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Titre : Algorithmes de descente de gradient inertiels pour la minimisation
convexe.

Résumé Cette thèse porte sur l’étude des méthodes inertielles pour ré-
soudre les problèmes de minimisation convexe structurés. Depuis les premiers
travaux de Polyak et Nesterov, ces méthodes sont devenues très populaires,
grâce à leurs effets d’accélération. Dans ce travail, on étudie une famille
d’algorithmes de gradient proximal inertiel de type Nesterov avec un choix
spécifique de suites de sur-relaxation. Les différentes propriétés de conver-
gence de cette famille d’algorithmes sont présentées d’une manière unifiée, en
fonction du paramètre de sur-relaxation. En outre, on étudie ces propriétés,
dans le cas des fonctions lisses vérifiant des hypothèses géométriques supplé-
mentaires, comme la condition de croissance (ou condition de Łojasiewicz).
On montre qu’en combinant cette condition de croissance avec une condition
de planéité (flatness) sur la géométrie de la fonction minimisante, on obtient
de nouveaux taux de convergence. La stratégie adoptée ici, utilise des analo-
gies du continu vers le discret, en passant des systèmes dynamiques continus
en temps à des schémas discrets. En particulier, la famille d’algorithmes
inertiels qui nous intéresse, peut être identifiée comme un schéma aux dif-
férences finies d’une équation/inclusion différentielle. Cette approche donne
les grandes lignes d’une façon de transposer les différents résultats et leurs
démonstrations du continu au discret. Cela ouvre la voie à de nouveaux
schémas inertiels possibles, issus du même système dynamique.

Mots-clés : Optimisation convexe, Algorithmes inertiels, Systèmes dy-
namiques, Analyse de Lyapunov, Condition de croissance.

Laboratoire d’accueil : Institut de Mathématiques de Bordeaux, 351,
cours de la Libération, 33 405, Talence, France.
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Title : Inertial Gradient-Descent algorithms for convex minimization

Abstract : This Thesis focuses on the study of inertial methods for solving
composite convex minimization problems. Since the early works of Polyak
and Nesterov, inertial methods become very popular, thanks to their accel-
eration effects. Here, we study a family of Nesterov-type inertial proximal-
gradient algorithms with a particular over-relaxation sequence. We give a
unified presentation about the different convergence properties of this family
of algorithms, depending on the over-relaxation parameter. In addition we
addressing this issue, in the case of a smooth function with additional geo-
metrical structure, such as the growth (or Łojasiewicz) condition. We show
that by combining growth condition and a flatness-type condition on the
geometry of the minimizing function, we are able to obtain some new con-
vergence rates. Our analysis follows a continuous-to-discrete trail, passing
from continuous-on time-dynamical systems to discrete schemes. In partic-
ular the family of inertial algorithms that interest us, can be identified as a
finite difference scheme of a differential equation/inclusion. This approach
provides a useful guideline, which permits to transpose the different results
and their proofs from the continuous system to the discrete one. This opens
the way for new possible inertial schemes, derived by the same dynamical
system.

Keywords : Convex optimization, Inertial algorithms, Dynamical systems,
Lyapunov analysis, Growth condition.

Institute : Institut de Mathématiques de Bordeaux, 351, cours de la Libéra-
tion, 33 405, Talence, France.
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αλήτης) pour qui je n’ai pas pu décider jusqu’au dernier moment dans quelle
section, française ou grecque, le mentionner. Merci de m’avoir donné du
courage ainsi que pour toutes les discussions et expériences "franco-grecques"
que l’on a eues ensemble. Finalement, je souhaite dire un grand merci à
Francesca pour tous les moments que l’on a pu passer ensemble à Lyon (ou
ailleurs) et pour m’avoir fait découvrir cet amour pour l’Italie (et surtout
pour la nourriture italienne hein...). Pendant cette période, tu m’as donné
le courage qu’il me fallait pour continuer dans les mathématiques, malgré les
circonstances difficiles. Aujourd’hui encore, je sens qu’une partie de ma force
pour faire cette thèse vient de toi.

Venons-en à Bordeaux. Je souhaite remercier les doctorantes/doctorants
(et autres) que j’ai eu la chance de connaître ici. Tout d’abord Elsa, la
première-meilleure rencontre et co-bureau à l’IMB. Merci pour ton accueil et
ta bienveillance, sans toi mon intégration à l’IMB n’aurait pas été la même.
Merci à Jean d’avoir partagé le même bureau et le même directeur que moi
pendant quatre mois de stage. Sami -le frère- le plus beau de l’IMB (le
jour où les luttes ouvrières vont converger, tes estimateurs s’effondreront).
À Philippe pour tes rigolades et tes têtes bougonnes. Merci à Fabien mon
premier-deuxième co-bureau et premier frère de thèse pour ta patience et
tes réponses à toutes mes questions de 1ère année de thèse, ainsi qu’à Marc
l’autre premier frère de thèse pour ta jovialité. Roberto pour toutes les dis-
cussions philosophiques autour de la vie et l’enseignement des maths (ah j’ai
oublié aussi le prix pour le meilleur pot de thèse). À tous les autres doc-
torants (vieux ou pas) Bianca, Alice, Jonathan et Nicolas et Nikola pour les
premiers moments conviviaux et les soirées "chez Niko" (ou ailleurs). Aux
gens du Labri comme Antonin et mon frère de thèse Pierre. À Mohammed,
Louis-Marie et Luis pour les repas partagés au Haut Carré, ainsi que pour
les matchs de ping-pong au Labri. Revenant à l’IMB, j’aimerais dire un
grand merci à mon voisin de bureau Baptiste pour sa bonne humeur quo-
tidienne, pour les petites -longues- discussions chaque matin, sa patience
pour venir répondre à toutes mes questions linguistiques (et pas seulement),
ainsi que pour toutes les corrections "indécises" de mes mails (tu es vraiment
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Κατερ́ινη και τις βραδ́ιες στην πλατέια και στο "μαγαζ́ι". Τον Μπούμπου για
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Σαν τους αλγόριθμους που μελετάω.
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Introduction (Français)

L’objectif principal de cette thèse, consiste à étudier et améliorer certaines
méthodes pour la résolution des problèmes d’optimisation mathématique.

Une formulation abstraite pour ces problèmes, peut s’exprimer de la
manière suivante :

F ∗ = min
x∈H

F (x) (1)

où H est un espace de Hilbert et F : H −→ R est la fonction modélisant le
problème.

En général, même si une telle solution existe, le problème (1) peut être
difficile à résoudre, si l’on ne fait pas d’hypothèses supplémentaires sur la
fonction minimisante F .

La convexité et la régularité de la fonction minimisante F sont quelques
conditions, qui peuvent rendre la résolution d’un tel problème réalisable.
La propriété de régularité, exclut des fonctions ayant des comportements
"sauvages" (comme x sin

(
1
x

)
près de 0) et fournit des bornes supérieures

quadratiques à la fonction minimisante F . D’autre part, la convexité est un
outil puissant, permettant de développer plusieurs méthodes, pour estimer
la solution du problème (1), d’une manière efficace. Le grand avantage des
fonctions convexes, est la propriété du local au global du minimum (i.e. la
solution F ∗ est unique). Cette observation, transpose le problème (1), en un
problème de recherche des zéros du (sous)gradient de F .

Dans le cadre de cette thèse, on s’intéresse aux méthodes du premier ordre
pour la résolution des problèmes de minimisation convexe structurés. Il existe
une large variété de problèmes intervenant dans plusieurs domaines différents,
comme en statistiques, en apprentissage machine (machine learning), ou en
traitement du signal et de l’image, qui peuvent être formulés par une telle
structure et être résolus efficacement par des telles méthodes.

Les problèmes de minimisation convexe structurés, se réfèrent à des prob-
lèmes de minimisation d’une fonction convexe F , qui se décompose en une
somme de deux fonctions F = f + g, dont l’une est différentiable à gradient

1
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globalement lipschitzien. Les problèmes inverses sont des exemples classiques
de problèmes qui peuvent être résolus en utilisant une telle formulation, avec
un terme d’attache aux données (partie lisse) et un terme de régularisation
(partie non-lisse) lié à la nature précise du problème.

Les méthodes du premier ordre sont des schémas (algorithmes), qui ne
font intervenir que le (sous)gradient de la fonction F , plutôt que de l’information
d’ordre supérieur, comme la hessienne de F . Ces méthodes se révèlent très
efficaces, dans le contexte des problèmes d’optimisation de grande échelle
(large-scale optimization), où la dimension de l’espace est grande et les cal-
culs des dérivées d’ordre supérieur peuvent être très couteux à réaliser.

Notre étude suit un chemin "du continu au discret", en passant des sys-
tèmes dynamiques continus en (temps), à des schémas discrets (algorithmes),
pour la résolution numérique du problème de minimisation (1).

Cette thèse se divise en deux grandes parties. Dans la partie I, on étudie
l’évolution des trajectoires, générées par des systèmes dynamiques, qui min-
imisent la fonction F . Outre l’intérêt de traiter des questions théoriques
d’une manière autonome, cette partie joue également le rôle d’un prélude
pour la partie II et l’étude des schémas discrets pour l’approximation numérique
d’une solution au problème de minimisation de F . En particulier, ces algo-
rithmes peuvent être identifiés comme des schémas numériques d’un système
continu associé. Par conséquent, étudier les systèmes dynamiques avant de
passer aux algorithmes s’avère offrir plusieurs avantages, car les calculs peu-
vent être plus faciles et plus simples à traiter que ceux du cas discret (al-
gorithmes). De plus, ils offrent une meilleur intuition (comme par exemple
pour la recherche de "bons candidats" des énergies de Lyapunov). Néanmoins,
comme on le verra au chapitre 2, l’étude des systèmes continus dépend na-
turellement des hypothèses de régularité sur F et devient plus compliquée
lorsque l’on traite des fonctions non lisses. Dans ce cas, des outils plus avancés
de calcul différentiel sont nécessaires afin d’établir les différentes propriétés
de convergence. D’un autre coté, les hypothèses sur la régularité de la trajec-
toire continue, jouent un rôle moins essentiel pour l’analyse des trajectoires
discrètes "sans dérivée" générées par un algorithme.

Dans le chapitre 1, on présente certains systèmes dynamiques qui ont été
étudiés récemment et qui génèrent des trajectoires pour minimiser la fonction
F . Plus précisément, on présente l’analyse pour un système dynamique du
deuxième ordre avec un choix particulier de terme de viscosité évanescente :

ẍ(t) + b

t
ẋ(t) +∇F (x(t)) = 0 (2)

avec b > 0 le paramètre de friction. Des systèmes comme (2), sont fortement
liés au problème de minimisation de la fonction F . En outre, comme il a été
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observé dans [SBC16], le système modélise un choix d’algorithme de descente
de gradient inertiel de type Nesterov. Ceci est d’une importance particulière,
puisque l’on s’intéresse aux propriétés de convergence de cet algorithme en
partie II . Dans le chapitre 1, on présente différents résultats concernant
l’équation différentielle (2). Ces résultats donneront une ligne directrice,
pour l’analyse des schémas discrets dans la partie II, ainsi que pour l’étude
de l’inclusion différentielle associée à (2):

ẍ(t) + b

t
ẋ(t) + ∂F (x(t)) 3 0 (3)

où la fonction F est convexe, mais pas nécessairement différentiable.
L’étude des inclusions différentielles telle que (3), recouvre une large

gamme de problèmes issus du domaine de l’optimisation convexe non-lisse.
Les problèmes sous contraintes, les problèmes de type LASSO faisant inter-
venir la norme `1, les problèmes de débruitage mettant en jeu la variation
totale, ou d’autres problèmes inverse faisant intervenir des termes de régu-
larisation non-différentiables, sont des exemples typiques que l’on rencontre
souvent dans ce contexte.

Dans le même esprit que pour l’équation différentielle (2), le système (3)
modélise un algorithme de descente de gradient proximal de type Nesterov
(voir algorithme 7 dans le chapitre 3), utilisé dans le cadre de la minimisation
convexe non lisse structurée.

Dans le chapitre 2, on s’intéresse à l’étude de l’inclusion différentielle (3)
et on étend les résultats trouvés dans le cas différentiable pour une solution
du système (2), concernant ses propriétés pour la minimisation de F . En par-
ticulier, on déduit que la solution de (3) (voir définition 2.1 dans le chapitre
2), satisfait les mêmes propriétés de convergence, en fonction du paramètre
de friction b > 0. De plus, dans le cas b < 3, on montre que l’ordre de
convergence pour la fonction objectif F (x(t))− F ∗ est optimal.

Dans la partie II, on étudie certains types d’algorithmes inertiels, dans le
cadre de l’optimisation convexe structurée. Ceci est le cas du problème de
minimisation d’une fonction F = f+g, qui se décompose en une fonction con-
vexe et lisse f et une fonction convexe (non nécessairement différentiable) g,
que l’on suppose proximable (i.e. dont on peut calculer l’opérateur proximal
(voir définition 7)). Depuis les travaux d’Euler, Lagrange et Cauchy [Cau47]
et l’algorithme de descente de gradient, de nombreuses avancées ont été faites,
ces dernières décennies, pour le développement de méthodes efficaces dans le
cadre d’optimisation convexe (non-lisse) structurée. L’algorithme du point
proximal ([Mar70], [Roc76]) ou plus généralement l’algorithme du gradient
proximal ([CW05]), sont parmi les méthodes les plus célèbres pour la ré-
solution des problèmes de minimisation dans ce cadre. Ces schémas, sont
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relativement simples à implémenter et jouissent de certaines "bonnes" pro-
priétés qualitatives. Pourtant, sans faire d’hypothèses supplémentaires sur
la fonction minimisante, la vitesse de convergence que l’on peut obtenir (en
termes de la fonction objective par exemple) avec ces méthodes est relative-
ment lente, à savoir d’ordre O(n−1) (où n est le nombre d’itérations). Ceci
montre que ces méthodes sont sous-optimales parmi celles du premier-ordre,
pour lesquelles la complexité optimale est d’ordre O(n−2), comme il a été
montré dans [NY83] (voir aussi [Nes13b]). Cet effet d’accélération et le pas-
sage de l’ordre O(n−1) à l’ordre optimal O(n−2), s’obtient via les méthodes
inertielles.

Les méthodes inertielles consistent à ajouter un terme d’inertie supplé-
mentaire à l’étape de descente de gradient (ou l’étape de descente de gradient
proximal dans le cadre de minimisation non-lisse), à chaque itération. Les
premières méthodes inertielles ont été considérées dans les travaux de Polyak
[Pol64] (voir aussi [Fra50]), avec l’algorithme de boule pesante (Heavy-Ball)
pour la minimisation des fonctions lisses et fortement convexes. Toutefois
ce n’est que dans les travaux de Nesterov [Nes83], qu’un choix de terme de
frottement particulier a été introduit permettant d’accélérer la vitesse de
convergence de la fonction objective à un O(n−2), pour la minimisation des
fonctions convexes et lisses. Le schéma inertiel initial qui a été proposé dans
[Nes83] est le suivant:

tn+1 =
1 +

√
4t2n + 1
2

yn = xn + tn − 1
tn+1

(xn − xn−1)

xn+1 = yn − γ∇F (yn)

(4)

avec x0 = x1 et t1 = 1 et γ un pas adéquat. En effet le phénomène
d’accélération reste toujours valable pour une plus large gamme de choix
de suite tn, vérifiant le règle général suivant :

t2n + tn+1 − t2n+1 ≥ 0 (5)

que l’on appelle règle de Nesterov. Dans ce cadre, on peut remarquer que le
choix initial de tn (4) de Nesterov, correspond au cas limite d’égalité dans
(5).

A la suite de ces travaux, les schémas inertiels ont fait l’objet de nom-
breuses études dans les dernières décennies. Notamment dans les travaux de
Güler [Gül92] et Beck et Teboulle [BT09] où les auteurs étendent le schéma
de Nesterov et l’effet d’accélération pour l’algorithme du point proximal et
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l’algorithme du gradient proximal respectivement, dans le cadre de minimi-
sation non lisse.

Plus précisément, dans la partie II de cette thèse, on s’intéresse à un
schéma inertiel particulier de type Nesterov, introduit récemment dans [CD15]
(voir aussi [SBC16] et [AC18d]), dans le cadre de l’optimisation convexe non-
lisse, structurée :

yn = xn + n

n+ b
(xn − xn−1)

xn+1 = Proxγg(yn − γ∇f(yn))
(6)

où Prox désigne l’opérateur proximal (voir définition 7) et b > 0 est le
paramètre de sur-relaxation, mesurant l’ampleur d’inertie appliquée à chaque
étape de l’algorithme. On peut remarquer que quand b est petit, le terme
inertiel n

n+b(xn − xn−1) est plus prépondérant, alors que lorsque b est grand,
l’inertie devient plus faible. Comme il a été montré dans les travaux récents
de [CD15], [SBC16],[AC18d], l’algorithme (6) a de nombreux avantages, par-
rapport au schéma initial (4) de Nesterov. En particulier en prenant b ≥ 3
on peut assurer l’effet d’accélération O(n−2), tandis qu’en choisissant b > 3,
on peut établir la convergence faible des itérés vers un minimiseur de F
([CD15]), ainsi qu’améliorer asymptotiquement l’ordre de convergence qui
est o(n−2) (voir [ACCR18]). Un deuxième avantage de l’algorithme (6) se
base sur le fait que l’on peut l’identifier comme un schéma de différence finies
de l’inclusion différentielle (3) (ou (2) dans le cas où F est différentiable).
Cette dernière observation éclaire le rôle de l’étude des systèmes dynamiques
continus comme (3) (ou (2)), puisqu’ils fournissent une meilleur interpréta-
tion du schéma (6), ils apportent une compréhension des résultats et de leurs
preuves plus profonde et ils ouvrent la voie pour des extensions possibles
dans le futur.

Tandis que le cas b ≥ 3, correspondant à la règle de Nesterov (5) à été
beaucoup étudié, celui de b < 3 correspondant au cas de l’inertie "forte" reste
inexploré. Dans le chapitre 3, on traite également ce cas. On étend l’étude
du schéma (6) dans le cas où le paramètre de sur-relaxation vérifie b < 3, et
on obtient des ordres de convergence pour la fonction objective et la variation
locale de la suite générée. Pour cela on suit les lignes directrices du cadre
continu dans la partie I, en transposant les techniques de Lyapunov au cadre
discret.

En outre, on complète ce chapitre, en présentant quelques résultats sur
une version inexacte du schéma (6), avec la présence d’erreurs de pertur-
bation (à la fois sur le calcul du gradient de la partie différentiable f et
à l’opérateur proximal de la partie non-différentiable g). En particulier on
étudie ses différentes propriétés de convergence en fonction des erreurs de
perturbations et le paramètre de sur-relaxation b > 0.
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De ce qui précède, il est clair que le choix du paramètre de sur-relaxation
pour les schémas inertiels et en particulier le réglage du paramètre b dans
le schéma (6), joue un rôle important pour les propriétés de convergence de
l’algorithme. Dans le chapitre 4 de la partie II, on s’intéresse à ce sujet,
en liaison avec quelques hypothèses supplémentaires sur la géométrie de la
fonction minimisante F .

En effet, la complexité optimale de O(n−2) pour les méthodes du premier
ordre (voir [NY83] et [Nes13b]) peut être améliorée, si la fonction minimisante
F satisfait des conditions géométriques supplémentaires. Un exemple typique
d’une telle condition est la propriété de forte convexité (voir définition 5).
Dans ce cadre, en considérant par exemple des méthodes de descente (i.e.
des méthodes qui génèrent des suites de la fonction objective décroissantes
(voir aussi définition 4.9 dans le chapitre 4)), on peut obtenir des suites
convergeant linéairement vers l’unique minimiseur de la fonction minimisante
F . Des exemples classiques de telles méthodes sont l’algorithme de descente
de gradient, ou l’algorithme de descente de gradient proximal dans le cas
général, qui s’avèrent être très efficaces dans ce contexte.

En effet, la convergence linéaire reste toujours valable sous des hypothèses
plus générales, comme la 2-croissance (ou 2-conditionnement), qui indique
que la fonction F , vérifie localement une condition de type Kd(x,X∗)2 ≤
F (x)−F ∗ où X∗ = arg minF , d(x,X∗) désigne la distance de x ∈ H à X∗ et
K > 0 est une constante appropriée. Plus généralement, on peut considérer
la condition de p-croissance pour un paramètre p ≥ 1 général :

Kpd(x,X∗)p ≤ F (x)− F ∗ (7)

pour une constant Kp > 0. La condition de p-croissance est aussi associée
avec la condition θ-Łojasiewicz [Łoj63, Łoj93] ou inégalité du gradient :

cθ
(
F (x)− F ∗

)θ
≤ ‖∇F (x)‖ (8)

où θ = 1− 1
p
∈ [0, 1] et cθ > 0.

Les conditions de croissance comme (7) ou (8), se révèlent être des outils
très puissants pour les méthodes de descente du premier ordre, à la fois dans
le cadre de minimisation convexe, mais aussi pour le cas non-convexe. En par-
ticulier, les propriétés de convergence de ces méthodes sont gouvernées par le
paramètre géométrique p ≥ 1, plutôt que par la nature précise de l’algorithme
(voir par exemple [BDLM10, FGP15, Gar15, BNPS17] et [GRV17]). En
général, pour ces méthodes, plus la fonction est affutée (sharp) (p proche de
1), plus la vitesse de convergence vers un minimiseur est rapide.

Tandis que les méthodes de descente sont bien adaptées à des conditions
géométriques comme (7) ou (8), le rôle de ces conditions sur les propriétés
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de convergence des méthodes inertiels comme (6) est moins connu, pour des
valeurs générales de p ≥ 1.

Dans le chapitre 4, on s’intéresse à cette question pour l’algorithme (6),
dans le contexte de la minimisation convexe et lisse (i.e. quand g = 0 dans
(6)). Plus précisément, on étudie les propriétés de convergence du schéma
(6), en fonction du paramètre de sur-relaxation b > 0 et les différentes pro-
priétés géométriques sur F , comme l’hypothèse de p-croissance (7). A cette
fin on considère une hypothèse géométrique supplémentaire sur la fonction
minimisante F , qui exprime le niveau de sa planéité (flatness) autour de ses
minimiseurs:

β
(
F (x)− F ∗

)
≤ 〈∇F (x), x− x∗〉 ∀x∗ ∈ arg minF (9)

avec β ≥ 1. La condition (9), a été introduite dans [CEG09a] et a été ex-
plorée à nouveau dans [SBC16] et [AD17, ADR18], pour l’étude de l’équation
différentielle (2). Comme on verra dans le chapitre 4, la condition (9), joue
un rôle important dans cette analyse et avec la condition de croissance (7),
caractérise les fonctions convexes se comportant comme ‖x− x∗‖r pour tout
p ≤ r ≤ β au voisinage de leur minimiseurs. Cette étude ouvre la voie pour
de nouvelles avancées dans un cadre plus général, comme celui de l’algorithme
du gradient proximal inertiel (6) pour la minimisation convexe non-lisse, ou
ses versions inexactes.





Introduction (English)

The basic purpose of the current Thesis is to study and improve some
methods in order to solve mathematical optimization problems.

An abstract formulation of such a problem can be mathematically ex-
pressed as follows :

F ∗ = min
x∈H

F (x) (1)

whereH denotes a Hilbert space and F : H −→ R is the modeling minimizing
function. In general, even if a solution of (1) exists, such a problem can be
very hard -if not impossible- to solve, without any specific assumptions on
the minimizing function F . A possible solution of problem F , is denoted by
x∗ ∈ arg minF .

Some of the basic assumptions that can render the resolution of problem
(1) feasible, is the convexity and the smoothness property of the minimizing
function F . Roughly speaking, smoothness excepts functions with "wild be-
haviors" (think of functions like x sin

(
1
x

)
near 0) and permit to upper bound

the minimizing function by a quadratic approximation. Convexity is a pow-
erful tool, allowing to develop plenty of methods to estimate efficiently the
solution of (1). Convex functions enjoys local-to global property, meaning
that every local minima is global (i.e. F ∗ is unique). This transposes prob-
lem (1), into the equivalent problem of finding roots of the (sub)gradient of
function F .

In the context of the current Thesis we are interested in the case of First-
order methods for solving composite convex minimization problems. There
is a large variety of problems arising in modern times, in domains such as
statistics, machine learning, image and signal processing or more generally
inverse problems, which can be formulated by such a composite structure
and be efficiently solved by such methods.

Composite convex minimization refers to problems as (1), where the min-
imizing function F is convex (see Definition 4) and has some additional split-
ting structure information. In the framework of the current thesis this ad-

9
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ditional structure information is translated to a particular decomposition of
the minimizing function F = f + g into a smooth convex part f and a non-
smooth convex part g. Typical cases with such formulation are the inverse
problems, where the minimizing function F is composed by a smooth data-
fit term, often chosen to be a squared distance from the initial data and a
suitable (convex) regularizer term corresponding to the particular nature of
the problem (see Chapter 3, for a brief description of these problems).

First order methods refer to schemes (algorithms) that exploit only first-
order information from the minimizing function F , such as gradients or sub-
gradients, rather than higher-order information such as the Hessian of F .
These methods turn out to be more suitable, when one has to deal with
large-scale optimization problems, where the dimension of the space is large
and the computations of second -or higher- order derivatives can be very
hard and costful.

Our study follows a continuous-to-discrete path passing from continuous
-on time- dynamical systems, to discrete schemes (algorithms), aiming to
solve numerically the minimization problem of F .

In particular this Thesis is structured into two major parts. In Part I we
are addressing the question of the minimization problem of F in a continuous
setting. More precisely we are taking look on the evolution of trajectories
generated by a dynamical system (differential equation with dependence on
time) that minimizes the function F . Besides treating questions of a the-
oretical interest in an autonomous way, this part also plays the role of a
prelude for the second part where we study some particular algorithms, in
order to approximate numerically a solution of the minimization problem of
the function F . In fact as we shall see these algorithms can be identified as
numerical schemes of the associated dynamical system. Therefore, studying
dynamical systems before passing to algorithms turns out to offer multiple
advantages, as calculations can be easier and simpler to deal with, than the
ones in the discrete case (algorithms). Moreover, they -often- offer a better in-
sight (such as finding "good candidates" for Lyapunov energies for example).
Nevertheless, as we shall see in Chapter 2, the study of continuous -on time-
systems naturally depends also on the regularity assumptions on F and it
becomes more complicated when one has to deal with non-smooth functions.
In this case more developed tools for differential calculus are needed in order
to establish the different convergence properties. On the other hand, the
(additional) regularity assumptions (such as smoothness) of the continuous
trajectory becomes a less essential element for the "derivative-free" discrete
trajectory generated by an algorithm.

In particular in Chapter 1, we present some special dynamical systems
which have been studied recently, which promote motions-trajectories that
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minimize F , in a smooth and convex setting. More precisely we take a look
to a second-order damped dynamical system studied in [SBC16] (see also
[CEG09a] and [ACPR18]), with a particular choice of vanishing viscosity
term :

ẍ(t) + b

t
ẋ(t) +∇F (x(t)) = 0 (2)

where b > 0 denotes the friction parameter. Systems like (2) are linked
with the minimization problem of the function F depending on the damping
parameter (in our case b

t
). In addition, as it was first remarked in [SBC16]

(see also [AC18d]), one of the motivations of studying system (2), is that it
corresponds to a particular Nesterov-type inertial gradient descent algorithm
for minimizing F . This is of a great interest in our case, since in the second
Part we are investigating the convergence properties of this algorithm. In
Chapter 1 we revisit some of the results in the existing literature concerning
the differential equation (2). These results and their proofs will offer a useful
guideline for the forthcoming analysis, both for the algorithms studied in
Part II, as also for the corresponding differential inclusion :

ẍ(t) + b

t
ẋ(t) + ∂F (x(t)) 3 0 (3)

where the minimizing function F is convex but not necessarily smooth.
Studying differential inclusions such as (2), covers of course a wider class

of interesting problems, coming as a subset of the non-smooth optimiza-
tion domain. Typical examples which are often met in optimization can be
constrained minimization problems, LASSO-type problems involving the `1

norm, denoising problems including the total variation norm, or other inverse
problems with general non-smooth regularization terms.

In the same way as for the differential equation (2), the importance of
studying system (3) comes from the different connections between it and a
fast Nesterov-type algorithm in order to solve non-smooth composite convex
minimization problems. In particular, it can be derived by (or model in-
versely) the proximal version of the inertial gradient descent algorithm (see
(6) or the i-FB algorithm 7 later on) with a proper implicit or explicit-implicit
finite difference scheme respectively.

In Chapter 2, we study the differential inclusion (3) and we extend the
convergence results found in the smooth case for a solution of (2), concerning
its minimization properties over F . In particular we find that the same fast
orders hold true depending on the friction parameter b > 0, for a solution of
(3) in some proper sense ( see Definition 2.1 later on). In addition we show an
optimality result for the convergence rates of the objective function F (x(t))−
F ∗, in the case where the friction parameter satisfies b ∈ (0, 3). This is done
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by giving an example of a function which is not everywhere differentiable,
hence only treatable in the context of (3). This study offers a better insight
and it paves the way for the forthcoming analysis of the algorithms associated
to it, for solving non-smooth composite convex minimization problems.

In Part II, we study some inertial algorithms for composite, non-smooth,
convex optimization, that is the case of Problem (1) with a function F = f+g,
structured by a smooth part f and a (possibly) non-smooth g, which we as-
sume simple or proximable (meaning that we can calculate its proximal op-
erator (see Definition 7)). Starting from the differential setting (i.e. when F
is smooth) and the simple case of the classical Gradient-Descent algorithm,
which dates back to the works of Euler and Lagrange and Cauchy [Cau47],
a lot of progress has been made in the last decades, for developing efficient
first-order methods for solving general structured convex minimization prob-
lems. Some of the most famous are the proximal-point algorithm ([Mar70],
[Roc76]) or the more general Forward-Backward splitting algorithm ([LM79],
[CW05]). Whereas these schemes are simple to implement and have some
good qualitative properties such as generating a relaxation sequence (i.e. the
sequence of objective function that converges decreasingly to the minimum),
they lack of efficiency in terms of speed of convergence of the values of the
objective function (i.e. how fast is the convergence of the objective function
to the minimum). Without any further assumptions on the minimizing func-
tion F , the -worst case- order of these descent methods is O(n−1) (where n is
the number of iterations executed). Nevertheless, as it was shown in [NY83]
(see also [Nes13b]), the optimal -worst case- convergence rate for a general
first-order method for smooth and convex minimization is of order O(n−2),
which consists of an improvement of O(n−1). Of course this does not directly
imply that schemes such as Gradient-Descent or Forward-Backward are sub-
optimal, but as it was shown in the seminal work of Nesterov [Nes83], the
optimal order of O(n−2) can be achieved. The key-element for this accelera-
tion effect and the achievement of this optimal rate is made by considering
inertial (or momentum) type methods.

Inertial methods consist in adding an extra inertial term on the gradient
step (or equivalently at the proximal-gradient step in the non-smooth setting)
at every iteration. Initially the first inertial methods appeared in [Pol64] (see
also [Fra50]) with the Heavy-Ball algorithm for strongly convex functions,
which can also be seen as multi-step methods. However, it was in the seminal
work of Nesterov [Nes83] that the author proposed a particular type of the
momentum term, which actually accelerates the convergence of the objective
function to the optimal O(n−2) for any smooth and convex function. The
initial choice of inertial scheme as considered in [Nes83], starting from x0 = x1
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and t1 = 1 is the following:

tn+1 =
1 +

√
4t2n + 1
2

yn = xn + tn − 1
tn+1

(xn − xn−1)

xn+1 = yn − γ∇F (yn)

(4)

for a suitable step-size γ > 0. In fact the acceleration effect holds true for
a more general choice of positive sequences tn, which satisfy the Nesterov’s
rule, i.e. :

t2n + tn+1 − t2n+1 ≥ 0 (5)

and as one can remark the choice tn in (4), corresponds to the limiting case
of equality in (5).

Since these works, a lot of attention has been given to inertial or momen-
tum methods, over the last decades, notably in [Gül92] and [BT09], where the
authors extend Nesterov’s scheme and the acceleration effect in a non-smooth
case for the inertial versions of the proximal point and the Forward-Backward
algorithms respectively.

More precisely in this second Part, we are interested in a particular split-
ting inertial proximal algorithm for non-smooth composite convex minimiza-
tion, also known as Nesterov-type, introduced recently in [CD15] (see also
[SBC16] and [AC18d]), which reads :

yn = xn + n

n+ b
(xn − xn−1)

xn+1 = Proxγg(yn − γ∇f(yn))
(6)

where Prox stands for the proximal operator (see Definition 7) and b > 0 is
the over-relaxation parameter measuring the magnitude of the applied inertia
at each step. Notice that, when b is small, then the inertia n

n+b(xn − xn−1)
is stronger, while when b is large, the inertia becomes weaker. As it was
shown in the recent works of [CD15], [SBC16] and [AC18d] the algorithm
(6) has several additional benefits in comparison to Nesterov’s initial choice.
In particular, while preserving the optimal rate O(n−2) in the case of b ≥
3, by taking b > 3 one can prove the weak convergence of the sequence
generated to a minimizer (see [CD15]), as also a slight amelioration of the
order of convergence asymptotically which actually is o(n−2) (see [ACCR18]).
A second major advantage of algorithm (6), as it was shown in [SBC16] and
discussed previously, is that it can be identified as a proper numerical scheme
of the differential inclusion (3). As already mentioned, this last observation
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enlightens the role of the study of continuous systems such as (3), since
it offers a better interpretation of scheme (6), and gives a better insight
on the different convergence results as also on the lines of their proofs and
opens the way for future studies, with other possible choices of numerical
approximations.

While the case of low-region momentum b ≥ 3, corresponding in Nes-
terov’s rule (5) for acceleration, is given a lot of attention and is widely
studied during the last years, the case of high-region momentum b < 3 still
remains undiscovered. In Chapter 3 we extend the study of schema (6) in the
case of a high-region momentum (i.e when the parameter of over relaxation b
in (6) satisfies 0 < b < 3) and we show that some relatively fast convergence
rates also hold for both of the objective function and the local variation of the
sequence generated. For that, we follow the lines of the Lyapunov analysis
made in the continuous setting in Part I for the differential inclusion (3).

In addition we complete this Chapter, with Section 3.4 by giving some
new results of an inexact version of the scheme (6), concerning the trade-
off between the magnitude of the perturbation errors (over the computation
of the gradient of the smooth part f and of the proximal operator of the
non-smooth g) and the inertial parameter b > 0.

From all the above discussion, it is apparent that the choice of the se-
quence of over-relaxation for inertial schemes and in particular the tuning
of parameter b > 0 in the scheme (6), plays a very important role in the
convergence properties of the algorithm both in terms of qualitative and
quantitative results. In the last Chapter 4 of this Part II, we are addressing
this question in link with some additional properties over the local geometry
of the minimizing function F .

While the optimal -up to constants-rate for first-order methods is O(n−2),
where n is the number of iterations (see [NY83] or [Nes13b]) for the class of
convex and differentiable functions, this complexity can be further improved
by making additional hypotheses on the geometry of the minimizing function
F . A first classical type of such an hypothesis is the strong convexity property
(see Definition 5), which generates linear convergence for descent methods
(i.e. methods that generate decreasing sequences in terms of values of F
(see also Definition (4.9)) later on Chapter 4 ), such as Gradient-Descent, or
Forward-Backward splitting in the general setting (see for example [Gol62]).
In the case of strongly convex functions, the linear convergence holds also true
for some special inertial-type algorithms, such as the Heavy-Ball algorithm or
the Nesterov’s scheme with a constant over-relaxation term (see algorithms
9 and 10 respectively in Chapter 4 ). In addition, these particular inertial
versions are proven to give linear rates with a better (smaller) linear factor
than the one of Gradient-Descent or Forward-Backward, which is optimal for
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the class of smooth, strongly convex functions ([NY83]). For general descent
methods the linear rates can be achieved, even for weaker relaxations of
strong convexity, such as the 2-conditioning or 2-growth condition, which is
when the function F satisfies locally a condition of the type : Kd(x,X∗)2 ≤
F (x) − F ∗ , where X∗ = arg minF , d(x,X∗) designs the distance from x ∈
H to X∗ and K > 0 is a suitable constant. Extending to more general
geometries one can consider the p-growth condition for a general p ≥ 1 :

Kpd(x,X∗)p ≤ F (x)− F ∗ (7)

for a suitable constant Kp > 0, which is also closely related to the famous
θ-Łojasiewicz condition [Łoj63, Łoj93] :

cθ
(
F (x)− F ∗

)θ
≤ ‖∇F (x)‖ (8)

where θ = 1− 1
p
∈ [0, 1] and cθ > 0.

Growth-type conditions such as (7) or (8) turn out to provide powerful
tools for general descent methods, both in the context of convex and non-
convex optimization. More precisely, general descent methods, enjoy several
fast convergence properties depending to the "geometric" parameter p ≥ 1
and not on the precise nature of the algorithm (see for example [BDLM10,
FGP15, Gar15, BNPS17] and [GRV17]). Roughly speaking, for first order
descent methods, the sharper the minimizing function is (p close to 1), the
fastest the convergence to a minimum is.

Whereas general descent schemes are proven to be well adapted to geo-
metrical properties like (7) or equivalently (8), this is not the case for inertial
schemes such as (6), whose convergence properties are largely unknown for
functions satisfying p-growth condition (7) for general values of p ≥ 1.

In Chapter 4 we are addressing this question in the context of smooth
convex minimization and we extend the study of inertial gradient descent
scheme (6) with g = 0. More precisely, we investigate its convergence prop-
erties depending on the local geometrical assumptions over F such as the
p-growth condition (7) and the over-relaxation parameter b > 0. For that
purpose, we consider an additional geometric property on function F , which
expresses its flatness-level in a neighborhood of its minimizers :

β
(
F (x)− F ∗

)
≤ 〈∇F (x), x− x∗〉 ∀x∗ ∈ arg minF (9)

with β ≥ 1. Condition (9) was firstly introduced in [CEG09a] and it was
afresh explored in [SBC16] and [AD17, ADR18], for the study of the differen-
tial equation (2). As we shall see condition (9), with β ≥ 1 plays a key-role in
our analysis, and together with growth condition (7) with p ≥ 1, characterizes
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convex functions which behave like ‖x− x∗‖r for all p ≤ r ≤ β, near the set
of their minimizers. Our approach again follows the line of the study made
in the continuous setting for the dynamical system (2) in the recent work of
[ADR18]. This study opens the road for further developments in more gen-
eral frameworks such as for the inertial Forward-Backward type algorithm (6)
for composite non-smooth minimization problems, or their inexact versions,
which corresponds in a larger variety of interesting applications.

A Thesis outline and Contributions

Part I

Chapter 1 In this Chapter we study the second-order differential equa-
tion (2). We give some of the results of the existing literature, concerning
the convergence properties of a solution of the dynamical system (2). We
present the Lyapunov analysis associated to this ODE and discuss about
some particular choices of its discretization. The analysis and presentation
of these results will provide a useful guide for the forthcoming analysis, both
for the continuous, but non-differential setting in Chapter 2 , as also for the
discrete case in Chapters 3 and 4.

Chapter 2 In this Chapter we turn our attention to the study of the dif-
ferential inclusion (3), modeling the inertial proximal-gradient algorithm (6)
for convex minimization problems, studied later on Part II. Firstly, we give
some notions of a possible solution for such an inclusion. We extend the
asymptotic convergence results of the smooth case, as presented in Chapter
1, into the non-smooth one. For this we employ an approximation scheme
of differential equations, whose solutions converge to some proper sense to a
solution of the inclusion (3). The contributions of this Chapter rely on the
journal article [AAD18b].

Part II

Chapter 3 We study the particular case of the inertial -accelerated proximal-
gradient algorithm (Nesterov-type) (6), in the context of composite (non
smooth) convex minimization problem. We complete the existing literature
on its convergence properties concerning the sub-critical case b < 3 and we
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give a unified presentation together with the related results. Our analysis
follows the one made in the continuous case in Chapters 1 and 2, by adapt-
ing the Lyapunov techniques for some properly defined energy sequences. In
addition we complete the analysis of an inexact version of this algorithm
in the case of presence of perturbation errors on both the gradient of the
smooth part and the proximal step of the non-smooth part. We show that
the convergence properties shown for the unperturbed version, are relatively
robust to these errors, under some control conditions depending on the over-
relaxation parameter b > 0. The contributions of this Chapter rely on the
journal article [AAD18a].

Chapter 4 We are further analyzing the Nesterov-type inertial gradient
descent algorithm (6), in the context of smooth, convex minimization prob-
lem. We are considering additional local geometrical assumptions on the
minimizing function F , such as the growth ( or Łojasiewicz) condition (7),
as also the flatness-type condition (9). Combining both of these conditions,
permits to derive new convergence rates for this algorithm, depending both
on the geometry of the minimizing function, as also on the over-relaxation
parameter of the algorithm b > 0. The analysis is still based on Lyapunov
arguments, for a proper energy-sequence and it follows the line of the anal-
ysis made in the continuous case, in Chapters 1 and 2. The contributions of
this Chapter rely on the (submitted) paper [AADR18].

B Mathematical background

Before passing to the main core of this Thesis, we set up some basic
notations and give some necessary elements that we will frequently use in
this manuscript. For all these classical tools and results, one can consult
some standard books in Convex analysis and Optimization, such as [BC11],
[Cla13], [AB06] and [BV04].

B.1 Notations
All along this Thesis, we denote with H a general Hilbert space (possibly
infinite dimensional, except if otherwise stated), equipped with the scalar
product 〈·, ·〉 and the induced norm ‖·‖ =

√
〈·, ·〉. The notation of R+ stands

for the set of all positive real numbers and R̄ for the extended set of real
numbers, i.e. R̄ = R ∪ {+∞}. We denote with Γ0(H), the set of all proper,
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convex and lower semi-continuous functions from H to (−∞,+∞]. For a
closed set C ⊂ H, for every x ∈ H, we denote the distance from x to C with
d(x,C) = min{‖x− y‖ : y ∈ C}.

For an interval I ⊂ R+, the classical notations Lp(I,H) and W s,p(I,H)
stand for the classical p-Lebesgue and p-Sobolev space of order k respec-
tively, with values to H (for the definitions and the different properties of
these spaces, we address the reader to [Bre10] and [EG15]). In a similar
way BV (I;H) and AC(I;H) denote the spaces of the functions of bounded
variation and the absolute continuous functions, respectively (see [EG15] for
more details).

Finally, for a sequence {fn}n∈N defined in H, we will use the classical
notation of weak convergence to f (which also coincides with the weak-star
convergence, since H is a Hilbert space ) with fn ⇀ f .

B.2 Convex and smooth optimization
Next we give some basic definitions and facts concerning the notions of con-
vexity and smoothness of a function, which allow to tackle optimization prob-
lems such as (1).

Definition 1. Let F : H −→ R̄. F is Fréchet differentiable at x ∈ H if there
exists a linear operator ∇F (x) ∈ H, such that :

lim
h→0
h 6=0

‖F (x+ h)− F (x)− 〈∇F (x), h〉‖
‖h‖

= 0 (10)

We call ∇F as the gradient of F .

Definition 2. Let F : H −→ R̄ be a (Fréchet) differentiable function. We
say that ∇F is L-Lipschitz if there exists L > 0, such that for all (x, y) ∈ H2

it holds:
‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖ (11)

Equivalently, ∇F is L-Lipschitz if and only if for all (x, y) ∈ H2, it holds:

F (x) ≤ F (y) + 〈∇F (y), x− y〉+ L

2 ‖x− y‖
2 (12)

or even (Baillon-Haddad Theorem) if and only if for all (x, y) ∈ H2:

〈∇F (x)−∇F (y), x− y〉 ≥ 1
L
‖∇F (x)−∇F (y)‖2 (13)

As mentioned earlier, another important feature, which allows to con-
struct methods for estimating a solution of the minimization Problem 1, is
the notion of convexity.
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Definition 3. A set C ⊂ H is convex if for all x, y ∈ C and θ ∈ [0, 1], it
holds :

θx+ (1− θ)y ∈ C (14)

Definition 4. A function F : H −→ R̄ is convex if its domain is convex and
if for all x, y ∈ domF and θ ∈ [0, 1], it holds :

F (θx+ (1− θ)y) ≤ θF (x) + (1− θ)F (y) (15)

If F is also Fréchet differentiable, then the notion of convexity is equivalent
to the fact that for all x, y ∈ domF :

F (x)− F (y) ≤ 〈∇F (x), x− y〉 (16)

If in addition the previous inequalities (15) and (16) hold strictly (≤ is re-
placed by <), then we say that the function F is strictly convex.

The notion of convexity of a function F , is an essential element for the
existence of a minimizer of F . In fact for a convex function F which is proper
and lower semi-continuous, the existence of a minimizer of F is guaranteed
in every compact set K ⊂ H, such that K ∩ domF 6= ∅. If in addition the
function is strictly convex, then the minimizer is unique.

One of the first and classical condition over the function F , which rein-
forces the notion of convexity, is the strong convexity property.

Definition 5. A function F : H −→ R̄ is strongly convex if its domain is
convex and if there exists µ > 0 such that the function F (x) − µ

2‖x‖
2 is

convex.
If F is also differentiable, the notion of strong convexity is equivalent to

the fact that for all x, y ∈ domF :

F (x) ≤ F (y) + 〈∇F (x), x− y〉 − µ

2‖x− y‖
2 (17)

From the above Definition, it is clear that a strongly convex function, is
also strictly convex, hence if it admits a minimizer, then it is unique.

More general, for a convex function F , the notion of differentiability of
F , can be extended to the notion of subdiferentiability of F .

Definition 6. Let F : H −→ R̄ be a convex function. A vector v is called
the sub-gradient of F , at point x ∈ domF , if for all y ∈ domF , it holds:

F (y) ≥ F (x) + 〈v, y − x〉 (18)



Introduction 20

The set of all sub-gradients of F at a point x ∈ domF , is denoted by ∂F (x),
i.e. :

∂F (x) =
{
v ∈ domF : F (x) ≤ F (y) + 〈v, x− y〉 , ∀y ∈ domF

}
(19)

and the set-valued operator ∂F : H⇒ 2H, which maps x ∈ domF to ∂F (x),
is called the sub-differential of F .

A simple observation from the definition of the subdifferential of a convex
function F , gives the following characterization, which forms the generalized
first-order optimality condition for minimizing a function F :

x∗ ∈ arg minF ⇐⇒ x∗ ∈ domF s.t. : 0 ∈ ∂F (x∗) (20)

According to the previous characterization (20) the problem of minimiza-
tion of a convex function F , is equivalent to the research of a zero of its
subdifferential (or its gradient if F is smooth).

B.3 The proximal operator
An essential tool for the analysis of convex functions, is the notion of proximal
operator of a convex function, introduced and studied by Moreau in [Mor65],
[Mar70] and Rockafellar [Roc76].

Definition 7. Let F : H −→ R, be a proper, lower semi-continuous and
convex function. The proximal operator ProxF : H −→ H of F is defined
by:

ProxF (x) = arg min
y∈H

{
F (y) + ‖y − x‖

2

2

}
(21)

Notice that since the function Gx(y) = F (y)+ ‖y−x‖2

2 , proper, lower semi-
continuous and strongly convex, it admits a unque minimizer (for every x),
hence the proximal operator of a convex function F is well-defined. In ad-
dition by the first-order optimality condition for Gx, for all x ∈ H, we have
the following important equivalent characterization:

p = ProxF (x)⇔ 0 ∈ ∂Gx(p)⇔ x ∈ {p}+ ∂F (p) (22)

In fact, relation (22), is an equivalent implicit definition of the proximal oper-
ator. Remark that by (22), we can identify the proximal operator of a convex
function F , as the resolvent of its subdifferential ∂F (see also Appendix A),
i.e. for all x ∈ H :

ProxF (x) := J∂F (x) = (Id+ ∂F )−1(x) (23)
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Chapter 1

Gradient dynamics for convex
minimization

In the present chapter, we denote with H a Hilbert space and we are
interested on the minimization problem of a function F :

min
x∈H

F (x) (1.1)

where F : H −→ R̄ = R ∪ {+∞}, with the following conditions:

C.1 F a convex function in C1,1
L (H) (continuously differentiable, with L-

Lipschitz gradient).

C.2 The set of minimizers X∗ = arg min{F} is non-empty.

We also denote F ∗ = min
x∈H

F (x).
In particular we are taking look on the evolution of trajectories generated

by a dynamical system (differential equation with dependence on time) that
minimize the function F . More precisely we study the properties of a solution
of the following second-order differential equation :

ẍ(t) + b

t
ẋ(t) +∇F (x(t)) = 0 (1.2)

where b is a positive parameter. The differential equation (1.2) was intro-
duced recently in [SBC16] (see also [CEG09a]) and studied in numerous fol-
lowing works (see [CEG09a, SBC16, ACPR18, AD17] and their related ref-
erences), and it is linked with the minimization problem of F . The analysis
presented in the current Chapter follows the aforementioned works and it

23
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constitutes an introductory guideline both for the differential inclusion asso-
ciated to (1.2) and studied in Chapter 2, as also for the second part of this
Thesis, where we study different discrete schemes (algorithms) in order to
minimize numerically the function F .

As already mentioned, studying the evolution of solutions-trajectories
of continuous time systems, offers a lot of advantages in an optimization
point of view, since one can exploit the rich ODEs theory in order to deduce
interesting convergence results. This offers a deeper insight and a useful
guideline for the analysis of their correspondent discrete schemes.

Roughly speaking, algorithms can be interpreted as finite difference ap-
proximation schemes of continuous dynamical systems. Hence one can expect
that -under some suitable discretization- the convergence properties of the
(continuous) dynamical system, are close enough to the ones of the corre-
sponding numerical scheme.

1.1 Dynamical systems and Lyapunov analy-
sis

In its most abstract form, a (continuous) dynamical system is a system
describing the evolution of a unit x(t) with respect to time t ∈ R+, which is
guided by a vector field G : R+ ×H → H and a differential equation :

ẋ(t) = G(t, x(t)) (1.3)

starting at an instant t0 ≥ 0 from a point x(t0) = x0 ∈ H. From (1.3), by
integrating, we have equivalently:

x(t) = x0 +
∫ t

0
G(s, x(s))ds (1.4)

which indicates the moving rule of the unit x(t) at every instant t ∈ R+.
In particular, in the context of problem (1.1), we are interested by the

study of dynamical systems, which promote trajectories (flows) which mini-
mize F . In this setting, the vector field G(t, x(t)) is usually expressed via the
potential ∇F (x(t)). We recall here that the first-order optimality condition
for the smooth and convex function F , leads us to the research of zeros of
the gradient of the function F , i.e. x∗ ∈ H, such that :

∇F (x∗) = 0 (1.5)



25 1.2. The Gradient Flow

Therefore this leads to the research of stationary (or equilibrium) points of
(1.3), which also coincide with the critical points of F . A classical powerful
tool for this task is the Lyapunov method ([Lya92]).

Standard Lyapunov analysis for finding critical (or stationary) points of
a general evolution system in a time interval I ⊂ R+

ẋ(t) = G(t, x(t)) (1.6)

consists of constructing an energy-functional Φ : H −→ R, which dissipates
along the solutions-trajectories of the system (1.3) (see for example [Lya92]).
This translates to the fact that the function Φ◦x : I −→ R is non-increasing
for a possible solution x(t) of (1.3). Classically, depending on the regularity
of a solution of (1.3), this is done by showing that

Φ̇(x(t)) = 〈∇Φ(x(t)), G(t, x(t))〉 ≤ 0. (1.7)

Of course multiple choices for a Lyapunov function Φ are possible, de-
pending on the structure problem (1.3) (i.e. the function G) and the expected
results.

In our framework we will use Lyapunov-type arguments in order to prove
the minimizing convergence properties of trajectories generated by evolution-
systems like (1.3), as also the associated rates. In particular this is done by
constructing suitable Lyapunov energies that interfere quantities, such as
the objective function F (x(t))− F ∗, the velocity ‖ẋ(t)‖ or the distance to a
minimizer x∗, ‖x(t) − x∗‖, up to a suitable function-order of time. Such a
function can have the following form :

Φ(t) = a(t)
(
F (x(t))− F ∗

)
+ b(t)‖ẋ(t)‖2 + c(t)‖x(t)− x∗‖2 (1.8)

for some suitable (positive and non-decreasing) functions a(t), b(t) and c(t).
It is then clear that the upper bounds of the Lyapunov function Φ(t), will

provide the estimates O
(

1
a(t)

)
, O

(
1
b(t)

)
and O

(
1
c(t)

)
, for F (x(t))−F ∗, ‖ẋ(t)‖2

and ‖x(t)− x∗‖2 respectively.

1.2 The Gradient Flow

One of the first and simplest dynamical system studied for minimizing
function F , or finding critical points is the Gradient Flow (or steepest descent
flow) system.
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 ẋ(t) +∇F (x(t)) = 0
x(0) = x0

(GF)

System (GF) generates motions (flows) which follows the locally-steepest
descent direction over the graph of F . This ensures that the solution x(t),
will always decrease (locally) the function F , until it minimizes it.

Formally, from Hypotheses C.1 and C.2, the Cauchy-Lipschitz Theorem
guarantees the existence and uniqueness of a global solution x ∈ C1([0,∞);H).
In fact by convexity of F , the existence and uniqueness of a generalized no-
tion of strong solution for (GF) can also be assured, without the hypothesis
on the differentiability of F (see Chapter 2 or [Bre71, Bre73, BJ75]).

In addition a simple derivation can show that if x(t) is the solution of
(GF), the objective function w(t) = F (x(t)) − F ∗ is a Lyapunov function,
since:

ẇ(t) = 〈∇F (x(t)), ẋ(t)〉 = −‖ẋ(t)‖2 (1.9)

which shows the minimizing property of x(t). Here we can even notice here
that the convexity of F is not needed. This shows that the gradient flow is
still locally minimizing functions that are not necessarily convex.

A more refined choice of Lyapunov energy for system (GF), is the follow-
ing:

U(t) = t
(
F (x(t))− F ∗

)
+ ‖x(t)− x∗‖2

2 (1.10)

where x∗ ∈ arg minF . Then by differentiating and using (GF) it is direct
that :

U̇(t) = F (x(t))− F ∗ − 〈∇F (x(t)), x(t)− x∗〉 − t‖ẋ(t)‖2 (1.11)

and by using the convexity of F , we find :

U̇(t) ≤ −t‖ẋ(t)‖2 (1.12)

In particular the properties of the Lyapunov energy U and Opial’s Lemma
(see Lemma A.0.1 in Appendix A) allow to deduce the following Theorem
(see for example [Bre71, Bre73], [BJ77], [Bai78], [PS10] and [Gü05]).

Theorem 1.2.1. Let x be a solution of (GF) then the following hold true

• F (x(t)) converges non-increasingly to F ∗. In addition :

F (x(t))− F ∗ = O
(1
t

)
(1.13)
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• {x(t)}t≥0 weakly converges to x∗ ∈ arg minF asymptotically. If in
addition this convergence is strong, then :

F (x(t))− F ∗ = o
(1
t

)
asymptotically (1.14)

While the Gradient flow enjoys some good local properties for minimizing
F (such as the decreasing property of F (x(t))), it suffers from a slow global
convergence rate for the objective function, without any further assumptions
on F . As we shall see in the next section, by using more precise dynamical
systems of higher order information, such as the acceleration of the unit x(t),
one can obtain better results. More precisely this can be done by considering
some particular second-order dynamical systems.

1.3 Second order damped dynamics

One of the first and simplest second-order system considered for mini-
mizing F is the Heavy-Ball friction system, which was studied in [Alv00]
and [AGR00] (see also [Pol64], [Ant94], [HJ98] and [BBJ15] in the case of
strongly convex function F ).

The Heavy-Ball with friction system reads the following :

ẍ(t) + αẋ(t) +∇F (x(t)) = 0 (HBS)

where α is a positive parameter.
In a mechanical interpretation system describes the motion of the unit

x(t) moving along the graph of F with a constant friction term −αẋ(t). His-
torically it was studied by Alvarez in [Alv00] (see also [AABR02]) in a convex
setting and in Attouch et al. in [AGR00], in the non-convex setting providing
a first way for exploring local minima of F . In particular by tuning properly
the initial velocity of the system ẋ(0), a solution of (HBS) can "escape" a
neighborhood of a local minimum, which is not possible for the trajectory
generated by the gradient flow (GF) (see [AGR00] for more details). Notice
in general that second-order in time systems, such as (HBS), allow to model
suitably the acceleration of the unit x(t), on the contrary to first-order sys-
tems such as the gradient flow, where the acceleration is constrained by the
velocity (and hence the initial position x0). Nevertheless, for general con-
vex functions, the -worst case- convergence rate of the (HBS) is not better
than the one obtained by the Gradient Flow (GF), as the following Theorem
asserts.
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Theorem 1.3.1 ([Alv00]). Let x be a solution of (HBS), with some initial
conditions x(0) = x0 ∈ H and ẋ(0) = v0 ∈ H. Then {x(t)}t≥0 weakly
converges to x∗ ∈ arg minF asymptotically and

F (x(t))− F ∗ = O
(1
t

)
(1.15)

In a more general way in [CEG09a] (see also [CEG+09b]), the authors
studied systems like (HBS) with t0 ≥ 0 and a general damping parameter
α(t), where α : [t0,+∞) −→ R+

ẍ(t) + α(t)ẋ(t) +∇F (x(t)) = 0 (1.16)
As it was shown in [CEG09a], systems like (1.16), are linked with the

problem of minimizing F (or finding critical points of F in the non-convex
case). It turns out that the dissipation term α(t) in (1.16), plays a crucial
role for the minimization of F . In particular it rules the asymptotic behavior
and the convergence properties of the trajectory associated to (1.16). As
it was shown in [CEG09a] (see also [CEG+09b]) the global (potential and
kinetic) energy of the system (1.16), U(t) = F (x(t)) − F ∗ + 1

2‖ẋ(t)‖2 is
a Lyapunov function. If in addition the damping parameter α(t) vanishes
to zero relatively slow (

∫∞
0 α(t)dt = +∞), then U(t) is dissipating until it

reaches zero. This corresponds to the minimizing property of the solution
x(t), i.e. F (x(t)) −→ F ∗ and ‖ẋ(t)‖ −→ 0. These studies were further
extended recently in [AC17] and [ACCR18].

In our case, we are interested on the -limiting order- particular choice of
the friction term α(t), which vanishes asymptotically exactly as α(t) ' 1

t
.

1.3.1 Second order damped dynamics with vanishing
viscosity

As it was firstly pointed out in [SBC16] (see also [ACPR18]), an interest-
ing choice for the viscosity parameter α(t) in (1.16) is the vanishing damping
parameter α(t) = b

t
, where b > 0 is measuring the friction. In this case,

second-order damped system (1.16) takes the following form:

ẍ(t) + b

t
ẋ(t) +∇F (x(t)) = 0 (1.17)

Since the seminal work of Su et al. in [SBC16], the gradient system (1.17),
gained special attention and it was studied intensively for the last years. The
first reason is that, under some suitable assumptions, system (1.17) turns



29 1.3. Second order damped dynamics

out to accelerate the minimizing property of the trajectory (i.e. how fast
F (x(t))−F ∗ −→

t→∞
0), in comparison to the one which is ruled by the gradient

flow (GF) or the Heavy-Ball system HBS. More precisely, as we shall see in a
bit, the parameter b > 0 governs the convergence properties of system (1.17).
The second reason (which is related with the first one), is that system (1.17)
is closely linked with Nesterov’s type accelerated scheme and its variants
(see algorithm (7) in Chapter 3 in the smooth setting), which are of a great
interest in the optimization community and more precisely in the current
Thesis. Hence under reasonable assumptions and suitable discretization, it
is expected that the discrete schemes derived by systems like (1.17) maintain
the same convergence properties as the ones of (1.17). This observation is
of a high interest since the analysis of the continuous-time system (1.17) will
give additional insight and it will pave the way for the one of the discrete
scheme (7), which turns out to be more technical. For a discussion about
the discretization of (1.17), we address the reader to Section 1.4 at the end
of the current Chapter, or to Section 2.4 of Chapter 2, in the more general
setting of the differential inclusion associated to (1.17).

Our presentation and proofs follow the same lines of the analysis of a series
of recent works [SBC16], [ACPR18], [AD17], and [May17] for the system
(1.17).

More precisely the Cauchy-problem associated to (1.17), with some initial
conditions x0 ∈ H is:


ẍ(t) + b

t
ẋ(t) +∇F (x(t)) = 0

x(t0) = x0 , ẋ(t0) = 0
(1.18)

Since we are mostly interested in the asymptotic properties, we con-
sider the system (1.18), with some initial condition on t0 > 0, in order
to guarantee the existence and uniqueness of a strong solution (in the clas-
sical sense) x ∈ C2([t0,+∞);H) for the system (1.18). In fact, under the
L-Lipschitz condition on ∇F , the existence of a slight weaker notion of so-
lution is still valid in the case of H = Rd and t0 = 0 (see Theorem 1 in
[SBC16]). In this case one can prove the existence and uniqueness of a solu-
tion x ∈ C2((0,∞);Rd) ∩ C1([0,∞);Rd) of (1.18).

In general a sufficient condition, in order to guarantee the existence and
the uniqueness of a strong solution of (1.18), is the Lipschitz character of
∇F on bounded sets.

In fact, by setting H : [t0,∞) × H2 −→ H2, with H(t, (v1, v2)T ) =(
v2,− b

t
v2 +∇F (v1)

)T
, and X(t) = (x(t), ẋ(t))T , we can reformulate system
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(1.18), in a first-order system, as follows :

Ẋ(t) = H(t,X(t))
X(t0) = (x0, 0)T

(1.19)

and since the operator H, is globally Lipschitz (thanks to the L-Lipschitz
character of ∇F ), by the Picard-Lindelöf (or Cauchy-Lipschitz) Theorem,
equation (1.19) and hence (1.18), admits a unique strong solution x ∈ C2((t0,∞);H).

At this point we should also stress out that apart the uniqueness of the
solution trajectory of (1.18), the Lipschitz character of the gradient of F
also assures the existence of a solution into a general -infinite dimensional-
Hilbert space H. Remark that without this regularity assumption, the gen-
eral Peano’s Theorem (see for example [Pea90]) for existence of a solution
fails to apply in infinite dimensional spaces ( for a counter-example consult
the works [Die50] or [God74] and [God75]). In order to guarantee the exis-
tence of a solution for a general function F , this assumption can be relaxed
simply to a continuously differentiable function F , only in the case where
H = Rd, d ≥ 1. Despite the fact that Lipschitz continuity of the gradient of
F , is a necessary condition to obtain both existence and uniqueness of a so-
lution, this condition is not necessary and it will not be exploited in order to
deduce the different convergence properties of such a solution. Hence in what
follows we consider the existence of solution as granted without mentioning
the Lipschitz continuity of ∇F .

Here we give the basic results concerning the convergence properties for
a solution of (1.18) for minimizing function F , depending on the friction
parameter b > 0. As already mentioned, these results have been established
in the works of [SBC16], [ACPR18]), [AD17], [ACR19] and [May15] and they
are summarized in the following Theorem.

Theorem 1.3.2. Let x ∈ C2([t0,+∞);H) be a solution of (1.18) and x∗ ∈
arg minF . The following estimates hold true :

1. ([AD17], [ACR19]) If b ∈ (0, 3) then there exist some positive constants
C1, C2 such that for all t ≥ t0, it holds :

F (x(t))− F ∗ ≤ C1

t
2b
3

and ‖ẋ(t)‖ ≤ C2

t
b
3

(1.20)

2. ([SBC16], [ACPR18]) If b ≥ 3 then there exist some positive constants
C1, C2 such that for all t ≥ t0, it holds :

F (x(t))− F ∗ ≤ C1

t2
and ‖ẋ(t)‖ ≤ C2

t
(1.21)
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3. ([ACPR18]) If b > 3 then :∫ +∞

t0
t
(
F (x(t))−F ∗

)
dt < +∞ and

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞ (1.22)

and the trajectory weakly converges to a minimizer x∗.
([May15]) In fact asymptotically, it holds :

F (x(t))− F ∗ = o
(
t−2
)

and ‖ẋ(t)‖ = o
(
t−1
)

(1.23)

Remark 1. As it was pointed out in [ACPR18] (see also [ADR18]), the rates
in the estimations (1.21) are -worst case- optimal for the class of smooth
convex functions. To see this one can consider one-dimensional functions
of type F (x) = |x|p, for any p > 2. Then the system (1.18), admits a
solution of the form x(t) = ct−

2
p−2 , for a suitable constant c. This implies

that F (x(t)) − F ∗ = C1t
− 2p
p−2 and ẋ(t) = C2t

− p
p−2 for all p > 2, and some

suitable constants C1, C2, which shows that the rates in (1.21) are optimal,
since for p large enough, the orders − 2p

p−2 and − p
p−2 are sufficiently close to

−2 and −1 respectively.
Remark 2. The previous example of functions F (x) behaving as |x|p, suggests
that by exploiting more the geometry of the minimizing function, one can
obtain more precise rates, than the ones in (1.21). As we shall see later in
this Chapter, this is possible under some additional suitable assumptions on
the geometry of F .

1.3.2 Convergence analysis
In this paragraph we give the main elements for the convergence analysis of
a solution of system (1.18), and in particular the proof of Theorem 1.3.2.
As mentioned earlier, the basic approach in order to prove the convergence
results as announced in Theorem 1.3.2, is based on finding suitable Lyapunov
energies. For that, for x∗ ∈ arg minF and x(t) a solution of (1.18), we will
use the following notations :

w(t) = F (x(t))− F ∗ and h(t) = ‖x(t)− x∗‖2 (1.24)

A first natural candidate for the Lyapunov analysis for system (1.18) is the
global ( potential and kinetic ) energy of system (1.18), i.e.:

U(t) = F (x(t))− F ∗ + 1
2‖ẋ(t)‖2 = w(t) + 1

2‖ẋ(t)‖2 (1.25)
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where x(t) is a solution of (1.18). By differentiating and using the fact that
x(t) is a solution of (1.18), we find:

U̇(t) = t〈∇F (x(t)), ẋ(t)〉+ 〈ẍ(t), ẋ(t)〉 = −b
t
‖ẋ(t)‖2 (1.26)

which shows that U is a Lyapunov function for the system (1.18). This
energy-functional can be used in order to deduce the minimizing property
of x(t), i.e. F (x(t)) −→

t→∞
F ∗ (see for example Theorem 2.3 in [ACPR18]),

unconditionally of the choice of the friction parameter b > 0. Nevertheless it
is not clear how to obtain the estimations and the orders of convergence rates
as they are presented in Theorem 1.3.2, from this energy. For that we have
to consider a "finer" Lyapunov function, which balances better the quantities
of interest, such as the objective function F (x(t)) − F ∗ and ‖ẋ(t)‖, with a
"proper" power of t.

Let x ∈ C2([t0,∞);H) a solution of (1.18). For all λ ≥ 0 and ξ ≥ 0
define:

v(t) = ‖λ(x(t)− x∗) + tẋ(t)‖2 (1.27)
and

E(t) = t2
(
F (x(t))− F (x∗)

)
+ 1

2‖λ(x(t)− x∗) + tẋ(t)‖2 + ξ

2‖x(t)− x∗‖2

= t2w(t) + 1
2v(t) + ξ

2h(t)
(1.28)

Notice that by developing the square in v(t) and using the fact that:

ḣ(t) = 2〈ẋ(t), x(t)− x∗〉, (1.29)

we have the following equivalent expression for the function E

E(t) = t2w(t) + t2

2 ‖ẋ(t)‖2 + (λ2 + ξ)
2 h(t) + λt

2 ḣ(t) (1.30)

This function can be seen as the negative entropy up to the balanced
distance ξ

2‖x(t) − x∗‖2. This functional was considered in [SBC16] and in
[ACPR18], as also in [AD17] and [ADR18], in order to deduce some fast
convergence asymptotic behavior for w(t) and ‖ẋ(t)‖ as well as the weak
convergence of the trajectory to a minimizer x∗. In fact from the definition
of E(t), for suitable values of parameters λ and ξ, one can observe that the
order of the upper-bounds -with respect to time t- for this energy, will also
furnish the same order for the estimates of t2w(t), v(t), t2‖ẋ(t)‖2 and h(t).

In particular, by differentiating E and using the fact that the solution x
verifies (1.18), one can find the following result :
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Lemma 1.3.1. Let x be a solution of (1.18), x∗ ∈ arg minF . Then for all
λ ≥ 0, ξ ∈ R, we have:

Ė(t) = 2tw(t)− λt〈∇F (x(t)), x(t)− x∗〉+ (λ+ 1− b)t‖ẋ(t)‖2

+
(
ξ + λ(λ+ 1− b)

)
〈ẋ(t), x(t)− x∗〉

(1.31)

or equivalently :

Ė(t) = 2(b− λ)tw(t)− λt〈∇F (x(t)), x(t)− x∗〉+ 2(λ+ 1− b)E(t)
t

+ (λ2 + ξ)(λ+ 1− b)h(t)
t

+
(
ξ − λ(λ+ 1− b)

)
〈ẋ(t), x(t)− x∗〉

(1.32)
In fact, in view of convexity of F , it holds :

Ė(t) ≤ (2− λ)tw(t) + (λ+ 1− b)t‖ẋ(t)‖2

+
(
ξ + λ(λ+ 1− b)

)
〈ẋ(t), x(t)− x∗〉

(1.33)

or equivalently :

Ė(t) = (2b− 3λ)tw(t) + 2(λ+ 1− b)E(t)
t
− (λ2 + ξ)(λ+ 1− b)h(t)

t

+
(
ξ − λ(λ+ 1− b)

)
〈ẋ(t), x(t)− x∗〉

(1.34)

Corollary 1.3.1. Let x be a solution of (1.18) and x∗ ∈ arg minF . Then
we have the following cases:

1. For b ∈ (0, 3), λ = 2b
3 and ξ = λ(λ + 1 − b) > 0, the function H(t) =

t
2b
3 −2E(t) is non-increasing in (t0,+∞).

2. For b ≥ 3, λ ∈ [2, b− 1] and ξ = λ(b− λ− 1) ≥ 0, the function E(t) is
non-increasing in (t0,+∞). In particular, for all t ≥ t0, we have :

Ė(t) ≤ (2− λ)tw(t) + (λ+ 1− b)t‖ẋ(t)‖2 (1.35)

Proof. The proof of point 1. is direct from equation (1.34) of Lemma 1.3.1, by
replacing λ and ξ and observing that when b ∈ (0, 3), then Ė(t) ≤ 2(3−b)

3t E(t)
(which is equivalent to the fact that the function H(t) = t

2b
3 −2E(t) is non-

increasing)
The proof of 2. is direct from (1.33) of Lemma 1.3.1 by replacing ξ =

λ(λ+ 1− b), with λ ∈ [2, b− 1].
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Lemma 1.3.1 and Corollary 1.3.1 permit to prove the Theorem 1.3.2, by
tuning properly the friction parameter b > 0 together with the Lyapunov-
parameters λ and ξ in the definition of the energy-functional E(t).

Proof of Theorem 1.3.2. For the first case b < 3, for λ = 2b
3 and ξ =

λ(λ + 1− b) > 0 from point 1. of Corollary 1.3.1, and the definition of E(t)
and H(t) = t

2b
3 −2, for all t ≥ t0, we have :

t
2b
3 w(t) ≤ t

2b
3 −2E(t) = H(t) ≤ H(t0) = t

2b
3 −2

0 E(t0) (1.36)

which gives the first bound of (1.20).
In the same way, since ξ = λ(λ+ 1− b) > 0, we have :

t
2b
3 −2h(t) ≤ t

2b
3 −2E(t) = H(t) ≤ H(t0) = t

2b
3 −2

0 E(t0) (1.37)

Hence, we deduce the existence of a constant C > 0, such that :

h(t) ≤ Ct2−
2b
3 (1.38)

By using the basic convex inequality and the fact that H(t) is non-increasing,
we find :

t
2b
3 −2

(t2
4 ‖ẋ(t)‖2 + (ξ − λ2)

2 h(t)
)
≤ t

2b
3 −2E(t) = H(t) ≤ H(t0) (1.39)

Hence by multiplying by t2− 2b
3 and using estimation (1.38), we conclude proof

of the first point (1.20) of Theorem 1.3.2.
For the second point if b ≥ 3, from (1.35) of Corollary 1.3.1, with λ = 2,

for all t ≥ t0, we have: Ė(t) ≤ 0, hence the function E is non-increasing and
thus bounded. From definition (1.28), since ξ = λ(b − λ − 1) ≥ 0, we have
directly the first estimation of (1.21) with C1 = E(t0).

In addition by definition (1.30), since λ2 + ξ ≥ λ (recall that λ = 2 and
ξ = λ(λ+ 1− b) ≥ 0) we have that :

h(t) + tḣ(t) ≤ E(t0) (1.40)

By integrating the previous relation, we deduce the existence of a constant
C > 0, such that for all t ≥ t0, it holds :

h(t) ≤ C (1.41)

By using the basic convex inequality ‖u‖2 ≤ 2‖u+z‖2 +2‖z‖2 with u = tẋ(t)
and z = λ(x(t) − x∗) and the fact that E(t) is non-increasing, from (1.28),
we find :

t2

4 ‖ẋ(t)‖2 + (ξ − λ2)
2 h(t) ≤ E(t0) (1.42)
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which by using estimation (1.41), gives :

t2‖ẋ(t)‖2 ≤ 4E(t0) + 2|λ2 − ξ|h(t) ≤ 4E(t0) + 2|λ2 − ξ|C ≤ C ′ (1.43)

which allows to conclude the second estimation of (1.21) for a suitable posi-
tive constant C2.

For the third point, since b > 3, by evaluating λ = b − 1 and λ = 2 in
(1.35) we obtain respectively, for all t ≥ t0 :

∫ t

t0
s(F (x(s))− F ∗)ds ≤ E(t0)

b− 3 and
∫ t

t0
s‖ẋ(s)‖ds ≤ E(t0)

b− 3 (1.44)

In order to prove (1.23), we consider the global energy function of system
(1.18) :

U(t) = w(t) + 1
2‖ẋ(t)‖2 (1.45)

By differentiating and using the fact that x(t) satisfies (1.18), we find :

U̇(t) = 〈∇F (x(t)) + ẍ(t), ẋ(t)〉 = −b
t
‖ẋ(t)‖2 (1.46)

Hence the function U is non-increasing, and bounded from below therefore
convergent. In addition, from (1.22), for all ε > 0, there exist some T > t0,
such that for all t ≥ T :

∫ t

t
2

sU(s)ds =
∫ t

t
2

s(w(s) + 1
2‖ẋ(s)‖2ds < ε (1.47)

By using the fact that U(t) is non-increasing, for all t ≥ T , we find

U(t)
∫ t

t
2

sds ≤
∫ t

t
2

sU(s)ds < ε (1.48)

hence, t2U(t) = o(1), which by positivity of w(t) and ‖ẋ(t)‖2, gives the
expected result.

For the weak convergence, the proof necessitates the use of Opial’s Lemma
(see Lemma A.0.1). Since the proof of the weak convergence is given for the
more general setting of the differential inclusion studied in Chapter 2, we are
addressing the reader to the proof of Corollary 2.2.1 presented later on.
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1.3.3 Perturbed system with vanishing viscosity term
Further studies (see [ACPR18], [AD17]) include the analysis of system (1.18),
with the presence of an additional integrable term p ∈ L1([t0,+∞);H) :

ẍ(t) + b

t
ẋ(t) +∇F (x(t)) + p(t) = 0 (1.49)

or more generally (see [May17], [JM15], [BM16]) :

ẍ(t) + α(t)ẋ(t) +∇F (x(t)) + p(t) = 0 (1.50)

The term p(t) can be seen as a perturbation error over the gradient ∇F .
This corresponds to the case when ∇F is p-approximately computed at every
instant t ≥ t0. As we shall see in Part II and in particular in section 3.4,
apart of questions of theoretical interest, the study of systems like (1.49) is
of a high importance in connection with the analysis of numerical algorithms
with inexact computations of the gradient of the minimizing function (see
section 3.4, later on).

In order to guarantee the existence and uniqueness of a solution of the
Cauchy problem associated to (1.49), apart from the Lipschitz character of
∇F , it suffices to impose that the perturbation function p is integrable, i.e.
p ∈ L1((t0,∞);H).

In particular, all the convergence rates found in Theorem 3.3.1 are rela-
tively robust, with respect to the perturbation term p(t), which means that
they remain true, under some control conditions on the function p. More
precisely we have the following Theorem, whose proof follows the same Lya-
punov arguments of the unperturbed case, is let to the reader.

Theorem 1.3.3 ([AD17],[ACR19]). Let x ∈ C2(t0,+∞) be a solution of
(1.49) and x∗ ∈ arg minF . If p = min{1, b3} and

∫∞
t0
tp‖p(t)‖dt < +∞ , then

the following estimates hold true :

F (x(t))− F ∗ = O
(
t−2p

)
and ‖ẋ(t)‖ = O

(
t−p
)

(1.51)

The proof of Theorem 1.3.3, is similar to the one of 3.3.1, for the unper-
turbed one and is based in a slightly modified Lyapunov energy of the one
in (1.28) :

Ep(t) = t2−2pE(t) +
∫ t

t−0
t2p−1〈λ(x(s)− x∗) + sẋ(s), p(s)〉ds (1.52)

with p = min{1, b3} and the use of Grönwall-Bellman Lemma (see for example
Lemma 6.2 in [ACR19]).
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1.3.4 The differential equation (1.18) under additional
geometrical assumptions

In various situations, apart convexity, the minimizing function F enjoys ad-
ditional geometrical features, such as strong convexity, or more generally the
p-growth condition for a general p ≥ 1 :

Definition 1.1. Let F : H → R be a convex differentiable function with
X∗ = arg minF 6= ∅. Let p ≥ 1. The function F satisfies the p-growth
condition L(p) if, for any minimizer x∗ ∈ X∗, there exists a constant Kp > 0
and ε > 0 such that:

∀x ∈ B(x∗, ε), Kp‖x− x∗‖p ≤ F (x)− F (x∗). (1.53)

Roughly speaking, the growth condition L(p), indicates the level of sharp-
ness of the function F near the set of its minimizers (i.e. how fast the function
F increases around X∗). For convex functions the growth condition is re-
lated with the Łojasiewicz (or more generally Kurdyka-Łojasiewicz) property
(see Definition 4.2 in Chapter 4), studied and used intensively in various do-
mains the last decades (see for example the works of [Łoj63, Łoj93] as also
[BDL07, BDL06, BDLM10, ABRS10a] and their possible references).

On the other hand, another important geometric property for the min-
imizing function, which was introduced in [CEG09a], and revisited in the
recent works of [SBC16] and [ADR18], is a flatness-type condition.

Definition 1.2. Let β ≥ 1. The function F satisfies the condition H(β) if,
for any critical point x∗ ∈ X∗, there exists η > 0 such that:

∀x ∈ B(x∗, η), F (x)− F (x∗) ≤ 1
β
〈∇F (x), x− x∗〉.

Opposingly to the p-growth condition L(p), condition H(β) expresses the
level of flatness of the function F , near the set of its minimizers. In fact
H(β) can be seen as a generalization of the notion of convexity of F near its
minimizers. It can be shown (see Lemma 4.4.1 in Chapter 4) that a convex
function that verifies H(β), for β ≥ 1, also verifies

F (x)− F (x∗) ≤Md(x, x∗)β. (1.54)

in a suitable neighborhood ofX∗ = arg minF and a suitable constantM > 0.
This shows that condition H(β) forms an upper threshold for the function F ,
measured by the parameter β, in contrary with condition L(p), which forms
a lower threshold measured by p.
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For a more detailed presentation and more comments about Hypotheses
H(β) and L(p) and their interplay, we are redirecting the reader in Sections
4.1 and 4.4.1 of Chapter 4.

In this paragraph we briefly present some of the recent results concern-
ing the convergence properties of a solution to (1.18), under the additional
geometrical assumptions H(β) and L(p) on the minimizing function F . Un-
der these conditions one can expect finer convergence rates, than the ones
presented in Theorem 1.3.2, under the sole assumption of convexity of F .
For a detailed presentation and full proofs of these results, we are address-
ing the interested reader to the recent work of [ADR18]. These results will
provide some useful landmarks for the analysis made in the discrete case in
Chapter 4, for the associated inertial-gradient algorithm (see algorithm (11)
in Chapter 4). In particular we have the following two Theorems, expressing
the convergence properties of a solution of (1.18), with respect to the friction
parameter b > 0 and the geometry of the function F (i.e. the parameters
β ≥ 1 and p ≥ 1).

Theorem 1.3.4 ([ADR18]). Let F be a convex differentiable function sat-
isfying H(β), with β ≥ 1 and x∗ ∈ arg minF . If x is a solution of (1.18),
then the following hold true:

1. If b ∈ (0, 1 + 2
β
) then :

F (x(t))− F ∗ ≤ C1

t
2βb
β+2

and ‖ẋ(t)‖ ≤ C2

t
βb
β+2

(1.55)

2. If b ≥ 1 + 2
β
then :

F (x(t))− F ∗ ≤ C1

t2
and ‖ẋ(t)‖ ≤ C2

t
(1.56)

3. If b > 1 + 2
β
then :∫ +∞

t0
t
(
F (x(t))−F ∗

)
dt < +∞ and

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞ (1.57)

In this case the trajectory x(t), weakly converges to a minimizer as also:

F (x(t))− F ∗ = o
(
t−2
)

and ‖ẋ(t)‖ = o
(
t−1
)

(1.58)

4. If b > 1 + 2
β
and F satisfies L(2) and has a unique minimizer x∗, then

F (x(t))− F ∗ ≤ C1

t
2βb
β+2

and ‖ẋ(t)‖ ≤ C2

t
βb
β+2

(1.59)
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In addition the trajectory x(t) strongly converges to the minimizer x∗ ∈
arg minF .

Remark 3. As it shown in [ADR18] and [ACPR18], by considering functions
of type F (x) = |x|r, for r > 1, one can show that all the above convergence
rates of Points 1., 2. and 4. are attained. This shows that these orders are
-worst case- optimal (see Proposition 4.2 in [ADR18]).

As for functions F with flat-enough geometry near the set of their mini-
mizers, we have the following Theorem.

Theorem 1.3.5 ([ADR18]). Let F be a convex function satisfying H(β),
with β ≥ 2 and L(p), with p ≥ 2. If x is a solution of (1.18), then there exist
some positive constants C1, C2, such that for all t ≥ t0 it holds:

F (x(t))− F ∗ ≤ C1

t
2p
p−2

and ‖ẋ(t)‖ ≤ C2

t
p
p−2

(1.60)

In addition the trajectory x(t) strongly converges to a minimizer x∗ ∈ arg minF .

Remark 4. As for Theorem 1.3.4, by considering functions of type F (x) =
|x|r, for r > 2, one can show that the rates in (1.60) are attained, hence are
-worst case- optimal for the class of the continuously differentiable convex
functions (see Example 2.13 in [ACPR18]).

Notice that Points 1., 2. and 3. of Theorem 1.3.4 consist of a generaliza-
tion of the results found in Theorem 1.3.2. Remark that when β = 1 (F is
convex), one can exactly recover Theorem 1.3.2.

In fact one can easily verify from Lemma 1.3.1 that by using hypothesis
H(β) with β ≥ 1, instead of the convexity of F , by choosing properly λ and
ξ, we can recover a similar version of Corollary 1.3.1 (here the number 3
appearing to Corollary 1.3.1 is to be replaced by 1 + 2

β
).

More generally, for a real parameter r, by extending the definition of the
functional E , one can consider the r-scaled energy Er as follows:

Er(t) = trE(t) = t2+rw(t) + tr

2 v(t) + ξtp

2 h(t) (1.61)

By differentiating and using equation (1.18), for λ ≥ 0 and ξ = λ(λ+1−b)
we find (see Lemma 5.1 in [ADR18]) :

Ėr(t) ≤ tr
(
(2−βλ+r)tw(t)+(2λ+2−2b+r)v(t)

2t +λ(λ+1−b)(r−2λ)h(t)
2t

)
(1.62)

Then the associated results of Theorems 1.3.4 and 1.3.5 can be obtained,
by choosing properly the Lyapunov-parameters λ and r, in order to recover
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the Lyapunov property for Er and using Hypotheses H(β) and L(p), in each
case when needed. For the details of this procedure, we address the reader
to the recent works [AD17] and [ADR18].

1.4 Discretization of the ODE (1.18)

In this Section we discuss about some possible discretizations of the dy-
namical system (1.18). As mentioned earlier by discretizing properly the
differential equation (1.18), one can expect that the convergence properties
of its solution-trajectory, are inherited in the corresponding discrete scheme.
Here we give a possible discretization of (1.18), which corresponds to a par-
ticular case of an inertial algorithm, which is of our interest in Part II.

Firstly note that by introducing the auxiliary function v(t) = ẋ(t), the
second-order ODE (1.18) is equivalent to the following coupled system :v(t) = ẋ(t)

v̇(t) = − b
t
v(t)−∇F (x(t))

(1.63)

with x(0) = x0 ∈ H and v0 = 0
We will discretize system (1.63) implicitly with respect to the first equa-

tion and explicitly with respect to the second. If we fix a time-step h,
t0 = bh > 0 and set the grid tn = t0 + nh = (n + b)h and xn ≈ x(tn)
and vn ≈ v(tn), from (1.63) we obtain :xn+1 = xn + hvn+1

vn+1 =
(
1− b

n+b

)
vn − h∇F (yn)

(1.64)

where yn depends on xn and vn and is to be defined (the reason of the choice
for yn will be clear in a while).

System (1.64) is then equivalent to x0 = x1 ∈ H and

∀n ≥ 1 : xn+1 = xn + αn(xn − xn−1)− h2∇F (yn) (1.65)

with and αn = 1− b
n+b = n

n+b . Hence if we choose yn = xn + αn(xn − xn−1),
we obtain y1 = x1 and for all n ≥ 1 :

yn = xn + αn(xn − xn−1)
xn+1 = yn − h2∇F (yn)

(1.66)
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System (1.66) corresponds exactly to the generalized Nesterov’s type ac-
celeration scheme for smooth convex functions, with a step γ = h2. This
is the algorithm of our interest in Part II in the more general setting of
composite convex optimization problems. This correspondence is of a high
importance, since the results and the proofs for a solution of the continuous
system (1.18), will trace the strategy of proofs for the associated discrete
scheme (1.66).

Of course scheme (1.66) is one among the numerous possible discretiza-
tions that one can do for the system (1.63). Notice also that the choice of
discretization can play an important role.

Remark for example that by full implicit discretization of (1.63), one can
recover a particular version of the accelerated proximal point algorithm as
considered in [Gül92] :

yn = xn + n

n+ b
(xn − xn−1)

xn+1 =
(
Id+ h2∂g

)−1(
yn − h2∇f(yn)

)
= Proxh2F

(
yn − h2∇f(yn)

) (1.67)

In this case, one can also notice that the scheme (1.67) is also valid when
the function F is not necessarily smooth, since the proximal operator is
well defined for general convex functions. In fact as we shall see in the
following Chapter, the fast convergence properties of the ODE (1.18) can be
extended in the case of a possibly non-smooth convex function F . Hence, by
discretizing similarly the differential inclusion associated to (1.18), we can
recover the inertial proximal-gradient algorithm (see algorithm 7 in Chapter
3) and expect the same convergence properties.

More generally, different combinations of explicit-implicit or explicit-explicit
discretizations of the coupled system (1.63), can lead to other versions of in-
teresting discrete inertial schemes. Clearly for such variants, one should
check the consistency and stability with the associated ODE (1.18), in order
to expect similar convergence properties. In view of the Lipschitz character
of ∇F , classical discretization methods seem to be consistent with (1.18),
under some mild assumptions on the magnitude of the step size h and a
"proper choice" for the sequence αn. In particular, it seems that the choice of
over-relaxation sequence αn is "closely connected" to the damping coefficient
b
t
. Nevertheless the possible options for αn are endless and they constitute a

challenging future area for study and it goes beyond the scope of the current
Thesis.
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1.5 Concluding remarks and perspectives

In this Chapter we presented some results concerning the convergence
analysis of the differential equation (1.18), from an optimization point of
view. As already mentioned the key-tool of the analysis is based on Lyapunov
techniques. These results and their proofs will provide us a useful guideline
for the discrete scheme found in Section 1.4. In a parallel way, one can
consider systems such as (1.16), with a general damping parameter α(t):

ẍ(t) + α(t)ẋ(t) +∇F (x(t)) = 0 (1.68)

or even more general systems :

ẍ(t) + α(t)ẋ(t) + β(t)∇F (x(t)) = 0 (1.69)

with some positive function β(t). Systems as (1.69) are still connected with
the minimization problem of F . It would be interesting to extend the study
made for the system (1.18), for the more general one (1.69) and explore the
different conditions over the functions α(t) and β(t), in order to obtain some
"good" convergence properties for the solution of (1.69). This question can
be also linked with the particular structure of the minimizing function F ,
as done in Section 1.3.4. Naturally, these studies can also open the way for
the exploration of generalized inertial discrete schemes, which preserve the
convergence properties of solutions of (1.69), as also pointed out in Section
1.4 (for some results on this direction, one can consult the works of [AC17,
AC18d, ACR18]).

In fact, systems such as (1.69), are also connected with the one studied
in this Chapter (1.18), via time rescaling, as it was shown in the very recent
work [ACR18] (see also [WW15, WWJ16] and [WRJ16] on this question). In
particular by rescaling in time, system (1.18) by a positive increasing function
s(t), one can obtain :

ÿ(t) +
(
bṡ(t)
s(t) −

s̈(t)
ṡ(t)

)
ẏ(t) +

(
ṡ(t)

)2
∇F (x(t)) = 0 (1.70)

where x is a solution of (1.18) and y(t) = x(s(t)).
It is then clear that the system (1.70), is of the form of (1.69). Notice then,

that by tuning properly α(t) and β(t), (with respect to s(t)), it is possible
that the orders of convergence rates found in Theorem 1.3.2, still hold true
for the rescaled solution of (1.18). This can lead to further acceleration of
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convergence rates, via time reparametrization. It would be interesting to
extend the study for general systems such as (1.69), linked with the time
rescaling of (1.18) (for some first results on this question, one can consult
the work of [ACR18]). Again this particular question is of a high importance
in link with the different possible discretizations of (1.18), or (1.69), for
obtaining even more competitive schemes.





Chapter 2

The differential inclusion

In this Chapter we are further analyzing the second-order damped system
(1.18) studied in Chapter 1, in a non-differential setting.

In particular in a finite-dimensional Hilbert space (i.e. H = Rd , d ∈
N) we are interested in the minimization problem of a proper, lower semi-
continuous and convex function F : Rd −→ R̄ (not necessarily differentiable).
In this setting, instead of the differential equation (1.18), we are led to the
study of a differential inclusion which takes the following form :

ẍ(t) + b

t
ẋ(t) + ∂F (x(t)) 3 0 (DI)

More precisely we show that the same convergence properties, as in Theo-
rem 1.3.2, hold true (up to minor constraints ) for a general convex (possible
non-smooth) function F . Due to a compactness argument used in our anal-
ysis, our study is valid in a finite dimensional Hilbert space, hence from now
on, all along the current Chapter, we consider, H = Rd, where d ∈ N.

In particular, we give an existence result of a shock solution x of (DI)
(see Definition 2.1 later on this Chapter), via an approximation scheme. For
such a solution we show that "almost" the same fast asymptotic properties
as the ones obtained in the differential setting in Theorem 1.3.2 hold true.
Due to the lack of regularity of such shock solutions, the convergence bound
estimates (1.20), (1.21) and (1.22) found before, hold true almost everywhere.

In the case when the domain of F is the whole space Rd, we show that
the regularity of a solution x of (DI) is sufficient to obtain exactly the same
results concerning the asymptotical behavior of this solution, to the ones
obtained for the solution of the ODE (1.18) in the differential setting in
Theorem 1.3.2.

In addition, we show that the convergence rate O
(
t−

2b
3
)
of F (x(t)) to the

minimum F ∗ when 0 < b < 3, is optimal up to constants for the class of

45
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convex, lower semi-continuous and proper functions. In particular we show
that when F is the absolute value function and b < 3, the rate O

(
t−

2b
3
)
for

F (x(t)) to the minimum is exactly achieved, showing therefore the optimality
of this bound. The "limit-example" concerning the absolute value function
also stresses out the motivation of studying the differential inclusion (DI),
instead of the differential equation (1.18).

Finally, as in the previous Chapter, we present a suitable finite difference
scheme for the differential inclusion (DI), which corresponds to the inertial
algorithm that we study in Chapter 3, for solving composite non-smooth
convex minimization problems.

Naturally, the study of a differential inclusion such as (DI), covers a wider
class of interesting cases of convex optimization problems, than the study of
differential equations like (1.18), considered in the previous Chapter. Typi-
cal examples such as constrained minimization problems, LASSO variants, or
other general versions involving the `1 norm, or total variation regularizers,
are some of the possibilities, arising in the non-smooth, convex optimiza-
tion domain, where the minimizing function F is convex but not necessarily
smooth. Notice also that the case of composite convex minimization prob-
lems (i.e. F = f+g where f and g are convex with f smooth) are also covered
in the study of systems such as (DI), by simply taking ∂F = ∇f + ∂g.

At the same time, the study of differential inclusions is in general harder
and more demanding in terms of technical analysis. For example, existence
and regularity of possible solutions of a differential inclusion such as (DI), are
also some non-trivial issues that have to be taken into consideration, before
proceeding to the convergence analysis.

Nevertheless, as we shall see in Part II, the numerical schemes that one
can obtain by discretizing the differential inclusion (DI), correspond to some
interesting cases of inertial algorithms for solving non-smooth, convex opti-
mization problems (such as the inertial proximal point algorithm or a par-
ticular inertial Forward-Backward type algorithms when F is composed by
a smooth and a non-smooth part).

Moving towards the numerical schemes of systems like (DI), some other
alternative approaches of the differential equation (1.18) can be taken into
consideration, by replacing ∂F in (DI), by different regularized maximal
monotone operator-terms. For further details on this topic one can also
consult the recent works [AP17] [AC18b] [BDES18], [BCL18b] [BCL18a]).

The study of time-evolution general systems in involving maximal mono-
tone operators, goes back to[Bre71] and [Bre73] (see also [Cra70] and [CL71]),
where systems like the following

ẋ(t) +A(x(t)) 3 0 (2.1)
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with A : H ⇒ H, a maximal monotone operator (for the definition of a
maximal monotone operator, see Definition 20.1 in [BC11]), are taken into
consideration.

Classical theory for maximal monotone inclusions, introduced in [Bre73],
permits to prove existence and uniqueness of a solution x(·) of (2.1), such
that x ∈ W 1,∞((0,+∞);H), for a given initial condition x(0) = x0 ∈ H.

In the context of the minimization problem of a convex function F , by
replacing A with ∂F (recall that from convexity an lower semi-continuity of
F , ∂F is maximal monotone ), by (2.1), we can recover the subgradient flow:

ẋ(t) + ∂F (x(t)) 3 0 (SF)

which generalizes the Gradient Flow (GF) and whose unique solution-trajectory
minimizes the convex function F ( see for example [Bre71], [Bre73], [Bai78],
[CT13], [Gü05], [BDL06], [MT06], [GAS+05] and their possible references).

Following the second-order extensions on the differential setting, further
analysis for second-order differential inclusions have been made in the works
[ACR02] and [CP07] for the Heavy-Ball with constant-friction system :

ẍ(t) + αẋ(t) + ∂F (x(t)) 3 0 (2.2)

where α > 0. Some other more general similar schemes, where the vis-
cosity term α ˙x(t) is replaced by a general Lipschitz continuous function
h(t, x(t), ẋ(t)) or other dry friction terms ∂F (ẋ(t)), can be found in [Sch78],
[Sch98], [Pao93], [Pao00] and [PS02]) and [AAC06] respectively. Here we
mainly follow the strategy of works [Pao00] and [ACR02] in order to estab-
lish the existence of a proper solution to (DI).

2.1 Existence and regularity of solutions

Firstly we give some preliminary notions on the definition of a solution
of the differential inclusion (DI). As already mentioned, basic results for ex-
istence and regularity of solutions of first-order systems like (2.1), with some
initial condition, were first given in [Bre73]. Classical approaches to establish
existence of solutions for general differential inclusions, invoke Moreau-Yosida
approximations (see for example [Bre71], [Bre73], [CP07] [Bai78], [Sch98]) or
constructions of other approximations by constructing interpolation func-
tions, converging to a solution (see for example [GAS+05], [Pao93], [PS02]).

Following the same strategy, we construct an approximating scheme that
converge to a solution of (DI), in some proper way (see the approximation
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scheme in Theorem 2.1.2), in order to obtain the fast asymptotic properties
of a solution of (2.4).
Remark 5. The inclusion (DI) can be written equivalently as

Ẋ(t) +H(t,X(t)) + A(X(t)) 3 0 (2.3)

where X(t) = (x(t), ẋ(t))T , H
(
t, (a1, a2)

)
= (−a2,

b
t
a1)T for all t ≥ t0

and all a = (a1, a2) ∈ Rd × Rd and A
(
(a1, a2)

)
= (0, ∂F (a1))T for all

a = (a1, a2) ∈ Rd × Rd. Nevertheless, under this reformulation, the op-
erator A is not necessarily maximal monotone, hence the classical theory for
monotone inclusions for existence and uniqueness of a solution of (2.3), can
not be applied directly ( for more information in this topic, we address the
reader to Proposition 3.13 in Chapter 3 in [Bre73] ).

2.1.1 Shock solutions
In this section we will present the results concerning the existence and the
regularity of a solution of (DI). As mentioned before, most of these results are
established in a more general setting (see for example [ACR02] and [Pao00]).

Let us first recall the system (DI), starting from an instant t0 > 0, with
some initial conditions x(t0) = x0 ∈ domF ⊂ Rd and a zero starting velocity,
ẋ(t0) = 0 : ẍ(t) + b

t
ẋ(t) + ∂F (x(t)) 3 0

x(t0) = x0 and ẋ(t0) = 0
(2.4)

As already mentioned the system (2.4) falls into the general one studied
in [Pao00], for a general continuous function h from R+×Rd×Rd to Rd and
Lipschitz in its last two arguments with respect to the first one.ẍ+ ∂F (x) 3 h(t, x, ẋ)

x(t0) = x0 ∈ domF and ẋ(t0) = v0 ∈ TdomF (x0)
(2.5)

where TK denotes the tangent cone of a closed convex set K , i.e. for all
x ∈ K,

TK(x) =
{
u− x
s

: s > 0, u ∈ K
}

As one can expect, the solutions of (DI) can not enjoy the same regularity
properties (such as the C2(Rd) character), as the ones of the ODE (1.18) in
the differential setting. To see that, we can, for example, simply consider
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the case of a constrained minimization problem, which can be formulated
as minimizing the function F = f + ιC , where f is a smooth and convex
function and ιC is the indicator function of a closed convex set C. In this
case the possible solutions of (DI) can eventually "bounce" on the domain
of F , creating some shock-behavioral trajectories, which mathematically can
be translated to the presence of possible discontinuities of the derivative
(velocity) of the trajectory.

Here we recall the basic results concerning the definition and the existence
of a solution for (DI). For a detailed presentation and proofs of these results
for the general differential inclusion (2.5), we address the reader in the work
of [Pao00].

Definition 2.1. Let I = [t0,+∞). A function x : I −→ Rd is an energy-
conserving shock solution of (DI) if the following conditions hold :

1. x ∈ C0,1([t0, T ];Rd), for all T > t0 i.e. x is a Lipschitz continuous
function,

2. ẋ ∈ BV ([t0, T ];Rd), for all T > t0,

3. x(t) ∈ domF , for all t ∈ I,

4. For all φ ∈ C1
c (I,R+) and v ∈ C(I, domF ), it holds :

∫ T

t0

(
F (x(t))− F (v(t)

)
φ(t)dt ≤ 〈ẍ+ b

t
ẋ, (v − x)φ〉M×C, (2.6)

In fact in this case, we have that (2.4) holds almost everywhere in I.

5. x satisfies the following energy-conserving equation :

F (x(t))− F (x0) + 1
2‖ẋ(t)‖2 − 1

2‖v0‖2 +
∫ t

t0

b

s
‖ẋ(s)‖2ds = 0 (2.7)

almost everywhere in I.

We then have the following existence result (see in particular Theorem
3.1 in [Pao00]).

Theorem 2.1.1. Let F be a lower semi-continuous convex function. The
system (2.4) admits a shock solution x in the sense of Definition 2.1. In fact
we have that (DI) holds a.e. in I.
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Following the work [Pao00], in order to establish the existence of a shock
solution in the sense of Definition 2.1, we consider the Moreau-Yosida ap-
proximation of F (see Appendix A), which we denote as Fγ and for all γ > 0
we consider the following family of approximating ODEs :ẍγ(t) + b

t
ẋγ(t) +∇Fγ(xγ(t)) = 0

xγ(t0) = x0 ∈ domF and ẋγ(t0) = 0
(ADE)

where ∇Fγ = ∂Fγ is the Yosida approximation of ∂F (we recall that Fγ is a
continuously differentiable function which gradient coincides with the Yosida
approximation ∂Fγ of ∂F , see Lemma A.1.1 in Appendix A.)

We give a sketch of the proof of Theorem 2.1.1, since we use some of its
elements in the following section, for the study of the asymptotical properties
of a solution of (2.4). For a detailed proof of Theorem 2.1.1, we address the
reader to [Pao00].

The schema of the proof is classic. Find some a-priori estimates for the
family of solutions {xγ}γ>0 of (ADE) and its derivatives {ẋγ}γ>0, {ẍγ}γ>0
and then conclude by extracting a subsequence which converge to a solution
of (2.4) in some suitable space. Here we must stress out that the finite dimen-
sional setting is due to the compactness theorem that we use for the existence
of a solution. To our knowledge an existence result of such a solution in an
infinite dimensional Hilbert space is not yet known.

Of course -depending on the particular choice of F - other type of approx-
imations of ∂F are also possible and can potentially lead to a different shock
solution (than the one obtained by the Moreau-Yosida approximation), or
even approximations by construction of interpolating functions (see for ex-
ample [GAS+05] or [AA08] in the case of the subgradient flow SF). This could
be an interesting topic in relation with the exploration of the convergence
properties of different possible numerical approximation schemes, that lead
to the differential inclusion (2.4).

In particular, in our case for the Moreau-Yosida approximation, we have
the following Theorem ( see proof of Theorem 3.1 in [Pao00]) :

Theorem 2.1.2. Let {Fγ}γ>0 be a family of functions such that Fγ is the
Moreau -Yosida approximation of F for all γ > 0. Then there exists a
subsequence {xγ}γ>0 of solutions of (ADE), that converge to a shock solution
x of (2.4) in the following sense :

A.1 xγ −→
γ→0

x uniformly on [t0, T ] for all T > t0

A.2 ẋγ −→
γ→0

ẋ in Lp([t0, T ];Rd) , for all p ∈ [1,+∞), for all T > t0



51 2.1. Existence and regularity of solutions

A.3 Fγ(xγ) −→
γ→0

F (x) in Lp([t0, T ];Rd) , for all p ∈ [1,+∞), for all T > t0

In order to prove Theorems 2.1.1 and 2.1.2 we make use of the following
a-priori estimates for the approximations {xγ}γ>0. In particular we have the
following :

Lemma 2.1.1. Let {xγ}γ>0 be a family of solutions of (ADE) for any γ > 0.
Then :

sup
γ>0
{‖xγ‖∞, ‖ẋγ‖∞} < +∞ (2.8)

Lemma 2.1.2. Let {xγ}γ>0 be a family of solutions of (ADE) for any γ > 0.
Then :

sup
γ>0
{‖∇Fγ(xγ)‖1, ‖ẍγ‖1} < +∞ (2.9)

From Lemmas 2.1.1 and 2.1.2, one can extract a subsequence denoted as
{xγ}γ>0 which converges according to a suitable approximate scheme (see
scheme (AS) later on) to a solution of (2.4) in the sense of Definition 2.1.

Let us now turn our attention in the case where domF = Rd.

2.1.2 The case of domF = Rd

In the case when domF = Rd, one can expect more regularity over the
solution x of (2.4). In particular we have the following corollary.

Corollary 2.1.1. Let F : Rd −→ R̄ be a convex function such that domF =
Rd. Then the differential inclusion (2.4) admits a solution x in the sense of
Definition 2.1, such that :

x ∈ W 2,∞((t0, T );Rd) ∩ C1([t0,+∞);Rd) , for all T > t0

i.e. x is defined everywhere in [t0,+∞) and is differentiable with locally
Lipschitz gradient.

Remark 6. Notice that when domF = Rd, the function is continuous ( as it is
convex in Rd), hence the lower semi-continuity property of F is automatically
satisfied.

In order to achieve this supplementary regularity for the solution x, we
use the following Lemma :

Lemma 2.1.3. Let {xγ}γ>0 be a family of solutions of (ADE) for γ > 0.
Then :

sup
γ>0
{‖ẍγ‖∞} < +∞ (2.10)
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Proof. In fact by Lemma 2.1.1 we have that {‖xγ‖∞}γ>0 and {‖ẋγ‖∞}γ>0
are uniformly bounded with respect to γ. Since ‖∇Fγ(x)‖ ≤ ‖∂0F (x)‖,
for all x ∈ Rd, where ∂0F (x) denotes the minimal norm-element of ∂F (x)
(see Proposition 23.43 in [BC11]), by using Lemma A.2.2 we deduce that
the family {‖∇Fγ(xγ)‖∞}γ>0 is also uniformly bounded with respect to γ.
Finally by invoking equation (ADE), we obtain that {ẍγ}γ>0 is uniformly
bounded with respect to γ.

Proof of Corollary 2.1.1.
By using the estimations (2.8) and (2.10) we deduce that {xγ}γ>0 is bounded
in W 2,∞(t0, T );Rd). In addition, by using the fact that W 2,∞((t0, T );Rd) ⊂
C1,1([t0, T ];Rd) b C1([t0, T ];Rd) ( see Theorem 4.5 in [EG15] and Theorem
1.34 in [AF03]), we deduce the existence of a subsequence (still denoted as)
{xγ}γ>0 that converges to a function x in C1([t0, T ];Rd).

Furthermore, as ẍγ is bounded in L∞((t0, T );Rd) and L∞((t0, T );Rd) can
be identified with the dual space of L1((t0, T );Rd), we also have ( that is the
Banach-Alaoglu Theorem, see for example Theorem 3.14 in [Cla13] ) that up
to a subsequence ( here we extract from the subsequence considered before )
still denoted by {ẍγ}γ>0, :

ẍγ ⇀
∗ u in L∞((t0, T );Rd) (2.11)

where by uniqueness of the limit (in the distributional sense) we have that ẍ ≡
u ∈ L∞((t0, T );Rd). Hence we have that x ∈ C1([t0, T ];Rd)∩W 2,∞((t0, T );Rd).

In fact for all i ∈ N∗, one can construct the sequences (of sequences) of
functions {{xih(γ)}γ>0}i∈N as follows :

x̂1
h(γ) −→γ→0

x̂1 ∈ W 2,∞([t0, t0 + 1])

x̂2
h(γ) −→γ→0

x̂2 ∈ W 2,∞([t0, t0 + 2])
...

x̂ih(γ) −→γ→0
x̂i ∈ W 2,∞([t0, t0 + i])

(2.12)

in a way that every time we extract a subsequence {xi+1
h(γ)}γ>0 from the sub-

sequence considered before {xih(γ)}γ>0 , for every i ∈ N∗. By diagonal ex-
traction we consider the sequence of functions {xih(1/i)}i∈N. We then define
the sequence of functions {wi}i∈N in [t0,+∞), as the W 2,∞([t0 + i,+∞))
extensions of xih(1/i), for all i ∈ N. By this construction there exists a
function x : [t0,+∞) −→ Rd such that the sequence of functions {wi}i∈N
converges to, with respect to the W 2,∞

loc ([t0,+∞)) norm. This shows that
x ∈ W 2,∞((t0, T );Rd) ∩ C1([t0,+∞);Rd), for all T > t0.
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Once the notion of a shock solution of (2.4) is established, we are ready
to pass to the asymptotic properties of such a solution. As we shall see
the key-element for the analysis is the approximation scheme established in
Theorem 2.1.2 and the Lyapunov analysis made in the differential case.

2.2 Asymptotic behavior

In this section we are interested in the asymptotic properties of a solution
of (2.4). As the regularity of such a solution depends on the domain of F ,
we will split the presentation into two parts, one which treats the case of a
shock solution and the other one concerning the case when domF = Rd. In
what follows in this section, we denote as x∗ a minimizer of F and w(t) =
F (x(t))− F (x∗).

2.2.1 Energy estimates for shock solutions
In the same way than the differential setting, we use the same Lyapunov
energy in order to deduce the bound-estimates for a shock solution of (DI).
The difficulty in the Lyapunov analysis comes from the fact that the solution
is not everywhere differentiable, hence we can not differentiate directly E .
Nevertheless via an approximation scheme we show that for w(t) and ‖ẋ(t)‖,
the same bound estimates as the ones obtained in in the differential setting
for a solution of (1.18), hold true for almost every t ≥ t0.

Thus, for λ ≥ 0 and ξ ≥ 0 we define the following energy-function asso-
ciated to a shock solution of (2.4) :

E(t) = t2w(t) + 1
2‖λ(x(t)− x∗) + tẋ(t)‖2 + ξ

2‖x(t)− x∗‖2 (2.13)

For the asymptotic properties of a shock solution we will systematically
make use of its approximation scheme in the spirit of the study made in
[ACR02].

Let {xγ}γ>0 a suitable subsequence of solutions of (ADE) such that the
approximation scheme (AS) holds true, i.e. :

A.1 xγ −→
γ→0

x uniformly on [0,T] for all T > 0,

A.2 ẋγ −→
γ→0

ẋ in Lp([t0, T ];Rd), for all p ∈ [1,+∞), for all T > t0,

A.3 Fγ(xγ) −→
γ→0

F (x) in Lp([t0, T ];Rd), for all p ∈ [1,+∞), for all T > t0.
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We will also use the following notations wγ(t) = Fγ(xγ(t)) − Fγ(x∗) and
hγ(t) = ‖xγ(t)− x∗‖2, for all γ > 0.

Eγ(t) = t2wγ(t) + 1
2‖λ(xγ(t)− x∗) + tẋγ(t)‖2 + ξ

2‖xγ(t)− x
∗‖2 (2.14)

Here we point out that since xγ is solution to (ADE), Lemma 1.3.1 and
Corollary 1.3.1, as presented in Chapter 1, hold true for Eγ.

Lemma 2.2.1. Let x be a shock solution of (DI) obtained as a limit of the
approximation scheme (AS) and x∗ a minimizer of F . Then the following
estimates hold true :

1. For b ∈ (0, 3), λ = 2b
3 and ξ = λ(λ + 1 − b) > 0, the function H(t) =

t
2b
3 −2E(t) is essentially non-increasing in (t0,+∞), i.e. for a.e. (s, t) ∈

[t0,∞)2 with s ≤ t, we have H(t) ≤ H(s).

2. For b ≥ 3, λ ∈ [2, 1− b] and ξ = λ(b− λ− 1) ≥ 0, the function E(t) is
essentially non-increasing in (t0,+∞).

Proof. Let {xγ}γ>0 a suitable subsequence of solutions of (ADE) such that
the approximation scheme (AS) holds. If we name Hγ = t−cEγ, for λ = 2b

3 ,
ξ = λ(λ + 1 − b) ≥ 0, then from the first point of Corollary 1.3.1 is a non-
increasing function for all γ > 0, i.e. :

Hγ(t) ≤ Hγ(s) for all t0 ≤ s ≤ t (2.15)

Let T > t0. By extracting a suitable subsequence when γ → 0 in (2.15),
thanks to the approximation scheme (AS), we obtain :

H(t) ≤ H(s) for a.e. t0 ≤ s ≤ t ≤ T (2.16)

Since T > t0 is arbitrary, we deduce that H(t) ≤ H(s) for a.e. t0 ≤ s ≤ t
and in particular H(t) ≤ H(t0) for a.e. t ≥ t0 , which concludes of point 1.
of Lemma 2.2.1.

In the same way, for b ≥ 3, λ ∈ [2, 1 − b] and ξ = λ(b − λ − 1) ≥ 0, by
the second point of Corollary 1.3.1

Eγ(t) ≤ Eγ(s) for all t0 ≤ s ≤ t. (2.17)

Hence by extracting a suitable subsequence when γ → 0, thanks to the
approximation scheme (AS) we conclude the second point of Lemma 2.2.1
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We are now ready to give the main Theorem, showing that for a shock
solution of (2.4) obtained as a limit of the approximation scheme (AS), the
same estimates of Theorem 1.3.2 hold true almost everywhere in (t0,+∞),
for the different values of the parameter b > 0.

Theorem 2.2.1. Let x be a shock solution of (2.4) obtained as a limit of the
approximation scheme (AS) and x∗ a minimizer of F . Then the following
estimates hold true :

1. If b < 3 then there exist some positive constants C1, C2, such that :

F (x(t))− F ∗ ≤ C1

t
2b
3

and ‖ẋ(t)‖ ≤ C2

t
b
3

for a.e. t ≥ t0 (2.18)

2. If b ≥ 3 then the trajectory {x(t)}t≥t0 is bounded and there exist some
positive constants C1, C2, such that :

F (x(t))− F ∗ ≤ C1

t2
and ‖ẋ(t)‖ ≤ C2

t
for a.e. t ≥ t0 (2.19)

3. If b > 3, we have :∫ +∞

t0
t
(
F (x(t))− F ∗

)
dt < +∞ and

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞

(2.20)

Proof of Theorem 2.2.1. For the first case b < 3, for λ = 2b
3 and ξ = λ(λ+1−

b) > 0 from point 1. of Lemma 2.2.1, since H(t), is essentially non-increasing,
we have :

t
2b
3 w(t) ≤ t

2b
3 −2E(t) = H(t) ≤ H(t0) = t

2b
3 −2

0 E(t0) for a.e. t ≥ t0 (2.21)

which gives the first bound of (1.20).
In addition, since ξ = λ(λ+1− b) > 0 and Hγ is non-increasing, we have:

t
2b
3 −2‖xγ(t)− x∗‖2 ≤ 2Hγ(t)

ξ
≤ 2Hγ(t0)

ξ
(2.22)

hence, by passing to the limit (up to a suitable subsequence), when γ → 0,
we find :

t
2b
3 −2‖x(t)− x∗‖2 ≤ 2H(t)

ξ
≤ 2H(t0)

ξ
< +∞ for a.e. t ≥ t0 (2.23)



Chapter 2. The differential inclusion 56

Hence, by using the basic convex inequality ‖α + β‖2 ≤ 2‖α‖2 + 2‖β‖2, we
deduce the existence of a constant C > 0, such that :

t
2b
3 ‖ẋ(t)‖2 ≤ 2t 2b

3 −2E(t) + t
2b
3 −2‖x(t)− x∗‖2 = 2H(t) + t

2b
3 −2‖x(t)− x∗‖2

≤ 2H(t0) + sup
t≥t0

{
t

2b
3 −2‖x(t)− x∗‖2

}
≤ C for a.e. t ≥ t0

(2.24)
which allows to conclude the first point of Theorem 2.2.1.

For the second point of Theorem 2.2.1, if b ≥ 3, λ ∈ [2, 1 − b] and
ξ = λ(b− λ− 1) ≥ 0, from (2.17) for s = t0, for all γ > 0, we have :

Eγ(t) ≤ Eγ(t0) for all t ≥ t0 (2.25)

By neglecting the non-negative terms we find :

‖λ(xγ − x∗) + tẋγ(t)‖2 ≤ 2Eγ(t0) for all t ≥ t0 (2.26)

By developing the square term in the left, and re-neglecting the non-
negative terms, we find :

λ2‖xγ − x∗‖2 + 2λt〈xγ − x∗, ẋγ(t)〉 ≤ 2Eγ(t0) for all t ≥ t0 (2.27)

and since λ ≥ 2, we obtain :

λ‖xγ − x∗‖2 + 2λt〈xγ − x∗, ẋγ(t)〉 ≤ 2Eγ(t0) for all t ≥ t0 (2.28)

which is equivalent to :

d

dt

(
λt‖xγ(t)− x∗‖2

)
≤ 2Eγ(t0) for all t ≥ t0 (2.29)

By integrating (2.29) over (t0, t) and dividing by λt ≥ t0, we find :

‖xγ(t)− x∗‖2 ≤ t0‖xγ(t0)− x∗‖2

t
+ 2(t− t0)

λt
Eγ(t0)

≤ t0‖xγ(t0)− x∗‖2

t
+ 2
λ
Eγ(t0)

(2.30)

By passing to the limit (up to a suitable subsequence) when γ → 0 and
using the approximation scheme (AS), we find :

‖x(t)− x∗‖2 ≤ t0‖x(t0)− x∗‖2

t
+ 2
λ
E(t0) for a.e. t ≥ t0 (2.31)

which shows that sup
t≥t0
{‖x(t)− x∗‖} < +∞
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In addition since E is essentially non-increasing, for 2 ≤ λ ≤ b − 1 we
have :

t2w(t) ≤ E(t) ≤ E(t0) < +∞ for a.e. t ≥ t0 and

t‖ẋ(t)‖ ≤
√
E(t) + sup

t≥t0
{‖x(t)− x∗‖} ≤

√
E(t0) + sup

t≥t0
{‖x(t)− x∗‖}

< +∞

(2.32)

which concludes the second point of the Theorem 2.2.1, with C1 = E(t0) and
C2 =

√
E(t0) + sup

t≥t0
{‖x(t)− x∗‖}

For the third point, for b > 3, by choosing λ = b− 1 in (1.35) in Lemma
1.3.1, we obtain :

Ėγ(t) ≤ (3− b)twγ(t) (2.33)

By integrating in [t0, T ], we have :
∫ T

t0
twγ(t)dt ≤

Eγ(t0)− Eγ(T )
b− 3 ≤ Eγ(t0)

b− 3 < +∞ (2.34)

By passing to the limit (up to a subsequence) when γ → 0 thanks to the
approximation scheme (AS) we deduce that :

∫ T
t0
tw(t)dt ≤ E(t0)

b−3 < +∞
Since the last inequality hold for all T > t0, we obtain

∫∞
t0
tw(t)dt < +∞ .

In the same way as before, since b > 3, for λ = 2 in (1.35) of Lemma
1.3.1, we find :

Ėγ(t) ≤ (3− b)t‖ẋγ(t)‖2. (2.35)

By integrating and passing to the limit ( up to a suitable subsequence ) when
γ → 0 and using the approximation scheme (AS), we find

∫+∞
t0

t‖ẋ(t)‖2dt <
+∞ which concludes the proof of the third point of Theorem 2.2.1.

In fact, as in the differential case for b > 3, one has slightly better results,
which are summarized in the following Corollary :

Corollary 2.2.1. Let x : be a shock solution of (DI) obtained as a limit of
the approximation scheme (AS) and x∗ a minimizer of F . If b > 3 then :

ess lim
t→∞

t2
(
F (x(t))− F ∗

)
= 0 and ess lim

t→∞
t‖ẋ(t)‖2 = 0 (2.36)

and the trajectory converges to a minimizer x∗.

Proof of Corollary 2.2.1. The proof follows the ones made in [May15] and
[AC18d], by passing from the approximation scheme (AS).
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First of all, we consider the following energy function :

U(t) = t2w(t) + t2

2 ‖ẋ(t)‖2 ≥ 0 (2.37)

and its approximation,i.e. for all γ > 0 and xγ solution to (ADE) :

Uγ(t) = t2Wγ(t) + t2

2 ‖ẋγ(t)‖
2 ≥ 0 ,∀t ∈ [t0,+∞) (2.38)

By differentiating, we have :

d

dt
Uγ(t) = t2〈z, ẋγ(t)〉+ t2〈ẍγ, ẋ(t)〉+ 2tWγ(t) + t‖ẋ(t)‖2 (2.39)

By using (ADE) and b > 3, we find

d

dt
Uγ(t) = 2tWγ(t) + (1− b)t‖ẋγ(t)‖2 ≤ 2tWγ(t) (2.40)

We now define the function Θγ(t) = Uγ(t)−
∫ t
t0

2swγ(s)ds. By definition,
Θ has non-positive derivative, hence it is non-increasing, i.e.

Θγ(t) ≤ Θγ(s) ∀t0 ≤ s ≤ t (2.41)

By passing to the limit in (2.41) up to a subsequence when γ → 0, thanks
to the convergence scheme (AS), we obtain that the function Θ(t) = U(t)−∫ t
t0

2sw(s)ds is essentially non-increasing. In addition from Theorem 2.2.1
for b > 3 we have that tw(t) is integrable, therefore the function Θ is essen-
tially bounded from below. Since it is also essentially non-increasing, it is
essentially convergent i.e. : ess lim

t→∞
Θ(t) = l ∈ R

As a consequence we have that U(t) is also essentially convergent when
t→ +∞ with :

ess lim
t→+∞

U(t) = ess lim
t→+∞

Θ(t) +
∫ +∞

t0
2tw(t) dt ∈ R (2.42)

Finally since b > 3, by Theorem 2.2.1 on a :∫ +∞

t0

1
t
U(t) dt =

∫ +∞

t0
tw(t) dt+ 1

2

∫ +∞

t0
t‖ẋ(t)‖2 dt < +∞ (2.43)

As
∫+∞
t0

1
t
dt = +∞ and U(t) is essentially convergent when t → +∞ ,

we deduce that ess lim
t→∞

U(t) = 0. This together with the positivity of t2w(t)
and t2

2 ‖ẋ(t)‖2 allow to conclude that

ess lim
t→∞

t2
(
F (x(t))− F ∗

)
= 0 and ess lim

t→∞
t‖ẋ(t)‖2 = 0 (2.44)
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as Corollary 1.35 asserts.
Lastly, for b > 3 we show that the trajectory {x(t)}t≥t0 converges to a

minimizer.
For this we use the continuous version of Opial’s Lemma (see Lemma

A.0.1 in Appendix A). In fact we will invoke the previous Opial’s Lemma
A.0.1 with S = arg minF and since in our framework as H = Rd is finite-
dimensional, we also deduce strong convergence of x(t) to a point of S =
arg minF .

By Theorem 2.2.1 for b > 3 and suitable λ and ξ the energy function E
is essentially non-increasing and bounded from below (at least by zero ), so
it is essentially convergent. By developing the term ‖λ(x(t) − x∗) + tẋ(t)‖2

in the definition of E , we have :

E(t) = t2w(t) + t2‖ẋ(t)‖2 + λt〈x(t)− x∗, ẋ(t)〉+ λ2 + ξ

2 ‖x(t)− x∗‖2 (2.45)

Since for b > 3, we shown that ess lim
t→∞

t2w(t) = 0 and ess lim
t→∞

t‖ẋ(t)‖ =
0, from (2.45), we deduce that ‖x(t)− x∗‖ essentially converges with :

ess lim
t→∞
‖x(t)− x∗‖ = ess lim

t→∞

√
2E(t)
λ2 + ξ

(2.46)

Since x is Lipschitz continuous function we deduce that lim
t→∞
‖x(t)−x∗‖ ∈

R. This shows that the first condition of Opial’s Lemma is satisfied.
For the second condition, let x̃ be a weak-cluster point of the trajectory

x(t), when t→ +∞. By lower semi-continuity of F , we have that :

F (x̃) ≤ lim inf
t→∞

F (x(t)) (2.47)

By Theorem 2.2.1 we have that ess lim
t→∞

F (x(t)) = F (x∗), where x∗ is a
minimizer, so that x̃ ∈ arg minF , which shows that the second condition of
Opial’s Lemma is satisfied, therefore we can conclude the proof by applying
Opial’s Lemma.

2.2.2 The case of domF = Rd

In this section we present the results concerning the asymptotic analysis in
the case when domF = Rd. In that case the regularity of a solution of (DI)
allow to have finer results than in the previous paragraph. In fact given
the regularity W 2,∞((t0, T );Rd) ∩ C1([t0,+∞);Rd) of a solution x of (DI),
most of the results presented here can be obtained as direct corollaries from
Theorem 2.2.1 and Corollary 4.5.2 ( remark that when domF = Rd, w(t)
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and ‖ẋ(t)‖ are defined for all t ≥ t0 ). Nevertheless we only give some brief
notions to stress out the importance of this supplementary regularity of the
solution in the case where domF is the whole space Rd.

In particular, the key-property for the analysis made in this subsection is
the absolute continuity of ẋ. This together with a generalized chain rule for
differentiation (see Lemma A.2.1 in appendix) make the proofs well adapted
to the ones made in the differential setting in chapter 1 and there is no
need pass through the different approximation schemes as done in subsection
2.2.1.

In fact, for any T > t0, if x is a solution of (2.4) in W 2,∞((t0, T );Rd), we
have in particular that x ∈ W 1,2((t0, T )) and the function h(t) = −ẍ(t) −
b
t
ẋ(t) is in L2((t0, T );Rd).
Therefore, in view of Lemma A.2.1, the function w(t) is absolutely con-

tinuous in [t0, T ] with :

ẇ(t) = 〈z, ẋ(t)〉 ∀z ∈ ∂F (x(t)) a.e. in (t0, T )

In addition as ˙̂x ∈ W 1,∞((t0, T );Rd), it is in particular Lipschitz continu-
ous in (t0, T ) ( see characterization of W 1,∞ space, Theorem 4.1 in [Hei05] or
Theorem 4.5 in [EG15] ), therefore it is also absolutely continuous in [t0, T ].
As a consequence we have the following proposition.

Proposition 2.2.2. Let x ∈ W 2,∞((t0, T );Rd)∩C1([t0,+∞);Rd) , ∀T > t0,
be a solution of (DI) obtained as a limit of the approximation scheme (AS)
and x∗ a minimizer of F . Then E(t) is absolutely continuous with :

Ė(t) ≤ (2− λ)tw(t) + (λ+ 1− b)t‖ẋ(t)‖2

+
(
ξ + λ(λ+ 1− b)

)
〈ẋ(t), x(t)− x∗〉 a.e. in (t0, T )

(2.48)

or equivalently :

Ė(t) ≤ (2b− 3λ)tw(t) + 2(λ+ 1− b)E(t)
t
− (λ2 + ξ)(λ+ 1− b)h(t)

t

+
(
ξ − λ(λ+ 1− b)

)
〈ẋ(t), x(t)− x∗〉

(2.49)

From Proposition 2.2.2, we deduce the following Theorem whose proof
follows the same lines of the ones of Theorem 2.2.1 and Corollary 4.5.2 and
is let to the reader.

Theorem 2.2.2. Let x ∈ W 2,∞((t0, T );Rd) ∩ C1([t0,+∞);Rd) , ∀T > t0,
be a solution of (DI) obtained as a limit of the approximation scheme (AS)
and x∗ a minimizer of F . Then the following estimates hold true for all
t ∈ [t0, T ]:
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1. If b < 3 then there exist some positive constants C1, C2, such that :

F (x(t))− F ∗ ≤ C1

t
2b
3

and ‖ẋ(t)‖ ≤ C2

t
b
3

(2.50)

2. If b ≥ 3 then the trajectory {x(t)}t≥t0 is bounded and there exist some
positive constants C1, C2, such that :

F (x(t))− F ∗ ≤ C1

t2
and ‖ẋ(t)‖ ≤ C2

t
(2.51)

3. If b > 3, we have :∫ +∞

t0
t
(
F (x(t))− F ∗

)
dt < +∞ and

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞

(2.52)
In fact:

lim
t→∞

t2w(t) = 0 and lim
t→∞

t‖ẋ(t)‖ = 0 (2.53)

In addition, the trajectory {x(t)}t≥t0 converges asymptotically to x∗.

We are now ready to give the last result of this Chapter, concerning the
optimality of convergence rate of F (x(t))− F ∗ in the case b ∈ (0, 3).

2.3 Optimality in the sub-critical region

As it was already mentioned in Remark 1 in Chapter 1, in [AC18d] (see
example 2.13), the authors give an example that shows that the rate O(t−2),
for w(t) = F (x(t)) − F ∗, is optimal, for the class of smooth and convex
functions ( where x(t) is a solution of (1.18) ).

In this section we are interested in establishing the optimality of conver-
gence rate for w(t) = F (x(t))−F ∗, in the sub-critical region for the parameter
b > 0 (i.e. b ∈ (0, 3) ), for the class of proper, lower semi-continuous and
convex functions.

In this case, Theorem 2.1.1 asserts that (DI) admits a solution x such
that x ∈ W 2,∞((t0, T );Rd)∩C1([t0,+∞);Rd), for all T > t0. In addition, the
first point of Theorem 2.2.1 asserts that when 0 < b < 3, the convergence
rate of w(t) = |x(t)| to x∗ = 0 is of order of O

(
t−

2b
3
)
. We show that this

order is optimal. we will study the differential inclusion (DI), for 0 < b < 3
when F (x) = |x|. This function enters in the framework studied before and
in particular domF = R.

More precisely we have the following Theorem.
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Theorem 2.3.1. Let x be a solution of (DI) with F (x) = |x| and 0 < b < 3
such that x(t0) 6= 0. Then there exists a constant K1 > 0, such that for any
T > t0, there exists t > T such that :

|x(t)| ≥ K1

t
2b
3
. (2.54)

Before proceeding to the proof, let us stress out some facts concerning
the particular example of the absolute value function F (x) = |x|, which we
use in our analysis.

Since the minimizer of F is clearly zero (i.e. x∗ = 0) and F is a convex
and positively 1−homogeneous function, we have :

w(t) = F (x(t))− F (x∗) = |x(t)| = 〈z, x(t)〉 with z ∈ ∂F (x(t)) (2.55)

In addition for any λ, ξ ≥ 0 :

E(t) = t2|x(t)|+ 1
2 |λx(t) + tẋ(t)|2 + ξ

2 |x(t)|2 (2.56)

and for λ = 2b
3 , ξ = 2b(3−b)

9 > 0 and c = 2− 2b
3

H(t) = t−cE(t) = t2−c|x(t)|+ t−c

2 |λx(t) + tẋ(t)|2 + ξt−c

2 |x(t)|2 (2.57)

In order to prove Theorem 2.3.1, we will make use of the following Lemma :

Lemma 2.3.1. Let 0 < b < 3 and x a solution to (DI) such that x(t0) =
x0 > 0. Then lim

t→∞
H(t) = l > 0 .

Proof. Let T > t0. From (2.48) and (2.55) we have :

Ė(t) = (2− λ)tw(t) +
(
ξ + λ(λ+ 1− b)

)
ẋ(t) · x(t)+(λ+ 1− b)t|ẋ(t)|2

a.e in (t0, T )
(2.58)

Since λ = 2b
3 and ξ = 2b(3−b)

9 > 0, by substituting the term t|ẋ(t)|2 as
exactly done in the previous paragraph, we find :

Ė(t) = c

t
E(t)− 2b(9− b2)

27t |x(t)|2 a.e. in (t0, T ) (2.59)

where c = 2− 2b
3

By rewriting the previous equation in terms of the functional H(t) =
tcE(t), we have :

Ḣ(t) = −2b(9− b2)
27 t−c−1|x(t)|2 a.e. in (t0, T ) (2.60)
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By definition of H (2.57) and its non-increasing property, for all t ≥ t0, we
have :

t2−c|x(t)| ≤ H(t) ≤ H(t0) (2.61)
By injecting the last inequality into (2.60), we find :

Ḣ(t) = −2b(9− b2)
27 tc−5t2−c|x(t)|t2−c|x(t)|

≥ −2b(9− b2)
27 tc−5H(t0)H(t) a.e. in (t0, T )

(2.62)

Hence if we set the functions ψ(t) = 2b(9−b2)H(t0)
27(c−4) tc−4 and Ψ(t) = H(t)eψ(t)

for all t ≥ t0, we have that ψ and Ψ are absolutely continuous with :

Ψ̇(t) = eψ(t)
(
Ḣ(t) + ξH(t0)H(t)

)
≥ 0 a.e. in (t0, T ) (2.63)

where we used the relation (2.62) for the last inequality.
From (2.63), and the absolute continuity of Ψ, we deduce that it is non-

decreasing on every interval (t0, T ) and since it is continuous we have that Ψ
is non-decreasing function for all t ≥ t0.

Hence for all t ≥ t0, we obtain :

H(t) ≥ H(t0)eψ(t0)−ψ(t) ≥ H(t0)eψ(t0) > 0 (2.64)

SinceH is non increasing function and bounded from below, with inf
t≥t0
{H(t)} ≥

H(t0)eψ(t0) > 0, we have that lim
t→∞

H(t) = l ≥ H(t0)eψ(t0) > 0.

We are now ready to give the proof of Theorem 2.3.1.

Proof. From relation 2.64, we have that :

E(t) = H(t)tc ≥ K1t
c (2.65)

where K1 = H(t0)eψ(t0).
Let T > t0. We distinguish four cases :

1. There exists some t1 > T , such that :

1
2 |λx(t1) + tẋ(t1)|2 + ξ

2 |x(t1)|2 ≤ K1

2 tc0 (2.66)

Then from definition of E(t) and (2.65), we deduce that :

t21|x(t1)| ≥ K1t
c
1 −

K1

2 tc0 ≥
K1

2 tc1 (2.67)

which concludes the proof.
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2. There exists some t ≥ T such that ẋ(t) = 0. By using the fact that
E(t) = t2x(t) + λ2+ξ

2 |x(t)|2 and (2.65), we have :

t2|x(t)| ≥ K1t
c − λ2 + ξ

2 |x(t)|2 (2.68)

Since lim
t→∞
|x(t)|2 = 0, there exists some t ≥ T , such that |x(t)|2 ≤ K1

2 t
c
0,

hence we can conclude as in the first point.

3. There exists some t3 > T such that x(t3) = 0. Since lim
t→∞
|x(t)| = 0,

there exists t > t3 such that ẋ(t) = 0 thus we can use the previous
point to conclude.

4. Finally we suppose that x(T ) > 0 and that the sign of ẋ is constant for
all t ≥ T . Since lim

t→∞
|x(t)| = 0 we deduce that sign(ẋ(t)) < 0, for all

t ≥ T . In addition for all t ≥ T , we have :

x(t)− x(T ) =
∫ t

T
ẋ(s)ds (2.69)

Since x(t) converges to 0, we deduce that for any η > 0, there exists
tη ≥ T such that |tηẋ(t)| < η. Hence for any ε, there exists tε ≥ T ,
such that :

1
2 |λx(tε) + tẋ(tε)|2 + ξ

2 |x(tε)|2 < ε (2.70)

thus we can conclude as in the first point.

This concludes the proof of Theorem 2.3.1.

2.4 Discretization of the differential inclusion
(DI)

Finally, as in the differential setting we derive a particular finite differ-
ence scheme for the system (2.4), which corresponds to the inertial Forward-
Backward algorithm that interests us in Chapter 3 in the second Part of this
Thesis.

In particular, in the case of non-smooth, composite convex optimization
problems, where the minimizing function can be decomposed as F = f + g,
with f a convex differentiable function with L-Lipschitz gradient and g a
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proper, lower semi-continuous convex function, the inclusion (DI) takes the
following form:

ẍ(t) + b

t
ẋ(t) +∇f(x(t)) + ∂g(x(t)) 3 0 (2.71)

Because of the regularity of functions f and g, we will discretize (2.71)
implicitly with respect to the non-smooth part g and explicitly with respect
to the smooth one f . By proceeding as in the differential setting in Section
1.4, if we fix a time-step h, t0 = hb and the grid tn = (n+b)h and xn ≈ x(tn),
by (2.71) we have :

xn+1 − 2xn + xn−1

h2 + b

(n+ b)h
xn − xn−1

h
+∇f(yn) + ∂g(xn+1) 3 0 (2.72)

where yn = xn + n
n+b(xn − xn−1) (the reason of this choice follows the one in

the differential case in Chapter 1). By multiplying by h2, the last inclusion
is equivalent to

xn+1 − 2xn + b

n+ b
(xn − xn−1) + h2∇f(yn) + h2∂g(xn+1) 3 0 (2.73)

Hence by re-arranging the terms we obtain :

xn+1 + h2∂g(xn+1) 3 xn + (1− b

n+ b
)(xn − xn−1)− h2∇f(yn) (2.74)

which by using the definition of yn and of the proximal operator, gives :

yn = xn +
(
1− b

n+ b

)
(xn − xn−1)

xn+1 =
(
Id+ h2∂g

)−1(
yn − h2∇f(yn)

)
= Proxh2F

(
yn − h2∇f(yn)

) (2.75)

By the definition of the proximal operator, schema (2.75) is well defined
and corresponds exactly to the inertial Forward-Backward algorithm (see
algorithm 7) with a step γ = h2 that we study in Chapter 3, for composite
(non-smooth) convex minimization problems.

Here we shall stress out that even if the differential inclusion (possibly)
admits more than one shock solutions, the particular discretization (2.72),
leads to a uniquely defined discrete scheme. As we shall see in Part II, the
scheme (2.75), preserves the same convergence properties of the differential
inclusion (DI) as stated in Theorem 2.2.1 and Corollary 2.2.1.
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Notice that unlike the differential setting, here the generalized Lipschitz
continuity for ∂F is not valid in general (for a definition of Lipschitz continu-
ity for set-valued mappings see Definition 9.26 in [RW09]). Hence studying
the convergence (consistence and stability) of every possible finite difference
scheme, can be a much more hard and challenging issue (see for example
[Tau81] and [DL92b] for some specific cases of differential inclusions). In
addition, in view of the non-uniqueness of a shock solution to 2.4, even if
a possible discretization scheme converges to such a solution, it is possible
that this particular solution does not satisfy the convergence properties of
Theorem 2.2.1 and Corollary 2.2.1.

2.5 Concluding remarks and perspectives

In this Chapter we showed that the fast asymptotic convergence prop-
erties of the second order-damped system, introduced in Chapter 1, extend
to the non-differential case, for the differential inclusion (DI). Our analysis
followed the construction of an appropriate approximation scheme, which
permits to deduce the existence of a shock solution to (DI), as also to take
advantage of the different Lyapunov techniques used in the differential set-
ting.

We let for future study the analysis of the differential inclusion (DI), under
some additional assumptions on the geometry of F , as exactly done in Section
1.3.4 of Chapter 1, in the differential setting. In fact, since this analysis
follows the same Lyapunov arguments, we believe that the corresponding
results of Section 1.3.4, are still valid in the more general setting of a non-
differentiable convex function.

Similarly to the differential setting, it would be also interesting to extend
the study for second-order systems with a general damping parameter, in the
non-differentiable setting, i.e. :

ẍ(t) + α(t)ẋ(t) + ∂F (x(t)) 3 0 (2.76)

where α(t) is a positive function or even more generally:

ẍ(t) + α(t)ẋ(t) + β(t)∂F (x(t)) 3 0. (2.77)

The study of inclusions (2.76) (or (2.77)) also opens the way for different
choices of inertial algorithms, identified as finite difference scheme of (2.76)
(or (2.77)), for solving convex non-smooth minimization problems.
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Appendix of Part I

Here we give the continuous version of Opial’s lemma (for more details see
[Opi67] or Lemma 4.1 in [AGR00]).

Lemma A.0.1 (Opial’s Lemma). Let I ⊂ R+ be an interval, H a separable
Hilbert space and S ⊂ H be a non-empty set and a mapx : I −→ H, such
that the following conditions hold true:

1. lim
t→+∞

‖x(t)− x∗‖ ∈ R , for all x∗ ∈ S

2. Every weak-cluster point of x(t) belongs to S

Then we have that x(t) converges weakly to a point of S as t→ +∞.

Remark 7. In the context of the current Thesis, we invoke Opial’s Lemma
with S = arg minF , in order to prove the weak convergence of x(t) to a
minimizer x∗ ∈ arg minF . If in addition H = Rd, d ≥ 1, we also deduce
strong convergence of x(t) to x∗.

A.1 The Yosida approximation
For a positive parameter γ > 0 and a maximally monotone operator A, one
can define the resolvent of A and the Yosida approximation of A by JγA and
Aγ respectively as follows :

JγA = (Id+ γA)−1 and Aγ = 1
γ

(Id− JγA) (A.1)

Let Φ : Rd −→ R be a proper, lower semi-continuous and convex function
and ∂Φ its subdifferential. Then ∂Φ is a maximally monotone operator and
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for γ > 0, one can define its Yosida approximation ∂Φγ as :

∂Φγ = 1
γ

(Id− Jγ∂Φ) where Jγ∂Φ = (Id+ γ∂Φ)−1 (A.2)

In particular, for any γ > 0, one can define the Moreau-Yosida approxi-
mation of Φ, Φγ as follows :

Φγ(x) = min
y∈Rd
{Φ(y) + ‖x− y‖

2

2γ } (A.3)

For any γ > 0, Φγ is a convex, continuously differentiable function with
Lipschitz gradient.

Lemma A.1.1. (Proposition 2.11 in [Bre73])
Let Φ : Rd −→ R be a proper, lower semi-continuous and convex func-

tion. For all γ > 0, the gradient of the Moreau-Yosida approximation of
Φ coincides with the Yosida approximation of ∂Φ (i.e. ∇Φγ = ∂Φγ). In
addition the following convergence property holds :

Φγ(x) ↗
γ→0

Φ(x) ,∀x ∈ Rd (A.4)

Here we recall a basic definition of absolutely continuous functions (see
for instance Definition 1.1.1 in [GAS+05] )

Definition A.1. Let [a, b] be an interval in [t0,+∞). A function G :
[a, b] −→ R is said to be absolutely continuous if for every ε > 0, there
exists δ > 0 such that for every finite collection {[ai, bi]}i∈J of disjoint subin-
tervals of [a, b], we have

∑
i∈J

(
bi − ai

)
< δ =⇒

∑
i∈J
|G(bi)−G(ai)| < ε (A.5)

Equivalently a function G : [a, b] −→ R is absolutely continuous if there
exists a function v ∈ L1(a, b), such that

G(t) = G(s) +
∫ t

s
v(τ)dτ ∀a ≤ s ≤ t ≤ b (A.6)

and in that case we have that G is differentiable a.e. in (a,b) with Ġ(t) = v(t)
a.e. in (a, b).
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A.2 Subdifferential calculus
The following Lemma consists of a generalization of the chain rule for differ-
entiation for composition of W 1,2-regular functions with convex functions (
see Lemme 3.3 in [Bre73] ).

Lemma A.2.1. Let T > t0 and F be a convex, lower semi-continuous, proper
function and x ∈ W 1,2((t0, T );Rd). Let also h ∈ L2((t0, T );Rd), such that
h ∈ ∂F (x(t)) a.e. in (t0, T ). Then the function F ◦ x : [t0, T ] −→ R is
absolutely continuous in [t0, T ] with :

d

dt

(
F (x(t))

)
= 〈z, ẋ(t)〉 ∀z ∈ ∂F (x(t)) a.e. in (t0, T ) (A.7)

The following Lemma shows that the subdifferential of a convex function
defined in Rd, preserves the boundedness of sets.

Lemma A.2.2. (see Proposition 4.14 in [Cla13])
Let g : Rd −→ R be convex function and let K be a bounded set in Rd. Then
the set :

A =
⋃
x∈K

∂g(x)

is bounded.

Proof. By contradiction we assume that there exists a subsequence in A
noted as {zn}n∈N such that zn ∈ ∂g(xn) for all n ∈ N and zn → +∞, where
{xn}n∈N is bounded (xn ∈ K for all n ∈ N).

From boundedness of {xn}n∈N we deduce that up to a subsequence still
noted as {xn}n∈N we have that xn −→ x ∈ K. For all n ∈ N we define the
sequence {en}n∈N as

en =


zn
‖zn‖ if zn 6= 0
1 otherwise

It is clear that ‖en‖ ≤ 1, hence there exists a subsequence noted again as
{en}n∈N such that en −→ e ∈ R.

From the definition of subdifferential, as zn ∈ ∂g(xn), we have that :

g(xn + en)− g(xn) ≥ 〈zn, en〉 = ‖zn‖ ∀n ∈ N (A.8)

By taking the limit to n→ +∞ from continuity of g ( since it is convex on
an open set in a finite dimensional space ) we obtain that the Left-Hand-Side
of the previous inequality converges to g(x+e)−g(x) which is finite. On the
other side by hypothesis we have that ‖zn‖ diverges to infinity, which leads
to a contradiction.
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Part II

The discrete setting
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Chapter 3

Inertial proximal-gradient
algorithms

In this Chapter we are interested in studying some efficient methods for
solving numerically non-smooth, convex composite minimization problems
with a specific splitting structure. The basic formulation for such problems
is the following :

min
x∈H

F (x) (M)

whereH is a Hilbert space and the minimizing function F can be decomposed
as F = f + g : H −→ R̄ = R ∪ {+∞}, with :

H.1 f a convex function in C1,1
L (H) with L-Lipschitz gradient, i.e. ∃L > 0,

such that :
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ (3.1)

H.2 g a convex, lower semi-continuous and proper function (possibly non-
smooth).

H.3 The set of minimizers X∗ = arg min{F} is non-empty.

A classical hypothesis that assures condition H.3 is the coercivity of the
function F which is usually satisfied in practice. In any case, in what follows,
we consider these conditions as guaranteed and we also denote F ∗ = inf

x∈H
F (x)

and x∗ ∈ H a minimizer of F .
The case of smooth convex optimization, is naturally included in hypothe-

ses H.1, H.2 and H.3, by simply considering g = 0. Therefore all of the
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convergence results of presented in the following sections are of course also
valid in the case of smooth convex minimization.

The structure of (M), includes various interesting optimization problems
arising from several domains which became popular the last decades, such
as Machine Learning or Image and Signal processing. In a general setting,
typical families of such problems can be formulated as the well known linear
inverse problems i.e.:

Find x ∈ H , such that : y = Ax (3.2)

where A is a linear bounded operator.
Unfortunately, in the majority of interesting cases the operator A is not

invertible, or the calculation of its inverse is very costful in resources (time,
memory), hence problem (3.2) is in generally not well posed (for example the
solution is not unique or does not depend continuously on the data y ) and
it necessitates more information-structure in order to be approached numer-
ically. In order to get around with this inconvenience, instead of searching
a solution of problem (3.2), we search for particular solutions of (3.2) that
enjoy additional properties, depending on the nature of the problem. For-
mally this can be done by choosing a function D(x, y) often called data-fit
term (with respect to data y) and R(x) often called regularizer term. Then,
the problem (3.2) can be then transformed to a generalized minimization
problem, as follows :

min
{
R(x) such that : Ax = y

}
(3.3)

or the regularized one:

min
{
D(Ax, y) + λR(x)

}
(3.4)

where the real term λ, plays the role of a trade-off parameter between the
data-fit termD (fidelity on the initial data of the problem) and the regularizer
R (additional properties of the solution of the problem).

Some standard smooth choices for the data-fit termD(x, y), is the squared
`2-norm, i.e. D(x, y) = ‖x−y‖2

2 or more generally D(x, y) = ‖Ax−y‖2

2 , with A
a linear mask-operator or the Huber-loss function (see [GRV18]) D(x, y) =
Hδ(x− y), with:

H (x) =


1
2x

2 if |x| ≤ δ

δ|x| − 1
2δ

2 otherwise

Some of the classical choices for the regularizer term, include the follow-
ing:
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• the indicator function of a closed convex set C:

R(x) = ιC(x) =

0 if x ∈ C
+∞ otherwise

for solving convex constrained optimization problems.

• the squared associated norm:

R(x) = ‖x‖2 or R(x) = ‖Bx‖2

with a linear bounded operator B, which stands for Tikhonov regular-
ization [TA77].

• the `1-norm:
R(x) = ‖x‖1, or R(x) = ‖Tx‖1

with T a linear operator (a dictionary, or wavelet transform for exam-
ple), which promotes sparsity for the solution (up to the transform
T ) and is used for image or signal reconstruction, such as deblur-
ring, inpainting and others, (see for example [DS89, DL92a, Don06]
or [CWB08]).

• The total-variation norm:

R(x) = ‖∇x‖1

which has the ability to preserve the edges (the contour of an image
for example), used frequently for image and signal denoising (see for
example [ROF92] and [CL97])

More generally instead of looking to problem (M), one can also consider
the general maximal monotone inclusion problem :

Find x ∈ H such that : 0 ∈
(
A+ B

)
(x) (MI)

where A and B are maximal monotone operators, with B cocoercive and
such that the set of zeros of A + B is non-empty (i.e. zer(A + B) 6= ∅). In
this context, the minimization problem (M) is a special case of (MI) with
A = ∂g and B = ∇f .

Since the basic part of this thesis lies on studying the convergence rates
for the objective function (i.e. F−F ∗) for the minimization problem (M), in
what follows we treat the case (M) and not the general one (MI). Neverthe-
less for similar results concerning algorithms for solving maximal monotone
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inclusion problems such as (MI), we address the interested reader to some
of the possible references [BJ77], [BL78] [LM79], [Pas79], [CR97], as also the
more recent ones [LP15], [MO03], [LFP17], [AC18a] and [AP19].

In this chapter we are interested in the convergence properties of an in-
ertial Forward-Backward type algorithm with a particular choice of an over-
relaxation term (see Algorithm 7 later on this section), as the one considered
in [CD15] (see also [SBC16] and [AC18d]). Firstly we introduce the exact
framework of non-smooth convex composite problems and briefly present
some of the first methods developed for solving such problems. We then in-
troduce a particular type of Forward-Backward algorithm of Nesterov-type
and we present its convergence analysis. As we shall see, the efficiency of
this algorithm depends on the inertial parameter. We complete some recent
results on the existing literature on Algorithm 7 in the sub-critical case b ≤ 3
(see point 1 of Theorem 3.3.1) and we give a unified presentation (see The-
orem 3.3.1) of the different known results of this algorithm (see the works
[SBC16], [CD15], [AC18d], [AP16] and [ACR19]).

In addition, in Section 3.4, we complete this study by considering an
inexact version of the inertial Forward-Backward algorithm (see algorithm
3.72). In particular we study the performance of the i-FB algorithm, with the
presence of perturbation error terms, both on the expression of the gradient
of f and the proximal operator of g on every iteration. Our analysis follows
the same spirit of works [SLRB11], [VSBV13] and [AD15]. In Theorem 3.4.1,
we give some new results for this inexact version, in the case when b ≤ 3 and
a unified presentation together with the ones of the existing literature for a
general b > 0 (see [SLRB11], [VSBV13], [AD15], [ACPR18]).

3.1 Proximal algorithms

To study problem (M) various method have been developed over the last
decades depending on the conditions over the minimizing function F To men-
tion but a few, some of the more popular Gradient descent methods, Proxi-
mal point algorithm, splitting methods such as Forward-Backward ([CR97],
[CW05]),Douglas-Rachford ([LM79]) or Alternating Direction of Multipliers
(ADMM) ([GM75],[GM76]), momentum methods([Pol64],[Nes83]), Primal-
Dual ([CP11]) and many other variants.

Here we are interested in the case of solving the minimization problem
(M), where the function g is simple, meaning that the expression of its
proximal operator has a closed form.
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Firstly we recall the definition of the proximal operator (see [Mor65]) of a
proper, lower semi-continuous and convex function F , which will be necessary
for the proposed algorithms.

ProxF = arg min
y∈H

{
F (y) + ‖x− y‖

2

2
}

(3.5)

Several algorithms have been proposed in order to solve the problem (M),
based on the use of the proximal operator, due to the non differentiable part
g.

One of the basics and simplest algorithms to tackle minimization prob-
lems such as (M) is the Proximal-Gradient splitting algorithm or Forward-
Backward algorithm (FB). Forward-Backward scheme consists of a general-
ization of the classical Gradient-Descent algorithm for solving non-smooth
minimization problems. It exploits both smooth and non-smooth structure
of the objective function F , by considering a proximal (backward) step with
respect to the non-differentiable function g and a gradient (forward) step
with respect to the differentiable part f . The FB algorithm consists in ap-
plying iteratively at every point with a size-step γ > 0 the non-expansive
operator Tγ : H −→ H, defined as:

Tγ(x) = Proxγg(x− γ∇f(x)) ∀x ∈ H (3.6)

where Proxγg designs the proximal operator of g.
The definition of the operator Tγ comes from the following observation:
By the first-optimality condition for any minimizer x∗ ∈ arg minF , for

all γ > 0, we have:

0 ∈ ∂γF (x∗) = γ∇f(x∗) + γ∂g(x∗)
∈ −x∗ + γ∇f(x∗) + x∗ + γ∂g(x∗)

(3.7)

Hence,
x∗ − γ∇f(x∗) ∈

(
Id+ γ∂g

)
x∗ (3.8)

or equivalently

x∗ = Proxγg
(
x∗ − γ∇f(x∗)

)
= Tγ(x∗) (3.9)

Therefore, the problem of minimizing F is equivalent to the problem of
finding a fixed point x∗ of the operator Tγ. The FB algorithm with fixed
step-size, takes then the following form :
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Algorithm 1 FB
Let 0 < γ < 2

L
and x0 ∈ H.

Repeat :

xn+1 = Tγ(xn) := Proxγg
(
xn − γ∇f(xn)

)
(3.10)

In the case of convex, smooth minimization problems (i.e. g = 0 in (M)),
the F-B algorithm 1 is simply the well-known (explicit) Gradient-Descent
algorithm with constant step-size ([Cau47]):

Algorithm 2 G-D
Let 0 < γ < 2

L
and x0 ∈ H.

Repeat :

xn+1 = xn − γ∇f(xn) (3.11)

Similarly, if f = 0, the F-B algorithm 1, gives the Proximal point algo-
rithm with constant step-size ([Mar70] [Roc76]) :

Algorithm 3 PP
Let 0 < γ < 2

L
and x0 ∈ H.

Repeat :

xn+1 = Proxγg
(
xn
)

(3.12)

Forward-Backward algorithm (or similarly Gradient-Descent 2 in the smooth
setting or Proximal-Point algorithm 3 if f = 0), has been widely studied (see
for example [CW05] or [DY16] for a unified presentation of this scheme) . In
fact, it turns out that the quantitative and qualitative convergence properties
of FB algorithm (such as convergence of the iterates and convergence rates)
are the same as of the GD (i.e. as if the non-differentiable part g was not
present).

In the following Theorem we sum up all the known results of the existing
literature, concerning the FB algorithm for solving problem (M).

Theorem 3.1.1. Let F be as in (M) and {xn}n≥1 a sequence generated by
the FB Algorithm 1. Then the following hold true :

1.
{
F (xn)− F ∗

}
n∈N

is non-increasing and converges to 0.
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2. {xn}n∈N is Fejer monotone, i.e.
{
‖xn − x∗‖

}
n∈N

is non-increasing.

3. {xn}n∈N weakly converges to a minimizer x∗.

4. There exist some positive constants C1 and C2 such that for all n ≥ 1,
it holds:

F (xn)− F ∗ ≤ C1

γn
and ‖xn − xn−1‖ ≤

C2√
n
. (3.13)

In fact asymptotically, we have that:

F (xn)− F ∗ = o
(
n−1

)
and ‖xn − xn−1‖ = o

(
n−

1
2
)
. (3.14)

Optimal rates for first-order methods In plenty of cases Forward-
Backward algorithm is very practical and simple to implement and it enjoys
good qualitative properties (such as monotonicity of the objective function,
Fejer monotonicity of the iterates and weak convergence to a minimizer of F ).
Nevertheless, without any other additional properties on F , the quantitative
properties such as the convergence rates of F (xn) − F ∗ or ‖xn − xn−1‖, are
often slow. In particular as shown in [NY83] ( see also [Nes13b]), the optimal
rate for first order methods is of order of O(n−2), which is not achieved by
Forward-Backward algorithm 1. As proven in [Nes83], the key-element in or-
der to achieve this optimal order and accelerate Forward-Backward algorithm
1, is done by adding an appropriate inertial term on every iteration.

3.2 Inertial proximal-gradient algorithms

Inertial (or multi-step) variants of the classical gradient-descent algorithm
go back to the works of Polyak [Pol64], Faddeev [FF81], Frankel [Fra50]
and Nesterov [Nes83] (see also [Nes13b]). The idea initially comes from
considering finite difference schemes of second-order differential equations
such as (1.16) seen in Part I. Thus, in contrary with the FB algorithm, in
inertial methods, every new iterate does not only depend on the previous
one, but in its extrapolation by a suitable term ( or momentum term ).

In a general way in the setting of the minimization problem (M), an in-
ertial proximal-gradient splitting algorithm takes the following form ([JM17],
[LFP17]):
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Algorithm 4 GDIFB
Let 0 < γ < 1

L
, x0 = x1 ∈ H and {αn}n∈N and {βn}n∈N two positive

sequences.
Repeat :

yn = xn + αn(xn − xn−1) (3.15)
zn = xn + βn(xn − xn−1) (3.16)

xn+1 = Proxγgn
(
yn − γ∇f(zn)

)
(3.17)

or more simply if we take αn = βn, then the Algorithm 4 takes the
following simplified form:

Algorithm 5 GIFB
Let 0 < γ ≤ 1

L
, x0 = x1 ∈ H and {αn}n∈N a positive sequence.

Repeat :

yn = xn + αn(xn − xn−1) (3.18)

xn+1 = Tγ(yn) = Proxγg
(
yn − γ∇f(yn)

)
(3.19)

In what follows, we will consider the simplified version of Algorithm 5,
unless if otherwise stated.

In particular, in the seminal work of Nesterov in [Nes83] (see also [Nes13b])
in the smooth convex setting (i.e. g = 0 in (M)), it was shown that con-
sidering a particular choice for the inertial parameter αn can lead to some
significant fast convergence properties for the trajectories generated.

These ideas were further developed in the semi-differential case (where g
is not necessarily zero) in [Gül91], [Gül92] for the proximal point algorithm
(i.e. f = 0) and notably in [BT09]. The basic scheme of this inertial Forward-
Backward algorithm (i-FB) which is introduced in [BT09] (see also [Nes83]
for the case g = 0) under the name FISTA (Fast Iterative Soft-Thresholding
Algorithm) is the following :
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Algorithm 6 FISTA [BT09] [Nes83]
Let 0 < γ ≤ 1

L
, t0 = 1 and x0 = x1 ∈ H.

Repeat :

tn+1 =
1 +

√
4t2n + 1
2 (3.20)

yn+1 = xn + αn(xn − xn−1) where : αn = tn − 1
tn+1

(3.21)

xn+1 = Tγ(yn) = Proxγg
(
yn − γ∇f(yn)

)
(3.22)

With this particular choice of the inertial parameter αn, one can obtain
faster global rates for both the objective function F (xn) − F ∗ and the local
variation ‖xn − xn−1‖. In particular we have the following result:

Proposition 3.2.1 (Nesterov [Nes83],Beck and Teboulle [BT09]). Let F be
as in (M) and {xn}n ≥ 1 a sequence generated by FISTA algorithm 6. Then
there exist some positive constants C1 and C2, such that for all n ≥ 1:

F (xn)− F ∗ ≤ C1

γn2 and ‖xn − xn−1‖ ≤
C2

n
. (3.23)

There is a vast literature concerning the study of this type of inertial
FB algorithms sometimes called as FISTA (to name but a few, we address
the reader to the works [Nes83], [Nes13b], [BT09], [KF16], and their possible
references). As mentioned before, the choice of the over-relaxation parameter
αn plays important role for the convergence of the algorithm. Following
the work of Nesterov [Nes83] and Beck et Teboulle [BT09], the basic idea
behind the acceleration effect seems to be an "algebraic trick" for the sequence
{αn}n∈N, based on the construction of estimate sequences for F (xn) (see for
example [Nes83], [BT09] and [VSBV13]). In particular, if the sequence αn
can be written as αn = tn−1

tn+1
, where {tn}n∈N, is a sequence that verifies

Nesterov’s rule, i.e. :
t2n+1 − tn+1 − t2n ≤ 0, (3.24)

then the optimal order of O(n−2) can be achieved.
Of course, other choices for the over-relaxation sequence {αn}n∈N, leading

to acceleration are possible. Such choices can depend on additional features
of the problem (M), such as the (possible) additional assumptions on the
geometry of the minimizing function F . This issue is also treated later on,
in Chapter 4. All the same, the question of the choice of the over-relaxation
parameter αn, depending on the structure of the minimizing function F is
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a challenging question and the study of the general inertial schemes such as
algorithms 5 and 4, is an active research area the last years. For this issue we
address the interested reader to the recent works [AC18d], [AC18c], as also to
[LFP17], [JM17] and [LS18] where the authors study different conditions over
the sequence {αn}n∈N and {βn}n∈N, in order to obtain several convergence
properties for the GIFB Algorithms 4 and 5.

3.2.1 Inertial Forward-Backward algorithm
Another choice of a particular interest for the sequence of inertial parameters
{αn}n∈N which raised up the last years, is when αn = n

n+b for all n ≥ 1
and a parameter b > 0. This corresponds to choose αn = tn−b+1

tn+1
, with

tn = n + b − 1, where b > 0. This version was considered in numerous
recent works (to mention but a few, we consult the works [SBC16], [CD15],
[ACPR18] [AP16]) and as we shall see, leads to significant advantages in
comparison to the initial version (i.e. the FISTA algorithm 6 considered in
[Nes83] and [BT09]). Formally, the algorithm is the following:

Algorithm 7 i-FB
Let 0 < γ < 1

L
and x0 = x1 ∈ H.

Repeat :
yn = xn + αn(xn − xn−1) where : αn = n

n+ b
(3.25)

xn+1 = Tγ(yn) = Proxγg
(
yn − γ∇f(yn)

)
(3.26)

In the forthcoming analysis we shall refer to the i-FB algorithm for algo-
rithm 7 and we are interested in its convergence properties.

The tuning parameter b
In this point we should mention that with the choice (3.25) for the parameter
αn, Nesterov’s rule (3.24) is equivalent to considering b ≥ 3. Notice also
that with the choices (3.20) and (3.21) for tn and αn (respectively), we have
αn = tn−1

tn+1
∼ n−1

n+2 ∼
n
n+3 , hence the initial choice of the parameter αn in

FISTA algorithm 6 is asymptotically equivalent to the choice of αn in the
i-FB algorithm 7 with b = 3.

In [Nes83] (see also [BT09]) the choice (3.20) for tn that satisfy Nesterov’s
rule with equality (3.24), seem to be justified by the fact that it minimizes
the constant C1 in (3.23) and it gives the optimal order O(n−2) (in fact there
is yet a slight amelioration of the hidden constant in the "big Oh" by a factor
of 2, as it was shown in the recent work [KF16]).
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Nevertheless, as we shall see, this choice of the inertial parameter αn, of-
fers a lot of advantages in comparison to the one in (3.21) in FISTA algorithm
6. As it was shown in [CD15] (see also [ACPR18]) the authors prove that
by assuming that b > 3, one can additionally expect the weak convergence
of the iterates {xn}n∈N generated by the i-FB algorithm (7), to a minimizer
x∗ of F . In addition in [AP16] the authors show that by taking b > 3 can
asymptotically improve the rate of convergence of F (xn) − F (x∗) which is
actually o(n−2).

Last but not least, as we already saw in Chapter 1 and 2 of Part I,
Algorithm 7 can be identified as a particular finite difference scheme of the
second-order dynamical system (DI) (or (1.18) in the differential setting).
This remark is of a high importance, since the study of these systems will
trace the trail for the different results and their proofs for the discrete scheme
7. In particular, by following the lines of the Lyapunov analysis made in
the continuous case, we are able to deduce the corresponding convergence
properties for the sequence generated by the i-FB algorithm 7.

3.3 Convergence results for i-FB algorithm

In what follows in this Section, we turn our attention into the convergence
analysis of the i-FB algorithm 7. We give the main result which treats the
case of low momentum (i.e. b ≥ 3) for the i-FB algorithm 7 which was already
established in the works [SBC16], [ACPR18], [AP16] and [CD15] and a new
result concerning the convergence properties in the case of high momentum,
(i.e. 0 < b < 3) (see [AAD18a] and [ACR19]).

Theorem 3.3.1. Let b > 0, xn be the sequence generated by i-FB algorithm
(7) and x∗ ∈ arg minF and tn = n+ b− 1 , for all n ∈ N. Then :

1. If 0 < b < 3 then there exist some positive constants C1, C2 such that
for all n ≥ 1, it holds :

F (xn)− F ∗ ≤ C1

t
2b
3
n

= O
(
n−

2b
3
)

and ‖xn − xn−1‖ ≤
C2

t
b
3
n

= O
(
n−

b
3
)
.

(3.27)

2. ([SBC16], [ACPR18]) If b ≥ 3 then there exist some positive constants
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C1, C2 such that for all n ≥ 1, it holds :

F (xn)− F ∗ ≤ C1

t2n
= O

(
n−2

)
and ‖xn − xn−1‖ ≤

C2

tn
= O

(
n−1

)
.

(3.28)

3. ([CD15], [ACPR18]) If b > 3 then :
+∞∑
n=1

tn
(
F (xn)− F ∗

)
< +∞ and

+∞∑
n=1

tn‖xn − xn−1‖2 < +∞. (3.29)

In fact as it is pointed out in the continuous setting, one can have better
convergence results if b > 3. As it was shown in [CD15] and [ACPR18],
one can prove the weak convergence of the trajectory to a minimizer, as also
that the order of convergence rates found in (3.28) is actually a small "o"
asymptotically. In particular we have the following Corollary
Corollary 3.3.1. [[CD15],[ACPR18]] Let b > 3, xn be the sequence gener-
ated by i-FB algorithm 7. Then it holds :

lim
n→∞

(
F (xn)− F ∗

)
= o

(
n−2

)
and lim

n→∞
‖xn − xn−1‖ = o

(
n−1

)
(3.30)

In addition, the sequence {xn}n≥1 weakly converges to a minimizer x∗ of F .
In the Figure below, we illustrate the order p(b) of convergence rates

for the objective function F (xn) − F ∗ = O
(
n−p(b)

)
, depending on the over-

relaxation parameter b > 0, as found in Theorem 3.3.1.

Figure 3.1: Values of the order of convergence rate p(b) ,depending on the
over-relaxation parameter b > 0, as given by Theorem 3.3.1. Remark that
without any further assumptions on the function F , for b < 3 the order of
convergence rate is sub-optimal in comparison to the worst-case optimal rate
O(n−2) for first-order methods.
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3.3.1 Lyapunov analysis
As discussed previously, in order to prove the different convergence rates
as presented in Theorem 3.3.1, our basic approach is to construct a suit-
able "energy" function and find some appropriate estimates by using some
Lyapunov-type analysis. To that purpose the analysis made in the contin-
uous case in Chapter 1 of Part I and the works of [SBC16], [ACPR18] and
[AD17], shall provide us a useful guideline.

For that we recall that if {xn}n∈N and x∗ ∈ arg minF we use the following
notations :

wn = F (xn)− F (x∗), δn = ‖xn − xn−1‖2 and hn = ‖xn − x∗‖2. (3.31)

In addition we define the following sequences :

vn = ‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2, n ≥ 1, (3.32)
with

tn = n+ b− 1 and αn = tn − b+ 1
tn+1

= n

n+ b
(3.33)

and the basic Lyapunov-sequence :

En = t2n
(
F (xn − F (x∗))

)
+ 1

2γ ‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2

+ ξ

2γ ‖xn−1 − x∗‖2

= t2nwn + 1
2γ vn + ξ

2γhn−1

(3.34)

Let us remark that by developing the square in vn in the definition (3.34)
and using the basic identity

2〈u− v, v − z〉 = ‖u− z‖2 − ‖v − z‖2 − ‖u− v‖2 ∀u, v, z ∈ H (3.35)

with u = xn, v = xn−1 and z = x∗, we also have the following equivalent
definition for En :

En = t2nwn + 1
2γ vn + ξ

2γhn−1

= t2nwn + (t2n − λtn)
2γ δn + λtn

2γ (hn − hn−1) + (λ2 + ξ)
2γ hn−1

(3.36)

In particular by the definition of the energy-sequence {En}n≥1, we can
see that the upper estimates of En rule the ones for the sequences, t2nwn, vn
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as also δn and hn. This leads us to the research of some "good" upper bounds
for En, in order to deduce convergence rates for the sequences of interest wn
and δn, as Theorem 3.3.1 asserts.

To do so, we start by studying the local variation of the sequence {En}n∈N
( i.e. the difference En+1 − En ). Using some Lyapunov-type analysis, for
some suitable choices of parameters λ > 0 and ξ > 0, we are able to control
the growth of {En}n∈N up to a suitable order. Once this control-estimate is
proven, an application of a discrete version of Gronwall’s lemma ( see Lemma
B.0.3 in Appendix B) will provide the bound for the sequence {En}n∈N as
given in Theorem 3.3.1.

We first present a sketch of this strategy, in order to give a better insight
on the different technical Lemmas used in the forthcoming analysis.

1. We start by investigating the local variation of the sequence {En}n≥1.
By using the fundamental descent Lemma B.0.7 and performing some
algebraic computations and a suitable value for the parameter ξ, we
obtain a relation of the following form (see for example relations (3.39)
and (3.40) of Lemma 3.3.1):

2γ(En+1 − En) ≤ 2γαn,λwn + βn,λδn + γn,λhn−1 (3.37)

for some suitable sequences αn,λ, βn,λ and γn,λ.
At this point, in order to prove the second and third point of Theorem
3.3.1 it is sufficient to choose suitable values for λ in order to show that
γn,λ ≤ 0, αn,λ ≤ 0 and βn,λ ≤ 0 for all n ≥ 1, under the supplementary
hypothesis that b ≥ 3.

2. For the first point (3.27) of Theorem 3.3.1, instead we are interested
in the case where b ∈ (0, 3) and the terms αn,λ, βn,λ are not necessarily
non-positive for all n ≥ 1. This case demands a more refined analysis
as follows. Firstly we express En as a function of wn and δn and we
find a relation of the form :

2γ(En+1 − En) ≤ 2γ c
tn
En +Rn,λ (3.38)

3. Finally by some suitable values for λ, we show that : Rn,λ ≤ 2γ a
t2n
En,

which permits us to use a recurrence relation (see Lemma B.0.3) in
order to conclude point 1 of Theorem 3.3.1.

We now give formally the different Lemmas that structures the aforemen-
tioned strategy.

The first Lemma expresses the control of the local variation of En in terms
of the sequences wn, δn and hn.
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Lemma 3.3.1. Let b > 0, {xn}n∈N the sequence generated by i-FB algorithm
7 and 0 ≤ λ ≤ b+ 1. Then the following recursive formulas hold true for all
n ≥ 1 :

1. If ξ = λ(b− λ− 1) then :

2γ
(
En+1−En

)
≤ 2γ

(
A1(λ)tn+1−λ

)
wn+

(
A2(λ)tn+(λ+1−b)(1−b)

)
δn

(3.39)
where : A1(λ) = 2− λ and A2(λ) = λ+ 1− b.

2. If ξ = λ(λ+ 1− b) then :

2γ
(
En+1−En

)
≤ 2γ c(λ)

tn
En+2γ

(
B1(λ)tn+1−λ

)
wn+B2(λ)δn+B3(λ)

tn
hn−1

(3.40)
where : c(λ) = 2(λ + 1 − b) , B1(λ) = (2b − 3λ) , B2(λ) = λ + 1 − b
and B3(λ) = 2λ(2λ+ 1− b)(b− λ− 1).

Remark 8. Remark that in cases 1. and 2. of Lemma 3.3.1 the value of the
parameter ξ, changes sign. Nevertheless, as we shall also see later on in the
proofs, due to the restrictions on the parameters λ and b for each of the cases
1. and 2., the parameter ξ always remain non-negative.

Next we give the Lemma 3.3.2 and 3.3.3 concerning the case 0 < b < 3,
which expresses the control over the local variation of En in terms of the
same energy sequence En, which also leads to Lemma 3.3.3, expressing the
order of growth of the sequence En.

Lemma 3.3.2. Let 0 < γ ≤ 1
L
, b ∈ (0, 3) λ = 2b

3 , ξ = 2b(3−b)
9 > 0 and

{xn}n∈N the sequence generated by i-FB. Then the following recursive formula
holds for all n ≥ 1 :

En+1 − En ≤
(

a

(n+ b− 1)2 + c

(n+ b− 1)

)
En (3.41)

where a = (3−b)(3+b)
9 and c = 2(3−b)

3 .

In particular, by a recurrence argument, from Lemma 3.3.2, for all n ≥ 1
we deduce the following :

En+1 ≤ E1

n∏
i=1

(
1 + c

tn
+ a

tn2

)
(3.42)

with c and a as defined in Lemma 3.3.2. Hence by applying Lemma B.0.3,
we obtain the following Lemma which gives the control over the order of the
growth of the energy En:
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Lemma 3.3.3. Let 0 < γ ≤ 1
L
, b ∈ (0, 3) and {xn}n∈N the sequence generated

by i-FB. Then for λ = 2b
3 and ξ = 2b(3−b)

9 , there exists a constant C > 0, such
that for all n ≥ 1, it holds :

En ≤ C(n+ b− 1)
2(3−b)

3 (3.43)

We are now ready to pass to the full proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. We split the proof into 2-parts depending on
the value of the parameter b and the value of ξ in the definition of En (3.34).

First of all we begin by the simplest case of proving points 2. and 3. (i.e.
estimates (3.28) and (3.29)).

For that if we set λ = b − 1 and ξ = λ(b − λ − 1) = 0 from (3.39), we
have :

2γ(En+1 − En) ≤ 2γ
(
(3− b)tn + 2− b

)
wn (3.44)

Therefore, if b ≥ 3 we deduce that the right-hand part of (3.44) is non-
positive, which entails that the sequence En is non-increasing. Hence from
the definition of En (3.34), with λ = b− 1 and ξ = 0, we find :

2γt2nwn ≤ 2γEn ≤ 2γE1 (3.45)

which gives the first estimation of (3.28) with C1 = (b−1)2

2 ‖x0 − x∗‖2 +
γb(F (x0)− F (x∗)).

In addition, for b ≥ 3, λ = b− 1 and ξ = 0, in the definition of En (3.36),
we find :

2γEn = 2γt2nwn + (b− 1)2hn−1 + (b− 1)tn(hn − hn−1) + (t2n − (b− 1)tn)δn
≥ (b− 1)

(
tnhn − (tn + 1− b)hn−1

)
+ (tn − t0)tnδn

(3.46)
Since b ≥ 3 and tn ≥ t0, from (3.46) we find :

(b− 1)
(
tnhn − tn−1hn−1

)
≤ 2γEn ≤ 2γE1 (3.47)

Therefore by summing over n, we deduce that for all n ≥ 1 :

tnhn ≤ (b− 1)h0 + 2γ
b− 1

n∑
k=1

E1 ≤ (b− 1)h0 + 2γE1

b− 1 tn (3.48)

which by dividing by tn, shows that sup
n≥1

{
‖xn − xn−1‖2

}
< +∞.

Hence by injecting the last estimation (3.48) into (3.46) - and since tn −
t0 ≥ tn

t0+1 = tn
b−2 , ∀n ≥ 1, we deduce that :

t2nδn ≤ (b− 2)
(
2γEn + (b− 1)hn−1

)
≤ (b− 2)

(
4γE1 + (b− 1)h0

)
(3.49)
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which gives the second estimation of (3.28) of point 2 of Theorem 3.3.1, with
C2 =

√
(b− 2)

(
4γ( (b−1)2

2 (b− 1)2h0 + γbw0) + (b− 1)h0
)
.

If now b > 3, then by choosing ξ = λ(λ + 1 − b) and summing relation
(3.39) over all n ≥ 1, for λ = b− 1 and λ = 2, we obtain respectively :

(b− 3)
n∑
k=1

t2kwk ≤ E1 − En ≤ E1 < +∞ (3.50)

and
b− 3
b− 2

n∑
k=1

t2kδk ≤ E1 < +∞ (3.51)

which gives the estimations of (3.29) since b > 3.
Now in order to prove point 1 (i.e. (3.27)) of Theorem 3.3.1, we choose

λ = 2b
3 and ξ = λ(λ + 1 − b) = 2b(3−b)

9 > 0 in the definition of En (3.34). In
that case by relation (3.43) of Lemma 3.3.3 and the definition of En, (3.34),
we have:

2γt2nwn + 4b2

9 hn−1 ≤ 2γEn ≤ Ct
2− 2b

3
n (3.52)

for a suitable positive constant C. This gives the first estimation of (3.27).
In addition, by the definition of En and the fact that ξ = 2b(3−b)

9 > 0, there
exists some suitable positive constant C ′ such that, for all n ≥ 1 :

hn−1 ≤ C ′t
2− 2b

3
n (3.53)

Finally, since En is a sum of positive terms, we also have :

vn = ‖2b
3 (xn−1 − x∗) + tn(xn − xn−1)‖2 ≤ Ct

2− 2b
3

n (3.54)

By taking the square roots in both sides and using the triangle inequality
and estimations (3.43) and (3.53), we deduce that for all n ≥ 1 :

tn‖xn − xn−1‖ ≤
√
Ct

2− 2b
3

n + 2b
3 hn−1 ≤ Ct

1− b3
n (3.55)

where C > 0 is a suitable renamed constant. This concludes the proof of
Theorem 3.3.1.

Finally we finish this section by giving the proof of Corollary 3.3.1, which
establishes the convergence results of the i-FB Algorithm 7, when b > 3.
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Proof of Corollary 3.3.1. Following the proof in the continuous setting for
the differential inclusion in Chapter 2, for a sequence {xn}n≥1 generated by
the i-FB algorithm 7, we define the energy sequence Un, as follows :

Un = t2n
(
F (xn)− F (x∗)

)
+ t2n‖xn − xn−1‖2

2γ = t2nwn + 1
2t

2
nδn. (3.56)

From Lemma B.0.7 with y = yn and x = xn we deduce that :
wn+1 − wn ≤ α2

nδn − δn+1 (3.57)
which by definition of αn = n

tn+1
, multiplying by tn+1 and re-arranging the

terms, is equivalent to
Un+1 − Un ≤

(
t2n − t2n+1

)
wn + (2tn+1 − 1)δn ≤ 2nwn (3.58)

The last inequality implies that the sequence Θn = Un − 2∑n
k=1 kwk is non-

increasing. In addition, since ∑∞k=1 kwk < +∞ (by (3.29) of Theorem 3.3.1),
Θn is also bounded from below, hence convergent.

By (3.29) of Theorem 3.3.1, we also have :
∞∑
n=1

Un
tn

=
∞∑
n=1

tn(wn + δn) < +∞ (3.59)

and since ∑n
k=1

1
tk

is divergent, we have necessarily that Un −→
n→∞

0. By
positivity of wn and δn we deduce that :

lim
n→∞

n2wn = 0 and lim
n→∞

n2δn = 0 (3.60)

For the weak convergence result, we use the discretized version of Opial’s
Lemma (see Lemma B.0.1 in Appendix B) with S = arg minF .

From (3.39) Lemma 3.3.1, for b > 3, λ = 2 and ξ = λ(b − λ − 1), En is
bounded from below and non-increasing, hence convergent. In addition, by
definition (3.34), we have :
2γEn = 2γt2nwn + t2nδn + λ〈xn−1 − x∗, tn(xn − xn−1)〉+ (λ2 + ξ)hn−1 (3.61)

Thus, by passing to the limit when n → ∞ and using relation (3.60), we
deduce that :

lim
n→∞
‖xn−1 − x∗‖ = lim

n→∞

√
En

λ2 + ξ
(3.62)

which concludes the first point of the Opial’s Lemma. In addition if x̃ is a
weak-cluster point of the sequence xn, then by lower-semi continuity of F ,
we have :

F (x̃) ≤ lim inf F (xn) (3.63)
and since F (xn) converges to F ∗, we deduce that x̃ ∈ arg minF ,which shows
that the second condition of Opial’s lemma is satisfied, therefore we can
conclude the proof of Corollary 3.3.1
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3.4 Inexact version of the inertial Forward-
Backward algorithm

In the previous Section we presented some results of the i-FB Algorithm
7, in the case when the proximal maps and the gradients are explicitly com-
puted. Unfortunately, in many interesting problems the proximal operator
of the function g, or the gradient of the differential part f , have not a closed
form and their computation is made approximately. This procedure endows
some embedded errors on the calculation of the proximal operator and gra-
dient, of the functions g and f respectively, for every outer loop-iteration in
the algorithm.

In this section we are addressing this question in the case of the i-FB
algorithm 7, in presence of some error parameters on the calculation of the
proximal operator of the function g and the gradient of f . Our framework
and analysis follows the one considered in [SLRB11], [AD15] and [SV12],
[VSBV13] (see also [CW05], [AFM14] and [SS01]).

In particular for the inexact version of the i-FB Algorithm 7, with b = 3, it
was shown in [SLRB11], that the fast convergence rate F (xn)−F ∗ = O(n−2)
is still valid, provided that the perturbation errors are sufficiently small. Sev-
eral extensions for other generalized accelerated Forward-Backward inexact
schemes were also made in [VSBV13] and [DGN14], giving the convergence
rates of the objective function, depending on the decay order of the errors.
Lastly, in [AD15], the authors studied another similar family of an "hybrid"
inertial scheme, interpolating Forward-Backward Algorithm 1 and i-FB Al-
gorithm 7, in the same inexact setting. They proved that the corresponding
results of the i-FB Algorithm 7, when b > 3, such as the improved rate o(n−2)
and the weak convergence to a minimizer (see Corollary 3.3.1), hold also true
in the inexact setting, under some proper control over the errors.

Our study completes the aforementioned ones ([SLRB11], [VSBV13], [DGN14]
and [AD15]) for the i-FB Algorithm 7 in the case b ≥ 3. Here we give some
associated results concerning the subcritical case for the parameter b (i.e.
b ≤ 3). In order to unify the different results and to give a complete pre-
sentation, we also give the proof for a general parameter b > 0 (including
thus the case of low momentum, where b ≥ 3). More precisely we show that
the convergence rates obtained in point 1. of Theorem 3.3.1, when b ≤ 3,
hold also true for the perturbed version of the i-FB algorithm, given that the
perturbation errors are sufficiently small. In what follows, we keep the same
notations as in the unperturbed case for the different sequences.
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3.4.1 Inexact computations of the proximal point
Firstly, we introduce the some notions used for the different kind of approxi-
mations of the proximal operator of a convex function, which we will use later
on. The presentation of this paragraph follows the one of [AD15], [VSBV13]
and [SLRB11].

As recalled in the first section, if F is a proper, convex and lower semi-
continuous function and a positive parameter γ > 0, the proximal operator
of F , ProxγF is defined by :

ProxγF (y) = arg min
x∈H

{
F (x) + 1

2γ ‖x− y‖
2
}

Let us denote by Gγ, the upper-quadratic approximation of function F ,
i.e.

Gγ(x) = F (x) + 1
2γ ‖x− y‖

2. (3.64)

Hence, by definition of the proximal operator, the first order optimality con-
dition for this strongly convex minimum problem yields :

z = ProxγF (y)⇐⇒ 0 ∈ ∂Gγ(z)⇐⇒ y − z
γ
∈ ∂F (z) (3.65)

To begin with, instead of considering the classical notion of the subdif-
ferential ∂F , we introduce the notion of limiting ε-subdifferential of F at the
point z ∈ domF , which is defined as follows (see for example section 4.3 in
[BNO+03]).

For any ε > 0 take :

∂εF (z) = {y ∈ H | F (x) ≥ F (z) + 〈x− z, y〉 − ε, ∀x ∈ H} (3.66)

It is worth noticing that for any z ∈ dom(F ), the following equivalence
holds true:

0 ∈ ∂εF (z) ⇐⇒ F (z) ≤ inf F + ε (3.67)

In that case we say that z is an ε-minimizer of F .
In this sense, the notion of ε-subdifferential consists of a generalization of

the classical subdifferential as given in section 2. Note also that for all ε > 0
and x ∈ H, we have : ∂F (x) ⊂ ∂εF (x).

We are now ready to give some definitions on the different types of ap-
proximations of the proximal operator of a function F , relying on the notion
of ε-subdifferential, that one can also find in [AD15], following [SLRB11],
[SV12] and [VSBV13].



93 3.4. Inexact version of the inertial Forward-Backward algorithm

Definition 3.1. We say that z ∈ H is a type 1 approximation of ProxγF (y)
with ε precision and we write z ≈1 ProxγF (y) if and only if there exists some
ε > 0, such that :

0 ∈ ∂εGγ(z) (3.68)
where Gγ is defined by (3.64).

Definition 3.2. We say that z ∈ H is a type 2 approximation of ProxλF (y)
with ε precision and we write z ≈2 ProxγF (y) if and only if there exists some
ε > 0, such that :

y − z
γ
∈ ∂εF (z) (3.69)

Notice that if z ≈2 ProxγF (y), then z ≈1 ProxγF (y) (see Proposition 1 in
[SV12]).

Finally we make call of a technical lemma taken from [SLRB11] ( see
Lemma 2), that enables to consider approximations of types j = 1 or j = 2
in a unified setting, in the forthcoming analysis.

Lemma 3.4.1. If x ∈ H is a type 2 approximation of ProxγF (y) with ε
precision, for some ε > 0. Then there exists r such that ‖r‖ ≤

√
2γε and

y − x− r
γ

∈ ∂εF (x) (3.70)

Notice from Lemma 3.4.1 that when r = 0, then we recover the definition
of a type 2 approximation of ProxγF .

In this framework, we consider the inexact i-FB algorithm as the i-FB
Algorithm 7, with presence of errors in both of calculations of the gradient
of f and the proximal operator of g on every step, as follows :

Algorithm 8 Inexact i-FB
Let 0 < γ ≤ 1

L
and b > 0 and tn = n + b − 1 for all n ≥ 1. We consider

the sequences {xn}n∈N and {yn}n∈N, such that x0 = x1 ∈ H and for every
n ∈ N∗ we set :

yn = xn + an(xn − xn−1) where an = tn + 1− b
tn+1

= n

n+ b
(3.71)

xn+1 = T εnen (yn) (3.72)

where T εnen (x) ≈εnj Proxγg
(
x− γ(∇f(x) + en)

)
where j ∈ {1, 2}

We are now ready to present the main result of this section, concerning
the inexact i-FB algorithm 8, which expresses the control estimate over the
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sequence En, depending on the error-terms en ∈ H and εn > 0 and the
parameter b.
Theorem 3.4.1. Let 0 < γ ≤ 1

L
, b > 0, tn = n + b − 1 and p = min{1, b3}

and {xn}n∈N the sequence generated by the inexact i-FB algorithm and En
as defined in (3.34). Then for λ = b− p and ξ = 2p(1− p), there exist some
positive constants C1,p and C2,p, such that for all n ≥ 1, we have :

En ≤ C1,p

(
2An +

√
2(C2,p +Bn)

)2

2γ (n+ b− 1)2−2p (3.73)

where : An =
n∑
i=1

tpi
(
γ‖ei‖+

√
2γεi

)
and Bn = γ

n∑
i=1

t2pi εi (3.74)

By proceeding in the same way as in the proof of Theorem 3.3.1, from
the estimate (3.73) for En, we deduce the following Corollary, expressing the
bound estimates on F (xn)− F ∗ and ‖xn − xn−1‖2.
Corollary 3.4.1. Let 0 < γ ≤ 1

L
, b > 0, p = min{1, b3} and {xn}n∈N the

sequence generated by the inexact i-FB algorithm. Then there exists some
constants C1,p > 0 and C2,p > 0, such that for all n ≥ 1, we have :

F (xn)− F (x∗) ≤ C1,p

(
2An +

√
2
(
C2,p +Bn

))2

2γ(n+ b− 1)2p

and ‖xn − xn−1‖ ≤ C1,p

2An +
√

2
(
C2,p +Bn

)
(n+ b− 1)p

(3.75)

where : An =
n∑
i=1

tpi
(
γ‖ei‖+

√
2γεi

)
and Bn = γ

n∑
i=1

t2pi εi (3.76)

Remark 9. The last Corollary asserts that under the supplementary hypoth-
esis over the perturbation terms An and Bn, the convergence rates for the
inexact i-FB algorithm remain the same as in the unperturbed case (i-FB
algorithm). In fact Corollary 3.4.1 expresses the trade-off between the over-
relaxation sequence αn (thus the tuning of parameter b) and the error-terms
en ∈ H and εn > 0 at each step.

Formally, if 0 < γ ≤ 1
L
, b > 0 and p = min{1, b3} and {xn}n∈N the se-

quence generated by the inexact i-FB algorithm. If in addition, the following
assumptions hold true :

+∞∑
n=1

np‖en‖ ≤ A < +∞ and
+∞∑
n=1

np
√
εn ≤ B < +∞ (3.77)
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Then :

F (xn)− F (x∗) = O
(
n−2p

)
and ‖xn − xn−1‖ = O

(
n−p

)
. (3.78)

Remark 10. Corollary 3.4.1 and Remark 9, express that even if the control
over the error-terms εn and en is not sufficiently strong to obtain the optimal
rate O(n−2) for the objective function, one can still expect some relatively
fast convergence for the objective function and the local variation of the
iterates of the algorithm (3.72) by further over-relaxing (i.e. taking b ∈ (0, 3)
in algorithm 8).

3.4.2 Convergence analysis of the inexact i-FB algo-
rithm

As in the unperturbed case for the i-FB algorithm, in order to prove Theo-
rem 3.4.1, we use some Lyapunov type analysis, for the energy-sequence En
defined earlier in (3.34). For that, we begin by adapting the descent-Lemma
B.0.7 of the previous section, in the case of presence of errors on the proximal
operator of g and the gradient of f :

Lemma 3.4.2. Let y ∈ H and γ ≤ 1
L
. For all x ∈ H , we have:

F (x)−F (T εe (y))+ε+〈e+ r

γ
, x−T εe (y)〉 ≥ 1

2γ
(
‖T εe (y)−x‖2−‖y−x‖2

)
(3.79)

where r ∈ H such that ‖r‖ ≤
√

2γε.

For a complete proof of Lemma 3.4.2, see Lemma B.1.4 in appendix. We
are now ready to present the proof of Theorem 3.4.1 :

Proof of Theorem 3.4.1. For that proof, for all n ≥ 1 we will also denote the
sequences zn = λ(xn−1− x∗) + tn(xn− xn−1) (here remark that ‖zn‖ = √vn)
and ζn =

(
‖en‖+

√
2γεn
γ

)
tn
√
vn + t2nεn.

By proceeding in the same way than the one in the unperturbed case, by

applying Lemma 3.4.2 to y = yn and x =
(

1− λ
tn+1

)
xn + λ

tn+1
x∗ we obtain (

here λ ∈ (0, 1 + b)):

2γ(t2n+1wn+1 − t2nwn) ≤ 2γkn+1wn + ‖(tn − 1)(xn − xn−1) + λ(xn − x∗)‖2

− vn+1 + 2γt2n+1εn+1 − 2γtn+1〈en+1 + rn+1

γ
, zn+1〉

(3.80)
Let us first treat the case b ≥ 3.
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In that case by using the last inequality, and performing the same com-
putations as the ones made in proof of Theorem 3.3.1, for λ = b − 1 and
ξ = λ(b− 1− λ) = 0, we find that for all n ≥ 1, it holds:

En+1 − En ≤
(
(3− b)tn + (2− b)

)
wn + (n+ b)2εn+1

− (n+ b)〈en+1 + rn+1

γ
, λ(xn − x∗) + tn+1(xn+1 − xn)〉

(3.81)

Since b ≥ 3, by using the definitions of zn, tn = n+ b− 1 and vn, as also the
Cauchy-Schwartz inequality and Lemma 3.4.1, we find :

En+1 − En ≤ −tn+1〈en+1 + rn+1

γ
, zn+1〉+ t2n+1εn+1

≤
(
‖en+1‖+

√
2γεn+1

γ

)
tn+1
√
vn+1 + t2n+1εn+1

= ζn+1

(3.82)

Hence by summing (3.82), over n ≥ 1, we find :

En ≤ E1 +
n∑
k=1

ζk (3.83)

By definitions of En and ζn we find :

√
vn

2 ≤ 2γEn ≤ 2γE1 + 2
n∑
k=1

tk
(
γ‖ek‖+

√
2γεk

)√
vk +

n∑
k=1

t2kεk (3.84)

Thus, by applying Lemma B.0.4 with :

un = tn
√
vn , an = 2tn

(
γ‖en‖+

√
2γεn

)
and Sn = 2E1 + 2Bn (3.85)

we find :
√
vn ≤

(
2An +

√
2
(
γE1 +Bn

))
(3.86)

Hence by injecting estimation (3.86) into (3.83) and the definitions of An and
Bn, we have:

2γEn ≤ 2γE1 + +2Bn + 2An
(

2An +
√

2
(
γE1 +Bn

))

≤
(

2An +
√

2
(
γE1 +Bn

))2 (3.87)

which concludes the proof of Theorem 3.4.1 in the case b ≥ 3 (i.e. p=1),
with C1,p = 1 et C2,p = γE1
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In the same way, by (3.80) and doing similar computations as in the
proof of Lemma (3.3.1) and (3.3.2), for b ∈ (0, 3), c = 2 − 2b

3 λ = 2b
3 and

ξ = λ(λ+ 1− b), we have :

En+1 − En ≤
(c+ a

tn
)

tn
En − tn+1〈en+1 + rn+1

γ
, vn+1〉+ t2n+1εn+1 (3.88)

which by using the Cauchy-Schwartz inequality and Lemma 3.4.1, is equiva-
lent to :

En+1 − En ≤
(c+ a

tn
)

tn
En + tn+1‖en+1 + rn+1

γ
‖√vn+1 + t2n+1εn+1

≤
(c+ a

tn
)

tn
En +

(
‖en+1‖+

√
2γεn+1

γ

)
tn+1
√
vn+1 + t2n+1εn+1

(3.89)
Hence by naming µn = 1 + (c+ a

tn
)

tn
and the definition of ζn, for all n ≥ 1, we

find :
En+1 ≤ µnEn + ζn+1 (3.90)

By using the discrete Grönwall’s Lemma B.0.2, we obtain :

En ≤
n∏
k=1

µk

(
E1 +

n∑
k=1

ζk∏k+1
j=1 µj

)
(3.91)

In addition since tn ∼ n, by relation (B.8) of Lemma B.0.3 in Appendix B,
there exist some positive constants C1 and C2, such that for all n ≥ 1 it holds
:

C1t
c
n ≤

n∏
k=1

µk ≤ C2t
c
n (3.92)

Hence by injecting (3.92) into (3.91), we find :

En ≤ C2t
c
n

(
E1 + C−1

1

n∑
k=1

t−ck ζk
)

(3.93)

By dividing the last inequality by tcn+1 and using the definitions of En, ζn
and Bn, we find :

(
t
− c2
n
√
vn
)2
≤ 2γC2E1 + 2C−1

1

n∑
k=1

(
t
1− c2
k

(
γ‖ek‖+

√
2γεk

)
t
− c2
k

√
vk + t2−ck εk

)

= 2γC2E1 + 2C−1
1 Bn + 2C−1

1

n∑
k=1

t
1− c2
k

(
γ‖ek‖+

√
2γεk

)
t
− c2
k

√
vk

(3.94)
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Thus, by applying Lemma B.0.4 with :

un = t
−c
2
n
√
vn , an = 2C−1

1 t
1− c2
n

(
γ‖en‖+

√
2γεn

)
and Sn = 2C2E1+2C−1

1 Bn

(3.95)
and the definition of An, we find that for all n ≥ 1, it holds :

√
vn ≤

(
2C−1

1 An +
√

2
(
γC2E1 + C−1

1 Bn

))
t
c
2
n (3.96)

By injecting the last estimation (3.96), into (3.93) and multiplying by 2γ,
we find :

2γEn ≤ C2

(
2C−1

1 An

(
2C−1

1 An +
√

2
(
γC2E1 + C−1

1 Bn

))
+ 2

(
γC2E1 +Bn

))
tcn

(3.97)
It follows that for some -renamed- suitable positive constants C1 and C2, for
all n ≥ 1, it holds :

2γEn ≤ C1

(
An +

√
C2 +Bn

))2

tcn (3.98)

which allows to conclude the proof of Theorem 3.4.1 in the case 0 < b < 3
(i.e. p = b

3).

3.5 Concluding remarks and perspectives

In this Section we gave a unified presentation for the convergence proper-
ties of the inertial Forward-Backward Algorithm 7, for solving convex com-
posite minimization problems. Our analysis followed the one in the contin-
uous case in Chapters 1 and 2, for the corresponding second-order damped
system. In particular we adapted the Lyapunov techniques for dynamical
systems, into the discrete setting. As it is apparent from Theorem 3.3.1,
the over-relaxation parameter b > 0, plays a crucial role for the convergence
properties of the algorithm. It rules the order of convergence rates for both
the objective function and the local variation, as also the (weak) convergence
of the sequence to a minimizer. Notice also that from our analysis the tuning
of the over-relaxation parameter b > 0, is "justified" via Lyapunov arguments
for the energy sequence En, in order to obtain the -worst case- optimal rate
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O(n−2). For some other approaches, explaining the acceleration effect of in-
ertial algorithms such as 7, linked with numerical integration of ODEs, one
can also consult the work of [SRBd17].

Like in the continuous -in time- setting, a puzzling question concerns
the phase transition from high-to-low momentum b = 3. Apart from the
acceleration effect from the high momentum region b < 3 to the low b ≥ 3 (see
for example Figure 3.1), the weak convergence of the sequence to a minimizer
still remains an open problem for the high-momenum region b ≤ 3. A partial
answer to this question, is given in the very recent work of Attouch et al
[ACR19], in the case of H = R and b = 3, but the proof uses topological
arguments, which can not be directly extended to higher dimensions.

In a more general way, it would be interesting to consider inertial algo-
rithms with a general extrapolation term αn and investigate their conver-
gence properties with respect to the structure of the minimizing function F
(this question is also partially treated in the recent work [AC18d]). As in
the case of the i-FB Algorithm 7, this question can be of course treated in
a parallel way with the study of the continuous dynamical system such as
(1.18) (or (2.4) in the non-differential setting). In any case, the tuning rule of
the over-relaxation sequence αn for inertial schemes, still remains a puzzling
question and an active research domain. In particular, as we shall see in the
next Chapter, the tuning of parameter b > 0, depends also on the possible
additional geometric properties of the minimizing function F .





Chapter 4

Inertial gradient-descent
algorithm under
sharpness-flatness conditions

In this Chapter we study the minimization problem (M) introduced in the
previous Chapter 3 under some additional assumptions on the local geometry
of the minimizing function F . Of course this restrains the variety of the
problems that one can handle with, but on the other hand one can expect
finer results (such as strong convergence results, faster convergence rates etc).
In particular we study the convergence properties of the i-FB Algorithm 7
introduced in Chapter 3 in a differential setting (i.e. when g = 0) which
takes the following form (see the i-GD Algorithm 11):

yn = xn + n

n+ b
(xn − xn−1)

xn+1 = Tγ(yn) := yn − γ∇F (yn)
(4.1)

for a step size 0 < γ ≤ 1
L
, an over-relaxation parameter b > 0 and a convex

differentiable function F with L-Lipschitz gradient.
Firstly we give some preliminary notions concerning some classical geo-

metrical assumptions on the minimizing function F , such as the strong con-
vexity property, or more generally, growth condition (or Kurdyka-Łojasiewicz
condition). We mention some of the results of the existing literature and on
how these geometrical conditions can improve the convergence properties of
descent schemes (i.e. schemes that produce non-increasing sequence of the
objective function F (xn)− F ∗).

In our case we show that for the inertial Gradient-Descent algorithm (4.1),
instead of considering only sharpness-type conditions (such as the growth

101
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condition), we additionally exploit a supplementary condition, expressing
the flatness-level of the minimizing function near the set of minimizers. In
this way we are able to derive competitive rates of convergence for the i-GD
algorithm (4.1), depending on both of sharpness-flatness level of the function
and the inertial parameter b > 0. In particular for functions We then compare
our results with the ones of the existing literature.

In particular we are treating differentiable functions F which -roughly
speaking1- satisfy near the set of their minimizers X∗, a relation of the fol-
lowing form:

Cβ dist(x,X∗)β ≤ F (x)− F ∗ ≤ Cp dist(x,X∗)p, (4.2)

where C1, C2 are some positive constants and the parameter β ≥ 1 expresses
the -worst case- level of flatness of F while p ≥ 2 the -worst case- level of
sharpness of F . In this framework we extend the results found for the i-FB
algorithm 7 in Chapter 3 and we obtain new precise rates depending on the
inertial parameter of scheme (4.1) b > 0 and the geometric parameters β and
p.

More precisely the results found in Theorem 3.3.1 in the previous Chapter,
hold true for a wider variety of the parameter b > 0 in the differential setting.
If for example b ≤ 1 + 2

β
, we show that (see Theorem 4.5.1 later on):

F (xn)− F ∗ + ‖xn − xn−1‖2 = O
(
n−

2βb
β+2

)
(4.3)

while if b > 1 + 2
β
, then :

F (xn)− F ∗ + ‖xn − xn−1‖2 = o
(
n−2

)
(4.4)

and the sequence converges to a minimizer.
If in addition the function F admits a unique minimizer and satisfies (4.2)

with p = 2, then (4.2) holds true for all b > 0.
These results apply to a variety of interesting minimization problems,

such as the Least-square problem or more generally minimizing quadratic
functions. In these cases β = p = 2 and the order of convergence rate is
F (xn) − F ∗ = O

(
n−b

)
, for all b > 0. In addition, in the particular case

of β = 1, the rates in (4.3) can be also extended for the i-FB Algorithm 7
in the non-differential setting. For example for the LASSO problem under
uniqueness of the minimizer, if we apply the inertial scheme 4.1, by (4.3),
we find that the -worst case- convergence rate for the minimizing function

1See Definitions 4.1 and 4.1 later on, for the exact conditions L(p) and H(β), made on
the minimizing function F .
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is O
(
n−

2b
3
)
, for all b > 0. In such cases we obtain arbitrarily fast -but

sublinear- order of convergence rate depending on the parameter b > 0,
which is (theoretically) worse than the linear order of convergence that one
can obtain with the Gradient Descent or other versions of inertial schemes
with fixed over-relaxation sequence, such as the Heavy-Ball algorithm (see
for example Algorithms 9 and 10 later on).

On the other hand, for "flatter" functions, with a unique minimizer, that
satisfy (4.2) with p ≥ β ≥ 2, we show that the convergence rate for the
objective function generated by (4.1) is (see Theorem 4.5.2):

F (xn)− F ∗ = O
(
n−

2p
p−2

)
(4.5)

The rate (4.5) is new and consist of an improvement, in comparison to the
one obtained by descent schemes, such as the Gradient Descent (see Theorem
4.2.1 later on). This fact indicates that employing inertial schemes such as
(4.1) for minimizing functions with flatter-than quadratic- geometries, is a
better strategy than the one of using descent schemes.

4.1 Sharp-geometry condition

We begin by defining properly the p-growth condition that we use in this
Chapter.

Definition 4.1. Let p ≥ 1. The function F satisfies the condition L(p) if,
for any minimizer x∗ ∈ X∗, there exists a constant Kp > 0 and ε > 0 such
that:

∀x ∈ B(x∗, ε), Kp‖x− x∗‖p ≤ F (x)− F (x∗).

Hypothesis L(p) with p ≥ 1, is a growth condition on the function F
around its set of minimizers X∗. Note that, when X∗ is a connected compact
set, it can be replaced by a more general growth condition on F in the
neighborhood of its minimizers :

Lemma 4.1.1. Let F : Rn → R be a convex differentiable function sat-
isfying the growth condition L(p) for some p > 1. Assume that the set
X∗ = arg minF is compact. Then there exists K > 0 and ε > 0 such
that, for all x ∈ Rn:

d(x,X∗) 6 ε⇒ Kd(x,X∗)p 6 F (x)− F ∗.
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Historically, the growth condition L(p) is also called p-conditioning (see
[GRV17] and [Pen96]) or Hölderian error bound [BNPS17], and is closely re-
lated to the Łojasiewicz inequality [Łoj63, Łoj93], (or Kurdyka-Łojasiewicz
inequality [Kur98], [BDLM10]) which turns out to be a key tool in the math-
ematical analysis of continuous and discrete dynamical systems ([ABRS10b],
[ABS13], [BDL06], [BDLM10]):

Definition 4.2. A differentiable function F : Rd → R is said to have the
Łojasiewicz property with exponent θ ∈ [0, 1) if, for any critical point x∗,
there exist c > 0 and ε > 0 such that:

∀x ∈ B(x∗, ε), ‖∇F (x)‖ > c|F (x)− F ∗|θ. (4.6)

where: 00 = 0 when θ = 0 by convention.
More generally ([BDLM10]), F satisfies the Kurdyka-Łojasiewicz inequal-

ity (KL) on x∗ ∈ domF , if-f there exist some constants c > 0, r > 0 and a
concave function φ ∈ C1((0, r)) with φ(0) = 0, and φ′ > 0, such that :

1 ≤ cφ′
(
F (x)− F ∗

)
‖∇F (x)‖ (4.7)

Note that in this case, this corresponds to controlling the sharpness of
the function F near the set of minimizers, under the reparametrization φ.
In fact the Łojasiewicz property (4.6), consists in considering the particular
case φ(t) = |t|1−θ.

In fact, in the convex setting, since the unit ball B(x∗) is ∂F invariant
(see [Bre73]), the growth condition L(p), p > 1, is actually equivalent to the
Łojasiewicz inequality, with exponent θ = 1− 1

p
∈ (0, 1] and c = K

1
p
p (see for

example [BDL06, BDLM10, BNPS17], [ABRS10a], [GRV17] or [KF18] and
[Zha18] for other equivalent notions).

Typical examples of functions having the Łojasiewicz property are real-
analytic functions and C1 subanalytic functions [Łoj63], or semialgebraic
functions (see [BDL07],[AB09] and [BDLM10]). Strongly convex functions
satisfy a global Łojasiewicz property (i.e. (4.6) holds everywhere in Rd )
with exponent θ = 1

2 [AB09], or equivalently a global version of the growth
condition, namely:

∀x ∈ Rn, F (x)− F ∗ > µ

2d(x,X∗)2,

where µ > 0 denotes the parameter of strong convexity and in this case
we have K2 = 2µ. Likewise, convex functions having a strong minimizer in
the sense of [AC18d, Section 3.3], also satisfy a global version of L(2). By
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extension, uniformly convex functions of order p > 2 also satisfy the global
version of the hypothesis L(p) (see for example [ABRS10a, BNPS17, GRV17]
and their possible references).

As already mentioned, the geometrical interpretation of the condition
L(p) is straightforward: it ensures that the function F is sufficiently sharp
(at least as sharp as x 7→ ‖x−x∗‖p) in a neighborhood of its set of minimizers
X∗. Consistently, observe that any convex function satisfying L(p), satisfies
L(p′) for all p′ > p.

4.2 Descent schemes

First results of exploiting the strong convexity of the minimizing function
F , or more generally growth condition L(2), were established in [Gol62] (in
the case of strongly convex functions) and by Polyak in [Pol63] and [Pol64] (in
the case of functions satisfying L(2)) , for the Gradient-Descent Algorithm
2 and the Heavy-Ball algorithm 9.

In particular, for the fixed-step Gradient-Descent Algorithm 2 applied
to the minimization problem of a convex differentiable function F , with L-
Lipschitz gradient and which satisfies globally L(2), the trajectory generated,
converges linearly:

F (xn)− F ∗ ≤
(
F (x0)− F ∗

)
qn (4.8)

with geometric ratio q = max{|1 − γµ|, |1 − γL|}. It is then clear that the
optimal value for the step size γ, is γ = 2

L+µ , which gives best linear ratio
q = L−µ

L+µ .
Further studies generalizing this result for convex (not necessarily dif-

ferentiable) functions, as also convex functions satisfying condition L(p) for
a general p ≥ 1 (or equivalently the p-Łojasiewicz property) were made in
[Roc76] [ABS13], [BDL06] [BL08] for the proximal point algorithm 3, or the
Forward-Backward Algorithm 1 in [FGP15], [Gar15],[BNPS17], [GRV17].

In fact, the common key-property of these schemes (such as Gradient-
Descent, Proximal-point or more generally Forward-Backward algorithm), is
the descent property of the generated trajectory. Roughly speaking the de-
scent property expresses that the iterative scheme produces a non-increasing
sequence of objective functions F (xn) − F ∗. This property is essential, in
order to derive convergence rates, by exploiting the growth condition L(p)
(or equivalently the p-Łojasiewicz property).
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Formally (see for example [FGP15]or [GRV17]), we say that {xn}n∈N is
a sequence generated by a First-order descent method for minimizing convex
function F , if-f there exist some parameters α, β > 0 such that for all n ∈ N,
it holds :

F (xn+1)− F (xn) ≤ −α‖xn+1 − xn‖2

∃zn+1 ∈ ∂F (xn+1) s.t. ‖zn+1‖ ≤ β‖xn+1 − xn‖
(4.9)

It is easy to check for example from Lemma B.0.7, that the sequence
generated by Forward-Backward scheme 1 verifies (4.9), for some suitable
values of α > 0 and β > 0.

More generally, we have the following Theorem :
Theorem 4.2.1. [BNPS17],[FGP15],[GRV17] Let F be a convex function
such that x∗ ∈ arg minF 6= ∅ , which also satisfies the growth condition
L(p) (or equivalently the p-Łojasiewicz property) with p ∈ [1,+∞). Let also
{xn}n∈N be a sequence generated by a first-order descent method (i.e. satisfies
(4.9) for some α > 0 and β > 0) and wn = F (xn) − F ∗. Then there exist
some constants C1 > 0, C2 > 0 (in each case) and q = α

2β2K2
such that :

+∞∑
n=0
‖xn+1 − xn‖ < +∞ (4.10)

In particular : xn −→
n→∞

x∗. In addition :

1. If p = 1, then : xn = x∗, for all n ≥ w0
q

( finite termination )

2. If p ∈ (1, 2), then for all n ≥ 1 :

wn+1 ≤
(
(1 + q)−1wn

) p
2(p−1) and ‖xn+1 − x∗‖ ≤ C1

√
wn (4.11)

3. If p = 2, then for all n ≥ 1 :

wn+1 ≤ (1 + q)−1wn and ‖xn+1 − x∗‖ ≤ C1
√
w0(1 + q)n2 (4.12)

4. If p > 2, then for all n ≥ 1 :

wn ≤ C1n
− p
p−2 and ‖xn+1 − x∗‖ ≤ C2n

− 1
p−2 (4.13)

Remark 11. [BNPS17] In general, if the function F satisfies the p-Łojasiewicz
property, then the order of convergence rate of ‖xn− x∗‖ is ruled by the one
of the objective function F (xn) − F ∗. In particular for all n ∈ N, we have
that

‖xn − x∗‖ ≤ C
(
F (xn)− F ∗

) 1
M2,p (4.14)

for a positive constant C > 0 and M2,p = max{2, p}
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It is clear by Theorem 4.2.1, that for descent methods satisfying (4.9),
the more the function is sharp in the neighborhood of the minimizers (i.e.
F is satisfying L(p) with p ∈ [1, 2]), the faster the convergence rates to the
minimum F ∗ are. Starting from linear convergence ( see point 3. in Theorem
4.2.1 when p = 2), passing to superlinear (see point 2. in Theorem 4.2.1 when
1 < p < 2) or even finite termination (see point 1. in Theorem 4.2.1 when
p = 1).

On the contrary, for functions that are "not necessarily sufficiently sharp"
(i.e. when the function F is satisfying L(p) with p > 2), the worst-case
convergence rates for the objective function are sublinear of order p

p−2 . This
means that, the more the function is flat, the slower the rates are, with the
limit case of o(n−1) when p→ +∞ (see [DY16]).

4.3 Inertial versions

In the last section, we pointed out the importance of growth-type con-
ditions (or Kurdyka-Łojasiewicz) for first order descent schemes (satisfying
(4.9)). Nevertheless, as pointed out in Chapter 3, inertial algorithms -in
generally- are not descent schemes. Therefore the analysis presented previ-
ously in Theorem 4.2.1 is not valid for these types of algorithms.

Except of some particular cases (such as the Heavy-Ball algorithm or i-FB
Algorithm 10), in general, few results are known concerning the convergence
of inertial schemes under additional local geometrical assumptions on the
minimizing function F such as the L(p) condition for a general p ≥ 1. Most
of them necessitate rather strong hypotheses such as strong convexity or
strong convexity along the proximal projection (see for example [NNG18]).

As mentioned earlier, first results concerning inertial algorithms for min-
imizing convex functions under additional hypotheses on the local geometry
of the function near the set of minimizers, date back to the work of Polyak
[Pol64] and the Heavy-Ball algorithm:

Algorithm 9 HB
Let x0 = y0, α > 0 and 0 < γ ≤ 2

L
. For all n ∈ N consider :

yn = xn + α(xn − xn−1) (4.15)

xn+1 = yn − γ∇f(xn) (4.16)
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In particular for the Heavy Ball-Algorithm 9 the authors shown that
for a µ-strongly convex and twice-differentiable function F (with L-bounded

Hessian), and an iteration step γ = 4
(
√
L+√µ)2 ≥ 1

L
and α =

(√
L−√µ√
L+√µ

)2

, the

convergence is linear with :

F (xn)− F ∗ = O

((√
L−√µ√
L+√µ

)n)
(4.17)

This consists of an improved linear ratio than the one found for Gradient
Descent which is L−µ

L+µ (when µ
L
is small). In addition as remarked by Nesterov

[Nes13b], the linear convergence rate with the ratio
√
L−√µ√
L+√µ is optimal for the

class of strongly convex and smooth functions. In fact the linear convergence
(4.17) holds also true if the strong convexity hypothesis is relaxed to the L(2)
property on F . However, a counter-example due to Lessard et al in [LRP16],
shows that the Heavy-Ball algorithm does not necessarily converges for a
general parameter α > 0 and a general strongly convex function (which is
not twice differentiable).

Another common choice of algorithm that is often taken into considera-
tion in the case of smooth and strongly convex functions, which is close to
the Heavy-Ball Algorithm 9 is the following:

Algorithm 10 NSC
Let x0 = y0. For all n ≥ 1 consider :

yn = xn + α∗(xn − xn−1) where : α∗ =
√
L−√µ√
L+√µ

xn+1 = yn −
1
L
∇F (yn)

(4.18)

In particular, for Algorithm 10 it was shown in [Nes13b] that the conver-
gence rate of the objective function F (xn)− F ∗ is also linear with :

F (xn)− F ∗ = O

((
1−

√
µ

L

)n)
(4.19)

where µ is the strong convexity parameter and L the Lipschitz bound of the
the gradient of F . Notice that even if the convergence is linear, the geometric
ration is slightly worse than the one obtained for the Heavy-Ball algorithm
since

√
L−√µ√
L−√µ < 1 −

√
µ
L
. Nevertheless, in both of two cases of Algorithms 9
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and 10, the hypotheses of twice differentiability as also the strong convexity
property are often too restrictive.

In the recent work [IM18] the authors propose a different application of
alternated inertia to (7) (i.e. applying the inertial term αn(xn − xn−1) every
two iterations), in a non smooth setting. Surprisingly this turns Algorithm
(7) with alternated inertia, into a descent scheme and it permits to have the
same convergence properties as the the ones in Theorem 4.2.1 , under the
hypothesis L(p) with p > 1.

Here we shall remark that even if the inertial scheme 10 or Heavy-Ball
algorithm 9, give linear rates, often it is not easy to implement in practice.
This is due to the fact that in most of the practical cases, the knowledge
of parameters L, and mostly µ or ( K2 in the case of L(2) property) is not
necessarily known and estimating them can be a hard and costful task. Some
possible approaches for estimating L is done by backtracking (see [Nes13a],
[BT09], [Tse08] or [CC17]). As for the parameter µ (or K2) this question
is getting more challenging (see also [Nes13a] for a backtracking strategy of
estimating µ).

Several tentatives for estimating the strong convexity parameter µ or more
generally the constant K2 when the functions satisfies L(2), and proving
linear convergence rates for FISTA Algorithm 6, have also been made by
restarting techniques (see for example [FQ16], [FQ17]).

The restarting effect is a fundamental issue raising in inertial algorithms.
The term refers to starting the algorithm afresh, from the last iterate (i.e.
taking the "last" iteration as the new starting point). This procedure consists
in resetting the inertial parameter αn equal to zero and start the algorithm
again.

Restarting techniques of i-GD algorithm 11 for strongly convex functions
go back to [Nes13a] (see also [GLJW09]), where a fixed-restart scheme is con-
sidered in order to obtain linear convergence rates for functions that satisfy
the L(2) condition globally. Nevertheless a basic drawback of the optimal
fixed-period of restarting is that it depends on parameters L and K2, as also
it does not take into consideration better-conditioned regions ([OC15]). This
led to the research of adaptive methods of restarting, where the restart-rule
does not depend on fixed parameters (such as the parameters L, µ or Kp )

A basic palette of the existing literature on adaptive restarting scheme is
given below (see [OC15], [SBC16], [TOW18] and [KF18])

1. Function scheme ([OC15]) Restart algorithm 4.1, whenever

F (xn+1) > F (xn) (4.20)
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2. Gradient scheme ([OC15]) Restart algorithm 4.1, whenever

∇F (yn) · (xn+1 − xn) > 0 (4.21)

or (see [TOW18]) :

∇F (xn) · (xn+1 − xn) > 0 (4.22)

3. Speed-Restart scheme : [SBC16] Restart algorithm 4.1 whenever:

‖xn+1 − xn‖ < ‖xn − xn−1‖ (4.23)

Even if adaptive restarting schemes seem to behave well in practice, the
theoretical guarantees of their convergence are either not proven or proven for
limited cases (such as when the minimizing function F is quadratic [OC15,
KF18] or when F is strongly convex [TOW18]) and their study is still an
active area of research. In addition most of the studies are restraint to the
quadratic error bound (i.e. the L(2) condition) with a few recent exceptions
(see [LY17] and [Rd17]) for functions satisfying L(p) for a general p ≥ 1.

From all the above discussion, it seems that -apart some particular cases
-the study of convergence rates for inertial algorithms for functions that
satisfy additional geometrical properties such as L(p), for a general p ≥ 1,
is largely unknown and hence a challenging question. In this point, we shall
mention the recent work [AC18d] (see also [SBC16]), where the authors derive
some convergence rates for the i-FB Algorithm 7 in the case when F admits
a strong minimum (i.e. satisfies the growth condition L(2) with a unique
minimizer x∗). In that case the convergence rate of the i-FB Algorithm 7
for the objective function is F (xn) − F ∗ = O

(
n−

2b
3
)
for any b > 0, which is

sublinear but arbitrarily fast (depending on the value of b).

4.4 i-GD algorithm and geometry

In this section we shall see that by exploiting a bit more the geometry of
the minimizing function F , we are able to deduce some competitive conver-
gence properties for the smooth version of the i-FB Algorithm 7 introduced
in Chapter 3. In particular instead of exploiting only sharpness condition,
such as L(p), p ≥ 2, we introduce a new condition

As mentioned in the beginning, in contrary to the previous Chapter, in
the current one, we consider the minimization problem of a function in a
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smooth and convex setting. Hence, in this section we formally consider the
minimization problem (M) with g = 0 and F = f a convex, smooth function
with L-Lipschitz gradient, and such that X∗ = arg minF 6= {∅}.

In that case, we call i-GD (inertial Gradient-Descent) algorithm, the i-FB
Algorithm 7, which takes the following form:

Algorithm 11 i-GD
Let 0 < γ < 1

L
and x0 = x1 ∈ Rd.

Repeat :
yn = xn + αn(xn − xn−1) where : αn = n

n+ b
(4.24)

xn+1 = Tγ(yn) = yn − γ∇F (yn) (4.25)

Before giving the main results of this Chapter, we settle up the new
flatness-type condition on F , that plays a key-role to our analysis.

4.4.1 Flat geometry of convex functions around their
minimizers

In this paragraph we present a new condition for a convex and differentiable
function F , describing (locally) its geometry around the set of its minimizers
X∗, as also the interplay between this new condition and the growth condition
L(p), defined earlier in this Chapter.

Roughly speaking, this condition characterizes functions behaving more
"gently" than the function ‖ · ‖β, with β ≥ 1, around its set of minimizers.
While condition L(p), introduced before, indicates how sharp the minimizing
function is near the set of its minimizers, this new condition assures that the
function is sufficiently flat in the neighborhood of its minimizers. Formally
we have the following definition:

Definition 4.1. Let F : Rd → R be a convex differentiable function with
X∗ = arg minF 6= ∅. Let β > 1. The function F satisfies the condition H(β)
if, for any critical point x∗ ∈ X∗, there exists η > 0 such that:

∀x ∈ B(x∗, η), F (x)− F (x∗) 6 1
β
〈∇F (x), x− x∗〉.

In fact the hypothesis H(β) was already introduced in [CEG09a, SBC16,
AD17, ADR18] and it generalizes the notion of convexity of a differentiable
function in a neighborhood of its minimizers.
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Firstly, observe that any convex and differentiable function automatically
satisfies H(1). In addition any differentiable function F ensuring that (F −
F ∗)

1
β is convex, satisfies H(β) with β > 1, which is slightly more demanding

than the convexity of F .
In order to have a better insight on the local geometry of convex functions

satisfying the hypothesis H(β), we need some additional results, which are
formulated on the forthcoming Lemmas :

Lemma 4.4.1 ([ADR18]). Let F : Rd → R be a convex differentiable func-
tion with X∗ = arg minF 6= ∅. If F satisfies H(β) for some β > 1, then:

1. The function F satisfies H(β′), for all 1 6 β′ 6 β.

2. For any minimizer x∗ ∈ X∗, there exist M > 0 and η > 0 such that:

∀x ∈ B(x∗, η), F (x)− F (x∗) ≤M‖x− x∗‖β. (4.26)

In other words, as already mentioned before, the hypothesis H(β) with
β > 1, can be interpreted as a flatness condition: it ensures that the function
F is sufficiently flat (at least as flat as x 7→ ‖x− x∗‖β) in the neighborhood
of its minimizers.

The proof of Point 1 of Lemma 4.4.1 is direct since for all 1 6 β′ 6 β
x ∈ Rd and x∗ ∈ arg minF , we have :

0 ≤ β′(F (x)− F (x∗)) ≤ β(F (x)− F (x∗)) ≤ 〈∇F (x), x− x∗〉 (4.27)

For the point 2, we make use of the following Lemmas.

Lemma 4.4.2. Let g : R→ R be a convex differentiable function such that:
0 ∈ arg min g and g(0) = 0. Assume that g satisfies H(β) for some β ≥ 1.
Then, there exists some constant M , such that :

∀t ∈ [0, 1], g(t) ≤Mtβ.

Proof. Let t ∈ (0, 1]
If we multiply H(β) by t|t|−β−2, we find :

|t|−βg′(t)− βt|t|−β−2g(t) ≥ 0 (4.28)

Hence if we consider the function G : (0, 1], such that G(t) = |t|−βg(t), from
(4.28), we deduce that G is non-decreasing in (0, 1]. It follows that for all
t ∈ (0, 1] it holds :

G(t) ≤M (4.29)
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where M = g(1). Therefore by definition of G, we find that for all t ∈ [0, 1],
it holds :

g(t) ≤M |t|β (4.30)

Lemma 4.4.3. Let F : Rd → R be a convex differentiable function with
X∗ = arg minF 6= ∅. If F satisfies H(β) for some β ≥ 1, then there exists
M > 0, such that, for all x in a neighborhood of X∗, we have:

F (x)− F ∗ ≤Md(x,X∗)β.

Proof. Let x∗ ∈ arg minF . For all x ∈ B(x∗, 1), such that x 6= x∗ and
t ∈ [0, 1], we define the function gx,x∗(t) = F (x∗ + t x−x∗

‖x−x∗‖)− F
∗.

By definition of gx,x∗ , we have that 0 ∈ arg min gx,x∗ and gx,x∗(0) = 0.
In addition g satisfies H(β) i.e. (βgx,x∗(t) ≤ tg′x,x∗(t)). By Lemma 4.4.2, we
deduce the existence of a constant Mx,x∗ , such that :

gx∗(t) ≤Mx,x∗t
β (4.31)

Since Mx,x∗ = F (x∗+ x−x∗
‖x−x∗‖)−F

∗ and F is bounded on B(x∗, 1), we deduce
the existence of M (independent of x and x∗), such that for all x ∈ B(x∗, 1)
with x 6= x∗ and t ∈ [0, 1], we have:

gx,x∗(t) ≤Mtβ (4.32)

Finally by choosing t = ‖x − x∗‖ and taking the inf over X∗, we conclude
the proof of the Lemma.

Remark 12. One can notice that the relation (4.4.1) of Lemma 4.4.1, "jus-
tifies" the term "flatness", given to the condition H(β), for β ≥ 1. As we
shall see just after, the relation (4.4.1), is very useful in order to precise the
local geometry of a function F , verifying both H(β) and L(p). An interesting
question, is if a relation such as (4.4.1), fully characterizes convex function
that are satisfying H(β) (i.e. if the inverse of Lemma 4.4.1 is true for convex
functions).

4.4.2 The interplay between sharpness-flatness condi-
tions

Before passing to the convergence results, we give some additional insight for
the different interactions between the flatness condition H(β), β ≥ 1 and the
sharpness condition L(p), p ≥ 2.
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For that, we consider any convex differentiable function F satisfying both
hypothesisH(β) and L(p). Combining the related inequalities, namely (4.26)
and the growth condition L(p), F has to be at least as flat as ‖x− x∗‖β and
at most as sharp as ‖x − x∗‖p in a suitable neighborhood of the set of its
minimizers.

For the simple example of the function F : x ∈ R −→ |x|r with r > 1,
a straightforward computation shows that F satisfies H(β) and L(p) if and
only if 1 6 β 6 r 6 p. More generally we have the following Lemma showing
the interplay of conditions H(β) and L(p):

Lemma 4.4.4. If a convex differentiable function F satisfies both H(β) and
L(p), with β, p > 1, then necessarily the parameters β and p satisfy: p > β
in some suitable neighborhood of X∗.

Remark 13. Notice that by Lemma 4.4.4, roughly speaking, conditions H(β)
and L(p) form a double-threshold for the minimizing function F in a suitable
neighborhood of the set of its minimizers X∗. In particular, the condition
H(β) provides an upper-threshold for the function F (depending on β), while
L(p) forms a lower-threshold for F (depending on p). In Figure 4.1, we
illustrate this remark.

Figure 4.1: Conditions H(β) (in black dot-dashed line) and L(p) (in black
dashed line), for some fixed parameters β ≥ 1 and p ≥ 2, for a function with
a unique minimizer x∗ = 0. The blue, purple, green and red curves, represent
some of the possible choices for a function F (i.e. F1, F2, F3, F4), that has a
unique minimizer x∗ and satisfies H(β) and L(p) in some neighborhood of
x∗.
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In our framework, the objective function F is assumed to be convex and
differentiable with a Lipschitz continuous gradient. For such functions, the
Lipschitz continuity of the gradient provides some additional information on
the local geometry of F in the neighborhood of its minimizers. Indeed, for
convex functions, the Lipschitz continuity of the gradient is equivalent to a
quadratic upper bound on F :

∀(x, y) ∈ Rd ×Rd, F (x)− F (y) 6 〈∇F (y), x− y〉+ L

2 ‖x− y‖
2. (4.33)

Applying (4.33) at y = x∗, we then deduce:

∀x ∈ Rd, F (x)− F ∗ 6 L

2 ‖x− x
∗‖2, (4.34)

which indicates that F is at least as flat as ‖x − x∗‖2 around X∗. More
precisely:
Lemma 4.4.5. Let F : Rd → R be a convex differentiable function with a
L-Lipschitz continuous gradient for some L > 0.

1. If F satisfies the growth condition L(p), then necessarily p > 2.

2. If F satisfies L(2), then F automatically satisfies H(β) with β = 1+ K2
2L

and K2 6 L
2 .

Proof. Assume that F satisfies the condition L(p). Combining the inequality
(4.34) and the growth condition, we get: for any x∗ ∈ X∗,

Kp‖x− x∗‖p 6 F (x)− F (x∗) 6 L

2 ‖x− x
∗‖2, (4.35)

for all x in some neighborhood of x∗, which necessarily implies: p > 2. In
the particular case p = 2, we also deduce that: 2K2 6 L. The second point
of Lemma 4.4.5 has already been shown in [ADR18].

4.5 Main results for the i-GD Algorithm

In this paragraph we give the main results of this Chapter, concerning
the convergence rates of the i-GD algorithm 11, depending on the geometric
assumptionsH(β), L(p) with p ≥ β and the inertial parameter b > 0. We also
make several comments and comparisons of these results with the existing
literature.
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Theorem 4.5.1. Let F : Rd → R be a convex differentiable function with
a L-Lipschitz continuous gradient for some L > 0. Let 0 < γ ≤ 1

L
and

{xn}n∈N be the sequence generated by i-GD Algorithm 11. Assume that F
satisfies H(β) with β ≥ 1. Then we have the following:

1. If b < 1 + 2
β
, the following convergence rates hold true asymptotically:

F (xn)−F (x∗) = O
(
n−

2bβ
β+2

)
and ‖xn−xn−1‖ = O

(
n−

bβ
β+2

)
(4.36)

2. (i) If b ≥ 1 + 2
β
then the following convergence rate holds true asymp-

totically:
F (xn)− F (x∗) = O

(
n−2

)
(4.37)

If in addition b ≥ 2 then {xn}n≥1 is bounded and:

‖xn − xn−1‖ = O
(
n−1

)
(4.38)

(ii) If b > 1 + 2
β
then:

+∞∑
n=0

n
(
F (xn)− F (x∗)

)
< +∞ and

+∞∑
n=0

n‖xn − xn−1‖2 < +∞

(4.39)
(iii) If b ≥ 1+ 2

β
and if F satisfies L(2) and admits a unique minimizer,

then the following convergence rate holds true asymptotically:

F (xn)− F (x∗) = O
(
n−

2bβ
β+2

)
and ‖xn − xn−1‖ = O

(
n−

bβ
β+2

)
(4.40)

In particular in the same way as in [AP16] (see Theorem 1), the results
of Theorem 4.5.1, are slightly improved asymptotically.

Corollary 4.5.1. Under the same assumptions of point 2(ii) of Theorem
4.5.1, in the case b > 1 + 2

β
, for n ∈ N, we actually have asymptotically :

F (xn)− F (x∗) = o
(
n−2

)
and ‖xn − xn−1‖ = o

(
n−1

)
(4.41)

as also the sequence xn converges to a minimizer x∗.

Several remarks can be made concerning Theorem 4.5.1, which regroups
some known results and extends some of them to functions satisfying hy-
pothesis H(β) with β > 1.
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Remark 14. First of all in the case β = 1 (i.e. when the function F is convex),
from points 1, 2(i) and 2(ii), we find the well-known estimates (3.28) of
Theorem 3.3.1 in Chapter 3. In fact, points 1, 2(i) and 2(ii) improve the
results of Theorem 3.3.1 (in Chapter 3), for a smooth function that satisfies
H(β) with β > 1. More precisely the classical rates of O(n−2) or o(n−2)
and the convergence to a minimizer, can still hold true, even if b < 3 (in
particular if 1 + 2

β
< b ≤ 3), given that the function F is "sufficiently" flat

(i.e. β large enough).
Remark 15. In the case where F satisfies both H(β) and L(2), the point
2.(iii), only makes sense, when 1 ≤ β ≤ 2. In addition, we have -at least- that
β = 1+ K2

2L (see Lemma 4.4.5). Hence from Point 2(iii) of Theorem 4.5.1) we
find that F (xn)−F (x∗) = O

(
n
− 2b

3 −
4bK2

3(2L+K2)

)
, which is an improved result in

comparison to the O
(
n−2b/3

)
found in [AC18d] concerning functions with L-

Lipschitz gradient. Furthermore, from (4.40), we can see that the rate is even
better if F satisfies H(2) and L(2). In this case we have F (xn) − F (x∗) =
O
(
n−b

)
. Remark for example that this is the case when F is a quadratic

function, since it satisfies H(2) and L(2).
Remark 16. In particular from (4.40) of Theorem 4.5.1, when F is satisfying
H(β) with β > 1 and L(2) and b > 1 + 2

β
, the order of the convergence

rate for the objective function (i.e. O
(
n−

2bβ
β+2

)
) is sub-linear but it can be

arbitrarily "fast" without any additional cost (by choosing b large enough).
Nevertheless, this result is sub-optimal in comparison to the linear/geometric
convergence rate which is proven for the Gradient Descent algorithm 2 (see
for example (4.12) of Theorem 4.2.1), or the inertial gradient algorithm with
some fixed momentum parameter 10 or the Heavy-Ball algorithm 9 (see (4.19)
and (4.17) respectively). This indicates that in case of functions with sharp-
enough geometries, (strongly convex or satisfying at least L(2) condition),
inertial Gradient Descent Algorithm 11 may not be the optimal choice (at
least theoretically). In this remark we shall also add that the dependency
of the hidden constant in the "big Ohs" of Theorem 4.5.1 on the parameter
b > 0 can play a major role on this comparison.
Remark 17. A final remark is about the necessity of the uniqueness of the
minimizer in the point 2.iii of Theorem 4.5.1, which comes mostly by an
algebraic argument in the proof, rather than a "counter-example intuition".
Thus we conjecture that this hypothesis may not be necessary in general,
but we could not omit it in our proof.

In the Figure below, we give a unified view of the order p(b) of the con-
vergence rates for the objective function F (xn)−F ∗ = O

(
n−p(b)

)
, as given in
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Theorem 4.5.1. This time the order p(b) depends both on the over-relaxation
parameter b > 0 of the algorithm and the Hypotheses H(β) and L(p).

Figure 4.2: Values of the order p(b) depending on b > 0 and the geometry of
F . With red (and magenta) colour the rates found in Theorem 3.3.1, without
supposing any geometric hypothesis apart of the convexity on F . With blue
(and magenta) the corresponding order of convergence rates for a function F
satisfying H(β) with β > 1 (Points 1. and 2.(i) of Theorem 4.5.1). Finally, in
green colour the order obtained by supposing both H(β) and L(2), as given
by Point 2.(iii) in Theorem 4.5.1.

The non-differential setting In fact, in the particular case when F only
satisfies H(1) (i.e. F is convex), in view of the validity of the descent Lemma
B.0.7 for general convex functions (not necessarily smooth), the analysis of
Theorem 4.5.1 is still applicable for the i-FB algorithm 7, i.e. :

yn = xn + n

n+ b
(xn − xn−1)

xn+1 = Tγ(yn) := Proxγg
(
yn − γ∇f(yn)

) (4.42)

where f and g are convex with f being smooth with L-Lipschitz gradient
and γ ≤ 1

L
.

In this case from Theorem 4.5.1 we can recover some of the results al-
ready found in Theorem 3.3.1, concerning the i-FB Algorithm (7) studied in
Chapter 3 in a more refined version (see in particular point 2.(iii) in Corollary
4.5.2). More precisely we have the following Corollary.
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Corollary 4.5.2. Let F = f + g , where f, g are convex, lower semi-
continuous functions, with f differentiable with L-Lipschitz gradient, such
that arg minF 6= ∅. Let also 0 < γ ≤ 1

L
and {xn}n∈N be the sequence gener-

ated by Algorithm (7). Then:

1. If b < 3, the following convergence rates hold true asymptotically:

F (xn)− F (x∗) = O
(
n−

2b
3
)

and ‖xn − xn−1‖ = O
(
n−

b
3
)

(4.43)

2. (i) If b > 3 then the following convergence rate holds true asymptoti-
cally:

F (xn)−F (x∗) = O
(
n−2

)
and ‖xn−xn−1‖ = O

(
n−1

)
(4.44)

(ii) If b > 3 then:

+∞∑
n=0

n
(
F (xn)− F (x∗)

)
< +∞ and

+∞∑
n=0

n‖xn − xn−1‖2 < +∞

(4.45)
In fact : F (xn)− F (x∗) = o(n−2) and ‖xn − xn−1‖ = o(n−1)
and the sequence {xn}n∈N converges to a minimizer x∗.

(iii) If b > 3 and if F satisfies L(2) and admits a unique minimizer,
then the following convergence rate holds true asymptotically:

F (xn)− F (x∗) = O
(
n−

2b
3
)

and ‖xn − xn−1‖ = O
(
n−

b
3
)

(4.46)

As we shall remark, Corollary 4.5.2, can be applied to a class of problems
of a particular interest such as the (generalized) LASSO problem. In that
case, the minimizing function F is convex piece-wise polynomial of degree 2,
hence (see Corollary 9 in [BNPS17]), for all r > F ∗, the function F satisfies
L(2) on every sub-level set {F ≤ r} = {x ∈ Rd : F (x) ≤ r} . This inducts
that the point 2.(iii) of Corollary 4.5.2 is applicable, under the supplementary
condition of the uniqueness of a minimizer of F . More precisely we have the
following Corollary.

Corollary 4.5.3 (Generalized LASSO). Let F (x) = 1
2‖Ax− y‖

2 + λ‖Tx‖1,
where A : Rd −→ RM and T : Rd −→ RM are some linear operators, y ∈ RM

and λ > 0. Suppose also that arg minF = {x∗}. Let {xn}n∈N, be the sequence
generated by algorithm (4.42). Then for all b > 0, the following convergence
rate holds true asymptotically : F (xn)− F (x∗) = O

(
n−

2b
3
)
.
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Remark 18. More generally (see Corollary 4.3 in [DL18] or [GRV17]), if
F (x) = f(Ax) + g(Tx), with some linear operators A ∈ RN×M and T ∈
RN×M and f , g are convex piecewise-linear quadratic functions (see Defini-
tion 10.20 in [RW09]), then F satisfies the L(2) condition. Hence by assuming
the uniqueness of the minimizer, the point 2.(iii) of Corollary 4.5.2 is still
applicable in this more general setting.

Last but not least, we shall mention that for the minimization problem of
F = f + g, where f, g are both convex with f differentiable with L-Lipschitz
gradient and g lower semi-continuous, by making additional hypotheses, such
as non-degeneracy condition on F and restricted injectivity on f (for more
details see the work [LFP17]), the uniqueness of the minimizer x∗ is reassured.
If in addition g is partially smooth at x∗ relative to a neighborhood of x∗ (see
Definition 5 in [LFP17]), then F satisfies L(2) locally in x∗. Thus, in that
case we can recover the order of O

(
n−

2b
3
)
of the point 2.(iii) of Corollary

4.5.2.
The second main Theorem of this Chapter treats the case of a function F

with a "sufficiently flat" behavior near the minimizer of F . In our framework
this is translated to considering the case of a smooth and convex function
F , verifying Hypotheses H(β) and L(p), with some parameters β and p,
satisfying p ≥ β > 2.

Theorem 4.5.2. Let F : Rd → R be a convex differentiable function with a
L-Lipschitz continuous gradient for some L > 0. Let 0 < γ ≤ 1

L
and {xn}n∈N

be the sequence generated by i-GD Algorithm (11).
Assume that F satisfies H(β) and L(p) with p ≥ β > 2, and that F has

a unique minimizer x∗. If b ≥ β+2
β−2 , then the following estimate hold true

asymptotically:
F (xn)− F (x∗) = O

(
n−

2p
p−2

)
(4.47)

To our knowledge, Theorem 4.5.2 is new and it is the first one that pro-
vides estimates for the objective function F (xn)− F (x∗) for an inertial gra-
dient descent scheme (which is not a descent scheme), for a function with
sufficiently flat geometry (i.e. satisfying L(p) and H(β), with p > β > 2).
For some similar results concerning restarting variants of Algorithm 11 in the
case when F satisfies L(p), with p > 2, one can also consult the works [Rd17]
and [Zha18]. Several comments can also be made concerning the related
results in the existing literature.

First of all, Theorem 4.5.2, indicates that for b large enough (b ≥ β+2
β−2),

the order of convergence rate for the objective function F (xn)−F ∗ is always
better than o(n−2), which is the order obtained with the sole assumption
of convexity of F (see Theorem 3.3.1 in Chapter 3). Unfortunately, as in
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point 2.iii of Theorem 4.5.1, the proof of Theorem 4.5.2, necessitates the
uniqueness of the minimizer x∗, which constrains a bit its applicability. Nev-
ertheless we think that this hypothesis is due to technical difficulties and may
be possibly lifted.

In addition, the order of convergence rate (4.47) for the objective function
F (xn)−F (x∗), consists also of an improved result, in comparison to the order
obtained by general descent methods (such as the Gradient Descent algorithm
(2), which is O

(
n−

p
p−2
)
(see for example Theorem 4.2.1) and is optimal (see

for example [MP10]). This suggests that for functions with "sufficiently flat"
geometry (i.e. F satisfying H(β) and L(p), with p > β > 2), the i-GD
algorithm 11, turns out to accelerate the convergence rates for the objective
function F (xn)− F ∗ up to a factor of 2.

Finally the estimate (4.47) indicates that the order of convergence rate
for the objective function F (xn) − F (x∗) is surprisingly not ruled by the
over-relaxation parameter b at least asymptotically, but only by the local
sharpness of the function F (i.e. the parameter p, always under the assump-
tion b > β+2

β−2).
As before we present an illustration of the order of the convergence rate

for the objective function F (xn) − F ∗ = O
(
n−p(b)

)
, as given by Theorem

4.5.2. For simplicity reasons we consider a function F satisfying H(β) and
L(β), with β > 2.

In addition in Table 4.1 we give an overall summary of the results in
Theorems 4.5.1 and 4.5.2, concerning the convergence properties of the i-GD
Algorithm 11, depending on the over-relaxation parameter b > 0 and the
local geometry of function F (i.e. parameters β and p).

b (inertia) H(β) and L(p) rates F (xn)− F ∗ convergence
b ≤ 1 + 2

β
H(β) O

(
n−

2βb
β+2

)
b > 1 + 2

β
H(β) o(n−2) xn → x∗

b ≥ 1 + 2
β

H(β) & L(2) O
(
n−

2βb
β+2

)
xn → x∗

b ≥ β+2
β−2 p ≥ β > 2, H(β) & L(p) O

(
n−

2p
p−2

)
xn → x∗

Table 4.1: Summary of the convergence properties of i-GD Algorithm 11. In
the last two rows the uniqueness of the minimizer of F is also assumed.
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Figure 4.3: In red, the possible values of the order of convergence rates p(b),
with respect to the over-relaxation parameter b, for a function satisfying
H(β) and L(β), with β > 2. Notice that for large β, one has a larger variety
of choices for b, but a smaller overall rate, with the limiting case of p(b) = 2
(red dotted line). On the other hand, when β is close to 2, the order is
arbitrarily large, given that b is chosen arbitrarily big (satisfying b ≥ β+2

β−2).
This fact goes in harmony with the corresponding result of Theorem 4.5.1,
when the function is close to satisfy L(2) (but a bit flatter).
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4.6 Convergence analysis of the i-GD algo-
rithm

As made in Chapter 3, the strategy that we follow in order to prove
Theorems 4.5.1 and 4.5.2 is a Lyapunov-type analysis for a suitable energy-
sequence and the asymptotic equivalences. The choice of the Lyapunov
energy-sequence, as also the asymptotic analysis are highly-inspired by the
work made in the continuous-time counterpart for a solution of (1.18) in the
work [ADR18] and briefly presented in Section 1.3.4, in Part I.

For this section we make use of the classical sequences defined in Chapter
3, i.e. for {xn}n∈N a sequence generated by i-GD Algorithm 11 and x∗ ∈
arg minF , for all n ≥ 1 we denote :

wn = F (xn)− F (x∗), δn = ‖xn − xn−1‖2 and hn = ‖xn − x∗‖2. (4.48)

and for all λ ≥ 0 :

vn = ‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2 (4.49)

In addition -due to technical issues on the proofs- we consider a slightly
modified version of the energy-sequence En as the one defined in (3.34). In
the current Chapter, for any β ≥ 1, λ > 0 and ξ ∈ R, and {xn}n∈N a
sequence generated by i-GD algorithm 11 and x∗ ∈ arg minF , we consider
the sequence {En}n≥1 as follows :

En =
(
t2n + λβtn

)(
F (xn − F (x∗)

)
+ 1

2γ ‖λ(xn−1 − x∗) + tn(xn − xn−1)‖2

+ λtn
2γ ‖xn − xn−1‖2 + ξ

2γ ‖xn−1 − x∗‖2

=
(
t2n + λβtn

)
wn + 1

2γ vn + λtn
2γ δn + ξ

2γhn−1

(4.50)
Observe that the energy can also be expressed as:

En =
(
t2n + λβtn

)
wn + 1

2γ

(
t2nδn + λtn

(
hn − hn−1

)
+ (λ2 + ξ)hn−1

)
(4.51)

Notice also that by using the basic convex inequality

‖u‖2 ≤ 2‖u− v‖2 + 2‖v‖2 , ∀u, v ∈ Rd (4.52)
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with u = tn(xn − xn−1) and v = λ(xn−1 − x∗), in the definition of En (4.50),
we find :

2γEn ≥ 2γ(t2n + λβtn)wn +
(t2n

2 + λtn
)
‖xn − xn−1‖2 + (ξ − λ2)‖xn−1 − x∗‖2

≥ 2γt2nwn + t2n
2 δn + (ξ − λ2)hn−1

(4.53)
which we will use during the several proofs.

In this context, the energy-sequence En is of the form:

En = ϕn
(
F (xn)− F (x∗)

)
+Rn (4.54)

where Rn is not necessarily non-negative (remark here that the parameter ξ
can be also non-positive). In fact the exact construction of En (see (4.50)),
depends on the geometric properties of F and on the order of the convergence
rate of the objective function, i.e. the value of δ such that:

F (xn)− F (x∗) = O
(
n−δ

)
(4.55)

as stated in Theorems 4.5.1 and 4.5.2.
In order to get the estimation (4.55), a two-step procedure is used:

1. First of all, since ϕn ∼ n2, we show that the control over the growth or
the decay of En is of the following form (see for example relation (4.63)
for Theorem 4.5.1 and (4.84) for Theorem 4.5.2):

En 6 Kn−δ+2 (4.56)

2. Since Rn is not necessarily non-negative we cannot deduce (4.55) di-
rectly from (4.56). For this issue, we infer the geometric properties of
F (in particular hypothesis L(p)) in order to deduce (4.55) from (4.56).

To get the appropriate control (4.56) on En, we follow a classical strategy
for bounding functions using a differential inequality, which is motivated by
the continuous-time setting (see [ADR18]) and is similar to the one used for
the proof of point 1 of Theorem 3.3.1 in Chapter 3.

More precisely, in the framework of the current chapter, we prove that the
energy-sequence {En}n>1, satisfies the following recursive relation asymptot-
ically:

En+1 − En 6
c

n
En + rn (4.57)

with c = −δ+ 2 and a suitable sequence {rn}n>1 that involves the geometric
properties of F . In particular, in the context of Theorem 4.5.1, we have that
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rn = a
n2En (see relation (3.41) of Lemma 4.6.2), while in the case of Theorem

4.5.2, rn = a1
n2En + a2

n2‖xn−1 − x∗‖2 (see relation (4.76) of Lemma 4.6.3), for
some suitable positive constants a, a1 and a2. This allows to deduce the
existence of a constant K such that for n ∈ N large enough, we have:

En 6 Knc (4.58)
Finally, in order to deduce (4.55) from (4.56) we use different strategies

depending on the hypotheses on the geometry of F and on the over-relaxation
parameter b.

1. For the first point of Theorem 4.5.1, the sequenceRn in (4.54) is positive
and (4.55) holds directly.

2. For the second point of Theorem 4.5.1 and for the bound of Theorem
4.5.2, we have Rn = R′n + ξ‖xn − x∗‖2, where R′n is non negative and
ξ non positive. Thus, from (4.56), for n large enough, it follows that:

ϕn(F (xn)− F (x∗))− |ξ|‖xn − x∗‖2 6 Kn−δ+2 (4.59)
and we conclude, using the growth condition L(p) to bound ‖x∗−xn‖2

and get inequalities such that

ϕn(F (xn)− F (x∗)) + A1(F (xn)− F (x∗))
2
p 6 Kn−δ+2 (4.60)

which, by recalling that ϕn = n2 and using an appropriate strategy
when p > 2 (see Lemma B.0.5), leads to (4.55).

Of course the value of δ in (4.55) and the use of conditions L(p) are different
in the two theorems, which leads to different results, but the strategies in
both cases are similar enough.

Firstly we give the Lemma that describes the local variation of the energy
En (i.e. En+1−En) in terms of the energy En, the objective function wn, the
local variation of xn (i.e. the sequence δn) and the distance to the minimizer
hn

Lemma 4.6.1. Let F : Rd → R be a convex differentiable function with
a L-Lipschitz continuous gradient for some L > 0 and satisfies H(β) with
β ≥ 1 and x∗ ∈ arg minF . Let also 0 < γ ≤ 1

L
and {xn}n∈N be the sequence

generated by Algorithm (11). Then for all λ ≥ 0 and ξ = λ(λ+ 1− b) in the
definition of En, the following recursive formula holds for all n ≥ 1:

2γ(En+1 − En) ≤ 2γ c(λ)
tn

En + 2γ
(
A1(λ)tn + 1− 2λβ(λ+ 1− b)

)
wn

+ A2(λ)δn + A3(λ)
tn

hn−1

(4.61)
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where:

c(λ) = 2(λ+ 1− b), A1(λ) = 2b− (β + 2)λ, A2(λ) = (2λ+ 1− b)(1− b)
A3(λ) = −2λ(λ+ 1− b)(2λ+ 1− b)

The following Lemma gives an upper bound-estimate over the energy
sequence {En}n≥1, which will be useful for the proof of Theorem 4.5.1.

Lemma 4.6.2. Let F : Rd → R be a convex differentiable function with a L-
Lipschitz continuous gradient for some L > 0 and satisfies H(β) with β ≥ 1.
Let also 0 < γ ≤ 1

L
and {xn}n∈N be the sequence generated by Algorithm (11)

with one of the following hypotheses in force:

i. b < 1 + 2
β

ii. b ≥ 1 + 2
β
and F admits a unique minimizer x∗ and satisfies L(2).

Then, for λ = 2b
β+2 and ξ = λ(λ+ 1− b) = 2bβ

(β+2)2

(
1 + 2

β
− b

)
in the definition

of the energy En, there exists some n0 ∈ N, such that for all n ≥ n0, the
following recursive formula holds true:

En+1 − En ≤
(

a

(n+ b− 1)2 + c

(n+ b− 1)

)
En (4.62)

for some constant a ≥ 0 and c = 2− 2bβ
β+2 .

In fact, the following estimate holds true asymptotically:

En = O
(
n2− 2bβ

β+2

)
(4.63)

We are now ready to give the full proof of Theorem 4.5.1.

Proof of Theorem 4.5.1. We start this demonstration by proving the
points 1 and 2(iii) of Theorem 4.5.1. For that, we choose:

λ = 2b
β + 2 > 0, ξ = λ(λ+ 1− b) = 2bβ

(β + 2)2

(
1 + 2

β
− b

)
,

in the definition (4.50) of the energy En. Using Lemma 4.6.2, there exist
n0 ∈ N and a positive constant C such that, for all n ≥ n0, we have:

En ≤ Ct
2− 2bβ

β+2
n . (4.64)

In order to deduce the expected convergence rates on wn = F (xn)−F (x∗),
we use different strategies depending on the sign of the parameter ξ. Firstly
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we consider the case b < 1 + 2
β
, i.e.: ξ > 0. In that case, the energy En is a

sum of non-negative terms, hence:

En =
(
t2n + λβtn

)
wn + 1

2γ (vn + λtnδn + ξhn−1) ≥ t2nwn.

Combining the very last inequality with (4.64) and noting that tn ∼ n asymp-
totically, we get the appropriate estimate: wn = O

(
n−

2bβ
β+2

)
for all n ≥ n0,

as asserted by the first point of Theorem 4.5.1.
In addition, since ξ > 0, from the definition of the energy En (3.34) and

(4.63) we find :

hn−1 6
2γ
ξ
En 6 Kt

2− 2bβ
β+2

n (4.65)

asymptotically, for some suitable positive constant K.
Finally, using the inequality (4.53), we have:

t2n
2 δn ≤ 2γEn − 2γt2nwn + (λ2 − ξ)hn−1

≤ 2γEn + |λ2 − ξ|hn−1

(4.66)

Injecting estimations (4.64) and (4.65) into (4.66) leads to: δn = O

(
t
− 2bβ
β+2

n

)
as expected.

Consider now the case b ≥ 1 + 2
β
i.e. ξ ≤ 0. In that case, the energy En

is not a sum of non negative terms anymore:
2γEn = 2γ

(
t2n + λβtn

)
wn + vn + λtnδn − |ξ|‖xn−1 − x∗‖2,

and an additional growth condition L(2) will be needed to bound ‖xn−1 −
x∗‖2. First, applying the inequality (4.52), on the one hand to u = tn(xn −
xn−1) and v = λ(xn−1 − x∗) and on the other hand to u = xn−1 − x∗ and
v = x∗ − xn, we have for all n ∈ N:

vn ≥
t2n
2 δn − λ

2‖xn−1 − x∗‖2, ‖xn−1 − x∗‖2 ≤ 2δn + 2hn.

Using these two inequalities successively, we deduce:

2γEn ≥ 2γ
(
t2n + λβtn

)
wn +

(
1
2 + λ

tn

)
t2nδn + (ξ − λ2)‖xn−1 − x∗‖2

≥ 2γ
(
t2n + λβtn

)
wn +

(
1
2 + λ

tn
− 2|ξ − λ2|

t2n

)
t2nδn − 2|ξ − λ2|‖xn − x∗‖2

≥ 2γ
(
t2n + λβtn

)
wn + t2n

4 δn − 2|ξ − λ2|‖xn − x∗‖2

(4.67)
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since the coefficient of t2nδn converges to 1
2 , and thus is greater than e.g. 1

4 for
n large enough. Assuming in addition that F satisfies the growth condition
L(2) and admits a unique minimizer, we then obtain for n large enough:

En ≥
(
t2n+λβtn−2|ξ−λ2|K−1

2

)
wn+t

2
n

4 δn =
(
1+λβ

tn
−2 |ξ − λ

2|K−1
2

t2n

)
t2nwn+t

2
n

4 δn

Hence there exists n0 ∈ N such that for all n ≥ n0, we have: En ≥ t2n
2 wn +

t2n
4 δn. Using finally the estimate (4.64) on the energy En allows us to conclude
the proof of the point 2(iii) of Theorem 4.5.1.

Consider again the case when b ≥ 1 + 2
β
. In order to prove the points

2(i) and 2(ii) of Theorem 4.5.1 with the only assumption that F satisfies the
condition H(β), we choose different values of the parameters λ and ξ in the
definition of the energy En. Let us set:

λ = b− 1 > 0, ξ = λ(λ+ 1− b) = 0.

In that case, the energy is again a sum of non negative terms and we then
have:

En =
(
t2n + (b− 1)βtn

)
wn + 1

2γ
(
vn + (b− 1)tnδn

)
≥ t2nwn. (4.68)

To obtain the expected convergence rate on wn as expressed in the point 2(i)
of Theorem 4.5.1, it is sufficient to prove that the energy En is bounded. For
that purpose, we apply Lemma 4.6.1 with λ = b− 1. Keeping in mind that
b ≥ 1 + 2

β
, we then have:

∀n ≥ 1, En+1 − En ≤
(
β(1 + 2

β
− b)tn + 1

)
wn −

1
2γ (b− 1)2δn

≤ wn −
1

2γ (b− 1)2δn ≤ wn (4.69)

Injecting (4.68) into (4.69), we then obtain for all n ≥ 1, En+1 ≤
(
1 + 1

t2n

)
En,

which implies by a recurrence argument that:

∀n ≥ 1, En+1 ≤ E1

n∏
i=1

(
1 + 1

t2i

)
By inferring Lemma B.0.3 with c = 0 and a = 1 we deduce that the sequence
(En)n≥1 is bounded. By (4.68), the sequence (t2nwn)n≥1 is also bounded.
Hence: wn = O(t−2

n ) = O(n−2) asymptotically.
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Assume in addition that: b ≥ 2. According to the definition (3.36) of the
energy En, for all n ≥ 1, we have:

2γEn = 2γ
(
t2n + (b− 1)βtn

)
wn + t2nδn + (b− 1)tn(hn − hn−1) + (b− 1)2hn−1

≥ (b− 1)tn(hn − hn−1) + (b− 1)2hn−1

≥ (b− 1)
(
tnhn − (tn − b+ 1)hn−1

)
Observe now that, since b ≥ 2, we have: tn − b+ 1 ≤ tn − 1 = tn−1, hence:

∀n ≥ 1, 2γEn ≥ (b− 1) (tnhn − tn−1hn−1) .

Using the fact that {En}n≥1 is bounded, there exist a constant C > 0 and
n0 ∈ N such that:

∀n ≥ n0, tnhn − tn−1hn−1 ≤ C. (4.70)

By summing (4.70) from n0 to N , we obtain that for all N ≥ n0, tNhN ≤
tn0hn0 + CN ≤ tn0hn0 + CtN . The sequence (hn)n is so bounded, which
implies that {xn}n≥1 is also bounded. Moreover using (4.53), for all n ≥ 1,
we find :

t2n
2 δn ≤ 2γEn + λ2hn−1,

By using the fact that the sequences hn and En are bounded, we obtain the
boundedness of the sequence (t2nδn)n, which is equivalent to δn = O(n−2)
asymptotically. This concludes the proof of point 2(i) of Theorem 4.5.1.

Finally, suppose that b > 1 + 2
β
. Let: η = b− (1 + 2

β
) > 0. As previously

done in (4.69), we have:

En+1 − En ≤ −(βηtn − 1)wn −
1

2γ (b− 1)2δn ≤ −(βηtn − 1)wn (4.71)

Moreover using the fact that there exists n0 ∈ N such that for all n ≥ n0,
we have: β η2 tn ≤ βηtn − 1 and summing (4.71) over n ∈ {n0, · · · , N}, for all
N > n0, we find:

β
η

2

N∑
n=n0

tnwn ≤ En0 < +∞ (4.72)

Lastly, the proof of the summability of the (nδn)n is exactly the same as
in [CD15, Corollary 2]. In few words, applying Lemma B.0.7, with γ ≤ 1

L
,

y = xn + αn(xn − xn−1) and x = xn, or equivalently using the Lipschitz
continuity of the gradient of F , we have:

∀n ≥ 1, δn+1 − α2
nδn ≤ 2γ(wn − wn+1),



Chapter 4. Inertial gradient-descent algorithm under sharpness-flatness
conditions 130

where: αn = n
n+b . Summing the last inequality from n = 1 to N , we obtain:

(b− 1)
N∑
n=2

(2tn − b+ 1) δn ≤ 2γ
N∑
n=2

(2tn + 1)wn + t22w1.

Observe now that for all n ≥ 1, we have: 2tn − b + 1 = 2n + b − 1 ≥ 2n.
Thus the summability of nδn follows from the summability of tnwn, which
concludes the proof of point 2(ii) of Theorem 4.5.1.

For the Corollary 4.5.1, we give a brief proof, following the lines of the
one made in [AP16] :

Proof of Corollary 4.5.1. The proof of this corollary is a direct consequence
of the summability (4.39) and of Lemma B.0.8 in Appendix B (these two
results are key elements of the convergence proof in [CD15]).

We define Un = F (xn)−F (x∗) + ‖xn−xn−1‖2

2γ . From (4.39) we deduce that
∑
n>1

nUn < +∞ (4.73)

It follows that for any ε > 0, it exists a rank n0 such that for any n > n0,
n∑

k=[n2 ]
kUk < ε. (4.74)

Hence, the sequence Ũn = min
k∈[[n2 ],n]

Uk satisfies

Ũn ×
n∑

k=[n2 ]
k 6

n∑
k=[n2 ]

kUk < ε. (4.75)

and thus Ũn = o
(

1
n2

)
. Moreover (Un)n>1 is non-increasing (see Lemma B.0.8

in Appendix B) and thus Un = Ũn which concludes the proof of (4.41).

Let us now turn our attention on the proof of Theorem 4.5.2, which takes
into consideration functions F with a "flat" behavior near the minimizer. To
do so we need the following Lemma :

Lemma 4.6.3. Let F : Rd → R be a convex differentiable function with a
L-Lipschitz continuous gradient for some L > 0. Let 0 < γ ≤ 1

L
and {xn}n∈N

be the sequence generated by Algorithm (11).
Assume that F satisfies H(β) and L(p) with p > β > 2. Let λ = 2

β−2

and ξ = λ(λ + 1− b) = 2
β−2

(
β
β−2 − b

)
in the definition of the energy En. If
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b > β+2
β−2 , then there exists some n0 ∈ N and some constant C > 0 such that

the following recursive formula holds true for all n > n0:

2γ
(
En+1 − En

)
≤ 2γ

(
− 4
β − 2 + C

tn

)
En
tn

+ C

t2n
hn−1. (4.76)

Proof of Theorem 4.5.2. We split the proof into three parts. In the first
part we present the analysis in order to obtain a control over the decay of
the energy En, by making use of an a-priori estimate for hn. In the second
part we deduce some estimates for the sequence wn. In the last part we infer
a bootstrap argument to improve the estimates for the sequence wn and to
get those stated in Theorem 4.5.2.

Part 1: In this part, we show that choosing λ = 2
β−2 and ξ = λ(λ+ 1−

b) = 2
β−2

(
β
β−2 − b

)
in the definition of the energy En, the control over the

decay of the energy En is given by:

En = O
(
n−m

)
, with: m =


4
p

if β = 6p+8
p+2

min( 4
β−2 , 1 + 4

p
) otherwise

.

In this proof we will frequently use the notation d = 4
β−2 . By Lemma 4.6.3,

there exist n0 ∈ N and a positive constant C such that

∀n > n0, En+1 − En 6 −
d

tn
En + C

t2n
En + C

2γt2n
hn−1. (4.77)

Denoting by Hn = C
2γt2n

hn−1 and zn = 1 − d
tn

+ C
t2n
, the previous inequality

(4.77) can be rewritten as:

En+1 6 znEn +Hn (4.78)

which, by applying Lemma B.0.2, implies:

∀n > n0, En+1 6
n∏

i=n0

zi

(
En0 +

n∑
i=n0

Hi∏i
m=n0 zm

)
. (4.79)

By relation (B.8) of Lemma B.0.3, we deduce the existence of two positive
constants C1 and C2 such that for all n > n0 it holds:

C1t
−d
n 6

n∏
i=n0

zi =
n∏

i=n0

(
1− d

ti
+ C

t2i

)
6 C2t

−d
n . (4.80)
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Hence by (4.79) and the definition of Hi = C
2γt2i

hi−1, we find:

En+1 6 C2t
−d
n

(
En0 + C−1

1

n∑
i=n0

tdiHi

)

6 C2t
−d
n

(
En0 + C3

n∑
i=n0

td−2
i hi−1

) (4.81)

for some suitable positive constant C3. So to obtain an estimate on the
energy, we first need an estimate on hn. Assuming that F satisfies the growth
condition L(p) with p > 2, and admits a unique minimizer x∗, we have:

hi−1 = ‖xi−1 − x∗‖2 6 K−1
p

(
F (xi−1)− F (x∗)

) 2
p = K−1

p w
2
p

i−1. (4.82)

By injecting the last inequality (4.82) into (4.81), for n > n0 we find:

En+1 6 C2t
−d
n

(
En0 + C3K

−1
p

n∑
i=n0

td−2
i w

2
p

i−1

)

6 C2t
−d
n

(
En0 + C3K

−1
p

n∑
i=n0

t
d−2− 4

p

i

(
t2iwi−1

) 2
p

)
(4.83)

Moreover, since F satisfies H(β) with β > 2, we can apply the results stated
in Theorem 4.5.1. Here: b > β+2

β−2 > 1 + 2
β
, Hence from relation (4.39)

of Theorem 4.5.1, the sequence (t2iwi−1)i is bounded. Therefore, from the
previous inequality (4.83), by using the series-integral comparison test, we
find that for all n > n0, it holds:

En+1 6 C2t
−d
n

(
En0 + C4t

max{d−1− 4
p
,0}

n

)
, if d 6= 1 + 4

p

or :

En+1 6 C2t
−d
n

(
En0 + C4 log tn

)
6 C2t

−d
n

(
En0 + C4tn

)
, if d = 1 + 4

p

for some suitable positive constant C4 (at each case). Therefore there exists
a suitable positive constant C > 0, such that :

En+1 6 Ct−mn (4.84)

for m =


4
p

if d = 1 + 4
p

min{d, 1 + 4
p
} otherwise

.
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Part 2: Once obtained the control (4.84) over the decay of En, we now
want to deduce the convergence rates on wn = F (xn) − F (x∗) expected in
Theorem 4.5.2.

Firstly, observe that when β > 2 and b ≥ β+2
β−2 , we have

λ = 2
β − 2 > 0 and ξ = λ(λ+ 1− b) = 2

β − 2( β

β − 2 − b) < 0.

The energy En is not a sum of non negative terms, so that, as in Theorem
4.5.1, we will so need the growth condition L(p) to bound ‖xn−1 − x∗‖2, or
more precisely ‖xn − x∗‖2 in what follows. First remark that using (4.53),
we get:

2γEn = 2γ(t2n + λβtn)wn + vn + λtnδn − |ξ|‖xn−1 − x∗‖2

> 2γt2nwn + t2n
2 δn − λ(b− 1)‖xn−1 − x∗‖2. (4.85)

By using the inequality

‖xn−1 − x∗‖2 6 2‖xn − x∗‖2 + 2‖xn − xn−1‖2

in (4.85) we find:

2γt2nwn +
(
t2n
2 − 2λ(b− 1)

)
δn 6 2γEn + 2λ(b− 1)hn. (4.86)

Hence, there exists n0 ∈ N such that for n > n0:

t2nwn 6 2γEn + 2λ(b− 1)‖xn − x∗‖2

6 Ct−mn + 2λ(b− 1)‖xn − x∗‖2

using the control estimate (4.84) on the energy En for some suitable positive
constant C. Using the growth condition L(p) with p > 2 combined with the
uniqueness of the minimizer, gives:

t2nwn 6 Ct−mn + 2λ(b− 1)
Kp

w
2
p
n (4.87)

Deducing now the convergence rates on wn is quite technical: multiplying
(4.87) by tmn and setting gn = tm+2

n wn, we find:

gn 6 C + 2λ(b− 1)
K

t
mp−2(m+2)

p
n g

2
p
n (4.88)
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By applying Lemma B.0.5 with zn = 2λ(b−1)
K

t
mp−2(m+2)

p
n and α = 2

p
∈ (0, 1), we

obtain:

gn 6 2 max
{
C,

(
2

2
p

2λ(b− 1)
Kp

t
mp−2(m+2)

p
n

) p
p−2
}

= 2 max
{
C,C ′t

m− 4
p−2

n

}
= O

(
tMn
)

(4.89)
where

M = max
{

0,m− 4
p− 2

}
=
{
m− 4

p−2 if p > max(β, 4) and d 6= 1 + 4
p

0 otherwise.

Substituting then gn = tm+2
n wn, we finally have:

wn = O
(
tM−m−2
n

)
. (4.90)

At this point we consider the different disjoint cases for the parame-
ters (β, p) in order to precise the estimate (4.90). Recalling that β 6 p,

m =


4
p

if d = 1 + 4
p

min{d, 1 + 4
p
} otherwise

and M = max{0,m− 4
p−2}, we have the

following cases: Let us first suppose that d = 4
β−2 6= 1 + 4

p

• If m = d = 4
β−2 then (since β 6 p), we have necessarily that M =

m− 4
p−2 . In that case by (4.90), we find: wn = O

(
t
− 2p
p−2

n

)
• If m = 1 + 4

p
then:

– If M = m− 4
p−2 , then from (4.90) we find: wn = O

(
t
− 2p
p−2

n

)
– If M = 0, from (4.90) we find: wn = O

(
t
−(3+ 4

p
)

n

)
Lastly, if d = 1 + 4

p
, then m = 4

p
< 4

p−2 , thus M = 0 and from relation (4.90),

we find : wn = O
(
t
−(2+ 4

p
)

n

)
The previous cases can be regrouped into two regimes B1 and B2, for the

parameters (β, p) ∈
{

(x, y) ∈ R2 : 2 < x 6 y
}
with:

B1 :
{
p > 4

}
∩ {d 6= 1 + 4

p
}

B2 :
({
p ≤ 4

}
∩ {d 6= 1 + 4

p
}
)
∪ {d = 1 + 4

p
}

such that:
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• If (β, p) ∈ B1 then from (4.90) we obtain:

wn = O
(
t
− 2p
p−2

n

)
(4.91)

• If (β, p) ∈ B2 then from (4.90) we obtain:

wn = O
(
t−µ1
n

)
with µ1 =

2 + 4
p

if d = 1 + 4
p

3 + 4
p

otherwise
(4.92)

In the case when (β, p) ∈ B1, we can conclude directly the proof of The-
orem 4.5.2.

Let us now treat the case of (β, p) ∈ B2. In this case the estimate found in
(4.92) is sub-optimal, in comparison with the one stated in Theorem 4.5.2.
This point is also strongly accented by the corresponding results for the
continuous-time version (see Theorem 4.3 in [ADR18]). This is due to the
use of the a-priori estimate for (t2nwn−1)n used in (4.83), in our analysis.

Nevertheless, we show that this estimate can be "improved" by inferring a
bootstrap argument for a suitable amount of times. More precisely the idea
is to use (4.92) as an a-priori estimate, by re-injecting it in (4.82). This idea
is presented in the third part.

Part 3: First we define the sequences {µl}l∈N, {ml}l∈N and {Ml}l∈N,
with µ0 = 2, such that for all l > 1 it holds:

µl =

2 + 2
p
µl−1 if µl−1 = p(d−1)

2
3 + 2

p
µl−1 otherwise

(4.93)

and for all l ∈ N:

ml =


2
p
µl if d = 1 + 2

p
µl−1

min
{
d, 1 + 2

p
µl
}

otherwise
and Ml = max

{
0,ml−

4
p− 2

}
(4.94)

(note that m0 = m and M0 = M).
For all l ∈ N, we also define the following family of conditions B2(l), for

the parameters (β, p):

B2(l) : Ml = 0 and ml =


2
p
µl if d = 1 + 2

p
µl

1 + 2
p
µl otherwise

. (4.95)

Since B2(0) is in force, by relation (4.92) we have that:

wn = O
(
t−µ1
n

)
(4.96)
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Hence, by using the hypothesis L(p) and the uniqueness of the minimizer,
we find that:

hn ≤ K−1
2 w

2
p
n = O

(
t
− 2
p
µ1

n

)
(4.97)

By following the same procedure as before in Part 1 and injecting the in-
equality (4.97) into (4.81), we find :

En+1 6 C2t
−d
n

(
En0 + C3

n∑
i=n0

t
d−2− 2

p
µ1

i

)
(4.98)

for some suitable positive constants C2 and C3 and n0 ∈ N.
Then, by using the series-integral comparison test in (4.98), we find:

En+1 = O
(
t−m1
n

)
(4.99)

By proceeding exactly in the same way as before in Part 2 of the current
proof, one can deduce that:

wn = O
(
tM1−m1−2
n

)
(4.100)

If we suppose that B2(1) does not hold true (i.e. M1 = m1 − 4
p−2), then

the result of Theorem 4.5.2 follows directly from relation (4.100). If in the
contrary B2(1) is in force, then from (4.100), it follows that:

wn = O
(
t−µ2
n

)
(4.101)

In fact, in the same way as before, by a recurrence argument, we find that
for all l > 0 it holds:

wn = O
(
tMl−ml−2
n

)
(4.102)

and if B2(l) holds true, then : wn = O(t−µl+1
n ), otherwise wn = O

(
t
− 2p
p−2

n

)
.

Let us prove by contradiction that B2(l) cannot hold true for all l ∈ N.
For that we suppose that the condition B2(l), holds true for all l ∈ N. In
that case, since Ml = 0 for all l ∈ N, we have ml <

4
p−2 which is equivalent

to:{
µl ≤

(6− p)p
2(p− 2) and µl 6=

(d− 1)p
2

}
or

{
µl ≤

2p
p− 2 and µl = (d− 1)p

2
}

(4.103)
Notice in that case that µl is always an increasing sequence, converging to

its supremum: 3p
p−2 . In fact one can assure that there is at most one l1 ∈ N,

such that µl1 = (d−1)p
2 ≤ 2p

p−2 , thus µl+1 = 3 + 2
p
µl for all l > l1. This entails
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that after a certain rank l∗ ∈ N, for all l ≥ l∗, we have µl > 2p
p−2 , which

together with (4.103), leads to a contradiction.
Thus, we deduce the existence of an l∗ ∈ N, such that B2(l∗) does not hold

true. Therefore (since the condition B2(l∗) does not hold true), by (4.102)
we deduce that:

wn = O
(
t
− 2p
p−2

n

)
(4.104)

for all (β, p), such that 2 < β ≤ p, which concludes the proof of Theorem
4.5.2.

4.7 Numerical examples

In this section we are presenting some numerical illustrations of applying
the i-GD Algorithm 11, on some simple toy-examples of minimization prob-
lems. These examples are chosen in order to put in evidence the results of
Theorems 4.5.1 or Corollary 4.5.2 and Theorem 4.5.2. We compare the i-GD
Algorithm 11 with different choices for the over-relaxation parameter b > 0,
as also with the Gradient Descent (GD). In particular we take a look on the
different orders of convergence rates of the error F (xn)−F (x∗), for functions
that are satisfying the conditions H(β) and L(p) with β ≥ 1 and p ≥ 2.

In the following four examples (Figure 4.4) we test the i-GD Algorithm
with five different choices for the over-relaxation parameter b (black,blue,
green, red and magenta), for the minimization problem of the function F :
RN −→ R+ , where F has different expressions, that enter in the framework
of Theorem 4.5.1 and Corollary 4.5.2. In all the following examples we choose
x0 = x1 ∈ H randomly and the step parameter is fixed to γ = 1

L
, where L

is the Lipschitz constant of the gradient of the differentiable part in F . The
different plots for these examples can be found in Figure 4.4.

Least squares: We are interested in the minimization problem of F (x) =
‖Ax − c‖2. In this example we choose A ∈ R100 × R400 with random i.i.d.
centered Gaussian coefficients and c a random i.i.d. centered Gaussian vector.

Quadratic loss: We are searching to minimize F (x) = 〈Ax, x〉 + 〈c, x〉,
where A ∈ R200 ×R200 is a random, symmetric and positive-definite matrix
and c a random vector.
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Tikhonov regularization: We are searching to minimize F (x) = ‖Ax −
c‖2 + λ‖x‖2. In this setting we choose λ = 4, A ∈ R100 ×R400 with random
i.i.d. centered Gaussian coefficients and c a random i.i.d. centered Gaussian
vector.

LASSO (Least Absolute Shrinkage and Selection Operator): We
choose F (x) = ‖Ax−c‖2 +λ‖x‖1, where λ = 4, A ∈ R100×R400 with random
i.i.d. centered Gaussian coefficients and c a random i.i.d. centered Gaussian
vector.
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Figure 4.4: Values of the error log
(
F (xn) − F (x∗)

)
as a function of the

iterations n, for the four minimization problems (Least squares, Quadratic,
Tikonov, LASSO). The first three cases fall into the Hypotheses of Theorem
4.5.1, while the fourth (LASSO), into the ones of Corollary 4.5.2.

One can notice that in all the four cases, the over-relaxation parameter b
plays a crucial role for the convergence rate of the objective function. Indeed
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larger values of b, seem to lead to faster convergence rates at a late stage,
as Theorem 4.5.1 and Corollary 4.5.2 assert. However, it is also worth men-
tioning that taking b very large, results to "slower" convergence behavior at
the beginning. This last remark suggests that the over-relaxation parameter
b, has also a serious impact in the hidden constants in the "big Ohs" of the
different estimates in Theorem 4.5.1 and Corollary 4.5.2.

In the second illustration (Figure 4.5), we are considering the simple
example of minimizing the function F : R8 −→ R+, such that F (x) = ‖x‖8.
In this setting we compare the Gradient Descent (yellow), i-GD Algorithm
with five different choices for the over-relaxation parameter b (black, blue,
green, red and magenta) for different values of p (p = 3, p = 4, and p = 8).
We always set x0 = x1 = 1T ∈ R8 and a suitable step-size γ 6 1

L
, where L

is the Lipschitz constant of the gradient of F . The different plots for these
examples can be found in Figure 4.5, which seem to be bounded.

In this case we intentionally choose a parameter b = p+1
p−2 < p+2

p−2 (blue
line) that violate the assumptions of Theorem 4.5.2. This seems to cause an
overshoot on the minimum of the corresponding trajectory. On the contrary
the trajectories that respect the hypotheses of Theorem 4.5.2 (red, green
and magenta lines) seem to produce a decreasing behavior, without bump
effects. From the second row, we can notice that at a final stage, the slope of
the lines obtained by the i-GD algorithm, are almost the same as the one of
n−

2p
p−2 (except the blue one). This suggests that the order of convergence rate

found in Corollary 4.5.2 for the i-GD algorithm is optimal for this kind of
functions, under the assumption b ≥ p+2

p−2 . Remark also in this case that the
slope obtained by the GD algorithm, is less steep than n−

2p
p−2 , which shows

that the i-GD algorithm is a better choice in this framework.
Finally, notice that in contrary with the results in Figure 4.4, this time

smaller values of b seem to give slightly "better" results, given that b ≥ p+2
p−2 .

This suggests that the limiting value b = p+2
p−2 may minimize the hidden

constants in the "big Oh" of Theorem 4.5.2. Nevertheless the order of con-
vergence rate seems to be independent of the parameter b, and it only varies
with respect to the parameter p (larger values of p lead to slower convergence
rates), as Theorem 4.5.2 asserts.
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Figure 4.5: Each column correspond to the minimization of ‖x‖p, with p = 3,
p = 4 and p = 8 respectively. In the first row, the values of the error
log(F (xn) − F (x∗)) as a function of the iterations n. In the second row :
here the values of the error F (xn)− F (x∗) as a function of the iterations n,
are in loglog scale. The light-blue curve corresponds to the theoretical bound
n−

2p
p−2 as found in Theorem 4.5.2. Notice that all the slopes obtained by the

i-GD algorithm with b ≥ p+2
p−2 (red, green and magenta), except the blue one

(b < p+2
p−2) and the black one (gradient descent) seem to be identical to the

light-blue one (n−
2p
p−2 ). In the third row : the values of the rescaled error

F (xn)−F (x∗), by (√γ(n+ b−1))
2p
p−2 . Here we can remark that all the three

choices of parameter b (red, green and magenta), that enter the framework
of Theorem 4.5.2, are bounded. On the contrary the blue one seems to
explode periodically along the iterations. Notice also that among the three
bounded lines, the one that has a better upper bound (red), corresponds to
the smallest possible value of b that enters the framework of Theorem 4.5.2
(i.e. b = p+2

p−2).
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4.8 Concluding remarks and perspectives

In this Section we studied the Nesterov-type inertial Algorithm 11, for
smooth and convex minimization problems, with some additional geomet-
rical information over the minimizing function F . We showed that, unlike
descent schemes under Growth condition L(p) for p ≥ 2, Algorithm 11, ne-
cessitates also a flatness type condition H(β), in order to deduce competitive
convergence rates. In particular from Theorem 4.5.1, one can deduce that
for functions with sharp enough geometry (i.e. L(2)) the inertial Gradient
descent algorithm may lead to sublinear rates, in comparison to the linear
rates obtained by a descent method. Nevertheless notice that for a given pre-
cision, choosing b large enough can even lead to better results than the linear
convergence proven for the Gradient Descent or Heavy-Ball-type algorithms.
This question is directly linked with the dependence on b, of the hidden con-
stants in the "big Ohs", in Theorems 4.5.1 and 4.5.2. The exact knowledge
of this dependence on b, can trace then the strategy of choosing (or not) a
particular inertial algorithm, rather than a Gradient-Descent for minimizing
F up to a given precision. Unfortunately our analysis does not allow to have
an explicit formulation of these constants, which is let for future study.

On the other hand, Theorem 4.5.2 shows that for functions with flat-
enough behavior (i.e. H(β) and L(p) with p ≥ β > 2), the i-GD algorithm 11,
performs better than a first-order descent method by factor of 2 (notice this
difference between (4.47) of Theorem 4.5.2 and (4.13) of Theorem 4.2.1). In
fact in the case of flat geometries (i.e. p > 2), it would be interesting to know
if the flatness hypothesis H(β) is necessary for the rates proven in Theorem
4.5.2, or if we can get around with the same rates without this assumption.
In addition the hypothesis of the uniqueness of the minimizer x∗ in Theorem
4.5.2, seems motivated more by a technical necessity, rather than a "counter-
example"-intuition. This arises the question if this uniqueness-hypothesis is
necessary or it can be omitted.

Another challenging task, is to extend the results of this Chapter to the in-
ertial Forward-Backward Algorithm 7, for non-smooth convex optimization.
In particular, this question is translated to extending the flatness condition
H(β) for a sum of two convex functions in Lemmas B.0.7 and B.2.1. In this
setting, we can further investigate the convergence properties of the i-FB
algorithm 7, for convex functions that satisfy the sharpness condition L(p),
for 1 ≤ p ≤ 2, as also for non-convex ones.

Moreover, we let for future study, the question of the robustness of the
convergence results in Theorems 4.5.1 and 4.5.2, in the presence of perturba-
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tion errors in the computation of the gradient of F . As we expect, the rates
found in Theorems 4.5.1 and 4.5.2 remain robust, under some summability-
control conditions over the error-terms, depending on the geometry of the
function (i.e. parameters β and p).

Finally an interesting question consists in proving the optimality of the
rates obtained in Theorems 4.5.1 and 4.5.2. In particular, as the analysis
in the continuous case for the system (1.18) shows, as also the numerical
examples (see Figure 4.5), the rates found in Theorem 4.5.2, seem to be
-worst case- optimal for functions such as ‖x‖p, for p > 2.



Appendix B

Appendix of Part II

In this appendix we are giving the proofs of the different technical Lemmas
used in Chapters 3 and 4.

We begin by giving the discrete version of Opial’s Lemma ( [Opi67] or
Lemma 4.1 in [AGR00]) :

Lemma B.0.1. Let K be a separable Hilbert space and S ⊂ K be a non-empty
set and x : [t0,+∞) such that the following conditions hold:

1. lim
n→+∞

‖xn − x∗‖ ∈ R , for all x∗ ∈ S

2. Every weak-cluster point of xn belongs to S

Then the sequence xn weakly converges to a point of S as n→ +∞.

Remark 19. Usually we invoke the previous Lemma with S = arg minF .
The next Lemma is a discretized version of Gronwall’s Lemma ( see for

example Theorem 4 in [Hol09] or Lemma 1 in [SLRB11] ).

Lemma B.0.2. Let C0 a positive real number and {un}n∈N, {un}n∈N and
{an}n∈N three non-negative sequences such that an 6= 0 for all n ≥ 1 and:

un+1 ≤ anun + vn (B.1)

Then for all n ≥ 1 it holds:

un+1 ≤
n∏
i=1

ai

(
u1 +

n∑
i=1

vi∏i
m=1 am

)
(B.2)

In particular if C0 ≥ 0, such that for all n ≥ 1 it holds :

un+1 ≤ C0 +
n∑
i=1

aiui (B.3)

143
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Then for all n ≥ 1 it holds :

un+1 ≤ C0

n∏
i=1

(1 + ai) (B.4)

Lemma B.0.3. Let a, c and C0 be some real numbers such that C0 > 0 and
a > 0 and {un}n∈N be a sequence of real numbers, and n0 ∈ N∗ such that
1 + c

n
+ a

n2 > 0 for all n ≥ n0. Suppose also that for all n ≥ n0, it holds:

un+1 ≤ C0

n∏
i=n0

(1 + c

i
+ a

i2
)

Then there exists a positive constant C, such that for all n ≥ n0, it holds:

un+1 ≤ Cnc

Proof. In fact for all n ≥ n0 we have:

n∏
i=n0

(
1 + c

i
+ a

i2

)
= e

(∑n

i=n0
log
(

1+ c
i
+ a
i2

))
(B.5)

By using the basic inequality x
1+x ≤ log (1 + x) ≤ x for all x > −1 and

the summation-integral comparison test, we have from the one side:
n∑

i=n0

log
(
1 + c

i
+ a

i2

)
≤

n∑
i=n0

(
c

i
+ a

i2

)
≤ A+

n∑
i=n0

c

i
≤ A+ c log n (B.6)

where A > 0 is a (renamed at each step) suitable positive constant.
From the other side:

n∑
i=n0

log
(
1+c

i
+ a

i2

)
≥

n∑
i=n0

(
c
i

+ a
i2

1 + c
i

+ a
i2

)
≥

n∑
i=n0

(
c

i+ c

)
≥ A′+c log(n+c) ≥ A′+c log n

(B.7)
where A′ > 0 is a (renamed at each step) suitable positive constant.

By (B.6) and (B.7) we infer that there exist n0 ∈ N and some suitable
positive constants C1 and C2 such that for all n ≥ n0 it holds:

C1n
c ≤

n∏
i=n0

(
1 + c

i
+ a

i2

)
≤ C2n

c (B.8)

From the hypothesis we have:

un+1 ≤ C0

n∏
i=n0

(
1 + c

i
+ a

i2

)
(B.8)
≤ Cnc (B.9)

which concludes the proof of Lemma B.0.3 for a suitable positive constant
C > 0.
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The next Lemma is a discretized version of Gronwall’s-Bellman’s Lemma
( see for example Lemma 1 in [SLRB11] ).

Lemma B.0.4. Let C0 a positive real number and {un}n∈N, {an}n∈N two
non-negative sequences, such that for all n ∈ N∗ it holds

u2
n ≤ Sn +

n∑
i=1

aiui

where {Sn}n∈N is a non-decreasing sequence such that u2
1 ≤ S1. Then for all

n ≥ 1, it holds :
un ≤

n∑
i=1

ai +
√
Sn

Lemma B.0.5. Let C > 0 a positive real number, α ∈ (0, 1) and {un}n∈N,
{zn}n∈N two non-negative sequences, such that for all n ∈ N∗ it holds

un ≤ C + znu
α
n (B.10)

Then for all n ∈ N∗ it holds:

un ≤ 2 max{C, (2αzn)
1

1−α} (B.11)

Proof. Let n ∈ N∗. We split the proof in two cases:

• Firstly we suppose that un ≥ (2zn)
1

1−α .

Since un ≥ (2zn)
1

1−α , we have that 1 − znu
α−1
n ≥ 1

2 , hence by using
relation (B.10), we find:

1
2un ≤ un

(
1− znuα−1

n

)
≤ C

so that un ≤ 2C.

• If un ≤ (2zn)
1

1−α the result holds trivially.

Next, we give a basic characterization property (optimality condition) for
the operator Tγ, as defined in (3.6):

Lemma B.0.6. Let γ > 0 and F = f + g as in (M). Let x ∈ H. Then
p = Tγ(x) = Proxγg

(
x− γ∇f(x)

)
if and only if :

∇f(x) + ∂g(p) 3 1
γ

(
x− p

)
(B.12)
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Next we give a basic descent-type lemma for a function F , concerning the
operator Tγ(x) defined in (3.6) (see also Lemma 2.2 in [BT09] or Lemma 1,
in [CD15]). This will play a fundamental role on the Lyapunov analysis for
both of Chapters 3 and 4.

Lemma B.0.7. Let γ > 0 and F = f + g with f convex, differentiable
function with L-Lipschitz gradient and g ∈ Γ0(H). For every (x, y) ∈ H and
Tγ(y) = Proxγg

(
y − γ∇f(y)

)
, we have that:

2γ
(
F (Tγ(y))−F (x)

)
≤ ‖y−x‖2−‖Tγ(y)−x‖2+

(
γL−1

)
‖Tγ(y)−y‖2 (B.13)

Proof. Using the fact that ∇f is L-Lipschitz, for all (z, y) ∈ (H)2, one can
obtain (see for example [Ber97] or [BC11]):

f(z) ≤ f(y) + 〈∇f(y), z − y〉+ L

2 ‖z − y‖
2 (B.14)

which -by adding g(z) on both sides- is equivalent to :

F (z) ≤ f(y) + g(z) + 〈∇f(y), z − y〉+ L

2 ‖z − y‖
2 (B.15)

Letting z = Tγ(y) and subtracting F (x) on both sides, for all (x, y) ∈ H2 we
have:

F (Tγ(y))− F (x) ≤ f(y)− f(x) + g(Tγ(y))− g(x) + 〈∇f(y), Tγ(y)− y〉

+ L

2 ‖Tγ(y)− y‖2

(B.16)
By using the convexity of f and g, we have :

F (Tγ(y))− F (x) ≤ 〈∇f(y) + ∂g(Tγ(y)), Tγ(y)− x〉+ L

2 ‖Tγ(y)− y‖2

= 1
γ
〈y − Tγ(y), Tγ(y)− x〉+ L

2 ‖Tγ(y)− y‖2

= 1
2γ
(
‖y − x‖2 − ‖Tγ(y)− x‖2

)
+
(L

2 −
1

2γ
)
‖Tγ(y)− y‖2

(B.17)
where in the first equality we used the characterization (B.0.6) of the operator
Tγ and in the second equality Pythagoras identity:

〈y− Tγ(y), Tγ(y)− x〉 = 1
2
(
‖y− x‖2−‖Tγ(y)− x‖2−‖Tγ(y)− y‖2

)
(B.18)

By multiplying the last relation by 2γ we obtain (B.13).
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Remark 20. By choosing γ ≤ 1
L
in Lemma B.0.7, it is direct that from relation

(B.13) we obtain :

2γ(F (Tγ(y))− F (x)) ≤ ‖y − x‖2 − ‖Tγ(y)− x‖2 ,∀(x, y) ∈ H2 (B.19)

By using the previous Lemma, we are able to deduce the following descent
property for a sequence generated by the i-FB Algorithm 7.

Lemma B.0.8. Let γ > 0 and F = f + g with f convex, differentiable
function with L-Lipschitz gradient and g ∈ Γ0(H) and x∗ ∈ arg minF . Let
also {xn}n≥1 be the sequence generated by the i-FB Algorithm 7. Then the
energy-sequence Un = F (xn)− F (x∗) + ‖xn−xn−1‖2

2γ is non-increasing.

Proof. It suffices to apply relation (B.19) of Lemma B.0.7, with γ 6 1
L
,

y = yn and x = xn, in order to find:

F (xn+1)− F (xn) 6 α2
n‖xn − xn−1‖2 − ‖xn+1 − xn‖2 (B.20)

By adding and subtracting F (x∗) in the left side (B.20) and rearranging the
terms we find:

F (xn+1)− F (x∗) + ‖xn+1 − xn‖2

2γ 6 F (xn)− F (x∗) + ‖xn − xn−1‖2

2γ

− (1− α2
n)‖xn − xn−1‖2

2γ
(B.21)

Since αn = n
n+b ≤ 1, for all n ≥ 1 , from (B.21), we deduce that Un+1 6 Un,

which concludes the proof.

B.1 Proof of Lemmas in Chapter 3
Here we give the proofs of the Lemmas used in Chapter 3. For the sake of
readability we recall the statements of the Lemmas.

Lemma B.1.1. (Lemma 3.3.1). Let F be a function defined as in problem
(M). Let also b > 0, {xn}n∈N the sequence generated by i-FB algorithm 7
and 0 ≤ λ ≤ b + 1 and En as defined in 3.34. Then the following recursive
formulas hold true for all n ≥ 1 :

1. If ξ = λ(b− λ− 1) then :

2γ
(
En+1−En

)
≤ 2γ

(
A1(λ)tn+1−λ

)
wn+

(
A2(λ)tn+(λ+1−b)(1−b)

)
δn

(B.22)
where : A1(λ) = 2− λ and A2(λ) = λ+ 1− b.
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2. If ξ = λ(λ+ 1− b) then :

2γ
(
En+1−En

)
≤ 2γ c(λ)

tn
En+2γ

(
B1(λ)tn+1−λ

)
wn+B2(λ)δn+B3(λ)

tn
hn−1

(B.23)
where : c(λ) = 2(λ + 1 − b) , B1(λ) = (2b − 3λ) , B2(λ) = λ + 1 − b
and B3(λ) = 2λ(2λ+ 1− b)(b− λ− 1).

Proof. By applying Lemma (B.0.7) to y = yn and x =
(

1− λ
tn+1

)
xn+ λ

tn+1
x∗,

with γ ≤ 1
L
, we obtain ( here λ ∈ (0, 1 + b)):

2γ
(
F

((
1− λ

tn+1

)
xn + λ

tn+1
x∗
)
− F (xn+1)

)

≥ ‖xn+1 − xn + λ

tn+1
(xn − x∗)‖2 − ‖an(xn − xn−1) + λ

tn+1
(xn − x∗)‖2

(B.24)
By using the convexity of F we obtain :

2γ
[(

1− λ

tn+1

)
F (xn) + λ

tn+1
F (x∗)− F (xn+1)

]

≥ ‖xn+1 − xn + λ

tn+1
(xn − x∗)‖2 − ‖an(xn − xn−1) + λ

tn+1
(xn − x∗)‖2

(B.25)
By adding and subtracting 2γF (x∗) to the left-hand side and definition

of wn, we have :

2γ
[(

1− λ

tn+1

)
wn − wn+1

]
≥‖xn+1 − xn + λ

tn+1
(xn − x∗)‖2

− ‖an(xn − xn−1) + λ

tn+1
(xn − x∗)‖2

(B.26)
By multiplying both sides by t2n+1, we obtain :

2γ
(

(t2n+1 − λtn+1)wn − t2n+1wn+1

)
≥‖tn+1(xn+1 − xn) + λ(xn − x∗)‖2

− ‖n(xn − xn−1) + λ(xn − x∗)‖2

(B.27)
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By adding and subtracting 2γt2nwn to the left-hand side we obtain :

2γ
(
kn+1wn + t2nwn − t2n+1wn+1

)
≥‖tn+1(xn+1 − xn) + λ(xn − x∗)‖2︸ ︷︷ ︸

=vn+1

− ‖n(xn − xn−1) + λ(xn − x∗)‖2

(B.28)
where

kn+1 = t2n+1 − λtn+1 − t2n = (n+ b)2 − λ(n+ b)− (n+ b− 1)2

= n2 + 2bn+ b2 − λn− λb− n2 − 2(b− 1)n− b2 + 2b− 1
= (2− λ)(n+ b)− 1

(B.29)

so that :

2γ(t2n+1wn+1−t2nwn) ≤ 2γkn+1wn+‖n(xn−xn−1)+λ(xn−x∗)‖2−vn+1 (B.30)

Hence by using the last inequality and the identity

‖u− z‖2 − ‖v − z‖2 = ‖u− v‖2 + 2〈u− v, v − z〉 ∀u, v, z ∈ H (B.31)

and the definition of En we have that :
2γ(En+1 − En) = 2γ(t2n+1wn+1 − t2nwn) + vn+1 − vn

+ ξ
(
‖xn − x∗‖2 − ‖xn−1 − x∗‖2

)
(B.30) ≤ 2γkn+1wn + ‖n(xn − xn−1) + λ(xn − x∗)‖2

− ‖tn(xn − xn−1) + λ(xn−1 − x∗)‖2

+ ξ
(
‖xn − x∗‖2 − ‖xn−1 − x∗‖2

)
(
(B.31)z = λx∗

)
= 2γkn+1wn + (λ+ 1− b)2‖xn − xn−1‖2

+ 2(λ+ 1− b)〈xn − xn−1, tn(xn − xn−1) + λ(xn−1 − x∗)〉(
(B.31)z = x∗

)
+ ξ‖xn − xn−1‖2 + 2ξ〈xn − xn−1, xn−1 − x∗〉

= 2γkn+1wn +
(

(λ+ 1− b)2 + ξ + 2(λ+ 1− b)tn
)
‖xn − xn−1‖2

+ 2
(
λ(λ+ 1− b) + ξ

)
〈xn − xn−1, xn−1 − x∗〉

(B.32)
Hence by choosing ξ = λ(b−λ−1) in (B.32), and the definitions of kn+1 and
tn, we find :

2γ(En+1−En) ≤ 2γ
(
(2−λ)tn+1−λ

)
wn+

(
2(λ+1−b)tn+(λ+1−b)(1−b)

)
δn

(B.33)
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which concludes the second point (3.40) of Lemma 3.3.1.
For the first point, by definition of En, we also have:

2γEn = 2γt2nwn+(λ2+ξ)‖xn−1−x∗‖2+t2n‖xn−xn−1‖2+2λtn〈xn−xn−1, xn−1−x∗〉
(B.34)

so that

tn‖xn−xn−1‖2 = 2γ
tn
En−2γtnwn−

(λ2 + ξ)
tn

‖xn−1−x∗‖2−2λ〈xn−xn−1, xn−1−x∗〉
(B.35)

By injecting this last equality into (B.32), we find:

2γ(En+1 − En) ≤ 2γ
(
kn+1 − 2(λ+ 1− b)tn

)
wn +

(
(λ+ 1− b)2 + ξ

)
‖xn − xn−1‖2

− 2(λ+ 1− b)(λ2 + ξ)
tn

‖xn−1 − x∗‖2 + 2γ 2(λ+ 1− b)
tn

En

+ 2
(
ξ − λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉

(B.36)
By choosing ξ = λ(λ+ 1− b) ( here λ ≥ b− 1), we obtain :

2γ(En+1 − En) ≤ 2γ
(
kn+1 − 2(λ+ 1− b)tn

)
wn

+ (λ+ 1− b)(2λ+ 1− b)‖xn − xn−1‖2 + 2γ 2(λ+ 1− b)
tn

En

− 2λ(λ+ 1− b)(2λ+ 1− b)
tn

‖xn−1 − x∗‖2

(B.37)
By definition of kn+1 (B.69), we obtain :

2γ(En+1 − En) ≤ 2γ
(
(2− λ)(n+ b)− 1− 2(λ+ 1− b)tn

)
wn

+ (λ+ 1− b)(2λ+ 1− b)‖xn − xn−1‖2 + 2γ 2(λ+ 1− b)
tn

En

− 2λ(λ+ 1− b)(2λ+ 1− b)
tn

‖xn−1 − x∗‖2

= 2γ
(
(2b− 3λ)tn + 1− λ

)
wn

+ (λ+ 1− b)(2λ+ 1− b)‖xn − xn−1‖2 + 2γ 2(λ+ 1− b)
tn

En

− 2λ(λ+ 1− b)(2λ+ 1− b)
tn

‖xn−1 − x∗‖2

(B.38)
which allows to conclude the first point (3.39) and the proof of Lemma 3.3.2.
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Lemma B.1.2. (Lemma 3.3.2). Let F be a function as defined in problem
(M). Let also 0 < γ ≤ 1

L
, b ∈ (0, 3) and {xn}n∈N the sequence generated by

i-FB and En as defined in (3.34) with λ = 2b
3 , ξ = 2b(3−b)

9 . Then the following
recursive formula holds for all n ≥ 1 :

En+1 − En ≤
(

a

(n+ b− 1)2 + c

(n+ b− 1)

)
En (B.39)

where a = (3−b)(3+b)
9 and c = 2(3−b)

3 .

Proof. By choosing λ = 2b
3 in (3.39) of Lemma 3.3.1, we find :

2γ(En+1 − En) ≤ 2γ (3− 2b)
3 wn + (3− b)(3 + b)

9 ‖xn − xn−1‖2

− 22b(3− b)(3 + b)
27tn

‖xn−1 − x∗‖2 + 2γ 2(3− b)
3(n+ b− 1)En

(B.40)
In this point, firstly we express the term ‖xn− xn−1‖2 with the aid of En

and wn and then we regroup the different terms.
From the convex inequality

‖α‖2 ≤ 2‖α + β‖2 + 2‖β‖2 ,∀α, β ∈ H

and the definition of En, we have ( for α = tn(xn−xn−1) and β = λ(xn−1−x∗))
we find :

2γEn ≥ 2γt2nwn + t2n
2 ‖xn − xn−1‖2 + (ξ − λ2)‖xn−1 − x∗‖2

(ξ = λ(λ+ 1− b)) = 2γt2nwn + t2n
2 ‖xn − xn−1‖2 − λ(b− 1)‖xn−1 − x∗‖2

(B.41)
Therefore, we obtain :

‖xn − xn−1‖2 ≤ 2γ 2
t2n
En − 4γwn + 2λ(b− 1)

t2n
‖xn−1 − x∗‖2 (B.42)

By injecting the inequality (B.42) into (B.36), we obtain :

2γ(En+1 − En) ≤ 2γ
(

3− 2b
3 − 2(3− b)(3 + b)

9

)
wn

+ 22b(3− b)(3 + b)
27

(
b− 1
t2n
− 1
tn

)
‖xn−1 − x∗‖2

+ 2γ 2(3− b)(3 + b)
9t2n

En + 2γ 2(3− b)
3(n+ b− 1)En

(B.43)
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Therefore we have :

2γ(En+1 − En) ≤ 2γ (2b2 − 6b− 9)
9 wn −

2b(3− b)(b+ 3)n
27(n+ b− 1)2 ‖xn−1 − x∗‖2

+ 2γ 2(3− b)(b+ 3)
9(n+ b− 1)2 En + 2γ 2(3− b)

3(n+ b− 1)En

= 2γB1wn −B2n
‖xn−1 − x∗‖2

(n+ b− 1)2 + 2γa
(n+ b− 1)2En

+ 2γc
n+ b− 1En

(B.44)
where :

B1 = 2b2 − 6b− 9
9 < 0 ,∀b ∈ (0, 3)

B2 = 2b(3− b)(b+ 3)
27 > 0 , ∀b ∈ (0, 3)

a = 2(3− b)(b+ 3)
9 > 0 ,∀b ∈ (0, 3)

c = 2(3− b)
3 > 0 , ∀b ∈ (0, 3)

Hence it follows that for all n ≥ 1 :

En+1 − En ≤
a

(n+ b− 1)2En + c

(n+ b− 1)En (B.45)

which concludes the proof of Lemma 3.3.2, with a = 2(3−b)(b+3)
9 and c =

2(3−b)
3 .

Lemma B.1.3. (Lemma 3.3.3). Let F be a function as defined in problem
(M). Let also 0 < γ ≤ 1

L
, b ∈ (0, 3) and {xn}n∈N the sequence generated by

i-FB and En as defined in (3.34) with λ = 2b
3 , ξ = 2b(3−b)

9 . Then the following
recursive formula holds for all n ≥ 1 :

En ≤ C(n+ b− 1)
2(3−b)

3 (B.46)

for a suitable positive constant C.

Proof. From Lemma 3.3.2, without loss of generality we can suppose that for
a suitable n0 ∈ N, for all n > n0, we have:

En+1 − En ≤
a

(n+ b− 1)2En + c

(n+ b− 1)En (B.47)
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with a = 4A and c = 2− 2bβ
β+2 . Equivalently:

En+1 ≤
(

1 + c

tn
+ a

t2n

)
En (B.48)

Hence by a recurrence argument, for all n > n0 we find:

En ≤ En0

n−1∏
i=n0

(
1 + c

ti
+ a

t2i

)
(B.49)

Thus, by applying Lemma B.0.3, we can conclude that there exists some
n0 ∈ N and a positive constant C > 0, such that for all n > n0 we have:
En ≤ Cnc, as expected.

Next we give a basic descent-type lemma adapted to the inexact FB
algorithm 8 with the presence of perturbation errors, which is used in Section
3.4. The proof of this Lemma follows the one in [AD15].

Lemma B.1.4. (Lemma 3.4.2). Let ε > 0, e ∈ H and γ ≤ 1
L
. For all

(x, y) ∈ H2 and T εe (y) ≈εj Proxγg
(
y − γ(∇f(y) + e)

)
, for j ∈ {1, 2} as

defined in inexact i-FB algorithm 8, we have :

2γ
(
F (T εe (y))−F (x)

)
≤ +2γε+2〈γe+r, x−T εe (y)〉+‖y−x‖2−‖T εe (y)−x‖2

(B.50)
where r ∈ H such that ‖r‖ ≤

√
2γε

Proof. By following the same lines of the proof of Lemma B.0.7 (see in par-
ticular the first line of (B.17)) and using the definition of the ε-subdifferential
of g (Definition 3.66), for all (x, y) ∈ H, we find:

F (T εe (y))− F (x) ≤ 〈∇f(y) + ∂εg(T εe (y)), T εe (y)− x〉+ ε+ L

2 ‖T
ε
e (y)− y‖2

(B.51)
By definition of T εe (y) ≈εj Proxγg

(
y − γ(∇f(y) + e)

)
, with j ∈ {1, 2}, we

have from Lemma 3.4.1 that there exists r with ‖r‖ ≤
√

2γε and:

− e− T εe (y) + r − y
γ

∈ ∇f(y) + ∂εg(T εe (y)) (B.52)

Thus, by injecting (B.52), into (B.51), for all (x, y) ∈ H2 we have that :

F (T εe (y))− F (x) ≤ 〈y − T εe (y), T εe (y)− x〉+ ε+ L

2 ‖T
ε
e (y)− y‖2

+ 〈e+ r

γ
, T εe (y)− x〉

(B.53)
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The result of the Lemma follows from the fact that γ ≤ 1
L

and using the
following basic equality :

2〈y − T εe (y), x− T εe (y)〉+ ‖T εe (y)− y‖2 = ‖y − x‖2 − ‖T εe (y)− x‖2 (B.54)

B.2 Proofs of Lemmas in Chapter 4
First we give a basic descent-type lemma for the function F , similar to Lemma
B.0.7 in the case of i-GD algorithm 11 concerning the operator Tγ(x) :=
x− γF (x) with a function F that verifies H(β), β ≥ 1.

Lemma B.2.1. Let γ > 0 and F satisfying H(β) with β > 1. For all y ∈ H
and x∗ ∈ X∗ it holds:

2γ
(
F (Tγ(y))−F (x∗)

)
6

1
β

(
‖y−x∗‖2−‖Tγ(y)−x∗‖2

)
+
(
γL+ 1

β
−2
)
‖Tγ(y)−y‖2

(B.55)

Proof. In fact by proceeding exactly in the same way as in proof of Lemma
B.0.7, with g = 0, we find :

F (Tγ(y))−F (x∗) 6 F (y)−F (x∗)+〈∇F (y), Tγ(y)−y〉+L2 ‖Tγ(y)−y‖2 (B.56)

By using hypothesis H(β) we obtain:

F (Tγ(y))−F (x∗) 6 1
β
〈∇F (y), y−x∗〉+ 〈∇F (y), Tγ(y)− y〉+ L

2 ‖Tγ(y)− y‖2

(B.57)
By using that γ∇F (y) = y − Tγ(y) and Pythagoras identity, we have:

F (Tγ(y))− F (x∗) 6 1
βγ
〈y − Tγ(y), Tγ(y)− x∗〉+

(L
2 −

1
γ

)
‖Tγ(y)− y‖2

= 1
2βγ

(
‖y − x∗‖2 − ‖Tγ(y)− x∗‖2

)
+
(L

2 −
1
γ

+ 1
2βγ

)
‖Tγ(y)− y‖2

(B.58)
By multiplying the last inequality by 2γ, we conclude the second point

(B.55) of Lemma B.0.7.



155 B.2. Proofs of Lemmas in Chapter 4

Remark 21. By choosing γ 6 1
L
in Lemma B.0.7, it is direct that from relation

(B.55) we obtain :

2γ
(
F (Tγ(y))−F (x∗)

)
6

1
β

(
‖y−x∗‖2−‖Tγ(y)−x∗‖2

)
,∀y ∈ H and x∗ ∈ X∗

(B.59)
Next we give the proofs of the Lemmas used for the Lyapunov analysis

and energy En as defined in Chapter 4. As before, for the sake of readability
we recall the statements of the Lemmas.

Lemma B.2.2. (Lemma 4.6.1). Assume that the condition H(β) is in force
with β ≥ 1 and let 0 < γ ≤ 1

L
and {xn}n∈N the sequence generated by the

i-GD algorithm (11) and En as defined in (4.50). Then for all λ ≥ 0 and
ξ = λ(λ+1− b) in the definition of En, the following recursive formula holds
for all n ≥ 1:

2γ(En+1 − En) ≤ 2γ c(λ)
tn

En + 2γ
(
A1(λ)tn + 1− 2λβ(λ+ 1− b)

)
wn

+ A2(λ)δn + A3(λ)
tn

hn−1

(B.60)
where:

c(λ) = 2(λ+ 1− b), A1(λ) = 2b− (β + 2)λ, A2(λ) = (2λ+ 1− b)(1− b)
A3(λ) = −2λ(λ+ 1− b)(2λ+ 1− b)

Proof. For this proof we will frequently make use of the following basic iden-
tity:

‖u− z‖2 − ‖v − z‖2 = ‖u− v‖2 + 2〈u− v, v − z〉 ∀u, v, z ∈ H (B.61)

Firstly, by applying (B.59) of Lemma (B.0.7) with γ ≤ 1
L

and y = yn,
x = x∗ we obtain:

2γ
(
F (xn+1)−F (x∗)

)
≤ 1
β

(
‖xn+αn(xn−xn−1)−x∗‖2−‖xn+1−x∗‖2

)
(B.62)

which by multiplying by λβtn+1 > 0, developing the term ‖xn + αn(xn −
xn−1)− x∗‖2, is equivalent to:

2γλβtn+1wn+1 ≤ λtn+1
(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

)
+ 2λn〈xn − xn−1, xn − x∗〉

+ λtn+1αn‖xn − xn−1‖2

(B.63)
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Since αn = n
n+b = n

tn+1
, by using the definitions of wn, δn and hn, we find:

2γλβtn+1wn+1 ≤ λtn+1
(
hn − hn+1

)
+ 2λn〈xn − xn−1, xn − x∗〉+ λn2

tn+1
δn

(B.61) = −λtn+1δn+1 + λn2

tn+1
δn

+ 2λn〈xn − xn−1, xn − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉
(B.64)

On the other hand, by applying (B.13) of Lemma B.0.7, with γ ≤ 1
L
and

y = yn, x = xn we obtain:

2γ
(
F (xn+1)− F (xn)

)
≤ α2

n‖xn − xn−1‖2 − ‖xn+1 − xn‖2 (B.65)

By adding and subtracting F (x∗) on the left side and multiplying by t2n+1
on both sides, we find:

2γt2n+1

(
wn+1 − wn

)
≤ n2δn − t2n+1δn+1 (B.66)

By adding relation (B.64) to relation (B.66), we obtain:

2γ
(
(t2n+1 + λβtn+1)wn+1 − t2n+1wn

)
≤ −

(
t2n+1 + λtn+1

)
δn+1 +

(
n2 + λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn − x∗〉
− 2λtn+1〈xn+1 − xn, xn − x∗〉

(B.67)
which -by adding and subtracting 2γ

(
t2n+λβtn

)
wn on both sides- is equivalent

to:

2γ
(
(t2n+1+λβtn+1)wn+1 − (t2n + λβtn)wn

)
≤ 2γkn+1wn −

(
t2n+1 + λtn+1

)
δn+1 +

(
n2 + λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉

= 2γkn+1wn −
(
t2n+1 + λtn+1

)
δn+1 +

(
n2 + 2λn+ λn2

tn+1

)
δn

+ 2λn〈xn − xn−1, xn−1 − x∗〉 − 2λtn+1〈xn+1 − xn, xn − x∗〉
(B.68)

where :

kn+1 = t2n+1 − λβtn − t2n = (n+ b)2 − λβ(n+ b− 1)− (n+ b− 1)2

= (2− λβ)(n+ b− 1) + 1 = (2− λβ)tn + 1
(B.69)
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In addition, by developing the squares in the definition of vn+1 and vn,
we have:
vn+1 − vn = ‖tn+1(xn+1 − xn) + λ(xn − x∗)‖2 − ‖tn(xn − xn−1) + λ(xn−1 − x∗)‖2

= t2n+1‖xn+1 − xn‖2 + 2λtn+1〈xn+1 − xn, xn − x∗〉+ λ2‖xn − x∗‖2

− t2n‖xn − xn−1‖2 − 2λtn〈xn − xn−1, xn−1 − x∗〉 − λ2‖xn−1 − x∗‖2

= t2n+1δn+1 − t2nδn + λ2
(
hn − hn−1

)
+ 2λtn+1〈xn+1 − xn, xn − x∗〉

− 2λtn〈xn − xn−1, xn−1 − x∗〉
(B.70)

By definition of En (3.34), inequality (B.68) and equality (B.70), we find:

2γ(En+1 − En) = 2γ
(
(t2n+1 + λβtn+1)wn+1 − (t2n + λβtn)wn

)
+ vn+1 − vn

+ ξ
(
hn − hn−1

)
+ λ

(
tn+1δn+1 − tnδn

)
(B.68), (B.70) ≤ 2γkn+1wn + (λ2 + ξ)

(
hn − hn−1

)
+
(
n2 − t2n + 2λn− λtn + λn2

tn+1

)
δn

+ 2λ
(
n− tn

)
〈xn − xn−1, xn−1 − x∗〉

(B.71)
By using (B.61) we have hn − hn−1 = δn + 〈xn − xn−1, xn−1 − x∗〉, hence by
(B.71), we find:

2γ(En+1 − En) ≤ 2γkn+1wn +
(
n2 − t2n + 2λn− λtn + λn2

tn+1
+ λ2 + ξ

)
δn

+ 2
(
λ2 + ξ + λn− λtn

)
〈xn − xn−1, xn−1 − x∗〉

(B.72)
Since tn = n + b− 1, by replacing n by tn + 1− b in (B.72) and performing
some standard calculus, we find:

2γ(En+1 − En) ≤ 2γkn+1wn + 2
(
ξ + λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉

+
(

2(λ+ 1− b)tn + (λ+ 1− b)2 + λ(1− 2b) + λb2

tn+1
+ ξ

)
δn

(
tn+1 > b

)
≤ 2γkn+1wn + 2

(
ξ + λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉

+
(

2(λ+ 1− b)tn + (λ+ 1− b)2 + λ(1− b) + ξ

)
δn

(B.73)



Appendix B. Appendix of Part II 158

By definition of En (3.34), we also have

2γEn = 2γ
(
t2n + λβtn

)
wn + (λ2 + ξ)hn−1 +

(
t2n + λtn

)
δn

+ 2λtn〈xn − xn−1, xn−1 − x∗〉
(B.74)

so that

tnδn = 2γ
tn
En − 2γ

(
tn + λβ

)
wn −

(λ2 + ξ)
tn

hn−1 − λδn

− 2λ〈xn − xn−1, xn−1 − x∗〉
(B.75)

By injecting the last equality into (B.73), we find:

2γ(En+1 − En) ≤ 2γ 2(λ+ 1− b)
tn

En + 2γ
(
kn+1 − 2(λ+ 1− b)(tn + λβ)

)
wn

+
(

(λ+ 1− b)2 + λ(1− b)− 2λ(λ+ 1− b)
)

+ ξ

)
δn

− 2(λ+ 1− b)(λ2 + ξ)
tn

hn−1

+ 2
(
ξ − λ(λ+ 1− b)

)
〈xn − xn−1, xn−1 − x∗〉

(B.76)
By choosing ξ = λ(λ+ 1− b), in (B.76), we obtain:

2γ(En+1 − En) ≤ 2γ
(
kn+1 − 2(λ+ 1− b)tn

)
wn + 2γ 2(λ+ 1− b)

tn
En

+
(

(2λ+ 1− b)(1− b)
)
δn −

2λ(λ+ 1− b)(2λ+ 1− b)
tn

hn−1

(B.69) = 2γ 2(λ+ 1− b)
tn

En

+ 2γ
((

2b− (β + 2)λ
)
tn + 1− 2λβ(λ+ 1− b)

)
wn

+
(

((2λ+ 1− b)(1− b)
)
δn −

2λ(λ+ 1− b)(2λ+ 1− b)
tn

hn−1

= 2γ c(λ)
tn

En + 2γ
(
A1(λ)tn + 1− 2λβ(λ+ 1− b)

)
wn + A2(λ)δn

+A3(λ)
tn

hn−1

(B.77)
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where: c(λ) = 2(λ+1−b), A1(λ) = 2b−(β+2)λ, A2(λ) = (2λ+1−b)(1−b),
and A3(λ) = −2λ(λ + 1 − b)(2λ + 1 − b), which concludes the proof of the
Lemma 4.6.1.

Lemma B.2.3. (Lemma 4.6.2) Let F : H → R be a convex differentiable
function with a L-Lipschitz continuous gradient for some L > 0 and satisfies
H(β) with β ≥ 1. Let also 0 < γ ≤ 1

L
and {xn}n∈N be the sequence generated

by Algorithm (11) and En as defined in (4.50), with one of the following
hypotheses in force:

i. b < 1 + 2
β

ii. b ≥ 1 + 2
β
and F admits a unique minimizer x∗ and satisfies L(2).

Then, for λ = 2b
β+2 and ξ = λ(λ+ 1− b) = 2bβ

(β+2)2

(
1 + 2

β
− b

)
in the definition

of the energy En, there exists some n0 ∈ N, such that for all n ≥ n0, the
following recursive formula holds true:

En+1 − En ≤
(

a

(n+ b− 1)2 + c

(n+ b− 1)

)
En (B.78)

for some constant a ≥ 0 and c = 2− 2bβ
β+2 .

In fact, the following estimate holds true asymptotically:

En = O
(
n2− 2bβ

β+2

)
(B.79)

Proof. Firstly we suppose that b ≤ 1 + 2
β
.

Setting λ = 2b
β+2 > 0, in the inequality (4.61) of Lemma 4.6.1, we find:

2γ(En+1 − En) ≤ 2γ c
tn
En + 2γA′1wn + A2δn + A3

tn
hn−1 (B.80)

where c = 2(λ+ 1− b) = 2− 2bβ
β+2 and

A′1 = 1− 2βλ(λ+ 1− b) = 1− 4bβ
β + 2

(
1− bβ

β + 2

)

A2 = (2λ+ 1− b)(1− b) = β − 2
β + 2b

2 − 2β
β + 2b+ 1 = (b− 1)

(
β − 2
β + 2b− 1

)

and A3 = −2λ(λ+ 1− b)(2λ+ 1− b) = − 2b
β + 2

(
1− bβ

β + 2

)(
1− (β − 2)b

β + 2

)
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Here we point out that in the case where b ≤ 1 + 2
β
the constant A1 is

non-negative while A2 may be positive or negative, and A3 ≤ 0.
Without loss of generality we can suppose that the constant A2 is non-

negative. Denoting by A = max{A′1, A2} > 0, from (B.80), we obtain:

2γ(En+1 − En) ≤ 2γ c
tn
En + 2γAwn + Aδn + A3

tn
hn−1 (B.81)

In this point, firstly we express the term δn with the aid of En and wn
and then we regroup the different terms.

By relation (4.53), for ξ = λ(λ+ 1− b) we find:

2γEn > 2γt2nwn + t2n
2 δn − λ(b− 1)hn−1 (B.82)

Hence we have that:

δn ≤ 4γEn
t2n
− 4γwn + 2λ(b− 1)

t2n
hn−1 (B.83)

By injecting inequality (B.83) into (B.81), for all n > 1 we find:

2γ(En+1 − En) ≤ 2γ
(
A− 2A

)
wn + 2γ c

tn
En + 2γ 2A

t2n
En

+
(

4b(b− 1)A
(β + 2)tn

+ A3

)
hn−1

tn

≤ 2γ c
tn
En + 2γ 2A

t2n
En +

(
4b(b− 1)A
(β + 2)tn

+ A3

)
hn−1

tn

(B.84)

In this point we consider the two cases depending on the value of the
parameter b.

Firstly we suppose that b < 1 + 2
β
. In this case A3 < 0, therefore, for

n ∈ N large enough we have that :

2b(b− 1)A
(β + 2)tn

+ A3 ≤ 0 (B.85)

Hence by (B.84) we obtain:

2γ(En+1 − En) ≤ 2γ
(
c

tn
+ a

t2n

)
En

which concludes the proof of the first case (b < 1 + 2
β
) of Lemma 3.3.2 with

a = 2A and c = 2− 2bβ
β+2 .
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For the second case we suppose that b > 1 + 2
β
and F satisfies L(p) with

p = 2.
Remark that in this case (b > 1 + 2

β
), by letting λ = 2b

β+2 , the constant
A3 is eventually non-negative. In fact, if β > 2 and 1 + 2

β
≤ b ≤ β+2

β−2 ,
then A3 > 0. Here without loss of generality we suppose that A3 > 0 (the
case A3 ≤ 0 can be treated exactly in the same way as before in the case
b ≤ 1 + 2

β
).

In particular, by using the inequality ‖u− v‖2 ≤ 2‖u− z‖2 + 2‖v − z‖2,
for u = xn−1, v = x∗ and z = xn, in (B.81) we find:

2γ(En+1 − En) ≤ 2γAwn + 2γ c
tn
En +

(
A+ 2A3

tn

)
‖xn − xn−1‖2 + 2A3

tn
‖xn − x∗‖2

≤ 2γAwn + 2γ c
tn
En + 2Aδn + 2A3

tn
‖xn − x∗‖2

(B.86)
By using again the inequality ‖u − v‖2 ≤ 2‖u − z‖2 + 2‖v − z‖2, with

u = xn−1, v = x∗ and z = xn, in (4.53) we find:

2γEn > 2γ
(
t2n + λβtn

)
wn + t2n

(
1
2 + λ

tn
− 2λ(b− 1)

t2n

)
δn − 2λ(b− 1)hn

> 2γt2nwn + t2n
2 δn − 2λ(b− 1)‖xn − x∗‖2

(B.87)
Hence for n ∈ N large enough we have

δn ≤ 4γEn
t2n
− 4γwn + 4λ(b− 1)

t2n
‖xn − x∗‖2 (B.88)

By injecting the last inequality (B.88) into (B.86) we find:

2γ(En+1 − En) ≤ 2γ
(
A− 4A

)
wn + 2γ c

tn
En + 2γ 4A

t2n
En

+ 2
(

8b(b− 1)A
(β + 2)tn

+ A3

)
‖xn − x∗‖2

tn

(B.89)

By using Hypothesis L(p) with p = 2 and the uniqueness of the minimizer
in inequality (B.89), we find:

2γ(En+1 − En) ≤ 2γ c
tn
En + 2γ 2(β + 2)A

t2n
En

+
(

2K−1
2

(8b(b− 1)A
(β + 2)t2n

+ A3

tn

)
− 6γA

)
wn

(B.90)
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Therefore, for n ∈ N large enough we have:

2K−1
2

(8b(b− 1)A
(β + 2)t2n

+ A3

tn

)
− 6γA ≤ 0

which permits to conclude the proof of Lemma 3.3.2 with a = 4A and c =
2− 2bβ

β+2 .

Lemma B.2.4. (Lemma 4.6.3). Let F : H → R be a convex differentiable
function with a L-Lipschitz continuous gradient for some L > 0. Let 0 <
γ ≤ 1

L
and {xn}n∈N be the sequence generated by Algorithm (11) and En as

defined in (4.50).
Assume that F satisfies H(β) and L(p) with p > β > 2. Let λ = 2

β−2

and ξ = λ(λ + 1 − b) = 2
β−2

(
β
β−2 − b

)
in the definition of the energy En.

If b > β+2
β−2 , then there exist n0 ∈ N and some constant C > 0 such that the

following recursive formula holds true for all n > n0:

2γ
(
En+1 − En

)
≤ 2γ

(
− 4
β − 2 + C

tn

)
En
tn

+ C

t2n
hn−1. (B.91)

Proof. By letting λ = 2
β−2 in (4.61) of Lemma 4.6.1, we find:

2γ
(
En+1 − En

)
≤ 2γ

(
2
( β

β − 2 − b
))En

tn
+ 2γ

(
B1tn + 1− 4β

β − 2
( β

β − 2 − b
))
wn

+B2‖xn − xn−1‖2 + B3

tn
‖xn−1 − x∗‖2

(B.92)
where:

B1 =
(
2b− (β + 2)λ

)
= 2

(
b− β + 2

β − 2

)

B2 = (2λ+ 1− b)(1− b) = (b− 1)(b− β + 2
β − 2)

and B3 = −2λ(λ+ 1− b)(2λ+ 1− b) = − 4
β − 2

(
b− β + 2

β − 2

)(
b− β

β − 2

)

By definition of En (3.34) we have:

2γEn = 2γ
(
t2n + λβtn

)
wn + vn + λtnδn + λ(λ+ 1− b)hn−1 (B.93)

where λ = 2
β−2 .
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Hence by definition of B1 and B3 and relation (B.93), we find:

2γB1tnwn + B3

tn
hn−1 = 2γB1En

tn
− 2γλβB1wn − λB1δn −B1

vn
tn

(B.94)

By injecting the last inequality (B.94) into (B.92) and omitting the non-
positive term −B1

vn
tn
, we find:

2γ
(
En+1 − En

)
≤ −2γ d

tn
En + 2γB′1wn +B′2δn (B.95)

where

d = 4
β − 2 , B′1 = 1− 4β

β − 2
( β

β − 2 − b
)
− λβB1 =

(
β + 2
β − 2

)2

and

B′2 = B2 − λB1 =
(
b− β + 2

β − 2

)2

By choosing B′ = max
{
B′1, B

′
2

}
, from (B.95) we infer that:

2γ
(
En+1 − En

)
≤ −2γ d

tn
En + 2γB′wn +B′δn (B.96)

By relation (4.53) (recall that λ = 2
β−2 and ξ = λ(λ + 1− b)), for n ∈ N

large enough, we have that:

δn ≤ 4γEn
t2n
− 4γwn + 2λ(b− 1)

t2n
hn−1 (B.97)

Hence by injecting (B.97) into (B.96) we obtain:

2γ
(
En+1 − En

)
≤ −2γ d

tn
En + 2γ 2B′

t2n
En − 2γB′wn + 4(b− 1)B′hn−1

(β − 2)t2n
≤ −2γ d

tn
En + 2γC

t2n
En + Chn−1

t2n
(B.98)

which concludes the proof of Lemma 4.6.3 with C = max{2B′, 4(b−1)B′
β−2 } > 0.





Conclusion and Perspectives

In this Thesis we presented a full analysis on the convergence properties
of the family of Nesterov type inertial Forward-Backward Algorithms 7, for
solving composite convex (non-smooth) minimization problems. We gave a
unified presentation of the acceleration effects of the inertial Algorithm 7
and completed the palette of its convergence properties in the subcritical
case, when the over-relaxation parameter b satisfies b ≤ 3. We additionally
extended these results for the inexact version of the inertial FB algorithm 8,
in the presence of perturbation errors.

Our approach followed a continuous to discrete path, which is revealed
very practical and useful in the analysis. In particular we presented the
study of the continuous system (1.18) (or (DI)), which can be associated to
the inertial scheme 11 (or 7 in the non-differential case) with a particular
finite difference scheme. We extended the known results concerning the dif-
ferential equation (1.18), for the differential inclusion (DI), linked with the
minimization of a non smooth convex functions.

The last years these continuous to discrete approaches are highly emerg-
ing in the field of optimization. Standard Lyapunov techniques for dynami-
cal systems are transposed to their discrete counterparts, in order to offer a
better understanding and an additional insight on the associated numerical
algorithms. Nevertheless the passage from continuous dynamical systems to
discrete schemes is not direct and must be treated in a delicate way every
time. These observations rise up an increased interest on the different con-
tacts between Optimization and other domains such as Numerical analysis.
Notice for example, that in the current Thesis we only treated one possible
discretization scheme for the differential equation/inclusion (1.18) (or (DI)).
Other choices are possible and can lead to other optimal schemes. Remark
for example, that even if all the convergence rates obtained for a solution of
the continuous systems (1.18) and (DI) are proven to be optimal, this opti-
mality is not yet proved for the corresponding rates obtained by the i-GD
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Algorithm 11 (or 7). In this type of questions, it is possible that other choices
of discretization of (1.18) or (DI) might suit better, compared to Algorithm
11 (or 7) used here. In these types of questions and results, the step-size
of the algorithm, linked with the time step-parameter of the associated dis-
cretized dynamical system, may play a central role, which has to be taken in
consideration.

Finally, in the last Chapter we presented the convergence properties of
the inertial Gradient-Descent algorithm 11, in the context of smooth convex
optimization, under some additional hypotheses on the local geometry on
the minimizing function F . As we mentioned in the introduction of Chapter
4, classical additional assumptions often met in practice, are the growth
condition L(p), or Łojasiewicz gradient inequality (see Definition 4.2), which
-roughly speaking- express the level of sharpness of the minimizing function
near its minimizers. These types of conditions can render classical descent
schemes, such as Gradient Descent algorithm, very efficient, according to the
local sharpness of the minimizing function.

In our context, we showed that apart from growth-type conditions such
as L(p), one should also exploit a flatness type condition such as H(β), in
order to get competitive rates for inertial schemes such as the i-GD Algo-
rithm 11. We believe that this study opens the way for further extensions in
more general settings, and deeper investigation between the interplay of the
geometrical hypotheses H(β) and L(p) and the efficiency of inertial schemes
similar to Algorithm 11. For example, extending the analysis on a non-
smooth convex composite setting as the one considered in Chapter 3, or even
in a non-convex one for functions that are satisfying H(β) with β > 0 and
L(p), are some possible future perspectives of a great interest. Another in-
teresting question concerns the comparison between inertial schemes such as
Algorithm 11 and descent methods, depending on the local geometric pa-
rameters β and p. According to Theorems 4.5.1 and 4.5.2, it seems that for
sharp geometries (at least as sharp as a quadratic function) descent schemes
perform better (linear convergence rates), than the inertial scheme 11, which
gives arbitrarily large, but sub-linear rates, depending on the over-relaxation
parameter b. Whereas for functions with a more flat behavior the inertia
turns out to accelerate the convergence rates. Of course in order to make
such comparisons in a rigorous way, one shall also have knowledge of the exact
dependence of the different constants of the "big Ohs" on the parameters of
the algorithm, such as the step size, as also the over-relaxation parameter b.
Since the proofs of Theorems 4.5.1 and 4.5.2 utilize asymptotic-equivalences
arguments, this dependency is not easy to be precisely expressed and it con-
stitutes a challenging question for future studies.
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