in the denominators are neglected. Indeed, the inclusion of these terms in the susceptibilities changes the resonance frequency, amplitude and linewidth by less than 1%. 4 The term in iαω in the denominators removes the singularity, resulting in nite amplitude and a non-zero linewidth of the resonance that is proportional to the damping constant α.

Lineshape of the susceptibilities

The susceptibility components χ kl can be separated into their real and and imaginary parts, as described in [START_REF] Harder | Electrical Detection of Magnetization Dynamics via Spin Rectication Eects[END_REF]:

χ kl = (D + iL)A kl (1.43)
where D, L and A kl are real. D represents the real, antisymmetric, dispersive line shape component of the susceptibility, whereas L represents the imaginary, symmetric, Lorentzian line shape. When detecting the magnetization dynamics during an FMR experiment using a current owing through the device, the electrical signal of ferromagnetic resonance can have several origins [START_REF] Juretschke | Electromagnetic Theory of Dc Eects in Ferromagnetic Resonance[END_REF], such as anisotropic magnetoresistance [START_REF] Liu | Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Eect[END_REF],

anomalous Hall eect [START_REF] Yamaguchi | Anomalous Hall Voltage Rectication and Quantized Spin-Wave Excitation Induced by Simultaneous Application of Dc and Rf Currents in a Single-Layered Ni81Fe19 Nanoscale Wire[END_REF] or spin pumping combined with the inverse spin Hall eect [START_REF] Ando | Angular Dependence of Inverse SpinHall Eect Induced by Spin Pumping Investigated in a Ni81Fe19/Pt Thin Film[END_REF]. Each mechanism couples dierently with the components of the susceptibility.

Thus separating the susceptibility into its real and imaginary components, or antisymmetric and symmetric components, can help understand where the FMR signal is coming from.

First let us express the susceptibility components for a lossy thin lm with interfacial anisotropy by taking Eq. (1.36) and making the substitution ω H → ω H +iαω to introduce damping:

χ xx = ω H ω M ω 2 0 -ω 2 + iαω(ω M -ω K + 2ω H ) χ xy = ωω M ω 2 0 -ω 2 + iαω(ω M -ω K + 2ω H ) χ yy = ω M (ω H + ω M -ω K ) ω 2 0 -ω 2 + iαω(ω M -ω K + 2ω H ) (1.44)
4 Numerical verication using Ms = 1.256 MA m -1 , α = 0.02 and H = 7.18 kA m -1 .

where the resonance frequency ω 0 is still dened by Eq. (1.38). As mentioned in the previous section, we neglect the iαω term in the numerators and the α 2 ω 2 term in the denominators.

Eqs. (1.44) are written as functions of angular frequencies, and thus correspond to nding the resonance peak by sweeping the frequency. However, in many experiments, including most of the ones described in this work, the resonance peak, characterized by its resonance eld H r , is found by sweeping the applied eld H for a xed frequency ω.

Therefore it is more convenient to express the susceptibility components as functions of elds. This can be done by using Eq. (1.38) to replace ω 0 . Using the same equation, we can write ω as a function of the resonance eld H r corresponding to it:

ω γµ 0 2 = H r (H r + M ef f ) (1.45)
Thus, using Eqs. (1.38) and (1.45) (as well as Eqs. (1.26) and (1.37)), we rewrite Eq.

(1.44):

χ xx = M s H (H -H r )(H + H r + M ef f ) + i αω γµ 0 (M ef f + 2H) χ xy = ω γµ 0 M s (H -H r )(H + H r + M ef f ) + i αω γµ 0 (M ef f + 2H) χ yy = M s (M ef f + H) (H -H r )(H + H r + M ef f ) + i αω γµ 0 (M ef f + 2H) (1.46)
where M ef f is dened in Eq. (1.14). Then, we can separate the real and imaginary parts:

χ xx = M s H H + H r + M ef f (H -H r ) -i αω γµ 0 M ef f +2H H+Hr+M ef f (H -H r ) 2 + αω γµ 0 M ef f +2H H+Hr+M ef f 2 χ xy = ω γµ 0 M s H + H r + M ef f (H -H r ) -i αω γµ 0 M ef f +2H H+Hr+M ef f (H -H r ) 2 + αω γµ 0 M ef f +2H H+Hr+M ef f 2 χ xx = M s (M ef f + H) H + H r + M ef f (H -H r ) -i αω γµ 0 M ef f +2H H+Hr+M ef f (H -H r ) 2 + αω γµ 0 M ef f +2H H+Hr+M ef f 2 (1.47)
Finally we can separate the susceptibility components into D, L and A kl via Eq. (1.43), as in [START_REF] Harder | Electrical Detection of Magnetization Dynamics via Spin Rectication Eects[END_REF]:

A xx = γµ 0 M s H αω(M ef f + 2H) A xy = M s α(M ef f + 2H) A yy = γµ 0 M s (M ef f + H) αω(M ef f + 2H) L = ∆H 2 g 4 (H r -H) 2 + ∆H 2 g 4 D = ∆Hg 2 (H r -H) (H r -H) 2 + ∆H 2 g 4 (1.48)
where the Lorentzian function L is dened such it is unitless and its maximum value is equal to 1. The dispersive function D is dened such that it is unitless. H r is the resonance eld, obtained by solving Eq. (1.45) for H r > 0:

H r = 1 2   -M ef f + M 2 ef f + 2ω γµ 0 2   (1.49)
∆H g is a generalized expression of the linewidth dened from the imaginary part of the nominator of the second quotient of the susceptibility components in Eq. (1.48):

∆H g = 2αω γµ 0 M ef f + 2H H + H r + M ef f lim H→Hr ∆H g = 2αω γµ 0 = ∆H 0 (1.50)
At resonance, this expression of the linewidth gives the full width at half maximum (FWHM) of the FMR peak. In the present case, only Gilbert-type damping is included, its contribution is written ∆H 0 .

Magnetostatic spin-waves

Magnetization dynamics have been treated so far in the case of a uniform magnetization using the Landau-Lifshitz equation. In this section, we will treat propagating excitations of the local magnetization in the magnetostatic regime. These collective excitations are called spin-waves, and from the equivalent quasiparticle point of view, they are known as magnons. An illustration of spin waves is shown in Fig. 1.3. To take into account their behavior as waves, it is natural to describe them using Maxwell's equations, and then, using the susceptibility obtained via the Landau-Lifshitz equation, to obtain their dispersion laws [START_REF] Stancil | Spin Waves: Theory and Applications[END_REF].

Spin-waves in the magnetostatic approximation

Let us consider the propagation of a uniform electromagnetic plane wave in the case of an unbounded ferromagnetic medium, in which the magnetization of the material is saturated by a magnetic eld H in the ẑ direction. spin-waves are characterized by their angular frequency ω, and their wavevector k or the wavenumber k = |k|. The group velocity of the wave:

v g = ∂ω ∂k (1.51)
gives the direction of propagation: vg |vg| . For plane waves, the direction of propagation is always parallel to the wavevector.

Waves such that the wavevenumber k ω c , c being the speed of light, are called magnetostatic waves. In other words, the wavenumber in the ferromagnetic media is much greater than the wavenumber in free space. In this regime, assuming there are no charges or currents, we can use Maxwell's equations in the magnetostatic approximation, a derivation of which can be found in [START_REF] Stancil | Spin Waves: Theory and Applications[END_REF]:

∇ × h = 0 ∇ • b = 0 (1.52)
where h is the time-varying magnetic eld of the electromagnetic wave and b the magnetic ux density, related by the constitutive relation b = µ • h. The permeability tensor µ is dened by:

µ = µ 0 (I 3 + χ) (1.53)
where I 3 is the identity matrix. Introducing the magnetic scalar potential ψ, dened by h = -∇ψ, we can rewrite the second line of Eq. (1.52) using Eq. (1.53):

∇ • µ • ∇ψ = 0 (1.54)
Using the expression of χ in Eq. (1.29), we obtain Walker's equation [START_REF] Walker | Resonant Modes of Ferromagnetic Spheroids[END_REF]:

1 + χ ∂ 2 ψ ∂x 2 + ∂ 2 ψ ∂y 2 + ∂ 2 ψ ∂z 2 = 0 (1.55)
where χ is the diagonal element of the susceptibility tensor of an innite ferromagnetic medium given in Eq. (1.29). The solutions to this equation constitute magnetostatic spinwaves. Assuming that the plane waves are propagating and are of the form m(r, t) ∝ e -ik•r e iωt , where m is the magnetization of a volume element and r its position, and ω the frequency of the spin-wave; the magnetostatic scalar potential will have the same dependence, and Walker's equation becomes:

1 + χ k 2 x + k 2 y + k 2 z = 0 (1.56)
where k i are the components of the wavevector. Let θ k be the polar angle between the direction of the propagation of the wave and the applied eld, then:

k 2 x + k 2 y = k 2 sin 2 θ k k 2 z = k 2 cos 2 θ k (1.57) where k = k 2 x + k 2 y + k 2
z is the wavenumber. Substituting the above into Walker's equation yields:

χ sin 2 θ k = -1 (1.58)
Substituting this result into Eq. (1.29), we obtain the dispersion law for magnetostatic spin-waves in an innite ferromagnet:

ω 2 (k) = ω H ω H + ω M sin 2 θ k (1.59)
Since the exchange interaction is not included in the expression of the susceptibility, these magnetostatic oscillations are called non-exchange spin-waves or dipole spin-waves.

It is interesting to note that the dispersion law is only dependent on the direction of propagation and not on the wavenumber. Thus, the group velocity is zero and the nonexchange magnetostatic waves are non-propagative. In addition, they are degenerate: for a given frequency, a wave can have any wavenumber. The degeneracy is lifted when taking into account the exchange interaction or when introducing boundaries to the medium.

The magnetostatic approximation is valid only within a certain wavenumber range, the lower limit of which was given at the beginning of this section. The upper limit can be established when the frequency given by Eq. (1.59), in the magnetostatic approximation, no longer corresponds to the one found using the full Maxwell equations.

So far we have ignored the contribution of exchange elds even though a spin-wave is a propagating excitation of the local magnetization, which implies a non-zero contribution of the exchange interaction due to non-parallel spins. The dispersion law above is only correct for small enough wavenumbers such that the exchange eld is negligible versus the dipolar eld, leading to the terms dipole-dominated spin-waves or non-exchange spinwaves for the magnetic excitations described in this section.

Exchange spin-waves in an innite ferromagnetic medium

For large enough wavenumbers, λ ex k 2 approaches unity, where λ ex (in m 2 ) is the the square of the exchange length l ex :

λ ex = l 2 ex = 2A ex µ 0 M 2 s (1.60)
where A ex is the exchange stiness constant of the ferromagnetic material. In such conditions, the expression of the susceptibility used previously is no longer valid, and the exchange interaction needs to be taken into account. In this regime, magnetic oscillations are called dipole-exchange spin-waves or exchange spin-waves. Assuming the plane wave is of the form m ∝ e -ik•r , the exchange eld, dened in Eq. (1.12), can be rewritten:

h ex = -λ ex k 2 m (1.61)
It can be shown that including the exchange eld in the susceptibility in Eq. (1.29) can be done by simply substituting the term:

ω H → ω H + ω M λ ex k 2 (1.62)
A quantum-mechanical derivation of the dispersion relation in an unbounded medium can be found in [START_REF] Holstein | Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet[END_REF] or [START_REF] Herring | On the Theory of Spin Waves in Ferromagnetic Media[END_REF]. The diagonal susceptibility component in the presence of exchange becomes:

χ = ω M ω H + ω M λ ex k 2 (ω H + ω M λ ex k 2 ) 2 -ω 2 (1.63)
The susceptibility now depends on both the frequency and the wavevector. Substituting the above into Walker's equation (1.58), we obtain the dispersion law for dipole-exchange spin-waves in an unbounded ferromagnet:

ω 2 (k) = ω H + ω M λ ex k 2 ω H + ω M λ ex k 2 + ω M sin 2 θ k (1.64)
Thus, taking into account the exchange interaction lifts the degeneracy. In the present case, spin-waves propagating perpendicular to the applied eld have higher frequencies relative to spin-waves propagating parallel.

Exchange spin-waves in a ferromagnetic thin lm

The theory for dipole-exchange spin-waves in thin lms was established by Kalinikos and Slavin [START_REF] Kalinikos | Theory of Dipole-Exchange Spin Wave Spectrum for Ferromagnetic Films with Mixed Exchange Boundary Conditions[END_REF] by solving the undamped Landau-Lifshitz equation for plane waves in a ferromagnetic thin lm, based on previous work by Kalinikos [START_REF] Kalinikos | Spectrum and Linear Excitation of Spin Waves in Ferromagnetic Films[END_REF]. Another approach, the Hamiltonian formulation of spin-wave dynamics, can be found in [START_REF] Krivosik | Hamiltonian Formulation of Nonlinear Spin-Wave Dynamics: Theory and Applications[END_REF].

In the context of this work, only some results of these calculations will be given, restricted to the case where the thin lm is homogeneously magnetized across its thickness and the applied eld is in the plane of the thin lm. For an innite ferromagnetic thin lm the dispersion law is given by [START_REF] Kalinikos | Theory of Dipole-Exchange Spin Wave Spectrum for Ferromagnetic Films with Mixed Exchange Boundary Conditions[END_REF]:

ω 2 (k) = (ω H + ω M λ ex k 2 )(ω H + ω M λ ex k 2 + ω M F 00 ) (1.65)
where F 00 is a function that represents the eective demagnetization factor of a nonuniform magnetization distribution, i.e., it scales M s down since the non-uniform distribution leads to a partial cancellation of demagnetizing elds. F 00 is dened by:

F 00 = 1 + g k (sin 2 θ k -1) + ω M g k (1 -g k ) sin 2 θ k ω H + ω M λ ex k 2 (1.66)
and where g k is a function that allows the demagnetizing eld to be taken into account in the thin lm approximation [START_REF] Harte | Theory of Magnetization Ripple in Ferromagnetic Films[END_REF], such that kt f 1, t f being the thickness of the ferromagnet:

g k = 1 - 1 -e -kt f kt f (1.67)
In thin lms, the small ferromagnetic layer thickness t f leads to a standing wave across the thickness and a quantization of the wavevector component perpendicular to the thin lm plane:

k x = k p = pπ t f (1.68)
where p is the order of the p-th perpendicular standing spin-wave mode (PSSW). Due to the nanometer thickness of the FeCoB layers used, the experiments presented in this manuscript can be adequately described by only considering the lowest thickness mode p = 0, which features a quasi-uniform magnetization distribution across the thickness of the lm. Higher order modes, which present a non-uniform magnetization across the thickness, possess a large amount of exchange energy according to Eq. (1.2). As a result, observing these modes requires an excitation at a much higher frequency than the range explored in this work. An expression for all PSSW modes can be found in [START_REF] Kalinikos | Theory of Dipole-Exchange Spin Wave Spectrum for Ferromagnetic Films with Mixed Exchange Boundary Conditions[END_REF]. 

Spin-waves in NiFe and FeCoB

To summarize this section, the spin-wave dispersion relation according to Eq. (1.65) is shown in Fig. 1.4 for two material systems, the rst, based on Ni 81 Fe 19 (hereafter referred to as NiFe) and the second on FeCoB. Only the two extreme angles are plotted for each system: θ k = 0 where the applied eld is parallel to the direction of propagation, and θ k = π 2 where the applied eld is perpendicular to the direction of propagation. However the spin-wave dispersion relation describes a spin-wave manifold for all θ k . Therefore solutions for the intermediate angles lie between the curve for θ k = 0 and the curve for

θ k = π 2 .
The rst example, shown in Fig. 1.4(a), is a d = 30 nm thick NiFe thin lm with µ 0 M s = 1.04 T and A ex = 13 pJ m -1 , under an applied eld µ 0 H = 100 mT. The second example considers a system similar to the one investigated in my thesis and is a d = 1.3 nm thick FeCoB thin lm with µ 0 M s = 1.57 T and A ex = 10 pJ m -1 , under an applied eld µ 0 H = 100 mT. An MgO/FeCoB interface inducing interfacial anisotropy is included using a PMA constant of K i = 1.18 mJ m -2 . The spin-wave frequency for both angles (and all angles in-between) coincides at k = 0 with the ferromagnetic resonance frequency and splits for |k| > 0. In fact, for k → 0, lim k→0 F 00 = 1 and Eq. (1.65) gives the ferromagnetic resonance frequency expected from the Kittel formula in Eq. (1.42).

On the θ k = 0 branch, the spin-wave frequency initially decreases for small wavenumbers. This is a consequence of the dipolar interaction, and as a result, for low k, the spin-wave group velocity (in the 1D case):

v g = ∂ω(k) ∂k (1.69)
is negative for small positive k (the phase velocity v p = k ω being positive). This property of the θ k = 0 branch has led to it being named the backward volume magnetostatic conguration. More importantly, in NiFe for µ 0 H = 100 mT the group velocity v g is close to 0 up to k = 40 rad µm -1 meaning that for θ k = 0, the spin-waves propagate slowly. In FeCoB, the anisotropy eld opposes the dipolar eld, resulting in the group velocity quickly increasing with k.

Historically, the spin-waves mode excited in the θ k = π 2 conguration were identied in ferromagnetic lms as propagating on both interfaces of the thin lm. This geometry is called the Damon-Eshbach conguration, after the scientists who predicted surface magnetostatic spin-waves [START_REF] Damon | Magnetostatic Modes of a Ferromagnet Slab[END_REF]. It is shown in [START_REF] Eshbach | Surface Magnetostatic Modes and Surface Spin Waves[END_REF] that the amplitude of the spinwave decreases exponentially across the lm thickness, where the maximum amplitude is either at the upper side of the lm for spin-waves propagating in the +y (k > 0) direction, or at the lower side for spin-waves propagating in the opposite direction. However in the thin lm limit, which already applies to both material systems described here, spin-waves The particularity of the NiFe case is that in the Damon-Eshbach conguration, the dispersion relation has a very steep and positive slope for small k, which is the opposite of spin-waves in the backward-volume conguration, where the dispersion relation has a very shallow and negative slope. Thus, the spin-waves at small k have a high group velocity and the behavior of spin-waves is dictated by the dipolar interaction. Indeed, the anisotropic nature of the dipolar interaction is reected in the anisotropic dispersion relation of the spin-waves at small k, meaning that the dispersion curve depends heavily on θ k . In contrast, at large k, where the exchange interaction is dominant, both branches have the same slope and increase with k 2 , due to the isotropic nature of the exchange interaction.

in
For the Ta/FeCoB/MgO case, the interfacial anisotropy needs to be included into the dispersion relation. An empirical relation is given in [START_REF] Brächer | Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Eect[END_REF]:

ω 2 (k) = ω H + ω M λ ex k 2 ω H + ω M λ ex k 2 + (ω M -ω K ) F 00 (1.70)
where ω K is dened in Eq. (1.37). This is only an approximation validated in a certain window by micromagnetic simulations as shown in the Supporting Information of [START_REF] Brächer | Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Eect[END_REF]. The PMA competes with the demagnetization energy and renormalizes the last term, reducing the frequency of the spin-waves. In Fig. 1.4(b), the region that is dominated by the dipolar interaction is greatly reduced, the spin-waves are almost immediately inuenced by the exchange interaction, due to the extremely small thickness of the ferromagnetic layer and the PMA. As a result, the dierences between spin-waves propagating in the backward volume and the Damon-Eshbach congurations are small and mainly restricted to very low wavevectors in the case of ultra thin ferromagnets with PMA, and the group velocity in both congurations quickly increases with k.

Relaxation rate

So far the spin-waves have been described propagating without attenuation. Relaxation processes for spin-waves include magnon-magnon interaction [START_REF] Gurevich | Magnetization Oscillations and Waves[END_REF], magnonelectron interaction [START_REF] Kamberský | On the LandauLifshitz Relaxation in Ferromagnetic Metals[END_REF] and magnon-phonon interaction [START_REF] Sanders | Eect of Magnon-Phonon Thermal Relaxation on Heat Transport by Magnons[END_REF]. One can dene a spin-wave lifetime τ as the time in seconds required for a spin-wave's amplitude to decrease by a factor of 1/e [START_REF] Stancil | Spin Waves: Theory and Applications[END_REF]. This can be modeled by describing the spin-wave's frequency by a complex number ω + iω r , where the imaginary part represents losses. The relaxation rate, related to the spin-wave lifetime by ω r = 2π τ , is given by [Sta09]:

ω r = αω ∂ω(k) ∂ω H (1.71)
where ω H = γµ 0 H, ω is the spin-wave angular frequency and ω(k) is the dispersion relation. The equation above is valid for ω r ω and α is the Gilbert damping parameter [START_REF] Stancil | Spin Waves: Theory and Applications[END_REF].

For a ferromagnetic thin lm with PMA, the resulting relaxation frequency is derived from Eqs. (1.70) and (1.71):

ω r = α ω H + ω M λ ex k 2 + ω M -ω K 2 1 + g k sin 2 (θ k ) -1 (1.72)
Once again, the PMA competes with the demagnetizing eld. Thus, in thin lms, the demagnetizing eld increases the relaxation rate, while the PMA reduces it. This can be understood by looking at the magnetization as it precesses. Its trajectory can be approximated by an ellipse in the (x, ŷ) plane, with the ellipse attened in the x direction due to the demagnetizing eld (mitigated by the PMA) in thin lms. In the attened parts of the trajectory, the magnetization is subject to the demagnetizing eld and the anisotropy eld, thus if the PMA is strong enough it will slow down the magnetization, resulting in a lower local frequency, lower ellipticity and lower relaxation rate.

Spintronics phenomena for controlling and detecting magnetization dynamics

One of the objectives of this thesis is to electrically control and detect magnetization dynamics in a spin-wave waveguide. This can be achieved exploiting spin-orbit torques that occur in FM/HM bilayer systems when passing a charge current through it.

Spin-orbit interactions generate spin currents and local torques that create eld-like and damping-like torques, that have to be added to the LLG equation (1.19):

dM dt = -γµ 0 M × H eff + α M s M × dM dt + τ f l + τ dl (1.73)
These torques are described in this section, along with the physical phenomena that are responsible: the Rashba interaction and the spin Hall eect. Since both eects depend on spin-orbit interactions, the search for normal metals, i.e., conductive and non-ferromagnetic, that exhibit these properties has focused on heavy metals such as platinum, tantalum and tungsten, given that a higher atomic number usually means stronger spin-orbit interaction [START_REF] Tanaka | Intrinsic Spin Hall Eect and Orbital Hall Eect in 4d and 5d Transition Metals[END_REF].

Additionally, via a phenomenon that can be understood as the opposite eect, a magnetic excitation can be detected electrically through the inverse spin Hall eect.

These two reciprocal eects couple charge currents with spin currents.

In the nal part of this section, we discuss a further spin-orbit interaction that can be used to detect magnetization dynamics, called anisotropic magnetoresistance. However, for the devices studied in my thesis we will show that the corresponding signal is weak and can be neglected.

The Rashba eect

At the interface between two dierent materials, the local electronic environment is modied, resulting in an electric eld perpendicular to the interface. This conguration, called structural inversion asymmetry, was rst investigated theoretically for semiconductor surface states [START_REF] Ohkawa | Quantized Surface States of a Narrow Gap Semiconductor[END_REF] and the theory for 2D electron gases was laid out by Bychkov and Rashba [START_REF] Bychkov | Properties of a 2D Electron Gas with Lifted Spectral Degeneracy[END_REF]. Through spin-orbit coupling, the electric potential results in the lifting of the spin degeneracy of the 2D electron gas at the interface. The Rashba eect, named after its discoverer, has been observed in other types of materials and interfaces [START_REF] Chernyshov | Evidence for Reversible Control of Magnetization in a Ferromagnetic Material by Means of SpinOrbit Magnetic Field[END_REF], including paramagnetic/ferromagnetic metallic systems [START_REF] Miron | Current-Driven Spin Torque Induced by the Rashba Eect in a Ferromagnetic Metal Layer[END_REF]. A proper derivation of the spin-orbit interaction requires a relativistic treatment of the electron which is beyond the scope of this work. Instead, here we will give a naive semi-classical approach to the spin-orbit interaction that gives rise to the Rashba eect.

In special relativity, electric and magnetic elds are linked through the Lorentz transformation; an electric eld E is experienced as a magnetic eld B in the inertial reference frame of an electron moving at a velocity v. Thus, the electric eld that arises due to symmetry breaking at the interface of two materials transforms into a magnetic eld in the moving frame of the electron:

B = E × v c 2 1 -v 2 c 2 ≈ E × v c 2 (1.74)
where the Fermi velocity v is small compared to the speed of light c. The potential of an electron's spin magnetic moment in a magnetic eld is:

V = -µ S • B = eg 2m * e c 2 σ • (E × v) (1.75)
where e is the electron charge and m * e its eective mass, g is the Landé g-factor, and σ the Pauli matrices collected into a vector for convenience. The Hamiltonian of a conduction electron at the interface, in the presence of Rashba spin-orbit interaction and the two eigenvalues (the ± symbols can be replaced by either + orto yield the two eigenvalues) are [START_REF] Manchon | Theory of Nonequilibrium Intrinsic Spin Torque in a Single Nanomagnet[END_REF][START_REF] Manchon | Theory of Spin Torque Due to Spin-Orbit Coupling[END_REF]:

H so = h 2m * e k 2 + α R (k × σ) • n E ± = h2 k 2 2m * e ± α R k (1.76)
where k = m * e h v is the wavevector of the electron, h the reduced Planck constant, n the unit vector normal to the surface, and α R ∝ gµ B 2m * e c 2 E represents the strength of the Rashba interaction. The Rashba term causes a spin and wavevector dependent wavevector shift of the dispersion relation, lifting the two fold spin degeneracy for k = 0 as illustrated in Fig. 1.5(b,e). In contrast, applying an external magnetic eld will result in a spin dependent but wavevector independent energy shift of the dispersion relation, lifting the spin degeneracy for all k, shown in Fig. 1.5(d).

Thus, the Rashba eect leads to the polarization of the conduction electrons. On the other hand, in ferromagnets the localized electrons are already polarized. There is thus a competition between the s -d exchange interaction, which wants to align the spin of the conduction electrons along the local magnetization, and the Rashba eect, which wants to align them in a dierent direction. The result is a reorientation of the local magnetization. In the absence of a charge current, the k and -k states are equally populated and there is no net eect on the magnetization. However in the presence of a charge current, the states are no longer equally populated and the average electron wavevector is non-zero, leading to a net torque on the magnetization. In the case where the Rashba interaction is small compared to the s -d exchange interaction, it can be assimilated to an eective magnetic eld, called Rashba eld, dependent on the charge current density [START_REF] Manchon | Theory of Nonequilibrium Intrinsic Spin Torque in a Single Nanomagnet[END_REF]:

H R = 2 α R m e J SD ehM s F (x • J c ) (1.77)
where J SD is a parameter of the s -d exchange interaction, F is the Fermi energy, J c is the charge current density and x is the axis perpendicular to the interface.

Since the Rashba interaction is an interfacial eect, it is expected that its eect on the magnetization will scale with the inverse of the thickness of the ferromagnetic layer [START_REF] Kim | Layer Thickness Dependence of the Current-Induced Eective Field Vector in Ta|CoFeB|MgO[END_REF]. 

Origin of the spin Hall eects

While the SHE was historically predicted by considering the scattering of electrons on nuclei or impurities [START_REF] Dyakonov | Current-Induced Spin Orientation of Electrons in Semiconductors[END_REF], several mechanisms have been proposed. They are split into intrinsic [Sin04; Tan08] phenomena, which arise from the band structure of the material, and extrinsic eects such as skew-scattering [START_REF] Mott | The Scattering of Fast Electrons by Atomic Nuclei[END_REF] and side-jumping [START_REF] Berger | Side-Jump Mechanism for the Hall Eect of Ferromagnets[END_REF] on impurities. The mechanism that is dominant is material-dependent, a review of the dierent origins as well as experimental studies of the spin Hall eects can be found in [START_REF] Sinova | Spin Hall Eects[END_REF]. 

Relationship with the anomalous Hall eect

The SHE, which occurs in semiconductors and paramagnetic metals, is the counterpart of the anomalous Hall eect found in ferromagnetic materials. In a FM, the same spin-orbit processes responsible for SHE lead to the spatial separation of spins, however since there is an asymmetric distribution of spin up and spin down, the spin current is accompanied by a net charge current that is proportional to the spin polarization of the electrons in the FM, as shown in Fig. 1.6(Top). The resulting transverse voltage is then proportional to the magnetization component that is perpendicular to the charge current and the measurement directions. This is called the anomalous Hall eect (AHE).

While the AHE was discovered in 1881 by Hall, it was not until 1984 that the iSHE was observed optically in semiconductors [START_REF] Bakun | Observation of a Surface Photocurrent Caused by Optical Orientation of Electrons in a Semiconductor[END_REF], shortly after Dyakanov and Perel's prediction. Moreover, it was only after Hirsch brought back the SHE to attention in 1999 [START_REF] Hirsch | Spin Hall Eect[END_REF] that the rst observations of the direct SHE were made using magnetooptical Faraday [START_REF] Kato | Current-Induced Spin Polarization in Strained Semiconductors[END_REF] and Kerr microscopy [START_REF] Kato | Observation of the Spin Hall Eect in Semiconductors[END_REF] in semiconductors.

Inverse spin Hall eect

The rst electrical measurements of the spin Hall eects [Sai06; Val06] involved the opposite phenomenon, the inverse spin Hall eect (iSHE), where a spin current generates a transverse charge current through the same processes, as illustrated in Fig. 1.6(Right).

The two eects are linked by Onsager's reciprocity relations [START_REF] Jacquod | Onsager Relations in Coupled Electric, Thermoelectric, and Spin Transport: The Tenfold Way[END_REF], such that the chargeto-spin conversion ratio for the SHE is equal to the spin-to-charge conversion ratio for the iSHE. This unitless ratio, written θ SH , is called the spin Hall angle.

Interconversion of spin and charge currents

In the following we quantify the SHE and the iSHE by relating charge and spin current densities in the general case. In a normal metal with strong spin-orbit coupling, a charge current density will create an orthogonal spin current density:

J s ij = - hθ SH 2 e J c k (1.78)
where ( î, ĵ, k) form an orthonormal basis, J c k is the charge current density owing along k and J s ij is the spin current density owing along î and polarized along ĵ.

Conversely, a charge current density can be created by either or both of the following orthogonal spin currents:

J c k = 2 e θ SH h J s ij -J s ji (1.79)
where J s ji is the spin current density owing along ĵ and polarized along î. Thus, by simply injecting a pure charge current in a normal metal, a transverse pure spin current is generated, which can diuse into an adjacent material. In this work, the adjacent material is a ferromagnetic conductor, such that the spin current will exert a torque on the magnetization. However, since a pure spin current does not rely on a net movement of electronic charges, the spin current can even diuse into a ferromagnetic insulator such yttrium iron garnet [START_REF] Kajiwara | Transmission of Electrical Signals by Spin-Wave Interconversion in a Magnetic Insulator[END_REF].

We note that further methods exist that generate spin currents. The rst is spin pumping, discussed next (in Sec. 1.4.3) and the second is used in magnetic tunnel junctions where the charge current becomes spin polarized and spin and charge current are thus coupled [START_REF] Slonczewski | Current-Driven Excitation of Magnetic Multilayers[END_REF][START_REF] Ralph | Spin Transfer Torques[END_REF].

Detection of magnetization dynamics via spin pumping and inverse spin Hall eect

The SHE and Rashba eects discussed above can be used to excite or manipulate the magnetization dynamics. In Sec. 1.4.4 we discuss the corresponding torques that have to be added to LLG. Before we come to this, we introduce the eect of spin pumping, which, in conjunction with the ISHE, can be used to detect the magnetization dynamics Spin-pumping, introduced by Tserkovnyak et al. [START_REF] Tserkovnyak | Enhanced Gilbert Damping in Thin Ferromagnetic Films[END_REF][START_REF] Tserkovnyak | Spin Pumping and Magnetization Dynamics in Metallic Multilayers[END_REF], can be understood as the reverse process of current-induced magnetization dynamics: a spin current can exert a torque on a magnetization and, vice-versa, a moving magnetization relaxes by emitting a spin current, which accumulates at all the interfaces and can leak into an adjacent layer, as shown in Fig. 1.7. This leads to a dissipation term in the LLG equation which takes a similar form to Gilbert damping. If there is a NM at one of these interfaces, the spin current can ow into it and the injected spins build up near the interface. This creates another spin current that ows back into the FM, until equilibrium is reached and both spin currents cancel out [START_REF] Tserkovnyak | Spin Pumping and Magnetization Dynamics in Metallic Multilayers[END_REF]. In our case, we will consider the simple case the precessing magnetization M(t) of the ferromagnetic layer (FM) leads to the emission of a spin current J s (also represented by electrons with opposite spin-polarizations σ and -σ moving in opposite directions) which ows in the adjacent normal metal layer (NM).

Inverse spin current: the spin current J s is converted into an orthogonal charge current J c . Taken from [START_REF] Ando | Inverse Spin-Hall Eect Induced by Spin Pumping in Metallic System[END_REF].

where the NM is an ideal spin sink and there is no spin current backow. This condition is met if there is sucient spin diusion and spin-ip scattering in the NM.

Thus, when the magnetization in a FM/NM bilayer precesses along an in-plane axis ẑ, a spin current ows from the FM to the NM, ie. along x. The total spin current density vector created is given by [START_REF] Harder | Electrical Detection of Magnetization Dynamics via Spin Rectication Eects[END_REF]:

J s 0 x =   J s 0 xx J s 0 xy J s 0 xz   = hG r 4πM 2 s M × dM dt (1.80)
where J s 0 x contains all the spin current density vectors owing along the x axis, at the interface. The key parameter of spin pumping is the real part of the spin mixing conductance, G r in m -2 , which is related to the reection and transmission coecients of spin up and spin down electrons at the FM/NM interface. There is an additional term owing to the imaginary part of the spin mixing conductance, but in most cases [START_REF] Tserkovnyak | Enhanced Gilbert Damping in Thin Ferromagnetic Films[END_REF],

it is up to 3 orders of magnitude smaller than the real part and its contribution can be neglected in the material systems studied in this work. This spin current decays in the NM due to spin relaxation and diusion, and the spin current density at a distance x from the interface is [START_REF] Harder | Electrical Detection of Magnetization Dynamics via Spin Rectication Eects[END_REF]:

J s xi (x) = J s 0 xi sinh ((x -t n )/l sd ) sinh(t n /l sd ) (1.81)
where i = (x, y, z), and t n is the thickness of the NM and l sd its spin diusion length. The latter is the average distance over which the electron spin will ip. For a non-polarized charge current it is the distance where the current becomes polarized in a FM and for a spin-polarized charge current it is the distance where the current depolarizes in a NM.

Thus, magnetization dynamics in a ferromagnetic layer can lead to the creation of a spin current in an adjacent metal. If this metal has strong spin-orbit interaction, the spin current will be converted through the iSHE to a measurable charge current, given by Eq.

(1.79), as illustrated in Fig. 1.7. These two combined phenomena, spin-pumping and the inverse spin Hall eect (SP+iSHE), thus provide a means to detect magnetization dynamics. This technique was used to show the presence of SHE in normal metals such as Pt [START_REF] Saitoh | Conversion of Spin Current into Charge Current at Room Temperature: Inverse Spin-Hall Eect[END_REF].

Modication of the LLG including the eld-like torque and the damping-like torque

While it was initially considered that the eld-like torque originated from the Rashba eect and that the damping-like torque originated from the SHE [Mir10] [Mir11], the situation is now understood to be more complicated, as some studies suggest that both eects can create both types of torques [START_REF] Haney | Current Induced Torques and Interfacial Spin-Orbit Coupling: Semiclassical Modeling[END_REF][START_REF] Freimuth | Spin-Orbit Torques in Co/Pt(111) and Mn/W(001) Magnetic Bilayers from First Principles[END_REF]. One way to separate the two eects is via a thickness-dependent study of the normal metal [Kim13; Fan13; Zha13],

since it is assumed that the Rashba eect is an interfacial eect while the SHE is a volumic eect in the normal metal. However even this methodology has encountered hurdles, due to the fact that varying the normal metal thickness changes the growth of the materials and the interface itself. The experiments presented in this thesis were performed for a xed thickness of the normal metal Ta, it is thus impossible to distinguish the physical origin of the observed torques. Consequently, their action will be summarized to an eective eld-like and an eective damping like torque, which are accessible in the experiment.

Field-like torque

When a charge current J c is injected in a normal metal with strong spin-orbit interaction, it generates a eld-like torque on the adjacent ferromagnetic layer's magnetization

M [Gar13]: τ fl = -γβ f l M × ( J c × n) (1.82)
where β f l is a parameter characterizing the strength of the eld-like torque (in T A -1 m 2 ) and n is the growth axis (with the ferromagnetic layer on top of the normal metal). β f l is dened by the ratio between the eective eld of the torque, H fl , and the current density that created it. The eective eld of the eld-like torque is written:

H fl = β f l µ 0 ( J c × n) (1.83)
Since the eective eld of the eld-like torque does not depend on M, the eld-like torque is functionally equivalent to one created by a Zeeman eld.

Damping-like torque

In spin-torque oscillators, the damping-like torque is used to completely compensate the damping, such that the oscillations of the magnetization reach a steady state without the use of an RF excitation [Kis03; Hou07], leading to the present name for the torque.

Indeed, in the experimental conguration where the polarization of an injected spin current is parallel to the magnetization, the damping-like torque either enhances or reduces the damping on the magnetization dynamics, depending on the polarity of the charge current used to generate the spin current.

The expression of the damping-like torque generated by spin-orbit interaction is given by [START_REF] Garello | Symmetry and Magnitude of SpinOrbit Torques in Ferromagnetic Heterostructures[END_REF]:

τ dl = - γβ dl M s M × (M × (J c × n)) (1.84)
where β dl is a parameter characterizing the strength of the damping-like torque (in T A -1 m 2 ). In terms of cross products, one can see the similarity between the expression of the damping-like torque and the term due to the damping parameter α in the LL equation (1.73). The eective eld of the damping-like torque is written:

H dl = β dl µ 0 M s M × (J c × n) (1.85)
The eective eld of the damping-like torque depends on M, thus the damping-like torque is not equivalent to a Zeeman eld. 

ρ(θ M ) = ρ(0 • ) -∆ρ AM R sin 2 (θ M ) (1.86)
where θ M is the angle between the current and the magnetization direction, and

∆ρ AM R = ρ(0 • ) -ρ(90 • ).
When injecting a current in a ferromagnetic layer, the magnetization M will aect the resistivity of the layer, and thus the measured voltage across the ferromagnet:

V AM R = lw 0 ∆ρ AM R M 2 s (J • M)M • dl (1.87)
where J is the current density vector injected the ferromagnetic layer and l w is the length of the ferromagnet between the measurement points. Thus, AMR also provides a way to probe the magnetization dynamics of a ferromagnet.

Chapter 2

Device fabrication

In order to characterize the eld-like and damping-like spin-orbit torques and to demonstrate the detection of propagating spin-waves using spin pumping and the inverse spin Hall eect for perpendicular magnetic anisotropy materials and their dependence on the ferromagnetic layer thickness we have realized a set of devices that contain a small bar of FM/HM material that serve as spin-wave waveguides with contacts at the ends and with a coplanar waveguide on top. Here we summarize the main steps for the realization of these devices.

Wafer deposition and annealing

The magnetic material chosen for our studies is the Fe rich alloy Fe 72 Co 8 B 20 (often referred to as FeCoB in this manuscript) that is used in SPINTEC for developing perpendicular magnetic tunnel junctions for memory applications. FeCoB is characterized by a strong saturation magnetization, low damping and a high perpendicular magnetic anisotropy.

The thin lms were deposited by an Actemium sputter deposition machine by Stéphane Auret (Spintec) on a high resistivity (5 kΩ cm) 2-inch Si wafer, capped with 500 nm SiO 2 . Materials were sputtered in the following order (thicknesses in nanometers): Ta

(5), Fe 72 Co 8 B 20 (1.0 -1.4), Mg (1.5), Al (2), Ta (1). The Ta (5) layer is used as a seeding layer and is deposited in conditions that allow the formation of β-phase Ta. This phase is recognizable by its high resistivity and demonstrates both spin Hall and Rashba eects

[Liu12; All15].
The FeCoB thin lm is deposited as a wedge with thicknesses ranging from approximately 1 to 1.4 nm over the 2 inch wafer. An oxidation step under controlled oxygen atmosphere after the deposition of Mg results in a MgO layer. The Al (2) and Ta (1) layers serve as capping layers and are partially oxidized once exposed to the atmosphere.

The wafer is then annealed at 250 • C for 90 min under vacuum, resulting in the migration of B from the FeCoB to the Ta [START_REF] Kozina | A Nondestructive Analysis of the B Diusion in Ta-CoFeBMgO-CoFeB-Ta Magnetic Tunnel Junctions by Hard x-Ray Photoemission[END_REF] and the poly-crystallization of bcc (001) FeCo at the MgO interface [START_REF] Yuasa | Characterization of Growth and Crystallization Processes in CoFeB/MgO/CoFeB Magnetic Tunnel Junction Structure by Reective High-Energy Electron Diraction[END_REF]. The presence of MgO generates PMA at the interface of the ferromagnetic layer which competes with the demagnetizing eld (see Sec. 1.1.3), result-37 ing in in-plane magnetization for FeCoB thicknesses above ≈ 1.2 nm and out-of-plane magnetization for thicknesses below ≈ 1.2 nm, as veried by magneto-optic Kerr eect microscopy on a magnetic stack deposited and annealed under the same conditions.

Device fabrication

After annealing, the wafer is processed at the Plateforme Technologique Amont at 1. ma-N 2401, an electron-sensitive negative resist with sub 50 nm resolution, is spincoated on the wafer, resulting in a 100 nm thick layer. Spin-wave waveguides are patterned using electron beam lithography. They are rectangles with a length of 12 µm and widths ranging from 500 nm to 5 µm.

2. The thin lm stack is etched down to the SiO 2 substrate using an Ar ion-beam at 7. A solution of 4% Poly methyl methacrylate (PMMA) is spin-coated on the wafer, resulting in a 300 to 400 nm thick layer. Shorted coplanar waveguides are dened on top of the SWW using electron beam lithography.

1 While I personally made many samples and devices for the study of magnetization dynamics, these did not result in exploitable results. The specic devices discussed in this thesis were fabricated mainly by T. Brächer.

8. Ti (5) and Au (30) are deposited by electron beam evaporation. The PMMA is then removed in a lift-o process, resulting in Ti/Au CPWs on top of the SWW, separated by a dielectric Al 2 O 3 layer.

Device description

Scanning electron microscopy was used to image the devices. The spin-wave waveguides, shown in Fig. 2.1, have Ti/Au contacts at both ends of the SWW along the long axis. The SWWs have a length of 12 µm and exists in 5 dierent widths: 5 µm, 2 µm, 1 µm, 500 nm and 250 nm. On top of the SWWs, two identical and separate CPWs are set left and right from the center of the spin-wave waveguide. The distance between the centers of the two CPWs is one of the following: 1.25 µm, 2.5 µm or 5 µm, however this feature was not exploited for the results discussed in this thesis.

There are 3 dierent CPW designs with varying geometry. Their features are summarized in Tab. 2.1, which gives the width 2a of each conducting wire and the center-tocenter separation s between the signal line and each ground line. All three CPW designs have the same layer composition and thickness: 30 nm of Au on top of 5 nm of Ti, and they are all insulated from the spin-wave waveguide by the 30 nm Al 2 O 3 layer.

Table 2.1: The three coplanar waveguide designs. All three type have the same layer composition and thickness: 30 nm of Au on top of 5 nm of Ti, and are insulated from the spin-wave waveguide by a 30 nm Al 2 O 3 layer. The wire width 2a is the width of a signal line or ground line, and the spacing s is the center-to-center distance between the signal line and either ground line. The nanofabrication steps in this process do not pose any particular challenges, except for the CPWs, which are narrow and long. The lift-o step of the CPWs proved to be delicate, causing a number of broken or missing CPWs and resulting in a low yield. The cause was the use of a pipette to start the lift-o in the acetone bath. An alternative that was proven to work on other wafers was to simply put the wafer in a low power ultrasonic bath.

The 30 nm Al 2 O 3 insulating layer, in addition to acting as an electrical insulator, helps to dissipate heat from the SWW and the CPW, given its relatively high thermal conductivity compared to SiO 2 and air. in this image). The CPWs are of type A, characterized by their wire width 2a and wire spacing s (see table 2.1). They each have a signal line S and two ground lines G. In ST-FMR experiments, an RF current density (j stfmr here) is injected into the SWW, generating the RF elds h fl and h ø as well as an RF damping-like torque which is not represented here. In SWR experiments, an RF current density (j swr here) is injected into one of the CPWs, generating an RF eld h cpw . An external magnetic eld H is applied in the plane of the thin lm.

Measured samples

Table 2.2 lists the devices that were measured, CPW design, thickness, as well as the type of experiment performed. In this table, ST-FMR stands for spin-torque ferromagnetic resonance, discussed in Chap. 3, SWR stands for spin-wave resonance, described in Sec. 4.4 and BLS stands for Brillouin light scattering, described in Sec. 4.5.

Due to the low yield of CPWs, the SWR measurements could not be done on many of the devices that were measured by ST-FMR. Additionally, due to the fragility, some SWR experiments resulted in the destruction of the CPW antennae.

The reported FeCoB thicknesses in the table are based on the Actemium deposition machine's calibration data, extrapolated to each point on the wafer. The wafer is divided into 18 rectangular chips, each containing an identical set of device designs, though the FM thickness varies continuously from one row of chips to another. Each rectangular chip contains 25 SWW devices layed out in a 5 by 5 matrix. From left to right the spinwave waveguide's width varies, while from top to bottom the CPW design changes and the FM thickness varies. The dierence in thickness between two adjacent devices along the wedge direction, 0.112 Å, is smaller than the atomic radius of Fe (1.26 Å). However even this minute dierence gives rise to a continuous change in eective magnetization, as shown in Sec. 3.4.3. Thus, it is assumed that the dierence between two adjacent SWWs lies in the distribution of the local thickness, and the numbers reported are the average of that distribution. While the gradient of thickness is extremely small, the range explored here, near the out-of-plane transition, provides a uniquely rich eld of study.

The indicated thicknesses have a large number of decimal numbers that does not reect the real precision, however we left them to distinguish the devices more easily. 

2-B3 1.16 none 1 ST-FMR 2-C3 1.171 A 1 ST-FMR 2-D3 1.182 B 1 ST-FMR 2-E3 1.193 C 1 ST-FMR 14-B3 1.233 none 1 ST-FMR 14-C3 1.244 A 1 ST-FMR 14-E3 1.266 C 1 ST-FMR 16-C2 1.244 A 2 SWR 16-C3 1.244 A 1 SWR 16-D3 1.255 B 1 SWR 16-E3 1.266 C 1 SWR 7-B3 1.306 none 1 ST-FMR 7-C1 1.317 A 5 ST-FMR+SWR 7-C2 1.317 A 2 ST-FMR+SWR 7-C3 1.317 A 1 ST-FMR 7-C4 1.317 A 0.5 ST-FMR 7-C5 1.317 A 0.25 ST-FMR 7-D1 1.328 B 5 ST-FMR+SWR 7-D2 1.328 B 2 BLS 7-E1 1.339 C 5 ST-FMR+SWR 8-C1 1.317 A 5 ST-FMR 8-D1 1.328 B 5 ST-FMR 8-D3 1.328 B 1 ST-FMR 5-B3 1.306 none 1 ST-FMR 5-C3 1.317 A 1 ST-FMR 5-D3 1.328 B 1 ST-FMR 5-E3 1.339 C 1 ST-FMR

Spin-torque resonance technique

A standard technique to obtain the material properties of a magnetic system is to use a broadband FMR setup [Kal06; Bil07; Gho12]. It allows for the magnetic probing of continuous thin lms by exciting uniform ferromagnetic resonance. In this measurement the sample is placed across a microwave waveguide (such as a stripline or coplanar waveguide)which supplies an RF magnetic eld, upon injection of an RF current into the waveguide. The FMR is detected as an absorption peak of the transmitted RF power.

The probed magnetic layer needs to be large enough that it sits across the waveguide and thick enough that the RF power absorbed by the total magnetic moment is detectable.

The broadband FMR at our disposal at Spintec, for instance, requires thin lm samples that are at least 2 mm wide and, to resolve FMR peaks for FeCoB, needs to have a thickness of at least 2.5 nm due to the small magnetic volume. The thickness range of 1-1.4 nm of the Ta/FeCoB SWW investigated in my thesis is hence below the resolution limit, so that a characterization as a continuous lm using our broadband FMR was not possible. Therefore we setup a ferromagnetic resonance technique using electrical excitation and detection to characterize the SWW,1 called spin-torque ferromagnetic resonance, though in the case of magnetic tunnel junctions it is often called spin-diode resonance In order to improve the signal-to-noise ratio of the rectication signal generated at resonance, a lock in amplier (LIA) is used. The LIA provides a sinusoidal reference signal at a frequency of f mod = 10.141 kHz to the RF generator, which is then set to deliver an RF current sinusoidally modulated in power at f mod . The LIA input is connected to the low frequency port of the bias-T and measures the DC signal at an enhanced signal-to-noise ratio. The modulation frequency and the bias-T were carefully chosen so that f mod is higher than the cuto frequency of the high frequency port of the bias-T and at the same time lower than the cuto frequency of the low frequency port. 

RF Excitation mechanisms

The conguration of the ST-FMR experiment is shown in Fig. 3.2. In an ST-FMR experiment, the charge current density vector j c and the external eld vector H are not necessarily collinear, and thus they each have their respective coordinate system (see Fig.

3.2)

: the external eld is set parallel to ẑ while the current density vector is parallel to ẑ , and θ H is the angle between the two bases.

In the spin-wave waveguides studied in this work, the current ows through both the FeCoB and Ta layers. For the sake of simplicity, we assume in this section that the whole current only goes through the Ta layer, and that the magnetization is uniform and saturated by the external eld. This current then creates at least three eects: an Ørsted eld, a eld-like torque and a damping-like torque. In ST-FMR experiments, the magnetization is excited by the RF current, à priori via a combination of all three phenomena. The RF current generates an Ørsted eld and spin-orbit torques that have a dynamic eect on the magnetization. The eect of each type of RF excitation will be discussed in the following subsections.

Moreover, a DC current can be added to the RF current, giving rise to a DC Ørsted eld and DC spin-orbit torques. The eects of these DC terms aect the susceptibility terms directly, which will also be detailed in the following subsections.

Excitation by RF Ørsted eld or RF eld-like torque

Here we address only the RF Ørsted eld and the RF eld-like torque excitation. We assume that the current ows through the Ta layer and that it creates an Ørsted eld that we calculate using the Biot-Savart law. It is assumed to be uniform and totally in the plane. In reality, due to the rectangular cross-section of the SWW, the in-plane Ørsted eld component drops o at the lateral edges of the SWW, and an out-of-plane component appears. Numerically, we calculated that the in-plane Ørsted eld component is at least at 95% of its maximum strength for more than 95% of the volume of the SWW.

We assume that the eective eld of the eld-like torque, dened in Eq. (1.83), is uniform across the SWW. Thus it has the same symmetry as the in-plane Ørsted eld component, under the assumption described in the paragraph above. The result is that it may be impossible to dierentiate the two eects. The eective RF eld of the eld-like torque h fl and the Ørsted eld h ø are taken into account by replacing the RF excitation eld h in Eq. (1.34) by:

h = h fl + h ø (3.1)
and the calculations are identical as those performed in Sec. 1.2.4. The resulting susceptibility components are given as a function of applied frequency in Eq. (1.44) and of applied eld in Eq. (1.46). Therefore, we expect the eld-like torque to create the same excitation as the Ørsted eld, and their eects to either add or subtract from each other depending on their relative phase.

In the SWW geometry presented here, where the excitation current ows along the SWW long axis, under the assumptions taken so far, we dene the excitation in the basis of H:

h = 0 h f l,y + h ø,y (3.2)
where h f l,y and h ø,y are the projections of h fl and h ø onto ŷ; there is no out-of-plane component due to this excitation.

Excitation by RF damping-like torque

In this subsection, we address a uniform RF damping-like torque as the excitation.

The LLG equation including the spin-orbit torques was given in Eq. (1.73). Keeping only the damping-like torque and using Eq. (1.84), the LLG equation becomes:

dM dt = -γµ 0 (M × H eff ) + α M s M × dM dt - γβ dl M s M × (M × (j c × n)) (3.3)
where n = x and where j c is the RF current density vector, and the eective eld is written, using the notations in Sec. 1.2.3:

H eff = H + m • x 2K i µ 0 M 2 s t f -1 x (3.4)
In contrast to the eld-like torque, the damping-like torque cannot be included in the eective eld due to the double cross-product with the magnetization. However to keep the same notation as in Eq. (1.28), with h dl as the excitation, we rewrite Eq. (3.3):

dM dt = -γµ 0 (M × H eff ) + α M s M × dM dt -γµ 0 M × h dl (3.5)
where h dl is the eective eld of the RF damping-like torque, dened in Eq. (1.85).

Here, with the RF current and the dynamic magnetization, we have:

h dl = β dl µ 0 M s (M eq + m) × (j c × n) = β dl µ 0 M s M eq × (j c × n) (3.6)
where we neglected the cross product of m and j c due to the smallness of β dl . h dl is assumed to be small enough that we are in the small angle approximation. Using the notations in Eqs. (1.26) and (1.37) and eliminating the second order quantities involving products of m x , m y h dl,x and h dl,y (the projections of h dl onto x and ŷ), we obtain:

iω m x m y = m y m x -ω M -h dl,y h dl,x ω H -iαω ω H + ω M -ω K + iαω T (3.7)
After rearranging and solving for the magnetization components, we obtain the susceptibility tensor for an RF damping-like torque:

χ = ω M ω 2 0 -ω 2 + iαω (2ω H + ω M -ω K ) ω H iω -iω ω H + ω M -ω K (3.8)
where the resonance frequency ω 2 0 = ω H (ω H + ω M -ω K ) is the same as in Eq. (1.38), after neglecting the term in α 2 ω 2 . The terms iαω in the diagonal elements were also neglected. Thus, we nd exactly the same Polder tensor as the case where the excitation is an Ørsted eld or the eld-like torque. The susceptibility components are given in Eq.

(1.44). In the SWW geometry, the excitation eld due to the damping-like torque given in Eq. (3.6) does not have a y component, and only the x component is relevant:

h dl = h dl,x h dl,y = -β dl Msj c z µ 0 0 (3.9)
where j c z is the projection of the charge current density vector along the axis of the external eld, ẑ. Thus, the only non-zero component of the excitation eld is parallel to x, whereas for the Ørsted eld and the eld-like torque, it is parallel to ŷ (see Eq. (3.2)).

This will select dierent susceptibility components and will therefore lead to dierent expressions of the detected signal, which also depend on the detection mechanism (AMR, iSHE, etc.).

Inuence of a DC current on resonance conditions

Next we derive the susceptibility tensor in the presence of DC torques, created via a DC current in the SWW. The DC current creates a DC Ørsted eld and a DC eld-like torque, as well as a DC damping-like torque. The projection of the Ørsted eld and the eective eld of the eld-like torque onto the axis of the external eld do not change the expression of the susceptibilities, beyond a shift of the resonance frequency. The resonance shift can be obtained by substituting ω H in Eq. (1.38) by:

ω H = γµ 0 (H + H s ) (3.10)
where H s is the projection of the DC Ørsted eld and the DC eld-like torque onto ẑ, the axis parallel to the external eld H. A schematic is given in Fig. 3.2. Given that the Ørsted eld can be estimated, a study of the resonance eld shift vs. current will allow us to extract the eld-like torque amplitude β f l .

The components of these elds that are perpendicular to the external eld will induce a shift of the equilibrium magnetization, i.e., the direction around which the dynamic magnetization will precess. This may change the expressions of the susceptibilities because it requires writing the LLG equation in a new basis, in which the expression of the eective eld H eff is more complicated. In our work, we neglect this shift because the external eld applied at resonance is up to 2 orders of magnitude greater than the DC Ørsted eld and DC eld-like torque, as the experimental results in Sec. 3.5.1 will show.

Thus, we consider that the magnetization equilibrium is unmodied by the DC Ørsted eld and the DC eld-like torque produced by the DC current.

Inuence of the DC damping-like torque on resonance conditions

Next we calculate the susceptibility under excitation from an RF Ørsted eld, in the presence of a DC damping-like torque. Similarly to the previous section, a damping-like torque can shift the equilibrium magnetization slightly though this can also be neglected due to the smallness of the damping-like torque vs. the applied eld. For completeness now we provide here the equation that has to be solved to determine the new static equilibrium. First, we take the LLG equation with

dM dt = 0: 0 = -γµ 0 M × H 0 eff - γβ dl M s M × (M × P) (3.11)
where P = J c × n and H 0 eff is the expression of the eective eld at equilibrium. By setting M = (0, 0, M s ), we implicitly set the coordinate system to the one in which ẑ is parallel to the equilibrium magnetization. Thus, we obtain the equilibrium condition from the ẑ component of the vector equation (3.11):

0 = µ 0 m x H 0 ef f,y -m y H 0 ef f,x + β dl (m x P x + m y P y ) 0 = m x µ 0 H 0 ef f,y + β dl P x + m y -µ 0 H 0 ef f,x + β dl P y (3.12)
where H 0 ef f,i are the components of the eective eld at equilibrium. Excluding trivial solutions such as m x = 0 and m y = 0, the only solution of interest is:

β dl P x + µ 0 H 0 ef f,y = 0 β dl P y -µ 0 H 0 ef f,x = 0 (3.13)
These are the equilibrium conditions imposed by the DC damping-like torque, as H 0 eff depends on the equilibrium position and thus solving Eq. (3.13) will give the equilibrium position.

The next step is to determine the susceptibility in presence of the DC damping-like torque. The dynamic LLG equation with a damping-like torque is written:

dM dt = -γµ 0 (M × H eff ) + α M s M × dM dt - γβ dl M s M × (M × P) (3.14)
The last term in the equation must be linearized around the equilibrium position dened by Eq. (3.13). This is done similarly to the linearization performed in Sec. 1.2.3. From Eqs. (3.2) and (3.9), the dynamic excitation eld due to the Ørsted eld, eld-like torque and damping-like torque is written:

h =   h † x h † y 0   =   h dl,x h f l,y + h ø,y 0   (3.15)
where we use the expressions with daggers in the following equations for convenience.

Replacing the vectors in Eq. (3.14) by their expressions , we have:

iω   m x m y 0   = -γµ 0      m y H 0 ef f,z -M s H 0 ef f,y + h † y M s H 0 ef f,x + h † x -m x H 0 ef f,z m x H 0 ef f,y + h † y -m y H 0 ef f,x + h † x      + iαω   -m y m x 0   -γβ dl   -M s P x -m x P z -M s P y + m y P z m x P x + m y P y   (3.16)
Neglecting second order quantities involving products of m i and h † i , and using Eq. (3.13) to eliminate terms, we obtain:

iω m x m y = -γµ0 m y H 0 ef f,z -M s h † y M s h † x -m x H 0 ef f,z + iαω -m y m x -γβ dl -m x P z m y P z (3.17)
Using the expression of the eective eld, given in Eq. (1.34), we have:

iω m x m y = -γµ 0 m y H z -M s h † y M s h † x + m x 2K i µ 0 M 2 s t f -1 -m x H z +iαω -m y m x -γβ dl -m x P z m y P z (3.18)
Solving for the excitation elds h † x and h † y and using Eqs. (1.26) and (1.37) yields:

h † x h † y = 1 ω M ω H + ω M -ω K + iαω -iω + γβ dl P z iω -γβ dl P z ω H + iαω m x m y (3.19)
Finally, we obtain the susceptiblity tensor in the case of a DC damping-like torque:

χ = ω M ω 2 0 -ω 2 + iω (α (2ω H + ω M -ω K ) -2γβ dl P z ) ω H iω -γβ dl P z -iω + γβ dl P z ω H + ω M -ω K χ = χ p ω H iω -γβ dl P z -iω + γβ dl P z ω H + ω M -ω K (3.20)
where we neglected the iαω terms in the diagonal elements, and the prefactor is called χ p . The resonance frequency, which is given by the real part of the denominator of χ p , is ω 2 0 = ω H (ω H + ω M -ω K ), after neglecting the second order quantities (αω) 2 and (γβ dl P z ) 2 . It is the same as the one given in Eq. (1.38).

The imaginary part of the denominator of χ p in Eq. (3.20) is responsible for the damping and the linewidth of the resonance peak. Following the same steps that allowed us to transform Eq. (1.44) into Eq. (1.47), we write χ p in Eq. (3.20) as a function of the applied eld H and the resonance eld H r :

χ p = 1 γµ 0 M s H + H r + M ef f (H -H r ) -i ω γµ 0 α(M ef f +2H)-2β dl Pz/µ 0 H+Hr+M ef f (H -H r ) 2 + ω γµ 0 α(M ef f +2H)-2β dl Pz/µ 0 H+Hr+M ef f 2 (3.21)
where we dene a generalized expression for the linewidth in the presence of a dampinglike torque, as was done in Eq. (1.50):

∆H g = ω 2γµ 0 α (M ef f + 2H) -2β dl P z /µ 0 H + H r + M ef f (3.22)
which at resonance gives:

lim H→Hr ∆H g = 2ω γµ 0 α - 2β dl P z /µ 0 2H r + M ef f = ∆H 0 + ∆H dl ∆H dl = - 4ω γµ 0 β dl P z /µ 0 2H r + M ef f (3.23)
where ∆H 0 is given in Eq. (1.50). Thus, the total linewidth is the sum of the Gilbert-type contribution ∆H 0 and of the linewidth contribution of the damping-like torque ∆H dl .

Since the sign of P z is dependent on the sign of the DC current, it is straightforward to see that for a given polarity the damping-like torque will reduce the linewidth and for the opposite polarity it will increase it. Thus, a study of the linewidth vs. applied current should allow us to characterize the damping-like torque coecient β dl .

Electrical detection of magnetization dynamics

In this section we calculate the expression of the DC signals that we can detect in our ST-FMR experiment when the magnetization is resonantly excited by one of the RF elds discussed in Sec. 3.2.1 and 3.2.2. In magnetic stacks where there are two conductive layers, the ferromagnetic and normal metal layers, we have considered two possible sources for detecting a DC voltage in response to magnetization dynamics. The rst is a rectication due to anisotropic magnetoresistance, which generates a DC voltage in the FM layer, and the second is due to the combined eects of spin-pumping and inverse spin Hall eect, which generates a DC current in the NM layer. In both cases, the signal is calculated by combining the excitation of the magnetization, represented by the susceptibility tensor and the corresponding excitation eld, Eq. (3.15), with the relevant phenomena responsible for the detection of the signal, AMR or the iSHE.

It is noted that depending on the excitation eld and mechanisms (see Sec. 3.2), dierent components of the susceptibility tensor will be responsible for the dynamic response and will lead to dierent expressions and angular dependencies for the same detection scheme. Therefore, in the next sections we derive the expression for the DC voltage signals combining the dierent excitation with the dierent detection schemes.

DC signal via to anisotropic magnetoresistance

In this section we will calculate the voltage resulting from AMR, rst with the Ørsted eld (or equivalently the eld-like torque) as the excitation, with h ŷ , then with the damping-like torque as the excitation: h x. The DC signal arises from the interplay of the oscillating anisotropic magnetoresistance through the oscillating magnetization, and the injected RF current. The magnetization in previous sections is expressed in the (x, ŷ, ẑ) basis (see Fig. 3.2), where ẑ is aligned with the static magnetic eld H, assumed to be in the plane of the thin lm, at an angle θ H with respect to the long axis of the SWW. On the other hand, the current density vector J, also in the thin lm plane, is more easily expressed in its own basis (x , ŷ , ẑ ), where J is parallel to ẑ which is the SWW long axis. The two coordinate systems are shown in Fig. 3.2, where the angle between ẑ and ẑ is θ H , and x = x . Thus it is necessary to dene a rotation matrix U between the coordinate system dening the equilibrium direction of M, called b, and the primed coordinate system dening the device geometry, called b :

  1 0 0 0 cos θ H -sin θ H 0 sin θ H cos θ H     x y z   b =   x y z   b (3.24)
Thus, the components of a vector in the basis b can be obtained by calculating a = U a.

For clarity, some vectors, matrices, and their components will be written with a prime symbol to indicate that they are written in the primed basis b . The static and dynamic magnetizations become, in the primed coordinate system:

M eq =   0 -M s sin θ H M s cos θ H   m =   m x m y cos θ H m y sin θ H   (3.25)
where m x and m y are the dynamic components of the magnetization in the (x, ŷ, ẑ) coordinate system. Using the general expression for the voltage that arises from AMR, given in Eq. (1.87), we write:

V AM R = lw 0 ∆ρ AM R M 2 s (j c • M )M • dl (3.26)
where j c is the RF charge current owing in the SWW and we integrate the electric eld due to AMR along ẑ across the length l w of the SWW (between the two contact points A and B shown in Fig. 3.2). Taking the time-averaged value of the AMR voltage, we obtain the DC voltage that arises from AMR, assuming a uniform magnetization and electric eld:

V amr = l w ∆ρ amr M 2 s (j c • M )(M • ẑ ) = l w ∆ρ amr M 2 s j c z M • ẑ 2 (3.27)
where j c = j c z ẑ , and the symbols indicate time-averaging. Using Eq. (3.25) to express M = M eq + m , we have:

V amr = l w ∆ρ amr M 2 s j c z M 2 s cos 2 θ H + m 2 y sin 2 θ H + 2M s m y cos θ H sin θ H (3.28)
In the equation above, only j c z and m y have a time dependence. Therefore only uneven powers of m y inside the parenthesis can give rise to rectication via the product with j c z , which leaves only the last term. Using Eqs. (3.15) and (1.21) and the susceptibility tensor, we can express m y as:

m y = -iχ xy h † x + χ yy h † y (3.29)
where h † x and h † y are the complex components of the RF elds in the (x, ŷ, ẑ) coordinate system. This equation shows that dierent components of the susceptibility tensor will contribute to the detected signal, depending on the excitation, as evaluated further.

Excitation by a eld-like torque

Let us rst treat the case where the RF eld is generated by the eld like torque or the Ørsted eld. The RF current ows in the SWW in the ẑ direction and the components of h are more easily written in the primed coordinate system. Setting the damping-like term h dl,x = h † x = 0 in Eq. (3.29) and using the inverse of the rotation matrix U in Eq.

(3.24), we have:

m y = χ yy h † y = χ yy cos θ H h † y (3.30)
where h † y contains the projections on ŷ of the RF Ørsted eld and the eective eld of the eld-like torque. They are assumed to be uniform in the volume of the SWW. The voltage in Eq. (3.28) becomes:

V f l amr = 2l w ∆ρ amr M s cos 2 θ H sin θ H j c z χ yy h † y = 2l w ∆ρ amr M s cos 2 θ H sin θ H j c z χ yy h † y (3.31)
We introduce the lineshape by expressing χ yy using its Lorentzian and dispersive components, given by Eq. (1.43):

V f l amr = 2l w ∆ρ amr M s cos 2 θ H sin θ H j c z (D + iL)A yy h † y (3.32)
We will introduce the complex time dependence, which was ignored up until now, but rst we remind that when dealing with complex variables, the real voltage is given by:

V r = Re (A) Re (B)

(3.33)
where A and B are complex numbers. Thus the real DC voltage that arises due to AMR in ST-FMR, between the electrodes of the ferromagnet is given by:

V f l amr = 2l w ∆ρ amr M s cos 2 θ H sin θ H I f w w t f Re e iωt A yy (H f l + H ø ) Re (D + iL)e iωt = 2l w ∆ρ amr w w t f M s I f (H f l + H ø )A yy cos 2 θ H sin θ H cos(ωt) (D cos(ωt) -L sin(ωt)) = l w ∆ρ amr w w t f M s I f (H f l + H ø )A yy D cos 2 θ H sin θ H ∝ D (3.34)
where j c z =

I f
wwt f e iωt , I f being the real amplitude of the RF current owing in the FM layer, w w being the width of the SWW and t f being the thickness of the ferromagnet;

h † y = (H f l + H ø )e iωt
, where H ø and H f l are the real amplitude of the RF Ørsted eld and of the RF eective eld of the eld-like torque. Both are proportional to the current owing in the NM layer.

Since I f , H f l and H ø are all proportional to the total RF current in the SWW, the signal is proportional to the RF power. Moreover, we nd that the signal that arises from AMR rectication in the case of eld excitation has a purely dispersive lineshape.

Excitation by a damping-like torque Now let us treat the same problem with the damping-like torque as the excitation source. We can start from Eq. (3.28). In this case, the excitation eld, given in Eq. (3.9), only has one component involved in the magnetization dynamics, and since it aligned with x, it has the same expression in both coordinate systems. Thus, Eq. (3.29) becomes, with the eld-like and Ørsted set to zero (h † y = 0) :

m y = -iχ xy h † x = -iχ xy h dl,x (3.35) 
Following the same steps down to Eq. (3.34), we obtain:

V dl amr = 2l∆ρ amr M s cos 2 θ H sin θ H I f w w t f Re e iωt H dl A xy Re -i(D + iL)e iωt = 2l w ∆ρ amr w w t f M s I f H dl A xy cos 2 θ H sin θ H cos(ωt)L cos(ωt) + D sin(ωt) = l w ∆ρ amr w w t f M s I f H dl A xy L sin(2θ H ) cos θ H ∝ L (3.36)
where h dl,x = H dl e iωt and H dl is the real amplitude of the eective eld of the dampinglike torque and is proportional to the current owing in the NM layer. The voltage here is proportional to the RF power as well.

Thus, we nd that the signal that arises from AMR rectication in the case of damping-like torque excitation has a purely Lorentzian lineshape.

Conclusion for AMR

The voltages for AMR rectication have a similar expression for the eld-like exci- The charge current leads to a voltage drop along the ẑ direction, measured between the two contacts A and B shown in the schematics of Fig. 3.2. Thus, the generated current density vector of interest is parallel to ẑ , which is at an angle θ H with respect to the applied eld axis ẑ. According to Eq. (1.80), the precession will create the following spin currents at the interface:

  J s 0 x x J s 0 x y J s 0 x z   b = hG r 4πM 2 s M × dM dt (3.37)
The charge current of interest is the one along ẑ and according to Eq. (1.79), it is created by the following spin currents via the iSHE:

J c z = 2 e θ SH h J s x y -J s y x (3.38)
We assume that there are no spin currents owing in the ŷ direction that penetrate the Ta layer, and therefore that only the spin current owing in the x direction through the interface, J s 0

x y , contributes. In the primed coordinate system, we have:

J s 0 x y = hG r 4πM 2 s ŷ • M eq + m × dm dt = hG r 4πM 2 s (M s ṁx cos θ H + sin θ H (m y ṁx -m x ṁy )) (3.39)
Following the same line of thought that led to Eq. (3.33), if we are interested in the real value of the spin current density, we must calculate it using the real values of the magnetization components when multiplying them:

J s 0 x y = hG r 4πM 2 s (M s Re( ṁx ) cos θ H + sin θ H (Re(m y )Re( ṁx ) -Re(m x )Re( ṁy ))) (3.40)
Since only m x , m y , ṁx and ṁy have time dependence, the rst term of the right hand side of the equation above disappears when taking the time average of the spin current, and we only have to calculate the last two terms Re(m y )Re( ṁx ) -Re(m x )Re( ṁy ).

Excitation by a eld-like torque First we will treat the excitation via an RF Ørsted eld (or, equivalently, a eld-like torque) created by a current owing through the Ta layer and creating a RF homogeneous eld along ŷ . The relationship between the magnetization and the excitation eld, Eq.

(1.21), becomes:

m x m y = χ xx iχ xy -iχ xy χ yy 0 h † y cos θ H (3.41)
where we used the rotation matrix U to write h † y (the sum of the Ørsted eld and the eective eld of the eld-like torque) in the b basis. To calculate the last two terms of Eq.

(3.40), we use Eq. (1.43) and the one above to express the magnetization components and their derivatives:

m x = ih † y A xy cos θ H (D + iL) ṁx = -ωh † y A xy cos θ H (D + iL) m y = h † y A yy cos θ H (D + iL) ṁy = iωh † y A yy cos θ H (D + iL) (3.42)
where the derivative of the Ørsted eld is ḣ † y = iωh † y . Taking the real parts yields: 

Re(m x ) = (H f l + H ø )A xy cos θ H (-D sin(ωt) -L cos(ωt)) Re( ṁx ) = ω(H f l + H ø )A
Re(m y )Re( ṁx ) -Re(m x )Re( ṁy ) = -ω(H f l + H ø ) 2 cos 2 θ H sin θ H A xy A yy D 2 + L 2 = -ω(H f l + H ø ) 2 cos 2 θ H sin θ H A xy A yy L (3.44)
where we used the equality

3 D 2 + L 2 = L.
The spin current at the interface in Eq. (3.40) becomes:

J s 0 x y = - hωG r 4πM 2 s (H f l + H ø ) 2 cos 2 θ H sin θ H A xy A yy L = J s 0 x y (3.45)
3 The result of D 2 + L 2 depends on how D and L are dened. They are given in Eq. (1.48). However the result is always proportional to L.

The time dependence has disappeared, therefore the equation already gives the DC spin current at the interface. Combining Eq. (3.45) with Eq. (1.81), we have the expression of the spin current as a function of depth as it decays in the NM:

J s x y = J s 0 x y sinh ((x -t n )/l sd ) sinh(t n /l sd ) (3.46)
Then, by combining the equation above with Eq. (3.38) and integrating along the thickness and the width of the NM, we have an expression for the real charge current generated by the iSHE in the NM that ows along the ẑ axis:

I c z = 2 e θ SH h J s 0 x y ww 2 -ww 2 tn 0 sinh ((x -t n )/l sd ) sinh(t n /l sd ) dx dy = - 2w w l sd e θ SH h J s 0 x y tanh t n 2l sd (3.47)
where t n is the thickness of the NM and l sd its spin diusion length, and w w is the width of the SWW. Replacing J s 0

x y by its expression in Eq. (3.45) we obtain:

I c z = w w e G r l sd θ sh 2πM 2 s ω(H f l + H ø ) 2 cos 2 θ H sin θ H A xy A yy L tanh t n 2l sd (3.48)
Finally, we can write the DC voltage that arises due to the combined eects of spinpumping and the inverse spin Hall eect, under an Ørsted eld (or equivalently, a eldlike torque) excitation:

V f l ishe = ρ n l w e G r l sd θ sh 2πt n M 2 s ω(H f l + H ø ) 2 cos 2 θ H sin θ H A xy A yy L tanh t n 2l sd (3.49)
where ρ n is the resistivity of the NM and l w the length of the SWW. Thus, we nd that the signal that is generated by the iSHE in the case of eld excitation has a purely Lorentzian lineshape.

Excitation by damping-like excitation

Now we shall calculate the voltage that arises from a damping-like torque excitation.

Starting from Eq. (3.40), we must calculate the last two terms. The relationship between the magnetization and the equivalent eld of the damping-like torque is given by:

m x m y = χ xx iχ xy -iχ xy χ yy h dl,x cos θ H 0 (3.50)
where we used the rotation matrix dened in Eq. (3.24). The components of the magnetization and their derivatives are: 

m x = h dl,x A xx cos θ H (D + iL) ṁx = iωh dl,x A xx cos θ H (D + iL) m y = -ih dl,
V dl ishe = ρ n l w e G r l sd θ sh 2πt n M 2 s ωH 2 dl cos 2 θ H sin θ H A xy A xx L tanh t n 2l sd (3.54)
Thus, we nd that the signal that is generated by the iSHE in the case of damping-like torque excitation has a purely Lorentzian lineshape as well.

Conclusion: AMR vs iSHE

To conclude, we have calculated all the voltages that we expect to contribute to the signals detected along the SWWs, under an in-plane saturating magnetic eld at an angle θ H , and injecting an RF current in the SWW at a frequency ω. There are three possible RF excitation sources in our Ta/FeCoB/MgO system: the damping-like torque, the eldlike torque and the Ørsted eld; the latter two being indiscernible. These excitations can each combine with anisotropic magnetoresistance rectication or the combined spinpumping and inverse spin Hall eect, resulting in a DC signal. This results in a linear combination of up to 4 voltages, the lineshapes of which are summarized in Table 3.1.

We recall the calculated voltages here for convenience:

V f l amr = l w ∆ρ amr w w t f M s cos 2 θ H sin θ H I f (H f l + H ø )A yy D V dl amr = l w ∆ρ amr w w t f M s sin(2θ H ) cos θ H I f H dl A xy L V f l ishe = l w ρ n e G r l sd θ sh 2πt n M 2 s tanh t n 2l sd cos 2 θ H sin θ H ω(H f l + H ø ) 2 A xy A yy L V dl ishe = l w ρ n e G r l sd θ sh 2πt n M 2 s tanh t n 2l sd cos 2 θ H sin θ H ωH 2 dl A xy A xx L (3.55)
where the terms A ij are dened in Eq. (1.48) 4 . The amplitudes I f , (H f l + H ø ) and H dl are all proportional to the amplitude of the current applied to the whole SWW, therefore all 4 voltages scale with the RF power. Additionally, in this conguration all of the voltages have the same dependence on the in-plane angle θ H of the applied eld, despite the dierent expressions of AMR and spin-pumping and the iSHE. However, AMR and the iSHE have a dierent out-of-plane angle dependence. The AMR and iSHE voltages have been calculated for numerous congurations by Harder et al. in [START_REF] Harder | Electrical Detection of Magnetization Dynamics via Spin Rectication Eects[END_REF], including dierent RF excitation directions, detection axes, and applied eld directions. Unfortunately we could not perform out-of-plane eld measurements with the electromagnet at our disposal.

FeCoB alloys are known to have weak ρ amr compared to NiFe alloys, and the proportion of current owing in the FeCoB layer is expected to be small given that the Ta layer is 4 times thicker than the FeCoB, at comparable resistivities. Another dierence lies in the frequency dependence of the signals, given by the direct dependence on ω as well as via the A ij terms (see Eq. (1.48)). However such a study would require impedance matched devices so that signals at dierent frequencies can be easily compared. As can be seen in Fig. 3.3 in Sec. 3.4, the variability of the amplitudes of the resonance peaks for dierent frequencies indicates that the devices are not t for a frequency-dependent study.

This conclusion is supported when analyzing the lineshape. We give an example in Fig. 3.4 in Sec. 3.4.1, which shows that the lineshape of the peak is Lorentzian, indicating that V f l amr , which is the only signal with a dispersive lineshape, is negligible. This implies that the studied system either does not exhibit eld-like torque or does not give a strong AMR signal. However, the eld-like torque has been measured in Ta/Fe 72 Co 8 B 20 /MgO samples fabricated using the same deposition machine as our devices, by other measurement techniques [START_REF] Garello | Symmetry and Magnitude of SpinOrbit Torques in Ferromagnetic Heterostructures[END_REF]. The eld-like torque has also been measured in similar Fe-rich systems such as Ta/Fe 60 Co 20 B 20 /MgO [START_REF] Kim | Layer Thickness Dependence of the Current-Induced Eective Field Vector in Ta|CoFeB|MgO[END_REF]. Thus it is reasonable to expect similar dependencies for the materials studied here, and the absence of a dispersive lineshape in our measurements indicates that the AMR signal is weak. With this, we conclude that the iSHE is the dominant source of the signal in our SWWs.

Moreover, the results of Chap. 4 are obtained in a conguration where the AMR contribution is expected to be minimum and the iSHE contribution maximum, indicating that the signals detected are purely the result of spin-pumping and the iSHE (see Sec. 3.4 ST-FMR characterization of Ta/FeCoB/MgO at zero DC current

In this section, ST-FMR will be used to characterize materials properties of the SWW, using an RF current for the excitation of the ferromagnetic resonance, but without a DC current.

By characterizing the resonance eld H r and the resonance linewidth ∆H as a function of frequency and FeCoB layer thickness, magnetic properties such as the saturation magnetization, interfacial anisotropy and the damping can be obtained in principle. All the devices measured in this chapter have a width of w w = 1 µm. First we will describe the measurement protocol and verify the angle dependence that was calculated in Eq.

(3.55). Thereafter we will present the dynamic ST-FMR characterization of the SWW at zero DC current.

Measurement protocol

A sinusoidal RF current, set at constant frequency throughout the measurement, is sent through the SWW. The electromagnet is set such that the eld will be in the plane of the device at an angle θ H = 68 • with respect to the long axis of the SWW, as shown in Fig. 3.2. The magnetic eld is initially at µ 0 H = 0 mT and is then slowly decreased to µ 0 H = -170 mT and then increased to µ 0 H = 170 mT, and nally decreased back to µ 0 H = 0 mT. The eld step, for all segments, is 1 mT. The eld is swept across the resonance a total of 4 times: twice for negative elds and twice for positive elds. The DC voltage is measured along the SWW, with the signal-to-noise ratio enhanced via the modulation of the RF power and the lock-in amplier. 

V = V m ∆H 2 4 (H r -H) 2 + ∆H 2 4 + V 0 (3.56)
where H is the applied eld, V 0 is an oset voltage, H r is the resonance eld, V m is the maximum voltage of the resonance peak and ∆H its full width at half maximum. An 

Linearity with respect to RF power

The models and equations provided in Sec. 3.2 and 3.3 have been developed in the linear approximation of the Landau-Lifshitz equation, which is inherently nonlinear.

Thus, we must make sure that the magnetization dynamics we study are in the linear response regime. In the nonlinear regime, eects take place such as two magnon scattering can take place [Hei85; Hur98; Kri10]. The two-magnon scattering process involves the coupling between the uniform FMR mode and degenerate spin-waves which have the same resonance frequency, leading to increased relaxation of the uniform mode. In practice, the linear regime is characterized by the FMR linewidth being proportional to the frequency, or the square of the resonance peak voltage being proportional to the absorbed RF power.

We attempted to reach the non-linearity by increasing the RF power up to the limit of our signal generator. When plotting the logarithm of the resonance peak voltage as a function of the power in dBm (resulting in a log-log plot), the peak voltage is still linear with respect to RF power even at +10 dBm. This is due to the fact that the SWW is not impedance-matched to the signal generator which has a source impedance of 50 Ω. Indeed, the 1 µm-wide SWWs have a resistance between 2 and 3 kΩ, resulting in a reection coecient of:

Γ = Z l -Z s Z l + Z s = 2000 -50 2000 + 50 ≈ 95% (3.57)
where Z l is the SWW load impedance and where Z s is the source impedance of the signal generator, and we considered only purely resistive behavior. This means that less than 5% of the RF power is transmitted to the SWW. For an RF power of +10 dBm at the the signal generator output, only -3 dBm is transmitted to the SWW.
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In fact, the linearity limit can be observed in the data presented in Fig. 3.24 in Sec.

3.5, where a DC current is added to the RF power in the SWW. The combined RF+DC power in this case leads to non-linear behavior visible in the linewidth of the resonance.

Angle dependence

Since both AMR and the iSHE have the same angle dependence for an in-plane eld in ST-FMR, the two rectication eects cannot be decoupled this way. We nevertheless performed an angle-dependent measurement to verify that the signal has at least the expected symmetry calculated in Eq. (3.55). The resonance peak amplitude as a function of eld angle is shown in Fig. 3.5 and is tted by sin θ H cos 2 θ H , which carries the expected symmetry for in-plane AMR and the iSHE, calculated in Sec. 3.3.1 and 3.3.2. To completely ascertain the source of the signal, an out-of-plane angle-dependent measurement is necessary but such an electromagnet was not at out disposal.

The angular dependence in Fig. 3.5 shows that the signal has a maximum at 45 • and minima at 0 • and 90 • , which are repeated periodically. Therefore it would make sense to set the external eld at 45 • . This angle takes into account the angular dependence of the detection mechanism (iSHE in our case) and the angular dependence of the excitation mechanism (a greater excitation would result in a larger precession cone and thus a greater signal). However, for the experiments in Sec. 3.5.1 and 3.5.2, where the DC eld-like and damping-like torques are studied, it is favorable to use an angle where their amplitudes are maximized, which is 90 • . Thus, θ H = 68 • was chosen as a compromise between signal strength and DC torque eciency.

The contribution at resonance of the anomalous Nernst eect, which has a cos θ H dependence on the applied eld angle [START_REF] Schultheiss | Thermoelectric Detection of Spin Waves[END_REF], can also be dismissed. This is due to the extremely small thickness of the FM layer, which likely has a negligible temperature gradient.

Another possible rectication is the spin Hall magnetoresistance,

Saturation magnetization and interfacial anisotropy

ST-FMR can be used to extract basic material parameters such as the saturation magnetization and the interfacial anisotropy. By sweeping the eld while applying an RF current at constant frequency, we extract the resonance eld from the Lorentzian t, dened in Eq. (3.56). This measurement is repeated for a number of frequencies in the GHz range, at zero DC current for devices of dierent FM layer thickness, listed in Table 6 In reality the transmission cables, contact probes, contact pads and the SWW itself all have complex impedance. Since the SWW is much smaller than the wavelength in free space of the applied RF current, the impedances can be approximated by their real resistances. The other components have much smaller resistances than the SWW. 2.2. For the Ta/FeCoB/MgO system, the interfacial anisotropy due to the FeCoB/MgO interface and the demagnetizing eld have to be taken into account. The resonance frequency is given by Eq. (1.38), which can be written in units of GHz and as a function of the eective magnetization M ef f (given in Eq. (1.14)):

f r = γ µ 0 H (H + M ef f ) (3.58)
where γ = γ 2π = 29.25 GHz T -1 is the gyromagnetic ratio, f r is the resonance frequency in GHz, H is the applied eld and M ef f is the eective magnetization which includes the demagnetizing eld and the interfacial anisotropy eld. Rearranging the equation above and solving for H > 0 gives the resonance eld H r as a function of the applied frequency f :

H r = 1 2   -M ef f + M 2 ef f + 2f γ µ 0 2   (3.59)
In Fig. 3.6 we show the resonance elds as a function of frequency for a set of devices with FeCoB thickness ranging from 1.16 to 1.34 nm. We use Eq. (3.59) to t the experimental data. For devices with an out-of-plane magnetization (described by Q > 1 in Fig. 3.6, and dened in Eq. (3.61)), the resonance eld given in Eq. (3.59) is an approximation under the assumption that the eld saturates the magnetization (this is further discussed at the end of this subsection). We extract M ef f from the ts, and plot it as a function of thickness in Fig. 3.7. The eective magnetization is related to the thickness by Eq.

(1.14):

M ef f = M s - 2K i µ 0 M s t f (3.60)
which allows us to linearly t the eective magnetization as a function of the inverse FeCoB thickness. The equation ts the data very well for devices with M ef f > 0, but not as much for devices with M ef f < 0. In-plane samples are characterized by Q < 1 and out-of-plane samples by Q > 1. Continuous lines are tted to the data using Eq. (3.59).

The t yields M s = (1.48 ± 0.04) MA m -1 for the saturation magnetization 7 and an interfacial anisotropy constant of K i = (1.67 ± 0.07) mJ m -2 , which results from both interfaces. The critical thickness where the magnetization switches from in-plane to outof-plane magnetized, extracted from the condition M ef f = 0, is t c = (1.21 ± 0.05) nm as shown in Fig. 3.7.

It is convenient to characterize the thickness dependence via the Q-factor 8 which is the ratio between the anisotropy eld and the demagnetizing eld, or equivalently the 7 µ0Ms = (1.87 ± 0.05) T.

8 Not to be confused with the quality factor used to describe how underdamped a harmonic oscillator is, or how sharp a resonance peak is relative to its base. ratio between the anisotropy energy and the demagnetizing energy [START_REF] Beaujour | Ferromagnetic Resonance Study of Sputtered Co|Ni Multilayers[END_REF]:

Q = 2K i µ 0 M 2 s t f = t c t f (3.61)
where the condition t f = t c is equivalent to Q = 1 and M ef f = 0. Thus, in zero eld, an in-plane magnetized SWW is characterized by Q < 1 and an out-of-plane SWW by Q > 1. The devices measured in this chapter vary from Q = 0.90 (t f = 1.34 nm) to Q = 1.05 (t f = 1.16 nm). The relation between Q and t f is shown in Fig. 3.8. From now on, data and devices will be referred to by their Q-factor, instead of their thickness.

We did not take into account a possible dead layer for the thickness of the ferromagnet and for the Q-factors described in this work. When a ferromagnetic layer is sputtered onto Ta (or vice-versa), part of the ferromagnetic material intermixes with the Ta. The resulting non-magnetic layer is called the dead layer. It has been shown by Cuchet in her thesis [START_REF] Cuchet | Magnetic and transport properties of single and double perpendicular magnetic tunnel junctions[END_REF], using the same deposition machine and the same FeCoB alloy, that the FeCoB/Ta interface results in a magnetic dead layer. The thickness of the dead layer depends on the Ta thickness and on the order of deposition: for Ta deposited on top of FeCoB, it can be up to 0.6 nm thick, whereas for FeCoB deposited on top of Ta, it is only 0.3 nm. The thicker dead-layer resulting from the deposition of Ta on top of FeCoB can be explained by the bombardment of the latter by heavy Ta ions, increasing the intermixing between the materials. In our case, since the Ta is deposited rst, we expect a moderate dead layer thickness, but we have not measured it precisely. To give an idea of the Q-factor that would result from taking into a possible account dead layer, we provide in Fig. 3.8 the Q-factor for the devices (blue stars) calculated using:

Q = t c -t d t f -t d (3.62)
where the dead layer thickness estimate is t d = 0.3 nm. The transition from out-of-plane to in-plane magnetization is dened by Q = 1 in both models. The values of Q for the devices do not change signicantly because they are near Q = 1, which is where the dierence between the models with and without dead layers is smallest. If we assume 0.3 nm of dead layer, we obtain M s = (1.15 ± 0.04) MA m -1 for the saturation magnetization 9 and K i = (0.75 ± 0.07) mJ m -1 for the anisotropy constant. 10 For comparison, in [START_REF] Cuchet | Magnetic and transport properties of single and double perpendicular magnetic tunnel junctions[END_REF], Cuchet found M s = 1.03 MA m -1 with 0.24 nm of dead layer in Ta(0.3)/Fe 72 Co 8 B 20 (1.2-2.2)/MgO (thicknesses in nm). 11 While the possible errors for M s and K i are potentially signicant, most of the data represented in this chapter depend on either Q, which changes by up to 2.5% when accounting a dead layer of 0.3 nm, or on M ef f , which is unaected. Due to the fact that we did not measure the dead layer thickness, in this chapter we simply used the uncorrected values of Q that do not take into account the dead layer thickness (black squares in Fig. 3.8). The thicknesses we indicate for each device are the nominal thicknesses at each position on the wafer that we expect from the calibration of the deposition machine. Thus, any drift from the calibration introduces errors that we cannot easily account for.

Therefore, in any thickness-dependent graph, the error bars do not take into account the possible error in the thickness or the Q-factor of the device.

To demonstrate the self-consistency of the ts, we calculate the expected resonance eld for f r = 3.5 GHz, which is the frequency used for the DC SOT characterization in Sec. 3.5.1 and 3.5.2, using Eq. (3.59) as a function of the Q-factor, and compare it to the experimental results. The results are shown in Fig. 3.9, and we nd that the calculated values t the variation in thickness adequately.

In order to extract material parameters from FMR it is preferable to be in the condition where the equilibrium magnetization is aligned with the external eld's direction, i.e., the magnetization is saturated. The formulas for the FMR resonance eld and the linewidth in Sec. 1.2.5 were derived under this condition. For SWWs with Q < 1 this is always the case since the in-plane shape anisotropy is negligible. However for devices with Q > 1, we must verify that the magnetization is saturated by our electromagnet, which can apply a maximum eld of µ 0 H = 170 mT in the plane. Using the saturation 9 µ0Ms = (1.44 ± 0.05) T.

10 This result is obtained by plotting µ0M ef f as a function of (t f -0.3 nm), where t f is the nominal FeCoB thickness, and performing a linear t similarly to the one done in Fig. 3.7. 11 The composition is abbreviated. The full stack composition is: substrate/Ta(3)/Pt(5)/(Co(0.5)/Pt(0.25))5/Co(0.5)/Ru(0.9)/(Co(0.5)/Pt(0.25))3/Co(0.5)/Ta(0.3) /Fe72Co8B20(1.2-2.2)/MgO/Fe72Co8B20(0.8-1.8)/Ta(1)/Pt(2) (thicknesses in nm). 3.10. For a given Q-factor such that Q > 1, the resonance curve is described by two monotonic parts with the saturation eld H sat marking a clear divide between the parts. For H < H sat , the resonance frequency f r decreases with the applied eld H while for H > H sat , f r increases with H. Comparing Fig. 3.10 to Fig. 3.6, we see that the experimentally extracted resonance elds for all thicknesses always increases with f , thus for all Q, the devices have been saturated.

12 With this, Eq. (3.59) gives a good approximation of the resonance eld for devices with Q > 1. For SWWs with a Q-factor up to 1.08, the magnetization should be saturated by the maximum available eld. However, in practice we could not adequately measure resonances for a SWW with a Q-factor higher than 1.05, therefore, devices with Q > 1.05 are not included in the discussions here.

Linewidth and damping in the absence of DC current

The eld linewidth ∆H can be used to extract information on the damping constant α of the material as well as inhomogeneous contributions to the linewidth. Using the 12 Fig. 3.10 is a plot of resonance frequency as a function of applied eld, while Fig. 3.6 is a plot of resonance eld as a function of applied frequency. expression of the Gilbert-type linewidth in Eq. (1.50) when H is near the resonance eld H r , the eld linewidth is related to the damping parameter:

∆H 0 = 2αf r γ µ 0 (3.63)
where γ is the gyromagnetic ratio in GHz T -1 and ∆H 0 is the Gilbert-type contribution to the linewidth. However the linewidth can have other contributions, therefore instead of calculating α from only one data point, the usual method is to measure the linewidth at several frequencies and to t the curve with a linear function. The slope is equal to 2α γ µ 0 according to Eq. (3.63). As an example, we show the linear tting of the linewidth in Fig. 3.11 for a device with Q = 0.91, obtaining α = 0.016. Unfortunately, not all devices were investigated with the same range of frequencies, 13 resulting in an incomplete picture in terms of linewidth vs. frequency, and thus α. Furthermore, while we were able to measure the damping for devices with Q < 0.95, obtaining values in the 0.015 -0.020 range, in other devices, especially those with Q > 1 and Q ≈ 1, the linewidth does not increase linearly with the frequency. Instead, it decreases or is non-linear, as shown in Fig. 3.12, and it is not possible to extract α for these SWWs in the small range of frequencies that we used, using Eq. (3.63). Additionally, we treated the devices as thin 13 This is due to several factors. For high frequencies, the resonance eld exceeds the maximum eld the electromagnet can generate. For lower frequencies, the resonance eld approaches zero, where the measurement setup produces an unexplained large noisy peak, which can overlap with the resonance peak. Additionally, the bias-T imposed its own limit on low frequencies for f < 1 GHz. SWWs (Q > 1). For comparison, calculations for Q = 0.9 and Q = 1 are included. lms whereas the lateral dimension is 1 µm for the devices studied in this chapter. In FMR experiments, there is often a frequency-independent inhomogeneous contribution to the linewidth that leads to a constant oset at f r = 0. However in the devices studied here there is evidence of a non-Gilbert damping process that is frequency-dependent.

Origin of the non-Gilbert damping

In order to explain such an unusual dependence, we examine how the quality of the FeCoB lm and a distribution of Q aects the linewidth. We expect that variations in the growth and thicknesses of the FeCoB and MgO layers at the thin lm limit as well as roughness at the interfaces can result in uctuations in the anisotropy constant and the saturation magnetization, creating regions with slightly dierent magnetic properties, including the eective magnetization. 14 Thus each region has a slightly shifted resonance frequency, which, when the spectra are summed, results in an overall linewidth broadening of the resonance peak of the device. 15 If we assume that the regions interact weakly, we can then simply sum the dierent linewidth contributions. This hypothesis requires that the average size of regions with dierent properties is greater than the exchange length l ex dened in Eq. (1.60), which, for FeCoB, is estimated to be approximately 3 14 Not to be confused with the concept of magnetic domains, which are regions of a magnetic material with the same properties but dierent magnetic orientation, separated by domain walls. 15 The resulting spectrum can be approximated by a single peak equal to the sum of the individual spectra if the variation in resonance frequency is smaller than the individual linewidths. nm depending on the value of M s . 16 We were not able to quantify that the average size of such regions is greater than l ex , though with the Brillouin light scattering microscope described in Sec. 4.5, which has a spatial resolution of 250 nm, we were able to observe variations in the local eective magnetization. Thus we assume that the sizes of the regions described above are large enough. We write the total linewidth:

∆H = ∆H 0 + ∆H in (3.64)
where ∆H 0 is the Gilbert-type linewidth given in Eq. (3.63) and ∆H in represents the frequency-dependent non-linear linewidth contribution due to the inhomogeneity of the magnetic properties of the SWW.

The linewidth broadening arises from the uctuations of the resonance eld over the volume. As written in Eq. (3.59), the resonance eld is a function of the FeCoB thickness, the anisotropy constant and the saturation magnetization. Thus, for a xed frequency, we can estimate a nite variation of the resonance eld using its partial derivatives, following McMichael's example [START_REF] Mcmichael | Ferromagnetic Resonance Linewidth Models for Perpendicular Media[END_REF]:

∆H r = 2 ∂H r ∂M s 2 ∆M 2 s + ∂H r ∂K i 2 ∆K 2 i + ∂H r ∂t f 2 ∆t 2 f ∆H r = ∆H in (3.65)
where ∆t, ∆K i and ∆M s represent the dispersion of the values of the FeCoB thickness, the anisotropy constant and the saturation magnetization, assuming that the magnetic Figure 3.12: Linewidth as a function of inverse thickness for a SWW with Q = 1.02. can be written as:

∆Q = 2 ∂Q ∂M s 2 ∆M 2 s + ∂Q ∂K i 2 ∆K 2 i + ∂Q ∂t f 2 ∆t 2 f (3.66)
We can use this result to write ∆H in as a function of ∆Q only:

∆H in = 2 ∂H r ∂Q ∂Q ∂M s 2 ∆M 2 s + ∂H r ∂Q ∂Q ∂K i 2 ∆K 2 i + ∂H r ∂Q ∂Q ∂t f 2 ∆t 2 f = 2 ∂H r ∂Q ∂Q ∂M s 2 ∆M 2 s + ∂Q ∂K i 2 ∆K 2 i + ∂Q ∂t 2 ∆t 2 f = ∂H r ∂Q ∆Q (3.67)
Thus, we can study the eect of the variations of all these quantities on the linewidth using a single uctuating parameter ∆Q. Before calculating the derivative in the equation above, we rewrite the resonance eld in Eq. (3.59) as a function of the Q-factor:

H r = 1 2   -M s (1 -Q) + M 2 s (1 -Q) 2 + 2ω γ 2   (3.68)
We then calculate the derivative of Eq. (3.68):

∂H r ∂Q = 1 2     M s + M 2 s (Q -1) M 2 s (Q -1) 2 + 2ω γ 2     (3.69)
Inserting into Eq. (3.67) yields the frequency-dependent inhomogeneous linewidth broadening contribution:

∆H in = M s ∆Q     1 2 + M s (Q -1) 2 M 2 s (Q -1) 2 + 2ω γ 2     (3.70)
Finally, combining the equation above with Eqs. (3.63) and (3.64), we have the total linewidth:

∆H = 2αf R γ µ 0 + M s ∆Q     1 2 + M s (Q -1) 2 M 2 s (Q -1) 2 + 2ω γ 2     (3.71)
Thus, the inhomogeneities give rise to a non-linear and frequency-dependent contribution to the linewidth, with two distinct behaviors based on whether the device has Q > 1 or Q < 1. Calculations of the total linewidth as a function of frequency for several values of Q and for µ 0 M s ∆Q = 30 mT are presented in Fig. 3.13. At high frequencies and for all values of Q, ∆H in reduces to a frequency-independent contribution ∆H in = 1 2 M s ∆Q and we have ∆H ∝ αf r with positive slope. However, at low frequencies the contribution of the inhomogeneous linewidth can be very large, such that the linewidth is no longer linear, and in fact the initial slope can even be negative for Q > 1 as seen in the experiment, Fig. 3.12. In particular, for Q > 1: there is rst a decrease at low frequency followed by an increase of the linewidth at higher frequency. The range of frequencies where this occurs corresponds to the one used in the experiment. For Q < 1, there is an increase of the linewidth at low frequencies before it turns over in an almost linear dependence.

Before trying to t the linewidths using this model for the inhomogeneous broadening for dierent devices as a function of frequency, we rst show the measured linewidth as a function of Q for f = 3.5 GHz in Fig. 3.14, along with the total linewidth calculated according to Eq. (3.71) for dierent values of inhomogeneities µ 0 M s ∆Q ranging from 0 to 50 mT and α = 0.02. As can be seen the linewidth is not constant as a function of Q, or equivalently 1 t f , but increases strongly with Q. Interestingly, independent of M s ∆Q, the values of ∆H level o to the same linewidth value of 5 mT for low Q, but dier strongly for large values of Q given by ∆H 0 + M s ∆Q. The comparison in Fig. 3.14 of the experimental data (black stars) vs. these calculated linewidths suggests that for Q > 0.95 the distribution ∆Q increases with Q. This suggests that the source of the uctuations of the magnetic properties, for example the ferromagnetic layer thickness t f , are constant as a function of t f , however their eect decreases as t f increases. Figure 3.13: Calculated total linewidth µ 0 ∆H as a function of frequency for values of Q ranging from 0.86 to 1.04. The linewidth is calculated using (3.71) with α = 0.02 and µ 0 M s ∆Q = 30 mT for all curves. The inhomogeneous linewidth contribution is responsible for the non-linear behavior at low frequency (approximately < 3 GHz) of the total linewidth for Q = 0, as well as the initial value at f = 0 for Q ≥ 0.

Due to this dependence, we tted the total linewidth ∆H vs. the frequencyf for each SWW of dierent thickness, where M s ∆Q was the tting parameter. In principle there is also a thickness-dependent contribution to the damping arising from spin-pumping α sp [Tse02a; Tse05], but it would be dicult to t the experimental data keeping both M s ∆Q and α + α sp as t parameters for devices of dierent Q. Therefore, for the qualitative study we present here, we assumed α to be constant using a value of 0.02 based on the relatively constant linewidth at f = 3.5 GHz found for 3 devices with 0.91 < Q < 0.93 (see ts shown in Fig. 3

.14).

17 These devices also present the smallest linewidths. This is under the assumption that for these values of Q, the inhomogeneous contribution is small compared to the Gilbert-type damping and spin-pumping.

We present in Fig. 3.15 the linewidths plotted as a function of frequency for SWWs with dierent Q-factors. Eq. (3.71) is tted to each curve, using M s ∆Q as tting variable.

The accuracy of the tted total linewidth varies greatly from device to device and the range of frequencies used for some SWWs is insucient for a satisfying t. Thus we are far 17 For these 3 devices, we assume the damping to be constant because the contribution of spin-pumping to the eective damping is small due to the small variation in thickness between the devices. We extracted the real part of the spin mixing conductance Gr by plotting α ef f vs. 1/t f and using α ef f = α+hγGr/(4πMst f ) (see Eq. (60) in [START_REF] Tserkovnyak | Nonlocal Magnetization Dynamics in Ferromagnetic Heterostructures[END_REF]) from 4 separately prepared samples with FeCoB thicknesses of 2.5, 5, 20 and 40 nm, obtaining Gr ≈ 12 nm -2 . This results in variations of 2% due to spin-pumping for the eective damping for the very small thickness range covered by the three devices. from a quantitative agreement. However the inhomogeneous linewidth broadening model is capable of qualitatively predicting the non-linear behavior: for Q < 1, it accounts for the increase of the linewidth with respect to intrinsic linewidth, and for Q > 1, it explains the initial decrease of the linewidth at low frequencies. We summarize the t results in In this section we neglected an important contribution to the linewidth, which is spin-pumping (see Sec. 1.4.3). Spin-pumping is a relaxation channel that increases the eective damping, and its role increases as the FeCoB thickness decreases, due to being an interfacial eect. While we neglected spin-pumping in this subsection, it cannot account for the decrease of linewidth for devices with Q > 1 at low frequencies since the contribution of spin-pumping to the eective damping is positive. Thus, a thicknessdependent eective damping parameter does not call into question our model. However, a quantitative validation of our model would require accurately measuring the eective damping at high frequencies such that ∆H ∝ α ef f f r , as well as taking into account spin-pumping, whose contribution can be obtained by performing a thickness-dependent study. In Fig. 3.17, we give an example of resonance peaks measured for the same device, at 3.5 Ghz, for 3 dierent currents. The black symbols represent data taken at I dc = -0.01 mA, which for this paragraph serves as the zero DC current example. For this current, the resonance eld and the linewidth of the peaks at negative eld and positive eld are equal in magnitude. The blue symbols represent data taken at I dc = 0.8 mA.

For both eld polarities the resonance peak is shifted toward smaller absolute eld values, however the shift is more pronounced for H > 0. Additionally, the peak at H > 0 has a smaller linewidth than the peak at H < 0. For data taken at I dc = -0.8 mA, symbolized by green circles, there is also a shift of the resonance eld toward smaller values for both polarities, but this time the shift is greater for H < 0. Likewise, the linewidth is smaller at H < 0 than for H > 0 for the data represented by the green circles. It is this eld and current dependent behavior that we will study to characterize the eld-like torque and the damping-like torque in the next two subsections, for devices of dierent Q-factor.

The measurement protocol is similar as in the previous section: the eld is swept at a 68 • angle, starting at 0 and down to µ 0 H = -170 mT, then back to 0. The measurement is then immediately repeated for positive elds. In addition, measurements are made at dierent DC currents, from -1 to +1 mA, in steps of 0.1 or 0.2 mA. Thus, each pair of eld polarity and current polarity is measured twice. Due to the limited magnetic eld range available, we could not vary the frequency to a reasonable range on all devices (due to the resonance moving outside the eld range. Thus we limit the frequency used in this section to 3.5 GHz. We remind that all of the devices measured in this chapter have a width of w w = 1 µm.

Oset voltage dependence on I dc

As mentioned in Sec. 3.4.1, the detected signal has an oset voltage, shown by V 0 in Fig. 3.4, which is dependent of the DC current (in Fig. 3.17, the oset voltages have been removed to compare the resonance peaks).

Though a contribution of the anomalous Nernst eect (ANE) to the peak resonance signal was dismissed in Sec. 3.4.2, it be responsible for the oset voltage. It has been measured in a system similar to ours, Ta/Fe 60 Co 20 B 20 /MgO [START_REF] Tu | Anomalous Nernst Eect in Ir 22 Mn 78 /Co 20 Fe 60 B 20 /MgO Layers with Perpendicular Magnetic Anisotropy[END_REF]. The ANE is observed when a ferromagnet is has a thermal gradient, resulting in an electric eld that is perpendicular to both the thermal gradient and the FM's magnetization. In the SWWs, it is likely that there is a heat gradient perpendicular to the layers, due to uniform Joule heating by the RF current and asymmetric heat dissipation between the top and bottom interfaces of the SWW. The RF power is modulated by the lock-in amplier, therefore the heat gradient also varies at the modulation frequency. Thus, a Nernst voltage can be detected by the lock-in amplier. In the experiments described in this section, an additional DC current is injected in the SWW, and the oset voltage increases considerably with the current. Fig. 3.18 shows the oset voltage vs. the applied DC current I dc for several frequencies. The following function ts the experimental data adequately:

V 0 = a + b sgn(I dc ) I dc + c I 2 dc (3.72)
where sgn(I dc ) gives the sign of I dc , and a, b > 0 and c < 0. The Nernst eect contributes to a. We expect the dynamic resistance of the SWW (due to Joule heating via the modulated RF current) to contribute to b. However we did not identify a possible cause for c which is negative nor for the dependence on sgn(I dc ) of the linear term. 

Shifting of the resonance eld via DC current

The Ørsted eld and the eld-like torque both manifest as in-plane elds for the experimental conditions studied here. Therefore their eect is expected to simply shift the resonance eld by an amount proportional to their projection onto the external eld axis. Thus, we will be looking at the resonance eld shift H s as a function of DC current injected, which will generate a static Ørsted eld and a static eld-like torque. We will refer to them as current-mediated elds. 18 The current will also generate a static damping-like torque, that will be characterized in the next subsection. Additionally, we expect the eld-like torque to have a dependence on the thickness of the ferromagnet [START_REF] Fan | Observation of the Nonlocal Spin-Orbital Eective Field[END_REF][START_REF] Kim | Layer Thickness Dependence of the Current-Induced Eective Field Vector in Ta|CoFeB|MgO[END_REF], that we will investigate through a thickness-dependent study.

The resonance eld, for a given excitation frequency, is a function of the eective magnetization M ef f and the applied eld H, according to Eq. (3.59). In Sec. 3.2.3, we gave the modied resonance frequency due to an additional DC eld in Eq. (3.10).

Equivalently, we express the new resonance eld in the presence of current-mediated elds by modifying Eq. (1.50):

H r = 1 2   -M ef f + M 2 ef f + 2ω γµ 0 2   -H s (3.73)
where H s is the sum of the projections of the Ørsted eld H ø and the eective eld of 18 In this chapter we consider the following DC elds: the external eld H, the Ørsted eld Hø, the eective eld of the eld-like torque H f l and the eective eld of the damping-like torque H dl . the eld-like torque H f l , onto the axis of the external eld, ẑ. Both of these elds are proportional to the DC current. The general measurement scheme is shown in Fig. 3.2.

Repeating the measurement shown in Fig. 3.17 for currents ranging from -1 to +1 mA and for devices of dierent thickness, we extract the resonance eld. We show the result for 3 devices of dierent Q-factor in Fig. 3.19 at 3.5 GHz. The data are divided between positive (up-pointing triangles) and negative (down-pointing triangles) elds. The rst noticeable behavior is the decrease of the magnitude of the resonance eld with current, for both current polarities and both eld polarities. Such a symmetric behavior cannot be attributed to the Ørsted eld or the eld-like torque, which are linear functions of the current. According to Eq. (1.38), for a xed frequency, if the resonance eld decreases, then the eective magnetization, proportional to ω M -ω K in the aforementioned equation, must increase. Thus, according to this equation, the eective magnetization should increase with the magnitude of the DC current.

When injecting a current into a conductor, due to Joule heating, the temperature increases with the square of the current amplitude. This increasing temperature is related to a decrease of the saturation magnetization [Du 19]. In our case, the situation is more complicated as the interfacial anisotropy decreases as well with the temperature [START_REF] Lee | Temperature Dependence of the Interfacial Magnetic Anisotropy in W/CoFeB/MgO[END_REF]. Thus, we attribute the decrease of the resonant eld to Joule heating inducing a faster decrease of the interfacial anisotropy compared to the decrease of the saturation magnetization and, in consequence, an overall increase of the eective magnetization. This phenomenon is well known and is exploited to more easily control the magnetization of a storage layer in MRAM via heating in a thermally assisted switching scheme [START_REF] Prejbeanu | Thermally Assisted MRAMs: Ultimate Scalability and Logic Functionalities[END_REF][START_REF] Strelkov | Impact of Joule Heating on the Stability Phase Diagrams of Perpendicular Magnetic Tunnel Junctions[END_REF].

Since the saturation magnetization and the interfacial anisotropy vary with temperature, which itself varies with the square of the current, they are both even functions of the current. There are other temperature eects that may give rise to a voltage in our experiment, such as the Nernst eect [START_REF] Tu | Anomalous Nernst Eect in Ir 22 Mn 78 /Co 20 Fe 60 B 20 /MgO Layers with Perpendicular Magnetic Anisotropy[END_REF], but none are expected to shift the resonance eld. A simple method of eliminating the even component of a function and keeping only the odd component is to calculate:

H r,odd (I) = H r (I) -H r (-I) 2 (3.74)
Thus, we eliminate all temperature-dependent eects from the resonance eld. The only odd functions of the current, that we know of, that can change the resonance eld are the Ørsted eld and the eld-like torque, which are linear with current. 19 Garello et al. [START_REF] Garello | Symmetry and Magnitude of SpinOrbit Torques in Ferromagnetic Heterostructures[END_REF] have shown evidence of higher order SOTs, relative to the angle of the magnetization, though they are still odd functions of the current. We did not consider them here because their eects on the magnetization dynamics are weaker than the two SOT terms we consider in this work.
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In Fig. 3.20, we show the odd part of the resonance eld, extracted using Eq. (3.74), for a device with Q < 1 and for a device with Q > 1. 21 The graph shows a linear trend for both samples, though the slope is positive and small for Q = 0.913, while it is negative and large for Q = 1.035. We linearly t the data only for H > 0 since the other half of the graph contains the same information. The slope of the linear t, which is the resonance eld shift per unit current, is attributed to the eld-like torque and the Ørsted eld. Thus, we have: We estimate the Ørsted eld under the following considerations: only part of the DC current goes into the Ta layer and the magnetic eld is applied at a 68 • angle with respect to the SWW long axis.

Let us make an estimation of the Ørsted eld by only considering the one generated by the DC current in the Ta layer, I t . We will not calculate the Ørsted eld generated by the current in the FeCoB layer, as its net eect on itself is negligible compared to the eld generated by the Ta layer. Using Ørsted's law, we calculate the eld in the FeCoB layer, far from the lateral and longitudinal edges, where it is assumed to be the strongest and parallel to the interface. The Ørsted eld is approximated for very thin wires, i.e., their thickness is much smaller than their width, by:

H ø = I t 2d (3.76)
where d is the width of the wire and I t is the current that ows in the Ta layer. At this stage, we do not know whether H ø and H f l have the same sign or not, 22 thus we 22 The absolute direction of the Ørsted eld could have been determined from the direction of the current, however this information was lost to entropy. 

µ 0 ∂H s ∂I dc = µ 0 ∂H f l ∂I dc + δ ø ∂H ø ∂I dc cos 22 • (3.77)
Next, the SWW contains two conductive layers, Ta and FeCoB. Let us make a rough estimation of the fraction of the current that goes through the Ta layer, under the assumption that the two layers can be assimilated to two parallel resistances:

I t I dc = ρ f t f ρ f t f + ρn tn (3.78)
where I t is the current that goes through the Ta layer, ρ f and t f are the resistivity and the thickness of the FeCoB layer, and ρ n and t n are the resistivity and the thickness of the Ta layer. The resistivity of Ta was measured to be ρ n = 196 µΩ cm for a 5 nm thick Ta lm thick lm capped by 2 nm of naturally oxidized aluminum. 24 Finally the ratio of current that goes through the Ta layer is 85%, when using an average thickness of FeCoB, 1.2 nm, according to Eq. (3.78). This ratio varies by ±1% for the two extreme thicknesses involved, thus we use this average value for all devices.

For each slope that we extract from the odd part of the resonance eld shift we make the following correction :

µ 0 ∂H f l ∂I t = µ 0 1 cos 22 • I dc I t ∂H s ∂I dc -δ ø ∂H ø ∂I t = µ 0 1 cos 22 • I dc I t ∂H s ∂I dc -δ ø 1 2d (3.79)
where

∂I dc ∂It = I dc It .
Finally, we report the strength of the eld-like torque β f l as a function of Q in units of T m 2 A -1 in Fig. 3.22 by multiplying by the cross section of the Ta layer, w w × t n = 1 µm × 5 nm:

β f l = w w t n µ 0 ∂H f l ∂I t (3.80)
In Fig. 3.22, we show β f l in the case where H f l is parallel to the H ø (black squares) and in the case where they are anti-parallel (blue circles). Under the assumption that the Ørsted eld varies little with Q (see Eq. (3.76)), and that β f l can vary with Q, we infer that the change of sign of ∂Hs ∂I dc in Fig. 3.21 signies that H f l and H ø have the same sign for Q < 0.94 and opposite sign for Q > 0.94. Thus, we conclude that the blue circles in Fig. 3.22 represent β f l correctly.

In Fig. 3.22, we drew a line suggesting that β f l follows a linear trend with Q, i.e., β f l is inversely proportional to the ferromagnetic layer thickness t f . This behavior would be consistent with the fact that as the ferromagnetic volume decreases, the eld-like torque has a greater inuence. Although, our measurements do not allow an adequate t we nevertheless conclude that globally |β f l | increases with 1/t f . A similar result was found by Kim et al. who studied Ta(1)/Co 20 Fe 60 B 20 (0.9-1.4)/MgO (thicknesses in nm), they reported values of the eld-like torque strength that increase with 1/t f [Kim13].

Since we did not vary the thickness of the Ta, we cannot conclude on the interfacial or volumic origin of the torque, and much less contribute to the Rashba vs. spin Hall eect debate [START_REF] Haney | Current Induced Torques and Interfacial Spin-Orbit Coupling: Semiclassical Modeling[END_REF]. It is also dicult to directly compare results with the literature as our Fe 72 Co 8 B 20 alloy is less common and therefore less studied, and the Ta (5 nm) used here is thicker than most studies, which has been shown to have a large impact on the spin-orbit torques [START_REF] Kim | Layer Thickness Dependence of the Current-Induced Eective Field Vector in Ta|CoFeB|MgO[END_REF][START_REF] Zhang | Magnetotransport Measurements of Current Induced Eective Fields in Ta/CoFeB/MgO[END_REF]. Garello et al. [START_REF] Garello | Symmetry and Magnitude of SpinOrbit Torques in Ferromagnetic Heterostructures[END_REF] studied an out-of-plane system consisting of Ta(3)/Co 60 Fe 20 B 20 (0.9)/MgO (thicknesses in nm) and obtained |β f l | = 4.5 × 10 14 T A -1 m 2 , a result within the same order of magnitude as ours for a system that is not too dissimilar. 24 The capped FeCoB test sample was deposited directly onto a Si wafer, which can aect its growth and its resistivity compared to the FeCoB in our devices, which is grown on Ta. 

Control of the damping via DC current

We now seek to characterize the damping-like torque, which, depending on the current polarity, either enhances the damping or reduces it. Thus, we will characterize the linewidth, which is modied proportionally to the current and the damping-like torque, see Eq. (3.20). In Fig. 3.17, we see the eect of the DC current on the linewidth, either broadening or diminishing the linewidth depending on the polarities of I dc and H.

Thus a study of the linewidth as a function of the injected current should allow us to characterize the damping-like torque. However due to the low eld resolution (due to the relatively large eld step of 1 mT during eld sweeps) and the high increase of the oset voltage when increasing |I dc | (see Fig. 3.18) leading to a lower sensitivity setting on the lock-in amplier, the linewidth of the resonance peaks is dicult to characterize for |I dc | > 0.1 mA.

A property of the Lorentzian function dened in Eq. (3.56) is that the linewidth (dened as the full width at half maximum) ∆H and the peak amplitude V A are inversely proportional. However we must verify that this is true for the linewidth under the inuence of a DC damping-like torque. The DC damping-like term β dl P z is present in the imaginary part of the denominator of the prefactor χ p of Eq. (3.20), where it aects the linewidth and therefore the inverse peak voltage proportionally for all iSHE lineshapes. The DC damping-like term is also present in the o-diagonal terms of Eq.

(3.20), however we show in Appendix A that this eect is negligible.

To verify that the signal shares this property we measured a device with good signal-Figure 3.23: Field linewidth vs. inverse peak voltage for a device with Q = 0.98, obtained for dierent H eld sweep polarity and I dc current polarity. For H < 0, I dc < 0 (red triangles) and H > 0, I dc > 0 (black squares), the linewidth is more or less proportional to the inverse peak voltage (linear ts are in solid lines). For H > 0, I dc < 0 (blue circles) and H < 0, I dc > 0 (green triangles), the linewidth and the inverse peak voltage are completely uncorrelated and the error bars are larger. For most data points, the linewidth error bars are smaller or equal to the inverse peak amplitude error bars.

to-noise ratio and found that in the case where the DC current reduces the linewidth, the tted linewidth ∆H is proportional to the inverse of the inverse peak amplitude, as shown in Fig. 3.23, though the error bar in the linear t is considerable. However in the case where the current increases the linewidth, the linewidth and the inverse peak amplitude are, in the worst cases, completely uncorrelated. This is due to the fact that when the damping-like torque increases the linewidth, the peak broadens and decreases in amplitude, approaching the noise level. In these conditions, the tting of the linewidth is often ineective, while the tting of the peak height yielded coherent values, even if the error bars is still large. Thus, we used the inverse peak height to characterize the linewidth, under the assumption they are always proportional.

The analysis presented in this section is based on the same data as the previous section, thus the experimental protocol is identical. In terms of data treatment, the Lorentzian function dened in Eq. (3.56) is tted to the peak, and the peak height, V a , is extracted.

We show the result of the Lorentzian ts for a device with Q = 0.983 at f r = 3.5 GHz, in Fig. 3.24. The inverse of the resonance peak height is plotted as a function of DC current, for both eld polarities, and are tted linearly. The dependence on the signs of I dc and H is made clear here: for I dc H > 0 (lower left and lower right quadrants), the inverse peak heights, which are proportional to linewidth, are reduced, while they are increased for I dc H < 0 (upper left and upper right quadrants). However the reduction in linewidth saturates, as shown by the red points, for |I dc | ≥ 0.8 mA for both current polarities. This is assumed to be due to eects arising at high current densities such as temperature eects and non-linear magnetization dynamics. Therefore, for the purpose of data extraction, we ignore some data points corresponding to the highest current values.

the results for two additional devices, one in-plane with Q = 0.921 and one out-of-plane with Q = 1.035. We are interested in the slope of the linear t of the inverse resonance peak height vs. current, as it is proportional to the linewidth reduction per unit of current. Unfortunately, this proportionality factor is a priori unknown, and is dependent on experimental parameters such as SWW impedance, contact resistance, RF power used, etc. Therefore, we cannot use the slope directly. However this same proportionality factor links the intercept of the linear t, which is equal to the inverse resonance peak height at zero current, to the linewidth at zero current, which we are capable of measuring accurately, as shown in Sec. 3.4.4. Thus we have the proportionality factor linking inverse peak height and linewidth, and we can calculate the linewidth reduction per unit of current, (in T A -1 ):

= µ 0 slope ∆H i=0 intercept (3.81)
where slope and intercept are obtained from the linear tting of the inverse peak height vs. current. The linewidth at zero current, ∆H i=0 , is measured directly via the full width at half maximum. Indeed, the FWHM at zero current can be reliably measured to obtain the correct and absolute value of the FWHM that serves to determine the proportionality factor. The linewidth reduction per unit of current (in T A -1 ) extracted in this way as a function of Q is shown in Fig. 3.26. We then calculate the strength of the damping-like torque in T m 2 A -1 by multiplying by the cross section of the Ta layer w w × t n = 1 µm × 5 nm:

β dl = w w t n (3.83)
The results are shown in Fig. 3.27. The damping-like torque is constant and weak for Q < 0.95, ie., for large thicknesses. For Q > 0.95, β dl increases with Q. Regardless of the interfacial or volumic origin of the damping-like torque, for a xed Ta layer and a varying FeCoB layer thickness, we can expect the eects of the damping-like torque to decrease as the magnetic volume increases. However Kim et al., who studied a Ta(1)/Ta/Fe 60 Co 20 B 20 (0.9-1.4)/MgO system (thicknesses in nm) did not nd such a clear trend [START_REF] Kim | Layer Thickness Dependence of the Current-Induced Eective Field Vector in Ta|CoFeB|MgO[END_REF]. Once again, it is dicult to compare with results from the literature due to our specic FeCoB alloy and the thicknesses used. Garello et al. measured |β dl | = 2.4 × 10 14 T A -1 m 2 in an out-of-plane Ta(3)/Co 60 Fe 20 B 20 (0.9)/MgO (thicknesses in nm).

Interestingly, we found that for all t f , the damping-like torque is twice as strong as the eld-like torque, which is in contrast to most studies where the eld-like torque is greater: [START_REF] Kim | Layer Thickness Dependence of the Current-Induced Eective Field Vector in Ta|CoFeB|MgO[END_REF][START_REF] Garello | Symmetry and Magnitude of SpinOrbit Torques in Ferromagnetic Heterostructures[END_REF][START_REF] Avci | Fieldlike and Antidamping Spin-Orbit Torques in as-Grown and Annealed Ta/CoFeB/MgO Layers[END_REF]. This is perhaps due to the thicker Ta layer (5nm) as compared to the aforementioned studies (1, 3 and 3 nm respectively). This could indicate that the damping-like torque's origin lies in the bulk of the Ta, via the SHE, instead of the Ta/FeCoB interface. On the other hand, Zhang et al. performed a Ta thicknessdependent study on Ta (1-5)/CoFeB(1)/MgO(1.3)/Ta(1), and found that while both the damping-like and the eld-like torques increased with the Ta thickness, the damping-like torque is never stronger than the eld-like torque, even for 5 nm of Ta [START_REF] Zhang | Magnetotransport Measurements of Current Induced Eective Fields in Ta/CoFeB/MgO[END_REF]. Since SOTs in Ta/CoFeB have shown to be sensitive to growth conditions [Avc14], another explanation for our nding might come form the dierent deposition techniques and annealing protocols used for our devices. [START_REF] Demidov | Control of Magnetic Fluctuations by Spin Current[END_REF] that when the damping-like torque approaches the critical value required to fully compensate the damping over an oscillation period (i.e., the current for which the linewidth is equal to 0), strong non-linear eects appear. This is due to the fact that the damping-like torque acts on all oscillation modes, including FMR and spin-waves, as well as relaxation processes arising between the modes such as two-magnon scattering [Hei85; Hur98; Len06], all of which lead to the increase of the linewidth. For the experiment shown in Fig. 3.24, we can extrapolate the DC current required to obtain a zero linewidth, obtaining a critical current I crit = 1.4 mA.

Conclusion

In this chapter we used ST-FMR spectroscopy to study Ta/FeCoB/MgO spin-wave waveguides as a function of thickness to characterize the magnetic properties in absence of DC current and the damping-like and eld-like torques in presence of DC current.

To analyze the experimental results, in the rst part of this chapter we derived the susceptibility equations using the concepts established in Sec. 1.2.5, considering dierent excitation schemes by dynamic Ørsted eld h ø , eld-like h fl and damping-like h dl , generated by an RF current in the SWW. We then calculated the expected DC voltages generated by AMR and iSHE rectication to determine which components of the Polder susceptibility tensor contribute to the signal for dierent excitation schemes, as well as the lineshape (symmetric Lorentzian or anti-symmetric dispersive) of each possible signal. Based on this and the purely Lorentzian nature of the measured signals, we concluded that the dominant source of DC signal in our SWWs is the combined action of spin-pumping and the inverse Hall eect. Finally, we derived the shift of the resonance eld by a static Ørsted H ø and static eld-like H fl elds, as well as the reduction of the linewidth via a static damping-like H dl due to a DC current in the SWW.

In the second part of this chapter, we describe the FMR experiments using our ST-FMR setup. For I dc = 0 we extracted the eective magnetization M ef f as a function of thickness, allowing us to extract the saturation magnetization and the interfacial anisotropy constant, as well as the ferromagnetic layer critical thickness where the magnetization reorients from in-plane to out-of-plane. We analyzed the eld linewidth ∆H and qualitatively explained its unexpected variation as a function of thickness, in particular, negative slopes of ∆H vs. the excitation frequency. This was accounted for by the inhomogeneous distribution of the saturation magnetization, the FeCoB thickness and the anisotropy constant, which can be taken into account by only considering an inhomogeneous distribution of the Q-factor that leads to a frequency-dependent contribution to the eld linewidth.

By performing ST-FMR experiments with the addition of a DC current , we carried out a careful and systematic characterization of the eld-like and damping-like torques of Ta/Fe 72 Co 8 B 20 /MgO vs. the ferromagnetic layer thickness, at the transition of the magnetization from in-plane to out-of-plane orientation, i.e., for Q-factors between approximately 0.9 and 1.1. Firstly, we analyzed the shift in resonance eld and removed the Joule heating contribution, and, taking the current distribution in the SWW and the Ørsted eld into account, we extracted β f l , the ratio between the eective eld of the eld-like torque and the current density. The data shows that β f l and Q, i.e., the inverse of the FeCoB thickness, are linear, with some deviations around Q ≈ 1. Secondly, we analyzed the voltage peak height, which is inversely proportional to the linewidth, and extracted β dl , the ratio between the eective eld of the damping-like torque and the current density, which was found to be proportional to the inverse of the FeCoB thickness. The absolute values of the eld-like torque β f l are comprised between 0 and 5 × 10 14 T A -1 m 2 depending on the ferromagnetic layer thickness, and values of the damping-like torque β dl betweeen 2 and 10 × 10 14 T A -1 m 2 . Surprisingly, the dampinglike torque is twice as strong as the eld-like torque in our devices for all FeCoB layer thicknesses, which is in contrast to most studies on similar systems. This might be explained by the thicker Ta layer we used, which may enhance the SHE contribution of the bulk Ta to the damping-like torque. Now that we have Now that we have demonstrated that SOTs can aect the k = 0 uniform mode precession (resonance eld and linewidth) in Ta/FeCoB/MgO layers, and that the iSHE can be used to detect the dynamic response, it will be of interest to see whether SOTs can also aect propagating k = 0 spin-waves and whether the iSHE can be used to detect them. The second aspect (detection via iSHE) will be the subject of the next chapter, while preliminary results on the rst aspect will be summarized in the Conclusion and Perspectives.

Chapter 4

Spin-wave excitation and detection in Ta/FeCoB/MgO

In this chapter we present the detection of spin-waves in a Ta/FeCoB/MgO spin-wave waveguide using the combined eect of spin-pumping and the inverse spin Hall eect.

The spin-wave waveguides are the same as those studied in Chap. 3. We use a nanometric coplanar waveguide (CPW) antenna to excite spin-waves within a large range of wavevectors. A rst task is therefore to calculate the expected spin-wave spectrum for perpendicular magnetic anisotropy materials characterized by non-zero linewidth by taking the geometry of the CPW antenna into account that will dene the spatial periodicity of the excitation. The excitation is a convolution of the excitation eld and the dynamic spin-wave susceptibility. We summarize the approach to obtain an expression for the wavevector dependent excitation eciency of spin-waves and calculate the expected spin-wave spectrum including also nite linewidth. The calculated spectrum is then compared to the experiments where the spin-waves are electrically detected via rectication due to the inverse spin Hall eect.

The results obtained using this detection technique, which we call spin-wave rectication spectroscopy (SWR), are also compared to Brillouin light scattering (BLS) experiments that were carried out at the university of Kaiserslautern by T. Brächer and myself. The BLS experiments furthermore allow us to determine the spin-wave decay length, and to extract the spin-wave lifetime. Finally, we discuss the merits of the spin-wave rectication technique with regards to device integration compared to other detection schemes.

The main ndings of this chapter were published in [START_REF] Brächer | Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Eect[END_REF]. Thus, some text and gures have been adopted from the publication.

Material and device characterization

The spin-wave waveguides investigated in this chapter are described in Chap. The SWWs are from the same wafer as those used for the ST-FMR experiments in Chap. 3 that provided the materials properties and the strength of the damping-like and eld-like torques. However the calculations and numerical simulations described in this chapter were performed before the thickness-dependent material characterization described in Sec. 3.4 was completed, therefore there are some dierences in the material parameters used to analyze the results here. This does however not aect the main results and conclusions presented.

The devices measured in this chapter are in-plane magnetized and have 0.85 < Q < 0.90 (for the Q-factor see Eq. (3.61)). Due to the low Q-factor, in these devices the inhomogeneous contribution to the linewidth described in Sec. 3.4.4 is less important and thus we are able to estimate the damping constant α, neglecting the inhomogeneous broadening the damping via ST-FMR measurements (see Sec. 3.4.4). The values of the damping were averaged for all devices in this chapter, obtaining α = 0.019. The value of the saturation magnetization used here, M s = 1.25 MA m -1 , 1 is assumed based on the study of Fe 60 Co 20 B 20 in [START_REF] Vernier | Measurement of Magnetization Using Domain Compressibility in CoFeB Films with Perpendicular Anisotropy[END_REF]. Using this value, the interfacial anisotropy constant is extracted from the measured eective magnetization M ef f via the method described in Sec. 3.4.3, obtaining K i = 1.18 mJ m -1 . The exchange stiness constant A ex = 10 pJ m -1 is assumed based on the study of Fe 60 Co 20 B 20 in [START_REF] Belmeguenai | Exchange Stiness and Damping Constants in Diluted Co x Fe y B 1-x-y Thin Films[END_REF]. These three constants, M s , K i and A ex , are parameters that govern the dispersion relation given in Eq. (1.70), which is the basis of most of the calculations in this chapter. As such, slightly dierent values of M s and K i (which are linked by M ef f , and is the most easily measured parameter) would result in a dierent value of A ex and not greatly aect the calculations 1 µ0Ms = 1.57 T. and results of this chapter.

In contrast to Chap. 3, in which devices are referred to by their Q-factor, in this chapter the devices are mainly referred to by the CPW antenna design used to excite spin-waves (see Chap. 2). Moreover, it was shown in Chap. 3 that there is a non Gilbert-type damping present arising from the local inhomogeneities of the magnetic properties of the SWW, resulting in us being unable to properly determine the Gilbert damping parameter. We carried out a separate ST-FMR analysis on the linewidth of the devices measured in this chapter and obtained α = 0.019, assuming the entire damping is Gilbert-type. This value was used for all calculations and simulations in this chapter.

Verication of the frequency-wavevector dispersion relation

In order to compare the spin-wave rectication experiments of Sec. 4.4 to the spinwave eciency calculated in the subsections below, we need the frequency-wavevector dispersion relation. We gave an empirically obtained expression in Eq. (1.70) for a continuous lm with PMA. To verify that the expression is also correct for the wires studied here, micromagnetic simulation were performed by T. Brächer using Mumax3. 2 mumax 3 is an open-source GPU-accelerated micromagnetic simulation program developed at the DyNaMat group of Prof. Van Waeyenberge at Ghent University. For more information, see [START_REF] Vansteenkiste | The Design and Verication of MuMax3[END_REF] or visit http://mumax.github.io/.

3 In reality, all simulations were performed with the same number of cells and geometry. Instead of varying the anisotropy eld by varying the thickness, the anisotropy constant was varied for a xed thickness (i.e., the wire always has a thickness of 1 cell). 

Excitation of spin-waves via coplanar waveguides

The aim of this section is to derive an expression of the spin-wave excitation in SWW using a CPW in order to predict the expected spin-wave spectrum, that is experimentally measured in Sec. 4.4. In FMR and ST-FMR experiments, a spatially uniform excitation (magnetic eld or eective eld due to damping-like torque or eld-like torque, see Sec.

3.2) is used to excite ferromagnetic resonance, which are non-propagative oscillations characterized by a wavevector k = 0. On the other hand, spin-waves are propagating oscillations, with nite wavevector k = 0. Accordingly they are excited by spatially non-uniform magnetic elds, which one can characterize by their Fourier transform in k-space. A coplanar waveguide, through which an RF current ows, is an example of an antenna generating a non-uniform magnetic eld.

In this section, we calculate how eciently a CPW antenna at a given frequency and eld excites spin-waves in a certain wavevector range. The derivation of this eciency involves obtaining an expression for the dynamic magnetization m of spin-waves under excitation from the combination of (i) the CPW eld and (ii) the non-local dipolar eld generated by the spin-waves themselves. Since these calculations depend on having a correct frequency-wavevector dispersion relation, we rst present in the subsection below micromagnetic simulations that allow us to verify that the dispersion relation given in Eq. (1.70) is adequate. We then address in Sec. 4.3.1 the calculation of point (i) to determine the spatial prole of the CPW eld. In Sec. 4.3.3 and 4.3.4 we address the calculation of m considering both contributions as well as the nite linewidth. We then numerically evaluate the derived expressions to predict the expected spin-wave spectrum for the three coplanar waveguides (for details on the CPW designs, see Tab. 2.1).

Magnetic eld generated by a coplanar waveguide

The coplanar waveguides used in this work are composed of three parallel, thin wires with a rectangular cross-section, as shown in Fig. 4.1. The CPWs are shorted at one end, and have contact pads at the other end for a ground-signal-ground RF probe; both the short and the contacts are far away from the spin-wave waveguide. The CPW is on top of the SWW and perpendicular to the SWW axis so that the RF eld is oriented along the SWW long axis, see Fig. 4.1. A cross section of the CPW is shown in Fig. 4.3 along with the coordinate system. In this chapter, we will use only one coordinate system: x is the out-of-plane axis, ŷ is the long axis of the SWW and also the direction of propagation of the spin-waves, and ẑ is the in-plane axis transverse to the SWW and parallel to the long axis of the CPW. It is also the direction of equilibrium of the magnetization since a magnetic DC eld is applied in this direction to saturate the magnetization. When a current I is driven through the CPW, one can consider that the resulting magnetic eld is the sum of the magnetic eld of each conducting wire. The expression of the magnetic eld created by a current in a conductor with a rectangular cross section can be calculated using the Biot-Savart law.

4 Such a derivation can be found in [START_REF] Chumakov | High Frequency Behaviour of Magnetic Thin Film Elements for Microelectronics[END_REF].

We give the expressions of the magnetic eld components generated by the central wire, called the signal line, at a point (x, y) in space outside of the wires:

H wire x = - I 8πab + (b -x) 1 2 ln (b -x) 2 + (a -y) 2 (b -x) 2 + (-a -y) 2 + a -y b -x arctan b -x a -y - -a -y b -x arctan b -x -a -y +(b + x) 1 2 ln (-b -x) 2 + (a -y) 2 (-b -x) 2 + (-a -y) 2 + a -y -b -x arctan -b -x a -y - -a -y -b -x arctan -b -x -a -y (4.1) H wire y = - I 8πab + (a -y) 1 2 ln (b -x) 2 + (a -y) 2 (-b -x) 2 + (a -y) 2 + b -x a -y arctan a -y b -x - -b -x a -y arctan a -y -b -x +(a + y) 1 2 ln (b -x) 2 + (-a -y) 2 (-b -x) 2 + (-a -y) 2 + b -x -a -y arctan -a -y b -x - -b -x -a -y arctan -a -y -b -x (4.2)
where x is the position along the out-of-plane axis and y is the position along the SWW's long axis; 2a and 2b are the width and the thickness of the signal line and I is the current owing through it. Since the current ows from the central signal line to the two adjacent wires, called ground lines (see Figs. 4.1 and 4.3), the currents in the latter have the opposite sign. Thus, the eld generated by each ground line can be found by taking Eqs. (4.1) and (4.2) and replacing a and b by a and b , I by -I 2 , and performing the variable change: y = y ± s, where s is the center-to-center spacing between the signal line and the ground lines, and the plus or minus sign indicates which ground line is being calculated: the one to the left or the one to the right of the signal line. Then, the total magnetic eld created by the CPW at a given position in the SWW is simply the sum of these 3 terms.

We present in Fig. 4.4 the components of the total magnetic eld, calculated as a function of the distance y along the SWW, at a xed position x below the center of the CPW, x = 54.5 nm, which corresponds to the surface of the ferromagnetic layer in our experiments.
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The CPW design used in the example of Fig. 4.4 is type C, which has 2a = 70 nm wide wires with s = 150 nm center-to-center spacing, and thickness 2b = 30 nm. Let us make several remarks. Firstly, all CPWs are composed of 30 nm Au and 5 nm Ti. Additionally, bulk Ti is 20 times more resistive than bulk Au and the true resistivity of the Ti layer is expected to be even larger given its thickness and the interface with the underlying alumina layer. Thus, we treat the Ti as non-conductive in the calculation of the magnetic eld due to its lower thickness and its higher resistivity.

Secondly, the Biot-Savart equation is valid for magnetostatics, but here the aim is to inject an RF current in the GHz range and thus one would expect the Biot-Savart equation to be inadequate for this purpose. However, it has been shown in [START_REF] Heussner | Lokalisierte Parallele Parametrische Verstärkung von Kohärent Angeregten Spinwellen in Ni81Fe19-Mikrostreifen[END_REF] via numerical calculations that the Biot-Savart equation gives a good approximation of the strength of the magnetic eld even at frequencies in the GHz range.

Finally, at high frequencies in thick enough conductors, the electric current ows mainly within the skin depth of the conductor. This is due to eddy currents induced by the changing magnetic eld caused by the alternating current. The skin depth is given by:

δ = ρ πf µ r µ 0 (4.3)
where ρ = 22.2 nΩ m and µ r = 1 are the bulk resistivity and relative permeability of Au, 5 The calculated depth corresponds to: 15 nm of Au (half of the total Au), 5 nm of Ti, 30 nm epitaxial Al2O3, 2 nm Al2O3, 1 nm Ta2O5, and 1.5 nm MgO. and f = 6 GHz is the upper bound of the frequency used in the experiments described in this chapter. The resulting skin depth is δ = 0.97 µm, which is much larger than the thickness and width of the conducting lines of the CPWs. Thus, we take the magnetostatic elds calculated via Eqs. (4.1) and (4.2) to be valid for RF currents up to the GHz range. As shown in Fig. 4.4, the CPW gives rise to a symmetrical in-plane eld, parallel to the long axis of the SWW, which reaches its maximum amplitude under the center of the CPW. On the other hand, the out-of-plane eld is anti-symmetrical, vanishes under the center of the CPW and then changes sign, reaches its maximum amplitude under each ground line.

From the spatial prole in Fig. 4.4 we obtain the Fourier spectrum of an antenna's magnetic eld, shown in Fig. 4.5. Since we are performing numerical calculations, the data is non-continuous and we use a fast Fourier transform (FFT) algorithm to calculate the Fourier spectrum of the magnetic eld for all three CPW designs. An interesting property of the magnetic eld of a given CPW is that the absolute value of the FFT of the in-plane and of the out-of-plane components are equal. The elds are calculated as per Fig. 4.4: at a depth 54.5 nm below the center of the wires, which corresponds to the surface of the ferromagnetic layer; and as a function of y. Therefore the Fourier coecients, written b ky for either eld component, are expressed as a function of k y , the wavevector component parallel to the direction of propagation ŷ, and they constitute the Fourier spectrum of the CPW, written (b ky ). 6 Moreover, the Fourier spectra of all the CPW designs (A, B, C) show a similar prole: the rst maximum is the highest, each following maximum is notably smaller than the previous one, and the amplitude is zero between maxima. More importantly, the minima are situated at integer multiples of 2π s , where s is the center-to-center spacing. Consequently, the smaller s is, the larger is the range of wavevectors between two minima. In fact, if one uses a single wire, a design called stripe antenna, there is only one maximum, at k y = 0, and the amplitude decreases to 0 for increasing wavevectors [START_REF] Ciubotaru | All Electrical Propagating Spin Wave Spectroscopy with Broadband Wavevector Capability[END_REF]. On the other hand, the width 2a only has an inuence on the maximum amplitudes of the curve between the minima.

Thus we have designed nanometric CPW antennae for the purpose of exciting a large range of non-zero wavevectors. These antennae are scalable not only because one can reduce their size and spacing and still obtain elds capable of exciting spin-waves, but also because this reduction leads to shorter wavelengths, which is a basic requirement for scaling down any magnonic device to the nanometer scale. Moreover, the wavevector dependent spin-wave excitation of the CPWs will allow us to characterize the iSHE detection scheme by comparing the expected spectrum vs. the measured signal, and determine whether the iSHE detection is wavevector independent or not. where the eld is applied in-plane but transversely to the direction of propagation. In this chapter, we will mainly deal with the Damon-Eshbach conguration, thus the calculations will be done in that geometry.

We consider the Damon-Eshbach conguration, with a propagation of spin-waves in the y direction and the magnetization saturated through a magnetic eld along the z direction. Here we summarize the expressions for the components k x , k y , k z of the corresponding wavevector k. Dierent waveguide modes can be excited, each with a dierent spatial conguration in the (x, z) plane due to the nite size, analogous to the vibration modes of a drum membrane.

In the x direction, perpendicular to the lm, according to Sec. 1.3.3, the ferromagnetic layer is thin enough that the spin-waves present an homogeneous prole across the thickness of the lm, with k x = 0 as higher modes require much higher excitation frequencies.

The SWW is half a µm to several µm wide, which is small enough to induce quantization of the width mode, described by the width or waveguide mode number n. Thus, spin-wave modes of dierent proles can exist along the z direction, described here by the mode number n and k z = (n+1)π ww . In the Damon-Eshbach conguration, the magne- tization at the lateral edges of the SWW can be aligned with the external eld (the edges are unpinned) or aligned with the long axis of the SWW (the edges are pinned) as well as anywhere in between. This is due to the competition between the Zeeman energy and the dipolar energy, and it can lead to an inhomogeneous eective eld, which is reduced near the edges. In such a case, one can dene an eective width w ef f as the width of the SWW where the eective eld is greater than half the external eld. For more details on the calculation see [START_REF] Brächer | Parallel Parametric Amplication of Spin Waves in Micro-Structures[END_REF]. In our case, we determined using Eq. (2.56) in [START_REF] Brächer | Parallel Parametric Amplication of Spin Waves in Micro-Structures[END_REF]:

H ef f (z) = H - M s π arctan t f 2z + w w -arctan t f 2z -w w (4.4)
that w ef f ≈ w w for the 5 µm wide SWW. This means that the magnetization at the lateral edges of the SWW are pinned and parallel to the edges.

Finally, k y , the wavevector component parallel to the propagation direction, is continuous.

Excitation eciency

Now that we have calculated the magnetic eld created by the three CPW designs, we can look at the spin-waves they can excite. Interestingly, the amplitude of the FFT for all three CPWs for k y = 0 is zero, a characteristic of CPWs. This means that an RF eld generated by the CPWs is incapable of exciting ferromagnetic resonance, which has k = 0.

As mentioned before, the aim is to have an expression for the excitation eciency, where the excitation eld has two contributions. In the previous section we considered the eld from the CPW, but one also has to consider the dynamic dipolar eld generated by the SWs themselves that is obtained from the spatial prole of the spin-waves. This involves solving the equation of motion for the spin-wave magnetization as was done in [START_REF] Schneider | Phase Reciprocity of Spin-Wave Excitation by a Microstrip Antenna[END_REF] for the Damon-Eshbach and the backward volume congurations.

7 Here we will summarize the main steps for the Damon-Eshbach conguration.

The propagation of spin-waves is aected by the dipolar eld created by the spinwaves themselves. Therefore, the relation in Eq. (1.21) becomes, for spin-waves:

m = χ (h + h d ) (4.5)
where h is the excitation eld generated by the CPW, h d is the spin-wave dipole eld and χ is the susceptibility tensor for the uniform mode excitation (see Eq. (1.29) in Sec.

1.2.4). The dipolar eld can be written as [START_REF] Schneider | Phase Reciprocity of Spin-Wave Excitation by a Microstrip Antenna[END_REF]:

h d (y) = +∞ -∞ G(y -y ) m(y )dy (4.6)
where G is a 2D tensorial Green's function. The Green's function for magnetostatics is detailed in [START_REF] Guslienko | Eective Dipolar Boundary Conditions for Dynamic Magnetization in Thin Magnetic Stripes[END_REF]. It describes the dipolar eld at a point y created by the magnetization at a point y , and the integration over the ferromagnet gives the total dipolar eld at the position y. The elements of the tensorial Green's function are related to the components of the susceptibility tensor for uniform magnetization dynamics using Eq. (4.6). One can rewrite Eq. (4.5) as an expression relating the magnetization to the uniform mode susceptibility components. In the Damon-Eshbach conguration, this is given by [Sch08;

Dem09]: In Eq. (4.7), both the in-plane and the out-of-plane components of the CPW's eld are taken into account, though their combined eect on the spin-wave depends on its direction of propagation, given by sign(k y ). 8 Indeed, as seen in Fig. 4.4, the magnetic eld components have the same sign under the left ground line while they have opposite sign under the right ground line. Due to the well-dened direction of rotation of the magnetization, the torques of the two components of the RF eld on the magnetization are in phase on one side of the antenna, and out of phase on the other side of it. The result is an asymmetry of the amplitude of the spin-waves depending on the propagation direction. Thus, spin-waves with k y > 0 have greater amplitude than spin-waves with k y < 0.

m x (y, t) = 4π t f |b ky | χ ⊥ -sign(k y ) χ 2 ⊥ -χ 2 e ikyy e iωt
The amplitude of dynamic magnetization oscillation |m| at a given wavevector k y is a measure of how eciently a spin-wave at k y is excited and provides the wavevector resolved spin-wave spectrum as it can be measured in an experiment. We therefore dene the excitation eciency here η ∝ |m|. For a thin lm system with perpendicular anisotropy, the excitation eciency is written [START_REF] Brächer | Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Eect[END_REF]:

η ± n (k y ) = |b z,n ||b ky | f n (k y ) µ 0 γ ± 1 µ 0 M ef f f n (k y ) 2 γ 2 -µ 2 0 H 2 ef f (4.8)
8 If b ky ,hx is the Fourier transform of the out-of-plane eld as a function of y, and b ky ,hy is the Fourier transform of the in-plane eld as a function of y, then through symmetry arguments and using Maxwell's equations, Schneider et al. found that b ky ,hx = i sign(y) b ky ,hy [START_REF] Schneider | Phase Reciprocity of Spin-Wave Excitation by a Microstrip Antenna[END_REF].

where ± indicates whether k y > 0 or k y < 0, f n (k y ) is the frequency of the spin-wave with k y and n indicates the waveguide mode n due to the quantication of k z across the width of the SWW, see Sec. 4.3.2. 9 γ is the gyromagnetic ratio in GHz T -1 , M ef f is the eective magnetization dened in Eq. (1.14), H ef f is the eective eld in the ferromagnetic layer as dened in Eq. (1.12). The b z,n factor is proportional to the net torque that the RF elds can exert on the magnetization for a given waveguide mode n. Therefore, b z,n is proportional to the net integrated magnetic moment across the eective width:

b z,n ∝ 1 n + 1 cos π(n + 1)(z + d ef f 2 ) d ef f 2 d ef f 2 = 1 n+1
for n even 0 for n uneven (4.9)

As a result, uneven-numbered modes cannot be excited in the Damon-Eshbach geometry, and waveguide modes of increasing number n have an excitation eciency that decreases with 1 n+1 . 10

In the model described thus far, if one excites a SWW with a CPW, a certain range of wavevectors can be excited, depending on the spatial features of the CPW. However, due to the dispersion relation, the choice of applied frequency and exernal static eld will select only one wavevector. Additionally, only uneven waveguide modes can be excited, and one direction of propagation will be favored. The asymmetry of the spin-wave's amplitude as a function of propagation direction can be a desired property for some applications, for example spin-wave logic gates in which information must pass only in one direction.

Non-zero linewidth model

The eect of relaxation processes on spin-waves was not discussed in the derivation of the excitation eciency Eq. (4.8). In this subsection, we include the non-zero linewidth in the excitation eciency as derived by T. Brächer and P. Pirro in [START_REF] Brächer | Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Eect[END_REF]. Phenomenological losses in magnetization dynamics lead to a non-zero frequency linewidth, which can be linked to the relaxation rate given in Eq. (1.71), via:

∆f n (k y ) = ω r π (4.10)
where ∆f n (k y ) is the linewidth in units of frequency for the spin-wave frequency f n (k y ).

A consequence of the non-zero frequency linewidth is that the spin-waves with k y can be excited not only at frequencies f n (k y ) but also at frequencies close by f = f n (k y ). The 9 The frequency and the wavenumber are related by the dispersion equation (1.70) for a FeCoB thin lm system with perpendicular anisotropy. It is therefore a function of kx, ky and kz; however since kx = 0 and kz has discrete values depending on n, we write the spin-wave frequency as fn(ky) for ease of reading. 10 In other works in the literature, such as [Dem09; Brä17a; Brä17b], the mode index starts at n = 1 for the fundamental mode, and thus in that numbering scheme only uneven modes can be excited and their eciency decreases with 1 n . We started the index at n = 0 for the fundamental mode due to the lack of nodes in its prole, similarly to [Wan]. distribution of the frequencies f of the spin-waves with a given wavevector k y excited at f n (k y ) is given by a Lorentzian function [START_REF]Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties[END_REF]:

L ky (f ) = 2 π ∆f 2 n (k y ) 4 [f -f n (k y )] 2 + ∆f n (k y ) 2 (4.11)
This Lorentzian function is dened such that +∞ -∞ L ky (f ) df = 1 to reect its property as a probability density. To account for all of the spin-waves with wavevector component k y and waveguide mode n, excited by a source generating a magnetic eld at a frequency f = f n (k y ), we calculate the excitation eciency of Eq. (4.8) by the frequency distribution due to the non-zero linewidth:

c ± n (f , k y ) = η ± n (k y ) × L ky (f ) (4.12)
In the following we will numerically evaluate the expression in Eq. (4.12) to predict the excitation spectrum that we expect to measure in a wavevector independent experiment such as the spin-wave rectication for which only the frequency of the excitation source is swept continuously. For this we have to integrate Eq. (4.12) over all wavevectors to obtain an expression of the excitation eciency C ± n (f ) as a function of the excitation frequency f '. In the numerical evaluations, due to discretization this will be a sum over k y :

C ± n (f ) = ky c ± n (f , k y ) (4.13)
Next we describe the procedure for the evaluation of C ± n (f ). Using the dispersion relation given in Eq. (1.70), we substitute the variable k y by f n (k y ) and calculate c ± n (f , f n (k y )) for f and f n (k y ), with both variables ranging from 0 to 10 GHz in steps of 1 MHz. In the resulting 2D matrix, where the values of c ± n (f , f n (k y )) as a function of f (and xed f n (k y )) are stored in the columns, a summation over the rows gives the total excitation eciency C ± n (f ) in the presence of non-zero linewidth, for a given waveguide mode n and for a xed external eld H.

We present in Fig. 4.6 the normalized excitation eciency C ± n (f ), calculated for all three CPW designs, under a DC eld µ 0 H = 55 mT. The unnormalized data show a large dierence in amplitude. To better compare, in Fig. 4.6 we normalized each excitation eciency to its respective maximum. We compare the excitation eciency C ± n (f ) taking into account only the waveguide mode n = 0 (solid lines) and when taking into account the modes with n up to n = 4 (dotted lines). As can be seen, the inuence of the n = 2 and n = 4 modes is negligible for all three CPW designs, and for all frequencies in the explored range. This is due to the fact that while the width of the SWW is small enough for quantization of the waveguide modes, it is large enough that the mode separation in terms of frequency is small, and therefore the excitation prole changes little between modes. Additionally, the amplitude of each higher mode decreases with 1/(n + 1). Thus, for all further calculations, we ignore the eects of the higher order waveguide modes n > 0. Like in the ST-FMR measurements, the rectied voltage is detected as a function of the applied eld for a given excitation frequency. The applied power of -1 dBm corresponds to the regime of linear excitation, whereas an increase of the power by about 2-3 dB leads to a deviation of the linear scaling of the measured voltage with the applied microwave power.

Measurement protocol

A sinusoidal RF current, set at constant frequency throughout the measurement, is sent through the CPW antenna. The electromagnet is set such that the eld will be in the plane of the device at an angle θ H = 90 • with respect to the long axis of the SWW, as shown in Fig. 4.1. The magnetic eld is then decreased down to a minimum of µ 0 H = -170 mT, sweeping across the resonance and then decreased back to 0. The measurement is then immediately repeated for positive elds. The DC voltage is measured across the SWW Au contacts, with the signal-to-noise ratio enhanced via the modulation of the RF power and the lock-in amplier.

Unlike ST-FMR experiments, the result of SWR is not a Lorentzian peak. When the eld is swept, it excites a continuous range of spin-waves, resulting in one or more non-Lorentzian peaks, depending on the CPW design used. Thus, the linewidth cannot be characterized. The results are then compared to the expected excitation proles obtained via the calculations derived in Sec. 4.3.

Linearity with respect to RF power

As with the ST-FMR experiments (see Sec. 

Angle dependence of spin-wave rectication

We performed an angle-dependent measurement of the spin-wave rectication, similarly to the ST-FMR measurements by varying the in-plane eld angle θ H similarly to the experiment described in Sec. 3.4.2 for ST-FMR. From the spin-wave spectra we extract the maximum amplitude and plot the results as a function of the in-plane angle of the eld in Fig. 4.9.

There are some key dierences with ST-FMR. Firstly, the spin-wave excitation is the result of two eld components, an in-plane one and an out-of-plane one (see Fig. 4.4).

In the case of uniform FMR, the angle dependences for AMR and iSHE for these eld congurations have been calculated in [START_REF] Harder | Electrical Detection of Magnetization Dynamics via Spin Rectication Eects[END_REF]. 11 We summarize their ndings here:

V x ishe ∝ sin θ H V y ishe ∝ sin θ 3 H V x amr ∝ sin(2θ H ) V y amr ∝ sin(2θ H ) sin θ H (4.14)
where V x ishe is the signal generated by the out-of-plane CPW eld excitation via the iSHE, V y amr is the signal generated by the longitudinal CPW eld excitation via AMR, and θ H is the in-plane angle of the external eld.

In the experiments described in this chapter we deal with spin-waves, therefore the signals obtained may deviate from these results. As one rotates the electromagnet in the plane of the thin lm, the geometry changes from the Damon-Eshbach conguration to the backward-volume conguration periodically meaning that, as shown in Fig. 1.4(b), the dispersion relation continuously shifts from one curve to the other. 12 As seen in Eq.

(4.8), the excitation eciency of a CPW antenna depends on the frequency and therefore on the dispersion relation. Hence the spectrum of the excited spin-waves is expected change as a function of the angle as well. In Fig. 4.9, we only plot the maximum amplitude of the spectra as a function of the angle, and we are not able to take into account the change in dispersion relation due to the angle.

As seen in Fig. 4.9, the angular dependence of the maximum voltage of the excited spin-wave spectrum is well tted by a linear combination of V x ishe and V y ishe from Eq.

(4.14), and cannot be tted adequately by V x amr or V y amr . This allows us to conclude that the SWR signal in the SWW due to AMR is negligible, and that the combined eects of spin-pumping and the iSHE are the dominant source of the signal. Furthermore, the experiments presented in this chapter are performed at 90 • , an angle for which the AMR signal is minimum, while the iSHE is maximum.

As mentioned for the ST-FMR case in Sec. 3.4.2, the Nernst eect, which has a cos θ H dependence on the applied eld angle [START_REF] Schultheiss | Thermoelectric Detection of Spin Waves[END_REF], can also be dismissed. This is likely due to the extremely small thickness of the FM layer, which likely has a negligible temperature gradient.

Experimental results

In the following, we address the excitation and detection of propagating spin-waves with non-zero wavevectors in spin-wave rectication (SWR) experiments and we show that this technique allows for the wavevector independent detection of the locally excited spin-wave dynamics in a large wavevector range. In the SWR experiment, the CPWs 11 In [START_REF] Harder | Electrical Detection of Magnetization Dynamics via Spin Rectication Eects[END_REF], the rectication voltages for AMR can be found in Tab. 4 and the voltages for the iSHE in Tab. 6.

12 Here, θ k = θH . with an applied RF power of P = 800 µW = -1 dBm at a frequency of 4.8 GHz. The voltages have been normalized to their individual maximum, which is on the order of µV.

Further details on the absolute values of the measured voltages are given in a subsection below.

As can be seen in Fig. 4.10 the spin-wave rectication spectra vs eld for f = 4.8 GHz We average over the two emission directions along the wire, which are not equal due to the interplay of the in-plane and out-of-plane component of the CPW eld, as described by the ± symbol in Eq. (4.8). Furthermore, we only consider the fundamental waveguide mode n = 0 14 in the calculations since the inuence of higher modes is negligible as shown in Fig. 4.11. The analytical calculations assuming a wavevector independent detection eciency by the iSHE are in good agreement with the experimentally obtained spectra.

The small visible deviations are likely caused by a too simple description of the material's damping, which is assumed to be entirely Gilbert-type, 15 and by an idealization of the CPWs which neglects their edge roughness.

The calculated intensity drops close to the noise level of our experimental setup for µ 0 H ≈ 52 mT. We convert this eld value into a wavevector for each device via Eq. and no systematic discrepancy with increasing wavevector is observed. Thus, the detection eciency via iSHE is independent of the spin-wave wavevector in the experimentally accessible wavevector range.

To demonstrate the feasibility of the iSHE detection for a broader range of frequencies, Fig. 4.11 compares the measured excitation spectra of the three dierent CPW types to the corresponding expected excitation spectra for frequencies between 2 and 5.5 GHz, determined by the available eld range of our experiments. The measured voltage and the expected spin-wave intensity are displayed color-coded as a function of the applied 14 We remind that in other works, the fundamental width mode can be referred to as n = 1. 15 In Sec. 3.4.4, we qualitatively characterize a non-Gilbert-type damping in ST-FMR experiments, caused by a inhomogeneous eective magnetization of the ferromagnetic layer. This non-Gilbert-type damping is also present in the devices used in this section but has not been characterized. 16 For each device, we calculate Eq. (4.13) for µ0H = 52 mT and f = 4.8 GHz and using the device's M ef f and its CPW design. We sum over the rows to account for the non-zero linewidth, and look up the corresponding wavevector.

eld and frequency. The white lines correspond to the Kittel ts obtained from the ST-FMR measurements. The spectra have been normalized individually to their maximum at each frequency to account for the changes of the input impedance. All color maps use an identical, logarithmic scale. As can be seen from Fig. 4.11, the measured spectra are in good qualitative agreement in the probed eld and frequency range. In the entire range, the noise-limited maximum detectable wavevector is about 40 rad µm -1 and is determined by the Fourier spectrum of the excitation source. The visible small peak at elds larger than the FMR, which corresponds to a spin-wave mode below the spin-wave band, is associated with an edge mode, [START_REF] Gubbiotti | Magnetic Field Dependence of Quantized and Localized Spin Wave Modes in Thin Rectangular Magnetic Dots[END_REF] which is weakly excited by the CPW. The white lines represent the Kittel ts obtained from the ST-FMR measurements. In both panels, the dashed lines are guides to the eye indicating the position of the maxima of the spectra expected from the calculations. Taken from [START_REF] Brächer | Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Eect[END_REF].

Comparison of measured voltages

In the following paragraphs, we provide a more quantitative analysis of the amplitude of the iSHE signals. In order to check whether there is a dependence of the iSHE voltage level on the excited wavevector itself we compare the voltage levels for the different types of CPW that have their rst maximum at dierent wavevectors. The peak voltages for the dierent CPW antennae obtained in the experiments are: CPW type A: V max = (13.2 ± 1.3) µV, CPW type B: V max = (2.5 ± 0.3) µV, and CPW type C: V max = (1.1 ± 0.1) µV. The ratio between the voltages for each CPW, 3. The excitation volume of the CPWs: given that the FM layer is ultra-thin and that all of the antennae designs feature CPWs that extend over the whole width of the SWW, we can consider that the excited SWW thickness t f and width w w (see Fig. We can conclude that the ratio is determined by the experimental setup and that the iSHE voltage level does not depend on the excited wavevector, within the experimentally accessible wavevector range, and within the range of frequencies explored in Fig. 4.11.

Brillouin light scattering experiments

In the previous section, we successfully detected magnetization dynamics via the iSHE rectication eect. To prove that we are measuring propagating spin-waves, we performed micro-focused Brillouin light scattering (BLS) experiments. Additionally, we are interested in characterizing the propagation of the spin-waves, which is possible with spatially resolved BLS microscopy, for two reasons. Firstly, to characterize the decay length of the spin-waves and thus their lifetime. Secondly, to verify that the spin-waves detected via the iSHE are far away from the contacts, to show that the iSHE detection scheme is sensitive to localized spin-waves dynamics.

Micro-focused Brillouin light scattering is an optical technique that allows the detection of local magnetization dynamics. We 17 were given the opportunity to perform measurements on our devices using a Brillouin light scattering microscope in the group of B. Hillebrands at the State Research Center OPTIMAS at the Technical University of Kaiserslautern. Measurements were performed with the help of T. Meyer, T. Fischer and P. Pirro. The working principles of BLS, as well as a detailed description of the microscope itself and of the measurement technique can be found in the dissertation of T. Brächer [START_REF] Brächer | Parallel Parametric Amplication of Spin Waves in Micro-Structures[END_REF]. Alternatively, reviews on BLS microscopy can be found here [Seb15;

Dem15]. In the following, we will only give a very brief overview.

Working principle

Brillouin light scattering is based on the interaction of light (photons) with oscillations in a material. The nature of these oscillations can be acoustic (phonons), dielectric (polarons) or magnetic (magnons). 18 The scattering of photons with magnons is inelastic, meaning that the energy of the photon is not conserved following the interaction with the ferromagnetic material. However, the total energy of all particles involved in the interaction is conserved:

hν = hν ± hf (k) (4.16)
where h is Planck's constant, ν and ν are the photon's frequency before and after the scattering process respectively and f (k) is the frequency of the interacting magnon with wavenumber k. During the scattering process, the photon can either create or annihilate a magnon (the creation of a magnon is illustrated in Fig. 4.13), which is represented by the ± sign. Thus, the interaction of photons with magnons results in a frequency-shift of the photons that is equal to the frequency of the detected spin-wave.

Description of the microscope

A schematic of the microscope is given in Fig. 4.14. A solid-state laser provides a monochromatic light source at a wavelength of 532 nm. The light is guided onto the sample by a microscope objective and focused down to a spot size of about 400 nm, with an eective spatial resolution of about 250 nm. Micro-step motors and an auxiliary optical microscope allow precise positioning of the spot on the sample's surface. The inelastically scattered light is recollected by the objective and guided into a 3+3-pass JRS Tandem Fabry-Pérot interferometer [START_REF] Mock | Construction and Performance of a Brillouin Scattering Set-up Using a Triple-Pass Tandem Fabry-Perot Interferometer[END_REF] where it is analyzed with respect to frequency and intensity. The obtained BLS intensity at a given frequency is proportional to the number of inelastic scattering events of the light with magnons of this frequency in the probing spot. Thus, it is directly proportional to the local spin-wave intensity under the laser spot.

In addition to the change in energy described in Eq. (4.16), the photon also experiences a change in momentum. In the simplied case where the magnon's wavenumber is where k y,photon and k y,photon are the photon's wavevector component parallel to y before and after the scattering, respectively. Since the reected light is collected by the same microscope objective that focuses the incident light, this change of wavevector has an important consequence. The direction of propagation of a photon is given by its wavevector, which means that the interaction with a magnon changes the reected photon's direction.

Since the objective has a limited aperture, a reected photon with too great a change in wavevector cannot be captured by the objective. In other words, such BLS microscopes are inherently limited by their optics and cannot detect spin-waves beyond a certain wavevector. The resolution limit of the microscope used in this work is 19 rad µm -1 .

Unlike the ST-FMR experiments of Chap. 3 and the SWR experiments of Sec. 4, in the BLS experiments presented in this section the applied eld is set to a xed value.

There is no RF current or eld. The analysis of the scattered photons gives the spin-wave spectrum in the frequency domain.

BLS measurements

The BLS measurements are performed on a 2 µm wide SWW with a type B CPW, 

Spin-wave decay length

We now seek to characterize the propagation length of the spin-waves in the SWW.

Due to relaxation processes, the amplitude of the spin-wave decays exponentially as the wave propagates in the ferromagnetic material. We previously described the spin-wave relaxation rate ω r in Eq. (1.72), which is related to the spin-wave lifetime τ via ω r = 2π τ .

It represents the time in seconds it takes for a spin-wave's amplitude to drop by 1/e. The group velocity v g , obtained in Eq. (1.51) from the dispersion relation, can be understood as the velocity at which the spin-wave's energy is transported along the direction of propagation. Thus, the spin-wave decay length δ is related to the spin-wave lifetime and the group velocity by:

δ = v g τ (4.18)
where δ is the distance over which a spin-wave's amplitude drops by 1/e. Thus, if the dispersion relation is known, the spin-wave decay length δ gives us access to the spin-wave lifetime τ . The spin-wave intensity I was measured at dierent positions y along the length of the SWW. As seen in Fig. 4.15, the intensity of the spin-waves is not equal for both directions, and for the experiment described in this subsection we naturally chose the direction with the higher intensity, using an applied eld |µ 0 H| = 55 mT. For each y, we measured the spin-wave intensity for certain frequencies at dierent positions z across the width of the SWW, and averaged these measurements for a given y. The results are shown in Fig. 4.16 with symbols, which give the spin-wave intensity as a function of y for a few frequencies between 3.4 GHz and 3.8 GHz, within the detection range of the BLS microscope. We tted the following exponential function to the experimental data:

I(y) = I 0 + A e -y-y 0 δ 2 (4.19)
where I 0 is the oset due to the experimental noise, and A is the spin-wave amplitude at the point y 0 . The squaring of the last term is due to the fact that the spin-wave intensity 4.5. BRILLOUIN LIGHT SCATTERING EXPERIMENTS 123 is the square of the spin-wave amplitude. The exponential ts are performed only for y > 200 nm, suciently far from the CPW so that the laser spot is not partially on the CPW, which would distort the detected spin-wave intensity.

As can be seen in (1.72) is also shown for the same anisotropy constants.

The spin-wave lifetimes obtained by experiments, the analytical calculations and the micromagnetic simulations are all large in comparison to the values expected from a material system with similar values of M s and α but no PMA. This can be understood from the ellipticity contribution to the lifetime for the ferromagnetic resonance. The FMR lifetime τ f mr , in seconds, is given by [START_REF]Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties[END_REF]:

1 τ f mr = αγ µ 0 H + M ef f 2 (4.21)
A reduction of M ef f due to the PMA signicantly increases the lifetime at low magnetic elds where H ≈ M ef f . The experimentally obtained value of 3 ns is comparable to the lifetime in thicker ferromagnetic lms on the order of tens of nanometers from metallic This potentially indicates the presence of a wavevector-dependent relaxation process in the measured devices. This is not incorporated into the analytical formalism, which might also explain why the maxima/minima in the measured spectra are not as well resolved as predicted. We recall that in the ST-FMR experiments described in Sec. 3.4.4, we found a frequency-dependent and thickness-dependent contribution to the linewidth, though it manifests itself at lower frequencies and smaller FeCoB thicknesses than the ones used here. 21 Heusler compounds are alloys which can present a unique mix of properties such as semi-or halfmetallicity, ferro-or antiferromagnetism, low magnetic damping, etc. [START_REF] Trudel | Magnetic Anisotropy, Exchange and Damping in Cobalt-Based Full-Heusler Compounds: An Experimental Review[END_REF].

Comparison of spin-wave detection methods

Ultimately, we would like to compare the iSHE detection to other detection methods: BLS detection (and other magneto-optical techniques like Kerr magnetometry) is local and the measured intensity depends on the local spin-wave density, which makes it a very powerful tool that does not require a large magnetic volume [START_REF] Sebastian | Micro-Focused Brillouin Light Scattering: Imaging Spin Waves at the Nanoscale[END_REF][START_REF] Demidov | Magnonic Waveguides Studied by Microfocus Brillouin Light Scattering[END_REF]. In principle, it is possible to measure the phase-evolution of propagating spin-waves directly by BLS, meaning that this method can give information on the wave amplitude and phase simultaneously. In contrast, the maximum resolvable wavevector is quite low (around k = 19 rad µm -1 for the microscope used in this chapter), which does not suce to study the short-waved spin-waves of interest for future magnonic applications. In addition, the limitations by optical diraction also limit the usefulness of BLS for nanoscopic structures. The optical setup makes it a good tool for laboratory work but will be dicult to implement in actual magnonic devices integrated on chips. For this electrical excitation and detection schemes are required.

For the detection of spin waves, we can use also use antennae (CPWs and other designs) in a reciprocal eect as discussed here for excitation of spin-waves. Such inductive techniques are used in many laboratories and can be integrated on a chip. However they can only give information about the spin-wave phase if costly microwave equipment like vector network analyzers or ultrafast oscilloscopes are used [START_REF] Bailleul | Propagating Spin Wave Spectroscopy in a Permalloy Film: A Quantitative Analysis[END_REF]. In addition, inductive antennae exhibit a strong wavevector selectivity given by their Fourier spectrum. 22 Furthermore, the weak inductive coupling between the antenna and the dynamic magnetization limits the applicability of inductive detection to microscopic devices; their sensitivity is insucient for nanoscopic structures. Because it scales with the magnetic volume, inductive detection are less suited for miniaturized structures made from ultrathin lms or lms with low magnetization.

In contrast, the iSHE detection excels in such layer systems as shown here: iSHE detectors can be easily integrated on a chip and show enough sensitivity and signal-tonoise ratio. The iSHE scales with the length over which spin-waves propagate, whereas inductive detection scale with the size of the antenna used. If only thin metallic layers are involved, the iSHE voltage is not shunted and is straightforward to detect. In contrast, in thick ferromagnetic layers, the iSHE voltage is reduced due to shunting eects and other phenomena, such as thermal eects arising from an inhomogeneous heating of the magnetic layer that can dominate the electric signal. As shown in the experiments described here, the iSHE detection limit is at least k = 40 rad µm -1 (determined by the excitation antenna used), though there is nothing in the detection mechanisms leading to the DC voltage that suggests that there is an intrinsic limit to the range of wavevectors detectable by the iSHE. The same holds true for the wavevector-independence of this technique. Thus, it is an ideal detection method for the development of scalable magnonic devices which calls for the reduction of the spin-wave wavelengths used. However, the 22 The Fourier spectrum that gives an antenna's spin-wave excitation prole (see Sec. 4.3.1) also gives its spin-wave detection prole, making antennae an intrinsically wavevector-dependent detection technique. iSHE detection can, by itself, always only provide amplitude and no phase information. Thus, the phase must be converted into another type of information, for instance, by translating it into an amplitude information [START_REF] Brächer | Phase-to-Intensity Conversion of Magnonic Spin Currents and Application to the Design of a Majority Gate[END_REF].

The studied spin-wave rectication experiment is similar to the thermoelectric detection in [START_REF] Schultheiss | Thermoelectric Detection of Spin Waves[END_REF], in which spin-waves propagate in a 100 nm thick NiFe SWW. Instead of the iSHE, spin-waves are detected via the anomalous Nernst eect (ANE). The decay of magnons create a temperature gradient which is detected as a voltage drop via the ANE. Such a detection technique is also expected to have no limit in wavelength and to be wavevector-independent. However, as shown in Sec. 4.4.3, we did not detect any signicant ANE signal, which is likely due to the fact that the FM layer in our devices is so thin that a thermal gradient is negligible. Thus, ANE detection is not suited for ultrathin SWWs.

Conclusion

Using the model derived by T. Brächer and P. Pirro, we have calculated the complete spectrum of the spin-wave excitation eciency of the coplanar waveguides, taking into account the perpendicular anisotropy of the Ta/FeCoB/MgO system and the non-zero linewidth of the spin-waves.

We detected propagating spin-waves presenting a large range of wavevectors up to ≈ 40 rad µm -1 via the inverse spin Hall eect for several devices and CPW designs. Furthermore, the wavevector dependence that can be observed (the maxima and minima of the spectra) as well as the upper limit of detectable wavevector can be exclusively attributed to the excitation scheme using CPW antennae. Hence it is concluded that iSHE is wavevector independent and can be used for detecting spin-waves in a much larger range of wavevectors.

By performing Brillouin light scattering experiments on the same spin-wave waveguides, we conrmed that the voltage generated by iSHE is due to propagating spinwaves, and that the iSHE is capable of detecting spin-waves localized far away from the where the DC signal is measured. A strong asymmetry was measured between the spin-waves propagating in either direction away from the CPW, which was predicted by the spin-wave excitation eciency. This is due to the interplay between the in-plane and out-of-plane RF eld of the CPW and is not related to the non-reciprocity of the classical Damon-Eshbach waves or to the Dzyaloshinskii-Moriya interaction, which is shown to be absent in the Ta/FeCoB/MgO material system.

Using BLS, we measured the spin-wave decay length in Ta/FeCoB/MgO, allowing us to calculate the spin-wave lifetime. We obtained a lifetime that is comparable to systems with relatively low intrinsic damping, due to the role of the perpendicular magnetic anisotropy in the Ta/FeCoB/MgO system, in which the demagnetizing eld is almost compensated by the PMA eld.

To conclude, the Ta/Fe/MgO system with strong PMA investigated here, together with the iSHE detection technique, are compatible with the integration into conventional microelectronics, owing to the compatibility of the material deposition and fabrication techniques, and the fact that the iSHE voltage naturally arises in any bilayer system where a FM and a NM with a signicant spin Hall angle share a large interface. Additionally, the iSHE detection scheme is an ideal candidate for scalable magnonic devices, as its wavevector sensitivity shows no indication of an upper limit nor any wavevector dependence, allowing the reduction of the device size and the wavelength used. Moreover, the chosen material system allows the manipulation of spin-waves with a simple electric current via the spin-orbit torques demonstrated in Chap. 3. Finally, the Ta/FeCoB/MgO stack is also compatible with other spintronic technologies such as MRAM, which are already commercialized. This paves the way for the development of scalable wave-based logic devices integrated onto CMOS electronics, with the possibility of including STT-MRAM or newer generation SOT-MRAM for fast, non-volatile memory.

Conclusion and perspectives

This thesis addresses the applicability of a Ta/FeCoB/MgO slab with an ultrathin ferromagnetic layer and characterized by a strong PMA, as a spin-wave waveguide. In particular, we focused on the characterization of the spin-orbit torques with the aim of using them to manipulate spin-waves as well as the capacity of the inverse spin Hall eect to provide a wavevector independent method of detecting spin-waves.

The rst experimental chapter is dedicated to the characterization of the magnetic properties of Ta/FeCoB/MgO spin-wave waveguides via spin-torque ferromagnetic resonance. The expected voltages arising from this technique were calculated, taking into account the dierent RF excitation sources as well as the two possible rectication mechanisms. It was concluded that in our spin-wave waveguides the main source of the DC signal is the combined eects of spin-pumping and the inverse spin Hall eect, and that anisotropic magnetoresistance rectication is negligible. Due to the lineshapes of the signals generated by the inverse spin Hall eect, it was impossible for us to dierentiate between Ørsted eld, eld-like torque or damping-like torque excitations. However, this does not mean that measuring the spin-orbit torques via ST-FMR is impossible. Indeed, we derived the modications to the susceptibilities induced by a DC eld-like torque and a DC damping-like torque, both produced by a DC current injected in the SWW.

Following an analysis of the linewidth of the resonance peak as well as its resonance eld as a function of the injected DC current, we characterized β f l (respectively β dl ), the ratio between the eective eld of the eld-like (respectively damping-like) torque and the current density in the Ta layer. From the characterization as a function of ferromagnetic layer thickness, we concluded that both β f l and β dl increase as the ferromagnetic layer thickness decreases, which is consistent with the fact that β f l and β dl are inversely proportional to the volume, i.e. the thickness.

Before analyzing the DL and FL torque as a function of current and ferromagnetic layer thickness, we performed an analysis at I dc = 0 and extracted the eective magnetization as a function of ferromagnetic layer thickness, which governs the balance between the demagnetization energy and the perpendicular magnetic anisotropy energy, determining the orientation of the magnetization. We identied the critical thickness of reorientation and studied devices around and at the transition. The extraction of the damping proved to be more complicated than expected, as an unexpected variation of the eld linewidth ∆H vs. the excitation frequency appeared for many devices. We qualitatively explained this result, particularly the negative slope of the linewidth vs. the excitation frequency by taking into account an inhomogeneous distribution of the magnetic properties of the ferromagnetic layer, resulting in a non-linear frequency-dependent contribution to the eld linewidth.

The second experimental chapter is devoted to the excitation, propagation and detection of spin-waves in the same Ta/FeCoB/MgO spin-wave waveguides. The excitation spectrum of the nanometric coplanar waveguides was calculated, taking into account the perpendicular magnetic anisotropy as well as the non-zero linewidth of the spinwaves. Taking advantage of the same detection mechanism that was demonstrated in Ta/FeCoB/MgO for uniform (k = 0) modes in the previous chapter, we performed spinwave rectication experiments. By comparing the measured spin-wave spectrum to the calculated excitation spectrum, we concluded that the detection mechanism is wavevector independent up to a wavevector of at least 40 rad µm -1 , at which value the signal drops below the noise level. This value corresponds to minima for the excitation by the coplanar waveguides, hinting that the iSHE-based detection method is eective and wavevector independent even for higher wavevectors.

The spin-wave rectication experiments were complemented by Brillouin light scattering microscopy, conrming that the detected signal arises from propagating spin-waves.

We then measured the spin-wave intensity as a function of distance from the coplanar waveguide and extracted the spin-wave decay length, which allowed us to calculate the spin-wave lifetime. We found a spin-wave decay length of 600 nm and a spin-wave lifetime of approximately 3 ns, which is comparable to the lifetime of thicker NiFe systems which lack a pronounced interfacial damping. The large lifetime is attributed to the perpendicular anisotropy of the Ta/FeCoB/MgO, which reduces the eective magnetization and its contribution to the ellipticity, leading to a reduced lifetime.

In comparison to other spin-wave detection methods such as BLS and inductive coupling, the main advantage of the iSHE method used in this work is its wavevectorindependence. More importantly it can be directly integrated with the device and the measurement requires no extensive laboratory equipment: the spin-wave dynamics is converted to a charge current, which can be detected by a transistor for example. Additionally, it shows no limit in terms of scalability, in terms of nanofabrication or wavelength limit. Of course, it lacks an important feature, namely that it cannot measure the phase of a spin-wave.

The next logical step is therefore combining the two main concepts studied in this work: spin-orbit torques and spin-waves. By injecting a DC current in the waveguide with the correct polarity, the damping-like torque can reduce the eective damping of the system, enhancing the lifetime of the spin-waves. We present in Fig. 4.20 preliminary results in which the voltage of the highest peak of the measured spin-wave spectrum is plotted as a function of the DC current injected longitudinally in the SWW. An RF current with f = 4.8 GHz is supplied to the CPW antenna for several values between 0 and -12 dBm, while the applied eld is swept across the resonance. In this conguration, a negative DC current is expected to enhance the eective damping, while a positive one is expected to reduce it. Surprisingly, for both current polarities, the peak height increases as the current magnitude increases. In fact the eect is more pronounced for negative currents, which is contrary to our expectations. In Fig. 4.21, we plot the peak voltage as a function of the power applied to the CPW antenna, for ±0.5 mA and ±1 mA.

Since the power is in dBm, and the voltage scale is in logarithm, this is a log-log plot.

Thus, the linearity between the measured voltage (which is related to the square of the dynamic magnetization) and the applied power is straightforward to verify. We see that for positive currents, the voltage is linear up to at least -2 dBm, while for negative currents, the voltage is non-linear for values starting at -8 dBm. Additionally, we see that doubling the positive current does not result in signicant changes, while doubling the negative current changes the non-linearity threshold and changes the slope of the linear t.

We were unable to explain both the very high increase of the peak for currents expected to increase the eective damping (negative currents), nor the lack of eect on the peak for currents expected to decrease the eective damping (positive currents). In any case, the decrease of the nonlinear threshold for negative currents shows that for one polarity, there is a clear increase in nonlinear relaxation processes. It would be interesting for future work to address these questions, as the enhancement of spin-waves via spin-orbit torques was achieved in dierent material and geometric congurations [Dem14; Che16], including nanowires [START_REF] Duan | Nanowire Spin Torque Oscillator Driven by Spin Orbit Torques[END_REF] similar to our SWWs. In these studies, the excited magnetic volume is much reduced, resulting in the separation of the spin-wave modes such that at a given excitation frequency, only one mode may exist, and therefore, 

3[ Bai03 ;

 Bai03 Sch08; Dem09] and CoFeB alloys 4 [Con13; Ran17] as well as half-metallic Cobased Heusler compounds [Seb12; Pir14]. However these materials have larger damping parameters in the 10 -3 range and thus the spin-wave propagation distances are only on the order of µm.
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 12 Figure 1.2: Motion of the magnetization M due to an eective eld H eff in the presence of damping. The precessional term (green) makes the magnetization turn around the eective eld while the damping term (yellow) reduces the angle of the cone of precession until the magnetization is aligned with the eective eld.
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 13 Figure 1.3: Illustration of a propagating spin wave with wavelength λ = 2π k and group

  (a) NiFe with d = 30 nm without PMA. (b) FeCoB with d = 1.3 nm with PMA.

Figure 1 . 4 :

 14 Figure 1.4: Dipole-exchange spin-wave dispersion relations for dierent material systems, for θ k = 0 (solid black) and θ k = π 2 (solid red), for an applied eld µ 0 H = 100 mT. The dispersion relation continuously shifts from one curve to the other as a function of θ k . f 0 (dashed green line) shows the FMR frequency of the corresponding material system. (a) Dispersion relation for a t f = 30 nm thick NiFe thin lm without PMA. (b) Dispersion relation for a t f = 1.3 nm thick FeCoB thin lm with an adjacent MgO layer that induces PMA.

  the Damon-Eshbach conguration essentially propagate in the volume because the amplitude of the spin-wave is almost constant across the thickness despite the exponential fall-o [Pat84; Hur95].
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 15 Figure 1.5: Dispersion relation of an electron. a) Section of the 2D dispersion relation with Rashba interaction. b) 2D Fermi contours with Rashba interaction, arrows represent the spin states. c) Dispersion relation of a free electron. d) Dispersion relation of an electron in a magnetic eld. e) Dispersion relation of an electron with Rashba interaction.Taken from[START_REF] Bercioux | Spin-Dependent Transport in Nanostructures[END_REF].

Figure 1

 1 Figure 1.6: Anomalous Hall eect and spin Hall eects. (Top) In the AHE, a spin polarized charge current generates a transverse spin polarized charge current depending on the magnetization. (Left) In the SHE, an unpolarized charge current generates a transverse spin current. (Right) In the iSHE, a spin current generates a transverse charge current. Taken from [Sin15].

Figure 1

 1 Figure 1.7: A schematic of spin-pumping and the inverse spin Hall eect. Spin-pumping:

1.4. 5

 5 Anisotropic magnetoresistanceAnisotropic magnetoresistance (AMR) was discovered in Fe and Ni in 1857 by Thomson[START_REF] Thomson | On the Electro-Dynamic Qualities of Metals:Eects of Magnetization on the Electric Conductivity of Nickel and of Iron[END_REF]. It also arises from spin-orbit interaction[START_REF] Berger | Inuence of Spin-Orbit Interaction on the Transport Processes in Ferromagnetic Nickel Alloys, in the Presence of a Degeneracy of the 3d Band[END_REF][START_REF] Ashworth | Galvanomagnetic Eects, Magnetostriction, and Spin-Orbit Interaction in Cu-Ni-Fe and Other Ferromagnetic Nickel Alloys[END_REF]. The eect, found in 3d transition ferromagnetic metals and alloys, consists in the change of electrical resistivity as a function of the angle between the magnetization of the material and the direction of the electrical current passing through it. At room temperature, the change in resistivity of bulk NiFe alloys can reach 5%[START_REF] Mcguire | Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys[END_REF]. For most materials, the resistivity is minimal when the magnetization is perpendicular to the ow of current and maximal when they are parallel. The anisotropic magnetoresistivity follows the following angular dependence[START_REF] Mcguire | Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys[END_REF]:

  Minatec and at Nanofab at the Institut Néel (both clean rooms are in Grenoble), using UV and electron-beam lithography. The aim is to obtain a Ta/Fe 72 Co 8 B 20 /MgO/Al 2 O 3 /Ta 2 O 5 wire that will form the spin-wave waveguide, with metallic contacts at each end, and two sets of CPWs above the wire with a Al 2 O 3 insulating layer in between, as shown in Fig.2.1. The electron-beam lithography was performed by G. Gaudin, the nanofabrication and scanning electron microscopy by T. Brächer and the atomic layer deposition of Al 2 O 3 (described below) by M. Schott at Nanofab.1 The main steps are summarized:

45•

  angle with respect to the lm plane. A secondary ion mass spectrometer is used to monitor the progress of the etching step. The result is a Ta/Fe 72 Co 8 B 20 /MgO/ Al 2 O 3 /Ta 2 O 5 wire with ma-N 2401 on top, which is removed in an acetone bath.3. AZ5214, a negative UV resist, is spin-coated on the wafer. Leads and contact pads are dened using UV lithography for lift-o. 4. Ti (5 nm) and Au (30 nm) are deposited by electron beam evaporation. The UV resist is removed in an ultrasonic acetone bath, resulting in Ti/Au leads and contact pads. These are connected either to the existing SWW or to the coplanar waveguides fabricated in step 8. 5. AZ5214 is spin-coated on the wafer. A rectangle completely covering the SWW is dened by standard UV lithography for lift-o.6. Al 2 O 3 (30 nm) is deposited on the wafer by atomic layer deposition. The UV resist is then removed in an acetone bath, resulting in an Al 2 O 3 insulating layer covering the SWW.

Figure 2 . 1 :

 21 Figure 2.1: Scanning electron microscopy image of a spin-wave waveguide with a length l w = 12 µm, width w w = 1 µm, and two electrical contacts A and B. Two coplanar waveguides (1 and 2) are positioned on top, separated by a Al 2 O 3 insulator (not visible

  torques and damping in Ta/FeCoB/MgOThe aim of this chapter is to characterize the strength of the damping-like and eldlike torques (given by β dl and β f l in Eqs. (1.83) and (1.85)) for the PMA SWW of Ta/FeCoB/MgO. For this we use a ferromagnetic resonance (FMR) technique and analyze the resonance peak position and linewidth. The damping-like torque is expected to aect the linewidth and the eld-like torque the peak position when a DC current is injected into the SWW. To extract the damping-like torque and eld-like torque amplitudes, we rst characterize the material parameters such as saturation magnetization, PMA value and damping parameter alpha in absence of a DC current. Indeed, we seek to investigate the behavior of spin-waves in an ultrathin material in which the demagnetizing eld is almost compensated by the perpendicular magnetic anisotropy, or even overcompensated, resulting in an out-of-plane magnetization. Once the FMR characterization is done, we can address the spin-orbit torques. This chapter describes rst the FMR technique used in our studies. We then analyze theoretically the dynamic susceptibility (see Chap. 1, Eq. (1.46)) considering dierent mechanisms that can contribute to the excitation of the dynamics and to the detected electrical signal. This is followed by the description of the experiments in zero DC current to extract the material parameters and nally the experiments under DC current to characterize the damping-like and eld-like torque contributions in our SWW with perpendicular magnetic anisotropy.

[

  [START_REF] Tulapurkar | Spin-Torque Diode Eect in Magnetic Tunnel Junctions[END_REF]. It includes many dierent excitation schemes and detection mechanisms, though the key dierence with standard FMR techniques is that the detection is obtained by measuring a voltage drop across the studied device instead of measuring the absorbed RF power. A high frequency current generates an RF excitation such as an Ørsted eld, spin-transfer torque in magnetic tunnel junctions[START_REF] Tulapurkar | Spin-Torque Diode Eect in Magnetic Tunnel Junctions[END_REF][START_REF] Sankey | Spin-Transfer-Driven Ferromagnetic Resonance of Individual Nanomagnets[END_REF] or spin-orbit torques in bilayer systems with strong spin-orbit interaction[START_REF] Liu | Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Eect[END_REF]. Generally, the magnetization is considered to be excited uniformly and the amplitude of the excitation becomes maximum at resonance, i.e. when the excitation frequency is equal to the FMR frequency.Depending on the type of device, the detection relies on one or several rectication effects such anisotropic magnetoresistance [Mec07; Yam07], tunneling magneto-resistance [Tul05; San06] or the combined eects of spin-pumping and the inverse spin Hall eect [Sai06; Mos10; Aze11]. The rectication creates a detectable DC voltage when the magnetization is precessing at resonance. 2 For the Ta/FeCoB/MgO system, we expect the magnetization to be excited by a combination of an Ørsted eld and spin-orbit torques, and the detection to arise from a combination of AMR and iSHE rectication. The analytical expressions for all these excitation schemes and these rectication eects will be investigated in Sec. 3.2 and 3.3. Here we rst describe the experimental setup. We will discuss the results on ST-FMR with zero DC current I dc = 0 in Sec. 3.4 and with I dc = 0 in Sec. 3.5. The experimental setup is shown in Fig. 3.1. The device is placed on an electrically isolated platform in the gap of an electromagnet capable of supplying up to 170 mT in the plane of the device, as shown in Fig. 3.2. An RF probe is used to contact the ends of the SWW, represented by the points A and B in Figs. 2.1 and 3.2. An analog RF signal generator is used to deliver RF power to the device via the high frequency port of a bias-T, while the low frequency port is connected to a Keithley source-meter, for measuring voltage and supplying direct current as needed. Thus, in ST-FMR all currents ow through the length of the Ta/FeCoB/MgO SWW. In our experiments, the frequency of the RF current is kept constant while the external eld is swept across the resonance.

Figure 3

 3 Figure 3.1: ST-FMR setup schematic. An electromagnet generates an in-plane eld centered on the spin-wave waveguide, whose terminals are connected via an RF probe to the combined port of a bias tee. The high frequency port is connected to an RF generator, and the low frequency port is connected to a current source and a lock-in amplier. The lock-in amplier supplies a low frequency signal to the RF generator that modulates the outputted RF power, allowing the lock-in amplier to increase the signal-to-noise ratio of the voltage detected at the terminals of the SWW.

Figure 3

 3 Figure 3.2: Schematic of ST-FMR showing the two coordinate bases used. The magneti-zation is saturated by an external eld H ẑ applied in the plane, at an angle θ H with the long axis of the spin-wave waveguide, and the equilibrium magnetization M eq is aligned with H. An RF current density j c ẑ is driven through the SWW, resulting in dynamic Ørsted h ø , eld-like h fl and damping-like h dl elds acting on the magnetization. The rectied voltage is measured between A and B.

  tation and the damping-like torque excitation. The dependence of both signals on the angle of the in-plane external eld, θ H , is identical. The dierence lies in the shape of the peak, which is dispersive for the eld excitation, and Lorentzian for the damping-like torque excitation. Since most material systems with SOTs exhibit both eld-like and damping-like torques, AMR rectication leads to a signal that is the sum of a Lorentzian and a dispersive lineshape. By tting a linear combination of Lorentzian and dispersive functions to the resonance peak, one can determine the amplitudes of both contributions and thus characterize the damping-like and the eld-like torques. This property has been extensively used to determine the ratio between the strength of the damping-like and of the eld-like torques, particularly in ferromagnetic materials with high AMR such as Py, which is often coupled with Pt for SOTs [Ski14; Nan15; Pai15]. One can then calculate the current density in the NM layer required to obtain the measured eld-like torque, and then obtain the absolute strength of each spin-orbit torque.3.3.2 DC signal via spin pumping and inverse spin Hall recticationNow let us treat the other major source for generating a DC signal, the combination of spin-pumping and the inverse spin Hall eect. In an ST-FMR experiment, the magnetization is precessing around the eective magnetization which is largely dominated by the externally applied eld, set along ẑ. This magnetization precession generates, via spin-pumping, a spin current that ows in the x direction to the FM interface. If the device is a FM/NM bilayer system, where the NM is a metal with large spin-orbit coupling, i.e., it has a consequent spin Hall angle, then the spin current is converted into an orthogonal charge current via the iSHE.

  xy cos θ H (-D cos(ωt) + L sin(ωt)) Re(m y ) = (H f l + H ø )A yy cos θ H (D cos(ωt) -L sin(ωt)) Re( ṁy ) = ω(H f l + H ø )A yy cos θ H (-D sin(ωt) -L cos(ωt)) (3.43) where h † y = (H ø + H f l )e iωt , the real amplitudes of the Ørsted eld and of the eective eld of the eld-like torque. The last two terms in the last line of Eq. (3.40) then become:

  x A xy cos θ H (D + iL) ṁy = ωh dl,x A xy cos θ H (D + iL) (3.51) Taking the real parts yields: Re(m x ) = H dl A xx cos θ H (D cos(ωt) -L sin(ωt)) Re( ṁx ) = ωH dl A xx cos θ H (-D sin(ωt) -L cos(ωt)) Re(m y ) = H dl A xy cos θ H (D sin(ωt) + L cos(ωt)) Re( ṁy ) = ωH dl A xy cos θ H (D cos(ωt) -L sin(ωt)) (3.52) where h dl,x = H dl e iωt , H dl being the real amplitude of the eective eld of the dampinglike torque along the x axis. The last two terms in the last line of Eq. (3.40) then become:Re(m y )Re( ṁx ) -Re(m x )Re( ṁy ) = -ωH 2 dl cos 2 θ H sin θ H A xy A xx L (3.53)which, apart from the eld amplitude and the term A xx replacing A yy , is the same as Eq. (3.44), where the excitation source is an Ørsted eld. Following the same steps as for Eq. (3.49), we obtain:

  4.4.3). This is due to the dierent geometry of the excitation eld used for the experiments in Chap. 4 (as compared to Chap. 3), resulting in a dierent angle-dependence for the AMR and the iSHE signals. In any case, the exact origin of the signal does not inuence the interpretation of the results shown in this chapter.With the iSHE as the dominant source of the detected DC signal, it will not be possible to distinguish between the contribution of the damping-like torque and of the eld-like torque excitation by comparing the relative amplitudes of the Lorentzian contri-4 In the case of a DC damping-like torque, the o-diagonal elements Axy are modied as seen in Eq. (3.20) bution vs the dispersive contribution.5 Thus, the method used in [Ski14; Nan15; Pai15] cannot be used here to determine the relative strength of each spin-orbit torque. 1: Summary of the FMR lineshapes created by the possible excitation sources and the possible rectication methods.

Figure 3

 3 Figure 3.3: ST-FMR resonances without DC current for an in-plane magnetized SWW, with a 1.33 nm thick FeCoB layer. The applied frequency ranges from 2.5 to 6.0 GHz. The uneven decrease of the resonance peak as the frequency increases is likely due to impedance mismatch.

example of a

  Lorentzian function tted to a resonance peak is given in Fig 3.4. The non-zero oset voltage V 0 will be discussed in Sec. 3.5 as it has a dependence on the DC current used in the experiments described in that section.

Figure 3

 3 Figure 3.4: ST-FMR resonance peak at 3.5 GHz without DC for an in-plane magnetized SWW. A Lorentzian function, dened in Eq. (3.56), is tted to the curve, yielding V 0 = 2.45 µV, V A = 2.92 µV, H r = 64.45 mT and ∆H = 5.4 mT.

Figure 3

 3 Figure 3.5: ST-FMR resonance peak amplitude at 3.5 GHz as a function of eld angle θ H . θ H = 0 corresponds to the external eld being parallel to the long axis of the SWW. The tting function is proportional to sin θ H cos 2 θ H . The large dispersion around 90 • and 180 • is due to the fact that the device is not perfectly positioned in the center of the gap of the electromagnet.
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 36 Figure 3.6: Resonance eld for devices with dierent ferromagnetic layer thickness. Each data set, identied by its color, corresponds to a device of a certain thickness and the corresponding value indicated in the legend is the device's Q-factor, dened in Eq. (3.61).

Figure 3

 3 Figure 3.7: Eective magnetization as a function of the inverse of the ferromagnetic layer's thickness. The linear t yields a saturation magnetization of M s = (1.48 ± 0.04) MA m -1 and an interfacial anisotropy constant of K i = (1.67 ± 0.07) mJ m -2 . The top scale for t f is non-linear.

Figure 3

 3 Figure 3.8: Q-factor as a function of FeCoB thickness. Black squares are calculated without consideration of a possible dead layer, using Eq. (3.61). Blue stars are calculated by taking into account a dead layer 0.3 nm thick, using Eq. (3.62). However the abscissa used for the blue stars is the nominal FeCoB thickness t f .
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 3 Figure 3.9: Resonance eld as a function of Q-factor at 3.5 GHz. Eq. (3.59) and Eq. (3.61) are used to t the data as a function of Q.

Figure 3 .

 3 Figure 3.10: Calculated resonance frequency as a function of applied eld for out-of-plane

Figure 3 .

 3 Figure 3.11: Linewidth as a function of inverse thickness for a SWW with Q = 0.91. The t yields a damping parameter α = 0.016.

  properties of the dierent regions have Gaussian distributions. The Q-factor is a function of the same variables, therefore the dispersion of the values of Q (dened in Eq. (3.61))

Figure 3 .

 3 Figure 3.14: Linewidth as a function of Q for f r = 3.5 GHz. Lines represent calculated linewidths for values of µ 0 M s ∆Q ranging from 0 to 50 mT, with α = 0.02. Stars represent experimental data.

Fig 3 .

 3 Fig 3.16. The inhomogeneity distribution ∆Q linearly increases as Q increases, indicating that the thinner the FeCoB layer, the greater the eect of the inhomogeneities on the linewidth, conrming the interfacial nature of its origin.

Figure 3 .

 3 Figure 3.15: Linewidths as a function of frequency for devices with Q ranging from 1.044 to 0.905. Symbols represent experimental data. Each data set is tted by Eq. (3.71), with α = 0.02, and represented by either full or dashed lines. Some curves cross due to the fact that dierent values of M s ∆Q were used for each device.

Figure 3 .

 3 Figure 3.16: Summary of the tted parameter µ 0 M s ∆Q (squares) as a function of Q, obtained from tting Eq. (3.71) to the experimental data. The linear t (red line) does not take into account the red square data point.

Figure 3 .

 3 Figure 3.17: Example of ST-FMR resonances for a device with Q = 0.974. The symbols represent experimental data, the red curves are Lorentzian functions tted to the data, and the vertical dashed lines are guides for the eye to indicate resonance elds. With near zero DC current injected (black symbols), the resonances are antisymmetric with respect to the eld. With -0.8 mA DC (green symbols), the resonance at negative eld has reduced linewidth while the resonance at positive eld has increased linewidth. With +0.8 mA DC (blue symbols), this behavior is reversed with respect to the eld. For both -0.8 and +0.8 mA DC, the resonance eld is shifted toward zero.

Figure 3 .

 3 Figure 3.18: Oset voltage vs. applied DC current at f = 3.5 GHz for a device with Q = 0.921. Eq. (3.72) is tted to the experimental data (solid lines).

Figure 3 .

 3 Figure 3.19: Resonance eld at 3.5 GHz as a function of DC current for devices with Q = 1.035 (black), Q = 0.974 (blue) and Q = 0.921 (red). Up-pointing triangles represent data points under a positive eld and down-pointing triangles under a negative eld.

  the extracted resonance eld is repeated for devices of dierent Qfactor. In Fig. 3.21, we plot ∂Hs ∂I dc as a function of Q, extracted from linear ts and averaged for results from positive and negative elds. The graph shows that ∂Hs ∂I dc increases in magnitude with Q, with a change of sign around Q = 0.93. Such a change of sign is indicative of two opposing eects: the eld-like torque and the Ørsted eld.

Figure 3 .

 3 Figure 3.20: Odd component of the resonance eld with respect to the applied current, calculated according to Eq. (3.74). Only the Ørsted eld and the eld-like torque contributions, which are odd functions of the DC current, are kept. Blue triangles represent resonance elds for positive (up-pointing) and negative (down-pointing) elds for Q = 0.913. Black triangle represent resonance elds for positive (up-pointing) and negative (down-pointing) elds for Q = 1.035. For I dc > 0, full lines are linear ts of the positive eld data points, while dashed lines are linear ts of the negative eld data points.

Figure 3 .

 3 Figure 3.21: Shift of the resonance eld per unit of current as a function of Q. Each data point is the average of the slopes of the linear t of the odd part of the resonance eld, for positive and negative elds, as a function of applied current.

Figure 3 .

 3 Figure 3.22: Strength of the eld-like torque β f l as a function of Q. The h ø eld is considered to be either parallel (black squares) or anti-parallel (blue circles) to h f l . The line is a guide for the eye.

Figure 3 .

 3 Figure 3.24: Inverse resonance peak height as a function of current for negative (black squares) and positive (blue circles) elds, for Q = 0.983. The peak height of the tted Lorentzian curve is inversely proportional to its linewidth. The eect of the current saturates at high magnitudes, therefore the red squares are not taken into account for the linear ts, represented by full lines.

Figure 3 .

 3 Figure 3.25: Inverse resonance peak height as a function of current for negative (downpointing triangles) and positive (up-pointing triangles) elds, for Q = 0.921 (black) and for Q = 1.035 (blue). Red symbols are not taken into account for the linear ts, represented by full lines.

Figure 3 .

 3 Figure 3.26: Reduction of the linewidth per unit of current as a function of Q.

Figure 3 .

 3 Figure 3.27: Strength of the damping-like torque β dl as a function of Q. β dl relates the eective eld in T to the current density that created it in A m -2 . The current density used is the estimated current density in the Ta layer. The solid line is a linear t of the latter.

  2, along with the details of their fabrication. A schematic of the device and the electrical contacts 95 is shown in Fig. 4.1.

Figure 4

 4 Figure 4.1: Schematic of the spin-wave waveguide. A Ta/Fe 72 Co 8 B 20 /MgO trilayer is patterned into a wire with leads to measure the voltage drop between A and B. An Al 2 O 3 layer insulates the SWW from the shorted coplanar waveguide on top that acts as a spin-wave excitation source. Taken from [Brä17b].

  simulations can be found in the supporting information of[START_REF] Brächer | Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Eect[END_REF]. A discretized ferromagnetic wire is modeled by 2048 × 256 × 1 cells (length×width×thickness), and the magnetization is excited by a localized Gaussian magnetic eld pulse. Two successive FFTs of the local magnetization as a function of time and space (i.e., cell position) yields data in the frequency-wavevector domain, from which the dispersion relation is extracted. The results are presented in Fig. 4.2 for several values of anisotropy constants 3 Eq. (1.70) was tted to the results. The good agreement of the t shows that the dispersion relation given in Eq. (1.70) accurately predicts the numerical results given by the simulations. Hence we can use the dispersion relation given in Eq. (1.70) to calculate the spin-wave eciency later in this chapter, as well as the group velocity and the relaxation rate.

Figure 4

 4 Figure 4.2: Squares: numerically simulated dispersion relation in a FeCoB SWW for dierent PMA constants K i . Solid lines: dispersion relations calculated from Eq. (1.70) with the corresponding anisotropy constants. Taken from [Brä17b].

Figure 4

 4 Figure 4.3: Cross section of the coplanar waveguide antenna. The epitaxial Al 2 O 3 layer covers the whole SWW and insulates it from the CPW. None of the thicknesses or widths are to scale. The curved arrows represent the Ørsted eld created by the current I in the CPW wires. The eld H is applied parallel to the long axis of the CPW and perpendicular to the long axis of the SWW. When an RF current is injected in the CPW, the RF Ørsted eld excites spin-waves that propagate away from the CPW in either direction (purple arrows), and they can be detected via the iSHE by measuring the voltage between A and B.

Figure 4

 4 Figure 4.4: In-plane eld component µ 0 H cpw y

Figure 4

 4 Figure 4.5: Absolute value of the FFT of the magnetic eld components created by three dierent CPW designs, assuming a xed current. CPW type A: in-plane (black line) and out-of-plane component (blue dots). CPW type B: in-plane (red line) and out-ofplane component (dark red dots). CPW type C : in-plane (green line) and out-of-plane component (dark green dots). Each curve is normalized to the maximum of the black line curve. For details about the CPW designs, see Tab. 2.1. The blue arrows show the minima detected in the spin-wave rectication experiments for CPW A (dashed blue) and CPW B and C (solid blue). The red arrow shows the minimum of the spectrum close to the minimum detected in the Brillouin light scattering microscopy experiment for CPW B.

  (4.7) where m x is the out-of-plane component of the magnetization, t f is the thickness of the ferromagnetic layer, y is the position of the spin-wave along the direction of propagation, k y the component of the wavevector parallel to the direction of propagation, χ and χ ⊥ are the diagonal and o-diagonal components of the susceptibility tensor in Eq. (1.29), |b ky | is the amplitude of the Fourier transform of the CPW eld for the wavevector k y , presented in Sec. 4.3.1, and ω is the angular frequency of the excitation eld.

Figure 4

 4 Figure 4.6: Normalized excitation eciency of the three CPW designs for a xed magnetic eld µ 0 H ef f = 55 mT and for an eective magnetization µ 0 M ef f = 194 mT. The solid lines are the calculations including only the fundamental mode n = 0, the dotted lines include all modes up to n = 4. Each curve is normalized to its respective maximum.
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 47 Figure 4.7: Schematic of the spin-wave rectication setup. An electromagnet generates a magnetic eld H perpendicularly to the long axis of the SWW. A signal generator supplies the CPW antenna with an RF current which is modulated at f mod by the lockin amplier. The lock-in amplier measures the iSHE voltage between A and B.

  3.4.1), we seek to study spin waves in the linear excitation regime, which we characterize by the proportionality between the square of the resonance peak voltage and the RF power injected in the CPW. Of course, we are simultaneously exciting a continuum of spin-waves with a certain range of wavevectors, and thus cannot compare two spin-wave resonance peaks individually. Thus, we plot the logarithm of the maximum voltage of the measured spin-wave spectrum as function of the RF power injected in the CPW, shown in Fig.4.8. In the resulting log-log plot, the linear t is adequate until a power threshold of about -1 dBm. Thus the SWR experiments are performed at this power or below. Unfortunately, the BLS experiments described in Sec. 4.5 were carried out before we could determine the linearity power threshold.

Figure 4

 4 Figure 4.8: Maximum voltage of the spin-wave spectrum as a function of the RF power injected in the CPW antenna. The linear t on the log-log scale shows the linearity threshold at approximately -1 dBm.

Figure 4 . 9 :

 49 Figure 4.9: Angle dependence of the spin-wave rectication signal. The maximum voltage of the detected spin-wave spectrum is plotted vs. the applied eld angle θ H (black squares). The solid curves are the calculated angle-dependence of the iSHE voltages, given in Eq. (4.14), tted to the experimental data.

Figure 4 .

 4 Figure 4.10: Measured spin-wave intensity spectra (solid lines) and analytical calculations of the expected excitation spectra (dashed lines), at a xed frequency of 4.8 GHz, for 3 dierent CPW designs and eective magnetizations. Black lines: CPW type A and µ 0 M ef f = 168 mT. Red lines: CPW type B and µ 0 M ef f = 194 mT. Green lines: CPW type C and µ 0 M ef f = 221 mT (See Tab. 4.1 for details on the CPWs). The shaded peaks show the ST-FMR peaks of each spin-wave waveguide, colored correspondingly. All measured voltages and calculated spectra have been normalized to their respective maximums for comparison. The blue arrow shows the approximate eld value where the calculated spectra fall below the noise level of the measurement.

( 4 .

 4 13),16 obtaining a dierent value for each CPW design. Thus, the calculated intensity drops to the noise level of the setup for wavevectors beyond the third minimum of the CPWs of type A, beyond the second minimum for type B and beyond the rst minimum for type C (see the blue vertical arrow in Figs. 4.5 and 4.10). This eld value corresponds to approximately 40 rad µm -1 for all three types of CPWs and is equivalent to a wavelength of λ = 166 nm for type A and of λ = 150 nm for type B and C, because the minima are situated at integer multiples of 2π s , where s is the center-to-center spacing of the CPWs. The experimentally accessible wavevector range and the envelopes of the measured spectra are predominantly determined by the features of the excitation source

Figure 4 .

 4 Figure 4.11: Color-coded measured and calculated spin-wave intensities as a function of the applied frequency and applied magnetic eld. Both have been normalized to their respective maximum for a given frequency. The upper panel shows the measurement and the lower panel the analytical calculations. (a): CPW type A and µ 0 M ef f = 168 mT. (b): CPW type B and µ 0 M ef f = 194 mT. (c): CPW type C and µ 0 M ef f = 221 mT.

  [C:B:A], is thus [(1) : (2 ± 1) : (12 ± 2)]; the error following from assuming a 10% uncertainty in the voltages arising from the variations in the contacting and the device resistance. These experimental values are compared to calculations from Sec. 4.3. These are determined by three factors: In the following we will try to estimate the expected voltage ratios between the dierent CPWs, which are determined by three factors: 1. The Fourier spectrum of the CPWs: Fig. 4.12 shows the square of the Fourier spectrum of the three CPWs normalized to CPW type C. This corresponds to the relative excitation amplitude which is expected if the current sent into the CPWs is kept xed. It corresponds to a dierent voltage ratio [C:B:A] of [1:2.7:4.1] between the dierent CPWs. 2. The dierent transmission characteristics of the CPWs: for a xed microwave current, the peak values of the microwave elds created by all three CPWs are the same within ±10%, so we assume them to be equal for simplicity. The CPWs of type B and C feature identical resistances, typically around 550 Ω; devices of type A feature a twice larger track width and, thus, a twice smaller resistance, typically around 275 Ω. Assuming that due to the very small size of the structures in comparison to the microwave wavelength the impedance is essentially determined by the resistance, this results in a larger reection from CPW B and C than from CPW A. The transmission coecient of the antennae is related to the reexion coecient given in Eq. (3.57): T = 1 -Γ = 2 × 50 R cpw + 50 (4.15) where R cpw is the resistance of the considered CPW design and the source impedance of the signal generator is 50 Ω. The ratio of the transmission coecient for CPW A over the transmission coecient for CPW B and C is 1.85, thus we have a contribution of [1:1:1.85].

  4.3) is equal for all CPW designs. However the width of the signal and ground lines are not equal among the CPW designs: type B and C feature three 70 nm wide lines whereas type A features 120 nm wide lines and, hence, the excited SWW length is 120/70 ≈ 1.71 times larger. The iSHE voltage is proportional to the excited volume, therefore this leads to an increase of the expected iSHE voltage for CPW type A by a factor of 1.71, leading to [1:1:1.71].

Figure 4 .

 4 Figure 4.12: Square of the absolute value of the FFT of the eld created by the CPW antennae. Black line: CPW type A. Red line: CPW type B. Green line: CPW type C.

Figure 4 .

 4 Figure 4.13: Sketch of magnon-photon scattering processes. The incident photon with frequency ν and wavevector k y,photon creates a magnon in the ferromagnetic layer with frequency f (k y ) and wavevector k y . The scattered photon has a reduced frequency ν and reduced wavevector k y,photon due to energy and momentum conservation. In the opposite process, a magnon is annihilated by the incident photon, and the scattered photon has an increased frequency and increased wavevector. Taken from [Brä15].

µ 0 M

 0 ef f = 195 mT, 19 in the Damon-Eshbach conguration: the SWW is magnetized along the short axis by a xed external magnetic eld. The microwave frequency is swept at an applied power of 1.26 mW = +1 dBm. This is above the non-linearity threshold19 Device 8-D2 in Tab. 2.2.

Figure 4 .

 4 Figure 4.14: Schematic of a Brillouin light scattering micro-focused microscope. For more information, see the source [Brä15], Sec. 3.2.

Figure 4 .

 4 Figure 4.15: Measured (solid line) and calculated (dashed line) spin-wave intensity spectra detected at a distance of about 200 nm to the right edge of the CPW for µ 0 H = ±55 mT. The dotted green line shows the dispersion relation of the fundamental mode (right y-axis). The red arrows mark the BLS detection limit in terms of spin-wave wavevector (k y ≈ 19 rad µm -1 ) as well as spin-wave frequency.

Figure 4 .

 4 Figure 4.16: Spin-wave intensity as a function of the position along the long axis SWW for dierent excitation frequencies. Solid lines are exponential ts of the data.

  Fig. 4.16, the spin-wave intensity is highest near the CPW and it decays exponentially along the SWW, indicating that the spin-waves are excited locally by the CPW and propagate with losses. Because of the exponential decay of the spinwaves, the iSHE voltage is dominated by the dynamics of the spin-waves in the vicinity of the CPW.

Figure 4 .

 4 Figure 4.17: Exponential spin-wave decay length as a function of applied frequency, extracted from spatially resolved BLS measurements at |µ 0 H| = 55 mT using Eq. (4.19).

Figure 4 .

 4 Figure 4.19: Spin-wave lifetimes obtained via Eq. (1.72) (green lines) and by micromagnetic simulations (squares) for dierent values of interfacial anisotropy. The interfacial anisotropy measured in devices for this chapter is K i = 1.18 mJ m -1 . The important spread of the results is due to the nite resolution in space (the number of cells that compose the simulated magnetic volume) and in time of the simulation model. Taken from [Brä17b].
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 4 Figure 4.20: Spin-wave rectication experiment with DC current injected in a 1 µm wide SWW, at f = 4.8 GHz. The voltage of the highest peak is plotted as a function of applied DC current. Each curve corresponds to a dierent RF power injected in the CPW antenna.

Figure 4 .

 4 Figure 4.21: Spin-wave rectication experiment with DC current injected in a 1 µm wide SWW, at f = 4.8 GHz. The voltage of the highest peak is plotted as a function of power applied to the CPW antenna. Up-pointing triangles correspond to positive currents, and down-pointing triangles correspond to negative currents. The solid lines are partial linear ts of the data.

Figure A. 1 :

 1 Figure A.1: Product of the peak height and the linewidth, where the P eak height and ∆H are calculated for each susceptibility component's real and imaginary part: ∆H(χ kl ) × Re(χ kl ) and ∆H(χ kl ) × Im(χ kl ), for kl = {xx, xy, yy}. For the imaginary parts of χ xx and χ yy , the lines are superimposed because they have dispersive lineshapes and thus their amplitude at resonance is zero. The current density J is normalized to the critical current density J c .

  

  

  

Table 2 .

 2 2: Device repository. The indicated thickness is the nominal thickness, obtained from the deposition machine's calibration data. The CPW designs A, B and C are summarized in Tab. 2.1. The last two columns indicate which type of experiments were performed on the device (ST-FMR, SWR and BLS).

	Device	FeCoB thickness (nm)	CPW design	SWW width (µm)	Measurements performed (µm)

Table 4 .

 4 1: Characteristics of the SWW used for the spin-wave rectication experiments.Each device has a dierent CPW design and a dierent FM layer thickness. The devices are referred to by their CPW design.

	CPW	2a (nm)	s (nm)	µ 0 M ef f
	design	wire width	wire spacing	(mT)
	A	120	500	168
	B	70	300	195
	C	70	150	221

In collaboration with A. Timopheev, A. Calafora and T. Brächer.

It is relatively easy to detect a DC signal when exciting the system with an RF current, compared to detecting an RF signal when exciting with an RF current at the same frequency.

In ST-FMR experiments performed on magnetic tunnel junctions, it is possible to dierentiate them due to the fact that the damping-like torque is antisymmetric with respect to the current, whereas the eld-like torque is symmetric with respect to the current[START_REF] Kubota | Quantitative Measurement of Voltage Dependence of Spin-Transfer Torque in MgO-Based Magnetic Tunnel Junctions[END_REF].

Large values of the damping-like and eld-like torque can also change the resonance eld by changing the equilibrium position of the magnetization, and thus the expression of the resonance eld, however we neglect this in our calculations. Indeed, the external eld, when reaching the value of resonance, is two orders of magnitude larger than the eective elds of the eld-like and damping-like torques we measure in this chapter.

This conclusion was reached after performing simulations on a uniform magnetization, adding the SOT terms one by one, using the values for Ta/FeCoB in[START_REF] Garello | Symmetry and Magnitude of SpinOrbit Torques in Ferromagnetic Heterostructures[END_REF].

For some devices, there is an unidentied oset that is dependent on the sign of the current, resulting in two parallel curves that do not meet at the origin. We were not able to explain this discrepancy. Since we are interested in the slope of the linear t, an oset does not change the treatment of the data.

and the resistivity of FeCoB was measured to be ρ f = 275 µΩ cm for a 1.5 nm23 The Ta test sample was not capped, thus we may expect a lower resistivity for the 5 nm Ta in the SWW.

This is done independently for each device. At the end of this subsection, we give additional details on the non-linearity encountered here.Moreover, the tting algorithm takes uncertainties into account by lowering the weight of data points associated with large error bars.

In our case, it means that the data in the upper quadrants, which have large error bars due to low signal-to-noise ratio in the Lorentzian peak tting, is automatically and impartially neglected as dictated by the tting algorithm. Instead the linear ts are mostly dependent on data in the lower quadrants, where the uncertainties of the peak tting are lowest. We show in Fig.3.2525 For symmetry, when doing so we also remove the data points corresponding to the opposite current and opposite eld.26 The tting algorithm described here is the default algorithm of the software Origin R , https: //www.originlab.com/.

Following the concept of wave-particle duality, magnons are quantized spin-waves.

Appendix A

Linewidth and peak height under a DC damping-like torque

In this section we verify that for the iSHE signal, the inverse peak height of the resonance is proportional to the eld linewidth. Using the expression of the susceptibility under a DC damping-like torque derived in Eq. (3.20) in Sec. 3.2.4, we calculate ∆H × P eak height, where ∆H is the linewidth and P eak height is the amplitude at resonance of the real and imaginary parts of each susceptibility components.