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Résumé

De nos jours, d’importants problèmes auxquels ont à faire face les industries et la société
concernent la réduction des gaz à effet de serre, ainsi que le problème de consommation d’énergie
(énergie fossile, fabrication de produits, etc.), et la recherche d’énergies renouvelables. Ac-
tuellement, chez les industriels ou laboratoires de recherche, les études pour la commande de
systèmes à énergie renouvelable deviennent très pertinentes. Dans la plupart de ces systèmes,
des phénomènes de perturbation sont présents. Ils diminuent l’efficacité, la qualité de service ou
réduisent même la durée de vie des processus. Les lois de commandes doivent prendre en compte
la nécessité d’améliorer les performances des nouveaux composants, machines ou systèmes
complexes tels que les systèmes à énergie renouvelable.

Notre travail a pour objectif d’améliorer l’efficacité des processus dans la production et/ou
consommation d’énergie en analysant l’influence des perturbations (ou influences équivalentes)
sur le comportement du système complet en concevant un contrôleur/observateur efficace, ceci
dans une démarche de conception intégrée. Nous utilisons une démarche physique basée sur la
représentation bond graph. Nous parlons de Rejet de Perturbation (atténuation) à l’aide d’un
Observateur à Entrée Inconnue. Des développements théoriques sont proposés et appliqués sur un
système réel de type Barre de Torsion, qui est le cas d’étude tout au long du travail de recherche.
Dans un même temps, nous comparons notre approche avec d’autres approches dites "approches
modernes" pour le rejet de perturbation dans la littérature scientifique. Nous proposons aussi dans
un même esprit une solution alternative au problème d’estimation à entrée inconnue. L’étude est
limitée aux systèmes linéaires.

L’expression "rejet de perturbation" utilisée dans le contexte classique de la théorie de la
commande fait référence à comment les perturbations externes sont atténuées et se propagent
dans le processus, en affectant éventuellement les grandeurs de sortie. La mesure concerne
l’amplitude des réponses fréquentielles représentant les relations perturbation-sortie. De cette
manière, le terme "rejet" est synonyme d’atténuation ou compensation, et la mesure s’exprime
par un pourcentage d’atténuation. L’association des deux termes "rejet" et "perturbation" veut
dire littéralement aucune interruption.

Pour la plupart des systèmes pilotés, il est difficile de choisir/trouver un modèle mathématique
précis permettant de décrire fidèlement le comportement. De plus, de nombreux paramètres ne
sont pas connus explicitement dans les équations mathématiques. De la même manière, des
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viii Résumé

phénomènes internes ou externes tels que les perturbations liées à l’environnement existent.
C’est probablement la raison pour laquelle en pratique, la commande de type PID est exploitée
de manière intensive dans l’industrie, car la commande par PID ne nécessite que très peu la
connaissance d’un modèle.

Dans l’industrie, l’objectif principal est en général d’atteindre un régime permanent, souvent
fixé et indépendant des perturbations, ceci pendant de longues périodes. Deux techniques sont
souvent mises en œuvre, à savoir essayer de limiter l’amplitude de la perturbation ou alors son
effet, et dans le meilleur des cas "la rejeter". Dans le premier cas, la commande est synthétisée de
manière à être "tolérante" aux perturbations. Nous parlons en général de commande robuste. La
commande permet de fonctionner en situation normale et si des perturbations apparaissent, la
performance de la commande doit être suffisante pour que le processus continue à respecter le
cahier des charges. De nombreux travaux existent sur ce sujet dans la littérature scientifique et ne
seront pas traités dans ce travail.

La commande prédictive permet aussi d’éliminer l’effet des perturbations sous certaines
conditions : 1) la perturbation peut être mesurée, 2) son effet sur le processus peut être évaluée,
dans ce cas un modèle précis doit être élaboré, 3) les variables de commande peuvent générer
l’effet opposé sur les variables de perturbation. La dernière condition est très restrictive et exige
en général de trouver un modèle inverse. A l’aide d’une connaissance partielle de la perturbation
ou du modèle, il est possible de trouver une contre réaction partielle.

Pour d’autres approches, la perturbation est mesurée directement ou indirectement par esti-
mation en mesurant ses effets sur le processus. Dans ces cas, l’effet de la perturbation peut être
totalement ou en partie éliminé. Nous étudions deux approches dans cette thèse. Dans un premier
temps, la méthode dite DOBC (Disturbance Observed-Based Control) pouvant être appliquée
dans diverses situations (systèmes non linéaires, régulation tolérante aux fautes...) et une seconde
technique dite ARDC (Active Disturbance Rejection Control). Ces techniques de commande
dites "modernes" se basent sur une estimation des variables de perturbation. Elles sont comparées
dans le chapitre trois de cette thèse à une technique développée pour ce travail basée sur une
commande par retour d’état dérivé.

Le second sujet d’étude dans ce travail de recherche concerne le concept "d’Observateur à
Entrée Inconnue". Comme évoqué précédemment, dans de nombreuses situations l’expression
de la loi de commande peut faire apparaitre explicitement les variables de perturbation. Dans ce
cas, ces variables doivent être au minimum estimées. Pour les modèles linéaires, de nombreuses
techniques constructives existent. Elles concernent des observateurs d’ordre réduit ou complet.
Les approches sont de type algébrique, géométrique ou basées sur des matrices à inverse généra-
lisée. La connaissance de la structure à l’infini du modèle est alors nécessaire et une condition
restrictive appelée "Observer Matching condition" s’applique pour certaines techniques. Si cette
condition n’est pas respectée, différentes alternatives existent, comme la technique d’observateur
à modes glissants, qui peut aussi être étendue aux modèles non linéaires.
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Plusieurs de ces approches sont comparées dans le chapitre 2, avec de nouveaux développe-
ments basés sur l’estimation des variables d’état dérivées et des variables de perturbation. Les
chapitres 3 et 4 sont dédiés à l’évaluation du concept de variable d’état dérivée pour la commande
et l’observation avec une application réelle de type barre de torsion. Une comparaison est faite
entre les trois approches étudiées dont les techniques DOBC et ADRC.

Notre recherche est décomposée de la manière suivante :

• Chapitre 1 : Historique sur le problème du rejet de perturbation et analyse de quelques
techniques classiques, i.e la technique de type PID, commande par retour d’état et par retour
d’état dérivé. Nous incluons quelques éléments théoriques pour l’analyse de la structure
des modèles linéaires (structure finie et structure à l’infini). Le système de barre de torsion
est décrit et son modèle bond graph est validé par expérimentation. La commande par
retour d’état dérivé pour le rejet de perturbation est aussi validée.

• Chapitre 2 : Ce chapitre a pour premier objectif de comparer différents types d’observateurs
à entrée inconnue. Ces différents observateurs sont testés sur le système de barre de torsion.
Nous proposons de nouvelles solutions dans le cas multivariable, avec une approche
semblable dans sa conception à celle développée pour le problème de commande par rejet
de perturbation. En effet, les techniques d’analyse structurelle et de synthèse basées sur la
représentation bond graph permettent de proposer une base théorique similaire. C’est une
contribution théorique de ce travail de thèse.

• Chapitre 3 : Dans ce chapitre, nous comparons par simulation les performances de trois
techniques de commande pour le rejet de perturbation (DOBC, ADRC, DSF) sur l’exemple
de barre de torsion. Nous prouvons l’efficacité de la technique basée sur le retour d’état
dérivé avec estimation de la perturbation, d’un point de vue méthodologique, de l’analyse
structurelle à la synthèse de la loi de commande, mais aussi d’un point de vue performance,
efficacité à rejeter à perturbation. Étant donné les similarités de la résolution des problèmes
de rejet de perturbation et du problème de découplage entrée-sortie, nous en profitons pour
proposer une solution au problème de découplage entrée-sortie avec une commande de
type retour d’état dérivé. C’est la deuxième contribution théorique de ce travail.

• Chapitre 4 : Finalement nous testons la loi de commande par retour d’état dérivé sur la
maquette barre de torsion et comparons les performances aux deux autres techniques, i.e,
DOBC et ADRC.

• Chaptitre 5 : Dans ce dernier chapitre, sachant que l’objectif affiché est d’améliorer les
performances des systèmes industriels, nous développons un modèle très simplifié d’une
centrale hydraulique avec objectif d’appliquer les techniques de commande développées.
Après une brève discussion sur les énergies renouvelables, un modèle bond graph simplifié
d’un système hydroélectrique est proposé à partir d’un "mot bond-graph" représentant les
échanges de puissances entre les différents constituants du système (approche intégrée). Les
premières simulations permettent de valider le modèle simplifié en première approximation.
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General Introduction

Nowadays, some of the important problems that industries and the society prioritise are more
related to the reduction of the greenhouse gas emission that are related to the consumption of
energy (fossil fuels, manufacture and fabrication of products, etc.), and the research of renewable
sources. Actually, in the industry or research laboratories, studies for controlling renewal energy
systems become relevant. In most of these systems, different perturbations are present. They
decrease the efficiency, quality of service, or reduce the life span (duration). New controls have
been studied or modified to satisfy the necessities of performance for the new devices, machinery,
or complex systems such as renewal systems.

Due to the physical approach used in this thesis (Bond Graph Modelling), our work aims
to improve the efficiency (or energy expenditure) of the associated processes in the energy
production (consumption) by means of analysing influence of the disturbances (or equivalent
influences) on the behaviour of the whole system by designing efficient control/observer in an
integrated approach. We will speak of Disturbance Rejection (DR) (attenuation) with the aid of
Unknown Input Observer (UIO). Some theoretical developments are proposed and applied to
a real Torsion-Bar (T-B) system that is the case study all along this report. At the same time,
we compare the proposed approach with so-called some modern approaches for the Disturbance
Rejection Problem (DRP) and in the same way we study some observers and we propose some
alternative solutions. The study is limited to linear systems (models).

Most of the dynamical systems developed in real life are affected by disturbances. The
disturbance is defined by the Oxford English Dictionary (OED) as "The interruption of a settled
and peaceful condition". If engineering is understood as the process of creating an apparatus to
serve the human needs, the “settled and peaceful condition” of such an apparatus is the primary
concern and the subject of study in the field of automatic control, [Gao, 2014].

The term “disturbance rejection” used in the context of classical and modern control theory
refers to how the external disturbance is attenuated as it is propagated through the process,
eventually affecting the output. It is measured as the magnitude of the frequency response that
defines the disturbance–output relationship. It is specified, usually, in terms of the amount of
attenuation and the corresponding frequency range required. Used in such a manner, “rejection”
is synonymous to attenuation, or mitigation, or compensation. Shaping system response, in
frequency domain, to external disturbances is what it really means by “disturbance rejection” in
the current textbooks on control.

1



2 General Introduction

The word “reject” comes from Latin, meaning “throw back”, and it has a derivative, rejector.
The word “reject” projects a sense of totality and finality, regarding the object of concern. Putting
the two words together “disturbance rejection” should, and therefore does from now on, means
literally “no” interruptions, whatsoever, of “a peaceful and settled condition”. If, the problem of
automatic control is the problem of disturbance, then disturbance rejection is absolutely central.
In an ideal control system, the disturbance, the sum total of the internal dynamics and the external
forces, should have absolutely no effect on the operation of the system as designed [Gao, 2014].

In most control applications, it is difficult to establish precise mathematical models to describe
accurately systems. In addition, there are some terms that are not explicitly known in mathematical
equations and, on the other hand, some unknown external (or internal) disturbances exist around
(inside) the system environment. The uncertainty, which includes internal uncertainties and
external disturbances, is ubiquitous in practical control systems. This is perhaps the main reason
why the Proportional-Integral-Derivative (PID) control approach has dominated the control
industry for almost a century because PID control does not utilize any mathematical model for
system control [Guo and Zhao, 2016].

In process industries, more than set-point tracking disturbance rejection is the principal goal,
as most industrial processes operate with a fixed set-point during long periods of time, but they
are subject to disturbances coming from the outside world or generated by the process model
uncertainties. When considering any of these disturbances, two approaches are mainly taken: to
bound the disturbance magnitude or to try to reduce its effect and, in the best case, reject it. In the
first approach, the control is designed to be tolerant to these disturbances. It is generally known as
robust control [Morari and Manfred, 1989]. The control is computed to operate under “normal”
conditions and if some bounded disturbances appear in the process the resulting performance of
the controlled plant should be good enough, according to the requirements. A lot of literature has
been devoted to this topic and it will not be considered for the actual research work.

Feed-forward is also a classical approach to counteract the effect of external disturbances
if some conditions apply: 1) the disturbance can be measured, 2) its effect on the plant can be
estimated, that is, there is a perfect model of the disturbance dynamics and also of its effect on
the controlled variables, and 3) the control variables can generate the opposite effect on these
variables. The last condition is very restrictive, as it implies in most cases the inversion of the
disturbance effect model. Approximate disturbance counteraction can be achieved if a partial
knowledge of this model is available (for instance, the steady-state behaviour), or if the control
action is bounded.

In another approach, some information about the actual disturbance is collected either di-
rectly, by measuring the disturbance, or indirectly, by estimating it looking at its effects on
the plant. In this case, the disturbance is counteracted, and its effects can be reduced and, in
some cases, fully eliminated. We study two approaches in this thesis. First, the Disturbance
Observed-Based Control (DOBC) [Visioli and Zhong, 2011] which is applied to non-linear
systems [Chen, 2004], or a fault tolerant tracking control [Baldini et al., 2018] and other applica-
tions [Tang et al., 2018]. An overview is in [Chen et al., 2016]. Secondly, the Active Disturbance
Rejection Control (ADRC) [Han, 2009] with works on non-linear systems [Guo et al., 2016,
Zhao and Guo, 2016, Xue et al., 2015] or real applications [Wang et al., 2018, Cui et al., 2018,
Wang et al., 2017, Albertos et al., 2015]. These so-called new modern approaches based on the



General Introduction 3

estimation of the state variables and on estimation of the disturbance variables are compared in
chapter 3, with new developments based on the Bond Graph (BG)bond graph representation with
a Derivative State Feedback (DSF) control. Since we prove the effectiveness of this approach
with simulations, we propose also in this chapter the application of Derivative State Feedback
control for solving the Input-Output decoupling problem from a theoretical framework.

Actually, there are also many other methods in control theory that work in disturbance rejec-
tion control. Principles are different that the mentioned before; some of them are for instance:
adaptive control [Nikiforuk and Tamura, 1988], sliding-mode control [Riachy and Fliess, 2011],
[Guo and Jin, 2013], control based on Conditional Integrators [Seshagiri and Khalil, 2005],
[Singh and Khalil, 2005], [Burger, 2011], etc. Due to the huge quantity of references, we will
not recall all the works.

The second subject of this research work is about the concept of Unknown Input Observer. In
the context of the Disturbance Rejection Problem, in many cases the control law is expressed
as a function of the disturbance variable, and thus this one must be at least estimated. For
LTI models, constructive solutions with reduced order observers are first proposed with the
geometric approach [Guidorzi and Marro, 1971, Bhattacharyya, 1978, Basile and Marro, 1973].
Constructive solutions based on generalized inverse matrices are given in [Kudva et al., 1980,
Miller and Mukunden, 1982, Hou and Muller, 1992]. Full order observers are then proposed in a
similar way (based on generalized inverse matrices) in [Darouach et al., 1994, Darouach, 2009],
but with some restriction on the infinite structure of the model, known as Observer Matching
condition, which is a rather restrictive condition. When the previous conditions are not satisfied,
[Floquet and Barbot, 2006] proposed unknown input sliding mode observers after implementing
a procedure to get a canonical observable form of the model. This method can also be extended
in the non-linear case.

The algebraic approach is proposed in [Trentelman et al., 2001] and in [Daafouz et al., 2006]
for continuous and discrete time systems, without restriction on the infinite structure of the
model. Sliding mode observers combined with a High-Gain approach are often proposed
[Kalsi et al., 2010]. New developments are also proposed with an observer-based approach
for some classes of non-linear systems with a fuzzy approach [Xu et al., 2012], fuzzy systems
with time delays [Tong and Yang, 2011] or with uncertain systems [Chen et al., 2011].

Some of these approaches are compared in chapter 2, with new developments based on the
Bond Graph representation with a Derivative State Estimation associated to the estimation of the
disturbance variable.

Chapters 3 and 4 are thus dedicated to the evaluation of the use of the concept of derivative
state at the same time for control and estimation with simulations in chapter 3 and real application
on the Torsion-Bar system in chapter 4. A comparison is carried out with two other approaches,
i.e. DOBC and ADRC approaches.



4 General Introduction

Thesis Layout and Summary of Thesis

This document aims to present the research in a structure in order to locate relevant information.
The research is presented as follows:

• Chapter 1: Background about the Disturbance Rejection Problem that clarifies some
classical existing approaches, i.e. PID, state space and derivative state space controls are
presented. We include some theoretical bases about model properties (finite and infinite
structure) and the description of the case study (Torsion-Bar System) and the validation of
our Bond Graph model. The Derivative State Feedback control law is also validated.

• Chapter 2: This chapter aims firstly to compare different observers, for disturbance variables
and state variables estimation. The different observers are tested on the model of the Torsion
Bar system. Secondly, we propose new solutions for the UIO observer in the linear Multiple
Input - Multiple Output (MIMO) case. A theoretical framework close to the one used for
the Disturbance Rejection Problem is developed, from analysis to synthesis, based on the
structural properties of the bond graph model. It is one of the main theoretical contributions
of the thesis.

• Chapter 3: In this chapter, we firstly compare from a numerical point of view (simula-
tions) the performances of three approaches (DOBC, ADRC, DSF) for the Disturbance
Rejection Problem on the model of the Torsion-Bar system. We prove the efficiency of
the Derivative State Feedback control law and the methodology from analysis to synthesis
in order to obtain the control law. Due to the similarity to the state-space approach for
solving simultaneously two classical problems, i.e. Disturbance Rejection and Input-Output
decoupling problems, we take the opportunity to propose a solution for the Input-Output
Decoupling Problem based on a Derivative State Feedback control law. It is the second
theoretical contribution of our work.

• Chapter 4: Finally, we aim to prove that the Derivative State Feedback control strategy is
effective, with a physical approach especially, by applying it from a practical point of view
on the real Torsion-Bar system. Results are analysed and compared with the two others
control strategies (DOBC and ADRC).

• Chapter 5: In this last chapter, since we claimed before that this work aims to develop
solutions for improving the efficiency of industrial plants, we develop a very simplified
model of an industrial hydraulic power plant in order to apply the previous concepts. First
a brief discussion about renewable power technologies is proposed, information obtained
from recent literature which is not exhaustive. A Word Bond Graph model is then drawn
following the power exchange between the different elements of the system (integrated
approach). With a detailed bond graph model, some simulations are issued in order to
validate with a first approximation the model and our assumptions.
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Contributions of the Thesis

The results obtained during the development of this work have been the subject of following
publications:

Journals

• Unknown Input Observer with Stability: A Structural Analysis Approach in Bond Graph.
European Journal of Control, ELSEVIER (Published). [Gonzalez and Sueur, 2018b]

• Disturbance Rejection with Derivative State Feedback Theory and application. Advanced
Engineering Informations, ELSEVIER (Submitted).

• Input-output decoupling with derivative state feedback: a bond graph approach. Advances
in Mechanical Engineering, SAGE (Submitted).

International conferences

• Unknown Input Observer for MIMO Systems with Stability. International Conference
on “Integrated Modeling and Analysis in Applied Control and Automation” (IMAACA),
2017, International Conference part of the I3M conference, September, Barcelona, Spain.
(Accepted). [Gonzalez and Sueur, 2017]

• Comparison of control strategies for a real bar system in the presence of disturbances: a
bond graph approach. ICBGM’18 International Conference on Bond Graph Modeling,
July, Bordeaux, France. (Accepted). [Gonzalez et al., 2018]

• Bond Graph Approach for Disturbance Rejection with Derivative State Feedback. IMAACA’18,
International Conference part of the I3M conference, September, Budapest, Hungary. (Ac-
cepted). [Gonzalez and Sueur, 2018a]

• Comparison of Disturbance Rejection with Derivative State Feedback and Active Dis-
turbance Rejection Control: Case Study. International Conference on Control, Deci-
sion and Information Technologies (CODIT), 2019, April, Paris, France. (Accepted).
[Gonzalez, Joel and Sueur, Christophe, 2019]

• Approach of dynamic modelling of a hydraulic System. International Conference. Which
models for extreme situations and crisis management? SimHydro, 2019, June, Nice, France.
(Accepted). [Ratolojanahary et al., 2019]
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Chapter1
Disturbance Rejection Problem

1.1 Introduction

In this chapter, the Disturbance Rejection Problem (DRP) will be recalled from different ap-
proaches, and a comparison between these approaches is carried out on a real Torsion-Bar (T-B)
system, whose model is first validated while comparing simulations and experiments.

From a general point of view, we consider linear time-invariant perturbed systems described
by a state-space representation (1.1).{

ẋ(t) = Ax(t)+Bu(t)+Fd(t)
y(t) =Cx(t)

(1.1)

where, x(t) ∈ Rn describes the state vector, y(t) ∈ Rp is the vector of measurable variables
(outputs). The vector u(t) ∈ Rm represents the known input variables, whereas d(t) ∈ Rq is the
vector which represents the unknown input variables.

Assumption 1. A,B,F,C are known constant matrices of appropriate dimensions.

Most of the approaches require the analysis of the structural invariants of the model which
play an essential role in this problem. The infinite structure of the model is also related to
solvability conditions. The knowledge of zeros (finite structure) is an important issue because
these zeros are directly related to stability conditions of the controlled system. The concepts
of poles and zeros are briefly recalled in section 1.2, see also appendix A for more details and
notations used in this document.

In section 1.3, some classic control strategies to solve this problem will be recalled and
some of these will be developed, e.g. Proportional-Integral-Derivative (PID) (PI) control, Static
State Feedback (SSF) control. The next section contains the Derivative State Feedback (DSF)
approach which is based on the Bond Graph (BG) methodology. Previous works are recalled.

At least, two sections are dedicated to simulations. The T-B system is used as case study and
the model is validated with experiments. Then, different control strategies for the disturbance
rejection problem are compared and some characteristics are highlighted.

7



8 CHAPTER 1. Disturbance Rejection Problem

1.2 Poles and Zeros: Theoretical framework

Before developing any methodology to solve the Disturbance Rejection Problem, modelling,
analysis and observer/control synthesis of the dynamical system is required (Integrated Design
Approach). These are necessary steps in the design phase of the observer as well as for the
synthesis of control laws.

The selected representation (Transfer Function, Space-State representation, BG, . . . ) must
allow us to understand the studied physical phenomena with an accurate mathematical model.
First of all, in order to study the structure of systems, a model must be chosen.

System dynamics are here represented through a differential equation of order n. This
differential equation can be written in matrix form and this representation is called State-Variables
Model or State-Space Representation. A State-Space representation is also a particular type of
Rosenbrock representation [Bourlès, 2010, Fliess, 1990].

Consider the system described by the state-space equation (1.2).{
ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

(1.2)

where x(t) is the vector for the system states, u(t) is the vector for the system inputs and y(t)
is the vector for the system outputs. Taking the single-sided Laplace transforms, the following set
of equations (1.3) is obtained. {

sx(s)− x(0) = Ax(s)+Bu(s)
y(s) =Cx(s)+Du(s)

(1.3)

where B can contain the known and/or unknown inputs. Considered the initial conditions
x(0) = 0, then the Input-Output relation is expressed in equation (1.4).

y(s) = [C(sI−A)−1B+D]u(s) (1.4)

where the matrix G(s) = [C(sI−A)−1B+D] is called transfer-function matrix.
The equations in (1.3) may be rewritten in the form (1.5).[

sI−A −B
C D

][
x(s)
u(s)

]
=

[
x(0)
y(s)

]
(1.5)

This is a particular type of Rosenbrock representation [Bourlès, 2010, Fliess, 1990]. The

matrix P(s) =
[

sI−A −B
C D

]
plays a key role for the study of the zeros associated with the

system.
The matrix G(s) gives a description of the way in which the system appears to its environment

and can be thought of as an external form of description. P(s) exhibits the internal structure
associated with the State-Space model and can be thought as an internal form of description.

P(s) conveys more information about the system then G(s), which represents only the
completely controllable/observable subsystem associated with the system defined in (1.2). In
general, a larger set of zeros is defined from P(s); if the system is completely controllable and
observable, then the set of zeros are the same [Macfarlane and Karcanias, 1976].
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The concept of the poles and zeros for the general matrix transfer-function case is done using
a standard form for transfer-function matrices called Smith-McMillan form that is an extension of
the Smith form for polynomial matrices.

Assume that all the elements of a real-coefficient rational-function matrix H(s) are polynomi-
als (polynomial matrix). The polynomial matrices can be put into a standard form (Smith form)
by a series of elementary row and column operations. If H(s) is a polynomial Matrix of rank r,
then H(s) may be transformed into the matrix S(s) defined in equation (1.6).

S(s) =
[

S∗(s)r,r 0r,l−r
0m−r,r 0m−r,l−r

]
(1.6)

where S∗(s) = diag{s1(s),s2(s), · · · ,sr(s)}. The row and column operations involved in
transforming H(s) to Smith form may be represented by suitable polynomial matrices, then the
transformation to the Smith form can be represented by

S(s) = L(s)H(s)R(s)

where both the matrix L(s) and the matrix R(s) must be uni-modular polynomial matrices. A
direct consequence of the existence of the Smith form is a canonical form for rational function
matrices, the Smith-McMillan form.

In addition, any transfer matrix G(s) of dimension Rm×l and rank r can be factorized as

G(s) = L(s)M(s)R(s) (1.7)

where L(s) and R(s) are the same matrices that the one mentioned before. Matrix M(s) is
described by equation (1.8).

M(s) =
[

M∗(s) 0
0 0

]
(1.8)

with

M∗(s) = diag
[

ε1(s)
ψ1(s)

ε2(s)
ψ2(s)

· · · εr(s)
ψr(s)

]
(1.9)

where the elements εi and ψi are monic polynomials such that:

(i) each εi(s) divides all εi+1(s) so that ε1(s)|ε2(s)| · · ·εr(s).

(ii) each ψi(s) divides all ψi+1(s) so that ψ1(s)|ψ2(s)| · · ·ψr(s).

M(s) is unique and called the Smith-McMillan form of G(s).
Defining ∆(s) = det[sI−A] as the least common denominator of all the elements of G(s).

The Smith-MacMillan form can be obtained from G(s) as follows: Let G(s) = N(s)
∆(s) , where N(s)

is a polynomial matrix and has a Smith form S(s), then N(s) = L−1(s)S(s)R−1(s), where L−1(s)
and R−1(s) are appropriate uni-modular matrices. The Smith-McMillan form of G(s) is then
defined as

M(s) =
S(s)
∆(s)

= L(s)G(s)R(s) (1.10)
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• Poles and zeros of transfer-function matrix: Let G(s) a matrix of normal rank r with
a Smith-McMillan decomposition described by (1.7) [Macfarlane and Karcanias, 1976].
The poles and zeros of G(s) are defined to be respectively the roots of the polynomials
ψi(s), i = 1, · · · ,r and εi(s), i = 1, · · · ,r of the Smith-McMillan form given previously.

• Invariant zeros: Consider the Smith form of the polynomial matrix P(s) and let it be such
that

P(s) = L(s)



f1(s) · · · · · · 0
... f2(s)

...
...

. . .
...

... fm+n(s)
· · · · · · · · · · · ·
0 · · · · · · 0


R(s)

where fi(s) are the invariant factors of P(s) and the set of zeros of these invariant polyno-
mials will be called the set of the invariant zeros of the system. The null invariant zeros are
the common null roots of the transfer matrix numerator.

The invariant zeros can be viewed as the system poles of the inverse system (when it exists).
One of the basic assumptions of the well-known Glover-Doyle algorithm in the H∞ theory is that
two subsystems have no invariant zeros on the imaginary axis ([Glover and Doyle, 1988]); see
also [Schrader and Sain, 1989] and [Wonham, 1985] for other uses of invariant zeros.

1.3 Control System: Disturbance rejection problem

Some classical control approaches are recalled in the following sections in order to compare them
with the Derivative State Feedback - Bond Graph one. This last approach is then the methodology
developed in this thesis. One important feature is that a structural analysis of the model must
be achieved before control synthesis. We will show that very similar concepts developed for
Unknown Input Observer (UIO) property analysis are as well expressed in chapter 2 in term of
finite and infinite structures of the model.

1.3.1 PID (PI) Control

The birth and large-scale deployment of the PID control technology can be traced back to
the period of the 1920s-1940s in response to the demands of industrial automation before
World War II. Its dominance is evident even today across various sectors of the entire indus-
try. In process control applications, more than 95% of the controllers are of the PID type,
[Åmström and Hägglund, 1995, Guo and Zhao, 2016, Guo and Zhao, 2016].

The PI and PID controllers have been studied since many years and they are the most common
control strategies. The Proportional-Integral (PI) Controllers have different expressions and they
have the ability to eliminate steady state offsets through the integral action. Their technology
has greatly changed, from analogue to digital electronics, with digital versions (discrete time)
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and the possibility to use micro-controllers [Chen and Seborg, 2002]. There are many methods
for tuning PID controllers, most of these methods are based on the classical Ziegler-Nichols
methods, [Cominos and Munro, 2002].

The classical PID control is defined in (1.11), where e(t) is the error variable, difference
between the reference input signal v(t) and the output variable y(t). It is rewritten in Laplace
domain as a transfer function described in (1.12). The PID controller is described by three
parameters (Kp-Proportional Gain, Ti-Integral Gain and Td- Derivative Gain). With proportional
control, there is normally a control error in the steady state behaviour. The main action of the
integral function is to make sure that the process output agrees with the set-point in the steady
state behaviour. With an integral action, a small positive error will always lead to an increasing
control signal, and a negative error will give a decreasing control signal no matter how small
the error is. The purpose of the derivative action is to improve the closed-loop stability. Several
properties of the PID control are well studied and analysis are shown in many books in the
literature as [Åmström and Hägglund, 1995].

u(t) = Kpe(t)+
Kp

Ti

∫ t

0
e(t)dt +KpTd ė(t) (1.11)

G(s) = Kp

[
1+

1
s Ti

+ sTd

]
(1.12)

Some works related to perturbation rejection with PI or PID controllers are [Tavakoli et al., 2005,
Tidke et al., 2018, Krohling, 1997, Chen and Seborg, 2002, Vrančić et al., 2004]. It is known
that only constant perturbation can be rejected (attenuated) following some rather restrictive
conditions; see references for more details.

1.3.2 Static State Feedback (SSF) control

The state-space formalism is very useful in providing both a simple and complete system repre-
sentation. This type of representation is indeed simpler than “Rosenbrock representation”: see
[Bourlès, 2010]. On the other hand, within this formalism, a complete description of the system
is possible (if the latter’s “structure at infinity” is left aside [Bourlès and Marinescu, 2011]).

We recall the study of control by an “elementary” state feedback that is well studied and
applied in different fields. Some of these works and historical research of the feedback control
are in [Mayr, 1970, Chen, 1998, WilliamsII and Lawrence, 2007]. We will then extend the state
feedback knowledge to the (derivative) state feedback control (next section) in order to solve the
Disturbance Rejection (DR) control problem.

The connection between the ability to arbitrarily place the closed-loop eigenvalues by proper
choice of the state feedback gain matrix K and controllability property of the open-loop state
equation, i.e., the pair (A,B) of the system Σ(C,A,B) is well established for systems without
disturbance. In that case we can speak of non-controllable modes (poles) or as well as input
decoupling zeros. This problem has received also much attention when a disturbance exists. In
that case, when the disturbance rejection problem has a solution with static state feedback, the
ability to arbitrarily place the closed-loop eigenvalues is related to non-controllable modes but
also to some of the invariant zeros. Finite structures of models Σ(C,A,B) and Σ(C,A,B,F) must
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be compared. A structural approach from the bond graph representation has been proposed in case
of control with state feedback. The algebraic approach is also well-known. When the disturbance
rejection problem with state feedback has no solution, an alternative control with derivative state
feedback can be proposed. We show in the following that the pole placement with the disturbance
rejection problem is similar to the state feedback problem in its formulation. A similar approach
is developed in terms of structural analysis and then in terms of control synthesis.

The state-space system described in (1.1) rewriting without disturbance in equation (1.13) is
the open-loop model to be controlled.

{
ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)

(1.13)

The state feedback control law without disturbance rejection has the form (1.14).

u(t) =−Kx(t)+Lv(t) (1.14)

where each parameter of feedback gain K is a real constant. If equation (1.14) is substituted
in (1.13), the closed-loop state equation is (1.15).

{
ẋ(t) = (A−BK)x(t)+BLv(t)
y(t) =Cx(t)

(1.15)

Figure 1.1 – State Feedback Control block diagram.

The block diagram shown in Fig. 1.1 describes the structure of the system. The state feedback
control law (1.14) features a constant state feedback gain matrix K of dimension m×n and a new
external reference input v(t) necessarily having the same dimension m×1 as the open-loop input
u(t), as well as the same physical units.
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For the Single Input - Single Output (SISO) case, the feedback gain K is a 1×n row vector,
the reference input v(t) is a scalar signal, and the state feedback control law has the form (1.16).

u(t) = −
[
k1 k2 · · · kn

]


x1(t)
x2(t)
...

xn(t)

+ lv(t)

= −k1x1(t)− k2x2(t)−·· ·− knxn(t)+ lv(t)

(1.16)

If the external reference input v(t) is absent, the state feedback control law is called a
"regulator" that is designed to deliver desirable transient response for non-zero initial conditions
and/or attenuate disturbances to maintain the equilibrium state.

Theorem 1. [WilliamsII and Lawrence, 2007] For any symmetric set of n complex numbers
{µ1,µ2, · · · ,µn}, there exists a state feedback gain matrix K such that σ(A−BK)= {µ1,µ2, · · · ,µn}
if and only if the pair (A,B) is controllable.

In the following, it will be supposed that the studied model is state controllable/observable. In
that situation, non-assigned modes with a state feedback control law for the Disturbance Rejection
problem are one part or all the invariant zeros

1.3.3 Static State Feedback (SSF) Control with disturbance rejection

The state-space system described in (1.1) is rewriting in equation (1.17). It is supposed that the
model is state controllable/observable and invertible.{

ẋ(t) = Ax(t)+Bu(t)+Fd(t)
y(t) =Cx(t)

(1.17)

In order to study the disturbance rejection problem, the structure of the model Σ(C,A,B,F)
must be highlighted. The different transfer functions are Tyu(s) = C(sI−A)−1B and Tyd(s) =
C(sI−A)−1F .

The disturbance rejection problem for the system described by equation (1.17) has a solution
by a state feedback control law (without measurement of the disturbance variables) u(t) =
Fcx(t)+Gv(t) iff the infinite structure of matrix s−1Tyu(s) is equal to the infinite structure of
matrix [s−1Tyu(s) Tyd(s)]. With the measurement of the disturbance variables, the condition is
on matrices Tyu(s) and [Tyu(s) Tyd(s)].

At most, the disturbance rejection problem for the system described by equation (1.17) has a
solution with stability iff the invariant zeros of model Σ(C,A,B) which are not invariant zeros of
model Σ(C,A,B,F) are strictly stable [Malabre and Martínez-García, 1993] (for invertible and
controllable models).

Consider now a SISO system and nc and np the infinite zero orders of systems Σ(C,A,B) and
Σ(C,A,F), respectively, Appendix A. If np < nc, the disturbance rejection problem is not solvable
with static state feedback. From a causal point of view on the bond graph representation, the
causal path length between the disturbance input and the output detector is shorter than the causal
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path length between the control input source and the output detector. In that case a Derivative
State Feedback is proposed as an alternative solution (next section).

Remark 1. The state feedback control law expression for the disturbance rejection problem is
not recalled here, since it will not be used in this work.

1.4 Disturbance Rejection with Derivative State Feedback (DSF)

Recently, the DSF control of linear systems has been studied, mainly in order to solve the pole
placement problem, with or without robust performance criteria. Procedures consider for instance,
the pole placement problem for SISO systems in [Abdelaziz and Valážek, 2004] and Multi-
ple Input - Multiple Output (MIMO) systems [Abdelaziz, 2008, Abdelaziz and Valážek, 2005,
Cardim et al., 2007] as well with a robust criterion [Duan et al., 2005]. A geometric theory of
derivative state feedback is given in [Lewis and Symons, 1991]. In the control of mechanical
systems, there are many applications, as the suppression of vibration, where the concept of
Derivative State Feedback is used. In these problems, because of their low cost, the main sensors
used, are accelerometers. In that case, from the signals of the accelerometers it is possible to
reconstruct the velocities with a good precision but not the displacements. [Kwak et al., 2002],
[Reithmeier and Leitmann, 2003] and [Duan et al., 2005]. More generally, there exist some prac-
tical problems where the derivative state signals are easier to be obtained than the state signals.

There are different applications in the literature, where the design of the control law depends
on the approach and assumptions of it, i.e., when the state vector x(t) is the same for state-
derivative feedback and state feedback [Cardim et al., 2007]; the state-derivative ẋ(t) and the
disturbance-derivative ḋ(t) are easy to measure [Cheng et al., 2015]; PI control design with
state-derivative feedback [Korosi and Veselý, 2018]; etc.

In this section, the Derivative State Feedback approach is focused on the Bond Graph
methodology [Paynter, 1960, Karnopp et al., 1975, Karnopp, 1979, Rosenberg and Karnopp, 1983,
Dauphin-Tanguy, 2000] for the SISO case. A Bond Graph is composed of elements and lines
which identify the power flow. Main elements are sources of effort and flow {Se,S f}, sensors
represented by flow and effort detectors {D f ,De}, physical phenomena (resistive R, capacitive
C and inertial I), junctions (zero for common effort and one for common flow) and two power
conservative transformer elements : Transformer (TF) and Gyrator (GY). Elements are connected
by power bonds represented by a half arrow labelled by two conjugated variables (effort e and
flow f ) where the product is the exchanged power between elements, and information signals
(such as detectors and controllers) generally modelled by an arrow. Indeed, firstly for structural
analysis of the model properties, the bond graph representation is well adapted. Secondly, the
design of the control law is made from the state-space representation. Properties of the control
law and of the controlled model can be also achieved as well from the bond graph representation.
Through the bond graph approach, it has been proved that solutions to the Disturbance Rejection
problem with Derivative State Feedback can be provided. A Derivative State Feedback control
law has been proposed in [Sueur, 2016].

Consider system Σ(C,A,B,F) as defined in equation (1.17). Non-restrictive assumptions that
can be verified graphically from the bond graph representation are written, studied here in the
SISO case.
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• System Σ(C,A,B) is state controllable/observable and the state matrix A is invertible

• The invariant zeros of Σ(C,A,B) are strictly stable and CA−1B , 0

• np < nc, the Disturbance Rejection problem is not solvable with Static State Feedback

nc and np are the infinite zero orders of systems Σ(C,A,B) and Σ(C,A,F), respectively,
Appendix A.

Consider the system Σ(C,A,B,F), and the Derivative State Feedback control law with
disturbance defined as (1.18), where v(t) is the new control input variable.

u(t) = Fcẋ(t)+Gv(t)+Fpd(t), (1.18)

Property 1. The Disturbance Rejection Problem DRP with a DSF defined in (1.18) has a
solution with pole placement iff np ≤ nc.

The controlled system is written in equation (1.19).{
(I−BFc)ẋ(t) = Ax(t)+BGv(t)+(BFp +F)d(t)
y(t) =Cx(t)

(1.19)

If matrix (I−BFc) is not invertible, the state equation in (1.19) is called "generalized state-
space system" or "singular system" [Verghese, 1978], [Coob, 1984, Verghese and Kailath, 1979,
Verghese et al., 1981, Yip and Sincovec, 1981]. The characteristic equation of the closed loop
system (1.19) is defined as (1.20). The degree γ of the characteristic polynomial in equation (1.20)
is the number of system’s finite eigenvalues, while n− γ is the number of system’s eigenvalues at
infinity [Fahmy and O’Reilly, 1989].

det(sI− sBFc−A) = 0 (1.20)

1.4.1 DR-DSF without pole placement

If a preferential derivative causality assignment is chosen for the bond graph model, the new
state-space representation is in equation (1.21).{

x(t) = A−1ẋ(t)−A−1Bu(t)−A−1Fd(t)
y(t) =CA−1ẋ(t)−CA−1Bu(t)−CA−1Fd(t)

(1.21)

With the control law equation (1.18), the equations (1.21) can be written as equations (1.22).

{
x(t) = (A−1−A−1BFc)ẋ(t)− (A−1BG)v(t)− (A−1BFp +A−1F)d(t)
y(t) = (CA−1−CA−1BFc)ẋ(t)−CA−1BGv(t)− (CA−1BFp +CA−1F)d(t)

(1.22)

If (CA−1−CA−1BFc) = 0 and (CA−1BFp +CA−1F) = 0 then y(t) =−CA−1BGv(t) and the
rejection of the disturbance is achieved. There is a direct transmission between the new input
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variable v(t) and the output variable y(t). The matrices Fc, G and Fp, solution of the disturbance
rejection problem are defined in equation (1.23), with condition CA−1B , 0, and the input-output
relation is y(t) = v(t). 

G =−(CA−1B)−1

Fc = (CA−1B)−1CA−1

Fp =−(CA−1B)−1CA−1F

(1.23)

With the control law defined by the equation (1.18), the invariant zeros of the controlled
system Σ(C,A,B) (without disturbance) are the same as the invariant zeros of the model Σ(C,A,B)
without control. At most, without pole placement, the controlled system Σ(C,A,B) is an implicit
model [Rosenbrock, 1970].

Property 2. The degree γ of the characteristic polynomial det(sI− sBFc−A) of the controlled
system Σ(C,A,B) with a DSF control law (1.18) with matrices defined in (1.23) is equal to the
number of invariant zeros of Σ(C,A,B), i.e. γ = n−nc. The new model contains only n−nc finite
modes (invariant zeros of Σ(C,A,B)).

The output decoupling zeros (non-observable modes) are the zeros of matrix [sI−At Ct ]t .
For an observable model, this matrix doesn’t contain any zero, but with the DSF control law, the
new model can become non-observable.

Property 3. The zeros of matrix [sI− s(BFc)
t−At Ct ]t of the controlled system Σ(C,A,B) with

a DSF control law (1.18) with matrices defined in (1.23) are the invariant zeros of the model
Σ(C,A,B). They are the finite non-assigned modes of the controlled system.

1.4.2 DR-DSF with pole placement

Property 4. The DRP (Disturbance Rejection Problem) with a DSF of type defined in (1.18) with
matrices G and Fp defined in (1.23) and matrix Fc in (1.24) has a solution with pole placement iff
np ≤ nc.

The solution for the DR-DSF with pole placement is obtained with the matrices G and Fp de-
fined in (1.23) and with a new matrix Fc defined in equation (1.24), where the set

{
α1;α2; · · · ;αnp

}
is a set of np free parameters used for pole placement.

Fc = (CA−1B)−1[CA−1 +α1C+α2CA+ · · ·+αnpCAnp−1] (1.24)

Property 5. The differential equation verified by the output variable y(t) with a derivative state
feedback control law defined by equation (1.18), with matrices G and Fp defined in (1.23) and
matrix Fc in (1.24) is written in equation (1.25).

αnpy(np)+ · · ·α2ÿ+α1ẏ+ y = v(t) (1.25)
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Property 6. The degree of the characteristic polynomial det(sI− sBFc−A) of the controlled
system Σ(C,A,B) with a DSF control law defined in (1.18), with matrices G and Fp defined in
(1.23) and matrix Fc in (1.24) is equal to (n−nc)+np (number of invariant zeros of Σ(C,A,B),
id est (i.e.) (n−nc) + infinite zero order of Σ(C,A,F), i.e. np).

Since the properties of the controlled model are known, a final property can be written.

Property 7. The DRP (Disturbance Rejection Problem) with a DSF of type defined in (1.18)
with matrices G and Fp defined in (1.23) and matrix Fc in (1.24) has a stable solution with pole
placement if np ≤ nc and the invariant zeros of model Σ(C,A,B) are strictly stable.

It is worth noting that if the disturbance rejection problem is solvable either by a Static State
Feedback (SSF) control law or a Derivative State Feedback (DSF) control law, in most situations
it is not possible to measure all the state (or derivative) variables directly: they must be estimated
by an observer. Since the disturbance variables are unknown input variables, an Unknown Input
Observer (UIO) is added in order to estimate different variables: (derivative) state variables, as
well as the disturbances variables. For linear Bond Graph models, solutions dealing with the finite
structure of the model Σ(C,A,B,F) for stability conditions of the observer and dealing with the
infinite structure of the model Σ(C,A,B,F) are in [Gonzalez and Sueur, 2018b] and presented in
the following chapters. An observer bond graph model similar to the bond graph model of the
physical system is synthesized.

1.5 Experimental System

In this section, a Mechatronics Experimental System is described which consists of a DC power
source, a DC motor, a gear mechanism and two disks connected by a flexible shaft (see Fig. 1.2).

Figure 1.2 – Real Torsion-Bar system.
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1.5.1 System description

In Fig. 1.2, the real Torsion-Bar (T-B) system is shown with its main parts. A functional schematic
model of the T-B system is presented in Figure 1.3, schematic representation given by 20-Sim®.
According to Fig. 1.3, the system consists of the following components: a DC Power Source, a
classical DC Motor which is modelled by an electrical part (Inductance La and Resistance Ra)
and a mechanical part (Inertia Jm is supposed negligible), a transmission element which transfers
the rotation from the motor to the motor disk with a transmission ratio (kb), a first rotational disk
(Motor Disk) with an inertial parameter J1 and a friction coefficient R1, a flexible shaft modelled
as a spring-damper element (Spring C f s and Damper R f s), and a second rotational disk (Load
Disk) with an inertial parameter J2 and a friction coefficient R2.

Figure 1.3 – Schematic model of the real Torsion-Bar system.

Figure 1.4 – Simplified Bond Graph of the Torsion-Bar system.

The simplified Bond Graph model of the system is shown in the Fig. 1.4. For the experimental
system in Fig. 1.4, the controlled input voltage is represented by a modulated effort source
MSe : u. Moreover, y2 and y3 are speed rotational variables represented in the Bond Graph model
by flow output detectors D f : y2 and D f : y3 respectively. The current output detector D f : y1 is
associated to y1 which is a current variable. These sensors are used to estimate the state variables
and to estimate the unknown input vector d(t) modelled by the source Se : dpert1, unknown torque
applied to the motor disk, and the source Se : dpert2 which represents a torque applied to the
second rotational disk(J2). The numerical values for each element of the system are given in
Table 1.1.
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Element Symbol Value
Inductance La 1.34×10−3 H

Inertia of motor disk J1 9.07×10−4 kg m2 rad−1

Inertia of load disk J2 1.37×10−3 kg m2 rad−1

Spring compliance C f s 0.56 N m rad−1

Resistance Ra 1.23 Ω

Motor disk friction R1 5.025×10−3 N m s rad−1

Load disk friction R2 25×10−6 N m s rad−1

Damping spring R f s 5×10−4 N s rad−1

Motor constant km 38.9×10−3 N m A−1

Transmission ratio kb 3.75

Table 1.1 – Parameters of experimentation for the Torsion-Bar system model.

1.5.2 State-Space Equation

A state model or a transfer matrix representation can be directly deducted from the Linear Bond
Graph model without the need to do complex numerical calculations, [Karnopp et al., 1975],
[Rosenberg and Karnopp, 1983]. Two features of Bond Graph modelling are the causality and
causal paths that are used in the analysis stage but also in order to derive models.

According to the Bond Graph model, a state-space representation is performed as described
in the form (1.1). The state vector x = [x1, x2, x3, x4, ]

t is composed of energy storage vari-
ables: x1 = qc = qcsha f t (represents the angular displacement), x2 = pJ2 , x3 = pJ1 (represent the
angular momentums), and x4 = pLa (representing the flux linkage). The outputs described by
flow output detectors are y1, y2 and y3 which represent a current and two angular velocities.
Then, the output matrix C can be also written as C = [C1

t ,C2
t ,C3

t ]t . The disturbance vector is
composed of two variables d(t) = [dpert2, dpert1]

t and thus matrix F is F = [F1
t , F2

t ]t . The state
equations are written as (1.26). The poles of the model (eigenvalues of matrix A) are equal to
−898.33,−7.834±55.68 j, −10.379.

ẋ1 =− 1
J2

x2 +
1
J1

x3

ẋ2 =
1

C f s
x1− (

R2+R f s
J2

)x2 +
R f s
J1

x3 +dpert2

ẋ3 =− 1
C f s

x1 +
R f s
J2

x2− (
R1+R f s

J1
)x3 +

km
La.kb

x4 +dpert1

ẋ4 =− km
J1·kb

x3− Ra
La

x4 +u
y1 =

1
La

x4 y2 =
1
J1

x3 y3 =
1
J2

x2

(1.26)

1.5.3 Model Validation

In this part, we compare some simulations obtained from the model developed by the Bond Graph
methodology and the schematic given by 20-Sim® and finally the data acquired from the real
Torsion-Bar system. This study allows us to present the proximity between the models and the
real system from some temporal responses.
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1.5.3.1 Step signal response

The first entry is a step signal and the results of the simulation are shown below. In Fig. 1.5, the
three output variables defined in the state-space representation (eq. 2.1) are displayed. They are
obtained from the 20-Sim® platform.

Figure 1.5 – Outputs from the Schematic given by 20-Sim® (blue) and bond graph model (red).

The outputs y1(t), y2(t) and y3(t) derived from the bond graph model and from the schematic
model of the Torsion-Bar system are compared. The dynamics of the schematic model is almost
equal to the bond graph model; thus, the bond graph model of the T-B system can be used for the
next applications and simulations in this thesis.

For the Real Torsion-Bar system, the direct measurement of y1(t) is not possible. Then, only
the output y2(t) and y3(t) are presented in the Fig. 1.6 which are the data acquired by the 20-
Sim 4C® platform. Also, variables y2(t) and y3(t) obtained from the bond graph representation
are shown simultaneously in order to compare simulated variables and measured data from the
Torsion-Bar system.

In Fig 1.6, a) one output represents the motor disk velocity, b) and the other, the load disk
velocity. The responses in the steady state phase are almost the same (≈76 rad s−1). Also, some
differences could be caused by neglected dynamics in the model or the equipment features to the
control and/or measurement (see the section 2.2.4).

In the following, comparisons are displayed in the same order for other input variables (ramp,
sine function).
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Figure 1.6 – Data from the outputs of real T-B system (blue) compared with outputs from BG
model (red).

1.5.3.2 Temporal response for a ramp signal

This entry is a Ramp signal and the results are shown below. In the following figures, a char-
acteristic of the T-B system, the limit (saturation) at the input is due to the protection for the
real torsion-bar system (entry limit ±12 V). Fig. 1.7 shows the behaviour of the outputs y1(t),
y2(t) and y3(t) of bond graph model and of the schematic model. After, the output signals (disks
velocities) from the bond graph model and the data obtained from the real torsion-bar system
(y2(t) and y3(t)) are compared in Fig. 1.8.

1.5.3.3 Temporal response for a Sine type signal

Now the entry is a sine type signal and some graphics are shown below. Fig. 1.9 shows simulations
of the outputs variables y1(t), y2(t) and y3(t). It compares the output signals from the bond graph
model (1.4) and the schematic model (1.3). The output signals (disks velocities) from the bond
graph model and the data from the real torsion-bar system (y2(t) and y3(t)) are compared in
Fig. 1.10.

1.5.3.4 Pulse signal response

Finally, a pulse signal is applied, and its graphics are shown below, as for previous inputs, Fig. 1.11
show simulations of the outputs variables y1(t), y2(t) and y3(t) and Fig. 1.12 presents the output
signals (disks velocities) from the bond graph model and the data from the real torsion-bar system.
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Figure 1.7 – Outputs from the Schematic given by 20-Sim® (blue) and bond graph model (red).

Figure 1.8 – Data from the outputs of real T-B system (blue) compared with outputs from BG
model (red).
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Figure 1.9 – Outputs from the Schematic given by 20-Sim® (blue) and bond graph model (red).

Figure 1.10 – Data from the outputs of real T-B system (blue) compared with outputs from BG
model (red).
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Figure 1.11 – Outputs from the Schematic given by 20-Sim® (blue) and bond graph model (red).

Figure 1.12 – Data from the outputs of real T-B system (blue) compared with outputs from BG
model (red).
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1.6 Disturbance Rejection for the T-B System

In the previous section, the model of the real torsion bar system developed in bond graph repre-
sentation is validated. It can then be used in this thesis for the UIO synthesis and Disturbance
Rejection with the concept of Derivative State Feedback.

The previous approaches presented in sections 1.3 and 1.4 for the Disturbance Rejection
problem are now applied to the Torsion-Bar system presented in section 1.5. A slightly modified
bond graph model and its state-space representation (1.27) are presented below.

Figure 1.13 – Modified T-B bond graph model with integral causality assignment: BGI.
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Only the second output y2(t) will be controlled. The new control variable v(t) is defined as
a step function in rad s−1 and its action begins at 0.5 s with a value of 20 rad s−1. At t = 2s the
input is incremented to 40 rad s−1 and maintained until the end. The unknown input is defined as
dpert(t) =−03Nm with time action between 5s and 15s.

1.6.1 Structural properties of the BG model: Disturbance Rejection problem

We consider the classical Disturbance Rejection problem by a Static State Feedback control
(DR-SSF). A structural approach is used due to the structural properties of the bond graph model.
Structural properties of bond graph models, such as the infinite structure and finite structure
are recalled in Appendix A. These structures are generally defined for system Σ(C,A,B). Since
the Torsion-Bar system contains one input control variable, one input disturbance variable, one
output variable to be controlled and two measured output variables, different finite and infinite
structures of models must be highlighted, with a particular notation for each infinite zero order.
Only the row infinite structure of the models is studied in this part. We denote {nci} the set of
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row infinite zero orders of the row sub-systems Σ(Ci,A,B) and {npi} the set of row infinite zero
orders of the row sub-systems Σ(Ci,A,F), (index c for control and index p for perturbation).

The disturbance rejection problem for the system Σ(C,A,B,F) described by equation (1.1) has
a solution by a state feedback control law u(t) = Fcx(t)+Gv(t) (without measurement of the dis-
turbance variables) iff the infinite structure of matrix

[
s−1(C(sI−A)−1B)

]
is equal to the infinite

structure of matrix
[

s−1(C(sI−A)−1B) C(sI−A)−1F
]
. With the estimation of the distur-

bance variables, the condition is on matrices [C(sI−A)−1B] and
[

C(sI−A)−1B C(sI−A)−1F
]
.

At most, the disturbance rejection problem for the system described by equation (1.1) has a solu-
tion with stability iff the zeros of model Σ(C,A,B) which are not zeros of model Σ(C,A,B,F) are
strictly stable [Malabre and Martínez-García, 1993]. From a bond graph approach, in the SISO
case, the condition for DR-SSF is: the causal path length between the input control MSe : u and
the output to be controlled D f : y is shorter than the causal path length between the disturbance
input Se : d and the output to be controlled D f : y.

First, properties of the submodels Σ(C2,A,B) and Σ(C2,A,F) are studied since only the
second output variable must be controlled. The shortest causal path between the output variable
to be controlled and the control input MSe : u is:

D f : y2→ I : J2→ R : R f s→ I : J1→ T F : 1/kb→ GY : km→ I : La→MSe : u .

The length of this causal path is equal to 3, then nc2 = 3. The shortest causal path between the
output variable to be controlled and the disturbance input Se : dpert is:

D f : y2→ I : J2→ R : R f s→ I : J1→ Se : dpert .

The length of this causal path is equal to 2, then np2 = 2 and np2 < nc2.

The causal path length between the disturbance input Se : dpert and the output to be controlled
D f : y2 is shorter than the causal path length between the input control MSe : u and the output
to be controlled D f : y2: The Disturbance Rejection problem with Static State Feedback is not
possible. For this reason, simulations when using state-feedback control are not presented in this
section.

An open loop control is first proposed in order to analyse the influence of the disturbance on
the output variable, Fig. 1.14. Each simulation is proposed with a white Gaussian noise, as it is
usual for realistic systems.

1.6.2 PID (PI) Control

The classical PID control is defined in (1.11), where e(t) is the error variable, difference between
the reference input signal v(t) and the output variable y2(t). The PID controller is described by
three parameters (Kp-Proportional Gain, Ti-Integral Gain and Td-Derivative Gain).
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Figure 1.14 – Open loop control, without disturbance rejection.

After probing different tuning methods in order to define the parameters for the PID controller,
we get parameters Kp = 0.1, Ti = 0.09s−1 and Td = 0.009s. Since the model is linear, it is also
possible to calculate the gains on beforehand. The PID Controller for disturbance attenuation
is applied to the equipment and variables behaviours (output variable y2(t) and control signal
u(t)) are presented in Fig. 1.15. The output variable y2(t) varies around its steady-state behaviour
which could be reached without any disturbance or with a constant one.

Figure 1.15 – Response of output y2 and the signal control u(t) for PID control.
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1.6.3 Disturbance Rejection with DSF

Model Σ(C,A,B) is structurally controllable/observable and the state matrix A is invertible, a
derivative causality assignment can be applied to the bond graph model, as proved in the Bond
Graph model with Derivative causality (BGD) model, Fig. 1.16. As studied in section 1.6.1,
nc2 = 3 and np2 = 2. Since np2 < nc2, from properties 4 and 6 the DSF has a solution with
n−nc2 = 1 finite non-assigned mode that is the invariant zero of model Σ(C2,A,B) and np2 = 2
finite modes which can be chosen freely with matrix Fc.

Figure 1.16 – Derivative causality assignment of the bond graph model: BGD.

From the BGD model of Fig. 1.16, the causal path lengths between the output y2 and the
different inputs (known and unknown input variables) are equal to 0, thus C2A−1B , 0 and
C2A−1F , 0. The system Σ(C2,A,B) has one invariant zero since nc2 = 3 which is not equal to
zero (property of the BGD model). Its value is Iz =− 1

C f s·R f s
=−3571.42. Some coefficients can

be derived from a causal analysis (causal path gains), but here they are directly obtained from
formal calculus, equation (1.28) for matrices without pole placement.

G =
(R1·Ra+R2·Ra+k2

m·k2
b)

(km·kb)
= 188.456 ·10−3

Fp = Ra
km·kb

= 8.4319

Fc =
[

R1·Ra+k2
m·k2

b
km·kb

Ra
km·kb

Ra
km·kb

1
]

=
[

188.245 ·10−3 8.432 8.432 1
] (1.28)

Without pole placement, Y2(s) =V (s). The degree of the characteristic polynomial is 1, with
root equal to the invariant zero (fixed finite mode) and det(sI − sBFc − A) =
R1·Ra+R2·Ra+k2

m·k2
b

C f s·J2·La·J1
· (C f s ·R f s · s+1).

With pole placement, matrix Fc is defined in equation (1.29), with numerical values in equa-
tion (1.30), and Y2(s) = 1

1+α1s+α2s2 V (s) (two poles can be chosen because np2 = 2). In that case,

det(sI − A − sBFc) =
R1·Ra+R2·Ra+k2

m·k2
b

C f s·J2·La·J1
· (C f s · R f s · s + 1) · (α2 · s2 + α1 · s + 1) =

2.9483 ·107 · (2.8 ·10−4 · s+1) · (α2 · s2 +α1 · s+1).

Fc = (C2A−1B)−1[C2A−1 +α1C2 +α2C2A] (1.29)
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Fc =
[

0.18824−245.6413α2 8.4319+52.7143α2−137.559α1 8.4319−75.8319α2 1
]

(1.30)

The differential equation verified by the output variable y2(t) with the Derivative State
Feedback control law defined by equation (1.18), with matrices G and Fp defined in (1.23) and
matrix Fc in (1.29) is written in equation (1.31). Parameters α1 and α2 can be arbitrarily chosen,
according to the poles of the closed loop model.

α2ÿ2(t)+α1ẏ2(t)+ y2(t) = v(t) (1.31)

Then, the two DSF control laws are applied, Fig. 1.17 and Fig. 1.18. The simulations are
proposed in two ways: at first for DSF without pole placement using matrices G, Fp and Fc

in (1.28) and then for DSF control with pole placement where matrix Fc is defined in (1.30).
Parameters have been chosen as α1 = 15/50 and α2 = 1/50, poles are arbitrarily chosen equal
to −5 and −10. In both cases, the Disturbance Rejection is achieved, with best results for the
second case because the model has only one infinite mode and two modes which are assigned. It
can be noticed that in the last case, the control input variable u(t) is must efficient (no oscillation
with hard value) and that the output variable y2(t) is equal to the input variable v(t) in less than
2 s without oscillation.

Figure 1.17 – Disturbance Rejection with DSF without pole placement.
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Figure 1.18 – Disturbance Rejection with DSF with pole placement.

1.7 Conclusion

In this chapter, different controllers have been recalled in order to solve the Disturbance Rejection
problem. The Torsion-Bar system is used as a case study. We proved the validity of the Bond
Graph model and a structural approach is used as a basis for the study of the model properties
before the synthesis of the control law. A solution via Derivative State Feedback (DSF) control
for the Disturbance Rejection Problem is recalled. The aim is to propose some contributions in
this way, first with the concept of Unknown Input Observer (UIO) which is the object of the next
chapter.



Chapter2
Unknown Input Observer (UIO):
Background and new developments

2.1 Introduction

In this chapter, we consider linear time-invariant perturbed systems described by a state-space
representation (2.1), where x(t) ∈ Rn describes the state vector, y(t) ∈ Rp is the vector of
measurable variables (outputs). The vector u(t) ∈ Rm represents the known input variables,
whereas d(t) ∈ Rq is the vector which represents the unknown input variables.{

ẋ(t) = Ax(t)+Bu(t)+Fd(t)
y(t) =Cx(t)

(2.1)

Assumption 2. A,B,F,C are known constant matrices of appropriate dimensions.

Generally, most of the state variables cannot be measured. At most, they are often subject to
the effects of unknown inputs. We can speak of perturbed systems, or systems with unknown
inputs.

This chapter is addressing the presentation of some works dealing with the estimation of
unknown inputs, but also state variables. An unknown input can represent different effects in a
system such as disturbances, perturbations, failures, modelling error, noise or non-linearities. The
unknown input estimation and state observability problem (UIO) is a well-known problem and
different approaches give solvability conditions and constructive solutions for this problem.

As for the Disturbance Rejection Problem (DRP), most of the UIO approaches require the
analysis of the structural invariants of the model which play an essential role in this problem. In a
similar manner, the infinite structure of the model is related to solvability conditions and the finite
zeros (finite structure) are directly related to stability conditions of the observer. The concepts of
poles and zeros are recalled in section 1.2, see also appendix A.

In this chapter, for an easy understanding, the UIO observer is first developed for the SISO
case from a mathematical point of view. Three classical approaches are first recalled, namely
the PI approach, the approach based on inverted matrices and finally an algebraic approach.

31
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Moreover, since the developed work in this research is mainly based on the bond graph rep-
resentation, a section is dedicated to UIO with bond graphs. Finally, since we compare the
efficiency of different approaches from theoretical and practical point of view, the experimental
system presented in Section 1.5 is worked out as a specific application. Different simulations
are compared, mainly from the bond graph model and the schematic diagram given by 20-Sim®.
Finally, simulation results are compared with data acquired from the real Torsion-Bar (T-B)
system.

In the end of this chapter, section 2.3 , new specific developments are proposed.

2.2 Comparison between UIO approaches

Many of the issues and associated problems of Linear Time-Invariant (LTI) systems have been
studied for a long time. This section is dedicated to the presentation of different backgrounds.
We recall previous works for observer analysis and synthesis for LTI systems with unknown
inputs, thus with different methodologies. In the literature, many works have been proposed for
modelling dynamical systems, while studying system properties for control design and estimation
(stability, controllability, observability, Input-Output decoupling, etc.), Fault Detection Isolation
(FDI) analysis, and many other problems.

2.2.1 Some classical approaches

In order to solve the UIO problem for systems defined in equation (2.1), some conditions
are often necessary, depending on the proposed approach. A well-known one, which is a
necessary condition for the existence of an observer is called observer matching condition
[Kudva et al., 1980, Darouach et al., 1994]. This condition is expression as rank condition for
some matrices: rank[CF ] = rank[F ].

Another condition is related to the concepts of strong* detectability and strong observability,
proposed in [Hautus, 1983]. The strong detectability of system with only the unknown input
vector d(t) corresponds to the minimum-phase condition, directly related to the zeros of a system
Σ(C,A,F) (finite structure, see Appendix A). The system Σ(C,A,F) in (2.1) is strongly detectable
iff all its zeros s satisfies Re(s)< 0.

In [Floquet and Barbot, 2006], a solution is proposed when the previous conditions are not
satisfied: after implementing a procedure to get a canonical observable form of the model, an
unknown input sliding mode observer is designed. This method can also be extended in the
non-linear case. Necessary and sufficient conditions are that system Σ(C,A,F) is left invertible
and minimum phase.

All these conditions are related to the concept of poles of zeros (finite or not) of the system,
concepts recalled above.

2.2.1.1 Proportional-Integral (PI) Observer

This observer was reformulated as a High-Order Observer to obtain a robust estimation of output.
The representation for the PI observer was given for [Niemann et al., 1995]. Then, it is possible
to create the structure shown in Fig. 2.1 and the equation (2.1) is rewritten as (2.2).
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Figure 2.1 – Structure of the PI observer (blue).

{
˙̂x(t) = Ax̂(t)+Kp(y(t)−Cx̂(t))+Bu(t)+Fd̂(t)
˙̂d(t) = KI(y(t)−Cx̂(t))

(2.2)

where, Kp and KI are the Proportional an Integral gains respectively. These gains cannot be
obtained independently, and this complicates the observer’s design because there is not a direct
method to obtain the gain values.

Applying the PI observer at the system (2.1) and defining the estimation error as e = x− x̂
and the estimation perturbation error ε = d− d̂, the next equation (2.3) is obtained.[

ė(t)
ε̇(t)

]
=

[
A−KPC F
−KIC 0

][
e(t)
ε(t)

]
(2.3)

With ξ =
[
e(t) ε(t)

]T , it is easy to write ξ̇ = Rξ .
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The stability condition for the PI observer are associated directly with the eigenvalues of
the matrix R. The PI observer is stable if and only if all the eigenvalues (λ ) of R are stable
(Re(λ )< 0). Then, e(t) will be close to zero asymptotically (x̂(t)→ x(t)).

2.2.1.2 UIO: Inverted matrices

In [Darouach et al., 1994] and [Darouach, 2009], an observer is proposed with the concept of
inverted matrices. State variables as well as unknown inputs can be estimated under some model
conditions related to the concept of strong* detectability defined in [Hautus, 1983].

Consider the following equations (2.4).{
ξ̇ (t) = Nξ (t)+ Jy(t)+Hu(t)
x̂(t) = ξ (t)−Ey(t)

(2.4)

where x̂ ∈Rn is the estimate of x. Matrices N, J, H and E are constant matrices of appropriate
dimensions which must be determined such that x̂ will asymptotically converge to x.

From the state equation (2.1) and the observer (2.4), it is possible to define the estimation
error as equation (2.5), with P = I +EC.

e(t) = x(t)− x̂(t) = Px(t)−ξ (t) (2.5)

The dynamic of the error variable is defined in equation (2.6).

ė(t) = N e(t)+(PA−NP− JC)x(t)+(PB−H)u(t)+PFd(t) (2.6)

The following proposition provides conditions such that equation (2.4) to be a full order
observer for the system (2.1).

Proposition 1 ([Darouach, 2009]). The full-order observer (2.4) will estimate x(t) if the following
conditions are verified:

• N is a Hurwitz Matrix Re(λ (N))< 0

• PA−N P− JC = 0

• PF = 0

• H = PB

If all the conditions given in the proposition 1 have been accomplished, then lim
t→∞

e(t) = 0 for

any x(0), x̂(0), d(t), and u(t). Therefore x̂(t) is an estimate of x(t).
In [Darouach, 2009], a procedure to obtain an estimation of the perturbation has been pro-

posed and it is related with the existence of the inverse of matrix F from the system (2.1).
Matrix F has an inverse matrix defined as F+ such that F+F = Iq. The next expression is

obtained rewriting the equation (2.1).{
d = F+(ẋ(t)−Ax(t)−Bu(t))
d̂ = F+( ˙̂x(t)−Ax̂(t)−Bu(t))

(2.7)
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where x̂(t) and d̂(t) are the estimation of x(t) and d(t). The estimation error for the unknown
input is written below.

ed(t) = d(t)− d̂(t) = F+(N−A)ex(t) (2.8)

2.2.1.3 UIO: Algebraic Approach

The observer proposed in [Daafouz et al., 2006] is now recalled for the case Single Input - Single
Output (SISO). The observer proposed in [Daafouz et al., 2006] is written in (2.9).{ ˙̂x = (PA−LC)x̂+Q(y(r)−U)+Ly+Bu

d̂(t) = (CAr−1F)−1(y(r)−CArx̂−U)
(2.9)

where, d̂(t) represents the estimation of the perturbation d(t). Matrices Q, U and P are
defined as: Q = F(CAr−1F)−1 , U = ∑

r−1
i=0 CAiBu(r−1−i) and P = In−QCAr−1 . The order of

the zero at infinity of system Σ(C,A,F) is defined by r, d is the unknown input variable and y the
output variable.

The estimation error for the state variables is given in equation (2.10).

ėx = ẋ− ˙̂x = (PA−LC)(x− x̂) (2.10)

Assuming that lim
t→∞

ex(t) = 0 for all x(0), x̂(0), d(t) thus x̂(t) define an estimation of x(t). The

estimation error of the unknown input is written as ed = d− d̂ = (CAr−1F)−1CAr(x− x̂).
Then, this observer is stable if the finite structure for system Σ(C,A,F) is stable. The

necessary and sufficient conditions for the existence of the observer (2.9) for the system (2.1) are
given by the following theorem.

Theorem 2 ([Daafouz et al., 2006]). The state x(t) in (2.1) can be estimated (asymptotically) by
the full-order observer (2.9) if the next points are accomplished.

• The perturbed system (2.1) is observable asymptotically if, and only if, it is left invertible.

• The perturbed system (2.1) is strongly detectable* (condition of minimal phase).

The Unknown Input Observer (UIO) performed by the algebraic approach is intrinsic, and the
computational complexity is lower than in the case of observer based on inverted matrix calculus,
presented in the previous section. The conditions are less restrictive, since the order of zero to
infinity can be arbitrary (in particular CF , 0 is not necessary).

2.2.2 UIO: Bond Graph (BG) Approach

Model Σ(C,A,F) is supposed to be a SISO Linear Time-Invariant model. If a somewhat physical
approach is proposed, some assumptions are also possible for the state model deduced from a
Bond Graph representation.

Assumption 3. It is supposed that the SISO system Σ(C,A,F) defined in equation (2.1) is
Controllable and Observable, and the state matrix A is invertible.
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For physical systems described with a Bond Graph representation, the assumption 3 is not
a restrictive (see Appendix A.2 or [Sueur and Dauphin-Tanguy, 1991]) in particular due to the
choice of energy variables for the state-space representation (generalized momentum p(t) and
generalized displacement q(t)). Moreover, a derivative causality assignment is possible for Bond
Graph models with the assumption 3 (physical model without null pole).

For many physical systems modelled by (2.1), the observer matching condition is not satis-
fied. To overcome the restriction imposed by this condition, an observer has been proposed in
[Floquet and Barbot, 2006] using the infinite structure of model Σ(C,A,F), and the derivatives
of input and output variables.

An alternative solution is proposed in this work, where state and unknown input estimation
procedures are recalled without the observer matching condition in the SISO case. Note that only
some derivatives of the output variables are needed for this observer. Note that the Bond Graph
model is thus used as a multidisciplinary tool for this research.

2.2.2.1 UIO:synthesis

The state equation (2.1) can be written as (2.11).{
x(t) = A−1ẋ(t)−A−1Bu(t)−A−1Fd(t)
y(t) =CA−1ẋ(t)−CA−1Bu(t)−CA−1Fd(t)

(2.11)

The disturbance variable and the estimation of the disturbance variable can be written in
equation (2.12) if CA−1F , 0 (model Σ(C,A,F) has no null invariant zero).{

d(t) =−(CA−1F)−1 [y(t)−CA−1 ẋ(t)+CA−1Bu(t)]
d̂(t) =−(CA−1F)−1 [y(t)−CA−1 ˙̂x(t)+CA−1Bu(t)]

(2.12)

The disturbance estimation error is written in equation (2.13).

d(t)− d̂(t) =−(CA−1F)−1CA−1[ẋ(t)− ˙̂x(t)] (2.13)

Let r be the infinite zero order for the SISO model Σ(C,A,F). This is the smallest positive
integer such that (C Ar−1 F) , 0. The estimation of the state vector is written as (2.14). The rth

output variable derivative is multiplied by matrix K which is used for pole placement.

˙̂x(t) = Ax̂(t)+Bu(t)+F d̂(t)−AK(yr(t)− ŷr(t)) (2.14)

If e(t) = x(t)− x̂(t) is the state vector error, from (2.11), (2.12) and (2.14), the state error
estimation equation is given by (2.15), where matrix NCLr is defined in equation (2.16).

e(t) = NCLr ė(t) (2.15)

The matrix NOL is written without matrix K (Open Loop estimation).{
NOL = A−1−A−1F(CA−1F)

−1CA−1

NCLr = A−1−A−1F(CA−1F)
−1CA−1−KCAr−1

(2.16)
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Equations (2.15) and (2.16) are proved for r = 2. The extension for any integer r is simple
and straight. First, write y = Cx. A first order derivative is ẏ = Cẋ = C(Ax + Bu+ Fd) =
CAx +CBu with CF = 0. Thus ÿ = Cẍ = CAẋ +CBu̇. The same equation is written for
ŷ, thus ¨̂y = C ¨̂x = CA ˙̂x +CBu̇. From these two expressions, a new one is written: ÿ− ¨̂y =
CAẋ+CBu̇− (CA ˙̂x+CBu̇) =CA(ẋ− ˙̂x). With an easy extension, it is proved that y(r)− ŷ(r) =
CAr−1(ẋ− ˙̂x), which proves equations (2.15) and (2.16).

The design from a practical point of view of the UIO for a linear SISO Bond Graph model
is recalled. Some works related with this issue are [Yang et al., 2013, Tarasov et al., 2013,
Tarasov et al., 2014b, Tarasov et al., 2014a, Pichardo-Almarza et al., 2005] where some exam-
ples and the Torsion-Bar (T-B) system are treated.

If the state equation (2.1) is written from a Bond Graph model, it is possible to design a
Bond Graph model for the state estimation defined in (2.14) because the equation (2.14) is very
close to the initial state-space representation in (2.1). Some signal bonds must be added for the
disturbance equation defined in (2.12). A block structure for the observer is proposed in Fig. 2.2,
where BGSY S is the Bond Graph model of perturbed systems defined by the equation (2.1) and
BGOBS is for the observer Bond Graph model based in equation (2.14). This block diagram
represented in Fig. 2.2 is also the structure of simulation to estimate variables (unknown inputs
and state variables). Note that in the literature, almost none of the UIO models are close to the
initial model. With this particular approach, the properties can be studied from a structural point
of view, as well from a symbolic point of view for parameters associated to physical elements.

Figure 2.2 – Structure of the simulation to estimate unknown variables.

The 20-Sim® software is dedicated to simulating Bond Graph models and is used here as
well as the MATLAB® software for some examples. Some simulation results for the real bar
system were proposed in [Tarasov et al., 2014b] as a SISO model with a flat control.

2.2.2.2 Properties of the Observer

Conditions for pole placement in equation (2.15), are studied. Note that the classical error
equation is written as ė(t) = Me(t), with M a matrix to be studied. In our approach, properties
of matrix NCLr are first studied due to the derivative causality assignment applied to the Bond
Graph model, (BGD), but for simulation and estimation of the experimental system, the classical
equation is used. If matrix NCLr is invertible, a classical pole placement is studied, and the error
vector e(t) = x(t)− x̂(t) does not depend on the disturbance variable. The conditions for (2.15)
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to be an asymptotic state observer of x(t) is that NCLr must be a Hurwitz matrix, i.e., has all its
eigenvalues in the left-hand side of the complex plane. A necessary condition for the existence of
the state estimator is in Proposition 2.

Proposition 2. A necessary condition for the matrix NCLr defined in (2.16) to be invertible is
CAr−1F , 0.

Proof. Matrix NCLr F is equal to [A−1 − A−1F(CA−1F)−1CA−1 −KCAr−1]F , thus it can be
rewritten as NCLr F = A−1F − A−1F(CA−1F)−1CA−1F −KCAr−1F = −KCAr−1F . If condi-
tion CAr−1F , 0 is not satisfied, the Kernel of matrix NCLr is not empty, which means that matrix
NCLr is not invertible and that this matrix contains at least one null mode, thus pole placement is
not possible (all its eigenvalues are not in the left-hand side of the complex plane).

Condition defined in proposition 2 is an extension of the well-known matching condition
defined in [Hautus, 1983, Darouach, 2009]. It means that the infinite zero order (relative degree)
between the disturbance variable d(t) and the measured variable y(t) can be greater than 1,
equal to r with this observer. Some other properties are recalled: with matrix NCLr , r poles can
be assigned and the other poles (fixed poles) are the inverse of the invariant zeros of system
Σ(C,A,F), invariant zeros for the classical error equation (ė(t) = N−1

CLr
e(t)).

Proposition 3. For matrix NCLr defined in (2.16), r poles can be chosen with matrix K.

Proof. Appendix B.1

Proposition 4. The eigenvalues of matrix NOL defined in (2.16) are the inverse of the invariant
zeros of the system Σ(C,A,F) (n− r modes) plus r eigenvalues equal to 0.

Proof. Appendix B.2

Proposition 5. The fixed poles of the estimation equation error defined in (2.15) are the invariant
zeros of the system Σ(C,A,F) .

Proof. From proposition 4, the eigenvalues of matrix NOL are the inverse of the invariant zeros of
the system Σ(C,A,F) with r eigenvalues equal to 0, and since NCLr is invertible and only r poles
can be chosen, all the fixed poles are the non-null eigenvalues.

2.2.3 UIO SISO case: Simulations

In this section, the Torsion-Bar system is considered as the case study with its bond graph model
presented in the figure 1.4. In order to simplify the study, only the disturbance dpert1 is considered.
As well, each output variable is considered independently in order to present theoretically the
SISO case. Only one example is considered for simulation and for comparison between the
different approaches recalled before. Since only one disturbance variable is considered, the
infinite zero order is denoted as r, but as well npi in oreder to consider the ith output variable
yi(t). To realize the simulations and/or to compute the different parameter for UIO synthesis, the
following platforms are used: MATLAB®, Maple and 20-Sim®.
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UIO: Bond Graph Approach

The poles of matrix NCLr are placed according to the number of fixed modes. The properties are
studied according to the choice of the output variable:

• Study of Σ(C1,A,F2)

First, properties of the SISO model Σ(C1,A,F2) are studied (finite and infinite structures).
The causal path between the output variable y1(t) and the disturbance input Se : dpert1(t)
is D f : y1→ I : La→ GY : kb→ T F : km→ I : J1→ Se : dpert1 . The length of the causal
path is equal to 2, then r = np1 = 2. Thus model Σ(C1,A,F2) has two invariant zeros which
can be directly pointed out from the reduced Bond Graph model obtained by removing
elements of the causal path between the unknown input and the output detector. The two
invariant zeros are stable. They are the fixed modes of the error equation (2.15) of the UIO.

The estimation of the unknown input variable is defined in equation (2.12) with the
appropriate output variable y1(t) and the matrix C1. The estimation of the state vec-
tor ˙̂x(t) = Ax̂(t)+Bu(t)+Fd̂(t)−AK(ÿ1(t)− ¨̂y1(t)) . For pole placement with matrix
K =

[
k1 k2 k3 k4

]
, only one pole can be chosen.

• Study for Σ(C2,A,F2)

Properties of the SISO model Σ(C2,A,F2) are studied. The causal path between the output
variable y2(t) and the disturbance input Se : dpert1(t) is D f : y2 → I : J1 → Se : dpert1 .
The length of the causal path is equal to one, then r = np2 = 1. Thus model Σ(C2,A,F2)
has three invariant zeros. The three invariant zeros are stable and can be directly deduced
from the reduced Bond Graph model. They are the fixed modes of the error equation (2.15)
of the UIO.

The estimation of the unknown input variable is defined in equation (2.12) with the
appropriate output variable y2(t) and the matrix C2. The estimation of the state vector
is ˙̂x(t) = Ax̂(t) + Bu(t) + Fd̂(t)− AK(ẏ2(t)− ˙̂y2(t)). For pole placement with matrix
K =

[
k1 k2 k3 k4

]
, one pole can be chosen.

• Study for Σ(C3,A,F2)

Properties of the SISO model Σ(C3,A,F2) are studied. The causal path between the output
variable y3(t) and the disturbance input Se : dpert1(t) is D f : y3 → I : J2 → R : Rs f →
I : J1→ Se : dpert1 . The length of the causal path is equal to two, then r = np3 = 2.
Thus model Σ(C3,A,F2) has two invariant zeros. The two invariant zeros are stable and can
be directly deduced from the reduced Bond Graph model. In that case, a formal expression
is s =−Ra

La
and s =− 1

R f s·C f s
. They are the fixed modes of the error equation (2.15) of the

UIO.

The estimation of the unknown input variable is defined in equation (2.12) with the
appropriate output variable y3(t) and the matrix C3. The estimation of the state vector
is ˙̂x(t) = Ax̂(t) + Bu(t) + Fd̂(t)− AK(ÿ3(t)− ¨̂y3(t)). For pole placement with matrix
K =

[
k1 k2 k3 k4

]
, two poles can be chosen.
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From the SISO case of the system Σ(C3,A,F2) some significant parameters and matrices will
be presented in order to achieve the simulation.

The input variable u(t) is defined as a step function which is defined in volts and its action
begins at 0.5s with a value of 2V. At t = 2s the input is incremented at 5V and maintained until
the end. The unknown input defined as dpert1(t) =−0.3Nm with time action between 5s and
15s and in addition to a Gaussian noise.

For the system Σ(C3,A,F2) the principal matrices of the UIO are written below.

Ωd =C3A−1F2 =−44.74189 , 0

Ω=C3Ar−1F2 =C3Anp3−1F2 =C3AF2 = 402.38534 , 0

For pole placement the matrix K is obtained. The four poles are chosen as − 1
Ra/La

, −1/1500,
−1/2000 and −C f sR f s for matrix NCL, but they are the inverse of the classical estimation error
equation. Thus:

NOL =


−280 ·10−6 560 ·10−3 −108.4202 ·10−21 0

0 0 0 0
907 ·10−6 0 0 −867.3617 ·10−21

−158.9207 ·10−6 867.3617 ·10−21 867.3617 ·10−21 −1.0894 ·10−3


(2.17)

K =
[
939.866 ·10−9 685 ·10−12 683.752 ·10−9 −123.877 ·10−9]t (2.18)

The results are shown in the next three graphics, in Fig. 2.3 the system state variables and
their estimations are shown.

In Fig. 2.4, the output variables and estimated output variables are shown. It is possible to
observe the accuracy of the estimation even during the action of the unknown input (dpert1(t)).

Finally, the estimation of the unknown input variable dpert1(t) is displayed in the Fig. 2.5. The
unknown input applied to the system was added to the graphic to compare it with its estimation.
This is only possible in simulation but it brings the possibility to see the accuracy of the unknown
input estimation.

Remark 2. The simulation takes into account some discrete elements and parameters given by
the equipment manufacturer.
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Figure 2.3 – State variables x(t) and their estimations x̂(t).

Figure 2.4 – Output variables y2(t) and y3(t) and their estimations.
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Figure 2.5 – Unknown input dpert1(t) and its estimation for the SISO case Σ(C3,A,F2).

PI Observer

This observer is presented in section 2.2.1.1. The equation of the observer is (2.2) while the error
equation is (2.3) as ξ̇ = Rξ , where

R =

[
A−KPC F
−KIC 0

]
Recalling that the PI observer is stable if and only if all the eigenvalues λ of matrix R are

stable (Re(λ )< 0), thus e(t) will be close to zero asymptotically (x̂(t)→ x(t)).

The eigenvalues selected for matrix R and that achieve the stability property for the PI
observer are close to the selected one for the UIO-BG, {−Ra

La
, − 1

C f sR f s
, −1500, −2000, −2500}.

Thus, the values for KP gain and KI are defined as KP = [16422.97,13.10,29061.36,−2020.3]t

and KI = 1.864 ·107. Remarking that the way to obtain the values for the gains is complex and
take a lot of time. Different program platforms are used to solve this problem.

Some simulation results are presented in the next graphics. Fig. 2.6 shows the system state
variables and their estimations. In Fig. 2.7, the output variables and the estimated outputs are
shown. The accuracy of this estimation is good for the different variables (state and output) even
during the effect of the unknown input variable dpert1(t).

In the Fig. 2.8, the estimation of dpert1 (blue) is shown in this simulation, and this estimation
is capable to estimate also the added noise. The graphics prove that the PI observer is capable of
producing an accurate estimation of the different variables. Remarking that the simulation was
done in Simulink from MATLAB® and some characteristics of the system were ignored in this
simulation. They will be taking into account in some next simulations.
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Figure 2.6 – State variables x(t) and their estimations x̂(t).

Figure 2.7 – Output variables y2(t) and y3(t) and their estimations.
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Figure 2.8 – Unknown input variable dpert1(t) and its estimation for model Σ(C3,A,F2).

UIO: Inverted Matrices

The observer applying the concept of inverted matrices presented in section 2.2.1.2 has some condi-
tions to be verified. These conditions are related the Strong* detectability property [Hautus, 1983],
and more precisely one of this condition is the observer matching condition that is defined as
rank[CF ] = rank[F ].

Rewriting the observer matching condition for system Σ(C3,A,F2), it comes rank[C3F2] ,
rank[F2], thus the condition is not satisfied. Moreover, conditions given in the proposition 1 are
not fulfilled at all. For example, the condition P ∗F2 = 0 with P = I +EC3 is not verified. In
conclusion, the observer cannot be developed for this example.

UIO: Algebraic Approach

Equation (2.9) for this observer is rewritten for the case study, system Σ(C3,A,F2) and equation
(2.19), as for main matrices. { ˙̂x = (PA−LC3)x̂+Qÿ+Ly+Bu

d̂(t) = (C3AF2)
−1(ÿ−C3A2x̂)

(2.19)

where
Q = F2(C3AF2)

−1 = [0, 0, 2.48 ·10−3, 0]t

P = I4×4−QC3A =


1 0 0 0
0 1 0 0

−3.24 695.146 0 0
0 0 0 1
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and L = [14110.36322, 4.794589, 53168.4357, 0]t . The poles for the matrix (PA− LC) are
selected as {−Ra

La
, − 1

C f sR f s
, −1500, −2000}.

Some results are presented in the next graphics. Fig. 2.9 shows the system state variables and
their estimations. With this observer, the output variable is not directly estimated, except if it is a
state variable. In Fig. 2.10, the estimation of dpert1 (blue) is shown. An error is existing due to
some variable derivations and the way to obtain numerical differentiation, (see following remarks,
section 2.2.4.1 ). Some specific filters are added in order to proceed this simulation.

Figure 2.9 – State variables x(t) and their estimations x̂(t).

Figure 2.10 – Unknown input variable dpert1(t) and its estimation for model Σ(C3,A,F2).
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2.2.4 Remarks

2.2.4.1 Output Differentiation and Noise

In order to estimate the state vector x(t) and the disturbance variable d(t), output differenti-
ation with order r (relative degree of model Σ(C,A,F)) is necessary for the measured output
variables as for their estimations. It is a classical practice for control and estimation, as in
[Floquet and Barbot, 2006], where differentiation of input variables is also necessary. Literature
offers many ways for solving the output or input differentiation problem. Numerical differen-
tiation of signals that come from measures is thus a classical problem in signal processing and
automation, and many problems have been solved by creating algorithms for approximation of
derivatives (forward-difference formula, backward-difference formula, automatic (algorithmic)
differentiation, etc.) [Griewank and Walther, 2008, Burden and Faires, 2011].

The numerical methods for approximation of derivatives of measurable signals can be used to
obtain signals which are not possible through measurements and reconstruct the missing system
data.

There exist many ways in the literature to derivate signals. Some common features are the
precision between derivative estimation and noise sensibility and perturbations. Noise or pertur-
bations are the principal troubles for developing derivation algorithms. Most of them assume
some features of derivate signal and noise (perturbation) of this derivation.

Different approaches are used for different situations such as Linear Systems
[Luenberger, 1971, Pei and Shyu, 1989, Carlsson et al., 1991, Diop et al., 1994, Al-Alaoui, 1993,
Dabroom and Khalil, 1997, Levant, 1998, Bartolini et al., 2000, Levant, 2003, Mehdi, 2010],
Non-Linear Systems [Mboup et al., 2007], Linear Time-Variant Systems [Chitour, 2002] or Dis-
crete Systems [Dabroom and Khalil, 1999]. These approaches can be classified by two principal
classes: a) Model Approach or b) Signal Approach.

In our work, simulations and applications of control laws and estimation algorithms are
performed using MATLAB® 20-Sim® and 20-Sim 4C® software, [Kleijn, 2013]. Good approxi-
mations have been obtained.

Moreover, for the real Torsion-Bar system, the sensors are incremental encoders with a
maximum counting frequency, [Kleijn, 2008]. The outputs variables are subject to a loss of data or
incorrect information because of the treatment of the signal from the encoders, or due to vibrations
on the entire model. The noise is a fundamental aspect of many systems which use communication
methods. At the signal abstraction, the additive white Gaussian noise is often a good noise model
or in other words it is a decent noise approximation of many systems. An advantage to use
this Gaussian noise is that it’s very easy to deal with mathematically (and translate into discrete
algorithms), making it an attractive model to be used [Balakrishnan and Verghese, 2012]. For the
Torsion-Bar system, many realizations of the signal noise associated to the estimated variable
d̂pert have been considered. The distribution of frequency (or frequency spectrum) of dpert has a
Gaussian form ("Bell form") and for this reason the Gaussian noise block in 20-Sim®.

The robustness is an attribute given to controllers when the controlled system works under
effects of perturbations, incertitude, parameter changing, etc., and guarantee a good performance



2.2. Comparison between UIO approaches 47

in the results. There are some works related to the Bond Graph methodology for analysis
and modelling of almost linear systems, e.g. the estimation of non-linear parameters of dy-
namical systems using the concept of unknown input observer dedicated to linear systems
[Tarasov et al., 2014a], the robust Fault Detection Isolation (FDI) with respect to uncertainties
given into a bond graph representation in Linear Fractional Transformations (LFT) configura-
tion [Djeziri et al., 2007, Djeziri et al., 2006, Kam and Dauphin-Tanguy, 2005] or approaches in
order to know whether a system will still operate as intended when some system parameters vary
slightly [Borutzky and Dauphin-Tanguy, 2004, Borutzky and Granda, 2002].

In a way, the robustness of our approach will be proved by comparison of theoretical results
applied on the real Torsion-Bar system (simulations) and results on the real plant. It will be
proved to be efficient in the next chapters where differentiation is used for estimation as well for
control synthesis using real measured signals and their derivatives.

2.2.4.2 Summary

Some important features from previous sections are summarized in different tables. There are
many works that give different points of view for analysing and developing different observers.
Some works are in [Bakhshande and Söffker, 2015, Hidayat et al., 2011, Al-Bayati and Skaf, 2010,
Radke and Zhiqiang Gao, 2006].

Observer
Features

Unknown
Input

Estimation

State
Estimation

Robustness
performance

and
Stability

improvement

Requires
noise

information

Requires
accurate
system
model

Based
on

disturbance
model

Complexity
Graphic
approach

Kalman Filter ? ? ? ? ?

Extended
Kalman Filter

? ? ? ? ?

Luenberger Ob-
server

? ?

PI observer ? ? ? ?

UIO:inverse Ma-
trix

? ? ? ? ?

UIO algebraic
approach

? ? ? ? ?

UIO-BG ap-
proach

? ? ? ? ?

Table 2.1 – Table to compare different observers

Properties in table 2.1 had been selected for the importance in the present thesis. The Kalman
filter and the observer mentioned in table 2.1 were taken from different bibliographies, some are
[Kalman et al., 1969, Luenberger, 1971]. Note that the PI-observer is one of the more complex,
due to the way to design its gain matrix, [Bakhshande and Söffker, 2015], but it gives good results.
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Table 2.2 shows some properties of the UIO presented in this previous section with the bond
graph approach. In the next section, we propose new developments of the observer for the MIMO
case.

2.3 UIO-BG: Multiple Input - Multiple Output (MIMO) case

In this section, three specific types of MIMO models are studied: non-square models with only
one disturbance input, square models without null invariant zeros and square models with one
null invariant zero. Theoretical developments can be easily achieved from these three specific
cases.

2.3.1 Non-Square Model

In order to simplify the presentation and proofs, first a non-square model with one unknown input
variable (q = 1) and p output detectors is studied, then a square model with two unknown input
variables and two output detectors is studied (p = q = 2) in the next section.

The concept of row and global infinite zero order of the model Σ(C,A,F) (recalled in appendix
A.1) is used in this part. Usually, this concept is proposed for control purposes (row by row
input-output decoupling problem with a regular Static State Feedback (SSF) law, or Disturbance
Rejection (DR)), and thus for the model Σ(C,A,B). In this work, the order of the infinite zero for
the row sub-system Σ(Ci,A,F) is denoted as npi .

2.3.1.1 UIO: Synthesis

It is supposed without restriction that np1 ≤ npi ; i = 2, · · · , p. The state equation (1.1) is now
rewritten as (2.20), with y1 =C1x(t) the first output variable and ȳ1 = C̄1x(t) is the set of p−1
output variables (except y1(t)).

x(t) = A−1ẋ(t)−A−1Bu(t)−A−1Fd(t) ,
y1(t) =C1A−1ẋ(t)−C1A−1Bu(t)−C1A−1Fd(t) ,
ȳ1(t) = C̄1A−1ẋ(t)−C̄1A−1Bu(t)−C̄1A−1Fd(t) .

(2.20)

If C1A−1F , 0 (Model Σ(C1,A,F) has no null invariant zero), variable d(t) and its estimation
d̂(t) can be written in equation (2.21), and the estimation error for the disturbance written in
(2.22). {

d(t) =−(C1A−1F)
−1
[y1(t)−C1A−1ẋ(t)+C1A−1Bu(t)] ,

ˆd(t) =−(C1A−1F)
−1
[y1(t)−C1A−1 ˙̂x(t)+C1A−1Bu(t)] .

(2.21)

{
d(t)− d̂(t) = (C1A−1F)

−1C1A−1(ẋ(t)− ˙̂x(t)) . (2.22)

The estimation of the state vector is written as (2.23). Matrix K, used for pole placement, is
multiplied by the nth

p1
derivative of the first output variable, and with the other output variables,

with a first order derivation.
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˙̂x(t) = Ax̂(t)+Bu(t)+Fd̂(t)−AK

[
y
(np1 )

1 (t)− ŷ
(np1 )

1 (t)
˙̄y1(t)− ˙̄̂y1(t)

]
(2.23)

If e(t) = x(t)− x̂(t) is the state vector error, from (2.20), (2.21) and (2.23), the state error
estimation equation is given by (2.24), where NCL is defined in (2.25). Matrix NOL is written
without matrix K (Open Loop Estimation).

e(t) = NCL · ė(t) (2.24)

 NOL = A−1−A−1F(C1A−1F)
−1C1A−1

NCL = A−1−A−1F(C1A−1F)
−1C1A−1−K

[
C1Anp1−1

C̄1

]
(2.25)

2.3.1.2 Properties of the Observer

Condition for pole placement in equation (2.24) are similar to the SISO case. NCL must be
invertible, and also a Hurwitz matrix. Properties of the observer are studied. A necessary
condition for the existence of the state estimator is proposed in Proposition 6.

Proposition 6. A necessary condition for matrix NCL defined in (2.25) to be invertible is that
C1Anp1−1F , 0 if np1 > 1 or CF , 0 if np1 = 1.

Proof. Matrix NCLF is equal to
[

A−1−A−1F(C1A−1F)
−1C1A−1−K

[
C1Anp1−1

C̄1

]]
F , thus

it can be rewritten as NCLF = K
[

C1Anp1−1

C̄1

]
F .

If condition K
[

C1Anp1−1

C̄1

]
F , 0 is not satisfied, the Kernel of matrix NCL is not empty,

then matrix NCL is not invertible and this matrix contains at least one non null mode, thus
pole placement is not possible (all its eigenvalues are not in the left-hand side of the complex
plane).

If np1 > 1, then C̄1F = 0 and condition in proposition 6 is equivalent to condition in propo-
sition 2. Some other properties are proved: with matrix NCL, the fixed poles are the inverse of
the invariant zeros of system Σ(C,A,F). Denote nIZ the number of invariant zeros of system
Σ(C,A,F).

Proposition 7. The eigenvalues of matrix NOL defined in (2.25) are the inverse of the invariant
zeros of system Σ(C1,A,F) (n−np1 modes) plus np1 eigenvalues equal to 0.

Proof. SISO case.

Proposition 8. The fixed poles of the estimation equation error defined in (2.24) are the nZI

invariant zeros of system Σ(C,A,F).

Proof. Appendix B.3
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2.3.2 Square Model: UIO without Null Invariant Zeros

The UIO problem is studied for the multi-variable case with two unknown input variables and
two measured outputs variables p = q = 2. It can easily be extended to any square model with
p = q. It is supposed that system Σ(C,A,F) is controllable, observable and invertible. Suppose
that {np1 ,np2} and {n′p1

,n′p2
} are the set of row infinite zero orders and global infinite zero

orders respectively, of system Σ(C,A,F). In the classical Input-Output decoupling problem, the
decoupling matrix Ω defined in equation (2.26) is used with matrix B instead of matrix F (with
the control input variables). It is proved that the matrix is necessary in this estimation problem.

Ω=

[
C1Anp1−1F
C2Anp2−1F

]
. (2.26)

The disturbance vector d(t) and its estimation d̂(t) are written as in the SISO case, equation
(2.12), and the disturbance equation error as in equation (2.13), if matrix CA−1F is invertible
(model Σ(C,A,F) has no null invariant zeros). The estimation of the state vector is written in
equation (2.27).

˙̂x(t) = Ax̂(t)+Bu(t)+Fd̂(t)−AK

[
y
(np1 )

1 (t)− ŷ
(np1 )

1 (t)

y
(np2 )

2 (t)− ŷ
(np2 )

2 (t)

]
. (2.27)

Matrix NCL in this multivariable problem is thus written as (2.28).

NCL = A−1−A−1F(CA−1F)
−1

CA−1−K
[

C1Anp1−1

C2Anp2−1

]
. (2.28)

Condition for pole placement in equation (2.28) are studied. If matrix NCL is invertible,
a classical pole placement is studied, and the equation defined in (2.16) for the error vector
e(t) = x(t)− x̂(t) is still valid, it does not depend on the disturbance variable. A necessary
condition for the existence of the state estimator is proposed in Proposition 9.

Proposition 9. A necessary condition for matrix NCL to be invertible is that matrix Ω is invertible.

Proof. Appendix B.4.

Proposition 10. In matrix NCL defined in (2.28), np1 +np2 poles can be chosen with matrix K.

Proof. Appendix B.5.

Proposition 11. The eigenvalues of matrix NOL defined in (2.16) are the inverse of the invariant
zeros of system Σ(C,A,F) (n− (np1 +np2)) modes) plus np1 +np2 eigenvalues equal to 0.

Proof. Appendix B.5.

Proposition 12. The fixed poles of the estimation equation error defined in (2.15) are the invariant
zeros of system Σ(C,A,F).

Proof. From proposition 11, the eigenvalues of matrix NOL are the inverse of the invariant zeros
of system Σ(C,A,F) with np1 +np2 eigenvalues equal zero, and since NCL is invertible and since
only np1 +np2 poles can be chosen, all the fixed poles are non-null eigenvalues.
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2.3.3 Square Model: UIO with Null Invariant Zeros

In this section, an UIO observer is proposed for square models with p = q = 2 (two unknown
inputs and two measured outputs) with null invariant zeros. The case with only one null invariant
zero is considered, it can be easily extended to more general situations.

Equation (2.1) can be written as (2.29).


x(t) = A−1ẋ(t)−A−1Bu(t)−A−1Fd(t) ,
y1(t) =C1A−1ẋ(t)−C1A−1Bu(t)−C1A−1Fd(t) ,
y2(t) =C2A−1ẋ(t)−C2A−1Bu(t)−C2A−1Fd(t) .

(2.29)

Consider, without restriction, that C1A−1F = 0. In that case, in the BGD, the causal path
length between the output detector associated to variable y1(t) and the two disturbance inputs is
at least equal to 1 (it is supposed to be equal to 1 in order to simplify the theoretical development).
In (2.29), the mathematical expression of y1(t) and of its primitive is then (2.30).

{
y1(t) =C1A−1ẋ(t)−C1A−1Bu(t) ,∫

y1(t)dt =C1A−1x(t)−C1A−1B
∫

u(t)dt .
(2.30)

Thus

∫
y1(t)dt =C1A−2ẋ(t)−C1A−2Bu(t)−C1A−1B

∫
u(t)dt−C1A−2Fd(t) . (2.31)

If model Σ(C,A,F) has only one null invariant zero, matrix C1A−2F , 0 and matrix
Ωd = [(C1A−2F)t ,(C2A−1F)t ]t is invertible. A new expression of vector d(t) can be written,
as well for d̂(t) from equation (2.31) in the same manner as in the classical case and the error
equation is written in (2.34).

d(t) =−Ω−1
d

[ ∫
y1(t)dt−C1A−2ẋ(t)+δ (u)

y2(t)−C2A−1ẋ(t)+C2A−1Bu(t)

]
. (2.32)

d̂(t) =−Ω−1
d

[ ∫
y1(t)dt−C1A−2 ˙̂x(t)+δ (u)

y2(t)−C2A−1 ˙̂x(t)+C2A−1Bu(t)

]
. (2.33)

Where δ (u) =C1A−2Bu(t)+C1A−1B
∫

u(t)dt and then

d(t)− d̂(t) =Ω−1
d

[
C1A−2

C2A−1

]
(ẋ(t)− ˙̂x(t)) . (2.34)
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The estimation of the state vector x(t) is the same as in equation (2.27) as well as for the
state estimation error equation defined in (2.24). Nevertheless, expressions of matrices NOL and
NCL have changed since the model has one null invariant zero and thus matrix NOL contains
(np1 +np2 +1) null eigenvalues. New expressions are written in (2.35).

NOL = A−1−A−1FΩ−1
d

[
C1A−2

C2A−1

]

NCL = A−1−A−1FΩ−1
d

[
C1A−2

C2A−1

]
−K

[
C1Anp1−1

C2Anp2−1

] (2.35)

A new proposition can be written.

Proposition 13. The fixed poles of the estimation equation error defined in (2.24) with matrix NCL

in equation (2.35) are the strictly stable invariant zeros of system Σ(C,A,F). (n−(np1 +np2 +1))
fixed poles.

Proof. See appendix B.6

As said before, this approach can be easily extended to MIMO models with several null
invariant zeros. The idea consists in applying integration on the output variables. Once again,
the approach is very similar to the concepts used for the input-output decoupling problem solved
with the concept of invariant subspaces calculated for the control synthesis.

Tables 2.3 and 2.4 synthesize properties of the new UIO.

2.4 Conclusion

This chapter is first dedicated to conceptual issues regarding the estimation of state variables as
well as disturbances variables for linear perturbed systems described mainly with a state-space
representation. In section 2.2, four approaches are briefly recalled and then a comparison is
performed thanks to a case study, the Torsion-Bar system.

As well, section 2.3 is dedicated to new conceptual issues regarding the UIO observer in
case of some kinds of MIMO linear models, but this time with an approach based on the Bond
Graph representation. Note that a state-space approach only could be employed, but thanks to its
graphical and causal properties, the analysis of the UIO properties as well as its synthesis can be
achieved from a structural point of view, and the mathematical expressions of the UIO can be
obtained formally. A distinctive characteristic of this UIO is that it is a so-called BG-observer,
because the observer can also be described by a Bond Graph representation.
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Chapter3
Disturbance Rejection with estimation
and Input-Output Decoupling with
Derivative State Feedback: Theory and
simulations

3.1 Introduction

In the last decades, the Disturbance Rejection Problem (DRP) has received a great deal of
attention. The Disturbance Rejection Problem can be considered in multiple ways, depending for
example on the full knowledge or not of the physical phenomena, and thus of the availability of a
model.

The disturbance rejection problem is presented in chapter 1 as a well-known problem
with many real applications and many control strategies that have been designed in order to
solve it, guaranteeing stability property. Well established solutions for this problem are pro-
posed in state-space and frequency domain formulations [Hautus, 1979, Wonham, 1985] with
stability conditions and also in terms of the unstable zero structure through algebraic treat-
ments in [Verghese, 1978, Malabre and Martínez-García, 1993, Martínez-García et al., 1995] or
in [Basile and Marro, 1992] through the geometric approach with structural conditions.

When a state-space model or a transfer function is available, solutions are thus frequently
defined in terms of infinite zero structure and in terms of the unstable zero structure, with a
static state feedback control law. Structural invariants play an important role in the DR problem,
[Hautus, 1980, Wonham, 1985, Morse, 1973, Brunovsky, 1970, Rosenbrock, 1970, Kailath, 1980].

57
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Nevertheless, there is not always a solution through a static state feedback control law
for the DRP and an alternative solution based on a Derivative State Feedback (DSF) con-
trol law is given in [Moreira et al., 2010] for a particular case. We propose to compare three
methodologies in this chapter: The Disturbance Observed-Based Control (DOBC) approach
[Li et al., 2014, Mita et al., 1998, Chen et al., 2016], the Active Disturbance Rejection Control
(ADRC) [Han, 2009] and the Derivative State Feedback (DSF) proposed in chapter 1. It is
applied on the Torsion-Bar (T-B) case study. The simulation results are compared and analysed.

An extension to the Disturbance Rejection (DR) problem is the so-called Input-Output De-
coupling problem. As for the DR problem, the Input-Output decoupling problem is not always
solvable by regular Static State Feedback (SSF) control laws. The Input-Output decoupling
problem are available in the literature since many years [Morgan, 1964, Falb and Wolovich, 1967,
Gilbert, 1969]. More complete answers to questions such as the stability property of the con-
trolled system and the intrinsic relation between the finite and infinite structures of the model
[Brunovsky, 1970] and decoupling properties are in [Descusse and Dion, 1982],
[Dion and Commault, 1993]. The geometric approach is also an alternative way that made
clear relations between subspaces and the decoupling properties, [Wonham and Morse, 1970,
Basile and Marro, 1992, Commault and Dion, 1982, Martínez-García et al., 1993].

In section 3.4, we present a new solution for the well-known Input-Output decoupling problem
of linear square invertible multivariable systems with a derivative state feedback control law. This
solution can be addressed particularly if the classical Regular Static State Feedback does not offer
any solution. A simple solution to the pole placement problem with a structural analysis of the
model properties is achieved with application to a mechanical system.

3.2 Disturbance Rejection - Three approaches

We begin by introducing two of the most recent works that are presented as solutions for
the disturbance rejection problem. First, the Disturbance Observed-Based Control (DOBC)
[Visioli and Zhong, 2011] on non-linear systems [Chen, 2004], fault tolerant tracking control
[Baldini et al., 2018] or other kinds of applications [Tang et al., 2018]. In [Chen et al., 2016],
a summary on the existing disturbance uncertainty estimation and attenuation techniques is
given, and some applications of these methods were reviewed. Secondly, the Active Disturbance
Rejection Control (ADRC) [Han, 2009] with works on non-linear systems [Guo et al., 2016,
Zhao and Guo, 2016, Xue et al., 2015] or real applications [Wang et al., 2018, Cui et al., 2018,
Wang et al., 2017]. Finally, the Derivative State Feedback (DSF) control law in Bond Graph
(BG) approach is developed when the Disturbance Rejection Problem (DRP) is not solv-
able with a classical Static State Feedback control law. A first development is proposed
in chapter 1, [Sueur, 2016]. In this approach, the state vector, its derivative and the dis-
turbance input variables are estimated with the aid of an Unknown Input Observer (UIO)
[Tarasov et al., 2014a, Gonzalez and Sueur, 2017, Gonzalez and Sueur, 2018b].

Some simulations of these controllers are applied to the T-B system. Performances are
compared and analysed.
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3.2.1 Disturbance Observed-Based Control (DOBC)

Disturbance Observer-Based Control (DOBC) has been regarded as one of the widely accepted
disturbance-attenuation approaches, also it is easy to understand, to implement and quite intuitive,
[Li et al., 2014, Mita et al., 1998, Chen et al., 2016].

In some works, the DOBC is considering as a solution for controllers that need to improve
their stability property and tracking performance but usually, they have unsatisfactory disturbance
attenuation. For this kind of control, the influence of the disturbances is estimated by a distur-
bance observer and it is then compensated on the basis of the estimation. The DOBC has its
antecedents in many mechatronic applications in the last decades, [Huang and Messner, 1998,
Ishikawa and Tomizuka, 1998, Kempf and Kobayashi, 1999, Baldini et al., 2018, Tang et al., 2018],
in particular for linear systems.

A basic structure of the Disturbance Observed-Based Control is shown in the Fig. 3.1. In this
figure, it is possible to see that the controller consists of two parts: a feedback control part and a
feed-forward control part based on a disturbance observer. The feedback control is generally em-
ployed for tracking and stabilization of the dynamics of the controlled system. The disturbances
and uncertainties on controlled plants are estimated by a disturbance observer and then compen-
sated by a feed-forward control, [Visioli and Zhong, 2011, Li et al., 2014, Chen et al., 2016].

Figure 3.1 – Original structure of DOBC.

From the Fig. 3.1, G(s) represents the real physical plant, Gn(s) is the nominal model used
for the controller design, Q(s) is a stable filter, C(s) is the feedback controller output, u is the
control input, y is the system output, yr is the reference signal, ȳ is the measured output, n is the
measurement noise, d is the external disturbance, dl is the accumulated disturbance, and d̂l is the
estimate of the accumulated disturbance.

There are many ways to create the DOBC structure while satisfying the performance specifi-
cations and stability property for the feedback control part, while the disturbance observer part
is designed to reject (or attenuate) disturbance. A way to express the DOBC controller is by
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its state-space representation as shown below with the disturbance observer and the feedback
control, [Li et al., 2014]. This approach supposes that the perturbation d and its derivatives are
bounded. Considering that the system can be represented by the eq. (3.1), and the disturbance
observer is written as eq. (3.2), where z is an internal variable of the observer and L is the matrix
gain of the observer to be designed.

{
ẋ = Ax+B(u+d)
y =Cx

(3.1)

{
ż =−LB(z+Lx)−L(Ax+Bu)
d̂l = z+Lx

(3.2)

The controller of the DOBC is described by the control law designed in eq. (3.3), where K is
the control gain to be designed. The block diagram for this scheme is given by Fig. 3.2.

u = Kx− d̂l (3.3)

Figure 3.2 – Block diagram of DOBC under the time domain formulation.

If the disturbance estimation error is defined as ed = d̂l−d, with the disturbance observer (3.2)
and the control law (3.3), the closed-loop model is written in equation (3.4).{

ẋ = (A+BK)x−Bed
ėd =−LBed− ḋ

(3.4)

It can be shown that closed-loop system is stable if the feedback control gain is selected such
that A+BK is Hurwitz, and the observer gain matrix is selected such that −LB is Hurwitz.



3.2. Disturbance Rejection - Three approaches 61

3.2.2 Active Disturbance Rejection Control (ADRC)

When the system cannot be described by a precise analytical model, an alternative solution to
the DRP can be the Active Disturbance Rejection Control (ADRC) that is now well-known in
modern control theory [Han, 2009]. As for the PID approach, it is an error-based control with a
state observer. It is based on an extension of the system model with an additional and fictitious
state variable, representing everything that is not included in the mathematical description of the
plant. The total disturbance is the sum of internal and external disturbances, usually denoted
as a total disturbance. It is estimated online with a state observer and used in the control signal
in order to decouple the system from the actual perturbation acting on the plant. For recent
mathematical analysis of this design approach designed for practical applications, the readers
are referred to [Miklosovic and Gao, 2004, Zhao and Gao, 2010, Wicher and Nowopolski, 2017,
Wicher, 2018].

The main idea of ADRC is to treat any unknown dynamics of the system together with
external disturbance as a total disturbance and to use an Extended State Observer (ESO) to
estimate this total disturbance in real time, and then cancel it in the control law [Han, 2009,
Zhao and Gao, 2010]. A precise analytical description of the system is not needed. The unknown
parts of dynamics can be considered as the internal disturbance in the plant. In this manner, the
exact knowledge of the system model is not needed in order to control it, and particularly in this
application, the resonance can be treated, no matter what the frequency is, as part of the total
disturbance.

The ADRC control system consists of three basic blocks, [Han, 2009]: The Extended State
Observer (ESO), the Rejector block and the Controller. The classical block diagram is shown
in Fig. 3.3. Notations applied in this figure are given according to the principal case study
(Torsion-Bar System) of this thesis, in order to avoid repetition.

Figure 3.3 – ADRC block diagram.

All the main functional blocks are derived in the following case study, such as the Extended
State Observer (ESO), the rejector block and the controller.
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For an nth order linear system, the linear ADRC allows us to write the canonical form (3.5),
see [Miklosovic and Gao, 2004]. y(n) denotes the nth derivative of the output y(t), u(t) and dpert

denote the control input variable and the disturbance variable respectively.

y(n)(t) = bu(t)+ f (y(t), ẏ(t), · · · ,y(n−1)(t),dpert(t), t) (3.5)

The extended state observer can be written as equation (3.6). z1(t) is the estimation of the
output variable y(t) and z j(t) is the estimation of y( j−1)(t), ( j−1)th derivate of y(t). At most,
zn+1 = f (·). 

ż1 = z2 +β1(y− z1)
...
żn−1 = zn +βn−1(y− z1)
żn = zn+1 +βn(y− z1)+bu
żn+1 = βn+1(y− z1)

(3.6)

The observer gains (β1, . . . ,βn+1) can be calculated by expressions (3.7), where coefficient
α j denotes the binary coefficients of Pascal’s Triangle and ω0 is the cut-off frequency of the
extended state observer [Miklosovic and Gao, 2004].{

β j = α jω
j

0 =

(
n+1

j

)
ω

j
0

}
j=1,2,...,n+1

(3.7)

The control law is described by the equation (3.8), where the gains of the controller are
calculated in equations (3.9), where ωc is the controller cut-off frequency.

uc = k0(r− z1)− k1z2−·· ·− kn−1zn− knzn+1 (3.8)

{
K j =

(
n
j

)
ω

n− j
c

}
j=1,2,...,n+1

(3.9)

The so-called rejector in the ADRC control is defined from the combination of the de-
coupling signal of the total disturbance estimate ( f (·) = zn+1) and of the controller output uc,
equation (3.10). u(t) is the input signal for the system.

u(t) =
uc(t)− zn+1(t)

b
(3.10)

3.2.3 DSF-UIO-BG

It is known from classical control theory that feedback control with derivatives can be very useful,
and even in some cases essential for achieving a desired performance or control objectives. The
output feedback, state feedback or the derivative state feedback are used in many works, with
robust control performances, [Armentano, 1985], [Kawamura et al., 1988], [Chang et al., 1991],
[Le, 1992, Estrada and Malabre, 1997, Bonilla Estrada and Malabre, 2000, Kim et al., 2015].
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Some basic principles of the Disturbance Rejection with Derivative State feedback (chapter 1,
section 1.4) as well as the ones for the Unknown Input Observer (chapter 2, section 2.3) developed
with the Bond graph approach are used in the following section.

It is worth noting that if the disturbance rejection problem is solvable either by a static
state feedback control law or a derivative state feedback control law, in most situations it is not
possible to measure all the state (or derivative) variables directly: they must be estimated by
an observer. Since the disturbance variables are unknown input variables, an Unknown Input
Observer (UIO) is added in order to estimate different variables: (derivative) state variables, as
well as the disturbances variables.

For linear Bond Graph models, solutions dealing with the finite structure of the model
Σ(C,A,B,F) for stability conditions of the controlled model and dealing with the infinite structure
of the model Σ(C,A,B,F), [Gonzalez and Sueur, 2018b] for solvability conditions.

Remark 3. The solution presented in the present thesis for the disturbance rejection problem
is based on the concept of Derivative State Feedback on bond graph models and this solution
involves the use of disturbance measurements. The disturbances are considered as unknown
inputs and thus the Bond graph-based Unknown Input Observer is synthesized in order to solve
the Disturbance Rejection Problem. Thus, the comprehensive solution for the Disturbance
Rejection Problem presented in this thesis, from analysis to synthesis of the solutions (controller
and observer) is based on the bond graph representation, even if a state-space representation
can be exploited for the mathematical point of view. The complete solution can be called
Disturbance Rejection via Derivative State Feedback with Unknown Input Observer on Bond
Graph approach (DR-DSF-UIO-BG).

The general structure for the DR-DSF-UIO-BG is described in Fig. 3.4. This structure is
used as well for simulation as for application to the real systems. In this figure, block BGsys is the
system itself or its bond graph model, block BGobs is for the bond graph model of the observer
which is used for the estimation of the state variables, their derivatives and the estimation of
the disturbances and at least block BGctrl is for the calculation of the control law (here with the
estimation of the state variables derivatives).

3.3 Disturbance Rejection: Simulations

The previous approaches are applied in this section to the Torsion-Bar system presented in
section 1.5 where parameters and features are described, also the Bond Graph model in Fig. 1.4
and the state-space representation in eq. (1.26). A modified bond graph model and its state-
space representation (3.11) are presented below, while considering specific measured output and
disturbance input variables. Properties of the controllers or observers mentioned in previous
chapters are considered in this section.
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Figure 3.4 – General control structure with system (or model) and observer

Figure 3.5 – Modified T-B bond graph model with integral causality assignment: BGI.
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Only the variable output y2(t) is controlled and the measured output variables are y1(t) and
y2(t). The control input variable v(t) is defined as a step function in rad s−1 and its action begins
at 0.5 s with a value of 20 rad s−1. At t = 2s the input is incremented at 40 rad s−1 and maintained
until the end. The unknown input is defined as dpert(t) =−0.3Nm with time action between 5s
and 15s. Finally, an important characteristic of the T-B system is adding in these simulations, the
voltage supply limits to the system that are ±12V.

The simulation results are displayed in three figures. The input reference v(t), the output
variable y2(t) and its estimation ŷ2(t) in the first figure. The second figure shows the output
variable error ey(t) = y2(t)− ŷ2(t) and the estimation of the perturbation d̂pert(t) if possible.
Finally, the control signal u(t) and the energy consumption J(t) are displayed.

3.3.1 Disturbance Observer-Based Control

Figure 3.6 – DOBC block diagram, the feedback control part in green and disturbance observer
part in blue.

Some structures are analysed in order to achieve a DOBC controller applied to Torsion-Bar
System. Block diagram Fig. 3.6 has the same structure that the one mentioned in the DOBC
methodology. Two important parts of the DOBC are highlighted in this figure. The feedback part
contains the state-feedback control with integral action and for the disturbance observer part is
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divided in two observers. The first is the Disturbance Observer defined in the eq. 3.2 and the
second corresponds to the State Observer. This state observer is necessary for the disturbance
observer part and feedback part.The state observer is defined as the well-known Luenberger
observer, [Swonder and Swonder, 1971, WilliamsII and Lawrence, 2007, Gonzalez et al., 2018].
The integral action has bias and offset handling functionalities. Thus, it is added for attenuation
of constant disturbance and set point tracking (y2(t)), [Edwards and Spurgeon, 1996].

Using the separation principle for linear systems, it is possible to analyse separately the
controller and observer properties (pole placement).

Consider system description Σ(C,A,B) and the adding of integral action in the Fig. 3.7. The
state-space representation is rewritten in equation (3.12).

Figure 3.7 – State feedback control with integral action.


ẋ(t) = Ax(t)+Bu(t)
ẋi(t) = v(t)− y(t)
y(t) =Cx(t)

(3.12)

The control law is given by u(t) = Kx(t)+F2xi(t) and the augmented system is described
below, equations (3.13) and (3.14). The controller matrix gains Faug = [Fc |F2] is chosen such that
the eigenvalues of the closed loop state matrix of system (3.14) are all in the left half complex
plane. The magnitude of the poles is generally related to physical limitations and to the conver-
gence rate of the system and of the control law. The gains in the control law are calculated based
on mathematical functions in MATLAB®.

[
ẋ(t)
ẋi(t)

]
=

[
A 0
−C 0

][
x(t)
xi(t)

]
+

[
B
0

]
u(t)+

[
0
1

]
v(t) (3.13)

[
ẋ(t)
ẋi(t)

]
=

[
(A+BK) BF2
−C 0

][
x(t)
xi(t)

]
+

[
0
1

]
v(t) (3.14)

Considering system Σ(C,A,B), the state-space representation for the well-known Luenberger
observer is written as ˙̂x = Ax̂+Bu+LS[y−Cx̂] and the block diagram representation is shown in
Fig. 3.8. The observer matrix gain LS is chosen such that the dynamics of the observer are faster
than the observed system, hence, the magnitude of the poles must be larger than the magnitude of
the poles in the observed system. The eigenvalues of (A−LSC) are all in the left-half complex
plane.
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Figure 3.8 – Representation of the Luenberger observer.

Thus, applying this controller to the T-B system and for the control design, the poles
are placed at [−5 ,−10 ,−15 ,−20 ,−2]. Values obtained for the control are such Faug =
[−1.2347, 14.376, −184.66, −872.39, 1]. The eigenvalues of (A−LSC) for the observer are
placed at [−25, −20,−15, −10]. Matrix LS is given in equation (3.15).

LS =


1 −0.866

0.45 ·10−3 38.57 ·10−3

−0.8 −0.825
6.56 6.707

 (3.15)

And finally, for the disturbance estimator described in (3.2) is rewritten in (3.16) to be applied
on the Torsion-Bar system and the values for the gain matrix Ld = [l1, l2, l3, l4] are defined as
Ld = [100,100,100,70].

{
ż =−LdB(z+Lx̂)−Ld(Ax̂+Bu)
d̂l = z+Ld x̂

(3.16)

The simulation results are displayed below. In Fig. 3.9, the output and its estimation are
shown. The estimated variable ŷ2(t) is different of the output y2(t). As well, the perturbation
variable is attenuated in the output y2 but not completely rejected.

The cumulated perturbation d̂l and the error definition ey = y2− ŷ2 are shown in the Fig. 3.10.

In the Fig. 3.11, two important information are displayed: the control signal (up) that have a
smooth dynamic and the Energy consumption (down) with a value of 432 J after 20 s.
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Figure 3.9 – DOBC: controlled output and its estimation.

Figure 3.10 – DOBC:Cumulative perturbation d̂l and the error ey
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Figure 3.11 – DOBC: control signal u(t) (blue) and energy consumption

3.3.2 Active Disturbance Rejection Control

From the Torsion-Bar state-space representation (3.11), it is possible to obtain the mathematical
input-output representation (3.17), where y2(t) is the load velocity, u(t) is the voltage variable
applied to the motor and dpert is the unknown perturbation variable.

....y 2 +nm3
...y 2 +nm2ÿ2 +nm1ẏ2 +nm0y2 = dn1u̇+dn0u+dpert (3.17)

Integrating equation (3.17) one time on both sides, the forth-order system with relative degree
3 becomes a three-order system, where function f (ÿ, ẏ,y,

∫
y,
∫

u,dpert) includes the external
disturbance dpert and internal dynamics. This function represents the total disturbance to be
estimated and dn1 is a constant that have to be calculated or known.

...y = dn1u+(−nm3ÿ2−nm2ẏ2−nm1y2−nm0
∫

y+dn0
∫

u+
∫

dpert)
= dn1u+ f (ÿ, ẏ,y,

∫
y,
∫

u,dpert)
(3.18)

3.3.2.1 Extended State Observer

Rewriting equation (3.18) with a state-space representation, with control variable u(t), output
variable y2(t) and with an additional (extended) state x4(t), it comes equation (3.19), where
x1 = y2, x2 = ẏ2, x3 = ÿ2, x4 = f (·).
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ẋ1 = x2
ẋ2 = x3
ẋ3 = dn1u(t)+ x4
ẋ4 = ḟ (·)

(3.19)

From equation (3.19), the state of the ESO can be designed as equation (3.20), where the
estimation error is given as e0 = y2− z2, z1 is the estimation of y2 and z4 estimates the total
disturbance f (·). 

ż1 = z2 +β1e0
ż2 = z3 +β2e0
ż3 = dn1u(t)+ z4 +β3e0
ż4 = β4e0

(3.20)

Parameters β1,β2,β3,β4 are the observer gains calculated following [Wicher and Nowopolski, 2017,
Miklosovic and Gao, 2004]

3.3.2.2 Rejector Block

The rejector is a part of the system where the decoupling signal of the total disturbance estimates
z4 and the virtual control signal u0 are combined. The output signal of the rejector ui is the input
signal for the plant. This block can be described by (3.21).

ui =
u0− z4

dn1
(3.21)

3.3.2.3 Controller

The controller is described by equation (3.22), where only the control error is taken from direct
velocity measurement of variable y2(t) while the derivative ẏ2(t) = z2(t) is estimated by the ESO.
The gains of the controller were calculated according to formula [Miklosovic and Gao, 2004,
Wicher, 2018].

u0 = Kp(vre f − y2)−KD1z2−KD2z3 (3.22)

In regard to ADRC: if ω0 is the cut-off frequency of the observer with ω0 = 100Hz, thus
parameter values for the ADRC controller are β1 = 4 ·ω0, β2 = 6 ·ω0

2, β3 = 4 ·ω0
3, β4 = ω0

4,
Kp = 1 · 106, K1 = 3 · 104, K2 = 300 and dn1 = 43804.58. The simulation for the ADRC with
these parameters is shown below.

In Fig. 3.12, the output and its estimation are shown. The disturbance is rejected, but the
output and its estimation overstep the reference signal.

The error e0 = y2− z1 (down) and the total disturbance estimated f (·) (up) are shown in the
Fig. 3.13. In this figure, it is possible see the value of the total perturbation f (·) and the error that
is close to zero except for changes when the output is under changes (input changes or significant
perturbations).
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Figure 3.12 – ADRC: controlled output variable y2(t) and its estimation z1(t)

Figure 3.13 – ADRC: Cumulative perturbation f (·) and the error e0 = y2− z1.
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Figure 3.14 – ADRC: input control signal u(t) (blue) and the energy consumption (red)

In the Fig. 3.14, two important pieces of information are displayed: the control signal (up)
that have some peak voltages in the dynamic (limited in simulation at ±12 V) and the Energy
consumption (down) with a value of around 445 J after 20 s.

3.3.3 Disturbance Rejection by Derivative State Feedback using UIO

The alternative strategy proposed in this thesis is applied now: The Derivative State Feedback
(DSF) using Unknown Input Observer (UIO) to reject disturbances developed by Bond Graph
approach.

The model Σ(C,A,B) associated to the torsion bar system is structurally controllable/observable,
a derivative causality assignment can be applied to the bond graph model, as proved in Fig. 3.15
for the bond graph model with preferential derivative causality assignment (BGD). As well, the
state matrix A is invertible. The Disturbance Rejection with Derivative State Feedback is applied
in the Single Input - Single Output (SISO) case, see chapter 2, and an Unknown Input Observer
is used in the Multiple Input - Multiple Output (MIMO) case since two variables are measured,
see section 3.2.3 or [Sueur, 2016, Gonzalez and Sueur, 2018b, Gonzalez et al., 2018].

In property 1, we recall the condition for disturbance rejection with DSF. Note that if np ≤ nc

and the invariant zeros of model Σ(C,A,B) are strictly stable, then the DRP with the previous
DSF has a stable solution with pole placement.
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Figure 3.15 – Derivative causality assignment of the bond graph model: BGD.

3.3.3.1 Unknown Input Observer applied to the T-B system

The Unknown Input Observer for this Bond Graph model is now designed, see chapter 2, sec-
tion 3.2.3. For system Σ(C,A,B,F) defined in equation (1.1), m = 1 (one input control), q = 1
(one unknown input variable, disturbance) and p = 2 (two measured variables y1(t) and y2(t)).

The UIO synthesis is thus proposed with the two output detectors D f : y1 and D f : y2. It is a
non-square model. Structural properties of the model Σ

(
[Ct

1,C
t
2]

t ,A,F
)

are studied. The causal
path with the first output detector is D f : y1→ I : J1→ Se : dpert and the causal path with the
second output detector is D f : y2→ I : J2→ R : R f s→ I : J1→ Se : dpert . The length of these
causal paths is equal to np1 = 1 and np2 = 2 for y1(t) and y2(t) respectively. Since np1 < np2, the
estimation of the state vector is written in equation (3.23) and the estimation of the unknown
input variable is still defined in equation (2.21). Matrix NCL is written in equations (3.24).

ˆ̇x(t) = Ax̂(t)+Bu(t)+Fd̂(t)−AK

(
y(1)1 (t)− ŷ(1)1 (t)
y(1)2 (t)− ŷ(1)2 (t)

)
(3.23)

NCL = A−1−A−1F(C1A−1F)
−1C1A−1−K

[
C1
C2

]
(3.24)

Matrix K = (ki j) is a 4 by 2 matrix with eight unknown parameters and matrix NCL can be
numerically rewritten as:

NCL =


−294 ·10−6 560 ·10−3−729.927 · k21 −100 ·10−15−1102.54 · k11 −10 ·10−15

−1.37 ·10−3 −729.927 · k22 −1102.54 · k12 −1 ·10−12

0 −729.927 · k23 −1102.54 · k13 0
100 ·10−18 −2 ·10−12−729.927 · k24 −2 ·10−12−1102.54 · k14 −1.09 ·10−3


(3.25)

From a structural analysis, it can be proved that model Σ
(
[Ct

1,C
t
2]

t ,A,F
)

has one invariant
zero, which is the common invariant zero of submodels (C1,A,F) and (C2,A,F).
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The invariant zero is equal to zI =−Ra/La =−917.91. The inverse of this invariant zero is a
fixed mode for the estimation error equation, i.e., for matrix NCL. If the four poles of matrix NCL

are −1/917.91, −1/1000, −1/2000 and −1/3401.4, matrix K is thus as expressed as:

K =


−9.07 ·10−17 7.672 ·10−4

0 1.37 ·10−6

4.535 ·10−7 0
−1.814 ·10−15 −2.74 ·10−15


3.3.3.2 Disturbance Rejection with DSF applied to the T-B system

The infinite structure of models Σ(C2,A,B) and Σ(C2,A,F) are first studied with a structural
approach. The shortest causal path between the output variable to be controlled D f : y2(t) and
the control input MSe : u(t) in the BGI model of Fig. 3.5 is

D f : y2→ I : J2→ R : R f s→ I : J1→ T F : 1/kb→ GY : km→ I : La→MSe : u .

The length of this causal path is equal to 3, then nc2 = 3. The shortest causal path between the
output variable to be controlled D f : y2(t) and the disturbance input Se : dpert is

D f : y2→ I : J2→ R : R f s→ I : J1→ Se : dpert .

The length of this causal path is equal to 2, then np2 = 2. Since np2 < nc2, from property 1
the DSF has a solution with n−nc2 = 1 finite fixed mode which is the invariant zero of model
Σ(C2,A,B) and np2 = 2 finite modes which can be freely chosen with matrix Fc (property 6). Its
value is Iz = −1/C f s·R f s = −3571.42. Some coefficients can be derived from a causal analysis
(causal path gains), but here they are directly obtained from formal calculus. With pole placement,
matrix Fc is defined in equation (1.29), with numerical values in equation (1.30). Two poles can
be chosen because np2 = 2. In that case,

det(sI−A− sBFc) =

=
R1 ·Ra +R2 ·Ra + k2

m · k2
b

C f s · J2 ·La · J1
· (C f s ·R f s · s+1) · (α2 · s2 +α1 · s+1)

= 2.9483 ·107 · (2.8 ·10−4 · s+1) · (α2 · s2 +α1 · s+1) .

The differential equation verified by the output variable y2(t) with the derivative state feedback
control law with pole placement is α2ÿ2(t)+α1ẏ2(t)+ y2(t) = v(t). Parameters α1 and α2 can
be arbitrarily chosen, according to the poles of the closed loop model.

The DSF control applied to T-B system with the UIO with general structure is shown in
Fig. 3.4. This structure is used as well for simulation as for application to the real system (see
chapter 4). BGobs is the bond graph model of the physical system with some signal bonds, and in
order to obtain the estimation of the state variables derivatives, it is sufficient to add effort sensors
(elements I) or flow sensors (elements C) on the dynamical elements of the bond graph observer,
without any use of mathematical derivation.
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With the parameters obtained before, the results are shown below in different graphics. The
studied variables are the previous ones in order to compare the different methods.

Figure 3.16 – DR-DSF-UIO-BG: output controlled y2(t) and its estimation ŷ2(t)

In Fig. 3.16, the output and its estimation are shown. The disturbance rejection is achieved.
Signal y2(t) and its estimation ŷ2(t) are smooth signals and the set-tracking of the reference is
well done. The disturbance variable and its estimation are shown in the Fig. 3.17. In this figure, it
is proved that the estimation for the perturbation is well accomplished.

The error variables e1(t) = y1(t)− y1(t) and e2(t) = y2(t)− y2(t) are shown in Fig. 3.18.
They prove the efficiency of the control law as well as the estimation of the disturbance variable
that is used in the expression of this control law.

In Fig. 3.19, two pieces of information are displayed, the control signal (up) applied to the
system and the Energy consumption (down) with a value of around 433 J after 20 s.
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Figure 3.17 – DR-DSF-UIO-BG: disturbance variable dpert and its estimation d̂pert .

Figure 3.18 – DR-DSF-UIO-BG: Errors e1 = y1− ŷ1 (up) and e2 = y2− ŷ2 (down).



3.3. Disturbance Rejection: Simulations 77

Figure 3.19 – Control signal u(t) (blue) and the energy waste (red) for this control.

3.3.4 Analysis of the results

Among other tasks, disturbance rejection is the main control objective. It is achieved with
different solutions that are now compared.

For each approach, the control aim is achieved. Results are in Figures (3.9), (3.12) and (3.16)
for the output controlled. From these figures, it is possible to check the output estimation. This
estimation is realised for each solution but only in the output estimation by DOBC appear the
effect of the control signal when the perturbation affect the system. This effect in the output
estimation can be modified if the method used in the Observer part of DOBC is modified. Also,
these figures shown if the main objective is accomplished. The disturbance rejection is achieved
for each solution with some different responses when the perturbation appears. It is also possible
to analyse the state estimations (not included in this work), except for the ADRC approach
because the state variables are not estimated in that case.

Another characteristic of these solutions is the capacity of estimating the Unknown Input
(perturbation) in different ways. The unknown input estimation for the DOBC (Fig. 3.10) and
the ADRC (Fig. 3.13) is based in the idea of estimating the cumulated perturbation in the whole
system. In the solution proposed in this work (DR-DSF-UIO-BG), the estimated perturbation is
associated to a real phenomena in a certain defined part of the system and with the possibility to
study the constitution of this perturbation (Fig. 3.17).
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From the solutions presented in this chapter, only the DR-DSF-UIO-BG uses the derivative
state estimation to achieve the main objective. Using DSF represents an advantage when the
Regular Static State Feedback (RSSF) cannot be applicable or when the sensors in the real system
make measurements of energy variables (e.g.. force, torque, (angular) velocity, electric potential,
current, pressure, flow rate, etc.).

Finally, the solution proposed in this research work is based on the bond graph approach
(Graphical approach) and one of the notorious characteristic is that the Bond Graph model used
for DSF-UIO-BG is the same Bond Graph model of the one of the system to be controlled.

In addition, the energy required is also shown in each solution. The energy consumption
in the DOBC and DSF-UIO-BG methods are lower that the ADRC one. Also, the quantity
of information from the DSF-UIO-BG is different in comparison of DOBC or ADRC. This
information can be useful for system behaviour analysis.

These approaches will be used and analysed in chapter 4 on the real Torsion-Bar system.

3.4 Input-Output decoupling with DSF

This section presents a new solution for the well-known input-output decoupling problem of
linear square invertible multivariable systems with a Derivative State Feedback (DSF) control
law.

We first present some properties of the classical Regular Static State Feedback (RSSF) control
law in order to compare it with the new one. It is shown that the methodology is very similar in
term of structural analysis (same invariants) and also in term of the synthesis of the control law.

We consider linear square invertible systems Σ(C,A,B) described by the classical state-space
representation written in (3.26), with x ∈ℜn the state vector, u ∈ℜm the input vector and y ∈ℜm

the vector of output variables to be controlled.{
ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)

(3.26)

3.4.1 RSSF: some properties

System Σ(C,A,B) in equation (3.26) is supposed to be state controllable and observable. We
recall here some simple necessary and sufficient conditions for the model to be decouplable by
a Regular Static State Feedback control law with stability, with a control law u(t) defined as
u(t) = Fx(t)+Gv(t), where v(t) is the new control law, for the closed loop system. Ω is the
decoupling matrix defined in equation (3.27), with Ci the ith row of matrix C.

Ω=

 C1An1−1B
:

CmAnm−1B

 (3.27)

System Σ(C,A,B) is decouplable by a regular static state feedback control law u(t) =
Fx(t)+Gv(t) iff matrix Ω is invertible, or equivalently iff {ni}= {n′i} [Morse and Wonham, 1973].
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Suppose {Z(C,A,B)} the set of invariant zeros of model Σ(C,A,B) and {Zi(Ci,A,B)}
the set of invariant zeros of submodels Σ(Ci,A,B) . It is well known that the fixed poles of the
controlled model are the invariant zeros of the global model (open loop model) which are not
invariant zeros of one of the submodels, see [Morse and Wonham, 1973, Icart et al., 1989] for
a geometric domain approach characterization or [Koussiouris, 1980] for a frequency domain
approach characterization. The fixed modes are thus one part of the invariant zeros of model
Σ(C,A,B). If

⋃
i{Zi(Ci,A,B)} is the union set with multiplicity of the invariant zeros of sub-

systems Σ(Ci,A,B), the set {Z f ixed} of fixed modes is defined as {Z(C,A,B)}−
⋃

i{Zi(Ci,A,B)}
and it number n f ixed is defined as n f ixed = card{Z f ixed}.

If the model is decouplable with a regular static state feedback control law, matrix F defined
in equation (3.28) and G =Ω−1 are solutions of the problem if all the invariant zeros are the
non-assigned modes. Parameters αi j are used for pole placement. If n f ixed , nIZ , matrix F is
different of the previous one. Its expression is more difficult to be designed. Generally, the
geometric approach is employed in that situation.

F = F1 =−Ω−1

 C1An1 +α11C1 + · · ·+α1n1C1An1−1

...
CmAnm +αm1Cm + · · ·+αmnmCmAnm−1

 (3.28)

3.4.2 DSF for Input-Output decoupling

A simplified version for the Input-Output decoupling problem with stability is given for m = 2. It
can be easily extended to any linear square invertible models. Some non-restrictive assumptions
for physical models are written.

• System Σ(C,A,B) is state controllable/observable and the state matrix A is invertible

• The state variable derivatives are measured or estimated

• The invariant zeros of Σ(C,A,B) are strictly stable

For system Σ(C,A,B), if {ni} , {n′i}, the input-output decoupling problem with the classical
regular static state feedback control (RSSF) is not possible, or equivalently the decoupling matrix
Ω defined in equation (3.29) is not invertible. Otherwise, the problem has a solution with RSSF.
In the sequel, the proposed procedure can be applied equivalently in both cases.

Ω=

(
C1An1−1B
C2An2−1B

)
(3.29)

A Derivative State Feedback control defined in (3.30) is applied. v(t) is the new input vector
(new control).

u(t) = Fẋ(t)+Gv(t) (3.30)
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The controlled system can be written as (3.31).{
(I−BF)ẋ(t) = Ax(t)+BGv(t)
y(t) =Cx(t)

(3.31)

The state equation in (3.31) is called "generalized state-space form" or "descriptor form", as
for the DSF solution proposed in section 1.4. The controlled model contains poles at infinity.
The characteristic equation of the closed loop system (3.31) is defined as (3.32).

det(sI− sBF−A) = 0 (3.32)

The degree γ of the characteristic polynomial in equation (3.32) is the number of system’s
finite eigenvalues, while n − γ is the number of system’s eigenvalues at infinity
[Fahmy and O’Reilly, 1989]. If matrix (I−BF) is not invertible, the system has thus poles
at infinity and properties such as controllability/observability properties must be studied in a
different way [Cobb, 1984, Verghese et al., 1981, Yip and Sincovec, 1981].

A different state-space representation (3.33) can be written if vector x(t) is expressed as a
function of ẋ(t). {

x(t) = (A−1−A−1BF)ẋ(t)−A−1BGv(t)
y(t) = (CA−1−CA−1BF)ẋ(t)−CA−1BGv(t)

(3.33)

If the model defined by equation (3.26) does not have any null invariant zero, thus matrix
Ωd =CA−1B is invertible and the control law defined by equation (3.30) with matrices F and G
defined in (3.34) leads to a simple decoupled singular model with direct transmission between
the new input variables and the output variables as described in equation (3.35).{

F = (CA−1B)−1CA−1 =Ω−1
d CA−1

G =−(CA−1B)−1 =−Ω−1
d

(3.34)

{
y1(t) = v1(t)
y2(t) = v2(t)

(3.35)

With the control law defined in equation (3.30), the invariant zeros of the controlled system
are the zeros of matrix SCL(s) defined in equation (3.36). As proved for the SISO case in
[Sueur, 2016], the invariant zeros of the model Σ(C,A,B) are the same ones as the controlled
system with a DSF control law defined in (3.30) and (3.34). It is also an implicit model
[Rosenbrock, 1970] of the type Eẋ = Ax+Bu, with matrix E non-invertible.

SCL(s) =
(

sI−A− sBF −BG
C 0

)
(3.36)

The degree γ of the characteristic polynomial det(sI− sBF −A) of the controlled system
Σ(C,A,B) with a DSF control law defined in equations (3.30) and (3.34) is equal to the number
of invariant zeros of Σ(C,A,B), i.e. γ = n−Σn′i. The new model contains only n−Σn′i (and not
n−Σni) finite modes, the invariant zeros of Σ(C,A,B).
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With the DSF control law, it can be easily proved that matrix [sI−A− sBF −BG] is
equivalent to matrix [sI−A −B] and thus this matrix doesn’t contain any zero. With the
DSF control law, the new model can become non observable. It is a classical property when
applying a static state feedback control the input-output decoupling problem. It is well known
that the non-observable modes are all or one part of the invariant zeros. The zeros of matrix
[sI− s(BF)t −At Ct ]t of the controlled system Σ(C,A,B) with a DSF control law defined in
equations (3.30) and (3.34) are the invariant zeros of the model Σ(C,A,B).

3.4.3 Properties of the controlled model with pole placement

The solution for the input-output decoupling problem with pole placement is obtained with
G =−Ω−1

d and with the new matrix F defined in equation (3.37). The set {α1,α2, · · · ,αn1} is a
set of n1 free parameters used for pole placement for the first submodel and {β1,β2, · · · ,βn2} is a
set of n2 free parameters used for pole placement for the second submodel.

F =Ω−1
d

[
C1A−1 +α1C1 + · · ·+αn1C1An1−1

C2A−1 +β1C2 + · · ·+βn2C2An2−1

]
(3.37)

The differential equations satisfied by the two output variables y1(t) and y2(t) with a derivative
state feedback control law defined in (3.30) with matrix G in (3.34) and matrix F in (3.37) is
written in (3.38). {

αn1y(n1)
1 (t)+ · · ·+α2ÿ1(t)+α1ẏ1(t)+ y1(t) = v1(t)

βn2y(n2)
2 (t)+ · · ·+β2ÿ2(t)+β1ẏ2(t)+ y2(t) = v2(t)

(3.38)

Proof. From equation (3.33), with matrix G =−Ω−1
d , the output vector can be written as (3.39)

and thus, with matrix F defined in equation (3.37), the output vector y(t) is now after a first quite
simple simplification in (3.40).

y(t) = [CA−1−CA−1BF ]ẋ(t)+ v(t) (3.39)

{
y1(t) =−{α1C1 +α2C1A+ · · ·+αn1C1An1−1}ẋ(t)+ v1(t)
y2(t) =−{β1C2 +β2C2A+ · · ·+βn2C2An2−1}ẋ(t)+ v2(t)

(3.40)

But C1ẋ(t)= ẏ(t) and C1Ax(t)=C1A[(A−1−A−1BF)ẋ(t)−A−1BGv(t)]=C1[(I−BF)ẋ(t)−
BGv(t)]. Since C1B = 0, it comes C1Ax(t) = C1ẋ(t) and thus C1Aẋ(t) = ÿ(t). With a similar
calculus, it comes C1A(k−1)ẋ(t) = y(k) for k≤ n1 and thus relation (3.38), and the same conclusion
for the output variable y2(t).

The degree of the characteristic polynomial det(sI − sBF − A) of the controlled system
Σ(C,A,B) with a DSF control law defined in equations (3.30), matrix G in equation (3.34) and
matrix F in (3.37) is equal to (n−Σn′i)+Σni (number of invariant zeros of Σ(C,A,B) + sum of
row infinite zero orders of submodels Σ(Ci,A,B)).
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Proof. Since Matrices S(s) (equation (A.2)) and SCL(s) are equivalent, detS(s) = detSCL(s),
which is a polynomial of degree n−Σn′i, (number of invariant zeros). Moreover, detSCL(s) =
det(sI−A−sBF) ·det(C(sI−A−sBF)−1BG), and since the new diagonal transfer matrix is such
that det(C(sI−A− sBF)−1BG) is of order Σni with a constant numerator, det(sI−A− sBF) is a
polynomial of degree (n−Σn′i)+Σni.

With this control law, the controlled system is thus an implicit model, i.e., matrix (I−BF) is
not invertible, with Σn′i−Σni poles at infinity, due to the difference between the two sets {n′i}
and {ni}. Theoretical developments must still be achieved. A future research challenge is also to
compare the set of non-assigned modes with the set of fixed modes, among the invariant zeros.
It is worth noting that in the SISO case, with pole placement, the degree of the characteristic
polynomial det(sI− sBF −A) of the controlled system Σ(C,A,B) is equal to (n− r)+ r = n
(n− r is the number of invariant zeros of Σ(C,A,B) and r is the infinite zero order of Σ(C,A,B)).
In that case, the controlled system is never an implicit model.

3.4.4 Comparison between RSSF and DSF

In this subsection, to address new challenges in the Derivative State Feedback control type, a
comparison study is proposed between the Regular Static State Feedback control (RSSF) and the
Derivative State Feedback control (DSF) in table 3.1. This table considers some conditions for
the capability of decoupling with, if relevant, the control law expressions and some properties
of the decoupled model. The feedback control matrix F in its general expression for the DSF
control law is defined in equation 3.41.

F = F2 =Ω−1
d

 C1A−1 +α11C1 + · · ·+α1n1C1An1−1

...
CmA−1 +αm1Cm + · · ·+αmnmCmAnm−1

 (3.41)

If matrix Ωd =CA−1B is not invertible, model Σ(C,A,B) has at least one null invariant zero.
This case is not considered here, but a simple extension is possible. If nid is the number of null
invariant zeros of the row subsystem Σ(Ci,A,B), then matrix Ωd is rewritten in the general case
as equation (3.42). If matrix Ωd is invertible, Σnid is equal to the number of null invariant zeros of
Σ(C,A,B) and the input-output decoupling problem with DSF has a solution with n−Σni−Σnid
non-assigned modes (not developed here).

Ωd =

 C1A−n1d−1B
...

CmA−nmd−1B

 (3.42)
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Controllable/Observable and invertible linear square model Σ(C,A,B) ; m = p
Regular Static State Feedback

RSSF : u = Fx+Gv
Notations and properties : see appendix A

Derivative State Feedback
DSF : u = Fẋ+Gv

Assumptions: A invertible; Ωd invertible

∑ni = ∑n′i
nIZ = n−∑ni

Non assigned modes: {Z(C,A,B)}
nIZ non assigned modes

F = F1 (equation (3.28)); G =Ω−1

Non assigned modes: {Z(C,A,B)}
nIZ non assigned modes

F = F2 (equation (3.41)); G =−Ω−1
d

not any infinite (impulsive) modes
Best solution

Fixed modes: {Z(C,A,B)}−
⋃

i{Zi(Ci,A,B)}
n f fixed modes

F no simple expression ; G =Ω−1

Best solution
Study of fixed modes : to be developed

∑ni , ∑n′i
nIZ = n−∑n′i

No solution with RSSF
Σ(C,A,B) : not decouplable by RSSF

Non assigned modes: {Z(C,A,B)}
nIZ non assigned modes

F = F2 (equation 3.41); G =−Ω−1
d

∑n′i−∑ni infinite (impulsive) modes
Best solution

Study of fixed modes : to be developed

Table 3.1 – Comparison between applicability conditions and properties of RSSF and DSF

Some remarks about robustness

Before developing the case study, some remarks are made about the robustness of the control
law, particularly for the steady state behaviour. It is well-known that classical control laws
such as Static State Feedback (SSF) type may not be able to suppress the disturbance and
track the set point in the presence of model mismatch. Few methods achieving simultaneous
decoupling and set-point tracking have been proposed in the literature. From the classical control
law u(t) = Fx(t)+Gv(t), the closed loop transfer matrix is Y (s) =C(sI−A−BF)−1BGV (s) =
MCL(s)V (s). In the steady state behaviour with s = 0, it comes MCL(0) = C(A−BF)−1BG
which is diagonal matrix containing the static gains. Clearly, these static gains can vary in the
presence of model mismatch with a difficult evaluation. Consider now equation (3.31). The
closed loop transfer matrix is Y (s) = C(sI− sBF −A)−1BGV (s) = MCL(s)V (s). In the steady
state behaviour with s = 0, it comes MCL(0) =CA−1BG. Matrix CA−1B is only a function of
some well-identified parameters and model mismatch has few influences on the steady state
behaviour. Matrix CA−1B contains the causal path gains for paths of length 0 between the input
variables and the output variables in the Bond Graph model with Derivative causality (BGD). It is
independent of matrix F , thus of the control matrix gain, only of some parameters which are well
identified, since contained in the causal paths. Concerning impulsive modes, a fundamental aspect
associated with Derivative State Feedback, from a theoretical point of views, discontinuity in
the state trajectory and thus unbounded values of the control law, [Verghese et al., 1981]. Indeed,
an impulsive mode can cause a jump at time t = 0 for some state variables and thus impulses
for the control law for some initial conditions. In our approach, derivative state variables are
estimated from the Bond Graph model without applying any derivation for the state variables.
Even if values can change strongly and rapidly, the effectiveness of the approach is proved
in ([Gonzalez et al., 2018]), with application of this control type applied to a real Torsion-Bar
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system for disturbance rejection purpose.

3.4.5 Case study: simple mechanical system

The studied mechanical system is presented in Fig. 3.20. The system consists of the following
components (names and parameters are identical): two masses M and m that can move without
friction on the ground, a damper R and a spring Ca =

1/ka between the two masses, a spring
Cr =

1/kr that acts on the mass m, and two actuators imposing a speed on the spring Cr and a
force between the two masses, respectively. In a vertical representation, this simple mechanical
system is the classical car shock absorber.

This system is studied first in the SISO case (without null invariant zero) and then in the
MIMO case, only in order to illustrate the different theoretical properties developed in the
previous section. The proposed procedures can be easily applied to more complex models.

Figure 3.20 – Schematic representation of the mechanical system

The bond graph model of the system (drawn with 20-Sim®) is shown in Fig. 3.21. MS f : u1
one of the two control inputs, is a flow source and MSe : u2 is an effort source. There are two
output variables associated to output detectors which can be used to estimate the derivatives of the
state variables that are used in the different control laws. These output variables are considered
here as output variables to be controlled. y1(t) is a speed variable associated to a flow output
detector D f : y1 and y2(t) is an effort variable associated the force applied on the spring Ca and
denoted as De : y2.

The state equations (3.43) are directly obtained from the bond graph model of Fig. 3.21. The
state vector is chosen as x = (x1,x2,x3,x4)

t , with generalized energy variables: x1 = pM and
x2 = pm (representing the momenta of the two masses), and x3 = qCa and x4 = qCr (representing the
generalized displacements of the two springs). The output matrix C can be written as C = [Ct

1,C
t
2]

t

and the control matrix B as B = [B1,B2] The state equations are written in equation (3.43).
The study is first proposed for the row model Σ(C1,A,B1) and thus for model Σ(C,A,B).

The Bond graph model is controllable/observable and the state matrix is invertible, a derivative
causality can be assigned to each dynamical element, Fig. 3.22.
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Figure 3.21 – Bond graph model of the mechanical system: BGI

Figure 3.22 – BG model with derivative causality assignment: BGD
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ẋ1 =− R
M x1 +

R
m x2 +

1
Ca

x3−u2(t)
ẋ2 =

R
M x1− R

m x2− 1
Ca

x3 +
1

Cr
x4 +u2(t)

ẋ3 =− 1
M x1 +

1
m x2

ẋ4 =− 1
m x2 +u1(t)

y1(t) = 1
M x1 y2(t) = 1

Ca
x3

(3.43)

3.4.5.1 Structural analysis and control of submodel Σ(C1,A,B1): SISO case

Model Σ(C1,A,B1) is controllable/observable and the state matrix is invertible. The infinite zero
order for the output variable y1(t), denoted n1, is equal to the shortest causal path length between
the input source MS f : u1 and the output detector Det : y1 on the BGI in Fig. 3.21. The causal
path is D f : y1 → I : M → R : R→ I : m→ C : Cr → MS f : u1 with length n1 = 3. We can
conclude that C1B1 =C1AB1 = 0 and C1A2B1 , 0, and that the submodel Σ(C1,A,B1) has one
invariant zero.

For the BGD in Fig. 3.22, the infinite zero order for the output variable y1(t), denoted n1d ,
is equal to the shortest causal path length between the input source MS f : u1(t) and the output
detector D f : y1. The causal path is D f : y1→MS f : u1 with length n1d = 0. We can conclude
that C1A−1B1 , 0 and that the submodel Σ(C1,A,B1) doesn’t have any null invariant zero. The
invariant zero is s =−1/RCa .

Consider matrices G and F defined respectively in equations (3.34) and (3.37). There is a
set {α1,α2,α3} of 3 free parameters for pole placement. G =−Ω−1

d11 =−(C1A−1B1)
−1 = 1 and

matrix F is in equation (3.44).

F =Ω−1
d11[C1A−1 +α1C1 +α2C1A+α3C1A2] (3.44)

The Input-Output relation with pole placement is α3
...y 1(t) +α2ÿ1(t) +α1ẏ1(t) + y1(t) =

v(t). Matrix (I−B1F) is invertible, the controlled model is not singular, and the fixed pole
is the invariant zero (strictly stable for this example). The characteristic polynomial of matrix
(sI− sB1F−A) is (α3s3 +α2s2 +α1s+1)(RCas+1)/(MmCrCa). It is worth noting that since
(C1A−1B1)

−1 =−1, the static gain of the closed loop model is theoretically always equal to 1
even with model mismatch.

3.4.5.2 Structural analysis and control of submodel Σ(C1,A,B2): C1A−1B2 = 0

The infinite zero order of submodel Σ(C1,A,B2) is equal to the shortest causal path length
between the input source MS f : u2(t) and the output detector Det : y1 on the BGI in Fig. 3.21.
The causal path is D f : y1→ I : M→MSe : u2, thus n1 = 1. We can conclude that C1B2 , 0 and
that the submodel Σ(C1,A,B2) has 3 invariant zeros.
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For the BGD in Fig. 3.22, the shortest causal path length between the input sources MSe : u2
and the output detector Det : y1 is D f : y1→C : Ca→MSe : u2 thus n1d = 1 and C1A−1B2 = 0,
but C1A−2B2 , 0. This submodel has one null invariant zero. The 3 invariant zeros are solution of
the polynomial s(s2 + 1/Crm).

Consider matrices G and F defined respectively in equations (3.34) and (3.37). There is a set
{α1,α2} of 2 free parameters for pole placement. G =−(C1A−2B2)

−1 = (−1/Ca) and matrix F
is in equation (3.45), with F(1,1) = β = [−M(Ca +Cr)+α2]/(M ·Ca).{

F = (C1A−2B2)
−1[C1A−2 +α1C1A−1 +α2C1]

F = [β −Cr/Ca R−α1/Ca −α1/Ca]
(3.45)

The Input-Output relation with pole placement is α2ÿ1(t)+α1ẏ1(t)+ y1(t) = v̇(t).

Matrix (I−B2F) is invertible, the controlled model is not singular, and the two fixed
poles are the non-null invariant zeros (not strictly stable for this example). The characteristic
polynomial of matrix (sI− sB2F−A) is (α2s2 +α1s+1)(Crms2 +1)/(M mCr Ca). It is worth
noting that since (C1A−1B1)

−1 = (−1/Ca), the static gain of the closed loop model is only sensible
to parameter Ca.

3.4.5.3 Structural analysis and control of model Σ(C,A,B): MIMO case

The infinite zero orders for each output variable yi(t), denoted ni, are equal to the shortest causal
path length between the two input sources MS f : u1(t) and MSe : u2(t) and the output detector
Det : yi, i = 1,2 on the bond graph model with an integral causality assignment drawn in Fig. 3.21.
The shortest causal path length is D f : y1→ I : M→MSe : u2 for the first output variable thus
n1 = 1. For the second output detector, the causal paths are De : y2→C : Ca→ I : M→MSe : u2
or with the same length De : y2→C : Ca→ I : m→MSe : u2 thus n2 = 2. Since these two paths are
not disjoint (same input variable), the model is not decouplable with a regular static state feedback
control law. The decoupling matrix Ω= [(C1B)t (C2AB)t ]t is not invertible. Two disjoint causal
paths are D f : y1→ I : M→MSe : u2 and De : y2→C : Ca→ I : m→C : Cr→MS f : u1.

The global infinite zero structure of model Σ(C,A,B) is associated to the two global infinite
zero orders that are equal to n′1 = 1 and n′2 = 3. The model doesn’t have any invariant zero since
its number is equal to n−Σn′i = 0. The infinite zero structure of the BGD could be analysed,
but it is not required here since the model doesn’t have any invariant zero, and thus matrix
Ωd = [(C1A−1B)t (C2A−1B)t ]t =CA−1B is invertible.

An Input-Output decoupling can be achieved with the derivative state feedback control law
defined in equation (3.30), with matrices F and G defined in equation (3.34) for control without
pole placement, and matrix F in equation (3.46) for a solution with pole placement.

F = (CA−1B)−1
[

C1A−1 +α1C1
C2A−1 +β1C2 +β2C2A

]
(3.46)
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The differential equations verified by the two output variables y1(t) and y2(t) with this
derivative state feedback control law are written in equation (3.47).{

α1ẏ1(t)+ y1(t) = v1(t)
β2ÿ2(t)+β1ẏ2(t)+ y2(t) = v2(t)

(3.47)

The matrices for the control law are G = I2 (the identity matrix) and F defined in equa-
tion (3.48).

F =

[
−α1/M 0 0 1

−1+β2/(MCa) −β2/(mCa) R−β1/Ca 0

]
(3.48)

The characteristic polynomial of matrix (sI−sBF−A) is (β2s2+β1s+1)(α1s+1)/(M mCr Ca).
Matrix (I−BF) is not invertible, the controlled model is singular since Σn′i−Σni , 0, and there
is one pole at infinity.

3.4.6 Concluding remarks on Input-Output decoupling with DSF

The main contribution of this approach is the development of Derivative State Feedback control
laws for the Input-Output decoupling design with pole placement. It is proved to be accurate
and can be applied when the problem is not solvable with classical techniques based on Static
State Feedback control. Structural properties of the open loop system are first achieved in order
to highlight properties of the controlled model.

In the future, we aim at clarifying the link between the stability property of the controlled
system with its finite structure, particularly the link between the set of invariant zeros of the
different submodels and the composition of the set of fixed modes associated with the Derivative
State Feedback control. Theoretical developments will also be proposed for the study of infinite
modes of the controlled model.

3.5 Conclusion

This chapter had two main objectives. First, we compared three solutions for the disturbance
rejection problem. These relatively modern solutions are compared with simulations applied to a
Torsion-Bar system. Even if the three approaches DOBC, ADRC and the solution developed in
this research work DSF-UIO-BG are relatively different in their concept, the idea is to use an
estimation of the perturbation in the control law, even if this estimation is not an exact value of the
disturbance itself. We prove that the DSF is a good solution for this problem. The multivariable
solution is not presented in this thesis, but a simple extension is possible.

Secondly, we proposed a solution for the Input-Output decoupling problem with DSF. In
some way, it is a simple extension of the disturbance rejection problem with DSF. The same
concepts are used: a structural analysis is implemented with the Bond Graph approach for a
solution with stability, and the synthesis of the control law is proposed formally. As for the
Disturbance Rejection Problem developed more than two decades ago with the Bond Graph
approach, it is possible to express properties of the control law with a geometric approach based
on (A,B)-invariant subspaces. The formal expression of the control law is quite similar, but it is
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obtained with the bond graph model in a derivative causality assignment (BGD) for the so-called
decoupling matrix, whether for the I/O-decoupling problem or for the DRP. A somewhat duality
exists between the two approaches: State Feedback and Derivative State Feedback.

Future work must allow us to clarify the link between the stability property of the controlled
system with its finite structure, particularly the link between the set of invariant zeros of the
different submodels and the composition of the set of fixed modes associated with the Derivative
State Feedback control for the two problems. Theoretical developments are also necessary in
order to the study of infinite modes of the controlled model. As well, the jointly problems of
DRP and I/O-decoupling could be in that way easily studied.

The case study (Torsion-Bar system) is presented in the next chapter, that time in a practical
way. We prove the very good performances of the control law.
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Chapter4
Disturbance Rejection (DR) - Derivative
State Feedback (DSF) - Unknown Input
Observer (UIO) - Bond Graph (BG):
Study case

4.1 Introduction

In this fourth chapter, the application of different methods for the disturbance estimation, and
its rejection (attenuation) will be performed for the real study case, i.e., the Torsion-Bar system.
Thus, this chapter is only dedicated to the application, and we don’t provide any additional
theoretical development.

This case study is introduced in the previous chapters where some simulations were developed
to show the effectiveness of the developed methodology in this research work and as well to
compare it with relatively known and modern methodologies proposed in the current literature.

First, we begin with the description of the Torsion-Bar (T-B) system with more details and
characteristics given by the factory owner (Controllab Products©). After, each controller is
synthesised associated to an observer, if this applies. We propose to compare the performance of
each one by displaying some temporal responses and by analysing the results.

Finally, some conclusions and remarks about the application are provided.

4.2 Real Torsion-Bar Description

The Torsion-Bar system described in chapter 1, section 1.5, is redrawn in Fig. 4.1 with a new
mechanical part allowing us to apply a torque (disturbance) on the first rotating disk (motor disk).

The Bond Graph model for the T-B system is show again in Fig. 4.2 and the state-space
representation obtained from this representation is rewritten in (4.1).

91
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Figure 4.1 – Real Torsion-Bar system with mechanical perturbation.

Figure 4.2 – Modified T-B bond graph model with integral causality assignment: BGI.
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ẋ2 =
1
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)x2 +
R f s
J1

x3
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1
J2
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(4.1)

The numerical values for each element mentioned in the bond graph model and state-space
representation are listed in table 4.1.

Element Symbol Value
Inductance La 1.34×10−3 H

Inertia of motor disk J1 9.07×10−4 kg m2 rad−1

Inertia of load disk J2 1.37×10−3 kg m2 rad−1

Spring compliance C f s 0.56 N m rad−1

Resistance Ra 1.23 Ω

Motor disk friction R1 5.025×10−3 N m s rad−1

Load disk friction R2 25×10−6 N m s rad−1

Damping spring R f s 5×10−4 N s rad−1

Motor constant km 38.9×10−3 N m A−1

Transmission ratio kb 3.75

Table 4.1 – Parameters of experimentation for the Torsion-Bar system model.

In the practical side, two software are necessary to apply the disturbance rejection methods:
20-Sim® software used for modelling and simulation of dynamical systems, and 20-Sim 4C®
used to export and load the C-code and to run it on the hardware.

Before applying the Disturbance rejection methods, some features of the 20-Sim 4C® are
expressed, [Kleijn, 2013]. From 20-Sim 4C®, the C-code can be created automatically or directly
from 20-Sim®. With the software 20-Sim 4C®, it is also possible to start and to stop the control
law applied to the system in real time and also to change the parameters during the run-time.
Implementing code is also possible from 20-Sim®.

In the previous Chapter, simulations proved the effectiveness of each disturbance rejection
methodology. These are now proved on the real Torsion-Bar system. For this, it is necessary to
take into account some characteristics given by the manufacturer (Controllab Products). These
characteristics are important to model the whole real system. It is important to emphasize that the
machine only has two velocity sensors (two incremental encoders) and one actuator of PWM
type. There is also a current limit at the entry for equipment protection, [Kleijn, 2008].
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Only the variable output y2(t) is controlled and the measured output variables are y1(t) and
y2(t). The control input variable v(t) is defined as a step function in rad s−1 and its action begins
at 0.5 s with a value of 20 rad s−1. At t = 2s the input is incremented at 40 rad s−1 and maintained
until the end. The unknown input that is defined as dpert(t)(Nm) could have time action between
5s and 15s. This perturbation is not applied automatically but manually, and its value is not
known. Finally, an important characteristic of the T-B system must be taken into account: the
voltage supply limits to the system that are ±12V. It is also linked to the current limit at entry.

The results are displayed in different figures. The first figure for each method have the same
information, the input reference v(t), the output variable y2(t) and its estimation ŷ2(t) (if possible).
The next figures could contain the output variable error ey2(t) = y2(t)− ŷ2(t) and the estimation
of the (total, cumulated or estimated) perturbation if possible. Finally, the control signal uc(t)
and the supplied energy.

4.3 Disturbance Rejection: Applications

A simplified description of the Hardware-in-the-loop (HIL) with this real time plant application is
proposed in Fig. 4.3. The connection between the real system and the control part is highlighted.
The control law is exported to a C-code from a model developed in the 20-Sim® platform. The
model requires some adaptations before to be applied to the T-B system because the sensor entries
and the control signal outputs are given in discrete time, thus, the model needs be redefined for
discrete time.

With this idea, signal treatment on the data output from the control uc(t) and the data entries
y1(t) and y2(t) are necessary. An D/A converter associated to uc(t) and two counts to velocity
converters associated to y1(t) and y2(t) are used. As well, the dynamical elements in Bond Graph
modelling (e.g., elements I, C, etc.) are adapted to be used in discrete time.

We will prove that all the studied controllers are able to achieve the DR but in different
manners and performances.

4.3.1 PID control

The classical Proportional-Integral-Derivative (PID) control described in the first chapter, sec-
tion 1.3.1 and equation (1.11), where only the error variable e(t), difference between the reference
input signal v(t) and the output variable y2(t), is used as information for the controller. The
PID controller is described by three parameters (Kp-Proportional Gain, Ti-Integral Gain and
Td-Derivative Gain).

After probing different tuning methods in order to define the parameters for the PID controller,
we get parameters Kp = 0.1, Ti = 0.09s−1 and Td = 0.009s. Since the model is linear, it is also
possible to calculate the gains on beforehand. The PID Controller for disturbance attenuation
is applied to the system and some variables are presented in the next figures. Note that the
disturbance variable must be constant and that it is not estimated with this approach. The data of
the output variable y2(t) and the reference v(t) are presented in Fig. 4.4 and the control signal
u(t) apply to the T-B system in Fig. 4.5.
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Figure 4.3 – Real time plant application with HIL description.
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Figure 4.4 – PID: output variable y2(t) and the reference speed v(t)

Figure 4.5 – PID: Control signal input u(t)
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4.3.2 Disturbance Observed-Based Control (DOBC)

The description of the DOBC methodology is in section 3.2.1 and the simulations in section 3.3.1.
The schematic structure is displayed in Fig. 3.6 and is applied to the real T-B system. Note that
the DOBC structure is divided in two parts: the feedback part state-feedback control with integral
action defined in equation (4.2), in addition with the disturbance rejection d̂l , the Disturbance
Observer Part, Disturbance observer equation (4.4) and a state observer (Luenberger)).

The integral action is added for attenuation of constant disturbance and set point tracking of
the signal output y2(t).[

ẋ(t)
ẋi(t)

]
=

[
(A+BK) BF2
−C 0

][
x(t)
xi(t)

]
+

[
0
1

]
v(t) (4.2)

Thus, for the feedback part that contains the state feedback control with the integral action,
the poles are placed at [−5 ,−10 ,−15 ,−20 ,−2]. The values obtained for this part are such
Faug = [K |F2] = [−1.2347, 14.376, −184.66, −872.39, 1].

For the Disturbance observer part, considering the state-space representation for the well-
known Luenberger observer as ˙̂x = Ax̂+Bu+LS[y−Cx̂]. The observer matrix gain LS is chosen
such that the eigenvalues of (A−LSC) are all in the left-half complex plane. The eigenvalues
of (A− LSC) for the observer are placed at [−25, −20,−15, −10]. Matrix LS is given in
equation (4.3).

LS =


1 −0.866

0.45 ·10−3 38.57 ·10−3

−0.8 −0.825
6.56 6.707

 (4.3)

And finally, the disturbance estimator described in equation (4.4) is applied on the T-B system
and the values for the gain matrix Ld = [l1, l2, l3, l4] are defined as Ld = [100,100,100,70].

{
ż =−LdB(z+Lx̂)−Ld(Ax̂+Bu)
d̂l = z+Ld x̂

(4.4)

The results and the data obtained from the application of this method with these parameters
are shown in the figures below.

Fig. 4.6 contains the data of the signal output y2(t) obtained from the real system, its
estimation ŷ2(t) and the reference described by v(t). ŷ2(t) is computed from the state-estimator
that doesn’t contain information about the perturbation. It can be observed that the output variable
is not at all well estimated. Nevertheless, the disturbance is rather well rejected. In Fig. 4.7, the
total perturbation variable is displayed and also ey2 = y2(t)− ŷ2(t). In comparison with other
approaches, the disturbance effect seems to be rather well estimated. Finally, the control signal
input u(t) applied to the T-B system is displayed in the Fig. 4.8. As well, it is similar to other
control laws.
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Figure 4.6 – DOBC: output signal y2(t) and its estimation ŷ2(t) and the reference speed v(t)

Figure 4.7 – DOBC: Estimated disturbance variable d̂l (up) and the error ey2(t) = y2− ŷ2
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Figure 4.8 – DOBC: control signal u(t) applied to the T-B system

4.3.3 Active Disturbance Rejection Control (ADRC)

This method is presented in chapter 3, sections 3.2.2 and 3.3.2, the three parts are rewriting
hereafter with the parameters for the application to the T-B system.

• Extended State Observer (ESO)

A state-space representation, with control variable u(t), output variable y2(t) and with an
additional (extended) state x4(t), is described in equation (4.5), where x1 = y2, x2 = ẏ2,
x3 = ÿ2, x4 = f (·). The function f (·) represents the total disturbance to be estimated and
dn1 is a calculated constant.


ẋ1 = x2
ẋ2 = x3
ẋ3 = dn1u(t)+ x4
ẋ4 = ḟ (·)

(4.5)

From equation (4.5), the ESO can be designed as (4.6), where the estimation error is given
as e0 = y2− z1, z1 is the estimation of y2 and z4 estimates the total disturbance f (·).


ż1 = z2 +β1e0
ż2 = z3 +β2e0
ż3 = dn1u(t)+ z4 +β3e0
ż4 = β4e0

(4.6)
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Parameters β1,β2,β3,β4 are the observer gains calculated following chapter 3 and refer-
ences [Wicher and Nowopolski, 2017, Miklosovic and Gao, 2004]. The parameter values
for the ADRC are β1 = 40, β2 = 600, β3 = 4000, β4 = 10000 and dn1 = 43804.58.

• Controller

The controller is described in (4.7). The gains of the controller were calculated accord-
ing to formula, [Miklosovic and Gao, 2004, Wicher, 2018]. The values computed are
Kp = 1 ·106, K1 = 3 ·104, K2 = 300

u0 = Kp(vre f − y2)−KD1z2−KD2z3 (4.7)

• Rejector Block

The rejector block deals with the total disturbance estimation z4 and with the virtual control
signal u0. The output signal of the rejector ui is the control signal applied to the system
and is a combination of the two previous signals. This block is described by equation (4.8).

ui =
u0− z4

dn1
(4.8)

Figure 4.9 – ADRC: output variable y2(t) (red) and its estimation z1(t) (blue)
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The behaviour of the T-B system with the ADRC control is now displayed following different
graphical representations. In Fig. 4.9, the output variable y2(t) and its estimation are shown. It
can be observed that the estimated variable contains high values. A focus on the output variable
is made in Fig. 4.10 with the reference speed variable. The error e0 = y2− z1 and the total
disturbance estimated f (·) are shown in Fig. 4.11. In this figure, it is possible to observe the value
of the total perturbation f (·) and the dynamic for the error e0, but as stated in the theoretical
part, it is not the exact estimation of the disturbance (real torque) applied to the T-B system. The
control signal is displayed in Fig. 4.12. We remark that some peak voltages are close to the limits
given by the T-B system.

Figure 4.10 – ADRC: output variable y2(t) and the reference v(t)

4.3.4 DSF-UIO-BG

In chapter 3 and section 3.3.3, the Derivative State Feedback (DSF) control law associated to an
Unknown Input Observer (UIO) is applied to the T-B system. Structural analysis is implemented
with a bond graph approach and a Disturbance Rejection (DR) solution is provided and then
evaluated by simulation. We recall some properties of the model and expressions of the control
law as well as the observer. Then, the control law is applied to the T-B system.

The model Σ(C,A,B) associated to the torsion bar system is structurally controllable/observable,
a derivative causality assignment can be applied to the bond graph model, see Fig. 3.15. As well,
the state matrix A is invertible. The Disturbance Rejection with Derivative State Feedback is
applied in the Single Input - Single Output (SISO) case, see chapter 1, and an Unknown Input
Observer is used in the Multiple Input - Multiple Output (MIMO) case since two variables are
measured, see section 2.3 or [Sueur, 2016, Gonzalez and Sueur, 2018b, Gonzalez et al., 2018].
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Figure 4.11 – ADRC: cumulative perturbation f (·) (up) and the error e0(t) = y2(t)− z1(t) (down)

Figure 4.12 – ADRC: input control signal u(t)
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4.3.4.1 Unknown Input Observer applied to the T-B system

The Unknown Input Observer for this Bond Graph model is now designed, see chapter 2, sec-
tion 3.2.3. For system Σ(C,A,B,F) defined in equation (1.1), m = 1 (one input control), q = 1
(one unknown input variable, disturbance) and p = 2 (two measured variables y1(t) and y2(t)).

The UIO synthesis is thus proposed with the two output detectors D f : y1 and D f : y2. It is a
non-square model. Structural properties of the model Σ

(
[Ct

1,C
t
2]

t ,A,F
)

are studied. The causal
path with the first output detector is D f : y1→ I : J1→ Se : dpert and the causal path with the
second output detector is D f : y2→ I : J2→ R : R f s→ I : J1→ Se : dpert . The length of these
causal paths are equal to np1 = 1 and np2 = 2 for y1 and y2 respectively. Since np1 < np2, the
estimation of the state vector is written in equation (4.9) and the estimation of the unknown input
variable is still defined in equation (2.21). Matrix NCL is written in equations (4.10).

ˆ̇x(t) = Ax̂(t)+Bu(t)+Fd̂(t)−AK

(
y(1)1 (t)− ŷ(1)1 (t)
y(1)2 (t)− ŷ(1)2 (t)

)
(4.9)

NCL = A−1−A−1F(C1A−1F)
−1C1A−1−K

[
C1
C2

]
(4.10)

From a structural analysis, it can be proved that model Σ
(
[Ct

1,C
t
2]

t ,A,F
)

has one invariant
zero, which is the common invariant zero of submodels (C1,A,F) and (C2,A,F). The invariant
zero is equal to zI = −Ra/La = −917.91. The inverse of this invariant zero is a fixed mode for
the estimation error equation, i.e. for matrix NCL. If the four poles of matrix NCL are −1/917.91,
−1/1000,−1/1000 and −1/3401.4, matrix K is thus as expressed as:

K =


−9.07 ·10−17 7.672 ·10−4

0 1.37 ·10−6

4.535 ·10−7 0
−1.814 ·10−15 −2.74 ·10−15



4.3.4.2 Disturbance Rejection with DSF applied to the T-B system

The infinite structure of models Σ(C2,A,B) and Σ(C2,A,F) are first studied with a structural
approach. The shortest causal path between the output variable to be controlled D f : y2(t) and
the control input MSe : u(t) in the Bond Graph model with Integral causality (BGI) of Fig. 3.5 is

D f : y2→ I : J2→ R : R f s→ I : J1→ T F : 1/kb→ GY : km→ I : La→MSe : u .

The length of this causal path is equal to 3, then nc2 = 3. The shortest causal path between the
output variable to be controlled D f : y2(t) and the disturbance input Se : dpert is

D f : y2→ I : J2→ R : R f s→ I : J1→ Se : dpert .
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The length of this causal path is equal to 2, then np2 = 2. Since np2 < nc2, from property 1
the DSF has a solution with n−nc2 = 1 finite fixed mode which is the invariant zero of model
Σ(C2,A,B) and np2 = 2 finite modes which can be freely chosen with matrix Fc (property 6). Its
value is Iz = −1/C f s·R f s = −3571.42. Some coefficients can be derived from a causal analysis
(causal path gains), but here they are directly obtained from formal calculus. With pole placement,
matrix Fc is defined in equation (1.29), with numerical values in equation (1.30). Two poles can
be chosen because np2 = 2. In that case,

det(sI−A− sBFc) =

=
R1 ·Ra +R2 ·Ra + k2

m · k2
b

C f s · J2 ·La · J1
· (C f s ·R f s · s+1) · (α2 · s2 +α1 · s+1)

= 2.9483 ·107 · (2.8 ·10−4 · s+1) · (α2 · s2 +α1 · s+1) .

The differential equation verified by the output variable y2(t) with the Derivative State
Feedback control law with pole placement is α2ÿ2(t)+α1ẏ2(t)+y2(t) = v(t). Parameters α1 and
α2 can be arbitrarily chosen, according to the poles of the closed loop model.

The DSF control applied to T-B system with the UIO with general structure is shown in
Fig. 3.4. This structure is used as well for simulation as for application to the real system (see
chapter 3). BGobs is the bond graph model of the physical system with some signal bonds, and in
order to obtain the estimation of the state variables derivatives, it is sufficient to add effort sensors
(elements I) or flow sensors (elements C) on the dynamical elements of the bond graph observer,
without any use of mathematical derivation.

With the parameters computed for this method, the results are shown below in different
graphics.

In Fig. 4.13, the output and its estimation are shown. The disturbance rejection is achieved.
Signal y2(t) and its estimation ŷ2(t) are smooth signals and the set-tracking of the reference is
well done. The estimation of the disturbance variable is displayed in the Fig. 4.14. Note that this
variable is not known at all, because it is a torque applied manually to the motor disk. Since this
estimated variable is explicitly used in the expression of the control law, we can consider that it is
well estimated.

The error variables e1(t) = y1(t)− y1(t) and e2(t) = y2(t)− y2(t) are shown in Fig. 4.15.
They prove the efficiency of the control law.

The control signal u(t) apply to the T-B system is presented in the Fig. 4.16. This control
signal doesn’t have any peak of voltage over the limits.
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Figure 4.13 – DR-DSF-UIO-BG: output variable y2(t) and its estimation ŷ2(t)

Figure 4.14 – DR-DSF-UIO-BG: estimation of the disturbance variable d̂pert .
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Figure 4.15 – DR-DSF-UIO-BG: errors e1(t) = y1(t)− ŷ1(t) (up) and e2(t) = y2(t)− ŷ2(t)
(down).

Figure 4.16 – DR-DSF-UIO-BG: control signal u(t).
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4.4 Concluding remarks

Numerous approaches for solving the disturbance rejection problem are available in the scientific
literature. In chapter 3, we recalled some of them and we made a comparative study, first from
a theoretical point of view in order to highlight the outstanding features such as conditions for
application (solvability conditions) and thus some features about the control law synthesis and
some properties of the controlled system. This enabled us to compare their performances with
some simulations.

This chapter aims to compare some of the control laws on the real torsion bar system used as
a case study. Each of the tested approach seems to be capable of achieving the objectives, namely
rejecting the disturbance, but with some different conclusions. Even if a constant disturbance is
each time rejected, the new approach based on the bond graph approach (DSF-UIO) is capable
of given a good estimation of this disturbance, and we even prove practically that this unknown
input can be of various nature. In particular, it could be easy to extend this approach to estimation
of parameter uncertainty or variation and thus adapting the control law accordingly. For that
reason, we strongly believe that this control strategy can be applied to power plant systems in
order to improve their performance by estimating some unknown phenomena and by elaborating
performant control law. This idea is the object of the next concluding chapter.
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Chapter5
Future Works: Renewal energy

5.1 Introduction

In this chapter, we present briefly a possible application of the present research work and we
direct it towards the improvement of renewable sources. We begin with a brief summary about
the climate change and the renewable energy and how it affects the research and investment in
the renewable power technologies, information from recent literature.

In a second step, we present a simplified model of a hydroelectric plant that could be a case
study for us. Indeed, some future works could be developed in respect to this subject. Some points
are highlighted to show the usefulness of this research work, first using the integrated approach
based on the bond graph representation, with the concept of "Word-Bond Graph". Secondly, a
detailed bond graph model is displayed in order to proceed some simulations. As for the previous
case study, i.e. the torsion bar system, we aim to be able to characterize properties of the model
(system) and be able to synthesize robust control laws with a complex system under the influence
of external phenomena, such as disturbances, failures or parameter variations.

Notice that this project under development is made in collaboration with researchers from the
fluid mechanics laboratory of Ecole Centrale de Lille. To conclude, we formulate some future
perspectives for this project.

5.2 Renewable sources: Brief summary

Global demand for energy continues to rise, led by developing countries, reflecting an expanding
global economy, rapid industrialization, population growth, urbanisation and improved energy
access, [IRENA, 2017].

The decrease in fossil sources, excessive environmental pollution and high prices are some
of the most reported problems of traditional energy resources. Energy and climate change are
related each other. This is why a fundamental change in current energy systems is necessary to
successfully confront climate change, [IRENA, 2019a].

109
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Governments around the world are rethinking their energy sector strategy and embracing
renewable energy technologies. Then, the global energy transformation is happening, driven by
the dual imperatives of limiting climate change and fostering sustainable growth.

The increasing energy demand is one of the key factors that manipulates the energy research
trends. As a result of the search for new resources, renewable energy resources have been con-
firmed as an adequate alternative to traditional generation of fossil fuel energy [Habibi et al., 2019].

An unprecedented decline in renewable energy costs, new opportunities in energy efficiency,
digitalisation, smart technologies and electrification solutions are some of the key enablers behind
this trend. Renewable power technologies are often the first choice for expanding, upgrading and
modernising electricity infrastructure around the world, [IRENA, 2019c].

In most parts of the world today, renewable sources are the lowest-cost source of new power
generation. As costs for solar and wind technologies continue falling, this will become the case
in even more countries. The cost of electricity from bioenergy, hydro-power, geothermal, onshore
and offshore wind was within the range of fossil fuel-fired power generation costs between 2010
and 2018. Since 2014, the global-weighted average cost of electricity of solar photovoltaics
(PV) has also fallen into the fossil-fuel cost range. For the vast majority of renewable energy
technologies, capacity and output continue to grow as renewable energies in the power sector far
outpace growth in conventional technologies.

During 2018, the contribution of all renewable energy sources to the global energy mix grew
by largest increment yet, particularly in the electricity sector, [IRENA, 2017, IRENA, 2019a].
Renewable power capacity represented 61% of all new power generating capacity added world-
wide.

Figure 5.1 – Renewable and Non-renewable power capacity additions between 2001-2015.
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In Fig. 5.1, [IRENA, 2017], we observe the moment when the additions on renewable power
capacity exceeds the non-renewable, and Fig 5.2 shows the global power generating capacity
until 2018, [REN21, 2019].

Figure 5.2 – Global Power Generating capacity, 2008-2018.

Each year, more electricity is generated from renewable energy then in the previous year.
Renewable energies provided an estimated 23.5% of all electricity generated in 2015 - 5660 TW h,
[IRENA, 2019b, IRENA, 2017]. In Fig. 5.3, in "Rethinking energy 2017", the different sources
of energy are shown for generation of electricity in 2015.

Figure 5.3 – Global electricity generation by source, 2015.
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In 2018, the rates are: wind power (21%), solar 59% and bio-power (8%). Overall, the
installed renewable power capacity at year’s end was enough to supply around 26.02% of global
electricity production (see Fig. 5.4), [REN21, 2019]. Hydro-power still accounted for some 60%
of the renewable electricity production followed by wind power, bioenergy and solar PV.

Figure 5.4 – Global electricity production by source, End-2018

Renewable energies overall are struggling to increase their share of the global energy mix for
three main reasons: 1) the traditional use of biomass is in decline as more people gain access to
modern energy; 2) Total final energy use continues to rise; 3) The technologies that have grown
the fastest have done so from a very low base (Solar PV and Wind power ).

Despite a second consecutive year of rising global energy related CO2 emissions, some
regions have achieved significant reductions in the electricity generation emissions due in part to
deployment of renewable power capacity. European emissions related to electricity production
reportedly fell 5% in 2018 as a result of renewable energies. US CO2 emissions from power
generation fell nearly 30% between 2005 and 2018, due in part to slower demand growth
(improvements in energy efficiency) and growing renewable electricity production, especially
from wind energy, [REN21, 2019].

There are more sectors that have been benefited by the renewable energies as the cost of elec-
tricity production, sources of employment, heating and cooling, transport, etc. ([REN21, 2019,
IRENA, 2019a, IRENA, 2019c, IRENA, 2017]).
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5.3 Hydroelectric plant

This case study and project is inspired for the previous summary and the previous chapters. In
addition, a collaboration with researchers from the fluid mechanics field bright to this research
a possibility to investigate, analyse and modelling a hydroelectric system. This hydroelectric
system, its model and modelling tools can be useful for related researches in hydraulic domain or
energy storage development, [Ratolojanahary et al., 2019, Ortego Sampedro, 2013].

In the next figure, Fig.5.5, the representation of the study case is presented. According to this
representation the model can consist of different parts: an opened tank linked to a pipe, a kink, a
needle valve (with conical bearing surface), a nozzle, a Pelton turbine and a Direct Current (DC)
generator.

Figure 5.5 – Hydro-electric system representation

A series of power interchange is also observed through the system. The flow at the tank outlet
is directed in the pipe and kink, it goes through the needle valve and it is accelerated in the nozzle.
The water jet is out of the nozzle at the atmospheric pressure level. The power from the water jet
exerts a force on the Pelton impeller bucket and starts spinning the impeller. A generator coupled
with the turbine is also driven rotationally to convert the mechanical energy into electrical energy.

5.3.1 Hydroelectric model: Word Bond Graph

The Bond Graph modelling process of the hydroelectric system described above is shown in
Fig. 5.6 where the transmission of power between each block is observed. This block diagram,
name Word-Bond Graph, is based in the power interchange in the bond graph approach. There
is an electromechanical part (red) that represents the generator and its load, a mechanical part
(purple) representing the Pelton turbine and shaft, and finally a hydraulic section (blue). The bond
graph representation is developed in accordance with equation (5.1) for the hydraulic part, equa-
tion (5.5) for the Pelton turbine and equation (5.6) and equation (5.7) for the electromechanical
part.
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Figure 5.6 – Hydro-electric system representation: word-bond graph

The detailed model is given in Fig. 5.7. Besides allowing the power transfer representation
between each element, the energy direction is also shown explicitly. The model is realized step
by step by adding each element of the system respecting energy exchange and conservation. We
can choose at each step the level of detail for the model, depending on modelling assumptions.
At most, it is possible to analyse properties of the dynamical model, such as comparing dynamics
between different parts (level modelling) or properties of the model (controllability/observability...
level control properties).

Figure 5.7 – Hydro-electric bond graph representation

We proceed some simulations that are presented in the next section. Since this model is a
non-linear one, the classical structural analysis on bond graph model is not implemented at the
moment. The first objective is to check the validity of the model with simulations.

5.3.2 Mathematical description

In order to describe the hydraulic system, some classical analytical equations from different
physical domains can be written, [White, 2011].

The flow of an incompressible fluid through the pipe is described by unsteady Bernoulli equa-
tion along a streamline between point 1 and 3, neglecting flow velocity in the tank, [Idel’cik, 1986].
It is written in the Eq. (5.1).

ρgH = ρL
d v2

dt
+

1
2

ρv2
3 +λ

L
Dc

ρ
v2

2
2
+Kl p (5.1)

ρ is the volumetric mass density, g is gravity, the height of water level is H, L represents
the pipe length, Dc is the pipe diameter, v2 and v3 are the flow velocities in the points 2 and 3
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respectively (see Fig. 5.5) and finally Kl p represents the total loss of pressure head cause by
singularities through the pipe and valve.

Equation (5.1) is solved to determine the velocity at the point 3 (v3 = v jet-stream velocity).
Then, the continuity equation (5.2) is applied and after equation. (5.1) is rewriting in (5.3). The
parameters S2 and S3 correspond to the cross-sectional area of the pipe and the cross-sectional
area of the convergent nozzle respectively, [Idel’cik, 1986].

v2 = v jet
S3

S2
(5.2)

d v jet
dt

=
gHS2

LS3
− v2

jet

(
1+(S3

S2
)2(λ L

Dc
+Kl p)

2L S3
S2

)
(5.3)

The final expression to determine v jet is given in (5.4)

v3 =

√√√√b
a

(
exp2

√
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1+ exp2
√
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)
(5.4)

where a =
1+
(

S3
S2

)2
(λ L

Dc
+Kl p)

2L S3
S2

and b = gHS2
LS3

.

Now, by analysing the energy conversion between the hydraulic energy and the mechanic
energy, it is possible to find the relative force from the Pelton turbine wheel when a stream with
certain velocity (v jet) is applied on its buckets, [Zhang, 2016, White, 2011]. The absolute velocity
at the inlet of the wheel corresponds to v jet . The relative velocity can be defined as ω1 = v jet −u
from the typical velocity triangle shown in the Fig. 5.8. ω1 = ω2 is the impeller turbine rotational
velocity and u is defined as inlet tangential bucket velocity.

Figure 5.8 – Triangle of velocities for an individual bucket
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The turbine force relation on the Pelton turbine obtained from the Newton’s second law is
defined in equation (5.5).

Fr = ρQv(v jet −ωR)(1− cosβ2) (5.5)

Qv is the volume flow and R is the impeller radius of the turbine. From Fr, it is possible
to obtain the torque from the Pelton turbine as τpelton = Fr R. The relation between the Pelton
turbine and the DC generator are given in the next equations divided in mechanical (5.6) and
electric part (5.7), where I is defined as the moment of inertia, B is the friction coefficient in the
mechanical part, La is the generator’s inductance, Ra is the electric resistance, kg is the generator
constant and, Vi and ia as the voltage and current generated respectively.

I
dω

dt
+Bω = τpelton− τgenerator (5.6)

La
dia
dt

+Raia + kgω =Vi (5.7)

5.3.3 Simulations

The parameters selected for this simulation are listed in the table 5.1. Other parameters are
choosing during the simulation.

Element Symbol Value
Atmospheric pressure Patm 101 325 Pa

Density ρ 1000 kg m−3

Dynamic viscosity µ 1×10−3 Pa s
Height H 50m

Pipe length L 50m
Pipe Diameter Dc 0.3 m

Jet outlet diameter D jet 0.1 m
Convergent (pressure loss coefficient) Kconv 0.5

Elbow (pressure loss coefficient) Kcoude 1.13
Tank (pressure loss coefficient) Kreservoir 0.5

Pelton turbine diameter Dr 2m
Pelton turbine Mass M 5000kg

Friction of pelton turbine B 22.025×10−3 N m s rad−1

Resistance Ra 22.3×10−3 ω

Inductance La 0.2×10−3 H
Electromotive force constant kg 9.5×10−3 N m A−1

Load Resistance Rl 4.498 80 Ω

Table 5.1 – Parameters for the Pelton Turbine Simulation.
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In Fig. 5.9, the pressures actuating on the hydraulic part are shown, including the atmospheric
pressure.

Figure 5.9 – Pressures in the hydraulic part.

The output velocity for the water from the nozzle in presented in the Fig. 5.10.

Figure 5.10 – The jet output speed v jet .
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When the jet is interacting with the buckets of the Pelton turbine, the angular velocity (ω) is
obtained (Fig. 5.11) and the torque of the Pelton turbine is computed (Fig. 5.12).

Figure 5.11 – Angular velocity of the Pelton turbine.

Figure 5.12 – Torque in the mechanical part of Pelton turbine.

The electric variables actuating on the load as voltage and current are shown in Fig. 5.13.
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Figure 5.13 – Voltage and current applied to the Load.

5.4 Conclusion

This project is actually in its first version and we implemented simulations from the bond graph
model. The project will be developed in a real version, i.e., a real plant application. The different
control strategies as those mentioned in this research work could be applied in a next work in
order to increase the efficiency of the plant and prevent different perturbations (e.g., pressure
losses, frictions, cavitation). Nevertheless, we must first validate the model and simple control
strategies. We aim at doing this part during the end of the thesis.

This project also presents the opportunity to apply the control methodology presented in this
work with an extension to MIMO non-linear systems.

This model can serve as a basis for studying other renewable energy sources because the
structure presented has the possibility to be rewritten easily following the context, as claimed
when using an integrated approach.
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General Conclusion and Perspectives

This thesis is concerned with aspects involved in designing and implementing controllers and
observers for linear systems subject to disturbances. This includes also a comparative study of
design methodologies from analysis of the model up to the synthesis of the controller and of
the observer as a new approach based on the bond graph representation and on the concept of
state variables derivatives. We spoke of Derivative State Feedback and Unknown Input Observer
(explicitly based on the state variables derivatives). This conclusion summarizes firstly the
research effort presented in the thesis. We thus conclude with some remarks about the use of state
variables derivatives and with open questions.

The thesis started with a comparison of three fundamentally different existing methodologies
for control systems subject to disturbance, namely PID, state feedback control, and Derivative
State Feedback control, all applied to a torsion bar system used as the case study in this thesis.
We include some theoretical bases about model properties (finite and infinite structure) that are
key aspects when synthesizing the control law in the state space domain. The bond graph model
as the control laws are validated in this chapter.

The architecture for the UIO bond graph based is presented in chapter 2. It is one of the
main theoretical contributions of the thesis. This UIO is compared with some other well-known
observers which for some of them give also very good results, but the main point, from our point
of view, is that the theoretical framework used for our UIO-BG is that it is very close to the
framework used for the Disturbance Rejection Problem, from analysis to synthesis. It is based on
the structural properties of the bond graph model.

In chapter 3, we compared the performances of three approaches (DOBC, ADRC, DSF-BG)
for the Disturbance Rejection Problem on the model of the Torsion Bar system with simulations.
We prove the efficiency of the Derivative State Feedback control law and the methodology from
analysis to synthesis in order to obtain the control law. We took the opportunity to refine and
clarify our framework for the solving the Input-Output Decoupling Problem with a Derivative
State Feedback control law type. It is the second theoretical contribution of our work. The
potential development of this approach is an interesting issue not only when classical solutions
to the Input-Output decoupling problem don’t exist, but also in order to solve simultaneously
the two problems. Other possibilities like using invariant subspaces defined in the geometric
approach could be explored too.
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We proved the effectiveness of the Derivative State Feedback control strategy in chapter 4, by
applying it from a practical point of view on the real Torsion-Bar system. Results are analysed
and compared with the two other control strategies (DOBC and ADRC). One main advantage of
the approach is that it can be considered as included in an integrated approach where estimation
and control are analysed identically as well as synthesized, graphically, structurally or from a
mathematical point of view. Since the unknown variables are perfectly estimated whatever they
may be, the UIO could be as well exploited for solving other similar problems, FDI, parameter
estimation...

In chapter 5, a hydroelectric power plant is described as a new case study. Some simulations
are carried out in order to validate the integrated approach as well as the model. This project is
developed in the Fluid Mechanics Laboratory in Ecole Centrale de Lille, and we aim to apply our
results step by step on a simplified plant.

To end up, we would aim to prove that the combined proposed DSF-UIO with BG is an
innovative solution in the future to facilitate the renewable energy sources integration and to
improve their performances. We would aim to highlight two points:

• Derivative state variables: Two main statements can be highlighted: firstly, the state
variables of a bond graph model are "energy" variables, thus their derivates are power
variables that are commonly used as state variables in the literature. Secondly, derivative
state variables are estimated from the bond graph model (BG-estimation) without applying
any derivation since they are directly measured on the bond graph model. These two points
were crucial in our decision to choose this approach.

• Structural analysis - integrated approach: From analysis to design, it is possible to
extract information from the bond graph model with a structural point of view due to
two main features: causality and graphical representation. The bond graph representation
allows us to harness the potential of the integrated approach when solving the different
problems (Disturbance Rejection and Estimation)

Based on the results obtained in this thesis, the continuing work toward the studied problems
in this research area can be described as following:

• Energy consumption: In many recent papers, it is claimed that energy consumption is
lower when using a Derivative State Feedback control law instead of a classical state
feedback control law. We have to check this point. Up to now, it was not possible to bring
to light a substantial difference.

• Impulsive modes: for each problem, Disturbance Rejection with Derivative State Feedback
control law, and Unknown Input Observer-Bond Graph based, the nature of the infinite
modes of the Controlled/Observed model must be clarified. As a matter of fact, impulsive
modes emerge. Concerning these impulsive modes, from a theoretical point of view, they
introduce discontinuity in the state trajectory and thus unbounded values of the control
law, [Verghese et al., 1981]. Indeed, an impulsive mode can cause a jump at time t = 0 for
some state variables and thus impulses for the control law for some initial conditions. Even
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if values can change strongly and rapidly, the effectiveness of the approach is proved in this
thesis work with application of this control type applied to a real Torsion-Bar system. We
agree that a theoretical study of impulsive modes and of its effects with a good framework
is essential. It will give as a potential problem for future works.

• Finite modes: One challenge is also to clarify the link between the stability property of
the controlled/observed system with its finite structure, particularly the link between the
set of invariant zeros of the different submodels and the composition of the set of fixed
modes associated to the Derivative State Feedback controller/observer. As for the classical
problems of Disturbance Rejection and Input-Output decoupling with a state feedback
control law, the set of fixed modes is not easy to bring out. We also have to clarify this
point, may be with a joint analysis of some invariant subspaces (geometric approach).



124 General Conclusion and Perspectives



Bibliography

[Åmström and Hägglund, 1995] Åmström, K. and Hägglund, T. (1995). PID Controllers: The-
ory, Design, and Tuning. 2nd edition.

[Abdelaziz, 2008] Abdelaziz, T. H. S. (2008). Robust pole assignment for linear time-invariant
systems using state-derivative feedback. Proc. IMechE, Journal of Systems and Control
Engineering, 223:187–199.

[Abdelaziz and Valážek, 2004] Abdelaziz, T. H. S. and Valážek, M. (2004). Pole-placement for
SISO linear systems by state-derivative feedback. IEE Proceedings - Control Theory and
Applications, 151:377–385.

[Abdelaziz and Valážek, 2005] Abdelaziz, T. H. S. and Valážek, M. (2005). Direct algorithm for
pole placement by state-derivative feedback for multi-input linear systems - nonsingular case.
Kybernetika, 41(5):637–660.

[Al-Alaoui, 1993] Al-Alaoui, M. (1993). Novel digital integrator and differentiator. Electronics
Letters, 29(4):376–378.

[Al-Bayati and Skaf, 2010] Al-Bayati, A. H. and Skaf, Z. (2010). A comparative study of linear
observers applied to a dc servo motor. In Proceedings of the 2010 International Conference
on Modelling, Identification and Control, pages 785–790.

[Albertos et al., 2015] Albertos, P., García, P., Gao, Z., and Liu, T. (2015). Disturbance rejec-
tion in process control. Proceeding of the 11th World Congress on Intelligent Control and
Automation, Shenyang, China, June 29 - July 4 2014.

[Armentano, 1985] Armentano, V. A. (1985). Exact disturbance decoupling by a proportional-
derivative state feedback law. In Proc. of 24th Conference on Decition and Control, Ft.
Lauderdale, Florida, U.S., pages 533–538.

[Bakhshande and Söffker, 2015] Bakhshande, F. and Söffker, D. (2015). Proportional-integral-
observer: A brief survey with special attention to the actual methods using acc benchmark.
IFAC-PapersOnLine, 48(1):532 – 537. 8th Vienna International Conference on Mathematical
Modelling.

125



126 Bibliography

[Balakrishnan and Verghese, 2012] Balakrishnan, H. and Verghese, G. C. (2012). 6.02 introduc-
tion to eecs ii digital communication systems. Digital Communication Systems. OpenCourse-
Ware.

[Baldini et al., 2018] Baldini, A., Felicetti, R., Freddi, A., Longhi, S., and Monteriù, A. (2018).
Fault-tolerant disturbance observer based control for altitude and attitude tracking of a quadro-
tor. In 2018 26th Mediterranean Conference on Control and Automation (MED), pages
1–6.

[Bartolini et al., 2000] Bartolini, G., Pisano, A., and Usai, E. (2000). First and second derivative
estimation by sliding mode technique. Journal of Signal Processing.

[Basile and Marro, 1973] Basile, G. and Marro, G. (1973). A new characterization of some struc-
tural properties of linear systems: Unknown-input observability, invertibility and functional
controllability. International Journal of Control, 17(5):931–943.

[Basile and Marro, 1992] Basile, G. and Marro, G. (1992). Controlled and Conditioned Invari-
ants in Linear System Theory. Prentice Hall, Inc.

[Bhattacharyya, 1978] Bhattacharyya, S. P. (1978). Observer design for linear systems with
unknown inputs. IEEE Transactions on Automatic Control, 23:483–484.

[Bonilla Estrada and Malabre, 2000] Bonilla Estrada, M. and Malabre, M. (2000). Proportional
and derivative state-feedback decoupling of linear systems. IEEE Transactions on Automatic
Control, 45:730–733.

[Borutzky and Dauphin-Tanguy, 2004] Borutzky, W. and Dauphin-Tanguy, G. (2004). Incremen-
tal bond graph approach to the derivation of state equations for robustness study. Simulation
Modelling Practice and Theory, 12:41–60.

[Borutzky and Granda, 2002] Borutzky, W. and Granda, J. (2002). Bond graph based frequency
domain sensitivity analysis of multidisciplinary systems. Proceedings of the Institution of
Mechanical Engineers. Part I-Journal of Systems and Control Engineering, 216:85–99.

[Boukhobza et al., 2007] Boukhobza, T., Hamelin, F., and Martinez-Martinez, S. (2007). State
and input observability for structured linear systems: A graph-theoretic approach. Automatica,
43:1204–1210.

[Bourlès, 2010] Bourlès, H. (2010). Linear Systems. ISTE Ltd and John Wiley & Sons, Inc.

[Bourlès and Marinescu, 2011] Bourlès, H. and Marinescu, B. (2011). Linear Time-Varying
Systems: Algebraic-Analytic Approach. Springer-Verlag, LNCIS 410.

[Brunovsky, 1970] Brunovsky, P. (1970). A classification for linear controllable systems. Kyber-
netika, 6:173–187.

[Burden and Faires, 2011] Burden, R. L. and Faires, J. D. (2011). Numerical Analysis. Richard
Stratton, editor, ninth edition. Boston, U.S.



Bibliography 127

[Burger, 2011] Burger, M. (2011). Disturbance Rejection using Conditional Integrators. Thesis
for the degree of philosophiae doctor.

[Cardim et al., 2007] Cardim, R., Teixeira, M. C. M., Assunção, E., and Covacic, M. R. (2007).
Design of state-derivative feedback controllers using a state feedback control design. In
3rd IFAC Symposium on System Structure and Control, editors, IFAC Proceedings Volumes,
volume 40, pages 22–27. Elsevier.

[Carlsson et al., 1991] Carlsson, B., Ahlen, A., and Sternad, M. (1991). Optimal differentaition
based on stochastic signal models. IEEE Transactions on Signal Processing, 39(2):341–353.

[Chang et al., 1991] Chang, F. R., Fang, C. H., and Wang, C. H. (1991). Doubly coprime matrix-
fraction representations using proportional and derivative feedback concepts in generalized
state-space systems. IEEE Transactions on Automatic Control, 36:1193–1195.

[Chen, 1998] Chen, C.-T. (1998). Linear System Theory and Design. Oxford University Press,
Inc., New York, NY, USA, 3rd edition.

[Chen and Seborg, 2002] Chen, D. and Seborg, D. E. (2002). Pi/pid controller design based on
direct synthesis and disturbance rejection. Industrial and Engineering Chemistry Research,
41(19):4807–4822.

[Chen et al., 2011] Chen, W., Khan, A., Abid, M., and Ding, S. (2011). Integrated design of
observer based fault detection for a class of uncertain nonlinear systems. Int. J. of Applied
Mathematics and Computer Sciences, 21 (3):423–430.

[Chen et al., 2016] Chen, W., Yang, J., Guo, L., and Li, S. (2016). Disturbance-observer-based
control and related methods—an overview. IEEE Transactions on Industrial Electronics,
63(2):1083–1095.

[Chen, 2004] Chen, W.-H. (2004). Disturbance observer based control for nonlinear systems.
IEEE/ASME Transactions on Mechatronics, 9(4):706–710.

[Cheng et al., 2015] Cheng, S., Wei, Y., Liang, S., Zhang, K., and Liang, Q. (2015). Rejection
and tracking sinusoidal signals based on state-derivative feedback. In 2015 34th Chinese
Control Conference (CCC), pages 23–29.

[Chitour, 2002] Chitour, Y. (2002). Time-varying high-gain observers for numerical differentia-
tion. IEEE Transactions on Automatic Control, 47(9):1565–1569.

[Cobb, 1984] Cobb, D. (1984). Controllability, observability, and duality in singular systems.
IEEE Transactions on Automatic Control, 29 (12):1076–1082.

[Cominos and Munro, 2002] Cominos, P. and Munro, N. (2002). PID controllers: recent tunings
methods and design to specification. IEE Proceedings-Control Theory Applications, 149(1).

[Commault and Dion, 1982] Commault, C. and Dion, J. M. (1982). Structure at infinity of linear
multivariable systems : a geometric approach. IEEE Transactions on Automatic control,
27:693–696.



128 Bibliography

[Coob, 1984] Coob, D. (1984). Controllability, observability, and duality in singular systems.
IEEE Transactions on Automatic Control, vol29:1076–1082.

[Cui et al., 2018] Cui, J., Zeng, S., Ren, Y., Chen, X., and Gao, Z. (2018). On the robustness and
reliability in the pose deformation system of mobile robots. IEEE Access, 6:29747–29756.

[Daafouz et al., 2006] Daafouz, J., Fliess, M., and Millerioux, G. (2006). Une approche intrin-
séque des observateurs linéaires à entrées inconnues. CIFA’2006, Bordeaux, France.

[Dabroom and Khalil, 1997] Dabroom, A. and Khalil, H. (1997). Numerical differentiation
using high-gain observers. In Proceedings of the 36th IEEE Conference on Decision and
Control, volume 5, pages 4790–4795. San Diego, California USA.

[Dabroom and Khalil, 1999] Dabroom, A. M. and Khalil, H. K. (1999). Discrete-time implemen-
tation of high-gain observers for numerical differentiation. International Journal of Control,
72(17):1523–1537.

[Darouach, 2009] Darouach, M. (2009). Complements to full order observer design for linear
systems with unknown inputs. Applied Mathematics Letters, 22:1107–1111.

[Darouach et al., 1994] Darouach, M., Zazadinski, M., and Xu, S. (1994). Full-order observers
for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 39:606–609.

[Dauphin-Tanguy, 2000] Dauphin-Tanguy, G. (2000). Les Bond Graphs. Hermes Science, Paris.

[Descusse and Dion, 1982] Descusse, J. and Dion, J. M. (1982). On the structure at infinity of
linear square decoupled systems. IEEE Transactions on Automatic Control, 27:971–974.

[Dion and Commault, 1993] Dion, J. and Commault, C. (1993). Feedback decoupling of struc-
tured systems. IEEE Transactions on Automatic Control, 38:1132–1135.

[Dion and Commault, 1982] Dion, J. M. and Commault, C. (1982). Smith-McMillan factorizations
at infinity of rational matrix functions and their control interpretation. System & Control Letters,
1:312–320.

[Diop et al., 1994] Diop, S., Grizzle, J., Moraal, P., and Stefanopoulou, A. (1994). Interpolation
and numerical differentiation for observer design. In American Control Conference, volume 2,
pages 1329–1333.

[Djeziri et al., 2006] Djeziri, M. A., Merzouki, R., Ould-Bouamama, B., and Dauphin-Tanguy,
G. (2006). Fault detection of backlash phenomenon in mechatronic system with parameter
uncertainties using bond graph approach. International Conference on Mechatronics and
Automation, pages 600–605. Luoyang, China.

[Djeziri et al., 2007] Djeziri, M. A., Merzouki, R., Ould-Bouamama, B., and Dauphin-Tanguy,
G. (2007). Bond graph model based for robust fault diagnosis. Proceedings of the 2007
American Control Conference, pages 3017–3022. New York, NY, US.



Bibliography 129

[Duan et al., 2005] Duan, Y. F., Ni, Y. Q., and Ko, J. M. (2005). State-derivative feedback control
of cable vibration using semiactive magnetorheological dampers. Computer-Aided Civil and
Infranstructure Engineering, 20:431–449.

[Edwards and Spurgeon, 1996] Edwards, C. and Spurgeon, S. K. (1996). Robust output tracking
using a sliding-mode controller/ observer scheme. International Journal of Control, 64(5):967–
983.

[Estrada and Malabre, 1997] Estrada, M. B. and Malabre, M. (1997). On the decoupling of
linear systems using proportional and derivative state feedback. In Proceedings of the 36th
Conference on Decision and Control, San Diego, CA, US, pages 1439–1440.

[Fahmy and O’Reilly, 1989] Fahmy, M. M. and O’Reilly, J. (1989). Parametric eigenstruc-
ture assignment for continuous-time descriptor systems. International Journal of Control,
49(1):129–143.

[Falb and Wolovich, 1967] Falb, P. L. and Wolovich, W. A. (1967). On the decoupling of
multivariable systems. Preprints JACC, Philadelphia, pages 791–796.

[Fliess, 1990] Fliess, M. (1990). Some basic structural properties of generalized linear systems.
Systems & Control Letters, 15:391–396.

[Floquet and Barbot, 2006] Floquet, T. and Barbot, J. P. (2006). Advances in variable structure
and sliding mode control, chapter A canonical form for the design of unknown input sliding
mode observers, pages 271–292. Springer.

[Gao, 2014] Gao, Z. (2014). On the centrality of disturbance rejection in automatic control. ISA
Transactions, 53(4):850 – 857. Disturbance Estimation and Mitigation.

[Gilbert, 1969] Gilbert, E. G. (1969). The decoupling of multivariable systems by state feedback.
SIAM Journal of Control and Optimization, 7:50–63.

[Glover and Doyle, 1988] Glover, K. and Doyle, J. C. (1988). State-space formulae for all stabi-
lizing controllers that satisfy an hinf-norm bound and relations to relations to risk sensitivity.
Systems & Control Letters, 11(3):167 – 172.

[Gonzalez et al., 2018] Gonzalez, J., Jimenez, J., and Sueur, C. (2018). Comparison of control
strategies for a real bar system in the presence of disturbances: a bond graph approach. In
International Conference on “Bond Graph Modeling” ICBGM’2018, Bordeaux, France.

[Gonzalez and Sueur, 2018a] Gonzalez, J. and Sueur, C. (2018a). Bond graph approach for
disturbance rejection with derivative state feedback. In 11th International Conference on

“Integrated Modeling and Analysis in Applied Control and Automation” IMAACA’18, part
of I3M’2018 “International Multidisciplinary Modeling and Simulation Multiconference”,
Budapest, Hungary.

[Gonzalez and Sueur, 2017] Gonzalez, J. A. and Sueur, C. (2017). Unknown input observer for
MIMO systems with stability. In Bruzzone, Dauphin-Tanguy, and Junco, editors, Proc. of the
10th Int. Conf. IMAACA, Barcelona, Spain, pages 1–8.



130 Bibliography

[Gonzalez and Sueur, 2018b] Gonzalez, J. A. and Sueur, C. (2018b). Unknown input observer
with stability: A structural analysis approach in bond graph. European Journal of Control,
41:25–43.

[Gonzalez, Joel and Sueur, Christophe, 2019] Gonzalez, Joel and Sueur, Christophe (2019).
Comparison of disturbance rejection with derivative state feedback and active disturbance re-
jection control: Case study. In International Conference on Control, Decision and Information
Technologies (CODIT’19), Paris, France.

[Griewank and Walther, 2008] Griewank, A. and Walther, A. (2008). Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation. Other Titles in Applied Mathematics.
SIAM, second edition. Philadelphia, U.S.

[Guidorzi and Marro, 1971] Guidorzi, R. and Marro, G. (1971). On Wonham stabilizability
condition in the synthesis of observers for unknown-input systems. IEEE Trans. Automat.
Control, 16:499–500.

[Guo and Jin, 2013] Guo, B. and Jin, F. (2013). The active disturbance rejection and sliding
mode control approach to the stabilization of the euler–bernoulli beam equation with boundary
input disturbance. Automatica, 49(9):2911–2918.

[Guo et al., 2016] Guo, B., Wu, Z., and Zhou, H. (2016). Active disturbance rejection control
approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to
stochastic disturbance. IEEE Transactions on Automatic Control, 61(6):1613–1618.

[Guo and Zhao, 2016] Guo, B.-Z. and Zhao, Z. (2016). Active Disturbance Rejection Control
for Nonlinear Systems: An Introduction. Wiley.

[Habibi et al., 2019] Habibi, H., Howard, I., and Simani, S. (2019). Reliability improvement of
wind turbine power generation using model-based fault detection and fault tolerant control: A
review. Renewable Energy, 135:877 – 896.

[Han, 2009] Han, J. (2009). From pid to active disturbance rejection control. IEEE Transactions
on Industrial Electronics, 56(3):900–906.

[Hautus, 1979] Hautus, M. L. J. (1979). (A-B)-invariant and stability subspaces: a frequency
domain description with applications. Memorandum COSOR, 7915. 1979.

[Hautus, 1980] Hautus, M. L. J. (1980). (a,b)-invariant and stability subspaces, a frequency
domain description. Automatica, 16:703–707.

[Hautus, 1983] Hautus, M. L. J. (1983). Strong detectability and observers. Linear Algebra and
its Applications, 50:353–368.

[Hidayat et al., 2011] Hidayat, Z., Babuska, R., De Schutter, B., and Núñez, A. (2011). Ob-
servers for linear distributed-parameter systems: A survey. In 2011 IEEE International
Symposium on Robotic and Sensors Environments (ROSE), pages 166–171.



Bibliography 131

[Hou and Muller, 1992] Hou, M. and Muller, P. (1992). Design of observers for linear systems
with unknown inputs. IEEE Trans. Automat. Control, 37:871–875.

[Huang and Messner, 1998] Huang, Y. and Messner, W. (1998). A novel disturbance observer
design for magnetic hard drive servo system with a rotary actuator. IEEE Transactions on
Magnetics, 34(4):1892–1894.

[Icart et al., 1989] Icart, S., Lafay, J., and Malabre, M. (1989). A unified study of the fixed
modes of systems decoupled via regular static state feedback. In Proc. Joint Conf: New Trends
in System Theory, Genoa - Italy, Birkhauser, Boston:425–432.

[Idel’cik, 1986] Idel’cik, I. (1986). Mémento des pertes de charge. Collection de la Direction
des Études et Recherches d’Électricité de France. Eyrolles,EDF.

[IRENA, 2017] IRENA (2017). Rethinking energy 2017: Accelerating the global energy trans-
formation. The International Renewable Energy Agency - ISBN 978-92-95111-06-6.

[IRENA, 2019a] IRENA (2019a). Global energy transformation: A roadmap to 2050. The
International Renewable Energy Agency - ISBN 978-92-9260-121-8.

[IRENA, 2019b] IRENA (2019b). Renewable energy statistics 2019. The International Renew-
able Energy Agency - ISBN 978-92-9260-137-9.

[IRENA, 2019c] IRENA (2019c). Renewable power generation costs in 2018. The International
Renewable Energy Agency - ISBN 978-92-9260-126-3.

[Ishikawa and Tomizuka, 1998] Ishikawa, J. and Tomizuka, M. (1998). Pivot friction compen-
sation using an accelerometer and a disturbance observer for hard disk drives. IEEE/ASME
Transactions on Mechatronics, 3(3):194–201.

[Kailath, 1980] Kailath, T. (1980). Linear Systems. Prentince Hall, Englewood-Cliff, N.J.

[Kalman et al., 1969] Kalman, R. E., Falb, P. L., and Arbib, M. A. (1969). Topics in Mathemati-
cal System Theory. McGraw-Hill, New York.

[Kalsi et al., 2010] Kalsi, K., Lian, J., Hui, S., and Zak, S. (2010). Sliding-mode observers for
systems with unknown inputs: A high-gain approach. Automatica, 46:347–353.

[Kam and Dauphin-Tanguy, 2005] Kam, C. S. and Dauphin-Tanguy, G. (2005). Bond graph
models of structured parameter uncertainties. Journal of the Franklin Institute, 342:379–399.

[Karnopp, 1979] Karnopp, D. (1979). Bond graphs in control: Physical state variables and
observers. Journal of The Franklin Institute, 308(3):221–234.

[Karnopp et al., 1975] Karnopp, D. C., Margolis, D. L., and Rosenberg, R. C. (1975). System
dynamics: a unified approach. A. Wiley - interscience publications. John Wiley & Sons, 2
edition.



132 Bibliography

[Kawamura et al., 1988] Kawamura, S., Miyazaki, F., and Arimoto, S. (1988). Is a local linear
PD feedback control law effective for trajectory tracking of robot motion? In Proc. 1988 IEEE
International Conference on Robotics and Automation., pages 1335–1340.

[Kempf and Kobayashi, 1999] Kempf, C. J. and Kobayashi, S. (1999). Disturbance observer
and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on
Control Systems Technology, 7(5):513–526.

[Kim et al., 2015] Kim, S., Kwon, W., Ban, J., and Won, S. (2015). Decentralized H∞ control
of large-scale descriptor systems using proportional-plus-derivative state feedback. In 15th
International Conference on Control, Automation and Systems (ICCAS), Busan, South Korea,
pages 1572–1576.

[Kleijn, 2008] Kleijn, I. C. (2008). Torsion Bar 1.0 Reference Manual.

[Kleijn, 2013] Kleijn, I. C. (2013). 20-sim 4C Reference Manual.

[Korosi and Veselý, 2018] Korosi, L. and Veselý, V. (2018). Novel approach to robust pi con-
troller design with state derivative feedback for linear uncertain systems. In 2018 19th
International Carpathian Control Conference (ICCC), pages 488–491.

[Koussiouris, 1980] Koussiouris, T. (1980). A frequency domain approach to the block decou-
pling problem ii: pole assignment while block decoupling a minimal system by state feedback
and a non singular input transformation and the observability of the block decoupled system.
Int. Journal of Control, 32:443–464.

[Krohling, 1997] Krohling, R. (1997). Design of pid controller for disturbance rejection: a
genetic optimization approach. In Second International Conference On Genetic Algorithms In
Engineering Systems: Innovations And Applications, pages 498–503.

[Kudva et al., 1980] Kudva, P., Viswanadham, N., and Ramakrishna, A. (1980). Observers for
linear systems with unknown inputs. IEEE Trans. Automat. Control, 25:113–115.

[Kwak et al., 2002] Kwak, S.-K., Washington, G., and Yedavalli, R. K. (2002). Acceleration
feedback-based active and passive vibration control of landing gear components. Journal of
Aerospace Engineering, 15:1–9.

[Le, 1992] Le, V. X. (1992). Synthesis of proportional-plus-derivative feedbacks for descriptor
systems. IEEE Transactions on Automatic Control, 37:672–675.

[Levant, 1998] Levant, A. (1998). Robust exact differentiation via sliding mode technique.
Automatica, 34(3):379–384.

[Levant, 2003] Levant, A. (2003). Higher order sliding modes, differentiation and output feed-
back control. International Journal of Control, 76(9):924–941.

[Lewis and Symons, 1991] Lewis, F. L. and Symons, V. L. (1991). A geometric theory for
derivative feedback. IEEE Transactions on Automatic Control, 36:1111–1116.



Bibliography 133

[Li et al., 2014] Li, S., Yang, J., Chen, W.-H., and Chen, X. (2014). Disturbance Observer-Based
Control: Methods and Applications. CRC Press, 1st edition edition.

[Luenberger, 1971] Luenberger, D. (1971). An introduction to observers. IEEE Transactions on
Automatic Control, Vol. AC-16, No. 6:596–602.

[Macfarlane and Karcanias, 1976] Macfarlane, A. G. J. and Karcanias, N. (1976). Poles and
zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-
variable theory. International Journal of Control, 24(1):33–74.

[Malabre and Martínez-García, 1993] Malabre, M. and Martínez-García, J. C. (1993). The
modified disturbance rejection problem with stability: A structural approach. Second European
Control Conference, ECC’93, Goningen, The Netherlands, 2:1119 – 1124.

[Martínez-García et al., 1995] Martínez-García, J. C., Malabre, M., Dion, J.-M., and Commault,
C. (1995). Condensed structural solutions to the disturbance rejection and decoupling problems
with stability. 3rd European Control Conference, ECC’95, Rome, Italy, 3b:2545 – 2550.

[Martínez-García et al., 1993] Martínez-García, J. C., Malabre, M., and Rabah, R. (1993). The
partial non interacting problem: Structural and geometric solutions. Kybernetika, 30(6):645–
658.

[Mayr, 1970] Mayr, O. (1970). The Origins of Feedback Control. MIT Press, Cambridge, MA,
USA.

[Mboup et al., 2007] Mboup, M., Join, C., and Fliess, M. (2007). A revised look at numerical
differentiation with an application to nonlinear feedback control. The 15th Mediterranean
Conference on Control and Automation - MED‘2007.

[Mehdi, 2010] Mehdi, D. (2010). Dérivation numérique: synthèse, application et intégration.
PhD thesis, Ecole Centrale de Lyon.

[Miklosovic and Gao, 2004] Miklosovic, R. and Gao, Z. (2004). A robust two-degree-of-
freedom control design technique and its practical application. In Conference Record of
the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., volume 3,
pages 1495–1502 vol.3.

[Miller and Mukunden, 1982] Miller, B. J. and Mukunden, R. (1982). On designing reduced-
order observers for linear time-invariant systems subject to unknown inputs. Internat. J.
Control, 35:183–188.

[Mita et al., 1998] Mita, T., Hirata, M., Murata, K., and Zhang, H. (1998). h∞ control versus
disturbance-observer-based control. IEEE Transactions on Industrial Electronics, 45(3):488–
495.

[Morari and Manfred, 1989] Morari, M. and Manfred, E. (1989). Robust process control. Pren-
tice Hall, Englewood Cliffs, New Jersey.



134 Bibliography

[Moreira et al., 2010] Moreira, M. R., Júnior, E. I. M., Esteves, T. T., Teixeira, M. C. M., Cardim,
R., Assunção, E., and Faria, F. A. (2010). Stabilizability and disturbance rejection with state-
derivative feedback. Mathematical Problems in Engineering,Hindawi Publishing Corporation,
2010:12 pages.

[Morgan, 1964] Morgan, B. (1964). The synthesis of linear multivariable systems by state
variable feedback. Proc.1964 JACC, Stanford, California, pages 446–465.

[Morse, 1973] Morse, A. S. (1973). Structural invariants of linear multivariable systems. SIAM
J. Control, 11:446–465.

[Morse and Wonham, 1973] Morse, A. S. and Wonham, W. (1973). Status of noninteracting
controls. IEEE Trans. Auto. Contr., AC-11:568–581.

[Niemann et al., 1995] Niemann, H. H., Stoustrup, J., Shafai, B., and Beal, S. (1995). Ltr design
of proportional-integral observers. International Journal of Robust and Non linear Control,
5:671–693.

[Nikiforuk and Tamura, 1988] Nikiforuk, P. and Tamura, K. (1988). Design of a disturbance
accommodating adaptive control system and its application to a dc-servo motor system with
coulomb friction. Journal of Dynamic Systems, Measurement, and Control, 110 (4):343–349.

[Ortego Sampedro, 2013] Ortego Sampedro, E. (2013). Etude d’un systeme hydropneumatique
de stockage d’energie utilisant une pompe/turbine rotodynamique.

[Paynter, 1960] Paynter, H. M. (1960). Analysis design of engineering systems. MIT Press,
Cambridge, Massachusetts.

[Pei and Shyu, 1989] Pei, S. and Shyu, J. (1989). Design of fir hilbert transformers and dif-
ferentaitors by eigenfilter. IEEE Transaction on Acousticc, Speech, and Signal Processing,
Vol. 37(No. 11):pp. 1457–1461.

[Pichardo-Almarza et al., 2005] Pichardo-Almarza, C., Rahmani, A., Dauphin-Tanguy, G., and
Delgado, M. (2005). Proportional–integral observer for systems modelled by bond graphs.
Simulation Modelling Practice and Theory, 13(3):179 – 211.

[Radke and Zhiqiang Gao, 2006] Radke, A. and Zhiqiang Gao (2006). A survey of state and
disturbance observers for practitioners. In 2006 American Control Conference, page 6 pp.

[Ratolojanahary et al., 2019] Ratolojanahary, N., Gonzalez, J., Dupont, P., Lainé, A., Neu, T.,
Guyomarc’H, D., and Sueur, C. (2019). Approach of dynamic modelling of a hydraulic system.
In Proceedings of 5th International Conference. Which models for extreme situations and
crisis management? SimHydro 2019, Nice, France.

[Reithmeier and Leitmann, 2003] Reithmeier, E. and Leitmann, G. (2003). Robust vibration
control of dynamical systems based on the derivative of the state. Archive of Applied Mechanics,
72(11):856–864.



Bibliography 135

[REN21, 2019] REN21 (2019). Renewables 2019 global status report.

[Riachy and Fliess, 2011] Riachy, S. and Fliess, M. (2011). High-order sliding modes and
intelligent pid controllers: first steps toward a practical comparison. IFAC Proceedings, 44
(1):10982–10987.

[Rosenberg and Karnopp, 1983] Rosenberg, R. and Karnopp, D. (1983). Introduction to physical
system dynamics. McGraw Hill.

[Rosenbrock, 1970] Rosenbrock, H. (1970). State space and multivariable theory. Nelson,
London, England.

[Schrader and Sain, 1989] Schrader, C. B. and Sain, M. K. (1989). Research on system zeros: a
survey. International Journal of Control, 50(4):1407–1433.

[Seshagiri and Khalil, 2005] Seshagiri, S. and Khalil, H. (2005). Robust output feedback reg-
ulation of minimum-phase nonlinear systems using conditional integrators. Automatica,
41(1):43–54.

[Singh and Khalil, 2005] Singh, A. and Khalil, H. (2005). Regulation of nonlinear systems using
conditional integrators. international journal of robust and nonlinear control. International
Journal of Robust and Nonlinear Control, 15(8):339–362.

[Sueur, 2016] Sueur, C. (2016). Disturbance rejection with derivative state feedback. In 9th Inter-
national Conference on Integrated Modeling and Analysis in Applied Control and Automation,
IMAACA’16, Larnaca, Cyprus.

[Sueur and Dauphin-Tanguy, 1991] Sueur, C. and Dauphin-Tanguy, G. (1991). Bond-graph
approach for structural analysis of MIMO linear systems. Journal of the Franklin Institute,
328:55–70.

[Sueur and Dauphin-Tanguy, 1992] Sueur, C. and Dauphin-Tanguy, G. (1992). Poles and zeros
of multivariable linear systems: a bond graph approach., pages 211–228. Bond Graph for
Engineers (P.C. Breedveld and G. Dauphin-Tanguy) Elsevier Science Publisher B. V.

[Swonder and Swonder, 1971] Swonder, S. C. and Swonder, D. D. (1971). Feedback estimation
systems and the separation principle of stochastic control. IEEE Transactions on Automatic
Control, 16(4):350–354.

[Tang et al., 2018] Tang, T., Niu, S., Chen, X., and Qi, B. (2018). Disturbance observer-based
control of tip-tilt mirror for mitigating telescope vibrations. IEEE Transactions on Instrumen-
tation and Measurement, pages 1–7.

[Tarasov et al., 2013] Tarasov, E., Gahlouz, I., Sueur, C., and Ould-Bouamama, B. (2013). State
and unknown input observer: analysis and design. 7th IMAACA’13, part of 10th I3M2013,
Athens, Greece, September 25-27.



136 Bibliography

[Tarasov et al., 2014a] Tarasov, E., Sueur, C., and Ould-Bouamama, B. (2014a). UIO approach
for estimation of non linear components behavior. 53rd IEEE Conference on Decision and
Control, CDC’14, Los Angeles, California, USA,December 15-17.

[Tarasov et al., 2014b] Tarasov, E., Sueur, C., Ould-Bouamama, B., and Dauphin-Tanguy, G.
(2014b). Flat control of a torsion bar with unknown input estimation. Multi-Conference on
Systems and Control, IEEE MSC’2014, Antibes, France, October 08-10.

[Tavakoli et al., 2005] Tavakoli, S., Griffin, I., and Fleming, P. J. (2005). Robust pi controller for
load disturbance rejection and setpoint regulation. In Proceedings of 2005 IEEE Conference
on Control Applications, 2005. CCA 2005., pages 1015–1020.

[Tidke et al., 2018] Tidke, A., Sonawane, P., Savakhande, V. B., Chewale, M. A., and Wanjari,
R. A. (2018). Disturbance rejection pid controller optimized using genetic algorithm for time
delay systems. In 2018 International Conference on Control, Power, Communication and
Computing Technologies (ICCPCCT), pages 245–249.

[Tong and Yang, 2011] Tong, S. and Yang, G. (2011). Observer-based fault-tolerant control
against sensor failures for fuzzy systems with time delays. Int. J. of Applied Mathematics and
Computer Sciences, 21 (4):617–628.

[Trentelman et al., 2001] Trentelman, H. L., Stoorvogel, A. A., and Hautus, M. (2001). Control
theory for linear systems. London, UK: Springer.

[Verghese, 1978] Verghese, G. C. (1978). Infinite frequency behaviour in generalized dynamical
systems. PhD Thesis, Stanford University,. 1978.

[Verghese and Kailath, 1979] Verghese, G. C. and Kailath, T. (1979). Impulsive behavior in
dynamical systems, structure and significance. In Proc. 4th Int. Symp. Marh. Theory, Networks
Syst.

[Verghese et al., 1981] Verghese, G. C., Levy, B. C., and Kailath, T. (1981). A generalized state-
space for singular systems. IEEE Transactions on Automatic Control, vol. AC-26:811–831.

[Visioli and Zhong, 2011] Visioli, A. and Zhong, Q.-C. (2011). Disturbance Observer-based
Control, pages 195–212. Springer London, London.
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AppendixA
Finite and Infinite Structures

A.1 Finite and infinite structures

Consider an invertible square model Σ(C,A,B,F) described by the state space representation
(A.1). {

ẋ(t) = Ax(t)+Bu(t)+Fd(t)
y(t) =Cx(t)

(A.1)

The infinite structure of the multivariable linear model Σ(C,A,B) is characterized by dif-
ferent integer sets: {n′i} is the set of infinite zero orders of the global model Σ(C,A,B) and
{ni} is the set of row infinite zero orders of the row sub-systems Σ(Ci,A,B). The infinite
structure is well defined in case of LTI models with a transfer matrix representation or with a
graphical representation (structured approach). The row infinite zero order ni verifies condition
ni = min

{
k|CiA(k−1)B , 0

}
. ni is equal to the number of derivations of the output variable

yi(t) necessary for at least one of the input variables to appear explicitly. The global infinite
zero orders are equal to the minimal number of derivations of each output variable necessary
so that the input variables appear explicitly and independently in the equations. The infinite
structure is also pointed out with the Smith-McMillan form at infinity of the transfer matrix
[Bourlès, 2010, Dion and Commault, 1982].

A similar study can be proposed for model Σ(C,A,F). In order to differentiate the infinite
structures of models Σ(C,A,B) and Σ(C,A,F), the row infinite zero orders of model Σ(C,A,B)
will be denoted as {nci} and the row infinite zero orders of model Σ(C,A,F) will be denoted
as {npi}.

The finite structure of a linear model Σ(C,A,B) is characterized by different polynomial
matrices. The invariant zeros (transmission zeros for controllable/observable models) of model
Σ(C,A,B) are the zeros of the system matrix defined in equation (A.2). nIZ , the number of
invariant zeros of model Σ(C,A,B) is equal to nIZ = n−Σn′ci. In a similar manner, the finite
structure of model Σ(C,A,F) can be highlighted.
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S(s) =
(

sI−A −B
C 0

)
(A.2)

System Σ(C,A,B) is state controllable iff matrix [sI−A −B] does not contain any zero, and
observable iff matrix [sI−At Ct ]t doesn’t contain any zero. Otherwise, zeros are called input
(output) decoupling zeros (respectively) [Rosenbrock, 1970].

A.2 Finite and infinite structures of bond graph models

Causality and causal paths are useful for the study of properties, such as controllability, ob-
servability and systems poles/zeros [Sueur and Dauphin-Tanguy, 1992, Boukhobza et al., 2007].
State space and transfer representations can be directly written from a bond graph model, thus
properties of these mathematical representations can be derived before any calculus with a causal
analysis. Bond graph models with integral causality assignment (BGI) can be used to determine
reachability conditions and the number of invariant zeros by studying the infinite structure. The
rank of the controllability matrix is derived from bond graph models with derivative causality
(BGD). A Linear Time-Invariant (LTI) Bond Graph (BG) model is controllable if and only if
the two following conditions are verified (see [Sueur and Dauphin-Tanguy, 1991]): first, there
is a causal path between each dynamical element and one of the input sources and secondly
each dynamical element can have a derivative causality assignment in the bond graph model
with a preferential derivative causality assignment (with a possible duality of input sources).
The observability property can be studied in a similar way, but with output detectors. Systems
invariant zeros are poles of inverse systems. Inverse systems can be constructed by bond graph
models with bi-causality (BGB) which are thus useful for the determination of invariant zeros.
The concept of causal path is used for the study of the infinite structure of the model. The causal
path length between an input source and an output detector in the bond graph model is equal to the
number of dynamical elements met in the path. Two paths are different if they have no dynamical
element in common. The order of the infinite zero nci for the row sub-system Σ(Ci,A,B) is equal
to the length of the shortest causal path between the ith output detector yi and the set of input
sources. The global infinite structure is defined with the concepts of different causal paths. The
orders of the infinite zeros of a global invertible linear bond graph model are calculated according
to equation (A.3), where lk is the smallest sum of the lengths of the k different input-output causal
paths. {

n′c1 = l1
n′ck = lk− lk−1

(A.3)

The number of invariant zeros is determined by the infinite structure of the Bond Graph model
with Integral causality (BGI) model. The number of invariant zeros associated to a controllable,
observable, invertible and square bond graph model is equal to n−∑n′ci.



AppendixB
Pole Placement: Unknown Input
Observer (UIO)

B.1 Proof of proposition 3: Pole placement for matrix NCLr

Pole placement for matrix NCLr is equivalent to pole placement for system Σ(CAr−1,NOL).
The observability property of this system must be studied, and particularly the rank of the
observability matrix which is equal to the number of poles which can be assigned. The n rows of
the observability matrix of system Σ(CAr−1,NOL) are

CAr−1 , CAr−1 ·NOL , · · · , CAr−1 ·Nn−1
OL .

Each row is calculated.

CAr−1

CAr−1(NOL) = (CAr−1)(A−1−A−1F(CA−1F)−1CA−1) =CAr−2

CAr−1(NOL)
2 =CAr−3

...
CAr−1(NOL)

r−2 =CA
CAr−1(NOL)

r−1 =C
CAr−1(NOL)

r = 0
...

CAr−1(NOL)
n−1 = 0

(B.1)

The rank of this observability matrix is r because model Σ(C,A) is observable and the non
null rows calculated in (B.1) are thus linearly independent. This proved that r poles can be
assigned in equation (2.15) and that the observer has n− r fixed poles.
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B.2 Proof of proposition 4: Fixed modes of the estimation error,
SISO case

First, the observability property of model Σ(CAr−1,NOL) is studied. The non-observable poles
are the roots of the invariant polynomials obtained from the Smith Form of matrix N(s) defined
in (B.2). With matrix CAr−1, only r modes of matrix NOL can be assigned, because the rank of
the observability matrix of system Σ(CAr−1,NOL) is equal to r. The rank of matrix (B.2) is less
than r for some values of s, that are the non-observable modes. This rank is equal to r with s = 0.
Thus, the null modes (if any) of Σ(CAr−1,NOL) are observable modes.

N(s) =
[

sI−NOL

CAr−1

]
(B.2)

The fixed poles of the state estimation error defined in (2.15) are thus the n−r non-observable
poles of model Σ(CAr−1,NOL). Now, some equivalent transformations are proposed for the Smith
Matrix S(s) of system Σ(C,A,F) defined in (B.3).

S(s) =
[

sI−A −F
C 0

]
(B.3)

S(s)∼
[

sA−1− I −A−1F
C 0

]
∼
[

sA−1− I −A−1F
C+ sCA−1−C −CA−1F

]
(B.4)

∼
[

sA−1− I A−1F(CA−1F)−1

sCA−1 I

]
(B.5)

∼
[

sA−1− I−A−1F(CA−1F)−1(−sCA−1) 0
sCA−1 I

]
(B.6)

∼
[

sNOL− I 0
0 I

]
(B.7)

Since det (poI−NOL) = pn
o det

(
I− NOL

po

)
, with s =

(
1
po

)
it comes

det(poI−NOL) = (−1)ns−n det(sNOL− I)

which is a polynomial of degree n with variable po and degree −n with variable s.
But, det(S(s)) is a polynomial of degree n− r, thus from a simple mathematical analysis
it is proved that the polynomial det(poI−NOL) has r null roots and that the roots of the poly-
nomial det(sNOL− I) are the inverse of the non null roots of polynomial det(poI−NOL) since(

po =
1
s

)
. In that case the non null poles of matrix NOL are the inverses of the invariant zeros of

model Σ(C,A,F).

The non-observable modes of system Σ(CAr−1,NOL) are thus all the inverse of the invariant
zeros of system Σ(C,A,F). They are the fixed modes of the state estimation error equation.



B.3. Proof proposition 8: fixed modes of the estimation error, non square model 143

B.3 Proof proposition 8: fixed modes of the estimation error, non
square model

The fixed poles of the state estimation error defined in (2.24) are the non observable poles of model

Σ

([
C1Anp1−1

C̄1

]
,NOL

)
. The non observable poles are the roots of the invariant polynomials

obtained from the Smith form of matrix N(s) defined in (B.8). With matrix C1An1−1, the n1 null
modes of matrix NOL can be assigned (see proof of the SISO case). The goal is to emphasize the
number of modes which can be assigned with matrix C̄1.

N(s) =

 sI−NOL

C1Anp1−1

C̄1

 (B.8)

Now, some equivalent transformations are proposed for the Smith matrix S(s) of system
Σ(C,A,F) defined in (B.9).

S(s) =

 (sI−A) −F
C1 0
C̄1 0

 (B.9)

S(s)∼

 (sA−1− I) −A−1F
C1 0
C̄1 0

 (B.10)

∼

 (sA−1− I) −A−1F
C1 +(sC1A−1−C1) −C1A−1F

C̄1 0

 (B.11)

∼

 (sA−1− I) A−1F
[
C1A−1F

]−1

sC1A−1 I
C̄1 0

 (B.12)

∼

 (sA−1− I)−A−1F
[
C1A−1F

]−1− sC1A−1 0
sC1A−1 I

C̄1 0

 (B.13)

∼

 sNOL− I 0
0 I

C̄1 0

∼
 sNOL− I 0

C̄1 0
0 I

 (B.14)

The roots of det(sNOL− I) are the n−np1 inverse of the non null poles of matrix NOL. From
equations (B.9) and (B.14), the non observable modes of Σ(C̄1,NOL) are thus all the inverse of
the invariant zeros of system Σ(C,A,F). Since only the null poles of matrix NOL can be placed
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with matrix C1Anp1−1, the non observable poles of system Σ

([
C1Anp1−1

C̄1

]
,NOL

)
are thus the

inverse of the invariant zeros of Σ(C,A,F). They are the fixed modes of the state estimation error
equation.

B.4 Proof proposition 9: Necessary Condition for Pole Placement,
MIMO case with p = q = 2

Consider the matrix product,

NCL ·F =
(

A−1−A−1F
(
CA−1F

)−1
CA−1

)
F−K

[
C1Anp1−1

C2Anp2−1

]
F =−KΩ .

Suppose that matrix Ω which is equivalent to a decoupling matrix in control theory, is
not invertible. in that case, {np1,np2} , {n′p1,n

′
p2}, i.e., the row infinite structure of system

Σ(C,A,F) is different of its global infinite structure. The rank of matrix NCL ·F is equal to 1,
thus matrix NCL is not invertible and the observer cannot be synthesized.

B.5 Proof proposition 10 and 11: Fixed Poles for the MIMO case,
with p = q = 2

Matrix NCL in this MIMO square problem is written as

NCL = A−1−A−1F(CA−1F)−1CA−1−K
[

C1Anp1−1

C2Anp2−1

]
.

Pole placement is thus studied with the observability property of system Σ

([
C1Anp1−1

C2Anp2−1

]
,NOL

)
.

The rows of the observability matrix of this system are calculated, firstly with the row matrix
C1Anp1−1.

C1Anp1−1

C1Anp1−1NOL =C1Anp1−1(A−1−A−1F(CA−1F)−1CA−1) =C1Anp1−2

C1Anp1−1(NOL)
2 =C1Anp1−3

...
C1Anp1−1(NOL)

np1−2 =C1A
C1Anp1−1(NOL)

np1−1 =C1
C1Anp1−1(NOL)

np1 = 0
...
C1Anp1−1(NOL)

n−1 = 0

(B.15)
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The same result is obtained with the row matrix C2Anp2−1, and the non null rows of the

observability matrix of system Σ

([
C1Anp1−1

C2Anp2−1

]
,NOL

)
are thus:

[Ct
1,(C1A)t , · · · ,(C1Anp1−1)t ,Ct

2,(C2A)t , · · · ,(C2Anp2−1)t ]t .

The Rank of this matrix is equal to np1 +np2 because model Σ(C,A,F) is observable and for
each output variable, the observability index is greater or equal to the row infinite zero order. The

non null rows of the observability matrix of system Σ

([
C1Anp1−1

C2Anp2−1

]
,NOL

)
are thus one part of

the independent rows of the observability matrix of system Σ(C,A).

B.6 Proof proposition 13: Fixed Poles for the MIMO case, with a
null invariant zero

Matrix NCL in this MIMO problem is in equation (2.35). Pole placement is studied with the

observability property of system Σ

([
C1Anp1−1

C2Anp2−1

]
,NOL

)
, because the number of modes which

can be assigned is equal to the rank of this observability matrix. The rows of the observability
matrix of this system are calculated, firstly with the row matrix C1Anp1−1 associated with the null
invariant zero, then with matrix matrix C2Anp2−1.

C1Anp1−1

C1Anp1−1 NOL =C1Anp1−1

(
A−1−A−1F

[
C1A−2F
C2A−1F

]−1[ C1A−2

C2A−1

])
=C1Anp1−2

C1An1−1 (NOL)
2 =C1A(np1−3)

...
C1Anp1−1 (NOL)

np1−2 =C1A

C1Anp1−1 (NOL)
np1−1 =C1

C1Anp1−1 (NOL)
np1 =C1A−1

C1Anp1−1 (NOL)
np1+1 = 0

...
C1Anp1−1 (NOL)

n−1 = 0

(B.16)
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A similar result is obtained for the row matrix C2Anp2−1, but the expression
C2Anp2−1(NOL)

np2 = 0. Therefore, the non null rows of the observability matrix of system

Σ

([
C1Anp1−1

C2Anp2−1

]
,NOL

)
are thus:

[(C1A−1)t ,Ct
1,(C1A)t , · · · ,(C1Anp1−1)t ,Ct

2,(C2A)t , · · · ,(C2Anp2−1)t ]t .

The rank of this matrix is equal to np1 +np2 +1 because model Σ(C,A,F) is observable and
for each output variable, the observability index is greater or equal to the row infinite zero order.

The non null rows of the observability matrix of system Σ

([
C1Anp1−1

C2Anp2−1

]
,NOL

)
are thus one

part of the independent rows of the observability matrix of system Σ(C,A). This rank can also be
studied with the invariant subspaces defined in the geometric approach.
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ESTIMATION AND CONTROL OF DYNAMICAL SYSTEMS WITH UNKNOWN INPUTS TOWARD RE-
NEWABLE SOURCES

Abstract
Nowadays, industrial processes must be efficient, particularly at the production level and/or energy consumption.
This research work aims at improving the process efficiency by analysing the influences of disturbances on their behaviour, from
the conception phase to the synthesis of controller/observer, in an integrated approach.
The disturbance rejection problem is first introduced as well as different control laws allowing attenuate/reject these disturbances.
The Torsion-Bar (T-B) system is presented. It will be used as case study all along this research work. A control law based on the
concept of derivative state variable is presented and validated while applied as disturbance rejection on the T-B system.
In order to reject the disturbance, different physical variables must be estimated, such as state variables, derivative state variables
as disturbance variables. An unknown input observer based on the bond graph representation is recalled and extended in the
multivariable case. It is the first theoretical contribution of this work. As for the synthesis of control laws, an integrated approach is
developed.
We thus compare the efficiency of different so-called « modern control laws » for the disturbance rejection problems by simulation
with the T-B system example. We analyse the efficiency of our approach. One extension to the Input-Output decoupling problem
allows us to extend the disturbance rejection problem to other control law type in an integrated approach. At least, these techniques
are applied on the real T-B system and compared. We validate our approach.
Since this work aims at analysing and developing efficient control laws for industrial processes, a simplified model of a hydroelectric
plant is developed, in order to apply our results. A simplified bond graph model is validated with simulations. It will be used as a
basis for the control of a plant. We are working with researchers of the fluid mechanic lab for developing a first plant.

Keywords: disturbance rejection, bond graph, derivative state feedback, unknown input observer, pole
placement, structural approach, torsion-bar system, pelton turbine.

ESTIMATION ET CONTRÔLE DES SYSTÈMES DYNAMIQUES À ENTRÉES INCONNUES ET ENER-
GIES RENOUVELABLES

Résumé
De nos jours, les processus industriels se doivent d’être efficaces, en particulier au niveau de leur production et/ou consommation
énergétique.
Ce travail de recherche vise à améliorer l’efficacité des processus en analysant l’influence des perturbations sur leur comportement,
de la phase de conception à la synthèse des contrôleurs/observateurs, ceci dans une approche intégrée.
Le problème du Rejet de Perturbation est d’abord introduit ainsi que différents types de contrôles permettant d’atténuer et/ou rejeter
ces perturbations. Le système de Barre de Torsion est présenté. Il va servir de cas d’étude tout au long du travail de recherche. Une
loi de commande basée sur le concept d’état dérivé est présentée et ensuite validée avec comme application le rejet de perturbation
appliqué à la barre de torsion.
Afin d’effectuer le rejet de perturbation, il est nécessaire d’estimer les grandeurs physiques utilisées dans les différentes expressions
de loi de commande, en particulier les variables d’état, leurs dérivées ainsi que les variables de perturbation. Un observateur à
entrées inconnues basé sur la représentation Bond Graph est rappelé et ensuite étendu au cas multi-variable. C’est la première
contribution théorique de ce travail de recherche. Une démarche intégrée est proposée, semblable à celle exploitée pour la synthèse
de lois de commande.
Nous comparons ensuite l’efficacité de différentes techniques de commandes dites « modernes » pour le rejet de perturbation par
simulation sur le système barre de torsion et analysons ainsi l’efficacité de la technique proposée. Une extension théorique au
problème du découplage entrée-sortie nous permet de généraliser le problème du rejet de perturbation à d’autres types de contrôle
dans une même démarche intégrée d’analyse et de synthèse. Enfin, ces techniques sont exploitées et analysées sur le système réel.
Nous validons ainsi expérimentalement nos résultats.
Comme ce travail vise à analyser et développer des techniques performantes de commande pour les processus industriels, un
modèle très simplifié de centrale hydroélectrique est développé afin d’appliquer les résultats de nos travaux. Un modèle Bond
Graph simplifié est validé par simulation. Il va servir de base pour le pilotage d’une centrale. Une première expérimentation est en
cours avec des chercheurs du laboratoire de mécanique des fluides.

Mots clés : rejet de perturbations, bond graph, retour d’état dérivé, observateur à entrées inconnues,
placement de pôles, approche structurelle, système de barre de torsion, turbine pelton.

Centre de Recherche en Informatique, Signal et Automatique de Lille
Université Lille 1 – Bâtiment M3 extension – Avenue Carl Gauss – 59655 Villeneuve-D’Ascq
Cedex – FRANCE –


	Résumé
	Acknowledgements
	List of Abbreviations
	Table of Contents
	List of Tables
	List of Figures
	General Introduction
	Thesis Layout and Summary of Thesis
	Contributions of the Thesis
	Journals
	International conferences


	1 Disturbance Rejection Problem
	1.1 Introduction
	1.2 Poles and Zeros: Theoretical framework
	1.3 Control System: Disturbance rejection problem
	1.3.1 PID (PI) Control
	1.3.2 ssf control
	1.3.3 ssf Control with disturbance rejection

	1.4 Disturbance Rejection with dsf
	1.4.1 dr-dsf without pole placement
	1.4.2 dr-dsf with pole placement

	1.5 Experimental System
	1.5.1 System description
	1.5.2 State-Space Equation
	1.5.3 Model Validation

	1.6 Disturbance Rejection for the TB System
	1.6.1 Structural properties of the BG model: Disturbance Rejection problem
	1.6.2 pid (pi) Control
	1.6.3 Disturbance Rejection with dsf

	1.7 Conclusion

	2 uio: Background and new developments
	2.1 Introduction
	2.2 Comparison between UIO approaches
	2.2.1 Some classical approaches
	2.2.2 uio: bg Approach
	2.2.3 uio siso case: Simulations
	UIO: Bond Graph Approach
	PI Observer
	UIO: Inverted Matrices
	UIO: Algebraic Approach
	2.2.4 Remarks

	2.3 uio-bg: mimo case
	2.3.1 Non-Square Model
	2.3.2 Square Model: UIO without Null Invariant Zeros
	2.3.3 Square Model: UIO with Null Invariant Zeros

	2.4 Conclusion

	3 DR with estimation and I/O Decoupling with DSF
	3.1 Introduction
	3.2 Disturbance Rejection - Three approaches
	3.2.1 dobc
	3.2.2 adrc
	3.2.3 dsf-uio-bg

	3.3 Disturbance Rejection: Simulations
	3.3.1 Disturbance Observer-Based Control
	3.3.2 Active Disturbance Rejection Control
	3.3.3 Disturbance Rejection by Derivative State Feedback using UIO
	3.3.4 Analysis of the results

	3.4 Input-Output decoupling with dsf
	3.4.1 rssf: some properties
	3.4.2 dsf for Input-Output decoupling
	3.4.3 Properties of the controlled model with pole placement
	3.4.4 Comparison between rssf and dsf
	3.4.5 Case study: simple mechanical system
	3.4.6 Concluding remarks on Input-Output decoupling with dsf

	3.5 Conclusion

	4 dr - dsf - uio - bg: Study case
	4.1 Introduction
	4.2 Real Torsion-Bar Description
	4.3 Disturbance Rejection: Applications
	4.3.1 pid control
	4.3.2 dobc
	4.3.3 adrc
	4.3.4 dsf-uio-bg

	4.4 Concluding remarks

	5 Future Works: Renewal energy
	5.1 Introduction
	5.2 Renewable sources: Brief summary
	5.3 Hydroelectric plant
	5.3.1 Hydroelectric model: Word Bond Graph
	5.3.2 Mathematical description
	5.3.3 Simulations

	5.4 Conclusion

	General Conclusion and Perspectives
	Bibliography
	A Finite and Infinite Structures
	A.1 Finite and infinite structures
	A.2 Finite and infinite structures of bond graph models

	B Pole Placement: UIO
	B.1 Proof of proposition 3: Pole placement for matrix NCLr 
	B.2 Proof of proposition 4: Fixed modes of the estimation error, SISO case 
	B.3 Proof proposition 8: fixed modes of the estimation error, non square model
	B.4 Proof proposition 9: Necessary Condition for Pole Placement, MIMO case with p=q=2
	B.5 Proof proposition 10 and 11: Fixed Poles for the mimo case, with p=q=2
	B.6 Proof proposition 13: Fixed Poles for the mimo case, with a null invariant zero

	Contents

